THE ENGINEER.

VISITS IN THE PROVINCES.

MESSRS. FRANCIS AND CO'S CEMENT WORKS, OLIFFE,
IT may be said that so many books and papers have been published on cement and cement testing during the past few years that there cannot be much more to be said
on these subjects. We propose , however, to describe the on these subjects. We propose, however, to describe the
practical manufacture of cement as carried on at a large practical manufacture of cement as carried on at a large
works. We recently visited the extensive works of Messrs. works. We recently visited the extensive works of Messrs.
Francis and Co. at Cliffe, over which we were conducted Francis and Co. at Cliffé, over which we were condinter,
by Mr. V. D. de Michéle, Assoc. M.I.C.E., Westminster, the engineer of the works. A greater quantity of cement is made in Kent than in any other district in the world. The manufacture is carried on on the banks of the rivers Thames and Medway, where abundant supplies of the necessary raw materials are found in close proximity, and
where the conditions for economic working are very where the conditions for economic working are very
favourable, both as regards making and distribution, comfavourable, both as regards making and disith London and its docks by river being easy, cheap, and rapid, and where the gasworks of London afford cheap, and rapid, and where the gasworks of London afford
an ample supply of coke-the fuel almost exclusively used an ample supply of coke-the fuel alm
in cement works-at a moderate cost.
cemest works-at a moderate cost.
Messrs. Francis and Co. possess two large works, the olderssts. Fhich was or originally laid down hy Mr. Alfred Giles, C.E., M.P., but were subsequently completed from The designs and under the superintendence of Mr. Michéle. These works are situated on the banks of the Thames, near its mouth, where they are surrounded by clay marshes, and are in close proximity to the chalk hils, with which they are connected by a short tramway. The Porthand cement is manufactured from chalk and clay, which in this
neighbourhood are found in a peculiarly soft, and therefore convenient form for reduction and mixture in a wet state. These materials are delivered from small contractors' tip wagons close together at a convenient point on tractors tip wagons close together at a convenient point on two works, and ard chalk to one clay by weight; the proportions are adjusted by the regulation of the number of barrow-loads of chalk to each ten barrow-loads of clay. It is impossible to lay down any fixed rules as to the quantities to be used, as they must vary continually with the
changes in density and quality of the materials. The changes in density and quality of the materials. The part of the chemist who is employed to analyse and test the different mixtures from day to day, as well as on the part of the foreman whose chief duty it is closely to watch of the information he receives from the chemist, and to see that the barrows are correctly filled and emptied in turn by the men. It may surprise many to learn that the apparently rough-and-ready rule-of-thumb manner of mixing together so many unweighed barrow-loads of material ing together so many unweighed barrow-loads of material such nice adjustment, but it is a fact on record that after many days working in this way the samples from the resulting mixtures have not shown so much as one per purpose if possible, rendering the proportions still less liable to error, Mr. Michélé has lately designed and introduced an apparatus for weighing one barrow of clay against two of chalk, thus also insuring their being always
delivered into the mixer in their proper turn. This appadelivered into the mixer in their proper turn. This apparatus is simply a scale with a scale bar of unequal length from point of suspension, and a pair of large flat scale pans, one carrying one and the other two barrows. But works well, and is of great use as a means of insuring the amalgamation of accurate and even proportions by weight, it is quite useless unless it is adjusted frequently with reference to the constantly varying specific gravities, and
compositions of the chalk and clay. In order to guide the compositions of the chalk and clay. In order to guide the
foreman in determining the correct proportions, whether foreman in determining the correct proportions, whether
the old barrow system alone, or the new weighing appathe old barrow system alone, or the new weighing appa-
ratus be employed, daily laboratory test which is most frequently repeated is one for ascertaining the carbonate of lime value only of the mixture in its
first stage of manufacture. It can be accomplished in a few minutes, and for the purpose an apparatus, designed by Dr. Scheibler, is used. It is very simple and effective and in the hands of a skilled operator will be found of great value to manufacturers. It may be safely predicted that should its use become more general it will contribute in no mean degree towards accelerating the general improve ment which is now taking place in the quality of cement
manufactured. Its action is briefly this-to cause a given quantity of a material which is partly composed of carbonate of lime, no other carbonates being present, to give off its carbonic acid, and then to measure the quantity. The exact amount of carbolic acid having been arrived at, the substance of definite composition, its constituent parts substance of definite composition, its constituent parts
being 56 per cent. lime, and 44 per cent. carbonic acid.

It consists simply of a glass horseshoe tube, graduated on ne arm, and a bottle attached to it by an india-rubber pipe.
A is a small pipe with a stop in A is a small pipe with a stop in
it, to admit water. B is a small it, to admit water. B is a smal
vessel which can be dropped in the neck of the bottle C. D is the graduated horseshoe in air-tight connection with the bottle C . The mode of opera-
tion is simple. A small quantity of the mixed chalk and clay is thoroughly dried. A given quantity of this is weighed and put into the vessel B. A little acid is put into the bottle C. B is lowered into C in such a manner that the acid and "slurry" do not come into contact. C is corked
down. The tube D is filled with water. C is then shaken so that the acid and "slurry" come into contact. As the carbonic acid gas is given off it passes into D, the heat in both arms is kept equal. The volume of gas given off is then read by the graduations on the tube. made As the carbonic acid cas and the lime in chalk made. As the carbonic acid gas and the lime in chalk
bear fixed relations to each other, when the quantity of
the gas has been ascertained the quantity of lime is also known, and hence this little apparatus is exceedingly useful in euabling the cement maker to know in a very
short time the quantity of carbonate of lime in his mixture.
The following table shows the usual composition of the materials and the products, and exhibits the changes which take place in
stituents after burning, grinding, and mixing vith water

	Clay.	Slurry.	Cement.	
Sand	0.87	124	0.98	116
Silica	54.14	11.77	$20 \cdot 45$	18.77
Peroxide of iron	$7 \cdot 76$	$2 \cdot 13$	$4 \cdot 37$	3.08
Alumina	14.68	$4 \cdot 45$	8.05	7.04
Magnesia	-	-	$1 \cdot 48$	1.52
Carbonate of magnesia... ...	$4 \cdot 48$	$2 \cdot 87$	$1 \cdot 48$	1.52
Lime	-	-	$62 \cdot 13$	$54 \cdot 89$
Sulphate of lime	-	-	$2 \cdot 13$	173
Carbonate of lime	2.01	$69 \cdot 97$	-	-
Water, carbonic acid	15.03	$5 \cdot 29$	-	-
Water, organic matter	-	-	-	$9 \cdot 45$

Besides the laboratory tests referred to, samples of the first mixtures of ingredients are carefully taken every day, and these are converted into cement by means of miniature drying floors and grinding appliances. No useful result
can be obtained from such experiments, however, in less can be obtained from such experiments, however, in less time the fact of whether there is a dangerons excess of lime or not can only be judged by a further delay of, say, forty-eight hours, whilst the strength at the present usual age cannot be arrived at until nine or ten days after the mixture took place, and, therefore, errors, extending place before they are detected. The value of a test for place before they are detected. The value of a test for
carbonate of lime, which can be made in a few minutes, is therefore obvious. Excess of lime is shown by the samples cracking after immersion in water, in consequence of the cracking after immersion in water, in cousequence of the
expansion of the free lime when wetted. Excess of clay expansion of the free the colour and low tensile strength of can be detected by the colour and low tensile strength of
the cement. At the works under consideration about 75 per cent. of carbonate of lime is found to be the best proportion, this quantity being present in the dried samples of the mixture of chalk and clay as it leaves the mixing mills, or wash mills, as they are technically called. There are in the old works of which we are speaking two of these mills, which are of the usual form, each consisting of a vertical shaft driven by bevel gearing and carrying eight horizontal arms, from which depend four "tines" the "tines" are driven through the mixture of chalk, clay, and water-the latter element being admitted to the extent of about 300 per cent. of the two former by weight-the materials are disintegrated at the same time that they become thoroughly mixed ; continued washing rendering the particles so fine that the motion of the mill carries them along with the water through brass wire gauze sieves containing 30 holes to the lineal or 900 holes to the square inch, these sieves being arranged in such a
position at the periphery of the brick tank that the mixture which passes through them may be conveniently removed by pumping and conveyed to the settling reservoirs for precipitation by gravity. The chalk when it is put into the mill contains about 20 per cent. of water, and is nearly pure carbonate of lime, containing only about 2 per cent. of extraneous manner, principally sand. The hiefly of silica and alumina. The chalk is dug from the hills in the immediate vicinity of the works, and the clay is obtained from the surrounding marshes or brought in barges from the Medway, fuel only not being procurable on the spot. The mixture of chalk, clay, and water which is now in a creamy state, has been followed to its resting place in the "backs," or large settling reservoirs, constructed on the earth with chalk walls faced with concrete, covering a considerable area and having a depth of 3ft. 6in., where it has to remain until the superfluous water can be allowed to flow away through penstocks having sills, which can be gradually lowered as the deposition of solid material takes place and level of the water in the reservoirs falls. As may be imagined, the settling process occupies many
weeks, and the precipitation effected is by no means even, weeks, and the precipitation effected is by no means even, the coarser particles remaining close to the inlets, and the
finer ones being floated to more remote regions by the water. When all the moisture except about 50 per cent by weight, has been removeded, the "slurry,", as the resulting
thick mud is named, is dug out, placed in barrows, and thick mud is named, is dug out, placed in barrows, and
wheeled to and spread upon-to the depth of 6 in . or 7 in . wheeled to and spread upon-to the depth of 6 in . or 7 in .
-the drying floors, large tiled surfaces, under which the flues from the ovens, where coke is prepared for the kilns, pass, and the remaining moisture is then evaporated. When dry the "slurry" is loaded into skips and taken to he kilns, into which it is introduced in alternate layers with the coke already mentioned as being produced in the ovens, along with a large addition of gas-coke. The pro-
portion of dried "slurry" to coke is about three of the portion of dried "slurry" to coke is about three of the
former to one of the latter by measure, but this ratio is constantly varied at the discretion of the "burner," who is engaged in loading the kiln, and who is responsible for its
proper performance. The kilns when loaded and heaped up are lighted at the bottom by faggots, and having a apacily or about twenty-three tons yield, they take about sixty hours to burn off. When they have burnt out the fire-
bars are dropped and the burnt slurry, called "clinker," is withdrawn, great care being taken by those engaged in its removal to pick out all the pieces of cinder and over-burnt removal to pick out all the pieces of cinder and over-burnt
material and extraneous matter. Good "clinker" should
be of a greenish-black colour free from yellow or pink
lumps, and although of a dense, compact lumps, and although of a dense, compact nature, not too solid or hard. When it is removed from the kilns, the "clinker" is wheeled in barrows to one of Blake's crushers, where the lumps are reduced to the size of walnuts; it is
then lifted to a loft above the grinding mills, where it is then lifted to a loft above the grinding mills, where it is passed between horizontal stones, similar to those used in
flour mills, 4 ft . 6 in . in diameter, and running at the rate flour mills, 4 ft . 6 in . in diameter, and running at er rate
of about 120 revolutions per minute. The powder coming of about 120 revolutions per minute. The powder coming
away from the stones is of a greyish colour, and is the finished cement ; it should be of such fineness that not more than 20 per cent. would be rejected by a sieve having fifty meshes to the lineal inch, or 2500 holes to After leaving the mill the cement is take where it is filled into barrels or sacks ato first carefully turned over in considerable quantities for cement are loaded into vessels which come alongside the cement
store.
It may be mentioned that at these works there are three wash mills, two as described here and one of a newer form to be described hereafter; fourteen backs, thirty-two
coke ovens with drying floors ; eleven kilns, two of which coke ovens with drying floors; eleven kins, $\begin{aligned} & \text { are worked on the continuous burning principle; and seven }\end{aligned}$ grinding mills. There are four stationary and one portable engine for driving the machinery, and there are two
steam cranes. The total indicated horse-power of the engines for washing, crushing, and grinding, at the Cliffe works, is about 250 . The ordinary production of a pair the 4 ft . 6 in . millstones is 15 to 20 tons in ten hours.
Having described the ordinary-or heretofore mo Having described the ordinary-or heretofore most
commonly adopted-process, as carried on in the old works, we now come to the large new works which have been recently constructed from the designs and under the
superintendence of Mr. Michéle. These embody what may be
considered sively applied. Several other schemes, some of them possessing considerable merit, were most carefully considered, and the greatest pains were taken to arrive a sound and impartial conclusion. In these works
there are sixteen kilns in one battery, each capable of turning out 25 tons of unground cement or clinker fitted with sixteen patent drying chambers connected with a chimney 200ft. high with a clear opening at the top of 7 ft . 8 in . The machinery consists simply of four patent wash mills, a set of three-throw " slurry " pumps a Blake's stone crusher, and six sets of millstones, the whole being driven by a pair of Corliss engines, which work up to 240 horse power, and are supplied with steam by four Lancashire boilers working at 75 lb . pressure. A building to receive and store the ground cement completes the works. The wash mills illustrated on page 186 of The Engiveer, 14th March, 1879, are constructed under Mr. Michéle's patent. The pan or tank, vertical driving shaft, harrows, and tines, are similar in their construction and action to those already described, although somewhat
smaller in diameter. Instead of being fitted with fine brass wire sieves, through which the particles of chalk and clay have to be carried by the addition of about three times their weight of water, each pan supports on its upper edge a cast iron ring about 9 in . wide, built up in segments and serrated on its upper surface ; upon this ring, suspended tc the lengthened arms of ted by bricks. rotates a similar one which is weighted
Between the surfaces of these two rings the efluent sludge finds its way, and is by them reduced to the requisite degree of fineness. The advantage of this construction is that instead of having to add a large quantity, about 300 per cent. of water, which acts only as a carrier to pass the mixed materials through the sieves, and as soon as this is accomplished has to be removed, only a very small quantity, about 13 per cent. of water is added, which is found sufficient to insure the due amalgamation of the chalk and clay in the mill and during their passage between the plates. As has been said before, the chalk contains ordinarily about 20 per cent. of moisture and the
clay about 40 per cent., so that when they are used in the proportion of 2 chalk to one clay the inherent water equals 26.66 per cent. When to this is added $13: 34$ per cent., the sludge upon leaving the mill
will contain 40 per cent. of moisture. This quantity enables the slurry to be conveniently pumped, and is not found too large to be subsequently driven off by the waste heat from the burning process. This waste heat is utilised by the adoption of the valuable contrivance known as Johnson's patent chamber, with the improvements which have been patented by Mr. Michélé, and illustrated in our impression of the 14th March, 1879. Each kiln is fitted with one of these chambers-which is of simple construction, and is cheaply maintained. It consists of a $9 \mathrm{in}$. brick arch, 15 r . wide, 5 ft . high at the centre, and 65 ft . long, extending over
top of the kiln in a horizontal direction towards the high top of the kiln in a horizontal direction towards the high
chimney, with which its opposite end communicates by means of a short flue. The whole is built "brick-on-end," the portion over the kiln being "fire work," the rest ordinary. stock. There are openings along the top for the admission of the slurry and coke, and for the purpose of ventilation and lighting, as well as for the ingress and egress of the workmen.
substantially built, and support two concrete walls, which, substantially built, and support on the outside of the chambers, and prevent the slurry intended for one kiln from passing to the next. Into these pockets the slurry is pumped direct from the wash mills, without any intermediate process, and aater remaining in them a tew interior of the liquid depth of a foot or so. The stiffer portion which has remained in the pockets is then "spitted" up on to the top of the arch. The kith, having the previously dried material from the chamber, is lighted up in the ordinary way. The heated gases rise up, and passing through the chamber to
the chimney, dry the material in the inside as well as on the top. Thus, the old drying floors with coke ovens are entirely dispensed with, and the expense of making
on a level with the tops of the kilns, it is conveniently wheeled to them in barrows, and loaded in the usual way. The head room of 5 ft . at the centre of the arch is found to be sufficient for the ment off, the clinker is drawn out and
After the kilns are burnt of ground as before described. In addition to the saving effected by the abolition of coke ovens and setting backs, it is found that about 5 per cent. more carbonate of lime
can be used, and that the quality of the cement produced can be used, and that the quality of the cement produced
is more uniform on account of the more even distribution through it of the coarser particles, which in the back process generally settle down near the imlets. The patent wash mills required ing skilled attendant, being managed by
the loaders engaged in filling the chalk and clay into them. The plates do not require touching when they have been years, when they can be cheaply replaced. The chambers yaars, when they can be cheaply replaced. The chambers and inexpensive repairs. By their use the large quantity and the waste heat used in the coke ovens is entirely saved and economic manner. From the value of the coals saved must be deducted that of the coke which would have been produced under the old system. Theoretically, a ton of would be superior to that obtained from gas works ; but in practice, to obtain increased heat for drying purposes, the ovens are often disturbed, and too much air admitted, so that the chaldron resolves itself into half, and sometimes even less; it is therefore difficult to make any reliable is appreciable if may be accepted that the saving in fuel shillings per ton on the cement produced. We have thus described the two cement works of Messrs. Francis and Co., which may be looked upon as typical, one of the old,
or system most commonly in use ; and the other of the new, or that embodying the most recent improvements which have been successfully applied.
Mention has been made of the modes of testing adopted in the first stages of manufacture under the old or "back" lime is applied, with the addition of a simple daily test to ascertain the percentage of water in the sludge as it leaves
the wash mills. The small sample kilns are dispensed with, as they are not found to be necessary when the time occupied by the whole process of manufacture is reduced from about eight or ten weeks to very nearly as many days. Under otones it should be sampled almost every hour, and pats made and immersed in water as soon as set, in order to at once detect any excess of lime. Briquettes also are made sile strength tested at two or seven days. Further, the powder is frequently sampled and tested for strength both leaving the works. There is little doubt that were it practicable no cement should be allowed to quit any works until it has satisfactorily passed a seven days' test for tensile streugth, but in consequence of the large masses of material dealt with, and therefore the enormous extent of warehouse room for storage required, to say nothinǵ of the extra cost of labour for moving which would be entailed, it is not found to be possible to insist upon such a practice being always adhered to, although in some special cases it
is. It is the the cement used shall be tested upon the works for which it is intended, and the manufacturers are sometimes bound to remove at their own cost any which will not withstand a given tensile strain. The result is that when the guaranfacturers to charge an duce, in order to cover the exceptional risk which has to be undertaken. It would seem to be more advantageous to all concerned if the cement could be always tested, as it now sometimes is, by competent persons before it leaves the manufactory. This practice reduces the manufacturers' risk considerably, as in the case of a heavy cheap material like cement the cost of carriage to the spot where it is used often amounts to a very considerable portion of its total value, and it saves the user the expense of erecting large
stores to contain the well as the risk of damage by damp, which must necessarily be greater in what are usually temporary structures than in the properly constructed permanent stores at a cement manufactory.
It may here be well to describe in detail, for the information of those who may not have had occasion to test any
cement, the usual method pursued. The powder is first cement, the usual method pursued. The powder is first
filled as tightly as possible into an imperial bushel measure filled as tightly as possible into an imperial bushel measure
and weighed. It is considered that this quantity should and weighed. It is considered that this quantity should
not weigh less thau 112 lb ., but it often weighs more. If not weigh less than 112 lb ., but it often weighs more. If
the weight is less than 100 lb ., it will probably be found that the cement bas been imperfectly burnt. After ascertaining the weight per bushel, a small quantity is again
weighed, and then sifted by means of a sieve with fifty weighed, and then sifted by means of a sieve with fifty
holes to the lineal or 2500 holes to the square inch. The holes to the lineal or 2500 holes to the square inch. The
residue obtained should not exceed 20 per cent. of the total residue obtained should not exceed 20 per cent. of the total
weight of powder under trial. The cement should be ground to this degree of tineness, but Mr. Michélé considers that it should not be sifted, as by the use of a sieve the hardest and, in his opinion, the best particles are removed. The next test, for the purpose of ascertaining if
there be any excess of lime, is conducted as follows:-By there be any excess of lime, is conducted as follows:-By
the use of a trowel, the powder, with the addition of as little water as possible, is mixed up to a stiff paste, with which small pats are formed, which are immersed in water
on pieces of slate as soon as the cement is set. If there on pieces of slate as soon as the cement is set. If there
are no cracks visible on their surface, after immersion for are no cracks visible on their surface, after immersion for no dangerous excess of lime, although there can be no
doubt that it is better to extend the time to three days, or doubt that it is bet
as long as possible.
as long as possible.
The next test applied is that for tensile strength. At the time the pats referred to are made, some of the stiff
paste is carefully placed in brass moulds, which are so paste is carefully placed in brass moulds, which are so
constructed that after forming " briquettes " with accurate constructed that after forming " briquettes" with accurate
breaking sections of $1 \frac{1}{2}$ in. by $1 \frac{1}{2}$ in. equal to $2 \frac{1}{4}$ square
inches in area, they can be easily removed. These "briquettes" should be made with great care, and only by those Slight inattention or want of the requisite knowledge on the part of the operator will be the cause of perplexing and contradictoy results. The briquettes are usually lef in the moulds for twenty-four hours, when they are
removed and immersed in water until the seventh day from that on which they were made, when they are tested in one of Mr. Michéle's machines illustrated herewith. It

has been found that the best cement so tested should be capable of withstanding a tensile strain of from 300 lb . to 350 lb . per square inch. Though briquettes having a breaking section of $2 \frac{1}{4}$ square inches are used in conformity to
established usage, Mr. Michélé urges the desirability of substituting an area of one square inch. No substantial arguments can be advanced in favour of the larger section, and it has many inconveniences. To revert to the tensile strength of Portland cement, although as much as 500 lb . and upwards per square inch at seven days has been obtained, it is found that with the existing appliances for manufacture these high strengths are sometimes obtained at the sacrifice of ultimate strength, on account of the high proportions of lime which must be used. The strongest and best cement is that which contains the greatest proportion of lime properly combined with the silica and
alumina of the clay. If there is even a slight excess of limethat is or the clay. If there is even a slight will sometimes withstand a high tensile strength at seven days, but will be found to depreciate instead of improve in strength afterwards. Too much attention cannot be paid to the test for lime, for if there be any of this free, sooner or later it will make itself known, either by the work for which it has been used showing signs of cracking or crumbling, or by its total collapse. No doubt the first consideration is to obtain the strongest possible cement in order that it may form an effectual matrix for the greatest number of particles of sand or other foreign material, but it is also obvious that unless the strength is permanent or increasing it is valueless. Thus, the cement which really presents which shows the highest tensile strength at seven days There are many practical difficulties in the way of extend ing the age of briquettes before breaking from seven to fourteen or twenty-eight days, though such a practice would enable a more accurate estimate to be formed of the material tested. Mr. Michélé seems to consider that for the present the best cement may be secured by a specification which ensures an average tensile strength of 300 lb . to 350 lb . per square inch at seven days, coupled with a strictly enforced test for lime. Briquettes may be broken at four days as well to enable some opinion to be formed of the growing strength of the cement between that age
and seven days, but the results so obtained must only be and seven days, but the results so obtained must only be taken with due regard to the time the cement takes to set
in the first instance. A quick-setting cement will show in the first instance. A quick-setting cement will show but little improvement in strength between four and seven days, whereas one which takes many hours to become firm
will often show a very considerable increase of strength in the same period.
It is impossible to foretell what may be reached in the future. Judging by the strides which have been made during the last ten years in the direction of improving the
tensile strength of Portland cement, it might be assumed tensile strength of Portland cement, it might be assumed
that before the lapse of another similar period strengths of that before the lapse of another similar period strengths of
500 lb . and upwards per square inch at seven days will 500 lb . and upwards per square inch at seven days will
become common. There is, however, a danger in specifybecome common. There is, however, a danger in specify-
ing too high degrees of strength at present. The first aim of an engineer who is responsible for works constructed with Portland cement, is the production of a material for him with the highest possible tensile strength, but at the
same time without containing any excess of lime which same time without containing any excess of lime which has not become properly combined in the process of manu-
facture, and which is therefore liable to expand and disintegrate his structure. The mode of testing above referred to when strictly adhered to will, it is believed ensure a practically safe cement under the present mode of
manufacture, but fresh means may have to be devised in the future. Before, however, any great and striking improvement in the quality of Portland cement can be expected, it would seem to be necessary that the fundamental principle involved in the setting or hardening
which takes place when water is added to the powder which takes place when water is added to the powder
should be understood chemically. Although several hypotheses have been enunciated to explain this remarkable property of cement, none of them seem satisfactory to chemists. This is a most important question and one
which merits the attention of chemists ind physicists as which merits the attention of chemists and physicists as
well as engineers, for it has an important bearing upon the stability of some of the largest engineering works in the world.

THE INSTITUTION OF CIVIL ENGINEERS.
the avalysis of potable water.
At the ordinary meeting on Tuesday, the 24th of January Mr. Brunlees, vice-president, in the chair, the paper read was on "Pe Analysis of Potable Water, with special reference to the
determination of Previous Sewage Contamination," by Mr. Chas. W. Folkard.

In the first p
ytical chemistry ytical chemistry, the conclusion being that, as far as mineral sub stances were concerned, the existing methods were nearly perfect
But when organic analysis was considered, a different state of things was apparent, owing to the great number, complexity of those contancd in the secretions and tissles of plants and animals in addition to which organic matter was present in drinking water
in very small quantities, and always more or less mixed with other substances.
The subject might be divided into four parts:-(1) The various employed by analysts to detect and determine the extent of this contamination, with an opinion as to the probable value of these
methods ; (3) the bearing of the results of biological and micromethods; (3) the bearing of the results of biological and micro-
scopical investigations on the subject; ; (4) the utility of irrigation, chemical treatment and filtration, for purifying purposes.
Under the first of these heads, the normal constituents of rain water were considered, all of which were practically harmless, so that rain-water, as it fell on the earth, or on the gathering
grounds of a system of water supply for a town, was unobjecgrounds of a system of water supply for a town, was unobjec-
tionable, having contracted but an inappreciable amount of contamination. Spring water was not so pure, owing to its
percolation through strata from which various mineral sub stances were dissolved. River water was the most objectionvegetable contamination which it acquired. Lastly, well water varied greatly in quality, in some cases being excellent where the
wells were deep and surface water was excluded, or when the diswells were deep and surface water was excluded, or when the dis
trict was thinly peopled; in other instances well water was more contaminated than river water, as in shallow wells in towns.
Under the second heading, the author pointed out that
analytical chemists had hitherto been compelled to be content analytical chemists had hitherto been compelled to be content
with the examination of the products of decomposition, or with the determination of one or two constituent elements of the
organic impurities of water. Unfortunately, the products of decomposition of the organic matter in water were the same as the normal constituents of rain, viz., carbonic acid, ammonia, and nitric acid. It was therefore impossible to ascertain whether thos
substances were derived from contaminating bodies or had been substances were derived from
dissolved by the rain in falling.
The various processes of water analysis were then considered evaporated, and the residue was subjected to a red heat in platinum dish. By this stances were burnt away, and from the loss of weight, the
amount of organic matter was inferred. One great objection water. With such unstable bodies it was by no means im probable that a large portion was destroyed during the process. By the second method the solid matter, left after evaporation
of a known quantity of the water, was mixed with an oxidising agent and heated to redness in a glass tube. The carbon an the form of carbonic acid and nitrogen gases, from which were deduced the weight of carbon and of nitrogen present as organic
matter in the residue. This ratio of carbon to nitrogen did not however, afford the slightest clue to the identity of the organi other hand, harmless. The albumenoid-ammonia method consisted in boiling the
water with an alkaline oxidising agent, by which the organic
matter was decomposed, and part of its nitrogen evolved in the matter was decomposed, and part of its nitrogen evolved in the
form of ammonia. This had the great advantage of simplicity of
manipulation, and was not open to the objection that previous evaporation was required.
The last considered was the permanganate method. In this the index of impurity was the amount of oxidising agent-namely permanganate of potash, required to destroy the organic matte
in the water. Inasmuch, however, as no relation had been esta blished between the oxidability of a body and its action on the the fitness of a sample of water for drinking purposes or the -
Under these circumstances the conclusion seemed inevitable,
that the subject was as yet beyond the power of the analytical It was, however, possible, by the second method, to determine approximately the minimum amount of contanimation which
had taken place since the water was precipitated as rain. For this purpose the whole of the nitrogen existing in the water was stimated, and the average amount in rain falling on the surface vegetable contamination, and it has been found convenient to express it in parts of average London sewage; that was to say, the
sample was returned, as having been contaminated to the same sample was returned, as having been contaminated to the same
extent as if pure rain-water had been mixed with so many parts of extent as if pure rain-water had been mixed with so many parts
ordinary sewage. But this afforded no direct evidence as to it fitness for dietetic purposes, because subsequent oxidation and harmless.
The author next considered the bearing of biological research in the subject, pointing out that mere dilution had an almost
inappreciable effect in disarming the germs of disease of their power. Thus, supposing a glass of water to contain
but one germ, if the person taking it was sufficiently un
healthy or weakly, he would contract the disease almos certainly as if there were hundreds of germs. In the author's opinion it would be impossible to banish zymotic disease from
towns, the water supply of which contained the dejecta of persons suffering from the disease, even though present in the most minute quantity. The very weakly would contract the complaint from the water, and from them it would spread to the more robust around them. Again, these germs were endowed with such per-
sistent vitality, that they withstood the effects of heat and cold, sistent vitality, that they withstood the effects of heat and cold,
moisture, drought, and chemical agents to an almost incredible extent, affording what seemed, at first sight, indisputable evidence
of the now exploded doctrine of spontaneous generation. From this it appeared that once-cominated water was dietetic purposes,
was conclusion, the author contended that a radical change was the only remedy. Irigation and chemical treatment were
alike powerless; in addition to which, during heavy rain all existing sewerage systems were incapable of dealing with the huge
volumes of water poured into them, and the sewage was allowed to flow direct into the river, to the manifest disadvantage of the towns below, who were dependent upon it for their water supply.
Filtration, again, was powerless to effect real purification. The Filtration, again, was powerless to effect real purifcation. The
germs of disease were so minute that they could pass one hundred abreast through the interstitial spaces of ordinary sand, and dissolved substances were, of course, unacted upon. In view of the great increase in cancerous diseases of the stomach and taking into
the subject was worthy of the most careful study, and analysis, the only way to ascertain if a sample of water was fit for aninking purposes was, in the author's opinion, to trace it to its
drource, and see that contaminating matter was exoluded from the source, and see that contaminating matter was exduded fom the
time that the water fell as rain till it entered the reservoir or
engine-well.

