ENGLISH PATENTS IN 1881.
IT is somewhat remarkable that so promising a subject as the "geographical distribution" of patents-to borrow a phrase from the biologist-should have been almost entirely neglected by statisticians. With the exception of a series of tables issued by the late Mr. Wooderoft about thirty years ago, we cannot call to mind any attempt to discuss and compare the relative number of applications for patents from various localities. Patents have increased so rapidly of late that the analysis for a single year is no
light task, although the necessary material is very accessible, and is in such a form as to give little trouble beyond that of mere careful counting. In view of the importance of the question we have undertaken an elaborate investiga-
tion into the place of origin of the applications for British tion into the place of origin of the applications for British patents during the past year, the basis of our analysis
being, of course, the Journal, published by the Commissioners of Patents. Before proceeding to state the results of our labours it may be well to mention the principles on
which the work has been performed. The total number of which the work has been performed. The total number of applications during the year, which reached 5751 , the largest
ever known, is obtained at once, each patent being numbered consecutively in the official lists. The number of foreign applications was ascertained in the first instance by direct computation, the result being checked by counting the number of applications from the United Kingdom and deducting it from the whole number for the year. If the work was accurately done, these two figures should have exactly agreed, but there was a discrepancy of 1, which
we are unable to account for. This is the only inconwe are unable to account for,
sistency we are aware of, and we feel bound, as a matter of conscience, to admit it. The work has been most care-
fully checked, and we believe the results to be thoroughly fully checked, and we believe the results to be thoroughly trustworthy. The frequent occurrence of joint patents, the parties to which reside in different quarters of the world,
in different divisions of the United Kingdom, and in in different divisions of the United Kingdom, and in different counties, has rendered necessary a continual process of " correction." For instance, an application for
a patent by a German and a Frenchman-such a conjunca patent by a German and a Frenchman - such a conjunction does occur now and then-would be counted under
both Germany and France when estimating the number of both Germany and France when estimating the number or
patents from those countries, but it would only appear once in the list of "foreign" patents. A similar rule has been followed in the case of joint patents originating, say,
in Scotland and Ireland, or in Warwickshire and Staffordin Scotland and Ireland, or in Warwickshire and Staffordshire. No other course suggested itself of dealing with applications of this nature, and it was obviously imprac-
ticable to count "half" patents. The occurrence of ticable to count "half" patents. The occurrence of
these dual patents will account for the apparent disthese dual patents will account for the apparent dis-
crepancies in the figures which follow. In the case of crepancies in the figures which follow. In the case of communicating the invention, who is the real inventor, has lone been regarded. No notice whatever has been taken of the residence of the agent in this country. When a town extends over two or more counties, as is the case
with Birmingham, care has been taken to duly apportion with Birmingham, care has been taken to duly apportion
the patents when dealing with statistics of counties. The the patents when dealing with statistics of counties. The he standard unless otherwise expressed. The first and most obvious step is, of course, to separate the foreign from the home patents. The following is the result :-
United Kingdon
England
Scotland
$\substack{\text { Scotlan } \\ \text { ITreland } \\ \text { Wales }}$
W.

$\begin{array}{r}3263 \\ 270 \\ 63 \\ 46 \\ \hline\end{array}$

Corrected total

3633
2139

Total for the year

$\overline{5751}$
One cannot help being struck by the very large number 37 per cent. of the whole. They are distributed as 37 per cent
follows :-

The above figures suggest some very interesting reflec-
ions, the most obvious of which is that an English patent tions, the most obvious of which is that an English patent have, unfortunately, no statistics of the number of foreign patents granted to Englishmen; but we are able to assert most positively that our countrymen do not show anything
like the eagerness to secure patents abroad displayed like the eagerness to secure patents abroad displayed by foreigners to obtain protection for their inventions here.
The exception above alluded to is the United States; and we learn from the report of the American Commissioner
that in the year 1881 the number of patents granted to that in the year 1881 the number of patents granted to
foreigners was 995 , out of a total of 16,584 , or 6 per cent. As regards Great Britain, only 343 patents were issued, or just 2 per cent. On the other hand, 745 applications out of a total of 5751 , or nearly 13 per cent., came to us from America during last year. obliged to compare the relative rumber of grants in the United States with applications at the Patent-office here, but the percentages furnish a perfectly trustworthy basis of comparison. It is possible however, to obtain approximately the total number of however, to obtain approximately the total number of simple calculation. The total number of applications in as previously stated, 16,584. Assuming the same proportion to subsist between the applications and the grants in the case of British subjects, as we may safely suppose was the case, the actual number of applications from this country would amount to 542, against 745 applications for British patents by Americans.
Those who have followed the course of the patent law controversy during the last few years, are aware that the United States have been held up as a sort of land of Canaan for inventors, especially for English inventors, who were supposed to be driven out of their own country in shoals by oppressive taxes upon genius. The figures we quote above do not in the least bear out what we have always characterised as a fond delusion. On the contrary, Brother Jonathan makes much greater use of our patent laws than we do of his, whether we take the absolute or the relative numbers of applications, and this in spite of the higher fees which prevail here.
It may also excite surprise that more than ten patents per week should come from France, and nearly an equa number from Germany. The forty applications from Switzerland show a somewhat curious amount of eagernes to take advantage of that protection which she denies to strangers. Holland, too, which has abolished her own patent laws, does not hesitate to avail herself of our laws. We must leave the professed political economist to explain the extraordinary rush of foreign patentees to our shores. If it means that foreigners only wish to secure an exclusive market here, preferring to manufacture abroad on account of the cheapness of labour, then the patent laws would seem to be operating somewhat unfairly upon home trade. We by no means imply that this is our own view, and the facts are quite susceptible of being explained by pointing to the great wealth and enterprise of this country, which is regarded as a promising field for disposing of a meritorious invention.
We have no detailed statistics for former years, bu from a rough estimate we are able to say that the proportion of foreign to home patents is increasing. In other words, we are being gradually invaded by the Americans is, however, an invasion which need not be regarded in spirit of hostility.
The large towns of the United Kingdom placed in order are as follows:-

It will be interesting to compare the order of succession of the large towns for 1881 with their relative position in Mr. Woodcroft's table above referred to. The order, as
determined by the total number of applications from the determined by the total number of applications from the
earliest period down to the end of the year 1858, was as follows:-

1. London	17. Halifax
2. Manchester and Salford.	18. Oldham
${ }_{\text {Birmingham }}^{\text {Glasgow }}$	19. Huddersfield
$\stackrel{\text { Glasgow }}{\text { Liverpool }}$	
6. Leeds	22. Bury
7. Sheffield	23. Blackbu
8. Bristol	24. Brighton
10. Nottingham	26. Belfast
11. Edinburgh	27. Ipswich
12. Newcastle-on-Tyne	28. Dudley
13. Dublin	29. Hull
14. Rochdale	31. Preston

The first seven places are occupied by the same towns in whilst Bradford has gone down to the thirteenth place, whilst Bradford, Nottingham, and Edinburgh still con tinue to occupy their same relative positions as they did twenty years ago. Bolton rises from 16 to 11 , whils Coventry, which was not within the limits of the old list,
takes the twelfth place. This is almost entirely due to the bicycle trade. Putting aside the first seven towns, which maintain their position, all the Lancashire and Yorkshire maintain their positio
towns have advanced

Confining our remarks to England alone, the distribu tion of patents by counties is very instructive. Omitting教

Lancashire			589
Yorkshire		380
Warwickshire	\ldots		247
Staffordshire		81
Cheshire							71
Durham				...					56
Nottinghamshire					51
Hampshire and Isle		Wig		...		\ldots			42
Gloucestershire	40
Worcestershire	40
Somersetshire	35
Northumberland					34
Sussex	31
Lincolnshire	\ldots	\ldots	...	\ldots	29
Leicestershire	\ldots	...	\ldots	28
Devonshire...	27
Derbyshire...	19
Hertfordshire	\ldots	\cdots	\cdots	17
Suffolk	\cdots	...	\ldots	16
Norfolk	14
Bedfordshire	\ldots	14
Wiltshire ...	\ldots	13
Monmouth	13
Cornwall	13
Cambridgeshire...	13
Buckinghamshire	12
Shropshire	10
Berks	10
Oxfordshire	\ldots	9
Cumberland				4
Northamptonshire	3
Rutlandshire	\ldots	\ldots			3
Herefordshire						2
Dorsetshire				1
Westmoreland		..	\ldots			1
Isle of Man...									1

Lancashire, as will be seen, stands far ahead of it competitors, the total being largely made up by the important contributions of Manchester and Liverpool. The Riding, and, as will be seen from our list of towns, Leeds Sheffield, Bradford, and Huddersfield together make up more than one-half of the total. Warwickshire depends upon Birmingham and Coventry for its place in the list After a long interval comes Staffordshire, closely followed by Cheshire. We should hardly have assigned the next place to Durham, which owes its position to the fact tha no less than twenty applications came from Sunderland Hampshire comes high in the list, and Somersetshire pre largely due to the various manufactories of agricultural implements. Without these its place could hardly be implements. Without these its place could hardly be
before Leicestershire. Many counties which are generally looked upon as purely agricultural come out comparatively high in the list. Did space permit we could show that this is generally due to some flourishing but partly-forgotten at least. On the other hand, some counties which include much show. For instance, the busy town of Northak much show. only contributed two patents during the year ; but perhaps
the attention of the citizens has been too exclusively directed towards an object which need not be more particularly alluded to
Statistical writers have always a tendency to push matters too far, a fault we have endeavoured to avoid. We do not say that the number of patents granted is an unfailing test of commercial prosperity, but it is at any rate a tolerably sure index of activity. Some interesting patents with the population. As our article is already patents with the population. As our article is already
long enough, we must leave our readers to discover these for themselves, contenting ourselves with this one observation, that the most "inventive" town in the United Kingdom is Birmingham.

THE FOUNDATIONS OF MECHANICS

By Walter R. Browne, M.A

No. VII.

103. Principle of Equivalence of Work and Vis Viva There is yet another caution which needs to be given before leaving the question of nomenclature. Men tion is often made of the principle of the equivalence of work and vis viva, and this is stated to be that the work done on the system is equivalent to the change in the $v i s$ viva. Now as we have defined the work done to be represented by Ps , it would follow from the principle, as thus stated, that $\mathrm{P} s$ is equivalent to $\mathrm{B} v^{2}$, whereas in reality it is $(\mathrm{P}-\mathrm{Q}) s$ which is its equivalent. What is meant by the work in this case is, therefore, the net difference between the total work done by the effort and the work done upon the resistance; in other words, it is the kinetic work only, as above defined. This fact should always be made clear when the principle is used as stated. In this, its correct form, the principle has, of course, been already proved in article 95.
104. Conservation of Energy. - We have now seen that, in the simple case under consideration, the fol lowing changes have taken place. There has been an exertion of energy on the part of the body A
acting upon B, which is represented by $\mathrm{P} s$, and which may be looked upon as the action of a cause. Again, the effect due to this cause, or the work done, is divided into two parts: (a) the potential work represented by - Qs, which means that the force Q of the centre C has been overcome through the distance $s ;(b)$ the kinetic work represented by $\mathrm{B} v^{2}$, which means that the velocity of the centre B has been increased from O to v. Now, by the general principle of conservation, namely, that effects live,
we should expect that these two effects would be capable we should expect that these two effects would be capable
in themselves of acting as causes, to produce equivalent in themselves of acting as causes, to produce equi
effects; and we have to see whether this is the case.
105. Let us first take the potential work Qs. In order to examine this effect by itself, let us suppose that, when B has traversed the space s, the velocity v and the force P are both annola assume to act by a series of impulses. It follows that A
will begin to move backwards towards C ; and since the action of C, by our definition of matter, is independent of time, and is always the same at the same distance, it
follows that the first impulse given to B, on its returning follows that the first impulse given to B , on its returning
road, will be exactly the same in magnitude and direction road, will be exactly the same in magnitude and direction
as the last impulse which it received on its outward as the last impulse which it received on its outward
journey. Similarly the second impulse of the new set will journey. Similarly the second impulse of the new set wind
be precisely the same as the last but one of the old set, and so on throughout; so that when B has reached the point
from which it started there will have been an exertion of from which it started there will have been an exertion of energy on the part of C, which is represented exactly by
$Q s$, and which is, therefore, precisely the same in amount Qs , and which is, therefore, precisely the same in amount
as the energy which was exerted by C during the previous movement, and was neutralised by the greater force of A At the end of this time
106. We have here spoken of C as remaining fixed and B moving towards it, because that was the assumption with which we set out. But of course we may just as well
assume B to be fixed and to draw C towards it by the equal mutual attraction subsisting between them ; orwhich would really be the case if B and C were left to themselves-that they both move towards each other
under the influence of that mutual attraction. The only under the influence of that mutual atiraction. The only
difference will be, in that case, that the distance s, instead difference will be, in that case, that the distance s, instead
of being measured along B's path only, will be measured of being measured along B's path only, will be measured
partly along B's and partly along C's ; being, in fact, in all partly along B's and partly along C's; being, in fact, in all
cases, the distance by which the two centres have approached each other during the motion.
107. We may therefore say that on our definition of matter the potential work done upon B in the course of its motion renders possible the exertion of a precisely equivabetweon B and C
us now consider the kinetic work $\mathrm{B} v^{2}$. To end of the space s, then itself, let us suppose that at the single centre at C, acting with a force ($\mathrm{P}-\mathrm{Q}$), that is equal in amount, but opposite in direction, to the net force may suppose this force $P-Q$ to act by impulses at
intervals $d s$. Then, by the Second Law of Motion, each of hese impulses will produce its full effect upon B, irrespec tive of the fact of B's present motion; it will therefore destroy a portion of B's kinetic energy precisely equivalent impulses which acted on B during its motion along the space s. Hence, by the time that n of these equal impulses,
due to P - , have acted upon B, the whole of its kinetic energy will have disappeared, and it will be at rest. But in the meantime it has overcome the force $P-Q$ through the distance s, precisely as the force Q was overcome
through the distance s in the former motion; and therefore, as explained in the last paragraph, the kinetic energy $\mathrm{B} v^{2}$ in disappearing must have generated an amount of
potential energy, due to the mutual attraction between A and C, which is , due to the mutual attraction between A precisely equal in amount to the energy by which the velocity v was originally generated in B.
108. Here, as before, for the sake epresented the energy as being destreye clearness, we have same steps as those by which it was generated ; but if we only grasp the principle that the kinetic energy $\mathrm{B} v^{z}$ fully epresents the effect of the energy originally expended upon B by P-Q, it will be evident that this representa tion is in no wise essential to the proof. We may suppose,
for instance, that A and C are both annihilated, and that for instance, that A and C are both annihilated, and that until it comes into the range of another centre D, whose force R may be a repulsive one. The centre B will then be gradually stopped, and will come to rest in a distance S,
which will depend on the value of R, but which will cerwhich will depend on the value of R , but which will cer-
tainly be such that $\mathrm{R} S=\mathrm{B} v^{2}$; inasmuch as S is tainly be such that $\mathrm{R} \mathrm{S}=\mathrm{B} v^{2}$; inasmuch as $\mathrm{R} S$ is
known to represent the energy which R will, during the passage over the space S , have exerted on B, and this energy has been expended in destroying the whole of the kinetic energy represented by $\mathrm{B} v^{2}$.
109. We may, therefore say
110. We may, therefore, say that, on our definition of matter, the kinetic work done upon B in the course of its motion renders possible the exertion of a precisely equiva-
lent amount of energy, due to the mutual action between lent amount of energy, due to the mutual action between 111. Let us now gather our results together. We started with an amount $\mathrm{P} s$ of energy exerted by A . We
saw that the effect of this exertion was the performance of saw that the effect of this exertion was the performance of
work, but work under two different forms, namely, poten-
tial work, represented by tial work, represented by $Q s$, and kinetic work, repre-
sented by $\mathbf{B} v^{2}$. We then found that the performance of sented by $\mathrm{B} v^{2}$. We then found that the performance of
each of these amounts of work rendered possible the exereach of these amounts of work rendered possible the exer-
tion of a fresh amount of energy, not due like the first to tion of a fresh amount of energy, not due like the first to
the action of A, but precisely equivalent in amount to the the action of A, but precisely equivalent in amount to the original energy exerted by Ain the two cases. In other words,
the kinetic work B v^{2}, done by A upon B, gave B the power of subsequently doing the potential work represented by in Art. 108,109 ; and the potential work Qs, done by A upon B , gave B the power of subsequently doing the kinetic work
represented by $\mathrm{B} \mathrm{V}^{2}$ (Art. 105), which can of course by a further operation, be converted also into potential work of equivalent amount. Hence, if we define energy, which we have not yet defined, as the power of generating B has, indeed, been reduced in the original action by the quantity $P s$, since the impulses which have gone to do that work have had their effect, and cannot, by any action
of A and B, be again renewed; but that the energy of B, or its power of doing work upon other centres, has been augmented by precisely the same amount. Hence, we see that, taking the system as a whole, there has been no gain
or loss of energy during the action. This is the principle of the Conservation of Energy as applied to this particular case. It will now be advisable to recur to the assump-
tions-Art 84 -tions-Art. 84 -with which we started on this investiga-
tion, and see how far they affect the generality of the principle we have just stated. In the first place we assumed that A is fixed. Since in every case of mechanics
it is necessary to assume some fixed point, and to consider the motions relatively thereto, there is no difficulty in mak ing A that point. In practice the centre of the earth may chanics, and the centre of the sun as fixed for the purposes of astronomy.
111. Again, we assumed that C is fixed; but if C have motion in the direction C A , the only effect will be that we shall have to diminish the quantity $Q s$, expressing the nergy imparted by C, by the quantity Q s^{1}; where s^{1}. in the direction CA . in the direction $\mathrm{C} A$. The efrect in the ratio sas rest, while the amount of Q was diminished in the potential work, and, of course, a corresponding in the potential work, and, of course, a corresponding
increase in the kinetic work. If C has a motion in the opposite direction, the potential work will be in like opposite direction,
manner increased.
112. Further, we supposed C and A to have no mutual action. In reality this is not, of course, true, by our definition of matter ; but in many cases C and A may be fixed with regard to each other-as where coals are wound up from a pit by a steam engine at the surface, which is fixed with regard to the earth-and this amounts to the same thing. Moreover, as we shall see hereafter, the forces of cohesion are very great at insensible distances, but are quite nappreciable at sensible distances; hence, in considering or instance, the case of a rope in tension, we may treat any section as being influenced by the two sections on either side of it, but not by those beyond. If, however, A does attract C , the effect is to move C in the direction of A , and thereby make the distance between B and C , at the end of the motion, less than in the former case he distance through which C has acts on C, and ine C A. Then A will have exerted the additional energy R S, which will all take the form of kinetic work done upon C . On the other hand, the energy P exerted on B will be just the same as before ; but the part of it which takes the form of potential work will be reduced from $Q s$ to $Q(s-S)$, because the number of impulses distributed over the space S will not have been given. Now the effect of this on B will be exactly the same as if, C remaining fixed, the strength of each impulse had been reduced in the proportion $s-S: s$ for in that case the total effect would be represented by
$\mathrm{Q} \frac{s-\mathrm{S}}{s} \times s=\mathrm{Q}(s-\mathrm{S})$ as before. But if the resistance
be reduced from Q to Q^{s-S}, then the unbalanced effort
will be increased from $P-Q$ to $P-Q \frac{s-S}{}$; and the
kinetic work, due to this unbalanced effort, will be increased from $(\mathrm{P}-\mathrm{Q})$ s to $\left(\mathrm{P}-\mathrm{Q} \frac{s-\mathrm{S}}{s}\right) s$, or $(\mathrm{P}-\mathrm{Q}) s+\dot{\mathrm{Q}} \mathrm{S}$
Thus the kinetic work will be increased by QS, which is exactly the amount, as shown above, by which the potential work is diminished. Hence the assumption that A acts on C does not introduce any gain or loss of energy on kin whe thergy exerted on C takes the foris and partly of potential work as before, but divided in dif ferent proportions.
113. The assumptions still remaining to be considere are (1) that B is initially at rest; (2) that the forces P and Q are constant. Now with regard to the first, let us suppose velocity V in being at rest the centre B has an initial the opposite direction B B the If the velocity is be the same, simply writing $-V$ for V throughout Then, by virtue of this velocity, it will also have kinetic energy represented by $\mathrm{B} \mathrm{V}^{2}$ (if B is half $\mathrm{B}^{\prime} \mathrm{s}$ mass), which can be converted into potential work, as explained in Art. 108. Let t be the interval of time considered. Then, by Art. 69, since the net moving force
$(\mathrm{P}-\mathrm{Q})$ has been acting on the mass 2 B during the time t it will have generated in B-irrespective of B's initial motion-a velocity represented by $\frac{P-Q}{2 B} t$, and will have caused B to describe a space represented by $\frac{1}{2} \frac{P-Q}{2 B}$
In addition to this B will have described, by
virtue of its initial velocity, a space $\mathrm{V} t$. Hence the virtue of its initial velocity, a space $\mathrm{V} t$. Hence the
total energy exerted by A will now be represented by
$\mathrm{P}\left(\mathrm{V} t+\frac{1}{2} \frac{\mathrm{P}-\mathrm{Q}}{2 \mathrm{~B}} t^{2}\right)$; and the total amount of energy
which has to be accounted for at the end of the motion, is
$\mathrm{BV} \mathrm{V}^{2}+\mathrm{P}\left(\mathrm{V} t+\frac{1}{2} \frac{\mathrm{P}-\mathrm{Q}}{2 \mathrm{~B}} t^{2}\right)$
Now the energy left at the end of the motion is as follows (1) The potential energy, due to the potential work done
in moving B through'the space $\left(\mathrm{V} t+\frac{1}{2} \frac{\mathrm{P}-\mathrm{Q}}{2 \mathrm{~B}} t^{2}\right)$ in op-
position to the force Q . This is represented by

$$
\mathrm{Q}\left(\mathrm{~V} t+\frac{1}{2} \frac{\mathrm{P}-\mathrm{Q}}{\mathrm{~B}} t^{2}\right)
$$

(2) The kinetic energy, due to the final velocity of B, or to
$\left(\mathrm{V}+\frac{\mathrm{P}-Q}{2 \mathrm{~B}} t\right)$. This is represented by
$\mathrm{B}\left(\mathrm{V}+\frac{\mathrm{P}-\mathrm{Q}}{2 \mathrm{~B}} t\right)^{2}=\mathrm{BV}^{2}+\mathrm{VP} t-\mathrm{VQ} t+\frac{(\mathrm{P}-\mathrm{Q}) t^{2}}{4 \mathrm{~B}} \mathrm{P}$

$$
-\frac{(\mathrm{P}-\mathrm{Q}) t^{2}}{4 \mathrm{~B}} \mathrm{Q}
$$

Adding the two expressions, we get for the energy left $B V^{2}+V P t+\frac{(P-Q) t^{2}}{4 B}$
This is exactly the same expression as that given above for the total energy which has to be accounted for. It during the motion, and therefore the principle of the
conservation of energy is not affected by the initial
velocity of B. velocity of 116
P and Q are constant the assumption that the forces P and Q are constant. This of course is never exactly true in the universe, although it is true within our limits
of measurement in many cases, e.g., that of a stone falling of measurement in many cases, e.g., that of a stone falling an indefinitely small interval of time. Hence for each an indefinitely small interval of time. Hence for each such interval the conservation of energy will hold, and if
so it must also hold for the sum of the intervals so it must also hold the sum of the intervals; that is for any particular time that is considered. The energy
exerted must of course be determined in this case by the methods of the integral calculus.
117. We have thus proved that the principle of the conservation of energy is true, with complete generality A, B, C lying in the from this to the general case of a free system extension and with any number of centres all of which act each other we shall not give in detail, since it is to be found in any standard work on higher dynamics, and also comprises nore analysis than comes within the scope of this treatise. The essential features of the method are briefly as follows. By the principle of the composition of fond also thesolve all the forces acting on any given contre, along three rectangular axes By this means we reduce all the forces and motions to three straight lines, and consider these separately as in the simple case. Then, taking an indefinitely small interval of time, we class the forces which tend to move the centre in the direction of its actual motion as efforts, and those tending in the opposite direction as resistances. By the geometrical principle of the centre of position we can consider all the efforts as if they were a single effort, acting from a centre whose position and motion is known; and similarly we can consider all the resistances as a single resistance. The problem is then reduced to the simple case of three centres, in which the principle has already been proved; and the methods of the integral calculus enable us to combine the three equations found for the three axes into one ceneral equation, which expresses, with the utmost generality, the principle of the Conservation of Energy
118. Before taking leave of this much canvassed principle, it will be well to state it in its most general form, and recall briefly the definitions, \&c., which it involves. The statement may be as follows :- "The energy of any affected by the mutual actions of the forces which exist in the system.
199. Now, in this statement the following things must 120 in mind :-
doing pa). The energy of the system means the power of tance - thatial work, or of overcoming force through disany other power, only when it has been exerted, and it is then measured by the amount of work it has done.
121 (b). The word force means force as defined in this treatise - that and nothing else ; in other words, it means the cause of motion.
122 (c). The word matter means matter as defined in this treatise-that and nothing else ; in other words, the system is a system of centres of force, acting upon each other by equal and opposite forces, which do not vary with the time, and therefore are always the same when the dis-
tances apart are the same. These are the forces which are tances apart are the same. These are the forces which are spoken of at the end of the statement.
$123(d)$. By an isolated system is meant one which is not acted upon by any forces from centres external to the
system. Therefore, the principle is not strictly true of any body of matter less than the whole material universe, since the phenomena of light and gravitation show that every part of this universe is at least capable of being acted upon from every other part. There are, however, many cases where a system may for all practical purposes be treated as isolated, the actions of the re
either allowed for or neglected.
124. It will be found that each one of the definitions
either allowed for ored just given are employed and needed at some point or other of the proof. If, in stating some proposition which is
called the Conservation of Energy, the same terms are employed with any meanings at variance with the above, employed with any meanings at variance with the above,
then that proposition does not express the principle of the Conservation of Energy, as it is quoted and applied by the great writers on mechanics throughout the world. This second proposition may, of course, itself be true, but it needs proof before it can be accepted, and certainly it cantion of Energy has been proved.

The Engine, Boller, and Employers' Liablity Insurange cently held at the head office, 12, King-street, Manchester, Mr R. B. Longridge, the managing director, preesiding. The annual
report, which was taken as read, showed that the proner company had was taken as read, showed that the progress of the same kind. A comparison was made with the two largest and case the total income was about 38.5 per cent., and in the othe only 19.8 per cent. of the income of this company for the same
period. The gross income for the year 1881 amounted to $£ 16,929$, period. The gross income for the year 1881 amounted to £16, 129 ,
being an increase of £4720 as compared with the previous year.
The claims for breakdowns of engines had been heavy more The claims for breakdowns of engines had been heavy, more same amounting to £4985. The chairman stated that there ha formation up to the present time, and he hoped with the careful inspections make by the officers of the company that explosions, if not entirely prevented, would at least be of very rare occurrence,
He did not anticipate, much reduction in the number of accidents
to engines as there were few engines without one or more weal to engines, as there were few engines without one or more weak
parts, and even with the strongest accidents were of common occurrence, owing to want of care on the part of the attendant During the last twelve months 161 breakdowns had occurred
among the engines insured by the company, in addition to which

RAILWAY MATTERS.

