THE EFFICIENCY OF FANS.

The articles which have appeared in our pages concerning the efficiency of various kinds of fans tried at Reading, have pens who have hitherto troubled themselves very little about them. We have already received several letters about them. We have already received several letters
commenting on the Reading trials, not a few of which commenting on the Reading that the writers of them have everything to learn concerning fans. Under the circumstances we think that a short and simple explanation of the principles
involved in the action of fans may prove useful. involved in the action of fans may prove useful.
weight; some persons who have been taught that the air weight; some persons who have been taught that the air
exerts a pressure of 14.7 lb . per square inch, cannot, exerts a pressure of 14.7 lb . per square inch, cannot,
however, be got to realise the fact that a cubic foot of air however, be got to realise the fact that a cubic foot of air
at the same pressure and at a temperature of 62 deg. at the same pressure and at a temperature of 62 deg.
weighs the thirteenth part of a pound, or over one ounce ; weighs the thirtenth part of a pound, or over one ounce;
13.141 cubic feet of air weigh one pound. In round numbers 30,000 cubic feet of air weigh one ton ; this is a useful figure to remember, and it is easily carried in the
mind. A hall 61 ft . long, 30 ft . wide, and 17 ft . high will contain one ton of air.
The work to be done by a fan consists in putting a weight -that of the air-in motion. The resistances incurred are due to the inertia of the air and various frictional influences;
the nature and amount of these last vary with the construction of the fan. As the air enters at the centre of the fan and escapes at the circumference, it will be seen that its motion is changed while in the fan through a right angle. It may also be taken for granted that within angle. It may also be taken for granted that within
certain limits the air has no motion in a radial direction certain limits the air has no motion in a radial direction
when it first comes in contact with a fan blade. It is well understood that, unless power is to be wasted, motion should be gradually imparted to any body to be moved. Consequently, the shape of the blades ought to be such as will impart motion at first slowly and afterwards in a rapidly increasing ratio to the air. It is also clear that the change of motion should be effected as gradually as structed; Fig. 2 will serve to give an idea of how it should structed;

In Fig. 1 it will be seen that the air, as indicated by the bent arrows, is violently deflected on entering the fan. In Fig. 2 it will be seen that it follows gentle curves, and so is put gradually in motion. The curved form of the
blades shown in Fig. 2 does not appear to add much to the efficiency of a fan ; but it adds something and

keeps down noise. The idea is that the fan blades when of this form push the air radially from the centre to the circumference. The fact is, however, that the air
flies outwards under the influence of centrifugal force and always tends to move at a tangent to the fan blades, as in Fig. 3, where the circle is the path of the tips of the

fan blades, and the arrow is a tangent to that path; and to impart this motion a radial blade, as at C , is perhaps as good as any other, as far as efficiency is concerned. Conback or front, opinions widely differ ; but it is certain that if a fan is to be silent the blades must be narrower at by different makers, the straight side and the curved sides, as shown in Fig. 4, being most commonly used. The pro-

portions as regards length to breadth are also varied continually. In fact, no two makers of fans use the same shapes.
As the work done by a fan consists in imparting motion
at a stated velocity to a given weight of air, it is very at a stated velocity to a given weight of air, it is very easy
to calculate the power which must be expended to do a to calculate the power which must be expended to do a
certain amount of work. The velocity at which the air certain amount of work. The velocity at which the air
leaves the fan cannot be greater than that of the fan tips. In a good fan it may be about two-thirds of that speed. The resistance to be overcome will be found by multiplying
theareaof the fan blades by the pressure of the air and by the
velocity of the centre of effort, which must be determined for every fan according to the shape of its blades. The
velocity imparted to the air by the fan will be just the velocity imparted to the air by the fan will be just the
same as though the air fell in a mass from a given height. This height can be found by the formula $h=\frac{v 2}{64}$; that is to say, if the velocity be multiplied by itself and divided by 64 , we have the height. Thus, let the velocity be 88 per second, then $88 \times 88=7744$, and $\frac{7744}{64}=121$. A stone or other body falling from a height of 121 ft . would have a velocity of 88 per second at the earth.
The pressure against the fan blades will be equal to The pressure against the fan blades will be equal to
that of a column of air of the height due to the velothat of a column of air of the height due to the velo-
city, or, in this case, 121 ft . We have seen that in round city, or, in this case, 121 ft . We have seen that in round numbers 13 cubic feet of air weigh one pound, consequently a column of air one square foot in section and times into 121. Now, $\frac{121}{13}=9 \cdot 3$, and this will be the resistance in pounds per square foot overcome by the fan Let the aggregate area of all the blades be 2 square feet,
and the velocity of the centre of effort 90 ft per second, then the power expended will be $\frac{90 \times 60 \times 2 \times 9.3}{33,000}=$
3.04-horse power. The quantity of air delivered ought to e equal in volume to that of a column with a sectional area equal that of one fan blade moving at 88ft. per 1 square foot, the delivery ought to be 5280 ft . per minute, weighing $\frac{5280}{13}=406.1 \mathrm{lb}$. In practice we need hardly
say that such an efficiency is never attained.
The number of recorded experiments with fans is very small, and a great deal of ignorance exists as to their true efficiency. Mr. Buckle is one of the very few authoritie on the subject. He gives the accompanying table of pro-
portions as the best for pressures of from 3 to 6 oz . per portions as
square inch.

Dia. of fans.	Vanes.		Dia. of inlet openings.
	Width.	Length.	
$\begin{gathered} \mathrm{ft} . \mathrm{in} . \\ 3 \end{gathered}$	$\begin{gathered} \text { ft. in } \\ 0 \end{gathered}$	ft . in. 09	$\begin{array}{cc} \mathrm{ft} . \mathrm{in} . \\ 1 & 6 \end{array}$
36	$010 \frac{1}{2}$	$010 \frac{1}{2}$	19
40	10	10	20
46	$11^{1} \frac{1}{2}$	11_{2}^{1}	23
50	13	13	26
60	16	16	30

For higher pressures the blades should be longer and narrower, and the inlet openings smaller. The case is to the space between the case and the blades radially from the origin to the opening for discharge, and the upper
edge of the opening should be level with the lower side of the sweep of the fan blade, somewhat as shown in Fig. 5.

A considerable number o patents has been taken out
for improvements in the construction of fans, but they all, or nearly all, relate to modifications in the form of
the case and of the blades. So far, however, as is known, it appears that, while these things do exert a marked influence on the noise made by a fan, and modify in
some degree the efficiency some degree the efficiency
of the machine, that this last depends very much more on the proportions adopted than on the shapes-so long as easy curves are used
and sharp angles avoided. In the case of fans running and sharp angles avoided. In the case of fans running
at low speeds, it matters very little whether the curves are at low speeds, it matters very little whether the curves are present or not ; but at high speeds the case is different. The fans used in ventilating ricks will be, for the most the efficiency of such machines can only be improved as the result of experiments. As we have said, the amount of experimental information available on the subject of fans is very small. Such as it is, it is well worth discuss ing in our columns.

THE NORTH-EAST COAST EXHIBITION OF MARINE ENGINEERING AND NAVAL ARCHI TECTURE.
One of the largest and most successful exhibitions of its kind which has been held in these countries was opened to the public on Wednesday in the buildings of the Royal Aquarium at Tynemouth, a few miles from Newcastle-onplete or unfinished, the committee are to be warmly congratulated on having done much good work in so short a time, for it is only a fortnight since the Aquarium came into their hands for preparation, and only three months Messrs. F. C. Marshall and George Renwick. To very many who saw the speed with which in five days the Agricultural Hall, London, was prepared for the opening of the Naval and Submarine Exhibition in April last, a fortnight may seem to be a long time; but the Exhibition its forerunner and parent in London, while the facilities are by no means so great for the placing of heavy exhibits in position-therefore much credit is
due to the managers and prime movers in this case. That this Exhibition would not have been so warmly taken
up by exhibitors, and be comparatively so easily pushed, had it not been preceded by the success at the Agricultural Hall, there can be no doubt; as also there can be none that
the latest development of the Marine Exhibition has surpassed the first one, if not in general interest, certainly in size, in the number of stands, in the amount of local enthusiasm which it has raised, and in its situation. Glasgow and Edinburgh are, though in the midstof the greatest of the engineering and shipbuilding works, too far north to attract the capitalists of London to a marine exhibition; and London, though it may safely be termed the countinghouse of the world, is too far south to tempt the Scottish manufacturers to exhibit there. But yynemouth, which is the fashionable resort and watering place of north-country engineers, shipbuilders, and shipowners, and which is situated at the mouth of the river, and within a few miles
of the Wear, Sunderland, Middlesbrough, the Tees, of the Wear, Sunderland, Middlesbrough, the Tees, Stockton, the Hartlepools, Blyth, \&c., and equidistant from the capitalists and merchants of the south and the manufacturers of the far north, while surrounded by a large and enthusiastic maritime population, is the place most suited of all others for the holding of a successful marine exhibition.
The special train, containing the invited guests, as well as the patrons, president, and vice-presidents, left the central station at Newcastle shortly after mid-day, and on its arrival at the handsome new station at Tynemouth the Mayor of that town presented an address of welcome to the Earl of Ravensworth in his official capacity as President of the Exhibition. His lordship having replied, a procession was formed in the following order :-1st, Lifeboat drawn by eight horses; 2nd, Coble, with sails, gear,
\&c., drawn by two horses ; 3rd, The boys and band of the ¿c., drawn by two horses; 3rd, The boys and band of the
Wellesley training ship ; 4th, The Tynemouth Volunteer Wellesley training ship; 4th, The Tynemouth Volunteer Life Brigade, with rocket apparatus; 5th, The band,
Tynemouth Volunteer Artillery; 6 th, The Executive ComTynemouth Volunteer Artillery; 6th, The Executive Committee ; 7th, the Earlof Ravensworth, the Duke of Newcastle,
Earl Percy, Sir W. G. Armstrong, Mr. Marshall, \&c., and Earl Percy, Sir W. G. Armstrong, Mr. Marshall, cce., and The Consular representatives ; 9th, The Mayor of Tynemouth and the members of the Council ; 10th, The Mayors and members of the Councils of the boroughs of the northeast coast. The procession was witnessed by many thou-
sands of people as it wended its way through the elaborately sands of people as it wended its way through the elaborately
decorated streets, the Mayors of Tynemouth and the decorated streets, the Mayors of Tynemouth and the
neighbouring towns having advised the suspension of all neighbouring towns having advised the suspension of all
business and the presence of all people at the Exhibition business and the presence of all people at the Exhibition or in the streets to give the visitors a warm welcome. It bution to the pres a miniature lifeboat drawn by eight boys in scarlet uniforms.
On arriving at the Aquarium, the President, accompanied by those gentlemen who had assisted in the procession, ascended the platform which had been erected in here inter Palace, as the great central hall is termed, and right hon ceremony of inauguration was perfote and apt pening speech, touching briefly on the various classes of the Exhibition, and very judiciously measuring out a meed of praise to each. Other speeches were delivered by the Duke of Newcastle and Sir William Armstrong, and then the Exhibition was duly and formally declared to be open. A kind of scramble luncheon followed, and more speeches were delivered, amongst others by Mr. A. C. Kxh, Mr. Laing, Mr. Swan, Mr. John, representing. ., as visitors. Upwards 700 guests sat down to luncheon, and speakers and sper enthusiasm. So much of the day had been occupied with the purely formal part of the ceremony that but little time remained to see many of the exhibits or to do more than obtain a merely casual idea of the arrangement of the whole. The exhibits have been mainly divided into six classes or sections, under the following heads:-(1) Naval architecture, which possesses 181 exhibits; (2) marine engineering, with 247 exhibits ; (3 and 4) fishing and lifesaving apparatus, with 622 exhibits ; (5 and 6) coast lighting and submarine engineering, with 58 exhibits. An additional section is devoted to workmen's models, of which some twenty-seven are shown. The catalogue, which is a most complete and admirable guide, is an absolute copy, of the N are many other things about the Exhibition, or style and the whole in all things in which the Committee has copied its predecessor, it has done so thoroughly, judiciously, and be impossibl the vast number of exhibits it would hose whible to make at present any selection of dea which deserve the most attention; but some he whole be formed of the gigantic style in which one exhibit alone, that of Messrs. Wigham, Richardson, and Co., comprises a pair of marine engines which weigh close upon 60 tons. The Wallsend Slipway Company also shows a large pair of marine engines, and Messrs. R. and W. Hawthorn exhibit two high-speed engines for gunboats, which are at present being built for the Danish Navy. Steel shafts up to a length of 48 ft . are also to be found in number, and Mr. Wasteneys Smith shows an unusually large anchor, in addition to many other interesting productions from the steel of which he is so fond. The Darlington and Leeds Forge Companies have also very large exhibits, and in the boiler room may be noticed the curious old engine of William Hedley, of Wylam, which bears the date 1813. The workmen were engaged up to the arrival of the procession in clearing up and decorating the various stands. At noon the men were engaged in glazing the erection in which the luncheon had o held atter the opening ceremony, and bricklayers and in the walls of the Rink and wooden erection to admit of the exhibits, some of which were arriving at that time.

Water Gas.-St. Louis is to be supplied with water gas for fuel purposes, made by the Lowe process.
progressing, with ten miles under contract.

TUNIS.
The question whether Tunis is really so rich as the ancients supposed gives rise, even in Tunis itself, to great controversies. Can history have deceived us? and did the Granary of Rome regard the pictures which have been represented to us of its astonishing prosperity as a sort of African mirage? At first
sight this is by no means easy to say. It is quite certain that to-day Tunis is a very dried-up country, entirely destitute of water in the central and southern parts, whose productiveness
consequently depends entirely on the winter rains. When the consequentiy depends entirely on the witer rains. When it is
winter is a wet one the harvests are superabundant, when
not there is no harvest ; and out of four or five winters one only not there is no harvest; and out of four or five winters one only
is wet. Was the climate the same formerly? Nothing goes to prove the contrary. In travelling in Tunis one is struck by the great number of cisterns and ancient water-ducts one meets
with. Like the French, the Romans experienced the necessity of counteracting, by means of great public works, the dryness of of counteracting by means of great public works, they believe their in declaring that they drew immense products out of the in declaring that they drew immense products out of the
country; and visiting the Regency in a good year, such as the
present, it is not difficult to believe that the ancient writers eexaggerated nothing. Some of the provinces are of a fer-
tility of which it is difficult to give an adequate idea tility of which it is difficult to give an adequate idea.
All the coast, the SShil, and the oases of the south,
are covered with luxuriant vegetation; one fancies one Plain is hardly less fertile, and the country of the Kroumirs is being equally favoured by nature. It is covered. by forests of cork trees and evergreens, the cultivation of which would be productive of the best results, and its valleys, watered by innumerable streams, are not surjected to the unhappy
which the rest of the country suffers from in dry years.
Thus the historic reputation of Tunis has not been over-
wrought. Under an intelligent and honest administration it would become again one of the granaries of the Mediterranean,
and her riches would be as varied as they would be exand her riches would be as varied as they would be exproduce, perhaps, the finest dates in the world, but unhappily at
the present time the cultivation of the date tree is in a state of decadence truly deplorable.
decadence truly deplorable.
The old works for collecting water are falling into ruins. It
would be necessary to restore them, and at the same time to see would be necessary to restore them, and at the same time to see
whether the process, practised with so much success in the provine of Constantine for increasing the water supccess in mamely,
the boring of artesian wells, which create new oases each daymight not be equally applicable to Djérid. Besides the dates, a new source of prosperity has sprung up during the last few
years, in the centre and south of Tunis, namely, that of the alfa, which is, it appears, of a finer quality than that of Algeria, and which has already initiated a very important commerce, and one
which would be easily developed. Along the east coast extends which would be easily developed. Along the east coast extends
${ }_{\mathrm{a}}^{\text {sort }}$ of ribbon of olive trees, some miles in depth, the a sort of ribbon of oive trees, some miles in depth, the product of which in good years suffices to make the fortune of
almost the whole country. Certainly, the olive trees form the actual plantations being doubled and tripled, for the soil situated behind them is of the same nature and subject to the same
climatic influences as that which they occupy and if this sis not done, it is only because the weight of the taxes is so crushing as to absolutely discourage the culture of them. In consequence, their cultivation has almost been given up; it will begin afresh when the
fiscal reform has been accomplished. The great plateaux, the immense plains situated beyond the sea coast, are now only used as pasturage for flocks and herds. If water could be commanded
it would doubtless be possible to create veritable oases there. The plain Kaironan, for instance, rivals Egypt ; it is formed of a layer of alluvial deposited by numerous watercourses which lose
themselves in its yielding the most splendid harvests. It is a sort of delta which no outlet. In rainy winters it forms a sigantic pond ; then comes the dryness when it is again burnt up like a desert. But in the interval the inhabitants are able to reap an abundant
harvest. Having only inferior ploughs, they scratch the surface of the earth; but the fecundity of the soil makes up for the want of culture
districts of Tunis, produces, and prevails over all the central districts of Tunis, produces, and might produce to a much greater
extent, such results. as would largely compensate for the insufficiency of the other industries. Every year Tunis might easily ex-
cith port millions of sheep to Europe. All the northern parts, and par-
 succeed as well in Algeria, and would in a few years double
the erevenue of these countries. the revenue of these countries,
There are two
There are two causes at present operating to produce sterility
in a country so fertile by nature. The first is the weight of the
taxes, which complety taxes, which completely crushes the cultivator. But this is
only a small part of what the taxpayer has to bear. The only a small part of what the taxpayer has to bear. The
Tuusisians pay at least half as much again as their Algerian neigh-
bours. Only to cite a few examples. In Algeria the tribes which pay tithes pay no perssonal tax in in Tunis, besides trithes
and the expenses of collecting them, every inhabitant above fifteen years, excepting old, blind, every inh lamebitant has to pay the Medjeba, a poll-tax of 45 reals per head- a real
is worth sixpence-and 5 kharoubes-the kharoube is about a twelfth part of a real. Soldiers, zapties, spahers, and zouaves
are exempt, but their childrea pay. Upon the value of food sold
1 kharoube per piastre is exacted 1 kharoube per piastre is exacted - the kharoube is the sixteenth
part of the paistre. There is a stamp duty of 1 per cent. part of the paistre. There is a stamp duty of 1 per cent. upon the
transfers of property, without taking into account the charges of
registration, which registration, which are also much heavier in Tunis than in France
or Algria. The second cause of the sterility of Tunis is the entire absence
of public works. It is well known that the Regency whose area at most is only equal to that of an average Algerian province,
nevertheless possesses a much greater expanse of sean nevertheless possesses a much greater expanse of sea-coast. This
is a most important productions to get to the port of embarkation at a very trifling cost ; but unhappily this natural advantage is counteracted by
the insufficiency of ports and by the almost entire absence of roads. The coast of Tunis is flat and the approaches very
shallow, so that vessels cannot easily approach the shore at any shalow, so that vessels cannot easily approach the shore at any
point. There is good anchorage. especially at Sousse, for
instance, where the ground is excellent int there are neither
roadsteads nor any notura is bheltere roadsteads nor any natural shelters. At Sfax, boats anchor a con-
siderable distance from the shore Zarzis. The island of Djerba, whose fertility is extraordinary,
and whose geocraphical and whose geographical position osutht of Tumis, and an ahort,
distance from Tripoli, is admirable, alike from a military and a political point of view, would be one of the jewevts of and the
Mediteranean if only it had a port. But it would be useless to
think of making one it wopld be
and one which would have continually to be done over again, for
the softness of the ground under the sea all round Djerba is such that it would be quite impossible to dig a durable canal in a soil owanting in consistency and stability.
In the northern districts Tunis is be
In the northern districts Tunis is better off. Every one knows
that the lake of Bizerte forms a magnificent basin, which might hold several fleets without difficulty if only the entrance to it were r
dyk.
Som
Some maintain that this would be an easy and inexpensiv likely to engulf millions. Whichever opinion be the correct one,
however, there is one thing certain, namely, that Bizerte could never be anything but a military port. As a port of commerce
it would have no future, though it would certainly be the most beautiful, and, after Malta, the most important port in the Mediterranean. It would be an African T,
but Tunis might become their Marseilles.
The construction and working of the port of Tunis were
confided to the Société des Batignolles, and very careful confided to the Societe des Batignolles, and very carefu consideration was given to it on that occasion by the
chief engineer of embankments and bridges $-M$. LarocheIf estimated the cost of the works at $11,000,000$ francs
In now anchor off Goulette to approach the town. The tonnage of the merchant ships which entered the roadstead in 1881 exceeded 320,000 tons ; from this the importance of Tunis may be judged, and there is abundant evidence that this importance might be irmly and to increase the number of public works
All the produce of the Medjerda plain, Sahil, and the neighbouring countries, would gravitate towards
would be sent the largest quantity of imported artices.
It would, no doubt, be necessary to impose very heavy dutie merchandise, in order to defray the expenses of construction it is now subjected. Merchandise at Goulette must first be landed, and then carried by the famous Italian railway to Tunis.
This costs on an average 3f. to 4f. per ton. If the port at Tunis were ever made, this expense would be saved, and the little railway from Goulette which Italy carried off from France with so much eccat, would become what it ought to be, a mere suburban railway.
North of Tunis, Bizerte, is not the only point worthy of notice. The importance of Tabarka is also very great-firstly, because hrough it, the country of the Kroumirs - where there must now Ways comilitary occupation-is accessible; and, secondly, becaust there having proved so fruitless, there is no possibilility of valry. The region bordering on Tabarka the most rer allow number of Europeans to settle there
Forests of cork and evergreens are met with. There is plenty of pasturage and abundance of water at all seasons of the year;
but the working of the mines and forests, and the utilisation of water as a motive power, could not be carried on without the aid European capital. Perhaps private enterprise may undertake
the construction of a port at Tabarka. In the districts inhabited by the Mecknas and Nefzas there are appearances of iron which ncourage the hope that much iron may exist. The Algerian and if their researches are crowned with success-as everything seems to show that they will be-the working ort iron mines would necessitate the construction of to three hundred thousand tons. In this case nothing would be more natural than to put into the hands of the mining director of a railway which would bring the produce of the mine to the point of embarkation. The unhappy Kroumirs, the immediate Their country would be transformed, and would become ex tremely rich. It seems that the explorations of the Mokta-el impossible to convince them that the ate firtst, and it was only being explored for iron. A number of their sheiks had to be conshow them that they were not being deceived. The sheiks returned convinced, and convinced their fellow countrymen, and now many Kroumirs are employed as workmen by the company.
They are very active and very gentle, and certainly have not the least idea that many Europeans look upon them as intractabl barbarians incapable of submitting to the slightest discipline.
On the east coast of Tunis there is the traffic is of suafficient importance to justify the creation of a Hount-Souk, and Zarvis ships anchor in the Sfax, Gabes embarkations and disembarkations are performed by means barges. This service might be improved by the construction of stockades, and the improvements of the quays, especially at
those places where the alfa commerce, one of the chief sources of revenue to the Regency, has come into, or is likely to come into play. It is unnecessary to touch upon the establishment of
new lighthouses, which might be continually kept in repair by
the Tunis. On this subject there cannot be any doubt. The
Thench Marie, which in future must be cong question of railways is a more complicated one ; the military European civilisation into the Regency, suppress insurrections there, and definitivively establish Euronean rule.
There is no doubt that from a French point of view construction of railways. For a long time the receipts would be inconsiderable, but at the same time the saving which
would be effected in the reduction of the number of troops, and in the expense of warlike expeditions, would be enormous as
soon as strategical and commercial railways were made For soon as strategical and commercial railways were made. For
example, in Algeria, no insurrection has ever been known to take place in a district crossed by a railway, and it is not too much cease. Locomotives are of more use in pacifying an Arab country than flying columns, and the more money expended ove would be effected not only in gold, but in what is of greater importance for the to Gafsa by Tebessa, from Tunis to Sousse, and from Djedeida base of operations in the south of the Regency. Bone is at the
bate same distance as Tunis from the oasis of Gafsa, which commands south. Thus a railway from Bône to Gafsa would be a link
sot etween the south of the Regency and the great Algerian port of
the French, and would admit of a large force being brourt two days on to the line of retreat of such tribes as had the imprudence to revolt. The Bey has already conceded the line
from Tunis to Sousse to the Bône-Guelma Company, and the
first section of it, comprised between Tunis and Hamman-el-Enf, is nearly completed. From Hamman-el-Enf to Sousse there are onstruction of thes, and as the soil offers no obstruction, the nexpensive. It the remainder of the railway wiil be easy and at both ends at once. This railway will cross through very rich countries, tributary to Tunis, at any rate that part comprised goods coming to the port of Tunis. From and milis will insure voods coming to the port of Tunis. From a military point of into the heart of the Regency, an advantage not to be despised, as disembarkation at Sousse is always risky,
The line from Djedrida to Bizerte has also been conceded, like that from Tunis to Sousse, to the Bône-Guelma Company. Its It would be about 75 kilometres, and it would be easily made. better still, it would traverse the reegion of Manis and Bizerte, and fertile, and would bring traffic to the principal line from Tunis to the Algerian frontier, a length of 25 kilometres. This last
line is of considerable importance, for it forms a branch of the great artery which will some day cross the whole of the northern great artery which will some day
districts of the States of Barbary
Actually, this branch is attached to nothing, being isolated by insufficiency of its revenues is scarcely other, so the deplorabl that the French Treasury should have rebelled against the excessively heavy expenses demanded of it in consequence was
only natural. But, because it cost France much more thas ought to have done, is no reason for condemning, as the French do, the making of it. They paid much too heavily for it, but it
was necessary to make it. If affairs in Tunis had been managed was necessary to make it. If affairs in Tunis had been managed with more order and method, and been so often allowed to take the place of the public rood, the State might have made much less rigorous conditio with the Bône-Guelma Company
and however, is useless, and when the port of Tuni is made and the line from Gardimaou to Souk-Ahras esta-
blished, the railway from Tunis to the Algerian frontier will find its traffic doubled, and its strategic importance increase in the same proportion, while demands upon the Exchequer will diminish. It would be a great misfortune if this first experience somasted rrance with Tumisian railways. It is furthe haracter which does not seem to he bey have a parnticuar which might help to relieve the French Exchequer. In France at the expiration of the grant, a railway reverts wholly and ntirely to the stace, so suat a upon it. In Tunis it is otherwise. By the terms of this grant the Government is obliged to buy back the line, in default of which the grant becomes perpetual.
Excepting in the environs of Tunis and about 30 kilometres in the direction of Bardo, Monouba and Hamman-el-Enf, there sed only in fine weather and by light carts, but which are impassable for all vehicles in the winter, when the re obliged to go at random over fields and meadows. If the French wish to insure military communication and to open large
paths for commerce, it is indispensable that they should make proper carriage roads. Nothing would be more dangerous, how ever, than to amuse themselves by trying mischievous experi ments, as for example from Sousse to Kairouan, where at great cost a sort of tramway was established, known by the name of ced the battles fought in the province of Tunis. It was a fad of the Minister of War against which everyone in Tunis protested, but which Paris nevertheless imposed in spite of wind and swamps.
Everytime it rains the "Decauvill Railway" is destroyed, fo Everytime it rains the "Decauville Railway" is destroyed, for the marshy ground through which it runs is incapable of sup-
porting it. It is so inadequate, indeed, that 500 horses are Whed to be sent every day with supplies of food for Kairouan easily made, as in the greatest part of the country the ground easily made, as in the greatest part of the country the ground
offers no great difficulties. In the mountainous regions the obstacles would be greater. For instance, in the country of the Kroumirs well engineered roads are being made which will make the French masters of the country.
The roads which will be of the greatest service are those which penetrate from Algeria into the Regency, notably those from
Calle to Ain-Draham from Souk-Ahras to Kef, by Gar dimaou, also those which would constitute the great country network, particularly those which would unite Gafsa to Gabes Gafsa to Tunis, and Sousse by Kairouan. In the northern dis augmenting its receipts will lessen the demand upon the French Exchequer. The telegraphic and postal service will also greatly facilitate communications, and is already organised in a very remarkable manner. In a few months the country has been covered with telegraph wires which work very wellindeed; perhaps
France herself is not better off in this respect than Tunis France herself is not better off in this respect than Tunis man to cut a telegraph wire. In order to avoid surprise from acts of spite from the natives, it would be well to have an electric cable from Tunis to Gabes and Djerba all along the coast. It
would not be costly and would be of immense service. The establishment of a flashing telegraph, such as the one already in use from funis to Zaghouan and from Zaghouan to would be a safeguard against the dangers which the absence of In of communication threatens to generate
In short, from an agricultural, industrial, and military point view alike, Tunis requires a certain number of public works, The Director of Public Works, M. Grand, has drawn up a programme, which includes all the essential undertakings, and the cost of which does not exceed $79,000,000$. The largest part
of the expense would, of course, be borne by the country, and those who would have personal interest in it, for all the works pro posed wour be mediately remunerative. If M. Grand's pro definitively, but she would be transformed. Her latent riches which have slept since the days of the Romans, would once again fertility, would return to her former prosperity; and even admit productive power, she would still, without coming up to thei descriptions, deserve to be regarded as one of the most beautiful provinces of Africa. Tunis is better adapted for colonisation
than Algeria. The inhabitants are milder in character, population is smaller, the climate less changeable, and territory generally easier to govern and defend. Being bounded on the north and health-gi
climate.