RAILWAY MATTERS The signalman Butler, charged with manslaughter in the Desford rail
Assizes.
The Central Metropolitan- Railway Company, Limited, has
lodmed the necessary parliamentary deposits for its Bill for the lodged the necessary parliamentary deposits for its Bill for the
underground railway from Westminster to King's Cross. A sympoate has been formed for surveying a line of light mining districts of Wassaw. The
for the Gold Coast on the 28th inst.
Tre North British Railway Company has received intimation THE North British Railway Company has received intimation
from the Board of Trade that Mr Barlow's plans for the new Tay
viaduct have been approved. The communication of Mr. Walker, Viaduct have been approved. The communication of Mr. Walker,
manager of the company, to the authorities in Dundee that work
will be at once proceeded with, has given much satisfaction.
will be at onee proceeded with, has given much satisfaction:
THE long-projected railway bridge over the Hooghly, whicl
The long-projected railway bridge over the Hooghly, which, will
enable the East India Railway to be run direct into Calcutta, is, it ens stated, to be taken in hand immediately. The main feature of the bridge is three wrought iron girders, each 400ft. long. The
cost will be be $£ 275,000$, and will be borne by the Government. The work will occupy three or four years.
EARL DELAWARR will, during the approaching session, introduce
a bill, the object of which is to make the use of continuous brakes a bill, the object of which is to make the use of continuous brakes
on railways ocmpulsory. It will be proposed that after the st of
It February, 1885, every company shall have in connection with each
passenger train a continuous brake, which shall be efficient in passenger train a continuous brake, which shall be eficient in
stopping the train, instantaneous in action, and appplicable without
difficulty. It must also be immediately self-acting in caso of difficulty. It must also be immediately self acting in case of
accident. material. The brake in each vehicle of a train is to be susceptible
of being worked as part of one system. The Board of Trade is to
one have power to in
use of the brake.
Briminghas, our correspondent writes, is very much behind other centres of similar importance in the matter of tramway
accommodation, for she is possessed of only four and a-half miles of tramways, against a considerably greater extent in other towns.
The Public Works Committee of the Corporation are out the whol opposed to tramways, for they consider that many of the streets of
Birmingham are too narrow, or their gradients too steen to permit Birmingham are eoonarrow, or theirier gradients too steep, to permit
of the safe working of the lines, and they also object to them of the safe working of the lines, and they also object to them
because of the obstruction incident to their construction and repair. Several applications for provisional orders for the
construction of new tramway lines in the Borough have late been made to the oommitttee, and on Tuesdan the committe ebtained
the sanction of the council to deal with these applications "as they Made to the committee, and on tuesayy the committ
thie sanction of the council o deal with these application
might deem advisable in the interests of the council."
IT is estimated that 7500 miles of new railways were constructed last year in the United States; and, according to the Philadelphia
correspondent of the Times, no less than 18,000 miles of new railway are projected for the current year. A comparison of the new

 1 mife, 2916 miles; 1879,4430 miles $; 1880$, 5839 miles ; $; 1881,7500$
miles. Capital ist thus being set fast in new railroad undertakings,
with nated in 1872 It is true that now the States are much bette populated and far wealthier than they were nine or ten years ano,
they thus need, and can afford to provide, much more ample means they thus need, and can afford to provide, much more ample means
of communication; but it wants a lot of wealth and people too to of communication; but it wants a lot of wealth and people too to
afford and support a capital outlay of an extra $£ 90,000,000$ or afrord and
railways.
A correspondent has sent the Times the following table
showing what may be called the maximum speed accomed showing what may be called the maximum speed accommoda
tion to or from London provided by nine different railway companies, and thin fares per mile at which they respectively
provide it. Wherever the length of the line is sufficient the run taken is considerably over 100 miles, with at least one intermediat stoppage :

It is obvious that the shorter lines-the London and Brighton, the
Chatham and Dover, and the South-Eastern-are unduly favoured on this prinoiple and occupy a higher place than they deserve, and this is especially remarkable with respect to the Great Western,
which runs distances a little over that chose, at an equal or greater hinch runs distances a itttle over that chose, at an equal or greater sped latter speak for themelvees, and it should be remembered
that the boat trains-for which credit has been given-start at very inconvenient hours for passengers, and are almost the only good trains which they run. The performance of the Great
Northern and the fares charged, are astonishing. The Great
Nos. Eastern now run s.
good and fares low.
The recent disastrous accident at Blackburn, it need scarcely be
sid, has necessitated an alteration of the traffic arrangements that station. As a result of the directors' report with regard to this matter, it is proposed to rea-arange the whole of the station,
and the company purpose laying out, more in the centre of the and the company purpose laying out, more in the centre of the
town, a new goods station entirel, the present gods station
heing company is erecting a larye new passenger station for the accommodation
of travellers by the Belfast and Isle of Nan boats, together with
extensive storaage accommodation to meet the requirements of the extensive storage accommodation to meet the requirements of the
important cattle traffic with the Trish ports. The station will
consist of one central consist of one central platform 250 yards in length, with a line of
way on either side, and a covereded in roof 516 fitt. in length. The
station will be constructed with a complete set of apartments consisting of refreshment and waiting-rooms, in connection with which will also be dressing-rooms for the accommodation of the
steamboat passengers. From the station to the boats there will one to the other completely under shelter. Between Heato Lodge and Dewsley Junction, about a miliee on the eest stande of Morirof about a couple of miles, and which will include the erection of a viaduct over the Calder. By this widening, its own traffic and
that of the London and North-W Western wwill be worked on spearate
lines. At Shawforth branc Bacup has just been completed, although not yet opened for traffic
 oxtension in connection with the recent widening of the Bacupp
branch, which was completed about twelve months ago, will faci-
litate the working of the whole of the traffic over that district, and provide additional means of communication between Bacuy
and the Yorkshire towns generally. Other important work, which can be only briefly summarised, consists in enliargements and improvements which are being carried out at all the stations along
the Lancashire and Yorkshire Company's coast line from Liverpool

NOTES AND MEMORANDA. The number of post-cards despatched in Germany during the
year 1880 was $123,000,00$. In the Post-office MIuseum at Berlin
there The
Thr French census returns shows the following results: - Lyons,
32,$894 ;$ Nantes, 121,$965 ;$ Rouen, 104,$721 ;$ Havre, 103,063,
 , Accordivg to the American Manufacturer, it would seem to be
easy to prepare phosphor brass. Its directions are -introduce about one-tenth of 1 per cent. of dry phosphorus into the melted
metal- good red brass-in a covered crucible. The
THE many earthslips that have recently taken place in Switzer-
land are believed to have some connection with the earthouake shocks which of late have been so forecuentin. Twenty-one of those
phenomena were noted in different parts of the country during the month of December alone.
A GREAT mass of rock from a height of 1000 ft . has fallen from
the Rothrisi above Emnenda, near Glarus, swept away part of a
forest west, and destroyed or chards, roads, and meadows. No lives
were ost; but the mass falling that distance did some work before
it came to rest,
Ceolo it came to rest, Geologic
now to level Switzerland.
WATERS from shallow wells in or upon Devonian rocks are, as a
rule, much more polluted than those situated in Silurian strata. Out of twenty-five samples of well waters from the Devonian rocks book on Water Supply, only eight weere fit for human consumption,
Of these twenty-five waters the hardness from $5 \cdot 0$ at Mr . Boon's Of these twenty-five waters the hardness from $5 \cdot 0$ at Mr. Boon's
well, Ivy Bridge, Devon, to 44.3 at the Fort Pump, New Quay,
Cornwall. Accordisg to Mr. De Rance's new work on Water Supply,
the Thames Basin includes within its area 170 square miles of iias,
931 of oolites 5 竍 331 of oolites, 5 of Hastings sands, 13 of Weald clay, 453 of
rrensand and gault, 2096 of chalk, and 945 of tertiary deposits. The clalk above Kingston occupies 1047 square miles, and has a storage capacity of sixten months-according to Mr. Beardmore
who estimates the annual rainfall oft at Kingston, between 1850
and 1868 , to give an and 1868 , to give an annual mean rate of $7 \cdot 83$ inn, while the mean
rainfall of Oxford was $26.08 i n$. , the remainder being absorbed by AT a recent meeting of
Professor Eggleston said he had discovered tellurime in York, copper products from Colorado. The sample examined had been
found to work unsatisfactorily, and was arsenic and antimony, as the pig yielded dense white fumes in the found, but nearly one-half per cent. of tellurium. The fumes poisoned the furnace, and the copper manufactured cracked in the Poils was useless excent for brosps of poor quatility, but was quite
rovitable fer the manufacture of cupric sulphate. The uses of asbestos increase every year. Asbestos, in the form
of a felt or tissue, is said to make a good filtering medium for the hemical horatory, as it resists the action of corrosive acids as well as of fire. For the same reason, a pair of gloves woven from
this substance is useful for handling acids. A sheet of asbestos card covering the table preserves it, and also prevents the breakage
of small glass objects. Asbestos makes excellent porous cells for a card covering the table preserves it, and aiso prevents the breakase
of small llass objects. Asbestos makes exellet porous eclls for a
galvanic battery; and kneaded with plastic clay, affords a good luting for the stoppers of bottles. Asbestos paint, use
objects from fire, has also been lately manufactured.
SIX THousAND three hundred and twenty-two vessels, with cargoes during the past year of 1881 , showing the following results, compared with the previous year: -1881 , number of ships 6322 , tonnage $3,686,982 ; 1880$, number of ships 6375 , tonnage $3,607,952$, For the month of December last the result of the trade was
Deember, 1881 , number of vessels 536, tomnage 317,558 ; December, 1880 , number of vessels 511 , tonnage 294,388 ;
in the number of vessels 25 ; increase in tonnage, 23,470 .
As a means of making printers' ink from cotton waste, M. Bastand subjects cotton waste, in a closed vessel, to the action of
bisulphate of carbon, or any other liquid having great aftinity for oil and capable of evaporating at a lower temperature. It should
completely saturate the cotton contained in the vessel, and run off which the mixture is subjected to the action of heat. The bisulphate of carbon is evaporated and condensed, to be used over again,
and the oil and grease serve admirably according to the Journal of the Society of Arts, for printers' ink, while the cotton waste,
Iv one form of secondary battery M. J. Rousse uses for the negative electrode a shieet of tilarium, which during the electro-
lysis absorbs more than 900 times its volume of hydrogen; at the positive pole he uses a sheet of lead; the electrolyte being a 10 per
cent, solution of sulphuric acid. Another form is produced by making the negative electrode of thin sheet iron, which absorbs more than 200 times its volume of hydrogen when
electrolysed in a 50 per cent. solution of sulphate of ammonia
The The positive pole is formed of a sheet of lead covered with a laye
of litharge.
Platinum and palladium are on less used a to platinumise or palladiumise other substances fo
und
electrodes.

For diminishing the danger of conflagration in theatres, Signo Griovanni Abelo martini-commends the thilowing formulx for below:-(1) Mixture suitable for light tissues: Pure sulphate of acid, 3 parts: starch, dextrine or gelatino, 2 parts; water, 100
parts. (2.) Mixture sitabile for scenes already panted, timber
work, furniture, doors, and windows to be raplied like work, furniture, doors, and windows to be applied like paint with
a rrush, at a temperature of about 140 deg. Fah. : Hydrochlorate of ammonia, 15 parts; boracic acid, 5 parts ; glue, 50 parts,
gelatine, 1 part; ; water, 100 parts. (3) Mixture sutathe for cloths,
ropes, and straw, which should be immersed for fifteen or twenty ropes, and straw, which should be immersed for fifteen or twenty
minutes, at a temperature of 212 deg. Fahi, and allowed to dry Hydrochlorate of ammonia, 15 parts; boracic acid, 6 parts ; borax
3 parts ; water, 100 parts.
Some time since the German Society for the Promotion Industry offered a prize of 2000 marks for the best manganese their physical qualities, especially their tensile resistance, and by
this means to this means to ascertain the influence of manganese on iron. The
competitors were the Gutehoffnungs Ironworks. Oberlausen, competitors were the Gutehooftrungs Ironworks, Oberhausen,
and R. Seelhof, engineer of the cast steel and arm factory
Witten. No less than 20 iron rods wer require be 50 centimetres long and 40 mm . thick. The first lot was to consist of an alloy of manganese. and iron, of of which the the carbon
did not reach 0.6 per cent., and all other substances were not allowed to exceed 0.4 per cent. The second set was to consists of
carbon containing an allog, manganese, and iron, in whioh all other substances were not allowed to exceed 0.6 per cent. The alloys or different sorts of iron, that manganese is very easily
oxidised and disappears from the alloy, and that when the rods
reere worked isplet were worked in a lathe or with a plane, and prepared for the teai-
ing tests, they Ing tests, they exhibited a large number of spots, showing that the
amalgamation was imperfect. Notwithstanding that the results
were not in accordonce with the were not in accordance with the conditions, the society agreed to
awarat the prize to the competitors on acoout of the trouble they
had takeen. The Gutehoffinungshutte having come nearer thi had taken. The Gutehoftnungshutte having come nearer the
conditions, was awarded two-thirds and Seelhoff one-third of the

CONTRACTS OPEN-GOODS WAGONS, GREAT NORTHERN.RAILWAY.

CONTRAOTS OPEN

550 NINE-TON GOODS WAGONS-GREAT NORTHERN RAAGONS
RALIWAY.
The Great Northern Railway Company invites tenders for 5 goods wagons. The accompanying engraving illustrates their conseneral arre following is a copy of the specification. The The body to be 15 ft . long by 7 ft . $6 \frac{1}{8}$ in. wide outside, and 3 ft . deep 3 ft . $2 \frac{1}{2} \mathrm{in}$. diameter at contre of tread, placed 9 ft 6 in centre t, centre ; the whole of the underframe to be of St. Clair white oak. the floor, sides, and end boarding of best St. Petersburg deals; the Whole to be of the best quality, dry, sound, and free from knots fied to be of the best where fitted to woodwork to be bedded on white lead the draw chains to be made of best Yorkshire chain iron; axles and tires to be of best Bessemer steel of approved English manufacture; springs to be made of the best spring steel; all the bolts and nuts all the bolt heads inside of waro to ball the nuts hexigonal; corners well rounded off washer plates. ris wer
and made to the following dimensions:-Sole 6 ft . $10 \frac{1}{\mathrm{i}} \mathrm{in}$. wide outside, $4 \frac{1}{2}$ in. thick, and to have a plate $\frac{5}{15}$ in. thick on outside, making total thickness $4 \frac{1}{3} \mathrm{in}$.; to be tenoned at ends into headstocks, and secured on inside with knee iron 10in. deep by 8 in . by $4 \frac{1}{\mathrm{in}} \mathrm{in}$.
and on outside by knee iron 10 in . deep by 4 in . by 3 in . The and on outside by knee iron 10in. deep by 4 in in. by 3 in . The ticed to receive soles, spring bed stretchers and diagonals. The crossbearers to be 1lin. by 5in., tenoned into soles, and morticed for longitudinal, diagonals, and spring bed. The longitudinal to side, and on top to have a saddle piece bolted on with on bottom bolts, 5 ft . 9 in . long by 11 in . wide by 31 in ., bevelled on edges as shown to $2 \frac{1}{2}$ in. The diagonals to be 5in. by 4in., tenoned into headstock and crossbearers. The spring bed to be formed by longitudinal pieces 4in. square, tenoned into headstoci and crossbearer,
plate $\frac{1}{2}$ in. thick, bolted underneath as shown : also to f secured with four longitudinal tie bolts, $\frac{3}{\text { sin. }}$. diameter from headstock to crossbearer as shown, these bolts to have square heads on outside of headstock $14 \frac{1}{2}$ in. by 9 in. by $\frac{1}{2}$ in., and one on crossbearer. Pieces of oak to form spring stop to be put in as shown; and on top of spring beds between headstocks and crossbearers, boxed at each end $\frac{3}{4}$ in. deep. The crib rails to be 5in. by 4 in. the full length of wagon, half lapped on to headstocks and secured to sole with four $\frac{5}{3} \mathrm{in}$. bolts; two pieces of oak $4 \frac{1}{2} \mathrm{in}$. wide by 4 in . thick by 8 in . deep to be bolted on sole bars on outside, to form side four bolts sin. diameter in each spring bed and tw. diameter, crossbearers as shown. The tenons on soles, crossbearers and longitudinals to be $1 \frac{1}{2} \mathrm{in}$. by $1 \frac{1}{2} \mathrm{in}$. by $3 \frac{1}{2} \mathrm{in}$. between where double tenons are used; all the other tenons to be $1_{4}^{1} \mathrm{in}$. by $1_{4}^{\frac{1}{4}} \mathrm{in}$. deep. Rope rings to be three on each side of wagon and two on each sole behind the buffing string plates sh. Boards.-Sides and ends of the body the outside with plain edges, having outer edges slightly planed on the corners to have corner plates $\frac{1}{4} \mathrm{in}$. thick, 3 ft . 5 in . long, 8 in . by Sin. wide, and boited with eighteen $\frac{2}{2} \mathrm{im}$. bolts in each ; great care must be taken to have all the heads of the inside bolts flush, and be well rounded off. The sides to be strengthened by two wrought iron knees to each, of the strength shown on drawing, and bolted to the sides with $\frac{1}{2} \mathrm{~m}$. bolts, two in each board with a long washer plate inside, $2 \frac{1}{4} \mathrm{in}$. by $\frac{1}{4} \mathrm{in}$. thick, rounded off on edges as shown. hinges bolted to them with $\frac{1}{2}$ in. bolts as shown, the two strong hinges to have lugs forged on to form the fastening, which must be made in all respects to detail drawing; the lower part of hinges to be bolted to crib rails and soles. The ends to be strengthened by ${ }_{3} \mathrm{in}$. oat top, bevelled as shown $4 \frac{1}{2} \mathrm{in}$. at bottom, tapered to $2 \frac{1}{4} \mathrm{in}$. by iron plate 1 ft . 6 in . long by 3 in, wide by $\mathrm{B}_{\text {in }}$ thick with one $\frac{3}{4} \mathrm{in}$., one $\frac{5}{8} \mathrm{in}$., and one $\frac{1}{2} \mathrm{in}$. bolt in each end board as shown. Body to be fastened to crib rails and headstock by twelve $\frac{1}{2}$ in, bolts, cup head bolts on coping, and nuts and washers under-
neath. Coping to be $2 \frac{1}{4}$ in. by $\frac{1}{2}$ in. thick carried all round, welded up at corners and fastene 18, besides bolts as shown on drawing. The floor boards to be $2 \frac{1}{2}$ in. thick, placed across the wagon spiked to underframe with 5 in . spike nails. The bottom doors to be 4 ft . 10 in . long by 2 ft . 3 in . wide in the clear, 11in. apart as shown, each door to be supported by two strong wrought iron hinges, and opened by two levers. The brackets for carrying the hinges to have two eyes, and are le
in flush with top of longitudinal bearer at 3ft. 10in. cr. to cr. through each hinge and bracket passes a long bolt $1 \frac{1}{4} \mathrm{in}$. diameter, and held in place with a $\frac{5}{10} \mathrm{in}$. split pin at each end. Each door to have a strap plate on underside 3 in . wide by $\frac{1}{4} \mathrm{in}$. thick. The levers for opening the doors to be 1ft. $10 \frac{1}{2} \mathrm{in}$. long, fixed to studs
bolted through sole, and so fixed that when the $\overline{\text { sin. }}$ pin shown is bolted through sole, and so fixed that when the $\frac{3}{4} \mathrm{in}$. pin shown is
taken out and both levers pulled outwards the door will fall down. Hinges and levers to be made to detail drawing. Six bolts in each
hinge. The Springs are to be of the best spring steel, properly tempered so as to retain their original camber after being forced straight; and secured with $\frac{7}{10}$ in. rivet. Bearing springs to have twelve $\frac{7}{10} \mathrm{in}$. by 3 in . plates, 3 ft . $8 \frac{1}{4} \mathrm{in}$. long, with $5 \frac{1}{4} \mathrm{in}$. camber unloaded. Buffing springs to have nineteen $\frac{3}{3} \mathrm{in}$. by 3in. plates 5 ft . $3 \frac{1}{2} \mathrm{in}$. long. with 14in. camber unloaded; all plates spear pointed and made is put together, and stamped with maker's name and date of manufacture.
Axle-boxes and Guards.-Axle-boxes of the best cast iron with gun metal steps, cast in the proportion of 2 年 oz . of tin to 1 lb . of copper, accurately fitted in boxes and made in every respect same 3in. thick, of the exact form shown in detail, forged perfectly parallel between the legs; each guard to be secured to sole by seven $\frac{3}{4}$ in. bolts with nuts on outside ; a clip strap to be provided at bottom of guard as shown. Buffers and Drag Hooks.-Buffer heads and rods to be forged solid from the best hammered scrap iron, the rod to be $2 \frac{1}{2} \mathrm{in}$.
diameter and made 17 in . square at ends to receive buffer shoes. Buffer shoes of cast iron to be accurately fitted to rods and secured with best Yorkshire iron cotter as shown. Sockets of best cast iron $9 \frac{1}{2}$ in, long, bolted to headstock with three $\frac{5}{8} \mathrm{in}$, bolts in
each, and placed St. Sin. apart or. to or. Draw-bars and hooks of
the best haammered seran iron, links 18 diammeter of the best Yorks
 1.in. pin. A striking plate to be bolted to headstock on outsid
14isin. long b
 forms one of the spring shoes to be made as shown. The short
 for hevers. Hand lever to be stt. Gin. long, and made to detain Wrought iron 2tin. by jin. thick and to shape shown on drawing bolt for brake block to be case hardened
 skeleton to be made of solid wrought iron of approved diesign and manufacture. Tires to be of best Bessemer steel of anproved
 at centre of tread when finished, seeured to wheel with clip. on the outside edge and four 马in. sereew bolts as shown on drawing. facture, and finished to the following dimensions :-Bearings, sin
 and date of manuracture of wheels, axies, and tires mumet be me mearerl]
 pressure of 60 tons. The contractor to make goth any defect
 months from the date of delivery.
rings to be put on as showno wrught ill den harase hooks, and ten rope be distinctly matb G.N.R. Outside of wagons to have two coats of lead colour and two of brown paint (to pattern) and then one coat of good carriage
varnish. Alt the ironwork to have two coats of lead colour and one coat of black lacquer. Spring plates to have one coat of lead paint previous to being put together, and two coats of lead and on
of black lacuuruer atter being erected. The writing and number oi wagon to pattern.
A pattern wagon will be supplied to the contractor. The materials and workmanship to be of the very best description through-
out. no advantage to be taken of any omission of detail in the drawing or speeification as full explanation will be given should any par
not be sufficiently shown or understood; ;and in case of any dispute arising, the decision of the company's locomotive engineer is to b taken as binding. The wagons and materials are to be subject to the inspection and examination at any time during the construction
thereof, and on completion thereof of the cons ensineer, or such persons as he may appoint, whony shall have fult power to reject all or any of the wagons, or materials, or detals of the same, that are not in his or their opinion in full accorrdance with the spirit and intention of this speaification, a s regards design, materials, or workmanship. The whole of the wagons to be deil The contract is to be carried out to the satisfaction of the lay loo motive engineer of the company, whose decision shall be final and conclusive as to any and every question that may arise concerning
the construction or meaning of this contract. No payment is to become due or payable under this contract without the written locomotive engineer is to have power at any time to rescind this contract, if at any time in his opinion sufficient speed has not been shown or made in the execution of this contract or in case the contractor or contractors or any of them shall become bankrupt o composition or shall have any proceedings in byrrangement, or against him or them ; such rescission shall not affect, and shall be without prejudice to any right of action the company may the have for delay or otherwise, for non-performance of this contract or themselves to accept the lowest or any tender. Tenders sealed up official form only, at the Secretary's office, before Ten o'clock a.m on Thursday, 2nd February.

LETTERS TO THE EDITOR

We do not hold ourselves responsible for the opinions of our

 correspondents.]THE FORTH BRIDG
Sir,-Whilst entirely agreeing with Mr. Edwin Clark as to the small lateral extent of heavy blasts of wind, and the compara tively insignificant influence of high wind gauge pressures on struc
tures of the size of the Britannia Bridge, I believe the statement in your artiole to be quite correct, that by a slip of the pen Mr. Clark has underestimated the action of the wind on that structure. On page 787 of Mr. Clark's work on the "Britannia Bridge"-the most valuable contribution, in my opinion, ever made by an engineer to
the literature of his profession-there appears the following equation
$\frac{\mu l}{f}=\frac{8 d}{l}\left(a+\frac{a l}{6}\right)$
With a 20 lb . wind Mr. Clark finds $\mu l=120$ tons, and by substitution he obtains $\frac{\mu l}{f}=\cdot 621$, whence, he remarks, $f=74.5$ tons per square foot, or but the "insignificant" stress of half a to per
square inch. He has clearly multiplied by " 621 when he ought to have divided, and the stress under a 20 lb . wind would, therefore,

$\cdot 621^{2}=2 \cdot 6$ times greater than that calculated by him. As the

 oss by rivet holes would reduce the sectional area of metal by about one-third, the actual tensile stress would be $\frac{2 \cdot 6}{66}$ or, say, four times that stated by Mr. Clark. In other words, considered as an pressure would be 1 ton per square inch for every 10 lb , per squar proot pressure instead of $\frac{1}{2}$ ton for 20 lb . as given in the work citedB. B.
above.
Westminster, Jan. 24 th.

atr machines,

Sir, -I have read Mr. Sturgeon's letter on this subject in last week's Enginerr. Though disagreeing with most of that gentlehad the honour of sending you on the 26th ult., yet I do not feel my encroaching on your space with any detailed exposition of the fact. To give this fully, and without running the risk of being however, ask you to permit me to correct the statement that the inlet valves in my compressors-as illustrated in the scientific papers-are not positive in their action, but depend for their lift on the creation of a partial vacuum. In all illustrations with any pretence to detail, the gear for lifting these valves is very distinctly shown, and it must be in che recollection of many of your reader Mr. Sturgeon seems to think he has a monopoly of the method of abstracting what he calls the "natural moisture" from the air when under compression, as well as of high speeds in relation to air compressors. I need hardly say this is not the case. When fresh
air containing the usual amount of moisture in solution is air containing the usual amount of moisture in solution is com-
pressed and cooled, a portion of the vapour is condensed according
to a natural law, which is fortunately at the service of all maker
and users of air refrigerators, and Mr. Sturgeon does not even my own and other drying apparatus. ough in order to defend accusation that because the air in his refrigerators is only com
pressed to 30 lb . absolute, it will hold double the amount of wate in suspension that it would if compressed to 60 lb . as in an ordinary
machine, the assertion is made that only a limited amount of water machine, the assertion is made that only a limited amount of water
is present. Mr. Sturgeon does not seem to appreciate that if this is present. Mr. Sturgeon does not seem to appreciate that inatural moisture" would be got rid of, as, of course, only the excess above that required for saturation can be
hrown down, and if the cooled air at 30 lb . pressure be not satuthrown down, and if the cooled air at 30 lb . pressure be not satuated there could not possibly have been any deposition.
As to speed, it is well known that there is no difficult
As to speed, it is well known that there is no difficulty in making ompressors to run efficiently at the rate adopted by Mr. Sturgeon,
nd there are refrigerators of 12 in . and 15 in . stroke in work at from 150 to 200 revolutions per minute, though there is no reason os suppose that this is a final limit.
With regard to the amount of mois
With regard to the amount of moisture which can be abstracted by my system, I would simply refer to the following formula, which
gives the pounds weight of aqueous vapour mixed with 100 lb . of pure air at any given temperature and pressure :
$\frac{62 \cdot 3 \mathrm{E}}{29 \cdot 9-\mathrm{E}} \times \frac{29 \cdot 9}{p}$
being the elastic force of the vapour at the given temperature in inches of mercury, and p the absolute préssure also in inches of
mercury. Apart from its bearing on Mr. Sturgeon's observation, this form may possibly be of interest to some of your readers.
116, Fenchurch-street, E.C., January 17th.
. B. Lightroot.

