THE STYRIAN EXCURSION OF THE IRON AND STEEL INSTITUTE.
The metallurgical industry of Styria and Carinthia being based upon a combination of resources in ore and fuel which is so utterly unlike anything that can be seen elsewhere, at least on nearly the same scale, it is not surprising that a large proportion of the visitors to the
Vienna meeting availed themselves of the opportunity afforded to them of visiting the beautiful valleys of Mürz Mur and Vordernberg, under the able guidance of Hofrath von Tunner and his colleagues of the Leoben Academy. The arrangements for the trip were so carefully planned
and admirably carried out that it would be difficult to praise them too highly. Starting from Vienna about $7.30 \mathrm{a} . \mathrm{m}$., the party were taken by a special train on the
Southern Railway across the Semmering Pass, stopping Southern Railway across the Semmering Pass, stopping
for a few minutes at the summit, to Mïrzzuschlag, where for a few minutes at the summit, to Miurzzuschlag, where
the train was shunted to the Neuberg branch, and ran directly up to the works where the special process of combined Bessemer and open hearth steel refining was shown in operation, together with the rolling of a large sized steel plate intended for a locomotive frame, after which
the company were with some difficulty collected, retrained -according to the new War-office phraseology-and taken back to the main line at Mürzzuschlag, where breakfast was provided by the Styrian Iron Trade, and billets
for the night's lodgings at Leoben were distributed to the visitors. When these arrangements were completed, the train started for Leoben, and after a short stoppage at the town to allow the members who were desirous of visiting was done by few if any-proceeded to the Donawitz forges and rolling mills, where the remainder of the afternoon in a pouring rain. Owing to the delay in returning, an interesting feature in the programme, the visit to the enterprising Academ, was necessarily om waver way there, when they were kindly shown round the collections by candle light. It is to be regretted that these collections, or more particularly that illustrating the metailurgy of iron, were not seen by members representing the great English ironbrough, Sheffield, and other places with advantace After the dinner given in the evening by the Styrian iron trade, which lasted till a late hour, the company separated to re assemble at eight on Saturday morning, and proceeded to the head of the railway at Vordernberg, inspecting soom that at Trofaiach, which represents the most improved practice in charcoal smelting, whence they proceeded by carriages along the Eisenerz road to the railway at the wild mountain side into the onen workings about the middle level of the Erzberg. Here the nature of the workings was explained, and after a short interval the blasts prepared during the morning's work were fired which was necessarily limited owing to the further demands made on the remaining time by the hospitality of return journey and a climpse down the lovely valley Eisenerz, which was fortunately clear of cloud and mist, the party reluctantly returned by the same route, and where the ceding itinerary it will be seen that the works were neces sarily examined in ascending order, those dealing with finished products, such as Neuberg and Donawitz, coming lastly, the mines. It will, however, be more convenient here to reverse the order, and consider first the central point of interest, the great Erzberg itself. This is a conical mountain mass on the watershed of the Enns and the Mur Vordernbead from Gratz to Steyer, which passes up the Vordernberg valley from Leoben, crossing the Enns at Hieflau. The highest point valley, reaches the Enns at Hieflau. The highest point above the sea-
level is about 4800 ft ., and about 3000 ft above the town of Eisenerz. The deposit nearly follows the surface contour of the ground, so that it was formerly stated that the entire mountain was solid ore, but it is now
known to be really a bedded mass included between limestones, which lie upon old schists, probably Devonian, and covered by the slaty beds of the
Werfen series, which are of Triassic Werfen series, which are of Triassic ages, and are
enormously developed in the Tyrolese Alps. The ore is a finely grained spathic carbonato, which when unweathered
contains from 40 to 42 per cent. of iron, 1 to 2 per cent. o manganese, and 2 to 3 per cent. of magnesia, with only
very little lime, usually under 1 per cent. When altered
by exposure to the air or iniltration of water, it changes
to the so-called brown or bilue ore, a rusty red limonite. averaging 4.4 per cent, of iron. This was the mineral
sought by the primitive miners as being alone best suited followed by small and tortuous levels, driven by pick and gad ; the unweathered white ore, locally known as Pflinz or spangles, from the glittering facets of the spar, was
abandoned as waste. In places the admixture of magnesia and lime becomes so great as to render the ore worthless, producing the triple carbonate known as ankerite, the proAt the base of the deposit the ore is somewhat siliceous from the presence of small strings of quartz; but this condition exceptional, the bulk of the produce being prominently of a basic character, and almost absolutely
free from sulphur and phosphorus. The average furnace yield is 37 to 38 per cent. on the raw, and 51 to 52 on the calcined ore, the charges being usually so combined as to
yield 48 per cent. on the average. The greatest real thickyield 48 per cent. on the average. The greatest real thick-
ness of the deposit is about 500 tt. ; but from the change in the inclination, which is at a low angle at the base and becomes greater, the ore in a more or less pure condition appearing greater, the ore in a more or less pure condition appearing
under foot for nearly 2000 ft , in height on the mountain
side. From the configuration of the ground, the deposi was attacked at different levels by the works on opposit sides, and by an arrangement made as far back as 1024 the upper part was appropriated to the furnace proprietors or
wheel masters-Radmeister-on the Vordernberg side, and whe lower to those in the Eisenerz Valley. As far back as 625 , the rights of the latter proprietors, consisting of ineteen furnaces with their associate forges, roads, and orests, were consolidated into one adventure known as the Inneberger Hauptgewerkschaft, while the furnaces or
wheel works of Vordernberg remained independent until wheel works of Vordernberg remained independent were nited, but the last one did not come into the combination until 1871. Since the commencement of the present year the
works in both valleys, together with the principal ore works in both valleys, together with the principal ore of the Alpine Montangesellschaft which now controls thirty-five blast furnaces.
On the Fisen
On the Eisenerz side the workings are entirely carried on in the open in regular terraces which cover a surface of about seventy-eight acres. Twenty-six terraces, with a total height of about 1500 ft ., are now worked, and there is room for five more up to the Vordernberg boundary from 500 to 600 men are employed in winter and about 1250 in summer. The transport of the ore is effected by a combination of vertical shafts or mills and horizontal eing ind inclined planes, numerous large reservois upply erposed at inervals for containing the wigh calcining kilns heated by wood or small coal. The calcined re is loaded in railway trucks and drawn by horses to the Eisenerz railway station, whence it is distributed partly to the company's distant furnaces at Hieflau, Zeltweg, and chwechat, a portion being smelted on the spot, and the he Eisenerz side is from 250,000 to 300,000 tons.
On the Vordernberg side of the mountain the workings lie between 3500 ft . above the sea level, and the summit nearly 1500 ft . higher, so that open working can only be carried on during the six summer months. Partly on this account and partly because of the thick surface covering, the method of underground working has been very largely developed. The open workings occupy about forty-five acres and the mines about twenty acres more. The system of working is by broad pillars or panels, the ore being aken away, either parallel or perpendicular to the main evels, according to the direction of the jointing of the The excavated spaces are paigs during the winter is stored till the following summer, when it is picked and broken.
The transport of the ore to Vordernberg is also confined to the summer, when about 200,000 tons have to be carried, cleaned, and stored for winter use. The arrangements for this purpose are in the main the same as those originally adopted in 1830, and it speaks well for the skill with which hey were laid out that they have within the last three vears been adapted to the immensely increased requireents of the present time with a comparatively small additional expenditure. The principal element in this line transportation is a railway about $3 \frac{1}{2}$ miles long, starting through the Präbichel ridge by a tunnel to the Handlap in the Vordernberg Valley. The ore from the upper vorkings is passed down by shafts, while that from below is raised to the loading place by three inclined planes, one worked by steam power, and the other two by water balances. The railway has a gradient with the load of 1 in 00 and was originally worked by horses but in 1878 traction by locomotives was adopted. The gauge of the line is 3 ft . The curves and tangents are in theratio of 30 to 70 , the average radius of the former being about 185 ft ., and the minimum, which, however, occurs only in two places, about 153 ft , The super elevation of the outer rail varies from lin. to 2in., according to the radius. The locomotives are tank engines, of Haswell's construction, such as were originally sed for underground traction in the collieriesin the bana they weigh 11 tons in working order, and take a trail a speed of nine miles an hour. The return journey 6 the empty train and engine, together about fuel consumption on the double journey is about 150 lb . of Leoben coal. Usually ten trips are made in twelve hours and between May to August the line is worked day and night. At the end of the locomotive line the ores are discharged into a covered reservoir, where they are loaded into other wagons which perform the remainder of the journey to Vordernberg by a combination of inclined planes, passes, and railways, on a falling gradient of 1 in 110 , further diference of level being about i170ft. from the Vordernberg. The most interesting features in this part f the system are the inclined planes, which are about quarter of a mile long, at an inclination of 14 deg. from a platform wagon. The load, of $9 \frac{3}{4}$ tons gross, or $5 \frac{1}{2}$ tons net, a platform wagon. The load, of $9 \frac{3}{4}$ tons gross, or $5 \frac{1}{2}$ tons net,
is lowered at the uniform rate of about 430 ft . per minute by an iron wire rope winding on a conical drum of 115 in . maximum, and 101 in . minimum radius, making seven and a-half revolutions per minute. The work due to the
acceleration of the descending load in the lower part of the journey, which is equivalent to 60 or 70 -horse power, is absorbed by a continuous brake, consisting of a four-armed paddle, revolving in a cistern under a head of about 5 ft . o This arrangement, which is a reproduction on a large scale of Joules' apparatus for determining the mechanical equivalent of heat, was viewed with great interest by most the members present. It has been at work since the year 1846, and the motion of the load is so perfectly
regulated that the iron wire ropes have a working life of ifteen years, the average day's work being 300 wagons of $5 \frac{1}{2}$ tons lowered. At various points on the lower railways large covered reservoirs are provided for storing the ore,
the winter being too severe to allow of its being left in the
open. There are five of these reservoirs, the largest of about 140,000 tons The a kilns with a of the The whe 10,000 tons yearly The total nof or varies from 750 in winter to 1100 in summer. The product, which for the present year is summer. The product, which for the present year is blast furnaces of the Vordernberg Valley, which will be subsequently noticed.

ELECTRICAL ACCUMULATORS OR SECONDARY BATTERIES
By Professor Oliver Lodae VIII.

IT is now time to consider the action of ordinarily coated lead plates. Sulphuric acid acts upon most salts and oxides of lead, decomposing them and forming plumbic sulphate. The peroxide escapes this action, but both the protoxide and minium are rapidly acted on when immersed in dilute sulphuric acid, without evolution of gas, but with som generation of heat. The action for litharge is simply,
but, as litharge has commonly absorbed some carbonic acid from the air, a few bubbles of CO_{2} are commonly evolved
at the same time; no other action is perceived, and the colour of the powder hardly changes, though it does become a shade lighter. The reaction for minium is no quite so simple-it is this,
$\mathrm{Pb}_{3} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{PbSO}_{4}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$. No adulteration of carbonate is commonly met with in minium, and accordingly no gas is evolved, but the formation of black peroxide makes itself manifest by a rapid darkening of the immersed powder. In either case, therefore, the quantity of free sulphuric acid present in the liquid is diminished, and if plenty of powder is put into the dilute acid, it will in time get reduced to plain water with no sour taste. A cell containing an excess of oxide of lead, and allowed to stand some time with the acid in before charging, cannot therefore be expected to conduct lead年-and especially minium-is packed pretty tightly would be a very long time berone its ine acid does get acted upon much ; for though, no doubt, the acic des soak all throughit, yet asit is a very clogging substance, acid in th scarcely any circulation or renewal of the Faure cell therefore, consist of a large amount of unaltered minium, together with a perfectly intimate mix ture of peroxide and sulphate, the latter occurring more particularly at the outer face and edges
To such a cell let a charging current be applied, and consider first what happens at oplate. If the electroclogging crust of hydrated protoxide or of sulphate is formed -see Art. VII.; but if the electromotive force applied is about three volts, the hydrocen of the hydrate is removed and a brown or puce coloured coat of PbO_{2} is at once formed, thus
$\mathrm{PbH} \mathrm{H}_{2}+\mathrm{O}=\mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{O}$
while some metallic lead is also acted on and apparently peroxidised direct.
As soon as a complete thin coat of conducting peroxide has been formed, the oxygen is liberated at its surface, and is no longer able to reach the lead beneath it, except in it finds to quanies. It therefore is ready to oxidise anything it finds to hand, and a good deal of it in all probability oxidises the $\mathrm{Pb}_{3} \mathrm{O}_{4}$ direct into $3 \mathrm{PbO}_{2}$; some more act upon the sulphate of lead present, with the help of $\mathrm{PbSO}+\mathrm{H} \mathrm{O}$
reproducing the sulphuric acid which was absorbed from the solution while the cell was standing idle; while another portion is apt to combine simply with itself, and to rise as gas. The quantity of oxygen which escape under the last head depends very greatly upon the intensity of the current-that is, on the strength of the current divided by the area of the plate-and by keeping the same time a slight escape of gas is not usually of very great moment, and it serves a useful purpose in promoting great moment, and it serves a useful purpose in promotin Iincline to think it most probable that the direct oxidation of Pb or PbO or $\mathrm{Pb} \mathrm{O}_{\text {, into }} \mathrm{PbO}$, is not performed until the oxygen has united with itself into ozone; for bubbles is necessary before any peroxide makes its ap bubbles is necessary before any peroxide makes its ap-
pearance, and that directly any visible gas appears some peroxide is instantly formed
have made special experiments to find out whether peroxide of lead requires for its formation an intensity of current above some particular limit; but I find that an exceedingly weak current is still able to form per oxide, though, of course, with extreme slowness. But its
presence is unmistakeable, from the violent energy of the return current as long as the peroxide lasts. The strength of current used in charging was about a milliampère; the plates were clean bright lead in dilute 15 shuric acid, and each plate exposed an area of about Groves, and its strength was brought down by adding This wee, not by diminisl whenever peroxide is force. formed. The coat so formed exhibited colour of thin plates, and in about twenty minutes its colour was Beginning
begining then at the surface of the + plate, and spreading out gradually through the mass of stuff with which it is coated, there grows a dense formation of con-
ducting peroxide of lead. It is mainly at the front and ducting peroxide of lead. It is mainly at the front and advancing surface of this formation that gas is liberated
and further peroxide formed. But the peroxide, though conducting, is slightly porous, and a certain amount of oxygen is being liberated pretty well all through it, so that, if a cavity of unaltered minium should happen to be
left, it is not altogether, though it is very nearly, protected from peroxidising action. The minium in such a
cavity would probably, however, scarcely be touched until he outer portions had all been acted on ; but as soon as this has occurred, and there is nothing more outside to absorb the oxygen, then the opposition electromotive force is so
much higher there than it is where there is still an absorbent much higher there than it is where there is still an absorbent
left, that a good deal of the current may be diverted to the eft, that a good deal of the current may be diverted eated by the porous substance in which they are buried.
Now consider what is happening at the - plate. The nascent hydrogen liberated by the charging current against its surface first reduces the slight coat of rust on it, prouucing a clear metallic surface alloyed more or less aist
hydrogen gas. More hydrogen, being liberated against hydrogen gas. More hydrogen, being liberated against as gas, or will act on and reduce whatever oxidised substances are in intimate contact with the lead plate. If the current is too intense, some gas will certainly be evolved, hydrogen from coated plates than it does to liberate free oxygen. There is, in fact, always a slight escape of oxygen,
whereas it is easy to absorb every trace of hydrogen. The whereas it is easy to absorb, every trace of hydrogen. The probably to the sub-oxide $\mathrm{Pb}_{2} \mathrm{O}$, and finally to metallic
lead. A growth of metallic lead, therefore, begins at the urface of the - plate, and spreads gradually out through he mass of oxide which coats it.
When lead is deposited in this way from a solution, as,
or instance, from the acetate, it grows in a fantastic for instance, from the acetate, it grows in a fantastic
crystalline, or "tree," form, but when it is formed, as above, from an insoluble and closely packed powder,
forms a dense, coherent, though certainly porous, cake. This is not the whole of the matter, however, for the coating consisted of some $\mathrm{Pb} \mathrm{O}_{2}$ and $\mathrm{PbSO} \mathrm{S}_{4}$, formed
while standing in the acid, in addition to unaltered while standing in the acid, in addition to unaltered
minium. The growth of metallic lead must sooner or minium. The growth of metallic lead must sooner or
later spread into districts occupied almost wholly by these substances, and the hydrogen will be liberated in contact with them. Now the peroxide offers no difficulty,
it will naturally be reduced step by step down to metallic it will naturally be reduced step by step down to metallic
lead; but there is some uncertainty with regard to the sulphate. It is certainly difficult to reduce sulphate of lead by the action of nascent hydrogen, and if it exists in even small lumps it usually escapes action altogether.
When, however, as in the present case, it is so intimately When, however, as in the present case, it is so intimately
mixed with other substances which have been already mixed with other substances which have been already
reduced, that every atom of it, one may say, is in contact with a hydrogen generating surface, it is pretty certain that it does become reduced, with the re-formation of the free sulphuric acid which had been absorbed.
We observe, therefore, that during the operation of
charging the cell, sulphuric acid is being generated at both charging the cell, sulphuric acid is being generated at both the plates, so that ultimately the full strength of the solu-
tion is exactly restored; in fact it is a trifle strong to than tion is exactly restored; in fact it is a trifle strong than it was, by reason of the absorption and evolution of the elements of water at the two plates. If the plates have
been originally coated with a mixture of minium and sulbeen originally coated with a mixture of minium and sulphate of lead, mixed together with the intimacy of fire-
work composition, fresh sulphuric acid is produced inside work composition, fresh sulphuric acid is produced inside the coatings at the expense of the sulphate, in addition to this is usually to whiten, and sometimes to destroy, the cloth in which the composition is wrapped.
The sulphuric acid in any case produced or reproduced during the process of charging, is apt to sink towards the bottom of the cell by reason of its weight; and, especially
if there has been no evolution of gas or thermal or other convective disturbance, it will be found that the solution near the bottom of a nearly charged cell is distinctly more acid than that rear the top. The lower portion of the cell, therefore, conducts the current better than the upper portion, and accordingly it is common to find the botton
of the plates most acted on, and I have seen the composition there fully peroxidised and reduced respectively, while that near the top was as yet barely touched.
In an ideally perfect operation, however, the charging should proceed with absolute uniformity, beginning at the surface of the lead plates and gradually spreading outwards as a steadily advancing plane layer, until the free gas would be usefully absorbed, and the opposition electromotive force would be kept down as low as possible all the time. But it is next to impossible to secure this steady advance by the layer of operation; for besides the tenwhich tendency may be counteracted by agitation, the layer is very apt to protrude itself capriciously in one or more places; and wherever such a protuberance occurs it
is sure to increase, because of the diminished distance between the conducting surfaces; so that a local growth of metallic lead, or of peroxide, is often found to have penetrated through the composition and to have reached the free surface, where it begins to spread out, screening off a
quantity of unaltered substance behind it. The oxide so screened can ultimately be acted upon, because the screen is more or less porous, but it is a slow and wasteful process; it takes a pretty high electromotive force, and a good completed portions while it is going on
In order to diminish the chances of this local inequality of action, the thickness of the composition, and distance
between the plates, ought to be very uniform, so that there be no thin places to offer less resistance to the current than others. Again, the edges of the plates ought in some way the amount of deposit on the edges of a plate is greater than on the flat portions, and for the same reason the growth of the peroxide and reduced lead is pretty sure to be completed first at the edges and thence to spread over the front face, protecting the middle portions.
Finally, the liquid must not be allowed to become stagnant and of different densities. A fairly powerful
charging current, by the heat it generates and the gas it evolves, automatically secures the uniformity of the liquid ; though this can hardly be considered an economical
mode of stirring. I am by no means sure that the plates
would not do better if "formed" in a large electro-plating sort of tank, and afterwards inserted in their separate cells
for use. When cells come to be made on a large, stationary, gasometer-like scale, various improvements may the small portable affairs now constructed are scarcely
practicable.
O. J. L.

KRUPP'S MEPPEN EXPERIMENTS FOR 1882.
We have now received the official report of Krupp's trials at Meppen, of which we have only noticed hitherto the case of one experiment connected with plates, of which a exhibition at Fishmongers' Hall.
We find from
We find from the report that the following piece have been fired this year :-(1) and (2) Guns of
0.5 centimetres (12in.) and 15 centimetres (5.9 in .) each, 35 calibres long, being examples of Krupp's new system, which is remarkable, Firstly, for the adoption
of heavy charges, reaching the amount of even one of heavy charges, reaching the amount of even one and Secondly, for the employment of specially here of the gun Secondly, for the employment of specially heavy and consequently long projectiles; and thirdly, for the great length of the guns. (3) Mortar of 21 centimetres ((8.3in.), re-
sembling that fired in 1879. (4) Gun of 15 centimetres sembing thith muzzle fixed by a ball joint in armour, before (5in.), with muzzle fixed by a ball joint in armour, before
tried the years 1877, 1878 , and 1879 . (5) Gun of 15 tried in the years 1877, 1878 , and 1879 . (5) Gun of 15
centimetres ($5 \cdot 9 \mathrm{in}$), fixed on a pivot-a long gun of 15 (3.4 inetres having replaced the gun of 87 centimetre (3.4in.) fired in 1879. (6) Gun of 8 centimetres ($3 \cdot 2 \mathrm{in}$.) on spring pivot. This was employed to exhibit the reduc tion of pressure which with pivot guns is produced by even very short recoil. There were present at the experi ments officers representing the following Powers: Germany, Austria, Belgium, Brazil, China, Denmark, Spain, Holland Italy, Japan, Norway, Russia, and Sweden.
The 30.5 cm . (12 in.$)$ and 15 cm . ((5.9 in.$)$ long guns were fired for accuracy, velocity, and pressure on the bore. The
21 c.m. (8.3in.) mortar was fired for accuracy. The 15 cm . $21 \mathrm{c.m}$. (8.3 in.$)$ mortar was fired for accuracy. The 15 cm
$(5.9 \mathrm{in}$)) for accuracy, speed, and trial of system. The 8 cm . ($3 \cdot 15 \mathrm{in}$. gun on spring pivot, and 15 cm . (3:9in.) gun on fixed pivot were fired to show the action of the pivots, and armour-
plate firing was carried on with the 15 cm . gun. These plate firing was carried on with the 15 cm . gun. These
must be considered in turn.

The 30.5 cm . Gun (12in.) of 35 calibres in length.-In its construction this gun resembles those of the same calibre, of 22 and 25 calibres in length, produced by
Krupp's factory in previous years. This new gun differs from its predecessors materially only in having a bor suited to the employment of larger charges and of longer projectiles. This great length even does not give the same complete utilisation of powder as in the earlier guns. In the gun of 30.5 cm . of 22 calibres long, with a charge of 72 kg . (158.7 lb .), the proportion between the cubic contents while in thas calibre the combustion chamber was 6 to 4.6 to 1 . In the experimental gun the combustion chambe had been prolonged, with the object of trying certain ex periments, which reduced this proportion in the trials of
last March 29th and 30th to that of $4: 3$ to 1. Now the utilisation of the powder depends much on this proportion Thus, in earlier guns the gas has an expansion up to six times the space occupied before the shot begins to move, while the expansion only reaches $4 \cdot 6$ times in the new
guns. Whilst in the first case each kilogramme of powder impresses silst in the first case each kilogramme of powder vis viva, only 44 tonnes-metres is attained in the second To obtain an equal result then, a much greater quantity of powder is necessary. This, however, is only a question o expense. One very important fact should be recognised namely, that the pressure of the gas at the muzzle is much greater when the expansion is less, consequently the gun
decks of ships are liable to suffer when the turret or other guns are brought to fire along them.
This inconvenience may be partly rectified by reducing the combustion chamber, but at all times this expedient has more rapid destructive effect on the gun. There only remains then the expedient of increase of length. To obtain in the new 30.5 cm . gun a six-fold expansion as in the old $30^{\circ} 5$ gun of 22 calibres, it is necessary that the gun should be about 45 calibres long. Such a long gun may be placed without difficulty in an open battery, but not always in a turret or naval battery. These considerations caused the limit to be drawn at 35 calibres. The experiof Kry self-closing tubes in an xial vep guns. 1 is dimensio 12 in.$)$; total length of gun, 10.7 m . (35ft.), that is 35 caliores ; length of bore, 9.77 m . (32ft.); total weight depth of grooves, 1.75 mm . (0.069in.). All the projectile of the experimental gun of 30.5 cm . weigh 455 kg . armour-piercing* shell, length $3 \frac{1}{\frac{1}{2}}$ calibres $=1067 \mathrm{~mm}$ (3ft. 6in.), bursting charge weight, 11 kg . (244 lib.); cast eight, 22 kg . ($48 \frac{1}{\mathrm{I}} \mathrm{lb}$.); steel common shell, $4 \frac{1}{2}$ calibres $=$ 1372 mm . (4ft. 6in.) ; bursting charge weight, 49 k 108 lb .). Centering is effected by the metal of the projectile without a copper ring. The copper ring for rifling and check of gas is of a special form, with the object o chamber and rifled portion of bore, so as to prevent the development of scoring by the bost possible obturation as it is well known that these scoring injuries are formed f prismatie faster as the charge ingh and of 1.82 density. For firing the experimental gun of $30^{\circ} \mathrm{cm}$. was placed on many experiments in 1878 and 1879.
Results.-The 30.5 cm . long gun fired seventy-three
rounds with varying charges and kinds of powder. The
bore shows the commencement of scoring, otherwise it is almost uninjured, seeing that one can only detect enlargeents of 0.1 mm . ('004in.). The results as to velocity and powder known as H 382 , powder known as H 3.82, made specially for this gun, proved to be the best. On March 27 th with the projectile
 of 147 kg . (324.1 lb.$)$, an initial velocity of 526 m .
$(1725.8 \mathrm{ft}$.) was obtained with a pressure of 2665 atmo(17258 ft.) was obtained with a pressure of 2665 atmo-
spheres (175 tons) by Rodman's gauge, and of 2785 atmopheres (18.3 tons) by the crusher gauge in the powde hamber. This gives a total vis viva to the projectile of 420 metre-tonnes (about 20,715 foot-tons), and vis viv This amounts to 43.7 metre-tonnes per kilogranime of charge ($20 \cdot 64$ foot-tons per lb.), or $130 \cdot 5$ metre kilogramme harge kilogramme of weight in gun, or $423^{\circ} 5$ foot-tons per ton o netal. On this trial a fact often noticed was very marked amely, that the tirst round of each day imparted a highe This is attributed to projectile than subsequent ones, After the second round the velocities are uniform.
Special attention is called to rounds No. 1 and No. 2 of March 15th, which show very low pressures. With an nitial velocity of 423.5 m . (1389 6ft.), and a projectile of 455 kg . (1003.1 lob .), the pressure is 1600 to 1700 atmo pheres (10.5 to $11 \cdot 2$ tons); and with the initial velocity 4993 m . (1605ft.) the pressure is 2325 atmospheres $(1525$ tons). The velocities were measured at 100 m . and 1974 m , 109 and 2159 yards) from the muzzle, and on several day t 300 m. . 328 yards) also. They accorded well with the results calculation. The flat on March 23rd the steel armour-piercing shell had at 2000 m . a less velocity han on March 23 ra , in spite of its having a higher velocity f m . from the muzie, is to be atributed to the force ther Too few rounds we fired to and 19 m . in the ther. Too few rounds were fired to do justice to the accuracy of the gun, but enough to show that the projectiles of specially increased length carried as truly as the short
On March 23rd and 29th were fired, each day, five ounds of armour-piercing shells of $3 \frac{1}{2}$ calibres length; and on March 27 th and 29th five rounds each day, with similar projectiles 4 calibres long, against a target at a
range of 2026 m . (2216 yards) with good results, the same range of 2026 m . (2216 yards) with good results, the same range tables serving for the armon1-piercing shell aud
common shell. The penetration of the $30^{\circ} 5 \mathrm{~cm}$. gun was common shell. The penetration of the 30.5 cm . gun was to calculate it. Herr Krupp calculates with an initial velocity of 520 m . (1706 ft .) a total stored-up work of 6276 metre-tonnes (about 20,230 foot-tons), $65^{\circ} 4$ metre-tonnes per centimetre circumference (536.7 foot-tons per inch circumference), and 8.58 metre-tonnes per centimetre squared of cross section. This he compares with the 100 -ton gun and 80 -ton gun, to which he assigns the following data:-
The 100 -ton gun : Weight of shot, $917 \mathrm{~kg} .(2021 \cdot 6 \mathrm{lb}$.) velocity, 520 m . (1706 ft.) ; giving a total stored-up work of 12,638 metre-tonnes (40,780 foot-tons) ; work per centimetre squared of cross section, 792 metre-tonnes. The 80 -ton gun : Weight of shot, 77 kg . (1700 lb); velocity, metre-tonnes (30,330 foot-tons) ; work per centimetre squared of cross section, 7.26 metre-tonnes. Herr Krupp, on this system of calculation, assigns to the $30^{\circ} 5 \mathrm{~cm}$. gun a greater penetrative power than either the English 100-ton or 80-ton gun, and he observes that the advantage is still more on the side of the $30.5 \mathrm{c} . \mathrm{m}$. gun as the range in-
creases. He also gives the actual powers of the gun against existing armour as follows

Name of ship.	Strongest armour	The armour-piercing shell of the $30-5 \mathrm{~cm}$. gun penetrates the armournormally normally	
		with a vis viva of tonnescentimetre of section.	therefore penetrates up to a range of metres.
Infexible (English).	$\left\{\begin{array}{l}2 \text { ini., plate } \\ \text { upon plate, \&c. }\end{array}\right\}$	\} 6.5	2200 (2406 yards)
$\underset{\substack{\text { Majestic } \\ \text { Cojossus } \\ \text { Ajaxmemnon } \\ \text { (English) }}}{ }\}$	$\underbrace{18 \text { in. compound }}_{\text {armour }}$ and	\} 5.5	over 2500 (2734 yards)
$\left.\begin{array}{c}\text { Admiral Baudin } \\ \left.\begin{array}{c}\text { Admimiable } \\ \text { Adirapert } \\ \text { (France) }\end{array}\right\}\end{array}\right\}$	$\begin{aligned} & 21 \cdot 7 \mathrm{in}, \text { steel (pro- } \\ & \text { bably) } \end{aligned}$	\} 8.3	200 (219 yards)
	$\begin{gathered} 17 \cdot 7 \mathrm{in} \text { steel (pro- } \\ \text { bably) } \end{gathered}$	\} $6 \cdot 4$	2300 (2515 yards)
$\left.\begin{array}{l}\substack{\text { Caiman } \\ \text { Indomptable } \\ \text { Requin } \\ \text { Terrible (France) }}\end{array}\right\}$	19 Tin . steel	$7 \cdot 3$	1250 (1318 yards)
Dandolo Duilio (Italy) \}	21.7 in , steel	8.3	200 (219 yards)
Italia Lepanto	$29 \cdot 5$	$10 \cdot 5$	Not penetrated at all

This table shows the Inflexible, Majestic, Colossus, Hoche, Majenta, \&c., penetrated normally at all fighting Baudin, Dandolo, and Duilio at the muzzle.
The 15 cm . gun of 35 calibres in length-vide Fig. 1 is constructed on the same principles as the 30.5 cm . gun of 35 calibres. The only difference in the construction consists in the fact that the 30.5 cm . gun is built up of more hoops than the smaller piece. The dimensions or the 15 cm . gun are as follows :- Calibre, $1491 \mathrm{cm}$. . (5 87n.); length of bore 4.800 m (15 ft . 8.98 in) 32 calibres ; weight of gun, 4750 kg . (4 tons $13 \frac{1}{2}$ cwt.) ; number of grooves, 36 ; depth of grooves, 5 mm . (0.009 in .). The projectiles are all of the weight of 51 kg . (112.44 lb .), but it is of course possible to employ lighter ones if a high velocity and flat trajectory at short range is desired. The projectiles are as
follows :-Armour-piercing steel shell, length 500 mm .