Tunis, indeed, is scarcely known. She is possessed of large

Djelha, and the beds of iron in the region of Tabarka are
already well known. They are seven miles in extent in the districts inhabited by the Nefzas
A Franco-Belgian Society has undertaken the working of the quarries of Ghemtou in the hope of tinding the Numidian
marble-yellow veined with purple-so sought after by the marble-yellow veined with purple-so sought atter oy the railway from Tunis to the Algerian frontier.
Private enterprise will undoubtedly find in Tunis a rich field for its activity, provided that matters cease to be conducted, as
hitherto, in oriental fashion, and work is carried on in a slower hitherto, im oriental fashion, and work is carried on in a slower bring a solid and lasting return. If things are better managed, Tunis may still gain the popularity it so well deserves, and
which would already have been very great if the French had which would already have been very great is worthe to them.
understood the country, and how much it is wor

HALPIN'S COMPOUND CONDENSING ENGINE. On page 178 we give the first of several engravings illustrating new form of compound condensing engine designed by Mr. Druitt Halpin, of 9, Victoria-chambers, and constructed by
Messrs. Manlove, Alliott, Fryer, and Co., Nottingham. The Messrs. Manlove, Aniout, ryer, and Co., Notringham.
engraving on page 178 shows the general construction of
the engine ; its construction in detail we shall describe in another impression with further engravings.

ON THE ELECTRIC FURNACE.*

By C. W. Siresens, D.C.L., F.R.S., and A. K. Huntington, THE electric furnace has previously Journal of the Society of Telegraph Engineers, June, 1880. It has since been found advisable to surround the furnace with a coil. By this means the direction of the arc can be regulated at will,
and the tendency which it has to fly to the sides of the crucible be checked.
The furnace consists of a crucible of any convenient size, in the bottom of which is pierced a hole to receive the positive electrode,
the negative electrode, which passes through a hole in the lid of the crucible, being suspended from one end of a beam, the other end of
which is attached to a hollow orlinder of soft iron free to move Which is attached to a hollow oylinder of soft iron free to move
vertically within a solenoid coil of wire. The force with which the cylinder is drawn into the coil can be counterpoised by a
sliding weight on the beam. One end of the solenoid coil is con-
nected with the positive, and the other with the negative pole nected with the positive, and the other with the negative pole.
The coil having a high resistance, its attractive force on the cylin dhe coir having a high resistance, its attractive force on the cylin-
der is proportional to the electromotive force between the elec-
trodes,, i.e, to the resistance of the arc. der is proportional to the electromotive Torce between the elec-
trodes, i.e., to the resistanceof the arc. TTe length of the aro is
therefore regulated automatically. This is a point of great
 developedinthedyed, and the result would be that hearchysudden change in its resistance or by the sinking of the material in the cru-
cible is thus also avoided. The crucible is surrounded with some cible is thus also avoided. The crucible is surrounded with some
infusible substance which is also a bad conductor of heat. Gas retort infusible substance which is also a bad conductor of heat. Gas retort
carbon or sand answers well for the purpose. The electrodes may carbon or sand answers well for the purpose. The electrodes may
be of such carbon as is sused in electric lighting or of any other convenient conducting substance. They may, if desired, be cooled by circulating water through or round them, or by exposing them
as far as possible to the air. For example, in one experiment a tin. nickel positive pole was employed, the lower end being
inserted into a solid rod of copper about lin. square by 6 in. long. inserted into a solid rod of copper about lin. square by 6in. long.
With this pole, no other means of keeping it cool being adopted, 11 b of grain nickel was fused in a clay crucible and poured in eight minutes, starting with all cold
attacked, and no oeakage ocurre.
There are two great advantages possessed by the electric furnace, viz, that the temperature attainable is practically only limited by
the refractoriness of the materials of which the furnace is con structed, and that the heat is developed immediately in the material to be fused, instead of first having to pass through the containing
vessel. The temperature to be obtained by the use of fuel is limited by dissociation. Deville has shown that carbonic acid undergoes dissociation at the ordinary atmospheric pressure at about
2600 deg. Cent.-4700 deg. Fah. driven by a Marshalls 12 hhorse power engine were employed;
one being used as an exciter. The current ranged between 250 and one being used as an exciter. The current ranged between 200 and
300 Amperes. The most refractory clay crucibles supplied by the Patent Plumbago Crucible Company were invariably cut through
in a few minutes, and, except for experiments of short duration, in a few minutes, and, except for experiments of short duration,
were useless. Plumbago erucibles stood exceedingly well Obviously, however, they could not be employed for all purposes, owing to their tendency to cause carburisation of the metal experi-
mented with. In some experiments the fusion of metal was mented with. In some experiments the fusion of metal was
effected in a bed of lime, sand, or electric light carbon dust. The effected in a bed of lime, sand, or electric light carbon dust.
latter is a very bad conductor, and, as in the case of lime and sand, allows the are when once formed to maintain a passage through it to the metal beneath.
the action of the arc for twenty minutes and iron were kept under into a mould. It was found to be crystalline, and could not be iron, nickel, or cobalt have been fused. Although the remedy, viz the addition of a little manganese just before pouring, is well known, the cause remains still unexplained.
Steel. - As much as 20 lb of steel files hav
charge, the time required being about one hour, starting with the
furnace hot. With such large quantities the metal has invaribly been full of blowholes. White iron, fused in a clay crucible for thirty minutes, when iron and coke were introduced into the furnace; the resultant metal was slightly grayer than the original. When, however,
retort carbon was substituted for the coke a good gray iron, soft and easily workable, was readily obtained in fifteen minutes, start ing with the crucible hot. On another occasion, starting all cold
at the end of thirty minutes the metal, although it had been wel fused, had not been rendered grayer. The difference between these two results was possibly due to the temperature being some
what higher in the one case than in the other. This is a point of -quarters of an hour, yielded sed gray crrytalline iron. Inreequarters onothe experiment, in which 8 oz oz of
gray iron, produced in the electric furnace from white iron, were gray iron, produced in the electric furnace from white iron, were remelted
obtained, from which on slow cooling a large quantity of graphite
separate separated.
minutes in carbon dust, was not the arially changed for forty-five and the general character of the metal as to the way in which it worked under the tool was not materially altered. The object of
the experiment was to ascertain the maximum amount of carbon iron is capable of taking up under circumstances presumably the
most favourable. The result is hardly that which would have most favourable. The result is hardly that which would have
been anticipated. Some of the same cast iron was fused for
fefteen fifteen minutes under lime, which nearly covered it. The character of the fracture of the metal was but little altered by this
treatment, when slight differences, due to the rate of cool ling treatment, when slight differences, due to the rate of cooling, are
taken into account. A strong smell of phosphoretted hydrogen or of a phosphide was perceived-probably the latter. This was only observed in the experiment in which lime was used. The lime employed still retains a very offensive odour.

Read before Section B of the British Association at Southampton.

When spiegeleisen was fused in a plumbago or a clay crucible
sraphite separated as the metal cooled. S. Selfecous pig iron containing about 10 per cent. silicon was fused by A similar result was obtained when 5 lb . of the siliceous fused for one hour in carbon dust. On fracturing the ingot obtained, a large quantity of scales of graphite was found in a
hollow which traversed nearly the whole length of the ingot at its centre. The fracture of the metal was still that so characteristic of highly siliceous iron, and was practically the same as that of the Ariginal pig iron.
mount of carbon of a given quantity of silicon. Gray cast iron and pig iron ${ }^{\text {con }}$ containing 10 per cent. of silicon were fused together in carbon dust,
the ratio between them being varied so as to yield motal with from \ddagger per cent. to 9 per cent. of silicon.
A similar series was made, only substituting sulphur for silicon. No odour of sulphurous acid was pereeived; therefore, presumably,
no sulphur was volatilised. This is somewhat remarkable, con. no sulphur was volatilised. This is somewhat remarkable, con-
sidering the nature of the experiment. It was thought that investigations of this kind might have an important practical as argument, that such distinction really exists-in assisting to determine the conditions in the blast furnace, \&co.
Nickel. - A positive pole of this metal-cast malleable by Wiggin
and Co.'s process *- -2 in. in diameter, was passed through a hole in and Co.'s process *- in. in diameter, was passed through a hole in
the obtom of a clay crucible. A carbon negative pole was used, nickel formed on the end of it, so that practically it was a nickel pole. This deposition of metal on the negative pole was
also observed with some other metals-notably with tungsten. Whilst disclaiming any special knowledge on the point, Professo Huntington suggested whether this phenomenon-which is the reverse of that geterally reconised as taking place-might not
depend on the relative volatility of the matter composing the poles. In the furnace arranged as just described, 1 lb . of grain nickel wai liant granular fracture. It could not be cut properly in the shaping machine, shearing off under the tool. One pound of grain
nickel fused in carbon dust for twenty-five minutes yielded a a dark gray carburised metal, which worked well under the tool. On another occasion an equal quantity of nickel, similarly treated,
gave a "blowy" metal, which could not be worked. Some carburised nickel, made as described above, was fused in a clay
crucible for twelve minutes, and allowed to cool gradually in the furna the fracture beca shit, the grain olose

Copper.-Three quarters of a pound of copper were fused for was found that all but about aust. had bexamining the result, it who were present during the experiments suffered no ill effect breathed
Platinum.- -Eight pounds of platinum were rendered perfectly Tquid in about a quarter of an hour.
Tungsten.- Half a pound of tungsten in powder was subjected t the action of the arc in a clay crucible. Dense fumes were evolved allowed to cool down slowly. When the crucible was removed, it was found to have been very much attacked below the point to which the
arc extended. The inference is that the crucible had been attacked arc extended. The inference is that the crucible had been attacked
by the metal at the temperature of the experiment. The metal was by the metal at the temperature of the experiment. The metal was
fused only to an inappreciable depth beneath the cavity formed by fused ondy the unfuppreciate depth beneath the cavity formed by
the arc. The underneath was covered with very descent crystals of tungsten, which under the micr scope appeared to be well-formed prisms. They have not yet been
measured. The crystals had evidently been formed by the slow cooling of the vapour distilled down from the surface.
A very large number of experiments was made with tungsten, the mall quantities at a time. It was possible to build up a ser ingot by fusing a little of the tungsten, and then adding little by little gradually. Even then the pieces obtained were for the
most part spongy and unsatisfactory. The best results arrived at most part spongy and unsatisfactory. The best results arrived at
were when tungsten which had already been fused was employed in the building-up process. Once the metal had been fused, it did surface exposed
Tungsten fused in the electric furnace is, when untarnished, pure hinte, and britle, the grain being very close. Tungsten hitherto has only been obtained as a gray powder, by reducing the oxide
with carbon or hydrogen, or in minute globules in the ordinary small electric arc. Tungsten has its fusing point lowered by the addition to it of carbon. Under these conditions a solid piiece of
moderate size can, without much diffioulty, be obtained. From moderate size can, without much diffioulty, be obtained. From
1000 grains of powder fused in carbon dust 650 grains were re covered, the remainder having been volatilised, and from 450 grains
of the fused metal 410 grains were obtained on refusion. One piece of tungsten which had been treated under the conditions most likely to cause it to be highly carburised was analysed. It
contained $1: 8$ per cent. of carbon. The metal was very white, ciose in grain, and brittle.
From the foresing
ny given metal which can be successfully fused in the electrio furnace, and the time required in effecting the fusion, are dependent on (a) the relation between the volatilising point and the fusing point, i.e., the extent to which the volatilising point i
higher than the fusing point ; (b) the conductivity of the metal
for heat.
It thus
steel, and in greater quantity for a can be more readily melted than

* See paper on "Nickel and Cobalt," by A. K. Huntington, in July
umber of the Journal of the Seciety of Chemical Industry.

This inference is believed by Professor Huntington to be justified
by the observations and experiments so far made. It still rem
in this paper In the discussion on the communication made by Professor Huntington Dr. Siemens remarked that the limit of the trempera-
ture producible by means of the electric turnace is ture producible by means of the electric furnace is as yet unknown,
for although the heat would probably increase the resistance of the are, that in it itealf would only cause a fursther development of
heat. The results obtained with copper, although peat. Nhe results obtained with copper, although apparently purposes, yet might prove of importance in dealing with metals in
the vaporous condition. He could not agree with Professo Huntington's sunggestion as to the cause of the deposition of metal on the negative pole. He thought it was due to the negative
pole being much cooler than the positive. fused globules.
fased globules.
Prof. Huntington replied that it was in the latter condition.
Mr. Terrill (Swansea) remarked that the loss of copper volatilisation in smelting was much greater than it was generally
upposed. During an accidental escape of sulphuretted hydrog supposed. During an accived a thicape of sulp. detted hydroge extending over a large area. He had detected copper deposited
even on the zinc counter of the refreshment bar at the railway even on the zinc counter of the refreshment bar at the railway
station some distance from the works. The discussion was con tinued by Mr. Maxwell Lyte, Prof. Vernon Harcourt, and the had been made miverb, who thought that such experiments

Emery in the United States. - In our last impression w stated on the authority of the American Manufacturer that emer he statement is not accurate, and that the prospectors have mis taken magnetic iron ore for emery.
A NEW TkLEPHONE.- It is well known to be advantageous to
utilise both poles of a magnet in the telephone. How should the wire be placed, relatively to the magnet, to give the best effect? is an important question. M. D'Arsonval has lately become conGower, Siemens, Ader, \&c.--the really active part of the wire is that lodged between the magnetic poles. The rest of the wire may eregaroed as mere useess resistance. The point, then, is to have
the whole coil between the poles. M. d'Arsonval accordingly he whole coil between the poles. M. © Avsonval accordingly minates in a short cylindrical piece, with a coil round it, while the other terminates in a ring piece surrounding the coil. These two poles are in the same plane and very near the plate. The complete
instrument is very light, yet it is said to transmit the voice with instrument is very light, yet it is said to transmat the voice with
extreme distinctness, and with such force that, if a trumpet mouthpiece be added, one can easily hear throughout a room. Royal Comaisssion on Technical Instruction.-The members Considerable progress has been made in the collation and arrange ment of the vast amount of information collected by the Commissioners during their visit to France, Germany, Austria, Switzer-
land, and Italy. They have recently ben land, and Italy. They have recently been engaged in pursuing
their investigations here and abroad. Professor Roscoe and Mr. in the sind occupied in reporting on the industry and school and Mr. Redgrave are at present travelling in the Black Forest, where they are collecting information with respect to the native taining if similar industries, under necessarily altered circumstance Kingdom. Mr. B. Samuelson, M.P., and Mr. Philip Magnus have
Kint been spending some little time in Treland, where they have been instituting inquiries into the possibility of improving the material
condition of the labouring classes by the establishment of trade schools, and the introduction of new means of livelihood among the Bo 0 O
Boring Operations with Bort. - A correspondent of the Times Writes:- In the course of some boring operations, which have
recently been carried on by the Government of the Cape of Good Hope in the search for coal, it occurred to the geologist in charge to make trial of native bort in lieu of the Brazilian carbonato,
which had, until then, been employed. The experiment proved a complete success. The last six crowns used were of 3in. diameter,
set with bort. It was found that these set with bort. It was found that these bered through h100ft. of
sandstone and shale, part of it exceedingly hard, being indurated
sy by contact with intrush
 class of country, eight crowns supplied from London and set with
carbonado, bored only 30 ft latter cost at the rate of 27 s . 6 d . per foot; while the work done with bort, in the same class of rock, cost less than 2 s . per foot
bored. The advantage in the use of bort is increased by the fact that, owing to the greater depth bored by a single crown, there is
less delay caused by the resetting of the stones. Great care is, very large percentage of the ordinary bort of commerce is unsuitable." Bort, we may explain, is a form of the diamond, blackin colo
very imperfectly crystalline, and unsaleable for ornamental use An American Express Train. - A train of new cars for the位 Mr. F. D. Adams, the master car-builder. The train consists of a baggae car, smoker, two passenger coaches, and two parlour cars,
and will be drawn by ane new engine also built by the Boston and
Albany Company. The exterior of the cars is is painted olive, and Albany Company. The exterior of the cars is painted olive, and
the marking is in plain but handsome letters. The interior finish
of of the smoker is mahogany; of the coaches and drawing-rooms,
ash and cherry, with bronze trimmings, racks, and lamp fixtures. The seats in the smoker are of rattan; in the coaches of dark drab leather and cushions and head-rests. The cars are lighted by full-
len length windows, which are provided with spring-roller shades.
There are eight lamps in each car in handsomely ornamented chandeliers. The floor of the drawing-room cars is covered with Wilton carpeting, and a strip of carpet is laid in the aisles of the
passenger coaches. TTe whole aspect of the interior finish and furnishing of the cars is light, airy, and pleasing to the eye. There are thirty-three seats in each drawing-room car and sixty-ight in
the others. One of the novelties in arrangement of the drawingroom is that the whole car, except, of course, the saloon, washroom, and stove-room, is in one open apartment. Instead of the
ordinary compartment there are four seats, similar to those in a
seeper, of a card party, or a party of friends who may wish to sit close
together. They can also be turned into a bed, the bedding being always kept ready, and shut out from the rest of the car by heavy draperies, so that a sick person can be carried comfortably and in
seclusion. The weight of each car is about 45,000 b. The body being comparatively light, 27,0001b., the great weight is near the rain, thus adding to the element of safety. The pair of trucks
weigh, in round numbers, , 8,000 olb. The wheels are of paper,
42ing in diameter, which is 9 in. more than the standard. The journals are 3 3in. in diameter and 7 in. Ung. The engine was buil
under the supervision of Mr. A. . Underhill, superintendent of Sin. iron, which is commonly put into locomotives. There are 221
tubes instead of 160 , the usual number. The boiler is tested at 400 lb . of steam, and will be run at 160 ib . pressure. The train is
equiped with the Westinghouse automatic brake.- Boston Ad-
eretiser.

messrs. ROSE, DOWNS, AND THOMPSON, HULL, ENGINEERS.

We illustrate $^{\text {above a dredger of simple construction, well }}$ calculated for doing useful work on shallow streams.
is 54 ft . long, 22 ft . beam, and 6 ft . deep. Her draught of water is is 54 ft . lon
under 4 ft .
Our drawing explains itself. It will be seen that we have here a swivelling crane and grab bucket, and that the stuff dredged can be loaded into the barge and conveyed where necessary, The lifting power of the crane is one ton, and in suitable material such a dredger can get through a great deal of work in a comparatively short time.

GEOGHEGAN AND STURGEON'S PATENT

 PISTON.THE accompanying engraving illustrates a piston now being introduced by Mr. T. Sturgeon, of Westminster-chambers. The object had in view is to jacket the piston and also use it as a heater to raise the temperature of the cylinder. This object it is claimed is fully accomplished by the use of a divided piston
with an arrangement for admitting live steam into the wide space with an arrangement for admitting live steam into the wide space
between the two sets of rings, so that the steam is brought into between the two sets of rings, so that the steam is brought into
direct contact with the interior surface of the cylinder, which it heats in advance of the incoming and expanding steam. This body of live steam, carried along between the walls of the piston, and in direct contact with the inner surface of the cylnder, will, than the external jacket could do, and will also present a hot surface of the piston to the steam, while the exhaust is not interfered with or acted upon by the hot steam except the part immediately in front of the piston. The breadth of the piston rings will prevent the live steam coming in direct contact with the cylinder at the extreme end of the stroke, but this little portion has the same chance of being heated by conduction as in

the case of the external jacket, while it has the additional advantage of the heated surface of the piston presented to the, of the hin body of entering steam. stroke, where expansion begins. It might at first appear that this arrangement of piston would involve a longer cylinder, but this is avoided by the arrangement shown in the illustration, in which only the chase of the cylinder is lengthened, and the cover recessed to the form of the piston, so that the length in the centre, from gland to gland or boss to gland, remains unaltered. In the engraving A A are small holes drilled through from the piston is at the end of its stroke, and the steam port when the live steam may pass into the interior of the piston, and thus enable it to recover at the end of each stroke whatever it may have lost by condensation during the stroke ; and B B are drain cocks. These are so placed as to enable them to drain the interior of the piston when at the end of its stroke.

BAILEY'S VERTICAL HOT AIR ENGINES. The "vertical" hot air engines, it will be observed, differ from hot air engines that have already been introduced into the market in the arrangement of the cylinders. The air cylinder is placed outside the casing, offering thereby greater facilities for
cleansing and lubricating, also for examining the different parts. through any defect in packing; so that it will be seen that? not This cylinder is fitted with a metallic piston, and the shape of only is it automatic in receiving the proper supply of air for the cylimder enables this type of engine to be made as compact
as possible. The action of the engine may be described as
this down stroke is made a small amount of oil is drawn into the follows :-After the fire is made the retort becomes heated to a \mid cylinder for lubricating the metallic piston. The manufacturers
 engine that the design admits of the engine being made much cheaper, as well as affording great facilities for examining, lubricating, and repairing, than is the case with any other hot air engine. It is being made in Bailey and Co., Salford.

Weight of a Million Dol-LARS.-Mr. E. B. Elliott, the Government actuary, has computed the weight of a million dollars in gold and silver coin, as
follows :- The standard gold follows:-The standard gold
dollar of the United States condollar of the United States con-
tains of gold of nine-tenths fineness, 25.8 grains, and the standard silver dollar contains of silver of nine-tenths of fineness, 412.5 grains. One million standard
gold dollars, consequently, weigh $25,800,000$ grains, or 53,750 oz. troy, or 44791 lb . troy of 5760 grains each, or 3685.71 lb . avoirdupois of 7000 grains each, or
$1843-1000$ "short" tons of $1843-1000$ "short" tons of
2000 lb . avoirdupois each, or $1645-1000$ "long" tons of 22401 b . avoirdupois each. One million standard silver dollars weigh $412,500,000$ grains, or $859,375 \mathrm{oz}$. troy, or $71,614 \cdot 58 \mathrm{lb}$. troy, or
$58,928 \cdot 57 \mathrm{lb}$. avoirdupois, or ${ }_{29}^{58,928.57} 464 \mathrm{lb}$. "co00 short" tons of 2000 lb avoirdupois, each, or
$26307-1000$ "long" tons of 2240 lb . avoirdupois each. In round numbers the following table represents the weight of a
million dollars in the coins named: Standard gold coin, $1 \frac{2}{3}$ tons; standard silver coin, $26 \frac{9}{4}$ tons; subsidiary silver coin, 25 100 tons. 100 tons.
-Five new railway post-offic cars, for the first mail service on the Baltimore and Ohio Railroad between Baltimore and St. Louis,
are now being completed at the are now being completed at the
Mount Clare shops. The cars are built by the company upon designs furnished by the Government, and are unique specimens of their kind. The exterior of
the cars is white, with yltramarine the cars is white, with rlltramarine
blue borders and gold lettering. They are numbered from one to five, and are inscribed on the sides, "Baltimore-Fast MailSt. Louis," and "United States Post-office." In the interior the
cars are finished in ash and cherry, oiled to show the natural grain. The ceilings are whitr, The forward section is fitted with stalls for mail bags. The centre is taken up with a series of eighty
inclined shutes for distributing newspapers. The matter for distribution is placed upon a long
dull red heat. This rise of temperature expands the small amount of air inside, which then forces the piston in the air cylinder downwards. Atter this expanded air has done duty,
the displacer, which is actuated from the crank, forces the air which has been condensed against the cold sides of the top part of the cylinder back to the hot end of the retort. As the piston performs its stroke, due to the expanded air in the cylinder, a small air valve is kept closed by the pressure, but as the piston makes the return stroke a small valve on the top of the cylinder opens for a sufficient length of time to permit air to enter the
cylinder to replace any which has been permitted to escape
table in front of the shutes, each
of which is numbered and labelled. When distributed it slides through by gravitation and falls into the pouches on the other side
In the rear section there are 500 boxes of uniform size, arranged in a semicircle for distributing letters. Each of the cars is lighted by ten polished brass Argand lamps, and heated by Baker heaters. The carriages and under gear are painted black and light brown. Loughridge air brakes are attached to each car. The five will soon
be finished, when three more will be commenced for service between Baltimore and Chicago. The white and blue coats of the cars have a very pleasing effect in their new state, but railroad men think the colour will not remain so bright after a short season on the road.-Baltimore Sun

20-TON PORTABLE STEAM CRANE, GLASGOW HARBOUR.
MESSRS. GEORGE RUSSELL AND CO., MOTHERWELL, NEAR GLASGOW, ENGINEERS.

The very fine crane which we illustrate above, has been erected on the Stobcross Wharf, near, Queen's Dock, for the For some Messrs. Henderson Brothers Anchor fine stea discharging these vessels, two of which have a lifting power of 5 tons, and two of 3 tons, at a radius of 30 ft . It was found with these cranes, that although quite competent for nearly all the work required, there occasionally were pieces above their lifting capa-

city, which necessitated removing the steamer to another part of city, which necessitated removing the steamer to another part of
the harbour to get the use of one of the fixed public cranes. In order to obviate this inconvenience, the crane we illustrate was constructed by Messrs. George Russell and Co., of Motherwell, near Glasgow. Its leading features are patented by Mr. Russell, of that firm, by whom this special crane has been designed. Fig. 11
shows an outline of the crane, and the extremely limited space between the edge of quay wall and sheds. The gauge of the wheels

is 10 ft . centre to centre, but in order to clear the eaves of the shed the central post is only 2 ft . 6 in . from the centre of the outside wheels. In order to distribute the weight equally on
the quay wall and grooved rail near the shed, eight supporting wheels are fitted on each side of the carriage. Fig. 2 is an elevation of a corner of the carriage, showing the wheels and levers for distributing the weight equally. There are on each corner a pair of main levers with fulcrum A, at each end of these

are fulcra B B, with shorter levers carrying the axle pins of the wheels C CCC. The levers being free to adjust themselves, it will be evident that the pressure at A is equally distributed over the four wheels, notwithstanding any irregularities in the quay surface. The outer wheels bear directly on the granite able iron plates $1 \frac{1}{8} \mathrm{in}$. thick, 4 ft , deep; the eipht wheels on side being 3 ft , centre to centre, give a wheel base of 21 ft . The central post is of malleable iron 2 ft . diameter; the $j \mathrm{jib}$ is 50 ft .
long, of malleable iron plates of box section, and its radius is variable by steam ; the chain barrel is 2 ft . 3in. diameter, screw gears. The engines have a pair of 9 in. cylinders by 13 in. stroke with steel link motion. The boiler is vertical, with three cross tubes, and a large cylindrical feed-water tank is placed above it through which the heat. passees to the the chimmey; the exhaust
steam is also led into it. Fig. 3 shows a section of the combined
stace ash-box and balance weight; the ashes drop from the fire-bars into a conical space terminating in a door at the bottom; when this door is opened the ashes are at once emptied into any con-
venient receptacle. The crane is moved along the quay by venient receptacle. The crane is moved along the quay by
gearing fitted under the carriage, grasping by means of a capped gearing fitted under the carriage, grasping by means of a capped
pulley a pitch chain made fast to any of the mooring blocks. pulley a pitch chain made fast to any of the mooring blocks. 16 tons at 35 ft working Besides ordinary lifts, it is is fitted with tipping gear for lifting coal wagons, and will shortly be used for coaling the vessels. The crane weighs 103 tons, and there are about the land side of the carriage; so that the total weight is 150 tons. Although of such large oapacity it is found to work with extreme ease under control of one man.
This is a very favourable example of thoughtful designing, the conditions under which the crane has to work being very excep-
tional. Messrs, Russell's reputation is an ample guarantee for the quality of the material and workmanship.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
fan trials at reading.
SIr,-I was surprised to see in your last week's paper a letter
from Mr. E. O. Greening, on the competitive trials of harvest fans, also at the conclusions he had come to from the figures given in yours of July 2 2th. You then siad you had been a alde to take
the figures by the courtesy of the judges, that you were only able the figures by the courtesy of the judges, that you were only able
to go briefly into the matter, but purposed to return to it again.
This I understood to This 1 understood to be after the judges had given their a ward.
was, therefore, surprised that he being one of the competitors should, appear in print tefore the judgess, report came out and and also
that he should arrive at such conclusions. I have no oubt you that he should arrive at such conclusions. I have no doubt you
would have noticed the errors in the table-if you have not done so-and have corrected them when you were able to go into the others, I hope you will favour me with space for a few lines.
As you say, further trials should have been made, and of
were made ; but when Mr. Greening produced his figures I again examined your table, and I have come to the conclusion that there was something wrong with the dynamometer, also there are one or
two errors in the air column.
With reference to the dynamometer we will take the two trials
of Mr. Phillips' common hand fan. In the first trial it was driven at 400 revolutions or 2512 ftt at tips of fan. The water column was 0.47 in ., and on the dynamometer lever was 4 ll . when the fan
was working closed, and 6 lb . when working was working closed, and 61 lb . when working open and discharging espectively-or an increase of about 50 per cent. in the latter cone Now, taking the next trial of this same fan run at 600 revolutions, or an increase of velocity of 50 per cent. and an increase of column of 100 per cent. or resistance, yet we have only 4.25 in . on weight of 6 per cent.; but we have 15in. when working crease of weight of 6 per cent.; but we have 15in. when working open, or
250 per cent. more than when working closed. Of course all this 50 per cent. extra air ; and from this case and some others, I have come to the conclusion the dynamometer was not properly adjusted for this first trial.
Going into Mr. Greenin
pressure of air or great velocity pressure of air or great velocity of fans are best for this purpose,
take first Mr. Greening's small hand fan. The velocity at the tips was 6784 ft . per minute. Mr. Phillips' velocity was 3768 ft . per minute, or nearly 50 per cent. 1ess in speed. Mr. Greening's gives a
column of $1 \cdot 3 \mathrm{in}$., and Mr. Phillips' 0.95 in ., or column of $1 \cdot 3 \mathrm{in}$. , and Mr. Phillips' $0 \cdot 95 \mathrm{in}$., or only 25 per cent.
Then the dynamometer has 9 lb. on the lever for Mr. Greening's
trial, and 4.25 lb . for Mr. Phillips' wice the power and only gets 1 .3in. of column of water takes twice the power and only gets $1 \cdot 3 \mathrm{in}$. of column of water to Mr.
Phillips' $0 \cdot 95 \mathrm{in}$. This does not prove Mr. Greening's conclusions.
But in But in further figures of the table referred to he has not got the correct figures. In the column giving the quantity of air disof 1445 cubic feet per minute. But taking the area of 61 dia. $=$ 30 square inches, and the velocity tiven as as 984 ft. ., we find the
31 cubic feet of air discharged to be 208tt., and agreeing very nearly
with the result given by air meter. Take again the next recorded with the result given by air meter. Take again the next recorded
trial of Mr. Greening's fan. The area of discharge is given at trial of Mr. Greening's fan. The area of discharge is given at the table. The column by air meter gives 1257 cubic feet. Greening having taken the larger figures, may come to the concluIf we take the usual formula being most suitable.
If we take the usual formula and apply it to the figures giving
the velocity of the tips of the fans and the inches of water the velocity of the tips of the fans a
column, we get results as given below :-

	Velocity of fan tips.	$\begin{gathered} \text { Water } \\ \text { column. } \end{gathered}$		Total ft. lb. required by fan.	Ft. lb. required to $1 \mathrm{c} . \mathrm{ft}$.ofair
Mr. Phillips	3760	$0 \cdot 95 \mathrm{in}$.	$0 \cdot 196$	6468	6 lb .
Mr. Greening.	6784	1.3 in .	$0 \cdot 27$	8910	42 lb .