There are now 2195 miles of steel rails on the London and A trial of the electric light is being made in a train running
between Calais and Brussels. AT a cost of $£ 88,000$ nearly 1900 miles of railway have been
interlocked on the London and North-Western Railway. ELEETREIC lighting is being tried in a thirteen-carriage train on
the Eastern of Erance Railway between Paris and Gretz. THE Geneva correspondent of the Daily News says the Mont
Cenere tunnel on the St. Gothard line was opened on Sunday last, Cenere tunnel on the St. Gothard line was opened on Sund
and a train ran for the first time from Giubasco to Lugano.
THE decrease in the number of second-class passengers, and the receipts from them, continues on the London and North-Western
Railway, but at present Mr. Moon does not think it advisable to do away with that class.
ON the Alsace-Lorraine railways mineral oil has been substi-
tuted for colza in lubricating the rolling stock, with a saving in cost of 60 per cent. The Bavarian lines have followed suit, with HE endless mos.
THE endless rope system of hauling tram-cars is about to be
fully tried in Chicago. It has long been in successful use in fully tried in Chicago. It has long been in successful use in San Francisco, as illustrated by us, and
as to form of locomotive or adhesion.
The Belgian Government is engaged upon a scheme for promoting a complete system of tramways throughout the country,
as feeders to the railways, the work to be done by the various communes interested, either singly or in combin
where necessary by subventions from the State.
Mr . EDIson has taken out a patent for an electric brake which ame form as those used in his dynamo-machines, but instead of the ordinary armature a disc on the railway axles runs partly between the cheeks of magnetic poles, and when a circuit is made
the disc, of course, revolves under a magnetic resistance, and so the disc, of course, re,
brings its axle to rest.
THe report of the "City Day Census," 1881, published by Messrs. Longmans, Green, and Co., gives the total number of foot
passengers at the various railway termini and stations during passengers at the various railway termini and stations during
sixteen hours. TThe totals are as follows :-Liverpoo-street,
32,$324 ;$ Broad-street, 29,506 ; Cannon-street, 20,471 , Ludgatehill, 18,39 ; Fenchurch-street, 15,24 , Matsion House, 13,528;
 thenen at sixty points of inlet, including the above stations, and
was, for the sixteen hours between five a.m. and nine p.m. 739,640 , was, for the sixteen hours between five a.m. and nine p.m. 739,640 ,
and of this total no less than 128,000 were brought by the various
The following table gives the average miles of railway to each
square mile in the State and countries named $-A=$ the area in square miles, $\mathrm{B}=$ miles of railwantr, and $\mathrm{C}=$ square miles C to one
mine

 Iv his, B ,
Iv his recent report on the collision by which five people were
illed and many injured, which occurred on the 25 th of November, 1881, near Tayyort station, on the North British Rail way, Majar
Marindin, speaking of one of the signalnen, says. "At the time of the acoident he had been on duty for nearly thirteen consecutive hours, while his daily work on week days, exclusive of the time he
may have taken in walking to and from his home, would average arrival of which the minute. It is hardly too much to say that it is a scandal that such an amount of work, as is implied by these hours, should be exacted from any
man upon whose vigilance depends the safety of the public, and who, by a momentary act of forgetfulness, may, as in this case,
cause a fatal catastrophe ; and I was glad to learn that since the date of this a
at Tayport."
The proposed tunnel through the Pyrenees is beginning to
attract the attention of French politicians, and especially of the representatives of the departments which have most to gain by this
important scheme. A number of senators and deputies for the Hautes Pyrenees, the Gers, the Lot-et-Garonne, the Dordogne, Minister of Public Works, to imperess upon hhim the and. Nantagroy, of
constructing the tunnel at the extremity of the rail way which runs through those departments. General Deffis, senator for the Hautes Pyrenees and governor of the Military School at St. Cyr, produced
several
sketch maps of the proposed routes , urging the adoption of that which, passing through the valley of the Neste, enters the Pyrenees at a point almost equidistant from the Mediterranean
and Attantio coast. This point is in direct communuication with
Paris by railway through Auch, Agen, Limoges, and Orleans. M. Varroy promised that the question should be studied
bearings, before the final adoption of any proposed trace.
THE colour of the painting of a locomotive engine is a ques-
ion of some economical as well as ornamental importance correspondent of the English Mechanic recently gave the following
tion description of the colours used in painting ensines on different rail-
roads in Great Britain. The North-Eastern engines are of light green, with broad lines of darker green picked out with black and
white, the frames are of a light are, as a rule, red, but I have noticed lately that some of them are and mineral engines are black, picked out with red and white. The London and North-Western passenger engines are also black; the number-plates are red, and name-plates polished black. The
plainness is somewhat relieved by the coat of arms of the company
being painted on the splasher. are of light green colour; the frames of the latter are coloured not
unlike those of the North-Eastern engines, but darker ; both the Midland and Great Northern engines are picked out with
white and red; Great Eastern black, with broad red lines ; Lond white and red; Great Eatern back, with broad red lines; London, North British, olive green, , brood lines of ofkeck, edged with red,
name gilt, number-plate polished brass. This colour is now dying name gilt, number-plate polished brass. This colour is now dying
out among the North British passenger trains, and will soon be seen on the goods only. Now the colour is light yellowish green-or
greenish yellow-and frames and lines suby colour. Great Western, green, yellow lines, frames dark brown; London, Chatham, and
Dover, olive green, dark green borders, picked out with red; SouthEastern, dark green, with broad lines of darker green and white
ines ; London and South-Western, dark blueish green, broad black ines, white edges. Those of Lancashire and Yorkshire engines, black, like London and North-Western locoomotives; Manchester,
Sheffield, and Lincolnshire engines, green; London and SouthWestern, brown, Furness, iron ore colour, Maryport and Carlisle,
lark green, Caledonian passenger, luue, broad balack lines, picked
out with white. Single ensines of this railway have lion of Scot.

NOTES AND MEMORANDA.

AT a recent meeting of the Academie des Sciencés a a new pump
or compression of gases was described by M. Cailletet. A special feature is the presence of mercury above a plunger piston, with
which the mercury moves. An hour's work will give 400 or 500 gr . of liquid carbonic acid or protoxide of nitrogen. The author stores each other, and each holding about four litres. Pressures of each other, and each holding about for
several hundred atmospheres are attained.
A Russian naval officer has invented a very ingenious apparatus
for ascertaining the depth of the sea without the use of a costly for ascertaining the depth of the sea without the use of a costly
and heavy line. Indeed, no line at all is used. The instrument is described by Nature es consisting of a piece of lead, a small whee float. While the apparatus sinks, the wheel revolves, and the
registered revolutions indicate the depth. When the bottom is registere, revorutions indicate the depth. When the bottom
reached, the lead becomes detached, the float begins to act, and the machine shoots up to the surface, where it can easily be fished up
THE

THE use of a basic lining for copper-refining furnaces has been . expered intont the furnace contained 0.320 per cent. of iron, whereas at the close of the operation it contained but 0.030 per cent. He states that it is generally preferable to refine the copper on a
siliceous hearth until it contains not more than about one half per cent. of iron, and then to refine it on a basic hearth as abovementioned, so as to eliminate the remainder of the iron and sul phur it con
phosphorus.
The following formula for a good varnish for writing on glass is
given by M. Crova in the Journal de Physique :-Ether, 500 gr. given by M. Crova in the Journal de Physique $:=$ - ther, 500 gr .
sandarac, 30 gr .; mastic, 30 gr . Dissolve, then add benzine in small quantities, till the varnish, spread on a piece of glass, gives have a homogeneous layer, pour over that already formed some oi of petroleum, let it evaporate a little, then rub in all directions
with cambric cloth till all is quite dry. With ink or lead pencil with cambric cloth till all is quite dry. With ink or lead pencil
lines can be produced on this surface as fine as may be desired
Thus ately proje cted.
The following for silvering glass have been given by Mr. A. A
Common, F.R.A.S. :-Solution 1: Nitrate of silver, 1oz, water 100z. Slolution 2: Caustic potash, 1oz.; water, 10oz. Solution 3 : Glucose $\frac{1}{2}$ oz; ; water, 10 oz. The above quantities are those
estimated for 250 square inches of surface. Add ammonia to solution No. 1 till the turbidity first produced is just cleared. Now add No. 2 solution, and again ammonia to clear; then a little
solution, drop by drop, till the appearance is decidedy turbid again. Then add No. 3 solution, and apply to the clean glass surface. A tilm was obtained in forty-three minutes at a tempera-
ture of 56 deg. Fah. AT a recent meeting of the Société d'Encouragement, Paris, M
Dumas in the chair, Colonel Goulier brought forward, in the name of the committee of mechanical art, a new instrument invented
by M. Cuvillier for measuring considerable thicknesses correct to Ito of a millimetre. It consists of a divided rule with two fingers, one fixed and the other movable. The former is cylindrical
and capable of revolving on its axis but excentrically, the excentricity being a millimetre. After measuring the thickness of an
object within a millimetre by the rule the cylinder is turned until object within a millimetre by the rule, the cylinder is turned until
the piece is held tightly betwe the two fingers, and the angle through which the cylinder has turned gives the fraction of a

$$
{ }_{A}^{\text {milin }}
$$

A NEW apparatus for the determination of melting points ha
been described by Mr. C. F. CCoss and E. J. Bevan. The appa ratus consists of a small platform of thin ferrotype iron or silver
havin having an opening for the reception of a thermometer bulb and a
small indentation or depression about 1.5 mm . deep and 2 mm . in diameter. A very small quantity of the substance is melted in the
little depression, and while still liquid a thin platinum wire bent like an L, and fused in a glass float is immersed in the liquid and held there until the substance solidifies, A thermometer is then inserted in the opening, and the whole apparatus plunged under mercury. The mercury is gently heated, and the thermomete carefully watched. As soon as the substance melts the float rise the whole of the substance is surrounded with mercury, and the attention can be concentrated on the thermometer.
At the meeting of the Physical Society, March 11, Mr. Newth showed some experiments illustrative of the fact announced by
M. Mascart in 1875, that solid particles in the air are necessary to the formation of fogs ; and secondly, that certain gases, such as sulphurous acid gas, also cause fogs in the same way, by permitting
the moisture to condense upon these particles The experiment consisted in passing an electric light beam through large bulbs of glass containing air and a small quantity of water. When the air
in the bulbs was washed with the water, and thus freed from in the bulbs was washed with the water, and thus freed from
motes, the fog produced in the bulb by slightly exhausting it with an air pump was much less than when the air of the room, o smoke, or sulphurous acid gas, was admitted into the bulb. The
dust on a platinum wire, rendered incandescent within the globe by an electric current, also caused a sensible fog. It follows that
with gas fires instead of coal, there would still be fogs, though not

Av explosion caused by lightning in winter is recorded by the the New York, Ontario, and Western Railroad new tunnel on February 21st. From inquiries made it appeared that the wires usually employed to supply the electric lamps in the excavation
were used for the purpose of firing the charges, being disconnected from the electric light system for the moment and connected with the explosives. As a rule, six charges were fired together, those of
the afternoon relay of men being exploded at very reguar the last six usually at 5.45 p.m. There were only sixteen men in
the shatt and the the shaft, and the work of connecting the wires had commenced when the flash of lightning that occurred at $5.42 \mathrm{p} . \mathrm{m}$. suddenly
charged the conductors and produced the explosion. There were two llashes of lightning between the hours of five and six o'clock later. The former simply caused a slight perturbation of the lights in the tunnel, but did not extinguish them. It would thus
appear to be well to suspend blasting during storms in winter as well as in summer.
ALcoHoL is found present in nearly all waters. The Paris
correspondent of the Lancet says M. Muntz director of the laboratory of the Institut Agronomique, has discovered this by
 it at one humdred.t-thousandch part and even less. He finds it in all the natural waters-such as those of the rivers and the sea, and
in rain water and melted snow. For instance, in the water of the Seine and in rain water the proportion of alcohol was about one thousandth, or one gramme to each cubic metre. The proportion rain water; the proportion was also sensibly greater in sewage
water. From the presence of alcohol in rain and river water, MI Muntz concludes that it must also exist in the air, and even in the nnerior of the earth; so that it may be said to exist everywhere in the hypothesis that it is procuced by the decomposition of organic
matter existing on the surface of the globe, in the depths of the matter existing on the surface of the globe, in after its production
sea, and in the different strata of the soil, and
and in in the atmosphere, from which it is eliminated with the meteoric

MISCELLANEA.

The Gerard Electric Light patents for France have been pur-
hased by the Societe Anonyme d'Electricité for the sum of 200,000
Hamarksmirth Bridge will be closed on the occasion of the
nstuing University boat race for two hours before until two hours after the time appointed for the race. THE new turret ship Colossus- 9160 tons, 6000 indicated horse at Portsmouth Dockyard. Lady Emma Baring named the vessel. WE are asked to mention that as Lord Rosebery has now
decided not to build his mansion at Albert-gate, Mr. J. C.
Humphreys, of New Bridye-street, E.C., will again occupy the
premises he formerly held A NEW kind of folding packing case and crate, Billings' patent,
being made by Messrs. J. Walsh and Co.. 33 . New Browdstreet When folded for return they occupy about one-fifth the space when open. They are strong, easily put together or folded up, and
peem to recommend themselves for transport of electric lighting ittings and lamps.
The British Electric Light and Power Generator Company wil mps. The contract is for twelve months, and the cost is thre times that at present paid for the gas, but ten times the quantity
f light will be given. of light will be given. The cost of the light is thus to be about
one-third that on ne-third that of gas.
Some time since Messrs. Wolff and Son, of 5 5, Great Queen
street, sent us a bottle of liquid Chinese ink. We hreat street, sent is a bottle of iquid Chinese ink. We have tried it,
it is god, it sticks to the paper, will not wash, and flows well
and if it is always the eame as ste makers say the process then it secures all the advantages of a liquid against a solid ink.
THe production of pig iron in the United Kingdom in 1881 has
been $8,377,364$ tons, being an increase of 655.531 toms been $8,07,304$ tons, being an increase of 655,531 tons, or 8.4 per
cent. on the make of the previous year. This increase is the Wrgest that has ever occurred in any one year except that of 1880 When the production of pig sho
or 28.1 per cent. on that of 1879 .
AT last Friday's meeting of the Metropolitan Board of Works report of the Bridgees Committee recommending that Hammer-
smith Bridge be reconstructed, with an increased width carriage-way and footways, and that the forndations of the outhern pier of the bridge should be straightened, at a total
estimated cost, approximately, of $£ 80,000$, was unanimously adopted.
GREAT strides having of late been made in instantaneou
photography, the lessees of the Alexandra Palace have offere rizes of gold, silver, and bronze medals for competition amon professionals and amateurs, for the best photographs of the crowds
assembled on Easter Monday. Last Easter Monday 76,824 persons visited the Palace, and it is intended to summon the whole number of visitors on the southern slopes of the park at a certain moment

The Chinese or some others equally well informed of the character of the English at home have some curious ideas on our
treatment of each other. After reading some statements made at arecent meeting of the Bermondsey Vestry by a deputation which cineared playing in the neighbourhood of the sewer works going on, they will be confirmed in their ideas. One child, the deputation
said, had been run over and killed, owing to the want of a proper oarding; and a member of the vestry said that "one of his vans being frightened at the engine used in the sewer." In comment ing on the latter statement the Pall Mall Gazette asks:-"If one s the whole number of children rum over by vans and other

THE third annual ordinary general meeting of the share Limited, was held at the offices of the company, 34, Grey-
street, Newcastle-on-Tyne, on the 2nd inst. A dividend at the rate of 5 per cent. on the paid-up capital of the company
was declared. The report showed that the number o boilers under insurance had increased during the year ny by 35 per cent., and in addition the company has considerably increased
the number of booilers for inspection only. The engineer, Mr. W B. Campbell, reported that the company had had only one accident
being the collapse of both furnace flues of a Lancashire boiler,
which arose from the stoker inadvertently nsing his hammer to adjust the front manhole door, as it was letting water escape. The adjust the front maninole door, asit was letting water escape. The
result of this incatious proceeding was to further displace the
door, the boiless being then door, the boilerss being then under 40 lib. pressure of steam, so that
he attendants were driven back, unable to prevent the collapse he attendants were ariven back, unable to prevent the collapse AT a meeting of the Metropolitan Board of Works on Friday, a Committee, which also contained a supplemental report by the
chief engineer, on the means to be adopted for the discliarge of the storm waters into Deptrord Creek durng the period of heavy rain
fall. With the object of averting the evils of tlooding they had
before them the construction of an adiditonal outlet into the creek at the Deptford Pumping Station, at an estimated cost o
$£ 75,000$. The Greenwich Board of Works had obtained injunction restraining them from forming new outlets; but the board had
rrom time to time under their consideration the formation of out ets in lieu of them into the new sewer now in progress from sewage and rainfall into the highay, -velel sewer in the neighbourhood
of the creek, would give additional means for the discharge storm waters. The engineer was of opinion that a relief from suc additional storm waters would be best afforded by the construction
of a sewer of large capacity north of the ligh level sewer down Church-stret and Deptford-groen into the Thames at this point.
The oost will he between $£ 30000$ and $£ 40,000$. The committee
The new tea steamer, the "Stirling Castle," built by Messrs.
John Elder and Co. for Messrs. Thos. Skinner and Co., was tried in the Clyde on Fridiay and Saturday last, and gave a speed which
shows her to be the fastest ocean-going steamer in the world. I the course of a run of six hours on Friday, she gave an average speed of 1818 knots, and on Saturday six consecutive runs at the measured mile gave a mean speed, calculated on the Admiralty 3 min .23 sec . 3 min . 12 sec .; 3 min . 18 sec.; 3 min . 13 sec .; and n board ready for the voyage out. Her length is 430 ft ., breadth Oft., and depth 33 ft ., and she registers 4300 tons. Her engine are the three-cylinder type, and have developed 8237-horse power.
The diameter of the high-pressure cylinder is 62 in ., and the two low-pressure 90 in ., with a 5 ft . 6 in . stroke. Surface condensers are of steel, and present a total heating surface of $21,161 \mathrm{ft}$.; the grat 2 quare inch. The propeller is made of manganese bronze, i revolutions at the trial was $66 \frac{1}{2}$ per minute, accompanied by crew shaft. The hull is built of steel, on plans approved by the Admiralty, with a view to national requirements, and is capable
of carrying coal for a twenty days cruse. Great interest is
attached to the performance of the vessel, as she may be regarded

FRITH HILL, GODALMING, AND FARNCOMBE WATERWORKS. mr. Jabez church, m.I.C.E., WESTMINSTER, ENGINEER. (For description see paye 215.)

i

STEAM AND HAND STEERING GEAR.
messrs. J. H. Wilson, Liverpool, engineers.

During the past few years many improvements have been made in steam and combined steam and hand steering gear, and amongt those who have taken up this branch of marine engineering are Messrs. J. H. Wilson and Co., Sandhills, Liverpool. The accompanying engravings fully illustrate the steam and hand steering gear made by them and as already fitted to about one hrom the engravings it will be seen that the transition from From the engravings it will be seen that the transition from
manual to steam working is the work of but one movement, mamely, throwing a clutchinto or out of gear. On turning the steam steering wheel the helmsman at will gives the desired direction

to the helm, and also supplies from the engine just the necessary force either to port or starboard from half a link length to lever is provided, which being actuated by the helmsman's foot secures for him safety, comparative ease, and complete control of the helm. At the top of the wheel column or standard there is provided a quadrant tell-tale marked port, starboard, and steady, which accurately pourtrays by an index pointer the varying position of the helm. Two steam cylinders A A, placed respectively at each side, act by connecting rods B B direct on to the crank discs C C keyed to and acting on the worm shaft with link motion is D , in one piece. An ordinary D slide valve whaft E -common to both engines-to which is attached a
lever F F, with a slotted head G G, on to which a clutch lever |brass bushes. Wo lubricate the bearing a dovetailed slot running H H is pinned. The short or clutch end of this lever works into nearly the whole length of the top half of the bearing, as shown a cod-head or clutch J J, which forms a portion of the horizontal in the above section, is packed with cotton, which, becoming shaft K K, and travels on a short length of a differential screw, on which is attached one of the pair of mitre wheels $M \mathrm{M}$, to which motion is imparted direct from the steam steering wheel.
The apparatus is, of course, capable of being worked as easily The apparatus is, of course, capable of being worked as easily instantaneously if required. The helm can, we understand, be brought over from hard-a-port to hard-a-starboard or reversed in ten seconds. The engine being connected through the medium of a worm, it will be seen that this acts as a continuous pawl, and no slip or back-lash of the cable can take place. The arrangement and design are good, and when kept in proper working order the gear should work noiselessly, while it takes little more room than ordinary gear.

BENTALL'S UNIVERSAL JOINT PLUMMER BLOCKS.
The accompanying engraving shows a new form of plummer block manufactured by Messrs. Bentall, Brothers, Fullbridge Works, Maldon, Essex. The advantages claimed for this bearing consist in the fact, that its construction, as may be seen from
the section, being of the nature of a ball-and-socket joint, it

saturated with oil, and being in contact with the shaft, the latter is continually kept moist, and a film of oil iskept spread over the entire wearing surface of the bearing.

CENTREING CENTRE PUNCH.
We illustrate herewith a small centreing centre punch made by Mr. R. K. Jones, Birkenhead. The specimen which has been sent us is for diameters up to lin., though they may, of course be made for sizes as much above this as is desirable. Beyond ahout 3 in . however, the advantage of greater accuracy, and saving of time over the crdinary method of centreing spindles and

other pieces for turning, would not be so great. For centreing small work, however, the punch we illustrate is effective of great saving of time, and in careful hands would last a very long time.
Our sketch shows the apparatus partly in section, and as in use except that it would almost always be used vertically centreing a piece about half the greatest diameter of the guiding bell. The little tool is well made, the bell and guide being of gun-metal.

THE CURRENT METER OF PROFESSOR A. R. HARLACHER.
The following paper, by Herr Richard Blum, City Engineer, Leipzig, has appeared as a "selected paper" in the "Proceedings " of the Institution of Civil Engineers:
Every one who has had ocaasion to measure the velocity of wate the instruments in urrent for that complained, and witpose are inconvenient, and do not give results scientifically satisfactory. With Woltmann's current meter, which has been chiefly used, the operation of
determining the velocity is delayed and rendered laborious by the necessity of remoring the meter from the water for every is the only one which can be used. in large and deep rivers. One cause of the inaccuracy of the results obtained by this instrumen is that considerable time is required to determine the velocity at
different depths in any vertical section, and a still longer time to repeat this operation at a sufficient number of verticals to give a
good value of the mean velocity at the cross section. In mos good value of the mean velocity at the cross section. In most
cases the level of the water surface varies during the operations, cases the level of the water surface varies during the operations,
and thus the different velocities are not ascertained under the same conditions, and cannot agree accurately with each other
Some engineers, therefore, have tried to shorten the time require Some engineers, therefore, have tried to shorten the time required
for such measurements, by improving the method of counting the
rotations of the meter. Thus Mr. Ritter-engeer-in-chief et Chaussees-at Paris, in 1859, and Mr. Henry, when measuring rivers flowing into Lake Erie in 1867 , adopted a method for elec
trically registering the number of rotations of the meter, and dis pensing with the necessity for lifting it out of the water for each
reading. Mr. Ritter reading. Mr. Ritter especially took great pains to improve the
current meter in this way, but arrived at no satisfactory resulte Professor Harlacher, of the Technical High School at Prague, wa the first to construct a current meter which obviates all the diffi-
culties and drawbacks of the instruments previously employed The Harlacher current meter permits the velocioust to be deter deter mined in the shortest possible time. Before describing the detail mined in the shortest possible time. Before describing the detail
of the instrument a general statement may be given of its merits of the instrument a general statement may be given of
and advantages.
The current meter is a serew meter on the same general prinThe current meter is a serew meter on the same general prin
ciple as the old instrument of Woltmann. Connected with it is an indicator or clock actuated electrically, which shows the number
of rotations of the screw. The meter is suspended in the water by a cord so that it can be raised or lowered at will. It can there fore be readily placed at any depth or allowed to descend slowly
and uniformly from the surface of the water to the bed of the river. The instrument is never taken out of the water until the measurements in one vertical of the section are completed, because the electric registration of the rotations is effected above water.
When the mean velocity at one vertical is required, that is mos easily obtained by allowing the meter to descend, regularly and
slowly along that vertical from the surface of the river number of rotations on the electric indicator and the time ar noted. Dividing the rotations by the time, the mean rate o rotation of the meter corresponding to the mean velocity of the
stream is found. The result is identical with that obtaine laboriously, by mear points on the vertical and taking the average of the velocities It is therefore needless, in future, to adopt the time-wasting method of observing a number of velocities at different points in each vertical in the cross section of the stream. It is only neces sary to allow the meter to descend once along each vertical from
the water surface to the bottom. Thus the whole of the measure ments for a cross section can be completed in as many minutes as hours would have been required with the old form of the Wolt mann meter, and the results will be more reliable, because for so
short a time the general conditions of flow of the river will have remained constant. Variations of velocity due to variation of the evel of the river are virtually eliminated when the It is unnecessary to describe all the stages in the invention of the present form of the Harlacher meter. It is sufficient to say
that Professor Harlacher worked for several years at its improvement, and that his success was acknowledged by the award at the Paris Exhibition of two gold medals
The Harlacher meter is constructed as follows:-For the movable staff, or rod is substituted, which is planted firmly in the bed of the river, and along which the meter slides up and down during the observations on any one vertical. This rod is a cast
iron tube with a solid point at the lower end AA, Fig. 1. The other parts of the apparatus, except the electric battery and indicator, are fastened to the tube, so that the whole can be moved from one vertical to another without having to be taken apart. The screw of the meter B is two-bladed. For very small velocities
it would be preferable to adopt a four-bladed screv diameter. The screw is fixed on a steel shaft $b-\mathrm{Fig}, 2$-which has an excentric enlargement at one point b_{3}. This makes contact with the steel spring b_{4} at each revolution of the meter. These
contacts complete the electric circuit and the current which contacts complete the electric circuit, and the current which
passes actuates the electric clock or indicator. The weight of the passes actuates the electric clock or indicator. The weight of the
screw B , the shaft b, and the rass box b, which carries the shaft, is balanced by a counterweight b_{5}, Figs. . 1,2 , and 3 . This keeps screw b_{b} serves to regulate the pressure of the spring $b_{\text {s }}$, while the
two screws b_{7} fasten the spring to the brass frame which surround two serews b_{7} fasten the spring to the brass frame which surrounds
and . protects the shaft. The shaft is square at the end which receives the screw, which is put on and held fast by a nut b_{s}, Figs ${ }_{2}$ and 3. The brass frame b_{2}, is fixed to a hollow cylinder C Below the hollow cylinder C is a plate C_{1}-Figs. 2 and 3 -which
prevents the instrument approaching too closely to the bed of the prevents the instrument approaching too cosely to the there it might be injured or retarded by obstacles. In the
rinter whe and $5-$ in which $\operatorname{pin}_{\text {pasten }} c_{s}$ is carried. To this pin the end of the suspending rope D is fastened. The internal diameter of the ccllinder C is a
larger thittle
lat larger than the outside diameter of the hollow rod A on which it
is to slide. The part ce, to which the rope is attached, is connected rod A . Thus the instrument is kept always-if the pis properly placed - with its axis normal to the plane of the cross
section. The cylinder C is also fitted with rollers $c_{5} c_{c}$ which render the motion on the fixed rod easy. After the instrument pulley e_{1} is attached at the top, and the rope is-Fig. 1 -with pulley. The rope D is wound on a barrel F. This barrel is fixed with the frame f_{1} and the pin f_{2} on the arm G - Figs. 1,6 , and $7-$
which is firmly fastened to the hollow rod A. With the barrel i connected the apparatus f_{3} registering the depth at which the rate of rotation of the barrel and permit the adjustment of the speed of the meter in its descent along the rod A. By the handle Fig. 6-arrest the rotation of the barrel. The movement begins as soon as the ratchet is lifted by the lever. On the frame of the
barrel F are fastened the contact serews 1,2 for attaching the wires of the electric circuit. The screw 1 is con nected with the rope D , which is a copper wire rope covered with
insulating material. The rope is in electric contact with the shatt of the screw through the spring $c_{3}-$ Fig. 5 -because an pin c_{s} and the lop opo one of the screwnsects the lower end of the b_{7}-Tigs. 2 and 3 -which
fasten the spring to the brass frame b. the cast iron pipe A, which is in contact with the rest of the appa ratus through the parts $\mathrm{C}, \mathrm{G}, f_{1}, f_{2}$, and $\mathrm{F}-$ Figs. 6 and 7 The appa putting a wire into the loop of screw 3 the depth of the meter below the water line can be registered electrically. The registering apparatus H -Fig. 1 -has two dials, one marking single revolu-
tions and the other hundreds of revolutions. If desired, a recording
arrangement can be added, the rotations of the meter being marked on a slip of paper in the same way as in a writing telegraph or
Professor Harlacher used this arrangenent in chronograph. Professor Harlacher used eive arrangenent in
determining the variation of velocity at a given fixed point. The battery I and the clock or indicator H, with the rod A carrying
the meter, are placed on a float P . The sight vane K is fastened to the rod A, so that it is parallel to the plane of the cross section and then the axis of the screw is normal to the cross section and parallel to the current. The float is anchored in large rivers and Pastened to guide ropes or poles in smaller streams. As soon as
the work at one vertical of the cross section is finished, the anchor the work at one vertical of ene cross section is other tightened, so as to bring the float into a new position in an easy and a speedy manner. The float must be built so as to be capable of supporting our or five persons.
The determination of the mean velocity at one vertical, by allowing the meter to slide once from the surface of the stream to the
bottom, is accomplished thus: The meter B and all its connecboctions C , c_{1}, \&c., are brought to within a few inches of the water
net surface, the fingers of the electric clock being set at zero. Then the barrel F is released by the lever $f_{7}-$ Fig. 6 . As soon as the
axis of the screw touches the water surface a signal is given, the
author's investigations on the four rivers, at points lying at an
extreme distance of 3000 yards apart, twelve lours were required, when determining the mean velocity both by allowing the instrument to slide down through the water, and by noting the velocity at every 2 in. of depth. For those observations in which the mean velocity was determined by allowing the meter to descend
through the water only, six hours and a-half were required for the four rivers, the measurements being repeated at each vertical three to ten times, according to the velocity of the stream. Further, the transport of the float from one cross section to another occupied in all about one hour of the time given above.
can be recommended to every engineer interested in the treatis* which tions. Danube in 1878. The drawings of the meter are taken from this work.
velocity of the water v from the observed number of rotations the where $\alpha \quad v=\alpha+\beta n$,
liminary experiments with the meter in still water. The meter liminary experiments with the meter in still water. The meter
is towed over a measured distance in still water at different speeds,

electric clock is brought into the circuit by a spring lever, and begins to count the rotations of the screw. It is necessary to com-
mence with the meter some small distance above the water mence with the meter some small distance above the water
surface, in order that it may acquire the proper descending velocity previous to the counting of the rotations. In a certain number of seonds the meter descends from M to N -Fig. 1 -having at each oo the velocity of the water at that depth. Dividing the numbe revolutions by the number of seconds, the rate of rotation corre fact that the disc c-Figs 1 and 3-prevents the mete from descending exactly to the bottom entails a small correction This correction, however, will be more insignificant the larger the ifference of the heights $M N$ and $N O$, that is, the deeper the rive the readings of the instrument at each vertical should be repeatel, nd the ere The results of single measurements will not differ much from each other, but the repetition of the readings will give a certainty that all the variations of the velocity at the given vertical ar Before using the meter, its constants must be determined in the ame manner as with the Woltmann apparatus. A length arked out in a still-water basin, and the meter is frequently
moved through this distance at different speeds. It is essentia hat the movement of the boat or float on which the meter is
The above descintion of
The above description of the apparatus will prove that the Before the author was satisfied that the mean velocity in on vertical could be determined by a single observation in the wa described above, he made numerous experiments. The velocity was ascertained by allowing the meter to descend through tint
water, and also by observing the velocities at equidistant point on the vertical and taking the mean. The results of the two methods differed only in the fourth or fifth decimal place. The Harlacher meter may be employed in large and deep rivers. The inventor has used it in the Elbe and Moldau rivers i The time required for the meanurements is very short. The author has at various times made observations in the sewers o
Leipzig, and in the four small rivers which flow through it, ascertain the amount of pollution occasioned by sewage. In th channel, It took seven hours to record the necessary results. In the
the speed in each trial being, however, as uniform as possible. The occupied in traversing the distance, are observed accurately. Let m be the sum of the number of seconds o
the velocity during any trial.
n the number of rotations in any trial in one second.
$\Sigma\left(n^{2}\right)$ the sum of the squares of the values of n.
$\Sigma v n$ the sum of the products of the corresponding values of v
Then by the method of least squares-
$a=\frac{\Sigma n^{2} \Sigma v-\Sigma n \Sigma n v}{\Sigma \Sigma n^{2} \Sigma n^{2}}$
$\beta=\frac{m \Sigma \Sigma v-\Sigma v \Sigma n}{m \Sigma\left(n^{2}\right)-\Sigma\left(n^{2}\right)}$