KRUPP'S GUN AND TARGET EXPERIMENTS AT MEPPEN.

(1ft. 7.68 in .), or 3.35 calibres ; weight, 51 kg . (112.44 lb .) ; bursting charge, 1.5 kg . (3.5 lb .). Common cast iron shell, length 596 mm . (17t. 11.57 lb .) : bursting charge, or 4.4 kg calibres ; weight, 7.5 lb kg . steel shell, length 670 mm . (2ft. 2.38 in .), or 4.5 calibres ; weight, $51 \mathrm{~kg} .(112 \cdot 44 \mathrm{lb}$. $)$; bursting charge, 6.2 kg . weight, 51 kg . (112.44 lb .) ; bursting charge, 6.2 kg .
$(13.7 \mathrm{lb}$.) gun in form. The charges are of those of the 30.5 cm . one perforation, and of density $1 \cdot 75$ to $1 \cdot 8$. powder with mounted on a coast carriage formerly employed with a 15 cm . gun 30 calibres long.
lmost without scoring more as 0 : Thas charge without scoring marks after firing :-Highest result, charge 18 kg . (39.68 lb .) ; weight of projectile, 50.5 kg . Rodman 2585 atmospheres ($16 \cdot 95$ tons). English instrument, 2695 atmospheres ($17 \cdot 70$ tons); stored-up work 797.9 metre-tonnes (2576 foot-tons) ; work per lup work, of powder, $44 \cdot 32$ metre-tonnes (143 , work per kilogramme charge of the 15 cm . gun is 17 kg . (37.5 lb) , with which charge of the 15 cm . gun is 17 kg . (375 lb .), with which the steel armour-piercing projectile weighing 51 kg . The mean pressure was abut 2600 atmosphere ($17 \cdot 1$ lfs.). The mean pressure was about 2600 atmospheres ($17 \cdot 1$ tons). gun was fired against two targets of armour at a range of 150 m (164 y ards) from 150 m (164 yards) from the muzzle. One of these was for direct impact. It was made up of two wrought iron (6.89in.) vide Fig. 2-(7.09in) with exactly 17.5 cm . (6.89in.) vide Fig. 2-(7.09in.) with an intermediate layer of wood 25 cm . thick (9.84in.). Figs. 2, 3, and 4 that the 15 cm . gun requires 3.9 tonnes-metre calculates that the 15 cm . gun requires 3.9 tonnes-metres vis viva 15 cm . of cross section. Hence he would expect the showed this to be the ease. On March e8th are. The trial fired with 18 kg of powder, which passed threctie was fired with 18 kg . of powder, which passed through and struck the ground intact 1110 m . (1213.9 yards) up the range. The point was slightly set up-vide 5, on top of plate. On March 30th an armour-piercing shot with a charge of 17 kg . also passed through the plate. The pro* In The Enginerr of May 5 th, 1882 , a cut will be found showing a
scection at the place perforated, but it is given here more completely section at the place perforated, but it is given here more completely
because questions may be raised as to the bolting together of the plates,

jectile was recovered uninjured at 300 m . (328 yards) up the range. These two projectiles are depicted in Fig. 5 aken from a photograph, standing on their bases above the holes made in the plate. The second target was for mpact on an angle of 55 deg . (35 deg . to the normal). It thickness, a layer of wood of 25 cm . ($9 \cdot 8 \mathrm{in}$.) and a skin of 2.5 cm . (0.98in.) -vide Figs 6 and 7 . On striking direct of 15 cm steel) 15 cm . steel armour-piercing shot penetrated this with a is viva of 2.5 tonnes per $\mathrm{cm} .^{2}$ of cross section.
In oblique fire the formulæ requires a correction of
$\frac{1}{\text { sin. }^{2}}$ angle of incidence. An angle of 55 deg., a vis viva of 25 $\frac{25}{\sin .^{2} 55}=2.5 \times 1.5=3.75$ tonnes-metres per cm. ${ }^{2}$ of cross section. This, then, is necessary for perforation. Hence one can reckon on perforation with the service charge giving 3.9 tonnes-metres per $\mathrm{cm} .{ }^{2}$. The target was completely penetrated, both with 18 and 17 kg . ($39 \cdot 7$ and 37.5 lb .) charges of powder-vide Fig. 6; also Fig. 7, front The the projectiles being broken up by the oblique blow. The three plates employed appeared to be of excellent uality.*
Herr Krupp observes that the great progress which brings this result before us is apparent, if one traces the development of guns of 15 cm . since the introduction of breech-loading guns. In 1864 it was imposof 10 cm . (3.9 in). (5.9 in .) gun to perforate a plate nough, the shot. ever. The gun was not strong enough, the shot not sufficiently rigid. In 1868, near Berlin, the 15 cm . gun just penetrated a 15 cm . ($5 \cdot 9 \mathrm{in}$.) plate. At that time it was thought that at short ranges Jow, in mht perforate plates their own calibre in thickness. Now, in 1882, at Meppen, the 15 cm . gun fired directly perforated two plates, each of which is considerably more plate of the the in thickness, and, at an angle of 55 deg., a plate of the thickness of $1 \frac{1}{3}$ its calibre ($7 \cdot 9 \mathrm{in}$.). In 1868, at a short range and by direct fire, this last target was just penetrated by a $24 \mathrm{~cm} .(9 \cdot 45 \mathrm{in}$.) gun. Hence the 15 cm . We understand that these plates were obtained from the German naval authorities, who had obtained them from England, either from
gun possesses now $1 \frac{1}{2}$ times the power of penetration of the 24 cm . gun of 1868 . The ironclad ships considered impregnable at that time could not now resist the small 15 cm . calibre gun.

With 20 deg. elevation a range of 8900 m . (9624 yards) was obtained. The coast gun carriage allows of an eleva tion of from 27 to 28 deg , at which a range of $11,000 \mathrm{~m}$. (12,030 yards) is obtained. The 15 cm . gun, then, is not only a good coast and naval gun, but a useful siege piece or gun for the defence of forts, to oblige the besieger to establish his parks at a great distance.

LOCOMOTIVE COUPLING RODS.

We give the following report of the Committee on Coupling Rods, submitted to the recent convention of Master Mechanics at Niagara Falls:-Side rods have very commonly been considered one of the necessary evils in locomotive construction since the time when the earliest engineers discovered that the tractive force of one pair of
wheels was not sufficient to haul heavy trains. Efforts have been made to abolish them altogether, notably in Mr. Webb's compound locomotive, where the cylinders are arranged to work on two different axles. Also in Mr. Strong's driver coupling, which by lengthening piston rod and guide bars some 8ft. enables him to engine, in which the upper wheel drives two lower ones by friction; but as it is not certain that these efforts will revolutionise ordinary practice, it is important to ascertain what is the best form of side rod to adopt.
The duty of a side rod is to transmit a rotary motion from the main driving axle to other parallel axles; to do this it must be
stiff enough to transmit a thrust along its length without buckling At high speeds it must be sufficiently strong to resist its own momentum ; it must also have ends forming good bearing surfaces, The first of these is amply satisfied by every section in use, as rods have to resist greater strains than this. As to the second, however, it is curious to notice in the history of coupling rods, the
gropings of engineers after a section of rod which is at the same time light, cheap, and rigid, especially in a vertical direction There are many rods still running of a circular section throughout; these are cheap of manufacture, but being of the same rigidity, both vertically and horizontally, they are disproportioned. This was somewhat improved upon by making rods of elliptical section,
but this was too expensive for a finished rod. Again a favourite way with some builders of heavy freight engines is to make their rods thick as well as deep rectangular bars. This is when the engine
is not expected to run fast.
Passing from this we find the ordinary proportion of rod to be
about 1 Bin. multiplied by 4 in. And at the opposite extreme we have on a agreat many railroads a rod with the middle section of
about 1.in. multiplied by bin., that is, four times as deep as broad.
Several attempts have been made of late years to find a lighter section of rod which will at the same time be stiff and cheap. In
Germany and also in this country an I-beam section of rod ha Germany and also in this country an I-beam section of rod has
been used. The finished section of this rod will be found to be
lighter than the ordinary rectangular section, the strength being mainly in the top and bottom flanges. Anction, this section leads to a received, simply two round bars of iron connected at the ends by
brass castings. These rods have been used on switch engines and have given satisfaction. There is a curious divergence of practice with regard to the section of rod throughout its length. Uniformity is the usual rule, but a large number of rods increase in depth
towards the centre, in some cases as much as 1in. One rod $\frac{1}{4}$ in., this being done by planing the rod while en a bent condition ; while another excellent
rod is thinned out in the middle from IVin. at the ends to 1 tin.,
while while at the same time its depth is increased from 4 in. . .o min.
thus lessening the section from 8 square inches in the end to 6 square inches in the middle, and at the same time keeping the A heavy side rod is such an impediment to an engine's rapid progress that the lighter it can be made the better. A very heavy
rod brought to our notice weighed 314 lb . Other weights of manufacturers's standard rods sare 302 ll . and 320 lb . On the other hand
another rod, though but 9 in , shorter, weighs only 170 lb,., and is another rod, though but in. shorter, weighs only 180 .i., and
used for very fast traffic. Between these we have a great variety
of weights. The rods of rectangular for equal strength; but a proper proportion of web to
flanse has sot yet been reached in practice flange has not yet been reached in practice.
type is that of a strap holding the brasses, and secured to the rod Another method iolts, and pierced by a cotter to to take up wear ing surface by inserting either ordinary brasses and cotter, or a a
solid bush made of brass or white metal. The objections to the former are the great mass of metal required to firmly bolt the strap to the rod; and, secondly, the weakening of the strap by piercing
it with bolts and square cotter holes; and, thirdly, the liability of cotters to come loose. The disadvantages, on the other hand, put adjustable. As there is much to say on each of these methods, we will first consider the strap end.
All rods with a strap require a large mass of metal for the strap
bolts to pass through, as well as room for a cotter. ingeniously modified in one instance by placing the cotter hat been the two bolts, which necessitates, however, slotted bolt holese in
the rod end. A more direct way of lightening the end is to cut a the rod end. A more direct way of lightening the end is to cut a
large hole in the useless mass of metal. The weakening of straps by cotter and bolt holes has been so orten the cause of the failure ing:- In a common rod, a strap 2 in. wide is weakened by a $\frac{3}{4} \mathrm{in}$.
 strap $_{2}$ in. wide is weakened by a sin. cotter and lin. bolt. In $\frac{15}{5 i n}$. bolt. In another rod, a strap 2 tin. wide is weatene win ${ }^{\frac{1}{5} \text { in }} \mathrm{i}$ in. bolt. Several railroads have lately found - probably by experience- the folly of thus putting a weak link - in the chain of
strains, and have is pierced, partially done a way with these weak points. A A sere it cotter hole in a strap 2 in. wide is strengthened by adding in bosses
a little more than half the stolen area ; and in another case by adding only one-fifth of the required additional strength in bosses. The same objection holds against solid end rods which are pierced
by cotter holes to adjust brasses. In one case the weakening of by cotter holes to adjust brasses. In one case the weakening of
the $\frac{\text { ind. cotter in a rod } 2 \text { in. wide is exactly compensated by }}{\text { in }}$ strengthening bosses on top and bottom ; but in another case only
half the area of the cotter hole has been added. These solid-ende rods, with bosses and a cotter, are more secure and lighter than the strap rods, but, on the other hand, builders assert that it costs more to fit these rods up than strap rods.
A still further step in the lishten
substituting solid bushes for adjustable brasses, and this method so light, so secure, and so exact in its centres, is coming into general of steel, is bored out in a reamer of standard size, and a bush is pressed into this hole by
hydraulic or other means, the pressure used being about 35 tons and s then secured either by a taper pin passing through the joint, or by a place. These bushes, when made of white metal, are cast in rron the rod, when they are bored out under a mill with the pressed into distance apart. With rods of this description it is easy to avoid
getting brasses too tight or out of centre, and if one rod fails, the interesting to note what Mr. Stroudley, of the Iondon, Bris most and South Coast Railway, England, has to say of his ten years' experience with this class of rods. A Aletter from Mr.. Stroudley on
the subject to your committee will be found attached to this

report.
Tre strength of cotters requires consideration, as they are a not only arle too stand its, strain without breaking, but to mater
it so strong that under its working strain it shall never be even deflected, as such a deflection causes a pinching and loosening of
 another much-used rod, but it is unadvisat cases be increased with advantage, e.g, a a light but very common section of cotter is \$inin by 1sinin in the middle, while Mr.. Strommon eys
cotter for a connecting rod small end measures lin. by 3tin. in the middle. In comparing these, though the ordinary working strain to be as strong, if not stronger, on the account of the the sudden shocker ought to which the main rod is not subjected. Another minor question on
this subject of cotters is, whether it is a real disadvantage place the cotters at both ends of a rod on the inside. The objec-
tion to the above-mentioned arrangement is, of course, that any centres of brasses leads to a corresponding lengthening of the fully lined up. The disadvantage, on the other hand, of placing
the cotter on the outside of one end, is a heavier end and less A modit
A modification of the strap and cotter, that of a screw adjustable wedge, has been neatly applied to side rods in one instance.
In the place of the ordinary cotter hole, only the top half of the
strap is pierced by a lin. set screw with lock nut which rise low the the wedge, the latter having a taper of 1 in 4 at the back
litaper of the brass. It would be interesting to know if these wedges,
with so steep a taper, have lasted well or not. And this brings us
to the subject of the right to the subject of the right taper for cotters. The variety in use
may be gathered from a dozen examples-of cotters secured by a set screw, three have a taper of about इin. to 1 ft., four have a taper
of about sin., and two have a taper of about lin. We find cotters
 heavy freight engine on the London and North-Western Railway
has only two cotters in ins whole structure, these being where the piston rods are connected to the crossheads, which shows the strong A very neet cotter is a German idea, where the cotter is in two
pieces placed one on each side of the road, and pressing against the
flanges of the brasses ; a bolt throurh onters tight. The greatest advantage for this end seems to to he that im
stead of piercing the rod with a slotted hole, the cotter bearings are made oy simply planing a step on each side of rod. Another
variety of a style very common in German designs is that of dove-
tiling the block into a forked end and securing it there by a light bolt through fork and blook, , eottter beeng used as usual to close
the brasses. With good workmanship this must form a very fai ond, and we are sorry that we lack information as to the working of these ingenious devioes. Some engineers in Europe have fitted
their brasses into ball joints, in order to give the wheels their brases int dail joints, in order to give the wheels more
lateral freedom, but the extra expense and double wearing surface
can sarcely conen can scarcely compensate for the very small advantage claimed.
The rods of a very heavy eight-wheeled coupled engine on the Paris, Lyons, and Mediterranean Railway are equipped with these ball joints. All the wheels are flanged, and in order to get the direction is allowed in the leading and trailing axle boxes, and spherical or ball bearings in the side rods were necessary to allow
this. There were ninety of these engines in successful use in 1880 ith cylinders $21+\mathrm{in}$. in diameter, 20 in . in 33, and were first adopted in 1869 .
It may be mentioned here that the
It may be mentioned strokes of the side tendency among some can of course only be done on inside cylinder engines ; as on
instance of this a 7 ft . diameter four-wheel coupled passenge engine recently designed with 19in. by $26 \mathrm{in}$. cylinders has
coupling rod throw of only 18 in. The breadth of bearing for side coupling rod throw of only 1sin. The breadth of bearing for side unfortunate that about 3 zinin. seems the greatest breadth ohtainable for outside cylinder engines. Mr. Stroudley's engines have both
inside cylinders and very broad bearings, 4tin tively. Iron is still generally used for side rodss, although steel is
rapidly coming into favour, but we have no data
athe veight of rod has been correspondingly reduced. Where steel has enables the rod to be lightened. Of the various mixtures of whic ing metal, each have their advocates, but phosphor bronze has
been so successful that most bushes for solid end rods and many sectional brasses are now made of it. White metal bushes are ery cheap, owing to the small amount of machine work on them,
but they sometimes work loose, which is probably due to the con inued knocking which must more or less alter their shape. good mixture for such bushes is-tin 16 , antimony 2 , copper 1 .
The Southern Railway of Austria make their bearings of wrough ron lined with white metal, but this seems one of those detail of continental work bhere expense is not an item of consideration.
Steel bushes have been suceessfully used for wrist pin joints where between the cost of different styles of rods, but the following figures will help in forming an opinion:

Material and smith work. smith wor dols.	$\begin{aligned} & \text { Machine } \\ & \begin{array}{l} \text { labour. } \\ \text { dols. } \end{array} \end{aligned}$	Total. dols.
72.00	50.00	
$\begin{aligned} & 48 \cdot 00 \\ & 68 \cdot 00 \end{aligned}$	$\begin{aligned} & 33 \cdot 00 \\ & 41 \cdot 50 \end{aligned}$	
81.50	63:50	
72:00	50.0	

From these figures, which have been accurately calculated from trap rod sources, we may infer that the cheapest rod is still the old been made is easiost made. That the next cheapest is the solid ushed end, although with fluted sides, which is, as we have seen bids fair, with a little practice to be as the common strap ended one; and, lastly, that the solid end with brasses and cotter is the most expensive. A great deal migh be said on the time spent on finishing off roas. An engine is sup posed by many people to be handsome when its parts are polished
and its colours brilliant, and to accomplish this much valuable time has been spent and acres of emery cloth used ; it is now more easily done by means of emery wheels, and some rods are allowed to go out straight from the grindstone and be painted. One of the after they come from the planer, but consider that a rod looks bes hen of the bevelling of absings work. For a similar reaso busy times when it is necessary to get out work quickly.
In conclusion we may ask, are alterations and improvements to be made by the suggestion of reason, or are we to go on in the old
way of keeping to old methods, and only modifying a piece when numerous failures have proved the necessity? The latter method would never subt, in the superfluously strong places which make an engine clumsy. On the other hand there are strains on a side rod which it is almost impossible to calculate, and which conditions engines, even in the small subject of side rods, which will have to be modified, until some day we may have a locomotive whose part veaker admirably proportioned that no one shall be stronger or perfect organism, to perform its own duty with perfect ease and safety.
The
pelose The extract from Mr. Stroudley's letter is as follows:-"I Eacose you tracings of my standard connecting and coupling rods. fitted with them, fifty are of the small size, the remainder being
uniform with the drawings, but all alike in design. All of the from the machines and puts in the brasses, cotters, bolts, \&c., and finishes the rod entirely. The same fitter also puts up the rods man being employed for rod repairs. The bolt which holds the and rod quite solid, and the cotter has sufficient strength to prevent its deflecting; there is, therefore, no wear on these parts, which
usually go to pieces quickly when fastened with the old-fashioned usually go to pieces quickly when fastened with the old-fashioned
gibs. The large end is bored out and the brasses are all turned to of be, so that at out stations the driver can remove a sie
of brasses and put in spare ones without the use of a file the worn brasses are sent to head-quarters and are filled up
with white metal and re-bored to be used for any other engine In the case of side rods I have a great number that have been
running since $1871-2-3$ to the present time without renewal to th bushes or pins. In no case has such removal been required, goods engines built in these works in 1871 was in the shops when the Iron and Steel Institute visited Brighton in 1881; the side rods were as close a fit ater runding ten years as when new, less than

1. in . play on the pins, and they were of course sent out without works were much struck with this durability, which is no doubt works were much struck
largely due to the use of case-hardened pins. We have these rods on
express, tank, and goods engines, the lengths being the same in each case. The side rods are thicker in the centre than at the ends. We plane them in an ordinary planing machine, bending
down the rod at one-half the required nereease of thickness, and after one side is planed the iron is turned over, bent down the reverse way, and when it is finished it is symmetrical and properly
curved. I may here mention that not one of these rods has broken. I place the outside crank on the same side of the axle as the inside
crank. The outside throw is 10 in . and the inside 12 in and 13 in . according to the size of the engine. The rod ends are case-hardened according to the size of then in and held by ap pin ans shownu in drawning
and the bushes force
these bushes do not get loose. In designing locomotive details consider what is required to be done, and our present means of
manufacture, instead of following old-fashioned designs which
different from what they are at present. I shall feel extremely
obliged if you will give me a copy of your report and some similar obliged if you will give me a copy of your report and some similar
details of the cost of manufacture and durability of American details
designs.
indon, brighton, and south coast railwar
Details of construction of a connecting rod.

ON SOME CURRENT-METER OBSERVATIONS IN THE THAMES.*

By Professor W. C. Unwin, M.I.C.E.

THE paper contains an account of a series of observations with a he actiont meter, undertaken or the double purpose of testing how far it was possible to obtain velocities in a tidal portion of a
The current meter is one made by Messrs. Amsler Laffon, of Schaffhausen, and it differs from ordnary meters in the mode of support and in the use of electrical signals. The meter is
suspended by a wire, which also carries below the meter a weight of 40 kilograanmes. The meter is suspended in gimbals, and is
kept directed up-stream by a conical rudder which governs both its kept directed up-stream by a conical rudaer which governs both its
vertical and horizontal movement. The wire can be wound up or
let out by a small trab, which has a graduation showing exactly let out by a small crab, which has a graduation showing exactly the position of the meter. The first poind of interest in using the
meter was the directive power of the rudder. So far as the author with very satisfactory steadiness. Near the surface, where its
position could be observed and where certainly the eddying motion of the water is not smallest, the meter appeared almost as
steady as if fixed on a rod. The screw of the meter in revolving makes an electrical contact at every 100 rotations, and this rings a taken with a chronograph watch. The action of the electrical arrangements was very satisfactory.
A large number of current meter observations have been made in ordinary rivers, but few have been, made in tidal portions of a
river. In the tidal portion of a river, in addition to the variations ng motion of the moment, due to the variation of the surface slope of the river. It river, numerous enough to furnish data for determining the law of variation of the velocity, they must be made with the greatest
practicable rapidity hought it best to take the entire charge of the current meter himself. He shifted the position of the meter, observed the time, and entered the records of the observations. Nevertheless, on the
average of six days' work, it was found that, including all interaverage of six dayss work, it was found that, including all inter-
ruptions, one velocity was obtained and recorded in less than three ruptions, one velocity was obtained and recorded in less than three
minutes. This rapidity of observation was not at the expense of reliable observation. Curves were exhibited showing observations
during three tides. Usually the velocities were observed in sucduring three tides. Usually the velocities were observed in suc-
cession at 0.5 metre from the surface, at mid depth, and at 0.2 netre above the bottom, the meter being shifted between each reading. Curves plotted from these observations, with the
tidal time as abscisse and the velocity as ordinates, do not, the Th. -about ten milies below the weir at Teddington-and at West-
minster. They were in depths of water reaching nearly 30 ft. minster. They were in depths of water reaching nearly sot.
They were intended to throw light on the velocity and volume of amount of upland water. The author does not propose to give the calculations at present of these quantities, but it may be observed ordinary river during all periods of the tide. Contrary to some oner ofservations, with the a very short period of the commence-
ment of flow or ebb, the sub-surface velocities bear the same relat.
tide.

The Eleotric Light at Hull.-On Thursday, the 28tin opember, the electric lighting of some of the streets of the old
own of Hull was officially inspected by the Mayor of Hull and the tighting Committee. The party assembled in the town hall at and passages. Six arc lights of about 1000 -candle power each $\mathrm{SD}_{\text {s }}$ machine, and about a hundred swan D_{2} machines, are employed for lighting up the building. Later ower lights in the streets were started, comprising four 3000 -candle power lights each worked by a D_{7} machine, and twenty-two
300 -candle power lights worked by a $\mathrm{W}_{1} \mathrm{D}_{7}$ machine in two The four strong ligh anterns similar to those in use at the Royal Albert Dock. The are placed, one on the pier, the second on the Market Place, the
third behind Trinity Church, and the fourth in Whitefriars Gate posts exactly similar to those used last year in thy city of London and are distributed over the principal thoroughfares at about 100 yards distance from each other. The station is situated in the We orshorse power compound semi-portable engines supplied by
Wessr. Wallis and Steevens capable of working the street lights alone. Suitable arrangements re also provided for measuring the currents and for interchanging
he machines. The town hall is about 1000 yards distant from the 1700 yards respectively. The lighting 1700 yards respectively. The lighting was witnessed by a large
crowd of people, who expressed themselves as very well satisfied
with The contract has been carried out by Messrs. Siemens, Bros.,
nd Co., the work being done under the superintendence of Mr. F.
W. W. Melhuish.

RAILWAY MATTERS.

IT is stated that the Eastern Railway Company of France has entered into a contract with the T.
lighting of several of their trains.
Ir is believed that Austria, being discontented with the result of the Conference of the four Danubian States, will at once commence
the construction of the Austria and the Danubian Railway, that the construction of the Austria
Power claiming that she has arrea
tory Powers to to the Berlin Treaty.
Two passenger trains met at Hutchinson, Kansas, a few days Two passenger trains met atch. Thine engines craskled together,
ago, through a misplaced swith. The
wrecking the forward cars of both trains. The wreck caught fire, and both drivers and both stokers were killed and the
aurnt. Six passengers were killed and several wounded.
A PLAN of the proposed underground sererailway from Kimed. King's-cross
to Charing-cross, and the Victoria Railway Station, Pimlico, has
been lodged with the to Charing-cross, and the Victoria Railway Station, Pimlico, has
been lodged with the Metropolitan Board of Works, and the Board requested to express its views as to the carrying of the railway
beneath the surface of the new street about to be made by the beneath the surface oftween Tottenham Court-road and Trafalgar-square.
Board
The request was referred to the committee for consideration and The req
report.
ON SSaturday evening last a serious collision of an alarming cha-
Reter racter occurred on the London and North-W estern Rail way at Crewe,
fourteen passengers being injured, some very seriously. It appears fourteen passengers being injurea, some very seriously.
that an exaursion train from London to vearious seaside resors in
the North arrived at Orewe Station, and drew up in the west bay the North arrived at Crewe Station, and drew up in the west bay
for the purpose of allowing passengers to change. As some of them for the purpose of allowing passengers to change. As some of them
were getting out a train from Nantwioh, due at the esame time, ran
rapidly into the bay occupied by the excursion carriages, the force rapidly into the bay ocuppied by the
of the collision being very severe.
Shortir before four oclock on the afternoon of the 22nd ult., as the Midland train from London was entering the Central
Station, the Liverpool Weekly Post says, the vacuum brake by some means failed to act, and the train ran at a high rate of speed
to the end of the arrival platform, coming into violent collision with an empty van which was standing against the butfers attached
to the platform. The van was completely wrecked and the two to the patariom. The van was completely wrecked, and the two main platform. The ornamental ironwork dividing this platform
from the "dock" was also broken. A NEw railway, extending the Great Northern system to opening of the first piece of railway work from Leicester to Swann-
ington, which proved the beginnin of the Midand system ington, which proved the beginning of the Midland system. On
that occasion George Stephenson was present with his engine, the
the coross. While paing through the tunnel the chimney of the Comet across. Whane down, having come into contact with the roof. On
was kkocked dow
emerging it was necessary to stop to enable the passengers to alight emerging it was necessary to stop to enable the passengers thalight
and wash their facesin a brook. The opening ceremony the other day was not similarly atténded. The station buildings at Leicest
are of a most substantial character, the cost being over $£ 80,000$. The Kinzua Viaduct, on the extension of the Bradford branch
of the New York, Lake Erie, and Western Raiiway, is said to of the New York, Lake Erie, and Western Raviiway, is said to of which flows the Kinzua creek, in McKean county, Pennsylvania,
three miles from Alton, the present terminus of the Bradford rranch. The structure is 2052 Ftft . long between a butuments, and
302 ft . high from the surface of the ground to the base of the rail, and consists of continuous lattice girders supported on twenty iron towers, formed by columns strongly connected together by bracing.
These towers have a uniform length at top and bottom of 38ft. 6in., a width at top of 10 ft ., and at the bottom the width varies with the height, the two highest towers having a width at their bases of
102 ft . 9in., the width of the towers at their bases being uniformly a the girders. There are twenty clear they rest to the underside of the yirders.
spans of 61 ft . and one of 62 ft . in length.
Frevch official statistics give the total length of working rail-
ways in Europe on December $31 \mathrm{st}, 1880$, as 168,419 kilos., and on ways in Europe on December 31 st, 1880 , as 1688,419 kilos., and on
December $3115 t, 1881$, as 172.372 kilos., the total increase in 1881
being thus 3953 kilos., or 2.35 per cent. of the extent worked in the being thus 3953 kilos., or $2: 35$ per cent. of the extent worked in the
end of 1880 . France shows the greatest increase, viz, 1411 kilos, or 38.45 per cent. in the total increase. Leoking at the absolute
development of the system of each country, without taking into aeveopment of the system of each country, without taking into European States rank as follows, with regard to importance of
railway systems: railway systems:-Germany, 34,314 kilos.; Great Britain and Ire-
land, 29,232 kilos.; France, 27,585 kilos.; Russia and Finland,
23,529 kilos.; Austria-Hungary, 19,126 kilos. Then follow in order, but with rail way systems the most important of which is
under 10,000 kiolios. -Italy,
Hollan, Sweden and Norway, Belgium, Holland and Luxembourg, Switzerland, Denmark, Roumania, Turkey, Bulgaria, and Roumelia, Portugal, and lastly Greece,
which has only 10 kilos
Degrsive action is being taken in Holland so as to prevent the
recurrence of accidents, such as we often chronicle in this country, as due in their effects to the want of a good automatic brake. A
Royal decree has been issued which will come into force in May, 1883 , with the commencement of the summer service of trains on the railways. Article No. 84 of the General Regulations is thereby
superseded by the following order, viz:- "For express trains running at a agreater speed than 60 kilometres - 37 I. miles -per hour
the engines, tenders, carriages, and vans must be provided with automatic continuous brakes of a system prescribed or arproved of
by the Minister of Public Works." Similarly "automatic brakes of such prescribed or approved system will have to be fitted to the engines, tenders, carriages and vans of those passenger trains which
do not run at a
graeter speed than
hour
on permissive decree, but makes it absolutely necessary to provide all
trains with A PIECE of railway was onened on the island of Peunion. in A Preor of railway was opened on the island of Reunion, in the
Indian Ocean, in February, between St. Louis, St. Denis, and St.
Benoit, along the const Benoit, along the coast. The construction of the line has presented ground, formed by the accumulated lava, and to the violence of the
torrents crossed greater part of the year, but when a cyclone passes over the island enormous masses of water rush down, and the s.lope is such, a corre-
spondent of the Times says, that the velocity of the stream is often more than 100 ft. per seocond. Huge blocks of rock are carried
down with tremendous force, and the streas mouths in a single freshet thousands of tons of sand and at gravel. On the 21 st of January, 1881 , one of these floods in the River de
Galets carried away the scaffolding of a metallic bridge that was being erected. The railway is nearly 80 miles 1 ong, and it
traverses three large rivers-those named du Mat, des Galets, and traverses three large rivers-those named du Mat, des Galets, and
de St. Etiene ; three seoondary rivers, des Roches, des Pluies and
de St. Denis metal and masonry, of a bold type, have been thrown. The
greatest difficulty consisted in traversing what is known in Reunion
 and having an abrupt descent of of 200 to 300 metres too the sea
and
This long will hitherto been merely a footpath along its base, often made impassabbe by the seea and torrentst, but for tor the rase, often a made tunnel
has been bored in the basalt, about 10,281 metres in length, or nearly as long as those of the St. Gothard and Mont Cenis. This has been accomplished in thirty months by the skill of MM.
Lavallez and Molinos. The opening of the railway, and also
shortly of shortly of a harbour,
perity to the colony,