Sir,- Since writing you last on this subject I have seen Mi ightfoot's specification, and finding that he there describes a pressor, I desire to anticipate his correction of my letter in thi respect, by admitting that, so far, his valves appear to have a positive action imparted to them. Whether he makes them so, o
as they appear in the illustration given in the scientific journals, as they appear in the illustration given in the sciencinc journals,
cannot say, not having seen his machine. In the year 1869 I tried milar cams for air compress liable to knock itself to pieces. I, therefore, abandoned that method in 1873 . I believe cams were used by Lowe before I employed them. I tried many contrivances
to get a positive action of the inlet valves, all more or less objeco get a positive action of the inlet valves, all more or less objec-
tionable, like the cams, before I adopted the stuffing-box tionable, like the cams, be
frictional inlet valve in 1873 .

John Sturgeon.
Westminster, S.W., Jan. 18th.

STRAINS ON BOWSTRING GIRDERS.

Sir,-Will you allow me, through the medium of your columns, draw the attention of engineers to what seems to me to be
allacy about the strains on some parts marked $H \mathrm{H}$, \&c., on sketcl enclosed.
We all are in the habit of regarding these members as ties, and their more especial function to be the counteraction of rolling load
strains, the theory being, as I understand it, that deflection being aused at the point of entrance of a rolling load - such as a locomo-tive-or a moving live load-such as a body of soldiers or a drove of cattle-entering on a bridge, and this deflection moving with the load, causes a wave action on the floor of the bridge, which create a sort of longitudinal strain tending to move the floor bodily for
ward before the advancing load, and the ties $H H$ must be introduced to counteract this,

I think this theory is fallacious, so far as the need for ties is irders being all securely rivetted and otherwise fastened together irtually constitute a most rigid and strong web girder, so exces ively deep, as measured by the span of the bridge, in proportio o its depth, as measured by the length of the cross girders, that it by the moving load. The same applies to road bridges. My own opinion, therefore, is that ties H H are mere excrescences, useless members, and the material in them woul
better still, be used as vertical members
I would like, however, to see other er
your column
Jan, 24th.
Hineers discuss the matte

$$
\pm
$$

sNOW-HILL STATION ROOF
STR,-I fully endorse Mr. Timmin's remarks about the weaknes per square foot made up thus : 10 lb . per foot for weight of struc 30.6 tons on the truss , 20 lb . for $55 \times 15.3-(15.5 \times 5.16+30.0 \times 4.5+41.9 \times 3.32+49.3 \times 2.3$
$=41.5$ strains on truss on the centre member B of the truss, whicl
has an area of $3 \cdot 14$ square inches, which gives 13.2 tons on the

quare inch, which is an excessive amount, and that too exposed to the sulphurous fumes and vapour from the locomotives. There can be no doubt whatever that the structure is a very unsafe one, and
the Great Western Company will incur grave responsibility if it i not immediately strengthened. It is surprising that such a weal and faulty structure could have been erected so late as 1873, the
C. E. BaINES. date, I believe, the station was renewed.
Victoria Cottage, Harrow, January 21 st

Sir, - I think many of your readers are indebted to Mr. Timmins tion of the Snow-hill Station roof. I have no doubt the matter stands just as he has described. If the theory is correct that iron oofs of this description should have a rise of one-third their span, of 92 ftt . 2inust wo defective on this score also. One-third of a span

I do not know the rule for determiming the usual distance be
ween top of a principal rafter and tie-rod, but I presume, if the rise also encreased, also have to be increased, and the ties made a trifle stronger in
proportion to their increased length. Perhaps Mr. Timmins will enlighten us a little further as to these particulars of roof construction.
ture in question investigation should be made respecting the strucas a guarantee of a little more security against the possibility of
January 24 th.
SIr,-MIr. Timmins's letter brings to light some very astonishing m bound to admit in the main they are correct. Probably, th method of obtaining the strains for a vertical reaction of the piers
and application of the load is open to objection, on the ground that uch a state of things can never exist. This, however, would not really receives some considerable support ; and unless the roof buildings, causing it to act as an arch, and thus partly relieving the strain on the ties, I-am at a loss to see why the roof does not show signs of giving way. That it is a very weak structure a moment reflection will show, as the main tie-rod at centre is only 2 in
diameter, whilst the principals are only 8 ft . deep at the centre, and are placed 20 ft apart. To prove by diagram and calculations that this is out of the question for a perman
ike using a steam hammer to crack a nut.
Camberwell, January 25 th.
\qquad F. H. C.
the tensile strength of long and short bars, Sir,-Allow me to correct an evident slight clerical error in
your report of Professor Chaplin's interesting paper "On the your report of Professor Chaplin's interesting paper "On the

Tensile Strengths of Long and Short Bars," in your issue of the The article says, if A_{x} is the probability that any particular untried bit of unit length has a strength lying between S , and | $\mathrm{S}_{1}-x \mathrm{P}_{1}\left(\frac{1}{2}-\mathrm{A}_{\mathrm{x}}\right)$. Therefore, the probability that a bar of the same |
| :--- |
| herefore $\left(\frac{1}{2}-2 \mathrm{P}_{1}\right.$ | quality and section, and n units long, has a strength lying below It is easy to see that if this were the case the value of this chance would decrease as n increased, that is to say, the chance of

the bar being below a certain strength would be lessened by the bar being below a certain strength would be lessened by
increasing the length of the bar, which is obviously not the case because the longer the bar the greater is the chance of its conlength. The strench weaker than the average of pieces of unit chance of the absence of weak pieces. With the same supposition then, as you make, the chance of this particular untried piece
having a strength above $\left(\mathrm{S}_{1}-x \mathrm{P}_{1}\right)$ is $\frac{1}{2}+\mathrm{A}_{\times}$. Therefore the probability of a bar of the same quality and section and of n units paragraph of the first column of your article-equal to $\left(\frac{1}{2}+\mathrm{A}_{x}\right)^{n}$,
and the chance of the same bar having a strength below $\left(\mathrm{S}_{1}-x \mathrm{P}_{1}\right)$ is
I have no doubt that this formula is the one intended, and adapt unity for testing it further. chance of weakness increases with the length of the bar.
23, Fopstone-road, Earls'-court, S.W., January 19th

A PROBLEM IN PILE DRIVING

Sir,-The following facts respecting important pile foundation
work in the United States I beg to submit for the consideration work in the United States I beg to submit for the consideration and comment of such of you laaders as may find them of profe A grain ware
navigable river. The house is 25 ft . back from the dock front of a no stone piers 4 ft . by 7 ft . at the bottom, resting on nests of piles.
Each nest is composed of thirteen piles, and must sustain a maximum load of 325 tons, or 25 tons on each pile, assuming the weight to be uniformly distributed. The piles are of hard beeel diameter at the large end. They are driven by a pile-driving
dammer of 2000 lb . weight, having a total fall of 34 ft . The surface soil is sandy, and the piles drive through it freely to a depth of say, 13 ft . to 15 ft. , reaching that depth in, say, twenty to thirty
blows, and going about 4 in . in the last of said blows. The piles being from 18 ft . to 25 ft . in length, would give a hammer fall of harder material is reached, through which the piles go at varying
distances, between 3 in in . and 1 i in . at each blow, until the depth of 25 ft - -the full length of the longer piles used-is reached. Single
test piles driven to a maximum depth of 38 ft . fail to find any test piles driven
The rule adopted in driving has been to reach a minimum depth oes not exceedin α 2quire that each pile shall be erriven until 2000 lb . hammer falling 30 ft .
Now I wish to know (1) What weight should such piles so
driven sustain, and how determine? (2) What would be the bearing power of piles 18 ft . long and driven until they go $2 \frac{1}{2} \mathrm{in}$. on each of five consecutive blows of a 200 lb . hammer falling 24 ft , as com-
pared with the like bearing power of piles 25 ft . long and driven pared with the like bearing power of piles 25tt. long and driven hammer falling 32 ft . \rightarrow how are the results determined in each to in dead load placed on the top of a pile, and how determined January 14th. PHILADELPHIA.

Water supply in india.
Sir,--In the Lancet I see a long letter by Dr. Cookson on the great percentage of deaths among the European soldiers in India.
Dr. Cookson attributes this to the dirty water supplied to the troops. It is to be hoped that water supply forms part of the
curriculum at Cooper's Hill. The wells made in India are mer surface wells made in the middle of the cantonments; the water is
the mere surface soakings which go down in the rains to the sandthe mere surface soakings which go down in the rains the the sand
bed underlying the surface soil. As there are no drains or sewers bed underlying the surface soil. As there are no drains or sewers,
either open or closed, in Indian cantonments, it is obvious that after twenty or thirty years the soil must lose its power of xidising animal matter, and that this water will be very nasty.
quite agree with Dr. Cookson that this dirty water carried in dirt. leather bags is most objectionable. Besides cholera and dysentery, all sorts of skin diseases are propagated in this way.
There is, as a rule, no want of water in India; the fault lie with the obstructive routine of the department. All that is needed ments, and pump the water by steam power to a covered-in reservoir,
where it will be kept clean and cool. The land round the well should be kept under grass, and will cause no expense, as grass i 141, George-street, Edinburgh.

STRAINS ON CRANE POSTS.
SIR, - In addressing you again I do not propose to add one word ppearing in your journal to-day, Mr. Stokes makes a persona charge, which I am compelled to refute. He accuses me first of "Mr. Coventry has kindly called his (my) attention," \&c.
Taking the second statement first: Mr. Coventry's first letter was published on December 16th. Mr. Stokes admits that my
letter, published on December 23rd, took up what we will for the

Jan. 27, 1882.
THE ENGINEER.
moment call my fnal position. If hhe will look again at that letter,
he will see that it was witten on No vember 2ath he will see that it was writen on November 266 thi,, ,e, ,three week
before the appearance of IIr. Coventrys first. Such a charge based on such careless reading is most unjustifable, and 1 hopo Mred
Stokes will see his way
to an unqualifed withdrawal, and as promptly made as that of his equally erroneous formulese for " the neutral axis theory
Now, as to to the
Now, as to the otharge of changing front. Mr. Pendred said
October 7 th, "I took the neutral axis as gradually being eliminated

 ence were proved, the position would be balculatated with due eegard
to mechanical laws. गlly letters of october 2lst and November
to

 admitted the existence of the axis placing it in unheard of and
absurd positions, and to such I hoped my two letters appearing
 the one treating of the eimple pirider, the other of the orane post;
and here it beame neessary for the first time to allude to the
 neutral axis, and had nowhere said a word as to the amount of
stress which might exist on either side of such axis in a crane post:

 20th Jannuary.
$\mathrm{Sir},-\mathrm{Will}$ Mr. Coventry, or Mr . Major, or Mr . Stokes, or Mr
Ward, or any of your correspondents, tell, me whether the breast
 word? I do not want to know how much thicker, but only whether
it ought to be thicker at all.
osmetimes 1 Ithink it ought to be
 it onght not to se, because then neex, axis shifs sabout so, , Then
I find that it is is not a neutral axis, but a " neutral line," or an

Hoxton, January 24th.
POWER AND SPEED of torpedo boats.
SIT, -In your last issue you dreva attention to the fatt that the propoition bew een tie powers requirect to prope boats of differen
sizes is far from constant at all speeds. It so happens that we have recently had under trial two torpedo obats of difitenent thizes which
illustrate the above very clearly, and as it may be of interest to

 a displacement of 33 tons:

Poplar, January 24th.

> THE EFFICIENCY OF TURBINES.

SIR, - Those of your readers who are interested in the discussion
the above subject, which commenced in THE ENGINEER of on the above subject, which commenced in The Engineer of
January $23 \mathrm{rd}, 1880$, and to which Messrs. McKenzie refer in their relating to weir measurements put an end to the correspondence. If those who have now opened up the question, and other prac-
tical men who have had experience in turbine work-and there tical men who have had experience in turbine work-and there
must be many such-will give the public the benefit of their
opinions, there will be no fear of a collapse on account of the opinions, there will be no
difficulties above-mentioned.
There is, no doubt, a necessity for reliable information as to the
efficiency of many of the turbines now in the market, but in the majority of instances a difference of 5 or 6 per cent. is of little consequence, and those wheels which are the best known are, I
believe, about on a par for efficiency; such is the case, probably,
with the Vortex, the Girard, the Leffel, and while in these turbines there may not be much differe efficiency, there is a considerable difference in construction; and if the discussion which has commenced is to be of much value, it
seems to me that the design of the details of these wheels must
be examined, besides fighting angle for the vanes. It is very important that a turbine shall
not be liable to choke easily; it is also of importance that the buckets shall not work loose, and that the gates for regulating the flow of water shall move easily and not be liable to stick, especially
when a governor is to be applied to the turbine ; these and other such practical questions should often decide between rival wheels rather than a matter of 4 or 5 per cent. in efficiency.
Of the three varieties of turbines, viz., inward flow, and parallel or downward flow, the first appears to be the most popular. With respect to parallel flow wheels, such as
Girard's or Fontaine's, it would be interesting to hear the experienc of any who are acquainted with the practioal working of this kind
of wheel. The experiments made by M. Girard and other eminent continental engineers are, no doubt, reliable, but many
of your readers who are interésted in this matter have not the of your readers who are interested in this matter have not the
time nor the opportunity to search up records of turbine tests. If there are wheels of this class working near home, and those who
know would communicate, their information would, I am sure, be very acceptable.
principle, which has met with some are few ; ine is the on Fourneyron's made by Messss. but the small apertures in the guide chamber mercentage of power, to choke, and when the gate is open for full water the friction in
these passages must be considerable. To come to inward flow these passages must be considerable. to come to inward flow
turbines, their name is legion, so also are their characters. In this country the Vortex has had a large sale, and it is, no doubt, a
good wheel, although there is no reason to believe that its efficiency is greater than some other turbines which are now being offerede to
the public. My experience is that there are less expensive wheels the public. My experience is that there are less expensive wheels
giving quite as much percentage of power. I should like to notice here the remarks made by Mr. Hett on the Vortex. From the manner in which he refers to Mr. Donaldson's work on turbines
those who have not read the book will think the Vortex nowhere for efficiency, but it is only fair to state that in Mr
Donaldson's opinion no turbine can give more than 50 to 60 per
cent., and probabiy not more than 40 per cent.; so that if the cent,, and probabiy not more than 40 per cent.; so that if the
Leffel, which Mr. Hett sells, had fallen into Mr. Donaldson's The internal construction of the Vortex turbine is objectionable on account of the long narrow passages which the vanes make,
and which are as liable to choke as those in McAdam's wheel.
Perhaps it is Perhaps it is not possible to make a turbine which is perfect in theory, and which will prove to be everything it should be in
practice; but if as good efficiency can be obtained with short and
large passages as with preferable, as not being likely to choke, and what is often of importance, a much coarser trash rack can be used in the head race.
A fine rack-which is indispensable with the Vortex in many localities-is sometimes the cause of annoyance in more ways than
one. Where the head race runs under overhanging trees, as is often
the case, a great mass of leaves and small wood will accumulate on
the rack, and unless it is constantly cleared the free flow of water will be interfered with. In the case of some turbines leaves and in any way, and other things being equal, it is certainly an advantage to have such a wheel.
one which has very few defects in its construction; such at least very coarse rack is used. In one case no trash rack whatever is used, and in a locality surrounded with trees. The buckets of the Wheel, and the body of the wheel itself, are very strong indeed,
The footstep is seldom worn down sufficiently to need replacing, the discharge of water being downwards, favouring the toe very
considerably, three or four years' work under ordinary circumstances causing only about tin. wear. In the Vortex there is an arrangement for raising the toe, as the wear is more severe than
In the Leffel. The guide blades of the Vortex are well in the Leffel. The guide blades of the Vortex are well
suited to their work, and would probably be easily operated by a covernor. The gates in the Leffel are also easily moved, and great satisfaction. I have compared the Vortex with the
Leffel because of the reputation both have achieved in this country and in America. I agree with Mr. Hett as to his remarks turbines are ercected, there is abundance of room for them ; and I do not therefore see any great advantage in making a wheel deeper. When I took part in the discussion of this subject two
years ago, I suggested the desirability of a public competition of turbines; and it seems to me that just now, when water-power is ikely to be used for electric lighting machinery, a thorough trial
of turbines would render a great service to future purchasers, and, indeed, to all owners of water-power. The usual objections to
turbine tests could not be urged if the wheels were tested, not only turbine tests could not be urged if the wheels were tested, not only Borough-road, Ipswich, January 25 th.

PHOTOMETRIC TESTS OF INCANDESCENT LAMPS, SIR,-Mr. Ormiston's letter of the 18th inst. has drawn iny
attention to a cause of error in my tests. I am therefore now re testing, under improved conditions, all the lamps mentioned in Table IV., and hope to send you the results.
The tests of Maxim lamps-Table III.-are,
pa fixe exiter having berrect,
 altered during the test of each lamp.
ANDREW JAMIESON.
-
LIVERPOOL ENGINEERING SOCIETY.

PLYMOUTH WATERWORKS.

The first meeting of the eighth session of this Society was held n the 18th inst. at the Royal Institution, Colquitt-street, the preusual business, Mr. H. F. Bellamy read a paper on "The Plymouth The author, having called attention to the fact that the antiquity the subject more than usually interesting, pointed out, on a bird'seye view of the town, the geographical position of the district sup-
plied with water by the Plymouth Corporation, proceeded to review in detail the history of the present source of supply-passing round Henry VIII. and Elizabeth, the originals of which are in the possession of the Marquis of Salisbury, in the Hatfield Library.
He then showed that prior to A.D. 1590 the chief source of supply was from wells in the town, and that the Corporation, finding this of which was given, and which continues to the present day - to introduce a supply from the river Meavy, by means of an open
channel or "leat." By quoting extracts from ancient corporate account books, and exhibiting a copy of the original plan for the construction of the "leat," he showed the cost and mode of carryafter the introduction of the water. In describing the present condition of the works, he stated that the original "leat," in a
repaired condition amounting almost to reconstruction, was still used for twelve miles of its course, discharging the stream into a service reservoir three miles from the town, from which the water
is conveyed by two lines of pipes, 12in. and 24in., to the distributing miles of the old course, He described, by a working drawing, th settling tanks, through which the water passes before entering the
reservoirs. With reference to proposed improvements, he stated that the supply still being inadequate, a storage reservoir of about hed of the this water-shed he showed to be very great. The pipe line is to be
extended about five miles to Roborough Down, and a series of settling tanks he gave details of consumption and quantity of water
clusion clusion, he gave details of consumption and quantity of water
available, the rules and regulations, rates for domestic and other supplies, and analyses of water.
After the paper, which was illustrated by plans, photographs, and
drawings, had been read, a discussion took place, and a vote of drawings, had been read, a discussion took place, and a vote of
thanks to Mr. Bellamy for his interesting paper was given. The
president announced that the next meeting of the Society would be held on the 1st of February, when Mr. Wm. Goldshaw wo
read a paper "On Municipal Control of Streets and Buildings."

THE ROYAL INSTITUTION.

Dr. HUGGINS ON COMETS.
Last Friday night Dr. William Huggins, F.R.S., lectured at the comets were supposed to presage war, pestilence, and woe, and that as during last year no less than seven comets had been seen, justification to the idea. The subject of comets was one on which there was no general concensus of opinion even among the masters
of science, although of late the spectroscope had done much to members of our own solar system; others visit us but once, and than twenty-six miles per second at the distance from the sun of the orbit of the earth it will go away never to return. A comet
leads a humdrum life except when it gets near the sun ; then it
undergoes violent ches undergoes violent changes, but at other times it consists of little comets contains solid matter, and that the collision of one of these with the earth would have serious effects indeed. By means of
the electric light he projected on the screen some magnified as they neared the sun a kind of cap was thrown out from the nucleus on the one side, from which streamed a long tail on the ther. Few photographs of comets had been taken because of
their feeble light, the long exposure necessary, and the too great of New York, and an astronomer residing near Ealing had taken a few. When they gave sufficient exposure to secure a representaMany years ago, when he and the late Professor W. Allen
Miller applied the spectroscope to comets, they saw luminous bands
ing the spectrum of the latter gas simultaneously, and with the
same apparatus brought to bear on the light from the comet, their same apparatus brought to bear on the light from the comet, their
identity was manifest. Most comets gave this spectrum, indicating the presence of some hydrocarbon. But the nucleus of the bright the presence of solar rays reflected by cometary matter ; the bright lines due to the presence of hydrocarbons were also present.
as well as some indications which had been proved by Professor Dewar to invariably accompany the presence of nitrogen. The effects seen in 1881 might have been due to the presence of Another branch of science, that relating to shooting stars, threw light on the subject. The November meteors go round the sun in
rather more than thirty years, and Schiaparelli, of Milan, dis covered that they move in the same orbit as the comet of 1861 ; thus there is a probable identity between the nature of the meteors and the comet. These meteors are very small pieces
of matter, which usually ignite by friction and burn away in the earth's atmosphere ; at other times some of them come through to range of chemical constituents, from the iron and nickel, of which some are chiefly composed, to the stony matter of others, rich in
silicates ; some of them contain carbon, hydrogen, and nitrogen. Probably the light of comets is not due to chemical decomposition, but to the setting free of the gases previously occluded in the
metals. Dr. Odling, he said, once at the Royal Institution lit up the theatre with hydrogen brought down from interstellar space by a meteorite; he (Dr. Huggins) did not intend to attempt anything so sensational, but he might state that hydrocarbons, carbonic
oxide, and nitrogen had been obtained from meteorites of both the So far he had been walking on solid ground ; beyond, all was speculation in relation to comets. The primary disturbing cause
in comets is the action of the sun, and Mr. Crookes thinks that in high vacua the loss of the sun's heat by radiation is very small; so that there may be considerable heat in comets. Professor
Tait, of Edinburgh, thinks that the luminous phenomena of the nuclei of comets may be due to stones knocking against each other. pectrum would be given, showing the composition of the ignited substances. A feeling is growing among physicists, especially in
America, that the light of comets may be due to electrical conditions; but in this direction speeulation should advance cautiously, because at present it is supported by no known facts. Professor
Zöllner says that, if certain data be granted, the action of eleotricity is sufficient to explain the phenomena of comets.
Dr. Huggins closed by hoping that throughout the lecture the
isteners had not felt themselves to have been under the influence of the malign characteristics of comets.
\qquad
Large Engines for the Navi.- The new twin-screw cruiser pound engines to indicate 5000 indicated horse-power, by Messrs. Maudslay, Sons, and Field. The same firm has received orders to fit the troopship Tamar with new compound engines of 2500 indi-
British Coal Shipments.-During the past year the coal
shipments of the kingdom have been on the highest scale, the shipments of the kingdom have been on the highest scale, the
exports especially reaching the maximum quantity known. From many of the Welsh ports there has been an enormous increase in east ports to other British ports have been large. Newcastle-on-
Tyne still stands at the head of the coal-shipping ports, the large quantity of $7,139,197$ tons having been sent thence. Cardiff, howrapidly than the Tyne port, the shipments last year having been Newport, the fourth port, shipped 2,058,975 tons; Swansea sent nore than a million tons, its quantity last year being $1,137,620$ tons. olliery explosion reduced the exports-shipped 502060 tons ; and North Shields, 319,065 tons. None of the other ports on the northeastern or Welsh coal-shipping coast contribute largely to the
export of coals or to the shipments to other ports. The largest increases in the exports are from Cardiff, Newport, Sunderland,
and Shields; whilst in the coastwise shipments, the additions are most prominent at Sunderlasle-on-Tyne. But in the shipments, so far as those for London are concerned, there is
increased competition with railways. The Midland Railway alone ncreased competition with railways. The Midland Railway alone
now takes into London more than two million tons of coals nearly-a quantity in excess of that of the largest of the ports that respect tho London by sea. It is possible, how one coalowners are now endeavouring to cheapen the cost of sea-borne coal as delivered
to London consumers, and in other modes to increase the sales. It remains to be seen how far they will be successful in this respect, for fuel. Of this there can be little doubt-that, from time to time, it is tolerably certain the shipments of coal at our ports will
grow, and that especially in the foreign part of the trade during periods of low pice of
Original Researches.- The Royal Society of New South
Wales offers prizes of $£ 25$ for the best communing Wales offers prizes of $£ 25$ for the best communication, containing
the results of original research or observation, upon each of the following subjects:-Series I.-To be sent in not later than Sep-
tember 30th, 1882: (1) On the aborigines of New South Wales, $£ 25$; (2) On the treatment of auriferous pyrites, $£ 25$; (3) On the
forage plants indigenous to New South Wales, $£ 25$; (4) On the forage plants indigenous to New south of pastures upon the growth 1883: (5) On the chemistry of the Australian gums and resins, $£ 25$; (6) On water supply in the interior of New South Wales,
$£ 25$; (7) On the embryology and development of the marsupials,
$£ 25$; (8) On the infusoria peculiar to Australia, $£ 25$. The competition is in no way confined to members of the society, nor to residents in Australia, but is open to all without any restriction, but
no award will be made for a mere compilation, however meritorious in its way-the communication to be successful must be research on the part of the contributor. The address of the
Fires in Thratres.- The Great Ring Theatre fire has directed
renewed attention to a work published about four years ago, by M. Auguste Felsch, in which he stated that up to the date of
his publication 252 cases of destruction of theatres by fire had occurred. According to his calculations, a theatre or concert-hall only lasts on an average 22 years, and is then destroyed by fire.
Of the above-mentioned 252 theatres, 5 weer burned before they were opened for performances ; and 70 only lasted five years; 38
attained their attained their tenth year; 40 the twentieth; 27 the thirtieth; 20 the fiftieth; 17 the sixtieth; 7 only lasted eighty years; 8 lasted one hundred; and 3 only exceeded that age. Thirty-seven places of amusement were burned twice, eight of the
largest theatres three times, and four four times, one, the National Theatre at Washington, five times. laking each country separately, it appears that there have been 176 theatres burned in
America, 68 in England, 63 in France, 49 in Germany, 45 in Italy,
26 in Austro-Hungary, 24 in Russia, and 17 in Spain and Portugal. 26 in Austro-Hungary, 24 in Russia, and 17 in Spain and Portugal.
The number of lives which have been lost has been enormous. or injured at the principal fires, it appears, taking an example here
and there, that in the year 1794, at Capo d'Istria, 1000 people lost and there, that in the year 1794, at Capo d'Istria, 1000 people lost
their lives ; in 1836, at St. Petersburg, 800 ; in 1855, at Canton, 1700 were killed, and 1670 injured ; in 1846 , at Quebec, 200 killed;
in 1872 , at Tien Tsin, 600 ; and in 1877 , the latest year for which

DOME OF THE DEVONSHIRE HOSPITALEXTENSION, BUXTON. MR. R. R. DUKE, BUXTON, ARCHITECT,

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.
** This week we publish a Double Number of The Evainker containing the Index to the Fifty-second Volume. The Index
ind Pudes a Complete Classified List of Aplications for and Grants inchues a $\begin{aligned} & \text { and } \\ & \text { of Patents } \\ & \text { Number, } 1 s .\end{aligned}$
*. Acceding to a reasonable request made by several of our friends,
we have commenced the publication of an Index to the we have commenced the publication of an Index to the
Advertisements which appear' weecldy in THE ENeINEER. The Index will alvays be found upon the last tout one of our advertisement pages.

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessarry to
inform correspondents that letters of inquiry addressed to the inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the pubbic, and intended for insertion in this column, must, in all
cases, be accompeanied by b lorge envelope legibly directed by the
voriter to himself, and bearing a add. postaye stamp, in order that usititer to himself. and bearing a 1 d. postage stamp, in order the
answers recived by us may be forvarded to their destination. answers received by us may be forvourded to their destinatition.
No notice will be taken of communications which do not comply ese instructions.
** We cannot undertakie to return drawings or ${ }^{\text {mies }}$
** All letters intended for insertion in The Encinerr, * Aontanning questions, must be acconpanied by the name ornd
address of the writer, not necessarily for publication, mut as a proof of good faith, No notice whatever will be taken of P. (South-hill-road, Liverpool)
R. P. (South-hill-road, Liverpool)., The address is the Woodlands, Hayes,

WroUGHTIRON PULLEYS. (To the Editor of The Enginer.)

 transmitting po
Birmingham.
artificlal manure.
SIR, - May 1 ask for some information as to the most approved methods
of treating the flesh and other matters from a horseslaughtering esta-
 refining the fat therefrom, or are there any good books on the subjeot?
ISLA.
Bridgefoot, January 24 th.

FISH GRINDING MACHINE.