Patent Law. - The Society of Arts Bill for the Amendment of the Patent Law has been brought in by Sir John Lubbock, Mr. W. H. Smith, and Mr. J. C. Lawrence, Q.C. The

Leyland Local Board: Competitive Sohemes for Public engineers to send in plans and estimates of the cost of the whole of the works necessary for the water supply of this district, the following gentlemen submitted schemes, viz. : Mr. Henry Bancroft, Manchester; Mr. P. L. Edinger, Woiton-le-Dale; Messrs, Forde, Liverpool; Mr. Joseph Harding Preston, Mr George Heaton, Wigan; Messrs, Moorson and Sacrè, Manchester; Mr. Alfred Moore, Manchester; Mr. E. Timmins, Runcorn; and Mr. William Wrennall, Liverpool. The board have held special meetings to consider these schemes, and from the closeness of the been keen. The board ultimately at their meeting on Thursday ast decided to adopt the scheme submitted by Mr. William Wrennall, of Liverpool, who is consequently selected to carry out the works. The scheme submitted by Messrs. Goodison, Atkinson, and Forde was considered to be second, and they

* "Die Messungen in der Fibe und Donau und die Hydrometrischen
Apparate und Methoden des Verfassers." Von A. H. Harlacher, 4to Apparate und Method
Plates. Leipzig, 1881.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
THE WATER METER QUESTION.
SIR,-In Your issue of the 3rd inst., in your article on "Mceters
or Rater " you state - with reference to or Rates," You state- with reference to a paper on "Water Waste
and Water Meters," by Mr. M. W. Kingsley, published by the
Civil Wer Mes, Civil Engineers
given in the paper which of show that a pipe even . . in. . idameterer wire
discharge about 322,000 gallons per annum, if open constantly; and a pipe of tin. diameter nearly $40,000,000$ gallons,
There is evidently some mistake or misprint regardi noted " discharge" said to obtain in the United States. The be overstated to give one-tenth that quantity by a pipe din. diameter, even assuming the discharge correctly speaking not by a pipe, but by an orifice, din. diameter, in the side or end of an ordinary
house service pipe. $40,000,000$ gallons per annum by a tin. orifice house service pipe. $40,000,000$ gallons per annum by a tin. orifice
require a velocity of 596 ft . per second, equal to a theoretical head
of 5515 ft . $4,000,000$ gallons per annum would hequire 55 ft . of of 515 ftt . $4,000,00$ gallons per annum would require 55 ft . of
head -theoretial and actual nearly 135 ft of of head. The discharge set against the pipe 1 ini. diameter requires-theoretically-
a head of 90 ft ., and -actually -of 178 ft ., on condition that the a head of 90ft., and-actually-of 178 fft , on condition that the
coefficients are something between 0.640 and 0.740 for the diameters and discharges
The following table of results was obtained from experiments I made-a number of years ago, and have since repeated- for the
purpose of ascertaining the discharge, or waste of water by small purpose of ascertaining the discharge, or waste of water by small
openings or orifices in service pipes, and bears on the point to gations with openings of corresponding diameters, viz., sin. gations
Diameter of Orifice, 1 İin. Lead Service $\frac{1}{1}$ in. diameter, 3 ft. 2 in .

	Discharge as measured.			Discharge by calculution.	Veloci			$\underset{\substack{\text { Head } \\ \text { divided. }}}{ }$	
409		P0	${ }^{167,535}$	$\begin{aligned} & h: V h:={ }_{h} \\ & +0 \cdot 62 \\ & +2 \cdot 22 \end{aligned}$	${ }^{39}$ 59,9		729 725 715	ft. 21 44 90 90	ft. 25 48 94

Diameter of orifice, 1 in. Lead Service $\frac{1}{2 i n i n . \text { diameter, } 3 \mathrm{ft} \text {. }}$ length, joined to Street Service Pipe 3in. diameter.

Pressure	(Discharge as $\begin{gathered}\text { measured. }\end{gathered}$			Discharge by calculation.	Velocity.		${ }_{\text {divided. }}^{\text {Head }}$	
苋								\% 旁 8 8 0
		$\begin{gathered} 8226 \\ 9207 \\ 10050 \end{gathered}$	$3,017,090$ $3,360,555$ $3,679,200$	$\begin{aligned} d= & \sqrt{h} \cdot \sqrt{h:}: d: \\ & +3 \cdot 00 \\ & +3 \cdot 00 \end{aligned}$	$44 \cdot 68$ 49 454 55 2 1	$66 \cdot 820 \cdot 6$ $77 \cdot 040 \cdot 6$ $86 \cdot 260 \cdot 6$	ft.	47
Theoretical velocity $=\sqrt{29 \mathrm{H}}=8.025 \sqrt{\mathrm{H}}$. Actual velocity $=\sqrt{29} \mathrm{H}=8.025 \sqrt{\mathrm{Hc}}$. Theoretical head $=\frac{\mathrm{V}^{2}}{64 \cdot 4}$ Actual head $=\frac{\mathrm{V}^{2}}{64 \times \mathrm{C}^{2}}$ $\mathrm{D}=\frac{\mathrm{B}}{\mathrm{C}}$					is	. per feet p ad in feet. efficient of tual vel. oretical vel seharge.		

The discharge opening was formed in the end or side of a lead to
to and supplied by a ain. diameter cast iron street service pipe, a tested pressure gauge being placed 2 2tt. from point of discharge,
While the ratios between pressure, discharges, and diameter not theoretically quite agree, the results practically and accurately indicate the discharges when the drawing off does not more than perceptibly affect the gauge
I expected to
supply by meter, and as to my experience of the Tyler and other having already occupied so much of your space I defer for the present,
March 14th.

smith and moore's method of getting coal

 SIR, - As unauthorised and imperfect notices of the new procesof coal getting by Smith and Moore's patent have appeared in several journals, the proprietors of the system-which has been patented in all countries where cral mines are worked-have
resolved, in consequence of the numerous communications they have received, to publish the following deseription of the proeess and its results, as prover by sev sev
Shipley Collieries, near Derby.
The mode of operating is to employ lime in a specially caustic
state. This is ground to a fine state. This is ground to a fine powder, and consolidated buy a
pressure of over thirty tons into the form of cartridges, which are
 use, Holes are first drilled by means of a light boring machine. An iron tube, having a small external groove and a cap of calico on
the end, and fitted with a tap, is first inserted along the whole the end, and hited with a tap, is ifrst inserted along the whole
length of the bore-hole. The cartridges are then introduced and lightly rammed, so as to ensure their completely filling the bore
hole. After the cartridges have been tamped up in the way as when using gunpowder, a pump is connected with ordinary
at the end of the tube, and a quantity of water equal in bulk to the quantity of lime used is forced along the tube, and escapes through the calico cap into the lime, saturating the whole of the
charge. The tap is then closed, so as to prevent the wosene steam, and the pump is detached.
By this system the
By this system the water is at once brought into contact with
the cartridges in a closely confined a large volume of steam an a high condition, immediately creating
thesure, and the great force a arge volume of steam at a high pressure, and the great foree
thus produced, followed by the expansion of the lime, is sufficient to bring downt the coal.
Absolute immunity areme of the advantages obtained by its use :-
flame ; absence of smosion of gas, there being no fire or flame ; absence of smoke or noxious smell, the roof is not shaken
the coal can be got with wedging the arpat with much less exertion to the collier than by
not leave the stalls or discole and inexpensive.
discontinue working, as is the men need
gunpowder, and they can by its use avoid all risk of injury while
the coals are falling. The results, when compared with wedging show a considerable increase in the percentage of large coal got. On and after April 3rd, the proprietors have made arrangements to send on payment of railway fares only, to any colliery where it may be desired to try the system, competent workmen, with cart-
ridges and necessary tools, who will show how to use the patent. ridges and necessary tools, who will show how to use the patent.
The process is so simple that one or at most two days would probably suffice to demonstrate its practical value.
sent to communications should be addressed to me; and men will be Shipley Colliery, Derby, March 15th

frigorific action of the condenser,

SIR,-As the important subject of condensation in steam
cylinders is now attracting to state that so long ago as 1843 my late father published in Weale's "Quarterly Papers on Engineering", an article, "Hints on
some Improvements of the Steam Engine," in which the phenosome Improvements of the Steam Engine," in which the pheno
menon of loss of heat in the cylinder, due to internal condensation and re-evaporation, is pointed out and investigated. The followin brief quotations will show that the frigorific action of the condenser is no new discovery:- A film of water is deposited on the durface of the piston and cylinder, which are kept by the steam at tempera on the liquid very little evaporation takes as the stea moment the pressure of the steam is removed, on opening the passage to the condenser, the boiling point of the water suddenly becomes about 110 deg., and as the metal with which it is in con of about 100 deg. of temperature above the now reduced boilin point of the liquid, which must cause its immediate evaporation. This reduced temperature of the cylinder causes a correspondin condensation of the steam with which it is filled at the succeedin stroke, and so onuntil an equilibrum is established. The cylinder win exterior causes of cooling, will be considerably lower than that of

In the same paper, 1843, superheating is proposed as a remedy as engines are usually constructed, we cannot expect to obtain the anll effect of steam unless, after its carmotionect to obtain th contact with water, so as to acquire a high temperature with a relatively low density or prossure. . Ate that is required is to increase the temperature of the steam after it leaves the boiler,
and one simple mode of effecting this would be, as suggested above and one simple mode of effecting this would be, as suggested above,
to cause the heated gases before entering the chimney to act on
the sim the steam through the medium of any convenient arrangement o steam might pass immediately on leaving the boiler."
Palerme, March 6th.

faure batteries.

$\mathrm{Sir},-$ At the meeting of the Society of Engineers on Monday to charge a Faure battery and at the same time to use the chargin current for generating the electric light. It seems to me that this proposition runs counter to the conservation of energy theorem,
which has already been disputed by some physicists on the Contiwhich has already been disputed by some physicists on the Conti
nent, who assert that if it be true, the received dynamical theory of the energy of a perfect gas must be wrong. The proposition concerning the Faure battery to which I have
alluded was vigorously disputed by another electrician, who alluded was vigorously disputed by another electrician, who
asserted that "wwe cannot have our cake and eat it." Perhaps
sit is right.
Perhaps some of your readers will tell me where I can get a Faure battery to try.
Lonaon, March 22nd.

the foundations of mechanics.

SIR,-Will you permit me to say that, before replying to Mr I would ask him to carry his remarks a step further, and explai how it is that a load is raised from a coal pit, the pull at opposite
ends of the wire rope being the same. If he asserts that it is not ene same, then I would ask him to answer these questions : (1) Given a load of 1 ton, moving upwards at a uniform velocity o
16 ft per seeond, what is the strain on the rope, neglecting the weight of the rope? and (2) assuming that the strain is more tha 1 ton, will Mr. Ramsbottom give me a formula for calculating the
additional strain, and will he refer me to some authority on the

What I have said to Mr. Ramsbottom will apply to the letter of $\xrightarrow[\substack{\text { Mr. Adams. } \\ \text { London, March 21st. }}]{\text {. }}$

the priming of boilers

SIR,-Your correspondent "G. F. B. L.,", in last week's issue H.M.S. Polyphemus. Perhaps the following rom some light on the subject. The air forced into the boiler-room was equal to 6 inin. of water. This would cause very rapid combustion
in the fire-box and in the fire-box, and expose the tube plates to a very high tempera-
ture. On entering the tubes the flmes would bee into small sections, and before they had passed half through would become extinguished, rendering the temperature irregular, the local heat disturbing the water and saturating the steam-in, fact,
causing the water to foam about even to the top of the stean causing the water to foam about even to the to of the steam
chamber. I Ihave seen this demonstrated with the chamber. Thave seen this demonstrated with the manhole cove flames issuing from the funnel is caused by re-ignition of the gase in the smoke-box-a common occurrence with the ordinary marine
boiler. The temperature in the fire-box would probably be abot boiler. The temperature in the fire-box would probably be abou
2400 deg. - in the tubes 800 deg. The locomotive, having the blas in the funnel and carrying a thicker fire, produces a steadie boiling action than can be obtained by forcing air into the boile room, as in the case of the Polyphemus.
London, March 22nd.
vacuem brakes on the midland railwar Sir, -Having read the letter in your issue of March 17th purporting to have been written and signed by "A Guard," givin
you a proof of trains running frequently without vacuum, and mentioning as an illustration the working of the 12 noon St Pancras to Liverpool on the 23 rd or 24 th of February, I beg to beg to give an empas the guard of the train mentioned, and also the means taken to stop this train at Garrston. He states that b mistake the driver went on to Cressington. I will allow this ; bu wen he states it was owing
oo contradict his statement
If your correspondent had the same aptitude for veracity that been taken up in contradiction. I hope in future "A Auard
beill
bill will give his name as I give mine. Tor SEESON. Liverpool, March 21st.
[Why did not Mr. S.
train running through ?-ED. E.] on the brake when he found his
the leavitt pumping engines.

the sectional area of pump, neglecting the slip; in other words,
calculating from the theoretic instead of actual lift of pumps. calculating from the theoretio are correctly stated by bim at
The foot-pounds per 112 lb . coal arm eport, $=91 \cdot 64$ theoretic. The efficiency of pump as given in $9164=114,550,247$ foot - pounds. My figures therefore stand correct. I should like to ask if the two diagrams engraved with
the eletter are from the Lawrence engine or the other one referred Nottingham, March 20th.
REGINALD Boition.

THE INSTITUTION OF CIVIL ENGINEERS.
the design of structures to resist wind pressure.
AT the ordinary meeting on Tuesday, the 14th of March, Sir
J. W. Bazalgette, C.B., vice-president, in the chair, the firs paper read was on "The Design of Structures to Resist Wind
Pressure," by Mr. Chas. B. Bender. It was observed the wind Pressure, by Mr. Chas. B. Bender. It was observed that wind
pressure was as often overrated as underrated. Instruments to measure the velocity and force of the wind were not very reliable on acoount of the frequent change of direction of the wind, and
of its action by sudden gusts, and not by mere statical pressure. of its action by sudden gusts, and not by mere statical pressure,
The most trustworthy experiments, made with falling plates by General Didion, yielded pressures of 40 lb . per square foot on a tes plate having an area of 10.76 squarest pate was very material
miles per hour. The size of the test Had Der idion used p patese 1 i2in. square, the pressure would have
been only 32 lb. The form of surface exposed to the wind was been only 32 lb . The form of surface exposed to the wind was
also of importance. Hollow cups experienced double pressures cylinders only one-half of the test pressure, and there were forms Since hurricanes generally acted with great lifting power, in calcolating the wind pressure upon a structure the oost dangerous
direction of the wind must be considerec. For bridge floors, wind airection of the wind must be considered. For briage loors, wind coming from below at an angle of about 25 deg was the most
trying. Now, assuming the wind to blow in this direction, and little from one side, the total oposing surface of a structure having regard to the size, position, and form of its members, and in the case of railway bridgese, carrying a light passenger train on
the floor, must be considered. Engineering structures must be so
and the foor, must be considered. Enginererng structures must be so
built that there should not be any movement, either of shifting turning on a pivot, or tilting of the whole structure. Further one-third of the calculated breaking strain. Since the horizontal wind-bracing might experience strains from the vertical loads,
those strains must be deducted from the specified maximum ; and it would be found that for short spans there would remain available for wind properd five tons, ford fort for lange there woulwayld remain avaides six tons per might be influenced by the vertical loads, and it must likewise be designed to stand strains arising both from wind and from moving had to be carried to the lower floor and leach bracing of a bridge had to be carried to the lower floor, and each end must be suffi-
ciently strong and stiff. As regards details, it was essential to provide strong plates or pins for joint connections, so as to absorb ectentic application of forces must not be neglected, and there should be joint. Iron piers, also long span bridges, must be carefully giving a sufficient base, or by anchoring to heavy blocks of masonry,
well proportioned and well executed, or by both of these methods. well proportioned and well executed, or by both of these methods.
The consideration of the action of wind materially influenced the proportion of the width of a bridge to its depth, and the latter was
limited long before the maximum height was reached, as regarded vertical loads, in a bridge of most economical design. For
instance, in a girder bridge of 400 ft . span and 18 ft . wide,
the instance, in a girder bridge of 40 ooft. scono and 18 ft t. wide, the
iruss could not with safety be deper than 45 ft ; if built 50 ft . truss could not with safety be deeper than 45tf.; if built 5 witt.
deep, a width of 21 ft. . was advisable. As the foroe of the wind upon a large railway bridge amounted to about the load of an
ordinary train, it followed that its design for carrying vertical loads was only part of the problem to be solved.

RESISTANCE OF VIADUCTS TO SUDDEN GUSTS

The second paper was on the above subject by Prof. Jules Gaudard was necessary to find the greatest pressure to which it might be subjected by sudden squalls. The maximum wind pressure in
England has been stated by Rankine to be 55 lb on the square foot, but a pressure of 71 lb . was observed at Liverpcol in Septemd to have exerted only from 331 lb , to 50 lb , was made by American engineers in designing bridges. In order to procure more precise data, it was
urged that suitable apparatus should be at once established in various places, for recording the pressures attained during severe affected by wind, as evidenced by the injuries inflicted by gales on the Roche-Bernard and Menai bridges. This class of bridge had
been stiffened by additional cables from the top of the piers to the been stiffened by additional cables from the top of the piers to the
roadway, by stays underneath, by cross-bracing between the suspension rods, by stiffening the sets of chains themse spreading out the cables laterally at the tops of the piers
distance apart of one of their sides, and one completely covering the other, the wind pressure on the two screens was 1.7 of that
upon the exposed seren. The presure, however, upon two
pote plate girders connected by a platform was evidently less,
and when the roadway was at the top or bottom of the girders might be reckoned as 1.2 of the pressure on the wind-
ward girder. In the case of trellis girders each opening might be regarded as an orinice with thin sides, in passing through which the
stream of wind experienced a certain amount of contraction, which occasioned a somewhat greater resistance than the proportion of An arch had the merit of opposing less surface to the wind in the central portion of the span; whereas the reverse was the case
with a bow-string. Two narrow iron arched bridges of large span at Oporto and Montereale had been secured against the wind by speciards the springings, so thirst, by spreading out the iron ribs apart at the crown, were 49 ft . apart at the springings; and the second, by placing side buttresses against the haunches of the arch,
thus providing a wider base. Trains passing along a lattice girder bridge increased the surface exposed to the wind. In the case age of the piers. The strains upon the Bouble viaduct, having lattice girders and braced iron piers 189ft. high, were investigated, and it was shown that in the extreme case of a wind pressure of
55.3 lb and a train on the viaduct, a strain of 244^{2} tons would be
thrown on the anchora thrown on the anchorage. The strain on the anchorage might be
provided for, either by stays fastened near the tops of the piers and secured to the ground, or by widening out the base of the piers by bpecially exposed to damage from wind, but they might be The force of waves, beating against very exposed structures, appeared occasionally to have attained a pressure of about 6000 lb .
per square foot, but in general the shock of waves was estimated
not to exceed from 600 lb . to 1000 lb . Even with this latter not to exceed from 600 lb . to 1000 lb . Even with this latter
pressure, the blow of a wave against the lower portion of a light-
house was more to be dreaded than the pressure of the wind unless the tower was exceptionaliy high. On the contrary, in the case of a high viaduct, the effect of the wind on the lofty super-
structure was more dangerous than the beating of the waves against

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to
 cases, be accompanied by a large envelope legibly directed by the
writer to himself. and bearing a do. postage stamp, onder that
answers received by us may be forvorded to their destination. answers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply
vith these instructions with these instructions.
** We cannot undertake to return drawings or ma
$* *$ All letters intended for insertion in THe The Engnerr, or
${ }^{*}$ contaning questions, must be accompanied by the name and
 proof of good communications.
anonymous (Blackburn). If you vill send models or dravings they shall have

SUbscriptions.

Half-yearly (including double numbers), Yearly (including tuo double numbers)

If credit occur, an extro charge of two shillings and sixpence per an be made. THE ENCNENER is registered for transmission abroad. Cloth cases for binding The Exainerr Volume, price 2s. 6 d.
Many Volumes of The Exainer can be had price 18s. each.

advertisements.

 except weeely advertisements are taken subject to this condition.
Advertisements cannot be inserted unless Delivered b

MEETINGS NEXT WEEK.

THE ENGINEER.

MAROH 24, 1882.

captain eaps' ship railway.
Captain Eads, an American engineer, whose claim to
hat title has been disputed in the United States proposed long ago to construct a railway across the Isthmus of their cargo as 6000 tons could be carried. The line is to run from the Bay of Campeachy to the Bay of Tehuantepec, about longitude 95 , and between 15 and 20 deg. north
latitude, and will be about 150 miles long. Instead of going round the whole coast of South America to reach the round the whole coast of South America to reach the overland by the Eads Ship Railway. This attractive pro-
posal was suffered to lie dormant for a long time. Recently it has been revived, and is now being run, to use a
Yankeeism, in rivalry with the scheme of M. de Lesseps. Yankeeism, in rivalry with the scheme of M. de Lesseps. and has been referred to the United States Senate Committee on Commerce. This Committee has introduced a
few modifications into the Bill, and has recommended its passage. In order to help the Bill through the House
of Representatives, Mr. Eads has printed a pamphlet in of Representatives, Mr. Eads has printed a pamphlet in
which he publishes in a compact form the opinions of several English shipbuilders and engineers whom, it
appears, he hes consulted. Thus, for instance, we find Mr.

Barnaby saying, "The problem of constructing a car on which a fully loaded ship can be safely transported over
such a railway is soluble, and the solution is, in my such a railway is soluble, and the solution is, in my
opinion, fairly indicated in your-Captain Eads'-plans." opinion, fairly indicated in your-Captain Eads-plans,
Mr. John Fowler says: "I have satisfied myself that there is no mechanical difficulty in carrying ships of any size
without injury to themselves in a properly designed car or without injury to themselves in a properly designed car or
cradle over a solidly constructed railroad." Many other cradte over a solidy constructed raile cautiously enough. Given the car and the railroad, and the thing can be done No one we fancy disputes this; but the construction of
the car, to say nothing of the railroad, involves some the car, to say nothing of the railroad, involves some
matters of detail about which it would be imprudent to matters of detail about which it would be imprudent to has fully endorsed Captain Eads' views is Sir Edward Reed, who, according to the pamphlet from which we are quoting, says : "I am of opinion-after making some
guiding calculations-that the weight of a car and cradle, of ample strength to carry a ship of 4000 tons weight, need not exceed 500 tons; if to carry a ship of 6000 tons, seen, has made some calculations Edward, it will be seen, has made some calculations. He has not spoken
without thinking, and yet there can be no doubt but that he is completely mistaken, and that no car could be made weighing but 750 tons to carry a dead weight of 6000 tons. It may be said that this is a matter of but little importance ; nothing more is needed than to make the car load to be transported the brencer will be the cost of trans port. The Eads Railway is a commercial scheme ; and so long as it was fathered by American engineers we had no remark to make. But the undertaking assumes a differen is to be used to back up Mr. Eads in getting capital. Under such circumstances the scheme is one about which we may have a good deal to say.
doubt of any kin weighing 6000 tons out quite possible to lift a ship car, transport her 150 miles by rail, and put her into the water again. In other words, Captain Eads' idea is quite sound. Whether the things to be done can be done in the way he proposes to do them, and by the means he has suggestea, is quite another mateer, concerning whatever. If it is essential to the success of his scheme that his transport car should not weigh more than 750 tons, then the scheme will be a failure; and as sir Edward The United States Railrood Gazette has already exposed the fallacy of Sir Edward Reed's assumptions. 5 ft . driving wheel with its tire may be taken as weighing a can carry. To support a load of 4000 tons, four hundred wheels would be required, representing as many tons. But the wheels must have axles, and axle-boxes, and springs, and frames to which to fasten these things. It is not wheels, and we that they will weigh as much as the before a portion of the cradle proper in which the
ship is to rest has been touched. Our America contemporary puts the question in a different and still more telling aspect:-"Taking the carrying capa-
city of ordinary car wheels, and-for reasons which will be given hereafter-assuming the weight of a shi cradle at one-half that of the ship and its load, we would
have for a 4000 -ton vessel a total load of 6000 tons, or have for a 4000 -ton vessel a total load of 6000 tons, or
$13,440,000 \mathrm{lb}$., which would require 1792 ordinary car wheels to carry it. A 6000 -ton ship would require the movement of a load of 9000 tons, or $20,160,000 \mathrm{lb}$., or 2688 wheels. Having this data it is comparatively easy to get at the weight required for certain parts of the running
gear, from the weight of these parts now in use. The gear, from the weight of these parts now in use. The
following are the weights of the standard parts now recommended by the Master Car-builders' Association :33 in . wheel, 530 lb .; standard journal box, 74 lb .; standard journal box cover, 10 lb ; standard journal box bearing,
9 lb .; standard journal box bearing key, 4 lb.; standard $9 \mathrm{lb} . ;$ standard journal box bearing key, 4 lb. ; standard
pedestal, 141 lb .; standard axle (one-half), 173 lb ., or in all 941 lb . Now, $941 \times 1792=1,686,272 \mathrm{lb}$. $=752$ tons and $941 \times 2688=2,529,418 \mathrm{lb} .=1128$ tons. In other words, the weight of wheels, and other parts enumerated, is alone 50 per cent. greater than that which Sir Edward
J. Reed - 'after making some guiding calculations'-estimated as the whole weight of the cradle." In practice it is well-known that the tare of a goods wagon is at least one-half the weight of the load the wagon will carry-a
10 -ton wagon weighing 5 tons, and so on. We cannot see why Captain Eads' car should be an exception to the rule. Thus, then, it may be looked on as certain that the
car alone will weigh nearly or quite 2000 tons if 4000 tons car alone will wei
are to be carried.
To haul this enormous load will be no light task. It appears that no definite route has yet been fixed upon, but Captain Eads admits that he will have to get up
inclines of 1 in 100. It requires a locomotive with 18in. cylinders, 2 ft . stroke, and 5 ft . wheels. to take with certainty 200 tons up such an incline as this. Thus thirty very heavy engines would be required to haul the ship will run twelve sets of bosies, carrying the cradle and ship will run twelve sets of bogies, carrying the cradle and ship
above. It will be very difficult to keep the load equally distributed among all these bogies and it is probable that the resistance will be much greater than that of a goods train. But assuming that thirty engines suffice, it is easy to see that the cost of working must be enormous, At 5s. per to this sum be added the cost of lifting and lowering the ship; maintaining the mechanism in order; keeping up the
road, and so on in a country where the cost of everything, and especially of labour, is enormous, it is clear that nothing but a very large traffic can make the enterprise appears to be impossible to railway cannot carry. It 4000-ton ship out of the water, lift her 40ft., put her on a cradle, carry her 150 miles across country and put
her afloat again in less than twenty-four hours. Thus but
one ship can be carried each way in the day with a single car and railroad. The toll paid by a 4000 -ton steamer in
going through the Suez Canal is about $£ 1700$. A return going through the Suez Canal is about $£ 1700$. A return
ticket for such a ship can be had for $£ 2700$. If the toll ticket for such a ship can be had for $£ 2700$. If the toll
were raised the canal would not be worked to its full capacity, and it is very improbable thatCapt. Eads would ge more than $£ 3000$ for a return ticket. Thus, the maximum 300 working days in the day or $£ 450,000$ a year, assuming 300 working days in the year. The cost of the railway is estimated at $75,000,000$ dols., or $£ 15,000,000$. There is no evidence to prove that the earnings would suffice to cover all expenses and leave a profit on this gigantic capital; nor is
there any reason to conclude that the carriage of one ship there any reason to conclude that the carriage of one ship
each way per day would meet the wants of the shipowners each way per day would meet the wants of the shipowners.
It is more than probable that for every ship weighing It is more than probable that for every ship weighing
4000 tons which wanted carriage five weighing a good deal less would present themselves, and the earnings of the railway would be proportionately reduced; and it is not improbable that not one, but several cars would be required to send a 2000 -ton car with a 1000 -ton ship.
Putting the commercial aspect of ship
side, we have nothing to urge against it railway on one side, we have nothrig and clever, and presents a splendid field for the display of engineering talent. As we have
fild said, we do not for a moment dispute its practicability but Captain Eads will gain nothing by minimising the diffisurmountable. Nothing but skill and very large sums of money are needed to get over them. It will not do, however, to start with the idea that it it is better to say that the lrary, it will be best in the lhan they can be. On the conculties rather than make light of them. The Eads Ship Railway must be something more than a toy ; and its making and working will not be child's play. This truth ought to be put very plainly
subscribe to its construction

vienna city railways.