To obtain the number of foot-pounds required to discharge one
cubic foot of air, I have divided the total discharge air meter into the total foot-pounds required to work fan. The velocity of the tips of the fans also ought by calculation to raise the water column in Phillips' fan $1.08 i n$. , and in Greening's fan 3.57 in , Greening's is two-thirds below what tow calculated results, while I do not think that high velocities of fans or highives.
e economical or effective. What I think is wanted is to will conomically as possible. What low pressure as possible, and as conomically as possible. What I mean by low pressure is, not to in the stack, but to draw from more than one place and so the ai large volume of air at a low velocity. This will cause the a passing to be of greater effect, and allow it to permeate more 118, Commercial-street, Newport, Mon., Sept. 6th

SIR,- -With reference to Mr. E. Owen Greening's letter in your I cannot failly, at the present moment for the hundred guinea prize statement, although I mesent moment, enter into details as to his segard to my improved harvest fan, are seriously erroneous : and I
regte venture to remark that it would have been wiser policy on the part
of Mr. Greening to wait until the judges' award and report had
been udge published before endeavouring to prove results which had ourse.
Newport, Mes will no doubt do in an exhaustive manner in du
CHARLES D. Phillips.

Sir, - Those interested in the subject of the disposal of sewage will feel greatly obliged to Mr. Hughes for his letter in your last
impression. As regards the immediate point, however, to which my previous letters have called attention, the information given by Mr. Hughes leaves us pretty much where we were. He states that in the case cited by him the result of separating the urine from the foeces has been successful; but it appears that in that instance no covering material was used. The large number of men using the latrine
no doubt gave rise to constant fresh deposits, which, covering those ho doubt gave rise to constant fresh deposits, which, covering those
below them, remained innocuous for a period of somehours. Certainly, a walk recently through a narrow lane which appeared to be the resort for natural purposes of the builders' men engaged in the
neighbourhood, did not serve to prove to me that drying foece unmixed with urine was productive of no offence. It does not seem to me, therefore, that my hypothesis as to reactionary
principle is correspondents.
In such an instance as that referred to by Mr. Hughes, separa tion of urine may be effected; but we know that it cannot be so households. For municinal purposes, therefore the penerality of not be carried out, and need scarcely be discussed, and further information as to the conditions of the matters removed from the latrine when separation was effected, would enable those who ar terested in this question to form more con
St. James's-street, S.W., September 4th
Wiswall's tilting weir.
SIR,-With reference to a paper in your last issue on "New,
Sluices in course of Erection on the River Irwell, near Manchester," Mr. Wiswall, C.E., says, page 153 , the gates retain their incline position until the water of the river rises to 2 ft . 9 in . above it
ordinary level, when they automatically tilt and release the impounded water.
I cannot see how these gates would be automatic with a flood o 3 ft . say. Having calculated approximately what the effect would be, I find they would not be self-ating; but I may be wrong in
this, and if Mr. Wiswall would indicate the method by whioh he has arrived at that result, he would confer a great benefit on your appended the figures by which I have arrived at this conclusion :-

Assume that a flood of 3 ft . causes the tail water to rise to a
imilar amount, and that the difference in the water levels is 9 ft . Let $y=$ breadth of bottom of door $=16$.5ft.; $\theta=$ angle at which sluice door level of 5440 ; O $\mathrm{Y}=$ axis at intersection of water level and production at plane of sluice door; oak beams at 50 lb. , and pine planking right of vertical plane through pivot 5.25 ft . by planking to the plane through pivot 675 ftt . by 7 ft ., say 8 cubic feet $=320 \mathrm{lb}$. ${ }^{*}$ The water pressure on the face of the door will be found thus :$\left.\begin{array}{l}\text { Distance from OY of the } \\ \text { centre of pressure } \ldots\end{array}\right\}=\frac{2}{3} \cdot \frac{x_{1}{ }^{3}-x_{2}{ }^{3}}{x_{1}{ }^{2}-x_{2}{ }^{2}}=\frac{2}{3} \times \frac{4441}{259}=11 \cdot 47 \mathrm{ft}$. Mean intensity of pressure $=62 \cdot 4\left(x_{1}+x_{2}\right) \sin \cdot \theta=513.5 \mathrm{lb}$.

Area of surface $=\left(x_{1}-x_{2}\right) y=115.2$ square feet.
Total pressure $=\frac{62 \cdot 4\left(x_{1}{ }^{2}-x_{2}{ }^{2}\right) y \sin . \theta}{2}=59,155 \mathrm{lb}$.
Moment of this acting at 1 ft . 8 in . from pivot $=98,591$ foot tance from tail water level to centre of pressure $=\frac{2}{3} x_{1}{ }^{1}=3 \mathrm{ft}$. 5 in .

Total pressure $=\frac{62 \cdot 4 x_{1}{ }^{2} y \sin . \theta}{2}=11,774 \mathrm{lb}$.
Moment of this acting at 4 ft . $10 \frac{1}{2}$ in. from pivot, 57,398 foot-pounds. The dead weight to the right of vertical plane through pivot of
 To the left of vertical plane through pivot, third beam, 250 lb .,
acting at $83 \mathrm{ft} .=207.5 \mathrm{ft}$ l lbs.; fourth beam, 250 lb ., acting at
2.08 ft . $=~$ 812.5 ft. lbs.; planking, 320 lb ., acting at $1.91 \mathrm{ft} .=611 \mathrm{ft}$. $1 \mathrm{bs} . ;$ total, $2151 \cdot 0 \mathrm{ft}$. lbs.
The resultant is 981 ft . lbs., acting downwards to the left of pivot.
The lane buoyancy due to water at back of sluice is :-Volume of planking, $4 \mathrm{ft} .9 \mathrm{in} . \times 9 \mathrm{ft} . \times 2 \mathrm{in} .=7 \frac{1}{8}$ cubic feet; volume of beams,
$10 \mathrm{in}, \times 10 \mathrm{in} . \times 9 \mathrm{ft} . \times 3 \mathrm{in} .=18 \frac{8}{4} \mathrm{cubic}$ feet.
\qquad Planking. 3rd Beam, 4th Beam. 5 th Beam.

Centre of gravity immersed
a depth of.
Volume in cubic feet
Intensity of pressure in lbs.
Acting at a distance of Moments round pivot
,

The resultant is 3447 foot-pounds acting upwards to left of pivot.
Summing up-resultant moments, dead weight of door, 981 ft . lbs.; buoyancy, 3447 ft . lbs.; total, $2466 \mathrm{ft}$. . bs. acting upwards.
Water pressures, face, $98,591 \mathrm{ft}$. 1 bs ; ; back, $57,398 \mathrm{ft}$. 1 ss ., total Water pressures, face, $98,591 \mathrm{ft}$. lbs.; back, $57,398 \mathrm{ft}$. lbs., total,
$41,93 \mathrm{ft}$. lbs. acting downwards. Balance against the sluice acting atomatically, $38,727 \mathrm{ft}$. lbs .
I may add that no account

* The vertical side beams of door have not been then
would take place, and of the fact that in a short time the timber
would become waterlogged, both of which would act powerfully against its tilting. William T. Olive, Didsbury, September 5th. , iniam Assoc.

Earle's shipbuilding and engineering company
SIR,-I regret very much that your correspondent who accomtheir visit to Hull, should have wandered through our works with ut a guide, as he would then have avoided publishing what is no quite correct, and he might possibly have felt a little more

All our engines are not precisely of one type, as, in various stages of erection, there were, beyond those noticed by your correwithout "cast iron pipes supporting the cylinders." I rejoice to find he owns "the workmanship is sound and strong," but sino proaching that stage, it is hardly finished, and only one eve of high finish." We were sorry not to have had some finishe engines in our shops to show the visitors, but circumstances had mhich It is not our general practice to mathe
e crank shaft bearing example of some of the most eminent of Clyde builders to follow in doing so. Those your correspondent saw were made so at the pecial request of the engineer of the firm for whom the engine were building, and so far from giving trouble at sea, the reverse is rst ship so fitted by us har of that then that New York and back, and the engineer reports-- "I have neve known the chill off the bearings, and they give us every satisfac
tion." The engineer of the sister ship to the one with which thes cast iron bearings are to be fitted reports- "The whith thes earings do splendidly. I have never had occasion to use a dro water on any of them." If your correspondent had examine vided to prevent the brasses from turning. He is also equally mis taken in supposing that for "the sake of saving a few sovereigns is likewise risk of damaging our reputation or of losing a ship. H aw being "ruined in less than three years by the injurious action of the steam." Again, Sir, I assure you of the regret I feel that your corre
spondent did not have a guide who could give him proper infor mation, and thus have prevented the necessity-which is painful being absent from notice in time to answer before, A. F. SEATON

Hull, Sept. 6th.
Engineer of Earle's Shipbu
Engineering Company
TOOTHED GEARING,
SIR,-I enclose you a rubbing of part of toothed wheel and解 The advantages of this system are :- p. 152 ,
oots of the teeth; (2) three teeth in contact; (3) thength at the ne tooth on another is a rolling in contact; (3) the motion of be tried by cutting out the diagram and turning round as in as may

use ; (4) impossibility of bedding the teeth too deeply-in fact they work with just clearance; (5) owing to this their tendency is
to clean themselves ; (6) quietness in work; when a heavy cut is on they are almost silent. I shall be pleased to hear opinion them. Any further information is at your service.

THE IMPROVEMENT OF PERMANENT WAY
Sir, -I, and I am sure many others, have read with attention
and carefully considered the and carefully considered the article on permanent way which
appeared in your last impression. In it you blame railway men for not doing something, precisely what you do not indicate, to improve permanent way. Will you, with your invariable fairness to both sides in a controversy, permit me to point out very succinctly that there is another side to the whole question lieu of wood. May I ask whate the use of iron permanent way in exchange? The section of road of which I have charge is now, and has been from the beginning years ago, in excellent condition although it has to stand a very fast and heavy traffic. I do not believe it would be possible to make a better road, as is proved by and the easy motion of the vehicles running over it. I do on it, say, think it is possible to have a better road, and I am quite sure that iron sleepers could not be introduced instead of wood save at an enormous outlay. On really well-kept roads the sleepers are never allowed to get into very bad condition, and to remove good sleepers, costing at least meet the views of my board of directors. It is quite out of the question to substitute iron sleepers for wood piecemeal, so that any change must cost a tremendous sum.
To make such a change my chief would incur a very heavy never hear the last of it. Why should he incur this responsibility? directors incur such a responsibility? They would gain nothing by it.
Permit me, in conclusion, to add that I have very carefully
watched all that has been done on the Continent in the watched all that has been done on the Continent in the use of iron
permanent way, and with the result that I fail to see in what permanent way, and with the result that I fail to see in what with it in Germany, for example, is quite useless in this country,
for the speeds are so much slower. If any of your readers could for the speeds are so much slower. If any of your readers could
stand beside me, and see a locomotive with a single pair of driving wheels carrying 19 tons flying round a curve at sixty to sixty-five twice before advocating a change on a system of construction which has borne the test of years, and given the greatest satisfaction. On the Continent permanent way has to stand up under slow of your readers can give me information is the case, perning the exceptions,

RAILWAY MATTERS.

AN addition has been made to the list of long bridges in the bridge of the Pensacola and Atlantic Railroad across Escambia
Bay, Florida. It is five miles and a-quarter long, and was opened for use August 15th,
Tre new branch of the Manchester, Sheffield, and Lincolnshire
Railway, connecting Barnsley with Nostell, was opened on the 1st Railway, connecting Barnsley with Nostell, was opened on the the
September. By this means the communication between Leeds September. By this means the
and Barnsley is much improved.
The Fontaine Locomotive Company has been organised in Detroit with a nominal capital of $1,000,000$ dols. to build locomo-
tives under the Fontaine patents. The officers are : president and tives under the Fontaine patents. . The officers are president and
treasurer, D. M. Ferry ; vice-president, O. W. Shipman ; secretary, Anson Waring.
THE promontory of Posilipo, to the West of Naples, has, for the
second time, been pierced by a tunnel to accommodate a steam tramway between Naples and Pozzuoli. The first tunnel, 765 yards long, and passing under Virgil's tomb, was, if not natural, made at
a very remote period, having been enlarged by the ancient Romans.
The blacksmith shop of the Pittsburgh, Fort Wayne and
Chicaco, at Pittsburgh, has been much troubled by the Chicago, at Pittsburgh, has been much troubled by the
unsettling of the brick forges by the jar of the steam hammers. unseessity has, however, proved the mother of invention. Forges
of asbestos paper have, it is said, proved a decidedly successful of assbestos paper hawever, proved it it said, p
method of overcoming all difficulties.
The Statistical Society has published a table showing the rail-
way mileage of the different countries of Europe, from which it way mileage of the different countries of Europe, from which it
appears that Germany comes first with 21,500 mil. followed by
 12,000 ; Italy, 5500 ; Spain, 4900 ; Sweden, 4600 selgium, 2500 ;
Swizerland, 1565 ; Holland, 1455 ; Denmark, $1160 ;$ Roumania, 920 ; Turkey, 870 ; Portugal, 660 ; and Greece six miles.
IT is said that iron express cars have been put on the Southern
Pacific-road. They are described as being very strong and bullet proof, and as containing two compartments, one for treasure and one for expressmen and guards. There are side doors, and also
loopholes in the sides for picking off train robbers who may approach from outside. Besides the necessary quantity of arms and ammunition and other modern improvements, each car has
four Siberian blood-hounds, costing 250 dols. a-piece. One of
these cars will these cass in go whi eadr rain
The Midland Railway Company has notified to several leading
collieries in the South Yorkshire district a reduction of from 2d. to
 the Lancashire and Yorkshire line, In addition a "slack" rate is
now granted to Huddersfield and other important towns. This is a point of consequence, as there is a large demand for slack in
manufacturing districts around Huddersfield, Bradford, Halifax, Keighley, \&c. The Great Northern has also revised the rate to
THe daily papers have made our readers aware of the wrecking
of a German excursion train, which ran off an embankment of a German excursion train, which ran off an embankment
near Hugstetten, it was said, because a telegraph pole had been
blown across the track the cause of the accident is, accoria Reichseisenbahnamt-CCentral 'accorving to a statement of the
Retice of the Empire- not
yet explained. The Commissary of the Government, who has yet explained. The Commissary of the Government, who has
been sent to the spot, states that the dead number fifty-six, the
severely severely wounded twenty-two, less severely wounded thirty-one,
not severely fifty. Though the train, being behind time, was going
at double speed -25 miles an hours-the twenty-six carriages full not severely fifty. Though the train, being behind
at double speed -25 miles an hours- the twenty--
of passengers were served by only six brakesmen.
THE large elevator A, of the New York Central Railway, at the
foot of West 65 th-street, was seriously imperilled, Auvust foot or west outh-street, was seriousl imperilled, August t, by the
breaking of a shaft on the top floor. The elevator is 550 ft . Tong,
and 1 Toft. high. It is operated by two and 1455tt, high. It is operated by two powerful engines in the
basement, the power being tranmitted by a rubber belt- 30 tht.
long and weighing three tons-which connects the driving wheel of long and weighing three tons-which connects the driving wheel of
the engine with a shafting wheel on the top floor. The shafting
wheel weighs four tons the engine with a shatting wheel on the top floor. The shafting
wheel weighs four tons, and connects with horizontal steel shaft,
7in. in diametere, running the whole length of the buil ding. This 7in. in diameter, running the whole lenth of the building. This
shaft broke close to the wheel, which was thrown out of place with great violence. The shaft was bent and twisted. The friction of caused a burst of flame at each point of contact, but fortunately caused a burst of flame at each point of con
the belt slipped from the wheel, and its
stopped before the flames got beyond control.
From a return recently issued it appears that twenty-seven
orders were applied for in December, 1881, from the Board of
Then Trade by tramway companies for the ensuing session, and they
proposed the construction of 123 miles of tramway, of which thirty-two were double, at an estimated cost of $£ 517$, ,6i1, or er equal
to about \&u2,000 per mile. Eleven of these companies aplied for
extensions of existing or authorised systems, thirteen were for new extensions of existing or authorised systess, thinteen were for new
tramways two for authority to use mechanical power on existing
lines. Altogether nineteen orders sought authority to use steam lines. Altogether rineteen orders sought authority to use steam
or other mechanical power. Only three orders were refused.
There hes There has been an increase in the number of long tramways; that
is to say, of schemes connecting various towns, or traversing is say, of schemes connecting various towns, or traversing
populous districts, as distinguished from those which are confined
to the streets of one town, four having an agregate length of to the streets of, one town, four having an aggreagate lenthth of
sixty-four miles. In each of these cases the use of mechanical
now
Ov the 1st inst was
ON the 1st inst. was opened a service of express trains between Liverpool-street and Doncaster, the long. projected new route, con-
neeting the Great Eastern Railway with the northern counties,
and formimg a fresh means of communication betwer the and forming a fresh means of communication between the e metro-
polis and the north. The line begins at Huntingdon on the Great Eastern, and ends at Black Carr Junction, near Doncaster, on the the
Great Northern system, a distance of Great Northern system, a distance of 117 miles, and is jointly
owned by the two companies. By means of this line the Great
Fistern Roilay is now owned by the two companies. By means of this line the Great
Eastern Railway is now enabled to book through from London to
the north, via Cambridge, Ely, March, Lincoln, and Doncaster, with a corresponding service from Cambridge, Ely, Norwich,
Ipswich, Bury St. Edmunds, Lynn, Newmarke, and the East
Coast ports and watering places. At Doncaster the eastern Coast ports and watering places. At Doncoster the eastern
counties are connected by means of the Great Northern, Lancacounties are connected by means of the Great Northern, Lanca-
shire and Yorkshire, and North.Eastern systems directly with
Bradford, Leeds, Halifax, York, Hull, and the other important
Bratfes, centres. The trains from Doncaster to London will carry t through
carriages for the Royal Albert Dooks, for the convenience of pascarriages for the Royal Albert Docks, for the convenience of p
sengers leaving England by vessels starting from those docks.
THe reduced scale for the conveyance of parcels by passenger
train on the Great Northern, the Great Western, the London and Railways is now in operation. The companies's scale is in Midland
 exceed
miles
6 lb .,

NOTES AND MEMORANDA.

PLASTER of Paris is made hard enough for a mould for metal
casting by the use of 10 per cent. of alum in the water used for mixing the plaster.
iven, has plosive compound, to which the name of Panclastite is given, has been invented by MIr. E. Turpin ; it is composed of two
liquids which are harmess before beeng mixed. It it said to be less
liable to liable to spontaneous co
far more striking results.
AN Italian journal recommends the use of methylaniline violet,
Iso called Hofmann's purple and Paris violet, for detecting fre mineral acids in vinegar. A solution of this dye, although containing but 0.1 per eent. of it, will be ohanged to an ultramarine blue by mineral acids, even when
acids do not affect the colour.
THE return of Dr. Webster, the American Consul at Sheffield, of the exports to the states for the month of August last, is a distinct disappointment in every item except steel. The gross value of
Shefteld exports to the States is \&85,26, as compared with
$£ 120,789$ for August, 1881, the decrease being no less than $£ 35,528$. $£ 120,789$ for August, 1881, the decrease being no less than $£ 35,522$,
Steel has been exported to the value of $£ 32$, , 477, and cutlery
value of the $£ 21,607-$ an increase in steel of nearly $£ 13,000$, and a value of $£ 21,607-$ an increas
decrease in cutlery of $£ 6575$.
Captain bing, of Paris, has devised an ingenious method of making a positive on glass from a n negative, and on the same glass.
The back of the negative is covered with soluble bitumen or asp back ond then negaive iis covered withated through the neatabive Aitumen After an
axposure sufficient to render the light portion insoluble the exposure sufficient to render the light portion insoluble, the
remainder of the asphalt is dissolved off with any of the usual off with the chloride of copper and a fixing agent, such as cyanide or hypo.
ThE American Government method prescribed for cleaning brass a mixture of one part common nitric acid and one-half part sul phuric acid in a stone jar. The articles to be treated are dipped
into the acid, then removed into clean water, and fanally rubbed
with sawdust. If the brass has become greasy, it is first dipped in a strong solution of potash and soda in warm water : this breaks the grease, so that the acid has free power to act.
Alist of chemical products, is described as a white crystalline substance, very soluble in alcohol, but sparingly soluble in water, the alcoholic solution in water gives it a distinctly sweet taste. Its
discoverer, Dr. Constantine Falberg, estimates that it discoverer, Dr. Constantine Falberg, estimates that it has from
twenty thirty times the sweetness of cane sugar. Should it
prove wholesome and producible in prove wholesome and producible in quantity, with comparative
cheapnesss it may play an important part in the future social and
industrial vis
is the only one of the platinum and H. Debray state that osmiun when its alloy with a large excess of zinc is treated with an acid capable of dissolving this metal. The others retain obstinately about 10 to 12 per cent., and the metals insoluble in aqua regia

- rhodium, iridium, and ruthenium - remain in the state of peculiar products, without metallic lustre, which seems to be an allotropic osmiden by mechanaical action. A A triple alloy of osmimm, iridium,
ond zino, if heated to about 300 deg., takes fire suddenly, almost with explosion, diffusing fumes of zinc and of osmic acid.
The Council of the Parkes Museum have just acquired new
premises in Margaret-street, Cavendisl-square premises in Margaret-street, Cavendisl-square, to which the
museum is to be removed from University College as soon as the
alterations and alterations and additions which are now being made under the
direction of Mr. Mark H. Judge, A.R.I.B.A., are completed. The new museum will consist of a central hall, suitable for meetings
and lectures, a library and corridors, all lighted from the top, and well suited for exhibition purposes. The meetings and lectures on
sanitary and other matters connete with sanitary and other matters connected with the health of the people,
which were only occasional while the museum was at University College, will form a permanent feature of the institution when it is reopened in Margaret-street.
Lithr nickel plating may, it is said, be effected by boiling. Dr bath of pure granulated tin, argols, and water, heats it to boiling, and then adds a small quantity of red-hot nickel oxide. A portion
of the nickel, as is shown by the green colour which the solution assumes-that is, above the grains of tin-is immediately dissolved. If a copper or brass article be now immersed in this solution, it
almost immediately becomes covered with a silver-like coating which consists of almost pure nickel. If a little cobalt carbonate
or cobalt tartrate be added to the bath, or cobalt tartrate be added to the bath, a bluish tint is produced,
which may be made lighter or darker acourding to the quantity
added. When the article is rubbed with dry savdust or chalk, very brilliant polish is obtained.
L. Lieberwann gives the following as the most delicate test for sulphurous acid in wine, cider, and other liquors: A portion of the
wine is distilled off, about 15 or 20 c.c. - one-half ounce-and diluted with an equal volume of distilled water and a few drops of
an iodic acid solution added. If sulphurous acid is present the an iodic acid solution added. If sulphurous acid is present the
acid acquires a yellowish-brown colour ; chloroform shaken with it acia acquires a yellowish-brown colour; ohloroform shaken with it
becomes pink in colour. If the liquid oontains one part acid in
500,000 parts, 2 c.c. is sufficient to detect it. Or some of the wine is distilled, ehloride of barium and hydroch1oric aocid added. The liquid remains clear until concentrated nitric acid is added and
heated, when a white precipitate forms. It can also be converted into sulphydric acid by means of sodi
acid and then detected by lead paper.
A SELF-AOTING fire alarm, which is an ingenious contrivance
invented by Mr. W. T. Braham, a watchmaker of been specially exhibited during the past week at the central station of the Manchester Fire Brigade. The apparatus consists of a
clockwork arrangement, set in motion by the expansion of air mercury to rise until it liberates a spring. The inventor makes use of a glass vessel containing a small quantity of mercury, into
which a tube is fitted, the bottom end almost touching the bottom of the vessel, and the top end being hermetically sealed to the
neck. In the tube is a hollow neck. In the tube is a hollow glass float, which rises as the air in
the vessels expand with the heat, which an outbreak of fire would generate, until it lifts a lever which liberates a coiled spring held
hack by a notch in the barrel in which the spring is fixed. Attached nack by a notch in the barrel in which the spring is fixed. Attache
to the barrel is a chain or cord connected to a heavy key fixed to tap or stop-cock. Thus when the spring is iliberated the key is
drawn own a quarter of a turn and water is turned on, which is drawn down a quarter of a turn and water is turned on, which is
distributed in a fine spray over the apartment in which the appa-
ratus is placed temperature of the room again cools, a similar apparatus
in a reverse position causes the key to drop the other
onarer quarter of a turn, and the water 18 shut off. In addition to this
the apparatus sets in motion a clock arragement by which an
alarm bell is rund detonators case of a fire on the stage of a a theatre would let down an asbestos curtain, or a similar arrangement might be made in any building
for shutting oft the part in which the fire had broken out.
Attachments can Attachments can also be made for telegraphing messages to any
place as desired. The apparatus, which is contained in compara
tively tively small compass so as to be readily fitted up in any apartment,
is also capable of application as a burglar alarm, and the principle can be applied for automatically regulating the ventilation of
ships, storerooms, \&c. The practicalexperiments made with theapparatus were very satisfactory, and although the mechanism is sompe what complicated, the invention displays a considerable amount of
ingenuity, and no doubt in many cases might be applied with good
results.

MISCELLANEA.

Negotiations are in progress for the establishment of an additional shipbuilding yard at Dum
vessels mainly of light draught.
Sivec June 1st Mr. Edison has filed fifty-one applications for
patents upon electric lighting devices, and has recently received patents upon electric lighting devices, and has recently received
twenty-eight patents, making 109 in all upon his system of electrio lighting.
HAMм Corporations of Hanley and Stafford for permission to solicit the Coard of Trade for licences to light those towns by electricity. Both Corporations have referred the applications to committees. The Fylde Union Sanitary Authority have obtained designs
from several civil engineers for sewering the town of Poulton, and the districts of Breck, Skippool and Little Poulton, and the e Mr. Alfred M. Fowler, Manchester, has been accepted. The Admiralty contract for Staffordshire boiler-plates for a term of three years has again fallen to Messrs. " Monmoor" brand. The The
of Woverhampton, the produess of the
same firm held the contract for a similar term which has just
run out
Mr. Robert Brigas, a well-known American mechanical engineer, died in Dedham, Mass., on the 24th of July, at the age of
fifty-five years. He was for a long time identified with some of he largest Philadelphia machine works, and was an active memOn Thursday
chester ship canal project made gentlemen interested in the Manfrom Throstle Nest, Manchester, to Howley Quay, Warrington, and appear to have been thoroughly satisfied with the practiea-
bility of the scheme so far as the above portion of the proposed bility of the scheme
route is concerned.
THE Sanitary Committee of the Hanley Town Council have decided upon a new departure in the efforts when they have been that in future both masters and workmen shall be summoned, not, it is explained, with a view of pressing the penalties against both,
but in order to find out which party is really responsible ON the 5th inst. a special meeting of the shareholders of the Union Steamship Company, called by requisition, was held at the
Cannon-street Hotel, for the purpose of considering the decision of the directors to ehange their shipping port from Southampton thendon. The result was that the decision was overruled and THE Jablochkoff Electric Light Company has taken large pre-
mises on the Albert Embankment, to be used as a manufactory for its carbon candles, and warehouse, and as a lighting centre
It is also about erecting a building on the Victoria Embankment for the purpose of more effectually carrying out the contract
with the Metropolitan ous applications have been received for the supply of the Jablochkoff light, to meet the demand for which several power centres for
the necessary machinery are about to be established. The South Staffordshire and East Worcestershire Trades Council, which has been recently formed to watch over the inte rests of operatives employed in the local trades, have just thed
meeting at Cradley Heath, at which the "truck system," which ill prevails in the hand nail-making districts, was discussed. The system was loudly condemned, and it was resolved, 'That this odevise some means which will tend to destroy the nefariou practice of trucking which prevails so extensively in their trade, an THis week experiments have taken place in some of the collierie on Cannock Chase with the new lime process of getting coal, chester, and so far the trials have been entirely successful. In the mines of the Cannock Chase Colliery Company the men chose ad been put in and the expansion had taken place, some 40 or 45 had been put in and the expansion had taken place, some 40 or 40 slack. When the trials at Cannock Chase have been concluded the
hard coal of the Sandwell Park Colliery is to be experimented

The Magazine Gun Board now in session at the Armoury Build xamination test after July 15th, at which time the supplementary ests of the guns already received began, and the real work of selecting one or more guns for trial in the service was inaugurated
It is understood that thirty-three different models have been tested by the Board, and there are five or six more still on the dock, and there seems to be a fair prospect of getting a good arm for the
service. The U.S. Army and Navy Journal states that the Board, as the result of their experiments, have reached the conclusion that a carbine cartridge with 50 grains of powder will shoot a bullet
farther than a cartridge with 70 grains of powder.
AN invention, which seems likely to have an important future ron braziers, Ettingshall, near Wolverhampton. It is a cask or barrel made wholly of sheet steel, and is intended for use in the conveyance of oils and varnishes in place of the wooden barrels
and metal drums now employed for such purposes. In shape the ew article is an exact imitation of a well-made wooden cask, and of which it is made being securely brazed where they join each other. The inventors claim for this new cask that it is superior to the wooden ones, alike in lightness, durability, prevention of
absorption, and evaporation of the contents, and handiness in use; absorption, and evaporation of the contents, and ha
yet its price is less than that of the ordinary barrels
We extract from a recent issue of the Rangoon Times the follow Exchange in that openity. The Telephone Exchange just established Exchange in that city. in this city by the Oriental Telephone Company, Limited, was Burma, on Wednesday evening. After the working of the appa-
ratus had been exhaustively explained by Mr. Mathews, Mr. Bernard, the Chief Commissioner, proceded to declare the
open. He congratulated the company on their success, and said open. He congratulated the company on their success, and said tributed to mercantile prosperity. He had great pleasure in
declaring the Exchange open, and he hoped that before the end of the year every office in Rangoon, both public and private, would be connection therewith
A trial of combined reapers and sheaf-binders, which recently the superiority of a well-known English firm's patent over that of an American rival, who has hitherto driven an immense trade in
our Australian colonies. The machines of three manufacturing Mirms were tested on the occasion under notice- mamely, those of
Messrs. R. Hornsby and Sons, Limited, Grantham. Mr Walter Messrs. R. Hornsby and Sons, Limited, Grantham ; Mr. Walter
A. Wood, America ; and Messrs. Howard, Bedford. The trial seems to have been a severe one, lasting, as it did, over two days; greatest nicety. The maximum standard of points was fixed at
1000, and at the close of the competition it was found that the 789 ; and Howard, 770 . A prize of the value of $£ 100$ fell, therefore, to the lot of the Grantham firm, $£ 50$ went to the American, be attached to the decision arrived at, because the superiority of
the English-made machine will probably secure for this country orders which have hitherto found their way from our own colonies

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.
$*$ With this week's number is issued as a Supplement, the Under-
mround Pumping Machinery and Endless Chain Haulage at the ground Pumping Machinery and Endless Chain Haulage at the
Russian Steam Navigation and Tradin Companys Mine.
Every copy as issued by the Publishher contains this Supplement, Every copy as issued by the Publisher contains this Supplement,
and subscribers are requested to notify the fact should they not
onecive receive it.