-
GUN-METAL CASTINGS.
(To the Editor of The Engineer)

, Ribston-street, Hulme, Manchester, January 14th.
E. Taylor.

subscriptions.

If credit occur, an extra charge of two shillings and sixpence per a
be made. The ExGINERR
Ts registered for transmission abroad. Cloth cases for binding The Enginerr Volume, price 23. $6 d$.
Many Volumes of The Enginerr can be had price 1ss. each.

 addice to the P Pes.
increased
rates.

 Portugal, Roumania, Switzorland, Tasmania, Turkes, United Soaltand,
West Coast of ffrica, West Indies, Cyprus, \&1 16s. China, Japan,
Indiia, \&2 os. bd.
 Mauritius, Sandwich Isles, £2 58 .
ADVERTISEMENTS.

MEETING NEXT WEER. Reference to the Determination of Previous Sewage Charles W. Folkard, Associate Royal School of Mines,

DEATH.

THE ENGINEER.

JANUARY 27, 1882.

the channel tunnel

On Friday, the 20th inst., a meeting of the Submarine Continental Railway Company was held at the Charingcross Hotel, to consider a proposed agreement with the
South-Eastern Railway Company concerning the Channel South-Eastern Railway Company concerning the Channel
tunnel. Sir Edward Watkin presided, and made a speech tunnel. Sir Edward Watkin presided, and made a speech
of some length. This speech contains a certain amount of information, but it leaves a great deal to conjecture. On Tuesday the money article of the Times contained a letter from Sir John Hawkshaw, written on the 30th of December, 1881, resigning his position as engineer to the South-Eastern Railway Company, because a document issued by the directors of that company to the share-
holders contained the following statement:-" The works holders contained the following statement:-" The works
of experiment which you have authorised were comof experiment which you have authorised were com-
menced after the failure of those who proposed to make menced after the failure of those who proposed to make
St. Margaret's Bay, to the North-east of Dover, the point of departure, so as to exclude your railway from a connection with the tunnel." As Sir John Hawkshaw was engineer to the Channel Tunnel Railway Company, this was a direct charge that he had neglected the interests of the South-Eastern Railway Company. This, we need hardly
add, he indignantly denies. "On the contrary," he writes, "they-that is, the Channel Tunnel Railway Company - have always proposed that the Channel tumnel railway should start from Dover, so as to admit of a good connection there with both the railways."
The publication of Sir John Hawkshaw's letter, following immediately after Sir Edward Watkin's speech, may be regarded as a comment on it. Sir John virtually warns the investing public, through the money article of the Times, that he is not responsible for any statements made by sir
Edward. We have no intention of following Sir Edward Watkin through his speech. The principal feature in it was the statement that the Submarine Continental Company purchases from the South-Eastern Railway Company, for paid-up shares, the tunnel work and plant, the property paid-up shares, the tunnel work and plant, the property
of the South-Eastern Railway Company. The sum named is large. Let us see what the purchasers have acquired. In large. Let us see what to purchasers have acquired. In cerning which not much is generally known.
Into the town of Dover run two railways, namely, the South-Eastern, and the London, Chatham, and Dover. The South-Eastern line passes under Shakespeare's Cliff
from Folkestone; both lines run branches on to the Admiralty Pier, and thus have similar advantages for carrying on their traffic with the Continent via Calais, Boulogne, and Ostend. Now, Sir John Hawkshaw proposed to construct a railway, part of which would be in tunnel, commencing at a point not far from The Priory station, to a point near the shore of Fan Bay, close to the South Foreland. The length of this railway would be approximately 23 miles. It was so laid out that junctions by easy curves and gradients could be and and both the existing railway systems. From Fan Bay
the Channel tunnel was to start, but nothing definite was ever arranged as to the precise direction which it was to take after it had left British soil. Its route from Fan Bay would lead it a little eastward of the Bover Ther it will be seen that Sir John Hawkshaw never proposed to start from St. Margaret's Bay and exclude the South-Eastern Railway. The story that he did, seems to would be found in the chalk, and to get rid of this he proposed that a drainage heading should be driven from some point in the tunnel off the pier head and Fan Bay to
St. Margaret's Bay, which is about $1 \frac{1}{2}$ miles north-east of Fan Bay. No Act of Parliament was ever got for this scheme, nor was the consent of either the French or English
Governments obtained of a different character. Leaving Dover the railway passes in a tunnel under Shakespeare's Cliff. It then Abbot's Cliff tunnel, and so distance, and enters the South-Eastern Channel tunnel starts from a point near the Dover end of the Abbot's Cliff tunnel, and runs under the seashore, and parallel with it, nearly to Shakespeare's Cliff. Thence it diverges seawards, passing the head of the Admiralty Pier. Thus it will be understood that while Sir John Hawkshaw takes what may be termed the eastern leg of a Y, Sir Edward Watkin has selected the southward of the pier. Sir Edward Watkin totally excludes the London, Chatham, and Dover Company from all participation in the advantages to be conferred by the
tunnel. It will be understood that no works have been carried out by the original Tunnel Company on shore, with the exception of certain borings; but a very important series
of soundings and auger borings have been made onits behalf of soundings and auger borings have been made on its behalf
by SirJohn Hawkshaw, and we have not the least hesitation by SirJohn Hawkshaw, and we have not the least hesitation in saying that his scheme is in every way better, if for no
other reason than because it is less selfish, than Sir Edward other reason than because it is less selfish, than Sir Edward
Watkin's. Sir John would give both railway companies access to the tunnel ; but Sir Edward wishes to reserve it entirely for the line of which he is chairman. This fact
alone would be certain to condemn the scheme the moment
it came before Parliament. Such a work as the Channel Tunnel must be cosmopolitan, and it will never receive soen that Sir F War on any other involves a long paralle seen that Sir E. Watkin's scheme involves a long parailel
shore boring under land and under water which will count as nothing in the true cross-channel tunnel, and that though his tunnel ostensibly starts at a point nearer the French coast than Fan Bay, it in reality involves a longer sea tunnel than Sir J. Hawkshaw's scheme. Not only is this so, but the Watkin scheme renders a considerable length of the South-Eastern Railway useless, and all for the purpose of making the tunnel, as he has said, a SouthEastern Railway tunnel.
We are now in a position to understand what it is that It has not sold a concession iompany has sold Act of Parliament, for none has been obtained; nor one in the sense of a permission from the French and English Governments to make the tunnel, for neither has that been got, although it is understood that Mr. Gladstone is or was not opposed to the work. What Sir Edward has sold is the permission to begin a tunnel on the three miles of sea-shore which the South-Eastern Company possesses at this place, and a heading about 7 ft . in diameter driven for a distance of $1 \cdot 1$ milein chalk parallel with and within the sea-shore, and not in any sense or way under the sea. For all the service this
 with, the South-Eastern Railway Company will find itself more than recouped for the sums it has expended ; but the new company will be just $£ 30,000$ out of pocket, and this will also be its fate if any other than Sir Edward Watkin's scheme is adopted. It denotes enormous faith in that gentleman that he should have succeeded in carrying out the sale under the conditions. In his speech at the Charing-cross Hotel, he made several statements which are at least rash, if not wholly opposed to the
experience and teaching of the best engineers of the day experience and teaching of the best engineers of the day. In the first place, the route he has selected is not regarded with favour by either Sir John Hawkshaw or Mr. Brunlees. Again, he stated that "a great fallacy which had been cherished by engineers was that in order to get to
the gray chalk they must go through the upper chalk; but the South-Eastern had taken the other plan-they had found the gray chalk and followed it." This is true; but Sir Edward forgot to explain to his hearers that it has nor anyone else can tell with certainty how soon it will be lost fter the wik tands searards in we lost arter problem conet with the her portant probled while the was silent. gress the air required for driving the boring machines gress the air required for driving the boring machines explain how compressed air is to be carried ten miles, or what would be the power required to get it through the mains. Concerning a scheme such as this, demanding for its construction on the most moderate estimates very large sums of money, it is essential that full information should be suppice. No one would think of conshey knew perfectly will how it was to be wark, and that its working presented no insuper able difficulties. But the most competent mechanical engineers alive assert that the Channel tunnel cannot be worked by locomotive steam engines, and yet not a hint is dropped by Sir Edward Watkin, or any one else connected with the scheme, as to what is to be used instead. The idea appears to be that if the tunnel is constructed some means of working it is sure to turn up. Parasome means of working it is sure tral, we say that this phrasing the words of a great general, we say erat this
may be financing, but it is certainly not engineering. A good deal has been said in continually appearing paragraphs in the daily newspapers about the borings on the French shore. These, in fact, until recently consisted of one shaft in the chalk ending in a chamber and two short headings normal to each other-mere hole-making to see what there is below, giving an appearance of reality to the scheme, which is said now to have been sold.
gas mingines and the electric light.
AT present there is a demand for something other than the steam engine to drive dynamo-electric machines. With the progress of the Swan or Edison incandescent system, this demand will probably increase. It is true that in
cities electricity may be supplied from great central stations, as it is now about to be supplied from a station in Holborn throughout a district of considerable extent ; but when all that can be done in this way has been done, there will still remain a good demand for small sets of apparatus, especially in country districts or provincial towns. There are beyond question objections to the use of the steam engine for driving dynamo-electric machines under such circumstances. These objections are so well understood that it is really hardly necessary to say that they refer to the risk incurred, and to the need for employing more or less skilled attendants to look after the machinery. No such objections apply to gas engines, and they enjoy considerable favour in consequence. The arguments against their use are that they do not drive regularly -at least, none of these engines which, like the to do make two revolutions for one impulse, can be said . The first of thes cost of ishe fuel cons in a fair way to be removed. Thus, Clerk's new gas engine, now being manu-
factured by Messrs. Thomson, Sterne, and Co., does twice factured by Messrs. Thomson, sterne, and Co., does engina, as regular driving as Messrs. Crossleys sevolution. One impulse to every revolution is also given by Turner's engine, but this engine bas not yet, we believe, been exhibited of more than 3 -horse power, though larger powers are being made. We do not refer here to the Bischoff engine because, although an extremely useful machine where little power
is needed, it is unsuitable for running a dynamo-electric machine, although, like Clerk's, it gets one impulse every revolution. There is every reason to think that Clerk's new engine will turn with sumicient regularity to give a
question which remains for solution is, therefore, simply one of cost. When 20 indicated horse-power are required to
drive a dynamo-electric machine, which will require least drive a dynamo-electric machine, wh
fuel, a gas engine or a steam engine?
Various attempts have been made to answer this question, and hitherto they have all led to the same result, namely, that the gas engine costs more to work it than
the steam engine. The latest utterance on the subject is the steam engine. The latest utterance on the subject is
that of Professor Ayrton, who delivered a lecture in French, on the "Economical Use of Gas Engines for the Production of Electricity," during the Electrical Exhibi-
tion, held last autumn in Paris. Professor Ayrton tion, held last autumn in Paris. Professor Ayrton
shows that so long as gas at 3s. per 1000 cubic feet is shows that so long as gas at 3s. per 1000 cubic feet is
used, so long must the steam engine be the cheaper motive power; but he goes on to explain that if a gas manufac-
tured on Dowson's system be used, instead of ordinary coal gas, the result is different, and the gas engine becomes the more economical motor. Professor Ayrton's lecture contains several statements which demand notice, and we are by no
means satisfied by his reasoning that the gas engine can, means satisfied by his reasoning that the gas engine can,
under any circumstances, compete with the steam engine on the basis of fuel consumption alone. But this statement is really not an argument against the use of gas engines, because they possess so many admirable quatities, becomes of secondary importance; still it is of sufficient importance to claim accurate statement. Now Professor Ayton begins with a por true meaning. He states that the steam engine wastes nine-tenths of all the heat evolved during the combustion of the fuel burned to put it in motion. "At present," said Professor Ayrton, "steam engines are chiefly used to and boilers it is well known that the fuel consumption is excessive compared with the actual work done. So good an authority as Sir William Armstrong has recently said that with a good condensing engine one-tenth of the whole is no exaggeration of facts." To those not well acquainted with the subject this statement will appear to mean that the steam engine wastes, as we have said, nine-tenths of nothing of the kind. The efficiency of any heat engine, no matter what, depends on the limits of temperature. term its coefficient of useful effect is found by the wellknown formula, $\frac{\mathrm{T}-t}{\mathrm{~T}}=\mathrm{E}$, where E is the practical efficiency of the engine. Now, with the steam engine, when
well made, E , as determined by practice--that is to say as well made, E, as determined by practice-that is to say, as measured by the work done compares very favourably
indeed with E as obtained by theory; and the steam engine is not at all a wasteful machine. That it rejects a large quantity of heat is certain, but this heat has been
first used in making the working fluid-steam. The loss first used in making the working fluid-steam. The loss
lies in the fact that the whole, or nearly the whole, of this fluid, after being made, is lost; while it is retained very good use indeed is made of it by the best engines, and
Professor Ayrton's statement is hardly fair to the steam engine, although it is, no doubt, true in a sense; but the sense is so readily mistaken that Professor Ayrton would have done well to explain in which of the two he used his words. We regret, indeed, to find that throughout he appeared to manifest a spirit of hostility to the steam engine. Thus, for instance, he says, "Engines and boilers of the portable type are those generally used now for electrical purposes, and in a competition in England of several
of the best engines of this class the fuel consumption was of the best engines of this class the fuel consumption was
about 4 lb . per indicated horse-power per hour; but in daily practical work it may be assumed at 6 lb . to 7 lb . more nearly representing the usual fuel consumption. This gives an efficiency of only about $\frac{1}{30}$ th." We do not know to what competition Professor Ayrton
refers - the last held in Great Britain was at Cardiff, when Messrs. Clayton and Shuttleworth's engine burned only 2.8 lb . per indicated horse-power per hour-but we do
know that Messrs. Fowler, of Leeds, claim that their compound, electric light, engines work with less than 3 lb . of coal per indicated horse-power per hour ; and we know
that Messrs. Ransomes, Head, and Jefferies' engine on the Thames Embankment works up to 42 -horse power with but a fraction over 3 lb . per indicated horse-power per
hour. In any competition between the gas engine and the steam engine, the latter will have to reckon with a con sumption of not more than 3.5 lb . of coal per horse per
hour, or about one-half the quantity stated by Professor hour, or
The best performance of a gas engine of large power, say 40-horses, is one horse-power indicated for 20 cubic feet
of gas. We have only to divide the price of gas per thousand cubic feet by fifty to get at the cost of fuel in this case. Thus, with gas at 3s., the cost is $0.72 \mathrm{~d} . ;$, with gas
at 4 s . the cost is $0.96 \mathrm{~d} . ;$ with at 4 s . the cost is 0.96 d. ; with gas at 1 s . it is $\cdot 24 \mathrm{~d}$, and so
on. The price of 3.5 lb . of coal, at 1 s . per ton, is 0.01872 d , consequently, with coal at 10 s . per ton, the cost in fuel of 1-horse power per hour is 0.1872 d .; with coal at 20s. per
ton the cost rises to 0.375 d , or little more than onehalf that of a gas engine worked with gas at 3 s . per
thousand. It appears to be quite clear, therefore, thousand. It appears to be quite clear, therefore
that so long as ordinary coal gas is used, that so long as ordinary coal gas is used, there does
not appear to be the least chance that the gas engine can rival the steam engine, and Professor Ayrton ought to see that the reason why, is just the same as that
which leads to the species of so-called waste with which he charges the steam engine. It is the cost of the working fluid with which we have to contend in each case. As
explosive mixture of coal-gas and air is more expensi than the quantity of steam required to develope the same power, and the gas is as much wasted and lost as is the its working fluid than the steam engine does of its working fluid is not impossible. All future attempts at the improvement of the gas engine, apart, of course, from struc a cheaper working fluid than ordinary coal-gas. With gas
at 1s. per 1000 cubic feet, the cost of a horse-power would be, as we have said, 0.24 d . per hour, or about the same as that of a steam engine burning coal costing 13s. per ton.
Now, Professor. Ayrton states that this cheap working Now, Professor Ayrton states that About this little on nothing has been heard as yet -in this country, at all water-gas, in a new guise. Steam mixed with air is passed
through a column of burning fuel. The steam is decomhrough a column of burning fuel. The steam is decombon monoxide given off. Professor Ayrton, gives its cent.; carbon dioxide, 3 per cent.; and nitrogen, 47 pe cent.; carbon dioxide, a per cent.; and nitrogen,
cent. Its calorific value is therefore much less than that of coal gas. Indeed, it appears that coal gas has 3.4 times is much energy as the Dowson gas, which must therefore ame advantage. As to the cost we know very little. Professor Ayrton exhibited a table, however, during his lecture, in which were set forth all the working expenses Dowson ras for 300 days of nine hours each. The tigure showed that the engine cost about $45 \frac{1}{2}$ per cent. less, power for power, when worked with Dowson gas than when not appear, however, that these figures were obtained by actual experiment. A smaller engine driven with Dowsons gas has, it was stated, in practice given results
showing that one indicated horse-power was obtained from 1.46 lb . of coal, a performance rather better than that of the best modern marine engines. But it is esti40 lb . would require but 90 ft . of gas per torse per hour, and wou
burned.
Should these statements be verified on further trial, the result will be very important. It is quite true that pipes cannot be laid down and the gas supplied from a central station, but each engine might be provided with its own producing apparatus to take the place of a steam boiler.
The question would of course then arise whether the boile The question would of course then arise whether the boiler or the gas producer would be the greatest nuisance. The still keep it in use. The only advantage to be derived from a resort to the Dowson gas engine instead of steam
would be a small saving in cost of coal. The necessity would be a small saving in cost of coal. The necessity
for skilled labour and the risk from fire would remain for skilled labour and the risk from fire would remain
about as before. Upon the whole we are disposed to think that the steam engine will find a more dangerous rival in the ordinary gas engine, such as Clerk's, than it
will in the Dowson gas engine which ouly appears to will in the Dowson gas engine, which only appears to advantage when compared with engines burning an unthing as a wasteful or badly kept Dowson gas engine might also exist, when the comparison would assum another aspect.
thermometers for low temperatures. Expermanents at the Meteorological Observatory at Kew have proved that ordinary thermometers are "very wild" below the
freezing point of water, and that the low temperatures announced as having been produced by apparatus for freezing meat on board cean-going sto $o f$ the the questioning. Some of the thermometers used for the indications
have been found to be inaccurate to the extent of more than 50 deg. Fah., and one was 100 deg. out. A thermometer, a relic of one of the earlier Arctic expeditions, was recently tested at
Kew. At - 40 deg. Fah, it was 15 deg. out, and at -100 deg. Fah it was 30 deg . wrong. The demand for trustworthy thermo-
meters for circumpolar and northern meteorological stations as well as for meat-freezing machines and various scientific purposes, has induced the authorities at Kew to test the instruments at the temperature of melting mercury, the air thermometer
being used for lower temperatures should exceptional circumstances require it. The freezing point of mercury - $37 \cdot 9$ Fah., was first determined by Dr. Balfour Stewart, and his observa tons were subsequently confirmed by other observers. Between point is known, although methyl chloride is supposed to furnish one. It is difficult to get this chloride in a solid state. On
Thursday, last week, for the testing of a thermometer to be used with meat-freesing apparatus, also a thermometer for a meteorelogical station in Norway, about a pint of mercury was
poured into a wooden cup, which cup was surrounded with a covering of boiler-felt, which again had an outside wooder evaporation of some of the liquid carbonic acid from an iron bottle, into which 200 gallons of the gas had been compressed mercury, a little sulphuric ether placed on the surface of the the lumps were pressed down into the mercury with a wooden spoon. This produced a hissing and a bubbling from the escape
of carbonic acid gas. After the operation had been several time epeated, lumps of solid quicksilver began to form ; some o them, rich in gas-bubbles, floated at the top; others sank to the whtom, for mercury, unike ice, is heavier than the liquid in
which it is formed. The lumps, some of them hard and some soft, were constantly broken up as much as possible with the wooden spoon, the great object being to get a thick layer of soft me thermometers during the observations. The whole operation ppeared to the onlookers to be simple and easy enough, although mercury was considered such a wonderful feat. Four standard Kew thermometers were then placed in the mercurial paste, and
those to be tested were inserted alongside, their errors in indicathose to be tested were inserted alongside, their errors in indicahe Kew thermometers going wrong at once is not to be supposed onsequently the values

the peter the great.

The alterations made by Messss. John Elder and Co., of oompleted, the vessel was taken out of their dock on the 21st inst. during a high tide, and towed to Greenock by six tug boats,
preparatory to taking in stores and undergoing her trials before leaving the Clyde. The Peter the Great arrived at Messrs.
Elder's Fairfield Works on the 13th July last, after a rather sder's Fairfield Works on the 13th July last, after a rathe
stormy passage round the north and west coasts of Scotland, and tormy passage round the north and west coasts of Scotland, and

A description of the vessel was published in The Evaineer at sary to give her dimensions now; but it may be of interest to tate briefly the nature of the work which has been done in connection with her by Messrs. Elder and Co. The workmen of that firm were engaged from the 25 th July to the 13th August in removing her old machinery and boilers, which consisted of three
etts of engines and twelve boilers. This task being accomplished he Peter the Great was towed up the harbour and placed in the Hyde Trustees' Graving Dock at Salterscroft on the 26th August, Here very extensive reparrs were executed upon her. Built of lates to about 4 ft . under water mark. In Salterseroft dock oppered over. Two new propeller shafts were put in, two bras propellers, and a brass rudder post, and also two complete set of gearing for workiug torpedoes and firing them under water
This part of the work was finished on the 8th October, when the vessel was brought out of the graving dock and taken back to Messrs. Elder's dock at Fairfield, for the purpose of having her new machinery put in. While preparations were being
made for this purpose it was discovered that the Peter the Great was not quite so strong a ship as had been believed, and it wa ound necessary to strengthen her considerably for the receptio of machinery. This being done, the new machinery, consisting placed on board the Czar's yacht Livadia, were put in. The engines indicate 8000 -horse power, and are expected to give speed of about $12 \mathrm{knots}$. The boilers are designed for a working
pressure of 75 lb , whereas those taken out worked at 30 lb . pressure of 7511 b ., whereas those taken out worked at 30 lb then new, and considerably less when they arrived in the Clyde During the stay of the vessel in Glasgow the officerss visited a icking up all the information they could regarding them.

RALLWAY.

The coroner's jury which sat at South Stockton to inquire the deaths of three of the victims of the recent locomotive iffer explosion near the Erimus Ironworks, has come to a totally leld rictims who resided at the latter town. It will be remembere hat the previous verdict was founded upon the evidence of
Mr. Lavington Fletcher, given in our last impression, and attri buted the accident to shortness of water, and not to any defect of construction. The new verdict finds "that the explosion wa caused by defective screw stays above the fire door, allowing the fire-box top was crushed down by the pressure upon it." The jury were further of opinion that "a number of vertical stay asing wig the crown of the fre-boke the them," and they think that "additional stays of a more efficient character should have been adopted." These conflicting verdict seem to show that the decisions of ordinary coroners juries are
liable to be matters of chance or impulse, and are not the deli berate judgments of competent persons. The public are puzzled itiger than assisted by such decisions, which are likely tolead t litigation and other complications. Surely this is a case where
a searching Board of Trade inquiry would be most appropriate and useful, if, indeed, it be not absolutely necessary.

LITERATURE.

The Book of Scales: Principally designed for the use of Students preparing for the Royal Military Academies at Sandhurst and
Woolucich. By Ambrose Whrerer Holohan. London : Longmans, Green, and Co. 1881
The contents of this little work are fairly indicated by its title. Besides, however, the description and explanation of various scales, it contains a table of lineal measures, a
table of the continental units of lineal measure in terms on English measure, and a series of exercises in scales. There is very little to say about a work of this kind; bu in this instance the book is excellently printed and bound and the paper of more than ordinary quality-rendering it a rather artistic production. The scales are simply described, with examples of their use given, the illustra-
tions being carefully and accurately drawn. The book tions being carefully and accurately drawn. The book will not only be useful to those preparing for Sandhurst
and Woolwich, but for any students of geometrical or and Woolwich, but
mechanical drawing.

Lighttring-rod Conference: Report of the Delegates. Edited by the Secretary,
Spon. 1881.
In 1878, the Council of the Meteorological Society, con sidering there were no authoritative directions in England o guard the public in their dealings with those who llthough official suiction is by means of inghther on best means of protecting - decided to ask the co-operatio of certain societies for the formation of a committee to consider the subject. The committee was ultimately formed, and the result of its labours is the volume before as. The Report occupies about nineteen pages, the
remaining portion of the book being filled with abstract femaining portion of the book being filled with abstract of papers, reports, correspondence, lists of books, \&c., the
information, in fact, upon which the conclusions of the information, in fact, upon which the conclusions of the
committee seem to have been based. The work is useful is containing such abstracts, the original papers not being easily obtained. There is nothing in the Report itself to object to. It simply states that the conclusions of the committee are the conclusions advocated a hundred time ordinarily followed by all who profess to know anything of the work. The value of the Report has been very highly appreciated by reviewers - such as he who
suggested that, as lightning took a zig-zag path, the natural arrangement of the lightning-rod should be also zig-zag-we suppose in order to show his knowledge of he silect, recessarly make the toportcolsseral essentials. The value of lightning-rod depends (1) upon its being the nearest conductor to the discharging cloud ; (2) upon its sectional area and material being suited for the work it has to perform ; (3) upon thorough metallic continuity; and (4) abstracts good for the student, useless for the practical
man, we should have preferred the discussion of earth connection under various conditions, and simple descriptions of the smoke of towns and unacquainted with electrical the smoke of towns and unacquainted with electrical
science might comprehend and use. We do not agree science might comprehend and use. We do not agree
with the advice to connect to the gas or water mains. with the advice to connect to the gas or water mains.
Such counections may or may not be good ; but of this we Such counections may or may not be good; but of this we
are sure that just as the householder needs good contact are sure that just as the householder needs good contact
the mains may be under repair and his contact broken, \&c. the mains may be under repair and his contact broken, \&c.
We would make a suggestion to the authorities moving in We would make a suggestion to the authorities moving in
this matter, viz, print the Report without the appendices, this matter, viz, print the Report without the appendices,
adding to the former a few paragraphs stating the various adding to the former a few paragraphs stating the various
causes which tend to decrease the efficiency of conductors we do not notice vegetation, for example, mentioned-and we oaddoice or two of the simpler tests, such as that in
alse at add one
use at Paris, and to give a few more suggestions as to good earth.

THE WATER SUPPLY OF COLCHESTER. AN important addition has been made to the water supply of
Colchester, a garrison town of about 30,000 inhabitants. The work has been carried out by Mr. Charles Clegg, Assoc. Memb. Inst. C.E., and borough surveyor to Colchester, for the Urban Sanitary Authority.
In the early In the early part of last year, this Authority having recently
purchased the works and plant, ogether with all the powers and
liabilities of the Colchester Woterworks Mr. Clegg its engineer, and almost the first duyy required of him was to report upon the then existing supply, and suggest
the best mode of augmenting it. This he accordingly did, and the best mode of augmenting it. This he accordingly did, and
was directed by the Authority to prepare the necessary plans
and specifications for carrying the same into effect. and specifications for carrying the same into effect.
The works are now practically complete, and The works are now practically complete, and the supply
obtained considerably in excess of the most sanguine anticipaobtained considerably in excess of the most sanguine anticipa-
tions. It may be well to state the general character of the works when purchased, and source and amount of supply. The
water was obtained from an sin. bore hole into the chalk, water was obtained from an sin. bore hole into the chalk,
about 410 ft . in depth from the surface, and starting from the
hottom of bottom of a well, 10 ft . in diameter and 37 ft deep, into
which led the suction pipes from two pairs of three-throw which led the suction pipes from two pairs of three-throw
12in. pumps, actuated by a pair of 25 -horse-no-minal
horizontal condensing engines, by Messrs. E. R. and F. Turner, horizontal condensing engines, by Messrs. E. R. and F. Turner,
of Ipswich. These engines drive the pumps by gearing, have expansion valves, and are very good engines of the type. The
supply was augmented by the water from some springs cropping supply was augmented by the water from some springs cropping
up in the adjacent watershed, and till the new well was sunk did not exceed 18,000 to 20,000 gallons per hour.
Mr. Clegg's plan consisted in the construction of a well 9 ft .
in diameter, about 30ft. distant from the then existing well, and carried down to a depth of about 46 ft . from the surface, and concarried down to a depth of about 461t. from the surface, and con-
nected with it by a subway, having a frt. penstock to close com-
munication if neessary with the old well. nectuication if necessary with the old well. The suction pipes
mumio
from the pumps are carried along the subway, and by an arrangement of valves andicie gearing, the water from either well can be used at will independently of the other. From the
bottom of this new well, a cast iron pipe, 18in. internal diameter, is driven down a few feet into the chalk stratum about 143 ft . from the surface, a $13 i \mathrm{in}$. hole being then bored about 268 ft .
through the chalk. In Colchester the water is pumped directly through the chalk. In Colchester the water is pumped directly
into a main, and there is no reservoir of any kind, therefore the
supply is constant supply is constant while the engines are at work. As the first
water obtained from the new well was sure to be chalky, it was necessary to pump to waste, but to do this it was necessary to
fit on a tail piece to the end of the existing main to carry the waste water to the river. This work was accomplished on Saturday night and Sunday morning during the feew hours the engines
could be stopped. On Sunday forenoon the engines worked as could be stopped. On Sunday forenoon the engines worked as
usual to supply the town, but about 4 p.m. the sluice to the old well was closed, and the pumps were put on to the new
well, the water pumped, which was as white as milk, rumning well, the water pumped, which was as white as milk, running
to waste in the river. The engines will be kept working on the new well, pumping. to waste et every opportunity until the water
clears, which it will do in a few days. The results of Sunday's and Monday's pumping were, that after about an hour's work, both engines going full speed, the head was found to be
lowered about 3ft; but although the pumps continued for seven hours to throw from 75,000 to 80,000 gallons pent hour, no forther
lowering of the head could be detected. This we cannot help thinking is an extraordinary supply, and is greatly due to the careful and thorough manner in which the work has been done
by Mr. Thomas Tilley, of 12 , Walbrook, the contractor. The
whole cost did not exceed $£ 1500$. The Colchester Authority contemplates some further works
for the inprovement of the distribution of the water, including a fine water tower, much to say at a future time. The whole work of obtaining the new
supply reflects much credit on Mr. Clegg.