The dilemma in which the project for the elevated been brought by a host of factious opponents is it ithas one of endless entanglement; but when all its bearings are taken into consideration, and some slight knowledge of the conditions of commercial life in
brought to throwna is light on its intricacies, the situation is by no means so complicated as it at first appears.
The vote lately passed by the Town Counci, after four postponements for further investigations and six months' delay is, to say the least of it, one of the most grotesque acts of self - stultification ever perpetrated by a body corporate. The result of their deliberations is the more show of earnestness that promised better things.
Not only was a Railway Commission appointed, consisting of eighteen members of the Town Council, whose labours Met ended on the 6th of February, but the Stadtbauamt, on Metropolitan Board of Works, were also requested to prepare a list of conditions under which the elevated railway independ accepted. The result of the labours or these the part of the Stadtbauamt, containing. nineteen cardinal points representing their own views, with the addition of about thirty different resolutions passed by the Austrian Institute of Civil Engineers, the Chamber of Commerce, and a still more detailed list of requirements on the part of the Railway Commission, in which nineteen paragraphs were devoted to general principles, fifteen to special condiwions, and three to the question of stations.
With all this matter before them, it might have been reasonably expected that the members of the council in full assembly would have paid some slight deference either to the opinions of their own engineers, or to the resolutions of the committee appointed by themselves to decide on the merits of the project, more especially as the latter had taken six months to prepare them. But in the discussion, which lasted four sittings, no reference was made to the resolutions of either the Stadtbauamt or the committee.
The greater part of the time was occupied by mutual The greater part of the time was occupied by mutual recriminations between the holders of opposite political
views ; and the results of their tedious deliberations were views; and the results of their tedious deliberations were embodied in the following enligmatical tesolitions:-
(1) "As the Corporation can only consent to the construc(1) "As the Corporation can only consent to the construa execution, the regulation of the river Wien and the demolition of the octroi lines be undertaken, and, because the present laws relating to granting concessions for railways,
especially in regard to expropriation and the control of construction do not sufficiently protect the interests of the construction, do not suriciently protect the interests of the
commune, they declare herewith that they can give their consent, at the present moment, to neither of the projects Corperion declares itself 'in principle' for ' (2) The tion of a City Railway." It may be as well here to remark that, in spite of numerous false assertions to the contrary, both spoken and published, neither the Minister of Commerce nor the Municipality of Vienna have ever investigated or paid any attention to any of the numerous soseveral scientific which, during the discussions in the rapidity of mushrooms, but have confined their researches, first of all to the merits of the elevated railway of Messers, Bunten and Fogerty; and, secondly, out of deference to native talent, to the underground project of the Vienna Baugesellschaft. During the discussion the latter scheme was not even alluded to.
The arguments which preceded-we will not say prothe mark as the resolutions themselves from the from expected to the questions propounded by the Minister of expected to the questions propounder by the Minister of
Commerce. One honourable member, a self-styled disciple of the "æsthetic," fulminated against an elevated railway as a "barbarism" and an "outrage," and with all the and mastered the elegancies of oratory no less than those
of art, surpassed himself in his happiest conception of the fitness of form, by designating London "the ugliest city
in the world," and New York "the dungheap of all the in the world," and New York "the dungheap of als the
garbage of Europe," and appealed to his hearers to suffer garbage of Europe," and appealed to his hearers to suffer
rather the stagnation of all commerce than to promote the prosperity of the city by adopting the ideas and innovations of such examples of bad taste and iniquity. Many other speakers followed in similar strains; but to the
initiated ear the key-note of personal hatred against one initiated ear the key-note of personal hatred against one
or other of their political opponents could be distinguished or other of th
It would tax the ingenuity of the Delphic Oracle to produce more enigmatical resolutions; but they are at the
same time, fair samples of municipal "decisions," where same time, fair samples of municipal "decisions, where section, whose sole hold on power consists in the readiness oo hurl accusations broadcast on the personal integrity of anyone rash enough to oppose them. The tactics of
this party, as shown by a late trial-in which their ringleader was condemned in costs-are directed against elevate the masses. The corruption they pretend to only in their own imaginations. They view the upright conly in their of of imaginations. They view the upright
other the jaundiced eye of their own disease, and seek only, by threats of denunciation, s, however the one side of the question, it now stands; and it would, indeed, be a sad one, did the welfare of Vienna and the chances of the railway uncture. But the entire intelligence of the city, the whole of the ministerial departments, the Society of Engineers and Architects, the Chamber of Commerce, the commercial associations of nearly every district and of the city and environs, the whole of the railway companies in Vienna, to say nothing of 400,000 inhabitants of the
suburbs through which the line is projected to run, and who have presented a petition to the House of Representatives praying the same to support Mr. Fogerty's railway, are all advantage, by the employment of thousands during its construction, who are now so borne down by the taxes imposed on them by the municipality that they can scarcely earn
their daily bread; and a permanent advantage in the influx of an enormous capital, in improved means of communication, by a decentralisation of the population-the bugbear and dread of the houseowners in the city, who form the majority of the Town Counci- -and in the erecfice from town or State, and will, at the end of the concession, become the property of the Empire.
The higher authorities, in whose hands the final decision rests, are by no means blind to the numerous benefits to be derived from so useful and important a construction; they have, from a feeling of deference to the wishes of the
municipality of so important a capital as Vienna, offered them the opportunity of displaying their loyalty, their patriotism, and their care for the improvement of the city committed to their charge, and have asked their opinion;
but they are by no means bound to be guided by so negative an expression. Their feeling of justice is far too high to saddle an undertaking that promises to raise Vienna to
the level of an actual and not a fictitious capital with all the level of an actual and not a fictitious capital with all
the shortcomings of the Corporation for centuries past. the shortcomings of the Corporation for centuries past to the dictation of an irresponsible body to alter the laws
of the country to suit personal requirements, and their of the country to suit personal requirements, and their
duty to the town and their allegiance to the State duty to the town and their allegiance to the State
must compel them, as there is no doubt it will, and as speedily as the forms will allow, to treat with
dignified silence the implied refusal of the municipality dignified silence the implied refusal of the municipality
to assist them, and the covert attempt to wrest concessions for party aggrandisement at the expense of the
State ; and they must sanction the construction of, to use State ; and they must sanction the construction of, to use
the Minister of Commerce's own words, " the only project that is suited to the requirements of Vienna, and on the execution of which the future prosperity of the city
depends." depends.

the building exhibition

The annual Building Exhibition was opened on Monday, and this year it is well worth a visit. This is seen to be the case
immediately upon entering the Agricultural H Hall, as, although the character or class of the leading articles shown is the same as in the two former exhibitions, there is a muxh larger display
of good representative work, and Mr. Black has succeeded in persuading several firms to go to considerable expense in
arranging attractive stands. There is a very marked absence of irrelevant shopkeeping displays as compared with those of last year and 1880, and the Building Exhibition may now be said to
be organised and arranged in a manner which will make it of value not only t t those engaged in the building trades, but to
everybody. It is, however, it must be pemarked purely everybody. It is, however, it must be remarked, purely a trade
exhibition, and therefore is essentially practical in its instructive
capacity. There are, for instance, no displays of woods of diffecapacity. There are, for instance, no displays of woods of diffe-
rent and little-used kinds from various parts of the world
intended to show what there is in intended to show what there is in colonial or other lands await-
ing application. There are few architectural drwing show ing application. There are few architectural drawings showing
systems of ventilation and heating, and so on ; but there are systems of ventilation and heating, and so on; but there are
plenty of wooden articles made from the timbers which the
builder or manufacturer can at present most economially builder or manufacturer can at present most economically obtain
or use to the best advantage either as to original cost cost of working, or appearance, and there are plenty of ventilators and ventilating apparatus., In fact, so numerous are these, that it
would fill much space to describe those of recent origin only, would fill much space to describe those of recent origin only
There are several good displays of building stones and marbles some of which are not much used though very nice looking;
not high in cost and apparently durable, the marbles being of Belgian production. An indirect illustration of the difference between the population of Belgium and that of Ireland, where
some deposits of beautiful and easily accessible marbles exist some deposits of beautiful and easily accessible marbles exist
suitable for chimney-pieces and clock, of both of which there is a large display in the Exhibition. There are several buildings
in the Hall
illustrating the employment of stone and iron for lodges, conservatories, balustrades, gates, \&c., as designed by
well-known artists of modern architectural taste, and there
are very numerous structures in concrete of various com-
positions and colours, after the manner of Lascelles' coloured con building houses, cottages, stalue of concrete as a material facility and strength. Cornices and other ornamental work in cement of different, and of some neer kinds, are well shown by
structural illustrations ; and terra-cotta occupies considerable structural illustrations; and terra-cotta occupies considerable
space. There is a very large display of fireplaces and cooking space. There is a very large display of fireplaces and cooking
ranges, exhibiting no marked improvement, unless it be increased ranges, exhibiting no marked improvement, unless it be increased
simplicity in the details of the interchangeable open and closed simplicity in the details of the interchangeable open and closed
fire ranges; and we need hardly say that gas fittings and fixtures fire ranges ; and we need hardly say that gas fittings and fixturee
are, as usual, in great strength, and on stands from a few feetsquare to those of many yards, with really fine displays. The electric light is to be seen on a small scale. Hoisting machinery and ries shownes and other tools are well represented, and some novel
thise though it contains no features of special novelty to engineers.
There are novelties in water and sanitary appliances, one watercloset flushing and waste-water preventer being shown which ha not a single valve, but which acts with a syphon and water-
displacing vessel, which on being depressed starts it into action.
the northern steel works.
Nor the least interesting of the tables that have been issued of the production of last year is that dealing with
Bessemer steel. That part referring to the production of
the North is of special value, because it shows the result of the North is of special value, because it shows the result of
the efforts that have been begun in recent years to render the the efrorts that have been begun intrict recent years the great Bessemer steeld-making isstricts of the kingdom. Although we believe that one o
the earliest of the licenses that were issued for the use of the Bes semer process was granted to a firm in Durham, it is only within the last three or four years that there has been any production
of moment of Bessemer steel. But the efforts that have been made to extend the steel manufacture in the district have been so successtul, and the four works that are now in existence
between Tudhoe and Eston have been so well worked during the year, that not less than 264,986 tons of ingots have been made last year. This was an addition of not less than 120,000 tons to British district. In the current year there is full ground fo British district. In the current year there is full ground for
the belief that the production will considerably exceed that of
the past. In the first place six out of the fouteen converters the past. In the first place six out of the fourteen converters
were not erected last year till part of the time had gone, and as these have been fully employed there will be this year a gain from that cause; and in the second, there are four or five converte to be starte it evis year, which towards the close may add to the
yield. It is evident that the steel manufacture has planted itself firmly in the North of England now, and that there may be in iron for that growth which the large resources of the are in course of erection, in which six additional converters are to be placed, and the proved success of the basic process will in
all probability stimulate the building of works in the North.
That process opens out the vast fields of ironstone in Cleveland
to the uses of the steel trade; and though as yet the great to the uses of the steel trade; and though as yet the great
bulk of the steel produced by it has been used in the rail manufacture, it seems to be contemplated that there will be speedily a use found for it in the steel plate trade. If this is so
it would lead to an immense development in the North-east, of the steel manufacture, because of the consumption of
steel plates in shinbuilding in that locality It may be too soon to speculate on the nature of the steel trade that will grow in the North-east, but one fact cannot be overlooked. In the production of rails, Cleveland has to compete with many districts,
some of which are more advantageously situated than it for the supply of certain markets. This would not be the case in the
plate trade, for the consumption would be largely local. But the prowth that has been noted in the past two or three years may
be expected to continue, though the precise form of the additional trade may not be discernible.
tored

The North-Eastern Railway Company is now bringing towards completion two of the largest of the works it has long had in Middlesbrough branches. The opening of the first is the event to take place in the that of the other-though later-is expecter ines will for years to come complete the service of the agricultural part of the North Riding, so far as the North-Eastern is concerned. The Pickering and Seamer branch runs through an exclusively agricultural district from near Pickering to
Seamer Junction, close to Scarborough, and it is intended to expedite the traffic to that queen of the northern watering-places to the end of last yearr caused the of construction, and has up the current halt-year it is estimated that $£ 10,000$ more will be expended on it, and that ards $£ 6982$ will be needed to at $£ 151,000$. The other branch is a put, in ruch more costly
and Company had expended not less than $£ 186,742$ on it since it took the undertaking in hand, and $£ 56,000$ were estimated to be needful to complete the line from that period. The
share capital of the original railway company was a quavter of share capital of the original railway company was a quarter of a
million, so that with debentures, the cost of the line, originally milion, so that with debentures, the cost of the line, originall
planned for sixteen miles long, is fully half a million sterling. will serve as a link in the chain of coast communication, and wil open out for passenger and mineral traffic a valuable tract o Whitby. With these works, the bulk of the important lines for developing North Yorkshire must be looked upon as finished, and
the North-Eastern Railway Company will be able to turn its attention a little more to parts that yield it at the present time a ver large traffic, the coast of Durham, and the coal-fields that send thereto for shipment-a district for which it has re
cently done little. The past ten or twelve years have filled cuntly done litthe. Yore past ten or twelve years have filled
up many of the Yorkshire dales, and now what the NorthEastern Railway has in some degree to look to is the provision of fresh routes from the have hinted at, and also the formatio trades to the manufacturing centres of the midland districts. It is evident that there will be proposals on the part of other
companies to enter this field if it is not more fully served, and it companies to enter this field if it is not more fully served, and it
would be well if there were that fuller provision for the growing trade of the north-eastern ports that the changed circumstances
of the last few years have rendered indispensable.

the arlberg tunnel.

Ar a recent meeting of the Société des Ingenieurs Civils, Paris, under the presidency of M. Emile Trélat, M. Mallet presented an in Western S witzer by M. M. Meyer, engineer-in-chief of the railways
in
Arlberg tunnel Arlberg tunnel. This paper is of considerable interest, and con-
tains many particulars of this work. The tunnel is to be
$10,270 \mathrm{~m} .-11,231$ yards-long. The hoights above datum at
the ends are 1302 m . -4572 ft .-on the east and 1215 m. .
3986 ft .-on the west. The highest point inside the tunnel is 1310 m .- 4298 ft .- so that the longitudinal section shows a rising and a falling gradient. The height of surface above the centre
of the tunnel is 800 m . -262 fft . It was at first intended to drive an inclined shaft to the middle of the tunnel, but this was abandoned on account of its cost, and the tumnel is being driven from the two ends. The rocks to be passed through consist of
crystallised and micaceous shales containing a variable proportion crystallised and micaceous shales containing a variable proportion
of quartz. The quartz is most abundant on the east, and the rock there approaches the gneiss. Mica predominates in the west, where the rocks are softer and less compact, giving rise to infiltrations of water and necessitating the use of timbering. The English method of driving has been adopted, and the heading at the bottom is 2.75 m . wide by 2.30 m . high- 9 ft . by 7 ft . 6 in . municating with a drift in the upper portion of the section 2 m . wide by 2.30 m . high-6ft. 6 in. by 7 it. 6 in .- which follows
closely upon the heading. The rock-drills and appliances for venils are driven by water-power. Two systems of rock pressed air, and on the west a rotary drill worked by a watel has been $3 \cdot 3 \mathrm{~m} .-10 \mathrm{ft}$. 10in.-and the cost is estimated at 34,711,000f.- $£ 1,388,440$,

N ORNITHOLOGICAL DANGER TO BRIDGES
In foreign climes the engineer has much to contend against. Elephants pull down telegraph poles ; monkeys short-circuit
wires ; white ants devour sleepers ; snakes bite him; scorpions wires; white ants devour sleepers; snakes bitur him; scorpions
sting him; natives rob him; indigenous labour carries wheel barrows on its head with two shovelsfull of earth, and holds that it does well. He is starved, and roasted, and roundly abused, Iaking one thing with another his life is not a happy one. In
certain districts it is worse than in others; thus white ants may be found superadded to scorpions in some places, while snakes and tigers go together in others ; and in South America a danger appears to exist about which nothing has been heard hitherto.
Mrs. M. G. Mulhall has written a very amusing book published by Stanford last year, and entitled, "Between the Amazons and Chaco, Paraguay, and Matto Grosso." From Mrs. Mulhall we learn that on the line of the San Louis Railway the ostriches are so numerous as to cause much trouble; for whenever onlyman loment, they disappeared, being swallow, w up by these birds,
momed
and one of the enginers declared that they even went so far as and one of the engineers declared that they even went so far a to pick the boits out of the iron bridges if they were left by an untruth, especially to a lady, it must be taken for granted that this is true ; but certain speculations arise in the mind which has absorbed such facts. What for example, we may ask, is the
biggest bit of iron an ostrich can get down? Could a large one manage to swallow a rivetter's hammer ? Given sufficient time could an ostrich get out a rivet which had been closed, and
swallow it How many ostriches would be required to eat up a lattice bridge, 100 ft . span, in a year, giving them a fair chance

LITERATURE.

On the Treatment of Steel. Issued by Messrs. Miller, Metcalf, and Parkin, Pittsburgh, U.S. 1882
This little volume professes to be a reprint of circulars issued at various dates by the firm whose name it bears, and who are steel makers at the Crescent Works, Pittsburgh. It also includes a paper entitled "Why Does
Steel Harden ?" read by Mr. Metcalf before the Engineers" Society of Western Pennsylvania. The former part consists mainly of remarks on the treatment of tool steel in the various processes to which it is subjected. These are eminently pithy and to the point; and we cannot do better than quote a few of them. The firm hold very
decidedly the view that pure steel is simply a compound of iron and carbon, and with regard to the percentage of carbon they give a series of analyses showing how accu-
rately it can be judged by a skilled eye. In a series of specimens arranged by eved by a skilled eye. In a series of specicareful analysis failed to detect a single error in the arrangement. They then go on to annealing, and their anneal any piece of steel, heat it red hot-and no moreheat it umformy, and heat it through, taking care not to let the ends as take it out of the fire, the sooner the better, and cool it as slowly as possible. fext, as to heating steel-with the three-fold object of forging, hardening, and tempering
they lay down the two following principles:- (1) The they lay down the two following principles :- (1) The
eflect of too high heat is to open the grain, $i . e .$, to make the eftect coarse ; (2) the effect of irregular heat is to cause irregular grain, irregular strains, and cracks. Hence they declare that steel should never be heated higher than all through, and that when hot enough it should be forged immediately, never being allowed to "soak" in the fire or, if for hardening, should be quenched immediately with an ample supply of the cooling medium. For tempering the rule is the same, with the addition that the cooling down shoud as slow as possible.
parts experiments on the results of heating different and then quenching the following sereal deduced :-" (1) Any difference in temperature sufficient to be seen by the colour will cause a difference in the grain, and this variation in grain will produce internal strains and cracks ; (2) any temperature so high as to open the the original ba the hardened pirdel piece to be bittle, liable to crack, and to crumble on the edges in use ; (3) a temperature high enough to cause a piece to charden the piece to not high enough to open the grain, wimpered bar, and to carry a keen edge ; (4) a temperature which will harden and refine the corners and edges of a bar, but will not harden it through, is just the right heat for taps, rose-bits, \&c., as it will harden the teeth sufficiently without risk of cracking, and will leave the mass of the tool soft and tough."
Passing on to the usual mode of using steel, the authors always be finer in grain than the proritis y tempered should cannot be done, consistently with the hardnessnecessary, the
steel is too low in temper originally, that is, contains oo little carbon, and this should be atered. Steel high in carbon should be work "generally the most hurried and crowded smith, being "generally the most hurried and crowded
man about the establishment," naturally tries to harden man about the establishment, naterraly at about the same heat. To avoid this trouble, all tools at about the same heat. To avoid this trouble,
the purpose for which a bar of steel is wanted should the purpose for which a bar of steel is wanted should always be stated with the order, which is very little tr
to the buyer, but is an immense relief to the maker.
The authors next treat the question of gauges, and descant upon the absurdity of the three systems of gauges in use, and the still greater absuraity of graduations between these, distinguished by such phases as tight, easy, dc. As they pertinenty ask, How is it possible or a roller to know just how many millionths of an inch nother man, whom he never saw, means when he says how many thousandths of an inch the other man's gauge is wrong in its make." The authors advocate getting rid of his by the use of the micrometer sheet-metal gauges hich are simple, and measure thousandths of an inch. Theories propounded, without actually endorsing any, and also gives the results of a number of experiments, chiefly on the specific gravities of steel under different circumstances. Into these we cannot enter, but may quote the following general laws, which, it is held, have been made
out:-(1) The specific gravity of the ingot varies with the quantity of iron present; (2) the greater the quantity of carbon the greater the amount of work necessary to procarbon the greater the change of volume due to a change carbon the greater the change of volume due to a change
of temperature. The last law is very important, as indicating why steel high in carbon is so much more apt to crack in working than a lower quality. With regard to the cause of hardening, the writer leans rather to the view that the quenching suddenly stops the molecular motion within the steel, and thus produces great internal tension, with consequent hardness and brittleness, as is known to be the case in hardened glass. This molecular action, as is remarked, may very possibly be combined with the carbon which the recent experiments of Professor Abel appear to have proved to exist between hardened and unhardened steel.

WATER SUPPLY OF SMALL TOWNS FRITH HILL, GODALMING
In continuation of the articles commenced in our impression for the 10th March, 1882, we now give illustrations and par Church, M.I.C.E., Westminster, for the supply of Frith Hill, Godalming, and Farncombe in 1878-9. The supply in this cans is from a deep well, and the works afford a good example of what may be done in the supply of small communities at a cost easily dealt with.
Well.- After trial borings were taken, the well was sunk at the foot of Frith Hill, in the lower greensand and rock which crop out here. The depth of the shatt is 7 oft., the upper portion of with an inch of cement between the two wh place only the cind wa place only the outer ring was put in, so as to allow the iron inner ring of brickwork was built up to form a found pation the the stone ourb. The cylinders are lin. thick, and were to have brickwork , external diameter to a depth of 54 ftt . below the cylinders could be got in when internal ones were the 6 ft .6 in . cylinders could be got in when internal ones were used to get
to the depths required. This well was a most difficult one to construct, as the cylinder had to be sunk through live sand by
the aid of a diver. When the cylinders were in the aid of a diver. When the cylinders were in place and the
bottom made sound with concrete 1 lin shown in the section, page 212 letting in the drilled a water came throuch a parge fissure in the rock wumnin. The Frith Hill, which was cut through by the cylinders Powerful temporary pumps were then fixed, and the water, full of sand, was pumped down as low as possible, when manholes were cut in the cylinder just opposite the fissure. All the
sand and rock in the neighbourhood of these holes was taken out and ballast put in its place, so as to keep up the surrounding in the fissure pumped away, in the tissure pumped away, perfectly clean and high-classed pumped down below the level of the fissure. The contract for carried out by Messrn Thot including the pumping, \&c, and wa a and Son.
161 ft . above the well, the reservoir - At the top of Frith Hill structed, as shown in the engravings- the tower for the supply of the high district of Frith Hill, and the reservoir for the supply of Godalming and Farncombe. The tower buildings
were designed by Mr. C. F. Hayward F.S A were designed by Mr. C. F. Hayward, F.S.A., who has a residence pany. The reservoir was constructed by Messrs. T. Docwra and inaccessible position of the site somewhat expensive owng to chimney shaft and flue, were built by Mr. Pink, a local builder The flue was formed of "rock con side of the hill some distance. The cost of the builder's work was $£ 1658$.
Pumping Machinery.-The engine, boiler, and pumps were
erected by Messrs. Young and Co., of Pimlico. All the work erected by Messrs. Young and Co., of Pimlico. All the work
is arranged with a a view to ultimate duplication of the machinery,
The engine is horizontal The engine is horizontal and non-condensing, though a condenser may be added at some future time. The cylinder is 12 in . dia-
meter by 24 in . stroke, fitted with an expansion valve with arrangement for altering cut-off equally by a right and left-hand
screw. The fly-wheel is 8 (t. 6 in. diameter, and weighs about screw. The fly-wheel is 8 itt fin. diameter, and weighs about
3 tons. The boiler is a single-flue Cornish boiler, 15 ft . long, 5 ft . 6 in . diameter. The pumps, illustrated on page 212 three in number, are on the bucket and ram principle. The buckets are
9 in. and the rams are 6 gin. diameter by 21 in. stroke. The pump buckets and the suction valves are of the double-beat descrip. tion. The cost of the machinery was $£ 1188$. The engine consumes exactly 31 lb . of coal per horse-power per hour. The total
cost of these works, including Parliamentary cost of these works, including Parliamentary expenses and land,
is $£ 12,000$ for a scattered population of 700 or at the rate of
$£ 1$ 14s. EI 14 s. 3d. per head, which ip very satisfactory, especially when the population.

TENDERS

AT a meeting of the Harbour Commissioners, held last Friday evening, the tender of Mr. William Rigby, of Worksop, Notting
hamshire, to construct the Dock, Railway, and Swing Bridge for hamsine, to construct
$£ 80,200$, was aceeted. The work. to be commenced at once, and
completed in twenty-one months. W. H. Wheeler, M. Inst. C.E., complete
engineer.

