THF INSTITUTION OF MECHANICAL ENGI NEERS AT LEEDS.
In accordance with the programme which we published last week, the summer meeting of the Institution of Mechanical Engineers commenced on Tuesday, with a reception by the Mayor-Mr. GeorgeTatham-of Leeds in the Civil Court of he Town Hall. Afteranappropriateaddress by Mr. Tatham, The President, Mr. Percy G. B. Westmacott, of the Northumberland, acknowledged the hearty welcome given to the Institution by the chief magistrate. He then spoke
concentration of work to the fullest extent upon a limite area had not always been properly recognised by dock companies. It had frequently happened, but more so abroad increase of trade had come upon a dock, it had been met by enlarging the dock area and lengthening the quay met at a great cost, instead of first making the best quay of mechanical arrangements. In conclusion, the President pointed out the importance of sufficient and constantly increasing precautions to protect this country's trade, and of providing every means for moving war materials in times of difficulty with the least amount of manual labour.
for the whole country; 3 forges for the making of iron, \&c." Leeds, however, must have given employment to the civil engineer long previous to this date, and of this fact the author gave several examples. Mechanical engineering, however, appears to have made but little progress prior to the commencement of the present century. The necessary machinery for the various mills in the district, whether driven by wind or water power, was of a very simple character, and the appliances for colliery working or for the smelting and working of iron, were of a very primitive description. It was about a hundred years ago that improvements in the steam engine gave an impetus to

SINGLE LEVER TESTING MACHINE, BY MESSRS. J. BUCKTON AND CO., LEEDS.-(For description see page 117 .
of the eminent engineers of past days in Leeds, among the successors of whom they now met. He paid a tribute of respect to thememory of the late Mr. W. Menelaus and Mr. C. P. Stewart, after which he spoke of the importance of a nation or a community applying itsinventive faculties to the moving of materials for useful purposes with the least amount of manual labour and waste. To extend and cheapen trans port by land and by water was, in fact, to be in the van of all real work of substantial progress, wealth, and civilisation. In the marvellous and gigantic structures of the East there was an enormous waste of manual power They served no good or useful purpose for mankind, and stood only as monuments of man's pride and selfglorification. We might feel pride in the vast strides which science, art, and engineering had made in our own time but posterity would assuredly lay its finger upon the great blot of waste and stigmatise our age as the black age, which had spoilt by careless, unnecessary, and selfish, inexcusable emissions of smoke and noxious gases many a noble town and many a lovely spot on earth. He said no really good invention was ever completely thrown aside, even though it might be superseded by some other invention. For instance, candles had not interfered with the use and progress of the oil lamp; gas had not snuffed out candles ; and he did not agree with those who believed that electricity would totally supersede gas. As to the means of transport across land, it might at first sight seem singular that rail ways, lessening as they had done to an enormous extent the cost of land carri age in comparison with other traffic, had neither done away with horses and carts nor drained canals of their freights. He told how on the Aire and Calder Navigation, which terminates at Goole, a boat containing 30
tons of coal is by a hydraulic hoist lifted
bodily out of the water and its contents are directly upset into the larger river craft ; and, as this system is being further developed for boats of 150 tons, the President proceeded to ask, might there not be in this the precursor of the time when ocean-going steamers wonld without loss of time, on arriving in port, be lifted bodily out of the water and then scuttled of their contents right and left into warehouses at a rate and with a saving of labour which would far exceed unything
hitherto attempted? The extraordinary results from a

A vote of thanks to the President for his address was passed on the motion of Mr . Windsor Richarde, srconded by Mr. Williams, of Middlesbrough.
A paper was then read by Mr. A. H. Meysey Thompson
mechanical engineering throughout the country, and the genius of Matthew Murray soon enabled the Leeds district to take a prominent place in this industry. The author gave many interesting particulars concerning Murray's work which we regret we have not space to refer to here. Murray commenced his career in Leeds at the flax mill of John Marshall, about the year 1789, at a time when the manufacture of flax by machinery was just commencing, and by the improvements which he introduced into the machinery, he gave to the flax trade of the district a start which it has never lost. Perhaps his most important inventions in this class of machinery were the hackling machine -which procured him the prize of the gold medal of the Society of Artsand his machine for wet flax spinning by means of sponge weights, which proved of the greatest practical value. Murray continued in Messrs. Marshall's service up to the year 1795, when, realising the great want there existed for trained mechanics and organised works for the better manufacture of improved flax machinery, he secured the co-operation of Fenton and Wood, and started-in the works known as the Round Foundry, and now in the occupation of Messrs. Smith, Beacock, and Tannett-the well known firm of Fenton, Murray, and Wood, afterwards Fenton, Murray, and Jackson. Two engines of his make, one of 50 the other of 16 -horse power, are still driving machinery at Messrs. Titley Tatham and Walkers, Water Hall Mills, Holbeck. For one of his engines, sent to Russia, he received a gold medal from the Emperor, Whether this medal was the only payment received fox the engine, history does not state. Mr. Thompson explained at some length Murray's connection with Blenkinsop, and his part in introducing locomotives.Coming down to more recent

On the History of Engineering in Leeds. Mr. Meysey-Thompson began by pointing out that the connection of Leeds with engineering dates from a very early period. As early as the commencement of the sixteenth century we find Bishop Tonstall asserting, at the time of Henry VIII.'s visit to Yorkshire, that this district was the richest he found in all his travels through Europe; there being within ten miles of Hazlewood, inter
alia, " 120 rivers and brooks, whereof 5 be navigable ; 76 alia, " 120 rivers and brooks, whereof 5 be navigable ; 76
water mills ; 25 coal mines which yield abundance of fuel
times, Mr. Thompson gave facts
which may be thus summarised:-In the year 1826 mechanical engineering in Leeds comprised: (1) Textile machinery; (2) locomotives; (3) fixed engines ; all of which were then made solely by the firm of Fenton, Murray, and Wood. By the year 1866 the tool trade of Leeds had grown to very large proportions, employing about 8000 men. A bout the year 1854 a new branch of machine making was introduced, owing to the outbreak of the Crimean War. Leeds has also sent out a great number of very powerful tools for turning, boring, and
rifling heavy ordnance．Locomotive engine building in Leeds has for the last fifty years held a prominent position， and of late it has received a further development by the manufacture，that of engines．Another branch of this menced in 1860 with the introduction of the steam plough and is now one of the most important industries of the town．There are certain industries of comparatively recent date，and to a certain extent peculiar to Leeds，and the author thought a short notice of them might be of interest to the members．The trades are as follows：－（1）Machine－ made clothivg；（2）machine－made hats and caps；（3） （1）A． （1）As togards the is employed similar in construction to a band saw but having a knife edre．Some twenty－five double pieces of cloth laid on one another are time The parts thus cut out are then united by sewing machines，running at from 700 to 800 stitches per minute，normal speed；though some travel as fast as 2000 stitches．The seams have next to be ironed ；and as the old system of heating irons in a fire has been found both troublesome and costly，metal cases have been adopted，inside each of which is a Bunsen being fixed at the end of a radial arm provided with elbow joints．The necessary 250 lb ．pressure for the ironing is applied by the foot of the attendant pressing on labour carried，that each suit of clothes passes through the hands of from twenty－five to thirty persons．The several processes of cutting－out，sewing together，binding braiding，putting in sleeves，sewing on buttons，making
button－holes，and ironing，are all done by machinery effect of this system has been to cheapen the cost to a effect of this system has been to cheapen the cost to a
remarkable degree；so much so that a suit of clothes for an adult can be bought at 13s．，and for a child at only an adult can be bought at 13s．，and for a child at only
2s． 9 d ．Power was applied to the machinery about seven years．ago，and it has been found that 1－horse power is sufficient to drive from twenty to twenty－five machines assuming large proportions；the machinery e，is rapidly assuming large proportions；the machinery employed is the turn－out of hats and caps per week is about 70,000 the turn－out of hats and caps per week is about 8 ，000
dozen．The total number of hands employed in these two dozen．The total number of hands employed in these two
industries in Leeds is estimated to be between 6000 and industries in Leeds is estimated to be between 6000 and
7000 ；of these nearly 5000 are women，whose wages range from 12s．to 30 s ．per week．（3）The manufacture of boots from shoes by machinery is also becoming an important and shoes by machinery is also becoming an important
industry．It commenced about the same time as the machine－made clothing trade，with a few simple machines， but has grown rapidly，and now gives employment to nearly 5000 hands．The whole of the leather，with the exception of the＂uppers，＂is stamped out by a machine．Very powerful sewing machines unite the parts thus cut out ；whilst the＂lasting machine＂
and＂finishing machine，＂recently perfected，have enabled manual labour to be still further dispensed with．Each boot passes through the hands of from six to twelve persons，and so rapid can the different processes be per－ formed that a boot can now be turned out complete in about half－an－hour．From one two million pairs of boots
are annually produced by the above processes in Leeds，and are annually produced by the above processes in Leeds，and
so cheap have they become that a pair of strong workman＇s so cheap have they become that a pair of strong workman＇s
boots can be bought retail for 6 s ．The manufacture of cut boots can be bought retail for 6 s ．The manufacture of cut
nails has made most rapid strides of late years．Formerly $\begin{array}{ll}\text { nails has made most rapid strides of late years．} & \text { Formerly } \\ \text { nails were made in presses by manual power．} & \text { In } 1819\end{array}$ nails were made in presses by manual power．In 1819
steam was first applied in Leeds to this manufacture by steam was first applied in Leeds to this manufacture by Messrs．Roberts，who cut a ton a week，which was then
regarded as a large quantity．Since that time the machines regarded as a large quantity．Since that time the machines
have been wonderfully improved．A nail is now cut， headed，and pointed at one stroke；and by a recent im－ headed，and pointed at one stroke ；and by a recent im－ diminishing manual labour very considerably．In the ear 1858 Mr．Kitson，in a paper read before the British Association，estimated the number of hands employed to
be 188 ，of whom 100 were women；and the annual weight be 188，of whom 100 were women；and the annual weight
of nails made to be 3452 tons．At the present time the of nails made to be 3452 tons．At the present time the
annual make of nails is about 15,000 tons，employing nearly annual make of nails is about 15,000 tons，employin
600 hands，of whom about two－thirds are women．
In connection with the engineering of Leeds，it would be interesting to mention the works，now nearly completed， for supplying Leeds with water．The operations at pre－
sent in progress consist of the construction of a reservoir sent in progress consist of the construction of a reservoir
at Eccup，about five miles from Leeds，which is intended at Eccup，about five miles from Leeds，which is intended to contain when completed 1400 million gallons of water． consumption；and as the water will enter in a regulated quantity at one end，and be drawn out at the same rate at he other end，it is anticipated that the purity will be much increased by slow deposition during so long a period． The water is in the first place obtained from the moors about 20 miles from Leeds，the area of watershed drained being 25,000 acres．This water is collected in three reser－
voirs，at Lindley Wood，Swinsty，and Fewston，about voirs，at Lindley Wood，Swinsty，and Fewston，about
13 miles from Leeds as the crow flies；their respective 1.3 miles from Leeds as the crow flies；their respective
capacities being 750,960 ，and 870 million gallons，with capacities being 750,960 ，and 870 million gallons，with a
total water acreage of 426 acres．From these reservoirs total water acreage of 426 acres．From these reservoirs
the water will gravitate to Eccup，through two 30 in pipes the water will gravitate to Eccup，through two 30in．pipes，
and from Eccup it will flow through a tunnel under Black and from Eccup it will flow through a tumnel under Black Moor，and thence by a 40 in ．pipe to the filter beds at
Weetwood，whence it will be distributed to the several parts of the town．The grand total capacity of the four eservoirs mentioned will be 3980 million gallons．The present daily consumption of water averages $7 \frac{1}{2}$ million
gallons，the population supplied being about 300,000 gallons，the population supplied being about 300,000
persons．It may be stated that the present charge for water，collected，stored，transmitted，filtered，and delivered o the consumers in Leeds，is $1 \frac{1}{2}$ d．per ton
No discussion took place on Mr．Thompson＇s paper， A vecause，as was explained by the President，it was historical
A paper was then read by Mr．Chas．Cochrane，
On tiie Working of Blast Furnaces of Large Size at
High Temperatures，with Special Reference to the
This paper mainly deait with the effects produced by
altering the position of the tuyeres．The author held that in all the discussions wrich have taken place，it would appear that two important elements in the successful gether ignored，namely，the size of the hearth，and the overhang of the tuyeres，or，as it may be put by preference， overhang of the tuyeres，or，as it may be put by preference，
the distance of the tuyeres apart across the hearth．The experience gained by the author during the past eight years，and his special observations during the last two of hese，point to the fact that in the employment of high from nose to nose is of great consequence ；and that， ceteris paribus，if they approach too close together，the effective capacity of the furnace is materially reduced． This reduction may easily go so far as to destroy the economy which should have resulted either from extra cubic capacity of furnace，or from extra temperature of blast employed．The effective capacity，spoken of in ontradistinction to the actual capacity，is estimated in accordance with the curve of furnace capacity and coke consumption given herewith．The writer＇s observations 3 ，and $4:-N o .1$ furnace is of 33,400 cubic feet capacity； No． 2 furnace is of 35,013 cubic feet capacity ；No． 3 fur－ nace is of 20,454 cubic feet capacity ；No． 4 furnace is of

DLAST－FUFNACE WERKMNC．

curve of furnace capacity
 20,454 cubic feet capacity．No． 1 furnace was constructed \mid No． 4 iron；the correction being made at the rate of $\frac{1}{2}$ cwt． with a hearth of 10 ft ．diameter，and an overhang of 16 in ．of tuyeres ；making the distance apart of opposite tuyeres on the across the hearth from nose to nose．It is shown which sketch with this distance 8 ft ．apart，being that at furnace tuyeres were placed in February，1882．The furnace was blown in on 18th March，1874．The No． 2 meter，and an overhang of 12in．of tuyeres，making the distance apart from nose to nose 6 ft ．It was blown in on 10th May，1876．In June，1880，the tuyeres at this fur－ nace were each drawn back 8in．，making the distance asunder was constructe from nose to nose， 7 ft .4 in ．No． 3 furnace tance from nose to nose of tuyeres being 6 ft ，and was blown in on 27 th November， 1876. No． 4 furnace was con－ January，1880．At the end of January blown in on 8th were drawn back to a distance of 7 ft ．apart．；with what excellent results we shall presently see．
Commencing with No． 4 furnace－the tuyeres of which， till the end of January，1882，had been only 6ft．apart，and during the months of February and March，1882，were separated to a distance of 7 ft ．apart－the following were been limited to results obtained ：－The make，which had preceding months of November，December，and January， sumption of coke was only increased by 27 tons，or from

Furnage
capagity
cubic FEET
40.500 the tuyeres from 6 ft t．to 7 ft ．apart was in fact to prevent the centralisation of
heat，and to bring about a uniform or more nearly uniform distribution of the ascending gases over the whole transverse sectional area of the fur－ nace．With the tuyeres placed 7 ft ． apart，none of the ore is subject to the influence of a greater volume of gas than is needed for its reduction，nor is any deprived of the volume needed to effect its reduction．Thus all the materials arrive at the hearth in a similar condition，equally ready to enter the region or zone of fusion， over the area of which the tempera－ ture is practically equable，and the volume of ascending gases per square
foot of sectional area is practically the sam
The author next proceeded to con－ sider at length the results obtained with the remaining furnaces．Seeing
that reference has just been made again to the capacity－curve given，it will be well to explain what is the precise meaning of this curve．In
1870 －＂Proceedings，＂page 75 ，and plate 12－a curve was constructed by the author，giving the results of expe－ rience obtained at that date at the Ormesby Ironworks，with furnaces up to what was then the largest actual capacity in use at those works，namely，
20,624 cubic feet．This curve was ex－ tended to show whis curve was ex－ be the further economy to be obtained by increased capacity up to 40,500 cubic feet．It is indicated by the thin line，which was adjusted to No． 4
quality of iron，being the standard quality to iron，being time it was thought proper to refer the working of blast furnaces．The horizontal lines in the diagram are divided into units of cwts．of coke consumed per ton of iron，whilst the vertical lines are divided into units of 1000 cubic feet of furnace capacity，commencing with 6000 cubic feet．The thick line repre－ sents the curve of manufacture under identically similar circumstances to those described in 1870，but adjusted to the production of No． 3 iron instead of
603 up to 630 tons per week．The tuyere area was unal－
tered，being 141 square inch total．The temperature escaping gases at the tunnel head in March was 100 deg． Fah．less than before the withdrawal of the tuyeres，viz， 617 deg．，whereas previously it had been 717 deg．；whilst the temperature of blast was increased by 109 deg．，being 1321 deg．in January and 1430 deg．in March．The author then proceeded to consider why this gain was truding too far into the furnace is that a the tuyeres pro－ heated and expanded gases per square foot of volume of sectional area must necessarily be delivered of transverse of the hearth than at its circumference．up the centre central column of reducing gas ascending at high veen the and the walls of the furnace there remains high velocity space charged withe furnace there remains an annular which the requisite volume of reducing reduction，but to which the requisite volume of reducing gas cannot gain doing only the duty of a smaller one．This arises from the circumstance that the hearth or this arises from ment of the tuyeres，has not been duly proportie arrange－ cubical the tuyeres，has not been duly proportioned to the work commenced of drawing back the day on which the furnace of 20,454 cubic feet capacity from 6 ft．to 7 ft ．apart furnace of 20,454 cubic feet capacity from 6 ft ．to 7 ft ．apart
from nose to nose，the slag turned gray，indicating a much higher temperature in the hearth； higher temperature in the hearth；
and it was necessary to cool down the heated blast by an admixture of cold air，until the heavier burden of iron－ stone and limestone，which the furnace ultimately proved itself capable of carrying on a standard weight of fuel， had worked its way down to the
hearth．The result of drawing back

[^0]
 $1=$ ． z
 $=$ I號號號號 號號 －
 ， 17 cWTS． the production of No． 3 iron instead of
rrection being made at the rate of $\frac{1}{2}$ cwt． No． 4 iron；the correction being made
of coke per ton of iron for the difference between Nos． 3
and 4 iron．To quote a single example：Whereas in 1870 and 4 iron．To quote a single example：Whereas in 1870 feet required 20 cwt ．of coke，to make No． 3 would have reet required 20 cwt ．of coke，to make No． 3 ，would have
required $20 \frac{1}{2}$ ；hence the thick line shows $20 \frac{1}{2}$ ，whilst the thin shows 20 cw ．This change has been rendered necessary because No． 3 iron has gradually become the current stan－ dard of reference in the district，as the quality at which manufacturers aim，and of which they desire to produce manufacturers aim，and of which they desire to produce by trade exigencies，that the No． 3 shall include every intermediate shade of grayer grade，from No． 3 up to No．1， which may not be gray enough for the manufacturers to which may not be gray
insist on calling No． 1 ．
There remains one point to be dealt with in connection with the blast furnace，in order to clear up allusions which have been made to the distribution of temperature in the hearth．It might be thought that，in the plane of the tuyeres，the heat is greater，or not less，in the centre of the hearth than at a short distance from the nose of the the hearth than at a short distance from the nose of the
tuyere；but this is not so．The author believes the observations he has made on this point will be worthy of record．On thrusting a round bar of lin．diameter into the hearth of a furnace，it will be found that if the tem－ perature of the blast be nearly red hot－say， 1200 deg．to 1250 deg．－the bar will become actually red hot，as seen by daylight，at a distance of 2 in ．from the nose of the tuyere ；and that the temperature will rapidly rise until it
attains the highest degree at 14in. from the nose of the tuyere. This temperature is so intense that in the Cleveand district 30 seconds exposure will nearly suffice to sever the bar at this point of maximum temperature, from which there is a steady fall through diminishing degrees of temperature till dull red is reached at a variable dis-
tance of 8 in. or 10 in. from the centre of the hearth. The tance of $8 \mathrm{in}$. . or $10 \mathrm{in}$. from the centre of the
curve is as shown in the engraving, page 116 .
Thispaper evoked a long discussion, which was adjourned to Wednesday morning, and which we shall give in another have described in previous impressions were visited.

On Wednesday morning the proceedings commenced with a renewed discussion on. Mr. Cochrane's paper, and
then a paper was read by Mr. Henry Davey "On Mining then a paper was read by Mr. Henry Davey "On Mining
Machinery." This we shall give in another impression. The last paper read on W
Hartley Wicksteed, of Leeds,

On a Single-lever Testing Machine.

The writer did not propose to contribute a critical paper upon various makes of testing machines, but merely to or which purpose, however, it would be useful to sketch beforehand some of the general considerations which have
influenced the design. Every dead-weight testing machine influenced the design. Every dead-weight testing machine is in some form or other a weighing apparatus, and that
which it weighs is the amount of resistance offered by the test sample to an attempt to distort it. The lines upon which a testing machine may be constructed are as various as the different well-known types of weighing machines ; yet there are one or two essential differences between the weighed, and those under which the strains upon a test sample can be ascertained. In the first place, a ponderable article counteracts the weights simply by its own gravity, leaving the weigh beam free to oscillate until the balance is found; whereas a test sample, while having one end firmly held by an independent support. Hence care must be taken that no unrecorded strain passes through the sample, such as might be due to shocks which with a free
load would expend themselves in oscillations. Also, since the weigh-beam in the case of a testing machine is not, as in a weighing machine, free to be adjusted into the horizon-
tal line regardless of time, it is important that the balance tal line regardless of time, it is important that the balance
be "just" in all positions of the beam throughout its range of deviation from the horizontal line. The limits of deviation should be small; and as the sample is subject to extension during the testing process, provision must be made for moving the position of the independent support. For testing moderate strains the writer prefers the steelyard in the form of a single lever to any other form of 50 -ton testing machine about to be described, and of which we give illustrations on page 115 . The lower figure
shows the machine with the deflecting or transverse strength testing apparatus attached, and the sliding weight in the position of equilibrium with the index at zero.
The upper figure shows the machine with this apparatus removed and with a sample for tensile strength in the holders. This shows the same weight travelled out into a pasitonced into this steel-yard are the travelling of the
ntrod weight beyond the fulcrum, on to the short end of the balanced; the arrangement of a non-pendulous travelling weight, of which the centre of gravity moves along a
centre live drawn through the point of support and the point of attachment of the sample ; and the indifferent equilibrium of the whole, which is attained by arranging he weight of the lever and all its attachments symmetrically above and below this centre line. The clips that on their inner faces, and at the back are tapered to an incline of 1 in 6 . At this angle the clips are found to give the necessary bite, but loosen the hold when the dieces, made free to revolve in the cast steel clip-box. by this arrangement the clips are enabled to swivel, and so can adjust themselves to bite fairly across a sample sample is similarly held by clips at its lower extremity and the lower clip-box is attached to a bonnet, which screws on to the rod of a hydraulic piston. The section shows in detail the pulling cylinder. The long horizontal
cylinder, shown at the back of the machine, with central piston-rod and pair of parallel horizontal screws connected as the pulling cylinder, but it arrang the the five times the length of stroke. The annular space at the right-hand end of the horizontal cylinder communicates by a hydraulic pipe with the annular space at the top of the pulling cylinder, and the piston area at the left-hand piston area at the bottom of the pulling cylinder. By ng, are only called upon to act under a pressure of 10 tons ing, are only called upon to act under a pressure of 10 tons, into play in transmitting this into a 50 -ton pressure upon the slower moving pulling piston. This piston extension in the sample. Besides this, the bonnet attached to the shackle can be screwed upon the piston rod over a range of 6 in . to accommodate different lengths of samples.
W ater is forced into this cylinder either above or below the piston, by means of a smaller piston in a horizontal cylinder. This small piston is forced along its cylinder by the piston rod, and driven through gearing actuated either by hand or by power. Thus a perfectly steady motion is bears the same ratio to the annular area on the top piston arge the as exasts between the whole areas of the two
large one as pistons. There is, therefore, solid water from piston to
piston on both sides, and the large piston responds at one tifth the speed to every motion made by the small one
It will be understood that the hydraulic piston through its attachments puts the required pull upon the test sample and takes up the necessary extension; the other end or
the sample is carried by attachments from the steel yard the sample is carried by attachments from the steel yard,
and, as the pull at each end of the sample is necessarily equal and opposite, it follows that the weighing apparatus balances and indicates the precise force with which the
hydraulic apparatus is pulling. The lever for thus weighing the pull has a 1 -ton weight upon it; this weight lies over the lever like a saddle, and will travel from end to end of it. When the weight is at the short end of the
lever it balances the long end ; and the adjustable index finger, carried on the weight, is made to coincide with zero on the fixed scale when the weight has reached a
position which puts the lever and all its attachments into equipoise. The knife-edged centres being 3in apart, it follows that, after zero has been established a
the balancing point, every the balancing point, every 3in. that the 1 -ton weight is traversed along the lever, as indicated on the scale, throws
one ton of unbalanced load upon the test sample. The weight travels 150 in , or fifty times the distance between the centres, so that at the end of its travel it will balance a pull of 50 tons. Every 3in. on the fixed scale is divided into tenths and hundredths, so that with the index finger on the travelling weight the load can be read off in tons to two decimal places. There is moreover upon the index finger a small vernier scale, which again subdivides the
hundredths on the fixed scale into ten ; and by means of this weaths on the fixed scale into ten; and by means of can be read with the greatest facility. Thus, without the use of any small auxiliary weights, the most accurate results can be ascertained by the mere position of the heavy travelling weight upon the lever, and errors are margin to a minimum ; for there need be no more and here, with in a one-ton weight than in a 56 lb . weight can only be multiplied by 50 , instead of by any higher multiplier. As the moving weight is not hanging freely but is carried by four wheels, it is kept rigidly in line with the lever; and as its centre of gravity coincides with the centre line of the lever, it follows that, however fast it is propelled, or however suddenly its motion is arrested, the momentum can have no effect whatever upon the oscillations of the lever. Motion is imparted to the travelling weight by a screw passing along the lever between the
side plates. The screw is driven by a small countershaft, bracketed out from the side of the lever, and the counter shaft in its turn is driven by a belt from a pulley running in supports on the main body; but as the centre line passing through the fulcrum of the lever, the pull upon The belt is driven either by a hand wheel or from a lay shaft, as most convenient. The outer end of the lever oscillates in an opening through a vertical standard, in which it has zontal line about 1 deg. above and 1 deg. below the hori block of wood, upon which the end of the lever falls, without undue jar, when the sample breaks. Throughout the whole of a test it is easy to keep the lever floating for, owing to the low multiple of its power, its movement steelyard, and thus to prevent any unrecorded augmenta tion of pull upon the sample, such as would be due to the momentum of a moving steel-yard.

Of the discussion on this paper, which was adjourne until yesterday, we must speak in another impression.

Conversazione.