LARGE DOME ROOF-DEVONSHIRE HOSPITAL,
BUXTON. We illustrate by the engravings on page 64 one of the largest
dome-shaped roofs in this country or abroad. It forms part of dome-shaped rofst in this country or arboad. It forms pargt of
the recent large exiension of the Devonshire Hospital at Buxton the recent large extension of the Devonshire Hospital at Buxton,
which has been carried out from the designs of Mr. R. R. Duke, architect of the building. In making the alterations and extensions it was found that the area required for the reception of
300 patients could not be obtained without the removal of two inner walls and a passage between them, which gave access to
the different parts of the interior; and this removal necessitated another means of access, and required a covered communication on the ground floor and communication by a gallery on the
chamber floor; and these could not be obtained satisfactorily by other means than covering the interior area. The con-
struction of the dome was therefore determined upon, as it not only supplies the means of communication, but enables every room to be detached, and gives an unequalled hall for
the recereation and protection of the patients from all inclemenis second only to the Royal Albert Hall oval roof in dimen-
sions. This however is not do dome principals of the truss type, having spans varying from 219ft. 4in.
to 185 ft . in . The Buxton dome is about 150it. in diameter, while the dimensions of some of the principal domes elsewhere are as fol-
 Florence, 139 ft .; St. Sophia, Constantinople, 115ft.; St. Paul's,
London, 112ft.; Baths of Caracalla, Rome, 112ft.; Temple of Apollo, 120 ft . The outer form of the hospital is an irregular
octagon, with an inner circular area of 164 ft diameter ; within octhis there is a circle of forcty-four columns, 1388ft. diameteter, forming a colonnade, 13 ftt wide, all round this inner area. These
columns, 2 ft . in . in diameter, with their entablature, rise 25 ft above the floor, and from this point springs the dome, covering
the whole of this area. The dome is a segment of a sphere, the
diameter of which is 156 ft . 6 in. , and is formed of wrought iron ribs, twenty-two principal ones, and twenty-two intermediate
ones, secured at the foot to a wrought iron plate rim and heavy cast iron girders, connecting the imner area wall and the colonnade, and thus securing a perfectly firm base for the dome, as
shown in elevation and plan at page 64. The lower ring or
noly polygonal bracing rests on the stone entablature, each bay Detween the main ribs being composed of two wrought
iron plates, each 15in. by fin,, interlacing each other at the
centre, and the ends being strongly rivetted to a third plate, which is combined with and forms part of the foot of the rib itself. The horizontal thrust of every rib is thus
received by this polygonal ring, there being no thrust whatever on the masonry. The ribs rise to a height of 50 ft .
from the base, or 7 fft. from the floor line, and are there secured
to lantern light, also having 40 ft . diameter, from which springs a
diand being 18 ftt high On the apex of this there is an ornamental finial, 25tt. high, thus giving a total height from floor to roof of lantern of 933 ft, and
to top of finial of 118 ftt . In addition to the lantern light abovenamed there are eight other skylights on the roof at the base of the dome; and together they give 4500 ft . superficial of light to
the central hall. The purline framing is of rolled girder iron, sin. by 5 in. by bin.; and, in addition to the attachedment direct to
to the main ribs at the upper surface, is braced diagonally thereto
by means of T-iron, extending from the lower flance of ribs point on the purline 3ft. 6in. from its junction on the rib. This bracing also adds to the rigidity of the arched ribs. There is
also a framework of light rolled girder intermediate ribs, intersecting and attached to the several tiers of purlines, and to the upper central ring. A gallery surmounts the exterior at the summit of the dome and foot of the lantern, with suitable
guard railing, to which access is provided. When the dome wa guard railing, to which access is provided. When the dome was
completely covered in it was found that the deflection was not more than din. The superficial area of this hall is just half an acre ; and it is capable of holding 6000 people. Its cubic conents is about one million of feet.
Our illustration shows the main front of the extensions with the come in the rear. The heating of the wards, day rooms under the floor, and coils of day rooms; the smaller rooms, lavatories, \&c., having pipes placen above the floor, and the hall having six rows of pipes around its
whole circuit, four rows above the floor, and two rows under the gallery. The ventilation, in addition to that obtained through the windows, is supplied by 12 in, glazed earthenware pipes,
starting from areas outside the building, passing under the floor, and having branches into each ward and round the colonnade carried up $8 f t$. above each floor level, in specially constructed wooden tubes; thus giving a perfect and constant supply of
fresh air throughout the hospital. This description of the ventilation applies equally to the chamber floor. In the centre of the roo The principal entrance is on the enst sente of the building. The The principal entrance is on the east side of the building. The
building contractor for the work was Mr. S. Warburton, of Cheetham Hill, Manchester; the ironwork being by Messsrs. Ranki of Livernool. Mr. Allen Vickars was the clerk of the works.

WASHING MACHINES AT THE COMPLEX ORE COMPANY'S WORKS, LLANSAMLET. The process patented by Mr. Edward Andrew Parnell is for
the treatment of ores containing zinc, lead, copper, silver, and gold, from which the zine cannot be eleminated by the ordinary
gren method of "dressing." The presence of xinc in such ores
renders them ill adapted for the dry smelting operations as commonly practised at lead, copper, and silver works; in such case
the whole of the zinc is lost, together with some of the lead and is considerabl increased by the presence of zinc. By Mr. Parnell's process all
the metals are utilised, the ore being treated in the following
(1) The ore is ground to a coarse powder; (2) It is then cal-
ned in muffle furnaces, at a moderate heat, to oxidise the cined in muffle furnaces, at a moderate heat, to oxidise the
sulphur and metals and form sulphates and oxides ; the sulphurous fumes which are disengaged may be collected when sulphuric acid in the leambers and towers, for the ned ore is then placed in a large revolving pan- see page 60 -and there phuric acid at once takes into solution-neariy all the pie suld most of the copper, leaving all the lead, silver and gold
in the undissolved portion. The latter is now in a suitable condition for smelting in the usual manne cupolas or reverbatory furnaces ; (4) the solution o
inc and copper is then drawn off into tanks, and the copper i next precipitated therefrom in the customary way, affording a copper precipitate at once suitable for the copper smelters
(5) The liquor, which contains the sulphate of zinc, is then drawn fr into pans and evaporated until it commences to thicken, when small quantity of raw or uncalcined blende-native sulphide of xinc, is added. The desiccation is carried still further with occasional stirring until a nearly dry mixture is obtained of sulphate of zinc and raw blende. The blende is added to decompose the
sulphate of zine in the next operation: (6) the mixture thus obtained is placed in close ovens, and there heated to redness he sulphate of zinc is thereby decomposed, sulphurous acid i bende-and conveyed to leaden chambers, for production sulphuric acid, while the zinc remains in the state of oxide well suited for the production of metallic zinc in the usual manner. The following are examples of the ores referred to above: - (1) Cavalo ore containing 15 per cent. lead, 17 per cent. vinc, and
20 oz, of silver per ton. (2) Spanish ore containing 4 per cent. opper, 30 per cent. zinc, 12 per cent. lead, and 18 oz. of silver wet assay- 10 per cent. zince, containing 4 per cent. lead per cent. copper- 1 oz. of silver,
nd 3 dwt. of gold per ton 2 per cent. copper, 30 per cent. zinc, 10 per cent. lead, 8 oz. of ing on the average 25 per cent, zinc, 30 per cent lend, and 15 oz of silver per ton per cent. zinc, 30 per cent. lead, and

TENDERS.
Construction of storm-water sewers in London-road and St.
James s-road, Leicester, as follows :- -60 yards of 20 in . brick sower James's-road, Leicester, as follows: -60 yards of 20 in. brick sower,
11 yards of 20in. cast iron syphon, 170 yards of 15 in. stoneware pipe sewer, 562 yards $12 \mathrm{in}$. ditto, 350 yards 6 in. ditto with man-
holes, \&o., for the Corporation. Mr. J. Gordon, O.E., borough surveyor and enginee.
 を
470
471
471
495
518
575

Clegvenand Instrtutron of Evaivekrs.-The meeting of Jan,
23rd is postponed till Feb. 6 th, of whicl due notice will be given. Naval Enginker Appointyrent. - The following appointment has been made at tho Admiraty :-Thomas
to the Pembroke, additional, for service in the Stork.
ShipsuiLDing in Barrow.-Figures have already been pub-
ished as to the work of shipbuilding done in Barrow in 1881, and Mshe as to the work of shipbuilding done in Barrow in
now we have to add in addition that Messss. Caird and Purdie, of Barrow, built shipping to the amount of 3179 tons, a gross
tonnage of 4927. The Barrow Shipbuilding Company built 32,700 tons, so that the total for Barrow will represent 30, 3 ,
Tranway Strert Locomotives. - Messrs. Merryweather and Sons have just despatched to Stoke-on-Trent one of their steep gradient tram engines, to work a section of the tramway, 1 in 16 .
This engine has a pair of 9 in. steam cylinders, 14 in . stroke. gradert enie has a pair of 9in. steam cylinders, $14 \mathrm{in}$. . stroke,
This engine
Another engine of rather less capacity has been sent to the
Rhineland Tramway Company. This makes twenty-seven in in numela
number
Holland
South Krasington Museur.-Visitors during the week ending Jan. 21st, 1882 :-On Monday, Tuesday, and Saturday, free, from
10 a.m. to 10 p.m., Museum, $11,92 \pm$; mercantile marine, building materials, and other collections, 3636. On Wednesday, Thursday,
and Friday, admission 6..., from 10 a.m. till 4 p.m., Museum, 1347 and rriday, adrissioncui., from mercantile marine, building materials, and other collections, 285 . Total, 17,192. Average of corresponding week in former
14,177 . Total from the opening of the Museum, $20,679,354$.
A NEW FIND or Ore in Furness.-We have pleasure to report
that during the past few days the boring which has been going oil that during the past few days the boring which has been going on
on the Elliscales estate has been attended with very successful results, and where a discovery was made recently, and reported in
our columns, near the Elliscales Farmhouse, a shaft is to be imme diately sunk. It is now announced another discovery of ore
has been made in a field not far from the junction of the Askam has been mode in a field not far from the junction of the Askam
and Park-roads, and 14ft. of good ore has been gone through in the
Acornent with an Ether Reprigerating Machine.-On
Wednesday Mr. Payne held an inquest at St. Bartholemew's Hospital, on the body of John Burden, aged 30, of 18 , Bakerwas chief engineer to Messrs. Reid and Co., brewers, of Clerken. well-road, and during the last three weeks had had under his
charge the repair of one of the firm's refrigerating machines. The charge the repair of one of the firm's refrigerating macthines.
ether, which usually circulates through the tubing of the machine, was removed when the repairs first commenced, and the tubes had all been washed out. On Saturday last the deceased was putting
the piston-rod into the cylinder, and as it did not move easily, he struck it with a piece of wood, and forced it in. The sudden entrance of the rod into the cylinder had the effect of opening
some of the valves of the machine, and some ether vapour escaped, and, coming in contact with a candle, immediately exploded, The use of the candle near thead by some portion of the machine. the establishment. Mr. G. Fletcher, house surgeon, stated that deeeased died the night he was admitted from fracture of the The Heaith of London in 1881.- Both birth-rate and deathverage, and lower than in any recent year. The birth-rate wa equal to $34 \cdot 8$, and the death-rate $21 \cdot 2$ per 1000 of the estimated popuation in the midade of the year. The death-rate was $1 \cdot 3$ per
1000 below the mean death-rate in the preceding decade, 1871-80. The most unfavourable feature of the year's mortality statistics referred to the principal zymotic diseases ; thesese included 2371 fatal
fate cases of smallpox, 2533 of measles, 2108 of scarlet fever, 2988 of
diarrhea, 1961 of whooping-cough, ,1196 of "fever"-including 96 of typhus, 977 of enteric, and 123 of simple ove undefned forms of
fever-and 654 of diphtheria. diseases was equal to $3 \cdot 6$ per 1000 , and was identical with the rate from the same diseases in 1880 . The fatal cases of smallpox, which
had been but 458 and 475 in the two preceding years rose to 2533 in 1881. The deaths from "fever,") measles. and diphtheria also showed a marked increase, while the fatal cases of scarlet fever, whooping-cough, and diarrhea were considerably less numerous,
The rate of infant mortality was lower than in 1880; the death under one year were equal to 148 per 1000 of births registered gainst 108 in 1880, a result mainly due to the decline in the measured in this manner averaged 158 per 1000 in the ten years 1871-80. The total death-rate was very low and smal
while scarlet and other fevers were also higher than ever.
 experimental trials with a new smoke combustion air injector
which have been carried out recently at the Heap Riding Mills, Hall-Foib The apparall, Hanch is shown the London Smoke Abatement Exhibition, and is a very simple arrangement, specially adapted for boiler furnaces. On the face plate of the boiler is inxed a circular brass perforated air injector, connected with a piece of orrinary 2 in. piping extending 2 tht. into
the flue. Inside the injector is a narrow tube with a small nozzle, with the boil three milimetres, and having a steam connection or closed at will. When in operation steam is admitted through he small internal tube, and creating a vacuum inside the piping plate of the boiler. The air and steam come in contact about half way up the pipe, and passing out at the pipe end at a high tem perature - which during the trials was registered at 125 deg.commingle with the furnace gases as they rise from the fire and
before they get away over the bridge., A more perfect combustion of the smoke and gases is thus secured, with economy also in the out and a sec effectiveness. The injector is designed specially in connection with Hall's patent revolving furnace bars, but these trials were made over where intens b preferable. The boiler was a two-flued Lancashire, 30 ft . long, 7 ft . diameter, fitted with ten Galloway tubes, working to an average
pressure of 80 lb , and driving an engine with 19 in . high and 30 in . low-pressure eylinders and 5 ft . stroke at 247 indicated horse-power. The fuel used was common riddled slack, and the trials extended over th day, with the view of affording illustrations to visitors,
searcely allowed an exact comparison of results to be obtained, but
scar the effectiveness of the injectors, so far as a considerable abatement of the smoke was concerned, was sufficiently demonstrated to satisfy
the visitors, who had opportunities of taking observations of the smoke emitted from the chimney as the injectors were applied or smoke emitted When the furnace bars were in good order the smoke
taken off.
was reduced to a thin vapour, and there was no doubt as to the successful operation of the injectors in causing a very good com-
bustion of the smoke and gases. One point, which of course blast in the injector, but this, it is stated, does not exceed more than 1 per cent. of the total amount genarated by the increased evapora is claimed is more than compensated by the increased evapora-
tion secured by the blast. In addition to the abatement of the fuel is effected by the use of the injectors, but upon this point no
reliable data was afforded by the trials. I was informed, however, reliable data was afforded by the trials. I was informea, however,
by Mr. Hall that during previous trials with the same boiler a
saving of 25 per cent. in the consumption of fuel, and a reduction saving of 25 per cent. in the consumption of fuel, and a reduction
of 60 per cent. in the amount of waste ashes had been effected by

$W_{\text {E illustrate }}$ by the accompanying engravings a new form of Gas exhauster, designed and made by Messrs. G. Waller and Co., Holland-street, Southwark, S.E. It may be made in any size, The medium sizes have three blades, and for sizes of 60,000 cubbic feet and above, it may be made with four blades, which still further reduces the oscillation or pulsation, and as they may be run at a much reduced. The chief points between this and the Reale exhauster are, that with three blades it will deliver one-third more than the latter with the same sized cylinder and ot the same speed, the contents of the cylinder being discharged three times in each revolution, against twice in the latter ; the oscillation is thereby reduced in proportion. It is of course still further reduced when four blades are used. The blades work on a central pin, and being thus radial with the cylinder, instead of being, as formerly, excentric to it, they work smoothly round its circumference, and much friction and power in moving them round with the heavy ring or segments at the ends of the blades is saved. The blades supported on a central pin are also better
balanced, and there is no falling over or slack movement when turning the centre twice each revolution, so commonement when or two-bladed exhauster necessitating the use of a heavy fy wheel to counteract the effect.
The illustration below is a transverse section of the ex-

hauster ; the other sections explain themselves. The cylinder has, as usual, two branches, and either can be inlet or outlet. The covers are recessed for ends of the roller, and have a boss for a central stud, or in large sizes for a central pin going admit of oil being injected to lubricate the joints of the blades. The roller is open at one end and solid at the other ; the ends fit in the covers, and round the circumference of the roller are steel slotted rollers to carry the blades and swivel with them to suit the varying position, as shown in the section through slide. making together a continuous bearing on the central each other, oil injecting lubricator for the central spindle above referre to is shown in section. These exhausters work very smoothly, and appear to be giving great satisfaction.

SWAN'S ELECTRIC MINING LAMP.
Since the trials of Swan's lamp at Pleasley Colliery, under the uperintendence of Mr. R. E. Crompton, and the subsequen in his endeavours to still further perfect the been constan number of modifications, the final form adopted is that shown in our illustration. The lamp proper is enclosed in a thick glass globe which is still further protected by a wire caging. The

lamp is surrounded at the neck by a wire in connection with the metal cap, so as to prevent the breakage of the thin globe by
being suddenly heated. The illustrations show how the metal cap is connected to the proctlustrations show how the metal are well insulated, and for a short distance from the cap of the lamp passed through a metal tube. It speaks well for the future of electric light in mines that it has for some time been working admirably in that most dangerous mine of Risca.

SHAFT SINKING UNDER DIFFICULTIES AT DORCHESTER BAY TUNNEL, BOSTON, MASS. [Concluded from page 41.]
Sinking West or Inlet Shaft.-All of the foregoing description applies to the three shafts generally; we will now confine our remarks to the west shaft, where the depth of the material over degree increased. Previous to the letting of the contract, test borings had been made over the line of the tunnel by the city of Boston, and the results exhibited. Owing to the great expense of so doing, these borings in no place penetrated the rock proper, and, therefore, they failed to give any certain indication of the presence, lying immediately on the rock, and containing a large body of water. At this west shaft especially the worst feature shown by the borings was a sandy clay. The tunnel grade had to be finally lowered $3_{2} \mathrm{tt}$. below contract grade, to meet this changed condition of affairs. The material was actually deposited at the west shaft 3 ft ., pure sand 5 ft . and then strata of varying thicknesses of pure tough clay-clay with thin seams of fine sand, and clay intimately mixed with sand. Above the surface of the solid rock, and meeting the clay and sand deposits, was a stratum, 14 ft . thick, of arge boulders, gravel, and very sharp sand; and in this lowermost found. This water was salt, and seemingly in direct communication with the bay above. In the sand seams struck before the boulder stratum was tapped, brackish water, in maximum quantity

not exceeding 200 gals. per hour, was found; but these seams generally drained out, and gave little or no trouble. The surface city datum rock was finally located at the west shaft, 123 ft . belew shafting were sunk without much trouble ; but at this point the frictional resistance of the clay was sufficient to prevent any further sinking of the iron lining by its own weight merely, although the material was excavated below the cutting edge. At this time the surface water was entirely excluded, and the shaft was dry. A dead weight of at first
fifty tons was now applied, as foilows:- On top of the flanges fifty tons was now applied, as follows :-On top of the flanges
forming the second cylinder joint, or 10ft. from the bottom of the shaft, a platform was built, made of four 12in. by 12in. hard pine sticks, laid in pairs parallel to each other, leaving a 6 in . space between the two sticks in each pair, and a space of 4 ft . between the pairs. These four sticks were accurately fitted to the inside of the cylinder, with as great a bearing surface on the the cylinder bolts. Two struts, 12in. by 12 in . and 4 ft . long, were let in between the pairs, and at right angles to them, so as to leave a central opening 4 ft . square; opposite the ends of these struts and between the sticks forming the pairs, four wedges were now driven, square inside, made of 4 in . plank, on end and internally braced, was next erected on this platform, and the space outside this box shaft well packed with iron refuse from a puddling furnace. As the cylinder descendec, and the friction became greater, this dead weight was increased to a little over 100 tons by putting in a second platform and box higher up in the shaft. Eight heavy
screw jacks were also applied in addition to this weight, on the top flange of the cylinder, reacting against trussed beams secured by chains to the bulkhead piles. When the cutting edge of the shaft lining had reached a point 57 ft . below city datum, the area of surface then exposed to possible friction
being over 1800 square feet, all our combined appliances failed to push it any further, and the use of the specified solid iron cylinders had to be discontinued.
Continuation of the Shuft to Rock.-No plan whatever of continuing the shaft after the cylinders were pushed as far as was possible being specified, the contractor was at liberty to adopt any
method that might seem to him most fitting. From the data before him timber was deemed sufficient, and a timber lining was adopted. The shaft was dry, all water from above excluded, and nothing but clay indicated below him until the rook was reached. Of the wisdom of this decision we will here say nothing, considermore often lead to trouble than exhibit the actual condition of
affairs. The timber shaft was 1 oft. square inside, and built of
12in. by 12in. spruce timber, laid skin to skin. As shown at 12 in. by 12 inn. spruce timber, laid skin to skin, As shown at
Fig. 7 , the stiks were cut and laid in alternate lengths of 10 ft. and 12ft., locking over each other at the corners; and to prevent
the shorter timbers from being forced inward, they abutted against
 were further held in place by the racing dessribed further on. ucceeding course stepping back
loft. square was reached. This was done to give the cutting edge oft. square was reached. Chis was done to give the cutting edge
of the ion cylinders a bearing on top of the timber work, at least
in the centre of the four sides. Between the top course of the in the e entre of the the rion sides. Between the top course of the
timber work and the iron a space 4in. wide was left, in which tin.
sheet piling was driven out horizontolly into the

corners outside the circle thus closed. The greatest difficulty to be dealt with from the start, and the chief objection against
such a compound shaft of iron and wood, was that of properly connecting the two. The corners of a square wooden shat ar
the point best the point best adapted for the location of any suspending
members ; but in our case these corners were outside ethe cylinder,
and, consequently, not available. At first four of the cylinder and, consequently, not available. At first four of the cylinder
bolts were removed from the bottom joint in the cylinder and replaced by four 1 lin . rods, with nuts at the top and
lipped plates, catching under the bottom of the second timber course, and secured by lin. rag bolts to this course; below this the hanging was continued by vertical planks spiked to the timbers.
As the shaft increased in length, these 1 sin. rods were supplemented by four rods 2 in. in diameter, suspended opposite the

entre of each side of the shatt, from heavy iron castings, bolte on top of the second cylinder joint. An iron plate 6in. by yinn. and
Stt. long was bolted by eight lin. bolts to the middle of each side, and at the top of this plate was an L-shaped head Sin. by 1 İin. ., through which the 2 in. rod passed, and was there secured by a nut.
This timber shaft was sunk with very little trouble to a point 95 ft . below datum, with a maximum quantity of water from the thin sand seams not exceeding 200 gallons per hour. But at the point
 rapidy filing the shaft to low tide mark. A steam pump was at
once put in place and the shaft again emptied. An examination showed that, while the source was at some point below the bottom
of the shaft, the water had in places forced its way up behind the

SHAFT FRAMING
timbering, and was entering the shaft in jets through any possible crevice. And what was worse, the main stream was undermining
the sides at the bottom, and the jets above were washing the fine the sides at the bottom, and the e ets above were washing the fine
sand inside, leaving voids outside the shaft lining. The sides
were were at onec caulked, and the water driven to the bottom, and the
Sin. by 8 in, bracing only partly in place, was completed to within 8in. by Sine bracing, only partly in place, was completeden, to within
4tt. of the bottom. The iron cylinder soon commenced to sink very slowly, showing that the ground surrounding the shaft was in
motion clear to the surface. The bulkhead and the adjoining portion of the machinery wharf sank with the cylinde
The bottom was now a sandy lay, but firm, the water passing to
the south-west corner of the shaft as soon as we commenced re-sinkthe south-west corner of the shaft as soon as we commenced re-sink-
ing. The material on the east and north sides seemed to drain
out and out and remained quite firm, while on the other sides it soon
became very soft, in places semi-lfid. This action increased the
strain on the soft strain on the soft sideas and tended to throw the timber courses
out of the horizontal, the west side sinking more rapidly than
the out of the horizontal, the west side sinking more rapidly than
the east. As long as the botom remained firm this inequality
of settlement was arrested by "rakers") and "props." All
of timbering on the soft sides could only be put in priace by
first carefully poling those sides, but surplus material would escape inside, and increase the pressures, All went well
enough under the circumstances until we reahed wrade 1.04,
where we suddenly where we suddenly struck a stratum of soft, almost dough-like
clay, which we afterwards found was the direct covering of the clay, which we afterwards found was the direct covering of the
water-bearing stratum of boulders, \&c. Into this soft material our
俍 rakers, props, \&c., easily sank and became useless as supports, and
thereby the strain upon the rods and hanging members on the soft sides was enormously increased, and the west and orsuth 2 in. rods
both broke, just above the lower nuts the immediate cause being Both slight bending of the L-shaped heads of the straps, chus acting
the
as lacing also commenced to give way, and being behind the corner bracing could not be repaired. Two steam pumps, a No. 8 Blake,
and a No. 10 Knowles, were at this time located in the timber
portion portion of the shaft, supported upon platforms; the discharge and
stam pipes were clamped to both the iron chlinder and to the
sides of the weod
the connection on those sides between the iron and the wood, the
lower portion began to settle more rapidly than the cylinder. The lower portion began to settle more rapidly than the cylinder.. The
effect of this was to break the bottom elbow on the discharge
colum column of our large pump, flooding the lower portion of the at a very criticial period. This damage was repaired as soon as
possible, and a re-ocurrence of the accident prevented by slinging posthof, ourd pumpeccurrence of the accident prevented by slinging
bope to the iron cylinder, and wedging
up between pump O_{n} sounding through the softerm stratum the wooden shaft settled about 7 ft . below the then bottom of the shaft, and as this was very near the point which the boring indicated as rook, we continued
sinking. After some tedious and dangerous work, and mucl simking. After some tedious and dangerous work, and much
trouble and delay from our pumps, which, it is usually the case, here always breaking down just when most needed, we reached the
hard stratum only to find it was not ledge rock, but the top of a
boulder stratum, of then unknown depth boulder stratum, of then unknown depth, and the source from
whence came all our water, now much increased in quantity. The sand in this deposit was unusually sharh increased in quantity would scour through a brass pump lining tin. thick in less, than three days, causing
further and dangerous delays. We attempted to sound the boulder stratum by driving iron bars, but failed to get ary satisfactory results until we started an artesian, boring in a. .in. pipe, and finally drilled
some 8 ft. into the rock establishing its actual depth and character some 8ft. into the rock establishing its actual depth and character.
At this time the bottom portion of our timber shaft was in very bad shape, many timbers portion of our timber shaft was in very inking courses very much out of the horizontal. To continue
 builsing a new shaft, in another location, was the somewhat
desperate one of attempting to re-timber thelower 36ft of the in the face of the moving ground and the consequent pressures We determined to re-timber without waiting for the ground to settle. The upper 23 ft of the timber work was still in good conditio the courses almost level, and the lacing intact. This portion we
concluded to leave in, but it had first of all to be securely connected concluded to leave in, but it had first of all to be securely connected
with the iron cylinders, and upon the integrity of this connection all success depended. Iron rods were abandoned in our plans for acer that in in one place certain obsstructions in the shaft prevented a fair lead. Iron wire cables were substituted for rods. Four cables,
 thimbles spliced into each end. The upper eye was made heart shaped, so that the lashing to be used would not ride and cut under the strain to be put upon it, the lower eye was made to take a 2in.
iron pin, and the splices on each cable were further secured by broad iron clamps bolted over them. On top of the first or lowernost cylinder joint, two hard pine timbers after to the inside of the cylinder; holes were bored vertically through these sticks, just
clearing the cylinder flanges, and passing through these clearing the cylinder flanges, and passing through these
holes, secured above by nuts and 12in. cast iron washers,
were four eyebolts made of were four eye-bolts made of 2 inin. round iron; two struts
were driven between the 12 in . by 2 2in. timbers, to prevent motion. The lower connection of the cables were more troublesome. At
the point selected, two hard pine beams 12 in . by 20 in . and 12 ft . Iong were inserted in the shaft horizontally, the ends extending out
under the sides. These two beams ran in the same direction as the under the sides. These two beams ran in the same direction as the
shorter beams in the cylinder, and were vertically under them. Around each of the 12 ft . beams, and directly under the eye-bolts, were four iron stirrups each 6in. by 1 in., with two eyes in each stirnup just over the centre of the beam. Between these eyes the
lower end of the cable was inserted and secured by a 2 in. iron pin. Theupper eye of each cable was now lashed to its proper eye-bolt by ensine The connection being now completed between the iron cylinder and the 26 ftt . of wood work to be left in place, the workmen commenced replacing the old and crippled timbers, below the hang ing beams, with new and level courses-in other woras, rebuildin the lower portion of the shatt. As shown on Fig. 4, a system acted at the same time as struts for the corner braces. This system . It was an right theoretiall, and ha do been have answered admirably, hut in practice it was found impossible, under the circumstances, to keep the inside faces of the timbers
sufficiently true to same principle was, however, retained by using iron straps 3in. by Sin.. and 4ft. long, spiked with 10 in . wrought iron spikes to the
timber. These straps were applied in the corners behind the timber. These straps were applied in the corners. behind the
braces, in such manner that each new stick was suspended by two of these straps as soon as it was in place-4ft. of the bottom of the A second set of hanging timbers was put in 20ft. below the first, and entirely independent of that set (Fig. 4). In this set each hanging beam was made up of two $12 i n$. by 1 12in. timbers, p paced
one on top of the other; the upper one was 12 tt . long and passed
throurg the acted as a strut as well. Two 2 in. iron rods, about 10ft, long each provided with an eye for a 2 in. pin above and a nut below,
secured the lower end of each secondary cable to the beams. These secured the lower end of each secondary cable to the beams. These
rods, in pairs, carried the compound beams between them, the lower ends of each pair of rods passing through a stirrup plate sin. cables were galvanised iron wire 4 in. in circumference. They were lashed at the upper end to four 2in. eye-bolts, which passed
through castings bolted on to the second cylinder joint. This rethrough castings bolted on to the second cylinder joint. This ree
timbering was slow and dangerous work, and the greatest care possible in poling could not prevent the escape of some of the out paratively slight, kept the ground in constant motion, the settlement being apparent clear to the surface. The first wire cables
soon became as taut as harp strings. At first the greatest weight soon thecame as taut as harp strings. At first the greatest weight
was thrown on the western pair of cables, leaving the east cables was tirrown on the western pair of cables, leaving the east cables
comparatively slack; the strain on the cables was equalised by senting up rakers, extending from the heavy west side to the east cylinder after the hinging beams. The total settlement of the iron timber shaft was in the above manner successfully carried down to the solid rock, the shaft continued 20ft. into the rock, and the
tumnel commenced. About five months after the completion of the timber work the brick lining was commenced required lines it was necessary to cut entirely through some of the
shaft timbers, and at the centre we found the shate timbers, and at the centre we found the clay outside
generally drained, and in good condition. In the time specified generaly drained, and in good condition. In the time specined
above, the brickwork was completed with but little trouble from