NORTHAMPTON

For the erection of a new brewery for Messrs. Ratliffe and
Ceffery. Messsr. Davison, Inskipp, and Mackenzie, consulting engineers and architects, 62, Leadenhall-street,
for No. 1 contract-by Messrs. Curtis and Sons.

For levelling, forming, and sodding proposed Recreation Ground or the Barmouth Improvement Committee. Mr. Thomas Roberts,

\section*{| Powell, Barmouth |
| :---: |
| Williams, Harlech |
 Williams, Harlech

Owentortion
G. Williams, Harlech
 Morgan, Doigolly
Thomas and Davies
Engineer's estimate}

THE ROYAL INSTITUTION.

mr. SWAN on the electric lighl

LAsT Friday night Mr. J. W. Swan, of Newcastle-on-Tyne, udience of the session sinsiderable nu nable to find more than standing room.
Mr. Swan first described the electric
t the Royal Institution. Sir H. Davy, he said, Drovy and Faraday of white hot gas between two pieces of carbon; the stream was produced horizontally, and it was called the " "lecetric arc" because
the currents of warmed air acting on it bent it upwards. The are the currents of warmed air acting on it bent it upwards. The arc
light being suitable only for the illumination of large areas, obtain to ob er arbomp suitabe for domestic use. In heating lengths of
wire or carbon by electricity, there was neither gain nor loss, in proportion as greater lengths were heated ; a ten times longer wire
would give out ten times more light would give out ten times more light, and consume ten times more
energy. The more a metal resisted the passage of a current withenergy. The more a metal resisted the passage of a current with-
out melting the better could it be used for illuminating purpose platinum was good in this respect, but an alloy of platinum with 20 or 25 per cent. of iridium was better ; still the resistance of metals was not high enough to wive an adequate return in light for the amount of energy expended, when the lighting of rooms had to
be effected. The power used in heating the wire was lost so far as be effected. The power used in heating the wire was lost so far as
the production of light was concerned; he illustrated this by passing the current first through two filaments and then through one, obtaining much more light thereby from the single lamp. If two
units of power gave the light of two candles, three units, he said, units of power gave the light of two candles, three units, he said,
would give the light of thirty-five candles, with the same lamp. would give the light of thirty-five candles, with the same lamp.
Karbon had long been attempted to be used for incandescent Carbon had long been attempted to be used for incandescent
lamps, but practical difficulties stood in the way of it untila recent
date date. Within the last three or four years it had been discovered that carbon could be produced in thin filaments possessing much
elasticity and spring. Carbon filaments, made from bamboo fibres elasticity and spring. Carbon filaments, made from bamboo fibres,
had these properties; also carbon made from cotton thread, treated with two parts of sulphuric acid mixed with one of water, a mixture which had the curious property of parchmentising blotting-paper,
and other fabrics made of vegetable fibre exhibited a carbon filament 18 veinetabie thick, which acted like a spring.
The permanence of these The permanence of these films when incandescent was due to thi perfect nature of the vacuum now obtainable in glass bulbs; this
was due to the invention of the Sprengel pump, followed up by the was due to the invention of the Sprengel pump, followed up by the
beautiful experiments of Mr. Crookes. In the present incandescent lamps there were no screw joints; they had no joints but those
made by the glassblower. It was due to Mr. Edison to say that he had connceived the idea at the same time as himself-Mr. SWan-o making lamps on this principle. He believed that the first lamp
of the kind ever exhibited in public was one of his own, which was used at a meeting of the Newcastle Literary and Scientific
Institution, in October, 1877. He thought that the expense of incandescent electric that of gas and some works were being erected in Amerably with that of gas, and some works were being erected in America which
would settle the question of relative cost. Incandescent lamps could be cheaply made to last for 1200 hours ; it was not certain
that the limit of durability struction. In connection with the system the renewal of lamp
was a point which had to be conside In the course of the evening, Mr. Swan
means of clusters of incandescent tamps,

CRYSTAL PALACE ELECTRICAL EXHIBITION

Whether a good light can or cannot be obtained from electricity is no longer an open question. Instead we have now as a problem for discussion, the cost of electric light ing. It happens that very little definite information exists on this point. It may be urged as an explanation of the fact that the light has not been long enough in existence to permit any accurate information to be obtained concerning its expense. But this is hardly true. The cost of the light may be classed under three heads, namely (1) the first cost of the plant ; (2) the cost of fuel, lamps, and attendance ; (3) the cost of maintenance. Hitherto statements concerning ehese things have emanated principally from gas engineers on the one hand, and electricians
on the other. The gas folk hold that electricity is dearer than gas, while the electricians maintain that it is cheaper. The utterances of both parties are obviously tinged with asus picion that they are prejudiced; yet it ought notto be difficult to arrive at the truth. If we take lamps for example the power required to work them can be ascertained, aso the mnual utlay main altendance; what annual outlay maintenance represents is surely easy enough
By the courtesy of Messrs Hammond and Co.,and Messrs. Davey Paxman, and Co., we were euabled on Friday to the results of which throw a good deal of light on the points to which we have referred. In our last impression we briefly noticed a semi-portable engine by Messrs Davey Paxman, and co., wor leding the low station. This engine we illustrate. It has a single unjacketted cylinder, 12in. in diameter and 14n. stroke already is fitted with a species of inner lid, in which are several small ports-on which slides a little gridiron valve. The inner lid is close to the back of the main slide valve, and the small gridiron valve serves to cut off the steam. This valve is worked by an excentric the engine, motion being imparted to it by a pair wheels. n. This sheave fitted with a hoop, and a rod from it extends to one end of a link, while the excentric rod is secured to the othe end of the link; a lever from a high-speed loaded governo is codiron the link, and by this be understood without further explanation by engineers The cut-off takes place very quickly, the gridiron valve having a stroke of but half an inch, and the engine drives the dynamo with remarkable regularity, the hand of the tachometer fitted to the machine remaining at rest through the Palace, Messrs eight double-carbon Brush lamps, and on Friday they placed at our disposal thirty-two of these lamps for the purpose of experiment. All the lamps are fitted with short carbons. It was not deemed advisable to try an experiment at night, when the Palace was crowded with visitors, so the lamps could only be used for one hour, as otherwise there would not be carbons enough left to maintain the light from 6 p.m. to 9.30 . It would, o experiment, but it will be seen that a great deal can be learned even from an hour's run concerning the electric light.
We stated in our last impression that the Davey Paxman engine was driving one 7a Brush dypamo. This is put down, and driven by a riding belt. The engine has only one fly-wheel, and one belt had to run on top of the other, the arrangement being as in the accompanying

O:(0)

diagram. Here A is the fly-wheel, B is the dynamo regularly used, and C is the dynamo added for the purpose of experment. It will be seen that was unfair to the engine, as one crank shaft bearing had to stand the strain of two double 8 m . belts, but there was no approach to heating. The sixteen lamps ordinarily driven by Messrs. Hornsby and Son's engine, were coupled on to the extia dynamo.
At $2.20 \mathrm{p} . \mathrm{m}$. the engine was started, the gauge standing at 70 lb ., and but little fire on the grate. At $2.26 \mathrm{p} . \mathrm{m}$. the counter was put in gear and firing commenced with We believe Powells Duffryn, and of excellent quality we believe Powells Duffryn, and of excellent quality.
Steam was gradually raised to 75 lb , and at that it was kept by a very skilfuı fireman with great steadiness. The $122 \cdot 1$ mantle men the engine 1221 . Exactly 1 cwt. of coal was put into the fire-box between 2.26 and $3.15 \mathrm{p} . \mathrm{m}$. The engine continued to run The indich pressure had fallen to about 72 lb . The indicator was then thrown out of gear, and the experiduring the run, but it was doonen diagrams were taken during the run, but it was soon found that they were all practically alike, as was to be expected, because the load gives 43 -horse power. Thus it would appear that 43 -horse gives 43 -horse power. Thus it would appear that 43 -horse equivalent to 2.6 lb . per horse per hour. So far as could equivalent to 2.6 lb . per horse per hour. So far as could
be judged by the eye, the fire was in the same condition at the end of the hour as on starting ; but in order to eliminate any chance of error on this point, we shall reject the
last ten minutes of the run, and take the consumption as

SEMI-PORTABLE ENGINEAT THE CRYSTAL PALACE

112 lb . in fifty minutes. That this is ample is 112 lb . in fifty minutes. That this is ample is certain, for the pressure tended to rise after the last shovelful of coal had been put on, and at couple of pounds higher than at starting on the ouple of pounds higher than at starting. On little in the gauge, which may be set against the extra pressure Taking then the consumption extra pressure. laking, then, the consumption tion of, in round numbers, 134 lb . per hour, equivalent to $3 \cdot 1 \mathrm{lb}$. per IH, P per hour-an admirable result, considering that this is an ordinary commercial engine, not made for exhibition, and that the feedwater was not heated in any way Thus, then, it is clear that two No. 7A Brush Thus, then, it is clear that two No. 7A Brush
dynamos can be driven by $43-H . P$. It would dynamos can be driven by 43 -H.P. It would little faster-say, 680 to 700 revolutions-but the governor could not be altered without some trouble to let the engine run at a higher speed, and the safety valve would not allow a higher pressure than 75 lb . to be carried without risk of blowing off. Against the lower speed must be put the resistance incurred by driving with a riding belt. All things considered, it is clear that with this plant $43-$ H.P. is ample for the dynamos, and this corresponds very closely with the statement of the makers of the Brush machines, who say that 19 to 20 indicated horsepower is absorbed by a No. 7A machine. The

and in order and look after two dynamos as well. The and look after is three farthings per lamp per hour. With these facts before us, per lamp per hour. With these facts before us, cost of lighting on the Brush system.
Engine, two dynamos, and thirty-two lamps with wires, ought not to cost more than $£ 1000$ complete and ready for use. Of this sum the engine would represent about $£ 300$. We shall say nothing concerning lamp-posts or their equivalent, because their cost depends on the character given to them. Interest on $£ 4000$ at 4 per cent. amounts to $£ 40$ per annum. If we assume that the engine fire is alight for five hours daily and that the engine runs for four hours, the cost of coal at $£ 1$ per ton, will be, in round numbers, 6 s . per day, and 1s. 6d. per hour while the lamps are alight. The driver's wages will be, at 5 s . per day, 1s. 3d. per hour while the lamps are alight. Cost of maintenance, which includes depreciation and outlay for repairs and renewals of all kinds, at 20 per cent. per annum, is $£ 200$ a year, and 2 s .887 d . an hour. The cost of carbons, at $\frac{3}{4} d$. per lamp per hour, will be 8 d. per day, or $£ 146$ per year. Wages of two lampmen, at 7 s . per day, $£ 25510 \mathrm{~s}$. Something may have to be added for rates and taxes, water, and rent of premises ; but in the country $£ 100$ per annum ought to be sufficient. The whole bill then stands at $£ 9425$ s. per annum for working thirty-two Brush are lights every day The forty-eight lamps require, we understand, the con-| electrician, Mr. Goldenberg, who is fully occupied in test- \mid in the year for four hours. Adding $£ 58$ for oil and stant work of two men for about nine hours per day to ing insulation, \&c. It may, however, he taken for granted, contingencies, we have a total outlay of $£ 1000$ a keep them cleaned and trimmed. There is besides an we think, that two men ean keep thirty-two lamps trimmed year. We have collected the several items for convenient
reference into the following table of total expenses:-

	Per year.	Per day.	$\begin{aligned} & \text { Per hour the } \\ & \text { lamps are } \\ & \text { alight. } \end{aligned}$
	£ s. d.	£ s. d.	
Interest at 4 per cent. on £1000...	4000	$0{ }^{0} 2 \cdot 6$	
Coal at £1 per ton ...	109100	$0{ }^{0}$	1 6.00
Driver's wages ${ }^{\text {coin }}$...	9150	050	
Cost of maintenance 20 per cent.	20000	$\begin{array}{llllllllll}0 & 10 & 11\end{array}$	
Do. of carbons	14600	088	
Wages of two men	255100	0140	
Rent, taxes, and rates	10000	$\begin{array}{llll}0 & 5 & 5 & 75\end{array}$	14.43
$\begin{gathered}\text { Total cost of working } \\ \text { arc lights } \ldots\end{gathered}{ }^{3} . \ldots$	9425	211785	$1210 \cdot 195$

It will be seen that the cost of carbons for the lamps
Insiderably exceeds that of the coal for the engine. We considerably exceeds that of the coal for the engine. We have charged the coal at $£ 1$ per ton, but this is a very
high price for engine coal. If we take 10s. as a fair price, it will be seen that coal becomes quite an insignificant item.
We believe that all our figures will be found trustworthy. We believe that all our figures will be found trustworthy
The item for lamp-men would, perhaps, be best divided into two sums of 10 s . and 4 s . per day, the man who received the highest wages being supposed to know enough
about electricity to test for insulation, \&c., while the other would be little more than a labourer, or a stout lad learning his business.
With the data before us we can draw a comparison
between the cost of street lighting for a small town with gas and electricity. The plant required to make gas for let us say 500 street lamps, which will suffice for, say, five
miles of streets, cannot be less than $£ 2000$. of giving all the items of the cost of making gas as we have done in the case of the electric light, we shall take gas at 5s. a thousand cubic feet-and no small town can expect to
obtain gas for less, because it is only when manufactured obtain gas for less, because it is only when manufactured on a large scale that the bye products become of much
value. Each lamp will use five cubic feet per hour, value. Each lamp will use five cubic feet per hour,
or in all, 2500 cubic feet. The cost of lighting will therefore or in all, 2500 cubic feet. The cost of lighting will therefore
be 12 s .6 d . per hour, or within a trifle of the sum named in the last column of the preceding table.
But to this must be added something for clenin But to this must be added something for cleaning,
lighting, and repairing the lamps, so that the lighting, and repairing the lamps, so that the whole
cost will be considerably in excess of 12s. 11d. per cost will be considerably in excess of 12 s . 11d. pe
hour. But for 12 s . 11d. per hour the electric arc gives us the light of 64,000 candles, while the gas gives the light of but 0,000 candles, if the best possible burners are used.
Thus estimated, in terms of candle power, gas is Thus estimated, in terms of candle power, gas is
actually $6 \cdot 4$ times dearer than the electric light. It may be argued, and with some force, that 500 street lamps wil be on the whole better adapted to the wants of a small town than thirty-two arc lights. But it does not appear
to be necessary to use lamps of 2000-candle power. Messrs. to be necessary to use lamps of
Siemens have at the Crystal Palace a street lamp which appears to be just what is wanted. We have not measured its intensity, but it is probably less than 1000 -candle power. Sixty four such lamps would, if judici
tributed, light up a small town very well indeed.
It will be seen that we have said nothing concerning the incandescent lamp. As yet we have had no opportunity of lesting the power required to work it. Its suitability for lighting large places is now being tried at Victoria station another time we may have something to say concerning it. Meanwhile we venture to hope that the figures we have placed before our readers may be found useful. That they are trustworthy concerning all that came under our immediate observation there cally will admit ; and we feel cer figures, such as the allowance for maintenance and wages are consistent with the best practice and with their own experience.

THE SWAN GARDEN IRONWORKS.

Four years ago Mr. John Lysagh, proprietor of the St.
Vincent's Galvanised Ironworks, Bristol, purchased the Swan Vincent's Galvanised Ironworks, Bristol, purchased the Swan
Garden portion of the ironworkss at Wolverhampton, carried on or so many years by the late firm of G. and B. Thorneycroft and
Co. After putting them in repair and making very considenable alterations and additions, he started them for the purpose of upplying the works at Bristol with sheet iron of a superior
uality and finish. This resulted in such an increase in the
 abroad, that it became necessary, in order to meet that demand,
to increase the number of sheet mills from seven to eleven For his purpose the following additional new plant has been put down during the last nine months, and has recently been
successfully started:-A forge, consisting of eight puddling and successfully started:-A forge, consisting of eight puddling and
two ball furnaces, five horizontal furnace boilers with double
flues and Galloway tubes fues and Galloway tubes, a 50 cwt . double-acting steam hammer, stroke, driving a fly-wheel 30 tons ensine, 25 in . cylinder, 4 ft .
bar rolls is worked bar rolls is worked direct. This forge is very compactly arranged set of guillotine cutting-down shears driven by an independent engine, two double sheet mills-equal to four single mills-each
consisting of two pairs of chilled rolls and one pair of bar rolls, consisting of two pairs of chilled rolls and one pair of bar rolls,
with suitable arrangement for working hot iron shears, two pileheating furnaces and two open annealing furnaces, two hori-
zontal furnace boilers with double flues and Galloway tubes. These two boilers are attached to the pile-heating furnaces ; one These two boilers are attached to the pile-heating furnaces; one
in each mill has also been put down. The two double mills are driven by two horizontal steam engines, 36 in , cylinders,
5 ft . stroke, with equilibrium valves and other of the most modern and approved princtipler Errangements
Eash engine
haty-wheel 26 ft . diameter, 65 tons weight, the rims of which are in one piece, and weigh, 45 tons weight, the rims of the boss and
arms are in one piece also, and weigh 20 tons each. The moulds for the wheels were struck up in loam sand, or in other wourds,
were formed of brickwork covered over with loam sand, and were formed of brickwork covered over with loam sand, and
then properly dried and prepared to receive the molten metal,
which was run from three air furnaces the time occupied being which was run from three air furnaces, the time occupied being
in each case about six minutes. The rim and arms of
each wheel remained in the mould for were sufficiently cool to be remored to their before they
respective
positions, which were sufficiently cool to be removed to their respective
positions, which latter was a very tedious process. Each inill
is worked direct from the fly-wheel shaft at a speed of thiry.
five revolutions per minute. The sheet iron shears for both mills
are driven by an independent horizontal steam engine. There is
also a very from these mills, consisting of a c chamber large enough to con-
tain four annealing boxes, with suitable appliances for charging tain four annealing boxes, with suitable appiances for ch
and drawing, also for putting on and taking off the covers.
In addition to the seven furrace boilers mentioned In addition to the seven furnace boilers mentioned above
there are two horizontal firing boilers with double flues and Galloway tubes. The flues from the whole of these boilers are carried under ground into two chimney stacks, each 120 ft . high
from the floor line, with a 7 ft . opening from the bottom to the The whole of these works are roofed over with galvanised
The sheets fixed upon wrought iron principals and girders made
at the Bristol works of the firm. The engines and steam hammers were supplied by the Lilleshall Company, Limited,
Shropshire, and have given the greatest possible satisfaction all having started to work without a single mishap. The whole of the castings used in putting down these works, including the
frge fly-wheels, were made at the Swan Garden Ironfoundry large fly-wheels, were made at the Swan Gardon Ironfoundry,
belonging to the firm, and reflect great credit upon all concerned,

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS
(From our own Correspondent.)
PrioEs, neither of finished nor of pig iron, were stronger on
'Change in Birmingham to-day-Thursday-nor yesterday in Welverhampton; nor were they very sensibly weaker. The closeness of Lady-day kept consumers from giving out orders. They,
mostly desired to hold back from buying till the Ironmasters
Quarterly Meetings are over. Meanwhile the finished iron estaQuarterly Meetings are over. Meanwhile the finished iron esta-
blishments, which are wanting specifications for their mills, are keeping their forges at full work accumulating puddled bars for use in the mills when the specifications are to hand, and to afford the forges
Bars were not difficult to buy to-day at from $£ 610$ s. to $£ 615 \mathrm{~s}$. good bars ran up from $£ 7$ to $£ 710 \mathrm{~s}$. and $£ 82 \mathrm{~s}$. 6 d . per ton. There was a tolerably good business done in bars of light sections.
Hoops were again inquired for on account of United States ; but makers' prices were declared to be too high. The business now
doing is mainly on account of Australia, New Zealand, Italy, and doing is mainly on account of Australia, New Zealand, Italy, and
Spain. Hoops of the usual sections were easy to buy at from E7 2s. 6d. to $£ 75 \mathrm{~s}$. sheets were in quiet sale both yesterday and to-auy, ber with-
was hardly so much complaining that the galvanisers were whin
holding specifications. Singles might have been been bounht at holding specifications. Singles might have been been ought at
from £8 to $£ 8$ 5s.; doubles, £9 ss , and trebles down to $£ 10$ 5s. to £10 10s. and upwards. There were few firms who were stickling sheets were procurable for deen stamping at from tili2. to $£ 15$. Boiler plates were $£ 810$ s. to $£ 9$ and $£ 910$ s., with a quiet sal.
Tin-plate of the common quality was dull.
Pigs were to be had below most
Pigs were to be had below most vendors' open market quo-
tations. Good sales have in the past few days been made by the chief local smelters. Of Spring Vale qualities 5000 tons have
heen sold since March came in for delivery during the ensing months. The prices of this brand are all-mine, ensu $£ \mathrm{~s}$. 6d.; hydrates, £2 17 ss . 6 d , and part-mine, \&2 2 s . 6 d ., though less by
half-a-crown would have been occasionally taken from good cus-
tomers.
All-mine iron of the firms generally was quoted at $£ 310$ s. easy and cold-blast $£ 4$ 10s.; part-mines were 5 ss s. 6 dd . to 55 s s; ; and cinder
sorts were procurable at from 42 s , 6 d to 4 ss , per ton. Northampsorts were procurable at from 42 s . 6 d . to 48 s . per ton. Northamp-
ton qualities were 58 s . to 52 s . 6 d . in the open market, but favoured ton qualities were 58 s . to 52 s s. 6 . in the open market, but tavoured
buyers declare that their offers of 4 s . 6 . were not invariably rejected. Derbyshire pigs were less yielding at 50s. to 52s. 6d. per their customers that yesterday an agent reported the loss of an order for 500 tons because he declined to accept the 3d. per ton less
which a competitor took. Hematite qualities were to be had at from 72s. 6 d . down to 70 s. Taken as a whole these pigs must be smelters have so much confidence in the future, and are already so well sold, that in the past day or so two lots of 1000 tons each have
been allowed to pass because a trifling drop upon the smelters been allowed to pass because a trining drop upon the smelters
terms offered by a customer would not be accepted. The produc tion of all-mine hot-blast pigs will be increased three weeks hence two furnaces, which have been standing idle for some years
Little or no change was reported in coal, but the more winterly
weather and the attempt to get the colliers in the Dudley weather and the attempt to get the colliers in the Dudley
district to demand higher wages had together a strengthening district to
tendency.
The miners of the Rowley and Old-hill districts gave notice las Saturday for an advance of 6d. in thick, and 3 d . in thin coal. The
action is condemned throughout the other districts of South Staftordshire, and there is no likelihood of the demand being
conceded.
At a re
Monday at Walsall the wages' question was considered. The secretary to the Mill and Forge Wagest' Board said he would bring
forward information showing that the men were titled to bette basis than that which had hitherto regulated wages. The suggestion was adopted by the meeting
Liability Assurance Corporation, Limited by the Employers before the South Staffordshire ironworkers this week, with the result that it was resolved that the operatives' secretary should
wait upon the masters, with the view of favourably recommending wait upon the masters, wie
the scheme to their notice
Amongst the contracts
galvanising works in this district are on hand at some of the bis Davies Bros, and Co., of the Crown Ironworks, Wolverhampton are engaged on contracts for the Bengal Railway Company and the
Mexican Railway Company, embracing galvanised corrugated sheets, gutters, ridge capping, amd the fittings. One of the item this trade, and roofing the new works of a large firm in the iro trade in London.
The interests of the bicycle and tricycle trade, which is fast
becoming an increasingly important industry in Coventry, Bir promoted by an exhibition of been opened at Bingley Hall, Birmingham. In Coventry alone
between 4000 and 5000 operatives are engaged in this trade, and it between 4000 and 5000 operatives are engaged in this trade, and it
is probable that in Birmingham this number is equalled if not is probable
exceeded.
year's trading of $£ 3591$. The definitive proofs included 105,375 best double birding barrels, and 17,318 single barrels of the same
description ; 1233 common double barrels ; 119,673 breeh-loadi bircing barrels; $; 13,456$ breech-loading military barrels ; 21,819
been breech-loading choke-bore barrels; 102,514 saddle
and 4467 of the same description of foreign barrels.
Shauth stafirordshire manufacturers learn with much satisfaction that Mr. Jno. Collett, the Director of Navy Contracts, has, in merce, consented to visit the district to hear manufacturers' views
on Navy contract tendering.

NOTES FROM LANCASHIRE.

(From our own Correspondent.)

Manchester.- Business in the iron trade of this district has been at Manchester on Tuesday, with an easier tone in a prices. Buyers seem determined to hold back for the prosent, and any transac.
tions now taking place are for the most part confined to small cheap lots of district brands to cover absolutely pressing require
ments. The close of the quarter no doubt influences buyers t. some extent, but the state of the Sootch and North of England markets whhre, although heavy shipments are at present being
made, the general tone of the reports is less favourable than of
late late, gives rise to the suspicion that when the pressure to complete
Austrian orders prior to the new tariff coming into Austrian orders prior to the new tariff coming into operation
over, there will be a collapse in the market so far as the foreign trade in this direction is concerned.
Lancashire makers of pig iron are doing extremely little, and, a Thave already pointed out, the new business coming in is so limited
that the output is gradually overtaking the deliveries. For local pig iron,
for 49 s . to 50 s. less $2 \frac{1}{2}$ per cent, for forge and foundry qualities; but at these figures they are not able to book new orders
owing to the lower figures at which district brands, especiall Lincolnssire, are offered, and there would be a disposition to entertain offers
Lincolnshire
at as low as 47 m . 6 d . to 48 s , less 21 , with cuotations for De bought brands ranging from 48s. to o 0 os.. 1 less $2 \frac{1}{2}$; but these do not represen the figures at which all the makers are disposed to sell, as, where
they have still large deliveries to make, higher rates are being they have still large deliveries to make, higher rates are bein
asked. For Middlesbrough iron, delivered equal to Manchester cash ; but these figures do not lead to business in this district, ne In the finished iron trade there is still a fair amount of activity
and the leading makers generally are kept well employed. Toler ably large shipments of hoop iron are being made to America a prices equal to about $£ 7$ 2s. 6d. to $£ 75 \mathrm{~s}$. per ton, delivered a
Liverpool, but there are sellers for local delivery under thes figures, and in the manufactured iron trade generally the amoun cases makers are getting rather short of specifications, and ar easier to deal with, but there is no actual giving way in quoted
prices, which, for delivery into the Manchester district, prices, which, for delivery into the Manchester district, avera
about $£ 615 \mathrm{~s}$. and $£ 617 \mathrm{~s}$. 6 d . up to $£ 7$ per ton in some cases. Judging from the reports sent in by the various districts con-
nected with the iron and engineering trades' societies, an improve ment in these branches of industry is evident to a moderate extent of employment. The reports made by the employers an mou of employment. The reports made by the employers also sho
trade to be better, but not in so marked a character that it can be followed up by better prices for the finished work. The reports for
the past month from the various districts connected with the Iron founders' Society, which, to some extent, represents the basis the engineering trades, return work as good in only one or two o
the really important centres of industry, and the number of me in connection with the society who are out of work shows a decrease figures being 584 this So far as the the ashire district is concerned the monty' reports show trade to be good in Salford, Liverpool, and Roch Barrow, oldham, and Stockport. From my own inquirie builders, and boilermakers to be well employed as a rule ; cotton machinists generally have also a good deal of work in hand, but really large amount of home work, although the number of nev mills either projected or being actually erected must necessarily
bring local orders into the market of considerable weight. Witl regard to wages, matters are generally quiet in Lancashire, but in
other districts the attitude now being taken by the men is ouner
operat.
work.
The
The coal trade is without material change. A continuance of the colder weather will no doubt impart a little more activity to the house coal trade, but with the abundance of supplies in the
market this will not be appreciably felt beyond a temporary check to the downward tendency of prices. Common round coals fo price, but engine fuel, so far as the better qualities of slack are concerned, show a tendency to harden. Heavy stocks of coal are
held throughout the district, and comparatively very few of the held throughout the district, and comparatively very few of the
pits are working more than three to four days a week. Prices at the pit mouth remain at about 8s. 6d. to 9. 9. for best coal ; seconds, 5s.; good, 3s. 6d. to 4s. per ton. for ironmaking and other manufacturin purposes continues in fair demand at about 9s. to 10s. for common
up to 12 s . 6 d . to 13 s . for the better qualities, at the ovens, but gas coke is a drug
"How we
other of the series of lectures syecially arranged for the miners engaged at the pits in the Dukinfield district, which was delivered
by Mr. C. M. Percy, of the Wigan School of Mines, on Wednesday. Mr. Percy, in the course of his lecture, said there was a very great
deal that the mechanical engineer might do and ought to do at deal enas the mechanical engineer mature, be carried on with appli-
collieries. Pumping would, in the futa ances perhaps not cheaper in themselves, but less expensive in
working. Hauling was even yet in a somewhat crude state of development, and afforded great scope in the way of improvements Tor energetic engineers and enterprising colliery proprietors. Coal
getting under existing arrangements was carried on in a barbarous fashion, and the danger with explosives was very great, and the waste with the very handy but obsolete tool, the pick, was fright-
ful. This state of things certainly could not and would not continue. In ventilation, the mechanical engineer had, during the last thirty years, done a great deal, and, on the whole, had done it well
So far as simply producing a current of air was concerned ally in deep mines, because the efficiency of the furnace increased with the depth; but there was the danger of setting something on fire in the vicinity or in the shaft, and there was the
injurious influence upon winding ropes, conductors, \&co, by the products of combustion passing away by the up-cast shaft. No was more expensive, but with really good appliances worked by condensing engines, mechanical ventilation even for deep mines
would come very nearly to the furnace. Mechanical ventilator might either act to compress the airnor ore. exhaust it, and in several respects forcing air in was more effective than sucking it out, but shaft for forcing arrangements had led to the almost universal adoption of exhausting appliances placed at the top of the up-cast.
Mechanical ventilators might be divided into three olasses-first, pum quantity of air at every revolution ; and third, fans working on
the centrifugal principle. Fans on the last-named principle
were, however, those most generally in use, and those most in were, however, those most generally in use, and those most in
favour were the Guibal, the Waddle, and the Schiele, all of which in practice had given very excellent results. The Guibal and the slowly, the engine being connected direct. The Schiele was a
small, fan rarely exceeding 15 ft . or 16 ft . diameter and worked
quickly, power being communicated from a large pulley on the quickly, power being communicated from a large pulley on the engine shaft by means of a strap to a small pulley on the fan shaft.
I_{r}. Percy had no strong preference for either large or small fans, but his opinion was that the blades should be inclined backwards
and that the fan should either discharge freely all round the cir
cumference or have a complete spiral casing opening into a
enlarging chimney. enlarging chimney. Aalford Trades' Council was held on Wednesday evening preparaSalford Trades Council was held on in ednesday evening prepara-
tory to special meeting to be held in Manchester on Saturday,
when delegates representing upwards of 50,000 trades' unionists in when delegates representing upwards of 50,000 trades' unionists in vered by Mr. Broadhurst, M.P., after which a committee will be appointed to carry out the necessary arrangements for th Barrow.-Judging from the extra animated character of the
demand noticeable in hematite pig iron at the beginning of the
week I thought the week's notes would have chronicled a much week I thought the week's notes would have chronicled a much
better aspect in inquiries for iron; but the slightly better inquiry
with which the week opened has not been maintained, and the with which the week opened has not been maintained, and the position of the market is practically the same as last reported.
The "spurt" on the part of buyers was of very short duration,
and even when contracts have been tendered for at lower figures the result has not been the securing of many orders. Stocks are increasing, and unless the demand shows some signs of improving, the necessity of restricting the output. The demand all round is
very quiet, and although the shipping season is now open America
shows no sign of increasing her inquiries. A better sale of iron shows no sign of increasing her inguiries. A better sale of iron
on American account can hardly be looked for now unless freights on American account can hardly be looked for now unless freights
are lowered; then our English markets will be in a better position to compete with producers across the Atlantic. Prices are again down, No. 1 Bessemer being quoted at 57 s . 6 d. ; No. $2,56 \mathrm{~s} .6 \mathrm{~d}$. ;
No. 3, 55s. $6 \mathrm{~d} .$, net f.o. . West coast ports, delivery over the next
three months. Steel mills are in full work, but the demand has diminished slightly. Steel rails are quoted at £6 2 s . 6 d. , but I to be more actively employed, as they have lately secured a few orders of fair tonnage. Other industries are in receipt of a fair
amount of work. Iron ore is a shade lower to buy, being from
14 s . to 15s. per ton on trucks at the mines. Coal and coke in good 14s. to 15s. per
At the Ronhead mines, owned by Messrs. Kennedy Brothers, the underground men have had an increase of wages given them
equal to 3s. per week. The advance has been given unsolicited by the men.
The dev
The development of the iron ore industry in South Cumberland is making rapid strides, and efforts are being pushed to get at some of the veins of ore which are known to abound in the Millom
district. On the Hestham and Langthwaite estate, and at Ravenglass, boring operations are being carried out on a pretty large The Lonsdale Iron Company at Whitehaven is about to follow the example of the Distington Iron Company in the same neigh-
bourhood, by blowing out its two furnaces, with a view of effecting necessary repairs and relining the furnaces. This will result Some very heavy classes of work being now on hand in the Barrow shipyards, the platers in the employ of the company did not return to their work after breakfast-time on Saturday last, as the work shall be done. A satisfactory result was, howeverer, come
to, and the men went on with their work on Monday, the arrangeto, and being satisfactory to all parties.

THE SHEFFIELD DISTRICT.
 (From our own Correspondent.)

 THE event of the week has been the announcement of Messrs.Charles Cammell and Co., ,himited, the Cyclops Steel and Ironworks,
that they propose to purchase the Dronfield Steel Works, and the Derwent Hematite Iron Ore Company, at Workington, where they intend to carry on the export rail trade. It has been known for
some time that Messrs. Wilson, Cammell, and Coo, of the Dronsome Steel Works, hasd finally resolved to transfer their rail busi ness to the coast. The report was repeatedly contradicted,
but information in my possession caused me to adhere to what I originally announced-that the steel rail business at
Dronfield would eventuall go to the coast. Messrs. Cammell and
The removal, howeevert , has come about in an uneexpected way.
was believed that the business at Dronfield would simply be taken to the coast, and that there would be an end of it. Now, however, the proposal assumes a far more important shape.
Practically the Dronfiel Steel Works and the Derwent Iron Company will be extinguished in Messrs. Charles Cammeli and Co.,
whosimmense undertakin $-\$ 800,00$ paid-up capital, and
$£ 350,000$ debentures-will be augmented by the creation of whose immense undertaking- debo, 00 paid-up captat, and
$£ 350,000$ debentures-wil be augmente by the cration of
$£ 350,000$ new stock to accomplish the purchase of the two works. The object in view is to retain the Sheffield export trade in rails.
Sheffield commenced the manufacture of steel rails some twenty years ago, and had a monopoly of it for some years, when Barrow-incontinental houses. Gradually the export portion of the trade has drifted away from Sheffield, owing to the cost of bringing the hema-
tite irons from Cumberland to Sheffield, and taking the rails to the ports of delivery. There was thus a double carriage to pay, equal
to about 18s. a ton, $i . e .$, ss. a ton for bringing the bar to Sheffield and 8 s. to 10 s. a ton to get the rails on board ship. To a company
with a heavy turnover of weight-some 120,000 tons of material with a heavy turnover of weight-some 120,000 tons of material
this is, of course, a great matter. To Messrs. Cammell and Co. it means $£ 50,000$ to $£ 60,000$ a year. By taking the works to the
blast furnaces, and thus combining the production near the sea, the whole of the railway carriage on the pig iron would be saved, and
the cost of shipping yery materially reduced. At Workington there are three bhast furnaces, and it it is intended to orect stee
works capable of producing 250 to 3000 tons of steel rails per week works capable of producing
on land close to the furnaces. The new works will simply be the
Dronfeld material will run into the plant put down at Workington. The material wunnaces, without any neecessity fonverter re-eding. The from works
blas within a few miles of the Cumberland hematite iron ore field,
are are within a few miles of the Cumberland hematite iron ore field,
and the leator and Workington Junction Railway, which intersects that field, runs into the company's premises, which
connected with the London and North-Western Railway.
Messrs. Cammell and Coo., it shoulla be added, intend to Workington establishment, exclusively for making rails for the the
export trade. This is a very important branch of their business export trade. This is a very important branch of their business,
which is rapidly inceeasing. Their extensive establishments at
Penistone and Sheffield will remain as before, with the exception that they will cease making rails for export, except in the case of those foreign firms who insist on Shenertile except made triils case of These
orders, with all contracts for home delivery, will be carried out
ort at the home establishments. Two important points remain to be
noticed with regard to the Penistone Works
Messrs. Cammell and is yet to come in the manufacture of sleepers for the permanen way of railways. Wooden sleepers will be ultimately replaced by steel
sleepers, as has already been done in France and Germany. For thi work the company will be favourably situated at Penistone. Then in
regard to the dephosphorising process, the Penistone works would regard to the dephosphorising process, the Penistone works woul
bein a good position in reference to the Lincolnshire ore, which i
believed to be better believed to be better adapted for the process than Cleveland. plucky enterprise will be to lift their company into the first position as regards the steel rail trade, and to secure to them ultimately
command of all the raw material they require. To the Midland Railway Company the removal will be interesting, as the two
works, Cammell's and Dronfield, paid $£ 120,000$ a year fo carriage, which will cease when the the Workington establisment is
in operationct It was impossible, however, tror the railway com.
panies aver to have reduced the charges of transis sufficienty low low

Another question sug
follow in self-defence?
Several local reports are important enough to be summarised here. Messrs. Cammell and Co. have had a very prosperous year,
and are able to pay $7 \frac{1}{\text { t }}$ per cent. for the twelve months, their total profit for the period being $£ 60,686$, making, with $£ 20,685$ brought forwarc from last year, £81,371. After paying the dividend an
other charges, thereremains to be carried forward to the current year the sum of $£ 21,371$.
MIssrs. William Jessop and Sons, Limited, Brightside Stee Works, have made a profit including £3067 brought for fard - of
$£ 44,52$, of which $£ 37,323$ is available for disposal. $£ 4000$ is set
aside for depreciation of buildings and machinery; $£ 5000$ is written off to extinguish formation expenses, and the reserve fund is increased to $£ 5000$, leaving $£ 25,83$ for dividend, which i
declared at the rate of £9 3s. 4 d per eent. on the paid--up capital
carring forward a balance of $£ 469$ to next account. On the carrying forward a balance of $£ 4691$ to next acount.
other hand, Messrs. Cocher Brothers, Limited -files, \&o. -repor a loss on the year's trading of $£ 928$; Messrs. Unwin and Rodgers,
Limited -cutlery loss of $£ 260$, which added to a loss of $£ 345$ in
1880 makes $£ 666$, which absorbs within about $£ 100$ of the balance 18s0 makes $£ 606$, which absorbs within about $£ 100$ of the balance
standing th the credit of the profit-and-loss account on December 31, 1879 . The directors ask the shareholders to say whether unde
these circumstances they will continue to carry on business. The Bilbao Iron Ore Company, which is mainly owned in this
district, pays no dividend for 1881 . Their sales, the directors say district, pays no dividend for 18 . . Their sares, he directors say
have greatly diminished, wing to the high rates of freights, while
the price of ore has fallen at the same time. The two cause account for the unsatisfactory result. ${ }^{\text {Messins. Newton, Chambers, and Cimited, Thorncliffe and }}$ Chapeltown Ironworks and Collieries, are offering $£ 160,000$ in
6 per eant. debentures of $£ 50$, $£ 100$, and $£ 50$ each, redemable in a select limitited company, which purchased the undertaking fo £448,963 1s.8d.
The colliery
The colliery trade is exceedingly languid, so languid that a
colliery proprieto told me this week he knew of only two collieries
which were yielding
THE NORTH OF ENGLAND.
THE Cleveland iron market, held at Middlesbrough on Tuesday last, was remarkably quiet and steady in tone, and previous prices
were maintained. Not much business was, however, transacted. The smelters held the weekly meeting, or conference- which ha
now become habitual with them -before the market, and decide now become to their quotations of the week before, Those quota-
to adhere
tions were 43 s . 6 . per ton for prompt f.o.b. delivered of No. 3 tions were 43s. 6d. per ton for prompt f.o.b. delivered of No. ${ }^{\text {and }}$
g.m.b., and other qualities in proportion. Owing to the briskness of shipments during the present month, the stooks at the blas
furnaces have beoome very bare, and consequently the warran stores are every largely drawn on. The stock in Connal's Middles an amount which largely exceeds anything experienced for some
time. An increased demand for warrants has naturally arisen, time. At increased demand for warrants has naturally arise
and this is likely to continue so long as they can be obtained, as present, at less than makers' prices.
The manufactured iron trade cont of improvement. There is very considerable pressure for quick
delivery of specifications against current contracts, and not a little
inquiry on account of the future. Some " bearing" transactions inquiry on account of the future. Some "bearing" transactions
in plates are reported. Glasgow merchants have appeared on the
and Tyne and elsewhere, offering and selling plates, in quantity, at are not covered, and should the market rise, or even remain steady,
the operators will certainly he caught Ship plates are still quoted at $£ 75$ s., and angles and bars at $£ 610$ s., f.o.t. Middlesbrough Old rails command 77s. 6 d. for flat bottoms, and 80 s. for double
heads, c.i.f. Tees, net cash. Puddle bars are in demand at 87 s .6 d . and steel rail ends at 70s., f.o.t. maker's works
The coal trade is weak in tone, and there is a manifest tendenc The Thawer prices.
The annual report of the Tees-side Iron and Engine Works
Company, Limited-late Hopkins, Gilkes, and Co,-has bee ompany, Limited-late Hopkins, Gilkes, The company made loss on pig iron until September, when the restrictive policy wa
adopted. A profit was then obtained, which has wiped out portion of the previous loss, and is is hoped that perseverance are being made to take the slag away in craft and tip it out at sea,
by which a saving will be effected. The engineering and foundry departments have been well occupied, but unfortunately not at profit hitherto. The bar and angle mills have been set to work,
but too recently but too recently to say anything about results. It it intended to the concern, and the shareholders are asked to sanction the inten but this, together with some portion of the accrucd dividend on preference shares, the directors hope to wipe off before the end of
the present year. Of the directorate, Messrs. Putnam, Smith, and At the last meeting of the Cleveland Institution of Enginee an interesting paper was read by Mr. James Taylor on improvec appliances for conveying and shipping iron. Mr. Caylor, who is
general manager of the TRees Union Shiping Company, has
devoted considerable attention to this subject; and has devised a truck wherefrom the iron load can be slung and lifted out bodily with the greatest ease. From the discussion which ensued it wa
evident that Mr. Taylor's ingenious efforts were cordially appre ciated by the Cleveland Engineers.

Thursday-owing to the reduction of the bank rate, the market
was firmer, with transactions up to 48 s . 4 4 d d. cash, and 48 s . 8 d . Owing to the slight relapse which has taken place in the warrant
narket, the values of makers' iron, which had improved towards the close of last weel now show little change upon the quotations

 and 49s. $6 \mathrm{~d} . ;$ Kinneil at Boness, 49s. and 47s. 6d.; Glengarnock at
Ardrossan, 3 s and $50 \mathrm{~s} . ;$ Eglinton, 49s. 6d. and 47s.; Dalmellington, 49s. and 48s.
malleable iron trade. The works still in the condition of the a lack of new contracts, and prices are a shade easier.
Throughout the engineering trades activity still prevails, and since last report a number of good orders have been placed in the
shipbuilding trade, which will tend to prolong the prosperity of the marine engineering department. It may be accepted as an indication of the confidence felt by the shipbualders in the conder to
the trade, that they have conceded an advance of wages to the operative engineers. Slackness is felt in the light department of
the foundry trade, and some of the pipe founders also find themselves running short of work.
The coal trade is, if country together, although in some of the districts full time is not being obtained the collieries. In some places miners have been
making a virtue of necessity, and declaring that they have entered upon a policy of restricting the output, when the truth is that
they are not able to work on account of want of facilities for ge ting the mineral away from the pits. Competition is very keen
the trade, and prices are without alteration. It appears from statistics made up for the month of February that the total amount of coal shipped to foreign ports from Scotland was 58,488
tons, as compared with 48,492 in Feruary 1888 . On the other
hand, the shipments of coal from Scotland to London and other ports in the United Kingdom amounted to only 66,968 tons,
against 87,939 in the same month of last year. Thhoughout the eastern mining ounties the coal trade has been have intimated a decrease on the miners wages' of $12 \frac{1}{2}$ per cent. In
these counties prices have fallen during the past three months from 1s. 6 d . to 2 s. per ton. The men profess to be taken by sur-
prise by the reduction, and an effort is proposed to at least effect a compromise. It is pointed out by them that the official returns of the output of coal in Fifeshire for 1881 were very satisfactory,
showing that $2,198,601$ tons were raised, being an increase of 94,593 over the production of the preceding year.

WALES AND ADJOINING COUNTIES

ALL interest this weelk is centred upon the results of the Parlia-
antren mentary Comimittee's inquiry into the various bills before them. Rhymney and Merthyr, are very engrossing. The best evidence moters are hopeful. The Glyncorrwg and the Swansea Bay bills fairly divided public favour. In support of the second I shall
expect excellent testimony from Mr. T. Joseph, one of the best authorities in south wales on the coal Ween?
By the withdrawal of the Great Western connection with
Cyfarthfa, the Taff Vale and Rhymney railways are left in Cyfarnia, the 1s understood that the Great Western will opnite
sition, but it is unit
with with, the Rhymney. A severe contest may be expeected, but I
should not be surprised if both succeed. There is no reason why
s. both lines should not be carried out, but if only one, then the Taff Vale has the strongest claim, as for several years it has attempted
to get Mr. Crawshay to join in forming a railway connection, and thus facilitate its traffic.
thus facilitate its tratici. Eorm an important coal company. Those who are on the search may be satisfied that the proposed tract is
the finest in South Wales. An immense capital will be required. I pointed out in these columns several years ago the merits of the time. Coal speculations, however, are flagging again, for the industry is beginning to wear a less prosperous aspect, The busi-
ness of the three principal oports shows this. Cardif, from an
export
varying from 115,000 to 125,000 tons, has fallen off to export varying froort, from 29,000 to 21,000 tons; and Swansea
90,00 tons; Newper
from 26,000 to 20,000 tons. This looks serious. Ido not, however, regard it as due altogether to a falling off in trade. Cyfarthfa,
for instance, has been working short time of late; but there are plenty of orders on the books, and the slackess is due to the non The mseames at Carain.
The machinery is being, placed at the Prince of Wales's dock
Swansea. I hear high praises of its excellence, and shall shortly devote a little time to give a more circumstantial account.
Swansea has again met with a reverse in failing to get the Mumbles tramway converted into a railway. I have not seen the
proposed plans; but if the railway was intended to be an open proposed plans; but if the railway was intended to be an ope
one, I am not surprised at failure; but if enclosed-and it is pos
sibl rather dull shipping from leaving, are doing anything but improving matters
but, not withstanding this, the revenue of the port is excellent. but, notwithstanding this, the erevenue of the port is excellent. Cyfarthfa, by the counsel's speech for promoting the Rhymney
Bill. In this he distinctly stated that Cyfarthfa would re-start with steel works. I hear also of a movement at Cardiff for giving Cyfarthfa an independent Penarth wharf, which looks wel
Meetings continue to be held in connection with the sliding scale
agitation, but it is not known whether Mr. Jenkins, of the Ocean agitation, but ill is not Colieries, whe scale in use there. Perfect securit against a recurrence of hostilities between master and man will
never be granted until the coalowners form a compact, harmonious body, governed and governing by one sliding scane, accepted by the whole of the colliers. A leading colliery agent of the Rhondda,
referring to the pacific attitude of the men at present, said, "Bu we are never certain of them. They are as ready no
were to assume hostile attitude if the occasion offered
Some of the leading authorities in tin-plate, Mr. Spence amongs them, advocate unity amongst tin-plate workers. It is owing
almost entirely to a lack of co-operation amongst makers tha burden, is now loading tin-plates at Swansea for New York.
\qquad
English versus American Strel.-The quality of American steel must be sadly belied in its own country it it is not mucl
inferior to English steel. Upon the Navy question whioh is now occupyng the attention of a Committee or Yerk douse porper purb.
sentatives, who are taking evidence, a New
lishes as follows. ". It would be particularly unwise to build American men-of-war of American steel; for however good our iron may be, we have not been able to produce steel that is at all equal to
English steel ; and Mr. Vanderbilt prefers to import steel rails for his road at a very much higher price than he would have to pay
for home-made protected steel."
Doubtless some excellent steel io for hade in America, but in proportion to the whole output it would seem to be small in quantity. Why, however, the Navy project if
carried out should not aftord that encouragement to the American carelmasters which by that project they are seeking, is anothe matter. Meanwhile their peculiar domes
iron shipbuilding puts them to serious d.
tion with the steelmaster of Uroant Britain.

THE ENGINEER.

THE PATENT JOURNAL.

Applications for Letters Patent.
Applications for Letters Patent.
When patents have been "communicated" the
me and address of the communicating party are name and patents
adress
printed in italics.

14th March, 1882.
14th March, 1882 .
1216. Rivetring, E. Austin \& F. Jackson, Manchester.
1217. BLEACHING Fibres, N. J. Holmes, London.
1218. KNIFE Cleaners, H. Beech. - (E. Ferguson,
Canada) Canada
1219. Smith's Forge, W. Roberts, South Wales.
1220. Chiorive, C. Wigg, Liverpool. 1221. Roller Bearinge, T. Hemmich, Reading, U.S.
1222. Sionals, H. H. Lake.-(A. L. Parcelle, U.S.). Malting Grain, A. Perty, Roserea.
Furnture Turgs, G. Dooititle, Bridgeport, U.S
GAUGING Wire, M. Evan, Wemyss Bay, N.B.
Proreling Ships, W. T. Lithgow, Renfrew.

 PUPsps, G. V. Fosbery, Britton.
Rousing Beeter, U.S.
field. Long, Bristol, and H. Aplin,
Redfield.
1236. BLIND, W. R. Lake. - (A. H. Lindstedt, Sveelen.) 1237. Prodvoing Lioht, A. Reckenzaun, Leyto
and J. H. Redfield, London.
1238. FAsteners, H. Andrews, Birmingham. 1238. FASTENERS, H. Andrews, Birmingham.
1239. RALWAY Colisions E. Clarke, Liverpool.
1240. SEWING APPARAUS, W. Hollingworth, Bradford.
1241. Brooms, J. G. Horsey, Londo 1241. Brooms, J. G. Horsey, London.
1242. MUsICAL IsvTRUMETYs, . I. Feeny, London.
1243. Looms, J. C. Fielden, Manchester, and R. H.
Harrison, Dukinfield. Harrison, Jukinfeld.
1244. VALVES, J. Hopwod, Poulton-le-Fylde.
1245. Crexis, W. Lake.-(J.O'Neill deG. Stecourt, U.S.)
1246. MUSIOAL INSTRUMENTS, H. H. Lake.-(G. W. 1246. Musical
Turner, U.S.)

15th March, 1882.
1247. Cuttina Shafts, W. Cook, Glasgow.
1248. Rotativa Drum, T. Cope \& Wrewe
1249. Magneto
1248. Rotating Drum, W. Cope \& W. Brewer, Liverpool.
1249. Magatero-ELECTRIO MACHINES, C. L. Levey and
 Spring*Clirs, W. D. Saull \& W. Brooks, London
Labes, S. Aroid, Londo.
TELEGRAPH ReLaY, J. Ebel, Now Charlton.
GUN, F. J. Cheesbrough. - (. Nemetz, Vienna,) Telegraph Relay, J. Ebel, Now Charlton.
GuN, F. J. Cheebrough.-(. Nemetz, Vienna.)
Looms, L. Greenwood, Hawick, N.B. Inhaling AIR, E. Chabot, London.
TAPE LADDERS, J. Cart, Manchester.
TYPE Moulds, E. A. Brydges,
1261. Preserving Designs, E. CutLer, Birmingham, Start and H. Scattergood, Nottingham.
1263. SIGNL LEVERS, W. Stroudley, Brighton.
1264. ZINC FURNACES, W. R. Lake.- (La Societ Oeschger Mesdach et Cie., Paris.)
1265. CuAIN ClIPs, J. Smith, Thornliebank, N.B. 16 th March, 1882
1266. Indigo, J. H. Johnson.-(Badische Aniline and Soda Fabric, Germany.)
1267. Toors, R. Davidson, Glasgow.
1268. FURNACEs, M. Watts and E. Swindells, Maccles
field 1269. Tuning Pegs, G. Wilde, Selston.
1270. TENT PEg, J. Jaques. -J. Wixier,
1271. Telephones, A. W,
2. URLEPE PRESE, A. WR. Rose, London.
3. Looms, T. Knowlese, Blackens, London.
Luark. Electric Lamps, F. Wright\& M. Mackie, London Leohman Burners, J. W. Willmot, Brixton, and T. Glasgow.
127s.
Germang. CAP, H. J. Haddan.- (0 . Ehrentraut,

 12S2. Fire-arms, L. Gye, London.
1283. Fog Signals, J. Natt, London.
1284. PIANoFortes, H. Witton, Lon 1283. Fog Signals, J. Natt, London.
1284. Pianoportes, H. Witton, London.
1285. Gininding Stones, G. Nawrocki., GRINDING SToNES, G. Nawrocki, (G. Oest, Berlin.)
6. SIzINo HANKS, J. Conlong, Blackburn.
PIsToNs, T. Tobin, London. 17th March, 1882.
1289. Perambulators, W. H. S. Aubin, Blox wich.
1290. Groos, H. Bonneville. (D. Cornilliac. Paris.)
1291. BEVERAEES, H. Bonneville. - (D. Corniliac, Paris.)
1292. LIovors, H. Bonneville
 1294. Fire-aksis, H. W. Holland, London
129. CHars, E. Sinith, West Dulwich.
1296. GETTING CoAL, W. H. Harbotle, 1299. CEATrs, E. Smith, West Dulwich.
M. GETING Cold, W. H. Harbottle, Orrell, and C.

 1300. Wall Paper, A. M. Clark.- (E. Leissner, U.S.
1301. Metalici Boxes, G. F. Grifin, London.
1302. ELEOTRRLIER, R. Brougham, London.
1303. TELEGRAPHIC Systems, P. M. Justice.-(Fr.

Rysselberghe, Schaerbeek.).
1304. ThRABING MACHNES, T. \& W. Nalder, Wantage.
1305. Purirying OAES, D. Watson, Manchester.
 13c8. Shutting-off Heat, M. Arnold, Acton,
1309. MEasurivg Distances, J. P. Nolan, Tuai
1310. Bobbiv-NET Machines, W. H. Beck.-(18 18h March, 1882.
1311. Mules, W. T. Watts, Stalybridge.
1312. Carriage Heads, T. C. Towns,
1312. Carriag Heads, T. C. Towns, Birmingham.
1313. Wrar-ape Couprive, E. A. Lietzmann and 0
Borchardt, Kōnigswusterhausen.

1316. SETDINGED TYPE, W. Barlow.-(J. Liveczak, Vienna.
1317. Coloured Devices, H,
1317. CoLoured Devices, H. Kaltwasser, Hamburg.
1318. GAs Moror Exgres, C. G. Beechey, Liverpooi.
1319. FIRE Escapes, G. Lakeman, Exeter, and G.

 mingham.
1345. JoINING WiRE, D. Bremner, Brixton.
1316. Botrice, C. M. Taylor, Snaresbrook.
1316. Botrike, C. M. Taylor, Snaresbrook.
1347. Eleotric Currievts, S. E. Phillips.-(IW.
 1319. RALLWAY SIONALS, J. Livosey, Blackburn, S.
Whitehall and R. Becconsall, Summerseat.
1350. Looms, A. Priestman and J. Ackroyd, Bradford. 1350. Looms, A. Priestman and J. Ackroyd, Bradford.
1355. Scarobing , Rettie, London.
1352. Checking Apparatcs. H. T. Davis, Newington. 1353. Lists, A. Clark, London.
1354. Flour, F. Engel. - (F. Lange, Neumilhten.)

Inventions Protected for Six Months on
Deposit of Complete Specifications.
 196. Car Couplings, J. E. Carmalt, Scranton, U.S.-
A communication from M. R. 'thurber, Scranton,
U.S. -11 ith March 1882 . U.S. - 11 th 'March, 1882.
122.1. RoLlER BEARINGS, T. F. Hemmich, Reading,
U.S. -14 th March, 1882. 1224. FURNITURE TUFTs, G. Doolittle, Bridgeport, U.S.
-14 . 1 March 1 SS82 -14. REELs, W. W. Lake, Southampton-buildings,
124. R. .
London.-A communication from J. O Neill and G.
M. Stewart, St. Louis, U.S. - 14 th

March, 1882 .
2264. ZINC FURNACES, W. R. Lake, Southamptonbuildings, London, - A communication from La
Societé Oeschger Mesdach et Cie., Paris. - 15 th
March, 1882. March, 1882 .
1292. ALCoHos, H. A. Bonneville, Cannon-street, Lon-
don. A communication from A. Ralu, jun., Paris.