On Wednesday evening a conversazzione was held in th Philosophical Hall, which was in every sense a success. Mr. James Kitson. Mr. Davey made some explanatory remarks on the machinery and models, and Professo Ruicker then delivered a lecture "On the Dynamo-Electric Crampton then lectured "On Removing the Mr. T. R Chalk from the Channel Tunnel" by his hydraulic method; and Mr. Fletcher, of Warrington, gave a demonstration On his discovery of "Fl
The Yorkshire Brush Electric Light and Power Company erected at the entrance porch and in several of the rooms, eight arc lamps of their ordinary 2000-candle 18 power, ane-Fox incandescent 10 as the Industrial Museum, whole electricity was supplied from a 16 -light dynamo installed 100 yards down Russell-street, and driven by one shire engines," with compound cylinders ; first cylinder 5in. diameter, with 125 lb . steam ; second cylinder 9 in dianeter, using the steam down to 7 lb . above atniosphere lamps, dynamo, and engine were lent by Messrs. Fowler In
In the Industrial Museum, among the more interesting exhibits were a pumping engine recorder and well gauge ontributed by Messrs. Hathorn, Davey, and Co. This that variations in working, stoppages, and the quantity of water pumped for all times, are graphically recorded on sheet of paper, which forms a check on the engine-driver A self-registering ships' compass, contributed by Mr. Pickwell. By this invention the ordinary steering compas produces a diagram showing the exact steered course o
the ship. The diagram is produced by a ray of either day light or lamp-light passing through the compass card on to a prepared paper. A model of Parson's variable expansion gear. This gear is for obtaining a high degree o expansion by working the ordinary slide valve by the
compound motion derived from two excentrics, one on the engine shaft and the other on a separate shaft driven at three times the speed by spur gearing. The range of three times the speed by spur gearing. The range of
expansion can be varied from one-eleventh to eleven
sixteenths of the stroke while running, automatically or In the
In the Inner Vestibule was shown M. de Laval's centrifugal cream separator, contributed by Messrs. D.
Auld and Co., which we have already fully described in ur notice of the Reading Show. The original model of Blenkinsop's locomotive was contributed by Mr. Embleton; also a piece of the original cog rail, which has been pre-
sented to the Institution of Mechanical Engineers by Mr. sented to the Institution of Mechanical Engineers by Mr.
Alexander Allen. This, it is claimed in Leeds, was the irst commercially successful engine used on any railway. Four of these engines were made by Fenton, Murray, and Co., of Leeds. The Salamanca and Prince Regent were
set to work August, 1812; the Lord Wellington and Marquis Wellington, 1813. These engines worked for boat twenty years on the railway extending from Middleton Collieries to the town of Leeds, about 3 $\frac{1}{2}$ miles, with trains of 30 coal wagons. The well-known model
locomotive, made by Murdoch in 1784 , was contributed by locomotive, made by Murdoch
his grandson, Mr. Murdoch.
In the Library was a microscopical exhibition of slides of micro-organisms of disease, by Mr. Crookes; the germs
that have been identified with certain acute specific disases. Bacilli found in swine fever; and in man, typhoid and tubercle (phthisis) diphtheria. The Bacilli of anthrax or Woolsorters' disease - also "fire-fly" electric gas lighter and Swan's 5 -candle electric lamps, contributed by Mr. Rey olds. A model of Sir W. Armstrong's unarmoured cruisel was contributed by the President of the Institution of Mechanical Engineers, Mr. Westmacott. This is an unarmoured ship of war, carrying bow and stern guns of 10 in . calibre, 25 tons weight; six broadside $6 \mathrm{in}$. guns ; two 9 -pounder
guns ; and four machine guns. The dimensions are, length ver all, 290 ft .; beam, 42 ft .; draught, 18 ft . 6 in. ; displacement, 2000 tons; indicated horse-power, 5500 ; speed, 17 knots an hour. The coal storage will enable the vessel to
steam at full speed a distance of 1280 knots, or at half steam at full speed a distance of 1280 knots, or at half speed a distance of 8000 knots. The 25 -ton guns are loaded and worked by hydraulic power, under cover of screens. The vessel has an underwater deck of steel from stem to stern, covering engines, magazines, \&c. An example of hrough a long A beautiful model of Messrs. Fowler and Baker's bridge to be erected across the Firth of Forth was also shown; 2 spans, each 1700 ft ; 2 spans, each 675 ft .; depth of main girders at piers, 330 ft ; depth of main girders at centre, entre, 27ft.; 150 ft .; deepest foundation below high-water, 90 ft .; highest part of bridge above high-water, 354 ft .; depth of water in centre of channel, 210 ft ; ; weight of steel used in construction, 42,000 tons. This is a "continuous "girder to be distinguished from an "independent" girder, and the points of contrary flexure are about 600ft. from the piers. comparative dacion bride contributed by Mr. D at dustrate the principle of the contious irder, which is virtually composed of a suspended girder in the middle, supported by cantilevers from the piers. Models of hydraulic coal hoist and train boats as used upon the Aire and Calder navigation were contributed by 120 tons-load lifted, 42 tons ; height of lift, 30 ft ; shipping capacity, 150 tons per hour; working pressure 850 ib . on the square inch. Train boats, capacity of each compartment, from 35 to 40 tons. These compartments can be either propelled or towed. When propelled, a train consists of ten compartments; they are steered by means of wire ropes and steam power ; when towed they reach 19ft. Sin. number. Dimensions of compartments, length of a governing and reversing motion for marine and steam steering engines, was contributed by Mr. Davey. In this gear an independent motion is given to the valves, so as to When applied to steam steering motion is that of the steering wheel, and when applied to marine engines the motion is that of a small subsidiary Thorpe
In the other rooms were to be seen illustrations of compound vibration and geometric tracery, by Mr. Teasdale also photographs printed by the platinotype process; periment," by Mr. Webb, already illustrated in our columns; an observatory hive, with bees working onder the influence of the electric laght; also sontributed by Mr. Daniel. A diagram of Joule's apparatus was contributed by Mr. Davey ; a model of Cowper's regenerative fire-brick hot-blast stoves, These stoves are employed to utilise the gases from the top of a blast furnace, to heat the blast for the furnace; they give The stove is first heated by passing a large flame up the flame flue, and down through the numerous passages of the regenerator, which thereby becomes heated to a good introduced through the bottom of the regenerator, and in ascending becomes of a thorough red heat, and so passes to the blast furnace. Two stoves, each alternatively receir ing and imparting heat, complete the system.
all is heated in the hot blast until it is of the same copper It is then dropped into a pint of water, the temperature of which is thereby raised 1 deg. for every 50 deg . of heat in he ball. A model of coal wagon, with hopper bottom and patent catch, was contributed by Mr. Briggs. The catch is pendulous, held to its place by a weighted excen-
tric ; when the excentric is lifted the catch is set free. It is designed to supersede the use of cotter pins for securing bottom doors of wagons
ing engine, scale lin. equal lft., was contributed by Mr ing en
The proceedings of Thursday and to-day we shall give
another impression.

FIVE-ROLLER CALENDER.
MESSRS. THOMSON AND SONS, DOUGLAS FOUNDRY, DUNDEE, ENGINEERS.

We illustrate this week an example of a five roller calender, |calender was designed and constructed by Messrs. Thomson, Son, having two paper and three iron rollers, the width of the paper
on the rollers being 180in. This, we believe, is the widest $\begin{aligned} & \text { and Co., Douglas Foundry, Dundee, for the well-known firm of } \\ & \text { Messrs. J. Pullar and Sons, proprietors of Pullar's Dye Works, }\end{aligned}$ on the rollers being 180in. This, we believe, is the widest Perth.

ing, chesting, or glazing finish. The centre roller is steam heated, and a hoist motion is applied for raising the levers and the three upper rollers by belt motion. It is driven by two pulleys having an open and cross belt. The double friction reversed at pleasure
The gross weight of the machine is about 56 tons, and total pressure on the lower journals is about 56 tons, and the

BOTTING'S AIR-TIGHT DRAIN AND MANHOLE The accompanying illustrations show an air-tight cover for drainage and other purposes, made by Mr. F. Botting, 29, Mountstreet, Grosvenor-square. Air-tight covers are now very generally specified by sanitary engineers, and for this one the inventor claims the following advantages:-That it is perfectly air-tight;
no key to get lost; no lock to get rusted or out of order, and having no hinges it can be taken away while any repairs are going on; no cement is needed to re-make joint; and that the joint will not set as the metal is not in contact. The hole at the side is a
cold air inlet, the arrows A A show the course of the current

along the top of the drain, and the arrow D the course of the sewage into the trap. B is a hole in the base of the pit for access to the trap. F is the intercepting trap. The overflow discharges into sewer-or in the case of isolated houses into the cesspool.

Fig. 3
Figs. 2 and 3 show different sections of the air-tight cover and its frame. Fig. 1 shows the cover as fitted over an intercepting its frame. Fig. 1 shows the cover as fitted over an intercepting the London Sanitary Protection Association.

Docks on the Thames.-Under the title, "Particulars of Dry Docks, \&c., on the Thames," Messrs. E. and F. N. Spon are publishing a table either in a sheet form or folded and in covers, compiled by Chas. H. Jordan, M.I.N.A., of Lloyd's Registry.
Of the dry docks it gives dimensions, constant for height of high Of the dry docks it gives dimensions, constant for height of high
water, material of which constructed, by what closed, locality, side of river, proprietors, and how reached. Similar imformation is given with respect to floating docks, pontoons, and slips, and a map of the shipping part of the Thames shows the positions at a lance. It is a most useful table to all interested in shipping. Meeting of the members of the Midland Institute of Mining Engineers was held at the Bull Hotel, Wakefield. Mr. T. W. Embleton, of Methley, in the absence of the president, occupied the chair. Mr. Jefferson, of Leeds, submitted a paper " On the Coincidents of the Barogram," whilst the chairman submitted a paper entitled meter and the Direction of the Wind." The latter paper was considered and adjourned for further discussion at a subsequent meeting. The preliminary report on accidents in mines was further considered and again adjourned to the next meeting.

MESSINGHAMFDISTRICT DRAINAGE WORKS.

These works, which we illustrate herewith, have recently been erected at Butterwick for her Majesty's Commissioners of Sewers for the Wapentokes of Manley, Coningham, and Aslacoe, for the drainage of part of the levels under their jurisdiction in adjoining the tidal portion of the river Trent, and comprises som very low-lying land. Hitherto gravitation, through outfall gravitation, through outfall
sluices, the sills of which are placed at about the level of prdinary low-water in the river. But this system was found to be most inefficient in wet seasons, when good drainage was of the greatest importance. For when there is much rain falling in the upper districts drained by
the Trent it causes what is locally known as a "fresh" in the river-that is, the water does not ebb out to normal low-water level by several feet. The consequence is that the sluice doors are kept closed sometimes for days together, during which the rainfall on the district accumulates in the drains and ultimately overflows the during the recent wet seasons has been most disastrous to the agricultural population of the district, and as the only means of relieving them, the Court of Sewers has determined to erect pumping machinery. The cost of the works was defrayed by a tax on the land and as many of the contributors
had become greatly impoverished by several successive bad harvests, the greatest economy had to be exercised through-
out. The works were arranged and carried out under the superintendence of Mr. Alfred Atkinson, the surveyor to the Commissioners. Owing to difficulties in the way of obtaining a suitable site for the engine-house, it was built over the main drain near the outfall sluice. The engine and pump-house is constructed of timber and is carried on piles. At present only one engine and pump have been erected, but it is intended to fix the duplicate set as soon as it is practicable.
The engine is made by Messrs. Marshall, Sons and Co., and is of their double-cylinder semi-portable type, fitted with Hartwell's patent automatic expansion valve gear. It drives, by means of a belt, one of Hett's improved "accessible" centrifugal pumps, with suction and delivery pipes 21in. in diameter. This pump is so arranged that the side of the case can be breaking any pipe joints or connections. The pump is charged by means of a steam jet exhauster not shown, which acts most by means of a steam jet exhauster not shown, which acts most
efficiently. The delivery pipe has a submerged hell-mouth, and is fitted with a sluice valve near the pump. The feed-water is lifted to a tank under the smoke-box of the engine by one of Hett's jet pumps, and every provision is made for working with a minimum of attendance. The centrifugal pump possesses the

HETT'S 2lin. CENTRIFUGAL PUMP.
five hours each tide, or in some cases for even less. The pumping machinery was formally started on the 11th March last, and has since been working very satisfactorily. The engine house and engine were constructed by Messrs. Marshall, Sons, and Co., C. G. Hett, of the Ancholme Ironworks, Brigg.

QUICK'S BREECH-LOADING MECHANISM.
Mr. George Quick, chief engineer, R.N., has proposed a breech-loading mechanism, which is to be tried by the United States Ordnance Committee shortly it is hoped. It is shown in Free. 1 and 2 herewith. It consists of a wedge entering the the dirke Krupp's, but sliding on grooves, and moved not hy counter action of a screw, but by a lever and ring with a lever, which is moving in a slot. Until the wedge is home, the Armstrong system, forces the wedge along the stud pin in Fig. 2, working in the slot, being the fulcrum, the moving wedge the resistance, and the handle G the point of application of the power with a lever of two to one. When the wedge is home, the same continued movement of the lever handle G, whose counter lever is now clear of the slot, forces a gas check R R in Fig. 2 home.

Mr. Quick claims the following advantages :-Simplicity, facility, and safety in working. The French system, he pleads, needs three motions to open it for loading and three to close the
gun ready for firing. In the Krupp's he observes two are necessary for opening and two for closing, while he only asks for one in each of these operations. In the French system the breech

screw is exposed and swings round on a hinged bearer ; in Mr. Quick's system there is nothing of this kind, and the screw threads are protected throughout. He pleads that on service such speed, simplicity, and safety will greatly increase the power of each gun, and that great durability and strength are obtained train on the inside tube of the gun. The system is inenious, and speed and protection of parts appear to be attained in the

model. It is clearly necessary, however, to try on full sized ordnance whether a lever with a power of two to one is capable of moving the breech as easily as desired, especially when it is out from one side altogether. This may be shortly tried by the Americans, and we may then have much better data on which to speak than at present.
Porthourno Lisbon Cable.-The Eastern Telegraph Cable Company have, August 11th, successfully repaired a fault in this been watching and waiting their opportunity to effect this repair but the weather has prevented it.

ROAD LOCOMOTIVE LEGISLATION

The carriage accident near Sheffield, which arose from the folly of a coachman who attempted to pass from behind a traction engine and loaded wagon without warning the driver of his presence, and which occurred some few months back, has brought some obloquy on a long-suffering and useful portion of the com-
munity, namely, traction engine owners. As there is some reason to fear that the opinions so violently brought forward on the subject by some correspondents in the columns of some of the daily newspapers may not be without influence on magistrates in country districts, it may be well to say a few words, first, on the extent of the interest involved ; secondly, to compare o estimate the comparative injury to roads by the two systems; and, thirdly, to show in what way the Road Locomotive Act,
known as the Highways and Locomotive Amendment Act, 1878 , known as the Highways and Locomotive Amendment Act, 1878, The majority of the writers allud
 such restrictions as to their use as would be practically the same thing, have, it may be said without disrespect, no knowledge of hey better acquainted with the matter they arguertance. Were aight be more convincing and less romantic. For instance, writer found the editor of a London daily paper good-natured enough to hand down to posterity the following illustration of his ignorance :-"Why should these horrible smoke-emitting made for horses, animals far 'more picturely were originally exigences of agriculture require the aid of steam, let farmers use that kind of engine whose boilers I believe can be placed on
a wagon so that they can be transported from place to place by a wagon
horses."
After reading correspondence of this calibre it is perhap public when railways were being intronduced by an imaginative die of fright, birds were to fall dead from flying over the fierybreathed monster, people were to die for lack of breath at speeds whilst arguing that railways could not possibly succeed, it was admitted that they would do what they have not done, namely, supersede horses. It cannot be denied that railways have sucu-
ceeded, and instead of their superseding horses, there are now about three times as many horses in this country as at the commencement of this century. What railways have done is, by
cheapening conveyance of food and produce, permitted mankind cheapening conveyance of food and produce, permitted mankind
to live in places which without the means of conveyance would not have supported them. They have, in fact, rendered it possible for a nation to increase threefold in numbers and ten old in wealth, and these results in a lesser degree must be
brought about by every appliance which greatly reduces the cost of transit.
A traction engine is undoubtedly such an appliance, as all ave not gone into the the matter know, and for those who higures. The question, then, as to whether traction engines are to be permitted to travel on public roads, under conditions remunerative to their owners, can neither stand or fall by arguments such as those alluded to as having appeared in certain daily
papers. If it can be shown that traction engines can draw heavy loads more economically than horses, and also that they n draw easily, loads which cannot be drawn by horses, load Cathedral, railway companies refused to take, except at exorbitant charges, and further, if by the use of steam it is possible to cultivate at a profit land which without its aid would go must turn their attention, not to the suppression of traction engines by Act of Parliament or the imposition of laws relating to their use which practically prohibit their being worked, but rather towards effecting such legislation as may lead to the charge
of horses and engines being entrusted to a more intelligent class of horses and engines being entrusted to a more intelligent class
of driver than is at present always the case ; for it is not too much of driver than is at present always the case ; for it is not too much
to say that it is to a want of intelligence, frequently acoompanied by a want of good temper on the part of the drivers of both animals and engines, that much of the alleged danger in the use that it has often been observed that horses driven by ladies pass traction engines with much less fuss than when driven by men ; and this fact is not entirely explained by the supposition tha but rather is it due to the fact that ladies do not, as a rule, bully their horses by tugging and flogging them, which add t
the fright of a nervous horse. the fright of a nervous horse.
dent which can, however remotely, be traced to a tringery accident which can, however remotely, be traced to a traction
engine, is raked up; whilst the accidents produced by barrel engine, is raked up; whilst the accidents produced by barrel
organs, street cries, German bands, gipsey fires and railway whistles, which causes produce about one hundred accidents or as the acts of God. Ho the present moment a memorial has been put before the Board, which if acted on wrould practically Local Governmen them on roads. This memorial owes its rise to the uccident already alluded to as having occurred near Sheffield in the spring of this year. Bearing this accident in mind, it is interesting t note the following: On Monday evening, the 17 th of July, a
serious accident befel the Brighton coach as it was passing Bel serious accident befel the Brighton coach as it was passing Bel-
mont Station, near Sutton. The horses shied at a tricycle, upset the coach, by which five persons, some of whom were ladies received severe injuries, some having legs and arms broken.
Nothing has been heard of a memorial to stop trioycles or bicycles, and probably nothing will be heard of such a memorial as the eact is recognised that they are owned by the public and benefit the public, albeit they are a futile source of danger to foot and horse traffic ; were it equally well recognised that traction engines by cheaper haulage benefit the public to a far greater
extent than bicycles or tricycles can ever do, there would have been no necessity for us to write this article.
who possess carriages and horses traction engines comes from those to forget, judging by the line of argument they take up, that merely recreation creunds essly for them, that roads are not veyance of proaduce from one district to another. Roads are for
the benefit of the comper fide or drive, but for the majority who walk. All minority who rested in the good condition of roads. A a good road was recog
nised by the Romans as the first essential in pised by the Romans as the first essential in civilisation. To state that it is estimated that there are at present employed in engines, and ploughing engines, all of which are road locomo-
tives within the meaning of the Act. These engines, for the
most part, range in size from 6-H.P. nominal to 14-H.P, nominal
 may be taken as 10 , and weight 10 tons. Inasmuch, however as each engine is capable of indicating from double to four times its nominal horse-power, we find that these engines are doing work which-taking the lowest figure, the nominal horse-power
-it would require 80,000 horses to do. It has been reckoned by competent authorities that the cost of a horse's labour per day of
ten hours, including interest on value, sinking fund, feeding, stabling, shoeing, and other expenses, exclusive of management,
is 5 s. per day. The total cost, then, for horse labour capable of would be $80,000=$
of one driver to every three horses at 3s. per day each, we find 26,606 drivers are necessary, whos wages would amount to $£ 4000$ per day, or $£ 24,000$ in all per day a the cost of the labour per ten hours of 80,000 horses. Taking the
4000 engines' original cost at $£ 50$ per nominal H.P., average $10-\mathrm{H}$ P, we find the total value of the engines is $£ 2,000,000$ Interest at 5 per cent.; maintenance of value, 10 per cent. repairs, 5 per cent.; together, 20 per cent., the totai capital charge
will be $£ 400,000$ per annum, or $£ 109510$ s, Allowing each engine 5 lb . coal per indicated ho
hour, say, 1 cwt . per hour, or for ten hours, $\frac{1}{4}$ a ton at $£ 1$ per ton; 10s. per engine per day; $£ 2000$ per day for the 4000 oil 2s., together 10s., we find the total cost for a day's work the 4000 traction engines to be as under :

Total cost of one day's work of 4000 enginos
Deducting then this sum from the cost of one day'

Deducting then this sum
work of 80,000 horses
we find that there is a saving to the country of $£ 18,90410$ s per day.
As regards the capital invested in self-moving steam machinery we have stated that the amount invested in engines is $£ 2,000,000$ To this must be added the value of the machinery driven by This may be correctly ont traction engines for motive power The total capital involved is therefore solu the engines, interest suff ciently large to dee attention, if not more deference, from the Legislature than it has at present received. Although in the heading of the Loco motives on Turnpike and other Roads Act-1st August, 1861 the probable growth of road locomotive traffic was recognised as the following passage shows :-" Whereas the use of locomotive is likely to become common on turnpike and other roads; and Whereas under and by virtue of certain local turnpike Acts tolls
may be levied upon locomotives drawing may be levied upon locomotives drawing or propelling wagons or
carriages, or upon the wagons or carringes so drawn or propelled which are or may be prohibitory of the use of locomotives the roads to which the said Acts respectivel anoly , and whereas the weighing clauses of the General Turnpike Acts have in many respects in anticipation of traffic by locomotives, and are or to the just and adequated to the profitable carrying of goods by locomotives, \&c." From the above it is clear that the importance and probable future growth of the traffic
old by those who framed the amended Act of 1865 .

Bearing weight upon the road of an 8 .ton traction ongine,
with coal and water weighing 9 tons, two thirds weight
with coal and water weighing 9 tons, twothirds weight
upon driving wheels, driving wheels 16 in. wide- wearing
per inch width
An Aveling's wagon to carry 6 tons-weight 1 ton 10 cwt. $=$
3380 li., tires sin. wide $=.$.
6 tons

lb. 420 105 100 420 525 294 560 854 308 672 980 175 560 785 168 560 728

Total bearing per inch
As regards the alleged injury to roads, the accompanying table engine, the pressure on wih the wide wheels of the traction less than half that of a Pickford's van to orrad is considerably in. wide, whilst with a 3 ton van, tires $2 \frac{1}{4}$ in wide the difference is even greater. It follows then that in mere crushing force on evere than stones in a road, the traction engine is much less mind that the van frequently goes at eight miles an hour, thus producing a violent hammering motion between the tires and the uperin that the engine never exceeds four miles an hour, the the recent case of action of the van is still more apparent. In hat the engines met with no trouble on the road, but the great weight of the bell and its truck-20 tons approximately-have heen too much for the bearing surface afforded by four wheels he truck consequently crushed some parts of the road completely ion. Althou on roads, espects road locomotives, at presentis of the Highway Acts as ion to the following suggestions those interested in traction engines and horses
Hold your horse be nervous, do not tug, flog, or shout at him. ither lour hand up for the driver to stop his engine, and then do so. After meeting past yourself, or get the man on foot to that no ill effects of whip or spur ensue, the horse will become quite bold.
with wagon attached or not-to pass it until you hgine-either driver aware of the fact of your pass it until you have made the urn into a cross road and nip you between the whise he may turn
"Drivers of engines should remember that albeit their engines
make a good deal of noise, their speed is slow, and that conse-
quently vehicles wishing to pass from behind are nearly as frequent as those meeting them. They should therefore frequently cast a glance behind them, instead of continuously watching the crank revolve. And they should further remember that any abuse or bad language which may be addressed to them is not and nervourem personally, but is the result of mingled anger and should consequently treat it with the silence it deserver . If they would always do this it with the silence it deserves. If turneth away wrath, there would probably be far fewer lawsuits and other inconveniences in connnection with the working of traction engines.
Much unpleasantness has sometimes arisen from the reckless way in which men in charge of engines treat ponds and other
places from which water can be obtained. Cases are common the men having broken down fences into orchards common of ne men having broken down fences into orchards and gardens
in order to get water, and we know a village in which a large pond, almost the only source of supply to the entire population, has been almost spoilt by drivers of engines recklessly taking their heavy engines quite into the pond, thereby cracking and ruining the clay lining and reducing the holding capacity of the pond. By this much inconvenience and serious monetary loss and been entailed in the village, and the only advantage gained buckets. It is this kind of conduot whioh has given traction engines in some districts a bad name.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
correspondents.]
the callington district and its mines,
SIr,-It is gratifying to see that some of our long abandoned mines are opening up well; New Halmbush, for instance, is pro-
ducing some splendid silver lead in addition to the copper and arsenical mundic. They are now preparing a parcel of the former for market. New Redmoor, which adjoins Halmbush, and under the same management, was formerly worked for silver lead only,
although there are five east and west lodes running through the although there are five east and west lodes running through the formerly nothing done to prove them, but now in cleaning up they have found one of the tin lodes in the eighty fathom level very good in tin and arsenical mundic. All the lodes in Kithill, of which a great deal has been written, are the same lodes as those met with in this property, as the two setts adjoin, Redmoor being cross courses and a counter helven east and west lodes there are four blue clay slate highly mineralised. The plant comprises some very fine machinery. There are two account houses, blacksmiths' and carpenters' shops, timber and sawyard, a newly-erected engine and boiler house, engine with 80 in . cylinder, pumping engine, and a winding engine, with steam capstan. The water is drained to the
100 fathom level by the aid of the 90 in , cylinder engine at Halmbush mine, but there will soon be a special engine to work level, and there is no doubt they soon will be preparing tin, copper and silver lead for market.
Callington, August 16th.

the sanitary stove.

Sir, -I have to thank you for the notice of my stove in your
issue of last week, and for the lucid description given of it. Will you allow me to supplement this with a few abstracts of the report
of Messrs. Verity and Hunt, briefly referred to at the end of the description? The stove tested by these gentlemen was, as stat a two-light circular one, fixed in an office, measuring 17 ft . by $15 \mathrm{ft} .6 \mathrm{in} .$, and 10 ft . high, having a capacity of 2635 cubic feet., and it was placed so that the lights were available for general use
in the office. The test lasted over a period of eight hours, and the consumption of gas was at the rate of $17 \frac{1}{2}$ cubic feet per hour.
The temperature of the external air was $43 \frac{1}{2}$ deg., and the the room was raised from $57 \frac{1}{2}$ deg. to $71 \frac{1}{2}$ deg, showing that, with
the above consumption of only $17 \frac{1}{2}$ ft. per hour, a difference of 28 deg. between the internal and external temperatures could be A constant ventilation was the whole time going on, this country. about 1750 cubic feet per hour, the air entering the room at about
Messrs. Verity and Hunt conclude their report by stating that the circulation of the air in the room was very satisfactory, the
temperature being nearly the same in all parts, and the air at all temperature being nearly the same in all parts, and the air at all
times quite fresh, and not in any way vitiated by passing through London, August 9th

ENAMELLED PIPES. Sir,-In your "Notes and Memoranda" for last week, you refer
to a patent taken out by two inventors in Bohemia for a method of enamelling cast iron pipes, the glaze being laid on to the core
before running in the metal. This very process was patented in 1850 by Messrs. Cochrane and Slate, of Dudley -see patent No, did not claim any pricular composition of claze, the essential feature of the patent being the mode in which it was applied.

Naval Engineer Appointhents. - The following appointments to the Inflexible : William P Ward, chief engineer, to the Jumna vice Jones ; Felix Foreman, chief engineer, to the Bittern, reap pointed on promotion ; William Nicklin, chief engineer, to the Beacon, reappointed on promotion; Richard J. Tench, engineer,
to the Penelope, vice Feak; James C. Oare, to the Alexandra, vice Cradd
The Miners' National Association and the New Methoi OF Working Coal. - In the programme issued by the Miners Manchester, notice has been given by the representatives of th Yorkshire miners with respect to the new method of getting coal by the use of lime cartridges. The notice is as under :- "That we
urge upon the Home-office urge upon the Home-office the necessity of finding means to test
the principle of bringing into use the new system of getting coal the principle of bringing into use the new system of getting coal
with lime." The question is an important one, and is likely to give president : Mr. Pickariscussion, inasmuch as Mr. Burt, M.P. Mr. Crawford, secretary, ; and other members. of the Union, have recently visited the Shipley Collieries, Derbyshire, and seen the system at work, and were very favourably impressed by what they
saw. The system will, it is understood, be recommen saw. The system will, it is understood, be recommended, owing
to its enabling miners to wedge or remove coal without having resor to blasting or drilling, thus making it valuable in the fiery seams, which are wrought in Yorkshire and other coal-fields. It is
also said to be even quite as economical as blasting, whilst the coal is brought down in much larger and more saleable blocks. A trial of the system has been made at one of the largest collieries in
South Yorkshire, where the measures worked are subject to thos sudden outbursts of gas from the roof and floor, necessitating the strict use o
discipline

RAILWAY MATTERS.