Pumping out Shafts.-The west and the east shafts were different times inted with water, the first was lost by a failure
our boilers, the other by suddenly uncovering an unusually large seam in the rock, through which more water entered the tunn -one of the handled with safety by the two pumps then in place tunnel and shaft filled up. All of our shatts were too small in
diameter, when their depth and the quantity of water to be raised through them is considered. This want of shaft room made our our exper of water to be pumped against was 18,000 gallons per hour, constantly flowing into the tumnel. To handle this quantity of water
with safety, under the working conditions, would require a pump with sety, under the working conditions, would require a pump
of the capacity of a No. 11 Knowles, which measures 9ft. over all, and would require an additional 2 fft . of room at the water end to allow packing, \&c. It can be readily seen that such a pump coula
not be located horizontally within the iron cylinders, which, as reduced by the flanges tonyty. $10 \mathrm{inn}$. . To diamereome, a space fhis difticultyer we
had special pump built by the Knowles Company, of the bucket
and plunger type, double-acting, and working vertically. This
pump had a 14 tin. steam cylinder, 12in. plunger, 17in. bucket, and pump had a 14 in. steam cylinder, 12in. plunger, 17in. bucket, and
24in. stroke ; its capacity was 11
gallons per stroke. (The steam cylinder proved too small for the work to be done, it should have the pump was 12 ft . long over all, and 3 it. in diame at thi widest part, and with 20 ft . of thin wrought iron suction
pipe 10 in. in diameter attached, weighed 7000 lb . The steam pipp was 2 in., the exhaust 3 in., and the discharge column was 6 in.
galvanised iron spiral pipe in 16 ft . lengths, connected by flanges galvanised iron spiral pipe in 16 ftt. lengths, connected by flanges
and six gin. bolts. On account of its shape this pump was used without platforms built in the shaft. Two heavy beams were thrown across the top of the shaft cylinders, and from these the pump was suspended by a purchase made up of two shanved masting blocks, and six parts of 4 in. Manilla rope, connection with the pump being made by a strong eye-bolt screwed int the water barrel of the pump. The running end of this purchase
passed from the lower block up to a large single block lashed to passed from the lower block up to a large single block lashed to
the top of the four-legged shears, shown at Fiq. 2 , and from there down to the wharf, and through a snatch-block to the drum of the hoisting engine. The 6in. discharge column and the 2 in. steam pipe pump below, and thence passed over sheaves lashed to the shears rope went through a smatch-block on the wharf, and then to large cleats, all so arranged that each rope could be paid out steadily,
and indenendently as the pump was lowered. steam passed into the water. To keep the pump from moving ateraly when it was at work, oak slides, with clamping screws, were against the sides of the shaft, and then clamped. The spreading of the blocks to which the discharge and steam in the falls. The method of operating this pump was as follows : possibl ther in the shat nad been pumped dow an loft. length of horizontal pipe was taken off from the discharge steam pipe was at the same time being disconnected, at a union provided for that purpose just at the top of the shath, and a new
16 ft . length screwed on ; while this was being done on top, another gang of men, stationed on the pump to prevent twisting in lowerready for a shift, the engineer lowered the pump slowly, and the men stationed at the discharge and steam pipe ropes allowed these section of steam pipe we pump until the thop uion; all ropes were and once secured, connection made with the boiler, and the upper
discharge elbow and its pipe again bolted in place, the men on the pump adjusted and secured the slides and all was once more in position, ready to pump out another 116 ft. of the shaft. After the make a shift was about twenty-five minutes, computing from the stoppage of the pump to the starting acain. But simple as the
above may appear, it was only after repeated trials and failures and considerable experimenting, that the wished for result was attained. At the east shaft we reached the tunnel grade with our suction pipe 166 ft . below the top five several times before we could
stay there long enough to pump out the 500 lineal feet of tuan already driven. It slould be remembered that the plunger, as we called it was only an emergency pump intended to empty the shaft and tunnel preparatory to setting up a large permanent pump
of the horizontal type in the tunnel. The vertical pump was pipes, and to hance, took up much room with its ropes and most troublesome feature. When the pump was in action there a very considerable vertical motion due to the elasticity of the fall ropes. This was especially the case when we neared the
bottom of the shaft, and a rigid steam connection was consequently impossible. After trying a jointed steam pipe without success, placed between the steam pipe and the steam cylinder on the pump, but, under the steam pressure carried, 100 lb . at the boiler, this hose burst in a few hours ; 10-1y canvas and pure gum was next tried, but even this would sometimes fail, by the intense heat softening the gum and thus allowing the liose to off the iron mipples in the enc, intended to prevent any such accident. The radiation from the steam pipes, and the ascending stean, caused by water falling on
the hot cylinder and pipes, made the temperature in the shaft almost unbearable. This, and the entire want of ventilation in the deep and narrow hole, caused great physical suffering among
the men whose duties called them inside, especially when this experience was varied by the bursting of 2 in. steam hose in the face of the pumpman. To the pluck and endurance of these was finally pumped out in little less thy due. hours. Having, we hope, given a sufficiently detailed description of how we got into a scrape at the west shaft, and how we finally got out of it, we can it should have been taken as grented that water was to be met
with in abundance, under the circumstances, as we neared the the rock. All indications to the contrary, obtained from borings, should have been disregarded. Had this been done, in the opinion of compound shaft, partly wood and partly iron. The iron cylinders should have been continued to the rock, by using iron into place at the bottom of the shaft, as soon as the friction prevented the further descent of solid cylinder sections, and the surface
water compared with the attempt to hang a square wooden shaft to an iron cyinder, the vertical connection would have been continuous
and abundantly strong, and the entire shaft could have been made water-tight by caulking the joints with dry pine wedges, or otherwise. And with rings not more than 2 fft . in height, any soft true that some have been at first put into a timber shaft, had the possibinity of the experiment, we think, would have been a dangerous one, as compared with a continuous iron cylinder, and all things considered, it would not have been as economical as iron. The
Dorchester Bay Tumnel was commenced in January, 1880 , and at this date some 4600 ft . of the tunnel are driven. The contract was
let to Mr. R. A. Malone, of Pennsylvani for the contractor. We cannot, in justice, omit the mention of our retimbering of the west shaft, and to William Reardon, the who put into place our hanging-up appliances. To the pluck, of the success was cue.

THE IRON, COAL, AND GENERAL TRADES BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

,om our oun Correspondent.)

THE usual January quietude has come over the iron trade of thi
part of the kingdom. New orders are being distributed only slowly, either for finished or for pig iron; and traders expect this quier however, is being now done than was in hand at this time last, year. Few works are other than busy throughout all their
departments ; and there are some who will close the month with a better account than has been possible with them for five years

Marked bars were quoted firm on 'Change in Birmingham to-day
-Thursday-as in Wolverhampton yesterday, at from $£ 7$ to
£8 2s. 6d.; but scarcely so firm as a week ago were certain of the
brands sold at between those two extremes. A perceptible decline was noticeable at each market in the tendency to quote extreme
rates by the marked bar firms who have not yet officially put up their prices, and very feve reported themselves either in bris k employment or in the receipt of many inquiries.
Medium and common bars were maintained
tionate inquiry, but they were wrable to commmand quiter po so firm rates. Quotations were unchanged at from $£ 617 \mathrm{~s}$. 6d. up to $£ 75 \mathrm{~s}$.
Gas strip was less difficult to buy at $£ 617 \mathrm{~s}$. 6 d . to $£ 6$. 15 s , the for stamping out purposes of rauges up to 20 w .g. was prip use for stamping out purposes of gauges up to 20 w.g. was procurable
from some firms at a little within $£ 7$, while firms whose brand is in
more favour still demanded $£ 7$ 10s. Similar variations characmore favour still demanded $£ 7$ 10. Simirar variations charac-
terised the hoop trade, as well as to coopers' as to baling sections. terised the hoop trade, as wew as so coopers' as to baing sections.
In both departments orders were sougt, but without moch suceess. Common sheets are in larger supply, the demand of the braziers
 to-day at from $£ 8$ 5s. to $£ 8$. 2 s . 6 d., and in a few instances after
some negotiation at even $£ 8$.
Galvanising sheets were without quoted change in the open market. Consumers were ready to purchase on bargain terms, but
 Galvanised ol late sheets were a slade less strong than they were
at the close of the meetingoo galvanisers a fortinght since, when prices were mostly advanced from 10 s. to 20 s. per ton.
and orders for boiler plates of good quality do not fall off in
number, though they are scarcely so for large quantities. Nakers nomber, though they are scarcely so for large quantities. MIFkers
nof good brands will not take less, than from ± 810 s." Wright, of good brands will not take less, than from $£ 810$ s. - "Wright"
quality-to $£ 9$ for "Monmoor," and so on for other reputed
qualities. ${ }_{\text {Puddled }}$ iron was sought after to-day for use in the mills, for the production of sheets mainly, and they were in a trifle better
supply at variable rates. supply at variable rates.
The Globe Ironworks, Messrss. Simpson and Wood, of James Bridge, Darlaston, are now
turning turning out merchant bars of all descriptions, and best tivet iron.
At the Globe Works is a pair of 60-ton shears which vill At the Globe Norks is anir or ao-ton shears which will cut
through two permanent way rails at once. These are believed to
be one of the most powerful pairs of shears in South Staffordshire, and they have been sought to be bought by engineering firms all over the kingdom.
Pig iron was not in muad
hig iron was not in much demand, though Bessemer pigs might have been sold in a few heary lines ir vendors would have accepted
half-a-crown under their quoted prices. But they stood frm at
77s. 6 . delivered into this district. Cold blast pigs were unchanged

 some cold blast which will require some expenditure in labour before it can be got into the furnace. Such rates were realised
under the hammer at the sale on Tuesslay of the plant at the Shrubbery Finished Ironworks,
blast furnace plant and land of Jhampton. The Gold-green was some time ago offered at \& $£ 10,000$, but failed to sell. The plant has yielded $£ 7500$, and the site of the works and some surplus land
is likely to fetch $£ 6000$ for thick-coal is believed to underlie it. is likely to fetch $£ 6000$, for thick-coal is believed to underiie it.
The Board of Conciliation in the Cannock Chase coal trade is arranging the agreement which is to regulate wages in the future.
The iron makers still show themselves dissatisfied with their wages scale. A mass meeting was held at Brierley Hill on Monday to consider the proposed alteration in the seale - which now regu-
lates wages in Staffordslire, South Yorkshire, and Lancashire. It was resolved to follow the example of the West Bromwich men,
and give notice for a reconsideration of the scale so that it should embrace all classes of iron, and providing that wases shall be one shilling in advance of equal shililings to the equal pounds that
represent the net average selling price of iron. This would be 6 d . advance on the present scale. The average selling price of iron upon which wages are at present calculated is obtained as to bar
iron only; and it is this limitation which the men wish to do away $\underset{\substack{\text { iron } \\ \text { with. }}}{ }$
At a meeting of the operative chain men on Tuesday, it was
determined to give notice for a rise of 10d. work, and 6c. per ewt. upon common chain. It was asserted that two of the largest employers had already conceded an advance of
10 per cent. on best crane chain-a class of work upon which a large number of the operatives are employed.
The Amalgamated Society of Brassworkers, whose head centre to shortly give notice for an advance in wages of 10 per cent. The constructive engineers are doing fairly well upon some railway work, and the nut and bolt firms are mostly in steady
employment upon the same account, but the demand is not brisk The directors of the Union Rolling Stock Company, Limited,
Birmingham, report that the operations of the company during the Birmingham, report that the operations of the company during the
past half-year have been, owing to special circumstances, excep tionally profitable. The profit for the half-year is nearly $\begin{aligned} & \text { E4000 } \\ & \text { out of which it is proposed to pay a dividend at the rate of } 10 \text { per }\end{aligned}$ cent. per annum on the ordinary shares ; to pay the usual pre ference dividend ; and to place $£ 1800$ to the reserve fund. The profits of the Wolverhampton Railway Rolling Stock Com-
pany for the half-year have been $£ 3257$-a dividend of 3 per cent. on ordinary shares, a sum slightly in excess of the previous
half-year. The business of the company in purchasing and leasing
wagons on deferred payments has largely exceeded that of the wagons on deferred payments has largely exceeded that of the
previous period, but very little of the advantages of such business is shown in the present accounts. Six hundred and eighty-seren wagons have been bought and 243 sold during the half-year
leaving 5068 in possession of the company. leaving 5068 in possession of the company.
Towards the close of next month, Mr.
army contracts, will, according to engagement, visit Wolverhamp ton and Walsall to hear suggestions which manufacturers may care to lay before him touching improvements in the mode of seeking ${ }^{\text {supphes }}$ The Wolverhampton Chamber of communication from the Associated Chamberse has received the apparent intention of the Austrian Government as to her pend
ing commercial negotiations is to increase her tarift on iron and ${ }^{\circ}$ The Walal wall
Associated Chambers a communication hapon the Fred from the negotiations, in which they state that the communication which Lord Lyons has now been instructed to make to the French Government may be considered to be the last words of our Govern-
ment. That the negotiations should be left in the hands of Lord ment. That the ne notiations should be left in the hands of Lord
Lyons was a course which several of the Chambers advocated las Lyons was a a ourse which several of the Chambers dvocated las
spring. "After for him to make satisfactory tariff arrangements.

NOTES FROM LANCASHIRE.

Manchester:--For the present there is comparatively very little new business coming into the market, and the easier tone at Glass
gow and Middlesbrough is evidently acting asa check upou buyers,

 coming into the hands of finished iron makers is considerably les
than it was a month or two back. Makers on the oner
their books so well filled for the remainder of the quarter that
they are not at all anxious sellers, and in this district prices both of pig and finished iron are firmly maintained. Lancashire pig iron quet mith wert at Manchester on Tuesday, and evinced no disposition to give way, and were firm at 52 s. Gd., less $2 \frac{1}{2}$, for forge and foundry rond delivered into the Manchester district,
For Lincolnshire iron makers are asking 52s. 6d. to 53s. 6d., les
 less 2 2 delivered. There are, however, second-hand lots in the
larket to be bought at under these figures, and Middlesbrougl market to be bough at ander these figures, and Middessrough
iron has now got o prie winch enables it to compete here,
g.m.b.'s being offered during the week at 51 s . to 51s. 6 d . for net cash delivered equal to Manchester. Finished iron remains firm at
an average price of $£ 72 \mathrm{~s} .6 \mathrm{~d}$. for bars, and $£ 710 \mathrm{~s}$. to $£ 7$ 12s. 6 d . s delivered into the Manchester district.
The engineering trades throughout this district continue gene-
pally well employed. T ool makers are full of orders, locomotive
fiid builders and boiler-makers are all busy, and amongst cotton ma-
chinists increasing activity is reported, although it seems probable that several of the projected new cutton mills may not be proSociety of Engineers show an increase in the number of unem-
ployed members on the books, this is readily accounted for as the temporary result of the new year holidays and the stoppages for trom-taking. As to the actual condition of trade, the reports
from the various districts are encouraging. Throughout the Manchester district trade is returned as either good or improving ; at Barrow, Blackburn, Farnworth, and Newton-le-Willows it is also
returned as good. At Liverpool, Lancaster, Oldham, Bacup, Bury, Heywood, Hollinwood, Preston, Staleybridge, Todmorden and Sutton, trade is returned as moderate; at Rochdale as
moderate and bad ; and at Ashton and Wigan as bad. Amongst the men, although no definite action has yet been resolved upon, there is an unquestionable movement going on for an advance of
wages, and a pretty general determination is expressed to obtain wages, and a pretty general determination is expressed to obtain
a return of the 2 s . per week taken off wages during the depressio in trade three years ago.
I still here of inguiries
acount of American engineering firms
A large new goods station is just being completed by the
Cheshire Lines Committee. The new goods depot, which occupies an area of about 500 square yards, adjoins the Manchester Central passenger station. The building is of brick, with stone dressing
and terra cotta cornice ; the main frontage, which is ninetee windows long by four high, is to Watson-street; there is a second
frontage twelve windows long by four high to Windmill-street, and return frontage to the passenger station twenty-three window long by three high. The upper floors are carried on cast iron rechings. The goods trains enter the station on the second story and powerful hydraulic lifts are being provided for raising and
lowering the wagons.
The brick archways under the central passenger station are also being utilised for loading and unloading goods. The plans for the goods station, which will cost upwards
of $£ 80,000$, have been designed by Mr. W. G. Scott, the company's enginer, and tre builk has be supp carried out under his super
vision. The irowork has been supplied by Messrs. Eastwood and Swindell, of Derby; the hydraulic machinery, with accumulators and engines, by Tannett and Walker, of Leeds, and the general
contractors for the work are Messrs. Neill and Sons, of Manchester In the coal trade the better classes of fuel for house fire purpose continue a drug in the market, with a downward tendency in price in good demand arealso plentifulu and offered at very low figures. Engine classes of fuel move off well at late rates. The average pit
prices are about as under :-Best coal, 9 s . to 9 s . 6 d .; seconds, 7 s
 Barrow. - The tone of the Hematite pig iron market has assumed a much firmer attitude during the past week. As a consequence higher prices are ebing asked, but quoted prices can hardy be taken
as giving a correct idea of the state of prices. I I am aware of some makers refusing to contract unless higher figures can be given, an Bessemer, 65s. 6 d. per ton ; mixed. samples, 64s.; forre iren,
62 s . 6 d. ; and Nos. 3 and $4,62 \mathrm{~s}$. 6 d . f.obl. at works. Besseme samples are in especial request, and the consumption of forge iron nquiries which come from the Continent, the colonies, an ratio than at present. I feel confident that we shall have an extraordinarily good year's trade. Makers are of course pushing all
the metal out of the furnaces they can, and some of the works are hurrying forward to increase their supply, so as to be in a position
not only to meet the demand but to be able to work off their contracts within the period contracted for
Steel makes are very actively employed in all departments, and
the orders which are held, and the inquiries which are being made the orders which are held, and the inquiries which are being made,
place this industry in a very active and satisfactory position. Iron ore in large consumption at a shade higher values. Iron slipbuiders are busy and have secured some good orders. Engineer
ironfounders, and others busy ; shipping brisk.

THE SHEFFIELD DISTRICT.

THE West Yorkshire coalowners have followed the example of those in South Yorkshire, and distinctly declined to accede the the per cent. advance asked for by the miners. Their reply is to t was shown to be required by the operation of the sliding scale The miners having hinted that they desired some revision of the sliding scale, the coalowners informed them that if they were dis-
satisfied with that agreement, they were at liberty to give the six on ths' notice required for its termination
A "hitch" has arisen in reference to the adoption of the collieries at Thornecliffe. The firm employ both unionists an non-unionists, the latter being in the majority. At the Rockingham and Tankersley collieries, however, the men belong to the
Yorkshire Miners Association, and they, acting on the advice of Yorkshire Miners' Association, and they, acting on the andvice of
their officials, oppose the adoption of the sliding scale, unless pre nxious for the adoption of the system, and as the non-unionist are equally anxious, it it probable that the latter will press for
ahis system of regulating wages, which once fairly established, and this system of regulating wages, which once fairly establishec, and equitably worked, would render strikes and lock-onts unnecessary.
A curious document came into my possession a few days ago. It was headed Yorkshire Miners' Association," and addressed our Members and Local Officials." It professes to be a statement
of the ase for the miners, and is signed by four oficiall, Edeard
Cowey, Benjamin Pickard, John Frith, and William Parrott. It is denied that in consequence of the short time worked the cost been used by the coalowners in the past when "the men have been asked to submit to indiriect reeductions." Even if it it in true,
the officials contend that trade has so far recovered as to cause pits to work on an average six days per week, which makes
it necessany for "t the one shilling added cost argument to be given up, and the incirect rectuctions taken from the men to be again
added to their wazes." Further, add the officials, ""along with the added to their wages. Further, add the ofticials, "along with the
improvemet of trade prices have improved to such an extent that
neither coalowners nor managers can gainsay." Figures are then neither coalowners nor managers can gainsay." Figures are then
given of the prices of coal at several collieries in West Yorkshire,
which are said to show a total increase of
general advance of 28 per cent. on the prices obtained in
July.
Similar figures are given for South Yorkshire, it is contendedo that a total increaus is estalablished of
its. on 80s., or a general advance in the rates of 20 ces. on Sos., or a general advance in the rates of 20 per
'the on July prices of 1881 The officals also state that of of the railway companies establish the fact that ool has gone up in value ;" "the committees of gas companies' bear similar testimony, and "all companies paying dividends
where they were not tormed in the inflated times, and "another
fact quite as significant" is statell thus- "Although rail way com-
ald panies are paying, if anything, more money for the enormous quantities of coal they use, they are paying, if anything, larger the officials are confident the employers are in a position to give
the men "a fair share of the advance which they (the employers alone are putting into their pocketse at the present time $;$ ", hence
alhey call on the men "to demand intelligently, earnestly, and
the The reply of the coalowners to all this is exceedingly brief.
Steam coal is the only class of fuel which has advanced. In that case the advance except in one instance-has not been secured,
owing to the contracts with the railway companies not having yet xpired. As for house coal, the employers contend it is 1s. to merchant, and not the coalowner or consumer, is obtaining the
advantage. A strike or lockout in the coal trade would be so erious a matter in the present condition of the general. trade of is district, that this lengthened reference to the position of affairy
important. A further meeting of the Sheffield steel manufacturers has bee xclusive property of Baron de Giers, of whose iron the firm of
Messrs. Thomas Firth and Sons, Norfolk Works, have the conces sion. The meeting for the defence of the general right to cuse the
nark hoop L was, I am informed, a most influential one. The manufacturers do not intend to contest the right of Messrs. T Firth and Sons to the sole euse of the word "Leursta;") but thy
contend that " hoop L" has been a common mark for thirty or forty years. The action, when it comes on for hearing, will be one
of the most interesting ever tried in connection with the Sheffield Messrs. George Wright and Co., stove-grate manufacturers,
Burton Weir, Rotherham, had a very complete exhibit of their productions at the Smoke Abatement Exhibition at South Ken nigton, where it was minutely inspected by the Prince of Wales,
His Royal lighness has since given the firm an order to fit up his Royal Highness's private apartments at Marlborough House, the grate selected being their patent bi-valve, in combination with the
Siemens grate for ensuring amokeless fire. The firm have also an
order in hand for Mr. Childers. The Sheffield Gas Company is order in hand for Mr. Childers. The Sheffiedd Gas Company is pushing the Siemens grate in the sheftield district.
The Barnsley Corporation recently made experiments with the lectric light,, which the Gas Company of the town has taken so
nuch to heart that it has reduced the price of lighting the pubic lamps from $£ 25 \mathrm{~s}$. to $£ 2$ per lamp, and the prioe of gas to
prate consumers from 3 s . 6 d . to 3s. per 1000 ft . On these term private consumers from 3s. 6 c . to 3s. per 1000ft. On these terms
the corporation have resolved to stick to gas, though they admit hat the decision was only arrived at on economical grounds, the
electric light being more brilliant, but dearer, than gas.

THE NORTH OF ENGLAND.
THE reactionary movement in the direction of quietness
iously repored still affects the Cleveland iron market. liously reported stil ausiness was done on Tuesday at Middllesbrough, and what transactions did take place in pigsiron were at easier prices. The lications between Austria and Italy, both tended to disinclin buyers from entering into contracts. Tuesday was also the polling
day for the North Riding election, and many who ordinarily attend The price of No. 3 g.m.b. ranged from 42s. 9d. to 43s. for prompt delivery. Warrants were not in much request, ontwithstanding that they were freely offered by some holders who have been
anxious to sell since the tendency to lower values set in. The price on Tuesday was from 43s. to 43 s . 6 d . for Connal's No. 3 f.o.b. brough store was on Monday 176,236 tons, or a gain of 122 tol upon the previous week. There are still some American inquiries
afloat, but few, if any, of them seem likely to come to business. The finished iron trade is steady at previous prices; buyers. are come, are rather relieved than othervise by a relaxation of pressure The quarterly return of the accountant to the Board of Arbitration has been issued for the last quarter of 1888 . It shows that
the price realised for manufactured iron during that period has the price realised for manufactured iron during that period has
slighthly fallen. Plates, which constitute the most important
 tion in ironworkers wages, Many of the ironworkers are dissatismely difificult, to get such men to understand that realised price is one thing and quoted price is another thing. The informa
tion accessible to them, and upon which their expectations usually founded, is what is published in the daily papers. This isualy founded, is what is published in the daily papers. are more than 20s. per ton above the prices lately realised.
Beyond a little ebullition of temper, it is not expected that the ronworkers will take any action until Appril next, when the present This may prove a difficult matter. The Union officials are in favour of a slididing seale, but never miss an opportunity of declaring their
intention to have the basis price raised. The rank and file of ironIntention to have the basis price raised. The rank and file of iron-
workers are divided amongst themselves, but according to present ppearances there is a large contingent who are altogether oppose to sliding scales on any terms whatever.

NOTES FROM SCOTLAND.

(From our own Correspondent.)