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inqueiry addressedes to to the
public, and intended for insertion in this colunn, must, ases, oe accompanited by a large envelope legivy directed oy the
uriter to himself. and bearing a $1 d$ postage stamp, in order that answers received by us may be forvwardede to their destination.
No notice will be taken of communications which do not comply with these instructions.
${ }^{*}$ All letters intended ** All letters intended for insertion in THe Enginker, or contanting questions, must be accompanied by the name and
address of the writer, not neceasarily for pubbication, but as a
proof of good faith. No notice whatever will be taken of anonymous communications.

ENGINEERS FOR CANADA

FELL LOCOMOTIVES.

(To the Elitor of The Engineer.)
 your columns as to to
14tons up hill with a
London, September

testing chain cables.

PHOSPHOR-BRONZE.

 Chili, Etiles. Borneo, Cces. 1

THE ENGINEER.
SEPTEMBER 8, 1882.
the price of coal.
For a very considerable period the coal miners of Great Britain have been endearouring to get their wages raised. It may be said that this is a statement not worth making;
and that the fact is not confined to the case of coal miners. It is quite true that all recipients of wages would gladly get
higher pay than they actually receive; but it by no means follows that they are continuously bringing their desires before the public. The action of the men employed in our
coal mines is exceptional in this respect, that they have coal mines is exceptional in this respect, that they have been incessantly agitating for higher wages since the price
of coal fell, on the termination of the fuel famine of 1873. of coal fell, on the termination of the fuel famine of 1873.
There have been strikes in abundance, most of which ended disastrously for the strikers; but apart from such energetic manifestations of their wishes, the coal miners
and their mouthpieces have hardly for a single week and their mouthpieces have hardly for a single week
ceased to demand, in one way or another, increased pay. The demand has fluctuated in intensity ; at one time a great strike has been threatened in some special district; another little is heard of the movement save muttered grumblings. Within the last few years the better informed
of the men have perceived that unless the consumer could of the men have perceived that unless the consumer could
be made to pay higher prices for coal, the mer could be made to pay higher prices for coal, the mee could
not get larger wages ; therefore reduction of output has been preached systematically. It has been argued that this could not possibly do the collier good
even if it took effect; but this view of the matter even if it took effect; but this view of the matter
is, we do not hesitate to say, erroneous. If coal was scarcer than it now is, longer prices would be paid for it than are now obtained. We do not assert that the
nation would gain by a reduction in output; but there is nation would gain by a reduction in output; but there is
no doubt that the collier would reap a substantial advanno doubt that the coilier would reap a substantial adtan
tage. He knows this very well. He has not forgotten his experiences of 1873. But, as a matter of fact we need not go back to 1873 to obtain information concerning the result
on the coal miners' wages of a scarcity of coal. It is not, on the coal miners' wages of a scarcity of coal. It is not,
we believe, generally known, but it is none the less true, that to a not inconsiderable extent the men in large dis tricts have succeeded in reducing the output. The effects have been a long time in making themselves felt, but they are beginning to become manifest, and coal is rising in
price, stocks are diminishing, and orders are not so eagerly snapped up as they were a little while since. It must not be imagined, however, that this statement is universally true. There are certain districts where stocks are accumulating instead of diminishing. Thus, for example,
in the South Yorkshire district, where many of the coalowners have lost vast sums of money, and are capable o raising in an ordinary day's work from 1200 to 1500 tons, at the present time the pits are nothing like fully taxed, and complaints are general that they are far too crowded with men. Although the house-coal trade has of late improved, there can be no denying the fact that, if needed, a thir more coal could be raised without any extra hands. For th moment we need say nothing concerning the effects which may be produced on our iron trade by a rise in the pric of coal. There is an enormous consumption of coal in the metropolis, not only for house fires but for gas making and for factories, and we have every reason to believ that the price of fuel will be considerably higher in London hy wher than it has been for some years past. But districts to coal miners, it is true, being paid in some recrudescence of agitation among them is very manifest Thus we have coal rising in price, and the men on whom we depend for our supply doing all they can to make it still dearer ; but the rise in price is not due to the action of the miners exclusively, or even principally.
What it is worth while for the miner to do it may be worth while for the London consumer to do also. The price of house coal in London now varies between about 18s. and 26s. per ton, according to quality. The colliery proprietor receives for the first about 8s. per ton, for the second, at most, 10s. per ton. The coal miners' wages are based of necessity on the receipts of the mineowner, not on the disbursements of the consumer. It is well that the London householder should understand why it is that he The difference is expended in various ways. In the firs place, there is a coal tax to be paid in the metropolis, amounting to about 1 s .8 d . per ton ; in the second place, there is the cost of carrying coal from the railway station to the consumer ; in the third place, there is the coal merchant profit to be paid; and lastly, there is the cost of carriage to be paid to the railway companies or the steamship owners. Now, it is assumed that under all manner of con named are unvarying ine certant. The coal tax does no vary ; the railway companies give the world to understand hat they do not alter their tariffs; the coal merchant calls al his gods to witness that he never, at the best of times makes more than a bare subsistence, and that his profits never fluctuate. The colliery owner in turn asserts that he is not a gainer, but a loser by a rise in price. It follows, of course, if all these be true, that the men reap all the dvantage, those standing between the miner and the consumer gaining nothing whatever. But it is very well known that an increase of ls. per ton in a hewer's wages
would represent a very considerable sum indeed to him. The quantity a hewer can send to bank per day of course varies, but three tons is not an over estimate. A rise of 3 s . per day would nearly double the pay in a great many pits. In a word, a rise of 1s. per ton at the pit mouth of all hands, not alone of the hewers, but of the banks men, screeners, engine drivers, \&c. If we admit that the colliery owner ought to have some share in the increased value of his coals, we may say that a rise of 2 s . per ton on coal at 8s., and a proportionate increase on the dearer fuel with mines. Are any of our readers rash enough to sup pose that a rise of 2 s . in coal at the pit's mouth would
be attended by a similar rise and no more in London? Is it not, on the contrary, certain that the augmentation would be more nearly 5 s. than 2 s ?
The question with which the people of London have then to do is this-Is it possible to let the coal miner have a little more pay without incurring a ruinous exond will be attained is, we fear, not to be expected. It is obvious that the only points of attack for the consumer are the intermediaries between himself and the colliery pro
prietor. Whether anything can be effected with the coal
merchant or broker, we are not prepared to say; but we are quite prepared to say that something ought to be effected as regards the railway companies. It is by no means easy to find out always what is paid to the companies for the conveyance of coal to London from the West or the North, but it has been publicly stated that the charge is as much as 10 s . per ton1. If this is the case we
have at once $8 \mathrm{~s} .+10 \mathrm{~s} .=18 \mathrm{~s}$. as the cost of coal to the have at once $8 \mathrm{~s} .+10 \mathrm{~s}$. $=18 \mathrm{~s}$. as the cost of coal to the
merchant in London. If we add 3 s . for carriage to the merchant in London. If we add 3s. for carriage to the consumer and for merchant's profit, we have 21 ss , and with
the coal dues added we get near 23 s . No doubt coal is the coal dues added we get near 23s. No doubt coal is
carried, under certain conditions, for considerably less than carried, under certain conditions, for considerably less than
10s. per ton. If it were not, it could not be bought at all ittle London for 18s., as little reason to doubt that the best coals are by far the most heavily taxed in some way, either by the railway companies or by the coal merchants. It is highly desirable that full information on the whole subject should be this moment from Wales to Paddington and the West London Gasworks is 8s. 5d. per ton for fully loaded trucks. The Midland and Great Northern Companies charge from the Sheffield district 8s. per ton, and from the Barnsley district 8s. 3d. per ton. Our own conviction is that the railway companies charge much more for the carriage of
coal than they ought. We have never heard a really noteworthy complaint made by any railway company that carrying coal did not pay. On the contrary, the carriage of very large quantities is always a subject for congratula tion on the part of chairmen and directors. In a word we hold that both the colliery proprietor and the Londo consumer should make common cause against the railway companies in this matter, and either abtain a sabstantial reduction in the tarif, or such a public statement of facts by the chairmen and directors of the London and North Western, Midland, Great Western, Great Northern, and Great Eastern Railway Companies as will satisf
consumer that only a reasonable sum is now charged
consumer that only a reasonable sum is now charged. a ton of coals 100 miles. Let us take the case of a coal train of 300 tons. This train will consist of thirty wagons, a brake van, and an engine and tender. The value of the train will be about as follows:-Engine and tender $£ 2300$; thirty wagons, at $£ 70, £ 2100$; brake van, $£ 120$; total, $£ 4520$. Interest and wear and tear may be taken at 20 per cent.-say, in round numbers, $£ 900$ a year. In a year such a train will run about 15,000 miles. The wagons may do a great deal more, but we prefer to under-estimate rather than the reverse. The cost of running such a train 100 miles will be $£ 6$, for interest, \&c. The engine will burn, let us say, 50 lb . of coal per mile, representing a cost for the 100 miles of about 16s. Wages of stoker, driver, and guard will come to about the same sum. We thus have a total of $£ 7.12$ s. If we add 8s. for grease, oil, water, and sundries, we have a total of $£ 8$ for the conveyance of 300 tons of coal 100 miles, or $6^{\circ} 4 \mathrm{~d}$. per ton per 100 miles. Of course to this must be added a not inconsiderable sum for the maintenance of the permanent way, the signalmen, rent, taxes, and "general charges." But on the other hand we have made a very liberal allowance indeed for the outlay on mere haulage, and it remains to be proved that the other charges which we have named can be three times that for haulage; even if they were, the total sum would not reach 5 s. per ton for 300 miles. We speak not without due reflection when we assert that if the great railway companies supplying the metropolis received 2s. per ton per 100 miles for the carriage of coal they would make large profits on this kind of tratic, which profit come entirely out of the pockets of the consumer. Their actual rates are double this; the public can draw their own conclusions. In the North it is well known the great ironmasters and others interested have ere now made a vigorous stand against the exactions of the railway companies, and with, in may instances, very fair success. Nor the weduced seen any attempt made to prove that, even at companies did not still earn a very fair profit
It is not, we fear, likely that much direct advantage can accrue to any of our readers in the sense that a reduction in the price of coal will follow the publication of this article; but it is just as well that the metropolitan public should clearly understand the position in which they stand with regard to the railway companies. We are not surprised that the coal miners should ask for higher wages than they are getting, considering the nature of their a long time past underpaid. The fact is not disputed by colliery proprietors; but colliery proprietors are simply powerless in the matter. They have been staving off ruin rom day to day for years past with but indifferent success. Very large sums are lying idle, seeking investment, and this being the case, it is being established. But on the other hand, many old and valuable mines are just now unsaleable. On every side we hear complaints that the cost of transport is so excessive that it cannot be incurred. The complaints to which we refer do not come from London alone. Indeed, from the metropolis they are least heard. From north, east, west, and south the same tale reaches us. This seems to be a specially favourable time, when winter is not distant, for having the question at issue put on some satisfactory basis. Either the railway companies make an undue profit out of the carriage of coal, or they do not. They can if they please, as we have already pointed out, set this question at rest. But if it can be proved that it costs more than the price of the raw material to haul it two hundred miles or so, then steps should be taken to reduce the cost of haulage. There is very good reason indeed to believe that it is much greater in England than it is either on the Continent or in decidnited States. The matter is one which cannot be fail to my commercial men alone. The engoer canjot which might take place ; and to know whether coal is now hauled to London on the cheapest possible system would be information worth having. May we suggest that the subject is one eminently worthy of discussion by
the Institution of Civil Engineers, the Institute of

Mechanical Engineers, and the Iron and Steel Institute. Mechanical Engineers, and the Iron and Steel Institute.
In the multitude of counsellors is wisdom, and it might be dealt with from three different points of view, which will no doubt suggest themselves to our readers, by the three bodies we have named.

THE SEA AT HAStINGS.
state of a portion of the foreshore at Hastings. In the brief period which has followed there has occurred an justify all the anxiety to which we had previously given expression. It does not appear that the wind was at all phenomenal in its violence. The Channel is described as blowing a gale, is said to have been "comparatively
moderate," by which we understand that the force of the storm was moderate compared with the mischief that was sloping mass of shingle which formerly lay in front of the Fish Market at Hastings, protecting it effectually from the sea, there was now a precipitous gradient, bristling with stakes and faggots, the shingle having to a large extent
disappeared, leaving a species of basin where formerly there was a shelving shore. We observed that the faggots were by no means secure in their place, and that if they
were to be carried away by a high tide, " the sea would were to be carried away by a high tide, "the sea would of the road which runs parallel with the shore." "In such a case," we considered, "the adjacent property
would be in imminent danger, and could scarcely escape destruction in the event of a high tide,
such as occasionally visits this part of the coast." The history of that which happened little more than a fortnight afterwards reads almost like a reproduction of our statements. A local paper, describing the scene, says :-
"The sea rushed in, eating away the road and sea defences in huge mouthfulls." Another account says :- "The mixture of stakes and faggots, a form of sea defence which
had been adopted at the east end, disappeared like so much had been adopted at the east end, disappeared like so much chaff, and huge pieces were swept out by single waves, raked out by the waves until nearly the whole roadway was gone." Wooden structures, some of them three or and ropes, were overturned, and in some cases washed away or shattered to pieces. In more than one instance there was a narrow escape from the sacrifice of human mains were broken, and underground telegraph wires deranged; heavy capstans were upset, valuable boats were damaged, and nets and ropes were entwined among such "f the faggots as were not swept out to sea. Altogether, bited "' mos confusion and loss." The damage is estimated as between $£ 1000$ and $£ 2000$. This, in fact, is a very mild way of putting the case, for the danger to this part of the shore is so evident that a curred if anything like the above amount must be infeared that the sea might even undermine one of the brickbuilt houses on the inner edge of the road, and preparations
This is not all the harm which Hastings sustained from the recent gale. Other parts, westward of the Fish Market, there was warningiv, though in a lesser degree. Happily the inhabitants of their pril a large number of houses along the front were therefore barricaded before the sea made its severer onslaught. The most ominous feature in to be exposed, at some time or ther to fier attack from the sea than that which has caused all this havoc. Had this particular storm been such as now and then visits that part of the coast, the tale to be told would, in all pro-
bability, be a terrible one. If the sea had palpably done there would be something consolatory in the fact. But the truth is otherwise, and, with the winter drawing on, the outlook is by no means comforting. Our correspondent, Mr. W. H. Thorpe, whose letter we published last week, wrote before the storm groyne, which the fishermen complained had been substituted for one of the concrete groynes recommended by Sir John Coode. While agreeing with us that to permit the oversight, Mr. Thorpe passed by the question as to how far there might be some natural action going on to account out, in dwelling on this part of the subject, that "if the sea, independently of groynes and building operations, is really threatening a portion of the southern coast, there is the more reason for the exercise of sound judgment in
meeting the difficulty." Without saying that a natural encroachment of the sea is the cause of all this mischief, we may yet contend that something of the kind is actually going forward. We have admitted that " the Hastings Fish Market occupies the extreme east of the whole foreshore of the borough to the westward is evidently calculated to deprive the fishermen's quarter of its natural protection." Mr. Thorpe states that there are
as many as thirty groynes to the westward of the Fish as many as thirty groynes to the westward of the Fish
Market, and he considers that for this Market, and he considers that for this reason "any
fears entertained are not ill founded." But he offers the consolatory suggestion that "the natural protection is,
however, slowly advancing to the rescue." We confess we however, slowly advancing to the rescue." We confess we
are not quite so well satisfied on this point as our correspondent appears to be, although we have admitted that "the beach shows some signs of creeping along from the western groynes to the eastern." All depends on whether or not we include the idea of a natural encroachment. The
Hastings people appear to hold the notion that if they Hastings people appear to hold the notion that if they
admit the theory of such an encroachment they will not be able to bring the same amount of pressure to bear on the Town Council. The sufferers by the inroads of the
sea wish to lay all the blame on the Corporation. They
are not even universally anxious to demonstrate that the carting away of the beach for roads and buildings is an injurious procedure. Their cry is for " more groynes," and it will be seen that Mr. Thorpe espouses this policy.
"Groyning," he says, "must be continued." He advises one, or at the most two lar the eastward of the spot where the sea has just broken in. There is much in Mr. Thorpe's letter which indicates knowledge of the facts, and ability to deal with them. But there is a certain handwriting on the wall which he appears not to have read, nor even to have looked at.
 owns of Hastings and St. Leonards." Why was this ? The blame of it could not be laid on "thirty groynes" to the westward, comprising "two miles and a-quarter of shore defences." It would seem from this statement that "the great poverty of shingle" first showed itself in the western part of the sea front. The sea first attacked the western wing and the centre of the front line. It was subsequently that the sea proved so troublesome at the westerly proynes. But why did the beach first of al disappear from the western extremity of the borough ? The groynes designed to protect St. Leonards and the hought that Hastings are gathering beach, and it in addition to such as already exist eastward of the Fish Market, would make that part of the front line as safe as the rest. But we are not quite sure yet that all is safe between the Fish Market and St. Leonards. We would
ask whether there is the same total quantity of beach in front of Hastings and St. Leonards now as formerly? W venture to say there is not, nor yet so much sand. Ther is a greater depth of water, the waves are of greater magitude, and the aspect of affairs is not satisfactory.
The Hastings Corporation, if we rightly understand the haos of resolutions and amendments into which they plunged at their last meeting, do not appear disposed to adopt Mr. Thorpe's remedy. Instead of putting up another groyne, they purpose extending their sea wall
farther eastward, so as to furnish a barrier of masonry gainst the attacks of the sea at the Fish Market. Although the structure to be reared in front of that spot is to be car ried at a low level, the arrangement is not a very drives them further to the east, and it seems as if the would be pushed out of the borough altogether. Looking back to the history of the south-eastern coast line, we con fess to a considerable amount of apprehension with regard to the position of Hastings, and parts to the westward of onsideration, both as a matter of scientific study and o practical concern. Property is at stake, and perhaps life Should all go well, there are still lessons to be learned shingle, which it is desirable should be rightly understood

NORTH-EASTERN RAILWAY WORKS.

One of the costliest works that the North-Eastern Railwa Company has undertaken is now so close to completion that i may be expected to be opened in the course of a few weeks. It
is that line which, commenced by an independent company, has dragged along so many years; the line that, starting from Saltburn, passes near the coast through Cleveland to Whitby.
Commenced by the Whitby, Redcar, and Middlesbrough Union Railway Company, much progress was made with the line in that period of prosperity that the iron trade knew a decade ago-
progress so great, that it was hoped that before the middle he year 1874 the line would have been end to as far as Hinderwell. Its route is northwards from Whitby, near the coast by Eastrow and Sandsend, creeping near
Runswick and Hinderwell, and on to Staithes, where a noble runswick and Hinderwell, and on to Staithes, where a noble
viaduct crosses the Sale, and thence by heavy cuttings on to Easington and Loftus, to which point it was a few years ago a mineral line traversing a rood part of the distance from that place to Saltburn, and who converted it into a passenger line. After the year we have named, the remaining part of the line lay idle for years, until the North-Eastern Railway Company agreed to complete it. That completion is at hand. The North $£ 229,785$ up to the middle of this year ; it is estimated that in the half-year that is now current there would be an expenditure of not less than $£ 15,000$, and a similar sum in a future period so that the cost of the line is about $£ 260,000$ to the NorthEastern, as well as the $£ 4500$ that it has paid to the original company for some years as rent. The line is complete now,
with the exception of a few works needed to fulfil the "wind nts" of the Board of Trade ; and thus in a few week there will be the opening a line through a picturesque country, and
the North-Eastern will find some return for the enormous expenditure that it has made; though it remains to be seen what return will be made to the original shareholders on the capital works that the North-Eastern Railway Company began in the
period of prosperity. The Alnwick and Cornhill branch authoperiod of prosperity. The Alnwick and Cornhill branch autho-
rised last session, which is expected to cost $£ 370,000$, has yet to be begun, but it is probable that the company will have to under take other heavy works to meet the growing demands of its
ports. The traffic to and from these inland is continually ports. The traffic to and from these inland is continually
increasing, and that with some rapidity, so that new lines will
be needed to serve them ; and the North-Eastern can now devote be needed to serve them ; and the N
attention to its sources and its traffic

WORKMEN'S PATENTS.

Discussion is just now rife in Birmingham touching the patent laws, and the alterations which the rights of inventors call for in any new legislation upon the subject. The advocates of specific present scale of fees for provisional protection. Mr. Richar langye has come forward with the expression of a "decided
opinion that the present scale of fees for provisional protection is much too high," but he disputes the inference of another writer, that it is because of the high fees payable at the various stages in the life of a patent that so vast a proportion "succumb
to exhaustion." He has no hesitation in saying that "fully impracticable, worthless, or have been anticipated" impracticable, worthless, or have been anticipated." In respect
of a bona fide invention of a working man, he holds that there
can be no possible objection to the lowering of the cost of obtain-
ing patent-rights ; but he inquires what can be said of an advertisement which is now being widely published, running protected and worked free of cost for share in the result." This Mr. Richard Tangye asserts is a direct incentive to
draughtsmen and operatives to take adantage of any imdraughtsmen and operatives to take adantage of any im-
proved method, process, or design which they may be employed in carrying out, to patent it in their own names, or, as a blind, in and patent agents names, behind the backs of their employers, latter from continuing to use the process in question. Mr. Tangye holds that "it would be much better to abolish patents altogether than that such practices should become general." We trust that Mr. Tangye takes an exaggerated view of the facts, and
we venture to think that the inventions pirated in this way are very few in number

PHOSPHOR BRONZE FOR TELEGRAPH WIRE
The cost of a telegraph line depends far more upon the difficulty of laying than on the cost of the wire. In Brussels unsupported for distances of 300 or 400 metres. These spans
unser would be impossible with galvanised iron, or even steel wire, but are perfectly practical with phosphor bronze. The diameter 38 to 44 tons per square inch. Phosphor bronze possesses this great advantage over copper, that it becomes very hard on being wire-drawing it With a slight reduction of sectional area in prevents all danger of elongation on tension, while it can be easily rolled up and unrolled. The experiments made at the Berlin Industrial Academy have proved that phosphor bronze is capable of stan.
alloy.

LITERATURE

A Treatise on the Transit Instrument as Applied to the Determination of Time, for the use of Country Gentlem
Clark, M.I.C.E., \&c. Westminster. 1882.
The author has found time in the midst of his labours in his own special line to write a popular work with a view of gentroduction of the transit instrument to the notice energy to master it; especially we may suppose those who live sufficiently far from a railway station to make the keeping up of correct time an object. The author, we of scientific eres to himself a country gentlen able to give himself to any regular scientific pursuit, who would erect his transit instrument, and perhaps in connection with a good clock, keep correct time for the benefit of the village ness-like way, with this distinct object in view. The object is a good one, for besides the direct results obtained, it
would be well if some of the more general principles of astronomy were better known. The relations of mean and apparent time, for example, are unknown to many who would not grudge the few minutes that are necessary to apprehend the question if it were brought before them.
We are inclined to believe that two or three hundred years ago, when sun dials were many and watches were few, there was more general knowledge on this subject, though apparent time might be kept up in the absence of a system watches in We remember this question coming up in an absurd way in Egypt in 1874, during the stay of our expedition to observe the transit of Venus in that country. Egypt from unning nearly due north strip of land the very thing for such a country and for the Egyptian people. The sun is almost always visible, their prayers take place at sunrise and sunset, and everything worked harmoniously until the presence of ships in Alexandria Harto mean time caused confusion and trouble. It was impossible eventually to keep Alexandria from employing mean time, and hence at certain periods of the year there existed over sixteen minutes of difference between the times of Cairo and Alexandria. This difference caused altercation and trouble on the railway at these periods, and the difficulty at length caused the matter to be given to adopt mean time at Cairo. The order was given, but the difficulty of getting it carried out may be conceived by those who know the East. Incidentally may be citadel the fact that an orthodoxay, being fired by the rays of the sun falling on a lens. Thus, the sun solemnly recorded its daily protest against the mean time movement, forming no bad type of the protest of the old
Mahometan authorities against the degenerate followers of Islam who have conformed to Western ideas,
To conclude with our Transit Instrument treatise, how ever. We have spoken of the business-like way in which instructions are given, illustrated by examples; we should, however, make one distinct change in the plan of such a work. We have ourselves in bygone years experienced ime. ffecter which has to be carried out in order to prepare to take the ransit of any star. Consequently, owing to disappoin ments in weather and other causes, it would often have to be done in vain. It would constantly present itself as a preliminary task, which would prevent a man being We should rather suggest that a clock or watch should be regulated to go to astronomical time. It is obviously very easy to increase its rate by four minutes a day. The expense is nothing in comparison to that of the transit
 A clock eon would do away with reat part of the calculating to which we object. It would ender the Nautical Almanack tables available, and it would be more really scientific. Astronomical and mean sola time might then be kept side by side, as at Greenwich.