THE French Government have declared to be a measure of public
atility the establishment of a tramway to be worked by locomotives, between Fourmies and Wignehies, in the department of Le
The Taff Vale Railway report is to hand, and shows a most satisfactory state of things. On the 31 st August 10 per cent. and 8
bonus will be paid. Mr. Nicholson has been appointed secretary, vice Mr. Geo. Robertson, who retires after thirty-one years service.
The Rhymney Railway report is also a hopeful one. They declare The Rhymney Railway r
a dividend of 12 per cent.
Acconding to the Gazctte de Lausanne, the report of M. Mar-
teau, French Commissioner, appointed by the Government to report on the effect of the St. Gothard Railway on French trade, advises in the interest of France the construction of another
Alpine railway between the St. Gothard and Mont Cenis, and Alpine railway between the St. Gothard and
recommends the adoption of the Simplon scheme.
On Saturday week the new Calais Station, 100 metres long, situated alongside the landing quay, was opened in the presence of
of M. Sartiaux, chef de lexploitation of the Northern Railway of France . M. Muet, chief inspector, and M. Bourrat, assistant
locomotive superintendent. During the first seven months of the present year there have been 117,041 passengers between Dover and
Calais, against 104,243 for the corresponding period of 1881, thus Chowing an increase of 12,798 .
The directors of the Bristol Tramways Company have
accepted the tender of Mr. August Krauss, contractor, \&c. acceptcd the tender of Mr. August Krauss, contractor, \&c.,
Bristol, for laying the new double line between the city and
the suburb of Redland, about three and a-quarter miles of the suburb of Redland, about three and a-quarter miles
single tramway. Mr. Kincaid, of London, is the engineer f
same. The work will have to be commenced in six same. The work will have to be commenced in six weeks and
finished within nine weeks from commencement. The contractor has constructed
piece of work.
Messrs. Fuessir and Co., of Zurich, are publishing an "Illus trated Europe "ssiries of hand-boors, chieffy illustrations of those
parts and sceneries which are reached by well-known railways. They are of a handy size, 7in. by byin., and are exceedingly welt illustrated. A part has just been published descriptive of the St.
Gothard Railway. It contains a creat deal of interesting descriptive matter ; the engravings, forty-three in number, by J. Weber, are good. It is published in English, French, and in Cerman.
The English edition is published at 63 , Charing-cross, by C. Smith and Son.
THose who may have thoughts of residing south of the Thames
near London will do well to remember the fact that they cannot near London will do well to remember the fact that they cannot hill without subjecting their visitors to the enormous extortions of the company for first and second-class fares. For instance, the
fare for some of the short distances is more than three times more for first-class than for the ordinary third-class, and 233 per cent, more for the second-class. The season tickets may not be
much higher than on the Chatham and Dover line, over which the
South-Western runs and so the holders affected, but those who have occasionally to take day tickets will not care to travel much on a line that charges to this extent.
A Locomorive gas engine is described in Herapath's Railuay
Journal as having been tried in the United States. The report describes an Erie-road locomotive, fired entirely by hydrogen gas produced by the decomposition of water under the action of
ignited naphtha, and says it was successfully run from Paterson to
the station in Sersey City seoonds ahead of timey City, making the trip one mind coming and ten
of the the depot with a pressure
of 140 lh of stem, beind nem of 140 lb . of steam, being nearly three times as much as the ordi-
nary locomotives carry at the end of such a trip. The engine had been constructed under the supervision of the inventor. During had to be opened nearly all the way. The amount of naphtha used for 199^{2} miles was 84 gallons, , osting 2.08 dols, or ar abou
third of the cost of coal usually consumed for the distance.
AN express train from Derby to London, on the Midland Rail-
way, has had a very narrow escape, the Times of Tuesday said, of being wrecked through the extraordinary oonduct of a man in
charge of a wagon and a team of horses. The driver of the express when nearing Leicester at full speed saw a man deliberately take a at a road betwen two fiflds. The engine-driver a lew his crossing
and at once applied the the vacuum brake with which the t thain wis fitted throughout. The wagoner made no attempt to get out of the way, and the express was only brought to a stop within ten
yards of the obstruction. Atter waiting till the wagon had been moved out of the way, the guard and driver of the express remon
strated with the man as to the extreme danger which his conduct had caused, but he only laughed at them, and treated the matter as a joke. It is expected that the company will take some action
in the matter, and certainly such a wagoner deserves severe
A sYsTrxs for enabling a railway train in motion to send and
receive telegrams was recently tried, but it is not said with what receive telegrams was recently tried, but it is not said with what
sucoess, on the Altantato Charlotte aeirial railway in America. It
is the invention of Captain C. W. Williams, of the United States Army, and is described as consisting of a telegraph wire running
Along the track, but insulated from it, and interrupted at intervals along the track, but insulated from it, and interrupted at intervals
of 4 oft. The ends at each break are connected to copper rollers which normally are in contact, so that the electric circuit is co
pleted through them. One oar of the train is fitted up as a tel graph office, and two long metal strins or rails projecting fil doing so they depress the rollers, thus causing them to break
contact with one another. The strips are connected together through the instruments in the car, and the electric current passes
from one roller through the instruments to the other roller, and rom one roller through the instruments to the other roller, and
thence pursues its way along the rest of the wire. The circuit
through the apparatus thus established is never absolutely inter rupted, for as the car moves from one pais of rorlersol to the the next-
the strips make contact with the latter just before contact with the former is brocken. The system enables a passenger to send or receive an important telegram while travelling, or the po
state of the train to be communicated to a distant station
Belgian railways are under the control of the Administration
des Ponts et Chaussees, and consist of four different classes, according to the conditions under which they are construsted.
The first class consists of railways constructed by the State to plans and sections prepared by the Ponts et Chaussés, and let by
public contract, the State generally purchasing the land. The second class comprises lines constructed for the State by companies
or by individual contractors to plans and sections prepared by
them and sanctioned by the Government, subieet to the necessary them and sanctioned by the Government, subject to the necessary
modifications. The oontractors have to purchase the lands and
carry out the works in accordance with the plans approved. In carry out the works in accordance with the plans approved. In
the third class, ,he project is prepared by the State, and the works
are eot by cotract; but the contractor has to submit the final
plan and section and also to purchase the land Ranilways of the plan and section, and also to purchase the land. Railw Railways of the
fourth class are conceded to, pand constructed by, companies, who are authorised to charge fares. Generally the companies also work
the lines; but sometimes the State works them and pays the conaessionaires a percentage on the receipts. Experience has shown
that the second and third systems lead to many difficulties, the construct of which is the antagonism of interests between those who
cork the line. The former construct and those who work the hine. The former have every
inducement to make the line ns cheapply as possible while the
State has every interest in its being the most fasourable for workState has every interest in its being the most favourable for work-
ing. The best system if found to be that in which the State con-
struet es it thints fit the line it struct as it thinks fit the line it has to work, and pays in propor-
tion to its requirements.

NOTES AND MEMORANDA.

Thr census of India gives the total population for the North ous returns, $22,912,556$ being males, $21,195,333$ females. Villages AT a recent meeting of the Academy of Sciences; Paris, a pape AT a recent meeting of the Academy of Sciences, Paris, a pape
was read on the vaporisation of metals in vacuo, by M. Demarcay This was effected at comparatively low temperatures ; the vola tility of cadmium was proved at 160 deg., zinc at 184 deg.,
antimony and bismuth at 292 deg., lead and tin at 360 deg. The
deposits in twenty-four to fourty-eight hours were weighabledeposits in
5 to 15 myr
The call for an electrical sheep-shearer made by a New Zealan orrespondent in the Scientijc American some months ago, ha apparently brought forth fruit in an unexpected quarter. It
now announced that the head of the Hudson Bay Fur Company Sir Curtis Lampson, has applied electricity to the trimming of sealskins. The skin is "fed" over a knife-edge bar, above which is
strecched a fine platinum wire, which, raised to a white heat by an electric current, meets the longer hairs which rise above the under SorAPs of mackintos them do
SORAPS of mackintosh and other india-rubber coated fabrics have hitherto been useless because the india-rubber could not be profit-
ably extracted from them. An American inventor, however find ably extracted from them. An American inventor, however,
that strong hot sulphuric or muriatic acid has no effect on the has taken out patents for a process of recovery in which he eats away the textile fabrics with these acids, preferring hydrochloric,
as it forms more soluble salts with the zine and whiting than sulas it forms more soluble salts with the zinc and whiting than sul-
phuric. If the original stuff be in lumps, it is first softened with
As an artificial marble the following has been patented :-Equal Weights of Portland cement, blue lias cement, cinder dust, and and run into moulds to set. Next day the casts are smoothed down with sand paper and enamelled with a succession of coats in
the following order, baking for twenty-four hours at from 150 deg. 200 deg. Fah. and smoothing down after each coating: (1) Best copal varnish and extra fine polishing varnish. The ground colours are applied after coating No. 1, the marbling after coating 2 or 3 . The following are given in the Railroad Gazette as the freezing points of drying oils, some of which are in common use:
"Lin - fax - seed oil freezes at 16 deg. below zero; poppy
seed oil freezes 16 deg. below zero; prunella - a Japanese oill-hempseed oil freezes
t 16 deg, below zero; castor oil freaze at
flower seed oil freezes at at deg. aboze zero ; grape seed oil freezes
at fish oils f foove zero; cotton seed oil freezes at 28 deg. above zero properly half-drying oils. Linseed oil stands first in every good AT a except or its tendency to change colour
Ase a recent meeting of the Paris Academie a paper was read on a
use of ectrolysis in dyeing and printing, by M. Goppelsreder. For
example, he impregnates of chlorhydrate of aniline, puts it on a non-attackable mot solution which he connects with one pole of a battery or small dynamo On the tissue or paper is placed a second metal plate having a
design in relief and joined to the other pole ; on pressure and passage of the current the design is reproduced. A modification of the method gives chemical discharge of colour. The current,
again, is used to prepare vats of indigo, aniline black, \&ce.; the
hy also used to prevent oxidation of colours in printing.
In the course of a discussion in the Morning Post, on the subject
of creaming machines, a correspondent points out that the scientifo principle epon which thereyare based has long been known. Dr Desaguliers, in his "Natural Philosophy," vol. i., p. 313 --third
edition, London, 1763 -describes a very simple experiment showing ow centrifugal force tends to promote the separation of substances
of different specific gravity. If a glass tube, hermetically sealed of different specific gravity. If a glass tube, hermetically sealed
containing non-miscible liquids, or foreign matter mechanically susperded in a liquid, such as muddy water, be whirled round by a
string fastened to a loop at one end, the various substances will apidly arrange themselves in the order of their density, the heaviest
being at the end of the tube farthest from the point o the string. This is just what happens in the centrifugal creaming machine
A sTRONG and durable article of belting is made at Oakland
California, out of the entrails of sheep. The entrails, which will average about 55ft. in length, are first thoroughly cleansed and thus paceed in vats of brepared they are not where they remain some thicker than a phecen of common
thus
cotton twine, stage in process of manufacture is to wind the prepared material on mobons, after which the process is the same as in making
common rope. This method is used to produce a round belt; but
where where a wide flat belt is to be made, a loom is employed, and the
fine strands are woven together, as in ribbon manufacture. The at belts are made of any size, and the round of sizes varies from the form of a smooth cord, or as ropes with from three to five
large strands. The sin. rope is said to stand a strain of seven tons.
A PAPER was recently read before the Academie des Sciencés on the properties of antisepties, and volatile products of putrefaction,
by L. Le Boo. The edisinfectant power of any antiseptic is weake the older the putrefaction. The strongest disinfectants are
permanganate of potash, chloride of lime, sulphate of iron acidified with acetic acid, carlbolic acid, and the glyceroborates of sodium and potassium. There is no parallelism between disinfectant
action of an antiseptic and its action on microbes ; nor between the power of preventing putrefaction and that of stopping it when it
has begun. Except a very few substances, strongly poisonous
such as bichloride of sarbolic acid, have very little action on bacteria, There is no
contich
cont and parallelism between the virulent power of a substance in putrefac-
tion and the toxical power of volatile compounds liberated fro, isonous. According to M . Le Bon the air of cemeteries may be poisonous. Ac
very dangerous.
Refrrring to some recent articles by Dr. J. H. Gladstone an Mr. Tribe in Nature, on "The Chemistry of the Planté and Faure
Batteries," Dr. Oliver Lodge asked a question about the lead sulphate into which they stated the spongy lead was converted
during the discharge of a Planté or Faure battery. In renly Gladstone sasy, "In an early stage of our investig. In replion we satisfied
ourselves that lead sulphate was capable of both oxidation and ourselves that lead sulphate was capable of both oxidation and
reduction by the voltaic current under the circumstances found in March 1 1 tht. It was made by spreading lead sulphate on platinum mitate more closely the conditions of actual practice. The sulphate was reduced by the electrolytic hydrogen as before. As,
however, the reduction takes place first in close proximity to the lead plate, it it in ot easily reeognised till the cheminical change
has advanced some distance, and a good deal of the white salt always escaped decomposition. But the circoumstances of the
actual praotice are much more favourable for the reduction of the sulphate than were those of our experiment; for the sulphate is
formed in perfect contact with the metallic lead of the plate formed in perfect contact with the metallic ead of the plate or its
spongy oovering, and the reduction is doublless facilitated by it that sulphate of lead is finally the 'only produot of the discharge, we were referring to the disappearanco of any peroxide, and did not
mean to imply that in actual practioe the whole of the spongy
metal is usually converted into sulphate."

MISCELLANEA

IT seems probable that the electric light will be largely employed durposes At night the light permits the matching of colours as in purposes. At night the light permits the matching of colours as in
daylight, and in the daytime the current may be employed for Two new courses of lectures, on the applications of machines and Engineering College attached to the Ghent University. There
vill be one lecture of han and a-half a week on both subjects, ane an hour and a-half a week
Through an excess of current accidentally brought about, the wires for conducting the electricity for illuminating the stage of
the Paris Opera lately became red-hot, burnt their covering of gutta-percha, and caused a fire, which, however, was speedily
extinguished with a few buckets of water. Such events as thes extinguished with a few buckets of water. Such events as these
are of the class that result from what must be culpable carelessTHE Association des Gaziers Belges, acting for the Brussels Municipality, have organised a competitive exhibition of gas stoves
for industrial, domestic, and culinary purposes. It is to be held in the Rue Gretry, Brussels, near the Halles Centralles, from 1st August to 1st October. The jury will award gold and silver medals and diplomas, not exceeding, altogether, the value of 4000 f . The
President of the compittee is M . H. Aerts, manager of the Brussels gas-works
A conTAOT key, which it is said will work with To soin. play, is
made by Messrs. Cumming and Brinkerhoff, of 219, East Eighteenthstreet, New York. The contacts, or electrodes, consist of a pair
of round-edged discs, the periphery of one of which rests on that of the other at an angle of 90 deg. The smallest possible surface of contact is thus obtained in such a way as to be ever renewable,
and the invention consists in the discovery that the smallest surface contact is the best for telegrap
The prospectus is issued of the Bahia Central Sugar Factor es Company, Limited, and subscriptions are invited for a part,
$£ 270,000$, in shares of $£ 20$ each. It is guaranteed by a Brazilian
Soper forme tories, including all other accessory works, such as roads, tramways \&c., in Bahia, Brazil. Mr. James Cleminson, Westminster, is
the engineer, and the offices of the company are at 9, New BroadOv the 14th inst, the Noord Braband was launched from the ON the 14th inst. the Noord Braband was launched from the
shipbuilding yard of Messrs. Raylton, Dixon, and Coo, Middles-
brough, a handsome screw steamer destined for the mail servic between Rotterdam and Java. Her disined ior tre:- Length ove betl, , enoft.; breadth, 4oft.; depth of hold, 23 tit. 9in., and she will
acry a dead weight of about 3650 tons. She is built with water ballast throughout on the cellular principle; has iron decks-the upper laid with teak-full poop aft for the accommodation of twenty
first-class passengers, and the second-class in forecastle, and having accommodation for her officers, \&co., under long bridge amidships. This is the seventh vessel built by Messrs. Raylton, Dixon, and Co the same service
A stFAM-WHEFL has been recently patented in Austria by Pro-
fessor Wellner, of Briunn. The wheel-according to the Polytechnischer Journal-consists of a simple water-wheel, mostly immersed
in hot water in a closed vessel. Steam is admitted at the lower part, and forces the cells of the wheel upward, producing rotation at length begins to escape into the steam-space above the water
Steam may either be produced directly at the lower part, or con ducted to the vessel from elsewhere. The upper tube for outle
of steam may lead either into the open air or into a condenser of steam may lead either into the open air or into a condenser.
The mechanical work is effected by the ascent of the specifically hter steam in the heavier liquid.
THe completed portion of the Hudson river tunnel, in which
several men were killed some time aso at the north measures more than 1200 ft ., although little advance has bee made on the New York side, owing to the difficult character of the grouna, which is a mixture of sand, gravel, and boulders. The ai pressure, to keep out the water, has been increased on the New
Jersey side, and two bulkheads have been erected in the tunnel,
which is severest test has yet to be passed, namely, that spot where the water being teepest, the thuner has to be made closest to the ber
bottom of the river. The air pressure is already 30 lb. on the square inch, but as little inconvenience is said to be experienced by the workmen, it is thought probable that it can be increased
sufficiently to enable the engineers to complete the work without Avstralians are vieing with English publishers in the publica-
tion of works of considerable merit. Mr. W. Crellin, Victoria Government surveyor, has compiled a work of great importance to
surveyors-namely, a "complete traverse table," which is spoken of in the lighest terms by all the leading engineers of the Govern ment of Australia, and especially by Mr. R. L. J. Ellery, F.R.S.,
Government astronomer of Victoria, who says it enables computors to double the work with half the fatigue resulting from the layingy mode. Mr. Crellin has also made an instrument for reatly f eie tables in the volume in which they are bound, which book is published in Australia by Mr. G Robertson, of Melbourn and the other capitals, and in this at 17, Warwick-square, Pater seen at the Institution of Civil Engineers
The syllabus of the course of lectures at King's College on
metallurgy, by Professor A. K. Huntington, has been issued, and contains particularss relating to the Siemens gold medal and prize,
which has been founded by Dr whimy has been founded by Dr. C. W. Siemens, with the object of standard of proficiency in metallurgical science. It is open to those who have, as matriculated students, studied in the Applied
Science Department for two years, and who, either in their third year, or, if they remain in the department for three years, in the
succeeding year, make metallurgy snecial study. The first award will be made at the end of June, 18t3, and will depend partly on an essay on some particular subject, partly on a written examina-
tion on the Metallurgical lectures, and partly on actual work done
in the taboratory. ithe laboratory. The subject for the essay for 1883 will be, the
"Manufacture of Steel suitable for Ship and Boiler Plates." The New York Evening Telegram, says :- "Natives of the Isle
of Cuba-'Queen of the Antilles'-were never noted for gressive ideas, but, nevertheless, the residents of the old shipping port, Cienfuegos, within a few weeks will be edified by the appear-
ance in their waters of a novel steam craft intended for lighteragg
service. The hull is 100 ft . long, 32 ft . wide, and, with 100 tons of cargo, will draw only 3 ft . of water. She will be decked over, and
has a perfectly flat bottom with vertical sides, and is the first
has example of what is thought by many experts will prove to be a
revolution in the 'dark science' of screw propulsion. A high rate
of speed, of course, is not expected, but her performance will exemplify, it it in thought, the expoomy which MrI. J. J. . Root, of the
Root Manufacturing Company, claims for his novel system of the Root Manufacturing Company, claims for his novel system of the
application of screw-propelling wheels. These wheels will be set on and aft, and not as the common type of screw propeller is , , at
fight angles the the line of motion of the vessel, They will be right angles aingle vertical direct-acting engine 10 by 12 . The
driven by a
boiler will be vertical tubular, 10 by 6 , and wit) 80 lb . pressure will drive the wheels from 150 to 200 revolutions per minute. The
'true crew' type of wheel will be uued, Gtt. in diameter, and they
will be onty will be only half submerged when the vessel is loaded. When wnished, which will be about the last of August, she will steam
fincoss the Gulf down to Cuba, She will cost about 15,000 dols,"
4

THE NIEDERBAUMSWINGBRIDGE, HAMBURG. Section THROUGH PIVOT PIER

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

With this week's number is issued as a Supplement, the Niederbaum Swing Bridge, Hamburg, Every copy as issued by the
Publisher contains this Supplement, and subscribers are requested Pu uisher contains this supplement, and s.

TO OORRESPONDENTS.

inform correspondents that letters of inquiry addressed to the public, and intended for insertion in in this oclumn, must, in all
cases, be ccompanied by a larte envelope legibly directed by the cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 1 d. postage stamp, in order that answers received by us may be forvorded to their destination.
with these instructions. ${ }^{*}$ We cannot undertake to return drawings or manuscripts ; we ${ }^{*}$ All letters intended for insertion in THE containing questions, must be accompanied by the name and proof of good faith. No
anonymous communications.
N. AND S.-Tramoays of Montevideo, Buenos Ayres, Salto and Bahia, and
Palermo. C. WELSTEED (Montreal). "Wartike Woolwich" is to be obtained of Mr.
Sackson, Thomas-street, Woolwiche.
S. The The ENGINERR, Sth October, 1881. For 230 revolutions per
minute read 2300 revolutions per minute, and for 2500 ft. per minute read minute read 2300 revolutions per minute, and for $2500 f t$. per minute read
25,000 ft.
H . G . There is no book specially dealing with the subject as treated in the
article to vohuch article to which you refer. You may, hovever, be able to deal with it as
you wish by the cid of Cotirell's book on on Steam and the Steam Engine,"
and Box's "Practical Treatise on Heat."

CONVERTING FISH INTO MANURE

(To the Editor of The Engineer.)
SIr,-I shall be obliged if any of your correspondents can give me any
formation as to the best process for converting freshly caught fish into information as to the best process for converting freshly caught fish into
artificial manure, with particulars of the requisite machinery, which I
shall probably wish to purchase.
W. L. D. shall probably wish to purchase.
East India-avenue, E.C., August 12th.

SUBSCRIPTIONS.

 If credit occur, an extra charge of two shillings and $\ddot{\text { dixpence per as a }}$.
e made. TEE ENINEE is registered for transmision abrood.
Cloth cases for binding THE ENGINEER Volume, price 2s. 6d. each. Many Volumes of The Enginerer can be had price 18s. each.
 at the published rates woill receive The EnaINEER weeekly and post-free.
Subscriptions sent by Pot-0fice order must ob accoppanied by letter of
advice to the Publisher. Thick Paper Conies may be had, if preferred, at Remittance by Post-office Order. - Australia, Belgium, Brazil, British
Columbia, British Guiana, Canada, Cape, of Good, Hope, Denmark,
Egypt, France, Germany, Gibraltar, Italy, Matta, Natal, Netherlands, Columbia, British Guiana, Canada, Cape of Good Hope, Denmark,
Egypt, France, Germany, Gibraltar, Italy, Matta, Natal, Netherlands,
New Brunswick, Newfoundland, New South Wales, New Zealand,
Portugal, Roumania, Switzerland, TTasmania, Turkey, United States,
West Coast of Africa, West Indies, Cyprus, \&1 16s. China, Japan,
India, £2 0s. 6d. Remittance by Bill in London. - Austria, Buenos Ayres, and Algeria,
Greace, Ionian Islands, Norway, Panama, Peru, , ussia, Spain, Sweden,
Chili, E1 16s. Borneo, Ceylon, Java, and Singapore, £2 Os. 6d. Manilla, hili, \&1 16s. Borneo, Ceylon, Java, and Singa
auritius, Sandwich Isles, 225 s .
ADVERTISEMENTS.

DEATHS.
On the 12th inst., at 5, Cedars-road, Clapham-common, Charless
EDWARDS Amos, C.E., in his 77 th year. Friends will kindly accopt this
intimation intimation.
On the 1 th inst., at his residence, at Fairfield, near Manchester, Mr. On the 13th inst., at his residence, at Fairfield, near Manchester, Mr.
Homas Drov HruL, C.E., Ashton-under-Lyne, aged 50.
On the 13th inst., at his residence, Cork, Mr. JoHN Rivg, C.E., aged
0 years.

THE ENGINEER.

AUGUST 18, 1882.

amalgamation among the london gas companies.
The immediate prospect of another amalgamation among the London gas companies calls attention to the change which has come over the conditions of the Metropolitan gas supply during the last few years. In 1869 there were governed by the Metropolis Gas Act of 1860. In 1870 two of the thirteen had disappeared, the Chartered absorbing the City of London Company and the Great Central. In 1871 the Equitable went the same road, followed by the Western in 1872 . A broad sweep was effected in
1876, when the Imperial was absorbed by the Chartered, as also the Independent, while the Ratcliff was taken by the Commercial. In 1879 amalgamation began to show itself on the South side of the Thames, the South Metropolitan absorbing the Surrey Consumers, added to which came the Phœenix in the following year. Thus in 1880 the gas companies of the metropolis were only four, namely,
the Chartered, Commercial, London, and South Metropolitan. The first two of these companies are situated solely on the north side of the Thames, the South
Metropolitan is wholly on the south, and the London has Metropolitan is wholly on the south, and the London has of the river. The latest phase consists in a project

Chartered, for which purpose terms have been arranged between the two companies, as ratified by the
shareholders at meetings held on Friday last. The scheme shareholders at meetings held on Friday last. The scheme
of amalgamation awaits the approval of the Board of of amalgamation awaits the approval of the Board of
Trade, and it is well understood that this authority will require the Chartered Company to surrender the southern require the Chartered Company to surrender the southern
portion of the London Company's district to the South portion of the London Company's district to the South
Metropolitan. The result will be to place the whole of the Metropolitan. The result will be to place the whole of the
gas supply of South London in the hands of the South Metropolitan, while the Chartered and the Commercial will have the northern shore. Only one more step is want Chartered, so as to absorption of the Commercial into the Chartered, so as to give the latter company the advantage
of supplying gas along the whole line of their mains from Beckton. The only present difficulty consists in the fact that the Commercial Company are supplying gas at a cheaper rate than the Chartered. But there was the same
obstacle years ago with the Independent, and it may be obstacle years ago with the Independent, and it may be
hoped that the Chartered Comnany will be able to reduce hoped that the Chartered Company will be able to reduce
their charge, especially if they have the prospect of entertheir charge, especially if they have the prospect of enter-
ing the Commercial district, which at present is like a desert land to the Chartered shareholders, rendering many miles of their mains wholly unproductive
It is not anticipated that amalgamation will be encouone enormous gas company. The official design is appaThe boundary is a natural one, divided by the Thames. The boundary is a natural one, though it divides the area very unequally, and the northern company will be very
much larger than the southern. Keeping alive the South Metropolitan Company is somewhat of a trial for the Chartered, as the capital account of the latter company is heavily burdened, and comparisons will be made between the prices charged by the two companies for their gas. On considerable load upon their shoulders when they absorbed considerable load upon their shoulders when they absorbed seems to depend very much on the exercise of a rigid economy. They have thus far enjoyed the advantage of
having a large portion of the old Phœnix district free from the supervision of a gas examiner inasmuch as they have by some means or other postponed the establishment of a testing station for that area. The Metropolitan Board are
a little uneasy on this point, and have threatened to apply a little uneasy on this point, and have threatened to apply
to Parliament for compulsory powers of a general nature, so as to prevent such delay in the future. The company are promising that there shall be no further loss of time, and the Board of Trade have expressed a hope that there may be no necessity for the proposed enactment. But the absence of a testing station is practically nullifying those guarantees which Parliament intended to afford to a gas consumer in respect to the quality and pressure of the supply. In the interest of the company it may be observed that if the latter are really fulfilling their obligations, they are not likely to have the credit of doing so, unless the
public have positive proof to that effect. Even with the highest official evidence, the consumer is apt to be sus picious that in some way or other, beyond the discernment of ordinary mortals, he is being "victimised" by the gas company. Independently of this attitude of suspicion on the part of the public, it is only fair, if comparisons are to be instituted between the Chartered and the South Metropolitan, that the two should be placed on the same vel as to the conditions of the service.
The process of amalgamation commenced under the distinct approval of Parliament. The Legislature were of opinion that amalgamation was favourable to economy, and was therefore conducive to the interests of the consumer. Another point to which reference was made about the same time consisted in the removal of the gas manufacture from the metropolis. Gas-making was deemed a nuisance and most people had an idea that gas-holders were much the same as powdermagazines. TheChartered Company obtained favour with select committees, because they proposed to erect enormous gasworks near Barking Creek, so as to metropolis. Hence arose Beckton, big in its original design, and bigger still as the result of subsequent enlargements. But consolidation has its limits. To have all the water supply by one aqueduct seems agreeable to place is an idea which finds considerable acceptance But we question the wisdom of such a conclusion. Any very serious matter for the metropolis, mains would be a considerable revulsion of feeling, on this subject. It may be questioned whether Parliament has done wisely in refusing any extension of the Fulham Gasworks. It is jected to the enlargement; but even bishops may be mistaken. The result is that land which might extension of its Fulham works is simply occupied by osiers. If these works were enlarged, the supply of an important district could be carried on more economically than it be now, and any accident happening to Beckton would be less serious to London. With Battersea Bridge improved -as it will be-coals could be brought up to Fulham by afforded by on the river, in addition to the facilities London Extension Railway connects the Fulbam work with the North-Western and other railway systems ; but the river communication is specially important. Coals come by the sea route to Beckton, occupying only thirtysix hours from the pits to the works. Another six hours would bring them up to Fulham. But there is little extension these days of any permission being given for the able as those works must be for the supply of the wester part of the metropolis. The Chartered Company will apparently, have to make the best of the existing area situated in the north and east, In with their other work itself becoming the centre of a populous district. The marshes are being covered with factories and houses, exnew lines ofs have been formed in the neighbourhood
and the region which was so lonely in 1868 is rapidly growing
The extraordinary increase in the consumption of gas in London has lately been demonstrated in these columns by means of a statistical investigation. The electric light, it is thought, has rather stimulated the demand for gas than otherwise. Certainly the London gas companies do not seem disposed to lose heart. The Chartered Company only submitted to absorption after a long series of nego tiations. The South Metropolitan Company have faith in the future, or they would hardly undertake the erection of what may be termed a transpontine Beckton in the marshes of East Greenwich. There is also the pressure of a statutory obligation in the case of the gas companies in
common with the water companies. They are bound to provide a supply equal to the demand, and must, therefore have works which shall be adequate to meet the growing equirements of the public. Hence new works become duced. Amalgamation is part of the same process, and is bringing about a readjustment of the gas supply which cannot fail to benefit London at large, though for a brie period there may be an apparent disadvantage befalling
some localities. Had the Chartered Company been gifted with greater prescience in its early days, an enormous waste would have been avoided in regard to the supply of gas. Instead of extending their borders, as the earliest of the London gas companies might have been expected to do, the Chartered Company allowed the metropolitan field o be divided among many comers, and that in the most capricious manner. London is only just escaping from the complicated system which thus grew up. It was nothing strange for one company to have their works in another company's district. Thus the Imperial had works at Fulham in the district of the London Company, and the Great Central had works at Bow Common in the district of the Commercial. Some of the districts were flung about London in fragments, a plece being sometimes insertedlike a solitary island-in the middle of another company's district. Thus the Western Company stopped short ory district of the London Company, pending the coming amalgamation, affords a similar example, having a perfectly outlying area extending from the Victoria Embankment between Somerset House and the Temple, up to Theobald'sroad. Properly speaking, the eastern boundary of the London Company's district is at Westminster Bridge, taking the Surrey side of the river ; but even then we meet with a severance at Vauxhall. Looking back to the time when all the companies were enjoying a separate existence, we are not surprised at the story that, during this period of complication, the directors of one of the ompanies became a little puzzled at finding that they were act that they has than they made. Inquiry revealed the another company instead of their own, and profiting accordingly. Things are getting into better shape now nd the costly chaos of the past is to give place to that With the electric light rising above the horizon, the London gas companies have more reason than ever to put Ticht is simply one of price and the as intors of their nnder takings everything that partakes of extravagance or that

THE BRITISH ASSOCIATION AT SOUTHAMPTON.