AT the close of last week the pig iron market was very dull,
with prices declining, and this week the market opened and has with prices declining, and this week the market opened and has
been for several days in a languid condition. The fall in quota-
tions tions since the downward tendency began has been very con-
siderable, but the impression seems to be that the prices will ere long reocver. As yet, however, the condition of business in the
market is somewhat discouraging. While the iron trade outside is busy in nearly every branch, the immediate demand for pigs
appears to be considerably below the average. The exports have been comparatively small, but the last return shows that they are on the increase and, with a better demand from. America, it is
probable that the market will soon gather strength. The elilveries into store during the past week have been somewhat larger,
amounting to 1200 tons. There are 10 furnaces in blast, as com-
Ther pared with 122 at the
pponding week of 1880
Business was done in the warrant market on Friday forenoon
a from 51s. 1d. to 50s. 9d. cash and from 51s. 3d. to 51s, one

50s. 7 dd. and 51 s . 2 d . cash, and 51 s . 4 td . one
monthi. To.day - Thursday - the market was month. To-day - Thursday - the market was
irregular, with business at 51 s . 3d. to 50 s . 102 d . cash, and again up to 51s. 1d.
On account chiefly of the backward state of the
warrants, the values of special branis of makers' iron in second hands are again reduced this week, while Carnbroe and Glengarnock No. 3 have been
reduced by makers 1s. per ton. The quotations

 Summerlee, 60 s s. 6 d and 53 s. ; Calder, 60 s . 6 d .
and 53 s . $6 \mathrm{~d} . ;$ Carnbroe, 56 s and 52 s .6 d ; Cilyde, and 53s. 6d.; Carnbroe, 56s. and 52s. 6d.; Clyde,
52 s , and 50 s ; ; Monkland and Quarter each, 51s. 6 d .
 Grangemouth, 53s. 6d. (ditto specially selected,
 mellington, 51 s . 6 d and 50 s .
There is a good demand for Cleveland iron among the Scotch manufacturers, and the imports to date show an increase of 3950 tons, as
with those of the same period last year
There is nothing new to report with reference works are all very busy, and prices continue firm. At the beginning of this week a strike of moulders took place in the foundries of Glasgow, and sur-
rounding towns where general work is done. The men allege that their fellow-workmen engaged in gradually during the past year, while their requests for an advance hadt yeen refused. their
The reason of this, no doubt, is that in the marine shops trade has been very brisk; whereas,
although there has been a good deal doing in bave not been quite so well employed as in the marine establishments. The advance sought by the men is $7 \frac{1}{2}$ per cent., which they say has been deducted from their wages at different times during the past few years, when trade was
dull. Some of the firms have conceded the

The coal trade is still in a rather backward condition, although the returns from the different shipping ports appear to indicate that a gradual ments compare favourably, not only with those ponding date last year. Complaints are made in the West of Scotland that the railway charges able quantity of business is driven a or to the English coast. The North British Railway give very favourable rates to the Fife ports, and in consequence the shipments at Burntisland are higher than at any other port in Scotland, with the single exception of Glasgow. At the present mall, it is felt that the railway companies might reatly help the trade without damaging their own interests, by a slight curtailment of the his week in the. There is no change to report think int

WALES \& ADJOINING COUNTIES. (From our own Correspondent.)
The Glyncorrag, Rhondda, and Swansea Junc-
tion Railway Bill was on Monday before Mr. Frere, one of the examiners, and that eentleman fter various proofs had been admitted, declared stan
This week there has been a good deal of discuswho seek to connect that port with the Rhondd Valley, and a strong mation of the two, especially as some fear that by the persistence of both, another twelvemonths elay may be caused. At this early stage I content certainty of connecting the Rhondda is the one that should be adopted. ion, and its improved exports of coal to foreign orts is well kept up. The total last week wa 17,000 tons on the week was remarked upon as xtraordinary.
The two ports, Swansea and Newport, are now in sturdy emulation of each other, and maintain exports from Newport amounted to 23,741 tons showing a decrease of about 3000 tons in com parison with the preceding week.
Cardiff still maintains its high position, and last week cameup to 130,000 tons within a few tons only. very probable that if the men purge aceable rack that an improvement will follow in wages. But I note that agitation is beginning with regard oo the sliaing scale, and though the feeling so far is stronger in the house coal collieries than in the extend.
An important meeting with the house colliers centre for the house coal men. A few days will taken before the end of the month
A large and import the month
may again come into action. I am prohibited from mentioning names at present as, the treaty may fall through. Still prospects are hopeful. flicting points are stated to be adjusted, and very oon indications will be given that business is intended. The time taken up has been considerable, but it must be understood that very weighty and important questions had to be arranged and notty subjects settled.
There is to be a branch rail from the Brecon line, which is also used by the London and North-
Western, into the Cyfarthfa Works. This will be useful in the new steel era which may be expected to dawn with the spring.
It has been decided not
It has been decided not to pay an interim divi-
lend on the Rhymney Works this time, and this is reasonable considering the extensive improveinsents to be carried out.
Mr. Inskip has been elected chairman of the Taff Vale. It was at one time expected that
Lord Wimborne would have accepted the posi-
tion. It would have been a judicious step. The
weighty interests of South Wales require a
broader policy than Bristol to give. Sir John Bristol is disposed at an thairman of the Taff, was father of the present Lord
Wimborne, and in the early days, before the coal and iron development, the railway had a hard struggle for existence.

THE PATENT JOURNAL.

\square
Pat th has comet our notice that some apphicants of tur

Applications for Letters Patent.

** When patents have been "communicated" the
name and address of the communicating party are
printed in in italics

- 1

17 th Janvary, 1882
228.
239.
230.
23. 330, Lamps, C. W. Siemens, Westminster.
31. TELEPE 32. ELectric Conduy.") 2. Electric Conductors, H. R. Meyer, Liverpool.
3. RIN SPINNNG, E. Clarke, TTodmorden.
4. DyN AMo-Electric Machines, W. . Lake.-- (c. A
 SAEA FASTENER, M. Delmard, Plumstead Common Spindles, J. Dodd and G. Little, Oldaham.
PIGMENTS, F. Wirth.-(o. Kall, Heidelberg.) Cigarettes, W. H. Beck.- (E. F. Leblond, Paris.)
Holdivg STAMPs, cce., C. A. Drake, London.
Loading Apparatus, A. Clark.-(C. Meserole, U.S.)
 skiv, Paris.) 47. Guns, W. R. Lake.-(D. M. Mefford, ohio, U.S.)
24. InHaLation Chambers, W. A. Barlow.-(M.
Encausse et Canisie, Paris.)

$$
\text { 18th January, } 1882 .
$$

249. Clraning Boots, G. H. Ellis, London.
250. Alcoholic Liquids, H. J. Haddan.-(J. A. Devize, France.)
251. Recording Instruments, R. Pickwell, York.
252. BATtERIEs, H. H. Lake.-(La Societl Universell
 BRakes, W. Wakefield, Dubiin.
SEwing Machives, M. H. Pearson, Leeds. SEWING MACHINES, M. H. Pearson, Leeds.
STEAM BoLLER, H. W. Pendred, Kingstown.
Motive PowEr, A. J. Lehmann, West Hartlep 255. Stoves, R. G. Greig.-(The Detroit Stove Wo
Company, Michagan, U.N.)
253. Floating VEssELS, R. Richards, Manchester. 19th January, 1882.
254. Rail, A. S. Hamand, Westminster.
255. ORNAMENTING, , ©., E. L. Voice, London.
256. SEWING MACHNE, H. Lake. -(D. Campbell, U.S.) 262. SEWING MACHINES, H. Lake. - (D. Campbell, U.S.)
257. Iron-pors, D. Cowan, Larbert, N.B.
258. Soundra INstrumens, ., Bassett, Liverpool.
259. BLINDS, J. Westley, Corley.

 71. Purifying Grain, H. J. Haddan.-(P.
anil J. Nagel, Belgium.).
260. Moving Targets, S. T. Lander, Mere. 273. Umbrellas, H. Haddan.-(C. Neumeister; Saxony.)
261. HocDina Coins, dc., H. J. Haddan.-((I. Guit mann, Berlin.)
262. ExTRACCING Gos, L. F. Gowans, London.
263. WATER-CLosETS, dC., T. Rowan, London. 276. Water-clasers, dc., T. Rowan, London.
264. STEAM Pupina Esines, W. D. Hooker, U.S.
 279. PENDANT LAAMPS, D. C. Defries, London.
265. SAW, F. C. Glaser.- (Isaakson and Co., Germany.)
266. GRABS, J. Jobnson.- (C. W. Maclean, Mellourne.
267. Trexch Spade, N. W. Wallace, Major of H.M. 282. Trenoh Spade, N. Wing Royal Rifles. Wlark.-(Mrs. M. Pidgeon, U.S.)
268. Trencers A. M. Clark.-(Mar of H.M. Vessels, T. Teodoresco, Galatz.
Lamps, W. Howes and W. Burley, Birmingham.
Bellows Forges, L. C. Gomant, Paris. 20th January, 1882
269. Earthenware, W. Boulton, Burslem.
270. Dyeing Cotton, J. Auchinvole, Glasgow. 289. SEcondary Batreries, J. Humphrys, Norwood.
290 Conductors, H. Haddan.- (J. D. Morel, France.)
271. Recording Spech, H. J. Haddan.-(J. D. Morel RUDDERs, H. Lumley, London,
Hook FASTENER, J. McKenny,
, Dublin.
Heating Water, G. Nussen \& W. Leachman, Leeds.
Water-closets, S. H. Terry, Whitehall.
Stoves, F. Engel.- (J. d.J. Koopmann, Hanburg.
Batteriss, Jand A. J. Higgin, Manchester.
PREsses F. Engel. SLAGEs, S. Pitt. - (G. Rocour, Belgium.)
ALARM, W. R.
Lake.
(H. S. Maxim.

218 J January, 1882.
Sewing Butrons, H. Haddan.- (J. Mathison, U.S.
Voltaic Batteries, A. R. Bennett, Glasgow, Voltaic Batereres, A. R. Bennett, Glasgow.
PLattes, T. Sowler and W. Ward, Manchester.
Oit Cap, T. Watson, Paisley. OIL CAP, T. Watson, Paisley.
ELETRII LAMPS, , N. Aronson, London.
EARTHENWARE TUBES, G. Smith, Bradford.
WEAVING Looms, T. Sutcliffe, Todmorden. EARTHENWARE THBES, G. Smith, Bradford.
WEAVIIG Looms T. Sutclifie, Todmorden.
AppyING SRINGS, H. Smelle, Kilmarnock. Boxes, H. Ste venson, Manchester,
Governors, W. Knowles, Bolton,
 Boots, de., W. T. Haynes, Leicester.
Rockiva Cas, E. O. Hallett, Weymouth.
Transmitrers, E. Brewer.-(J. Olmsted,
 Recondary
Rumbert, Paris.) Apparatus, A. M. Clark.-(L.
Brace Buckes, T. Walker, Birmingham. 23rd January, 1882.
323. Spinning, B. A. Dobson, E. Gillow, and
Bolton.
324. Ranges, H. M. Ashley, Knottingley.

 Transmitiers, S. P. Thompson, Bristol.
REgunating Tension, J. Foley, Dublin.
Shoes of Horses, T. W. Overden, Kilburn.

Lnventions Protected for Six Months on
Deposit of Complete Specifications.
204. Distiluing Apparatus, G. E. Vaughan, Chancery-
lane, London.-A commumication from F. Lirmann,

 A communication from Q. E. Packard, Montreal.-
19th Janury, 1885 .

| Patents on which the Stamp $\begin{array}{l}\text { Staty } \\ \text { \&50 has been paid. }\end{array}$ Duty of |
| :--- | ${ }^{211 .}$ Electric Curkexts, J. Rapieff, London.- $18 t$ 212. Stean Boiler Furnaces, J. Young, Bunker Hill, Sherer Merat, J. Jones, Southwark., -3rd January, 19s. Midingrs' Comprasses, H. A. Severn, London.-

1tth Jonuary, 1879 .

 235. CARDING Fibres, J. Schofield, J. Walton, and TI
Holt, Littleboroush 27. WATER Morous, F. C. Claser, Berin.-20tl Jann269. Skerarating Metas, F. M. Lyte, London. $-22 n d$ 30s. SKintse, F. E. Dowler, London.- 25 th January,
1877.
26. Cor-windivg, W. W. Urquhart, J. Lindsay, and

 315. TRandssirrtivg Sousps, J. H. Johnson, London.-
 412. TRaNsintrive Sound, L. J. Crossley, Halifax.

 Patents on which the Stamp Duty of 29s. Unbrellas, J. Willis, Sheffield.-26th January,

Notices of Intention to $\begin{gathered}\text { Applications. }\end{gathered}$ Proceed with Last day for flling opposition, 10th February, 1882 .
3931. Wringing Corrov, J. Wolstenholme, Radeliffo.
 3979. Covering Tras-Cars, E. H. Grey, Islington.-

 reunies. 17 Th S Setember, 1881.1
4014. Moustiva Crocher Cortow Balls, H. Greg,

Last day for fliny opposition 14th February, 1882,

4049. Pus T Thesel, Nottinghem,
and S054. PAvprsamber, 18881 . de Pass, London. - A comms
nication

 ampton,-23rd Septemberr, 1881.1 .
4115. FLoon VALVEs, F. Dyor, Camden Town- -23 rcl

 18841. Tonert Looking Glasses, E. W. Elmslie, St.

 261. Cutring Apparatus, G. Hamit, Haddenham.-

 bilo. Porifying Alkalise Solutions, E. Carey, H.
Gaskell, jun., and F. Hurter, Widnes.- 5 bll Decen-
 December, L18sil.
5404. Vortion Cexis, J. W. Swan, Newcastle-on-Tyne. 5498. SpRisco PACKING, W. Lockwood, Shoffield, -15 th

 1188. Revolving Fire-ARMs, W. Stringfellow, Mistley.

 munication from C. W. Cooper.-12th Jonuarary, 10882:

Patents Sealed.

(List of Letters Patent which pasesal the Graat Seal on

 33s9. WIre Hair Brushes, w. R. Lake, London.- 4 th 3400. ELEETETRIO Machinss, J. H. Johnson, London.-
 Auyust, 1881 .
3412 . GalvaNic Battreries, T. Coad, London,--6th

 N814．STEAM，ENGINES，N．Macbeth，Bolton．－3rd
5027．Open Stoves，E．R．Hollands，London．-18 th November，1881．
5035．BortuING．AERated Waters，J．T．Hayes，
Walthamstow．－ 17 thl November，1881． Walthamstow．－17th November， 1881. ．J．Haddan，
517．METICLAL CARBURETTER， London．－23rd November，1881．
5127．SETTING TyPEs，S．Pitt，Sutton．－ 23 rd November，
1881． 1881．
5137．Pumping Liquids，A．M．Clark，London．－24th
November，1881． （List of Patent Letters which passed the Great Seal on the
24th January，1881．） 3261．Glazing Apparatus，T．W．Helliwell，Brighouse，
Yorkshire．－26th July，1881．
 July， 1881 ．
3284．SEPating Glycerine，F．J．O＇Farrell，Dublin． －27th July， 1881 ．J．Broadbent and E．Mitchell，
3316．SININNI，J．J．
Bradford．－ 00 th July， 1881 ． Bradford．－ 30 th July， 1881 ．
3222．ControLing Suply of StEAM，S．Hallam，Man－
 August，1881．MACIINERY，A．Lamberton，Coat
3453．CRUBING Mridge，
bridge，N．－ 3 rd August，18si．
 castle－upon－Tyne．－ 3 rd August，Lisil．
3368．FoLDING BEDSTEAD，H．H．Lake，London．－ 3 rd
August，1881． 3390．Permanent London．－tth August，P．J881．J．Neate，Belsize Park，
3392．Asbestos Packiva， 3292．Assessos Packivg，C．J．Allport，London，and
A．Hollings，Manchester．－5th August，1881．
3405．TELEPHONIC APPARATUS，T．A．Connolly，London． －6th Aupust，1881．Strickland，Strada San Paolo 3408．Bicycles，G．Strickland，Strada San Paolo，
Malta．－6th August，1881．
3442．LiquID Rovas，C．D．Abel，London．－9th August， 1881．Enarkss，H．A．Bonneville，London．－9th
3453．
August，1881． August， 1881.
3490．TELL－TALE Apparatus，L．V．Bunnen，Brussels．
－ 12 th August， 1881 ． 3491．FLAT－HEADED Tacks，\＆c．，定．Klug，G̛lasgow．－
12th August，1881． Auguset， 1881.
366s．Electriclighting，W．R．Lake，London．$-23 r^{2}$ d August， 1881.
3862．REGENERATIVE KILNs，J．Dunnachie，Lanark，
N．B．$-6 t \downarrow$ September，1881．
 4336．Treativg Raw Hides，D．R．S．Galbraith，Edin－ burgh．－ 5 th October，1881．
4422．SPiNNIN YARN，T Briggs，Manchester．－11th
October，1881． October，1881．
4430．BIOYCLES，T．T．Harrison，Bristol．－ 11 th October，
1881 ． 1881．Electro－magnets，J．Imray，London．－12th
444．
October， 1881 ． 4450．Telephonio Apparatus，J．Imray，London．－
112 th
October， 1881. London．－ 18 th October， 1881 ．
4711．FIIURED FABRICs，J．Makin and J．E．Johnson－ Ferguson，Bolton．－ 27 th October， 1881 ．
471．WEAVING FIGRED FABRICs J．Makin and J．E． Johnson－Ferguson，Bolton．－27th October， 1881 ．
4720. REFRRERATIIG，J．Chambers，Manchester．－ 2sth October， 1881 ．
473．CARRIAGES J．Jancock and W．Smith，Not－
tingham．$-29 t h$ October， 1881 ． tingham．－ 29 tht October， 1881 ．
4777．ELECTRIC LAAPPs，E．R Prentice，Stowmarket．
1st November， 480．FIRE－ARMS，H．Simon，Manchester．－3rd Novem－
 129 November， 1881 ．
497．Composirors Rules，J．C．Mewburn，London．－
14th 14th November， 1881 ．I．Livermore，London．-15 th
4990．INDA－RUBBER，I．
November，1881． 502t．BICARBONATE of Soda，E Carey，H．Gaskell，jun
and F ．Hurter，Widnes．－16th November，1881． ${ }^{5058}$ jun．London－ 18 th Noverber 1881 ．Westinghouse Jun．，London． 1 Cond Novering ElETRIC COrRents，R．E．B．
Crompton，London．－21st November，1881． Crompton，London．－21st Novenber， 1881 ．
5095．ELECTIICAL COMMUTATORS，W．R．Lake，London -22 nd November， 1881.
5167．Woollen FARISS，H．A．Bonneville，London．－
26 th November，1881．

List of Specifications published during th eok ending January 21st， 1881 ，
 ＊＊Specifications will be forwarded by post from
the Patent－office on receipt of the amount of price and
postage．Sums exceeding 1s．must be remitted by postage．sums exceeding 1s．must be remitted by
Post－ottice order，made payable at the Post－oftice， 5 ，
His． Patent－office，Southampton－buildings，Chancery－lane
London．

ABSTRAOTS OF SPECIFICATIONS．

epared by ourseives expressly for The Engineer at the
oftice of Her Majesty＇s Commissioners of Patents．
2041．Apparatus for Controlling and Llocalising
Electric Corrents，L ．M．de Bejar－y－ 0 Lazolor：－
10th May Thith May，1881． $8 d$ ．
This is a modification in the apparatus described in
specification No．408，1878，its object being to use a wire such as a telephone wire，oo that messages to or
from the principal station are inaudible or invisibie
elsewhere．
2263．Apparatus for Effecting Electrical Mea SUREMENTS，J．C．Cuft．－24th May，1881．6d．
This invention relates to modifications in the makin
of resistance boxes the use of a sliding contact piece to pat coils in or out of
the circuit，the arrangement and construction of the
coils．

2524．Mandacture and Purification of Gas，J．H．
Johnson，Landon．－ 10 th June， 1881 ．（A communi－
cation from A．M．H．T．du Montcel，Paris．）． $6 d$. any substance capable of producing hydro－carburetted any substance capable of producing hydro－carburetted
gaseous products and hydrogen by distillation．The
substance is placed in retorts A heated by a furnace，

and the gases evolved pass by pipe B to the lower
purifier D ，above which are two other purifiers E and
，the F，through which the gases pass successively．Each
purifier，as shown in Fig．2，contains a plate G
mmer purifier，as shown in Fig． 2 ，contains a plate an
immersed in the purifying liquid，and placed in an
inclined position．The plate is perforated with a
［524］

on the under side webs or deflecting plates are
arranged in the form of a fan so as to divide the stream of gas．Each purifier has an orifice I for the sscape of the gas，a syphon pipe J through which the
gas is admitted（except the lower vessel，where the
gas enters by pipe B），a gauge K to indicate the level gas enters by pipe B），a gauge K to indicate
of the liquid，and an outlet L for the liquid．
2538．Electric and Magnetic Brakes，de．，M．R． The inventor does away with brake blocks，and
mploys a dynamo－electric machine for each carriage employs a dynamo－electric machine for each carriage，
the machine being connected with and put in motion
by an endless band or other gearing from the axles of by an endless band or other gearing from the axles of
the carriage．These machines are so arranged that the carriage．These machines are so arranged cosed
when the circuit in which they are included is clod
the action of the electric energy produced will retard the motion of the train．When the circuit is not
thosed the dynamo machine will revolve freely and give out a current which may we utilised to produce
heat，light，or to charge secondary batteries，which in turn shall feed excentric lamps．
2557．Variable Expansion Gear for Link－motion
Reversing Enines T ．Engithe ，Davoley，near Dartford，and D．Greig，Leeds．－ 13 th＇June，1881． $6 d$ ．
The object is to provide an earlier cut－off of the steam than can be given by the link motion alone
vithout interfering with the use of the link for varying the cut－off at a late period of the stroke，or

2557

for starting，stopping，and reversing．The valve
spindle U of the expansion valve mounted on the back
of the of the main valve Q is jointed to the link G near the
centre， centre，and receives the reciprocating movement of
this point．The spindle of the main valve may be
jointed directly to the end of the radius rod K ，but is
就 preferably，as shown，actuated through unequal
levers L and M， M ，preferably in the proportion of two to
one，in which case the relative movement of the one，in which case the relative movement of the
expansion valve is always approximately equal to
that of the main valve on its seat．The steam ports that of the main valve on its seat．The steam ports of
the main valve will be closed at a period of the stroke
which may be varied either by varying the lap of the the main valve will be closed at a period of the stroke
which may be earied either by varying the lap of the
expansion valve or the position of the slider H in the expansion valve or the position of the slider H in the
link，or by the two actions combined．The link G is
restrained near its centre between parallel guides T ， restrained near its centre between parailel guides T，
which allow the centre point of the link to receive the
reciprocating motion due to the angular advance or reciprocating motion due to the angular advance or
lead of the excentrics C D beyond a right angle in
advance of the crank． dvance of the crank．
 cook，Glasgove．－ 1 13th June， 1881 ． 6 d．
This consists of an inner core for imparting strength，
shell shell giving external form，and a finishing part for
closing down upon and securing the plates，sheets，or pieces of glass，or other mathinrial，plates，sheets，or parts being
ormed and adapted to each other． 2558．CENTRIFUGAL MACHINES，W．Shears，Bankside．
$-13 t_{h}$ June，1881．6d． This relates to improvements on patent No．118，
A．D． 1875, in which the basket was suspended by an
a hemisphere，which rested in a cup at the top of the
tubular axis，which was carried by fixed bearings and
driven by a belt driven by a belt．The object is to check the gyrations
of the basket，and it consists in forming an enlarge－

ment on the top of the curp E which reaives tho
biock or hemisphere D by which the busket B bis
 2573．Improvements in Means for Supporting and
Protectine Wires，de．，Used For Electrical Pud
 This invention consists in the combination with
the curb of the footways of a conduit fixed thereto， the curb of the footways of a conduit fixed thereto，
which carries the wires for electric lighting or other
purposes，whilst branch conduits lead off into the purposes，whilst branch conduits lead oif into the
 Paris．）－（Not proceeded with．）4d．
A tie－piece fits into a recess in a covering plate，and the tie－pieco is provided with a slot or opening at its
outer end，into which fits a wedge or key，which，when driven in，abuts against the recessed plate，and draws
the two parts of the bedstead as tightly together as
may be desired． 2582．Tricycles，H．J．Haddan，Westminster－－14th
June，1881．－A communication from C．W．Oidreive， Mass．，U．S．A．） $6 d$. spokes，with a car or carriage body，and tubular
sournas thereto arranged within such wheles，and
with a perch，auxiliary wheels，and an axle，the said wheel and car being provided with means or mechan－
ism to enable a person while in the car to revolve ism to enable a person while in the car to revolve
the wheel in order to put the tricycle in movement． 2586．Shirs＇Pens For Catrie，H．J．Haddan，
Westminster：－14th
June，1881．－（A communication thom S．Shaw，Mass．，U．S．S．）． $6 d$ ． rods fastened to the sides or top of the berth or pen in such a manner that a space is left between it and the
framee or part of the ship from which is is suspended
sult sufficiently to allow it to move enough to overcome the fore－and－aft motion of the ship．
2592．Improvements in the Manufacture or
Telegraphic or Telephonic Conductors，de．，W ． TeLegraphic or Telephonio Conductors，de．，W．
Rathe，London．－ $14 t h 1$ June，1s81．－（A communi－
cation from H．A．Clark，Boston，U．S．A．）
6d． This invention relates to a machine adapted for
coating wires with insulating material，which is so constructed that the material is forced through the die opening as the wire proceeds through the same，
giving direction to the coating material in the line giving direction to the coating material in the line
along which it passes throug the die，opening before
itreaches the wire it is to coat．It is thus prevented from working itself in a backward direction upon the
wire．This，it is claimed，is an advantage where the wire may have previously been coated．The invention
also relates to a compound cable for telephonic or other purposes，in which the wires are all at the same
distance from and parallel with each other． 2602．Copying Presses，J．Mitchell，Sheffield．－15th June，1881．6d．
This relates to the construction of a copying press
of book form，or other convenient form，in which the pressure necessary to copy a letter is obtained from
and by a spring or springs fixed or fitted therein
by acting on
or plates．
2604 ． 2604．Cooking Eags By Hot Air，W．H．Beck，
London．－15th June，1881．－（A communication from P．L．Labarbe，Paris．）6d．
This consists in the application of hot air produced and generated by means of a lamp with asbestos wieck
arranged below the eggs to be cooked，and enclosed arranged below the eggs to be cooked，and enclosed
along with the said eggs in a case which allows of the
admission of external air at the base of the apparatus admission of external air at the base of the apparatus
only for supporting the combustion of the lamp alone． 2606．Electrio Accumulators，A．Muirhead．－16t
June，1881．－（Not proceeded votth．） $2 d$ ． The electrodes were arranged similarly to the lead
foil plates in condensers，and could be coated or not
with red oxide of lead，\＆c． 2611．D
2611．Distribution of Fluid in Motors，\＆c．，W．L．
Wise，Westminster：－-15 th June，1881．－（A communi－ cation yrom C．Rour，Paris．） 6 d ．did
This relates to a method of fluid distribution by
three pistons mutually controlled without the aid of three pistons mutually controlled without the aid of
intermediaries other than orifices and passages by
which the fluid passes．A is the motor or measuring

piston，B the distributing piston，and C the prepara－
tory or initial distributing piston，D the inlet，and C
the the exhaust passage．Channels communicate with
each other and with the inlet，and also communicate or not，as the case may be，with other channels accord
ing to the position of pistons B and C．
2612．Improvements in the Construction or
Electric Lamps and Apparatus For Electric
Lithring，W ．Crookes． 15 th June $1881.4 d$ ．
After purifying the material to form the carbon
filament from silica，it is treated with cuprammonia
to destroy its structure．The copper is afte
extracted．Modified methods are described．

2613．Velocipedes，A．L．Bricknell，Brixton．－16th 2613．VELOCIPEDES，A．L．Bricknell，Brixton．-16 th
J．
This relates，First，to the framework of the bicycles； Secondly，to the construction allowing of the raising
and lowering of the seat of the bicycle；Thirdly，the construction of a silent pawl and ratchet mechanism ；
Fourthly，the combination of the silent pawl mechan－
ism ism with disconnected treadles；Fies ：Sixthly，the mechanism for catching and holdining the pawl out of
gear with the ratchet to enable the machine to be
wheeled back 2619．BaLL Cocks or Valves，S．Owen，London．－16th
June，1881．－（Not proceeded with．） $2 d$ ． The outlet end of the body is formed with a socket or recess to receive a packing or seating of india－
rubber or other suitable material．Around the exte－ rior of the outlet end of the body is formed a screw to
fit a female thread formed within a ring or cover used to keep the packing or seating in position，and to
carry the axis of motion of the strig or ball lever．The
隹 plug of the valve is formed conical t ．
shaped hole in the packing or seating． 2620．Tools for Drawing out Tubbs from Mul－
titubular Boilers，dc．，W． This relates to the combination of a screwed rod， detachable head or mandril，a collar，screw nut，and
suitable abutment，the the thole constituting the
improved tool to be operated by percussion applied after strain has been put on by the screw．
2623．Transporting Carriages and Cattle over Rivers，\＆c．，J．Bell，F．G．M．Stoney，and W．E．
Richs，Westminster．－16th June，1881． 6 ． This consists in the adaptation to travelling floating
trructures of hydralic lifting apparatus，and in com－ ination therewith the use or a dock or its equivalent
provided with guides for steadying the movements of provided with guides for rseadying the movements of
the floating vessel when rising from or descending into the water．
2624．Gas Cooking Stoves，W．T．Sugg，Testminster： This consists in the combination with a gas cooking
stove or domestic heating apparatus of covered galleries placed externally of the stove or app
and gaspipes provided with flat flame burners． 2632．Platting Fibrous or other Textile Mate－
rials，N．Fraser，Arbroath，N．B．－16th June， 1881 ． This consists，First，in the system of plaiting
together three or more strands or ends of fibrous or other flexible materials by passing the combined or plaited material in rotation over and under the
several strands or ends；Secondly，in the combina－
隹 tion of a plait receiver or shuttle moving in a circular
course，with devices which move the strands or ends course，with dev
across its path．
2642．Corkscrews，F．A．Whelan，London．-17 th This consists in the combination with a collar， bar，or their mechanical equivalents，whereby the
direct grip or muscular contracting power of the hand direct grip or muscular contracting power of the hand
itself can be utilised for drawing the cork，by causing
the the said sliding block and handle to aproch 2643．Garden Syringe，Garden Engines，Hose
Directors，Watering Cans，\＆c．，F．Cooper，Hands－ This relatas to means of preventing the back or drip
water running down the hand，arm，or sleeve of the water running down the hand，arm，or sleeve of the
operator by means of an annular rim or flange． 2646．Regeptacles and Vehicles for Storage and
Transport of Dairy Produce，Provisions，\＆c．， J．Wilson，London．－17th June， $18881.6 d$. ．${ }^{2}$ ．
This relates to the peculiar combination and rrangement of the internal fittings of receptacles or
ases for the transport or storage of dairy produce，\＆cc． 2647．Locomotive Engine，L．A．Aroth，London．-17 th／
June，1881．－（A communication from C．Raub．）1s． This consists of a locomotive，the centre of gravity of which is located in transverse centre plane of the
entire structure，and which is provided with a fire－ ox at each side of its trans centre plane，boilers the fire－boxes，and one central steam dome vertically
above and surmounting the same． 2650．SEwrmount bin the same
2650．SEwing And Binding of Books，\＆c．，G．Brovn，
Glasgov．－17th June，1881．Sd． The sewing is effected by needles pointed at both
ends，with the eye in the middle，such as are used for mbroidery machines，and worked and ranged as stitching across the back of the book，and passed right
through each sheet as it is placed or fed into the through each sheet as it is placed or fed into the
machine open at the back folds in front of the row of
needles，preferably on an angled rest with shifting machles，open at the back oladly on an angled rest with shifting
needles，petting guides，and two or more spring or clip
or 2653.

June，1881．6d．Barton，Boston，Lincoln．－17th This consists in protecting from the destructive
action of the fire the metal air tubes，which pass
hrough the fuel in cetion of the fire the metal air tubes，which pass
through the fuel in pedestal and other stoves by the
application thereto of a casing of plumbago or fire－ application thereto of a casing
clay composed of loose sections
2654．Book Cases，\＆c．，W．T．Rogers，West Dulvich．
-17 th June，1881． $6 d$ ． This consists in the application to cases intended to
eeceive shelves of interlocking parts so constructed receive shelves of interlocking parts so constructed
and arranged that level bearings for shelves may be
obtained at any desired height with facility． 2657．Glass Holders of Gasaliers and Lamps，J ． This consists in attaching to the arms or brackets carrying the globe or glass of a lamp or gas burner
loose clips pinned to the arms． 2658．Apparatus for Saving Life and Property at
Sea，A．D ．Roth，Blackleath．-17 th June， 1881 ． $6 d$ This consists in the general construction of a safety
nd signal buoy；Secondly，in coating such buoys with luminous paint and fitting them with lights and ight－reflecting signals in combination with another
mode of signalling，and the adaptation of electric
ction for the purpose of sight and sound signalling on action for the
such buoys．
2660．Feeding Fibrous Material to Carding
Engines，A．M．Clark，London．－17th June，1881．
$-(A$ communication from E．Gessner，Aue，Saxony．） This relates，First，to means of delivering continu－
ously an equal and regular supply of material to the machine，and to equalise and spread the fibre in an
even and regular manner on the feed apron，or by even and regular manner on the feed apron，or by
omitting the apron to deposit the material directly on
to the licker to the licker－in，or the cylinder，or any working roller
of the machine；Secondly，to means of conducting
the material equally and regularly supplied by a of the machine；Secondly，to means of conducting
the material equally and regularly supplied by a
feeder to the first breaker card，onward to the second feeder to the first
earding machine．
2661．Stool To Prevent SEa－SICkNESS on Board
SHIP，F．Lebacq，Paris，－18th June，1881，－（Not pro ceeded vith．）${ }^{4 d \text { ．}}$ ．
This reatates to meeping a seat in a hori－ 2662．Cements and Compositions，A．M．Clark，Lon－
 Magnesia and sulphate of magnesia are combined
with water to produce a cement which rapidly with water to produce
2666．Gardener＇s Cuipping Shears，G．Brockelbank，
Anerley，Surrey．－18th June，1881．－（Not proceeded This relates to the employment of two extra shanks
 Thith.) 2 did .onginal bars in the harrow framing are
 bolted the theth of the harrows. which ortater are flanges atevent the teoteth from turning upwards, and
fhus kepep them firmly in position during work
 V.S.A.) 4.

The pin consists of two parts, one forming a common pin and the other a spring cap to be placed on
the pin after it has been threaded through the cloth. 2672. Treativa TAN or Spent Bark for Manviac-
TURE or PAPER, W. Guest, Deptord, and C. Court, ${ }^{\text {sin. }}$ 8d.
The tan or spent bark is put into a hopper or other
reeetacele, and is delivered therefrom by mechanical
arran arrangements, and passes between and is crushed by
revolving rollers. The fibrous tan and its knots revolving roliers, The fibrous tan and its knots
having beon thus opened up, or the fibres to an extent separatede, the masse is in trod ouced in convenient quan-
tities into a rotary boiler or agitator, containing an admixture of water and caustic soda, in in solution, and When the boiler or agitator is closed steam is admitted therein, and the
 The ore, after it has been treated together with is saturated with nitric aecid, and again heated to con Vert the silver and other metals, such as nickel and
cobalt, into nitrates. obalt, into nitrates

This consists partly in forming countersinks in the rm heads of beit or rope pulleys which have wrought rim into the recesses thus formed.

This consist in
 yse soting or hath hard surface ocvered wwithe colouring
yidater, so as to produce a mottled coloured appear-
mat
2677. Folding Seat for Bars, Shops, \&c., J. Rettie, Tho seant is fixted tount the tion dor close up to the counter olded up the seat closes flat up against the counter or Fall, and when doon or open for use it comes away
rom the counter, leaving room for the knees as with an ordinary seat.
2681. Laxps,
1881. $6 d$. F. B. Baker, Birmingham.- 18 th June, This relates. First, to the construction of the piston
and rod of the lamps : Secondly, to means for permitting the entrancos and reandy escape onans or or puring
the filling of the reservoir and charging of the cylinder
 This consists partly in the treatment of petroleum, alcoholic solution of submuriato of potash and caustic 2685 . Exverores, S. R. English, Nottingham-20th This relates to the form of the blanks and to the manner of folding.
2688. Boss Axy Union Holdirg for Joinitg and

Hudgell, Hendon.-20th June, 1881. $6 d$
ccording to one form a holder is used, co
hollow sto farnished with a screw, and provided
with expanding clamping levers B a attached to the
oower ond of tsem A A a pin and near the upper end
2689

foreed against the inner side of the pipe G by a rod C are mado at an angle, so as when acted upon by the
rod C their lower ends are forced outwards. When thus secured to the pipe the union piece F is placed
in position and the conion noposition and the conical clamping nut E screwed
down gainst it, and is held up while the joint is being made by a wire spring
288. APpILCATION
 To (Not proceeded witht). $2 d$. such as sand, powdered glass, or suitable granula substance, is impreguated with a concentrated solution of aniline or other colour or substance, which
sis then drien The granular or powdered substance
is applied to the wet f fabric. 2691. Furrze Presses , , . J. Haddan, Weestminster:-
 or piecess placed in grooves in the metal frames, and
these battens are planed instead of the metal frame and their planed surfaces serve to press the cloths and 2693. H

 miliver, the long fibres being collected, laid paralle) separated from the tow and shrive or noils, and ready
for, passing directly to the preparing and spinning cor passing
tor
machines.
 This oceasists of one
one flour, and one fat.
2696. Box to Contatit Boot and Shor Brushes, \&o, ceeded with.) th. the blacking, brushes, tic, with a convenience for resting the bot or ssoe upo, at any desired elevation
in order to facilitate the ceanning 2697. Loonss, J. West and J. Fish, Blackburn.- 20 th
Jine, 1881.- (Not proceded voith.)
mochanism for actuating the taking. up roller, or roller
on which the oloth as woven is wound.

Iution of the rollers two sheets of double printed paper. A and B are the rollers with grooves S reach-
ing nearry from end to end of each, and arranged
inposite opposite and relatively to each o ther., Mare arranged
Ince plates stretched over each roller and fastened by clamps and springs.
2698. Divina Apparatus, G. H. Heinke, London.-

This consists, First, in the construction and employ ment of an articullated metallicic suit adapted to be
worn over the flannels of the diver; Secondly, in the construction and employment of a combined valve an tap, adapted to be fitted on the breast-plate of the
hemmet and
purpose of regular the control of the the parppose of regulating the escape of the foul or exhaled
2703. Improvements connected with Elecrric ${ }_{\text {ATIIG }}$ UPon TRAMs, dot., J Richardeon, Lincoln.Thith June, 1881. - (Not troceeded with.). $2 d$.
This ine motor and secondary batteries to drive the tramecar.

The machine is dosignod mechanically to effect the shaping and welding of the links in such a manner
that rods or "blanks" of ron or steel cut into suitable lengths and heated to a welding heat are introduced
into the machine by the vtlend ne to links, and their ends to be welded together by powerful, pressure, each sobusequent tionk being by power-
through the preceding one, and a continuous chain
thr thus produced.

Fabrics
 This consists in subjectitg the platited fabria. so soon
as folded under moderate pressure and in connection with one or mor mod thatentressessure ond and in conlennection aborben
material to the heat and moisture of free steam.
 Roth June, 1 R8s1.- A conimunacation from C. W.
Rhasay.)
b. This relates to a converting or trenting chamber, or
a series of two or more thereof, having paralel end rugations for a part of or or the entire working dis-
tance between the induction and eduction ports of tance betwen the induction and eduction ports of
each chamber, in combination with rotary distributors each chamb
or beaters.

 cases.
2711.
 June, 1881. Sdi. for wavajing the diriver of an ongine when he is it too
close to another train. The engine is fitted with an
che electric generator, an alarm apparatus, and a metallic
brush which sweeps the rail and forms connection

with it and with the alarm apparatus on the ensine. The generator 1s connectace whe the alar the apparates ordinary running a closed circuit is maintained
the elocomotive and the alarm is not sounded whenever the circuit is broken the alarm is operated. The
rails are divided into insulated sections, connected as shown in the figure, from which it will also be seen
that if two engines are on the same section of the rails the alarm apparatus will at once be operated through
the relays. When Bis in contact with A, that is when
with the exception of the break between rails H and
Thnd this is done by the b rush
and as the engine passes, and the circuit is not brokeen.
aut if B be

 is broken and the alarm operated. The invention also
includes an arrangement whereby if any points remain
 way should the points be closed and the signalman
try to open them, a diso will indicate to him that a try to open them, a didso will indicate to him that a
train is on that section of rails
the alarm on ombination with the alarm on the engine is an arrangement for mark
ing ofr on paper kept in onstant motion the times a.
which alarme signals wero recoived on the hengine.

This relates to thit outilisation of the preipitate
Which is deposited from the treatment of well-washed and p and the subsequent admixture therewith of an equal
wieight of water, asi
oley, which by itself, or by the
 adhesive material or substance, or by the add of
pressure obtanined by any suitable mould or press, may
be used for the mat be used for the making or moulding of various articles
of ornament or of utilty. 2715. Necritrs, J. Thom

This relates to the arrangement or construction of
the parts containing the fastening or holding means.
 ${ }_{T h i s}^{\text {with.). }}$. 2 2d.
This relates to the employment of a universal
joint which allows the driving or actuating rod to be
placed at 2719. MAchiser This consided with.). $2 d$.

 urnished with a
U.
very ten foet cut.
2721. Eva Tmisrs, A. B. Houghton, Birmingham.The instrument, madd on the principle of the hour 2724. GLass Bortirss, DEEANTREss, \&e., J. Jefifs,
Isington.-21st June, 1881. This relates to means for utilising glass bottles, \&c., for advertisements.
2725 . Foraming M
-21st Junne, 1881. 6d. This consists in the combination of an axis, two
riñks, two connecting rodss, slides and lates, forming apparatust for simultancously y rammin 2726. CArRiagss, D. Kerrige, Needham, Market,
Suffolk. -213 t June, 1881 . (Not proceded vith.) 2d. This freates ot constructiting a carcirage in such
manner that it may either serve as a two or four manner that
wheel vehicle.
2727. Masuracture of Heands, \&e., W. E. Gedye,
London. 22 nd January 18si. - A. communication from N. and J. Chaize, St. Etienne, France.) $6 d$.
This consists, First, of the heald itself in its con stitution or make, inasmuch that it 18 manufacture by the natural effect of the working on the loom on the
six threads of which it is composed ; Secondly, in the mechanism permitititing the conposerion an the the erequire moment of the tension or wisting of the six threads
of the two tranhes of the heald into a plaiting point
which ties them together
 This consistst of a t tibular frame mounted on wheels carrying a convenient number of hollow discs which
communicate
with the tubular frame by tubular stalks. Water under pressure is supplied to the frame and discs from pumping machinery either on a barge
or ashore. The discs are drawn through the sand, x, yor a motor engine or engines, and back on the pier or n either direction backward or forward.
 This consists lin the enrangement and application of siae spring yorkin.
2731. Kers For Locks, 2. Strauss, Birmingham.-
22nd J une, $1881 .-$ A.
 This relates to keys for indicating by the appearance
or condition of the key itself after its witharawal or or condition of the key itself after its withdrawal or
removal from the lock, whether the lock has been removal from the look, whether the
left in a locked or unlocked condition.

A vith. ${ }^{2 d i}$. trame or traveller reciprocates in V groves or chanmel or in thaveller uper reciproct ower frames,
gnd on one side of the traveller is secured the knife

 receive the fange of the wheel, and it itis over the
upper phat of the sle eper B and 1 s secured by byirs C ,
whilist the two lines of rails are conneceted by bars D.
 This consists, First, in the construction of a gas-
burner in the form of an ordinary jet, with one or burner in the form of an ordinary jet, with one or
more smaller jets below the level of the nipple, pro.
 use with any gas-burner, consisting of a slightly coned
chamber, spindle, valve, and projections thereon;

Thiseceaded
on thit. means for maintaining the tension
on triving bands equal at all parts on
on the driving bonds eauns for ant malin tainiting of the tension
of the bobbin both in cap and fly spinning traverse

 This relates to treating mangold wurzel and other natter.
 une, $1881 .-(A$ A con, H. A. Lake, London.-22na
 sure exerted upon the middole and edges of the Aheet
to be reguate wwith exactitude. The rollers R aro supported in journal boxes in the housings H, the two
being geared together, and each being bored with a

centre hole to admit steam to heat them. The journa
boxes of the lower roller an be adiusted horizontall so ns to throw it out of line with the upper one , by
which
 wedges M controlled b
2743. Pavenverss, \&e., H. H. Lake.- $22 n d$ June, 1881.)
-A communication from D. McLean, Neio York.) This relates to paving blocks formed of concrote,
baving their upper and lower longitudinal and trans: V shaped channels running form when laid down other, and adanpted to be reversed at will. 2746. Boors and Shozs, D. W. Outhbert, Gluegorv. -
23rd June 1881. This consists in providing the soles and heols of
 2751.
 with.) $\frac{2 d .}{}$. short length iron or hard metal tube of a sizo to enter the soft pipen is forred into the two end to
be oined, so that the ends meet midway. The ends are then enclosed in a metal box, and melted metal is
poured in, which unites the pipes.

[2752

metallic material. A strip or length of this packing
is coiled within the stufuting-box and pressure exerted
it there 3 .
 This consisiss in making the slag tap hole in the back
wall of the furnace and opposite the first working
 ends towards a line joining the said tap hole and dirst
Working hole of the Working hole of the furnace, the said tap hole opening
into a recess or depression in the back wall of the furnace, into which recesss the slag is conducted from
the bed of the furnace, and in
which it accumulates,
 furnace
2755. Drives yor Sewria Machines, J. Sefton, Bel.

 below the main deck with numerous holes, and arranging the freight so as to allow air to circulato
freely in
n ship deek to the bottom of the hold
2758. Apparatus for Seraratina Soutd Bodirs axd
Lievins, H. J. Smith, Glasgouv. -24 th June, $1881 .-$

The mahoezeed is conitsturuced so that two circular or other shaped vessels provided with inlets and outlets,
whico may be protected by filtering apparatus, rotate together about the same axis, and whose edges thanged
and so arranged as to obtain close ond derricet contact,
 2760. RAII
 Thids relates to means of increasing the strength
without materially adding to the weight.

${ }^{\text {t }}$ tombination of bars and folding partitions aro
 2788. Exerrisiso Machines, H. J. Altion, London.
 This relates to an apparatus in which a wed ght
attached
lowered to a cord runnuing over a pulley is ruised huld
 Leather, P. Nevall and J. Barker Har Hanallon, This relates to a machine in which there is a rising placed, and a revolving drum fitted with
dressers for dressing and finishing leather.

rubbing into the fibres of a skein of several threads of
silk sazacharinine matter, such ns as ate fruit, after which it is rubbed with a compounn of plumbaro, sacechrine matter, and asbestos, to ronder rit hard and smooth, The silk and en
nventor uses
nn insulator.
 This relates to improvements in apparatus for pumping or compressing air and or oine pumpang
purposes, and has for its objoct to provie simple and
eficient means which efficient means which are now especially adapted for
pumping air for condensing the exhaust steam from
the pumping air for condensing
2780. PIPR . Joinve J. Jarlon, Winchester.-25th
 nto the larger end of another length or section.

 of flue, which has abve the fire door ; its other end forms a junction with a pipe or chamber placed across
the furnace underneath the boiler and at or near the ridge, which chamber receives through an opening
nits upper side the unconsumed gases and smoke intisin proen side frre, thesoos beimed joined by a amorent
of heated air introduced into the chamber through a
and pipe leading from underneath the grate, and the
whole being discharged, mixed with, and aided by jets of steam brought from the boiler by suitabie 2791. Guidiva Trax-CARs ar Porints, W. Stirling,
 plough that may be raised or lowered when required. 2795. Fastrexing for Legangs or Garrers, M. and This consists
a slide consists of a a spring-acted latech-plate fitted to nat of the gaiter, which enters a hole in the onthel
 797. Apparatus for Treating Gaskous Fugit,
Lloyd, Birminghomi_-25tl June, 18st. This relates to the arrangene of condensing th ended matter of gaseons fuel before it is burned pand thereby causing org the said gaseous fuel to burn witl a smokeless flame
2798. Raisisa Ale, Berr, Wine, de., J. A.
Bennett, King's Heath, and J. Herd and
B.
P P.
 f carbonic acid gas applied to the liquid contained in closed vessel by means of tan ant liquatic conty regulated in
arthen
 prints or impressions which have been received on lithoographic stones, charged with the required pig-
ments or material ; Secondly, in breaking up the hard
 ance in the said designs by rolling a cylindrical brush
or roiler over the surface on which the print or im pression has been set off, and while the varnish is
 Mhis reates to a process wherein tannic acid or
tannin is used in the treatment of spent tyes ressulting from the manufacture of soap.

London
A. and

This consists, First, in the the method of separating the reduced grain, and then mashing, fermenting and distililing the separated starch alone, whereby pure
 which consists in first steeping the tre grain, thrain, reducing the steeped grain by girinding or beatitig,
then separating the bran and gluten from the starchy liquid by sifting, and then mashing, fermenting, and
distilling the sepparated starch slone 2874. Cenvirifgait Extractive Machines, F. Woult
 Yeir, copenhagen.) 60.
This rolltes to means
 varying the same during the motion of the machine.
The rotating reservoir. A has an annular plate E;
 groove the heavier liquid passes into the space botween
the plate and the cover G, snd from which it is drawn [874]

off by the tube F. The annular plate has on its inner
circuimference a collur which, llong its inner circum-
 the delivery, the levelel of the fluid in the reservoil

 by shaty the tubes F and FH lengthwise the
 ${ }^{1 \text { sta }}$ July, 1881. - (A communnication from La ComThis relates to liquoring or cleansing substances by steam either aloneor mixed with other gases, in a
centrifugal machine, the object being to utilise the

separation taking place before its entrance into the
machine.
For this plo prpose the liguoring agent is by a perforated tube A so as to impinge on the outer surface of the revolving drum B, whereby the aqueous
particles are thrown off on to the casing C and can be drawn off, while the liquoring agent thus deprived of its moisture pene trates into the drum and acts upon

 pincers by a method of adjusting resulting from the
coninac, ihape employed, and from a peouliar con
otriction struction of head or cap preventing it coming out of
is socket. 3016. VE

Jully, 1881. $6 d$.
This relates to the general arrangement of mehanism whereby one, two, three, Iour, or mor persons whom only are required to work or propel the machine

This consists essentially in forming upon the
needles a p pivot, whereon the tateh is hinged, which pirot is struck up by means of a die upon the inner
face of one of the two flaps or jaws that hold the lateh ace of one of th.
between them.
4421. Apparatus for Usk upon Thikphong Linvs,
G: Pitt, Sulton. -11 the october, $1881 .-(A$ commulThe desi
 out producing a signal al the others. The invention
also rolates to the arangement of tines, and the
and apparatis at the eentraran station on The destails are ex-
apedingly numerous, and relate to no less than eedininly numerous, and relate to no less than
wenty-seven claims.

 partly in section are interposed between layergo of
cork, in which the said tubes are partly embedded, nd removable air-tight tre employed
 The regulation of the earbons in this lamp is
effectod by the pulley H and the chain C, which is attached to the ends of both carbons. When the
currentis on, hee core E is attracted by D, and caused to enter it. This action moves the lever to which Eis
attached forward, and causes a plate to press on the
[4617]

spring I, which in turn presses upon the pulley H,
and causes it to revolve and wind wi carbon a short way by means of the ehain, the sesitue
movement also lowering the negative carbon and movement also lowering the negative carbon and
establishing the arc. When the arc becomes too long,

4420. Tmprovenents Relatina telephone ant

 Part of this invention refers to an improvement whereby a central ofice manager can regulate at will
the number of subscribers to be taken care of by single attendant, and also a method of notifying the the
latter of a call when ho is not istening at this tele-
phone. By this invention the subscribers' wires are phone. By this invention the subberibers' wires are
grouped at the central office to a common wire which rouped at the central ontice to a common wire which
connects to
listening operators
teleppone thence to ground, aid the terminals of sub-
seribers , individual wires are
call bells common $\sqrt{\text { wiree the the said wirreses, serving to to grou the the }}$
outer ends of the telephone wires together. Fach subseriber is thus provided with two circuits-first,
his individual telephone second, the lines of hit group that happen to bo connected with the common
line at their outer ends when he connectas with the
said common tine connecting the calling battery with a point near the
lever of each spring jack, and so constructing the any subscribers line with a contact moans of it connnect with the calling bate ery, and d thus signail hat ocunbectibing.
The invention also refers to improvements in telephone The invention also refers to improvements
cables, whereby induction is neutralised.

 The objectit is to renender journal bearings thoroughly vent heating; also ot to prevent the tubricant which is appioed to the concave surface of the bearing fron
becoming unduly
fisplaced by pressure or heat, and further to enable the attendant pressure or heat, and
removing the bearing, whether or not it wit requt
trequ removing the bearing, whether or not it requires
roppacing For this purpoen the conceat surfar of
the journal side of the bearing is made with alternate

weak ridges or, projections and depressions, which
latter are tor the partial reception of the substance of latter are tor the partial reception of the substance of
the rideo when they become orushed down by the
operition of the journal. In the drawng operation of the journal. In the drawing L are the
riveses. The grooves between the ridges are filled in with a lubricant of the nature of allow, cross ritiges
A preventig it flowing out along the grooves when
in H liquid state. The front end of the bearing is forme with an aperture G, through which the upper
edge of the collar mav be see ed beo me colar miy be seen, so as to ascertain
it becomes worn without removing the bearing.

SELEOTED AMERICAN PATENTS.

250,248. Grant Thrashing and Separativg MA Marion, onio.-Filed 2nd June, 1ss1.2 $2 d$. Claim.-(1) The combination, in an grain separator
of the concave of the thrashing oylinder, the pivotted arms C, a transerse shaft D , the excentrics E , on this shaft, the guides F on the frame, a ratchet-wheel
G on said shat
and , and a pawl H, all substantially as described. (2) The combination, with the grain chinte
R 1 , of the jointed supporting links
S1, the
250.248

 pension springs
radiating from th
ally as doscribed.
250,306. Regeriver for Telephones, Henmy B

250.306

jected within and in combination with the cup o piece are seeored, to waid maich the diaphragm and ear.
bing provided with
hin mametic dises and hin magnetic disses, and a coil arranged within said
cupp subbstantially as described. (2) The combination,
and
 jected within said chamber, magnetic discs forming
fattenede extensions of the pole therof. and a coll
or helix arranged between the discs and within the receiver cup, substantially as daescribed. (3) Thin come.
bination, with a hollow metal cup of a receiver of of
bar-magnet projected within said cup, magnetic
metal dises secoured thereto, a coil arranged between
maid discs said discs and within the cup, and a second ooil arranged upon the magnet outside the cup and con.
nected with the inner coil, substantially as described. 250,367. Wrisco A AD Pipe-cutrer, Israel Kinney, Claim-(1) In a wrench, the combination, with the connected jaws having their inner edges opposite
each other, of the handle provided with a tapering tongue, arranged to slide between said jaws and ggainst the inner edge of one of them, substantially
as d described. (2) In I wrench, the combination, with the jaws arranged opposite each other, and conneneted
by the bars or portion C of the handle provided with tapering tongue passing then

250.367]

 pposite each other and conneected by the bars and portions C , of the rotary cutter d pivotted on one of
said jaws, and the handle A , provided with the tapering tongue passing between, said ceannecting bare or-
portions, and arran portions, and arranged to slide against the jaw oppo-
site the rotary cutter, substantially as described. 250,590. Method or Makina Itidiun-Tipped
 fipped metallic wh which consists in charsing winrranulated iridium a cup-formed carbon positive elec-

250.59]

(2) The process of manufacturing an iridium.tipped lated iridiuiu, a cup-formed darbon positive electrode
and bringing the same, while under the action of nd bringing the same, while under the action of of a rod of other metal, the rod proper being then
nveloped wwith roentroco of the same or difterent
netal, substantially as setforth

CONTENTS.

The Enginerr, January 27 th, 1882.
Visits in the Proyinges-Francis and Co.'s page he Instruturow ör Civil Ënaine of potable waters OTRS AND MEMORAND

Goods Wagons, Great Northern Pu

Stran Air Machines .: .̈. ...

Tenslle strexart of Lova đ̈xd S̈hoöt Bars

EfFICIENCY of TURBinEs
Photometric Tests or incandescent Lamps Lymouth Waterworks
Dr. Huggins on Comets
The Channel Tunne

Literature-
The Book of Scales. By A. W. Holohan \ldots.
Lightning Rod Conference. By G. J. Symonds.
66
66 The Water supply of Colchester
Large
Lome Roor,
Devonshire
Hospital.

TEADERS
WAFT SINKING UNDER DIFFICULTIES. (Illustrated.) he Iron, Coal, and General Trades o Notes from Lanoashire
Notes from therfield $\because \because . . .$.
Notes from Woulles and adooinina Counties
abstracts of Patent ofeolfications. (illus-
 (Illustrated.)
ARAGRA PHS-
Large Engines for the Navy
British Coal Shipments
Original Researches
Fires in Theatre
Smoke-bumitres....\quad.. $\quad . \quad$.. $\quad . . \quad . . \quad$..
Tramway Street Locomotives
Ore in Furness
Health of London in i881
Accident with an Ether Kefrigerating Ma-
chine ..

Epps's Cocoa. - Grateful and Comforting -"By a thorough knowledge of the natural laws nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epps has provided our breakfast tables with a delicately flavoured beverage. which may save us many
heavy doctors' bills. It is by the judicious use of heavy doctors articles of diet that a constitution may be gradually built up until strong enough to resist every tendency to disease. Hundreds of subtle mherever are floating around us ready to attack wherever there is a weak point. We may escape
many a fatal shaft by keeping ourselves well fortified with pure blood and a properly nourished frame." - Civil Service Gazette. - Made simply with boiling water or milk. Sold only in packets
labelled -"JAMFS EPPS AND Co Homcoopathi Chemists, Londo " Chemists, London."-Also makers of Epps's
Chocolate Essence for afternoon use, -[ADVT.]