NOTES AND MEMORANDA.
THE quantity of gas used in London last year, according to the
analysis of the London gas companies' accounts, rpepared by Mr. analysis of the London gas companies' accounts, prepared by Mr.
John Field, was, in round numbers, 20,230,000,000 cubbic feet.
which is equal to a bulk of one mile square by 7266 ft . high, and its which is equal to a bulk of one mile
cost to the public was $£ 2,911,000$.
AT the Tynemouth Exhibition we observe that Mr. Ralph H. Iweadell has attached to his portable rivetting machines Swan' incandescent lamps, the electrical conductor being carried along-
side the copper tubing, conveving the hydraulic pressures to the
machines. Under the bottom of a ship, the keel rivetter is shown doing its work, and the movements of this machine can now be
plainly seen. TThis interesting and novel application of the electric light can be
machines.
Iv a paper read before the Academy of Sciences, Paris, on
marsh fevers, by M. d'Abbadie, the aythor says that marsh fevers, by M. AAd Eadie, the ather athor says that immunity
from such fevers in bad Ethions is often secured by
sulphur fumigations on the naked body. In Sicily the workmen in sulphur mines on low ground suffer much less from intermittent fever than the rest of the population. In Greace-M. Fouqué has
shown-a once flourishing town of 40,000 inhabitants, Zephyria, shown-a once tlourishing town of 40,000 inhabitants, Zephyria,
has been almost utterly deppulated decadence has corresponded to a sulphur emanations are preoperations to the east, so that the sulphur emanations are
vented by a mountain mass from reaching the site of the town.
Iv a paper read before the British Association, by Mr. W. Sugg,
" Gas Burners," the author said : "One point of great import ance in the construction of a gas burner is, that the gas should not
be heated until it arrives at the point of ignition. The body of the chamber below the point of ignition must, therefore, be made of material which is a bad conductor of heat, so as not only to
prevent the undue expansion of the gas before it arrives at the print of ignition, but also to maintain the heat in the flame. Sir Frederick Bramwell pointed out, some time since, that the important point in the proper combustion of gas is not so much to keep
the gas cool as to keep the flame hot; and a non-conducting gas chamber performs
IN a paper entitled, "Study on the refime of the Maritime
Loire," read before the Paris Academy of Sciences, by M. Bouquet de la Grye, the author says that between Nantes and saint sand and mud. The volume of the channel has diminished about 56,000 cubic metres annually for sixty years. The outer bar of
the river has risen 0.70 m . since 1864 , and will probably rise more, presenting a danger for large vessels coming to Saint Nazaire. The author indicates means or replanging, covering slopes with turf,
constitution, such as and he suggests a plan for carrying off quickly into the sea the
40 million cubic metres that have been deposited during the last sixty years.
The following device for keeping open the channel of the Columbia river, now seriously obstructed by sand bars, is described
in the Scientific American:-The promoter's theory was that the current was strong enough to carry off the sand if it were properly
stirred up. Mr. Prescott, manager of the Oregon Railway and Navigation Company, felt sufficient interest in the experiment to
offer the use of the company's steam collier Walla Walla in making it. The steamer was moored on the bar, bow up-stream,
the stern at the lower edge of the bar, and loaded so that the keel touched the bottom. In eighteen hours' actual work a channel 1000 tt . long and 100 ft . wide, was deepened from a maximum of
18 ft . to from 22 ft . to 24 ft . The steamer is now completing and ghe channel on the wiele length of the bar:

THE Registrar-General's weekly return shows that the annual rate of mortality last week in twenty-eight of the largest English
towns averaged 20.6 per 1000 of their aggregate population, which towns averaged 20.6 per 1000 of their aggregate population, which
is estimated as $8,469,571$ persons in the middle of this year. The six healthiest places were Derby, Bristol, Nottingham, Sheffield,
Norwich, and Portsmouth. In London 2538 births and 1449 deaths were registered. Allowing for increase of population, the
births were 22 below, whereas the deaths exceeded by 75 , the births were 22 below, whereas the deaths exceeded by 75 , the
average numbers in the corresponding week of the last ten years. $19 \cdot 4$ per 1000 week, During the two preceding weeks, rose again ended last Saturday the death-rate
averaged only 18.6 per 1000 against 20.7 and 20.5 in the corre averaged only $18 \cdot 6$ per 1000 , agains
sponding periods of 1880 and 1881 .
THe range of the changes of level in the rivers of Russia in
Europe has become, since 1876 , the subject of accurate measure ments, and M. Tillo has just published in the Russian Nautical being the result of measurements made at eighty different places. The highest range is reached by the Oka at Kaluga, the difference
between the highest and lowest levels being as much as 45 ft .; the averate range or the same river from its source to its mouth being
32.2 ft.; the average for the Volga from its source to its mouth is
 course this range diminishes very much towards the mouth of each
river ; but still it reaches 12 ft . for the Volga at Astrakhan, and 9ft. for the Duna at Riga. The highest range observed in the
Iakes of Northern Russia was only $2 \cdot 1 \mathrm{ft}$. A map prepared, Nature lakes of Northern Russia was only $2 \cdot 1 \mathrm{Itt}$. A map prepared, Nature
says, by M. Tillo, shows the distribution of hydrometrical stations
on Russian rivers, their numbers having been increased in 1880 to 341 stations.
For cleaning old and soiled engravings, Mr. W. Brooks, writing
in the Journal of Photography, recommends the use of ozone bleach. The strength he prefers is one part of ozone bleach to ten of water, well shaken up before pouring into a dish. He immerses the engraving in the solution, face upward, avoiding
bubbles. The only caution to be observed is that whin the engraving is sodden with water it is somewhat rotten; so the less
it is handled the better. Sometimes, if the engraving be only sightly stained, half an hour is quite sumicion, when quite stains are removed, and the paper has regained its pure whiteness,
pour the solution out of the dish into a bottle, as this can be used per and over again, until it becomes discoloured; then fill up the dish with water, changing frequently for about two hours, or,
better still, place it in running water. When sufficiently washed it can be taken out and blotted off and then hung up to dry, and
when perfectly dry, iron on the back with a warm flat-iron; but care must te to dry, iron on the back wit
A PAPER on the "Extraction of Selenium from a Waste Product "Chem. Cent. Blatt.") According to the Journal of the Society of
Chemical Industry. the Chemical Industry, the author finds that the deposit which occurs
in the muriatic acid condensers of alkali works contains a large
 gravity 1.53, selenium per litre, and in a second sample It distils with the first portions specinc the
muriatic acid. A sample of the latter of specific gravity $1 \cdot 16$ muriatic acid. A sample of the latter of specific gravity 1116
yielded 25 mgrms. per litre. The percentage of selenium in the
deposit varies between t1. and 45 . The
extollowing process of extraction is recommended. The substance is suspended in water formed and decomposed by the water into seleniousu acid, a portion
of which is oxidised to selenic aeid. The liquid is filtered and of which is oxidised to selenic aeid. The liquid is filtered and
boiled with excess of hydrochloric acid. 0 O addition of acid sodium sulphite, the selenium is precipitated in the form of deep red
flocks, which are aggregated on passing steam, into spongy masses
of a steel grey colour, which are then dried and fused

MISCELLANEA.
Ir is reported that considerable damage was caused to the new
harbour works at Carrickfergus during the gale of Sunday. THE street lighting on the large scale by electricity in New York of light in houses and shops which was previously sufficient no longer satisfies.
There are already thirty electric light companies in England, Wha a capital of over $\pm 6,000,000$. The number in France is less,
but the capital represented is nearly as great. There are ove fifty companies in America, and the capital is considerably over
:10,000 is not known.
The rumour that the German Government had now begun to devote serious attention to the project for the construction of a
canal comnecting the North Sea with the Baltic is said to be with out foundation. Since the report on the subject by Lieutenant-
Colonel Vogel von Falkenstein, the Government has taken no steps in the matter.
THE Gas Committee of the Marchester Corporation are about to
hand over to the Improvement Committee of the city, to be hand over to the Improvement Committee of the city, to be
devoted to city improvements, the sum of $£ 52,000$. This amount, with the exception of $£ 8530$ withdrawn from the reserve fund, represents the profits upon the
the year ended June $24 \mathrm{tth}, 1882$.
THE prospectus of a company with the title "The Caledonian
Steel and Iron Company, Limited," has just been issued. The
 Directors has been obtained. The company is being formed to
work the Thomas-Gilchrist process in Scotland. work the Thomas-Gilechrist process in Scotland. The company will
purchase the Wishaw blast furnaces with the coal and ironstone purchase apertainnang to them.
property appper
THE second International Electrical Conference is to be opened in Paris on the 15th of this month, a subsidy of $90,000 \mathrm{f}$. having been
granted by the French Governmenttowards thatobiect. The principal ts with a view t determining electric units, to fix upon methods of observation for
atmospheric electricity, to gather statistics relating to lightning atmospheric electricity, to gather statistics relat
conductors, and to fix a definite standard of light.
SILvER medals, the highest awards made, have been given at the
-orth-East Coast - Tynemouth - Exhibition, to the Durhat Churchill governor and to Mr. Maurice Gandy's patent belting. Messrs. Douglas and Grant, engineers, of Kirkcaldy, N.B., Exhibition for their exhibit of one of Lightfoot's patent dry air refrigerators in operation in connection with cold storage chamber.
A silver medal has also been awarded to Messrs. Priestman Bros.

The four-masted steamer Werra, built by Messrs. John Elde and Co., of Govan, for the North German Lloyd, for their mail
service between Bremen, Southampton, and New York, made hee service
official trial trip on the Clyde on the 29 th ult. The Werra is a
ald screw steamer of 5109 tons gross burden, 2856 net register tons.
She is 450 ft . long over all, 46 ft . broad, and 36 ft . 6 in. deep. Her engines are constructed on the same model as those of the Orient
steamer Austral; the contract indicated horse-power was 5600 but on her trial trip it reached as high as 6700 . The contract stipulated for a speed of 16 knots on a consumption of coal not exceeding 1936 lb per indicated horse-power per hour, but when running
the measured mile the mean speed was 17 .225 knots an hour. AN interesting experiment took place at the opening of the
present session of the London Hospital Medical College on Monday evening, when a phone Company, the Anatomical Theatre was placed in telephonic communication with the Savoy Theatre, and many of the audience heard distinctly the opera, "Patience," by the telephone. The electric light used on the occasion was also a great success, Mr.
Crookes incandescent lamps being adopted for the first time at public exhibition, supplied by a Gülcher low tension dynamo machine though crowded, remained perfectly cool.
ON Saturday Colonel Yolland, R.E., accompanied by Mr of the Channel tunnel works. They were a accompanied by Mr.
Brady and Mr. E. Cumming Madden, a Berlin correspondent Brady and Mr. E. Cumming Madden, a Berlin correspondent of
one of the London daily newspapers, and Mr. W. Lawford, C.E., the latter two gentlemen attending at the special invitation of Sii gress whatever was found to have been made with the heading remarks that " while the party was in the tumnel several pieces of the chalk through which the heading is being driven were
secured for Count von Moltke and members of the German military
staff, who are in favour of and take great interest in the scheme, Last week the Shipbuilding and Ensineering Works Company, De Maas, Limited, launched from their yard at Delfshaven,
Holland, a screw steamer named Monica, built to the order of the Crofton, Shipping Company, Limited, Hull. The vessel, to be dimensions:-Length, 212 ft ., beam, bear, 30ft.; deptho of hold, 14 ftt ;
displacement 1720 tons; carrying
 water ballass tanks, 210 tons ; three hatchways-aft, 29 ft . 4 in. by
16 ft .; middle, 25 ftt 8in. by 16 ft .; fore, 16 ft . 6 in. by 16 f . S is schooner rigged, with topgallant forecastle, long bridge amidships, raised quarterdeck and half poop for captain's cabin, fitted
with three steam winches and Harfield's patent windlass. The engines-compound -are supplied by the builders of the vessel,
and have cylinders 27 in. and 5oin. diameter with 33in stroke, with
, $16 \mathrm{ft}$. in. diameter-supplies steam to a working pressure of 85-horse power. The vessel has been built according to Lloyd's
rules for the 100 A1 class, and has been surveyed during her con struction by Captain J. C. Thompson, who will command her
This is the faring her engined in Holland to the order of an English firm. In the event
The the can be used.
A very large flour mill was inaugurated in Holbeck, Leeds, by the Leeds Industrial Co-operative Society. The mill previously
belonging to the society was burned in October, 1881, and after an
examination of the various new sym nearly completed was commenced. The mill comprises a brick
 disclarg. The wagon loads of grain entering the warehouse are of raising 100 quarters per hour, and at once passed through separators. In a line with this warehouse is the corn mill proper.
It has a frontage of 93 ft ., and a depth of 91 ft . into the yard. Ihis building is also of brick, and is five stories high, 500 square yards
being allowed for eal It is divided into two sections-a stone miil and a roller minl, so
that the two processes may be carried on separately or combinedly. The system adopted is half-high grinding, the wheat passing through stones and rollers of diterent sized corrugations into
centrifugals and purifiers until it reaches the final stage and is centrinugals and purifiers until it reaches the final stage and is
ready for delvery. The mill will, when complete, grind 1500
sacks of corn a week, and is so planned that even may be ground by an extension of the e fifty-fout hours 2500 sacks
now usual. The machine
noty and system, by Messrs., John Fiechter and Sons, of on Liverpool. Hungarian
sive of the value of the trade stock on the Holbeck estat.
sire sive of the value of the trade stock on the Holbeck estate, $£ 17,000$
has been expended on new machinery and $£ 16,800$ on buildings

HALL'S PATENT COLD DRY AIR MACHINE.

We illustrate above a new pattern of cold air machine, manufactured by Messrs. Hall, of Dartford, who are already well known in connection with appliances of this kind. This machine is arranged to be driven by a belt either from any existing power not required for wine, which can also be utilised others machines was at work during this summer in connection with a suitable refrigerating chamber, preserving about 12 tons of butter, which, when removed at the end of two months, was found to be in perfect condition in every way, and remained so during the usual
time for ordinary consumption. time for ordinary consumption.

HARKER'S COMPOUND LAUNCH ENGINE.

 We give herewith a plan ${ }^{\circ}$ of the launch engine made by Mr. Harker, of Stockton-on-Tees, in our last impression, p. 234. It will be remembered that the cylinder, valve chests, \&c., are all cast in one piece. The cylinders are 7 in . and 12 in . diameter with a stroke of 12 in . The hand wheel is for reversing below, but a prolongation of the vertical mitre wheel shaft rises through the deck, and so puts trol of the steersman if need be, The engine is massively made, but it is intended to run at high velocity. The air and circulat ing pumps, it may be well to explain, communicate with the condenser through the base plate, the circulating water passing under the after crank shaft bearing and keeping it quite coolan arrangement which is excel quite new.
THE HIGHGATE HILL
 CABLE TRAMWAY.

 MANy of our readers will be interested to learn that at last a ducing into this country the Hallidie cable system of drawing tram cars, and by that means altogether superseding the employment of horses or steam locomotives for the work. The Steep Grade Tramway and Work Company will commence its operations with a new line running Nom the Holloway-road terminus of the London Street and laid up Highgate-hill east, until near Fairrest House ; here a single line will be extended to the Southwood-road terminus near the historic Highgate " Gate House."
The system was devised for the purpose of propelling tramway cars by means of endless steel wire cables, actuated by a steam engine or other motor fixed at either end, or at any intermediate point of the line, as convenience or necessity may dictate. A tube of sufficient capacity to contain at proper intervals of distance grooved sheaves on or under which the cable may travel-is placed beneath the surface of the street and between the rails.
The tube is provided with an opening or slit on the upper side running along its entire length, and sufficiently wide to but not wide enough to admit the wheel tire of the smallest carriage, the extreme width of the opening being only threequarters of an inch
For each track one tube is employed, and it is furnished with two sets of sheaves, and contains both parts of the travelling cable, which would run therein in opposite directions. At a suitable place, and connected by the necessary gear to the steam or other engine, are mounted grip pulleys, by which the power is
transmitted to an endless cable to set it in motion. The slit in

This is the smallest size machine of this kind that has yet been made, and delivers about 2000 cubic feet of cold air per hour at a temperature of 35 deg . Fah. below zero. A 3 $\frac{1}{2}$-horse Onwer gas engine is of amply sufficient power for driving which it can be attended to, it is specially adapted for the requirements of butchers, fishmongers, poulterers, \&c. In the illustration A is the compressing cylinder, C the cooling box, B the air expanding cylinder, D the driving wheel. When preferred a steam cylinder can be added for driving, and the whee
D omitted.
the tube is made on one side of the vertical centre line, and not vertically over the rope or sheaves, in order to prevent stree refuse falling therein. In the event of double sheaves being require on either side of the slit, which in such case is placed in the centre. Upper sheaves are not required where the line runs fairly true between two given points, but when the grade varies considerably, upper sheaves are necessary as well as lower sheaves, in order to keep the line of rope parallel with the axis of the tube. In such cases the cable travels over the lower sheaves and under the upper sheaves, sufficient space being left between them to permit the foot of the gripping attachment to pass uninterruptedly. The gripping attachment, by the means of which the motion of the cable is transmitted to the car, consists of an iron frame fastened to the bottom of the "car or wheel and nut fitted to a hollow screw, which reaches from the wheel and nut fitted to a hollow screw, which reaches from the
frame to the bottom of the car or dummy, to which it is secured At the lower end of this screw is attached a steel shank which has a dovetailed groove in its length; a slide works therein actuated by means of a nut and hand-wheel working in a screw at the upper end of the slide. The lower end of the slide is furnished with a wedged piece, which actuates two horizontal slides at right angles to main slide that works in the shank of the large hollow screw. The steel shank is 5 in . wide by ${ }^{5} \mathrm{in}$. thick
so that the longitudinal slit in the tube is not more than ${ }^{3} \mathrm{in}$, or
$\frac{7}{8}$ in. at the utmost in width. Curves are as easily overcome as grades by the simple application of special rollers. There is no reason why this system should not be as successful in England as it is America, for wave long used it in a less complete show the working expenditure of the the general figures will Horse tramways are worked generally 85 per cent. of the earnings, steam at an expense of 75 to cent., whilst the cable works in several cases at about 30 per cent. According to the paper recently read before the Institute of Mechanical Engineers in Leeds by Mr. Davey, the cost of haulage by endless wire rope in mines is, including every cost, $2 \cdot 9 \mathrm{~d}$. per ton per mile, or by means of a tail rope 1.87 d . per ton per mile, and this is done under the conditions of wear and tear which generally obtain in a mine. This economical working strongly commends the system, which may be said to distribute energy in a way unattainable by any other method of tramway traction. This is shown by its success on the Chicago tramways, which are almost wholly level, and on those of San Francisco, which have a steep Mr . James Cleminson this line, and we look. Inst. C.E., is the engineer-in-chief of opening.

FANS AT READING.
The accompanying illustrations show some of the apparatus not yet illustrated in our columns. The fan here shown is that made by Mr. E. Pratt, of Uxbridge, and exhibited outside the

hay meadows, but not entered in the Society's catalogue. The hand-wheel had 272 cogs and the pinion fourteen cogs, and the
fan thus makes 776 revolutions per minute with 40 revolutions fan thus makes 776 revolutions per minute with 40 revolutions

f the hand-wheel. The fan case was 6.5 in . wide inside, and the wood tube to the rick was 6.5 in . by 7 in . The engravings show the form of the fan and the arrangement. Mr. Pratt also howed the same fan driven by a strap, and the whole arranged
with a small horse gear on one frame.

The application of an exhaust ventilator exhibited by Messrs. C. Kite and Co. is shown in the annexed diagrams. To this we

have previously referred, and it is commented upon in the judges' report on the trials, which we published in our impression of the
22 nd ult.

HATHORN'S ROCK DRILL.

In our issue of August 4th, in the course of our remarks on the exhibition at the Alexandra Palace, we mentioned a peculiar valve motion which operates the rock drill shown by Messis. Hathorn and Co., of 22, Charing-cross, S.W. We give think that a study of its principle will repay our readers. The alve itself is marked D, and is little D valve with a turned face carried in a boss between two pistons, all being cast together and sliding on a spindle with a feather to prevent its turning off the ports. The spindle is the bolt that holds the two caps on the end of the valve-box, which is bored to suit the piston valve, and has an inlet for steam on either side in the centre. Thus the space over the little D valve and between its two pistons is ways full of live steam, and any movement of the valve to one side admits steam to a port in the usual manner. There being a certain amount of movement for the valve, it follows that when it is in the central position over the ports there is a space at either end between the cover of the box and the piston part of vertical slotted hole is drilled into each of these clearance spaces, nd a passage is made by drilled holes from it-as may be seen
on the sectional plan-into the interior of the cylinder itself by two little tubes A and B carried through the steam passages The forward tube A thus communicates with the rear space a, and the rear tube B with forward space b. Parallel with these steam cylinder into a chamber communicating with the fre exhaust hole-see Fig. 1.
The piston is a long one, and has a recess turned out of the middle of its length just long enough to allow of both holes A and B being shut by its edges. It follows that as the live steam leaks past the periphery of the pistons of the valve into spaces a and b this steam will blow through the passages into the recess in the piston, and circling round, it finds its way out through hole C or D into the open exhaust. But if the piston is moved back or forward so that one shoulder of the recess covers one pair of holes, say A and D, as shown in Fig. 1, then the steam contained in space b will have no escape and will drive over the piston valve from that end, opening by that means the steam
ther detail consists the surface of the valve-bor. When the piston valve is pushe

ver on one side the inner edge of the little piston passes this slot, and the live steam passes freely under the side of the piston to the space behind, and will tend to keep the valve in the central position. These slots thus answer the purpose of returnwhen the drill is set out of the horizontal, as the weight of the valve itself then comes into play. The practical action of this valve is peculiar. The steam may be throttled until only enough to overcome the inertia of the piston is admitted; then the piston will move to and fro just the amount necessary to uncover one or other of the little holes A or B, and the stroke will be gradually increased as more steam is admitted till the full stroke s obtained.
Another feature is the great variety of pressure under which the same motion will work. We are informed that 5 lb . per square inch will vibrate the piston, and Messrs. Hathorn state hat they have had the drill running under an air pressure of 75 lb . per square inch, when, although the motion was so xiprocations by the pye the valve motion had perfect and unfailing action.

CRAMPTON'S HYDRAULIC TUNNELLING MACHINERY.

CRAMPTON'S SYSTEM OF EXCAVATING THE CHANNEL TUNNEL.* By Mr. t. r. Crampton, m.I.C.e.
It is assumed, to avoid complications in this statement, that there underlies the bed of the Ohannel between Dover and Calais an uniform stratum of grey chalk-impervious to water and so soft that it can easily be cut by ordinary cutting tools or chisels. more recently have established the fact that a rate of advance may be easily maintained of one yard per hour, or twenty-four yards
n British Association, Seotion G_{1}
per day, at which rate the excavation of half the length, or ten miles, would take two and a-half years to accomplish, taking the year at 300 working days. The tunnel is assumed twenty miles
long independent of approaches; and the latter may be made at the same time as the main tunnel, and with work going on simultaneously from each side of the Channel, we have practically
to deal with ten miles only. The tunnel is supposed to be 36 ft . in to deal with ten miles only. The tunnel is supposed to be 36 ft . in
diameter, and may be pierced in one operation. Each yard forward, therefore, represents a quantity of 113 cubic yards to be removed. To this quantity I add 50 per cent. for contingencies, making a total of 170 cubic yards, or 250 tons of chalk débris per hour to be dealt with,

If we now assume"for the moment the use of the ordinary
system of removal, by trucks, we find that the transport of 170
cubic yards of debris would necessitate the passage of eighty-five trucks of two yards each per hour, or one truck every forty-two seconds ; or, if trains be made up of ten wagons each, there will be one such train every seven minutes passing out and a train of empties passing in-in fact, a continuous traffic. These trucks will next have to be lifted up the shaft 450ft. high, and discharged twenty-four hours, independent of the weight of wagons, men, tools, stores, \&c., a quantity more than double that lifted in some of our greatest collieries. In certain cases the trucks may be drawn up the incline approaches by locomotives.
The lining of the tranel -3 ft , thicle all round merequiren the
introduction of thirty four cubio, or, with contingencoies, say fifty
cubic. yards of materials per hour broukht in, of course, by the

 through the thunnel so great a traftic as will be going on for the 1 proosesed therefore
 remove the deterisi in an antuomatio manner, and convey it back in
pipest the the surae, and then to the sen
Near the mounth of the uprivhts shatts at Fanhole-see section,

 madeinery working at the tunnel face, and in order to tacilitate
the advance of the boring machine 1 interpose between it and the

given, is diting machinery-see page 255 -of which diagrams are

 cylineriaes drum, which revorves at a g given rate. The quantity of

 with a teleseopicie joint similiar to the one for the ine ile tipe both
are attached to one another, and when they have run to the full

 interruption.
The o rream, whether foreed back to the bottom of the shaft or

 as is occupied by the two pipes-the

 a pipe instead of by locomotives and trucks
in commencing operations it it
is assumed
 and might probably necessitate commencing at the lower eend Referring now to the diacram representing the the tunnel to be
made, it is assumed that operations will begin by making the
 boring machinery in the direction from B to D down an incline of
1 in 80 . The water will be pressed to F to
Thind
 This acting on 490 oubbic feet per minute will give an anarailable The
The pressure may therefore at first be considerably diminished, is very trifing, and will amount at the end of one milile to onl
$7 \cdot 5$-horse power. As the boring machine addances more power will
 below the level of the sea, the diffirence in oult cases shatering toigh be

 and the heandingmed tht.
latter will
will be ter from C
wortb to D , have been made. Th
the
 the point C , and then be lifted to the surface. When the point. D .

 lifting the cream to the surface is considerably yncreased, amounting
to 950 -he sere For the section B
 it will have to be worked under a weessure of some ; 7roo lib. pert
 cream will of course have to be raised to the surface.
The eutting part of the merhine consitst of of ace. alye disc fitted
with a number of circular revolving eutting discos. 1 I have ascertained that for a 3 3ft. tunnel 3 30-h orse power will be required
for cutting the chalk.
To

 ${ }^{\text {well }}$ within practical limits.
 per minute. One face of the drum is made of a stront wire
grating, but in the centre

grating, and collects in a reservoir, whenee it is is
outside by pumps or allowed to run away by gravity.
In this ppparatus a a quantity of chalk dederis, amountity to to teve cubic yards, or twenty-one tons, was reduced to cream within one

woud thererore anount to 85 -horss powe Respecting the oonveyance of cream to

Respecting the conveyance of cream to the bottom of the shaft,
found from trials made with eream passing throulh emall that while an admixture of equal quantities of chall sand water as compared with water alone, caused a loss of nearly 14n per cent
through extra friction-that of 1 of chalk to 2 of water 3in per ent., and that of 1 of chalk to 3 of water a loss of 2 s per cent.it was therefore deided to use the proportion of 1 of chalk to 3 of
water by weight, or of 1 of chalk to 6 of water by bulk. It was Iso ascertained that it would not be safe to pass cream of 1 to
 sethle. I Ih
ert second
eer
In a diagram I have given a statement relating to the powers
 minute, and at a proportion 1 of chalk to 6.4 of water 490 cubic teet of water per minute will be required, and conveyed to the
tumnel face by a $12 i \mathrm{in}$ inlet pipe. The pipe will deliver the wate $\underset{\substack{\text { at } a 1 \\ \text { powe }}}{ }$
The sluage or cream is composed of chalk, 76 cubic feet ; water 190 oubic feet: total of cream, 566 cubic feet per hour. This will
Se forcee by pumps through 22 Tin. pipes, at the rate of 3.56 pet seoond, requiring g7\%-5horse power pre mile, But where sulticien
gradient exists in the tunnel, the cream may be allowed to run by
 pumps driven by machinery on the top.

LETTERS TO THE EDITOR.