Nearly thirty-six years will have passed away between the first meeting of the British Association in Southampton in September, 1846, and that which commences in hat town next Wednesday. Names now classical in the ists of English science were the leaders at this meeting, Si ohn . W. Herschel, Bart., resigned the post of president in the roderick Impey Murchison, and thus the two men the architecture of the heavens and of the earth. Not that Sir John Herschel was unknown in geological circles, for he contributed some most important papers to physical geology, but his strength was in astronomy. Of those who delivered evening addresses in September, 1846, Professor Owen still remains to us, but of the Council very few remain. Dr. Murchison's address, though largely occupied with geological questions, touched upon many other branches of science. In those days it was customary with the presidents to give an address in which they glanced at almost every subject which had prominently ccupied thought during the past year. This custom as of late years been less followed, and the presidential scientific work has been split up into branches, this has its scientific work has been split up into branches, this has its themsei. - especially to one or two subjects. This, perhaps, gives to t.ee address a personal element which cannot be avoided; but although the address may suffer in popuarity, it is more likely to be of solid advantage to scientific

The Southampton meeting is not identified with the nnouncement of any remarkable discovery. A report by Professor Owen on the "Archetype and Homologies of f the he " Britain", A report on the "rear nform, ion to thon of statistical value, whe the communicachemical subjects may be turned to with interest, though they possess little special importance. Amongst the papers read on mechanical science were those of Fairbairn and of Eaton Hodgkinson on the experiments on the tubular bridge then proposed for the Menai Straits ; and one still of interest by John Scott Russell on "The Law hich Governs the Resistance to Motion of Railway
experiments with trains on several lines, and reached sixty-one miles an hour. The resistances at different
speeds were recorded, and a formula deduced therefrom speeds were recorded, and a formula deduced therefrom
for the resistance at any speed. The resistances obtained for the resistance at any speed. The resistances obtained
by this formula agreed pretty closely with the observed resistances, but were in most cases higher. Of the paper to be presented at Southampton next week little is known
but the address of the president, Dr. C. W. Siemens, may be expected to touch upon the several branches of physical science in which the president-elect is a known master; but
more especially to dwell upon certain metrical questions more especially to dwell upon certain metrical questions
important in the practical application of electricity. The determination of electrical units is a subject of growing
importance, and one in which Dr. Siemens is known to take great interest, and in his proposals on this
subject it may be hoped that he will suggest the employment of terminology and units well known and commonly employed by English mechanicians and phy-
sicists. There is no reason why, for instance, we should sicists. There is no reason why, for instance, we should not continue to use feet and pounds and foot-pounds as
much in electrical matters as in engineering and thermomuch in electrical matters as in engineering and thermo-
dynamics ; and as these and other commonly known units are and will continue to be used by the leading electrical engineers, there will be but little chance of the general adoption of the meg erg and centimetre gramme seconds
system. To some minds a gramme raised one centimetre in system. To some minds a gramme raised one centimetre in
a second may represent a conceivable quantity of work but a pound raised 1 ft . in a minute will ever remain a more tangible and useful quantity to engineers, electrical and otherwise. Fancy measuring or talking of the power
of an engine, or worlk done by one, in ounces raised an of an engine, or work done by one, in ounces raised an
inch per second ; yet this is a much greater combined unit inch per second ; yet this is a much greater combined unit
that the centimetre gramme second. If very small quantities must be expressed, they may be most accurately ex-
pressed in decimals of the larger and more generally handy pressed in decimals of the larger and more generally handy ported, it was because only very small quantities wera to me measured, but now that enormous quantities of electricity for transferring power and electric lighting have to be
dealt with, foot-pounds instead of centimetre grammes are as necessary to the electrician as to the engineer.
As a meeting place Southampton possesses many
attractions, and offers many facilities to those who travel thence by sea, holiday bent. In the town and within easy distances are many places and remains of great historic
and archæological interest. Southampton is itself a town and archæoological interest. Southampton is itself a town
with a history, though, like the modern representative of some other old Englisch towns, it does not occupy the site
of its ancient predecessor. It has, however, existed-it of its ancient predecessor. It has, however, existed-it
was sacked in 1339 by the French or Genoese-long enough to have many objects of great interest, including
old town walls and towers, while some traces of the Roman old town walls and towers, while some traces of the Roman
town of Clausentum, looked upon as the predecessor of town of Clausentum, looked upon as the predecessor of on a promontory, counterpart of the Northam promontory made by the curvature of the river Atchen. It is on the
east side of the river, and is reached by the Northam Bridge. Only a short distance down Southampton Waters are the ruins of Netley Abbey. Not far off are the City of
Winchester, the old town of Romsey, the City of Salisbury, Old Sarum, Stonehenge, Cherbury, and Wilton Park, the village of Beaulieu, in the New Forest, with the remains
of Beaulieu Abbey. On the shores of the Solent is Hurst Castle, and a little beyond, the priory of Christchurch. Less than half an hour away is the Isle of Wight, which, like the places already mentioned, has its ancient ruins
and modern attractions. There are, moreover, the Queen's residence at Osborne House, and facilties which have been
granted for inspecting the Royal Victoria Hospital granted for inspecting the Royal Victoria Hospital at
Netley, the great naval arsenal, dockyard, \&ce., at Portsmouth, and the royal yacht Victoria and Albert. The geologist will find more than enough to occupy much more Headon Hill, and at Swanage, Lulworth Cove, along the stratified cliffs of Purbeck stone, gypsum, clay, chalk, \&c.,
the Purbeck Hills and beds, Studlands Bay, Durlston Bay, pastTilly Whim, St. Aldhelm's Head, and Kimmeridge Bay, and also along Southampton Waters. Southampton is miles by road, 783 m miles by South-Western Railway. president, and about two dozen local nobility and gentry are vice-presidents. Mr. W. H. Davis, Mayor of Mr. W. E. Darwin, vice-chairman ; local treasurer, Mr. T.
Blount Thomas; and the local secretaries are Mr. C. W. A. Jellicoe, Mr. J. E. le Feuvre, and Mr. Morris Miles. W. The president-elect, as already mentioned, is Dr. C. W. the skating rink on Wednesday, August 23rd, at 8 p.m.; when Sir John Lubbock, F.R.S., will resign the chair, and the president-elect will assume his office and deliver his
address. On Thursday, August 24th, at 8 p.m., there will
be a soivee in the Hartley August 25 th, at the Hartley Hall ; on Friday evening, August 25th, at 8.30 p.m., in the skating rink, a discourse on evening, A ugust 28th. at 8.30 p.m., in the skating rink, a
discourse on pelagic life, by H. N. Moseley, F.R.S. On Tuesday evening, August 29th, at 8 p.m., a second soiree
in the Hartley Hall; on Wednesday, August 30th, the concluding general meeting will be held in the skating there will be a lecture to the to these arrangements, skating rink on Saturday evening, August 26 th, by Mr.
John Evans, D.C.L., on "Unwritten History Read it." Amongst other places available for the sectional meetings are, the Watts Memorial Hall, Zion Hall, the School, the Masonic Hall, the Philharmonic Hall, the County Court, the Friends' Meeting House, the Unitarian The Southampton Yacht Club, the Council of the
Hartley Institution, Steamship Company, have made arrangements by which the members of the Association are afforded great facilities, Beside the work to be done at the sectional meetings, which
no doubt will be well attended, there are excursions which are generally as enjoyable as the work, The excur-
sion arrangements are very complete, and include all-day excursions on Thursday, August 31st, to Salisbury, Stone-
henge, and Wilton Park; Portsmouth Arsenal, Dockyard, henge, and Wilton Park ; Portsmouth Arsenal, Dockyard,
the Royal Yacht, \&cc.; and a marine excursion to Bournemouth, or round the Isle of Wight; as well as afternoon excursions on Saturday, August 26th, to Alum Bay;
Ryde, Brading, Whitecliff, Newport, and Carisbrooke; drives in the New Forest; Netley Abbey and Hospital ;
Romsey, Broadlands (the seat of Lord Mount-Temple), Rc.; Winchester and St. Cross. The various local factories
Messrs. Day, Summers, and Co., Northern Ironworks ; Messrs. Day, Summers, and Co., Northern Ironworks ;
Oswald, Mordaunt, and Co., Woolston Shipbuilding Works, \&c.), and the yard of the Royal Mail Steamship Company
will also be accessible to the members and associates with their friends. Fine weather alone is required to make the neeting a successful one.
the city and guilds of london institute.
A writer on the "Human Mind" defines an invention philosophy suggests, pleasure prompts, duty demands, or not confined to the mechanical arts, but range over every so practical account by inventive genius. These bear the
to ame relation to sciences as wisdom to knowledge, or practice to theory. Is, or can, any art be quite perfect? This ques
tion must, we imagine, be answered in the negative. It is tion must, we imagine, be answered in the negative. It is
but quite recently that it has dawned upon the minds of enthusiasts that education is a science, and if it be science we presume there is a corresponding art. Further,
the laws of the science being acknowledged to be at present but vaguely known, the art must necessarily be far from perfect. It is, therefore, with no suprise that we find constant changes in our eaucational system ; whether such changes are good or bad, time alone can prove
In order to turn science to practical
In order to turn science to practical account it is neces These principles can be known in two ways:-(1) Partially and with great trouble from experience ; (2) by a know ledge of the history of the science. The greater part of
our information is historical. We, thanks to the advanour information is historical. We, thanks to the advancommence where others left off. The results of thei labours are tabulated ; some of them may in our so-calle student days be tested to verify correctness, but by far the
greater part are taken without doubt. The knowledge greater part are taken without doubt. The knowledge
derived from individual experience is comparatively small that obtained from the experience of the world through half-a-dozen generations is immense. Which, then, is
better-to spend a few years acquiring a knowledge of the history of spend a few years acquiring a knowledge of the such knowledge and blindly to trust to experience? Since we have fallen into the track of quotation, let us hear what Kitchen's edition, Book II., p. 111. "But if my judgmen be of any weight, the use of history mechanical is of al others the most dadical and fundamental towards natural philosophy. Such natural philosophy as shall not vanish in the fume of subtile, sublime, or delectable speculation but such as shall be operative to the endowment and benefor the purs life, for it will not only minister and sugges connection and transferring of the observations of one art to the use of another, but further, it will give a more true hitherto obtained. For like as a man's disposition is neve well known till he is crossed, nor Proteus ever changed
shape till he was straightened and held fast. passaces and variations of nature cannot appear so fully in the liberty of nature as in the trials and vexations of

We all tacitly agree that this is a fair statement of the case, but till quite recently no action was taken to carry into effect. The reason is simple, but natural those who have not, but would like to have, the knowledge Fortunately or unfortunately, as the case is viewed from f recent standpoints, the dentiop principles finds all alike ignorant; thus there are no vested interests, and everyone starts in the race under similar conditions, and all want to know what is known. The application to practical pureducate the world, and if there is steam has done much to the application of the newer electrical science the progres made from ignorance to knowledge will in the next fifty years be proportional to that utility. We are accustomed consider the 1851 Exhibition the cause which led to nore generous appreciation of technical or really scientific drawings, specifications, \&c., held good; the wider principle work to drawings because they accord with scientific when viewed as mere work; bad because generally neither designer, draughtsman, nor workman knew why this on nature's done, the result being frequently at variance with Scientific teaching became recognised in our schools. The pecial themselves, and for a time all seemed well Trade bestirred dull; other nationsseemed to be ousting us from our markets, and these, added to politic considerations, have led the City the spread of "Technical Education." The best method already, to the ignorance of the principles of the science o who pass prescribed examinations. In fact the pupil who pass prescribed examinations. In fact, the pla
the Science Department has been slavishly followed. protest most emphatically against the method which teachers and examiners. Although in such teacher-examiner is generally far more careful to frame own pupils, it is impossible to eradicate the idea from the
minds of other teachers that this is possible. The City and Guilds Institute is desirous of providing artisans and of the laws and principles which guide in the designing of of the laws and principles which guide in the designing of fore of all they do. Great care must be taken that the Institute hey do. dreate in the Institute does not degenerate into a mere examining
body, looking to the number and the success of the candidates in the examinations as reasons why it should receive support. The examinations, as examinations, should be viewed with little favour; as giving a rough idea of the method and matter of the teacher, showd ve viewed with a considerable amount of respect. The vast majority of the other than an ordinary elementary education. They have passed the sixth standard and have gone to work Grammar and logic are almost negative quantities in their minds; yet the men may know thoroughly the why and wherefore of their work. In these examinations do such
men shine conspicuous by their absence, or are they plucked men shine conspicious by their absence, or are they plucked
because of bad spelling, bad grammar, or inability to give a logical answer? The report states that in November last 3467 students were attending the technical classes, and implies that this number increased ; yet only 1972 candidated presented themselves for examination. Were the
students led to believe that the attainment of knowledge was the sole purpose of their attending the classes, or were they led to suppose that the aim was to pass the examinais at the end of the session? We fear too much stress is laid upon the examination, and that thousands of young people who would like to join the classes are thereby kept
away. At present we imagine that while the cost of a away. At present we imagine that while the cost of a cost of a scholar in a technical school is more like $£ 10$ a year; yet for the same cost in all probability ten times the number of students could be taught
That our remarks are warranted by facts may easily be seen from the examiner's report on bread-making. He says :-" "In the past examination forty candidates entered;
not one has passed. Those numbered 1343 to 1390 seem not one has passed. Those numbered 1343 to 1390 seem to be children who have been crammed by a person grossly get the children lear my Cantor Lectures.' Parrot-like, they repeat the words, not only without knowing their meaning, but mixing them up so as in many cases to produce the most absurd information would be given to the general public if in these reports the "ages" and occupation of the candidates were given. Are the candidates really " children"- for
example, children in board schools? If so do these form the corpus vile the City Guilds Institute wishes to mould and shape? Then, again, a pertinent question concerns the examiner. The problems he puts may or may not be suited to the object in view. If we rightly grasp the hat 0 the Institute, we are reluctantly compelled to say tions are such as should not be asked, and which the students might naturally be expected to fail in answering.
connical education, and recently an attempt has been made to cacation, and recently an attempt hase rather adversely, perhaps, criticised the system adopted, but that it is able to bear good fruit we have no doubt. The work of the City Guilds, even as now carried on, will do a good particu good. The mere suggestion of study in a workers influence their friends; and more by book work and discussion amongst themselves, and a closer attention to principles when at work, than from teachers, such men gain knowledge. Masters desirous of earning a few and although we decry the methods of cram as much as the examiners, we must admit that there is even in such cases wheat as well as chaff. Many of the pupils begin to in it the master, is ignored; but the obtaining of knowledge goes on. Assume, nay prove, that many or most of the science masters crammers, and so on it is impossible to ignore the fact that since South Kensington came into existence there has been a very considerable increase in the general so with respect to this technical education. It is wanted -it must come-and whether the method adopted to dissemminate the knowledge be the best or the worst, the ball has been set rolling, and nothing will or can stop it. Good is thus, it may be admitted, being effe the cost is enucational estably disproportionate to work done.
artillery casualties in the bombardment of
Certain casualties have been reported in the papers as occurring which interfered with the efficiency of our guns, stopped nhout the matter. We believe we can now speak with confidence as to general character and nature of these casualties. The most alarming report was with regard to the guns of the Alexthese: In two 10in. guns of this ship slight imperfections in welds and slight movement of coils has been perceptible, but such as in no way to interfere with the efficiency of the guns, which are ready gun of the same ship has suffered from the bursting of a common gun of the same ship has suffered from the bursting of a common
shell in the bore, near the muzze. The steel tube has, we believe, a slight crack in it ; the gun was fired some rounds
afterwards, however. It is proposed to drill a hole at the extremity of this crack, to prevent its extension as the gun conto be satisfactory, because it is very difficult to trace how far a crack in steel extends. When opportunity occurs we imagine this gun will be exchanged. A shell bursting in the bore of a
gun near the muzzle of course throws a shock on the weakest gun near the muzzle of course throws a shock on the weakest part of the bore, though injuries effected there are less important
than those which might occur nearer the breech. We know of
venience and delay was caused by the jamming of some of the
Inflexible tubes. This was only the matter of the few minutes Inflexible tubes. beforehand, and an improved pattern has been brought in. Then again many shells failed to explode on impact. This is unsatisfactory. The fact is that such care has always been taken to ensure the Pittman fuse not exploding against a wave, that it
has not uanaturally become too little sensitive. The proof in the Laboratory, we think, has always been that a percentage fuses should be fired in shells against water from a 7in. gun
with 22 lb . charge. Striking newly dug earth obliquely, there with 22 lb . charge. Striking newly dug earth obliquely, there
might then be a chance of their not exploding. It ought not to have occurred in a direct blow against earth, much less against nasonry. Our readers have doubtless read the absurd account fired from the Inflexible, being found in the drawing-room of a house, unexploded. On the owner's request that it might be removed, it was carried carefully away rolled up in a feather mmunition, one of detail, but one that needs attention, especially f our navy are likely to have to deal with fired and unexploded
shells. Some years since-perhaps fifteen years ago-the great shells. Some years since-perhaps fifteen years ago-the great
danger of handling shells containing percussion fuses whose internal parts had been disarranged, or put in action by firing, and consequently might be exploded by a very slight shock, each shell in the head, not many inches from the fuse hole. This was closed by a screw plug, which could be safely removed from fired shell, so that the charge might be drowned with water which it appears were practically never used, were discontinued. The 80 -ton gun shells have not got them. Preabbly this shell
might be safely carried off in a feather bed if it had failed to fire might be safely carried off in a feather bed if it had failed to fire on impact, however oblique. Nevertheless we confess we should sort of little ring wall with clay or putty round some spot of the
upper side of the shell as it lay, such as enabled us to have a upper side of the shell as it lay, such as enabled us to have a carefully drilled a hole into the interior of the shell, moving the it very gently, and keeping water on it, specially at the end of the process as it broke into the interior. The charge might then have been gradually saturated. We presume the shell was plan unnecessary, and a big shell is worth saving. Another tually of a shell lying in the water. We hear that one of our old shell fired in the siege of Sebastopol exploded recently that town on heing tampered with. The iron shot brought
from the Mary Rose which had lain two hundred years und water was so finely honeycombed by the sea water, and presented metal in so fine a state of division to the action of the air, that, to the horror of the finder, the shell gradually steamed fiercely,
and became intensely hot. Might this happen if our feather bed and became intensely hot. Might this happen if our feather bed friend should be taken out of the water two hundred years
hence, and if so, will the Egyptians of the period find that it
finishes its performance by exploding?

the channel tunnel.

Differfent opinions will be expressed on the decision of the Government with respect to the Channel tunnel, but the fate of the bills before Parliament is certainly that which has been
anticipated by a good many. In our impression of the 10th of anticipated by a good many. In our impression of the 10th of without being in the slightest degree of the alarmist disposition, vithout enormously adding to our military requirements These views met with a good deal of adyerse criticism, but were subsequently strongly supported by our daily contem-
poraries. The Government placed the scheme in the hands of poraries. The Government placed the scheme in the hands of
a War-office Committee, assisted by engineering and other experts, and having now the assistance of their report, they have decided that it is unadvisable to allow the two Channel tunnel
Bills to proceed further. This is in spite of the speeches Bills to proceed further. This is in spite of the speeches
and actions of Sir Edward Watkin, whose couleur de rose views, and denunciations of all opposed to his actions in the
matter, have probably done as much to stop matter, have probably done as much to stop as to help may be urged against the scheme as an engineering matter, not and ventilation of the tunnel if finished, and as far as the trial heading under our shores has been carried, it has afforded no real proof that the tunnel would be carried under twenty miles of sea without great difficulties, which might render its completion work of much greater cost and expenditure of time than any
estimates put forward, to say nothing of the sanguine expectations, or, at any rate expressions, of the chairman of the SouthEastern Railway Company. So far as they have gone the trial
headings have indicated that the work might be successfully accomplished, but they afford no proof, thought be successfully sumed to be a tolerably continuous formation through which the tunnel would be made. It is not, however, it seems, so much that the Government have arrived at a conclusion adverse to the promoters of both the tunnel Bills, and upon these consideration we have now no reason to add anything to what we hav
already published. It is certain, however, that as far as already published. It is certain, however, that as far as cross
Channel traffic is concerned, there is so much possibility improvement in the direction now being taken by the railway companies, as by the London, Chatham, and Dover in the con-
struction of the fine fast vessel, Invicta, and what might be done struction of the fine fast vessel, Invicta, and what might be done in the improvement of the port accommodation, that with these
fully carried out, and the Channel crossed in about an hour, there would be no arguments in favour of the tunnel on the score of economy of cost, little in time, and none as to safety or comfor
the canal du nord.
The Municipal Council of Paris has just adopted the conclusion of a report proposing that surveys for this great canal should be
pushed forward with the utmost possible activity. The Council should be extended as far as Dunkerque, which the French wish to make a rival of Antwerp. It may be interesting to recapitulate a few particulars with reference to this important new canal. A
law of 1878 authorised the French Government to execute the necessary works for giving the Seine a depth of 10 ft . between
Rouen and Paris. English coal, which is already delivered in considerable quantities upon the Parisian markets, would, on such the French capital more easily, and could be sold upon the
Parisian markets at some reduction in price. The pro-
 coal supply of Paris, After consideration of all the
facts, the parties interested came to the conclusion that, in
order to increase the outlets of the coal mines of the Nord with order to increase the outlets of the coal mines of the Nord with
the Pas-de-Calais, it is indispensable to unite those departments with the northern frontier of France sy a number of navigations which have become inadequate to meet the requirements of modern commerce. The movement of commodities is effected upon these navigations in a sluggish fashion and under relatively costly conditions. The Northern of France Railway cannot
supply the deficiencies of the existing navigations, and the result supply the deficiencies of the existing navigations, and the result
is that Paris, the great industrial centre of France, is obliged to is that Paris, the great industrial centre of France, is obliged to
apply to England, Belgium, and Germany for half the coal which apply to England, Belgium, and Germany for half the coal which
it consumes. The proposed canal would not only accommodate coal traffic, but it would be of obvious utility for the conveyanc of heavy goods, which naturally seem intended to travel by water
rather than by railway. Two routes for the proposed great canal rather than by railway. Two routes for the proposed great canal to the relative merits of these routes, the Commissioners of Inquiry pronounced almost unanimously in favour of a direet canal via Arleux, Péronne, Ham, and Noyon. The Commissioners further advocated the doubling of the sluices, and proposed that the width of the canal should be carried from 36 ft . 8in. to $56 \mathrm{ft} .8 \mathrm{in} .\mathrm{The} \mathrm{Commissioners} ,\mathrm{in} \mathrm{short}$,adopted the proposal
for a direct canal of large dimensions. The effect of the proposed doubling of the sluices and increasing the width of th
canal will be to carry the estimated cost from $£ 3,320,000$ to $£ 4,200,000$. The expense of maintaining and working the cana is estimated at $£ 36,000$ per annum. The annual charge for
interest at 4 per cent. per annum upon the capital which will interest at 4 per cent. per annum upon the capital which will
have to be expended will be $£ 168,000$; and, accordingly, to clear its expenses the canal will have to earn somewhere Nord be carried out, it will abridge the distance between Dunkerque and Paris by $68 \frac{3}{4}$ miles. The district to the east of Aisne will also benefit to some extent, as it will abridge the distance between it and Paris by about 63 miles. Finally, direct navigation between the Mediterranean and the North Sea will
also be reduced by the proposed new canal to $715 \frac{5}{8}$ miles, or about the length of the present railway route from the north to the will have to be A reduction of the distance over which coal of the transport dues. and it is estimaty involve also a reduction of the transport dues; and it is estimated that upon coal forbe about 1s. 7 d . per ton. As the consumption of the department of the Seine now exceeds $3,000,000$ tons of coal the department which more than half is imported from abroad, the annual saving secured by the district accommodate
would obviously be very considerable.

IITERATURE.