ON THE TREATMENT OF STEEL FOR THE CONSTRUCT

$$
\begin{aligned}
& \text { SES. } \\
& \text { By Sir W. G. Armstrong, C.b., F.R.S. }
\end{aligned}
$$

THE improvement which of late years has been effected in the manufacture of steel, and the control which has been attained over
the quantity produced, now seems to justify its exclusive employthe quantity produced, now seems to justify its exclusive employ-
ment in the construction of ordmance. We have, therefore, to conment in the construction of ordnance. We have, thererore, to con-
sider what are the conditions under which it can be most favourably sider what are the conditions under
used for that and other purposes.
There is at present much want
There is at present much want of a proper definition of steel.
The former was formerly confined to iron containing a much higher proportion of combined carbon than is found in the so-called mild
steels of the present day. The chief distinction between iron and steels of the present day. The chief distinction between iron and
steel Iow seems to lie ein the process of manufacture, steel being
operated upon in astat of fusion, while iro is dealt with in a
state of aglututinisation. But even in the mild state steel, as thus operated upon in a state of fusion, whine eron is deat with in a
state of agglutinisation. But even in the mild state, ,tteel, as thus
defined, contains more carbon than is generally to be found in defined, contains more carbon than is generally to be found in
wrought iron, and this excess, small as it is, appears to exereise a
very important influence upon its qualities. These qualities have very important influence upon its qualities. These qualities have
been very distinctly brought out in some investigation which I Ihave
recently had occosion to make on the welding, tempering drawing, been very distinctly brought out in some investigation which T have
reeently had occasion to make on the welding, tempering, drawing,
and annealing of steel, and the results possess a general interest, independently of gun-making. First, as to the adaptation of
steel for welding. As a matter of every-day practice, we know
that steel very low in carbon is capable of welding, and it has frequently been maintained that without departing from the system quen constructing ordnance known as the "cepivil system,", great
of coand
advantage woold berealised by substituting mild steel for wrought
iron in the making of welded coils. Our distinguished President, iron in the making of welded coils. Our distinguished President,
who has taken such a leading part in the modern development of
steel manufacture and whose
knowledge of the metallurgy of the steel manufacture, and whose knowledge of the metallurgy of the
subject is not surpassed by that of subiect is not surpassed by that of any otier person, has held this
opinion, and a fev years aro he supplied tom my firm a sample of
mild steel speaill prepared for this purpose. It was very low in
carbon, ontaing carbon, containing only about $0 \cdot 10$ per cent. A test piece cut from
the bar as it came from the maker showed the limit of elasticity the point at which permanent stretch commenced, to be lasticity, tons per square inch, being not mucr greater than that of wrought iron,
and it broke at 23.3 tons, showing that its ultimate strength was also very similar to that of iron; but its ductility was so great
that it stretched to the extent of 37.5 per cent. of a lenth of
2in. before brealing 2in. before breaking. A similar test piece tempered in oil had its elastic limit raised to 24 tons per square inch, and it broke
at 28.6 tons per suaare inch, while its ductility remained nearly
the same as before, the elongation being 36 per cent. instead the same as before, the elo, ${ }^{\text {ondation being } 36 \text { per cent. instead }}$
of $37 \cdot 5$. It will be perceived, therefore, that the material was
of a very fine quality, and if the results attained with the temof a very fine quality, and if the resutts attained with corem
pered specimen could have been realised in a welded oil, its
supprioty over wrought iron would have ebeen very marked indeed.
Two welded coils superiorty over wrought iron would have been very marked indeed.
Two welded coils of equal dimensions were made from this
material, and there was no appearance in either case of defect in the welding. Both of these coils were tempered in oil, and one of them was applied as a jacket to a steel cylinder closed at
both ends, and used for the purpose of determining the pressure
exerted by different charges of gunpowder fired in confinement An exact duplicate of this cylinder was jacketted with a coil of An exact iuplicate of this cylinder was jacketted with a coil of
wrought ron of the same dimensions as the steel one, and the two
cylinders were used in comparison with each other. Much to our surprise, the cylinder with its steel jacket began to stretch
laterally under a pressure which produced no change in the
wrought iron coil. wrought iron coil. The experiment was considered conclusive
against the use of steel for welded coils, and no further attempt against the use of steel thr welded coils, and no further attempt
was made to use it for that purpose.
The duplicate of this steel coil was laid aside, and my attention having been lately recalled to the subject, I applied myself to discover the cause of the inferiority displayed after undergong the
process of coiling and welding. I Ihad a test piecece cut from the
coil in the lengthways direction of the bar of which it was made, coil in the lengthways direction of the bar of which it was made,
and I found the elastic cimit was only $12 \cdot 5$ tons per square inch,
against 24 tons in the previous tempered test piece, while the against 24 tons in the previous tempered test piece, while the
breaking point was 191, against 286 tons in the former case. The
loss of ductility was still more decided, the elongation being loss of per ent. instead of 36 per cent. I e then had had a test
only 7.5 per
piece cut across the welds, and this broke, not at a weld, but piece cut across the welds, and this broke, not at a weld, but
throưh the solid, thus showing that the welding was perfect.
In this case the elastic limit was 12 tons per square inch, the In ealis case point 20.1 tonss and the elongations 6 per per cent. To To deter-
brine
mine whether the deterioration which the material had sustained was permanent, or whether this quality could be restored, a portion
of the welded coil was hammered out in length, and reduced from a piee of about 5in. and 2in. thick to a section of about lin.
square. A test piece. from this bar showed a complete. restoration
of the fine qualities of the steel. The limit of elasticity rose to
on of the fine qualities of the steel. The limit of elasticity rose t.
21 tons, the breaking point to 27 tons, and the elongation to 36.5 per cent. It was remarkable, however, that after this treatment
no further increase of strength was obtained by a renewal of the no murering increase of strength was obtained by a renewal of the ture of the test tipee from the original
temper was slate coloured, and of the character usually called fibrous.
bar The test pieces from the coil shown in coarssely granalar fracture, but in the restored state, effected by hammering, the fracture
again became slate coloured and fibrous. Thinking it possible
that the coil might have been over-heated in the welding process, I that the coil might have been over-heated in the welding process, I
had a pile made with a number of small slabs of the restored
materiail, and welded at a somewhat lower heat than had been material, and welded at a somewhat lower heat than had been
applied on making the coil; but test pieces cut across the pile invariably failed at the junctions with a very insignificant strain,
showing that the welding heat could not be reduced consistently with sound welds.
In order to ascertain whether it was the heating or the hammer-
ing that had injured the weldede coil, I had a piece of the material
cut from the coil and restored to cut from the coil and restored to a good condition by drawing under the hammer, and then heated up to the welding point,
allowed to cool without being hammered for welding. In this case
the froctur the fracture showed no change of crystalline structure, nor was
there any deided alteration in quality execpt that the hardening
effeet of the hammering was removed. It began to stretch at a
 low limit, viz., 12.5 tons per square inch, but its breaking point
was 25.2 , which was hilgher than in the original bar. The elonga-
tion remained naerry the same, beins 34 per cent., so that the mere hieating to a welding temperature without disturbing the particlese
by hammering had no serious detrinental effect. I the took by hammering had no serious detrinental effecet. I then took a
pieoe of the stel in the restored condition, and after heating it
to the welding pint, delivered upon it in that state a single to the welding point, delivered upon it in that state a single
blow of a hammer sumficient to crush it into half its thickesess
The result was that the flattened piece divided into fissures ali
round the edges Fo th the prose The resud the edges. For the purposes of comparison I took a piece of
round
wrought iron, selected at random from a scrap heap it exactly in the samed manner. The reseunt wap that, the ind troated bore
the blow, flattening it to the same extent as the steel without showthe blow, Hattening it to the same extent as the steel without show-
ing the slightest fissure on its edges. These two pieces are now on
the table, and it is impossible to examine them without perceiving the tabe, and it is impossible to examine them without perceiving
that the steel, though differing so little from iron in the amount of
its carbonisation ,ys. its carbonisation, was yet, when heated the the welling point, in a
state of friaility, while the iron remained perfectly plastic. The
conclusion was thus confirmed that it is the disturbance of the conclusion was thus confirmed that it is the disturbance of the
particles in this friale state, and not the mer eheating, which
exercises the injurious effect in the welding process. I was not
surprised to find that the surprised to find that the cil itself had derivea no benenit from
the tempering, because although steel so low in carbon as this
samper sample is considerably improved by tempering when the piece
subjeceted to the process is of manal dimensions, yet when the bulk
is considerable the cooling in the oil is not suffiently is considerable the cooling in the oil is not sufficiently rapid to
produce any decided effect. My next experiments were made upon a block of gun steel, con-
taining 34 per oent. of carbon, and which had been rejected on
account of its deficient tensile strength. A test piece, cut from
the block as received from the maker, began to stretch permanently
at 11 tons per square inch, breaking at $29 \cdot 4$ tons per square incl with tons per square inch, breaking at 29.4 tons per square inch
witongation of $24^{2} \cdot 25$ per cent; but a pieeo of the same
steel ba of 5in. to a thickness of 1 iqin. resisted 19 tons instead of 11 without stretch, and a breaking strain of $27^{\circ} 5$ against $24 \cdot 2.25$. A piece
of the same steel 5in. long by 4in. thick, having been tempered in oil, , eave a test piece showing a further, increase of strength with
little diminution of ductility. It began to stretch at 23 tons, breaking ittle diminution of ductility. It began to strutch at 23 tons, breaking
at 36 .5 tonsand elongating 21 per cent.
to arious attempts were made
weld this steel in a pile of slabs, but it was found impossible make sound joints, and the steel was even more deteriorated than had ben the casse with the previous sample; but a piece of this
material spoiled in the attempt to weld it, having been drawn out into a bar of 1in. square, proved to be far stronger than in the
original state. It stood 24 tons per square inch before stretchin original state. It stood 24 tons per square inch before stretching,
against 11 tons in the previous untempered state, and 33.6 tons
 Whatever of the provious injury it had sustained by the attempt to weld it. A piece of the same ingot, heated to a welding tempera,
ture and allowed to cool without hammering, gave a test piece Which, so far from showing any injury by the heating, resisted a
considerably higher strain than the sample taken from the block as it came from the maker. Its stretching point was 16 tons per
square inch, its breaking point 332 tons, and its elongation 20 per cent. Another block of gun steel containing rather more carbon
viz, 41 per cent., gave the following results from block in its original state, began to stretch at 14 tons per square inch, broke at 32.5 tons, thd elongated at 23 per cent. The
same cot from a thick lump of the same material, whish had been
tempered tempered in oil, resisted
43 tons before breaking, with ans elongate permanent of stretch and 16 per cent., thus showing the much greater effect of the tempering process; the
proportion of carbon is increased, but showing also that the loss of ductility by process becomes more considerable.
It being important to ascertain whether steel cylinders which
have been tempered in oil could be re-heated sufficiently for the have been tempered in oil could be re-heated sufficiently for the purpose of shrinking upon a gun without destroying the effect of
the tempering a test piece, cot from the same tempered lump of
this steel was heated in melted zine to a temperature of 750 deg., and then allowed to cool naturally in air. Comparing its resistance
with thepiece which had not beenre-heated, it gave 25 tons per square inch, against 28 tons before stretching, 40^{-2} tons against 43 tons
before breaking ; but its ductility was increased from 16 per cent. to 20.5 per cent.; so that although rendered slightiy inferior in ing. Similar experiments made with steel rather lower in carbon almost inappreciable either in the way of improvement or the contrary, and no degree of sudden cooling from so low a tempera-
ture had any distinct effect. On carrying the re-heating to still
higher degreest the effect of the previous tempering higher degrees, the effect of the previous tempering gradually
diminished, but was not altogethere obiliterated, even when the
temperater which temperature was raised to the bright red heat which the rapid
cooling steel had been immersed in the oil. The friability of the cooning stee hai been ierature became more marked as the per-
steel at a welding temperate
centage of carbon was increased. Of the many examples I tried, the highest in carbon was the block already mentioned, containin suff perer cent. of carbon. litto from being mereely heated to the wel selding tem-
perature, provided that while so heated it was not disturbed bperature, provided that while so heated it was not disturbed by
hammering. But it was so friable at that temperature that it broke into a mass of small crumbs under a moderate blow of the
hammer. It was remarkable, however, that the same blow of the hammer which detached them from the block united them in a thin cake on the anvil. Specimens are produced illustrating the effects
of this treatment. Whether the friability at a high temperature can be corrected by combining these materials with it is a poin upon which my experience casts no light. If it can be so corrected
without detriment to the material, the knowledge of how to do Many important acquisition to metaluryical science
Many of my test pieces were taken from rolled steel hoops con-
taining from 22 to 35 per cent. of carbon, and all of these showed much greater tenacity than was exhibited by test pieces taken
from forged blocks of similar material. It is one of the charac-
teristios of mild steel that it is enormously increased, both in strength and toughness, by being drawn out either by rolling or hammerng, bat espeeially by rolling, which is more unifore process
action than hammering. There an be no doubt that the
of rolling steal tires may he ended to the production of rolle of rolling steel tires may be extended to the production of rolled
hoops of great width, and the time may not be distant when we mays see a realisation of the prediction made many years ago by
Sir Frederick Bramwell, that we should eventually be able to produce in this manner continuous unwelded cylinders for boiler
making purposes. Steel cylinders thus made and tempered in oi
will be in will b bin a highly favourable condition for the construction
ordnance, but in order to make them available for longitudinal ordnance, but in order to make them available for longitudinal a
well as for lateral strength, it will be essential to have them in produce. All ductile metals derive additional strength by being
stretched, but steel does so in a pre-eminent degree. Roughly speaking, its modulus of elasticicty may be taken as equal to This measure of elasticity fapplies equally, or nearerly equally, to all strength is increased. Thus, steal that will bear 20 tons with permanent stretch, will retract $\frac{20}{2}$ th of an inch per foot of length
on being released from its load; while steel that will bear 40 tons without permanent stretch, will recover 1_{5}^{4} th th of an inch per foot which recover only 3 sto ot of an inch be stretched to a point at
 of elasticity will be doubled. This is a very valuable quality enabling steel to gather strength as it yields to an important
increase of load. As an illustration of the extraordinary strengthening effect of stretch upon mild steel, I may mention that a sample of the steel taken from the welded coil to which I have
adverted, and which in its original state showed a tensile strengt very slightly exceeding that of wrought iron, sustained a load o nearry
of fracture.
But much as steel gains in strength by the process of rolling, it parable, in respect of strength and toughness, to that which hat
been drawn into the form of wire or riband; and in the case of its application in that form to the strengthening of a cylinder, it ha
the additional advantage of admitting of being laid on with a mo avourable adjustment of tension than is practicable with a soli hoop of considerable thickness. But even with wire, the best
tensional condition for giving strength to a cylinder can only be approximately attained, owing to the fact, which is commonly
overlooked, that in bending a wire over a cylinder it is impossible to give the proper degree of stretch to both of its sides. The outer greater elongation than the inside; and in fact, unless the wire be
laid on at a far higher strain than would be necessary or beneficial in the case of rings, the inside, acting as a fulorum to stretch the
outside, will assume a state of compression, which can only be
taken offit by expanding the cylinder after the wire has been laid on. The thinnex the wire the less will this disadvantage be feit and for this reason a given area of section is much better in the
flat, or ribbon form, than either round or square. Greatadditional
strength is given to steel wire by tempering in manufacture, and strength is given to steel wire by tempering in manufacture, and
the elighest strenth is attained by passing the wire through the
die as a final operation after the tempering process. The effect
dhe
which, though greatly adding to the strength, is unfavourable
for bending, and a very slight injury to the surface greatly conthat has to be rolled at a high tension on a cylinder, and, for this reason, wire tempered after instead of before finishing is safer, though not so strong. If the wire be thick, judicious annealing,
though it lessens the ultimate strain which the wire will bear, raises in a very marked degree the limit of elasticity. I have
found that steel wire of about 0.2 in . thick, of strength, began to stretch permanently at a tension as low as 25 tons per square inch, while after being properly annealed it
would bear 35 tons before permanent movement. The explanation of this curious fact is probably to be found in the removal by the annealing process of the contending state of tension produced by
the drawing or tempering on the inner and the outer portions of ness of the riband was reduoed to advantage of the annealing process al almostwhwholly disappeared, and
the wire was simply softened or rendered more ductile. Castings the wire was simply softened or rendered more ductile. Castings
of steel unhammered are improved by being tempered in oil in much the same degree as the cast tro cast the elastic limit was 16 tons, breaking load $27 \cdot 8$ tons, elonga-
ing tion in 2in. 7.5 per cent. After tempering, E.L., 25 tons ; B.W., tion in 2 in., 75 per cent. After tempering, E.L.,
377 tons ; Ex., 12.5 per cent.; showing a great improvement under every head. The quantity of combined carbon containe. 0.36 per cent. The objection to the use of cast stel in the
men was bubbles. This I think ought not to exclude its use for trunnion rings, which, from their peculiar form, can only be very imper-
fectly forged. The unsoundness from this cause would be greatly mitigated by casting under pressure, as advocatid by sir Joss
Whitworth.. There is much less sacrifice of ductility or toughness when increase of strength is obtained by tempering than by oil is so apparent, both in the case of steel castings and of steel which has been either rolled or forged, that there is strong inducethe efficiency of the material in nearly all its applications. The saving of the weight of material necessary for a given purpose
would amply repay the cost of the terpering, and in the case of
bridges of bridges of great span, where the strains are chiefly due to the
weight of the structure independent of its load, the economy effected would be far more than proportionate to the increase of My experiments are not suffic
My expenitely as to the best proportion of combined carbon for steel, to which the tempering process is to be applied, but excellent results can be obtained with steel containing $0 \cdot 35$ per cent. carbon.
If the masses to be dealt with are thin, less will suffice, and if If the masses to be dealt with are thin, less will suffice, and if
thick more will be required, but it is quite possible that the mode of applying the oil in the tempering process might be inproved so
as to render it more efficacious where the bulk of the steel is large.

The Engineriing Colleger in Japan.-In the beginning of July Mr. Henry Dyer resigned the principalship of the Imperial
College of Engineering at Tokio, an office which he held for nine years. He has been succeeded in the principalship by Dr. Divers,
who has been Professor of Chemistry since the institution of the College, and his work in the Chair of Engineering is to be taken up by a new Enclish professor. As a testimony of the respect in
which Mr. Dyer is held by the Government of Japan, he has been appointed Honorary Principal of the College; and before leaving
he was presented with addresses and testimonials from the foreign
staff of the Collige, the graduates and the students. The Emperor of Japan has also decorated Mr. Dyer with the Order of the Rising Sun
Examinations of THE Societr of ArTs.- The attention of
secretaries of institutions and others interested in the Society of Arts examinations is especially drawn to the fact that important
alterations have been made in the examination system. The following are the principal points in which changes have been made since the publication of last year's programme : -1 . The examina-
tions in subjects of "Commercial Knowledge" have been renewed 2. The three subjects, "Clothing, cookery, "Housekeeping," mestic Economy." The examination in "Health", will be
continued under the title of "Sanitary Knowledge." 3. A
fee continued under whe title of Sanitary Knowledge. in a. A
fee of 2. 6d. will be required from each candidate in each
subject, except Practical Musi, for which special fees are required. 4. No prizes will be given in any subject. 5.
Certifcates in three classes will be given. 6. The restri-
tion as to the age of the candidates has been removed An examination will be held in any subject of "Commercial
Knowledge," in addition to those already in the programme, for which 25 candidates offer themselves, provided the Council approve of the subject. The subbects of examination for 1883 will be :-

1. Arithmetic. 2. English-including composition and corre-
s.andence and précis writing. 3. Book-keeping. 4. Commercial
 Economy. 12. SSanitary Knowliedge. 13. Theory. of Music.
2. Practical Music. In addition to the above subjects, the
S. Society will provide for an examination in any other subject which
may fairly bo comprised in "Oommercial Knowledge," and of
which the Council approve, provided not less the are guaranteed for such subject. The examinations, in all the subjects, except practical music, will be held on the evenings of
Monday, the 9th, Tuesday, the 10th, and Wednesday, the 11th of April. The complete programmes can be had upon application
to the Secretary of the Society of Arts, John-street, Adelphi, W.O. has been built to the order of Messrs. R. P. Houston and Co. hruy-buildings, Liverpool, made her trial trip last week, and the result of her preliminary run must have been as satisfactory to the
owners as it was creditable to all concerned in the fitting out of the vessel. The Hermes is the second ship which has been built
for the firm named--the Hercules being already on active serviceand she will prove a notable addition to the steamers sailing from Liverpool, being intended for the general carrying trade. She was
built at Whiteinch, Glasgow, by Messrs. Aitken and Mansel, and is 305 ft . long, has 40 ft . breadth of beam, and 22 ft . depth of hold. She possesses soo tons water ballast, very powerful pumps, and ali
the latest improvements in marine architecture, including Messrs,
Muir and Cald well's steam steering gear, and Sir W. Thompsons compasses. The Hermes has been fitted with her engines by
Messrs. Jones and Sons, of St. George's Engine Works, Liverpoool,
and the ship has been constructed to and the ship has been constructed to carry 3200 tons dead weight,
with 20ft. draught. She is remarkably well built, and furnished in a manner which has fully satisfied the requirements of Lloyd's surveyor's special inspection, being classed 100 A 1 . She has two bnilers and eight furnaces, and is expected to attain a speed of to
knots an hour. The screw steamer Benbrack, of 2047 gross tonnage, was taken out for a six hours' trial trip on Friday, in Liver-
pool Bay, and proved exceedingly satisfactory to those interested.
About three months a aco when this steamer was handed over to About three months aso, when this steamer was handed over to
the engineers to be refitted with new engines, \&ac., she was a four-
masted vessel, with the engines right aft, and required 400 tons masted vessel, with the engines right aft, and required 400 tons of
ballast on board to keep her upright. As she appeared on her trial trip she is a smart-looking schooner-rigged steamer, with funnel
amidships, 600 tons of water ballast on board, and clean swept holds. The speed and consumption with the old engines were relatively 7 knots and 24 tons a day; with the new engines they are
10 knots on 17 tons. The steamer was handed over by the
managing owner, Mr. Joseph H Hoult, to the contractors, Messrs. John Jones and Sons, St. George's Engine Works, by whom the
whole of the ship and engine work has been effected, the engines
having been fitted with all the latest improvements introduced by

EFFECTS OF SHOT ON A COMPOUND ARMOUR PLATE.

RECENT EXPERIMENTS WITH AN 11-INCH COMPOUND ARMOUR PLATE AT SHOEBURYNESS.
Major O'Callaghan, R.A., who under the Commandant of the School of Gunnery, Colonel Hastings, R.A., carries out all experiments, has recently communicated a paper to the Royal Artillery Institution, on some curious features in the behaviour of steelfaced plates under fire, on which he consulted Col. Inglis, R.E. Such a paper is of course most interesting to those who have to do with armour in any form. Without attempting to follow the critical reasons throughout, we give some extracts, observing that plate by the artillery, by between this trial of an 11-inch Brown plate ntly made ory , by mell-Wilson 11 and 12 in . guns, and that $12 \cdot 5 \mathrm{in}$. guns. This plate is described by Maior 0'Callagh as follows :-"An 11in. compound, steel-faced, armour plate" has

recently passed through such a severe ordeal, and has exhibited such curious phenomena in connection with the behaviour of of this batteriected to battering, that perhaps a short account manufactured by Messrs. Brown and Co., of Sheffield, measured 10 ft . by $5 \frac{1}{2} \mathrm{ft}$. by 11 in ., and was composed of about 7 in . of iron, faced by about 4 in . of steel, welded together by the process known as Ellis's patent. This process may be roughly described by stating that a wrought iron plate, rolled in the usual manner, is brought to a welding heat, and then covered with a layer of molten steel which is poured on to it and retained by a wall of
wrought iron surrounding the plate, after the manner of an open mould. When the mass is sufficiently cool, the double plate thus formed is rolled again, and its thickness considerably reduced By this means a weld between the two metals of extraordinary tenacity is produced; in no instance has firing at the plate

* This is the same plate as the one referred to by Capt. Orde Browne in his Lecture on "Ironclads," which ap,
ceedings" of the Artillery_Institution.
effected their separation. In this particular instance the usual modus operandi was departed from, and the molten steel was poured between the wrought iron backing and a face-plate about in. thick of rolled steel. Both steels were precisely the same in composition, and contained the same amount of carbon, i.e 0.75 per cent.'

Four rounds were fired at this plate, which was backed with 24 in . of oak, from the 9 in . gun. The first three were with Palliser chilled projectiles, weight 260 lb ., charge 50 lo . of pebble, energies from 4132 to 4050 foots with a studless Cammell steel shell weighing 279 lb ., striking velocity 1405 ft ., energy 3822 foot-tons. These projectiles produced indents of from 6.9 in . to 5.55 in . with some hair cracks in front and bulges in rear of from $1 \cdot 1 \mathrm{in}$. to 0.68 in . Fig. 1 shows the plate at the conclusion of this part of the trial. It had then been struck by a total weight of metal of 1059 lb ., with an aggre gate striking energy of 14,869 foot-tons, against which it had held its own. Major O'Callaghan terms the damage practically nil.
In last October the same plate was set up again in front of an old 12 in . compound plate, 12 in . of oak backing intervening. In the meantime a star-shaped crack had developed in the face near the end opposite to that which had been fired at, showing how much more extensive is the molecular action developed in a plate by blows than appears at first. This plate was then fred at twice shell 840 lb fing ${ }^{2} 160 \mathrm{lb}$ P ${ }^{2}$ powder striking velocity 1425 ft . and 1413 ft successively the corresponding stroke energies being 11,824 and 11,695 foot-tons. The first round of these two-No. 5 in all-cut through the plate so far as to nearly separate a disc above 20 in . in diameter; the rear view is shown in Fig. 4, the body of the shell, which was apparently inferior in quality, opening out and rebounding in the form shown in Fig. 2 while the head flattened out and made a curious impression on the disc of steel which was in front of it, as shown in Fig. 3. The plate battered as it was received the sixth round-the second from the 38 -ton gun-which striking near the position of roun our, see Fig. 1, made a hole about 21 in . in diameter.
We would first point out that this 11 in . plate has been sub jected to two blows capable of penetrating about $17 \frac{1}{2} \mathrm{in}$. of ought to be capable of giving a good account of a compound plate, though considerable difficulty has been experienced in obtaining such projectiles lately. Previous to this the plate had received three rounds of Palliser shot, which had been declared by the sub-committee almost useless against compound armour and one of steel, which should be capable of penetrating about 12 t in . of unbacked iron. This plate was well backed though with soft backing, and thus the reference we give to the regular standard may not be as good a measure as desirable. The prac tical value of this armour, however, is apparent when we point with it have defied capable of carrying 1lin. of armour might Armstrong guns in the Chinese ships and the 80 and type ton guns of the Inflexible and Italian vessels. Yet 11 in . is by no means thick armour, two broadside ships carrying that indeed, the Alexandra carries 12 in . and the Temeraire 11 in . iron, and the whole of our first-class turret ships carry more Such trials are strong incentives to use compound armour. But
this is not the point dwelt on by Major O'Callaghan. He proceeds to investigate the action of impact on steel-faced plates. After reading repeatedly what he has written we think we can hardly curtail his observations, and those ofith the exception out serious loss, and so give them the which it would be a bad ompliment to the readers of The Engineer to reproduce in onnection with information from the very best sources on such a subject:"A large layer of steel was found to have come away from the front in the region of the indeiguration of the steel round these Isclosing as. Fig. 5 shows the crater-like form they exhibit, and Fig. 6 is a cross section through A B, showing their depth and the curved form of their sides. This strange phenomenon perhaps throws some light on an appearance which has given rise

to much speculation in former rounds fired at steel-faced armour plates. It has always been observed that a wedge-shaped layer of steel is apparently separated radially round the indents, and, steel face, the absolute wnif thonght that a thin palways be guaranteed, had been struck. The frequency of the appearance, however, negatived the theory, and the denuding of this plate seems to show what probably happened in other instances; the wedge-shaped layer of steel being, in fact, a portion of the surface or covering of craters, now removed. It is wonderrul to conbeen going on under the apparently undisturbed surface of the plate, and which was merely indicated by the radial cracks which were developed, some at the time, and some considerably after the shot had struck; difficult, too, to realise the tremendous tension to which this surface was subjected, tightly stretched ever
the distorted metal beneath it. Yet, in spite of all this, the plate had still cohesive power left t
shock of the first 38 -ton projectile.
"It may be urged that this shell was of inferior quality, but when we take the state of the plate into consideration it must
be confessed that it was a very remarkable performance. Including the second 38 -ton shell, which, had it struck a sound part, would probably have done little more harm than the first, the
weight of metal fired at the plate now amounts to 2744 lb., weight of metal ired at the plate now amounts to
striking with an aggregate energy of 38,388 foot-tons. The actual causes which have given rise to the peculiar appearance of the surface laid bare by the flaking away of the crust are rather obscure, and one or two authorities have bestowed a considerable amount of thought upon the subject. The theory that is perhaps most worthy of credence is one which is really the outcome
of several people's opinions, and may be briefly stated as follows : of several people's opinions, and may be briefly stated as follows :
When a shot strikes and is arrested by a plate, the metal its When a shot strikes and is arrested by a plate, the metal its
point or head displaces must go somewhere. In a wrought iron plate, it is, we believe, driven forwa in front of the pronounced swelling, which, if the point has nearly penea pronounced sweling, which, if the point has nearly pene-
trated, is cleft by star-shaped fissures. In addition to this, there is generally a high lip thrown up round the entrance of
the hole. In a steel or steel-faced plate the appearances are very the hole. In a steel or steel-faced plate the appearances are ery ceptible, or, at all events, much less pronounced; hence it is
evident that the metal round the point of impact is more evident that itse efforts to escape when displaced. Now it is clear
impede in that the displaced metal must be thrust away normally to the
curvature of the head of the shot, and the direction taken by curvature of the head of the shot, and the direction taken by
the molecules is represented by diverging rays in the diathe molecules is represented by diverging rays in the dia-
grams, Figs. VII., VIII., IX., and X , at all angles between
the vertical and horizontal. A bursting strain or thrust the vertical and horizontal. A bursting strain or thrust
will be set up somewhere bet ween these two limits, and
along this line will there be the metal to separate -inere be a ther words, there on will be a line of part of
the line cleavage. We should therefore be prepared to find a portion
separated from the rest in the form of a cone bounded by separated from the rest in the form of a cone bounded by
straight lines. But it is not so. The cone is, as we have seen, curved in section. How is this curvature to be becounted for ?
When any metal is subjected to a crushing strain beyond its When any metal is subjected to a crushing strain beyond its
power of resistance, it evinces a tendency to buckle or bulge power of resistance, it evinces a tendency to buckle or bulge
outwards-this is, I take it, the key to the rounded aspeet of the exterior of what may be termed the 'craters.' The steel displaced by the advancing point is crushed and yields upwards, or
buckles into the cavity caused by its separation, or partial separation, from the rest of the plate ; thus presenting the appearance of the rounded, indented cumulus before described.
"On examination of other broken compound plates in which portions of these cumuli are seen in section, it appears that,
although it has never been before so favourably displayed, the same phenomenon has been invariably produced to a greater or less degree, and that therefore some law must exist which governs
the motion of the particles in the disrupted metal. It remains the motion of the particles in the disrupted metal. It remains
for further experiments to throw more light on the subject, and for further experiments therr more light on the subject, and
to prove whether the e theory above enunciated is worthy of adoption ; at present it is only put forward as a conjecture fairly supported by facts.
reatest authorities on armour plates that we from one of the greatest authorities on armour plates that we have, Colonel T.
Inglis, R.E., in which the writer's views on the subject just dis-
cussed are set forth so clearly and vizorously that with his kind permission, I quote them in extenso. entrance of the pointed head of a shot into a steel-faced plate, I imagine that the intense pressure of the shot is mainly borne by a cone, roughly described in the diagrams. In fact, up to the
stage shown, very little work can have been done upon the steel stage shown, very little work can have been done upon the steel
lying outside this cone. The pressure upon the material of the cone will be in the direction of the arrows, Fig. X., tending, of course,
to compress it, while the adjacent steel outside the cone is not subjected to any great pressure. Hence, it would be natural to expect some separation of the cone from the rest of the steel ;
and it must be remembered that not only the steel of the cone under compression at this stage, but its base is resting all the
time against a bed of soft wrought iron, which must vield more time against a bed of soft wrought iron, which mustst yield more steel. The reason for the cone not being a true figure, but more often, I believe, bounded by curved lines is, I have no doubt, due
to the form of the head of the shot-and probably we could, by to the form of the head of the shot-and probably we could, by
varying the form of head between a blunt and very sharp cone, varying the form of head between a blunt and very sharp cone,
alter the form of cone in the armour almost at will. Of course, the steel face outside the cone becomes more or less compressed in later stages of the entrance of the shot, but by that time the main separation has taken place, and although the pressure in a less measure to the wrought iron of the armour, yet, if we
could more fully examine the effects produced in several of these a less measure to the wrought iron of the armour, yet, if we
could more fully examine the effects produced in several of these
rounds, I should expect to find the commencement of other cones beside the main one. In a soft, plastic material the action must obviously be very different, and hence the reason for these cones of separation not having, been observed before the intro-
duction of steel-faced armour." duction of steel-faced armour."

A RUSSIAN COAL MINE.

The mine of the Russian Steam Navigation and Trading Company, of part of the machinery of which we give this week a supplement drawing, is situated at Grouchefka in the district of anthracite coal are found. A branch line of railway conneets this mine to the Kozloff Voronege and Rostoff Railway Company's line, by means of which the coal on being drawn from the pit
and loaded into the railway truck is conveyed to whatever part and loaded into the railway truck is conveyed to whatever part
of the empire it may be destined for, without being removed of the empire it may be destined for, without being removed
from the railway truck. The machinery and other plant of these from the railway truck. The machinery and other plant of these
mines is arranged for putting out 60,000 poods, or 1000 tons of mines is arranged for putting out 60,000 poods, or 1000 tons of
coal per day; but owing to the scarcity of miners, or the demand
for coal being limited, the output seldom exceeds or 400 tons, which is about a ninth part of the whole of the
various classes of coal worked out in the district of the various classes of coal worked out in the district of the Don Army.
The
The sinking of the pits was commenced in the year 1863, and
continued until two workable seams of anthracite reached, the first of 35 in . and the second of only 28 in . thick-of the two seams the second is the better coal, and is about 12 per
cent. more valuable in the market than the upper or first work able seam. The seams were reached at a depth of 61 and 71 the working of coal commenced in the year completed and direction of the late Russian mining engineer, Mr. Paul Wagner.
In 1872 the management of the mine was transferred to the present manager, Captain N. Skariatine, I.R.N. Owing to the opening out of extensive dip workings, and the prospect of
having a large increase of water to contend with in the future it was deemed necessary to put down the additional underground pumping and hauling machinery as shown by our drawing.
The underground pumping engine was supplied by

Hathorn Davey and Co., Leeds, and is one of their directacting compound and condensing engines, fitted with Davey's patent differential valve gear. The diameter of the high-pressure
cylinder is 23in., and that of the low-pressure cylinder 35in., with a stroke of 6 ft .; the piston rod at back end is connected direct to two 11 in . ram pumps, and connected at the front end of the engine by a wooden connecting rod to the two bell cranks which actuate the spears of the two bucket pumps for to the tank placed in the engine compartment in the first workable or upper seam of coal, from which the ram pumps take the water and force it to the surface. The engine is capable of raising 306,432 Russian vedros, or about 828,672 gallons per
day. Provision is also made for placing another engine of the same power alongside it, should it be found necessary, the steam and main water pipes having been put in of sumficient size for
the two engines. Independent of this new pumping machinery the two engines. Independen or this new pumping machinery the construction of the pit, and consist of an engine at the sur face on the Bull system, with a cylinder of 45 5in. diameter and 9 ft . 8 in . stroke, actuating a set of 14 in . diameter plunger-andbucket pumps which are capable of raising 200,000 Russian vedros, or 577,617 gallons of water per day. Besides these there is a set of 14 in . plunger-and-bucket pumps placed in the winding pit, which can be connected to either of the winding engines in cases of emergency, and are capable of raising 100,000 Russian vedros, or 288,808 gallons per day, making a total of
606,342 Russian vedros, or $1,695,097$ gallons per day. This large amount of pumping power is liable to be required at the commencement of the spring of any year after a winter of much to penetrate to the workings of this and the numerous small mines in the direction of the rise of the seams, many of which mines are not wrought at that season, and the water from them finds its way to the Russian Steam Navigation and Trading Company's mine, and has to be raised by the machinery described. the pump well of the main pumping machinery by means water pressure engines, which are situated near the bottom of the dip or lower boundary of the royalty, as marked in the
illustration. These engines are driven by water taken down from the surface, and actuate ram pumps, which force the water up the incline through cast iron pipes to the well of the main the cages at the bottom of the pit was formerly done by manual labour and horses, until the workings becoming at such great in getting out the quantity at a cheaper rate than could be done by machinery. It was then decided to put down endless chain in 8 cwt. tubs in eight hours from the lowest part of the
the royalty to the cages at the bottom of the winaing pit. The chain is driven by a horizontal engine, with a cylinder 18 in .
diameter and 3 ft . stroke. The main sheave for driving the chain diameter and 3ft. stroke. The main sheave for driving the chain
is bolted to the arms of the spur wheel, which is driven by a on the crank shaft which makes five revolutions to one o the spur wheel. The branch roads are driven by 3 -tier chain prevent the chain from slipping. The same size chain is used in all the roadways; this enables the chain from the upper road when it has become too much worn, to be replaced by the chain from the lower road, where the least work has to be done. The chain was supplied by Messrs. Brown, Lennox, and Co., London, and the spur gearing, chain sheaves, and other castings were made at the engineering works of Mr. William Graham, Rostof old rails have been used in the construction of the chain gear.

THE ELECTRIC LIGHT AT BIRMINGHAM.

WHILST a good deal of congratulatory criticism has been to add a little more, but upon a slightly different subject. Bir mingham likes to do things well, and one of its citizens thinking it would add to the interest of the festival, suggested and offere to bear the expense of lighting the Town Hall by electricity.
The offer of Messrs. Wingfield and Co., of the Cambridge-street Works, was accepted. The speciality of this firm has hitherto been connected with gas fittings, but seeing the possibility of the lighting a been given to electric light fittings. The lighting at Birmingham was carried out at the firm's request by Messrs. R. E. Crompton all the opinions expressed the lighting was a great success-in fact it is said to have been the most perfect experiment ever carried out in this direction. The lamps employed were those o
Mr. Swan, of 20 -candle power nominal. Five hundred of thes lamps were used upon two circuits. Grive of twelve lights, resembling a bunch of grapes, were placed upon pendants, each
lamp having a translucent fluted glass shade to assist in diffusing the light. Sixteen such groups and ten compound groups were arra-jed in the Hall is 135ft lumber of wide, and 65 ft high with with the orchestra and organ facing the entrance. Before describing the arrangements adopted for obtaining the cur rent, it may be well to state that those engaged during the festival were invited to give a written opinion as to the light, showed that, contrary to the case when gas is used, the coolest part of the room was above, the temperature level with the top an light, and one lady made the pertinent remark that no fainting perature the dee during the festival. Owing to the equable tem The current was obtained from Bürgin machines construct. by Messrs. Crompton, the motor being the steam engine at the Cambridge-street works. The fly-wheel of the engine is about 24 ft . diameter and makes some 48 revolutions per minute upelve Bürgin machines, in four sets of three each, were fixed upon a wood framework, the machines being so arranged as to be to be made tight. One set of three machines was used to excite the field magnets in series of the other machines. Only
two of the three machines were used, the third bing two of the three machines were used, the third being there in
case of accident. Thus the magnetic field of each of these nine machines was practically alike, and as field of each of these nine machines was practically alike, and as the pulleys were all conthe speed of the armatures was the same, as was also the electro motive force and the current. The armatures were connected in multiple arc, and the current delivered into one main. The currents from the brushes were led by means of switches through a Siemens dynamometer to terminal screws upon a heavy brass
plate. A similar plate was fixed at the ends of the circuits in
the Hall. The current could be passed direct from plate to plate or through a resistance of iron wire, this resistance being lamps one half. The conducting and return mains to the The lamps one half. The conducting and return mains to the Town
Hall consisted of eleven cables, each of seven No enclosed in an iron pipe taken under the street. Eight of the enclosed in an iron pipe taken under the street. Eight of the
dynamos supplied the current to one circuit, the minor circuit being supplied by the ninth dynamo. Mr. Lea has given the following figures :
(A) Exciting Circuit.

Resistance of two exciters in series nine field magnets in series
 Total resistance Current in (A) circuit
 $\frac{7 \cdot 86}{} \frac{15 \cdot 7}{23 \cdot 56}$
 (B) Working Oircuit.

 440 lamps (35 ohms each) in series of four $35 \times 4=$
 Total resistance urrent in (B) circuit
 The Minor or (C) Circuit gave
 Resistance Current ..
 $11 \cdot 69$ ohms. 22 Amperes

The lights ran for several hours together without a perceptible ficker, and so well had the lamps been selected and manufac Although the success attending this installation has been so great, we must not forget that it was a temporary and not a permanent one, and hence some of the arrangements were of slightly different character from those which would hold in the case of permanent work. The fittings, which were carried ou by Messrs. Wingfield, were designed to accord with the gorgeou fitings or the Hall, and were admable. We believe that Messr Wingtield have taken up this branch of work, and the sugge tions of Mr. Crompton, and it is not too much to say that the a fair idea of the capabilities of the electric incandescent light.

Rail Imports and Railway Construction in America. British rail exports to the United States have declined steadil May last they were the smallest since January, 1881, and with that exception the smallest since 1879 .
cant for several years until August f of that year they amounted to but 8948 tons; in the remaining
five months of 1879 they were 18,840 tons. Since 1879 the monthly exports
2240 lb .

Last year in May the exports to the United States were larger than
ever before since 1873 ; this year they were nearly the smallest since 1879; and last year and the year before the exports were comparatively light early in the year, and became heavy in the spring
and summer, while this year they were heavy in the winter and have become light since. The Railroad Gazette says:-"If we be a certain indication of an approaching reduction in consumption, but our imports are now but a small part of our supply, and the works for producing steel rails in this country probably have nearly
20 per cent. greater capacity than at the same time last year. It 20 per cent. greater capacity than at the same time last year. It the price of domestic rails. Steel rails are now about 20 per cent. lower than at the beginning of the year.
A Startling Ride.-Here we were to stop at the village of visit the Cor some time, to unload machinery, giving us time to world. Two little tracks lead from the wharf directly up over the nountain, a rise of about 350 ft . to the quarter mile. A number of kindly rigged a short box-car, by nailing planks across; and we all were to be pulled wa the in the broiling sun, wondering how we gratified in a way that made us a trifle skeery, and caused some to give up the pleasure of the journey. The principle on which the
cars run was very simple. The cars were attached by a long cable, and when they came down the hill laden with ore, they pulled, or and there was no particular starting signal. The first intimation we had that we were ready was a sudden and terrific jerk, followed y the grand and unanimous acrobatic feat of a back somersault by he whole company, a chorus of femillas and by the time we all got back on our seats many had all the ride they desired. But, alas ! they were now doomed; for there was no stopping of this train until the summit was reached, and no
getting off without tumbling from that terrible trestle. We plunged along, now swiftly, now slowly, and at every fresh start our necks. Soon we began to tear along madly, and sway from side to side. Just then a dark object whizzed by, It was the ore
cars on the down track. Their speed was now frightful, and ours cars on the down track. Their speed was now frightful, and ours was necessarily in the same proportion; for the faster they went
down the sooner we reached the top. We finally arrived, more own the sooner we reached the top. We finally arrived, more
frightened than hurt, over the brow of the hill. The mine was now four miles distant. Our car was hitched to an ore train, and locomotive drew us the remainder of the distance. If the ride had still a deep grade to ascend, and the engineer opened wide the
throttle, and let the "old thing just hum." We went ahead ten feet at a jump. often three feet above the rails ; but Providence to side until the car grazed the trees by the wayside, and when we napped the whip around sharp curves the train would swing out And all this time we were enveloped in a dense cloud of smoke and cinders, which numerous umbrellas could not ward off. When at
last we did arrive at the Calumet Mine, we were so changed in ast we did arrive at the Calumet Mine, we were so changed in
appearance that we were taken for a band of striking miners, until the spokesman explained. . . . On the way down the same reckless rate of speed was kept up. An unfortunate cow
stepped suddenly from the woods on the track. Our car struck her, and she shot off into the air over the edge of the mountain,

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND
OTHER DISTRICTS,
(From our own Correspondent.)
There is no falling off in the activity at the finished ironwork throughout South staffordshire, East Worcestershire, and Shro
shire. Galvanised sheets of good quality are procurable at $£ 8$ for singles
$£ 9$ for doubles, and $£ 10$ for trebles. Working-up sheets, to bear stamping, were priced from 5. to 10 .s. in andvance of these figures.
"Severn", sheets were quoted yesterday $£ 12$, B. sheets $£ 13$, B. £14, and B.B.B. \&15. The works of MIessss. E. P. and W Plates for girder use are selling at $£ \&$ on a bood $£ 8$ 5s. is asked. Boiler plates are firm at £8 10 s. for "'Wright"

quality, and "Monmori" and "B.B.H." are £9 ordinary and £10 | best, with a slowly growing demand. |
| :--- |
| Scrap bars were quoted to-day at $£ 9$ for best qualities, and $£ 10$ |
| 1 | Scrap bars were quated to-day at $£ 9$ for best qualities, and $£ 10$

for double best. Plating bars were $£$, and best ditto $£ 910$. $£ 910$ s., and marked rivet iron $£ 9$ to $£ 910$ s. per bars.s., and marked and mirked cable bars $£ 8$; but there was a quality
of "cable iron" to be got at $£ 617 \mathrm{~s}$. 6 d . and occasionally $£ 6$ 15s. An excellent tmithy bar was offiered to-day at $£ 8$ easy, and there
was no dificiculty in getting a fairly good quality from that figure
down offered them decolined to impress theirir brand.
Prices were stronger yesterday and to-day because of the resolution passed on Saturday at the conference of miners held in
Manchester, to demand a rise of wages in October under threat of Manchester, to demand a rise of wages in October under threat of
a strike, and there was a feeling of insecurity touching iron-
ons. a strike; and there was a that may be arrive
North of England.
Pigs were in plentiful supply from the local furnaces, and the sales were a slight increase at firm rates. Hot-blast all-mine son
were $£ 35 \mathrm{ss}$. to $\pm 310 \mathrm{~s}$.; cinder qualities, $£ 2-$ quoted $£ 22 \mathrm{~s}$. 6 d .
Coal was firmer alike in Birmingham and Wolverhampton, and the Cannock Chase household qualities were advanced 1s. upon
last week's rates, making deep coal at the pits 10 s , per ton. The demand in the wrought iron tube trade has fallen away conspicuously during the last couple of months, and the works are
now only partially ococupied. There are, however, some noteworthy exceptions where the worik. in hand for eopeorter, allome of of full time the
still being run. South Africa is an important customer for water-
tubes.
One of the last contracts received in the Birmingham district is for a large quantity of coach ironwork to be used in the construction of ambulance, limber, and provision wagons at Woolwich, to
be despatched to the seat of war. The contract has fallen to a
Wednes be despatched to the seat of war. The contract has fallen to a
Wednensury firm, and a larger one might have been secured if if
deliveries could have been made with all the stipulated promptitude.
The Miners' Conference in Manchester is already bearing fruit in this district. A series of meetings have been arranged for in North
Staffordshire, with a view of making the miners more united, so as Staffordshire, with a view of making the
to gain an inorease of wages by-and-bye.

NOTES FROM LANCASHIRE.

(From our oun

Manchester. - Both buyers and sellers in the iron market here
still show so little anxiety to enter into further transactionsstill show so little anxiety to enter into further transactions-
consumers on the one hand running off their contracts, and makers consumers on the one hand running oft their contracts, and makers
on the other working on with their deliveries
that there is scarcely anything to test values, so far, at least, as pig iron is concerned.
There is undoubtedly a large consumption going on throughout the district, which, with a continuance of a healthy state of trade, must tefore long bring boyers into the market; but for the present
there is a general absence of demand, and the tendency would there is a general absence of demand, and the tendency would
appear to be towards less firmness on the part of sellers. Although offers at under current rates would in many cases be more readily, entertained than was the case a week or two back.
I could hear of very few inquiries stirring on the Manchester
Exchange on Tuesday. Local makers of pig iron have bean Exchange on Tuesday. Looal makers of pig iron have been
doing extremely little for the past week or so, but they are still Manchester their less 2 for both forge and foundry qualities. District brands are, if anything, a triffe easier in some cases. Sales here and there are
still reported at full rates, but the averace hries for
 Linconshire and 48s. to 49s. 6d. for Derbyshire less $2 \frac{1}{2}$; g.m.b. g . cash.
The forges throughout the district continue well employed; they
are, however, kept busy chieffy on orders for shipment, the home
demand not being more the demand not being more than moderate. Makers are firm on the Liverpool, but there is some under selling by second hand hoster or With regard to the engineering trades, the information I gather from well-informed sources is that business is not quite so good as
it has been ; there is a falling off in the number of new inquiries it has been; there is a falling off in the number of new inquiries,
and even in the shipbuilding trade new orders are coming forand even in the shipbuilding trade new orders are coming for-
ward less freely. Inquiries for men are also considerably fewer than they were a short time back.
The new process for getting coal by compressed lime cartridges in the plaw process of blasting betting sunpowder campe om onsed lime cascussion at the the
Miners' Conference during their sitting of Thursday last, but did Miners Conference during their sitting of Thursday last, but did
not meet with unqualified support. The opinions expressed by
several delegates only tended to several delegates only tended to confirm what I pointed out last
week, that there is not as yet any basis of results sufficiently reli-
able to claim for the process an undoubted able to claim for the process an undoubted success. The use of
powder was, of course, strongly condemned, but the new system did not seem to have impressed itself at all favourably upon the
mind of some of the delegates. Although it was admitted to have given satisfactory results where it had been tried in long-wall
workings in several collieries, the opinion was expressed thsome seams and for some methods of getting coal it would not be
so all adaptable. One or two that of the
at and at all adaptable. One or two of the delegates went so far as to
urge that it was no business of the Conference to push forward the urge that it was no business of the Conference to push forward the
system or to ask Government to interfere for its promotion; that if it
was really good the system would of itel was really good the system would of itself come to the front with out
any outside assistance. Ultimately a resolution was passed th uapo the Home Office the necessity of finding means to tessed the urge
ciple of bring ciple of bringing into ose the new system of getting coal with lime. I
may add that the opinion of practicall mining engineers with whom
I have conversed, who are as anxious Thave conversed, who are as anxious as anyone to dispense with
the undoubted danger attendant upon blasting with powder, is that
the slowness of the lime process will interfere with it the slowness of the lime process will interfere with its success in
seams where there when the roof or oreor is clempange of soft material soft material. In such cases
it is probable that the gradual expansion of the lime would be it it probable that the gradual expansion of the lime would be be
taken up and expend itself in the softer material, where a sudden
disruption would be eftective in disruption would be effiective in bringing down the coal. In good
solid seams, with sound roof and floor, the lime process would noo
doubt be effective, as they would afford a resistance to the amount of expansion ; and as the expansive force exerted by the lime is irresistible, , wo would inevitably bring down the coal.
The coal trade although improving so far a s the demand for
house fire qualities is concerned house fire qualities is concerned, does not as yet develope sunficicent
aoctivity to enable any advance in prices to be realised. Suplies aativity to enable any advance in prices to be realised. Suplies
are still so plentitul in the market that for current sales ocpliery
proprietors have to take low figures, and when in one or two cases proprietors have to take low figures, and when in one or two cases
slight advances were talked off with the commencement of the
month, no attempt has yet boen

For iron making and steam purposes the demand shows no material
alteration. At the pit mouth prices remain about as under :-Best coal, 8s. to 8s. 6d. s seconds, 6s. to 7.s.; common coal, 5s. to 5s. 6 d.
burgy, 4s. to tas. $\mathrm{ta} . ;$
Shipping has not been quite so active ; for delivery at the high level Liverpool, or the Garston Docks, prices remain at 6s. 6d. to
Is. for steam coal, and 8s. 3d. to 8s. 6d. for seconds house fire 7. for star
qualities.
The stril

The strike in the St. Helens district has come to a somewhat
abrupt termination ; Messrs. Richard Evans and Co having with brupt termination; Messrs. Richard Evans and Co. having with been resumed on the old terms. The rext feature is the threatened agitation for an advance of wages throughout Lancashire; but as part of the employers or the men
Barrow.- Miew feature of any moment has occurred in the siderably strengthened by a further influx of orders, some of which being quoted at 59 s .; No. 2, 58 ss ; No. $3,57 \mathrm{~s}$. per ton net f.o.b.
Heavy consumers from America have arrranged with makers pion per ton ery large parcels. The demand for hematit ally America, and the expectations of a brisk trade with that country, which were indulged in some time ago, have been fully
realised. American buyers are still active, and are making arrangerealised. American buyers are still active, and are making arrange
ments for placing further orders in the hands of smelters, which are likely to keep them fully employed during the winter months.
The deliveries of iron are still very heavy, and as I have previousl noted, will continue so till the complete close of the shipping season. Steel makers are very busy in all departments, especially
rails. Prices are unchanged. Blooms are in active demand. Iron ore is in large output at late prices. Iron shipbuilders have Engineers, ironfounders, boilermakers, \&ce., are busy, and have a good supply of work. Shipping active, principally on foreign

THE SHEFFIELD DISTRICT.
(From our own Correspondent.)
Next month Messrs. Charles Cammell and Co., Limited, expect
transfer the whole of their rail plant from Dronfield to Working to transter the whoie of their rail plant from Dronfield th Working
ton, but I question if they will do it so early. The Derwent over the Dronfield concern, cost it $£ 105,000$. They consist o three large blast furnaces, with all the necessary appliances. Fo
the production of steel rails the Dronfield plant, of course, will be placed close to the blast furnaces, and new works are at present in
progress for the combination. The whole works, when completed proill cover over 80 acres of land. Workington. will have yet
will placed si at which the company aims is 3000 tons of steel rails per week, and to accomplish this the new mills will be of larger capacity than the
present Dronfield Works. The additions at Workingto present Drenfield Works. The additions at Workington are
expected to cost over $£ 40,000$. The cost of removing the plant at Dronfield to the coast is estimated at $£ 34,000$. At the last annual meeting it was stated that by the removal of the Dronfiel
Works the company expected to save $£ 50,000$ a year in carriage o raw material to Dronfield, and $£ 20,000$ in the despatch of rails to
the port. This is equal to 19 per cent. per annum on the capital the port. This is equal to 19 per cent. per annum on the capital
required for the purchase and removal, and equal to a dividend of 72 per cent. on the existing capital of the company. The popula-
tion of Workington will be increased by some 3000 , and 500 more houses will be needed to provide accommodation for them.
So far I hear of no other local firm following the bold lead of Messsis. denying thes Cammell and 0 . denying the advantage of producing rails at the coast, but the
home trade oan be done quite as effectively in the centre of Eng land. At Workington Messrs. Cammell and Co. will make rails for export only, and continue to manufacture rails for the home
companies at Sheffield and at Penistone. At present the rail companies at shefifield and at Penistone. At present the rail
trade is brisk enough, but prices are very low, and even at these low quotations, competition is excessively keen.
At the Etna Works Messrs. Spear
their facilities for the production of saws. When the increasing dull certain parts of the works were given over for spade making It has now been necessary to renew saw-making in the old shops,
and as the spade and fork trade is also active, to find accommodaand as the spade and fork trade is also active, to find accommoda-
tion for it by transferring the steel manufacture to the other side of the street. The revival of the saw trade, it must be admitted, mailly y due to the adoption of American patterns, such as the very good business is being done at present in hand saws fo France. In forks, the wood shafts, come from Canada, are fitted
here with steel tines, and return to the Canadian market the here with steel
pleted " fork,"
The advance in the price of coal notified by the London firms appears to be owing more to apprehensions of increased prices than to actual rises in value at the collieries. The foolish tallk at the
Miners' Conference at Manchester about a general strike if colliers wages were not generally raised, has evidently alarmed the dealers. fresh advance was made in house coal for the district on the 1st of September, but for London the quotation was increased 6d. per
ton. The value must increase quotations are the rule in the locality, and for London there has pen ton was added.
were exposed for sale on Tuesday, but found no purchaser, though offers
and eventually at $£ 20,000$ and $£ 15,000$.
The new Master $C u t l e r$,
Steel Worls, Master cutler, Mr. Albert A. Towitt, of the Scotia Stee Works, Attercliffe, was installed on the 7th inst., and gave
the usual cutlery feast the same evening. Mr. Jowitt contemplates opening the question of making the Cutlers' Company a those who made articles with a cutting edge $;$ and one of the
classes to whom he proposes to open its doors is the engineering

classes to profession.

THE NORTH OF ENGLAND.
(From our own Correspondent)
The Cleveland Iron Market held at Middlesbrough on Tuesday tendency to firmness. The decision of the Scotch ironmasters they would not continue to act with their Clevelo in restricting their output, had naturally a depressing effect for a
time, and prices rapidly went down until, towards the end of last
weelk On Monday, was again reached for No. 3 g.m. l .
August wever, the Cleveland jronm August ware issued, showing a a nett decrease in stocks of 21,842
tons. This return was regarder tons. This return was regarded as extremely favourable by all
interested, especially in view of the accumulation which must have
occurred in the Stock occurred in the Stockton race week. A reaction therefore set in,
and prices recovered on Tuesday about half what they the previous week, No. 3 g.m. b may now be taken to be worth 44s., f.o.b. Middlesbrough, and forge iron 1s. less.
The ironmasters' returns show that at the end of the month there were 120 furnaces in blast, whereof 81 are making Cleveland taken off the latter product and put on to the former. The
output of Cleveland iron for the month was 147,818 tons, and of
other output of Cleveland iron for the month was 147,318 tons. and of
other kinds 76,949 tons, making a total of 224,767 tons, or 2526 less
than July. In makers' stores there was an increase of 567 tons,
the total quantity being 61, , 337
tons. The North-Eastern Railway net result is a diminution in stooks to the extent of 21,842 tons. The total quantity held at the end of the month was 309,494 tons, The agreement to restrict, entered on the 1st October, 1881 xpires on the 30th inst., and has been attended so far by a reduc Some incks to the extent of 124,927 ton
Some orders from the United states have been received, and two cargoes, amounting together to nearly 3000 tons, have recently These vessels will bring back flour, bacon, and other farm produce The manufactured iron trade is tending towards increased firm hess. Shipbuilders and other consumers have been entering int the market largely during last week, and the quantity contracted
for has been considerably in excess of what was rolled off. It was
jon just this time last year that a period of heavy buying commenced,
and the manufacturers believe that a similar period has now courred. Ship-plates are, however, still offered at $£ 615 \mathrm{~s}$. to $£ 1 /$ f.o.t. Middlesbrough, according to quantity and time of delivery.
Bars and angles are quoted at $£ 65 \mathrm{~s}$. to $£ 67 \mathrm{~s}$. 6 d ., less $2 \frac{1}{\mathrm{~d}}$ per The ironworkers connected with the manufactured iron trade have sent in a claim to the Board of Arbitration for $7 \frac{1}{\frac{1}{2}}$ per cent,
advance, to come into operation at the termination of
年 ward. It will be remembered that the employers gave notice of recuction, to commence at the same period, but have not yet fixed
the amount of their claim. The men base their application on the generally improved prospects of trade, and becausp the returnn for
the second quarter of the year, published by Mr. Waterhouse, the ccountant, showed, it is said, higher prices than those upon which his notice is really a piece of trd. It is believed, however, that already decided that the question shall be arbitrated, so far as they can influence the disposal of it, and they no doubt think that the ikely they will be to avoid a heary reduction. It is, however, no at ail certain that the employers wil agree to arbitrate at all, inas-
much as the recent award was repudiated by the men, and was A meeting of the standing committee of the Board of Arbitratio was held at Darington last week, to consider the claim from puddlers at three works for 6d. per ton extra for every half pig of
hematite used for making better class puddled bar. Mr. David ll it, had bee subject to rather severe blasts of late, that it had, nevertheless,
leep roots, and he hoped would have a stronger hold in future han in the past. Evidence was taken on both sides, the me declaring that puddling hematite was much more difficult tha The employers brought evidence that this was not the case, and pointed out the fact that in Cumberland six heats of pure hematito omplimented both sides on the courtesy with which they ha advanced their claims, and reserved his decision,
The ironworkers in the North of England are
estimonial to Mr. Trow, their general secretary, for the vealuable services he has rendered them for many years. They have
appointed a committee to carry out this object. Mr. Trow richly eserves the compliment likely to be paid him. He is an able intelligent man; while he is a most effective advocate for th forward and honest to a degree which many others might imitate It it io to be regretteded that Mr. Dunn, the able secretary of the
Cleveland Miners' Union, has resigned his post. It has not bee Cleveland Miners Union, has resigned his post. It has not been as all the yood qualities which also mark Mr. Trow, it is to b feare constituents who have not yet attained to the same moral level.

NOTES FROM SCOTLAND. (From our oun Correspondent.)

THE breakdown in the agreement between the Scotch and Cleveland ironmasters, for the restriction of the output of pig iro some derangement in the market. When the proposal for a renewa feeling compact was first talked of, about four weeks ago, the subsequently grew up a strong belief in its continuance, but ther ailure of the ironmasters to agree came umon the trade as surprise. Messre. William Baird and Co. are said to have been in the end the chief objectors to another term of restriction; and the proportion of furnaces owned by them is so great that without
their concurrence it really would have been of little use for the months has produced good effects no one will deny ; but now tha the makers' stocks have beeni greatly reduced, it is natural, when the demand for pig iron is so good at home and abroad, that the
ironmasters should be desirous of enjoying full liberty in the matter of production. In the meantime the values of warrant taken place in the market within the past few days.
Business was done in the warrant market on Friday morning a
 to 49s. 6d. one month. On Monday forenoon business took plac the transactions in the afternoon being at 49s. 10.1d. to 50 s cosh and $50 \mathrm{~s} . \frac{1}{3} \mathrm{~d}$. to 50 s . $2 \frac{1}{5} \mathrm{~d}$. one month. On Tuesday forenon busi-
ness was done up to 5 s . 3 d . cash, and in the afternoon the quota
ions were 50 s . 3d. to 50 s . d . cash, and 50 s . $5 \frac{1}{2} \mathrm{~d}$. to 50 s . 3d. on tions were 50 s .3 d . to 50 s . 1 d . cash, and 50 s . $5 \frac{1}{2} \mathrm{~d}$. to 50 s . 3 d . one
month. Yesterday business was done from 5 s . to 50 s . $3 \frac{1}{\mathrm{~d} . ~ c a s h, ~}$
50 s . 6 d . to 50 s . 4 d . one month. To-day business done at 50 s . 2 d . to 49 s . 11 d . cash, or 50 s . 4 d . to 50 s . 2d. one month. Market firm The prices of makers' iron are a shade easier, in sympathy with
warrants, as follow :-Gartsherrie, f.o. b. at Glasgow, per ton,
 land, Quarter, and Govan, each 51s. 6d. and 50s.; Shotts, at
Leith, 63s. and 55s. 6d.; Carron, at Grangemouth, 5s. -specially garnock, at Ardrossan, 55 s. and, 51 s. . 6 d .; Eglinton, 52 s .6 d . and The past week's arrivals of and 51 s .
of la
manufactured continuance of activity in nearly every branch of the In the course of the week the coal trade appears to have been
airly active, and a good trade is still anticipated. At Glasgow shipments are somewhat retarded by repairs that are being made Frith of Forth the mhineral termingus. On the south in coals is brisk, and a slightly better tone has prevailed in Fifeshire. The coalmasters of that the the adjoining county of Clackmannan hold out no prospect to not admit of it,
During the past month 26 vessels, with an aggregate tonnage of
36,980 , were launched from the Clyde shipbuilding yards, as compared with 21 vessels, of 32,730 tons, in the correspond-
ing month of 1881 In the eight months there were 166
vessels and 233,773 tons put into the water, against 153 vessel vessels and 233,773 tons put into the water, against 1
and 214,990 tons in the corresponding period of last year.

WALES \& ADJOINING COUNTIES. (From our oven Correspondent.) THE week started badly, and a general strike Coedcae Colliery, one of the most important sinkings in the Rhondda Valley, seemed to
presage the advent of bad times again; fortupresage the advent of bad times again; fortu-
nately prospects are better, and an amicable nately prospects are better, and an amicaboe
settlement has been brought about in both sinstances. As to Landore steel works, it would appear that the hammermen have been paid at the rate of $£ 5$. 10 s . per week, and the metalmen
$£ 3$ 10s., the class of steel by the Siemens $£ 310$ s., the class of steel by the Siemens
process of these works being of first excellence, process of these works being of first excelience, and requiring extreme care and ability. These
wages the owners sought to reduce, in order to
enable them to compete more sucessfully for enable them to compete more successfully for
trade; and though for a time this was refused and trade; and though for a time this was refused and
counter propositions submitted, eventually the counter propositions submitted, eventually the
hammermen at the new works returned at a compromise ; and though at the new works there is a partial standstill, it is expected to be prolonged only a few days. Then at Coedcae
again, where a thousand men are employed, the men came out, maintaining that they ought to be would give them 4d. per week more than they now get, and hauliers 3 d. per month! It is scarcely
conceivable that a large number of middle aged and old men would resort to a stand-out on such paltry pretences, and possibly they would not hav
done so but for the hauliers, who were the lead ing spirits in the strife. On Wednesday the men arranged to resume work on the understanding with Mr. W. T. Lewis that they would work oin until the end of the month, which would give time for the arrangement of the dispute. Thave
since heard that the origin of the dispute was through some mathematically-gifted collier discovering that the decimals of the Cymmer rate were not taken into consideration. What may
not be expected when the next gencration of not be expected when the next gencration or scholl coal is alvancing in price and wettin scarcer. One firm has discontinued supplying it Doubtless the activity in the patent fuel trade has something to do with this.
The tin-plate trade in the Llanelly district is rather slack; elsewhere work is tolerably good,
and market quotations are maintained

THE PATENT JOURNAL

Condensed from the Jourralal of the Commissioners of
$\stackrel{y}{*}_{* *}^{*}$ It has come to our notice that some applicants of the have caused mush unnecessary trouble anciannoyances
both to themselves and to the Patent. ofice ofticiols, by

 Index and giving the numbers there found, wewich only
refer to the pages,
tnding place of the thring to those puguges and

Applications for Letters Patent.

 $* *$ When patents have been "communicated" thename and address of the communicating party are
printed in italics. printed in italics. ith August, 1882.
4112. Batris, W., Morgan-Brown.-(W. W. Rosenteld,
Nevo York., U.S.)
 4114. Avox, Nend Yo Nirpres for Wire Ropr,
and B. G. Nichot, Newcastle-on-Tyne,

MoAllum, New

 4117. Machinn for Washing Laws-tennis Balle, a. S. Openshaw, Birmingham.4118. Cosstrucrivg Casks, dec., S. T. Thomas, Wol4119. PRoperluiva Shirs, tc., G. F. Harrington, Isle
 ${ }^{\text {R }}$ Raphael, Balnamore, Ireland. 4. J Jstriviras for Beyrurs, A. Boult.- (A. Hage
 4123. Filtrrs, M. Richards, Stafford.
 4126. Speed-acoblerating Dhiving Mechanism, w.

 S. H. Stephens, Cornwall.
4119. BAKERS
OvENs, H. J. Haddan.-(C. M. Valfort

30th August, 1882.

4134. Spranirgo Frames for Sprwirga, JUte, dce., S.J. V
Day.-(J. Mobertson, Samnugri, calcutta,

 Hive Cinm
Lis.
London.
Lis. 155. Appranuvs for the Evaporation of Lieulids,
dCo., Baron Podevils

 4158. APparatus for Mesuliva, \&c., Electric Cur-
REMs, A. L. Lineff, Londons,
4135.

4160. TELELEPHonio Instrumexts, J. Husbands, London.

1st September, 1882.

 4168. CABbor for rusk in ARc, dec., ELectric Lasprs,
H. J. Marshall, Linslade.
 den, Bradford.
4172. FRastes of Bags, \&ce., v. Huppe, Germany. 1 (B. Lavarenne, Paris.) Lit5. Skevining Heans of Brooms to Handles, w. J.

 and T. J. Jones, London.
4779. VEntLIATors for Rallway Carriages, \&c., r. H.

 sent, Tynemouth.

2nd September, 1882.
183. Ralway Vehicizs, W, L. Wise, -(E. Rïber

 London.
4187 Breg-Loading Smald-arms, E. James, Bir4188. AbpaRatus for Preparing Wool, \&co., I. Bailey, 4189. STrair Exainss, A. W. Pattic and G. W. Robertson, Glasgow,
41100. APpRRATUs
of Cor
 Paris.)
4192n Electro-hydraulio Meter, dec., R. Hammond
 (194. Kovering Contests of Rallway Truors, dc., H
 4196. APpARATUus for Recording Votrs, J. Lazenby,
 4998. GaLVANIC Batreries, E.
and W. T. Scott, Strattord.

4th September, 1882.
4199. Construutisa Hopper, \&c., Drkdgers, W. R Kinipple, London. 4200 Havclusf for Bcyels, \&c., G. S. Kelsey, Birmingham.
4201. Apmatitus for Carbonising Air, \&e., H. Defty,
Iondon London. 420 AxLe-blocks for Carriages, R. Palmer, Man-
chester chasester.
420. Dring Waste
stone, London.

 H. J. Bennett, London
Hor AviLs, de., R. Evans and
4209. STARBH and Foon

Inventions Protected for Six. Months on
Deposit of Complete Specifications. 4094. MANVFACTURE of STRARCH from MAIZE, \&c.
W. . Uhee. Southampton-buildings. TIondon.
communication from W. T. Jebb, Buffalo, U.S.communication fr.
206th Aufust, 1882 .
4055. UMBRELLA.

 4141. Recirrocativa Pissons for Fluid-pressurg
Exgins, H. J. Haddan, Kensington. -A communi Exgives, H. J. Haddan, Kensington. -A communi-
cation from M. . . Schilt, Cologne, Germany. -30 th
and
 Munich.-318t August, 1882.
Patents on which the stamp Duty of 3549. Pbranamer Way, de, of Railways, F. W. Webb Crewe. -4th September, 1879. .
 3476. Microphonto Apparatus, w. P. Thompson,

 Patents on which the Stamp Duty of 3090. Malleable Cast fros, J. Tenwick, Grantham $-3 r d$ September, 1875.
3109. Twise or Cord,
A. Waithman, Prestwich. $-4 t h$ September, 1875. Foldisg PAPER, \&c., W. Conquest
3105. CuTriva and

Notices of Intention to Proceed with Last day for flling opposition 22nd September, 1882.

 April, 1882.
2022. INombiens for Preparing Woven Fabrics, de

 July, 1882. .
 London.-A communicitaion from C. Grataloup and
J. B. Leymarie. 26 .
August, 1882 .
Last day for fling opposition, 26 th September, 1882.

 Grimsby-1st May, 1882.
 for Weraving, J. Aspinall, Ravensthorpe.-2nd May,
1882. Mechinical Skpapatiov of London. Com. from L. do soulages. . 2 n. . May Mad 1882 .

 May. 1882.
2097. PRoput
Brighton. $-4 t h$ May, 1882 .

May, 1882,
2230. INININ
May, 1882 . 2234. Life.preserving Bed, A. M. Clark, London.-A
communication from M. H. Holmes and $\mathrm{J} . \mathrm{R}$.

 from E. Bourdon. ${ }^{13 t h}$ June, 1882 . 23rr June, 1882 ,
3230, W. W. T. Shaw, Surbiton, and W.
 3425. BALL VALVESS H. A. Cuther, Upton.-19th July,
1882.
3509. Drawing Rolukrs for Spinsing Machines, A. J. 3509. Ditawing Rollers for Spinsing Machings, A. J.
Boult, London. A A communication from C. Jenatzy-
Leil

Patents Sealed.

List of Letters Patent which pased d the Great Seal on the

 114. VALVEs, ,č,. A. W. Harrison, Abergavenny.1155. Percouthing Corfer Juas, E. Jones, Birming
ham. 10 .h Narch 1882 .
 1163. Electric Lithitina AppARATUS, W. R. Lake, London.- 10 th March, 1882.
1164. Protecting the INTBBIor of Graves, J. Walters, Kingston, Devon.-10th March, 1882 .
1167. Puriplyse GAs, G. C. Trewby, Beckton.- 10 th

 1192. Apparatus for Folding, Tueking, do., w. R
 1195. Eliectric Circuits, do., W. P. Thompson, Lon 1198. FounTMAIN PENs, W. E. Kay, Farnworth.-11th
 1202. STBAM Boiskrs, H. J. Haddan, Kensington.122. Manverucrukise GAs, \&c., A. w. L. Reddie,
London. $13 t h$ March, 1882 .
 March, 1882.
1220. MANUACTURING ChLorine, C. Wigg, Liverpool

 1282. Brebeh-Loading Fire-Arnis, L. Gye, London.

 1402. TUBULAR BoLLers, J. Imray, London,- $-23 r$ rd
 1579. Locks and Latches, D. Summerfield, Aston,
 1696. Fishing Barr, do.., M. Carswell, Glasgow.-8t A31. Hows, ADzes, and Martocks, R. P. Yates, Bir 2280. Bomitu-rinulva Machives, c. M. Sombart,
 2499. Driluing or Boning M Merais, A. Higginson,
Liverpool. $-26 t h$ May, 1882 .
 2641. TeLerphonic Comausicators, A. W. Rose, Lon 2744. BuNNINO PYYRTEs, E. Bramwell, st. Helens.
$12 t h$ June, 1882 . 296. Law ${ }^{12 t h}$ June, TENENIS APPARATUS, W. Brookes, Man

 (List of Letters Patent which passed the Great seal on
the 29th August, 1882.) 1093. Marking Oun Lawn Tensis Courrs, \&ec., R. W.
Ralph and W. Underrinl, Newport. W7th March, 8882.
Noll Ralph and W. Udderhill, Newport.- Tith March, 1 , idon 109s. Workrith Vrion and G. Wethered, Maidenhead. - Tth March, 1882 .
1104. LLsistive Boors and SHoEs, W. R. Lake, Londion - 1109 . Fixvivc shaskris of Zirc on Roors, \&c., T. W.

 1123. MASUFAOTURRNG PAPRR, षC., J. H. Annandale
 Brussels.-8th March, 1882. 1133 . Bortis SToprers, A. Clark, London. - 8th March 153. SUBstruve for Gutta-prrcha for Insulatiso,
M. Zingler, London, -Oth March, 1882.

 Walthamstow,- -11 th March, 1882 ,
184t, TRATING RICE,
G. P. W. Witt, London. -11 th 1223. MALLTING, \&..., A. Perry, Roserea. -14 th March,
 291. Frutt-flavourbd Alcoholio Beverages, H. A

 Justice, London.-17th March, 1882. . D. Wall.- 21 st
 1427. VARtable Expansion Gear, T. English, Hawley.

2250. CASKs or Barkels, S. Wright, Liverpool.-12th
May, 1882.
 2375. AIR PUMPRs, ©. H. Gimingham, Neweastle-upon-

 London--3rd June, 1882.
8th June, 1882.
2984. Marine Engines, G. Rodger, Barrow-in-Furness. 3062. DETACHABLE GAS LAMPs, W. R. Wynne, London. 3183. Preparing Co

London.-5th July, 1882 . 18 . Spinning, A. M. Clark,
3187. Regutating the Suppit of 3187. Requlating theSopply of Air to Furnaces, \&c.,
R. H. Brandon, Paris.-6th July, 1882 .
3283. Cuton,-11th July, 1882 .
3315. Coativg Wire with Metal, W. R. Lake, London.
$-12 t h$ July, 1882 . -1 2th July, 1882 .
3319. Treating Hides or Skins, W. R. Lake, London.
-12 th July, 1882 . 12th July, 1882 .
343. MEDICAL BATTERIES, W. R. Warren, London.-
20th July, 1882 . List of Speciffcations published during the
week ending September 2nd, 1882 .

${ }^{*}$ * Specifications will be forwarded by post from postage. sums exceeding 1s. must be remritted by
Post-office order, made payable at the Post-ofice, 5 , High Holborn, to Mr. H. Reader Lack, her Majesty's
Patent-otfice, Southampton-buildings, Chancery-lane,
London.

ABSTRAOTS OF SPEOIFIOATIONS.

 Fepared by ourrelvese expressly for THE ExiNERR at theofice of Her Majesty 3 Commissioners of Patents.
 Thional protetction not allowed.). 2d. 1 . 1 dess cord, rope,
 the shaft to be driven.
5688. Impro vements in Cymaphens or Apparatus
for Transmiting Sound by Electricity For Transmiting Sound by Electricity, C. F.
Varley, Bexley Heath, and F. H. Varley, Mildmay-
grove, Middlesex.-27th December, 1881. 10 . Grove, Middlesex. - 27 tht December, 1881. 10d.
The figure shows one method of carrying out this
invention. The style E projects through a carbon invention. The style E projects through a carbon
rod. On the end of E there is an adjusting nut for
regulating the pressure spring B, which is made to regulating the pressure spring B , which is made to
press the carbon rod against the contact pieces press the carbon rod against the contact pieces
C C1 To the carbon rod an iron armature
F is attached. Near F the poles N and S of an F is attached. Near F the poles N and S of an
adjustable magnet are placed. These attract F and
counteract spring B. Now, if the magnet is powerful counteract spring B . Now, if the magnet is powerful
enough, it will overome B and open the circuit
between C and C . If the space between F and the poles
[578]

N and S be increased the magnetic force is weakened,
and spring B forces the carbon rod into contact with C and C1. Thus, by regulating the resistance or produced, and the most sensitive condition for transmitting sound by means of electric waves obtained.
Many other methods of carrying out this invention are also described and illustrated.
5722. Preventing or Lessening the Effects of
Explosions in Coal Mines, J. S. McDougall, Man-
 chloride of magnesia or other suitable deliquescen
salts which possess the property of absorbing moisture from the atmosshere and of extinguishing flame or other combustion. The salts are used either dry or
dissolved in water, and are scattered over the dust or upon the exposed, surfaces of the coal mines.
17. Increasing the Heating Effect of Fuel and
Diminishing the Production of Smoke in FurNacks, G. D. Peters, London.-2nd January, 1882 .
$8 d$.
This consists in the use of an injector to admit into out atmospheric air, so as to insure the more perfect
combustion of the fuel. 198. Lmprovements in Electric Block Signals and
Electric Locking Apparatus for Levers WorkING SEMAPhores And Points on Rallways, dce,
J. Radeliffe, Retford, Notts. 13 th January, 1882 .
The object of the invention is to prevent the signal-

man from lowering his signal until he has received
"line clear." The signal lever is locked by means of
a vertical bar suspended from its upper end over a

 mhan ourrent paseses the the olectro-magnnet attriacts it

 cheap, and officieqt sounding apparatuss According to

 being closed and small openings left betweon the compar the measuring chamber is closed, and openings left into the receiving compartment. A gauge glass communicates at each end with the measuring com partment. According to the Second part of two
invention the sounding apparatus consists of two
tubes connected by a flexible joint, one end of the tubes connected by a flexibpe joint, one end of the
tube being left open and the other end closed. tube be
271. Purivying Grain, \&c., H. J. Haddan, London.
19th January, 1882. . A communication from P.
Lefebvre and J. Nagel, Brussels.) $6 d$. Lefebvre and J. Nagel, Brussels.). 6 d.
This relates to apparatus for purifying grain and
other cereals from stones, sand, dust, straw, and other impurities, by means of air currents drawn in by a
revolving ventilator. 297. Improvements in Gaivanic Batteries, \&c., J,
and A. J. Higgin, Manchester.- 20 th January, This invention includes the substitution of tin for the zinc elements in batteries, and a simple means
whereby the tin is recovered in a form suitable for certain chemical manufactures. Inside a stoneware
jar a hollow cylinder of tin is placed. Inside this cylinder is placed a porous cell. In the outer cell
dilute sulphuric acid is placed, and in the porous cell carbon rod surrounded by pyrolusite or native peroxide of manganese broken small. When in action the manganese, which remain in solution. The tin is
subsequently separated by adding to the saturated subsequently separated by adding to the saturated
solution sufficient peroxide of manganese in fine powder to causent the protosulphate of tin to become per
sulphate. The liquid is then diluted largely with water, when a precipitation of stannic acid or oxid takes place. This is subsequently washed, thrown on
a filter, drained to a paste, and is then ready for
further treatment for chemical purposes. 305. Improvements in Electrio Lamps, J. N. Aron son, London.-21st January, 1882 . 6d.
This relates to the construction of the elobes of
incandescent lamps with reflectors formed of the same material as the globe itself, the reflective surface means. Improvements in Regulating :Electric
339.
Lamps, \&c., E. de Pass, London AMPs, \&c., E. de Pass, London..-23rd January,
882.-(A communication from B. Abdank, com monly (alled Abukanowicic, Paris.). $6 d$.
The principle of the invention is the introduction The principle of the invention is the introduction of circuit of the lamp, which measures the resistance of
the arc. The figure illustrates, in section, one form of his balance. A and B are two movable solenoids, one
in the main circuit, the other in a shunt. Through these passes a core CD, having non-magnetic exten-
sions C E and DF , which slide rreely in bearings GH .
The main current The main current passes from terminal I of the
machine M by Q, coil A, and Q^{1} to the lower carbon of mamp. The derived current is taken from Q1 through
terminal N; it then traverses resistances R-only a
portion of which are shown-in the box, enters a

movable indicator Z-travelling over a graduated enters shunt solenoid B , and out through wire k into t rod $i i$ held by a weak spring, and terminal S . By be measured. Suppose that on the introduction of
such resistances CD approaches solenoid B; if then by means of Z, additional resistances $P R$ be inserted
in the circuit of B the attraction of A will become greater than B , and $\mathrm{CD} D$ be attracted that way, so that Moreover, A and B are movable on a slide, and their position with regard to CD changes their attractive
force upon this core. This reciprocal motion, indicated on the graduated scale of the slide, in com-
bination with a short travel of CD, also allows the resistance introduced into the main circuit to be
measured.
346. Improvemenvis in Electric Lamps, \&c., R. B.
B. Crompton, London. $24 t h$ January, 1882. 8 .
This relates to improvements in arc lamps. The This relates to improvements in arc lamps. The
action of the lamp will be understood by reference
to the figure, and the following explanation. When no to the figure, and the following explanation. When no
current is passing the gearing frame B B rests within the main frame in its lowest position, the rack rod AA
being free to descend through it until stopped by its
carbon resting on the lower carbon. When the current carbon resting on the lower carbon. When the current
enters the lamp it passes through the helix of the
main magnet G, lifts the frame B B, and with it the rod A A through its proper stroke, thus parting the
carbons and establishing the arc. When thus lifted carbons and establishing the arc. When thus lifted
the frame B B brings the soft iron ond E1 of the brake
E within the attractive influence of the fine wire feed magnets C C. So long as the difference of
potential at the two sides of the arc remains normal,
the current through C C is only sufficient to give it potential at the cwo sides of the are remains normal
through C is only sufticient to give it
attractive power to balance the opposing regulating
spring F which presses the brake Ep on brake wheel C^{3} spring F which presses the brake E on brake wheel C^{3}.
When the difference of potential exceeds that for
which the regulating spring is regulated, the feed magnets overcome the spring, ilit the brake off the
brake-wheel, and allow the rack rod A to descend brake-wheel, and allow the rack rod A A to descend
until the difference of potential is again normal. An
improvement consists in the provision of a long fine
wire of high resistance, in connection with, say, the
positive terminal of the lamp and earth, the object
being to provide a leakage wire for the static charge

which is acquired by the lamp. Another improve
ment consists in an arrangement for cutting the lamp 352. Curtiva
352. Cutring Cheese, W. Chisholm, Havick, N.B.-
24th January, 1882. 6d. This consists essentially in fitting a wire in connection with revolving wheels fixed on a frame, and cut-
ting the cheese by winding up the wire on the
358. Improvements in Sounding Apparatus, C. A.
McEvoy, Adelphi, London.-24th January, 1882 . (Not proceedede voith.) 22 .
hrough a sounding apparatur completing the circuit when a lead or sinker attached to a a sounding boat,
hine, made contact with the bottom.
359. Improvements in and Connected with Elec-
tric Lamps J. N. Aronson, London.-24th Janu-
ary, 1882.8 d .
This relates to incandescent lamps, and has for its object the combining of several carbons, either in one
lobe or several clusters of carbons in glass tubes in ne large globe, so that on the failure of one, another
can be substituted for it, and put in circuit either automatically or by hand. One arrangement, when several carbons are used, is to enclose each terminal or connecting wire in a glass tube fused around it,
and then to arrange the tubes in a group and fuse
them into a mass, which may be fixed in the globe by them into a mass, which may be fixed in the globe by
fusion, or like a stopper. The ends of the wires are with contact pieces in conne The socket is provided wires; these may be either sliding or stationary, and
the inventor brings these into contact with the the inventor brings these into contact with the
terminals of one of the carbons at a time, either by hand or by an automatic arrangement in connection with an electro-magnet and armature, so that on
failure of a carbon a fresh one may take its place. 363. Converting Reciprocating into Rotar
Motion, A. M. Clark, London. $-24 t h$ Januany Motion, A. M. Clark, London.-24th January,
The object is to overcome the dead centres of the
usual crank mechanism without loss of motion and uswer, and consists in the use of a shifting crank pin
poided to move in a path excentric to the crank axis.
guis 382. Withering and Drying Tea J. H Joinson, London.-25th Jan Jary. 1882.-(A communication
from J. C. Allen, Bengal.) $6 d$. The object is to effect the drying of tea, and at the
me time and by same fires to raise steam for worksame time and by same fires to raise steam or work-
ing the machinery for the other processes, such as
rolling, and it further relates to improvements on rolling, and it further relates to improvements on
patent No. 4254, A.D. 1877 . The furnace of a steam
boiler is utilised to heat air to be supplied to the the tea is caused to which a drum of trays containing 386. Improvements in the Construction of Cores
for Cables, dic., W. T. Henley, Plaistov. $-26 t h$ January, 1882. $6 d$.
This relates to the construction of a core with
nultiple conductors, which may be used for a number of circuits or a few, a switch connecting all the conductors in one or in separate circuits, from two
upwards, according to the direction in which it is upwards, according to the direction in which it
turned. The conductors of the core are first insulated separately and then all inclosed in another cotat of insulation, being next served. with yarn and protected
with wires in the usual way. The improvement con-
sists in surrounding the core with strong manilla or sists in surrounding the core with strong manilla or
Russian hemp laid up into closely spun yarns, which are laid round the core in long spirals and then served
With galvanised steel wires of small size; the cable is
then covered with tape or yarn and compound as then cover
usual.
389. Magazine for Fire-arns, W. R. Lake, London
-26th January, 1882.-(A communication from W. Trabue, Louisville, U.S.) $6 d$
This consists, First, in an inclined guide formed on
the trigger guard for elevating the rear end of the cartridge as it leaves the magazine, in connection with a stop notch on the inside of the receiver or frame of the gun at the top, against which notch the cartridge
strikes, and also in a connection with a finger on the bottom and front of the bolt, which finger passes under
and elevates the bullet end of the cartridge into and elevates the bullet end of the cartridge int
alignment with the bore of the gun when the bolt is
forced forward. Secondly, in a hammer provided with forced forward; Secondly, in a hammer provided with and the premature discharge of the cartridge, on the
bottom of which blade, near its forward end, a note is formed, which in connection with a similar notch formed on the sear prevents the accidental withdrawal
of the breech from the receiver or frame; Thirdly, in a swinging extractor hook pivotted to the bolt head
diametrically opposite to its bite on the rim of the cartridge, and provided with a projection that strikes
against the receiver when the bolt is withdrawn, in connection with a cam cut on the bolt head; and
Fourthly, in a thumb screw acting against the bolt 391. Sing the breech.
391. Stylographic Fountain Pens, W. P. Thompson,
Liverpool-26th January, 1882.- (A communication trom G. W. Carleton, B. Coffin, jun., and A. S.
French, New Yore.) \&d. This relates to the general construction of such
pens, the specification having twenty-five claims. 393. Cutiery, \&c., H. M. Marsden, Sheffield. - 26 th This consists, First, in constructing the blade of the knife of two qualities or tempers of steel
Secondly, in forming a knife with a hollow handle in one piece
are described.
397. Gas Engines, c. Emmet, Leeds.-26th January,
1882. 10d. The improvements may be applied either to hori-
zontal or vertical gas engines; the drawing is a plan
howing the application
pump Q is attached to cylinder and serves as a gas
pump, worked by excentric on the crank shaft, and
capabie of being disconnected and worked by hand to camp, worked of excentric on the crank shaft, and
start the enging disconnected and worked by hand to
The quantity of gas pumped can be varied by causing the pump plunger to approach nearer to or further from the end of the pump. A
receiver W for the gas has an overflow vale which
allows excess of gas to pass back into the pump, and
this receiver communicates with a chamber formed in
the rear of the cylinder, and from which the gas

passes into the cylinder through a perforated plate so
as to divide it into jets which mingle with the air
in in cylinder. A rotary hollow plug-shaped lighting
valve B is applied to the air valve-box, and is driven by suitale gearing from crank shatt, and as it
revolves receives a supply of gas which is ignited by a fixed atmospheric burner
398. Sugar, C. Scheibler, Berlin.-26th January, 1882 This.
Telates to improvements on the fifth claim o
patent No patent No. 331, A.D. 1881, consisting in the application
of saccharate of strontium for the separation of beet juice or other saccharine juices. The separation of the "non-sugary" portions contained in the beet or othe
saccharine juices is effected by the application of

399. Ornamenting Vitreous or Sem-vitreous, Sur
Faces, W. Slater, Stoke and E. C. Hancock, WorThe object is to produce an appearance of etching
or " matting" on such surfaces without the use o arid, and it tonsists in the use of fine siliceous, cal
careous, or other like non-vitrifiablematters to sue surfaces, so that when subsequently fired the pattern incised, "matted," or deadened effect
405. Dredaring, C. J. Ball, London.-26th January, This relates to improvements on patent No. 987
A.D. 1878 , consisting in the use of a peculiarly-formed A.D. 18 . T, consisting in the use of a peculiarly-formed
pump. The pumps, which are of the centrifugal kind, are placed above the level of the water, and the
neeessity of a foot valve, or even of filling the pump before starting, is avoided by lowering the suc
tion pipe into the water, and placing an obturat on the end of the delivery pipe. The pump is then placed in commumication with an ejector, whereby pipe into the pump, so that on starting the machin the pump also starts. But to avoid having to repea this operation each time the pump is stopped
previous to restarting, the pump is caused to delive downward, and the piping then brousht through half circle to the required direction for delivery, care being taken that the fall and rise of the pipe is
somewhat more than the height of the suction above
water level. Other improment water level. Other improvements are described.
410. Separating Oil or Tar from Blast Fur
1882.- (Not proceeded with.) 2 d . taining a number of diaphragms, dises, or screens kept constantly wetted with water. These discs are per-
forated gases must pass through such perforations. 418. Lathes, J. Dewrance, Surrey.-27th January, In lathes which are required to repeat time after
time the same work, and in which several tools of different form are used, a square block H is used wit the tools clamped to its sides, and having a circula
foot to fit a hole in the slide G, while a hole is formed

in such foot to receive the stem of the traversing nut
upon the hand screw E of the upper guide. The upon the hand screw ound upon the upper slide so as
block can be turned round
to bring any locked by a pin or bolt. Forking screw cutting a slidin also turn in bearings. A sleeve L can be clipped to aliso bar, and carries a hand lever M free to turn
this bereon. The tool is secured in the socket X . At the
the thereon. The tool is secured in the socket X. At the
end of bar K is a finger which bears against the end of bar K is a finger which bears against the
pattern screw, revolved by gearing from the lathe
spindle. spindle.
424.
424. Preventing Waste of Water from Lavatories
1882. - (Not proceeded with.) $2 d$.
The object is to dispense with overfow pipes and
oid waste and injury caused by taps being left on, and it consists in the use of a three-way tap connected and it consists in the use of a three-way aip leading to
to the water supply pipe, and also to a pipe
a receiver containing as much water as is needed to fill the bowl or bath. When the tap is turned of
the water passes from the supply pipe and fills the

 Tils

 441.