- 17 th Marchm 17. - A March, 1882 .

293. Curting Machine, H. A. Bonneville, Cannon1293. CuTrivg MAchive, H. A. Bonneville, Cannon-
street, London. - A communication from G. Dubois
and J. Francois, Belgium. - 17th March, 1882.
294. WALL PAPER, A. M. Clark, Chancery-lane, Lon1300. WALL PAPER, A. M. Clark, Chancery-lane, Lon
don. A communication from E. Leissner, U.S.-
17 th March, 1882 . Patents on which the Stamp Duty of
$\& 50$ has been paid. 1002. Shart Couplings, H. M. Butler, Kirkstall Forge,
near Leeds.-13th March, 1879 ,
 les-Calais.-14th March, 1879 .
295. EARHENWARE W. Wray, A. And Wortobello
and Musselburgh. - 15 .th March, 1879 . 201. Separating Stout, de., from Sediment, J. F. C.
Farquhar, London, and W. Oldham, Balham.-17th March, 1879. . T. King, Liverpool.- 25th March, 1879 .
296. STEEL, J.
297. CHIMNEY CowLs, J. M. Lamb, South Ha 1199. Chimney Cowls, J. M. Lamb, South Hampstead.
298. 26 Ca March, 1879.
 1033. ENGRVING Compositions, F. Kaiser and A. A
Duplessy, Havre. - 5 th March, 1879.
299. CEEANsing RevND BARS, A. B. Perkins, Brad-
ford.-18th March, 1879. ford. -18 th March, 1879 .
300. Cocks, \&c., B. Rhodes, London. -20 th March, 1879.
New, Brinting Presses, H. P. Trueman and J. G.
New Bingam. - 1 st April, 1879 . 1334. Vegetable Substances, B. Rhodes, Bow.-4th
April, 1879.
301. EEETrical Apparatus, E. Tyer, London.-17th March, 1879 .
302. STEEL, S. S. Thomas, Battersea.-19th March,
303. 1080. Furrow Ploughs, J. C. Richardson, Slough.-
19th March, 1879 , 1088. Sortenivg JUTE, \&c., W. P. Butchart and J.
Skiner, Dundee.- 19 ht March, 1879 .
1. GAS STovEs, J, 095. GAS
1879 Stoves, J. Adams, Glasgow.-19th March 1105. Preventing Overwinding, J. King, Pinxton.-
20th March, 1879.
 March, 1879.
2. HoIsTs, D. Edwards and T. Alexander, Cardiff
-27 Heth March, 1879 . -27th March, 1879.
3. BuFERs, D. Edwards, Cardiff.- 27 th March, 1879 .
4. 112. Ferr, W. Spence, London.-20th March, 1879.
1. WHITE LEAD, J. C. Martin, Richmond.-1stl March, 1879.
2. PIANorortes, J. Brinsmead, London, -18 th
March 1070. Extracting Tannin, W. A. Barlow, London.-
18th March, 1879 . 1081. DIsINFECTANTs, \&c., R. V. Tuson, Camden Town

- 19 th March, 1879. 1099. SEwING MACHiNES, C. F. Gardner, Upper Nor-
Wood. 19 Mh March, 1879.

1121. CluTCH Mechanism, J. C. Mewburn, 20th March, 1879.
1122. Looms, J. Rollinson and J. Senior, Dewsbury.-
15th April', 1879 .

Patents on which the Stamp Duty of
$\& 100$ has been paid. 1111. Lap Machines, E. Buckley, Stalybridge.-27th
March, 1875 .
1127. Printing Machines, E. Anthony, Hereford, and 1127. Privtivg Machines, E. Anthony, Hereford, and
W. W. Taylor, Cambridge.- 27 th March, 1875 .

Notices of Intention to Proceed with
Applications. Last day for fling opposition 7th April, 1882. 4939. Producing Light, A. F. St. George, London.-
11 th November, 18s1. 494. Preventing Escape of Steam, dc., G. Tall,
Brixton.- 11 th November, 1881 .
 4981. Hiverpool. -14 th November, 1881 .
495s. TkETH BRUSHEs, E. Pierrepont, London.-14t
November, 1881 . November, 1881. Hallas, Huddersfield.-14th Novem-
4086. PlokERs, E.
ber, 1881.
4998. DRIVING BANDS, M. H. Smith and F. Fleming,
 5016. SoAPING Woven Farics, J. and P. Hawthorn
and J. P. Liddell, New Mills.- 16 th Novenber, 1881
5017. Fire-ARM, A. Dardelle, London.-16th November, 15S1.
5032. Working Railway Signals, S. Brear and 1 .
Hudson, Bradford. -17 th. November, 1881 . Hudson, Bradford.-17th Nocember, 1881 .
5056. Hot-AI ExGines, A. E. and H. Robinson, Man-chester.-18th November, 1881.
5131. SEWING MA MHINES, Im Imay, London.-A com
munication from A. Boisard. 2 thth November, 1881 munication from A. Boisard. - 24th November, 1881
5164. Law-TENN1S PoLES, E. Haskell, London,- 26 th
November, 1881 . November, 1881 .
5188. Loons, J. Bullough, Accrington. -28 th Novem.
ber, 18s1. 523t, Fire-al.arMs, W. T. Braham, Manchester.- 30 th
November, 1881 . 5367. Covering Elegrtical Conductors, W. R. Lake,
London. - Com. from H. Maxim. - Sth December, 1881 .
5373. RABBIT Trap, J. C. B. Fox, Brislington, 5373. Rabbit Trap, J. C. B. Fox, Brislington.-Sth
December, 1881.
5387. Stean Engines, H. B. Young, London.-9th
5444. Boots, W. R. Lake, London. - A communication 544. Boors, W. R. Lake, London.-A communication
from W. Comey.-13th December, 1881.
5471. Horss' Collass, T. Loveday, Islip.-14th December, 1881 .
5567. BRACELETs, B. W. Fase, London.-20th December,
18si. 1881.
573t. Elecrrical Resistances, G. Pfannkuche and R.
E. Dunston, London.- 31 st December; 1881 . E. Dunston, London.- ${ }^{31 s t}$, December, 1881.
48. Fouding NEKTIEs, M. Steinbock, New York.-4th 436. Electrio Telegraph Printing Apparatus, J.
Imray, London.-A communication from J. M. Imray, London.-A communication from J. M. E.
Baudot. -2th Janaury, 1882.
657. ANviLs, E. and O. Wright, Dudley.-10th FebThary, 1882 .
76. DyNamo electric Machine, C. W. Siemens, Lon-
don. Com. from E. Siemens.- 16 th February, 1882 . don.-Com. from E. Siemens.- 16 thl February, 1882 .
03. ExTINGUSHING FIIREs, J. K. J. Foster, Bolton.-
18th February, 18th February, 1882 .
10. VENTILATING VALE, A. S. Buxton and F. O. Ross,
London $-20 t h$ Febryary, London.-20th February, 1882.
843. DETACHING SHIPs' BOATS, J. Ailkinson and N.
McGounell, Folkestone.-21st February, 1882 . McGounell, Folkestone.- 21 st February, 1882 .
367. CARRIAGES of Bobbin-NET MACHINERY, Payne, Nottingham.-22nd February, 1882,
876. SPINNING MACHINERY, G. Perkins, G. Wimpenny,
and J. H. Evans, Manchester. and J. H. Evans, Manchester.- 23 rd
S99. Fobruary, 1882 . 899. Cotton Opening Machines, W. R. Lake, London,
-A com. from R. Kitson. 24 thl February, 1882 ,
905. Secondary Bateries, J. W. Swan, Newcastle-on-Tyne.-24th Februars, 1882 .
968. CUTING HoLes in METAL,
2Sth February,
28th February, 1882. 995. Obtanining Starch from Grain, W. R. Lake, Lon don.-A com, from W. T. Jebb,-1st March, 1882 .
110s. SAEFTY PINs, W. R. Lake London. A communication from J. Jenkins. - Tth March, 1882 .
1190 SRAPING CANE, W. R. Lake, London.-A com-
munication from FF, munication from F. F. Raymond. 11 th March, 1882. nication from M. R. Thurber.-11th March, 1881. 1 .
1224. . SEwING FURNTURE TUFIS, G. Doolittle, Bridge-
port. $-14 t h$ March, 1882.

Last day for flling opposition, 11th April, 1882.

4995. Measuring Speed, C. E. Kelway and E. Dyer London-15th November, 1881. M
4996. CHARGING SYPHoss, T. G. Messenger, Lough
borough. -16 th November, borough.- $16 t h$ November, 1881.
4997. SpINNING Corron, M. Dickie, jun., Stockport.5033. Artiricial Marbie, B. O'Neill, London.- 17 th November, 1881. .
4998. MIXING GAs, J. A. B. Bennett, King's Heath, 5039. DisINFECTING WATER-CLOEETS, \&C., T. Beddoe, London.-17th November, 18ss. Wilson, Handsworth.-
4999. Smith' Hearths, A. 17th November, 1881 .
5000. TELEsCoPIC Sights, L. K. Scott, London.-18th November, 1881 .
5001. FIRE-PROOF FLORS, E. Homan, Turnham Green. -19th Nocember, 1881.
5002. SHAPIG Woon, H. J. Haddan, London.-A com-
munication from A. Wenzel. - 19th November, 1881. munication from A. Wenzel.- 19th November, 1881.
5003. FURNACEs, W. S. Welton, London.-19th November, 1881. . MIZING MAchines, A. A. Dickinson and W.
5004. SIM
Rosseter, Blackburn.-19th November, 1881, Rosseter, Blackburn.-19th November, 1881 .
5005. STEREOTYPISG APPARATUS, F. Harrild, London. -21st November, 1881.
5006. TRAVRSE Moorions of Lathes, T. White, jun.,
Headingley.-22nd November, 1881. 5097. FobloING - BEDSTEAD, A. J. Boult, London.-A
com. from O. Guinchard.-22nd November, 1881. com. from O. Guinchard.- 22 nd
5007. Aoventionatic ATTACHMENT, W. Thompson, London. -Com. from C. McCormick. - 22 nd November Copenhagen.
5008. MECHANICAL HEEL, A.

- A communication from A. H. Christensen and G. Lund. 22 ned Noviomber, 1881 . H. Christensen and G.

5109. VAOUUM Brake ApPARATUS, J. Gresham, Salford. 5112. Fliter Blocks, C. D. Abel, London.- - A commu
nication 5112. Filter BLocks, C. D. Abel, London.-A commul
nication from F. Kleeman. 23 rd November, 1881 .
5110. Fonding CHARs, L. Field, Birmingham.-23rd November, 1881 .
5111. BREWNG A
November, 1881
 cation from R. Cockerne Moth November, 1881 . Halifax.-6th December, 1881 .
5112. Fusmaces, J. Bissett, Glasgow.-8th December
1S81 5472. Mechanical Stoppers, N. Fritzner, Berlin.-
5113. CRANES, F. R. Ellis, Liverpool.-11th January,
5114. Mixing Materials, J. Jackson, Kensington.405. Dredang, C.J. Ball, London.- $26 t h$ January, 1882
5115. CARriAges, A. Cracknell, Peckham. -27 th Janu ary, 1882 .
5116. Seats of Tricycles, A. Burdess, Coventry.-2sth
 537. BURNERRS, B. Verity, London.- Srd February, 1882 .
5117. BaLL BEAING, A. Burdess, Coventry.-11th
February, 1882 . 725. Ferding Mechanism, R. B. Pope, Dumbarton. Sol. Wooden PAckIN Bexes, W. Crookes, York.-
18th February, 1882. So2. REFRIGERAOR, W. Morton and P. Robinson,
Burton-on-Trent.- 18 ith February, 1882.
S23. Smeting Furnaces, W. Ferrie, Calderbank.-
 A. com. from T. H. Hovenden. 21 st Febrrury, 1882 ,
Ont OVENS, B. Cochrane, Durham.-24th February,
18s8 944. Packing Recepracles, H. J. Haddan, London.
A com. from T... . Fogarty. - $28 t h$ tedruary, 1882.
5118. Propeling Ships, J. Cooke, Richmond.A Com. from Propelung Shirs, J. Cooke, Richmond.-
March, 1882 .
5119. REFLETING Lights, W. Brass, jun, London,

 1881.
5120. Firg-bLowers, J. J. Lish, Bucklersbury.- 6 th
March, 1882.
5121. Creels, W. R. Lako, London, - A communica
tion from J. ONeill \& G. Stewart. - 14 Mth March, 1882 ,
5122. HEATING ZINO FURNACES, W. R. Lake 1264. HEATING ZnNo Funsacks, W. R. Lake, London
-A communication from La, Societi Oeschger Mer

Patents Sealed.

(List of Patent Letters which passed the Great Seal on the 3604. Brushes, S. Abraham, Manchester.- 19 th August 4021. Laspps, T. Ward, Kentish Town.-19th September 4031. SKEIN HoLDER, F. Mausch, Termonde, Belgium 4035. GLuE, G. W. Bremner, London,-19th September 4031. Expression of JUice, W. Thomson and J. Milne
London, and J. B. Alliott, Nottingham,-19th Sep tember, 1881.
4051. Driving Mechanism for Velocipedes, E. R Settle, Coventry-20th September, 1881.
4057. Prodvinio Electric Curents, H. E. Newton. London.-20th September, 1881. He
4067. Receptacles for Coiss, C. Horner, Halifax. -
21st September, 18s8.
 4070. SigNais, W. P. Thompson, London.-21st September, 1881. SigNaLs, J. Norris, Sunningdale.-21st
4078. ALAM
Sentember, 1 SI81. Septenter
4082. STEAM GENERATORS, L. Shaw and P. T. Fletcher, Manchester.-22nd September, 1831 .
4083. MEABRING WATER, W. Richard, Norwood-road,
Surrey, Surrey.-22nd September, 8881 .
4087. CUTTING HoLEs IN METAL Plates, J. H. Smiles 4094. Pumps, F. P. and J. E. Preston, J. T. Prestige,
J. Fowler, Deptford, and E. W. de Rusett, Anerley. 4106. BICYCLE LAMPS, J. E. Leeson, Oldham. -233 ct September, 1881 .
4107. DyNamo-electric Machines, F. H. Fahrig Southampton.- 23 did September, 1881 .
4114. RAISING September, 1881 .
4207. DyNAMO- ELECTRIC MAchines, C. A. Barlow, Man
chester chester.- 29 thl September, 1881 .
4220. MeTAL Wheels, W. R. Lake, London.- $30 t h$ Sep tember, 1881. Machines, H. Aylesbury, Bristol.-4th 4319. BICCCLEES, J. A. Lamplugh, Maxchester.-4th
October, 1881. 4486. Obtaining Oxides, J. B. Readman, Glasgow.14th October, 1881.
4540. FITrER PrEses, H. E. Newton, London. $-18 t h$
October, 1881 . 4640. Roasting, \&c., Coffee, \&c., J. Parnall, Bristol. 4718. Rive Retober, 1881 . 5418. ElECTRIIAL APPARATUS, J. B. Liardet, Brockley
and T. Donnithorne, London. - 10 th December, 18si 5491. GRINNDNG WIRE, LARRS, A. W. L. Reddell, Lon
don. -15 th December, 1881. 5631. SECONDARY BaTkERIES, J. S. Sellon, London.-
23rd December, 1881 . 23rd December, 1881.
5751. Operating Railway Brakes, W. R. Lake, Lon
don.- 1 1st December, 1881 . don. -11 st December, 1881. . . Dixon, Glasgow.-4t
39. Couorrin MATrERS, J. A.
January, 1882. January, 1882
(List of Letters Patent which passed the Great Seal on
the 21 st March, 1882.)
4084. Racquets, A. Hodgkinson, Manchester.-22nd September, 1881.
409. TRIe VCLEs, J. Adams, Camberwell.--22nd Sep
tember tember, 1881.
4097. MAKING CARDs, J. Sellers, Scholes.-23rd Sep
tember 1881 . 4098. CoNsumption of Smoke, W. Ireland, Chester.-
23rd September, 1881 . 23rd September, 1881.
4111. Dressing CAsEs, T. H. Mann, London,- $23 r d$ 4115. Flood Valves, F. Dyer, London.-23rd Septem ber, 1881.
4118. Money Changing Apparatus, G. E. Absell, Lon
don. $-24 t h$ September; 4126. CoNDENSING VAPFORS, A. Chapman, Liverpool.-
 4131. LACE, W. .. Horne, Bexley. -24 hth September, 1881
4132. OPENING AsBEsTos, C. J. Allport, London, and A. Hollings, Salford. -25 th September, 1888 ,
4134. ADJUSING Lookna-GLASsEs, E. W. Elmslie, St Leonard's-on-Sea.-26th September, 1881 .
4139. Coanting Metals, T. S. Webb, London.- $26 t h$ September, 1881.
4140. SPiNNING MuLEs, T. H. Blamires, Huddersfield

- 2 bith Sentember, 1881 . 4141. SUPRPLYINM LAAMPS. WITH OIL, J. Wilby, Barnsley
-26 Lth September, 1881 . 4159. Bookeninding, W. Morgan-Brown, London.-
27th September, 1881. 27th September, 1881.

4160. TUNNELING, F. B. Deering, Trefriw.-17th Sep 416. BARREL.
September, 1881 . Smedley, Burton-on-Trent.- 27 th 4176. Treating Clay, J. Gillespie, Garnkirk.- 28 th September, 1881.
4161. SUN-BLINDS, G. Hatton, Southport.-29th Sep
tember 4214. Treathent of SEAweed, H. E. Newton, London 4227. Insulators, J. Lyon, St. Helen's.-30th September, 1881.
4162. Curting Weeds, G. Hamit, Hadderham. -1 s .
october, 1851 . 4267. Exhibiming Apparatus, W. R. Lake, London.-
1st 427. Electroomanetic Apparatus, W. R. Lake
London. -1 st October, 1881 . London.- 1 st October, 1881.
4163. STrax Bockers, J. L. Rastrick, London.-3rd 4277. PREFARING Food, E. J. T. Digby, Hammersmith
 4351. Sewing Machines, H. Simon, Manchester.-Sth 4390. Trimgivg Boots and Shoes, W. R. Lake, Lon
don.don. - 8th October, 1881.
4164. SMELTIMG ORES, J. W. Chenhall, Morriston.-11th 4449. Brushivg Surfaces, F. Stansfield, Bradford.-
12th October, 1881. 4516. Forging 1881 . Metals, E. Dearden, Darnall.-17th
october, 1881. October, 1881. .
4165. HEATING WATER, S. Leoni, London, -26 th Octo 4742. CABINET Desks, F. H. F. Engel, Hamburg.-
29th October, 1881. 4796. Lavatories, G. H. and S. Jennings, Stangate.-
2nd November, 1881. 5105. Beer Barrels, w. Rose, Halesowen. $-22 n d$ No vember, 1881.
4166. ALUM, P. and F. M. Spence, Manchester.- $24 t h$
Decenber, 1851. 5732. Towing Lighters, W. R. Lake, London.- 30 th 26. Secewowive SHips' Aschors, S. Baxter, London.-3rd
January, 1882. January, 1882 .
4167. SEwING MACHINES, W. R. Lake, London,-3rd 62. Treating Timber, S. B. Boulton, London.-5th January, 1882 .
4168. CosvRTER, J. H. Johnson, London.-10th
January, 1882.
4169. Treatigent of Animal Refose, J. H. Johnson,
London. -10 th January, 1882 .

List of Specifications published during the week ending March $18 \mathrm{th}, 1882$.

 షididu did did M
fanges, and in the space between the flanges on each
guide works an excontric Hi, these excentrices are
fixed on the axed on the crank shaft c, and are or may be adjust--
able, and they are set so as to raise the inner ends of the guides as the saw moves forward, thus depressing
the saw gradually during the cut; the excentrics the saw gradualy during the cut;
lower the inner ends of the guides and
so as to ease it during its return stroke.
3 .

The machine has a number of rollers caused to revolve by gearing, and means are provided to actuate
at intervals a sories of levers and creasers, which
aperate revolvi operate revolving rollers in boxes containing paste,
from which the creasers take away a portion of paste on one side only at each operation. On the creasers
descending upon and bending the paper to form the
side side or bottom seam, the paste is wiped off the
creasers by the paperas it closes against the former in
the oreration the operation of folding
3231. Improvenents in Comatutoos for Dynamo
ondon.-23rd July, 1881.- (A com muxurication tre

this is done as follows $:-$ The insulation of the com-
mutator is widened and the conducting bars narrowed

at one end, and on this portion of the commutato cylinder and at each sise herreor ong ens is is noted brus)
 figure. This brush is connected to a series of breaking
points resting on a breaking cylinder, as shown

munication from Messrs. Pilon Freires and Co.,
Paris.) bd. The carbonisation and distillation are effected in
apparatus which has an intermittent delivery, and is so arranged that the two processes are conducted so
that the substances are gradually and progressively that the substancess are gradualy and prog
subjected to the action of heat and to cooling

In order to render advertisements or signboards moro readily distinguishable, the announcement is
mritten on alas, ppaced in a frame, and illuminated
from the interior.
3237. Bobbin-Ner on Twisr-Lace Machives, dec.
J.
R. Hancock,
Nottingham. $-25 t h ~ J u l y, ~$
,

This. relates to a combined go-through lace machine
and jacquard, the improvements being equally applicand jaecuard, the improvements being equally applic-
able to lever machines and curtain machines.
The go.through machine consists of an inverted T-top tie
bort two end standards and one internal top standar with brace encetandards, and one internal top stand bearing front, a point bar arm axle, and a point bar knocking
out lever axle. The point bar arm lever is double sided, and between it revolves the point bar truck an slide, which is a block adjustable in the upper end or
the point bar arm. The latter at front and back ar the point bar arm. . The tatter at front and back are
slotted from the the bearing end, the
upper upper end allowing the point bar pressing-up cam to
pass within it, the lower end leaving a pin to secure
 The links which govern the in-and-out movements of the front and back catch bar feet are hinged on pins
in the end standards. Each link carries a pin to con nect it to a lever on a shart rocking in bearings
secured to a second rocking shatt supported by the secured to a second rocking samt supported by the
intermediate and end standards
The second shaft carries a lever at each end connected to a rod secured
to a disc driven by ${ }^{2}$ rod. $\begin{aligned} & \text { Between the governin }\end{aligned}$ to a disc driven by a rod. Between the governing
links are levers rocking upo the axles. and with
their inner ends secured to the catch bars, the ends inks are levers rockured to the catoh bars, the ends
their inner ends seat
of which are adjustable on the truck levers. The
 3243. Machiness for Combing Fibres, G. Little, old-

nections), slide, or other such like appliances, for
 number of rows or lines of pins or teeth is reduced.

 suppottom and sides, and also having handles to enable
at to be removed through a side door. The ontents of
it the outer case may be removed by a pump through a
suitabie vertical channel. A box of itisffectant tis

3271. Glasses or Lesses for Pavenent and othen
Lights, A. McLaren, London. $-26 t h$
July, 1881 This. consists in forming a lenticular or double and a plane with a plane surface for reveiving light,
aiffusing light.
diave combined for dispersing and
3272. Broccless, J. H. Johnson, London.-26th July,
1881.-(Acommunication from W. Rennyson, Penn The object is so
The object is to prevent the rider being thrown over
 3276

A wheel with a number of teeth or recesses is secured to the entre pivot, and over it a spring catch
is fittod to the frame of the swing glass, and engages
with the wheol with the wheel.
3280. Fiuss
3280. Finss For Printing, \&e., A. M. Clark, Lon.
don. $-26 t h$ July, 1881.- (A communication from B.
 smooth upper surface, and ines, dots, stipples, ,ce., or on its lower surface, which inkeed surfate is is to be be
placed on the surface upon which the e transforred by applying an andrasive prowsurue on the
back of the film by means of a stylus or like instru-

 blockk so that the swingin
rest on the block or stone.

 of common salt is obtained, and using this solution for the purpose of separating the glycerine from a frosi) charge of soap, thus enabing the process to be
repeatedo over and over until thhe maximum amount of
glycerine is obtained from the minimum volume of
 steam jet, so as to secure a perfectly uniform solution
during distillotion during distillation
 This oonsists in combination with a governor and
subsidiary cylinder and its slide of the differential ever N linked to the piston rod of the subsidiary

cylinder, and the hand lever J , with its studs K and
L mounted on the slide rod, whereby the slide of the L mounted on the side rod, whereby the slide of thi
subsidiary cylinder can be subjected to differential action when desired.
3329. Ploughs, J. Cooke, Lincoln.-1st August, 1881

This relates to improvements in ang ploughs and
turnwrest or one-way ploughs.
Fig. 1 shows the

3329

beam regulating the width of the furrows. The pole
Gis is fted at the frontof the plough and bebtween the
 end terminating in a bar held in position by an iron pocket H by means of a pin passing through holes in he pocket, so as to adjust the poie aterally. The
land and furrow wheels J are fixed on sliding bars
 able by screw X . The lever M works in a notched
uadrant, and by cam N acting on pole G raises the quadrant, and by cam N acting on pole G raises the
cant end of plough. Fig. 2 shows the improvements in turnwrest ploughs, and consists in an arrangement
to e enabie the wheols to act alternatel vas land ind
furrow wheels with to stop at each end and leave the handles to adjust he wheels. Under the beam R is a swing carriage
carrying the wheel slides, and also a circular plate w,
 the required position
by means of lever T.
3310. Valves for Regulating and Controuling
the Flow or Fluids, A. E. Carter and D. Young This relates to screw, down valves, and the object is
 opening and closing the valve, and also to enable the packing to be renewed while the valve is under
pressure, and in some cases to do away with any packing
3316.
Br. Spinning, \&e., J. J. Broadbent and E. Mitchell, This relates to cap spinning, and its object is to combine the ring and traveller with the ordinary cap,
whereby the prosent cap frame and spindles can be utilised and a smoother and better yarn produced than by the ordinary cap. The bottom part of the cap is
made of larger diameter than the body, and is formed withe a flarge at the extreme end of the cap, and a
roove at the inside diameter between the flange and the body. Around the flange an ordinary traveller is placed, through which the yarn passes in its travel
from the front rollers to to ohobbino on the ordinary
tube and spindle and which is driven in the usual tube and spindle, and which is driven in the usua
manner.
3317. Tricyocres, W. Jeans, Christchurch, Hants.This relates to means for increasing or diminishing the power exerred upon the driving wheel at pleasure
without altering the throw of the cranks worked by the rider's feet; that is to say, the driving wheel may be caused to rotate a greater or less distance at each
rotation of the crank shaft, the extent of movement of the latter remaining unchanged.
3320. Firtings ror the Holds of Colliers, C. H. The object is to provide against the breaking-up ccurs while loading the coal into the holds of colliers and it consists in the use of permanent shutes fitted
in the holds and reaching from the hatchways to the
foo of the hold. 3323. Mounting The Spindles of Spraning MA.
chinery, C. H. Openshavo, Bury. $-30 t h$ July, 1881 . This. relates more particularly to the spindles of
throstles and consists tin mounting each spindle throstles, and ans consts in mounting each spindie et
revolve within a tubulur pillar formed with the upper revolve withn a tubuar pilar formed with the epper
bearing for the spindle, and provided at the lower end
with and with an enlargement to contain the wharve. An
opening is provided for the epassage of the driving
. of pillar is secured to the rail, and the upper end
oxtends nearly to the boss of the flye. The upper bearing is a short distance from the top of pillar soa

 Valves, so that the explosive mixture or the products
of combustion may be emptied easily into the of combustion may be emptied easily into the
cylinder behind the piston and without any back cymersser, Seeocondly, in the division of the explosive
prower into severai separate explosions in separate
pole
 compartments and
petroloum introduce ; Fourthly, the thetilisation of
the heat in the water of the jacket by injecting the Fifthly, to a special form of ortary slide valve retationg
in one direction only; Sixxthy, the regulation of the In one direction only; Sixthly, the regulation of the
speed of ontin on closing tht exhaust valve during
ond the up
described
3332. RoAD-MAKING ENGINES, \&ce., A. Lamberton,
Coutbridge, N.B. -2 2nd Aupust, 1881. 6 .