A School Course on Heat. By W. Larden, M.A. London
Sampson, Low, and Co. 1882 . In a generally clearly descriptive manner the author conducts the student through the various subjects usually grouped under the general heading, heat. In some case he refers to Deschanel's Natural Philosophy, part Heat ; but imitation Deschanel a greater comprime the reader by many of the illustrations, and afterwards by the text. If Mr Larden had exactly followed Deschanel, we should have asked why his book was published at all ; but examination ciently in places where the former work is not sumexplanatory, he has done his beste but the good intention with which he seems to have started, namely, to help the student by means of worked-out examples in the seems son of the values found by the methods a the part dealing with the expansion of solids. Even here however, his method is not as simple as it might be, fo one ping an example of what he calls. area expansion i the student repeat a lot of figures which would be unneces sary if he simply explained the use of the expression rise in temperature through the being the area before the of expansion k. In dealing with the mechanical theory heat, the author has made a few points rather clearer to the student than Deschanel has done, or rather Everett in his translated and revised edition, but it is not so com plete, while his treatment of the steam encine is no better, and the illustrations are copies. The dixgram used in explanation of the compound engine is the absurd misleading thing used by Everett. Mr. Larden's information on compound engines is also restricted. He says, Engigained in expansive working, with an approach to the same evenness of pressure during the stroke that we get in which-expansive working. Now the total pressure with steam per square inch \times the area of the piston. If, then, we can contrive to admit steam, when it has lost pressure larger area will to some extent componste for thea, this pressure of the steam." After reading the latter paragraph, whether other furgy part hat been overlooked, but the author, like Professor Everett in the translation to which we have already referred, and which seems to be the author's model, is safe until he gets on to the practical modern steam engine, and there he fails.
It is curious that authors of works of this kind will not for themodern books, such as Rigg's on the "Steam Engine," incorrect ideas both of theory and design. The steam engine diagrams and illustrations given in the book are nearly all old or incorrect. For this there is no excuse. It makes here, whary for the student's eye to unlear on conduction the author prevented. In his chapter explicit, and, like his model, does not show at all how the observations on conduction may be applied to questions of heating liquids, \&c. In explaining the expansion of solids, lecture apparatus was first used on the Thames, for hewn that volumetric expansion of solids is shown by "the Gravesend Ring and Ball," the illustration showing Gravesande's ring and ball. Mr. Larden's book has probably
been written for the same reason that many school books
have in recent years been written, namely, because the use than other teachers' books, but more handy for his own who will take his book in preference to those with which they are acquainted.

Rules and Regulations Made Under the Adelaide Sewer's Act, 1878, with Plans and Descriptive Directions as to the Best Method of
Making House Connections. By Oswald Brown, M.IC.E Making House Connections. By Oswald Brown, M.I.C.E.,
Hydraulic Engineer. Published at the Office of the Hydraulic Engineer of Adelaide. 1882.
Those interested in the methods of forming house drains and their connections with the main sewers, will be glad comprise not only the rules, \&c., but complete descriptions of the various methods of , drains, illustrated by twenty-four well executed lithographic plates. Adelaide contains 65,000 inhabitants, and acres, so that its sewerage system is con able. It has been carried out under Mr. Oswald Brown and is now complete except in respect of the house connections, which in Adelaide, as elsewhere, will take time Although the engineer of a town has had a great many perplexing systems of water-closets, traps, guleys, and designs given in these plates show that Mr. Brown has made a selection which at the same time secures effective action and simplicity. In a "Note to the English Editor" of these rules, \&c., an interesting description is given of the water supply and sewerage works of Adelaide, with the reasons for adopting the plans which have been carried out. Broad irrigation and intermittent downward filtration are adopted for the disposal of the sewage, 450 acres of land of a light loam over a sandy subsoil having been obtained for that purpose
Did our space permit we would reprint these regulations in extenso, but as they can be obtained for 1s. we must commend our readers to the book itself, which is in every way a creditable piece of work. House connections made in accordance with these regulations have been found to
work very satisfactorily. Since the formation of the work very satisfactorily. Since the formation of the
street sewers in Adelaide some complaints have been made of smell from the street ventilators, the cause being the fact that, owing to the comparatively small number of con nections at present completed, the quantity of sewage lowing is not sufficient to maintain a constant stream the small sewers. Hence, artificial daily flushing has been resorted to until all the connections are made, then the
sewers will all be self-cleansing, having good falls. In the wide streets ventilators are provided at the centre of the oadway, spaced 100ft. apart. In the narrow streets venti lating shatts 6 in . in diameter are carried up above house tops in suitable situations. In addition to these precau-
tions every house, as may be seen from the regulations, is solated from the sewer and provided with its own special ventilation of its drains.

BOOKS RECEIVED.

A School Course on Heat. By W. Larden, M.A. London
Sampson, Low, and Co. 1882. Elementary Chemical Arithmetic, with 1100 Problems. By
Sydney Lupton, M.A. London : Macmillan and Co 1882. A Manual of Naval Architecture. For the Use of Officers of the Royal Navy, Officers of the Mercantile Marine, Shipbuilders, Ship-
wners, and Yachtmen. By W. H. White. London: John Murray. 1882.
Continuous Railway Brakes: A Practical Treatise on the Several
Systems in use in the United Kingdom. By Michael Reynolds. Systems in use in the United Kingdom.
London: Crosby Lockwood and Co. 1882.
Art Instruction in England. By J. Edward Hulme, F.L.S.,
.S.A. London: Longmans, Green, and Co. 1882 .
Transactions of the Institution of Civil Engineers of Ireland.

Vol. xiii. Dublin : Printed for the Institution by John Falconer. | V.l. |
| :--- |
| 1882. |

Treatise Relative to the Testing of Water. Wheels and Mackinery.
Third Edition. By James Emerson. Springfield, Mass : Weaver, shipman, and Co. 1881.
Lectures on the Science and Art of Sanitary Plumbing. By J.
Stevens Hellyer. London : B. T. Batsford and Co. 1882. The Principles of Colliery Ventilation. Second Edition. By
Alan Bagot, Assoc. M.I.C.E. London: Kegan, Paul, and Co. Alan 1882.
Treatise on the Arrangement, Application, and Use of Slide Rules.
y Thos. Dixon, Engineer, Bradford, Yorkshire The Dredger, Excavator, and Elevator. London: Priestman
Bros., 52, Queen Victoria-street. 1882. The Liability of Employers for Personal Injuries. By W. Row-
and Roberts and Gerge Henry Wallace, M.A. London : Reeves and Turner. 1882.
Proceedings of the United States Naval Institute. Vol. 8. Pub-
lished quarterly by the Institute. 1882. Notes on Continental Irrigation, with Plates. By Henry Ling
Roth. London: Trübner and Co. 1882. Society of Engineers, Transactions for 1881. London: E. and
F. N. Spon. 1882. Picture Frame Making for Amateurs. Illustrated by James
Lukin, B.A. London: L. Upcott Gill. 1882. Lukin, B.A. London: L. Upcott Gill. 1882.
A Popular. Hand-book to the Natural Histo Museum of the Yorkshire Philosophical Society. By the Keeper of the Museum, Walter Keeping, M.A., F.G.S. York : John Samp-
son. 1881. The Foundations of Mechanics. By W. R. Browne, M.A.,
M.I.C.E., \&c. Reprinted from The Enginker. London: C. The Diamonds, Coal, and Gold of India, their Mode of Occur
rence and Distribution. By V. Ball, M.A., F.G.S. London Trübner and Co
Minutes of Proceedings of the Institution of Civil Engineers.
Vol, lxviii. London : Published by the Institution, 1882 .

THE NIEDERBAUM SWING BRIDGE, HAMBURG.
With this impression we publish a supplement containing a section through the pivot pier of this bridge, and an enlarged
view of part of the girder, forming Figs. 7 and 8 described in The Engineer of the 4th inst.

The Steayship Mary Beatrioe.- The new Folkestone and
Boulogne passenger ship made her first passenger run yesterday,
when the trip was made in ninety-three minutes with a two and
a-half knot current against her,

THE MECHANICAL REFRIGERATION OF AIR. By T. B. Lightroot, M. Inst. C.E., M. Inst. M.E. No. III.
In the first class of refrigerators the expansion is accomplished either in a single or double-acting cylinoisure held in solution by the air at its entering temperature and pressure, say, 95 deg . Fah. and 75 lb . per square inch fter expansion, or, say, 50 deg. below zero and at atmopheric pressure, is condensed and converted into ice, which is, or should be, discharged with the cooled air, from which it must be abstracted by a s
The amount of ice formed in the expansion cylinder of a refrigerator working under the temperatures and pressures just mentioned, can be ascertained from o be 0.68 lb . for each 100 lb . of air treated. This formation of ice necessitates the adoption of special exhaust valves, these valves being generally of the mitre type, closed by means of strong springs against a sharp edge, so as to cut hrough any snow or ice that may have lodged upon the seat. Besides the inconvenience which arises from the conversion of all the condensed vapour into ice, there is an actual loss of efficiency, greatest in the tropics, from the liberation of the heat of liquefaction, each pound of water on being frozen giving off 142 thermal units to the expanded

The following diagram Fig. 5 gives the actual expansion curve D J from a refrigerator expanding moist air, also
the line of adiabatic expansion D E, and the theoretic curve D G for moist air. Taking the initial temperature at 95 deg . Fah., and the pressure at 75 lb . absolute, and assuming expansion to be carried out to atmospheric pres-
sure, the final temperatures are 112 deg. below zero for adiabatic expansion, 77 deg. below zero for the theoretic expansion of moist air, and about 50 deg. below zero for the actual case, provided due care be taken to thoroughly clothe all parts of the cylinder and valve chests with a good non-conducting material. The final volumes are proportional to the absolute temperatures.
Refrigerators of the second class may themselves be separated into two divisions-those in which the further cooling of the compressed air is accomplished by passing it through an arrangement of tubes, or other surfaces, exposed directly to the current of intensely cold air discharged from the expansion cylinder, and those in which the cooling action is derived from the spent air passing from the cold chamber. The object
in both cases is to reduce the temperature of the cooled and saturated compressed air as nearly as possible to freezing point, so that, by lessening its vapour capacity, a condensation and deposition of a portion of its contained moisture will be effected.
Taking air, as in the first case, at 75 lb . pressure and 95 deg. Fah., every 100 lb . will contain 0.71 lb . of vapour. On reducing the temperature to 40 deg. Fah, , under constant pressure, it will be found from Table I., corrected for pressure, that only 0.112 lb . of water can now be held in solution. The difference, or 0.598 lb ., will therefore have been condensed, and
can be collected and run off. The heat given off in cooling the compressed air, and also that rendered sensible in condensing the vapour, is imparted to the cold expanded air. In the case just taken, this heat will amount to 1946 thermal units, made up as follows:-
Cooling 1001b, air from 95 deg. Fah. to 40 deg. Fah. 1309 units.
Condensing 0.598 lb. vapour

Total

$\overline{1966}$
And as this must all be taken up by 100 lb . of almost perfectly dry air, its temperature will be thereby raised
82 deg. Fah.

Fig. 6 shows graphically the operation of cooling and expanding air on this system. CD D is a volume of compressed air just cooled by the application of water. By
submitting this to the further action of colder air the temperature is reduced from 95 deg. Fah. to 40 deg. Fah., buen heated 82 deg. Fah. The volume is now reduced to w Fill rand if this is expanded to atmospheric pressure, F E curve from an actual indicator diagram. For adiabatic expansion the final temperature would be 147 deg. below
zero Fah.; but in practice probably 80 deg. below zero would be the maximum degree of cold produced under the
most favourable circumstances, on account of the great most favourable circumstances, on account of the great
losses from conduction of heat from the outside, which losses from conduction of heat from the
occur at such excessively low temperatures.
If the air delivered from the expansion cylinder at 80 deg. below zero is immediately caused to impinge against the tubes of the apparatus for cooling the compressed air, as it is in one description of refrigerator, it will at once receive the heat given off in the cooling and condensation of the vapour ; and if this cooling extends through the range taken in our calculations, the cold air will be raised 82 deg. Fah., and will be delivered for use at 2 deg. above zero. This must therefore be taken as the available temperature for cooling purposes. If the air is not thus heated then the deposition of moisture will be less, and more snow will be formed during expansion. In using this apparatus care should be taken to avoid the formation of ice in the cooling tubes, from the freezing of the condensed vapour.
This is desirable, not only on account of the trouble in This is desirable, not only on account of the trouble in
thawing the ice and clearing out the obstruction from the thawing the ice and clearing out the obstruction from the
tubes, but also to prevent the further sacrifice of cold likely tubes, but
to arise.
In the other division of this class of refrigerators, in which the spent air leaving the cold chamber is used for cooling purposes, there is, of course, no danger from the formation of ice in the cooling tubes, and in this respect this plan is preferable to that just con sidered; but the spent air, which is seldom below 25 deg. Fah., is capable of but little cooling and mois ture-depositing action. This is at once seen by remember ing that if the initial temperature of the partially cooled compressed air is 95 deg . Fah., the final temperature of the cooling air must be actually, at least, 10 deg. less than this, or 85 deg . Fah., so that the difference between 25 deg . and 85 deg . Fah. represents the maximum range through which the cooling air can be heated, and this gives per 100 pounds of air an absorbing power of only 1428 units instead
of the 1966 which would be given off in cooling the comof the 1966 which would be given off in cooling the comwhen the spent air at 25 deg. Fah. is used for cooling and moisture depositing purposes, the compressed air can never be reduced below 58 deg. Fah. in the tropics, or in cases where the cooling water is initially at 90 deg. Fah., and will, therefore, be delivered to the expansion cylinder containing a considerable amount of moisture which will be converted into ice during expansion. Another objection to this method is the space occupied by the apparatus which isnecessarily of large dimensions, and there is a difficulty in for insta it cases where there is no cold chamber, such temperatures in breweries, as well as in cases where com paratively high chamber temperatures are required.
In the third class of refrigerators the moisture is also abstracted by taking advantage of the varying vapour capacity of the air, but instead of the cooling being accomplished by contact with cold surfaces it is effected in the with a trunk cooled by the action of water is introduced into the annulus and expanded to such pressure as gives a terminal temperature of about 35 deg . Fah. The result is the conform of of almost the whole of the moisture, which in the vessel called thist is discharged with the air intaces so arranged that the mist is deposited on them as water which falls to the bottom and is drained off. The surface are proportioned so that the air in passing through is is passed relieved of the water, and dried in this manner piston area to the cylinder, expanded becharged cooled and practically free from snow ready for use.

Fig. 7 shows this method of expansion. The volume o air C D at 75 lb . pressure and 95 deg. is expanded, according to the curve D F, the pressure being reduced to about 40 lb . absolute and the temperature to 35 deg. Fah. It is then exhausted and passed through the water separator admitted behind the piston, and the expansion continued this line being nearly a true adiabatic curve FG, perature being about 55 deg . below zero. D E is the adiabatic line as before with a terminal temperature of 112 deg. below zero. According to calculation the curve for final expansion on this system should fall little below the curve for moist air expansion given by line D G in Fig. 5, as the loss due to the setting free of the heat of liquefaction in the formation of ice is almost entirely avoided. In practice, however, from conduction of heat which always takes place, no matter how carefully it is guarded against, the final temperature is always a little higher, though the actual result comes much nearer the theoretic than in the case shown in Fig. 6, in which by reason of the very low temperature attempted the losses from conduction are unfortunately much increased. that above-named pressure and temperature expanded on thi system :-
Amount entering first expansion cylinder
Amount remaining after passage through separator...
${ }_{0}^{0.711 \mathrm{~b} .}$
$\overline{0.59} \mathrm{lb}$ 。

The 0.59 lb . is run out as water, and of the balance of $0.12 \mathrm{lb} ., 0 \cdot 1 \mathrm{lb}$. will be condensed and converted into ice
during final expansion and discharged with the air, the emainder, or 0.02 lb ., continuing in the state of vapour in the cold air. The abstraction of water is therefore precisely the same as in the case treated in Fig. 6, but
while there, in order to obtain the cooling of the air and while there, in order to obtain the cooling of the air and
consequent condensation of vapour, the cold air after consequent condensation of vapour, the cold air after
expansion had to be heated by 82 deg. Fah before it expansion had to be heated by 82 deg. Fah. before it
could be delivered for use, in this case the air at 55 deg below zero can at once be utilised, and full advantage taken of all the cold produced. In order to allow for any variation in the temperature of the cooling water the cut-off valve of first expansion is made variable, so as to ncrease or decrease the ratio of expansion according to the increase or decrease in initial temperature, and this adjustment not only maintains an uniform abstraction of moisture in all climates, but prevents alteration in the temperature of the air after final expansion.
In these articles but little reference has been made to the details of machines for carrying out the various processes of compression, cooling, and expansion. These resent nothing special beyond requiring that careful design and selection of material and workmanship, which are just as much to be desired in an ordinary steam engine or machine as in an air refrigerator. While, however, in a steam engine a slight leakage at the slides, or bad adjustment of them, may only affect the result in so far as to cause a fractional increase in coal consumption, in a refrigerator the same defects, without being what would ordinarily be called very excessive, may yet be sufficient to cause the air to be delivered some 20 , or even 30 , degrees higher than what would be attained with better workmanship and construction. To produce cold air, heat must be converted into mechanical work during expansion, and cateris paribus, that machine in which expansion is most efficiently performed will best discharge the function of a efrigerator.
In conclusion, it should perhaps be pointed out that though the adiabatic curve for the expansion of a perfect gas has for convenience been taken as the basis for all comparisons of expansions, the curve actually to be aimed at is the adiabatic for air saturated with aqueous vapour. This moist air expansion curve, as it is called, differs slightly from the adiabatic for a gas, inasmuch as owing to the continual condensation of vapour as the temperature is lowered, heat of vaporisation is liberated, and being taken up by the partially expanded air, its temperature is thereby raised. Below 32 deg. Fah. heat of liquefaction is also set free on the conversion of the condensed vapour into ice, but the quantities of moisture existing as vapour at any temperature below this point are so small that the curve afterwards almost coincides with that for a perfect gas.
For any known temperature and pressure the volumc and the quantity of contained vapour can of course be easily ascertained by the formulæ already given, but the actual construction of the moist air curve involves the use oxpressions much too elaborate for reproduction here hough they have been carefully worked out by that able mathematician, Mr. J. McFarlane Gray, to whom the writer is also much indebted for many valuable hints and suggestions.

IMPERIAL DOM PEDRO II. BRIDGE.

The engraving we give this week on page 104, illustrates a bridge, in the design and construction of which are features of an essentially practical and important character. This structure threefold purpse Bahia Rail waypose of carrying the Brazillan Imperial Central Bahia Railway; to form a public highway, and lastly a foot-bridge
across the Paraguassa River, between the cities of Cachocira and Sao Felix. The principle that has been observed by Mr Clemin son in designing and carrying out this work is the elimination of all skilled labour, by utilising the material just in the condition that it leaves the rolling mill, and its treatment throughout by machinery only. We shall publish details in another issue, when we shall describe the methods and appliances that have been devised and employed with great success in point of economy in the cost of the work. The inception of the work is due to Mr. Hugh wilson, C E., whose energy and judgment in guiding the Brazilian Imperial Central Bahia Railway to its present high recognition at the hands of his Majesty the Emperor, who
ren graciously permits the bridge to be named after himself. This work is being carried out under the approval of Mr. A. L. Imperial Bahia Central Railway Company.

CHARLES EDWARDS AMOS.

The death is announced, on the 12 th inst., of Mr. ChasEdwards Amos, at the age of 77, at his residence, Cedars-road, Clapham Common. Mr. Amos, like Sir William Cubitt and others, began life as a millwright, to which he served an appren-
ticeship under Mr. J. Wilkinson, at Elm, Isle of Ely, and early started on his own account, for in 1855 he had been in business sixteen years as a manufacturer of engines and machinery, and was well known as a very skilful millwright and ingenious mechanist. Mr. Amos was early associated with Mr. James Easton, and was ene his partner in 1836. Under his directions in 184 he Government waterworks in Trafalgar-square for the supply of the fountains and of all the Government offices. These works were commenced in 1844. A good supply of water was obtained to a depth of 300 ft ., and a second well to a depth of 168 ft ., the two wells being connected by a tunnel 400 ft . in length. In 1859 a paper on these waterworks was read before the Institution of Civil Engineers by Mr. Amos, and a lengthy discussion folCowed it. Mr. Amos b
For thirty years he was the partner of Mr. Easton, and with him was consulting engineer to the Royal Agricultural Society. His practical ability and mechanical ingenuity was here applied in the arrangement and conduct of the important trials of steam and other machinery which used to be carried out by the Royal Agricultural Society until its council comprised members interested in the trials. When Mr. Amos retired in 1866, the firm of Easton and Amos became and remains Easton

A NEW FORM OF GIRDER.

Some experiments were conducted some months ago at the Pacific Rolling Mills, of San Francisco, with a form of cast iron girder, the invention of P. H. Jackson, of that town, late Chief in New York. This girder, in various detail, we illustrate herewith. Mr. Jackson hopes a great deal from his design, and many will agree with him that cast iron has without cause fallen into bad favour amongst engineers and bridge builders. Mr. Jackson thus described his designs in the Mining and Scientific Press last year :-
"By this formation cast iron may be made into girders for long spans, used compressively as in cast iron columns,

having a resistance of 60 per cent. in excess of wrought iron -that is comparing the compressive resistance of wrought that its defective strength for long spans may be avoided by shert sections, and the tensile strain on the rods utilised to destroy the power of the load to rupture the arch. The prime cost of the 25 ft . girder was 150 dols. The girders in common use in this city to sustain 100 tons and 25 ft . long, supported only at the ends, are sold at about 350 dols each. Fig. A of the engraving is an elevation of a girder experimented on.

Length, $25 \mathrm{ft} . ;$ distance between supports, 23 ft . 2 in.; height from bottom of tie to under side of arch, 2 ft . 3in. The cross section and the greatest height 10 in . Two of $2 \frac{1}{2} \mathrm{in}$. diameter wrought iron tie rods sustained the tensile strain. Fig. C shows the knuckle joint, the round cast on the centre piece, and the socket cast on end pieces, and with the strut cast on same piece, this latter resting on the bottom of the tie rods as there shown. At the top of this arch will be seen a space of $1 \frac{1}{4}$ in. Whatever may be the deflection, no parts of the arch, excepting the knuckle joint, touch, so that compression is only exerted on the line of the bottom flange. The cross section of arch-see ro sustain 16 in brick wall. consequently, from its broad bade ing for the wall, it is larcely in excess in compressive resistance to the tensile canacity of the rods. The following is the cost of this girder in San Francisco, where materials and labour are higher than in the Eastern cities and in Europe :-

$\begin{array}{r}\text { Dols. } \\ 100 \cdot 10 \\ 40.59 \\ 5.50 \\ 3.00 \\ \hline 149 \cdot 19\end{array}$
Had this been made to sustain 186 tons as a safe load, the breaking load, three times greater-the same casting to be used,

3080 lb . casting, as before $\%$
Three 3 .
in. rods,

Dols.
100.10
87.78

ther expenses
Difference
$48 \cdot 19$ dols.
In the experiment at the Pacific Rolling Mills this girder was loaded with 117 tons and 1741 lb . of railroad iron, the length foundation on which the girder rested settled 7in, so that loading had to be stopped. I have no doubt it would have carried 225 tons, or until the rods broke. At each of the abutting ends a lamina of lead was used to fill in between the castings, which were not nicely fitted, as the strength at this place was so much in excess of requirements. This was to make up for the
irregular surfaces, the draught of the pattern making it fuller in the middle in each piece. To make up for the closing up part of the lead when the compressive force was exerted, as well as to at the joints above the true arc. The same rule applies to each one of these three sections as that of a continuous arch in one
piece of its length; that is, they are subject to a bending piece of its length; that is, they are subject to a bending moment and a thrust force, and both compression and tension are brought into play, as in a straight girder, but less of previous part of this article But it must be mentioned in a that the compressive fore. in must arches, or sections of the long arch, equivalent to three smal girders, each 7ft. 9 in . long, is equal to the compressive force of the whole length, 23 ft . 3 in ."
Figs. 1, 2, 3, 4, and 5 show a railroad bridge which may be made 500 ft . in length, and of a suitable number of bays. It will be seen that the top of strut is round and the ends of arch are socketted to meet the round of the strut. Provision is made to prevent the girder rising by being loaded only at one end with a tendency to raise at the other, as by a railroad train on the one end. This is effected by the bottom edges of casting pressing together. It will be seen that the ends of arch on outmade for long spans by widening the ends where they abut and made or the strut. To sustain the bridge floor wrought iron rods,
enclo enclose the strut. To sustain the bridge floor wrought iron rods, strut, or a wall on top and floor beams laid on it."
This construction Mr. Jackson thinks will be found to be much cheaper for equal strength than any now in use.

YOUNG'S PATENT SPEED INDICATOR.

The want of an instrument which will instantaneously anc correctly indicate the speed of dynamo-electric and other machines adapted to run at high speeds, has been often experienced by engineers and others employing such machines. This wan is effectually met by the instrument shown in the annexed illus tration, which is a portable speed indicator, and can be applied to rotating shaft in the same manner as the counters hitherto employed for ascertaining the speed of dynamo and other in that it indicates the number of revolutions per minute at a glance, and without the necessity for using a watch or clock

in conjunction with it. Owing to its construction, moreover each little machine can be minutely adjusted during final testing in the manufactory, and its indications may be so correctly fixed that it will show the variations in the speed of a machine caused employing machines for producing the electric light. In addition to the portable form shown, these instruments are made to be permanently attached to the machines. The indications are effected by means of a small high-speed centrifugal governor arranged within a casing as shown herewith, and acting upon an index or pointer by means, shown in Figs. 2 and 3. Two or more spindles are provided as shown, upon which to place the carrier or thrusting against the end of the shaft. These spindles are fitted with multiplying or reducing gear, so that both high and low speeds can be indicated, the dial having two or more ments have now been uspor ther instruneers with great success, and have in every case given satisfaction those employing them. These speed indicators are manufacture in a durable and highly finished form by Messrs. Elliott Brother of Charing Cross.

In Figs. 2 and $3, \mathrm{~A}, \mathrm{~A}^{1}$, are the governor balls provided with arms a, a^{1}, and connected to arms b, b^{1}, on the sleeve B. The arms a, a^{1}, are connected to the fly-wheel P , by a plate n, passed
ver a screwed tube formed on the fly-wheel P until it rests gainst the fly-wheel, and a nut n^{*} is then screwed down over it. The said plate n is formed with lugs n^{1}, n^{2}, for the arms a, a^{\prime}.

FIC.R

FIG. 3.

The fly-wheel P is fitted upon the spindle D, so that, when the said spindle is rotated, the fly-wheel will be carried round with it by friction as soon as the inertia the fy-wheel is The spindle D passes through the casing to receive the carrier L^{1}. The pinion l^{2} is fixed upon the spindle D , and gears with the spur wheel m fixed on the spindle M, in bearings m^{1}, m^{2}.

TENDERS.

BREWERY AT TADCASTER.