 This relates to tmprovementson ontionts No. 3555 ,

 $\frac{\text { munication from R. P. C. Sanderson, Neev York.) }}{6.1}$ This consists of a vessel open at one or both ends
and provided with hinged arms extending from the vessel to the site of the ships, oxte as to forma joint
between them, canvas being then spread outside the arms to complete the joint. 454. Metaluio Brushes, G This consiststs in banarking 1882 . $4 d$. This consists in backing the wires of metallic hair
brushes with sheet metal or other suitable electrical conductor, and providing attachment for a wire, cord,
or conductor, so that the wires of the brush may form or conductor, so that the wires of the
part of an electric or galvanic circuit

 disc F is driven independently at a slower epeed, so that the material delivered to the space between the
two discs is kept constantly in motion. C are the

crushing rollers mounted on one end of levers H
fulerumed in the disc D and oonnected to a apring a
the the other end, the tension of which is adjustable, and
whith forces the rollers G against the inner surface of Which fo
disc F .

 free from manganese or phosphor in moulds, decar
bonising them afterwards so as to convert them int
 or coating by piekling the surface in a mixture oo ng of oxide of irom
458. CosL-empin
458. Coax--ETTING Machivery, M. and C Burneth, The drawing hows the machine as dotiven by hand
power, but it may also be driven by a suitable motor.

 with intermediate wheel E diven by pimion F which
is actuated by handle G. The wheels E and F are

mounted on radial arm H free to move on a circular projection cast with the lower or fixed half of nutc
so that it can be placed at any angle. The cutter head
o A is attached to cylinder L, perforated as shown and
supported at the end by standard 0, being guided in its rotation by rond ers P standard Mear oring guided in
cool to the surfice are descrived
 This relates t to means for preventing acidents to
perambulators, ©ce, by causing a brake to be applie perawe wheols, as soon as the handle is released, so that
to they will be preve the
the 461. Railway SIGNaLliNg Apparatus, Co Barker
Thetford, Norfolk. - -3oth January, 1882.- (Not pro lever on the train is actuated by projections on
line woil gong or whistle to be sounded

This. relates, First, to a tool to clear the tubes of
boilers of any deposits, and consists of a at one end a straight, cotter or scraper ser seaceded excen.
trically on the rod, the other end of which is screw. threaas tightened up by means of nuts when , so cutter is in position. A cone is mounted excentricall on one end of the rod which it supports. The tub
stopper consists of a a pair of semicircular flaps con
necter nected by a double joint to a rod and arranged soo as
to fall against the latter when being inserted int
the the tube, and fall outwards when through, so as t
present a dise which, when the rod is drawn back closes the end of the tube.

This onsists of drums provided with paddles at the suitable manner, and fitted with ining propeliled
enable the the machin
 This relates to means for throwing the driving
wheels in or out of gear.
 This relates to the une of a ruller clothed with
rubber, which, while the window is being raised, is
 on the sash and prevents the decout of of ho window,
whinh, howerer, may be effected by exerting a slight
wdit window sasi
469. Bollers asd Furvaces for Heativg Greew-
Houses, de., J. Parkinson, Eaton.-31st January, The boiler is made with a shallow water space al water space at the back. The crown of the furnace is
an arched water shhif conneceted to the front and side
water space, but stopping short of the to an arched water shelf connected to the front and side
weater space, uut topping sort of the bock, so as
loeve communication from the furnace to the the fre space
above. Betwen the crown of furnace and top of
boiler are threo other arched water shelves, the centre one connected to the front water space and stopping
short of the back, whilst the other two are connected to the back water space and stop short of thenhected front.
The gases are thus caused to pass in a serpentine form The gases are thus caused
betwen the water shelves.
 from L. Allen, Nen York.) bd.
This relates to machines in which gas is compressed and its temperature being reduced, is then expanded
and used for cooling or refrigerating purposes. The and used for cooling or refrigerating purposes. The
compressor B, driven by team engine take its
air from the surface cooler E; the cooler C Cakes its

ir from compressor B , the air ongine D takes its air from cooler C, and the surface cooler E Receives the
air from air engine $\mathrm{D} ;$ I is an auxiliary air pump leakage. The whole ofross a closed cyclece in which the
air is compressed above and expanded again to a air is compressed arove and expponded again to a
minimum limit of pressure materially higher than the ninimum limit of pressure $\begin{aligned} & \text { nermal atmospheric pressure. } \\ & \text { nor }\end{aligned}$
 January, $1882 .-$ (Not proceeded prith.) $2 d$.
On a pin fixed to the inner portion of the hack lieces
lerminating in a move, and each carries a metal rod
At the bottom of the case spring clips are arranged, so that as the rods are
pressed into position they engage on one side in a groove and on the other are pressed against a vertical kind of spring.
475. Rekricerators, A. Samuel, London.- 81st Janu-
ary, $1882 .-(A$ communnacation from . M. J. Lisons Montreal.)-(Not proceeded with.) $2 d$. . leave intermediate air spacess, and within it is a tray 477. Springs, H.

January, 1882 . - (A communuication from W. Barnes, Washington, U.S.) $6 d$.
The object is to produce a coiled spring, the band of
which gradually increases in thickness from its inner whits outer end, and consists in the combination with rolls, one of which is arranged to recede from the
other by the gradual withdrawal of screws, of a train of gearing adapted to actuate the screws.
480. Braces, \&c., L. A. Groth, London.- 31 .

January, 1882. . (A communnication, from C. Vorberg,
Cologne.) (Not troceded oith.) 2d.
his relates to an apparatus which may be used This relates to an apparatus which may be used
either as a bandage for wounds or to prevent the loss
of blood, or as braces or suspenders or waist belts. of blood, or as braces or suspenders or waist belts.
481. CRINOLETTEs, B. Baker, Oxford-street.- 31 st
January, $1882 .-$ (Not proceeded voith.) This relates to the use of a "crinolette", or "dress
improver," consisting of a skirt formed with pockets, which can be inflated with air through suitable mouth-
482. Latches and Locks, E. R. Wethered, Wooloich. This relates to latches or locks fitted with a bolt heir weight, tend to throw the bolt forward. 483. Frames or Stands for Cruets, W. Edge, BirThis relates to the use of a sliding frame containing
the bottles, and which when raised brings the stoppers of such bottles under a curved part of the upper bar the stand, so as to prevent the removal of the
ottles, a suitable lock being provided to secure the sliding frame in its raised position.
484. Finaer Rings, \&c., W. R Lake, London.- $-31 s t$
January, 1882.-(A communication from R. J. La

This consists in forming the bow of the ring in seg. ments, one of which is hinged to either side of the is caused to slide, and is secured by suitable means. 486. Hot Blast SToves, E
$-31 s t$ January, 188s. $4 d$

This relates to pipe stoves in which the cold blast is sissted in forming the pipes of such stoves of steel, the
tove itself being of cast iron first pass through the stove, whereby it becomes heated to a certain degree, and is then passed through the
steel pipes and further heated. 488. Packing for Piston and Valve Rods, de.,
W. R. Lake, London.-31st January communication from the Matthews Steam Spring
Packing Company, Boston, U.S.) carrying the packing with the rod in a packing cylincarrying the packing with the rod in a packing cylin 490. Spring Motor Apparatus for Tras-Cars, dc.,
W. R. Lake, London.- 31 stt January, 1882 . - A com-
munication from W. Tarimore, St. Louis, U.S.)

This. relates to mechanism for assisting horses to the cars as, as, for instance, in acilitating the running ing inclines, and
to it consists essentially in a spring band or bands
arranged to be coiled by the running of the wheels and to work upon the wheels when uncoiling, and
hus assist in the movement of the car. 491. Machine Guns,

This relates to barrels having their ends to which a series of fixe cartridges in a ing and extracting devices in combination with longitudinally to chiefly in the means for supplying the cartridges and extracting and ejecting the empty shells. A rectan-
gular frame conitains a series of rows of tubes to eceive the cartridges, and is actuated by mechanism
o bring the rows in line with the barrels, when the cartridges are forced forward by plungers, each of
which is hollow and carries a firing pin and a spring
to drive the latter forward, and also an extractor.
 This consists in mixing and thoroughly incorporai tint rook oil, shale oil, petroleum, or any mineral ol
with oily shales or oil-yielding shales. 495. Machinkry for Sawing Wood, J. Smith, Roch This relates to means for foeding wood to circular bearings on each end of the fence, and passing roun
 the saw spindio, thereby causing the chain to travel.
tad the wood being forced into ontact with the chain
by a presser rollier, is fed forwarad to the save 496. Central Fire Cartridess, C. S. Bailey Whis relatares to oey-ans to toprevent encsape of gases and
produce cartridges specially adapted for hammerress Guns, and consistst in dispensing with the usual irion
tube lining the base cup, and makino the latter shorter than hitherto, and usisig in combination therewith an
outer longer cup constructed so as to enclose the crown
 cup, whicustis is backea up by by the paper packing and
cupports the flange of the cap chamber 498. Cutting OvaL and Circular Holess and Rivgs, A worm is fitted with feather keys on a driving
shaft and gears sith a wheel, to the underside of which an adjustable tool-holder is secured, and having in the upper part an annular groove to, fit on to a
circular bearing surface formed on the bottom of a sliding plate. From the latter project two lugs,
between which the worm turns. In the top of the
 groove in a fange at the bottom of a vertital spind
and on this fange rests an adjusta le disc, through
slot in which the spinde slot in which the spindle pipses. The disc in
set as much out of centre with the spindolo as may
be needed to mive the difter be needed to give the difference required between
the major and minor diamerers of the oval to
he tor
 motion when the machine is used to cut ovals. By
fring the disc concentric with the spindle a circle will
be cut. 499. Sizing and Wrivaisg Hanks, J. Conlong, Black-
burrn, and J. Robertshav, Manchester. 1 - 18 T February, The strap is shifted on to the fast pulley by means of a pedal, so that t hook secured to its shaft is caused
to orate and so twist or wring the hank , hhich is
is passed over two hooks. The other hook can slide bu
does not revolve, and the twisting of the hank cause it to slide against the action of a weight suspended by
a chain, and by suitable levers to shift the driving band on to the loose pulley
February, 1882. 6 Bd. The object is to utilise the waste heat of the pro
ducts of combustion for heating the bottom or sides o the boiler, so as to promote a better circulation of water catue equal expansion, prevent corrosion, and enable
stean to be got up mor rapidy without injur to the
boiler ; and it consists in in connection the the smoke-box into which the return tubes lead with one or more legs or vertical flues leading downward into a hor
zontal flue extending beneath the whole of the bottom of the boiler between the stools on which it rests, an 503. Sospension Lamps for Bioycless, dec., H. Sald
 grasp the wheel axte, while the top of the rront do.
is urved do lap orer it and is held by pring catches
on the hook A lip on the door can be fixed so as to nip the under part of the wheol axle and prevent the
lamp jumping. Stump ends are screwed into lamp jumping. stump ends are serewed into
threaded ocketat the outer end of the give rods and
bear against the hub. Flanges on the upper part bear against the hub. Flanges on the upper part of
the oil well slide in grooves in the inner isde walls o the lamp body, so as to suspend the well and burne
from the upper part provided apper hart holes. A spring eatch at the side
the lamp body retains the well and burner in A bow spring inside the door acts on the oil well and
prevents shaking, and also forces the door open when the top catehes are released. A weighted stem is fixed
on top of the lamp and prevents it oscillating while travelling
508. W_{1}
58. W.ithidrawivg Aerated Liquors from Bortire A slightly conical tube of wood is fitted with a the botlle the thass or other stopper is forced down,
and the band then causes the tube to tit tightly. The
tube at the outer end is fitted with to cock, by which tube at the outer end is fitted with a co
the liquid can be withdrawn as required. 509. Manuwacture of Salt Cake and Muriatic This consists in manufacturing salt cake, evolvin muriatic gas and producing muriatic acid by the use
of hermeticaly sealed revorving retorts, by which
means, by excluding the atmospheric air, a distillable means, by excluding the atmospheric air,' a distillable
 This consists of a lever moving on a fulcrum, and
one end of which can be slipped into an eyeon the end one end of which can be slipped into an eyeon the end
of a hook, which is slipped into the boot or shoe or the 511. Tuentables For Reversible Carrages, Morris, Birmingham. -2 nd February, 1882. $4 d$.
 with recessess to fit over such projecting part.
512 . STzeryo

This consiits in the application to stering gear of
differential gear combined with clutch arrangements, so that when such gear is engaged, firstly a powerful leveragly is brought to bear on the rudaer chains, and
seocnly the strain due to the water on the rudder,
ate aitter it is placed in the desired position, is is ot taken up
in the differential gear itself as to impart little or no
strai In train to the steernn wheel The gear it is spreforred
to mploy
to to employ consists of a toothed wheel actuated by an
excentric wheel within it, the number of teeth of the 515. Silvering Glass, J. B. Pratt, Camberveell. -2 nd Thish relates to the use of an inclined fixed table prepared liquid, being then poured on at top and running down to the bottoon, is caught in a trough, a
deposit of siliver being leit on the glass as the liquid

 | Therland.). $\begin{array}{l}\text { bed. } \\ \text { The construction of springs to be } \\ \text { used in places of the usual spiral springs, and consists }\end{array}$ |
| :--- | used in place of the usual spiral springs, and consists

in torming the enme with two arps by bending bire
into a reotangular form and coiling it spirally at a central point.
521. Makivg Crianktress, \&ce, R. Walluork, Man
chester.-3rd February, 1882 .
\&id. This relates to apparatus for forming eigarettes, and with a frame hinged to to lengthways, so as to b
capable or being turned flat aganst the polte. Thi
frame forms the reeentaclo in which the tobaco on

to retain the paper in position and also as a hopper to
receive the tobacco, which with the paper is pressed
down into down into the first frame by a presser hinged parallel to that trame, and which also serves to press sthe papor
when the edges are turned over tightly into the box. 543. Throstue Sinsing And Doubing Franms, A. This relatesers to the ooliar - bearing for the the spindle and bobinn of the ordinary flye throstle and doubling
frames, to that indereasd speed may be botained ivith
greater steadiness

543

 is formed partly up the interior of the barrel H is
the upper bush of the barrel of the bobbin. Holes 1
allow oil to
 projection or tubo Et treceive oil put upon the biade
parit of the spindle when the bobbin is doffed. Apin
fixe the

 formed opposite the cutting trame and in these guides
silides a rack with two stes of horizontal teeth at
different levels, and on the same side as as the lower set different levels, and on the same side as the lower set
if onother set of te th projecting upwards.
to the rerack is is the moving table, and above the vertical teeth rack is a small pinion running on a spindle in
the guide, and gearing with which is a double rack
 of it in pivotted arookking arme called a pusher riding
of orer a vertical bar having a cam surface, by which it
iver
 hricks, whichare then fen toth the touttinm a number of of
upon by the usual cutting wires.

 Trom the Society for the Manuz
Grell ingen, Svoiterancand.)
$2 d$
This consisists in rereating fier
remove the material so as to remove the incrustating and other foreign substancos
contained therein, by boiling it with a watery solu-
tina contained therein, by boiling it with a watery solu-
tion of ammonia in a closed vessel with or without
pressure.
 This consists in so constructing the discs between
which the knives are held while the discs revolve,
that they have that they have a cather facings of of elasticity
which enables the leath disse t accommodate themselves to the wedge form of the
knife.
 This consists in manufacturing the metallic cases of Or alloy, or from thick discs having the marginal por-
tions reduced and with the thick central portion outwards. The tube is
then turned down in alathe, the colosed end being still
left of the same diameter, wherehy the tim on fonil then turned down in a a lathe, the closed end being still
left of the same diamoter, whereby the rim or flange
of the case is formed. 563 . Inpis formed.

with lugs carying pans F F, Against which slided
cross bars, pinned at their centres. When a current

flows through the electro-magnet the core is drawn
upwards, the coroses arms are straightened and force
the the gripping pieces against the upper carbon rod, thus
lifturn pit and estabishing the re. The slightest
decreuse in the magnetisation of the core causes the
det decrease in the magnetisition of the core causes the
cross roms to touch the tiod-plete extending them,
releasing the carbo tho
 This consists in substituting for the usual wood
brake blocks, brake blocks made of wrought or cast metal connected at back by means of small ears to two
irron brakets or adjusting rods screwed to the usual
block hhneer 617. BRERCH

 break-ofss of breecht.loading smakillarms haveng of intere-
nal hammers, groves or chamels to provide means
for the escape of gases produced by the detonation of
the percussion caps of the cartrididges; ;and secondly in making similar grooves for the same purpose in the
faces of the metallic heads of the cartridges to be used with such fire-arms.
633. Antr-Corrosive PanNT, A. Riegelmann, Hanaun This consists, First, in adding caustic anhydrous
alkaline earths in combination with hydrocarbons such as mineral oils, parafinine, to ordinary paints, so
that the canstic possible; and Secondly, in manufacturing packing
paper or fabric by coating one side thereof with the paint deseribed,
chromleim.
672. Weidys Merxis, C. D. Abel, London. 1 Ith
February, $1882 .-(A$ communication from J. Lapitte, The fuxing material, such as borax or sal-ammoniac, vith flingss of the metal to be welded, and then agglomorated under pressure into the form of a sheet,
which in placed beetwen the two pieas to be united,
the whole being then heated and subjected to the OO9.

 quently united more firmly thereto.

This consists, First, in the combination of asphaltum
or bitumen with sand or broken rock or stone, and an oxide of any metal or orther base and a chloride of on the
ame base in varying proportions ; Secondly in the combination of a hydrautic cement with sand or stone.
con
an oxide of ony mell or other hase and a chloride of an oxide of any metal or other base, and a chloride of
the same base in varying proportions ; and Thirdly he combination of sand or broken rock or stone and
an oxide of metal or other base and a chloride of the same base, with any suitable material to be used as : 1083. Flostiva
 T Ber rin.) ${ }^{\text {bid }}$
This relates to improvements on patent No. 4515 ,
A.D. 1876 , in which gas is supplied from a reservoir on hed floating vessel or buoy through a regulator to reduce its pressure, and to the burner. Inv order to
relight the burner, hhould it be extingiuhhed by
severe concusions, a mall
 without passing through the regulator, and which,
therefore, bieng at a high prosuroe, is on or oreadily
extinguishen, 118 S. Corsccrews , . W. von Nawrocki, Berlin.--
1ith March, 1882.-(A communication from R. Hessel Berlin. ${ }_{c}^{\text {March }}$ da.
To obviate the
The obriate the necessity of removing the cork from ormed with a conical enlargement above it, and
which, as the he first cork upwards, the enlargement enters the atter, and divides it dow
halves fall off themselves.
1529. ATrachivg Now-conductors , to Haxdless or March 1 1888. $6 d$.
A disc of ivory or
Armed with a serewed shank on each side of it, one thread being geft-handed and dhe other rige of thandode
The shanks take into similar female threads formed in The s.anks take tinto similar female threads. formed in
the sooket of the toa-pot or other vessel, and the
hande to to connected thereto. 881 to bo connectod thereto.
 This consists in reducing grain to flour by passing speeds and in the same direction, and of surcessive speds and in the same drection, and of successive
degrees of fineness of dress, the frst part of the series
of rolls having a dress of round or oval flutes or nclined reversed sharp flutes, and the latter part of said series having a dress of sharp or serrated futes
arranged at an inclination to the ais in combination with bolts arranged intermediate of each set and the
succeoding set of rolls.
1958. STrami Boilers, G. W. Havokesley and M.
 type, wherein the thbes are beneatht the water linie.
The ravaing shows one arrangement, he tubes being
arranged on thereturn principle. Ais the furnace inside
 flattened to constitute a tube plate. To the side of
boiler is attached a cylindrical projection B carrying

another tube plate Y, beyond which is the combustion
chamber C. At the opposite side of the boiles is an oval or elongated tubponate Z, and covering itit is the
smoke box F carrying chimney G. Tubes D p pass from
s. tube plate X of the furnace to the lower part of tube
plate Y of the

 iec recentacle nearr the otop anding supported drom with an
and with a top adapted to cause a circulation of air in the chamber round the sides and over the top of the
ice recentac Seondly
 end of the iie receptacle to form a tight connection
with the roof of the ohamber, while its sido walt are
wpon a lower upon a lower plane to allow, air to circulate laterally
over the to of the receptacle ; and, Fourthly, in the W-shaped combination in a reeftineerating chamber of a
ports,
nid opening

 teeth points or rollers usualy fitted to loom temples which they operate, by two cylindrical or conical which thes operate, by tro cyilindirical or ornical
rollers over which the tabrio or web passes with an
ahherence which is re evulated by the pressure brought adherence which is regulated by the pressure brought
to bear upon the rollers by a third cylindrical or conical
 ular or proper width
2168. Frurres, G. Macaulay-Cruikshank, Glasgonv:-
9th Man, 1882- (A communication from H. C. Rice,
 frustro-conical shape and of a sheot of 1 iltering cloth
or other filterring material. The inner tube, which is
perfore perforated, is of less diameter than the outer one, and
orms the lower half of the receptacle for the liquid to be filtered, whilst the outer tube forms the upper
half, from which the lower half is suspended by being inserted inside and forced down inside the
other half 2278. ox

This conpisists. First, inplete.) 4 Id. oxides of of leadst by subujecting lead fumes to the joint
action of carbonate of sodu or caustic soda and heat by roasting in a furnace; Secondly, in manufacturin
oxide of lead by subjecting lead fumes to the action of carbonate of soda or caustic soda, by boiling then
to thether

 of sulphuric acid, removing the zinc, and then boilin
the sulphate of lead with a solution of carbonate soda or coustic soda, and roastiny the resulting
carbonate of lead or hydrated oxide of lead in a furnace.
2303 .

 apparaneco of stained class windows with leaden
glazing from pieces of coloured sheet gelatine or thin transparent variety of one of the nitro-cellulose pro-
ducts, such as cellulooid, xylonite, tuc., the different
 or otherwise seoured to the adioining ed geas The
pattern is then supported between two sheets of glass.

 square sticks ; and comprises, First, the use of a rack to hold the sticks in a stack, and an automatic
device to deliver them device to deliver them one at a time to feeding
mechanism, Secondly, the employment of feeding rolls operating on the sticks by, y yielding pressure to advance them to a "rougher," and gripping jaws
which advance the rounded sticks from the rougher to stationary clamping jaws, the movements of the rolls and dripping jaws being internittent simul
taneously and equal im amount Thirdly providi taneously and equal hin amount; fhirdy providing
the delivery end of the rougher spindle with a removable bushing having a conical mouth, for centrally
delivering the rounded sticks to the feoding delivering the rounded sticks to the feeding jaws
Fourthly, mechanism for operating the feeding and clamping jaws; Fifthly, the employment of peculiarly
moving fingers to transfer the spool blanks to the head dressing and shaping tools; Sixthly, an improved
construction of the non-rotating head dressing spindle and its accompanying parts; and Seventhly, a device
for removing the inished spools from the live spindle. 2388. Conrbing Frirre, C. DD. Abel, London.-20th
May, 1882.- (A communication from F. C. Glaser, This relates to improvements in combing machines consists in the arrangement of the feed apparatus the mechanism for forming and leading forward the combed tufts, as also the mechamism ior morigl
delivery and noil cylinders. The inventor claims First, arranging the slide surface of the entire feed mechanism incimed to the plane of the feeding grate so that the fibres may be properly seized by the teeth
of the comb ; Secondly, the use of two or more rollers comnected with the feed mechanism, and caused to revolve on the backward motion of the feed me-
chanism ; Thirdy, the mechanism for detaching the combed tufts and forming them into slivers, and consisting of a detaching cylinder separate from the
sliver belt, and so arranged in relation thereto that the former detaches the full length of the fibre by rolling upon a segment, while the latter takes up the
separate tutts from the former, , ndd cuases them to

SELEOTED AMERIOAN PATENTS.

From the United States' Patent Office Ofticial Gazette.
262,305. Box-NALusa Machine, Frederick Myyers,

 stantially as described for supporting the boxes at an
angle, whereby the nails which are driven vertically

by the nail drivers will be driven obliquely into the

 combination with the said supporting plates $s^{2} 5^{s 3}$ of
the adjustable auxiliary crosshead Q, pivotted to the
main crosshead and adapted to support the nail
drivers, and the adiustable bar E for supporting the
dit nail boxes, substantially as above set fortit and for the
purpose purposes specitiea. (4) The combination, whungers of the rod or bar T, having the recessess or grooves an
provided
with porthed with a fiat face, sinstantially as above se
forth and
nation with the purpose speified. (5) The combi nation with the crosshead C of a nailing machine
of the adjustable auxiliary crosshead
 262 substantiny as doed
 Acim- (1) Thhe combination, in a dynamo-electric
machine, of four electro field magnets, which, with macir connecting plates and field segments, are mad
their
in $t w o$ in two solic con lacess masses of iron, so formed an zontally a phoghe passing either verticaly or horl
zhe field t maugets he contre of the armature axis that the field magnets in such casting shall be in line wit ether, and which are wound with their field coils in
othen such directions that the two magnets in each castin shall have their simar poles joined in the field seg ment conneoting them, and that the two feld seg.
ments shat ino of oppose thagntio wolarity
respect to eacho other, said two castitings to constitutute
[262 544

when joined and bolted togethes, the entire iron
framework of the machine, exclusive of the armature and its ant smoth and uniform in thile mounted and revolving between the field segments aforesaid upon an open skeleton or rramework of wood in all directions from its central axis, the whole constructed, combined, and operating substantially as
described described and set forth. (2) In a dynamo-electric and carrying of a cylindricali ion armature, consisting of two hubs, made of brass or other non-magnetio material, with radiating arms of like materiai,
adiustable in length being set sa seevs into their
hubs, and supporting at their extremities wooder bars, pressing supporting at the their extremitios wooden
ture, subsstantially as deserriner surface of the and set of torthe CONTENTS.

The Enginerr, September sth, 1882.

 ON THE Elegrric Furnace. (Illustrated.) Groohbgan and Sturgeon's Piston. (Illustrated.)
BaILEY's Hot-AIR ENGINE. (Illustrated.) Twenty-ton Portable Stram crane. (illus-

Earter

Testing Chatin Cablie
Phospror
Phosphor bronz
Rallway Matters
Notes and Memoranda
Misoellanea $\quad \ddot{ }$
Leadivg Articless
The Price of Coa
The Price of Coal $\quad . . \quad . . \quad . . \quad . . \quad . .17$

${ }_{\text {THE Treatiso on Transit Instruments }}$.. 18,
Efrgots dr shor on a compond Araodr-hate.

 Notes from Sheffiel
Notes from the Nor
Notes from Scotland $\cdot \ddot{0}$ adoining Counties
 AbsTracts of
(Illustrated.)

Coal Gas . the United $\ddot{\text { States }}$
Emery in
Boring with Bort.. An American Express Train
A New TTelephone
Royal Commission on Technical Instruction
Weight of a Million Doll American Post-oftice Cars.:
The Engineering College in
Examination of
Examination of the Sollege in Japan
Thaty of Arts
Rail Imporpool Steamers
A Startling Ride America South Kensington Musedm.-Visitors durin
the week ending Sept. 2nd, 1882 :-On Monday, Tuesday, and Saturday, free, from 10 a.m. to
10 p.m., Museum, 12,800 ; mercantile marine building materials, and other collections, 6477 ,
On Wednesday, Thursday, and Friday, admissio On Wednesday, Thursday, and Friday, admissinn
6d., from 10 a.m. till 6 p.m., Museum, 2050 mercantile marine, building materials, and other spoctions, 707. Total, 22,034. Average of corre
sponding week in former years, 20,385 . Total