 "metal" "sed are broken to the proper siize and dis.
tributed behind the machine, being rolled in on the return journey of the machine. . Thompson, Liver
 This consists primarily in a pump communicating with the internal chambers of two cylinders, each
provided with a contral chamber and
and annalar surrounding chamber, the pump being arranged do deliver
a body of water or ther lipudid from one vessel to the
a other alternately in opposite directions, and provided
ovith areorsing ear controled and oprated by such
liquid, so that when the liquid attains a a given height n one chamber it shall cause the pump to be auto-
matically reversed, and the liguid to be pumped to the other chamber, suitable valves and pipes being pro-
vided for the admission of gas or other fluid into the central chambers, and for its deli very into the annular the water columns, The invention further consists in
a peocilia o onstruction of the colinders
and i in overs arrangement of valves for controlling the the
evering of the pump, and various other details of the machine.
 The object is to enable the weight of the parts
pon the carriage or top framing to counteract with the greatest effect the weight suspended from the jib,
and to enable the crane to work freely under heavy strains, and it consists in constructeting the top of the
bogie upon which the crane works, in the case of
bise bogie upon which the erane works, in the case of a
travelling crane, with a centrar pivo round whithe
carriage turns, being supported on wheols carriage turns, being supported on whels runing
on a truck on the booit. The upright of the crane of
on upported and fixed to the top of the carriage, and is
further supported by a strut fixed at one end to the further supported dy a strut mxed at one end to the
upright and at the other to the carrige. The jit is
pivoted at the outer edge of the carriage. The workprovted at the outer eage or the carriage. the work.
ing parts of the engine are mountod on the carrage,
mossly on the lowe part of the upright, the boiler
 piatiorm. the level of the obsie or corriage, in order
adhasting the crane may always stand on a level.
that
 One end of a square spindle is fixed to one handle,
and the other end is formed with ratchet-shaped groves on one or more of its faces, , with whichaped
siding catch piece in the other handle engazes. To
 the catch, so as to ra
grooves in the spindle.

 which two or more rolls revove against each other at
different peripheral rates of s.eed, and it consisg
chiefly in the peculiar construction and arrangement of the grooves and ribs upo the rolls, also in the the
means for ajousting the orols, and in series of subh
rolls graded in respect to fineness or number of
 growest to the inch with intermediate
ral sets acting in suceession of grade.
3347. Stram Boizres, H. W. Blake, London, and J.
shepherd, Manchester.-2nd Tue obbee of steam boilers, and to to render the in parte expoed to the water less liable to choke with deposit,
and also to render the flue tubes strong and flexible, so as to admit of expansion and contraction, and it
consists in forming UUShaped chamber rings bent in

 In the upper part of astrong frame, one, two, three,
or more jaws are carried on an axis upon which they or more jaws are carried on an axiss upon which they
can be moved una dad down as well ins in and out by
means of excentrics passing through bearings in the lower part of each jaw. As each movable jaw is forced
inwards, it crushes the material between it and the
 pasing in theen wise motion is imparted to the roller
same
to prevent them becoming scored or grooved. ${ }^{3357}$. Pcogisg Claxi, de.
The clay is fed into a purmill, in the bottom of
which
 being filled the contents of the one previously filled il
pressed the pressure being applibe simultaneously
from above and below. Atter peing presseod thy pressed, the pressure being appied simultaneously
frome abee and below After being peresed the
article is raised to the top of the mould which is
orted on artice is raised to the top of the mourd, which is
placed on a liding table and removed, the next
pould being at the same time carried to the place
where the pressure is applied.

 The capping machine consists of a framework in the
torm of to paralel benches with a raiseor platoro
between, on which a boy who feeds to the solderer

 the upper end of each spindle a few incheses above the
bench is an iron bowl with grooves in it to receive two
bize sizes of cans. Alongside the spindles and running
through the benches are a corresponding number of rods having each a weight at the lower end, the upper
end obing curved over, so that when pushed to one
side the end of the curve fits in the centre of the cap end being curved over, so that when pushed to one
side the end of the curve fit in the centro of the cap
on the can in the bowl and forms a pivot for the can to 3367. Gust ENeires, M. P. W. Boulton, oxforrl.-3rd
August, 1881 . Sd.
 One object is to introduce the inflammable charge so
that it
 commence ts stroke, or is at the dead point, another
is towork so that for each ignition of the charge the
piston shall no make more than one pair of strokes
por

 tion, in order that this air or ffuid mana ybstract the
passage of heat from the ignited charge to the metal.

 bedstead particularly ydapted
may also serve as a stretcher.
3377. Fire Exaises, H. J. Haddan, Kensington. - 4th
August, $1881 .-(A)$ communication from S. B. Babcock, Gedies, U.S.) Gd. force pumps grouped at the centre of a horizontal
driving wheel and connected with said wheol by
suitable actuating mechanism, all mounted on a suit.

able ehhicle, and having extended from the driving
wheel a Iever adapted for the connection thereto of
the the animal puaper required for ornection theretang orthe said
driving wheel and pumpse onnected therowith.
3870 sal

 spaces being left between the rings. The retort is set
In brick work with tuaes, and the material to be dried
is adiditted at top and graduall drops down from ring to ring, cloggng being preventerops down the striming
appliance. The material leaves the retort at the
hot tom bottom.

 coupled topether so as to rotate in unisose eithor ar b
tooth gearng or its equivalent, and on the axis of on
carrier is mounted a ratchet wheel and pawl driven by
a chanin or equivalent connection with the moving
auts of the hen parts of the hammer.
 The central pillar carries a toothed pinion gearing
with wheels on the axes of covers fitting over the different bottles, the that by turning the central pillar
he bettles are either atered or wncoverel
3389. Wrip Harr Berverzs, W. R. Lacke, London.--
4th. August, 1881.- (A communication trom J. A. Horton, Boston, U.S.S. $6 d$.
This relate
Tot mechanism
Mdia-rubber while a row or series of on metallic strip of is
being simultaneously inserted into it, and for feeding
 grasped at its opposite edges and stretched at the
point where the pins are inserted, so that it will be
peld siffeienty held sufficiently firm to enable the pins to perforate it
when forced against it without displacing the strip to any material extent; a second object is to enable the
strip to be automatically fed so that the pins will be Inserted in groups, each group having the number of
pins to form a single adjacent strips so that the strip can be readily cut to
detach the sections of material containing the groups of pins.
3392. Aspessos Packnso, C. J. Allport, London, and
A. Hollings, Manchester. - 5 th Aupust, 1881.
4d. A core is formed of any desired number and sizz of strands to make up p pap king of the required dimen
sions and around such core, the strands of which are
paraliel a covering is paraliel, a covering is woven, consisting of comparat
tively large diameter warp and fine woof or weft.
iDerin Hively iage ding the weft is drawn tight, by which
During weat
means the core is sufficienty compacted, and the surface of the finished article is left with round pro jections of warp only for bearing on the rod when the
packing is in position in angand The fine weft being
at the bottom of the depressions between the project

 This relates to apparatus which will allow of pro-
ducing an immediate and abbolute immobility of the
parts parts, assured by perireailit of allowing the joints
consolidition, with capalite to act without affecting the place of fracture, and it
consists of a frame forming a litter to receive the consists of a mame for seang ing and adjusting the in
patient with meand in the desired positions.
jure parts 3403. Suaar, J. Duncan, London.-5th August, 1881 This consists in the employment of chlorine for
bleaching raw or coloured sugar, the small being afterrinars remored by passing iant throush the emass
and then adding alcohol in any convenient form. 3406. Foot Skites, J. F. Walters, Bayswater.-6th On a light spring steel skeleton frame is mounted a
foot-board that can adjust itself by rubber cushions The frame is attached to an axle bearing light skele-rear of the frame a small wheel is placed.
3408. Bicycles, G. Strickland, Malta.-6th August,

This relates to means for adjusting the rake or inClination of the fork carrying the driving wheel, so as it consists in forming the backbone in two parts,
sliding within the other, suitable means being provided to effect the sliding 3413. Lios for the Furine Holes of OL Cans,
dic J. Nickholds, Wolverhampton.-6th August, The lid is in the form of a segment of a sphere, and transverse spindle. The filling hole in the can is
opened and closed back wards, and if left open,when the valve for the
exit of oil is opened, a projection on the valve spindle ats on the spring arms and closes the filling hole.
 for dris relinges to the application of an electric motor 3424. Gearing and Apparatus to Increase and

 more spur or friction wheels, which gears or gear into
a corresponding wheel or wheels of the same size
fine

 pitch as the wheel or wheels secured on the crank
shaft are fixed, and these are geared with corresponding wheels also of the same size, secured on the
driving or oropolligg shat of the engine. The inter
mediate shatt is carried in brackets or bearings at

each end, and is capable of being lowered and raised
so as to throw the spur or friction wheel secured upon the hollow shaft into and out of gear with the corree
sponding wheel on the crank shatt by means of levers centred at one end on the driving or propelling
shant the opposite ends of the levers being conneeted
together by a crosshead or frame, which is provided

3426. Loors, F. C. Glaser, Berlin.- 8 tht August, 1881 .

- A communication from P. Hasdenteufel, Germany.)

This relates to means for operating and securing the bolts of mortice and padlock, and as applied to a door
lock with a sliding bolt, serving as ast day bolt and as a
nik night bolt, being operated from outside by a key, and
from inside by a slide; it consists in forming a trans verse opening in the bolt to receive the short arm of a
balance le balance lever, the longer arm of which carries a
weight, and the fulcrum being so polaced that the
weight serves to close the boit. The key withdraws Weieght serves to close the bolt. The key withdraws
the bolt by turing a cam so so to litt the balance
lever. If the lock is to be closed from inside, a
 the tecessed underside o
later by turning the cam
3427. Pravasext WAP of Ranwavs, F. C. Glases,
Berlin.- $8 t h$ Auchust, 1881 - (A communication from A. Haarmann, Germany.). 6 d.d.
The rails are secured at the desired inclination on
metal sleepers of the form described in patent
No. 1250 ,... 117\%, by mens of tapering or sloping
sadde
sade

 Bermondsey. Bth A A ugust, 1881 . 4d.
The tire is formed with V or other shaped grooves on each side, and the hollow rim of the wheel is formed with correeponding ribs or projections extending
round the imner edge and taking into the grooves of
the tire. the tire.
3438.
3436. Regulating Valve for Rainway Brakes
Worked hy fuuld Pribsure,
G. Westinghouse,
 under presure to be admitted into the pipe which
convers it along the or tran力 and also ot relieve the
pressure more or less in the train pipe The valve box
 has two nozzees, A connected to the thid supply, and
to the train pipe, subh nozzase openinf from two com.
partments of the valve box separate by a partition having a valve C pressed to its seat by or ppring.
hattached to i is a seocon valve D , the seat of which is
 between the e two prarts of the erux ox The coumpartagge
of the box on the other side of piston communicates

3436

with the outer air by passages G, there being free pasthe hole throumpithe piston and crovs holess. The
btem of piston has a shoulder, between which and a
stem stem of piston has a shoulder, between which and a
plug on the lever handle K a sprin H is placed, the
pin
 a spring catech lever M engacing with teeth on ring N
between the two parts of valve box. When the handle is wurned one wast the piston E is prossed of orwara, the
inalve D seated and valve C opened, the fluid entering
val Valve D seated and valve C opened, the fluid entering
nozzil A, and fowing by nozzle B B to the train pipe,
whilst when

 passes past valve D through the piston and escapes by
passages G, thus relieving the pressure in the train pipe.
3439.

August, 1881 -(A communnieation from Captain C. This relates to means for removing excremental
matter from towns by air pressure and it consists in means for automaticuly atceasting, cooks whichs put
the district reservoir in communication with the Vacuum pipe, so as to produce a vacuum thereon;
then to close such cock, and open the cocks which establish communication between the district reser-
voir and the water-cosests to be emptied, and finaly osing the latter cooks and opening the coocks which
open communication between the district reservoir and the main reservoir of the engine-house.
 This consists in attaching the shafts to the carriage frame by means of bolts, which when raised by means
of levers will instantly release the same, and so detach
3451. Regulativg the Suppiy of Water and other
 The water ins supplied by a ball ocot to a tank of a
apacity equal to the quantity of water to be supplied at one time, and in the bottom of the tank is ixixed a a
aternel discharge pipe reaching up to the highest
vertical Yertical discharge pipe reaching up to the highest
leve of the water Surrounding the ppipe is an
annular passage with openings at the bottom of the
and tank, so that water may pass up it and into the diss
Charge pine. Afsixed cylindirial displacer surrounds
the annular passage, its upper edge being attached to the edge of same and carrying an annular plate
extening over its moth partly over the mouth
ext of the discharge. The displacer extends some didis-
tance down the outside of the passage. A cylindrical hood is anpabe ont ofieing raisesed and io. 1 Awerd by the the
pull, and raises the amount of water required, which

 This relates to an ancunce in which the motive fuid
 or mixed together, or with water in suitabie propor-
tions, or all gases capalo of being liquefied or bodies
capable of passing from the liquia to the gaseousstate or vice
3463.
ar

This consists in placing the cable through the links of a double chain, which form a sort of cage so o as to
thoroughly protect the cable from dragging and
chafing on the bottom of the cean. 3468. Sprivo Saddir Bars, G. Curtis, London.-10th The object is to effect the instantaneous release of a
rider in event of being thrown from a horse, and also on give additional strength to the saddle tree, and it
consists in pivotting to the saddle bar a lever arm with a vertical and horizontal joint, which catches into a
shorter curved arm governed by an internal spring in shorter curver
the saddele bar.
 A trough or box is divided into an upper and ${ }^{\text {a }}$
lower compartment by a perforated metallic plate, the
 ing a reservoir for the ink, By turning the phad down-
wards it will become saturated with
ink , the oxces running back into the reservoir when the pad is placed
upwards again.
 A stronns, frame cariries a chopping blide or guillo-
tone knife driven by a crank, and the wood alrendy cut into blocks is phaced in a trough leading to the
blade and is forced forward either by hand or mechanically. In front of the bade is a guide to regulate the
thickness of the slice to be cut and for holding the wood well up to the blade, such guide being fitted with a spring arrangement to allow the slice cut off to
fall into a tube which lead oit between a pair
roll rollers, one plain and the other fitted with a number
of circular $\begin{aligned} & \text { nnives, which again act on the wood and } \\ & \text { reduce it } t \text { no }\end{aligned}$. reduce it to piecess of the required size and form.
ren 3481. Rotary Puxps, C Comstock, Neo Canada,
Conn., $U . S .-11 t h$ August, 18si. bd. This consists, First, in the construction of the levers QR, , and parts connected with them, and their combination with a heart-shaped cam or slot (or cams or
silots) in which the rollers on the short arms of the

5481

said levers work; Secondly, in making the valves or
radially sliding plates with converging sides, so that
 avoid leakage Thirdy, in the combination win the
value, and with hhe tixe division betven the ingres
and egress passages of the pump, of elastic metallic packings.
3496 .
 This relatest to means for retaining the umbrella in its open position without the usual catch and spring
at the top end of stick,
mad
for retaining it
In
 "gat" on the rib longer than usual, and slighttly turn-
ing the two sideo of one end of he " gat," so as to
make two ears on which the stretcher proses,

 spinning and doubling machines to which the ring
and traveller are applitable, and consists Frist, , in an and traveller are applicable, and consists, First, in an
improvement to ossist the winding on of the yanra or
thrend thread, more particularly on the bare spindle or on a
tube, hee externald iameter of which is the same size as
 also regulates the tension of the yarn or thread, so
that immediately it has any tendency to become too tight it causes the traveller to rotate more quiekly
thereby avooiding breakage and enabling much fine yarnuto be spun The second part consists in causing
the ring itself to rotate and apply a rakee acting
directly on the traveller, so as to efflect the same object.
3508
 So as to steady floating bodies or vessels, a series
horizontal platess is fixed below the bottom of the vessel, out of reach of the action of the ways, and at
a distance apart one over the other, so that the water may pass freely between them.

 fluids to eliminate from them the greatest amoun
possible of heat, and deliver the resuluting gases alon

 an ordinary furnace
3527. Gas Esarins, T. H. Lucas, Birmingham.-13h August, 1881, 8d. or motor piston of the gas engine of a aupplementary
piston constituting as it werea movable bottom or en piston constituting as it were a movable bottom or end
to the oflinder, the said supplementary pistom having
on purposes or expelining the exploded gases from and for
drawing into the cylinder the fresh charge of the

gaseous mixture, and in conjunction with the
prinipal or or motor piston for compressing the said
gaseon Iminition of the gaseous mixture, and the expuls, of of
the spent gases being effected in one cylinder, and at each rotation of the principal shafts of the ensine or in double-acting engines at oa.
of the prinicipal or motor piston.
3520

stitches so formed are afterwards submitted
shearing device, which cuts the raised loops.
3530. Cartridges for Mining ordnance, de., W Hogarth Sonth port.-15th August, 1881.- $\begin{aligned} & \text { (Not pro } \\ & \text { ceded with }\end{aligned}$ the the formation of an air space passin This relates to the formation of an air space passing surrounding part, yet atiled with oxygen up to the

3531. Brakes for Ratiwars, dec, A. Balme, Leeds. The brake blocks at opposite sides of a wheel axis are carried by a pendant lever formed with a skid to
cot on the rail, when the two levers are caused to 3535. Porthasd cy a toggle lever arrang ata

This consists, First, in a new process or ssstem of treating slurry to produce a perfect amal gamation
nnd close relationship of the particles, and in conse quenceal better clinker for cement than hitherto; and Secondly, in effecting a perfect amalgamation of the dashing onward ang antiting chation witmed sithin arry, by
ike apparatus having rapidy revolving agitators.
 munizaction from J. Gotltieb, Vienna.) $2 d$.
The object is to prouce an odourless and colourles oil for cossmetic and oharmazeeutical purposeses, and it oon-
ists in repeatedly digesting any ordinary mineral oil ot
 Sarying in quantity from 10 per cent. to 40 per cent
of the weight of the oill, which is left to settle after eare digestion, and then skimmed off or decanted
from the sedimiment. TThe oit thms purifed is treated
while hot with the powder formin the eosidue in the while hot with the. powder forming thr ra
production of yellow prussiate of potash.

from. C. Seloondelmaier, Germany.-(Not proceelal
veith.) 2d the form of a fish contains mechanion
cose

 and in it a series of trucks is caused to tra.
sion at intervals of a few minutes or less.
3549. Rolls, T. Brown, Walsall.- -16 th August, 1881. This rieltasesto rolls for rolling metals, and consists, so shaped that when the acting grooves of the top and bottom rolls become worn, it is only neecssary to put
the top roll bottom and the bottom roll top to bring bottom rollls are used in oconjunction with a spare
middie roll. Secondly, to chilled rolls used for rolling hieil hole of large diameter passing from end to end the object being to prevent fracture from the unequal heating. So as to cause them to cool slowly after use cos or other flames are caused to play on the outside
ff the rolls.
 A ellinder is fitted with a a piston, and contains which the piston is cansed to press bya a spring and and
so fore the lubricant through a hole in the cylinder so force the
to the bearing.
${ }^{5552 . \text { STRAM BoILERS, J. R. Oldham. Sunderrland. }-16 \text { th }}$ This relates to a pecular form and arrangement of tubes in connection, with a them, the obraneet being to form a boiler in which the products of combustion are
led downwards and through return tubes a the bottom and centre of the boiler, so as to heat the water at the 3558. Foominsa Crians, H. Austin, London. - 16 th This relates, First, to means for adjusting the angle Secondly, to the manner of fixing rockers to such 3562. Tenvis, CRicker, and Other Playing Balls
A. J. Altman, London. $-16 t h$ August, 18s1.-(Noo This consists in iorming the bulls from pieces of
cork cut to the necessary shapes and united together by a solution impervious to the action of moisture.

 This consists in dragging chains along between two
 3574. Reed Prpe Notrs for orans, I. B. Hamil-
ton, Greencich.-17th August, 18si.- (Not proceded Thisth consists in reacting upon reeds and controlling their motion by means of a wind resitance, or the
resistance of other reeds under the action of wind
 munucication trom A. Delabovere. Paris.) 4 4. hemp threeds and mitssues. consisiting in inen treating
the same with a solution of chride of lime in the presence of a solution of alun
rated with hydrate of alumina.
 The material too be sifted is placed on a sieve to
which a reciprocating motion is imparted, the smaller portions apsing throunh the simparted, and being conater
ducted away as desired, while the larger nusifted material is conveyed from one end of the sieve to the
other by means of revolving worms situated above
the sieve

This consits in the employment of the crystais Yofmed in the teanc char doecomposing combinations of
of surogen with the metalloids, as well as noxious and 3585. Woikiva up Butrex, R. W. Whinneralh, near
 The e ipmaratus consists of a sloping funnel-shaped
rough with raised sides and mounted on feet, and at thhe Hower ond of crich is is pivotted an hand lever
forming a presser fluted on one side to convey away moistura.
 This consits in a reversible soldering tol, thit tip of
which mav be brought into any position desirird by by
3587. Bicročes, \&c., A. W. Robinson, Birmingham. This relates, First, to ${ }^{2}$ asteering check spring to tion necessary for travelling in a straight line, so that he hands or the rider may be free excopt when contruction of seats for tricycles.
 This consists in dispensing with the collars ordi-
narily fixed on the shaft on each side of the bearing, and fixing two collars BC on the shaft A on same
side of the bearing at a short distance apart, between

which fixed collars a loose collar E is situated, by means ortion is given to the said shaft by suitable 3592. Bekr Barrels, sco., W. Smedley, Burton-upon
Trent. -1 sth August, issi. - (Not proceceded with.) This relates to protecting the part of the head of the barrel in which the hole is formed to reecive the tap
by means of a metalic collar screwed into the hole.
 proceeded vith. $)$ 2h.
The unper part of the of the engine can be be turned in any desired direction, so as to escape the
direct current of wind which may be blowing, and albo to direet the sparks and smoke away from any 3597. Printivg Machinery, R. C. Annand, Peter.
head. -1 sth August, $1881 .-($ Not proceded evith.)

This relates to a machine by which printed copies
of a sheet on one or both sides may be obtained by nsing the type in the fat, and also orinting the shee
from the web, and cutting it up afterwards into the required size. The machine has four platens arranged
one above the other, and guided and held in position one above the other, and guided and held in position
by vertical giviess the top and botom onse bein
bind fixed, and the mid
caliy up and down.
3601. Supporting, Fixiva, And Adjusting Swisa

 and on tis inner face a bearing block with a concave
seat to bear arvinst the spherical end of the support ing axis of the swing looking-glass
advance by means of a thumb-screvv

This consists in the consisting of ceratonia siliquanatacture of or compone date fruit, the
seeds vicial sativa, or dholl, and contie 3603. Colouring Matters for Dyerivg and Print
Ing. J. H. Johnson, London. $-18 t h$ August, 1881.-
 a compound sooluble oin waterion or the thilarine purposes of dy 3605 . thon. -19th Aupust, 1881 . $2 .$. This consists, First, in subssituting for the ordinary oak-gal solution waste tan liquors rich in gallic acid
Secondly, instead of using sulphate of iron ind siling or ing instead of using sulphate of inon, iron
fimply comminuted condition is
emped. 3608. PR
 This relates to per
This relates to perambulators with a seat at each
end and cossists in mounting the hood so that it can
be reversed be reversed and made to cover either seat, also in making the front end of the body capable of being
folded down inside the other end when desired to foldad down inside the other end
make the perambulator single only.
 An endiess platrorm moves along the centre of
stage, and conveys the coal to shoots from which it
falls in fals into wayons
3612. Weavinc, P. Dunkerley, Manchester.- 19 in
August, 1881.- (Not proceeded with.) This relates principaly to weaving belting for
driving machinery, and consists in the employment of driving machinery, and consists in the employment on
four sloots and six sets of warps, the tension on the four sioots and six sets of warps, the tension on the
latter beeng alway equal, oth the second warp
beam is abolished, and only one employeyed. 3613. OnNankented Soap, see, J. A. Graham, Puthey
-19th Aupust, 1881. - (Not proceded 2ith.) This relates especiaily to ardie consisting of an
outer tube of the form to be given to the soap, and containing inner tubes of any desired form, soaps o
different colours being forced through the differen different colours being forced through the different
tubes and made to unite where they issue from the

 fricion roilers, and brakes are so arranged that
rupture of the able from which the cage is suspended
sets the brakes 3623. Bicrucres And Trivecurz, C celo Toope, Stepney.
19th Auyust, 1ss1.-(Not
 coiled springs setween the forks.and the socoket of the
back, and also between the lower ends of the fork back the bearings of the driving wheol.
3624. Controluivg AND Arrestiva the Ivcursiovs
or Looustrs, dec, W. Clark, London. -1 Oth August 1881.-(A communication from A. Durand and
Hanvel, Parris)
41
of thin smooth sheet metal plates, arranged in con-
vercing Imines, in combination with pitis sulso furnished
vith bariers nisects collected in such pits by metallic mass of the subsequent use of apparatus for disengaging
ammonia by the action of a base, and transforming the mmonia into sulphate
3813. Forming the Joints of Tix or Shert Metal

This relates to apparatus for forming double seams
sheet metal br first forming a joint or seam of cir-
 suach joint to a flattened oconfiguration, thererby press.
ing the interlocked edges into close contact with each other.
5570
570. Compousp Exgives, A. M. Cark, London.-
20ith December, 18st.-
A. Communication from G. Maseay, Neo York.) (comptet.) ©did
This consists in compound engines, of the combina. ion of two contiguous cylinders in direct connection

5570

by ports at the end of the low-pressure cylinder, the it itp endss, aydind der havinge exhaust and steam ports here being two pistons on the rod of the high-pressum
cylinder, and a piston and rod in the low-pressurn cylinder. Improvements in details are shown.

SELEOTED AMERICAN PATENTS. From the United States' Patent ofice oficial Gazette 253,289. Locomortive, Benjanin F. Hudson, Bean
Creek, Tex.- Fried November 28th, 1881. Claim. - The frame B, having inclined guides J JI,
and the ereiprocating carriages I It oonneceted by the

II to the driving whels respectively, and the
piston rod G, all combined with the wheels Cl^{2}

55307

consisting of the bent wire or rod $\triangle A$, adapted to and the spring G, adapted to be fastened to a rak
head, substantially as shown and described, for th
 rrame A BC and the spring G , adapted to be fastene
to a rake handle, substantially as set forth, to operat in the manner described, for the purposes specified. (3) A combined clearing bar and frame adapted to
surround, extend between, or intertwine the teeth of a rake, ${ }^{2}$ spring extending from said frame and
adapted to
be fastened to and combined relatively to each other, and a rake, sub stannial set forth, for the purposese specified.
353,339. Fertilser Distributrr for Grain Drillas George Wive, Lontloun Countly. - Fized September halt
Claim.-(1) The rollers R having concave peripher the openings A in the lower rear corner said rovler theing mounted on a shaft outside the said, corner, and
bextending fush with or alittle beyond the extending flush with or a little beyond the inner line
of the box, substantially as set forth. (2) The con bination of the slide C, links, and operating lever D
shaft D_{1}, hand lever D, and spring, forcing one ent of the lever D2 ${ }^{2}$ outward, with the ratchet E1 mountel

combination with the lever D^{2}, shaft $\mathrm{D1}$, and with
the spring forcing the lever D^{2} into engagement with
 couraway in the back to receive the slido and it
operating links, and having a sloping bootom forme on the wood, and a feather-edge at the point wher
the rollers revolve, and having the lining F coverin the roliers evovive, and having the lining F covering
the ontir interior of the box, lying over the sllde and
attachments
 with the lining Fa a complete
A 1 , substantially as set forth.

CONTENTS.

The Enginger, March 24th, 1882

South Khnsington Museum.-Visitors during the week ending March 18th, 1882 :-On Monday, 10 p.m., Museum, 9583 ; mercantile marine, On Wed materials, and other Eriday, admission 6d., from 10 a.m. till 5 p.m., Museum, 1517; mercantile marine, building materials, and other sponding week in former years, 15,705. Total Epps's Cocoa.-Grateful and Comforting. "By a thorough knowledge of the natural laws which govern the operations of digestion and nutrition, and by a careful application of the fine
properties of well-selected Cocoa, Mr. Epps provided our breakfast tables with a delicately flavoured beverage which may save us many
heavy doctors' bills. It is by the judicious use of such articles of diet that a constitution may be gradually built up until strong enough to resist
every tendency to disease. Hundreds of subtle maladies are floating around us ready to attack wherever there is a weak point. We may escape
many a fatal shaft by keeping ourselves well ortified with pure blood and a properly nourished
frame." - Civil Service Gazette. - Made simply with boiling water or milk. Sold only in packets abelled-"JAMres EpPS AND Co., Homooopathic
Chemists, London." - Also makers of Epps'z