The invitations to tender for a 60 -quarter brewery at Tadcaste ${ }_{\mathrm{L}}$, with cooperage, drying shed, stores and offices, boundary walls, \&c.,
for Mr. John Smith-Messrs. Scamell and Colyer, 18, Great George-street, Westminster, S.W., the quantities by Messrs. R. L. Curtis and Sons, London-resulted in the following tenders :-

The Phosphor Bronze Company, Limited, v. Billington. -On Wednesday last, before the vacation judge, Mr. Justice North, Mr. Aston, Q.C.-with whom were Mr. Webster, Q.C., and Mr. dendant, until the hearing of the action, from advertising certain metallic alloys, known as "phosphor bronze." An order was made restraining the defendant from so advertising any sueh metallic alloys, and the defendant was directed to keep an account. Mr. Whire was the solicitor . for the plaintiff

THE DOVER-CALAIS CHANNEL BOATS.-THE NEW S.S. INVICTA
Last Saturday morning a special train left Victoria for Dover with a number of guests invited to make the first trip to Calais
on board the new Channel steamship Invicta, which has been specially designed by Mr. Ash for the Dover-Calais passage. of the London, Chatham, and Dover Railway Company ; Mr. superintendent ; Sir Frederick Bramwell ; Lord Bathurst; Sir S. Waterlow and Lady Waterlow; Mr. Cunningham ; Lord
Kilmorey; Sir E. Sullivan ; Mr. Blackwood, of the General Post-office; ; Mr. Calceratt, of the Board of Trade ; Sir T. Bruce ;
Mr. Maudslay ; Mr. Field ; Mr. Peter Rolt, chairman of the Thames Ironworks. Company; General Newdegate ; Major
Dickson, M.P.; Colonel Rice ; M. Cousin, director of the Northern Dickson, M.P.; Colonel Rice ; M. Cousin, director or the Northern
Railway of France ; General Du Plat, and about 150 others. The whole party was welcomed by a deputation of the Mumicipal The Invicta passed the Dover pierhead at 11.34 a.m., and the and
11 minutes, and according to another, of 1 hour $12 \frac{1}{2}$ minuttes.
On the return trip the distance was run in 1 hour 14 minutes ; sea very smooth; faint breeze from the E.S.E.
The Invicta, which is built of steel, is 312ft. long, 33ft. beam, 17 ft . 3 in . depth of hold, and engines of 600 nominal horse-power.
The engines are expected to indicate 3900 -horse power. The engine room is 70 ft . long, and there are eight, boilers. The draught of the ship is 1251 tons, and the builder's measurement
1647 tons. The Invicta has an upright stem and stern and rudder at each end to enable her to get out of the entrance channel of the port of Calais, in which there is not room for her
to turn. Her builders are the Thames Iron Company and she to turn. Her
has been fitted width orscillating engines by Mespsss. Mauddslay
and Field. When taken over she will become the property of the London, Chatham, and Dover Railway Company, which owns all the passenger steamships rumning regularly between
Dover and Calais, although some of them which carry the French mails are obliged to sail under the French flag.
Passengers embarking on board the Invicta in wet weather have entire shelter eeven while on deck, under the promenade
deck, which is the full width of the ship. There are two saloons, the largest of which is 96 ft . long. The refreshment room is separated from the cabin, so that sea-sick passengers win not be will not be surrounded by a chorus of sea-sick passengers. The
ship has six watertight bulkhead compartments, and is both luxuriously and elegantly fitted up. She has a range aft of fourteen private cabins. Swan's electric light will illuminate
the saloons, engine-room, and other parts of the ship between decks at night, and a large electric lamp is fixed upon each
paddle box. The two paddle-box electric lights will be used only when embarking or disembarking passengers alongside the
piers. The dynamo machines are driven by a Brotherhood threecylinder engine. The engines of the Invicta have cylinders 80 in
in diameter, 6 ft . 6 in . stroke, 30 lb . pressure of steam, jet conin diameret, the boilers have six furnacess each, fired amidships. She is fitted with Brotherhood's steam reversing gear. As above stated all the passenger steamships plying regularly
betweenDover and Calais are the property of the London, Chatham, nd Dover Company, which, in addition to the Invicta, possesses nine passenger and three cargo boats, five of which sail under
the French flag, and are manned by French crews, an imperative necessity to enable them to carry the French mails. The boats steaming under the English flag are manned by English sailors;
each country carries its own mail under a separate contract. The English boats carry the night mails, and the French boats the day mails.
The following boats sail under the English flag:-The Maid of Kent, paddie-wheel steamer, 200tt. long, 24 ft . beam, 334 tons
gross, nominal horse-power 160 , average speed 15 knots. She is
one of the best of the old arge for the port twenty years or Her three sister vessels, the Samphire, Breeze, and Wave, are of the same construction. All these vessels, which are of steel, were built in 1861-62
The boats sailing under the French flag are the 30.6 ft . long, 26 ft . 6 in . beam, gross tonnage 497 , nominal horse power 240 , average speed 15 knots , built of steel. The Petrel is
the same. The Prince is built of iron, 206 ft . long over all the same. The Prince is built of iron, 206ft. long over all-she
has a bowsprit 2ftt. long -horse-power 180 . The France, also
Tron built is the has a bowsprit 24 ft . long--horse-power 180 . The
iron built, is the same. They were built in $1862-64$.
one
The well-known twin ship the Calais-Douvres, which sails daily during the summer under the French flag and a French combeam over all 63ft., and is driven by two wheels between the pposite directions at the same time, the ship turns upon its yer tical axis. The nominal horse power is 600 , and the speed 14
knots. In bad weather she compares relatively more favourably knots. In bad weather she compares relatively more favourably
in speed with the other vessels, because her wheels are always in the water, and are not so much knocked about by the waves. She is taken of the route in the winter, when passengers are
fewer, because she is such an expensive boat to run, but in the summer she works at a profit, irrespective of the circumstance
that she also brings traffic to the railway. By her steadiness she reduces the amount of sea-sickness, and apparentlly by about 75 per cent.,so for as average statistics once carefully collected by
the London, Chatham, and Dover Railway Company - can throw any light upon a problem so intimately connected with the
uncertainties of organic life. The three ocrew cargo boots are the Chatham, built in 1873 ,
of iron, 378 builders' tonnage, 168 ft . long, 22 ft . beam, nominal of iron, 378 builders' tonnage, 168 ft . long, 22 ft . beam, nominal
horse-power 80. The Calaiss built in 1874 , is the same. The
Paris, built Paris, built of iron in 1878 , is 170 ft . long, $22 \cdot 6 \mathrm{ft}$. beam, nominal
horse power 85 . At present three passenger shins horise power 85. At present three passenger ships run each way
daily.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
HE mills and forges remain in Correspondent.)
operation, and durging remain in steady-many of them in active-
started for the week on Monday instead of Tuesday
Prices show a tendency to strensthen for most
Prices show a tendency
of rolled and of crude iron.
Ton in chief feature of the market this week is a rise of 1s. 3d. per
Wolvere pigs of the Barrow
 ther brands of hematite iron remained unaltered upon my last
पutations, namely, from \&3 2. 6. to \&3 7s. .d., acocoring to
district. The same tendency is not seen in
district. The same tendency is not seen in all-mine pigs. Nor
are purchasers in the market for hematites to any considerable
extent, consumers having largely satisfied their requirements to
the end of October, and in a few cases to the end of the year the end of October, and in a few cases to the end of the year
New brands of Northampton pigg ontinue to be placed upon
the market. Hunsbury Hill is a new brand. It is being offered at 47 s . 6 d . Wellingborough remains firm at 50 s., yo
there were
45s. Willingswerth irthamptons of notrocurable to-day at down to pative part-mine quality, was from 47s. 6 d . down to ths., and there were cinder pigs to be hat hat to 40 s. Spring Vale pigs, which are estill being turned out at the rate
from 1000 to 1200 per week, were quoted at, for hydrate sorts $£ 3$ 2s. $6 \mathrm{d}$. ; mine sorts, £2 12s. 6 d .; and common, £2 2s. 6 d . per
ton.
Lincolnshire were mostly 50 s . for reliable descriptions.
Thumber of furnaces now at work in the Staftordshire district has been reduced to forty-sever, the Union Company, West
Bromwich, having blown out one for repairs. It is satisfactory bromwich, having blown out one for reparrs.
that, with one or two exceptions, no heavy stocks of unsold pigs are held in the district at the present time.
Merchants and large consumers of common and ordinary bars of the most serviceable sections were desirous, in Birminghan, to
place orders for forward delivery, but they were not generally suc-

 Marked bars keep strong at £7 10s., with
Round Oakk brand. High-class rivet irion
better reauest both for home
Girder bars and plates are still going
the yards of the constructive engineers, but new the yards of the constructive engineers, but new orders do not keep
level with the orders worked out, a slackened demand for bridge
and roofing work for India being noticeable-the result mainly of and roofing work fa
the war in Egypt.
Boile-plate orders are sought after at $£ 8$ up to $£ 9$ and $£ 910$ s. The boiler-plate mills remain the least actively employed.
Good orders are being received for best stamping sheets. Naker to-day reported the receipt of more valuable advices this week than
last, and for prompt delivery a little more money was here and there required. Medium sheets were demanded by the merchant and the galvanisers. There were few firms who roll this class of
iron who were anxious to book. They sought from $£ 10$ to $£ 10$ and $£ 1010$ s. for latens, $£ 9$ for doubles, and $£ 85 \mathrm{ss}$. for singles. Excepting at impossible prices, hoops were not asked for. The
best offers which the holders of baling hoop specifications were prepared to make were 5 s. under the lowest figures that most
makers would quote. Buyers expressed themseves able to place
orders orders at less than the $£ 610 \mathrm{~s}$. mostly asked. For bedstead stri) coopers' hoops.
ago, the influence of were scarcely so strong as they were a week having a slighthly of prejudicial influence
remain at:--Furnace coal, east of Dudley, 10s.; west, 9 quotations slack, best, 5s.; and medium, 4s.; good mill coal is fetching 7s. 6 s ., anu orge coal is to be had down to 5 ss . 9 d . per ton. To-day the
quotations were strengthened by a possible joint action among the colliers throughout several of the districts to restrict the output to
get up wages the guestion being about to get up wages, the question being about to be debated with more
persistence than heretofore at a conference of miners in Birming ham. Colliery owners hesitated to-day to book forward. and is carrying forward a larger balance than a year ago. Beyond the slackened inquiry for constructive engineering work
in India, the influence of the war in Egypt is most seen in the susIn India, the influence of the war in Egypt is most seen in the sus-
pension of the demand lately so considerable in pumps and other irrigation machinery and general manufacturing appliances of a mechanical sort, and the hard ware firms are complaining that tho distribution orer a wiey area, extending even to Constantinople, ar not now being bought.
Camp requisites to the order of Go
make up for some of the foregoing loss.
The engineer to the South Staffordshire Waterwor Compan The contractor haw reservoir at Burton is finished and in full use. field, Wylde-green, and Boldmere, and the pipes are all charged under pressure, and are now giving a constant supply to those company justifies a 4 per company justines a 4 per cent. per
about £isoo being carried forward.
The electric lighting companies are alert in this part of the
kingdom. Hitherto the absence of competition has always led to lingaom. Hitherto the absence of competition has always led to
the tacit acceptance by the Corporation of Lichfield of the annual tender of the local gas company. This year, however, the contract is not to resolve itself into so formal a matter, for in addition to light company has offered to company, an enterprising electrio If the electric company should secure the contract they will ereet
incandescent lamps at various points commanding the streets of incandescent tamps at various points commanding the streets of
the city, and they would be in a position to lay on private supplies to any reasonable extent.
the next annual contract conal gas company when the time for the ninator. The Birmingham and Warwickshire (Brush) Electric
Light
Lighting Lighting Company has offered to supply the local authority there
at a price equal to the cost of gas, namely, 3 s . per 10000ft., assuming that the contract is restricted to street lighting. The Streets Committee of the Wolverhampton Corporation to make a mittee refrain from taking any action at present
The directors of the Miidiand Railway Carriage and Wagon
Company, Limited-Birmingham-have decided to real payment of a dividend at the rate of 5 per cont to recommend the payment on dividend at the rate of 5 per cent. per annum on the
ordinary, and 6 per cent. per annum on the preference shares for
the past year. The Worhampton. Tramways Company, though they have eecived £481 less on this than in the previous half-year, yet are able to declare the same dividend of 3 s . per share.
Sixty of the members of the South Staffordsh
Nining and Mechani
Mining and Mechanical Engineers went on Monday to well Park Colliery ; to Messrs. Tangye's Limited ; and to the HamAt Sandwell Park they were shown the endless chain arrangemouth, to the boats on the canal, together with the fine slack
mouth
hope hopper. These appliances were in splendid working order, and they were effecting economy in time and labour. The pit now
contains $10 \pm$ miles of gate rooding, and the huge fan still continues to ventilate the whole. The new duplicate pit shaft and winding
plant are now advanced to the following state :- The pair of large plant are now advanced to the following state :- The pair of large
winding engines, eight boilers, underground hauling engines, bricks, and other materials have all been secured by contract at low prices, and considerable progress has been made in the erections.
The shaft has been sunk to a depth of 75 yards, and is being rapidly proceeded with. As much of this plant as was erected was criti-
cally examined by the engineers, and the proposition to use a future hauling machine for the purpose of sinking was considered an
At Messrs. Tangye's the party divided, but the whole works
were visited. Some went through the steel works, where Siemens' process is in use a and they admired the gas producers, whereby
the finest slack is converted into gas to feed the boilers. The pump shop contained specimens of the Soho engine, the Colonial the firm in process of testing. Shipping hoists, pins, brasses,
blocks, \&c., wwere all shown; nor were the extensive moulding,
fitting and blacksmiths' shops overlooked
fitting, and blacksmiths' shops overlooked.
This week a newv central fire brigade
erected at the Upper Priory, Birmingham,
to public inspection. The site has the advantage of being easy of
cocess from most parts of the town. The brigade premises comprise access from most parts of the town. The brigade premises comprise
residence for the superintendent, houses for the assistant super"flat", system, an office and waiting-room, a large engine-house
"5ft. by 17 ft , which will afford space for six engines, extensive stabling accommodation, $\begin{aligned} & \text { rowns ther } \\ & \text { toft. high for drying the hose, which can be hean }\end{aligned}$ temperature of 120 deg., and a large drill wround with a glass roof at the end. Two men will be on duty at the station day and night, stations, theatres, \&c.,.,and with the central station of the Tele-
phone Exchange Conpany, which in Phone Exchange Company, which in turn is in communication with many of the large manufactories of the town. The ironwork for
the buildings has been supplied by Messrs. Hassall and Singleton, and the total cost has been some $£ 220,000$. The Mayor of Wolverbampton and the chairman of the Chamber of Commerce have each had a formal suggestion put before them
by Mr. A. S. Hill, Q.C., M.P. for West Staffordshire, touching the practicability of promoting an industrial and art exhibition in
Wolverhampton, to be held next year, similar to that which was beld in the same town some twelve years ago.

NOTES FROM LANCASHIRE.

Manchester:-There is just at present neither very much buying Eoing on nor any great pressure to sell in the iron trade of this
district. Consyu the present, and with heads of firms ins, many cases away for the bolidays, very few orders of importance are being given out.
Makers, on the other hand, are still sending away large deliveries against contracts, and as these are keeping them well engaged,
they are for the moment indifferent about further orders quently, although the market is dull so far as the actual weight of new business coming in is concerrned, a firm tone is maintained as
regards prices, and where sales are made they are at fully late
There was only a moderate attendance on'Change at Manchester In Iues for delivery equal to Manchester Lancashire pis iron remained at 46s., less $2 \frac{1}{2}$, for both forge and foundry qualities, with distant brands, such as Lincolnshire, ranging from 47s. 6 d . to
48 s .6 d and 49 s ., less $2 \frac{1}{2}$; and Derbyshire from 48s. 6d. to 50 s . The fon, less $2 \frac{1}{2}$. . firon trade is steady, most of the forges in this bents being well sold over the remainder of the year. For homer requirements the demand is only moderate, but there are fair
shinping inquiries mainly for sheets and hoops. Bars are not in shipping inquiries mainly for sheets and hoops. Bars are not in
very pressing demand, and boiler plates, which seem to be the very pressing demand, and boiler plates, which seem to be the
weakest section of the market, are only dull cf sale. For delivery equal to Manchester or Liverpool prices average about as under:In fid. to $£ 810$ s. per ton. . In the ore trasty there ised by contract. For delivery into the Manchester district purple ore can be bought at about 16s. 6d., and There is still very little actual change to notice in the condition of the engineering trades of this district, except that although
almost every branch continues busy no advance is being made, and he short time back. This view of the situation is borne out by reports Hen. The usual from sources representing both employers and the branches connected with the Amalgamated Society of Engineers in this district show that the shops all through continue fully employed, and there is little or no variation in the number of men on
donation, the percentage of out of work members remaining at $1 \frac{1}{2}$ 2 of the total membership. Steady employment is reported as same pressing enquiries for hands as was the case in some departments recently.
There is one point, whilst 1 am referring to the engineering trades, which is deserving of notice, and this is brae abormal
condition of the iron shipbuilding trade. This branch of trade xceptional activity in shiphuilding, with the comparatively high rate of wages obtained by the men, has a disturbing influence upon
other allied branches of industry, including iron making and ngineering, and tends to a restless feeling amongst the men. So that they are not reaping very much advantage financially from that they are not reaping very much advantage financially from
the activity in trade, as, where they have been able to get any dvance in prices-which has been only to a limited extent-this has at once been followed by imperative demands from the men for One-half of the new we;
ear Manchester, which has been river Irwell, at Throstle Nest, pany, with the view of obvia the Bridgewater Navigation Com-low-lying districts of Broughton have been periodically subjected, is now completed. The weir is being constructed on an altogether new principle, and consists of a number of tilting sluice
gates on French Barrage principle, which are being substituted gates on French Barrage principle, which are being substituted
for the previously fixed weir and dam boards. The gates are designed to open automatically when there is 3 ft . head means of multiple crabs. The width of the weir is 140 ft . and it is divided into fourteen sluice gates, each held on a swivel in the
centre, from which they rise fft. at an angle of about 45 deg. In ordinary times there is a fall from the crest of the weir of about there is a back-pressure rise of 2ft., so that with 3 ft . of water going over the weir there would be a back pressure of 6ft., which
would be sufficient to tilt up the sluice gates to a dead level, and gates, would be allowed to pass away freely without obstruction The efficiency of the new weir has been very keenly criticised, and secure the object of preventing a recurrence of floods in the district. Although this question has not yet been practically put
thoroughly to the test, the portion of the new weir now completed thoroughly to the test, the portion of the new weir now completed so far has proved very effective, whilst a weir constructed recently nott Mill on similar principles has

The provisional committee appointed in connection with the proposed construction of a tidal navigation canal to Manchester ontinues expressions of support received from corporate and other bodies engineers are pushing forward rapidly their investigations by borings and surveys, and although no definite report can be expected at present, so far I understand nothing like any serious obstacle
engineering point of view.
Trades' Mutual Insurance Association, the object of Liability Act, will hold its first annual meeting in London during the course of next month. This association is in connection with
the Iron Trades' Employers Association, whose central offices are in Manchester, and I understand that the report to be presented will show very satisfactory results for the first year's working. premium more than 300 per cent. below the rates asked by ordinary
insurance offices in Manchester and London for covering the same
risks, and even upon this low scale the receipts have been found
considerably more than sufficient to cover the working expenses and considerably more than suffic
every claim that has arisen.
An extension of Messrs. W. H. Bailey and Co.'s Albion Works,
Salford, is being carried out with the view of practically doubling their present facilities for the production of the varied specialities manufactured by the firm. The addition will consist of a building
four stories high, covering about an acore of land, and special four stories high, covering about an acre of land, and special
machinery is being designed in connection with the boring and anufacture of valve and steam cocks.
The coal trade is without material change. The demand all
hrough continues dull in proportion to the supplies, and pits in most cases are not working more than about four days a week.
Quoted rates nominally are unaltered, but low selling continues to Quoted rates nominaly are unaterede, and for quantities prices are very irregular. At the

 s, however, being done, but at very low figures, Lancashire steam btainable at 6s. 6d. to 7s., and seconds house coal at 8 s . 3d. to Ss. 6d. per ton.
For ooke a tolerably good demand is kept, and prices are steady
at about 9 s . for common up to 11 s and 12 s . per ton for the best orts at the ovens,
The St. Heleus
The St. Helens strike continues, with the men apparently more held in Manchester next week, when propositions from various Lancashire districts for an advance in wages are to be brought forward. As the winter approaches there seems to be more than a
possibility that the wages question may again become a disturbing rade
Barrow.-Considerable progress has been made with the business in the hematite pig iron market, and, as I foreshadowed in my ast, prices have gone up 6 d . per $2,58 \mathrm{~s}$.; No. 3 , 57 s ., net, f.o.b. west
quoted at 59 s . per ton. coast ports. American demands for some little time past have
shown an appreciable increase, and it has been evident that American users would require a heavy tonnage of metal ; but during the
past week the demand from that quarter has improved very argely, and some heavy orders have been given out. Continental oryers are also showing a much better disposition to give their
ordere prices get much higher. Stocks are getting low on account of the exceedingly heavy exportations. Second-hand
parcels may be said to be nil, as very few are procurable. The pig parcels may be said to be nil, as very few are procurable. The pig
iron market all round is yery briskly empployed, and the prospect prices has a very re-assuring effect on both buyers and sellers, and every confidence is felt in the reaction as being sound and likely to continue. Smelters in various parts are busily pushing forward
arrangements for the re-lighting of extra furnaces, in order to be arrangements for the re-lighting of extra furnaces, in order to be continue to improve weekly. There is an advance to note in the and now the prices are quotably higher, other advances may be
expected, although the output is enormous. Shipbuilders have mproved their position a little. Other industries unchanged. Tron ore in good request at late rates, but a few raisers are able to
get prices a little beyond quotations. Shipping active get prices a little beyond quotations. Shipping active.

THE SHEFFIELD DISTRICT.

THE coal trade in this district, though in a very unsatisfactory state, is not quite so bad as in West Yorkshire. In the southern
division of the county there are several collieries workin fairly well, including the Nunnery Company, who have four collieries London market, varying from 6 d . to 9 d . per ton. At London, according to a circular issued by a leading firm of dealers, an Sheffield district summer prices continue to be quoted; but the slight change in the weather towards cold would soon cause coalwners to issue fresh lists.
In West Yorkshire affai
In West Yorkshire affairs appear about as bad as they can be,
judging by the annual report of Messrs. Henry Briggs, Sons, and Streethouse collieries. The directors state that the year's business has been the most unprofitable ever experienced by the company. The very mild weather prevalent during the past winter deprived the company of the profit which, under the present conditions of
the coal trade, can alone be made during the winter, and
reduced the sales of house coal during the season almost educed the sales of house coal during the season almost
to a summer level. Sales show a falling off during the
year of $£ 22,000$, and although the utmost economy has been exercised, the directors regret that their efforts have not sufficed to make more profit than will meet the interest on debentures, and under these circumstances cannot recommend the payment of
a dividend. They have closed the Streethouse Colliery, and have given twelve months' notice to determine the lease of Stanley Main instead of helping the company, has so far turned out unremunerative, owing to the large number of small faults and the divisions of
coal. The sales of coals made £188,901, other items bringing up the receipts to $£ 198,987$. On the other hand $£ 97,440$ has been
paid for wages, for carriage $£ 39,003$, and after various other items With all this dulness in the eala
read the returns of the business done with somewhat curious to South Yorkshire. No less than 88,256 tons more were forwarded in the past seven months than was the case in the corresponding
period of last year. Last month 49,908 tons were sent by water, nd 64,457 tons by rail, the total quantity forwarded in the seven has been sent in the same period for a number of years. The
export scason has been brisk throughout, no fewer than 385,732 tons having been forwarded during the past seven months, against
278,894 tons in the corresponding period of 1881 . One firm alone, 278,894 tons in the corresponding period of 1881 . One firm alone,
the Denaby Main Colliery, has supplied from January to July,
both inclusive, 90,177 tons, against 58,168 tons in the same period When the sliding-scale ceases to slide up, and begins to slide down, its popularity wanes. At Manvers Main, the other day, the cliffe it ended in a reduction. Then the miners held what reads
like an indignation meeting, in which one of the speakers-Mr. W. Brown, secretary of the Staffordshire Miners' Association-stated
Brown that "the present wages of miners were no more than a bone
thrown to a dog, compared with what they ought to be." The meeting after that passed a resolution in favour of better organi-
sation and increased wages. At Dronfield, on Tuesday, Messrs. Wilson, Cammell, and Co.'s this side of 1883. I am assured, however, by undoubted authority
that the transfer to Workington will take place in October at latest. That the transfer to Workington will take place in October at latest. themselves. Near to the Derwent Works, which have been have lately risen and are still rising. It is stated that with the Derwent Works and the new steel works will be about 83 acres. Steel rails are not so freely ordered as they were, but most of
the local houses are full of work on American, South American, about American, and hame account. Quotations at present are
according to sections. Tenders are invited for 35,000 tons of steels
rails for the Victorian Company, and there is considerable interest
rails for the Victorian Company, and th
as to the placing of this large contract.

The Sheffield
Forge and Rolling Mills Company, Limited,
 year's balance, makes a total availahle for dividend of $£ 4658$, which
permits a dividend of 6 s. per share, and leaves $£ 2407$ to be carried forward to next account. The whole of the balance due to the
vendors on purchase account has been paid off during the year, and a special loan of $£ 1000$ has also been discharged. The
directors report that a considerable portion of the melting fur naces, which had been unoccupied for several years, has now been
let, and there is a fair prospect of the whole becoming tenanted at an early period
The twelfth annual meeting of the shareholders of Samuel Fox was held on Wednesday-Mr. James Halliday presiding. The shareholders an opportunity of seeing the additions to the premise during the past few years. . he sharchoicrs expressed themselve as highly gratified at the condition of the works, and their
greatly-increased capacity. A dividend at the rate of faction was expressed with the management of the concern, special praise beings given to Mri. Fax, the chairman, whosedevo
tion to the interests of the company, the trustees considered, had suggested the question as to whether he was sufficiently com pensated. This suggestion was warmly approved
holders, and there is no dout that the question will soon be
brought before them in a tangible form. The portrait of Mr. Fox, recently presented to him, was on view, and a desire was expressed that an engraving should be sent to each shareholder

THE NORTH OF ENGLAND.

THE iron market held at Middlesbrough was but poorly attended This was partly owing to Stockton races-regarded in the Cleve
land district as justifying a week's holiday-and partly to the tion of Mechanical Engineers.
e tone of the pig iron market was nevertheless firm. The price paid for No. $2 \mathrm{~g} . \mathrm{m} . \mathrm{b}$. was from 44 s . 6d. to 45 s . f. o. b. bo
Middlesbrough, and for forge quality 1s. 1ess. Manufactured iro was also firm. The price of ship plates was from $£ 61$ 15s. to $£ 7$, but makers were not anxious sellers. Bars and angles were quoted
at $£ 6$ हs. to $£ 67 \mathrm{~s}$. $6 \mathrm{~d} .$, less $2 \frac{2}{2}$ discount. The whole of the manufactured ironworks, foundries, and engine works at Stockton an It now appears that the recent purchase of the Moor Ironworks Stockown, ostesesibly yb Mr. A. J. Dorman, of the firm of Dorman,
Long, and Co., Middlesbrough, was not, as was widely stated, on behalf of that firm, and in order to place both works under a single management. The case was this, Messrs. Backhouse and
the Moor Works under a mortgage deed, with an attornment in security for a loan of right to sell at any time should default be made, in order to recove
the above amount. But had any greater amount been obtained by the sale, they could not have appropriated the surplus, even
though they had further claims. They must have handed it over ally. They had, therefore, hardly any uncentived creditors gener
all the wort
 further claim. They were, therefore, willing to sell the works for the amount of their secured debt, as far as their own interests
were ooncerned; but very properly offered it first to the
unsecured value if they chose to buy. The policy adopted by Messrs Backhouse and Co. was a most reasonable and liberal one towards the unsecured creditors. The latter, however, could not agree
 of the wealthy firm of James Watson and Co., iron merchants, of to the bank, and in their joint names ocncluded the purchase, and became owners of the property. It was then obviously in their
power to do what they chose with it. Under all the circumstances however, they decided to transfer it, without profit, to a new limited company, and to admit into the latter on equal terms with enter. Harmony was thus restored by a masterly stroke of policy, for which the principal actors deserve great credit. The works have never stopped, no
expected that they will
The future of the Erimus Steelworks, lately owned by Mr. C. E $£ 34,000$ and a second one for $£ 18,000$. Of course the first mort gagee retains ownership, unless, and until, he is paid off. The general opinion in the district is that, if sold, the property would
not fetch more than his claim, if so much. There is, therefore, nothing to be expected from it for the second mortgagee, mued which has been added within the last year and a-half, is well arranged, and in excellent condition. It is, however, adapted only when rails are being offered at under £o per ton at works. T adapt the plant for the basic process, and to make the mills and
other appliances sufficient for rolling heavy steel rails in large other appliances sufficient for rolling heavy steel rails in large
quantity, would probably require a large expenditure of additional

The North-Eastern Steel Works at Middlesbrough are beginning to make a considerable show. It is expected they will start about January next. They will produce nothing but basic stee. Two
converters out of the four in place will at first be set to work, and converters out of the four in place will at first be set to work, and
one heavy cogging and one rail mill. Rails will be the only finished maducts, but there will probabi
The Durham colliers' 'strike is over. The employers' committe met the workmen's deputation a few days since, the result being complete surrender by the men. They desired to resume work at
once, and agreed to pay the oosts of 500 summonses, together with that the scale price for working the jet seam should be settled by arbitration. Here is the case of a strong employers' and a strong operatives union, with a negotiating committee to act between.
The result contrasts favourably with those which have latterly been obtained by the North of England Nanufactured Iron Trade and the Board of Arbitration, which was supposed to supply the place of both, has shown itself quite incapable of enforcing its own
decisions. Clearly when the latter is remodelled, which is likely before long, it should be made to assimilate more to the syster adopted in the Durham coal trade.