[We do not hold oursecteres responsible for correspondents.]
WISWALL'S TILTING WEIR.
Sir, -Reverting to the point upon which the foregoing diseussion
tarted, viz, the automatic action of this tilting weir $工$ would express an opinion that, in order to be of any practical value,
automatic relief weirs should only be placed in such streams where
and
 yater at the back of the present weir rises twice as quickly as in front in timeseof flood, so that when theses tiltining agteo are built
the tail water will rise to such an extent as to render their autothe tail water will rise to such an extent as to render their auto-
matic aaction practically useless, as the flood of the upper pool
 nce a hadking up alony its whole course : while (2) the canacity the lower pool is still further diminished by the deposited material scoured out from the upper pool through the manual opening of
the gates mentioned ; and (3) at the sume time and in coninction the gates mentioned; and 3 at the same time and in conjunction
with this no improvements, with a view of innereasing the discharg
 stream and carried upwards.
misleading. The governing weut Mre Mr. Wiswal's statement is again horizontal tunnel-see sletech in my letter of September 19 th; and he yelocity quoted, namely 23 2ft. per seond, is due simply to the
vertical drop of the shaft, which, of course, is immediately dissi pated on the water reaching the bottom. The only outlet for i it i is
py a to the st ectionaluousen and withl y hatif a mile long, and of a dimimished cannot attain even the velocity of the river above the weir- 122 th err second- so that the tunnel becomes gorged with water, whice
ises in the shaft until sufficient head is obtained to force the wate through. The shaft would be completely filled and the tume submerged before the automatio action could come into play, and
where then would be its use, for it is simply the head of wate Whioh would be the sole a acting agent.
$\mathrm{SIR},-\mathrm{A}$ great many years ago, in the reign of Oharles the First I think, d disputa ragead among learned. men an to whether fifh
weighed anysthing in water or not. The ouestion was discussed Weighed anything in water or not. The question was diseussed
vith great aerimony and much ingenuity of reasoning So on Tor a long time thounht of testing the question practically. A A last some one suggested that it should be tried. A pair of seale
were procured, and a fish was weighed. . It turned the seale at oound. Then a bow of water was ppt in the seales and acouratel
palanced. The fish was then slipped into the bowl and the sall beam turned, and a pound was required to restore equilibrium. Mr.
Now it seems to me that the dispute between Mr. Olive and Mr. Wiswall is strictly anallogousto to this. If Mrr. Wiswalls sweir has eve
 tested, II would dungest that it is quitite time he did. Nothing could
 stabishod, and the question now being diseussed set at rest a
nee in the most conclusive manner.
Either the weir will work it will not, no amount of argument, it appears, is likely to settle
which, for Mr. Wiswall has a parry for every thrust made by Mr. Which,
Oive,
Nan
I am much surprised that no test of the Wiswall principle has
nen made een made. There is a story anent Don Quixote's helme
which Mr. Wiswall may remember. At all events I think he ught not to wait for a winter flood at Throstle Nest, but try a. experiment at once.
Great Georgesestreet, October 3rd.

ortion of t. W. Mincent is evidently entirely ignorant of that or the e9th relating to to the whaties of trailway enginerss, while if
The duty of a railywy enineer is to take care of the property entrusted to him; to maintain it in the highestestate of efficiency
or the smallest outlay, and from time to to time to sugusest to or the smallest outlay, and from time to time to suggest to his
directors, or to adopt himself, such improvements as anpear to Mrectors, or to a aopt himself, such improvements as appear to
worthy of trial. He he has all the time to bear in mind that a very attachested $t \mathrm{tim}$, and that he is not speciall tophoyed or paid or expected to do anything which can incur risk
to the pubii, .fis directors, or himelf. Above all he must not speculate with the funds of the railway company.
As regards the introduction of changes in permanent way in on all our principal lines a road bed thoroughly consolidated by age and long use, and on this is laid a track which is admitted on all hands by experienced men to be of unparalleled excellence, much
of which is no doubt due to the attention which it reeciives from gangs of men perfectly trained to their work. The only obiection
which Mr. Vincent has to urge against this track is that it costo more for renewals than an iron sileper road would.
 totally difterent type. The platelayers available have no experi-
enco of such slepers, and would no doubt in the first instance mate a mess of laying them. The raod bed now frirst and sound
would have to be aill rooted up to receive new sleepers, and the
chances are a hundred to one that the whole road would be spoiled
for at least three months, whilie the lives of passengers would be

 would last longer than the ofa. Now it is very easy to make statements of this kind, but it is quite another thing to prove that they
are acourrate, and 1 chanlenenge MIr. Vineent to prove his statement.
 avery moderate computation it will last six years. I have wooden sleepers down ten or a dozen years, But yet me suppose that a
sleeper lasts but four yearse year per sleeper, and during this time there are no renevals or

 eeary traffic
I now ask Mr. Vincent, since he is so enamoured of permanent
way, to give me particulars of the first cost of twenty continuous way, to give me particuars of the first cost of twenty continuous
miles of iron permanent way in any part of the world over which
 not to have a less velocity than fifty miles an hour, nor a less load
ne each driving wheel than eight tons. The lowest speed of ten other trains shall be forty miles an hour, and that of the remaining-let us say goods trains- shall be not less than twenty miles an hours
Of course I I do not tiie him dow to these precise figures.
Iuse tyeed traftic
I maintain that there is no iron permanent way in the world, sither laid by Mr. Wood or anyone else, which has to sustain any-
hing like the traffic on the Great Northern, Midland, North-
 ryes that such ntrack oughtt to be adopted. Forthermore t can

 contend that he has no facts to go on. The circumstance that Jrr.

 maximum.
vith interest, but befo sub he information he will be listened to some information for himse
Doncaster, October 2nd. Wooden Slekper.
railway accidents.
$\mathrm{SIR},-\mathrm{I}$ have anxiously waited for the publication of your paper
his week hoping to see full particulars of an accident caused by he failure of the vacuum brake at the Central Station, Liverpool.
 but I should like to mention a little of my recent experience. On
July 10th I had to leave London by the twelve o'clock from St. Pancas, and when stopping at Kentish Thewn I felt a jerk, looked
 nine a.m., and when stopping at a station, Wigston Junction I August 3 hst, I I was a a a passenner in the twelve noon from Liverpool, The train ran past the platiform at Leicester, nand I saw a great
examining of pipes, and was told the brake had failed arain
ent Quite lately - lam not quite certain to a day the nine am train from Liverpol parted into two portions at Market Harborough,
and again at Bedford.
So far theses oases, although a alitle alarm-

 pool, when to my surprise the grinding eaesed and the train seemed
to jump forward as if all the brakes had suddenly gone offt I I was just geting my umbrella down from the rack, when the train,
unsteal end of the station, coussing $m y$ head to come into sharp contact with the baik of the carringe, fortunately the padiping of the
first-lass sarriage broke the force of the blow, otherwise I should have got a nasty hurts. As soon as 1 got out I inquired, "what
ever was up? I was told that it was not the fault of the driver, is the brake failed in his hands. After this experience of brakes
on the
Nlidland, I have decided to On mentioning my ill-fate to a gentleman with whom I do business, he tells me that on the 14 tht of September he was a passenger
in the 9.50 Nanchester to London, and that when the train got to Luton this vacuum brake failed, and they ran past the station and brakes, butitit really appears to toe that this one is beginning to be a source of danger, not of saraty; anc as
Ithink it my duty
 understanding as to the chase of all hhose mishaps.
Limestreet, Liverpool.
jointing locomotive inside cylinders.
STR, -I would like to exchange ideas on this subject with any

 ras cut into the face, and the flanges have to be planed up, and to
teep the cylinders to gauge we have to put in a iner between the tanges. It appears that, owing to unequal expansion whee in thide

 oen triea to prevent this warping, all of them resulting in failure.
One idea was to out through the deep flanges at either end of the onindeaw wasto cut through the deep pranges at ither end of the
cylinderse
This ome eltent, surtit is such a thoroughly un-mechanical idea to cout
wway all the strensth of the thing that I m If 1 was asked to design a pair of inside cylinders, I would make He langes oroader, and put in a doubbe ine of bolts. Are there
 which we got planed up, and in which we the breadtu of the flange, I have jointed just from the planing
machine without any scraping, and with red lead thin enough to maubine without any seraping, and with red lead thin enough to
put on with abrush. The copper liner is left a little broad, and is chipped off after the joint is made both outside and inside the This I find to be the best method of jointing cylinders in my exthere is to making new cylinders this way. The copper liner being
ooft pidds little to to oftt, yields s little to the warping of the flanges, and thereby pre-
vens the in

to be faced up again. Water is no test for cylinders. I have seen to be faced up again. Water is no test for cylinders. I have seen
a pair of cylinders pressed to 2000 b. with water, and as tight as a
bottl bottle, but when 100 lb . of steam was put into them they blew
badly. Neither is it a fair test to press cylinders with steam when they are not in the engine, when in their place they are in different circumstances, being greatly heated from the smoke-box, and this
tends to keep the upper portion of the joint tight. Cylinders get badly corroded on the top surface from water thrown from the exhaust pipe and in washing out the boiler. Would it not be better if a plate was fixed on water-tight to protect the cylinders?
I am certain this does not receive the attention it deserves. I have I am certain this does not receive the attention it deserves. I have
seen cylinders corrode from this cause only, until the piston came seen cylinders corrode from this cause only, until the piston came
through the side. Jumalpore, Bengal, August 26th.
fan trials at reading.
Str, - In replying to criticisms which have appeared upon my
etters in your columns, I hasten to acknowledge the fairness of your own comments.

I admit that the large stack of Mr. Coultas was made
of inferior grass ; but that does not alter the fact of the presence of mould in great abundance. My point is, that the stacks made of much the same hay, viz., my hand-fan stack, which sold for $£ 243 \mathrm{~s}$.; Mr. Bamlett's hand-fan stack, $£ 19$; and Mr. Phillips's power-fan stack, £19. Here two were ventilated by hand-fans and one by a power-fan. There is no invidious disparagement necessary in drawing from this a conclusion not Turning to your leader of Septe you for bringing to the front the all-important question of the true principle of construction. Everything else is now subordinate to this. The real success of the Neilson method as a system will establish itself in spite of the unfortunate Reading trials. Mr.
Neilson has proved it himself by eighteen years' patient working, Neilson has proved it himself by eighteen years' patient working,
and nothing will long hide this from public appreciation. The only question for us is, How can this system be most suitably applied to the circumstances of the great mass of our farming community? In other words, given a 20ft. stack to exhaust through 8in. or 9 in. pipes, what is the best kind of fan for the purpose, workable, if possible, by agricultural labourers.
As you have taken the pains to
construction, perhaps I cannot do a better service at this stage of the controversy than submit to your own and public judgment the working drawings of the interior of our fan.

The hand-fan being 12 in . diameter, has a 6 in . inlet, and the proportions you quote from Mr. Buckle. The width of our blades we have made greater than usual, and the excentricity of the centre somewhat above the ordinary proportion. We draw air direct into
one side. The shape of our blades is fully shown in the drawings one side. The shape of our blades is fully shown in the drawings.
How we obtain a high speed by means of a large friction wheel driven by a sun-and-planet motion you have already explained to driven by a sun-and-planet motion you have already explained to
the public. By calculation such a fan, when running with forty
revolutions of the handles, ought to raise the water gauge about revolutions of the handles, ought to raise the water gauge about
$3 \frac{1}{2} \mathrm{in}$. In my re-tests I get an average 3 3in in. By removing the lower side of the discharge pipe, and so enlarging the outlet, I got
the higher results recorded in my first letter to you. That the fan was not adequately tried at Reading is to you. That the some hope that you will conclude that this fan should perform the necessary work with hand driving.
I must now reply to Mr. Hodgson, who writes from Newport in
defence of the fans of Mr. Phillips. His first statement is to the defence of the fans of Mr. Phillips, His first statement is to the run at a velocity at the tips of 6784 ft . per minute $;$ Mr. Phillips
runs his hand-fan at 3768 ft . per minute, or nearly 50 runs his hand-fan at 3768ft. per minute, or nearly 500 per cent. less
speed. Mr. Greening's gives a column of 1'30in., and Mr. Phillips's speed. Mr. Greening's gives a column of 130in., and Mr. Phillips's on the lever for Mr. Greening and 4.25 lb . for Mr. Phillips. Thus Mr. Greening takes more than twice the power, and only gets
1.30 in . to Mr. Phillips's 0.95 in ." This sounds straightforward, but there is a little fact omitted which Mr. Hodgson ought at least to have mentioned. At Reading the judges first settled that forty
revolutions of the handle was the natural and accustomed speed revolutions of the handle was the natural and accustomed speed
for labourers to turn a machine. Mr. Phillips's fan and mine and
all the others were therefore driven at that sped all the others were therefore driven at that speed. Mr. Phillips's
fan gave a singularly low result and required a high comparative power. Mr. Phillips's fan was then tried at 50 per cent. higher speed and gave double the result. Mine was not so tried. Mr.
Hodgson sinks all mention of trials at the same speed of turning, and compares the result of my fan at forty revolutions against the
result of Mr. Phillips's at sixty revolutions,

I admitted in my first letter that with an increase of velocity especially y 隹e than a proportionate increase of effect. In fact, now uses otherwise. But if Mr. Phillips's fan doubles its effect by quicker running whilst it only requires a small increase of power, surely that proves that his fan is wrongly constructed to run at a
low velocity when the men are turning it round at their natural speed. In the next place Mr. Hodgson speaks of a "discrepancy in the table I use," as if I had claimed that my fan would "dis-
charge 1445 cubic feet ' of air,' instead of the 209 cubic feet which charge 1445 cubic feet ' of air,' instead of the 209 cubic feet which
the air meter gives." (2) He speaks of the "next trial" of my fans as though my hand-fan had a second trial, and uses the figures relating to the trial of my power-fan in this connection.
(3) He omits all mention of the fact that Mr. Phillips's hand fan was not tested at all for air discharge at the same speed as mine,
but only at a higher speed. (4) He takes credit for the quantity of air discharged at this higher velocity by Mr. Phillips's fan, but makes no mention of the enormous power required to do the work,
viz., 23,580 foot-pounds, or about three-quarters of a horse-power. He quotes the power required by my fan as if reliable, and the amount of air discharged as if beyond question. But he blames the dynamometer for showing too much against Mr. Phillips. (5)
He substitutes for the actual power proved at Reading, a calculaHe substitutes for the actual power proved at Reading, a calculation of his own deduced from the figures of the water column; that
is to say, he assumes that the power required to drive Mr. Phillips's is to say, he assumes that the power required to drive Mr. Phillips's
fan when working open and drawing a large volume of air may be deduced from the forces required to work it when it was only operating on a thin tube filled with water.
The actual figures of the power required, as given in the table
by THE ENGINEER, were as follows :by The Engineer, were as follows :-

When discharging $\begin{gathered}\text { air. }\end{gathered}$
Phillipg's fan,
Greening's fan

When operating on a water column with fan closed.

air.
23,580 foot-pounds.
8,610
I draw a very different moral from these figures. I hesitate to throw doubt on the whole of the trials by condemning the Royal
Agricultural Society's dynamometer, which is the one they Agricultural Society's dynamometer, which is the one they use on
all occasions; but I say as regards my own fan, it is evident that for some reason it was not operating to a fourth or fifth of its power, or it would certainly have required more power to drive it when it was discharging air than when it was closed.
Agricultural and Horticultural Association, Limited,
3, Agar-street, Strand, W.C
grain hoppers or bins.
SIR, -If Mr. Roberts will carefully carry out a trial with his
small elongated bins he will find that our statement, "that the
 grain moves like a fluid," is
no error-but a fact. The best way to witness this is to
divide one of the elongated divide one of the elongated
model bins into halves, from bottom to top by a vertical
glass division crossing the discharge orifice. It can then be seen that the moving grain,
during delivery, assumes the September 20th.
The figures herewith show the shapes of the moving
mass of grain during its dismass of grain during its dis-
charge at two distinct stages. The depression of the top surface of the falling mass itself until the elongated hoppers are about two-third empty. The formulæ derived by Mr. Roberts with small model elongated bins cannot
be considered as safe and be considered as safe and
reliable for proportioning the strengths of the bottoms of
large grain hoppers. A hoplarge grain hoppers. A hop-
per 14 ft . by 14 ft . by 75 ft . deep would, hold about 300 tons of wheat.
The formule of Mr. Roberts makes out that the greatest pressure upon the bottom of such a hopper when full of wheat would
be about 60 tons. We certainly should require more proof than Mr. Roberts adduces before spending money on the building of a large hopper in accordance with such formulæ. In our opinion this
matter cannot be satisfactorily decided except by trials with a large experimental hopper which will take into account the movements of the grain during manipulation as pointed out in our former
letter. Until this has been done we must continue our usual pracletter. Until this has been done we must continue our usual prac-
tice, which so far has proved safe and reliable, viz.:- "To treat the tice, which so far has proved safe and reliable, viz: - "To treat the
wheat as a fluid having a weight of 47 lb per cubic foot, and to manongst themselves and against the side walls. Such allowance being determined by the shape, area, and height of the proposer
bin."
Higginbottom and Stuart, Milling Engineers. bin."
Liverpool, HIGGINBOT
October 4th.

A PHASE OF FOREIGN COMPETITION

SiR,-In my letter in your paper" of January 3rd, 1879, under tion, and made some remarks upon one point having a bearing upon it. With your courtesy I may now make a few statements of facts bearing upon other points having also a bearing upon it in another
department of trade. (1) Some years ago-I am bound to speak department of trade. (1). Some years ago- -I am bound to speak
somewhat indefinitely owing to the nature of this communicationtwo gentlemen left an engineering establishment of considerable standing and repute, one a little time after the other ; they were
foreign gentlemen. The firm they had been engaged by within a fe weeks after they. had firm they had been engaged bere surprised to find these gentleme were advertising themselves as "Engineers and Machinists," and having a works in Germany-a works the buildings of which wer they had been employed for some time. Their surprise was stil more heightened when they found they were actually lithographing their designs, and that too without alteration of any dimension. At the Paris Exhibition they exhibited machines which, had it not
been for the name upon them, might have been taken as havin been made by the English firm, whose designs they had covertly got possession of whilst working in the capacity of draughtsmen. This firm has now no foreigners in its employment.
(2) Within the last few years all, of any design, that was in or being produced in the drawing office of another firm of standing
was traced at a place in a northern town-the works were in its suburbs-and the tracings were sent direct to Germany. Other similar instances I might give, but they would add nothing to the point of the two given above, which to a thoughtful mind speak for
themselves and need no comment. I myself have been connected themselves and need no comment. I myself have been connected
with a firm as a shareholder-although I am not referring specifically to limited companies-in which I found persons higher in September 20th.

GRIFFITHS' SCREW PROPELLER SHIELDS,

Sir,- The enclosed paper gives a short account of my propeller shield, which I discovered after a long course of model experiments
to be the only arrangement that can be applied to screw ships to prevent the screw drawing away the dead water from the stern which, as marine engineers are well aware, increases a ship's resist.
ance

Naval Architects that the most effective position for the screw proince that time several ships have had their screws moved aft, and obtained very much better speed in consequence; but when the
shield is applied the screw in the ordinary position becomes very nearly as efficient, the ship's speed being increased 6 to 8 per cent or the present speed may be maintained with a saving of 16 to 20 per cent, of the coal, the vibration entirely prevented, steering improved, and racing reduced, while the cost of the shield and the
patent right does not exceed one-twentieth of the value of the patent right does
increased speed.
This shield consists of two plates, so arranged that they prevent
Ther the propeller acting on the dead water, and increase the speed of a ship from 6 to 8 per cent., and in addition prevent vibration,
improve the steering, and reduce the racing when the ship is pitching.

The following result was obtained from a steam launch to which was applied, the owner, Mr. C. Bour-
Royal Navy, being present at the trial:-

\section*{| Without | With | |
| :---: | :---: | :---: |
| shield | shield. | |
| 6.417 | shier | |
| 289 | . | 6.636 |
| | 265 | |
| $45 \cdot 1$ | .. | $42 \cdot 5$ |}

Mean speed
Mean revolutions per minute.
Mean pressure of steam
howing that $3 \frac{1}{2}$ per cent. more speed was got with a saving of 15 per cent. of power. diameter propeller being only $£ 12$, and it can be put on without docking the ship. Taking the cost of marine engines at £40 per nominal H.P., and allowing a similar sum-a very moderate esti-
mate-for the coal they require, space occupied in ship by the coal, mate-for the coal they require, space occupied in ship by the coal,
repairs, \&c., the increase of 6 per cent. in speed, to obtain which 19 per cent. more power would be required, is equivalent to an ncrease in the value of the ship of $£ 1520$ for every 100-I.H.P. of the engines.
54 , Gresham-street, E.C., October 3rd.

A PROBLEM IN HYDRAULICS

Sir,-Can any reader explain this simple hydraulic phenomenon: - A small pump, driven by steam cylinders, bad a 6in. delivery pipe, but it was found that the power of the engine was not man "suggested the apparently stupid method of making the delivery pipes 3 in., but strange to say the pump now works and
delivers easily to the top. Why? Has the velocity anything to Mo with it?

THE NEW PUTNEY BRIDGE.
On page 258 we publish the second of a number of drawings of the new stone bridge to be constructed at Putney. In succeeding is
descriptions.

Electriotity and Torpedo Warfare.- In a short notice on guncotton at the end of the article on the above subject in The attributing to Mr. Abel the discovery of the valuable property which gun-cotton, together with other explosives, possesses in being capable of violent explosion through the agency of detonation.
The credit of this discovery is, we now understand, due to Mr. E. The credit of this discovery is, we now understand, due
O. Brown, of the Chemical Department, Royal Arsenal.
Electrio Lighting at the Royal Albert Dock.-As may be remembered four stations have been erected in the dock, each con-
taining a 20 -horse power condensing engine, supplied by Messrs taining a 20-horse power condensing engine, supplied by Messrs.
Marshall and Co., and a number of electrical machines. Some of these work the powerful arc lights suspended from tall latticed iron posts, and others, giving alternate currents, are connected with two main leading wires running along all the sheds on the north side of the dock. At each shed a commutator is provided, so that the current can be turned into the shed or the shed may be cut out. Specially constructed suspenders are suitably distributed
over the interior, the front, and the back of the shed, to which the lanterns containing the electric lamps can be attached; provision is also made for connecting ships lying alongside the quay by
means of movable leading wires to the circuit, so that electric means of movable leading wires to the circuit, so that electric
lights can be placed in the hatchways and below for facilitating lights can be placed in the hatchways and below for facilitating
loading and unloading during night time. As this mode of working has given universal satisfaction on the north side of the docks, Messrs. Siemens have now received a further order from the dock company to fit up the sheds on the south side in a similar
manner, and the work is being pushed on with all speed. Chesterfield and Derbyshire Institute of Mining, Oivil, and Mechanical Engineers.-The next general meeting of the members of the Institute will be held in the lecture room-the Stephenson Memorial Hall, Chesterfield-on Saturday, the 14th the chair. The following papers will be open for discussion:(1) On compressed air, viz.: :Mr. D. P. Morison's paper "On the
application of Compressed Air to Coal Mines " (see Part I., vol. vii.). Mr. Joseph Timms' paper, entitled, "The connection between Heat Expended and Work thereby Done; also the use of
Compressed Air as a transmitter of Power theoretically considered" (see Part II., vol. ix.). The late Mr. C. T. Owen's paper, on "A Compensating Air Compressor" (see Part II., vol. ix.). (2) Mr. (3) Thereport of the Coal-dust Experiments Committee. (SSee PartI.), vol. x.). The following will be taken as read :- "On Mining Coal by
Compressed Lime, under Sebastian Smith and Moore's Patent," by Compressed Lime, under Sebastian Smith and Moore's Patent," by
Mr. Sebastian Smith, Shipley, Derby. "The Manufacture of Coal Mr. Sebastian smith, shipley, Derby. Illume Manufacture of Coal
Gas, and its application to Artificial Ilum-fifth paper of
the series-distributing apparatus, meters, burners, \&c,", by Mr. the series-distributing apparatus, meters, burners, \&c," by Mr.
Charles Edwin Jones. "The Electric Exbibition at the Crystal Palace, London; closed June 3rd, 1882," by Mr. G. E. Smith

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertio in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the ases, oe accompanien ob a large envelope legibly directed by the
vriter to himself, and bearing a 1 d. postage stomp, in order that answers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply No notice will be taken
vith these instructions.
must tannerefor underertake correspondendsts to keep copies. ** All letters intended for insertion in THe Enginerr, contaning questions, must be accompanied by the name and
address of of the writer, not necessarrily for publication, but as
proof of good faith. No notice whatever will be taken

Uut you may consult the books on fou proding refefrred last impression. If y you woill say what it is you

FOUNDRY MIXTURES.

the attractive power of magnets
 explain the cause of this
London, October 4th.

mittance by Bill in London--Austria, Buenos Ayres and Algeria

ADVERTISEMENTS.

THE ENGINEER.
OOTOBER 6, 1882.

the ferranti dynamo.

In our impression for September 22nd, we considered at some length the principles affecting the efficiency of dynamo-electric machines. Our remarks were evoked by
a couple of letters which had appeared in the Times a couple of letters which had appeared in the Times
dealing with the efficiency of what is now spoken of as the dealing with the efficiency of what is now spoken of as the
Ferranti dynamo. Another correspondent has now taken up the subject, and the Times of Monday contained a letter from Mr. Frederick Pertwee, manager of the Birmingham and Warwickshire Electric Light Company, Limited, in which certain startling statements are made. Mr. Pertwee, after referring to the great outlay necessary to
establish a system of electric lighting under existing arrangements, submits the following figures concerning the prices of the largest dynamo machines at present offered, of various makes, for incandescent lamps in multiple are:-The largest dynamo capable of running 160 20-candle power lamps on the Brush system costs $£ 720 \times 310=49,600$ lights $=£ 223,000 ;$ the largest
dynamo capable of running 200
20 -candle power lamps on
the Siemens system costs $£ 300 \times 250=50,000$ lights $=$ $\pm 7,000$; the largest dynamo capable of running 1200
20-candle power lamps on the Edison system costs $£ 2400$ $\times 41=49,200$ lights $=£ 98,400$; the largest dynamo $\times 41=49,200$ lights $={ }^{\text {capable of running } 25,000 \text { 20-candle power lamps on the }}$ Ferranti system costs ? $\times 2=50,000$ lights $=£ 25,000$ (?), From careful inquiries which he has made he finds that machines up to the present time supplied for incandescen work yield as follows :-Brush, four lights; Siemens, at
the Savoy Theatre, eight lights; Edison, at the Holborn the Savoy Theatre, eight lights; Edison, at the Holborn
installation, ten lights ; Ferranti, at the trial installation, installation, ten lights ; Ferra
eleven lights per horse-power.
Now, such a definite statement as this coming from the manager of an electric light company, may very well mislead the unwary. We have already explained that the electricity obtained from a dynamo cannot possess more energy than has been expended in producing it; and hat, as waste, cc., has to be allowed for, the return wil certainly not be so great. Of course, after the electricity has it be true that the Brush Company's dynamos give but if it be true that the Brush Company's dynamos give but
four 20-candle lights per horse-power, as stated by Mr. four 20-candle lights per horse-power, as stated by Mr.
Pertwee, it by no means follows that the fault resides Pertwee, it by no means sollows that the fault resides
in the dynamo. The wires, the lamps, the insulation, and in the dynamo. The wires, the lamps, the insulation, and
many other things, may all be at fault. All, however, hat it is necessary we should insist on is that, no matter what the construction of the dynamo may be, not
more than about 90 per cent. of the power actually exmore than about 90 per cent. of the power actually ex-
pended in driving it can be got out of it ; and it so happens that the dynamo can, so to speak, be indicated. That is to say, the quantity of current and its potential or electromotive force can be measured by accurate instruments, and such instruments applied over and over again to hal-a-
dozen well-known dynamos have proved that a very high percentage of useful effect can be got from a sufficient number of these machines of different type to prove that here is very little room for improvement in this specia
direction. direction.
Whe know what the construction of the Ferrant machine is ; the secret has been very closely kept; but we have not the least hesitation in saying that in wilectrical energy available for lighting purposes more than 90 per cent. of the power put into it. On thi point there is absolutely no room for doubt of auy kind there is no loophole or means of escape. has been put into
sible to get more out of a dynamo than has sible to get more out of a do mame mamp a mill wheel pump to turn it and it as it is to make a millstones besides. If we take Mr. drive a pair of millstones besides. If we take Mr.
Pertwee's own figures we shall come at some startling results. He asserts that a Ferranti dynamo can be made which will work 25,000 20-candle lamps - that is to say,
a single machine will maintain $20 \times 25,000=500,000$ a single machine will maintain $20 \times 25,000=500,000$
candles. Mr. Pertwee admits that the Ferranti machine can maintain but eleven lamps per horse-power Now $\frac{25,000}{11}=2270$ indicated horse-power. The great
Corliss engine at Bradford, noticed in our pages, has a cylinder 40 in . in diameter and 10 ft . stroke, and it makes about 800 ft . of piston speed per minute. Two such engines, making about gooft. of piston, would be required to drive the single Ferranti dynamo of which M. Pertwee speaks, Whether it is advisable or not so to concentrate the powe required in a large district is at least open to question; but if we assume that there is nothing objectionable about this part of the scheme, and that it is even better in some respects than the Edison system of sub-dividing the power required among a number of dynamos and engines, we have the fact remaining that so far as the efficiency of the dynamo is concerned nothing whatever has been etter, the Ferranti machine is simply a colossa dynamo; but there is no reason whatever, as re-
gards the principles of action involved, why other dynamos should not be made just as large. Within moderate limits, the energy of the current generated when a coil of insulated wire cuts a magnetic field is quite power expended in cutting series of double velocity will be doubled; but so will be the number of the currents produced, and the augmentation set up in actua resistance, will, of course, be returned in electrical energy Consequently a dynamo may be made with an armature 20ft. in diameter as well as one with an armature of 20 in . Practical difficulties of a troublesome character may be incurred, but there is no theoretical objection whatever to be urged against, let us say, a Ferranti machine with an armature 20ft. in diameter ; only, as we have said before, it has yet to be proved that any practical advantage can accrue from the adoption of one big dynamo instead o several smaller machines. It may be that the Ferrant machine is after all of very moderate dimensions, but i that is the case it is impossible to see how over 2000 -horse power can be imparted to it.
It is to be regretted that Mr. Pertwee has given no definite information concerning the reasons why the horse-power. It may be worth while to ad 1 that this performance is by no means unprecedented. Indeed, with some lamps it has been beaten. If the angular velocity of he armature is very great-which it may be if the armature is very large in diameter, although its number of revolutions per minute is moderate-then the electro-motive force of the machine will probably be great, and this may conceivably enable a high candle power to be got per horsepower with special lamps ; but Mr. Pertwee gives no information on this subject. In point of fact, up to the present moment we have heard nothing concerning the Ferranti dynamo but apparently extravagant assertions unsupported by an atom of proof. To say the least, the adoption of this course is unfavourable to the Ferranti dynamo, and will tend to prejudice it in the eyes of scientific electricians.
the duties of superintending engineers
A Letter, which will be found in another page, from the pen of "Wooden. Sleeper," raises a question of
very great interest and importance. Aomeone it is evident
must put inventions and improvements into practice, otherwise the inventions can be of no possible value, and the putable that the arts and sciences have made enormous advances within the last century, and that these advances have been for the most part brought about by the inventive energy of the nation; so that, reasoning by analogy, the inventor ought always to be encouraged and his inventions tried. The question indirectly raised by "Wooden Sleeper" is, simply, who are the proper persons to put inventions into practice? If we interpret our correspondent literally, he says in effect that superintending engineers of railways are not the right men to introduce mprovements of any kind in permanent way ; and by parity of reasoning, it follows that the superintending engineers of shipping companies, the managers of works, hould have nothing to do with Admiralty and inventions We have no doubt that those inventors who read correspondent's letter in this way will be very angry, and not without reason. The impartial observer will, however, be willing to admit that there is something to be said on our correspondent's side. What that something is we propose to explain here
We find at the very outset that the statements of Wooden Sleeper" are comparatively narrow in thei application; but within certain limits they apply to the ordinary routine of the superintending engheers with tartling force. An engineer is appointed to a large rail way. He finds the perma.int and the great body of railway engineers in this country ay that the road is as good as it can be made. The company which he serves is prosperous, good dividends are egularly paid, and the shares of the company command a high price. Is he under the circumstances justified in making any alterations in the road? We can give but
one answer to this question. He is not justified. If the so-called improvement should fail it may entail the mos disastrous consequences; and the great travelling public will argue, and very justly, that no railway engineer has a right to make experiments which may endanger位e for the sake of, perhaps, adding a small sum to the dividends of the will argue that whether the railway company pays $5 \frac{1}{2}$ per ever to them. They care nothing at all about the profit made by the They care nothing at all about the profit about being carried safely. It is clear that no enginee could lay down two or three miles of permanent way of a new type on any of our main lines without incurring responsibility great enough to make his hair turn grey before six months were over. We do not think that salaried servant of a company is called upon to incur any such risk. But it may be said that there is no necessity for puting down a really experimental road on a main ine It may be first laid on sidings, or on branch lines, and so a brid is is only true in a limited sense. If a boiler or ge is being tested, we put more strain But this i都 sidings It will in such situation heavy trains at excessive rates of speed, and consequently the experience acquired in any place but that to which the improvement is ultimately to be applied, although usefu as far as it goes, does not go far enough to be very useful. The true experiment begins when a bit of the new track is laid, let us say, on a sharp curve on the main road, away from a station. A very large number of railway inventions have come to grief in this way. Every railway enginee who has reached middle life will remember the dozens of systems of permanent way which he has seen tried, and not one of which is now in existence, although it pro mised well in a station yard, or on a bit of out-of-the-way branch road. The North London Railway Company used to give every inventor with a reasonably good system of permanent way a chance of trying it. There is not line in the kingdom on which several systems have not been tested ; and in spite of this, at this moment the fact remains that in Great Britain there are only two system. in use-the longitudinal and the cross sleeper-and that in the United States, with a greater railway mileage than, perhaps, that of all other countries put together, there is virtually but o It does not follow from this that there are not better sys tems of permanent way available, but it does go to show that the superintending engineer who would give up the wooden cross sleeper for something else-a something that will be regarded as a radical change by a host of railway men indnot help assuming a grave responsibility. It could ndeed, be argued that he was rejecting the acquire railway of nine-tenths of the railway engineers and more than ordinary of the world, and w the case of the superintending engineer of a steamship com pany we see that there are many points of similarity between whim and his professional brother. The man, for instance cross the Atlantic a new type into a steamensibility ; and we are not at all clear that a superintending engineer is in any sense or way bound to incur it. If the ships under hi charge have been doing well, why mate a chance which may mean so much for the sake of gaining an uncertain advantage? We might go on to cite numerous othe instances of the same kind, as, for example th manager, let us say of a great brewery with a splendid reputation. Would such a man be justified fo the sake of possibly increasing his employer's profits, in introducing modifications and changes which may imperil the reputation of his firm? It is well known that a very small alteration in a blast furnace making a particular quality of iron will entirely change the nature of the product. Would not that manager be open to rebuke who when a furnace was going well, attempted to make it go here, and onm and well alone? We think so.
But it may be argued, if this rule is to be followed then
no improvements can ever be effected in permanent way or anything else. We have written nothing to justify such a remark. We have not said, for example, as regards
permanent way, that risks should never be rum, or that no permanent way, that risks should never be run, or that no there is nuch to be said on the side of the superintending engineer who refuses to take the responsibility of trying new
things ; but this is quite a different affair: The proper course to be pursued is for the directors, who are supposed to know something about railway matters, to examine the
invention proposed for adoption ; to call on their consulting invention proposed for adoption ; to call ond after also consulting with the superintending engineer, to give the thing a trial. In this way they can always argue, and with
truth, that they took every reasonable care to see that they were safe before they made the change. The superintending or executive engineer will then have his responsibility shared, and a load taken off his shoulders.
In this way, perhaps, our correspondent, "Wooden Sleeper," would be quite content to try any reason-
ably good system of permanent way and to He would practically have the orders of his directors to fall back on, to hold him scatheless should an accident occur. In the same way the superintending engineer of a
steamship company, or the manager of a brewery, could be cleared of responsibility. In a word, we contend that executive engineers of all kinds are justified in refusing to
make, on their oun responsibility, changes in systems giving good results. Whether the directors of railway and steamship companies, and the proprietors of manufacturing establishments, are equally to be excused if they do not try
new things or test the advantages of improved methods of working, is not, we think, a point worth discussing. We are dealing now with the duties of engineers, not with those of their employers.
If we furth
If we further examine the question raised by "Wooden Sleeper," it will be seen that his contention appears
to apply only to experiments the making of which may entail risk on some person or persons, or on the property of the railway company. At least, this is the light in which
we read his words. If he holds different views from these then we must beg to differ from him, and he will find moreover that his practice will be diverse from that of all the more efficient men of the day. For example, new and presumably improved types of locomotive are being
designed every day and put to work, and there is no reason why this should not be done; nor does the engineer incur more than his legitimate responsibility by doing it.
A new type of locomotive may burn more fuel than that which went before it or prove unsatisfactory in various ways; but its use can in no conceivable way endanger the lives of the passengers whom it draws, so long, at least, as
certain truths well known are kept in mind and acted upon. There can be no objection to testing a new carriage or a novel signal, because none of these things are likely to endanger human life by their failure. Yet even here we superintendent who puts a new type of leading axle under an express engine incurs a very grave responsibility. The
rejection of iron axles for steel axles again was a very serious rejection of iron axles for steel axles again was a very serious
matter. So, reasoning in this way, we may lay it down as a rule that no executive engineer is called upon to incur
the responsibility of testing inventions which, by their the responsibility of testing inventions which, by their failure, may endanger life or property, or the reputation of
the goods made by his employers. But, on the other hand, he is justified in giving careful consideration to, and in reducing to practice, any invention which appears likely to
benefit his employers, and the trying of which entails no risk benefit his employers, and the trying of which entails no risk very largely; and it will be found that all inventions. whose adoption involves personal risk of any kind have moved slowly, and have in the end made their way into favour were thoroughly excellent and new. There are hosts of inventions applicable to an immense number of depart ments of human life, every one of which entail greater or less risk in their adoption. It may be a risk of life or looks askance, and the engineer is certainly not to be blamed, if he follows the example of the world, and are, we need hardly add, enthusiasts who will see no good thing in what we have written; but we do not write for enthusiasts of this type. Prudence is necessary to the
success of every man, and the executive engineer who refuses to incur a grave responsibility is only manifesting prudence. Yet these gentlemen must not forget that
there are occasions on which to display limitless audacity may be the most prudent course which it is possible to adopt.

the munich electrical exhibition.

Thr meeting of the Iron and Steel Institute at Vienna afforded an opportunity to many who would not have otherwise done
so to visit the International Electrical Exhibition at Munich. The exhibition is held in a large building fashioned after the manner of our Crystal Palace, and called the "Glass Palace.
The Exhibition following so closely after those of Paris and London, can hardly be expected to contain much that is new
yet it will be found to indicate progress this Exhibition was to have been the transmission of power by electrical apparatus; but at the time of our visit the arrange
ments were incomplete. There is it seems plenty of water within a mile or two of the own, and it was hoped to utilise this. According to the original programme the Exhibition
will be closed about the middle of this month, whence
it is doubtful if the experiments will be carried out attraction of these exhibitions of course centres around the shown here, even if it be on a small scale ; thus we fyst Burgin Brush, Fein, Schuckert, Siemens, Weston, and Edison dynamos some differing somewhat from the types we are accustomed to
see, while Edelmann, Schwerd, Schöneman, Einstein, \&c., exhibit machines of a type, so far as we know, not yet familiar in
England. An effort, and we think a successful effort, has been made to show the adaptability of the electric light, both of the ar
and the incandescent systems, to interior lighting and the incandescent systems, to interior lighting. In the
restaurant a dining-room is lighted by Siemens lamps from the
outside through coloured glass windows
lighted from above. A model chapel constructed of paper and and furnished with a kneeling figure of a cardinal in red hat and gown-is lighted from above by a Crompton lamp. The
effect is very fine, the light being arranged to throw a flow light like brilliant sunshine through a window over the kneelin figure. The small theatre, also built of gingerbread material has the stage lighted by Edison lamps, whilst the body of the theatre was at first lighted by six Schuckert lamps from above through a glass screen. These were afterwards supplemented by
Edison lamps round the walls- not, we should imagine t Edison lamps round the walls-not, we should imagine, to increase the effect, which was undoubtedly good, but to show the
different systems. Various other rooms were lighted by Edison different systems. Various other rooms were lighted by Edison
and Maxim lamps. Prizes have been offered for the best designs and lectric light fittings in the shape of chandeliers, with a very for electric light fittings in the shape of chandeliers, with a very
satisfactory result. Two new and interesting incandescent lamps are shown. These are the Müller and the Cruto. The former differs little if any, except in the form given to the flament, from the Swan lamp. The carbon filament of the Swan lamp, as is well known, has a single complete loop; in the Miller lamp the carbon is spirally arranged throughout. This perhaps sives a greatly equality of radiating surface in every direction than any other form, otherwise it has no specia advantage. The carbon of the Cruto lamp is electrolytically
deposited upon another material which is afterwards removed leaving a hollow filament. The resistance of the carbon varies
directly as its length and inversely as the area of its section, and directly as its length and inversely as the area of its section, and
the heat developed is represented by the equation $H=C^{2} R$, so that any alteration in R directly affects H - - for example, doubling the resistance doubles the heat effect. Hence, with a hollo arbon the same current will give a greater heat effect, or a less greater economy. The practical value of such hollow carbons is a question of the future; but the idea is by no means new, although these are the first lamps
the kind exhibited. The hollow carbons of the Crut
the lamp are spirally arranged like those of the Mïller lamp,
Close to the stand upon which the Cruto lamp is shown are two very interesting archeological relics, these being Steinheil's
original telegraph and Reiss' original telephone. Modern riginal telegraph and Reiss original telephone. Moderi telephony, telegraphy, medical electricity, are well represented tive tests which are being made of the dynamos and lamps. The issioners have entered eagerly into the question, and no pains have been spared to make the tests complete and trust-
worthy. It is in this direction that the Munich Exhibition will probably play a more important part than either of its pre detail with regard to some of the prominent exhibits.

the word "electric.

Perfaps there is no scientific word in more frequent and general use at the present time than the term electric ; and of
he multitudes who are constantly employing it there are, we fancy, very few who know when and by whom the word was
introduced into the language. To William Gilberd, who lived in the sixteenth century, is to be ascribed the honour. In 1600 was published in London his "De magnete, Magneticisqu This work, in which the foundation of the doctrines of terrestria hasnetism wes set forth, contain the words "Vim illa electricam nobis placet appellare quae ab humore provenit.' ondon aithera was born at Cambridge, travelled on the Continent, and then settled as physician in London in 1573. He soon gained a great name, was appointed body-physician to Queen Elizabeth, and afterwards to
King James I. He was probably an intimate associate of Lord Bacon, who at the same time frequented the court, and consider able resemblance has been traced between the style in which these two men wrote. His work, "De Magnete," is written with decidedly the first of its kind. It is remarkable that he published less in England than abroad; and while at home up to 1628 , only two editions of his work appeared,
five had been published in. Holland and Germany. Gilberd will always be remembered in that it was he who propounded common steel magnet ; he it was who made out that the caus of the direction of the compass needle was not to be sought in the heavens, nor in the situation of iron masses in the norther region, but in the globe itself taken as a whole. This great and
correct idea gives Gilberd complete right to be regarded as the founder and establisher of terrestrial magnetism. To illustrate the analogy of the earth to a magnet, he constructed a spherical "Terella." With such a Terella on which he acted with a magetic needle, suspended from a thread, he showed how the direc ivined that the inclinatic force varies from place to play but must increase from the equator to the poles, a divination
He held the he magnetic poles accorded with the geographical poles, and th magnetic equator with the geographical equator; and, considering the few determinations made during his lifetime, this is not
to be wondered at. He believed that the solid ground alone was egative, and not the water, and did not arrive at the truth in regard to declination. Moreover he knew that, and showed the hy and wherefore o, a rod or that ing hen hammered He was buried in his native town, and th hen ment aret byas buried hothers is well preerved the Church of Holy Trinity ; on the lowest part of it is a black phere let into a slab

he production of coal

THE agitation amongst the miners of the United Kingdom has rought into prominence the question of the production of coals It appears that there was a very large reduction in the average f prosperity in the coal trade a decade ago. Since that time it is clear that there has been a large recovery, but the average
amount sent out by each miner has been less last year than it was ten years ago, before the extraordinary increase in price leven years ago it appears that every miner sent out on the
verage 315 tons of coal in the year-the quantity being obtaine by dividing the annual production of coal by the total number of miners. For three years-years of high wages and less workbeen year by year an enlargement of the average output, but inen the year less than it was ten years before; and it is to be emembered that this is despite the fact that there has been is most easily worked, and also despite the fact that there has
for bringing the coal to the top of the pit. This lessened pro-
duction is due in some degree to the large number of workmen who crowded into the trade during the years of high wage, and who, remaining in it, have had in many instances to work limited time, and thus have reduced the average production; and it is also noteworthy that the average yield varies much-the yield of the Monmouth and Glamorgan district being very low, and that of South Durham very high; whilst there is between the highest and the lowest nearly 100 tons a year, in the average,
difference. Much must depend upon the class of seam that is vorked, but bech this, the most potent influence in affecting the average is the prevalence or otherwise of the practice of working short time. The more the miners work full time the greater is
their average yield, and, of course, their average earnings. It is his that is the great obstacle to

LITERATURE

The British Navy. Vol. III. BySirThos. Brassey, K.C.B., M.P., \&ce.
This volume differs a good deal in character from its predecessors, being devoted to "Opinions on the Shiping Policy of the Navy." These are taken in succes should be built and in what relative proportions, and then to the actual construction and dimensions of each class, namely, sea-going ships of war and ships of special types, turret ships, monitors, torpedo ships, and circular vessels ; also, in their place, armour, rams, torpedoes, and systems of propulsion, forms of bow, \&c., aredealt with. Lastly, are given the parliamentary speeches and papers by the author on designs of ships of war. On the important question as to the best type of ship of war, the author, assisted by quotations and facts, brings us to rely primarily on sea-going armour-clad ships, all other classes, such as coast defenders which wormoured ships, being qa those of our enemy, keep and nur enemy that of a defending army, with most of the advantages of supply on our side. We read, "Having command of the seas, you may take the offensive on the shores of an enemy. If beaten, or reduced to the defenmay be added have to defend your own coasts, to which have an opportunity of proving their power if an enemy chooses to attack, which wil
Again we read, "Ironclad ocean-going vessels are not adapted to coast warfare. All the chief naval Powers, however, will possess a fleet of ocean-going ships ; indeed, they have such fleets already, and all will desire to fight which wommand of the sea in those neat naval battles Operations, therefore, will begin with encounters between ocean-going ships, and the conqueror in a general engagement, secure from attack on his own shores, will be able to employ his coast defence fleet to the best advantage." This consists, we are told, of two classes-river gunboats and oating harbour defences, and co
As to the best type of sea-going ironclad, we read :-"In concluding this general review of the most recent shipbuill bing operations of foreign naval administrations, it ships, threerved that the list comprises four central the barbette and central battery are combined thirteen sea-going first-class coast service ships, four belted cruisers, and three coast service ships, not of the sea-going type. The mastess turret ship predominates among the most recent bette tower is combined with the central battery ranking next in importance in point of numbers, but comprising the most powerful vessels now building in France.
As to armoured cruisers for secondary work, England will generally have a number of armour-clads which have Mediterranean which commission in the Channel and pletely in Chinese waters and other distant seas, it is thought.
As to tonnage, the author appears to incline to a ship of mout 8500 tons, carrying about 43 -ton guns as the maxiFrance and Italy for monsters may compel us to keep a few. Unquestionably the increased power in new type guns tends to
As to masts, there is no question that the mastless seagoing type has much greater fighting powers than can be rgged, is the most powerful type for the line of bitle, we are told. We hope, however, that it will be so far modified as to carry a secondary armament of new type medium guns, and that the spectacle of one gun per 2850 tons, as in the case of the Inflexible, will not often being that we have nothing to direct against the unprotected broadside batteries which the newer French and Italian vessels carry as auxiliaries to their very heavy guns. ment for one turret in the Dreadnought as a possible expedient. The French barbette system appears to be preferred to the turret in many respects as giving better vision, greater command, decrease of weight of armour, and freedom from evils of gas, which may become very serious with breech-loading guns in turrets. The turret, of course, for close hard fighting must have a great advantage as to protection.
interest; for attacking at night or lying by till difficulty and then charging her ; Scott Russell's graphic description of an imaginary encounter and the general conclusions are most interesting; and among the letters and papers on dimensions, Sir T. Brassey gives us some and by General Mattei. With his predilection for small vessels, we are a little surprised not to find more on the
subject of the Elswick cruisers. We need not attempt to consider this work further. As we said, it mainly consists
of a vast collection of opinions on the most interesting of a vast collection of opinions on
questions connected with the Navy.

THE PROPOSED MANCHESTER SHIP CANAL:
Now that the engineers instructed to make detailed surveys of the rivers Mersey and Irwell in connection with the projected construction of a canal to Manchester available for ocean-going vessels, have presented their reports, more trustworthy data are obtainable than has hitherto been afforded as to the feasibility of the scheme. At present the Mersey and Irwell navigation is but little used. The existing traftic is worked by the Bridg rater Navigation Company, Limited, through a canalised river,
divided by locks and weirs into ten levels, with falls varying from 3 ft . 6 in . to 10 ft ., the total fall from Manchester to Warrington being nearly 60 ft ., but during the greater portion of the year the water maintained, only
allows the passage of barges with small cargoes. The allows the passage of barges with small cargoes. The
question of utilising this water-way in some such manner question of utilising this water-way in some such manner public, and more than forty years back one couplet of a public, and more than forty years back
topical song somewhat prophetically ran-

And this be true, Sirs, I'll bet you a crown Manchester shall be, Sirs, a seaport town.

But no previous scheme has been taken up with such a full determination to bring it to a practical issue as that shown by the present promoters. The steadily growing commercial requirements of Manchester have no doubtdone much togive cost of overland carriage between Manchester and Liverpool is estimated at between $£ 2,000,000$ and $£ 3,000,000$ the importance of any improved means of transit for the
vast shipping trade of the district is obvious. Practically vast shipping trade of the district is obvious. Practically
the only present outlet to the sea is by transit over rail carriage by canal being an item so small as scarcely to enter into calculation; but it can scarcely be alleged that
so far as the railway companies are concerned, there has so far as the railway companies are concerned, there has
been any neglect to provide ample means of transport between Manchester and Liverpool. No stronger proof of this is needed than the fact that there are at present no
fewer than five separate routes by which goods can be carried fewer than five separate routes by which goods can be carried the London and North-Western Railway, via Tyldesley the London and North-Western Railway, via Lymm ; the Lancashire and Yorkshire Railway, via Bolton; and the Cheshire Lines Railway, via Warrington. It is, however,
strongly urged that the trade of the district is seriously handicapped by unfair and excessive rates, and as an illustration of the view which manufacturers and merchants take of the present railway arrangements, the following Peter Spence, J.P., of Manchester, before the House of Commons Committee on Railway Rates, will be of
suggestive interest in connection with the proposed ship canal. Mr. Spence, after replying to a series of questions with reference to the alleged proportionately exces expresses his belief that manufacturers and merchants are helplessin the midst of the arbitrary and inequitable arrangecomplete monopoly prevailing throughout the railway sys tem of the country, and then adds :-"I now beg to cite case. Although the men of Manchester and Liverpool advisedly when I say that so far as goods transit between
these two cities is concerned, the invention of the locomo tive has proved to be an unmixed evil. The charges per mile of the four railway companies who are fattening upon and Glasgow, and the South Lancashire trade is in thi way annually fleeced of hundreds of thousands of pounds." A wagon and horses road service, Mr. Spence contends, could carry goods for 25 per cent. less than the present charges
of the railway companies. "A plate railway" he adds "has recently been proposed which would admit of the use of ordinary road wagon wheels, and thus save all terminal expenses at stations. By a ship canal between Manckester far greater than by any other system; steam navigation inland transit. I may add that the Manchester ship canal scheme has the approval of able engineers.", All the modes of relief were, however, practically denied to moted in Parliament for a horse tramway or ship canal either scheme would meet with the determined opposition schemes be actually inaugurated it would have to face long struggle with the companies, who would reduce their rates in the hope of starving it into the "conference," and the consequent acceptance of their former "pppressive
tariff. "I submit," Mr. Spence continues, "that the Lancashire manufacturer has a right to demand that Parliament shall require these railway companies to make reasonable rates, and also to abstain from using their provide a radically cheaper mode of carriage. On this this Committee's labours is to fix the railway rates of the country, and to prevent them being lowered merely for the sake of destroying water carriage competition, there is no
doubt that the scheme of a Manchester ship canal will be undertaken at once, and I for one will be happy to take ares in it.
A prevailing feeling such as this will in large meaof a ship canal, hitherto regarded with which the project realisation, has at length been taken in hand with so much determination. The object of securing a cheaper carriage not the only stimulus the ship canal has received. There
is the avoidance of the dock and harbour dues at Liverpool and the advantage which merchants would possess in
being able to ship their goods under the direct supervision of their own staff, thereby saving also the commissions now paid to forwarding agents. In addition to this there are anticipations of new industries springing up in the district, trades, studding the banks of the ship canal ; whilst it is arged that the exports of coal from the Lancashire collierie would greatly expand with the additional facilities afforde for competition with the seaborne coals from Wales. These
and other considerations, amongst which may be added as not the least important the possibility of preventing the recurrence of the disastrous Irwell floods, have encourage the promoters to persevere in a work which long ago was
bandoned as impracticable. The work once again taken in hand, no time has been lost in placing the revived cheme on a definite footing. On the 27th of June last a meeting for the promotion of the improved navigation was
held at the residence of Mr. Daniel Adamson, and a provisional committee for the carrying out of the project appointed. This was followed by the appointment of Mr.
H. Hamilton Fulton, of London, whose name had for some time been prominently associated with a scheme for widening, deepening, and straightening the rivers Irwell and Mersey, so as to bring a broad tidal stream up to Man chester, and Mr. E. Leader Williams, of Manchester, for merly connected with the River Weaver Navigation, as engineers, who were instructed to make the necessary tructing a navigation to Manchester available for oceanoing vessels. In less than two months the engineers completed their surveys and presented their reports. Each engineer has acted independently, and Mr. Williams has presented a scheme essencially different from the original project of Mr. Fulton, which was practically the basis upon which the movement was again taken up. Mr. Fulton's proposal as first set forth, to make a tidal navigation the whole of the distance, no doubt possessed a certain amount of fascination for an inland town like Manchester. Mr. Williams has, however, been guided by considerations less on the entimental and more on the practical side of the question, and the proposal he has submitted, to improve the presen fidal portion of the river from Garston to Latchford, to make it from that point to Irlam semi-tidal, and thence to Manchester to construct a ship canal, has received the approval of Mr. James Abernethy, who has acted as the provisional committee and the promoters of the improved navigation.
The report presented by Mr. E. Leader Williams has vidently been prepared with great care, and deals with the whole question in a thoroughly comprehensive manne In defence of his own scheme Mr. Williams has naturally been under the necessity of pointing out the disadvantages of the proposed tidal navigation. Amongst these the great depth of channel that would have to be cut, and the fact an the bottom of the Docks at Manchester would be, on bviously serious obstacles in the way of Mr. Fulton's project, whilst even the supposed advantage to be gained the navigation of vessels by the incoming and outgoing tides is shown to be fallacious. The distance from the bar avigation is fifty miles, and Mr. Williams holds thi distance too great for even a steamer to reach Manchester in one tide ; and that it would therefore, above Warrington, encounter the ebb tide, with the result of losing more time on the journey than would be consumed in passing up a still-water navigation with locks. On every ground, whether of speed and safety of navigation or cost of conannot advise mainteraitte to apt the project of a tidal avigation to Manchester ; and the alternative scheme he proposes is set forth as follows. The present condition of the water-way for navigation has already been briefly navigable for ocean-going vessels Mr. Williams, in his
I propose to continue the tidal river from Garston to Latchford, above Warrington ; and above that point to Manchester, a distance of fifteen miles, construct a ship canal, with locks to raise the water level to nearly its present height at the proposed site of the dooks
at Manchester. At Latchford there will be a group of three locks Manchester. At Latchford there will be a group of three locks
of different sizes, placed side by side, close to and parallel with each of diffierent sizes, placed side by side, close to and parallel with each
other.
Intermediate gates will be provided to each lock, so as to
illow of the larger locks being used tor shor without waste of water. Through a similiar group of locks on the
Amsterdam ship canal, nearly 700 vessels of different sizes have Amsterdam ship canal, nearly 700 vessels of different sizes have
been passed in one day, so that detention need not be feared, as the largest locks will hold several vessels at once, or a tug and large train of barges. The gates and sluices will be worked by means of
hydraulic power, for which purpose the fall at the locks will be
utilised the lydraulic power, for which purpose the fail at the lows
utilised, the vessels will be able to pass quickly through the locks.
Exeet at low tides, the gates of this set of locks will be all ope Except at low tides, the gates of this set of locks will be all open
about high water, as the tide will rise to above the level of the
upper pound. At such times vessels will pass through the locks apper pound. At such times vessels will pass through the locks
or through special large tidal gates without any detention. The or through special large tidal gates without any detention. The
large flood sluices- which are provided at each set of locks-will also be opened, and thus through the tide gates, the three locks,
and the sluices, a free flow of the tide will pass up the first pound
-which will be thus partly tidal- to the next group of locks near which will be thus partly tidal -to the enext group of locks nuar Irlam, a distance of about eight miles. As soon as the tide turns
on the ebb, the gates and sluices will be closed, and the level of will be above the railway bridges of the Cheshire lines, which will therefore have no higher water level under them than high tides.
These locks will be the same in every respect as those described at Latchford, except that the tidal gates will not be required, as the second pound-four miles long-will be above the level of tidal
influence. The Irlam locks and sluices will pen back the water to a short distance above Barton Aqueduct, where the third and last set of locks, similar in every respeet to those at Irlam, will be
constructed. The Barton locks will maintain the ordinary level of the river to a height tsft. less than at present below Throstle Nest
Bridge, a distance of three miles, and give a level for the water in the proposed docks which miles, and give a level for the water in trade to be carried on with
facility and dispatch. Steam power will be provided to work the hydraulic apparatus in dry weather, when the whole of
the flow of the river might be required for lockage. If necessary the flow of the river might be required for lockage. If necessary,
this power could be utilised at such times to pump water back
to the pound above, by means of large centrifugal pumps. In to the pound above, by means of large centrifugal pumps. In
ordinary seasons the river will afford an ample supply for the
Irlam and
through those pounds, 4 ft . lower than will be required for purposes
of navigation, so that the surplus depth may act as large reservoirs of navigation, so that the surplus depth may act as large reservoirs
in exceptionally dry weather. The Irlam pound will also have the ndvantage of the supply from the Mersey, which wills be taken,
and required, by a conduit, through which the river will flow When required, by a conduit, through which the river will flow
into the canal above the Irlam locks. The locks will be connected
with ench other by culvert with each other by culverts and sluices, which will allow of a great utilised again for lockage. passed into Welland ship shin canal in
The Canada, which has cost a much greater sum than is proposed to be
expended on the Manchester ship canal, has no less than twentyseven locks, with a total rise of 330 ft . The rise by lockage above
ordinary spring tides at Irlam will be 35 ft , by two locks ordinary spring tides at Irlam will be 35ft. by two locks. There
are few docks that are not entered by a lock, and as a vessel going up on high tides to Manchester will pass the Latchford locks when the gates are all open, it will only have to pass one lock more than
usual at many seaports. The width of the canal between Manchester and Warrington will be 100ft. at the bottom. The Suez解 can only pass at certain places, where the canal has been widened
for the ship canal shouould be of susidicer it essential width to enable the Mange vessestels to pass at any point. From Warrington the canal will gradually
increase in width, until it is $300 \mathrm{ot}$. wide at the bottom as it approaches Runcorn; through the tidal pertion of the canal the depth will be dredged to 22 ft . at low water; on the upper part of
the canal, the canal will be 26 ft . at ordinary water level. The question of floods will be dealt with by the proposed works
in the most effectual way, as the water level between Throstle Nest, Manchester, and Latchford, near Warrington, will be permanently lowered, on an average about 10ft.,
while a much wider and deper channel will be provided
for the passage of the for the passage of the flood waters at the lowered level.
Below Warrington the low water level will be reduced on an average 15ft., and the deeper and straighter course of the river
will materially assist in decreasing the height of the floods. Thus without a River Conservancy Act, and without cost to landowners or tenants, a great public improvement will be carried out. The but will be fell far inland, up the valleys of the riverves Mersey,
Irwell, Bollin, Glazebrook, and other tributary streams. The docks at Manchester will occupy the ground now used as a race-
course, and some of the adjoining land, all of which is admirably adapted for the purpose. The ground is level, there are no bild arge dock is designed to be seventy acres in extent, the entrance will be near Mode Wheel lock, and will be provided with gates lowered for scouring purposes. The dock gradually enlarges until it is 1350 ft . wide, where four branch dooks will extend out of the large dock, with wide quays between them, on which sheds wil
be provided. This system of dock has been lately adopted in Lonay space, and great facility of working. By this plan the maximum amount of accommodation will be given at the neares point to Manchester, thus saving time and expense in the cartage
of goods. The ordinary height of the water in the docks will be only 8ft. below the quay, which is designed to be, on an average Sft. lower than the present level of the ground. The existing
iver channel will be maintained for the passage of toods and can, if required, be straightened by constructing a quay wall on
the Salford side, and be widened to 300 oft., so as to form a large float for coasting and other vessels, floods swill passo oft through
this float without interfering with the large dock. The total quay space thus provided will be four miles in length, and the of quay will be construceted, stitable for coal tips or other trade.
of to marrington the new At Warrington the new canal will leave the existing river, which locks and sluices will be constructed to enable the river to be thus used. The water can be maintained at any desired level, and grea
facility given for all the land adjoining the river being utilised for works, while side docks can be constructed, when required, at a rington for docks and yards will be six miles. At Barton, the rive is crossed by the aqueduct of the Bridgewater Canal, which i struct here a new aqueduct, the centre portion of which will be a wrought iron caisson, kept full of water, which will swing on
central pier, in a similar way to a railway swing bridge, leaving wide phar for the of vessels on either side. This is not a difficult work, as the present aqueduct is only wide enough to
allow one boat to pass. There will be lifting gates at each end of
the all the gates are closed the caisson can be moved round quickly by hydraulic power without loss of water. Even if a boat is on the opening of the aqueduct, as the boat might remain while the caisson was swung, the weight and pressure on all points being the
same. The water-tight joints will be of thick india-rubber, closed by pressure similar to the arrangement I designed for the Anderton by hydraulic 52 ft . high in three minutes, floating in a caisson. There are only four roads arossing the river that will be affected by the ship canal, These will require to be raised, or made into swing bridges. The question of the railway crossings is one of importance. On passing
up the Navigation from Liverpool, the first bridge reached is Runcorn, with three spans of 30oft. each, and a clear headway at high spring tides of 75tt. From the level of the proposed low wate
ine the headway will be 100 ft , and to 22 ft . depth at low water, the bridge can be passed imited number of days in the year the headway will averave 90 oft at the state of tide when most vessels will pass the briage.
This height will allow of sailing vessels of large size passing under would always be ts the top masts would not interfere with, but rather assist, the pro-
gress of the vessel

With regard to the railway bridges crossing the water way, of which there are five between Runcorn and Manment has enforced the adoption of a clause providing that
a swing bridge shall be substituted if the Mersey and Three of thion is made available for sea-going vessels, Western system at Warrington, Walton bridges are so close together that they might be Cheshired into one; the remaining bridges are on the the railway companies were ready to meet the question fairly and raise the levels of these lines, swing bridges might possibly be avoided, as the level of the river would the river; but these are questions which he leaves the rail way companies themselves to consider. Another consideraship canal, the facility it will afford for Manchester the side of the canal, and with regard to times of flood or freshes, Mr. Williams proposes to have near the
locks, instead of weirs, flood sluices, each 20ft, wide, to lift

THE HUGSTETTEN RAILWAYACCIDENT.

clear out of the river, thus allowing an entire change of water.
Having dealt with the portion of the river to be canalised, Mr . Williams sets forth the work necessary for the requisite improvement of the lower section which would admit of tidal navigation :-
The river Mersey between Warrington and Runcorn takes a winding course through flat marsh land, part of which is covered with water at high tides. It gradually increases in width as it
approaches Runcorn, where it widens out considerably, becoming again narrower when it passes Runcorn Gap, where it is crossed by the London and North-Western railway bridge. The new
channel from Runcorn to Warrington has been designed so as gradually to widen out as it progresses downwards, in order to promote a full and free action of the tide, and enable the flood
waters to pass off with ease. The existing course between Warringwaters to pass off with ease. The existing course between Warring-
ton and Runcorn is eleven and a-half miles long, and it will be shortened to three and a-half miles by cutting off the bends. Except where the new channel crosses the river it is all new cutting, and the line I propose will give very easy curves, and pass through the lowest and least cultivated property. Near Runcorn,
the system of deepening the river by training walls and dredging the system of deepening the river by training walls and dredging the channel is of sufficient depth for large vessels at low water. This portion of the work will confine the river to a fixed course, whereas it is now constantly shifting; I have known it vary a mile in a few days. The diminished depth of water at Runcorn is due to the fall in the bed of the river, and the great size of the tidal estuary below,
which is from $1 \frac{1}{2}$ to 3 miles in width. It is proposed to improve this part of the river by training walls, constructed of rubble stone -brought from the canal cutting above Warrington-to such a height as will maintain a low-water channel in one defined course, without interfering with the free flow of the tide over the surround-
ing sand banks. As soon as the ebb and flow of the tide is fixed in ing sand banks. As soon as the ebb and flow of the tide is fixed in to the full' depth of 22 ft . at low water ; the result of the dredging will be to lower the low-water line at Runcorn 12ft., and $17 \frac{1}{2} \mathrm{ft}$. at Warrington, thus making room for a column of tidal water which Before the service in scouring the lower channel and bar. Before the best lines for the training walls can, however, be determined so as to meet the approval of the Conser-
vators of the Mersey, further tidal observations and flood vators of the Mersey, further tidal observations and flood gauging will be necessary. The proposed docks and locks
are to be constructed on rock or hard clay foundations are to be constructed on rock or hard clay foundations away from the present river channel, and Mr . Williams
believes the whole of the proposed works believes the whole of the proposed works may be completed in four years. As to the cost, estimating it at contractor's prices, dealing liberally with questions of land and compensation, and allowing 10 per cent. for contingencies, the total is put down at $£ 5,160,000$.
With regard to
Abernethy reports that Leader Willams's scheme, Mr . Abernethy reports that he approves of the salient features of the design without reference to matters of detail requiring more mature consideration. On one point, however, Mr. Abernethy offers a recommendation. Consider-
ing the importance of Warrington, where Mr. Williams proposes the construction of a lock, forming the present bed of the river, Mr. Abernethy would build a dock of
twelve acres by widening out on the right bank twelve acres by widening out on the right bank of the present river, immediately below the crossing of the London and North-Western Railway; and with regard to the cost of the whole scheme proposed by Mr.
Williams, this he increases to $£ 5,400,000$. Without detailed Williams, this he increases to $£ 5,400,000$. Without detailed
designs of the various works, Mr. Abernethy, however, admits the impossibility of arriving at the exaet eost, but
from long and varied experience in the design and construction of similar works he is of opinion that the sum above named may be considered a sufficient estimate for the tidal channel, canal, and dock works at Manchester, and that if energetically prosecuted the works may be Wxecuted within the period of four years set down by Mr for the various locks, sluices, and walls will be of a favourable character, whilst no peculiar engineering difficulties present themselves in the construction of the works.

Mr. Hamilton H. Fulton has not dealt with the question in the exhaustive manner which characterises Mr. Wil liams's treatment of the whole project, and Mr. Aberethy, who states that he has received Mr. Fulton's report without any relative plans, sections, or other explawatory data, has necessarily to confine his observation with reference to the alternative scheme to a limited and general area. Briefly stated, the works which Mr. Fulton proposes to carry out, in order to form a navigable channel or large vessels from Liverpool to Manchester, a distance of forty-two miles, are the improvement of the navigation by the construction of training walls, simply, between Otterspool and Runcorn, except where rock may exist between the latter port and Garston, so as to ensure a minimum depth of 22 ft . at low water of spring tides; and from Runcorn to Manchester to excavate channel with a bottom width of 80 ft . of the same depth, with passing places, to Manchester, terminating in a tidal basin of $128 \frac{1}{2}$ acres, with a depth of 37 ft . at high water spring tides, the estimated tidal rise being 15 ft . and 12ft. at neaps. The cost of these works is put down at $£ 5,072,921$. With regard to this scheme, Mr. Abernethy is not of opinion that any such result as the above as to tidal range would follow by the formation of a channel of such length; nor, he adds, does he find in the report the Wita by which Mr. Fulton has arrived at his conclusion. With reference to the estimated cost he can form no opinion, as Mr. Fulton has not furnished detailed quanti es and prices, and the general and limited information contained in the report does not induce him to alter his conclusion that the improvement of the navigation between Liverpool and Manchester can best be effected by the formation of a tidal channel of a length that can be safely navigated by vessels during a flood, and canalising the The scheme proposed by Mr. E. Lead
The scheme proposed by Mr. E. Leader Williams having now been definitely adopted, the promoters have before them the task of obtaining the necessary Parliamentary powers and raising the requisite funds. That a strong opposition both on the part of the railway companies and the Liverpool dock interests will have to be encountered there is no doubt. For the preliminary expenses the committee have come to the conclusion that it will be necessary to aise $\pm 100,000$, and with the view of obtaining this amount, each subscriber is offered, as an inducement, the phion of taking shares in the company when formed by Act or Parliament to the extent of ten times the amount of his roch entrusted by Parliament to private enterprise, but may be
vested in the hands of a public trust. With such an arrangement we understand the promoters would be quite content, providing the improved navigation were carried out; and in view of such a contingency the Manchester Corporation, whilst giving the heartiest support to the movement in its present form, have reserved to themselves the right to act as trustees should this course be desirable. No question can be raised that to secure an efficient and cheap means of water carriage to the sea for the shipping trade of the district would be of immense advantage to the commerce of Manchester. As to the project now before the public being quite possible from an engibut whether its commercial success can be sufficiently guaranteed to secure that financial support to the undertaking by which alone it can be carried to completion is a point upon which it is undeniable many misgivings exist A consideration which may also somewhat operato araist. the scheme is that, after leaving Manchester it does not apart from Warrington-half-way on the route-and Widnes, near the outlet of the navigation, directly open out the many other large centres of industry which spread themselves over Lancashire. It would, however, carry a trade of enormous bulk, and the strong support the project has already received promises well for its ultimate realisation.

Naval Enginerr Appointments.- The following appointments have been made at the Admiralty :-Adam Shoolbread, Alexander Q. Smith, Jeremiah P. Lloyd, Charles E. Stewart (a.), George additional, to the Asia; Richard Irwin and William A. Harvey, engineers, additional, to study at the Royal Naval College,
The British Association. - With respect to the proposed meeting of the British Association in Canada the Toronto Mail in Canada in 1884 will probably be rece but without much consideration. It may be a good thing for the locality the Association may pick out to meet in, but we question whether meeting in Canada will be good for the Association, good or science, or good for Canada. In the first place, not even half country. The number of first-rate papers will therefore be limited. The Press will not be able to afford to report the proceedings at the length and with the accuracy of the English journals. Thus the usefulness of the proceedings will be greatly curtailed. The audiences likely to assemble will be small, and by no means average fashionable gathering is not scientific; it is not even literary in the most meagre sense. It very hazily comprehends Oscar Wilde ; it fails to grasp Professor Tyndall or Professor Huxley. Therefore the readers of the papers will find little ready tinuity of the proceedings in England will be broken up, and may not be so easily renewed. The English public, which contains a very large audience for pure science, will lose its accustomed prompt report of papers ; and those of us in Canada who may take interest in the proceedings will have to wait till the papers go to England, 'Transactionshed either in the leading magazines or in the society's present proceedings at Montreal outside that city, and the same fate will overtake the British Association. It would be a pity to spoil the effeot of a great gathering by holding it in the wrong place; and Oanada would possibly be the wrong place for the

HE IRON, COAL, AND GENERAL TRADES OF
BIRMINGHAM, WOLVERHAMPTON, AND OTHER
DISTRICTS.

DISTRICTS. (Br oun Correspondent.)

 price. Mhere
being asked.
Toakk-plates were quated Es to-day for immediate use; and the

 lying ide for some time. but they whill now ob pu put
and restarted on the manutacture of sheets and bars.

 for some Derbyshire sorts.
was the price for Carntorth.
In onstone wos pantitutu, but rather frimer, at about 6 . per ton
delivered for No thampton sorts. Purple ore for feetling purposes was 18 s. gd. per ton.
 position by Mr. Walter Vassano, one on of private, members, importataty proo
future method of carrying on the Commission Next Wednes
futay this scheme is to cume on for open discussion.

 mined upon an advance of some 20 per cent. on general goods, and
have fixed the new prices for buckets on the basis of 7 7. 3d. per dooze for 12in. 36 libs sorts.
The North Staftor doshire oolliers in the district south of Tunstall have now joined in the movement, which at first was confined to
the collieries north of that town, for a 10 per cent. rise in wages the collieries north of that town, for 10 per ent. rise in wages

 amounting to 1 s.500. It it tor recover this and the lossese ocacasioned by the alle ged defective designing, that the firm bring the claim. been given to Worlverhampton by yariouse electricic lighting oompanies
have sinee been recoived by the Birmingham Corporation to the number of seven. The eg say som mittee evere on Tresday in instructed
to consider whether the Corporation had n not hetsen
 a committee an offier of Messrs. R. W. Winfifill then relegated to

 more expensive than the present gas lighting.
 Abatement Extibibition had applied to the gas department of the

 exclusively shall
already in hand.

NOTES FROM LANCASHIRE.

Manchester:- Although I hear many complaints that the actual business of this district is not good, and that the requirements of
consumers of iron in Lancashire do not bring forward any great weight of orders, the market itself is exceedingly firm. The explanation of this somewhat anomalous state of things seems t t
be that the strength of the market is due more to the absence of any pressure of makers in outside districts to secure orders here, than to any pressure on the part of local buyers for iron. Both at
Glasgow and Middlesbrough iron is going away freely for shipment at better prices than are current in this market; district makers
of pig iron also are in many cases so fully sold that they are quite of pif iron also are in many cases so fully sold that they are quite
indifferent about securing orders here, and the result has been that cone hands the hands of Lancashire makers, whose comparatively low prices,
as compared with other brands of pig iron, have enabled them to
put on their books, during the past week or so, orders for a tolerably large amount of iron.
The general reporton the Manchester Iron Exchange on Tuesday concerned, was only limited in extent, but there was a stead concerned, was only limited in extent, but there was a steady
healthy tone throughout the market. Local makers of pig iron
were still quoting late rates, viz., 46 s ., less 2 l , for both forge and were still quoting late rates, viz., 46s., less 2 L, for both forge and
foundry quanities, but following upon the fairl large sales recently
effected in local iron they were very stiff at these fivures are now pretty well coverede to the end of the year. In some o
the distant brands of pig iron offering in this market prices had an upward tendency, and pige or two of the better makes of tincoln
chire were advanced ls chire were advanced 1s. per ton upon last week's rates, bringing
quotations for delivery equal to Manchester up to 48 s . 4 d . for quotations for delivery equal to Nanchester up to 4ss. 4d. for
forge and 499. Ad. for foundry, less 2 a per cent.; Derbyshire iron in
some cases is quoted at prices. which are altogether out of this some cases is quoted at prices which are aitogether out of this
market, but when makers have iron to sell their prices run about
the same as for Lincolnshire. A few odd sales of Middlesbrough me same as for Lincolnshire. A few ood sales of Middlesbrough
the made on the basis of 53 s . 4 d net cash for $\mathrm{g} . \mathrm{m}, \mathrm{b}$.'s delivered
are equal to Mancheste.
fairly active and the local forres sare all well supplied with to be The bulk of the business doing is still for shipment, and consider sheets, with hoops slaso being recenken in moen gidaten ouat for paries. In the
home trade, although the demand is still only moderate, inquiries are said to be improving. There is still some underselling on the the
part of merchants, who have iron yet to come in bought at under current rates; but so far as makers' prices are concerned the tendency is to stiffen; and for delivery equal to Manchester or
Liverpool, good local bars now average $£ 6$ 10s. per ton; hoops, \&7; and sheets, $£ 815 \mathrm{~s}$. per ton.
With regard to the engineering trades, it will be of interest to
give the substance of a conversation I had this week with a gentle-
man who has excentional condition of the various branches of the iron industry. Trade in
this district, he told me, was not so good as it had been recently. There were some branches, such as tool-makers, locomotive builders and boiler-makers, which were still kept busily employed, although
this to some extent was on the completion of orders for shipment
Machinist, however Machinists, however, have less work in hand, and millwrights and founders are not so busy as they were. As to the general condition
of the trade, he pointed out that many people were doing so badly during the period of depression, that so soon as any activity made itself apparent, they rushed in to seoure orders at low figures, and
this, notwithstanding the considerable amount of work which had
been given out, had tended to keep prices down

With regard to the activity of locomotive builders mentioned
above, I may add that from my own inquiries I find it is confined chiefly to the working out of old orders, comparatively little new
business business being at present put in the market. I may also her
nention the many complaints I have heard with reference to the manner in which local firms who secured French contracts some
ime back have had to work under the specifications ; and judging
rom the great dissatisfaction which is pue om the great dissatisfacion which is expressed, it will certainl out under similar conditions. It is not so montracts that in the carried
first place considerable difficulty was experienced in working up to the specifications owing to the peculiarities of construction which were
required, and which for a time entailed a special trainhing of the
nen-to that, in fact, no complaint would have been raised-but men-to that, in fact, no complaint would have been raised- but
ittle petty letails, and small source of such constant objectioms, which have have only been
rexatious in themselves, but, having to be referred for decision the principals in France, have neeessitated frequent and consider ble delay, that English makers will not care to work again under
specifications interpreted in a manner which is altogether incom pecificications interpreted in a manner which is altogether incom-
prehensible to English methods. Paltry matters which an English nspector would at once have decided upon his own responsibility
ave been the frequent cause of stopping work and most volumi ous correspondence, and as an illustration of the manner in which the French inspectors have thought it necessary to fulfil their
duties, I may mention that plates after they have been passed the piling of the metal.
orders which some of the local firms have on their books certainly o not indicate any apprehensions of declining prosperity in this branch of trace, Messss. W. and Galloway and Sons, of the noully heavy sets of machinery for a French ironworlzs I have previously given a description, have now their books full of similar orders to be executed for English iron manufacturers. The firm have at present in hand no less than five large blowing
engines, three of which will have cylinders of over 100in. diameter, two pairs of heavy reversing engines, besides a number of the of work, chiefly for English iron manufacturing firms is so grsur hat an additional erecting shop, considerably larger than the one t present in use in connection with the works, is being built on the In the coal trade of this district the de
it was tow the lose of last moth the im hensions of a strike having been allayed by the temporary with rawal of the notices sent out by the men for an advance of wage drawal of he enotices sent a good demand, and colliery proprietors
There, is,
have deliveries to socomplete on account of orders in hand that will have dost cases keep them going well over orders in hand thenth. Pits, will
nen-
mose sequently, are kept on full time, and a good deal of coal is still
being filled up out of stock. With the commencement of the month there has been an almost general advance of 6 d . to 1 s. per
ton on round coals, which in some cases is in addition to an advance made during September, and engine classes of fuel have to a larg extent been put up 5d. per ton. At the pit mouth prices now
average about as under:-Best coals, 9 s . 6 d , to 10 s . seconds, 7 s . 6 d .
 oo 4s. per ton.
tirring at Itivperpg trade there has been a tolerably good business sirring at Liverpool, and especially at Garston, where vessels have been considerably delayed by the scarcity of berths in the docks, nd, to meet temporary recuirements, as much as 10 s. per ton has ben paid for steam coal delivered at Garston Docks. The average advance which is now being realised upon late prices is about 1s.
per ton ; steam coal delivered at the high level, Liverpool, or at Garston Docks, being quoted a.
coals at 9s. 6 d . to 10 s. per ton.
withdrawn by the miners in thance.of was have been temporarily way subsided, and it is is more than probable that the demand will be renewed with still greater determination at the end of the
month, with the result that a strike will follow if an advance in month, with the result Int a strike wime the policy of the men
wages is not concede. In the meantime sit to restrict the output as much as possible
The annual meeting of the Manchester Geological Society wa ensuing year. During the forthcoming session the society, which is at Wigan. Barrow.-During the week there has been a decided improve advanced 6d. per ton all round. I noticed last week that the present demana, if maintained, must of necessity carry up quota-
tions, and the marked improvement which has taken place will, in Hons, and the marked improvement which has taken pace wil, nental users are very active in their inquiries, and the demand made on American account are such as will provide plenty of mployment for smelters. The business for the winter months vill carry them through the autumn, and the present active stat of the market, if only maintained for a very short time, will find to the heavy exportation of metal. Steel makers have improved their position, and orders are being booked at prices higher than
those quoted, viz, £亏5. 12 s .6 d . Some makers refuse to do business at present prices, having in hand very large contracts which wil
take some time to clear off. Iron ore in heavy consumption at 1.ts. to 15s. per ton at the mines. Spanish and Irish ore are being mported to the west coast in large cargoes. Iron shipbuilders Wngineers, ironfounders, ,ooilermatesters and ore others busy. Coal
En better demand at high prices. Coke steady. Shipping active.

THE SHEFFIELD DISTRICT.

The long-expected experiments with armour-plates at Spezzia have not yet taken place, owting to the absence of the rtaian
war-ship Duilio. On the outbreak of hostilities in Egypt, the he will doubtless soon return. The Duilio is armed with 100 -ton suns, which were to have been used against the plates. When the
xperiments do come off, they will excite general interest outside axperiments do come off, they will excite general interest outside ispute as to the French and English systems of coating war-ships, herself is clothed 22int thick-while the English Admiralty have definitely made up their minds for the composite -steel faced-
armour. It should be added, however, that a French firm has bbtained the right of manucturing "Wilso" " y payment of a royalty
or the Benbow, a new vessel with which the English Governmen intend to replace the old ship of that name. It is to be of a large
ize, and of the very newest type of British men-of-war. Her pating is expected to be of is..-composite. As soon as the will, as usual, probably be divided between Messrs. John Brown and Co, Limited, and Messrs. Oharles Cammell and Co., Limited. tendered for, and a number of Indian State Railway engines. A sood share of the materials is certain to come to Shefield as usual.
The Roumanian Minister of Public Works recently invited
were the following:--Bolckow, Vaughan and Co., Middlesbrough,
f6 8s. 3 d., M Moss
Cbay Hematite Iron Company, Workington
 ously situated and keenest continental competitor, Herr Krupp,
was 12 s . per ton above that of the largest makers from Cleveland ores on the East Coast of England, and even higher than the
prie of the Moss Bay Company at Workington, who would
doubtless use their own best quality of English hematite ore in the dountess use
manufacture. Bessemer pig iron -hematite-is at present making 67s. 6d. per
ton, and forge iron 44s. per ton. These rates are about the same as at the corresponding period of last year. There is a rumour
that certain important East Coast furnaces now making hematite
vill be altered to suit the production of common iron. This will will be altered to suit the production of common iron. This will
have the effect of making the price of hematite stiffer, as it will Dreaty Wesbter, the Unitited States Consul, kindly supplies me with
De particulars of Sheffild exports to the United States during
her the particulars of Sheffield exports. to the United states during
the equarter ending September last. They are not so gratifying as
was expected. The total value for the three months is $£ 311,573$, decrease of $£ 29,036$ as compared with the corresponding period of 1881. Steel has been exported to the value of £98,231, and
cutlery $£ 79,720-$ an increase in steel of $£ 20,711$, and a decrease in
cutlery of $£ 2103$. The total values exported for the thre cutlery of $£ 2103$. The total values exported for the three months
were-July, $£ 107,018 ;$ August, $£ 85,265 ;$ September, $£ 119,290$. The exports for September last show an increase over September,
1881, of $£ 3000$ in steel and $£ 6164$ in cutlery. The increase of September over the preceding month is very satisfactory, being no less than $£ 34,03$
or 15 per cent of the hour at present is the demand of the miners
 largest ever held in South Yorkshire, over thirty of the leading coliiery firms in the district being represented. The proceedings
were were private, but peres The principal resolution, which states concisely the whole question from the employers' point of view,
was as follows - "That there has been no advance in the coal to warrant any advance in the wages of the miners, but with a vew to settle the question of wages upon a permanent footing, the
masters are willing to renew the offer made in 1881, and to take as a basis for the regulation of wages the net average selling price over the last two years ending June 30 th, 1882 , or any one of the
four half-years as may be selected by the workmen; and to give the miners the earliest possible advantage of any rise in the price of coal, they are willing to submit their books at once to the
inspection of competent accountants to purpose, with instructions to ascertain the net selling price for the three months ended 30th September, 1882 . If any advance during
the last three months is shown over the period selected, the men's the last three months is shown over the period selected, the men's
wages to be advanced from the 1st November next in the following proportions, namely:- $-2 \frac{1}{21}$ per cent. for every complete fourpence
dvance in the selling price of coal up to 1 s . 4d. per ton over the basis price of the period to be selected ; and for the fifth advance of ourpence 5 per cent. to be given-so that for every 1 s .8 d .
dvance in the selling price the men to be entitled to 15 per cent.;
advan to meet a deputation from the miners, and explain the reasons which have compelled the owners to pass the foregoing resolution.
The deputation consists of Mr. J. D. Ellis, Aldwarke Main and
. ar House, who presided at the meeting; Mr. George Wilson,
Oaks ; Mr. A. M. Chambers, Thornclife ; Mr. Tames Moxon, Darfild Main ; Mr. B. Sellars, Roundwood ; Mr. Joseph Mitchell, Maiks and Mitchell Main ; Mr. J. Tyas, Edmunds and Swaithe
Main ; and Mr. C. E. Rhodes the honorary secretary. The resolations have been forwarded to Inr. Pickard, the secretary of the
Yorkshire Miners
Association, and a Yorkshire Miners' Association, and a conference will no doubt be
held in a few days. The executive of the association have issued instructions for taking the votes of the men by ballot. Meetings ane to be called at every pithead, and the three points to be
aballottedfor or against are-(1)Shallwe on on strike if the coalowners
ald refuse to concede the advance of 15 per cent. on our present wages? (2) Shall we give fourteen days' notice to try and secure the same?
(3) Shall we, when we get the advance, restrict the output of coal, nd if so by what means and to what extent? The result is to be In Deriyshire various ooalowners are offering advances of $5,7 \frac{1}{2}$,
and 10 per cent. At Tibshalf, Messrs. Seely and Co. have pro mised an advance of $12 \frac{1}{2}$ per cent. on the black shale coal, and
1 and 1 percent. in the South Yorkshire district on was generally Nunnery Colliery Company raised its quotations by fo. to 10d, largest tonnage of Silkstone coal from South Yorkshire to London, ncreased their prices by 10 d . to 1s. 3d. per ton, their quotations on
the wharf at Sheffield being Mortomley best Silkstone 13s, 4 d per ton ; Mortomley thin seam, 12s. 1d.; Mortomley best nuts. It is expected that the wages difficulty will be decided by a compromise, probably $7 \frac{1}{\frac{1}{2}}$ per cent. advance, although the miners
are very unanimous and determined on having 15 per cent.

THE NORTH OF ENGLAND.

The Cleveland iron market held at Middlesbrough on Tuesday last was well attended, and a good deal of business was done.
During the past week business has, indeed, been in a most satisfactory condition, especially as regards pig iron. Prices, which
until a week since had for a considerable time remained almust stationary, are now advancing steadily. The market was not much affected by the report that in scotland the iron trade was somewhat depressen, consumers having evidently come to the
conclusion that, in view of the enormous demand and of good reports from all parts, prices are not unlikely to go still higher.
They are, therefore, now extremely
 was quoted by some merchants, and 44 s . 9 d . was the least others
would take. It will thus be seen that there is a further rise of 3 d . to 6 d . per ton since the last report.
smeiters are being very much pressed to make contracts, and could easily book for delivery up to March next at present prices,
f they felt inclined too commit themselves so far ahead. Most
of the iron in stock is, however io for and producers are thus not bound to sell at present. At their makers fixed their price at 45s. per ton f.o.b. for No. 3, subject to payment by oash on the Monday following delivery, They also
decided that, so far as Cleveland is concerned, the restriction shall remain in force for another three months, whether the Scotch Iron in both makers' and merchants
carce, some qualities, more particularly No. 3, being very difficult to get. It is some time since shipowners have experienced such
difficulty in obtaining cargoes for their vessels. It is not an uncommon sight just now to see four or five waiting their turn at
the wharves. Connal's No. 3 warrants are to be had at 44 s . 6 d . per ton, but the demand for them is not great at present. The quantity of pig iron shipped from the TTes during the
month of September reached the enormous total of 100,838 tons. On only one previous occasion in the history of the
northern iron trade has there been a greater quantity exported in a single month, namely, in September, 1879 , when the total
reached 101,154 tons. That, however, was the year of the
American boom, and about 10,000 tons were sent to the

United States. Last month none was sent
thither. The shipments for August were 95,861

Of last month's exports 26,105 tons were sent t Of last month's exports 26,105 tons were sent to
Sootland, 10,0 to tons to Wales, 3320 tons to
 ${ }_{22,336 \text { tons to }}^{10,160 \text { termana, }}$, 4860 tons to Belpium,
 other countries. The increase in the shipment
of manufactured iron and steel is also very great.
 18,787 tons during August. Of this amount
17,462 otos went to foreign ports, and 11,367 tons to osritish ports.
This estock of Cleveland pig iron in Connals Midadebbrough store on Tuesday amounted to
108,858 tons, being 1190 tons less that on the previous Tuesday
There is still yery little doing in the manufac sive iron trade, byyers being very reluctant to

 as coal, , hbour, and pigik iron have all risen in
and price, it is is nout likely that manufacatured iron will long remain at present rates.
The coal trade is very active
hold cool adranaceed on Tuestive just nows now. House.
 per ton. Coke also has risen to to the extentof of 9 d. ${ }_{p}$ per ton above last weeks s price.
The North-Eastern Marine Engineering Company's new works at Gateshead have made a com
mencement in the foundry department. mencement in the foundry department. The
fitting shops are almost completed, and it is hoped that soon all the departments will be fully at work. The Cleveland ironmasters' returns have been issued for September, and are highly satisfactory. The number of furnaces in blast remains the same iron is being made by eighty-three of these furnaces, the remainder being at work on hematite basic, \&c. Messrs. Bolckow, Vaughan, and Co. have put a furnace out of blast, and the Claylane Iron Company has Messrs. W. Whitwell and Co.'s furnaces have
been changed from hematite to Cleveland iron During August the make of Cleveland iron was 147,8187 tons; in September it was 149,155 tons, iron has decreased by 6294 tons, being only 70,6555 tons. The total output for the month has
been 219,810 tons, or 4957 tons less than the preceding month, a result due mainly to the less number of days in the month.
The amount of iron in stock in the stores on
the 30th September was 269,273 tons, a reduction the 30th September was 269,273 tons, a reduction of 40,221 tons for the month. Makers' stocks
show a decline of 15,217 tons, being now 105,102 tons, whilst in their stores the amount is 47,041 iron in the public stores was 117,230 tons, being a falling off of 10,208 tons.
An address has been sent out to the ironworkers from the Executive Office at Darlington, in
which the following appears:-" We wish to call the serious attention of all the iron and steel makers to their present weak and helpless condition, owing to the disorganisation now prevailing, and ask them how they expect that justice is to if they are determined to take so little interest in that which affects their own as well as other workmen's, interests, and continue in their present disorganised condition, refusing to make any provision for their own protection, or render any assistance to those who are doing their utmost to ing men's interests, but, on the other hand doing all in their power to weaken the position of the representatives, and render them powerless to do good; and yet, after acting in this manner, demand and expect these men, upon whose serthey repudiate every time it suits their convenience - will fight their battles, defend their interests, and protect them in all cases of difficulty which may arise.

NOTES FROM SCOTLAND THE Scotch iron trade is in a very satisfactory position, almost every branch being very fully pressure is felt in meeting orders. In the iron market during the past week there has been great activity. Considerable speculation has taken
place in warrants, the prices of which have flucmakers' special brands is still felt, and further advance in prices has taken place. The
The inquiry for No. 4 pig iron for use at the forges
has been unusually keen, and consumers are apparently anxious to make purchases in case of ping trade has been better than during a few weeks previously, and it has been found impossible to place some of the orders in consequence of works. Several furnaces have been put out at
Shotts with the object of making repairs, and a dispute is threatened at Coltness by the furnace men, who profess to be dissatisfied with having to
work on Sundays, but who are understood to be uite ready to do so if their wages are advanced. mployers will immediately have one which the ace, the rise in the prices of iron having led the workmen to expect an increase of pay. The maintained. There are fewer inquiries from where the stocks of Sootch pigs are reported to be all but exhausted. The stock in Messrs. Connal and Co.'s stores is d
1000 tons per week.
Friday up till 51 s .10 d . cash. market was rather quieter, whe On Monday the place to 51 s . 8 d . On Tuesday forenon a reation took tions were effected at $51 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. to 51 s .3 d. and
$51 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$. cash, and at 51 s . $7 \frac{1}{2} \mathrm{~d}$. to 51 s .6 d . and 51 s .9 L d. one month. A stronger feeling prevailed
in the afternoon, when business was done from In the afternoon, when business was done from
51 s. 912 d d, cash and 52 s . $\frac{1}{2} \mathrm{~d}$ o one month. Business
was done on Wednesday at 52 s , to 51 s . 7 d , cash,
and to-day-Thursday-between 51s, 6d, and
51 s .9 d . cash. Makers' stoks are officially announced.
last report makers have all increase their prices, and the quotations are now as Iollows:- Gartsherrie, f.o.b. at Glasgow, per ton
No. 1, 66s.; No. 3, 56s.; Coltness, 70s. and
56s. 6d.; Langloan, 68s, and 56 s . 65s. 6d. Land 51s. 3d.; Calder, 65s. and 55s. Carnbroe, 59s. and 53s.; Clyde, 55s. 6d. and 53s. Monkland, Quarter, and Govan, each 53s. and
$51 \mathrm{~s} . ;$ Shotts, at Leith, 66 s .6 d . and 56 s .6 d .
Carron at Grangemouth, 53 s . - specially selected, Carron, at Grangemouth, 53s.-specially selected,
57 s .6 d .-and 52 s ; Kinneil, at Bo'ness, 51 s , 6 d.
and 50 s .; Glengarnock, at Ardrossan, 59 s . and and 50 s .; Glengarnock, at Ardrossan, 59s. and
$53 \mathrm{~s} . ;$ Eglinton, 54 s , and 52 s ; Dalmellington, 54s. and 52 s . 6 d .
There is considerable improvement in the the amount received in Scotland to date for the present year is fully 47,000 tons
in the corresponding period of last year.

hardly any change in prices

 At the malleable ironworks gratifying activity upward tendencyThe steel trade is likewise several new works almost ready to be put in operation, while those going are working well up founding establishments are all busy, with numerous orders coming to hand.
In the coal trade a very large business is being than at this time last year, and the home inquiry for nearly every quality animated. Prices are still tending upwards, and an effort is being made by the coalmasters to obtain a uniform rise from the consumers of about 1s. per ton.
The wages question in the mining trade is
engaging a great deal of attention. The masters are not unwilling to meet the terms of the men at least to some extent. In Fifeshire they hav intimated as much, stating at the same time that their efforts to increase the prices of coals hav hitherto failed. These efforts, however, it is are successful the edvance will be granted the meeting of the men, when this communication was received, an opinion was expressed to the effect that the employers are able even at
the present rates to increase wages, but in the present rates to increase wages, but in
this part of the country, as well as in the west, the men have so far manifested extreme dislik masters this week in Lanarkshire had not received a notice from the men of their demand for higher pay; but under the direction of the delegates every effort i
The trustees of the Duke of Hamilton have resolved to let the minerals under what is known as the North Haugh, stretching between Hamil-
ton Palace and Bothwell Bridge. The new coalfield extends to about 800 acres, and it is sai that it will include the minerals under the palace, of excellent quality, and will greatly add to the productive capacity of the Hamilton coal-field. The Clyde Coal Company, Limited, has sold its Spittalhill Colliery in the vicinity of Newton Motherwell
Managers held their Association of Gas Glasgow a few days ago, under the presidency of Mr. Dalziel, of Kilmarnock. Interesting paper were read on a variety of subjects, including on purifier lighting apparatus," which he has intro duced into the Grangemouth works ; and one by Mr. Andrew Napier, of Crieff, on the " Λ ssessin of Gasworks, in which he contended that 7 pe sion took place on the economy value. A discusiron instead of lime, and the opinion generally expressed was that at large works it was cheape to use the oxide, but where a high quality of gas oxide. Under the direction of Mr. Foulis, of Glasgow, the members of the association paid
visit to Dalmarnoch gasworks, and inspected the regenerative furnaces in use there for the distilla-
tion of coal.
The past month's output of new shipping on
the Clyde is the largest on record, amounting to upwards of 40,000 tons.

WALES \& ADJOINING COUNTIES (From our own Correspondent.)
THE first general meeting of Hill's Graving It is understood that Logan and Co. will have th contract. Mr. James Frazer, of London, is to be auditor. Quiet movements are still going on towards the proposed dock at Barry, and for con-
necting the Ocean and other collieries with the operations ar to Merthyr, for connecting the new steel works at Cyfarthfa with the Great Western and Rhymney systems.
The P
ing in the ing in the Rhymney Valley.
The Ogmore Dock and Rail
of the most promising of latest ventures, The necessary money has been subscribed for pre-
liminary expenses, and powers will be asked for next session. Plans have been prepared by Mr.
The new works in the North Dock, Swansea
are rapidly approaching completion. The Swansea
coal trade appears to be benefitting by the present state of things in the North, a good many new ustomers being diverted to this quarter
The aspect of colliery labour throu
whole of South Wales is satisfactory, thout th is known that efforts have been made to try ani bring about a kindred action for higher wages with the North of England and North Walian colliers. Two formidable and threatening move Collieries scale agitation and the Coedcae and Havod difficulty. Both are now arranged, and
colliers are all working tranquilly, satisfied with the prospect of a small advance.
The ironworks are all fairly The ironworks are all fairly busy. Prices are
steady for most things, and for best steel rails are
looking up. Bars-common-are firm at $£ 515 \mathrm{~s}$.
to $£ 517 \mathrm{~s}$. 6 d . There are plenty of inquiries for id rails at cyfarthfa has sold an immense quantity of old iron, and
going ahead in the direction of steel. Neath Abbey Harbour Works-contractor Mr
Daniel-are progressing well. There are 500 men now fully employed. A preliminary trial of the Merthyr Wireworks as been satisfactory in result.
nd Newport Railway, the bridge Caerphilly, Taff, is progressing well, but I do not anticipate an opening much before Christmas, though un-
questionably the contract is in excellent hands. The difficulties in the way of completion have been great, but have been successfully overcome

THE PATENT JOURNAL.

Condensed from the Jourral of $\begin{gathered}\text { Patents. }\end{gathered}$

$\frac{\text { Applications for Letters Patent. }}{\text { When }}$, patents have been tcommunicated,
namo and adarisess of the communicating party ha
26th September, 1882
567. Obtaining Mechanical Effect by Electrica
Energy, E. L. Voice, London. Energy, E. L. Voice, London.
4568. Heating Wate, A. J. Billing, Holborn.
4569. Furnace Lininas, dc., S. Pitt.- $(C . G$.

N70. Obtaining Fibre from Leaves and Stanks of Plavis, \&., A. V. Newton. (The Sanford Universal Fibre Company, Incorporated, New York, U.S.) 4573. Portable Electrical Lighting apparatus, J Imay. (E. Arnould, Paris.) 4574. Hypraulic Machnes, . H. Tweddell, London 4575. Properen
 ${ }^{\text {p }}$ pool. . Cinf Stools or Folding Seats, J. C. Mewburn
 -(W. Walcker, Paris.) WooL, \&c., H. M. Whitehead, 4577. STowING BAGS of London.
 4578. Dredagng Bugets, W. Clark.-(W. H. Wood, New York, U.S.) Macts, 4579. ICe-MAKivg Machinery, W. H. Beck.-(G. Dubern,
 Calcutta, India.)
 R. Lake.-(H. R. Cassel, Nero York, U.S.) 4581. Removing INK STANs from the HUMAN SKIN, G F. Redfern. - (H. Buczkowski, Vienna)
 F. Redfern - (H. Buczkozozki, Vienna.) 4582. PREPARING Crude Earth Wax for
 F. E. Tucker, London.

4583. Rotary Pumps and Blowers, M. Benson.-(
M. Roots, Connersville, U.S.)
4584. Buckles or FAstening for Braces, \&c., J. B

Brooks and F. R. Baker, Birmingham.
4585. AERILL and MARIE NAVIGATION APPARATUS, B
W. Manghan
W. Maughan and S. D. Waddy, London.
458. Locomotrve Brakes, W. M. Lendrum.-(s.
S.onan

45s7. Reguativg the Transmission of Power for
Operating the Bellows of ORgans, J. Johnson and
Operating the Bellows of Organs, J. Johnson and
R. Talbot, Blackburn,
4588. Steam and Water-gauge Taps, T. Allison,
Milnsbridge.
459. Corser Busks and Clasps, C. A. Snow.-(c. A.
Adams, Asheville, U.S.)
Adams, Asheville, U.S.)
4590. TREATIN SoAP LYEs to Recover Glycerine, \&c.
A. J. Lawson and H. L. Sulman, Bristol.
4591. Pasting and Applying Labels to Bottles, \&e,
F. Foster, London
F. Foster, London.
4592. VENIATING APpliances, H. Blair, Glasgow.
4593. INDEPENDENT CAR WHEELS and Journal Bear-

INGs, H. J. Allison.-(G. W. Fairman, W. H. Gray,
and W. R. Austin, Nevo York, U.S.)
459. Lamps, W. L. Wise. (F. Besmard, Paris.) 28th September, 1882.
${ }^{50} 5$

4606. Compound VAcuum Pumps, J. H. Johnson.-(IV.
4607. Obtaining the Extrati or Soluble Portio
from Taning Materials, J. Hutchings, Warringto
668. Obtaining Artiritial Llaht, J. Mayer, London,
4609. Raising, \&ce., Portable Riveting Machine

Fielding, Gloucester. \&c., D. W. Hamper and E
4610. MAsHNG MALT,
Harper, Sowerby Bridge,
Harper, Sowerby Bridge. D. W. Hamper and E
4611. Bounve Wort, هc., D. W.
Harper, Sowerby Bridge. Harper, Sowerby Bridge. Winks, \&c., D. W. Hampe
4612. PREPARING FININEs for Wring
and E. Harper, Sowerby Bridge, and E. Harper, Sowerby Bridge.
4613. F.EEDING., Woor, ©e., to. CARDING or othe
Michines, R. Tatham, Rochdale. 4614. Clips for SECURING Tires on the Wheels
BIICYCLES, ©., F. R. Baker, Birmingham. 4615. Sewing Machines, C. P. Evans, Birmingham.
4616. ANEw System of ADVERTISING, S. Puente Iond 4616. ANEW AYSTEM of ADVERTISING, S. Puente, London
4556. M EASURING, \&., ELECRIC CVRRENS, S. Z. de
Ferranti, Shepherd's-bush,and A. Thompson, London Ferranti, Shepherd's-bush, and A. Thompson,London
4597. BICYCLES, \&c., T. Warwick, Aston.
4998. UTLISINsG HEAT as a Motor, H. Gruson and R
Handrick, Buckau, Prussia.

Oth September, 1882.

648. Cylinder Glass Stylographs, H. I. Callendar

Saffron Walden.
Salind S49. Produoing Ornamental Frillings, C. Jackson,
Nottingham.
4650. Musical Instruments, T. Machell, Glasgow.
651. Artificial Light Apparatus, J. Y. McLellan, Glasgow,
W5: Ecuring Windows, \&c., T. Young and G. C.
Wood, Sheffield.
653. Checking, Apparatus, W. M. Llewellin, B53. Checking, \&c., Apparatus, W. M. Llewellin,
Bristol.
654. Folding Knives, dce., L. Hager, London.
Metaluc STaircasks, R. Hudson, Gildersome.
 France.)
4659. Trating Sewage, J. Young, Kelly.
4660 . Operating upon the Athosphere of Apart Ments, W. W. Nightingale, Southport.
G6i. REGISTERG the Supply of Electricity, J. H.
Greenhill, Relfast Gra2. Coupling, ©.., Railway Carriages, J. Richard-
son and C. Greenwood Harrogate Son and C. Greenwood, Harrogate.
4663. OBTANING MoTvEPowER, J. Stephan, Worcester.
664. Churns, J. Llewellin, Haverfordwest. 664. ELLECTRO-MOTOR, M. Immisch, London,

New York, U.S.) 4668. VELOCIPEEES, S. Miller, Londo. Lon.
4660. STEAM GENERATORS, W.Clark.-(M. Hervier, Paris.) 2nd October, 1882.

670. Composition for Boots, \&c., E. and A. Wright,

 Surrey.67. Photogap Phy, C. P. Evans, Birmingham.
68. Peat Fuel, G. Wilson, Elmers End.
69. Coupling for Rallway Vehicles, R. Stone,
Bristol.
70. STEam Engines, T. J. Handford.-(T. A. Edison,
Nero York, U.S.) 675. KEYLESS, dC., WATCHES, T. Waller, Coventry.
(C. H. F. Milleere Hamburic Lamps, J. F. Phillips.-
 W. Regenerating Sclphur from alkali Waste,
W. Weldon, Burstow.
71. Protecting Bricks from Rain, J. D. Lampard
and F. Coppen, London. and F. Coppen, London.
W. DYayMo-EEECTRIC, © © ., MACHINES, and F. King, London. S. Beeman,
 Nielsen, Denmark.)
72. LaTHEs, W. Allan, Sunderland.
73. PREssING OIL from Sed, W. Bushell and W. T. Haydon, Dover.
74. TRaNsMITTING, \&c., Power Force or Motion, W.
P. Thompson.-(J. . Wright, Worcester, U.S.)
75. NUT Locks, A. J. Boult.-(W. Mack and J. B. Deeds, Terre Haute, U.S.)
76. Mexal Puvohes, A. Boult. - (E. A. Bailey, G.
W. Constantine, T. W. Foveler, and F. W. Smith Washington, U.S.).
77. SAFETY Hoors for Harness Traces, H. H. Lake. -(W. K. Rairigh, St. Petersburg, U.S.)
78. GENERAINNG, \&C., ELECTRIC ENERGY, F. C.
Phillips, London.

Inventions Protected for Six Months op

 4569. Furvace Linnvas, dc., S. Pitt, Sutton.-A A com-munication from C. G. Franklyn, New York, U.S.26th September, 1882 .
589. Corser Busks and Clasps, C. A. Snow, Washing.
ton, U.S. - A communication from C. A. Adams,

Patents on which the Stamp Duty of
$\& 50$ has been paid. 3875. Electric Lighting, C. W. Harrison, London.-
25th. September, 1879.
 Dundee.-29th September, 1879 .
4357. Grain Elevators, E. Power, London.-25th October, 1879.
3881. Fibtering and Drying SEwage, \&c., W. and G.
C. Gibbs, London.-26th September, 1899. .
3926. TABLETs for Erasing Writing, A. W. L. Reddie, London.-30th September, 1879.
3953. RoTARY E EqINES ana. PuMps, B. Tower, Black-
heath.-2nd October, 1879.
 27th September, 1879.
966. EARTHENWARE, Drinking Vessels, A. Dunn,
Bermer

 Liverpool.-4th October, 1879 .
4038 Producing Vinegar, C. Kesseler, Berlin.-6th October, 1879.
3935. BorTiLE and SToppers, \&c., H. Barrett, Hamp-
ton. -30 th September, 1879, ton. - 30th September, 1879 .
93s. Whire Lead, W. R. Lake, London.- 30 th Sep.
tember
 952. Moulding Traps for Water-closets, \&c., W. M.
Smeaton, London.-2nd October, 1879.

Patents on which the Stamp Duty of $\& 100$ has been paid.

 3374. Electric Telegraphs, J. Muirhead, jun.,Wimbledon.-27th September, 1875 .
3380. SEwING MAchiNEs, T. McGrah, Sheffield.-28th September, 1865.
3426. Foo SIINALS, F. H. Holmes, London. -2 nd
October, 1875.

Notices of Intention to Proceed with 2241. Booleyra, Su. Jones, Wrexham. -12 ther, May, 1882 ,
2463. Apparatus for Lirting Ccoth, dco, T. Stead, Leeds.-24th May, 1 S82.
2465. S.LIDE VALVEs, J. W. Joyce, Durham.-24th May,
1882 . 2480. Compounds Suitable for Electrical Insula
Tion, F. Field, Beckenham.
2481. Looms for Weaving, W. Thompson, B82. Blackburn. 2422 ORGANS, , ©e., J. B. Hamilton, Hammersmith.-
25th May, 8882 .
2484. Metallic Alloys, G. A. Dick, London.-25th May, 1882 .
2486. SUPPorting the Net employed in the GAME of
LAWN TENNIS, đc., J. M. Croisdale, Manchester.-
25th May, 1882 . 25th May, 1882. Boors and SHoEs, E. A. Brydges,
2500 HeLs for Ber
Upton.L-A communication from M. Rachler, G.
Henneberg, and I. Rothriegel. 26 M. Upton.-A communication from M. Rachler, G.
Henneberg, and I. Rotheiegel. $-26 t h$ May, 1862 .
2501. INsuLATOR for ELECTRICLL PURPOSEs, B. Rhodes
and G. Binswanger, London. - 26th May, 1882.

 2554. Vutcais

 ${ }_{2}$ 2frd. June. 1882 . - bith June, 1882.
2761. Parr-mag Machines, M. and L. Campe, Berlin. -12 th June, 1882 . ${ }^{2777}$. Matches, W. T. Evans, Manchester.- 13 th June,
1882 .

 U.S - 20 th June, 1882 .
3016. Ascrevaninive Approximately the Trim and
Initial Stability of Ships, \&c., A. Taylor, Newcastle-

 188. PERMANENT WAY of RAILWAYS, A. M. Clark,
3538. Pondon.-A communication from J. Elmer. $-25 t h$,
Les. July, 1882.
3728. Rallway, \&c., Carriages, U. Scott, London.-
5th August, 1882. 5th August, 1882. Beale, Blackheath.-9th August,
3782. Bicyoles, J. Beal
1882. 188.
3808. Steam Boilers, August, 1882. Sters, de., G. Sinclair, Leith.-10th
3818. TYPand Space Holners, J. C. Mewburn, Lon-
don.-A communication from . . Low and L. K. don.-A communication from A. A. Low and L. K.
Johnson.- 10 th August, 1882.
3832. SELF-ACTING STEAM TRAP, L. Dove, Stratford. -

 cation from T. Holland. - 15 th August, 1882 .
3914. STEAM Evgins, P. Armington, Lawrence, U.S.
-16th August, 3926 SPRING MATTRESSEs, \&c., W. R. Lake, London.

- Com. from G. Gale. 16 th August, 1882. -Com. from G. Gale.- 16 th August, 1882 , London.

3942. IMprovex Pump, W. B. Tibbits, Clifton.-17th
August, 1882. August, 1882 ,
3943. Gas Lam August, 1882 .
4113, SEwING and Trimming Knir Goods, \&c., J. H.
Johnon, London, A communication from C. H.
Willcox, Le9th August, 1882 Wohnson, London,-A communication from C. H.
Willcox.-29th August, 1882 a.
3944. VALVE Motions and Cylinders of STEAM
 Glasgow.- 30 th August, 1882 .
3945. Embroidering MAchivs,

- A communication from J. A. Groebli. -21 st Septem.

Last day for fling opposition, 24th October, 1882. 1908. Strains for Straining Pulp, G. Tidcombe, jun.,
Watford. -21 st April, 1882 . Watford. 21 st April, 1882 .
2372. SYrup from Date Fruit, \&c., T. Webb, London. -19th May, 1882.
2524. CENTRAL BUFFR and Coupling Gear, W. R. S.
Jones, Ajmere, India.- 27 th May, 1882. Jones, Ajmere, India.-27th May, 1882 .
2529. Digonva, «c., Machines, W. Doubleday, Chelms-
ford. -27 th May, ford. - 27 th May, 1882 .
2550. SIFTING MACHINE, M. Shearer, sen., and M.
Shearer, jun., London.- 30 th May, 1882. Shearer, jun., London.-30th May, 1882.
2552. STEERING QUADRANT, de., J. Cook, jun
Washington, and W. Prosser, Newcastle-upon-Tyne Washington, and W,
-30th May 1882 . 25f3. Hivegs, A. J. Boult, London.-A communication
from E. Salomona and E. Armant-- 30 th May, 1882 . 2564. Barges, \&c., E. Moxon, Tunbridge Wells.-31st
May, 1882. 2569. Elicerric Lamps, T. E. Gatehouse and H. R.
Kempe, London. $-31 s t$ May, 1882 . 2586. Sogar Cane MinLs, E. Hunt, Glasgow.-Com.
from J. Thomson and J. Black.-1st June, 1882. from J. Thomson and J. Black, - 1 st June, 1882 .
2587. CATCHES for RATHET WHEELS, J. F. Davies,
Blackburn. Blackburn.-1st June, 1882 .
2589. ScREW BuTToNs, F. Wain.
2589. Screw Butrons, F. Wirth, Frankfort-on-the-
Main.-A communication from L. E. E. Hunrath.-
1st June, 1882. 1st June, , 1882.
2590. GLazINe, \&c., T. H. P. Dennis, Chelmsford.- 1 st
June, 1882 . 2597. STOPPREINGG BotrlLes, \&c., G. Falconnier, Switzer-
land.-1st June, 1882 . land.-1st June, 1882.
2598. LoadiNg and UNLOADING Grain, \&c., W. Cooper
and J. Holdsworth, Hull.-2nd June, 1882. and J. Holdsworth, Hull. - 2nd June, 1882 .
2599. MovLDs for CAsTING STEEL, A. Patrick, Glasgow.
-2nd June, 1882. 2601. Atraching to Purses Certain Appendages to
Prevent Loss of same, S . Cooke, London.-2nd Junee 188 L .
2602. SECONDAR C. T. Bright, London.- 2 nd Juine, 1882 . 2624. Water Gavges for Steam Boilers, H. Slater,
Derby. - 5 Jh June, 1882.
2634. Pleating Machines, C. G Hill, Nottin 5th. June, 1882 .
2691. Sroppiva Plogaring the Ends of Boiler
TUBEs, D. McMillan Govan
 from F. Krizik and L. Piette.-9th, June, 1882. .
2746. Brekch-Loading Fowling Pieces, L. Gye, London. -10thi June, 1882 .
2477 . RIGGIve of SALING Vessels, W. H. Hall, Kew.-
10th June, 1882 . 2863. Checking Apparatus, H. R. Landon and G. L.
Dezille, London. 17 th June, 1882 . 2997. OIL CAN, G. Cornut and A. Castelin, Paris.- 24 th
June, 1882. 3151. EwING MAchines, F. Wirth, Frankfort-on-the-
Main.-A communication from Junker and Ruh.4th July, 1882 .
3342. PRovoring Aliti Salrs from Sulpho Acids,
F. Wirth, Frankfort-on-the-Main. - Com. from
 3415. Separating Grain, P. V. Gelder, Sowerby
Bridge. 18 th July, 1882 .
3603. BUTTONS and Fasteners, C. Daggett, London.-
29th July, 1882. 29th July, 1882.
3776. Coke, \&"., J. Wood, Flockton, near Wakefield.

- 8 ©th August, 1882. -8th August, 1882.

3786. FURNACES, J. Imray, London.-A communication
from C. H. F. Russmann.-9th Auqust, 1882 . from C. H. F. Russmann.- 9 th August, 1882 . 3840. NEcG- TIEs, D. . T. Keymer and F. Theak, Wal-
brook. 11 th August, 1882 . brook,-11th August, 1882 .
3787. STTAM BorLLEs or Gexrators, J. Imray, Lon-
don. Com. from C. Russmann.-14th August, 1882 . don.-Com. from C. Russmann.-14th. Augus, 1882
3788. HYDROCARBO FURACES, J. Mundell
Gordon, Philadelphia, U.S.- $-22 n d$ August, 1882.

Patents Sealed.

(List of Letters Patent owhich passed the
29th September, 1882 .)
1322. Dryivg by Cold Proorss Printing on Tin, \&ice,

 Lake, London.-3rd April, 1882 .
 1884. India-rubber Coatte Fabrics, w. r. Lake,

 1671. Axpriingishing Firrs, P. Ambjorn, Paris. -6 th
16850. Biover Ahril, 1882.

 r, Berlin. $-12 t h$

 A86ril, Purifrivg Raw Spirits, \&c., F. M. Lyte, London. 1913. TRERTIIN OREs, A. M. Clarke, London,-21st 1941. CRyssaluised Hydrochlorate of Alumina, W

 Woor, de., E. Mansfield, London. 28 Sth April, 1882.
2220 ORMMAETIINQ RIBBoNs, A. H. Horsfall, Coventry. 2239. SkPAR 11 ThP2. May 1882. 2239. SERAMATITNe. SUGAR from Molasses, \&o., C
Scheibler, Berlin. $-11 t h$ May, 1882.

Clasgow,-30th May, 1882. C. . J. Erskine 2864. Buaching Corton Cloth, \&c., E. de Pass, Lon
don. -17 th June, 1882.

 184NoLine, dc., J. Erskine, Glasgow.-28th June
3112. Removing Surplus Brozze from Paper, \&c., J.

 1882. ${ }^{1822 . \text { Stand for Photographic Cameras, J. F. Plücker, }}$ 3293. Crip ARETTIE MAcHINE, W. R. Lake, London.- -11 th

(List o Letters Patent which passed the Great seal on
the 3rd October, 1882.) 1646. Bobsiss and Spoous, J. Spence, Shipley.-5th

 1661. Minst for Ghivisid Grain, w. R. Lake, London.
 Abrrili 1882. .

LLondon.-6th April, 1882. MACHNEs, D. P. Piot, ${ }_{1697}$ - th A April, 1882. H. T. Beamish, Queen'sTown.
 April, 1882 .
 1703. PRoosecriliss for OrDNaNCe, E. Palliser, London.

 1957. TIURNING, \&C., STEAAM SHips, A. W. L. Reddie,
 265. Dune 1882 IND

 List of Specifications published during the
week ending September 30th, 1882 .

** Specifications will be forwarded by post from
the Patent-office on receipt of the amount of price and postage. Sums exceeding 1s. must be remitted by
Post-ofice order, mado payabie at the Post-ofice 5 ,

ABSTRAOTS OF SPEOIFIOATIONS.

Prepared by ourselves expressly for The Enarvers at the
ofice of Her Majestys commissioners of Patents.

 Acchamber or cavity is iormed round the collar or reservoir for the turricant. Triough the tube or
collar opening sare made commuicating wiht the
interior of the reservoir and spindicate. The reservoin is interior of the reservoir and spindle. The reservoir is
secured to the spindle rail, and in the upper part is an opening to supply the lubricant, and in the lower part
s an opening to remove the same, such opening being usually closed by a screw plug.

 telephone transmitters, preferably sulph
metals, as molybdenum, lead, silver, de.
333. ELErTric CabLes, T. J. Handiford, London.-
23rd January, 1882.-(A communication from P. B. Delayb, Nee York.) $6 d$.
The cathi is conposed of a number of braided or 493. Preparation

1882.- (Provisional protection not allowed.) 2d. 2 .
The asbestos is soaked in a hot bath of black wax obtained from suitable hydrocarbons and then pressed
in heated moulds. Sulphur or other hardening mate-
rin may be introduced. ral may be introduced.
 Lanark. -3 rd February, 1882.6 . 6 .
The claims are in the construction of the armature y winding on a non-magnetic core iron wire rope with
nssulatedo conducting wire, driving the armature through a spring from the shaft carrying the commuator, and driving the armature and commutator attached to a spring frame carrying the intermediate year of the coupling.
387. Telephone Central Office System, A. M.
Cark, London. 11 the February, 1882.- (A com-
muncation from G. M. Hopkins, Brooklyn, Nero Yorkr.) $6 d$.
Rellates to the arrangement of switch board for a 689. Iaprovennents in Telepronene Regeeverrs, A. M. Clark, London.- 1 lith February, 1882.-(A , commu:
nication from G. Mopkins, Brooklyn, New York.) The object of this invention is to obtain increased
efficiency, compactness, and lightness in receiving officiency, compactness, and lighiness in receving
telephones. Acording to one modification a series of
Actan
 ng the soft tiron core of a contral magnet, and their other poles in cont tact witc the unders.t. The soft iron
diaphragm
near magnet core is in the centre of the case close to the
diaphragm, and at it its other end it has a broad thin anne, against which the poles of the magnets are
ressed by an elastic rubber ring confined between
hem them and the back of the case, to which the case is
attached by a screw. The ore is surrounded by a
and attached by a serew, The core is surrounded by a
fine wire helix, whose terminals are connected to 729. Foldivg Packiva CAsss, E. J. Billing, CheitenThis relates to improvements on patent No. No. 1969,
A.D. 1880 and consists, First, in making the hinges of A.D. 1880, and consists, First, in making the hinges of
sheet metal and fixing them outside the case, the middile part being cranked and the edges of the cease
notched to receive the orank; seocolly, in inside
fasteners to secure the sides of the case, and formed focteners to secure the sides of ' the case, and formed
by attaching a notched plate to one part, and a second by attaching a notched plate to one part, and a second
plate to interlock therewith on the other part;
Chirdly, in forming the ledge of the lid at each end and Fourthly, to machines for driving and clenching the hinges described.
740. Improvenents in Electric Lamps, \&c., A. M.
Clark, London. -15 .h February, 1882.- (A communiThis invention relates to a means of regulating the arc by making the feed of the carbons dependent on the fusion or softening of a stick of glass attached to each of the carbons, and which when the heat of the
arc has attained a certain altitude sotens, bends out
of the way, and allows the carbons to approach, they of the way, and allows the carbons to approach, they
being urged forward by cords and pulleys. The inbeing urged forward by cords and pulleys. The in-
ventor also claims the combination with his lamps of
narrow induced a dynamo machine having long narrow induced
magnets, and in which the inducing or field magnets magnets, and in which the
are placed in a shunt circuit.

communication from W. A. Shaw, Brooklyn, New
York.). bd. This invention consists of a telegraph instrument conductor having a vibrating section that is detached
and swings freely in the main circuit and in the field of the magnet without breaking the circuit, and
which is combined with a sounding device and operated by the action and re-action of a make-and-
break current through the vibrating section in the field of the magnets.
749. Inprovements in Telephonic Exchange Sys-
tems and Apriances, G. L. Anders, London.-16th February, 1882. 8d.
The inventor cembines a telephonic transmitter of the Hunning's type, a receiver, and a battery in a
portable case, capable of being held in the hand; the several apparatus being so arranged that the sound
waves shall act both on the receiver and transmitter during transmission, whereby a louder articulation is
obtained. The figure shows a longitudinal vertical obtained. The figure shows a longitudinal vertical
section of a combined transmitter, receiver, and
battery, lettered respectively A, B, and C. First
comes the Hunnings transmitter, with the poles $b b$
filles with comes with powidered carbon, and a thin diaphras ogm
fillet
between them and the mouth or ear piece. Behind the metal plate d is the receiver B, which may be an
ordinary electro-magnetic one; and behind this comes ordinary electro-magnetic one; and behind this comes
the battery C, consisting of a carbon plate h, sup-

ported on partition i, and covered with a salt of
mercury, and of a zinc plate l kept out of contact with mercury, and of a zinc plate l kept out of contact with
the salt of mercury by a spring m. When required
for use the push button shown makes the required contact. The inventor also claims improvements in
telephonic exchanges. 756. Machines for Producing Electric Cureents,
J. Brockie, Brixton. $16 t h$ February, 1882. 6 d . The armature has two iron rings mounted on a non40

magnetic boss, and transverse compound iron bars
fixed between the rings, upon which coils of insulated wire are wound. The figures show the construction. 760. Dynamo-electric or Electro-dynamo Machine.
C. W. Siemens, Westminsier- 16 th February 1882 .
$\frac{-1}{\text { - }}$ (communication from E. W. Siemens, Berlin.) A magnet formed as a segment of a hollow iron
cylinder revolves within a number of stationary coils

which have their wires connected successively to one
another and to an external circuit. Claim is also made the arrangement of parts. Fig. 1 shows an ond

view; Fig. 2 a longitudinal section; and Fig. 3 a
transverse section of the magnet.

 deck of the vessel; and Fourthly, in connecting the
tidal platform with the land by one or more travelling
platforms actuated by suitable machinery. plattorms actuated by suitable machinery

This consists, First, in stringing pianofortes, and
more especially bichord and trichord instruments, by endess strings pasing over antifriction pulley
adjustable in the rails ; and Secondly, in raising adjustable in the rails; and Secoldly, in raising or
lowering the pitch or tone of the instrument by
increasing or diminishing the distance between the win

Drying Wool and other Fibre, J. B., c. H.,
and W. Whiteley, LDockroood, near Hudderstield.-
2oth February, 1882. 8d. This relates to improverents on patent No. 2150 ,
A. D. 1874 , the object being to blow blasts of hot air
into and through A.D. 1874, the object being to blow blasts of hot air
into and through the fibres while passing through the
machine, so as to dry the same in a shorter time, and it consists in the use of heaters from which the hot
air is conveyed to the machine by means of a fan. 818. Reaping and Mowivg Machines, W. P. Thomp-
son, Liverpool. - 20th February, 1882 . - A communi-
cation from W. F. Cochrane and J. L. Mothershead, This relates especially to reaping and mowing
machines in which the shoe is coupled to the frame by a spherical joint, through a portion of which passes
a rotating shaft geared to the axle, and within which
a the rotation of the shaft is converted into a reciprocat-
ing movement, and it consists, First, in a system of
bevelled planetary gear obtained by placing on the rotating axle of the machine an extended sleeve, with conical bifurcated spider, the arms of which support
the spindles of the bevelled pinions, rotating each on its own axis, and about the axle in planes at an angle
thereto. The spider can be coupled to the axle by clutch. The pinions engage a stationary annular
wheel fixed inside a stationary outer casing enclosin the shaft, and whose periphery is adapted to engage a
pinion on the upper end of a crank shaft extending diagonally to the shoe for the purpose of driving the
cutter bar ; Secondly, in the combination with the
shoe shoe, connected by a spherical joint to the frame of an Thirdly, in lifting the cutter bar by one of the driving
wheels or by a treadle ; and Fourthly, in making the finger bar, so that it can be withdrawn from the cutter
bar endwise. 831. Electr

This describes various ways of using weiphts to
operate the carbons in arc lamps. 839. Ratchet Braces, S. Gardner, Adderbury.-21st This relates to a self-acting feed arrangement for pressure, acompressed by a nut or screw to the feed desired, causes frictional resistance between two surfaces, one of which
is stationary while the other is in connection with the
in is stationary while threaded sleever or is in condy whicetion receivives the
screw of the drill shaft. This frictional resistance is
she sleve withe the drill shaft, so that the screw will pro-
duce a feed, and then, when owing to this feed, the resistance between the screw and sleeve overcomes actions take place alternately through the whole Thenge which the ratchet is capable of working fent Conditions, A. G. V. Harcourt, Ond Differer -21 The instrument consists of two glass tubes standing
side by side, one of which is open at top but bent over top, the capacity of which is about four and a-half
times that of the tube. Both tubes extend into a hollow box at the bottom, and are connected by
flexible tubes to a reservoir containing mercury situated in the box. The reservoir has a loose top, and
is intended to be contracted by the application o pressure so as to drive the column of mercury into
the vertical tubes, such pressure being applied by a
screw screw passing to the outside. The pressure is regu-
lated until the mercury is at the same level in both
tubes, when a reading is takeni and represente the tubes, when a reading is taken and represents the
volume occupied at the actual atmosspheric pressure
and temperature by a mass of gas which, under standard conditions, occupies a volume 1000
855. Mouding Machinss, F. Wirth, Frankfort-on-
the-Main. 21 st Februarry, $1882 .-$ A Communication
from J. G. Sebold and F. Neft, Karlsruhe, Germany.

A revolving frame arranged on a wagon carries a
moulding-box with a moulding or pattern plate and a
covering frame. After sprinkling the box with covering frame. After sprinkling the box with
moulding sand, it is filled wwith casting sand from a
sand-box having on the fore part two vertical hinged wings, which can be set according to the aperture o
the moulding-box to be filled. The box when filled i scraped on the top, covered with a press-block, and
driven under a press where pressure is exerted from
above, suitable indicating mechanism being provide to show the amount of pressure exerted. The box in ind
then removed from prodide then removed from the press, the uper cover
removed, and the superfuous sand raked off, after
which the frame carrying it is revolved on the wagon which the frame carrying it is revolved on the wagon,
whilst the other half of the box on its wagon is being
operated upon in the same manner. 867. Carriages of Bobbin-net or Twist-lace Ma-
Chinerx, H. B. Payne, Nottingham. $-22 n d$ Febru-
ary, 1882. $6 d$. ary, 1882 .
This relates to means for covering or guiding the
threads over the bobbin at each particular point where
the warp or other threads are likely to catch, and thu preventing the bobbins from cutting out the threads
in their usual course of working; and it consists in
having the part of the spring for in position, which is opposite the point where the projects on each side of the surface of the carriage at
such point. The same means are used to cover or pro
tect the bobbin at the back tect the bobbin at the back part or other half of the
carriage, the spring being then placed at the back carriage, the spring being then placed at the back or
in anyother suitable position. A double verge is used
at the back part of the carriage for a certain distance, in comb.
872. Improvements in and Appertatning to Elec-
trodes or Contacts for Telegraphio InstruMENTs, \&., F. des Voux, London.- 23 d February,
1882.- (A communication from G. Cunning and
Clara This relates to improvements in the contacts of telegraph keys, \&c., and consists in making both con-
tatct points adjustable and in the shape of discs, the angles to each other, the discel being provided righ
platinum metal rims or tires of round triangular

Wheol C arrying coils D . The brushos E E collece
from F , and convey the current to the lamp of lamps
881.

This realatesto providing such machines with a guide
so disposed in rolation to the aprons that the two
 delivery rollers.

891. Provgrume ${ }^{7}$

The object is to construct projectiles of iron for teol, cated with asoter metal for the following pur

 the phovectile in the bore, and and a onsequenuenty steadie
hight

892. Desscantixa or Dintiva Sewas de. J. H
 or deaiceating by the employment of the heat of steam
under presesur
 Firmanis", the improvements rendering the sam cylinder has double ends and sides, and a series
plates are carried by the shaft, so as to increas
the the heating surface. The cylinder is caused t
revolve, and at each revolution, the hottest stean
being at the upper side, heats the inner being at the upper side, heats the inner wall to
its maximum degree, and the water of condensation
upon this side is upon this side is discharged at the same time by a
special arrangement. The central shaft is caused to revolve in the opposite direction, and s
to both the cylinder and to the shaft.
897. Steam Cooking Apparatus, J. Mitchell, New-
castle-upon-Tyne.-24th February, 1882.-(Not proSteam is generated in an outer case by coal or gas,
and within it are fitted cooking pans arranged so that a water space is left between them and the case.
898. ELectric Arc Lamps, J. Brockie, Brixton.This is an improvement
Brockie lamp, and combines with a periodic feed a
particular method of reversing the polarity of the particular method of reversing the polarity of the
readjusting magnet by means of the arrangement
shown in the figure, the parts used being a wheel W,

898]

n insulated boss B, a lifting pin, a contact lever and spring K. Other modifications are described, a
with a definite feed to one carbon, while the othe
is regulated by a solenoid, 900 G B
900. Gas Burner Apparatus,
Brockley. $-24 t h$ February, 1882,

This relates to a gas burner in which the flame ntirely enclosed, and all air passing to it to suppor heated by the products of combustion as they pass
away. The flame also may be directed downwards away. The flame also may be directed downwards,
and then allowed to curl upwards under the edge of deflector, so that the flame may be at the bottom o
the lamp, and consequently avoid any downwar shadow
906. Motor Apparatus, T. R. Lake, London. - - 2 Ath
February, $1882 .-$ (A communication from M. RosenA series of balls. act by gravity on a wheel fitted
with pookets, which receive the balls at about the loves of its centre shaft, and discharge them at the
rawised again to the revoution, when the weights ared position by an elevator
actuated by a spring motor, the spring of which
be automatically rewound by the machine itself. 911. BRICKS AND Tiles, J. Parker, Kilmarnock. -25 th
February, 1882. $6 d$. The object is to approximate the bricks more closely before being fired, but when dry enough for such peration, to operations whereby excess of materia
is removed from the upper and under sides, and inequalities which show themselves in the drying pro-
cess are corrected. The bricks are placed on a
travelling endless band which conveys them between ravelling endless band which conveys them between
uitable dressing surfaces consisting of wire card or other suitable roughened surfaces.
914. WATER-CLosETs, URINALS,
Strand. -25 th February, 1882. $6 d$.
This relates to valve closets, urinals, and slop sinks,
and has partly for its object to prevent matter rising
up in the valve box of a valve closet and entering trap up in the valve box of a valve closet and entering trap
of the overflow. For this purpose the overflow trap is Conne overflow. For this purpose the overflow trap is
coint above the level of the of the vasive box at a
ounch vent pip point above the level of the basin, such vent pipe
being open to the atmosphere, or where a vent pipe is not used, the overflow trap is connected at a point
above the valve with a horn in conneetion with the
valve box. So as to screen the upper edge of the valve valve box. So as to screen the uper edge of the vale
and prevent anything lodging thereon, the surface of
the arm carrying the disc is raised at the part next and prevent anything didg ing thereren, the surface of
the arm carrying the idse is aised at the part next
the hinge, so as to bring it fusk with the surface of
the valve, while its forward edge fits closely up to the the valve, while its forward edge fits closely up to the
upper edge of the periphery of the valve. To ensure
a thorough flushing of the overfluw trap, and secure
its water seal without depending solely on the water its water seal without depending solely on the water
rising in the basin, the inlet or flushing arm of the
basin is connected directly with the overflow arm by passage in the basin itself.
918. Ventilators, H. J. Haddan Kensington.- 25 th
Februa $y, 1882$.- (A communication from P. Mihan,

Massachusetts, U.S.) $6 d$.
This consists in part of a hith a mouth on one
 it top to the lower part of the partition, and the other
hinged to the partition on a level with the top of the mouth. The ventilator is principally for use on ship-
board. 926. Omnibuses, \&c., A. G. Margetson and W. S. Hek, The chief objects are to set the body lower than
usual for convenience of getting in and out, combined usual for convenience of getting in and out, combined
with lighter draught for the horses by the front wheels withlighter draught for the horses by the front wheel
at same time being higher than usual ; fitting the springs so as to work more freely; an arrangement o
pearing beneath to render the steering more easy and gearing beneath to render the steering more easy and
to make the vehicle answer more quickly in turning ccommodation for passengers riding on top. Th ends of the springs carry rollers on which the body of
the vehicle rests. The axles are secured to the vehicle by a central pin and have rods or chains working vercoss
each other and connecting the front and hind axles each other and connecting the front and hind axles.
The top seats face the direction in which the vehicle
travels and the passages to reach them are on either travels and the
side thereof.
933. Compass Correctors,
The dith february, 1882 .

The dial or inner central movable dumb card is
ormed with an outer movable graduated ring, and both the csrd and ring work in an outer gimballed weighted ring with the words "ship's head" marked
with an index line. By a central serew the card and
the and he ring can be. fixed in position relatively to the
himballed ring and to each other. The dumb card is marked to quarter points only; the points of the com
pass are placed on opposite sides in reverse position to ordinary cards, that is, E is where W is, and so on.
The movable ring is graduated along the inner edge from north to 180 deg. both ways, and the outer edge from the line of the 180 deg. 30 deg. or 40 deg. right
ndd left to indicate easterly and westerly variation.
At 90 deg. on the easterly variation side P. M. is marked At 90 deg. on the easterly variation side P. M. is marked
nd on the opposite side A. M. In. the centre is
nounted a movable sight vane with a slit in the upright part and a fine wire stretched between it and
the point of the vane. The sight has a black centr line on white ground in continuat
reaching to the point of the sight.
937. Corrugating Machines, V. B. Daelen, Berlin.This relates to a machine by which corrugations are
formed in plates and tubes by rolling, or in plates b pressing or stamping, and it consists, in making th pressing dies movable, and combining with them suit-
able devices to cause them to approach each other while the rices to cause them to approach each other
wies are gradually brought close
940. Taps for Beer, \&c., J. E. Chambers, Smethwick. A socket with a female screw is secured inside the barrel and receives a screwed plug or valve perforated
to allow the fluid to pass. The outer end of the plug
has recesses to receive projections on the end of the has recesses to receive projections on the end of the
stem of the tap, which is also screwed to fit the
socket, so that as the tap is screwed in the plug is
screwed out of the opposite end and so opens the fluid 942. Hair CLAsPs, F. L. R. Kop Kopp, Hamburg.-27th
February, 1882.-(Complete.) 4d., This relates to forming hair clasps with a double
bend so as to render them elastic and with straight or
curved teeth. 944. Packing Receptacles and Glands for Piston
Rod Packinge, H. J. Haddan, Kensington.-27th Rod Packivgs, H. J. Haddan, Kensington.- 27 the
February, 1882 .-(A communication from 0. Lonze,
Paris.) $4 d$.
The object is to render an automatic packing appli-
able to piston rods having both ends larger than the

alves, and holding it in place by the rings A , the cap csecuring it in position. M is the follower, also in two
pieces held together by ring X at one end, and by
passing into the packing receptacle at the other. F is
a bushing ring in two piocos held togethor by ring G,
and
and i sa
 reeeptacele, cuusing them to press on the rod and form 948. Lantris asin Bunsres, se., P. Molloy, Limerick. The lamp can bo used at any distanco from tho through a s.aitablo tube as it is consumed. Air is
domitted to the burner throunh inletain th in arranged to cause a a unrent of air to pass round the

 Mada-shaped folder, and the hatter pates forming
bearings oro two rollers, which are geared with eench

 attemptad to file throuph the bat, the file will como
in contact with the round metal and cause it to

 ncausing the hent generated to bo absorbed ine erpal
ation of the moisture present with the materals
 rrmly through them. Tho evaporation is also pro-
hoted by crating a partial vacuum.

 crangement oos

for the water jet, placed in opposite directions, and
through either of which the water can be directed. A ater-spray apparatus H is combined with the venti nd purifying the air, the water passing from the turbine casing into the spray apparatus by funnel 0 .
disinfecting apparatus $\$$ may also be secured to
shaft G, and consists of a perforated trough containing sponge, to which a disinfecting fluid is supplied 959. Paper Wrappers For Post Purposes, T.
Singleton, Darven. - 28 th February, 1882.- (Not proThe wrappers are made of taper form, sn as to
effect an economy of material, and in them holes are frmed, so that the stamp may be attached partly to
the wrapper and partly to the enclosure, which is thus the wrapper a.
961. Machingry for Capsoling Bottles, F. W. W.
Boldt and P. C. Vogel, Hamburg.-28th February, This relates to machines in which the capsules
are compressed by rubber jaws, and the objects are,
First, to communicate a sliding motion in the irrection from the mouth to the mottom of the bottle to the compressing jaws; and Secondly, to
facilitate the driving of the different parts of the
machine. 962. Supports for Rowlocks of Outrigagr Boats,
J. H. Clasper, Oxford.-28th February, 1882.-(Not proceeded with.) $2 d$.
This relates to supporting the rowlock and the pin
which it swivels, and it consists in placing at the on which it swivels, and it consists in placing at the
back of one or the other, and nearly mid way between
the upper and lower portion on which the rowlock
swivels, a supporting web leading to the junction of swivels, a
the stays.
964. Str
34. Steerrng Surps, \&c., T. F. Walker, Birmingham.
-28th February, 1882.-(A communication from J. This relates to improvements to steering apparatus rudder is that of steam or hydraulic apparatus instead of manual force, and it consists in providing means
for causing the steersman to experience the "sensa-
tion" which in hand-steering gear is conveyed to him according to the position the rudder is brought to, and
this is effected acording to one arrangement by
causing a cord, to which a weight is suspended, to overwind itself on a drum on the axle of the small
stering wheel, and thus offer increased resistance to
the operation of the 987. SToves For Warming Rooms, \&c., F. Wirth,
Frankfort-on-the-Main. -28 F Fbruary, 1882 . - A
communication communication from E. Schonetberg, Frankfort-on-
the-Main.) (Not proceeded vith.) 2d.
The stove consists of a pedestal with a cosely fitting
or and a cinder box, a fire receptacle with a removThe stove consists of a pedestal with a closely fitting
door and a cinder box, a fire receptacle with a remov-
able grating at its lower part, an outside casing with plate arranged between an the firet pipe, and a spiral
outer casing,

 together ; and Secondly, in the application to such
springs of stops, screws, means to release the spring acting upon the hinge.
 SITIOUS, ALUMINOUS, AND OTHER SUBSTANCES,
©..., J. P. Kagenbusch, Lambeth.- $28 t h$ February,
1882.-(Not proceeded with.) $2 d$. The above substances are pulverised, and then roasted with charcoal and thrown whilst red hot into
water. They are then dried, and when mixed with suitable flluxes containing soda ash or potash, placed
in crucibles and heated to white heat. When the smelting is finished zinc and copper are added and
the mass stirred, the object being to cause a development of electricity, which facilitates a further and
complete separation of the metals from the silica, complete separation of the meta
alumina, and other earthy matters
971. Ratchet Braces, February, 1882 . 6d.
This relates to ratchet braces in which the drill is
automatically fed by a differential arrangement of gearing, and it consists in
of the parts of such braces.
972. Cutting Screw Threads on Tubes, \&c., J.
Whitham, near Leeds.-28th February, 1882 .-(Not proceeded with.) 22 .
A boss or sleeve is fixed in the desired position on
bube the tube, and at one end has a guide screw of the same
pitch as the screw required. On the guide screw is a
nut from which an arm extends, and is fitted with a nut from which an arm extends, and is fitted with a
hinged tool box free to slide thereon. The nut is
turned by a lever fitted to the arm, and also regulates hinged tool box
turned by a lever
the depth of cut.
973. Compensating Apparatus for Railway Signal
Wires, F F. W. and W. W. Brierley, Harroov-road.A "floating"" wheel has attached to it a chain con-
nected on one side with the signal wire, and on the
other with a weight, a locking device being emplo other with a weight, a locking device being employed,
the action of which is governed by a curved and in-
.clined slot, so as to lock the wheel and cause it when .clined slot, so as to lock the wh
revolved to pull off the signal.
974. FANs, C. Cockson, Wigan.-28th February, 1882. The inventor claims the manufacture and use of
fans of similar character to that known as the Guibal, provided with close fitting casings and vanes dimi976. Machines For Driling Rocks, \&c., W. R.
Lake, London. $-28 t h$ February, 1882. (A communication from A. Skedlock, Nee York.) 8d.
This invention relates to that class of rock-drilling
machines designed to be operated by hand power and machines designed to be operated by hand power, and
comprises certain improvements in the supporting
legs, whereby the machine may be readily adjusted in legs, whereby the machine may be readily adjusted in
working position; ;also mprovementin the construc-
tion and arrangement of the striking hammer and its

actuating spring, whereby the hammer has a direct
linear movement to and from the drill-holder, and the spring is easily removed to be substituted by a
stronger or weaker one, as the quality of the rock operated upon may demand, also an an itmproved device
for actuating the drill to and from the bottom of the hole, and partly rotating it between each succossive blow, so constructed as to obviate the necessity of
using spring pawls or springs, and to make the said using spring pawls or springs, and to make the said
movements of the drill perfectly positive also an
improved feeding device for carrying the drill forward improved feeding device for cearrying the drill forward as fast as it performs its work. The drawing shows a
vertical longitudinal central section of a drilling
machine constructed according to the invention 977. Staple for Use with a Hasp, W. R. Lake. Lon-
non.- 28 th February, 1882 . - (A communication
from G. Smith, Chicago.)
Gd. Tne long antion one shorists legsentially in a staple having
threaded long leg being screwthreaded and the short one provided with a foot to
rest on the surfaceof the part to which the staple is
applied, the said foot being provided with an aperture 978. Manveacture of Gas, TV. R. Lake, London.-
28th. February, 1882.-(A communication from T. B. Fogarty, New York.) Sd.
The invention relates to the manufacture of heatin and illuminating gas through the decomomposition of
steam by incandescent carbon, and to apparatus used
in such manufacture 980. Moulding Bricks, \&c., T. Le Poidevin, Guernsey.

- 28th February, 1882. Gd. The invention consists. essentially in the combina-
tion with a pug mill of a series of moulds supported tion with a pug mill of a series of moulds supported
on travelling platforms or trucks running on a railway
beneath the purg mill and reciving tho beneath the pug mill and receiving the clay direct
therefrom, the train and carriages and moulds being
made to travel along as fast as the moulds are filled by gear from the pug mill itself or otherwise. 981. Treating Dynamite to Remove its Liablityy
to Explosion, de., W. Hovitt, Ilford. $-28 t h$ FebTen parts india-rubber are dissolved in a suitable
solvent, and ninety parts dynamite are then mixed
with it in an earthen with it in an earthen ware vessel, the mass being con-
stantly agitater. The plastic mass is then filled into
a case of india-rubber, and a fuse inserted. 982. Protectivi Seats from Damp, Dust, \&c., C. P. This consists in coveroring seats with sheth shetts of metal
or other rigid material, which are capable of being
turned out of the way when not required. 988. Application of
Encines, B. Asplen,
Londinding Mills,
(Not Tho proceeded with.) 2 d. Tr me object is the application of grinding, erushing,
engortar mills toportable, semi-portable, or stationary
thines of the ordinary locomotive type by placing the pan on the under side of the booiler and by placing
the rollers on an axis arranged preferably transversely

989. Locking Device for Vessels Containing
Mirk, dc., C. Bolle, Berlin. - Ist March, 1882 . 6 .
A handle or bridge piece is, by means of a bolt or A handle or bridge, piece is, by means of a bolt or
equivalent, jointed to a hinge piece on the upper part
of the can or other vessel. The bridge piece is rigidly of the can or other vessel. The brige piece is rigidi
attached to the cone-shaped lid of the can by soldering
or otherwise, so that when the bridge piece is or otherwise, so that when the bridge piece is rotated
around the aforesaid bolt the lid will turn together
therewith, and thus the can may be opened or closed. 991. Suspending the Windows of Sashes of Rail-
WAy Carrages, \&cc., G. Haycraft, Lyme Regis.WAY Carriages, \&c., G. Haycraft, Lyme Regis.-
1st March, 1882 - (Not troceeded joith.) $2 d$.
This relates to racks fixed in the grooves of the door frame in which the window slides, one at either side, having inclined teeth, preferably rounded at the
points, in combination with steel springs affixed to the edges of the window sash, said springs having
curved or rounded ends, which project from the sash
and bear against the racks 993
990. Pocket Hanger for Hats And Coats, A. M.
Cark, London.- 1 st March, 1882.- (A communicaThe hat or coat-holder consists of two parellel plates, connected at each end by a rivet, and two
hooks pivotted on said rivets and turned in opposite
directions 997. Manuracture of Horseshoe Nails, I. Briggs,
Middlesbrough, Mass., U.S., and J. W. Booth, Bir mingham. 1 st March, 1882. sd.
This relates to improvements in the cutting and sharsing toe nails, and in the appliances connected with the cutting and shaping tools.
991. Ring Spinning and Doubling Frames, S. Brooks,
Manchester, and A. Holden, Gorton.-2nd March,

This consists partly in arrangements by whic mechanism connected with the copping motion will, or spring to traverse the driving belt from the fast to mee loase pulley, and will act upon and put in gea
mechism for lifting the ratchet pawl of the copping
motion, and winding it back ready for a fresh set 999. Fastening Scaffold Poles, \&c., G. Willon,
Nevo Cross.-2nd March, 1882.-(Not proceded with.) The instrument consists of three main parts, viz.,
two two parts hinged or connected together by a slotted o
yielding point, the one part being of a shape to fit
firmly a arainst the pole or or firmly against the pole or other artucle, and the othe
being preferably rounded at its outer side. The third part is a wedge, which is to be driven between the 1000. Process for Rapidly Etching and Matting
Patterns, Letters, dce., on Glass, B C. Hancock, Worcester:- 2 nd March, 1882 .-(A communication
from Dr. Wrine, Berrin.) $4 \vec{d}$. The inventor claims in vitreous etching the direct
result of a "matted" pattern by the corrosion of result of a'
fluoric acid.
1001. Saddle por Velocipedes, S. Fry, Hampstead.-
2nd Narch, 1882. - (Not proceded with.) $2 d$. The saddle is a double one, composed of two com-
plete saddles attached together, and the front seat is plete saddles
the smaller.
1003. Fish Joints for Rails, A. Davy, Sheffield. This consists in constructing fish joints for rails with
the fish plates extended some distance below the rail, where they are made to bear against each other as a
fulerum, while they are caused by a bolt or bolts fulcrum, while they are caused by a boit or bolts pass-
ing through them immediately below the bottom head
or flange of the rails, to grip the latter above and or flange of the rails, to grip the latter above and
below such bottom head or fange and beneath the
upper head or on the upper part of the web. 1009. Construction or Ships, H. H. Lake, London.
2nd March, 1882.-(A communication from A. P. Bliven, Neve York.). 6 . 6 .
and the main deck forming the three sides of a triangle 1010. Ratuways, G. M. Minchin and L. H. Despeissis,
Staines.-2nd March, 1888.-(Not proceeded with.)

This relates to a means of securing a direct communication by electricity between two or more trains on
a line of raillway where there is danger of collision
between them, owing to their distance apart being between them, owning to their distance apart being
within limits arbitrarily fixed. 1011. Rotary Enaings, A. M. Clark, London.-2nd
March, 1882. - (A communication from the Blastic March, 1882.- (A communication from the Blastic
Wheel and Manufacturing Company, Virginia, U.S.) This relates, First, to the construction of segmental
exhaust valves and their combination with a cam, xhaust valves and eneir combination with a cam,
whereby thir proper action is ensured when the
engine is running rapidy under low pressure Secondly, to the combination of the piston with

disc having solid tangential projections between Which the piston is secured, and to an improved
piston packing; and Thirdyl, to means for shifting
the reverse valve in reversing the engine. The casing A is in two pieces, bolted together, and each forme with an annular recess X to receive the piston D,
which is connected by a disc to the driving shaft,
and a smaller annular recess Y to receive packing. Ports are formed in the disc, and issue through tangen
tial projections enclosing the ends of the piston on opposite sides thereof, and communicate with the
interior of shaft E. The shell is formed with valve
chambers chambers G at opposite points communicating with
the steam chamber, and provided with exhaust opening H. In each chamber is an oscillating valve
L actuated by levers N operated by a cam. A reversing valve over the ports in ths disc, and also with
the valve
plug valves M in the valve chambers, 1012. Machine for Labeliung Tins, Boxes, dce., G.
J. Hutchings, Nevo Cross.-2nd March, 1882., The macechine consists in the combination with an in-
clined bed of apparatus for performing in successio clined bed of apparatus for performing in succession
during the rolling of the tin down this incline the
several operations of gumming the circumference of
the tin or box, applying the label to the gummed surface, gumming down the overlapping edge of the label,
and smoothing the label so applied around the tin or 1026. Gas Engines, J. Niel, Millwall.-3rd March, The invention consists, according to one arrange ment, as shown in the drawing, in the application and
use of two cylinders A and B, one the smaller cylinder A, in which the explosion takes place, and the othe sion after being heated by the products of the com-
bustion blown out from the small cylinder A. The pistons of both the cylinders A and B are connecte at the part where the ignition is made, is placed a
"regenerator," or heat accumulator, C , made of thin regenerator," or heat accumulator, C , made of thin
metal sheets or of a series of tubes or wires, or other metal sheets or of a series of tubes or wires, or other
suitable eonductor of heat, arranged so as to present a
great surface, which, whilst allowing the air and gases treat surface, which, whilsto several parts. At the
to pass divides them into
moment of ignition a portion of the heat produced moment of ignition a portrator C, therereby stoadying
is absorbed by the regenerater
the pressure of the gases during the completion of the stroke of the piston
the small piston D is the made between the cylinders A and B by means o
is me slide valve E, worked by excentric rod F from the

crank shaft G of the engine, the piston H of the large ward stroke. Previous to this, however, the large
that same moment commencing its out piston H during its inward stroke has drawn in air on
its outward side through the air or shifting valve I placed at the outer end of the large cylinder B, and
 B is forced by the large piston H during its outer
troke through the piston D of the small cylinder A into the latter at its inner or ignition end.
1028. Indicating and Registering Apparatus for
Pumping Engines, H. Davey, near Leeds. $-3 r d$ March, 1882.6 d .
This relates to Trokes of a pumpinging engine ware indicated, the quantity of water pumped by it in a given time is regis
tered, and the level of water in the well is shown. 1031. Vacuum Pumps for Exhausting Bulbs of
Electic Lamps, \&u., F. Wrigh and M. W. W. Mackie, London.- 3 rd March, 1882 . $6 d$.
This relatas to
bulbs of electric lampum pump for exhausting the rarefaction of air is required, the object being to darefaction of air is required, the object being to
provide in simple and compact form for utilising the
barometric column of mercury as a seal for the outlet of the discharged air,
O32. Apparatus For Atding Persons in Swim-
minge C. D. Abel, London.- 3 rd March, $1882 .-(A)$
communication from J. A. Andre, Esens, Germand
This relates to apparatus whereby the body of the wimmer is sustained above water, while at the same time means are provided for effecting his propulsion in
addition to that afforded by the usual swimming
motion of his limbs notion of his limbs.
1100. Piavorortes, \&c., J. Ainsworth, Brinscall. -7 th
March, 1882. 4 d. This relates to apparatus for connecting pedals to
the keys of pianofortes and other like instruments,
so that the keys may be worked by the feet of the oo that the keys may be worked by the feet of the
performer. 1300. Elevators or Lifts, P. M. Justice, London.-
-1 thth March, 1882 . - A communication from G. C . Tevcksbury, Lynn, Mass., U.S.) 10 d.
This relates to improvements in elevators or lifts goods and merchandise from one floor or story of a building to another; and the object is to provide such
an elevator with devices whereby the car may be started by an operator at any point from any other tion without requiring the presence of an attendant
on such car 1879. Manufacture of Saccharine Compounds, W.
R. Lake, London. $-19 t h$ April, 1882.- (A communicaThe chief object is to produce dry saccharine compounds of grape sugar or glucose and cane sugar or
beet sugar, in which compound sthe sticky or adhesive 1970. Nut Locks, J. T. King, Liverpool.-26th April, The devices used are a leaf-plate or locking dog, nuts, and a wire to which the leaf-plate or dog is
hinged. The ends of said wire are preferably bent around
2563. Tmprovements in Electric Lamps, \&e., W.
R. Lake, London. $-31 s t$ May, 1882.- (A communication from J. J. Wood, Brooklyn, New York.) Gd.
This relates to an arc lamp with an improved means of cutting it out of circuit when faulty, the cut-off being actuated by a shunt magnet in the magnet
regulating the carbon feed, and combined with it,
instead of separate as heretofore. The safety switch or
. instead of separate as heretofore. The safety switch or
 opin, and an electro-magnet circuited in such relation
with the arc that an abnormal length of arc will cause the armature of the magnet to trip the trigger-latch,
release the switch, and allow it to be closed by the spring, and thereby permanently throw the lamp out witch for throwing the lamp out of circuit at will. magnet in a shunt circuit, and the arc is formed by an electro-magnet in the main circuit, the upper carbon
being attached to a rack gearing into a train of wheels 2570. Improvements in Electric Lamps, de., W. R. Lake, London.- 11 st May, May, 1882 - (A A communnication
from J. . Wod, Brooklyn, Neor York.) 6 d .
This relates to duplex or double carbon are lamps,
and the object is to provide apparatus so that only
one carbon shall be in action at one time, and the
strain of one only ber train of one only borne by the regulating mechanism, constantly engaged with the regulating mechanism, but one is in "idle" engagement and the other in
active engagement, the weight of the one which holds active engagement, the weight of the one which holds
the second carbon being supported by a latch, while the second carbon being supported by a latch, while
the weight of the active carbon is borne by the regulating mechanism. When the latter is consumed, its terminal movement will trip the latch and allow the
 mechanism by means of a spindle, to which each is
engaged by clutches which bite in, one direction and
slip in another. The inventor claims the above and ip in another.
2594. Ammuntion Boxes or Cases for Machine
Guns, de , W. R. Lake, London -lst June Guns, \&c, W. . R. Lake, London.- 1 st June, 1882 --
(A communication from E. G. Parkhust, Hartford, The box is formed of pasteboard, the inner part to recive the cartridges being of ordinary construction,
and fitted with an outer case formed of a strip of card-
nit oard bent to the required form and placed over the
inner part and secured in position by a strip of paper pasted over its edges.

SELEOTED AMERICAN PATENTS.

rom the United States' Patent office official Gazelte.
264,150. Process of Spinning Sheet Metal, Henry
Grom, Nevark, N. J.-Filed August 3rd, 1882. Brief.- - Gets a pattern by turning it out of wood or
metal, or by taking any article that has been spun in or more pieces, From thi
264.150
 form is cast. Spins the metal over this forms in the
usual way. Then heats in an oven or a metal bath to
melt out the soft metal form.
264,230. Commutator for Dynamo-blectric M-
CHINES, George W. Beardslee, Brooklyn, N. Y.-Filed
May $29 t h$, May 29th, 1882 .
Claim.-(1) The combination of a commutator wheel Al, having insulated metallic segments, with a com-
mutator wheel, A, having segments secured to or

forming parts of discs, provided with pins E, adapted wheel A1. (2) The combination of a commutator fingers E 1 , with a commutator wheel, A , having seg ments secured to or forming parts of disse, provided
with pins E , to come into contact with the fingers EI .

CONTENTS.
The Engineme, October 6th, 1882.
$\underset{\text { The Styrian Exoursion of the Iron and Steel Page }}{\text { Institute }}$

 ON sometve Current Meter Observations on the Thames ${ }^{\text {RALWAY MATERS }}$
Ratlway Mat
Notes and M
MIscellanka
THE HIGHGAT
The Higheate Hilut cable Trämway
Harker's Compound Engine
Fans at Reading $\ddot{\text { Hile }}$.̈. (̈liustrate
Hathorn's Rock
Rampton's Hydraulic Tunneliling Michinery LeTters to The Editor-
WISWALL's TIUTING Weir
Wiswall's Tilting Weir..
The mprovement of Permanent Way
Rallway Accidents. $\quad \ddot{\text { Rointing Locomotive Inside Cylinders }}$
Fan Trials at Rkading
a Phase of Foreign Co
Griffith's Screw Propelemer Shield Therobem in Hydradlics (̈llustrated.) The Ferrantici Machine Improvement of Perme.antöay
The Munich Electric Exhibition
The Word Electric..
Production of Coal..
The British Navy
 he iron, Coal, and General Trades of Bir MINGHAM, WOLVERHAMP
NOTES FROM LANCASHIRE
otes from the north of Eingland
Notes from Sheffield
Notes from Scotland
otes from Wales and adjoining Counties
 (Illust
PRAR
Ale
ARAGRAPHS-
Electric Light at Hull
Electricity and Torpe

Engineers
Naval Engin
The British Association ..