NOTES FROM SCOTLAND.

(From our own Correspondent.)
The Glasgow warrant market has been comparatively quiet during the week. The fluctuations in prices have not been very
great. At the same time a large quantity of iron has changei hands, chiefly amongst brokers, the outside public still manifestin abroad is very satisfactory, and it is now believed that the demand will keep pretty good throughout the remainder of the summer.
The stock of pig iron in Messrs, Connal and Co.'s stores has decreased about 500 tons in the course of the past week.
Business was done in the warrant market on Friday forenoon at

 nock, at Ardrossan, 555s. 6d. and 52s. 6e.; Eglinton, 53s. and The past week's imports of Middlesbrough pig iron at Grange-
nouth were 3910 tons, as compared with 4166 in the same week of howing the total imports to date since Christmas are 147,246 tons. corresponding week of last year. It is believed that an extra
mount of Scotch pigs fully equal to this decrease has been used ere in the manua The Scotch make admitting of this being done.
The malleable works still keep busy, as also do the foundries. is a steady and large de nd sugar-making machinery. Nearly, all the general engineering
orks in Glasgow and the western districts of Scotland have good orders in hand, and marine engineers are, of course, sharing in the ontinued prosperity of the shipbuilding trade.
A strike has occurred of the moulders
A strike at the Carron Ironworks, the men asking an advance which the company does not feel itself warranted in conThe coal trade continues very brisk in the west, there being a pressing demand for ell and main coals for shipment at prices
which are about 3d. per ton better than those recently current. which are about 3d. per ton better than those recently current.
For splint coals the inquiry is not quite so good, but the demand on of the yea rade is active in Fifeshire, with the miners in full employment.
At Burntisland steam coals are quoted at 6s. 3d. to 6s. 6d. per ton, While household qualities are about 7s. 6d. at the pits. y the liquidators of the Benhar Coal Company, Limited the sale 97ructed company of the Benhar and Niddries Collieries, for $£ 30,000$ in February, the same amount in June, and the balance in October, 1883 , the company to get possession of the collieries on payment of the first instalment. The slare capital of the origi
nal company was $£ 560,000$, and it has all been
lost, the price now btain not being sufficient to meet the liabilities, It was, how-

The annual meeting of the Huntington Sulphur and Copper Company was held in Glasgow this week, when the report pre-
sented was not a favourable one. The statement of accounts howed the amount at debit of profit and loss account to be £66,206, as compared with £60,697 last year. Part of the
loss, it was explained, wwas caused by a reduction in valuations made by the new superintendent of the works. Some proposals were made for a rearrangement of the capital among them, being
n increase of it to the extent of $£ 25,000$ in preference shares of $£ 1$ at the rate of 10 per cent. on the amount of the shares paid up.
The Uphall Oil Company, Limited,
ew days ago in Glasgow, to empower the directors to borrow
e20,000. It was explained that $£ 11,000$ had recently been expended
. on new plant.

WALES AND ADJOINING COUNTIES.
Ir was not to be expected that so important a measure as the mount of fractious opposition, and accordingly the tippers made his week a demand for unreasonable concessions, and this being refused struck work. There was a good deal of alarm in Cardiff in onsequence. Pessimists said: "If tippers and trimmers strike no coal can be shipped, there will be no use sending coal down,
nd no need for the collieries to be worked-in fact, a thorough eadiock must be expected all over Wales. This view may have been an innocent one; but I am afraid that it was purposely
used in some quarters to coerce Mr. W. Lewis, and thus
nable the agitators to gain their ends. If so the device was enable the agitators to gain their ends. If so the device was
ill-conceived, for Mr. Lewis has been in the thick of every trike for the last twenty years, and his indomitable resolution in withstanding anything like an unjust claim is known taxed in this episode, for as the strikers only numbered a few
tundreds, sufficient men were soon got together to work the ips, and the regular men seeing this have given way
Hsiness. Both ireat misfortue for anything now to obstruct rders are coming in well, and quotations are firm. In iron and steel good healthy business is being done in all the ompletion.
Orses," and cyfarthfa whas been occupied in blowing up the "old
olearing ground and making preparations or the Rhymney line, which will be brought within the precincts of

 demand being for steel, some of which, brought lately under my notice, is of first-rate excellence. Pig iron is fetching better prices, and large sales are effected. This is probably due to a better tone A petition has been presented for winding up the Aberdare
hhondda Steam Coal Company. This will be heard this week. I Rhondda Steam Coal Company. This will be heard this week,
have not heard, up to despatch of my letter, how it has fared with
the announced sale of Plymouth Works and Collieries. one gentleman prepared to give a moderate amount, but the
hindrance in the case of most would-be buyers is the twelve years' ease. As nere is a lot of virgin ground, and as new sinkings to speculate is not a great one. Anyhow, the sale may be expected to olear the air,
The Taft Va Clydach line this week, and found all in exveellent state. A latrge
coalowner and ironmaster is in treaty for "three pairs of pits" in coalowner and i
this new locality
Numerous single accidents are occurring in the coal districts. During the last month or two there has been an average of one
fatality a day. This in the aggregate approaches the dimensions of a great calamity, but does not receive the attention it should
from the men. I believe that all is now done that con be from the men. I believe that all is now done that can be by coal-
owners to minimise accidents, but the haste of coal getting is leading to some amount of recklessness on the part of the men.
This coal get is considerable. Last week the exports, foreign his coastwise, from a this notwithstanding a large amount of holiday making. Prices
are firm for house and steam qualities, and enquiries justify their
frmness. An agreement has been made with the Great Western firmness. An agreement has been made with the Great W estern
Railway for the extension of the line to Cardigan. Appleby and likely to be the contractors. I had the pleasure of tion. The coal was of magnificent quality. How comes it that this wealthy company have
station for their new town?
the patent Journal. Condened from the Journal of the commissioners of Pat It his onmeto our ntite that some apphiarant of the

 Tending the numumbers of the Speceitraction.

Applications for Letters Patent." *** When patents
name and addres
printed in italics.

8th August, 1882.
3761. Preserving Wood, F. C. Glaser.-(P. J. F Röper, Pinneberg.)
3762. UTiLising the Force of Fluids, E. E. H. Rous. seau, Paris.
373. TeLEFHones, J. J. Barrier and F. T. de Laver3764. PERMANENT WAY, J. Dickson, jun., Seaforth.
3775. Spoons, \&c., E. Hunt. (I. C. Davis, U.S.).
376. Mount 3766. Mounting Ordance, A. C. Kirk, Glasgow.
3767. Deconativg Glass, T. Markham, Manchester.
3768. Lamps, H. Cullabine, Sheffield.

 BRICKS, J. C. Bloommed and
Coke, J. Wood, Flockton.
GUN CARRIAES, P Jensen.-(M. Bussiere, Paris.)
WASHING MACHINE, C. C. Greenway, Streatham 9th August, 1882.
3779. Lasps, B. J. B. Mills. - (W. M. Thomas, U.S.)
3780. Rotary Engines, A. Kissam, London.

 3785. REGULATING AppARATUS, H. Davey, Headingly,
3786. FURNAEES, , Imray. - (C. Rusmann, Hamburg.)
3787. GENERATNG APPar 3787. GENERATTNG APPRAATOUS, H. Davee, Hamburg.)
3788. SEWING MACHINES, J. Imray.-(Grimee, Natalyis, and Co., Germany.)
3789. OXIDIsIG ALCoHoLs, E. A. Brydges.-(D. Sand-
mann, Charlottenbur mann, Charlottenburg.)
3790. PAINT, E. P. Welis, Notting-hill.
3791. FIRE ExTINGuISERE, P. M. Justice,

keerberghen, Brussels.). Miting, Rye. 3792. DIsTILATES, E. K. Mitin, 3993. Doon MaT and SRaper, J. S. Willway, Bristol. 397. Lids or Covers, E. Green, Wakefield.

 Hop Poles, W. A. Barlow.- (F. Borner, Cologne.)
STERING GEA, J. H. Smiles, Stockton-on-Tiees.
Boxes, P. Jensen.-(D. L. Caillat, Paris,
 10th August, 1882.
 Berlin.)
3818. TYPE, J. C. Mewburn.-(A. A. Low and L. K.
Johnson, Brooklyn, U.S.)
 Paris.
8821. ELECTRIC Lamps, F. Mori, Leeds.
3822. ELEETRIC BATrRIEs, F. Mori, Leeds.
3823. KNIVEs, T.Clark.- (l. Kay
 J. de B. de Liman, France.)
3852. ELECRIC MoTors, , H. Emmens, London.
3826. KNITIING MACHINES, A. M. Clark.-(I. W. Lamb Parshallville, U.S.)
3827. Comprssing Ark, O. W. Harding, King's Lynn.
3828. FURNACE LIIIING, W. H. Beck.-(L. Wallet, Paris.) 11th August, 1882.
3829. Ventilating Sewers, \&c., T. S. Wilson and H.
T. Johnson, Manchester. 888. DRYING FABRICs,
88.., W. M. Riddell, London.
8881. ORES, A. K. Huntingdon \& W. E. Koch, London.
3832. STEAM-TRAPS, L. Dove, Stratford. 3832. STEAM-TRAPS, L. Dove, Stratford.
3833. Combing FIBEs, G. Little, oldham, T. Cast- East
wood, Bradford, and J. Green \& J. Fletcher, Oidham. 3834. Requlating AppaAATUS. H. Wileteher, Manchester.
3855. ALUM, ,CC., P. and F. M. Spence, Manchester.
 France.)
3899. TILING, J. H. Johnson.-(J. A. Kay, Melbourne.)
384. NEGKTIEs, D. T. Keymer and F. Theake, London.
3841. Shielids, W. R. Lake.-(I. 3840. NEGETIES, D. T. Keymer and F. Theak, Lond
3841. ShIILD, W. R. Lake. (I. A. Cantield, U.S.)
3842. SUSPENDING WIREs, H. C. Jobson, Dudley. 12th August, 1882.

Inventions Protected for Six Months on
Deposit of Complete Specifications. 3762. UTILIIINo the Force of Fluids, E. E. H. Rous-
seau, Paris.- $8 t h$ August, 1882 .

Patents on which the Stamp Duty of
$\& 50$ has been paid. 3194. Sllphur, W. Weldon, Burstow.-8th August, 181. Sterering Apparatus, W. Clarke, Gateshead.8th Auqust, 1879.
3192. DREsING, © . Bacs, F. and L. Marx, London.

- 8 th August, 1879. 3198. PHosphates, S. G. Thomas, London. - 9 th August, 1879 .

322. D. Champney, London.-11th August, 3306. Making-Up Sheets of Printed Paper into PamPHLETS, W. Conquest, London. -16 Pth ApEr into Past
Augit, 879.
323. OVERHEAD SEWING, C. D. Abel, London.-11th 3226. Overiead Sewing, C. D. Abel, London.-11th
August, 1879.
324. Sewing Machines, S. W. Wardwell, jun., Provi-

 Llanelly.-23rd August, 1879.
325. RADIGGRAPHs, C. Milton, London.-12th August, 1879.
326. Treating Dextrine-Maltose, A. L. Bruce, G.
Stenhouse, W. M'Cowan, and A. Haddow, Edin-burgh.-12th $\dot{A} u$ gust, 1879.9 . Haddan, London. $-12 t h$ A26. Looms for Weaving, H. Lomax, Darwen.-13th
August, 1879.

Patents on which the Stamp Duty of $\& 100$ has been paid.

 2806. Audible Alarm Signals, N. J. Holmes, London. 2823. CLu Tugust, 1875 .August, 1875. August, 1 1s75.
2843. IlLUMINATing Gas, G. Anderson, London.-12th A uqust, 1875.
2870. TICKET-HOLDER, H. J. M. Russell, Ashiesteel.-
14th August, 1875.

Notices of Intention to Proceed with Last day for fling opposition 1st September, 1882. -Com. from D. Lukins. -6 th April, 1882 . 1684. Telephonic Instruments, A. E. Dolbear, Summerville, U.S.- 6 th A April, 1882 .
1695. BrEaKWATERS, G. H. T. Beamish, Ireland.-8th Apro4. RowLoc
April, 1882.
1714. STRAM or AIR Whistle, J. Cran, Leith.-11th
April, 1882 . 1720. Cases for Letrers, W. P. Thompson, London.-
Com. from G. V. Naueth.- 1 th April, 1882. 1755. Ascrrtaining Gradients, P. Jensen, London.-
Com. from E. F. MacGeorge.- 13 th April, 1882 . Com. from E. F. MacGeorge.- 13 th A April, 1882 .
1830. TRavsporting Goods, F. Jenkin, Edinburgh.-
17th Aprili, 1882 . 1852. Preskrving Meat, E. G. Brewer, London.-A
communication from A. Lee, J. A. Wallace, and R. W. Knox.-18th April, 1882,
2142. PLoogHr, C. A. Snow, Washington.-A commu-
nication from H. Quin.-6th May, 1882. nication from H. Quin.-6th May, 1882 .
2455. RAsIsNG, \&c., WinDows, R. J. Iron, Dover.-24th Mal. Arbitectural Work, P. Ross, London.-30th
2541. ARy, 188 . 2679. AtTaching Handles, dc., T. and J. Brooke,
Sheffield.-7th June, 1882. Sheffield. - Tth June, 1882.
3202. Combing Wool, F. Fairbank and J. Robertshaw,
Allerton.-6th July, 1882. 3240. Preparing Plates for Electric Accumulators,
T. S. Sarney and J. M. Alprovidge, London.-8th July, 1882.
3353. BRICK-MAking, G. Dalton, Leeds.-14th. July, 1882 .
3461. Suply, \&c., of WATER, J. Shanks, Barhead.-
21st July, 21st July, li882.
3495. Liviss for Atraching Chains, J. H. Shoebotham
and J. F. C. James Birming and J. F. C. James, Birmingham. $22 n$ d . July, 1882.
3762. UTuIsIvG the Fooce of Fluids, E. E. H.
Rousseau.-8th August, 1882.
Last day for fling opposition, 5th September, 1882 1709. Steering Gear, T. Britton, Sunderland.-11th
April, 1882. April, 1882.
Apriap Burners, W. Lighbody, Edinburgh. -11 th 1717. GAA Burners, J. A. Drake and R. Muirhead,
Maidstone. $-11 t h ~ A p r i l$, , 8882 . 1721. LEAD. PEROXIDE, F. M. Lyte, London.-12th
April, 1882. Ap5. SAP, F. C. Glaser, Berlin.-A communication
from D. O. O. Liebreieh.- 12 th April, 1882 . 1727. Elxcrric MMchines, W. Fisher, Birmingham.-
172th April, 1882 .
1730. Colouring Substances, J. Wetter, London.-A 1730. Colouring Substances, J. Wetter, London.-A
communication from O. Bredt. 12 Ah A Arril, 1882 ,
1735. PIston Packing RINas, A. A. Rickaby, Sunder-
land. $-12 t h$ April 1741. FILLING, drc., Botries, J. J. Varley, London.-
12th April, 1882 . 1743. Moulle 1882 , \&c., FUEL, I. Lilley and F. Morris,
Swanse -12 th April, 1882 . (14. Sewing Machines, A. Guillaume and A. Lam-
bert, Belgium. -12 th April, 1882 . 1779. Crushing Sekds, H. Holt, Hull.-14th April,
1888. 1836. Artificial Stone, W. Walker, London.-18th
April, 1882.
1837. STEAL 1837. STEAM Boilers, J. Imray, London.-A commu-
nication from J. . . .Bordone. - 8 Sth April, 1882.
1857. Brioks and Tiles, W. Blyth, Barton-upon-
 188. LaMPP, A. Leefe, London.-18th April, 1882 .
1866. Purrivying, ©.., RAW Spirits, F. M. Lyte, Lon-
don. $19 t h$ April, 1882.
1875. SEcond 1875. SEcondapy Barteries, D. G. FitzGerald, C. H.
W. Biggs, and W. W. Beaumont, London.-19th
April, 1882.
1956. Elegtric Ben April, 1882.
1956. Elecrric Batteries, T. J. Handford, London.
-Com. from B. Jarriant.- 25 tht April, 1882 . -Com. from B. Jarriant.- 25th April, 1882.
196. MolEsKIN CLoort, H. W. and H. King, Hebden
Bridge. 27th April, 1882. 2156. PREPARING PHoTooraphic Plates, F. Wirth,
Germany.-A communication from G. Meisenbach.
-8 th May, 1882 . -8th May.-A 1882 . communication from G. Meisenbach.
2182. CLocks, A. Harder, Ransen, Prussia.- 9 th May,
1882. 1882. Ornamfnting Ribbons, \&c., A. H. Horsfall,
Coventry. $-11 t h$ May, 1882.

2224. Nitrous Vapours, G. Prim, Mons, Belgium.-
11th May, 1882.
2239. Separating Sugar from Molasses, Prof. Dr. C. 2239. Sepratating Sugar from Molasses, Prof. Dr. C.
Scheibler, Berlin. 11 th May, 1882 . 2544. Colouring Matters, J. Erskine, Glaggow.-A
communication from Dr.C. Konig. -30th May, i882.
2575. REMoVING VEGETABLE MATTER from Woor, J. 2575. REMOIING VEGETABLE MATERR from Wool, J. J.
Wetter, London.-A communication from A. Snoeck. -311t May, 1882 .
2789. Supplyivg Air to Furnaces, J. Howden, Glas gow. - 14 th June, 1882. . Baxter, London.-19th June, 1882. Metallic Printivg, H. Panowski and K. M.
2929.
Ross, London.- 20 .th June, 1882. 3044. PRoDUCOING CERTAIN DERIVATIVES of Alpho
OxyHydro-chinoline, \&c., J. Erskine, Glasgow.-communication from, F. Vorm. Meister, Lucius, and
Briuning.-28th June, 182. tion from L. Trobeen. - 28 th Londone. J -A 1882 . communica3160. Regulating Currents, W. R. Lake, London.-
A communication from
3208. Obtaining the SEPARATIONter. 4 th July, 1882 . Covering from the Natual SNins of on or other
T. Tussaud, London. -6th July, 1882 . 1.
3216. METHYL INDIGO, J. Erskine, Glasgow.-A com
munication from the Farberke vorm. Meister
Lucius, and Briuning. Lunication from the Farbwerke vorm. Meiste
Lucius, and Briuning.- 7 th Jully, , 888 .
3218. CINNAMIC AcID, J. Erskine, Glasgow.-A com
munication from the Farbwerke vorm. Meister munication from the Farbwerke vorm. Meister,
Lucius, and Bruning.- Fth tuly, 1882 , -13th July, 1882. 1882.
3477. CLAY, J. Gillespie, Garnkirk.- 21 st July, 1882 .
3485. TELEGRA PHING, W. B. Healey, London.-A munication from W. W. L. Hunt. - 22 Lond July, 1882 .
3547. Electric CABLEs. J. G. Lorrain, 3547. ELEOTRIC CABLES, J. G. Lorrain, London.-
communication from J. André. 26th July, 1882.
3575. ELECTRIC LAMPs, J. G. Lorrain, London.-27t July, 1882.

Patents Sealed.

(List o, Letters Patent which passed the Areat Seal on the 693. RoLler Mills, J. Qualter, Barnsley.-13th Fe ruary, 1882 . J. Hollingworth, Dobeross. -13 th Fe -
69. Loons, 703. GAs ENGINES, C. T. Wordsworth, Leeds, and H
Lindley, Salford.- 14 th February, 1882 . Lindley, Salford.-14th February, 1882 .
715. VENETIAN BLisDs, R. M. Chevalier, London.14th February, 1882.
732. SUlphate of Alumina, W. Gentles, Widnes. 15th February, 1882 .
754. Hoors, M. Benson, London.-16th February, 1882
777. Recovering Tin, C. D. Abel, London.-17th Feb ruary, 1882 .
782 WINDING YARs, W. T. Stubbs, Manchester.-17th
February, 1882 . 785. TEXTILE FABRICs, J. B. Hutcheson and J. J.
Dobbie, Glasgow,-18th Februery, 789. PotATO- PLANTING MACHINES, G. W. Murray
Banfl, N. -18th Febuary, 1882, Banff, N.B.-18th Febuary, 1882.
790. ILLUMINATING, J. R. Wigham, Dublin.-18th Feb
ruary, 1882. ruary, 1882 .
792. PLovers, E. G. Lakeman, Modbury.-18th Feb
ruary, 1882 . 822. Castring. Ingors of STEEL, J. D. Ellis, Thurascoe
Hall, near Rotherham.-20th February, 1882. Hall, near Rotherham.-20th February, 1882.
823. CasE for HoLDING PAINT, W. R. Lake, London.-
20th February, 1882. 20th February, 1882.
825. Fountain Pen-Holders, M. Benson, London.852. Reaping, de., MACHines, J. Harrison, Ipswich.872. Electrodes, F. des Vœux, London.-23rd Feb ruary, 1888 . WooL, W. R. Lake, London.-24th Feb
908. WAsHING
ruary, 1882 . ${ }_{\text {911. Bricks }}$ and Tiles, J. Parker, Kilmarnock.-25t
 MMPURITIES, C. D. Abel, London.-27th Februa y, 1882
Febrinal SUPPort, G. E. Vaughan, London.-27t 973. Compensating Apparatus, F. W. and W. W
Brierley, London.-2 2tht Fberuary, , 1882.
977. STapLe, W. R. Lake, London. 28 th February, 1836. Carbons, H. Leipmann and P. S. Looker, Lon don.-3rd March, 1882 . Johs
1048. FILTER PRESSES, S. H. Johnson, Stratford.-4th
March, 1882. 1062. BALL, A. M. Clark, London.-4th March, 1882.
1084. WHEELS, R. H. Brandon, Paris.-7th March
1882 . 1882.
1099. CUT-off Valve Gear, A. W. L. Reddie, London
-7th March, 1882 . 1231. Grinding Mills, L. Gathmann, Chicago.-14t 1241. Brooms and Brushes, J. G. Horsey, London.14th March, 1882 .
1415. SHIPs' RUDDERS, Sir J. E. Commerell, London.
$-23 r d$ 1516. Eleotric Insulation, J. Imray, London.-29th 1615. Utiisisation of Tides, F. Davies, London.- 3 r April, 1882. W. Nightingale, Southport. -18 th April,
1834. IIE, W. 2047. BRIDGES, W. W. Wynne, London. - 1 st May, 1882 .
2215. SIGHTs for Rifles, I. Gilbert, London. $-11 t /$ May, 1882.
2428. TELEGRAph Printing, \&c., J. Imray, London.-
23rd May, 1882 . 2565. Dyny Mo-electric Machines, A. J. Jarman London-- $31 s t$ May, 1882.
2633. Steam Boilers, \&c., A. C. Engert, London.- 5 tl June, 1882 .
757. GAS Burners, J. Imray, London.-12th June, 1882. Medicinse, W. H. McLaughlin, San Francisco,
U.S.-20th June, 1882. (List of Letters Patent which passed the Great seal on
the 15 th August, 1882.) 707. Rolling Pamphlet Covers, W. P. Thompson
London. -14 , 746. VENTILATING, T. F. Wintour, London.-16th February, 1882 .
755 . WATER-CLOSETS, R. Weaver, London.- 16 th Feb -
ruary, 1882 . $763 . \mathrm{NUTs}$ for Screw Bolts, R. Harrington, Wolver-hampton.-16th February, 1882.
$765 . V_{\text {EsSELs, }}$ \&c., W. May, London.-16th February,
1882. 67. Cans, \&c., J. S. Gates, London.-16th February,
1882 , 17th February, Slek82. $\&$., H. T. Grainger, London.-
71. P 71. Pundering Holes, J. Tushaw, London.-17th Feb-
ruary, 1882 . 79. Pianofortes, E. Outram, Greetland.-17th Feb-
ruary, 1882. 799. Orgasy, \&c., J. B. Hamilton, Greenwich.-18th
February, 1882. S02. Rebrigrator, W. Morton and P. Robinson
Burton-on-Trent. 11. Lubricators, J. Lumb, Elland.-20th February,
1882. 26. Scoring, \&c., FAbrics, A. C. Adam and D
Stewart, lalagow. 21 st February, 1882. gow.-23rd Feeruary, 1882 . ${ }^{\text {. }}$ HIPs, T. Davison, Glas
87. ANNUNOLATOR, \&e., M. Volk, Brighton.-23rd Feb ruary, 1882 .
880. SIonalling, C. Spratt, London.-23rd February,
1882. 1882.
M93. Ming Concrete, A. Jamieson, Blantyre.-24th
February, 1882.
910. Cores, B. Johnson, jun., Pudsey, near Leeds.-
25th February, 1882.
914. WATER-CLosETs, \&c., S. S. Hellyer, London.-25th February, 1882.
980. Mouling Bricks, T. le Poidevin, Guernsey.28th February, 1882 .
997. Horsserie Nali, I. Briggs and J. W. Booth,
Birmingham Birmingham. 1 st March, 1882 .
1040. VALVEs, W. Brierley, Rochdale, and M. Mitchell, Bacup. - 4th March, 1882 .
1074. Feming Water to Steam Boilers, J. Ripley
and T. Scholes, Bolton. - 6 th March 1882 . and T. Scholes, Bolton.- 6 th March, 1882 . Lake, Lon
1075. MUSICAL PISTON INSTRUMENTS, W. R. Lake don. - 6 th March, 1882 .
1079. INANDESCENT ELECTRIC LAMPs, W. Crookes
London. -6 th March, 1882 . London.- $6 t h$ March, 1882 . . Holden, Gorton.-7th
Marchin Engines, A. 1882 . March, 1882.
1168. EsDless Traveling Railways, J. C. Mewburn, London. - 10 th March, 1882 .
1848. GAs Lishting, \&c., T. Thorp, Whitefield.-20th
March, 1882. 1387. Valves, W. Teague, Illogan.-22nd March, 1882.
1485. GAs, F. H. Wenham, Lond 1560. FASTENERS for GLoves, \&c., E. Horsepool, Lon-
don.- 31 Gist March 1587. Secondary Batteries, A. Tribe, Notting-hill.1699. MoTve Power, A. Wilson, Handsworth.-8th April, 1882.
1705. CONDENSERS, A. M. Clark, London.- 8 th April,
1882. 2024. Exhaustiva Apparatus, T. Thorp, Whitefield, and T. G. Marsh, Oldham.-28th April, 1882.
2129. AIR Punps, D. Johnson, Chester, and S. C.
Tisley, London.-5th May, 1882.
 2545. Mixing Coffee Berries, Beans, \&c., E. J.
Humphery, London.- 30 th May, 1882 , 2611. Distilling Coai, W. J. Cooper, London.-2nd 2657. Railway Brakes, A. E. Harris, London.-6th 2663. Puvverising Blood, dc., J. Farmer, Salford.-
th June, 1882. E. TEEEPHoNES, H. Alabaster, South Croydon, T.
E. Gatehouse, Camberwell, and H. R. Kempe, Barnet.-7th June, 1882.
2721. FALsE Borroms of Mast TuBs, A. W. Gillman
and S. Spencer, London. - 9 th June, 1882 . and S. Spencer, London.- 9 thl June, 1882 .
2759. EiEcTric LaMPs, H. H. Lake, London.-12th 2813. SHIRTS, D. P. Belknap, San Francisco, U.S.-
14th June, 1882.

*** Specifications will be forwarded by post from postage. Sums exceeding 1s. must be remitted by Post-office order, made payable at the Post-office, 5 , High Holborn, to Mr. H. Reader Lack, her Majesty's Patent-office, Souther Patent-office, Southampton-buildings, Chancery-lane, London.

ABSTRAOTS OF SPEOIFIOATIONS.

repared by ourselves expressly for The Engiveer at the
ofice of Her Majesty's Commissioners of Patents.

P91. Manufacture of Starch and other Userul Proder 1st April, 188.- (A communication from E Wilheln, Nero York.). 1s. $2 d .0$. This relates partly to improvents in processe

 nd apparatus partly to impribed in patements No. 386 processesand No. reating starch water obtained by the separator with caustic alkali, after the greater part of the starch has been first obtained from such water by subsidence.
The invention further relates to means for concentrating starch-milk or starch-water, so as to deprive
the starch of a large quantity of its water, and consists in supplying the water to the bottom of a tank from the top of which the water flows off, leaving the
starch behind. The invention further relates to a carrier for conveying the starch from the settling
tables to any desired point, and various other improvements are described.
2325. Boots And Shoess, P. M. Justice, London.-17th
May, 1881. - A communication from S. K. Hindley,

This relates to improvements in what are known as "stitchdown"" boots and shoes, in which the upper at
he line of contact with the sole is turned outward, the line of contact with the sole is turned outward,
and fastened to the sole by seams or fastenings outside the upper.
5517. Smoking and Reading Chair, J. Sothcott,
Bayswater.-16th December, 1881. $4 d$. The inventor claims the combination of chair, flap-
table, countersunk articles, such as tobacco box, 5750. Alloying, Uniting, and Covering Metals
 from which by decomposition fine metallic alloys are 18. Substitute for Whalebone, \&c., W. Morgan-
Brown, London.- 3 - January, 1882.-(A conmunication from G. H. Phelps, Newton, U.S.) 6 d.
The substitute for whalebone is composed of long bres arranged in mass with individual a solu tion of gelatine, then with chromic acid, and then
subjected to the action of light, heat, and pressure. 46. Open Fireplaces or Grates, de., W. Haughton, London.- 4 th January, 1882 . 6d.
The grate is designed to consume its own smoke,
and means are provided for emitting a stream of warm air into the apartment. 53. Mining Coai, W. G. Thompson, Liverpool. - - .h
January, 1882.- (A communication from J. Duı Bois, The First part relates to the method consisting in which it is to be undermined, and then cutting from the hole outward by successive actions of a reciprocat. beneath the coal, and also when required upward past
the sides of the same, thereby loosening the body of the sides of the same, thereby loosening the body of the coal, so that it may all or concists in a channel-
usual manner. The Second part cons
ling tool, consisting essentially of a reciprocating ling tool, consisting essentially of a reciprocating
chisel, a guide therefor, and a ram or hammer pro-
vided with means whereby it may be moved forward and backward by hand.
74. Apparatus for Applying and Retarding Motive
Power, \&c., W. B. Tibbits, Bristol.-6th January, The drawing is a side elevation of an apparatus as
applied to the underside of a brake van for example.

A is one of the axles of the vehicle; at or near the
middle of this axle is constructed or fixed an excentric or tappet B. C is a bar which is curved at one
end in auch manner that when the esaid end is raised
the anid curved parth half encircles the sead excentric the said curved part half encircles the said excentric
or tappet B The othe ond of the bar C in forked and
sloted so as to slide on a bearing pin secured in a
sin

 brakes. This bar E has ratchet teeth formed on a
portion of ts upper side, into which the pawlD catches por drops.
or
or

 This machine is constructed so as to traverse in
horizontal or vertical direction, and on which mould
are placed. are placed.
32. Apparatus for Recording Fixed Amounts and
the Portion or Portions or a Journey over
 This relates mainly to a system of dividing a
journey into sections, and in identify ing each section

83. Machivery for Reciaming Low or Swaivy

 without the necessity of resorting to dumping ther artificial means of obtaining such material. It consisist further ins the pecuiliar conchtruation of an
excavating and distributing apparatus for carrying 86. STEAM GENERATORS, J. Jones, Liverpool. - 7 th In the drawing A is the forward part of generator
made cylindrical and provided with fire tubes B, Which lead from the combustion chamber C neas the the
wheck to the uptake D in front. E elliptical rean back to the uptake Din front. E eliliptical rear.
portion of the exanaraor joined to the forwad part
and having the combustion chamber C formed
86

therein. The portion E is flush with the top of A
and projects or hangs down beneath it so as to
lon
 mid-featherer or wall. J Jraropeningre beaparated by
furnaces into the combustion chamber.
 [91]

 which latter works in the excentric grooves formed
in the tappots. Too these hedales are conneted by
means of a pivot E the vertical bars EL , which carry
the heddle frames F . The treadles act on a fulcrum
at G, and their free ends move in vertical slots in the guides H . Vertical motion is in imparted to the heddle
Trames by suitaly formed
bard 98. Trioycluss, \&o., W. Daves, Leds.-7th January,
 manumotive venicer ree mployed for propelling, a, means
arts. of the
is embodied in the arrangement and construction of is embodied in the arrangement and construction of
the whole, whereby the guiding and controlling can
then the whole, whereoy the guiding and controiling can
be as safolyand entionontly fefecod a in those vehicles
in which the legs only are employed for propelling. 99. Velocipenss, ¿e., M. D. Rucker, jun., Bethnal-
 nd Secondly, to the ball bearings.

(A communication fron F. Casse, Haarlev, Denmark.)
This relates to improvements in weighing machines
for railway vehicleses and other heayy objects, and also for ascertaini
motives, \&c.
101. Wririsa Pans, W. R. Lake, London.-7thh Janu-
ary, 1882.- (A communnication from
E. M. M. Vienna.) $4 d$. . This reatest ta writing pad consisting of a number
of sheots of botting or other paper suitably bound
together, and having orinted cogether, and having printed upon them consecutive
portions of a calendar or diary. 102. Apparatus for Teachivg Reading, dec., B. Sykes
and $0 . G$. Abbott, Huddervsiled. -7 th January, 1882. This relates to the employment of printed blocks
Thich can slide up and down wires, 103. Botries for Contaning Akrated Liguors, \&c., This relates to the employment of a scrow-threaded 104. Apparatus for the Manvpacture of Lami-
Natre STEEL Springes, dco., R. B. Hansell, Shefield. The drawing is an elevation of the machine for shaping, hardening, and tempering spring, blades. ER E
is the frame, Fis series of weights loosely held in ide by side, G is a bed built up of a series
parts, His a holder in which the parts G

104

resting upon the bed, K is gearing by which the hent on the frame F . slide with a parallel move解 upon the bed it is raised up to the weights F, thich then caus
 This rolates to improvements in omnibuses, tram. cars, and other vehicles, parts of such improsements
having for their object the checking of all fares paid
hy by the passengers therein

 and to machinery for making the heads of such 107. Machines for Tentrenng, Stretching, and
otherwise Treating Fabrics, dece, J. Ashuvorth

Thition) $4 d$. machines, and some of them to machinery and
arrangements for treating fabrics before and aftter they
pass through the tentering mabine pass through the tentering machine proper, and they
may be used separate from, but the invention also may be used separate from, but the invention also
consists in combining them with, the tentering
10. Treating Fish for Preservation, c. Pieper,

Shis consists in a combination of the operations of nd smoking it, and of packing the same, together
vith sweet oil and with or without the addition of spices or aromatic fruits, into suitable vessels, which
iter having been hermetically closed, are exposed t interes having beer
moderate heat
12. Makiva BRicss, \&c., H. J. Haddan, Kensington.

This consists in the application of three revolving
forms, by meannof of which the flling of one form, the
the forms, by means of which the filing of one form, the
pressing of a brick in the seond form, and the
emptying of a third form are carried out at the same
timp
113.
 osition composed of water, pelts, borax, and 114. Overstrichisa MAchises, J. F. Richard, New
York. -9 th January, 1882.- (Not proceded woitho This relatas to an overstitching machine, which is
speciall adapted to the sewing the "sweats"
or sweat.leathers" into hats.
115. Afparatus for Washing, Soaping, Dyeing, de. The object is to dispense with the top roller, and at the same time to provide a self-acting means, whereby
the tension of the fabric underoperation is kept equal.
 rrangement of of bearing for the axdles or shasts ; econdy, the construction and use of an india-rubber
-oller, an emery roller, and a cleaning brush combined on one axis.
117. Cosstr
 The Pimeoo-9th Jan hary, 1882, 6d. special manner of spring stecel or equivalent material),
to be affixed in the path of an envine of to be atixixed in the path of an engine of a rail way
train to open the steam whistle mechanically while the train is passing, and the semamphoreo or signal set
at danger,
atrether the said signal be observed by the
 communication from F. W. Jones, Nevo York.-(Not
proceeded voith.) This receatatee with duplex cable telegraphs, and the
objects are to overcome the disturbing effects of the objects are to overcome the deale upon the receiving
electrical discharge from the cable
 the use of asheck for the statio discharge in the shape
of an electro-magetic coil placed in the main circuit.
 The obiect is to provido a simple and efficient
fastening for window sashes which cannot be opened fastening for window sashes which cannot be opened
from the outside, and which when fastened will hold the window sashes firmly together. 120. Storing Electrical Energy, J. B. Liardet and T. Donnuthorn.-9th Janacry, 1882.8 . 8 .
Small particles of chalk, salt, \&cc., are covered with Lead; then the interior removed, leaving a porous
mass. Charcoal, coke, \&co., are covered with porous lead hy electrolysis, Cills are made by filling the
innerior with finelydivided lead. Various other ways
of movinit interior with t
of making up
are described.
121. SToves or Firp-arates, A. C. Engert, Bromley-
by-Bow, -Oth Januury, 1882 . The stove or fire-grate consists of a fuel holder or The stove or fire-grate co
rearer in the form aproo
barrel divided longitudinally
122. Shrans For Simaniva Sherp, \&c., W. Smith, The invention consists in the employment of a
fixed twoedged blade between the two movable blades or a pair of shears, by which two sets of cutting 23. Stuitovs,

January, $1882 .{ }^{2}$. 4 . Moreland, jun., London.-10th This relatese to the construction of stillions in such a
124. Reproducing on Metal Engravings, de., by
Means of Photoaraphy, L. H. Philippi, Hambury.

The inventor claims, First, in the reproduction of rawings or pictures on metal), the application of
photo-ngrgavings or photo-relies as patterns for castin ylates of hard meta, the depressions of which
cot
 of hard metal from phot--ngravings or photo-reliefs
for stamping sheet metal.
 This relates to boottles for
ther liquids or powders, and in the means for closing 12.
 communuication from C. G. Picard, Paris.)-(Not
proceeded (with.)
$2 d$.
In principle the invention emanates from the
rolling mill, in so far that the moulding substance in the requisite condition is distributed at the point of
contact of two discs turning in contrary directions at contacual velocity. On the periphery of one of the
an equ is
diss is engraved or sunk the mould of the article
 This relates to the consstruction of a motor operated by means of a fall or pressure of water.
 This relates to a combined pick and shovel or spade,
pivotted or turning on the end of a handle shaft. 129. An Improved Method and Aparatus for
Eiketricaluy Lighting Railway Trains, W. H.

Preect, Wimbledon, and $J J$. James, Lambeth, Surrey.
This consists in the combination of air compressors and reservoirs with dynamom machines and lampps. The
reservoirs are charged with compressed air by com. reservoirs are charged with compressed air by com-
pressing pumps worked from one of the train axtes. pressing pumps waire works engines, which in turn
This ompressed ain
work the dynamos, by which current is supplied to the lamps connected with them by suitable wires, and
which lattor are distributed as required through the

 thereto, so as to make the bronze or brocade adhere to and in contact therewith is hinged an inclined plate or doctor,, which forms a V-shaped trough into which the bronze is placed, so that as the fabric is
travelling along over the roller it is pasted or coated with bronze or brocade.

January, 1882.-(A communication fromi. Messsrs.
Gaillet and Huet, Lille.-(Not procecded with.) This retates to nonel conemical processes for the 133. Covyrrtes

 constructed in substantially the same manner as
ordinary converters, but its trunnions A instead of
 C , which are supported on columns in the usual manner. The object of this arrangement is to permit the
converter, when it has to be relined or otherwise

repaired, to be wheeled away on the track and on to any siding or turn-out communicating therewith, so
as to make way for a converter which has been prepared for immediate converter which has been prewheted to the working position previo
by the temporarily discarded converter.

This consisiss int frrst parise) pesving the crude materials
from decomposition by from decomposition by submitting them to the action
of chloride of aluminim, and ate orwards extracting
the fat or tallow and gelatine and by
135. Manupacture or Fire-hiohters, F. Holmes,
 137. Tip Wacoss, J. W. Glover, Warvoick.-10th Janu-
ary, 1882 .
6d. Thiry relates to the method of hinging the movable bodies of tip wagons or carts,
ing the
 tip cart or wagon. 138. Raile de., For Railways And Tranways, W*
Bean, Coydon, and
S. Thompson, Nuhhead. -10 the
 angle with the treas surfaces, which rail can be turned end for end, and the under surface be brought upper-
most when desired

 This consists partly in forcing a current of cold air
into each axle pox by means of a rotary gear.
1882.- (Not troceeded 2uith.). $2 d$. This relates to improvements in the steering appara142. Manveacture of Iron and STEEL WIRe, dec, G. and E. Woods, Warrington.
1882. (No procede w with.)
he

The object is to produce e galvanised or metal-coated
iron and steel wire of superior finish. 145. Umbrella Fastrners,

Thith.) $\begin{gathered}\text { 2d. } \\ \text { Tastener comprises } \\ \text { two }\end{gathered}$ The fastener comprises two parts, one bing a
metal piece serving as hook for the second part to
catch in. 146. Lithooraphic And Letrierpress Printing
MAohinss, G. Neuosum, Leeds.-11th January, 1882. Ghis refors, First, to the inking or forme rollers used
in lithographic and letterpress printing machines ;

 any ordinary gasalier, wall bracket, or othher gas titting
for the purpose of curburetting the gas on its passage to the purpose of curburetting the gas on its passage
to the burner, and thereby increasing its illuminating
 The invention relates to improvements in the arran tinguishing and tion of letters patent, dated 25th January, 1 Itr7,
No. 301, in which portable pneumatic apparatus was
Nat do. 301, in which portable pneumatic apparatus was
deseribed for discharging a jet of water under pres.
sure 152. Appanatus for Dyersa or Washivg Hanss or
YARN, dec., B. Boden, Manchester.-11th January, This relates to improvements in that class of dyeing
and washing apparatus oonsisting of a vat or ovtorn
provided with adouble series of revolving rollers over provided with a double series
which the hanks are placed.

This relates to the construction of the tongue or peg
of the shuttle.
154. Apparatus for Lubricating the Spindirs or
Machines for Prepaning, Sininiv, Doubinge,
 The object is so onuse the pirculation of of the oil to
 one right-handed and the other left-handed. 155. Botrons, S. P. Widding, London. - 11 Ith January,
i882.- (A communication from R. Behrendt, MagdeThis releates to meaneas of andording a more secure attachment for, and to obviate certain disadvantages
in, buttons as at present used. 156. Treatment of Certain Minkral Phosphates to
obtain Userul Produts therefzon, D. Peryy, Glasgon.- 11 th $\mathrm{Janarary}$, , 1882. 42 .
This rolates to
containing either iron or alumina, or both, in order to obain the phosphoric acid and the alumina therein
contained as compounds of commercial value, viz an alkaline or earthy phousphatic and alumina hydrate, or
any of its compounds 159. Machinkry for Marivg Boxes of Cardboard,
deco., S. Wood, Cleckheaton. $-12 t h$ January, 1882. 8d This relates to a method of securing and strengthen-
ing the angles or sides of boxes made of cardboard
 inserted through the sides of material of the box,
bent to the angle required, and clenched on the other 180. Fasteninas for Stax Bugks, J. E. Salisbury, Thisefield. - 1 Ith thenucry, $11882.4 d$. 4 . fasteners or clasps provided with covers or shi 161. Machinery for Spinsing , Twistivg, and Doub-
Liva Cortron,
 the spindales.
162. Syphon Traps for Dranss, A.T. Angell, Fulham.
road. -12 th
Januury,
1882., (Not troceded voith.) This relates to a means for the effectual cleansing
 This relates to the means of attaching skates to the boots of skaters, and has for its object to fasten the
skate by simply treading upon it with the foot without previously adeusting the mechanism according to
the izz of the boot. 184. Shuttle Boxe

 167. Dyeing AND Colouriva Feir, Jute, dce., This relates to machinery and apppisances sased for
dyeing and colouring felt, iute, or orther textile dyeing and colouring felt, jute, or other textile or
porous farbis, in which the materin to be trated is
held firmly between hollow dies or blocks upon which the pattern is formed, and through which suitable
liquid dye or colour is foreed so as to penetrate the
 the hollow blocks separated, so that the material can
bo drawn forward for a sufficient distance, when the
bio blocks are araain brounht together and the process
repeated, and so on as often as may be necessary.

Thith January, 1882.2 c .
Together.

 175. Hoistrin M M chivss τ.
 Ine end o the horizonttal wormant and worm wheel. on

 flux. The mixture is mois moisenod or with wary wast tuibl

 furnace.

 180.

181. VELEociremes, G. Moss, London.-13th Jamuary,

 diameter.
 This reateses to buttons with shanks, and consists through whith an oye if ituing a soot in the head, and 184. Gas

 ing the olower parat of the burner into two cham bers by
atoriontal partition, and leading the gas from the
lowe

Whenencit it sesai
and is consume

 192. Oorres Prownerss I. Cumeron

 Ono end of the har has a pin which enters a hole
bored through the shoo, and the other end has an
 oecting stud

 pup, en fisphaced in ine thes and swich isd tho

 Thot pootecate with) 2.2 .he suply of air to stoves
 arr phaced two or moro plates so as to form passages
anside the stove, such phassages corrosponding witi
and
 apertures corrosponding with the pasasages and phaced So that arr an pass down the pasaq
 Thise conisit in tho production of ammoniacal com. analogous bye products, excreriong, or ilauids, by
traatment with a mixture of sawduast, barks, peat or
 ther similar organic matter in a dividad
onderium, or magsesium sulphate or chloride.

 truction of the apparatus.
 4d.
Batw ween the two sido plates of an iron frame two
avs of cant ircon are sus enented
by rod ran and provided
 pitman rods trom a crank shaft, and exerta a combinad
iressurre and grinding or rubbing action on the sub resarur and grinding
tanco to bo reducoed

 rom the front or from theor the back.
209 , Gixazsi, Grexyousge Coxservaroniss, do. This consists partly in improvements for preventing
 nd other appliance
 This oonsistas. essentialy, in wising ground asbestos,

 This raltas to improvements on patant No. 142, , aratt on tho trigger in oocking and releasing the tho
anmmer, and it oonsists in the emplosment of a spitit
and

 and withdraw the hammer bolt to its fullest extent
ready to be released by pulling the second trigger. 217. Horse Beds, B. W. Holt, London.-16th January,
$T \mathrm{To}$ sheets of canvas are connected by stitching, so awdust and then sewn up, the cover being then 220. ARTIEICIAL Ivory
220. Artificial Ivory, F. W. Cottrell, Gray's-inn
road. -16 th January, 1882 . $4 d$. Fibre is immersed in a solution of nitrous acid in
sulphuric acid, and then slightly pressed and allowed stand for from twenty minutes to an hour. The
bise is then washed to remove the arid, some of which, however, must be allowed to
cemain, and the fibre is immered remain, and the fibre is immersed in a solution of
sulphide of barium containing about 25 per cent. of
the salt, which neutralises the remaining acid and nders the fibre non-explusive. To the mixture alum, carbonate of soda, and silicate of soda are
dded. The excess of water is removed and the pro
uct dried, after which it duct dried, after which it can be treated with 242. Loading and Unloading Ships' Cargoes, A. M.
Clark, London.-17th January 1882 . cation from C. B. Messrole, Neio Rochelle, Newo
Yorr.). 6 d. levators of jointed sections, endless chains, tables, and sprocket wheels; Secondly, in forming the
sections of rails, united by joint plates and rods, and
combined for operatin combined for operating with the endless chain carry-
ing the tables; and Thirdly, providing the endless
in V-shaped bars held by connecesting them by rods and with the jointed sections, a supporting frame.
269. Permutation Locks, \&c., J. R. Nottingham,
Washington, U.S $-19 t h$ January, 1882 , (A com.
munication from G. M. Hathaway, Jersey City, U.S.)
 by a novel auxiliary lock. St. Louis, U.S. - 19 thh Jamuary, 1882 . is. 4 . Ho. Hoker,
This relates to improvements in steam pumping
engines; also to improvements in compound engines engines; also to impprovemenents in compound pumping
nd their connection and combination with a condenser of novel construction, producing a pumping
engine of increased working capacity. The condenser
forms forms the bed-plate, and direct connection of the
engine exhaust with the condensing space and of the pumps with the water-way of the condenser is pro-
vided, so that the water raised is drawn through the
condenser, and produces a vacuum in the water-way condenser, and produces a vacuum in the water-way
to counteract that formed by condensation in the
steam space of the condenser. The invention further
relates to the valve mechanism and to an improved
construction of steam pump. The pumps are mounted on one end of the condenser and driven direct by the
engines mounted on the other end there 411. Sewerage Gulurs, C Pieper, Berlin,

This rylates - 188% (Complete.) 6 d . This relates to the effectual separation of solid ewers; and consists in causing the water to pass off
from the upper part of a vessel, perforated at top to orm a strainer. When the latter is obstructed a por-
tion of the water passes automatically through an tion of the water passes automatically through an
aperture at the lower part of the vessel, to which a
syphon, containing a valve, is attached. 414. Carriages for Advertising

This consists in forming an ornaryental car with grooves to receive sheets bearing advertisements. For
night advertising the sheets are made transparent and night advertising the
lighted from within.
15. Velocipedes, \&c., W. Hillman, Coventry. -27 th This consists, First, in an arrangement of double driving gear for tricycles consisting of the combina-
tion of crown pinions on the hubs, clutches carrying
tuds with bell cranks disconnecting either wheel studs with bell cranks disconnecting either wheel as
stud steering rod is moved to turn the machine to the steering rod is moved to turn the machine to
either side, or for disconnecting both wheels for descending hills; Sor Seondly, an in improved whenrier for urfaced sleeve held between adjustable screws; Fourthby, in an arrangement in "sociable" tricycles enable the "off" rider to steer.
1848. Crystallised Anhydrous Grape Sugar, W.
R. Lake, Lomdon.- 18 A April, 1882. (A communication from A. Behr, Nero Jersey.) - (Complete.) $4 d$.
This consists in forming a highly concentrated watery solution of grape sugar, and in depositing the
same in a suitable receptacle, either with or without admixture with a minute proportion of finely-divided crystallised anhydrous grape sugar previously pre-
pared, and in maintaining the concentrated solution at a temperature of about 90 deg. Fah. until complete crystallisation has taken place, and in then disintegrating the crystallised mass
bulk in the basket of a cen
draining it in the usual manner.
1932. Self-levelling Ships' Berths, A. A. Youn
Boston, U.S.-22nd April, This consists in supporting the main oscillating beam upon a crosshead in such manner as to be
longitudinally adjustable upon the latter, and in supporting the said crosshead in turn adjustably upon
its supports, the object of this being to its supports, the object of this being to enable the
point of suspension or centre of oscillation of the berth to be varied to equipoise the berth to the person for
the time occupying it, and to reduce ethe friction
between beam and its west possible point
2223. Car Couplings, H. J. Haddan, Kensington.-
11th May, 1882 - (A communication from R. M. The coupling pin of one draw head is ele evated and
held as indicated in the draw head in the lower figure and the link is arranged as indicated in the upper
figure at the left of the drawing. When the cars come

together the link secured in the draw head enters the opposite draw head and forces the pawl or dog back so
as to drop the coupling pin through the link.

SELEOTED AMERIOAN PATENTS.

From The Sta' Patent Office Oficial Gazette

261,147. Combined Garden Hoe and Seed Planter, 1881.

Claim.- The combination, with the frame C , having
flanged rotary hopper or seeding cylinder H , and

pivotted beam A, of the rods or brackets O, pivottec upon the same bolt as beam A extending rearwar subst 274
261,274. Journal Box, Firederick H. Sweet, Williams-
porl, Pa., assignor to Roveley and Hermance, same porce. Pa., assignor to Rovetey and Hermance, sam Claim. - (1) The combination. substantially as set
forth, of a fixed box or bearing having a central

a curved guide on each side of a central shaft recess,
two cap sections fitting on said guides, and adjusting screws bearing against the ends of the cap sections.
(3) The combination, substantially as set forth, of a box having curved guides on its top, two cap section journal bearing having an internal oil reservoir,
covered at top by curved guides extending from a central sh
tially as set
281,288
261,288. Coupling for Commutators AND Arma-
ture Wires, Jannes J. Wood, Brooklyn, N.Y.Filed October 26 th, 1881 .
Brief.--The coupling consists of two parts, one of

which is attached to the commutator segment,
between which the terminals of the armature coils are clamped.
261,503. Automatic Incandescent Electric Lamp, William L. Voelker, Morton, Pa., assignor to John
H. Irvin, trustee, same place.-Filed January 23rd,
Brief.- The interruption of the current by the
breaking of a carbon automatically shifts the carbon carrier, so as to bring another carbon into circuit. Claim.- (1) In an automatic incandescent electric
lamp held firmly in position, the combination of within the vacuous chamber, one of such supports
being provided with an armature and arranged and adapted to be revolved by an electro-magnanet on the
outside of said vacuous chamber, substantially as described. (2) In an automatic incandescent e electric
lamp held firmly in position, the combination of lamp held firmly in position, the combination of
numerous carbon filaments pivotted between supports within the vacuous chamber, one of such supports
having an armature and electrical connections

-

magnets B and B1, and between said electro-magnets,
substantially as described. (3) In combination with an automatic electric lamp held firmly in position,
and having numerous carbon filaments, adapted and
arranged to rotate arranged to rotate within the vacuous chamber
between supports, one of which is provided with an
armature, the electro-magnets B and $B 1$, of unequal armature, the electro-magnets B and BI , of unequal
strength, and electrical comnections between said
electro-magnets and the carbon filaments, substan-clectro-magnets and the carbon filaments, substan-
tially as and for the purpose described. (4) In an
automatic incandescent electric automatic incandescent electric lamp of the character
herein specifed, electro-magnets B and B , lamp
bulb $A *$, support H , bearing arm H , incandescent
filaments filaments of carbon J, rod F , diso I , pieces I , screws b, and armature L, actuating pawl
bined and arranged to operate substantially as as shwno
and described.

CONTENTS.

The Engineer, August 18th, 1882.
The Institute of Mechanidal Engingers at
Leeds. (Illustrated.)

 Messingham District Drainage Works. (Illus.) 119
Quick's Breech-loading Mechanism. (Ilus.) 119
Road Locomotive Legishation.. 120

 ENAMELLED PIPES
RALWWAY MATTERS...
NOTES AND MEMOP
Miscellanea moranda

Leading articles-
Amalgamaton Among the Gas Companies
The British Association at Southampton
The City and Gullds Technical Institute.. .12
Artilery Casualties in the Bombardment

Literature-
Rules and Regulations Under the Adelaide
Sewers Sewers det.
Books Received
THE MECHANI.
The Meohanical Rëfrigeration of ärr. no. ili..
(Ilustrate Charles Edwards Ämos
Dom Pedro Bridge
Brazilian Imperial Cemtral R̈allway (iilué.) 12 A New Form of GIrder. (Illustrated.)
Young's Speed Indioator. (Illustrated.)
TENDERS

 Botes faham, Wolverhampton, and District.. 12 Notes from Sancashiri
Notes from theriend
North

Abstracts of Patent Specifications, (Illua,
ABstracts of American Patent Specifioations
(Illustrated.)..
Paragraphs-
Docks on the Thame
Midland Institute of

Naval Engineer Appointments $\quad . \quad . \quad . \quad . \quad . \quad . \quad 129$
The Miners' National Association
The Phosphor Bronze Company v. Billington $\quad . .1120$

[^0]:

