THE SMELITING OF SPATHIC ORES IN STYRIA No. II.
The newest and most improved blast furnace plant in the Vordernberg district is that belonging to Prince Schwarzenberg, at Trofojach, which was entirely rebuilt in the year 1871. It stands about half-way between
V Vordernberg and Leoben, in a more open situation than any of the upper furnaces, so that all the materials charged have to be lifted through the full height of the furnace, As in the works previously noticed, the ore is calcined by
the waste gas of the furnace in Fillafer's patent kilns, of the waste gas of the furnace in Fillafers patent kilns, of which there are ten, arranged in a rectangular block, 13.5
metres long by 4.25 metres broad. Each kiln has an internal capacity for 2.2 tons of ore, and is twice filled during the twenty-four hours, giving 3 tons of roasted from is regulated by the addition of more or less small ore; but when large ore alone is used the production is careful provision against loss of heat by radiation, the stack proper being surrounded by an outer casing at a stack proper being surrounded The intermediate annular space is closed both above and below, and encloses a large volume of air, which, being stagnant, remains at a nearly uniform temperature of about 60 deg. Cent., the utmos The outer casing forms an imposing-looking tower of masonry, the lower part being square, 11 metres in the side and 5.6 metres high, with a siight taper upwards,
each of the four sides being pierced by a large roundheaded tuyere arch. The upper part is octagonal, also tapering, in a height of 11 metres, from 10 metres in platform. The octagonal wall is continued for a short platform. The octagonal wall is continued for a short the tunnel head is roofed-in, forming a shelter for the men working at the furnace top against the inclement weather prevalent in winter time.
The furnace stack, which is scarcely more than one-third wo walls. The outer one, of common bricks hooped with iron rings, is carried upon six cast iron columns, of the tunnel-head chimney above the charging platform. The inner stack stands entirely free within the outer one. It is built of fire-brick. The interior is nearly cylindrical, eylindrical portion at the boshes. The leading dimensions are-Height, total, $15 \cdot 900$ metres ; height of lower cone $4 \cdot 109$ metres ; height of cylindrical boshes, $2 \cdot 184$ metres; height of upper conical stack, 5.373 metres ; diameter of
hearth, 1.580 metres ; diameter of boshes, 2.580 metres ; hearth, $1 \cdot 580$ metres; diameter of boshes, 2.580 metres
diameter of throat, $1 \cdot 100$ metres ; cubic volume of stack 58 cubic metres.
Experience has shown that there is no considerable wear in the stack of these furnaces, except in the lower part near the hearth, which requires renewal after five or six
years of continual working. Iron supporting columns are herefore used, as in the outer casing; but they are not so tall, leaving only a height of 2 metres of hearth proper, that can be rebuilt when necessary. The tuyere plane is
530 mm . above the hearth bottom. There are six bronze tuyeres, the two lower ones blowing into the centre, while the axes of the two middle ones are laid 80 mm ., and those of the two front ones 150 mm ., off the centre line. The blast nozzles vary, according to circumstances, from 46 mm . to
70 mm , in aperture. The gas trap is formed by a sheet 70 mm . in aperture. The gas trap is formed by a sheet
iron cylinder, 1.10 metres diameter and 2.2 metres deep, ron cylinder, $1 \cdot 10$ metres diameter and $2 \cdot 2$ metres deep,
suspended in the throat, which is correspondingly enlarged to form a ring flue. The opening of the gas flue, which is 948 mm . diameter, is 1.3 metres below the furnace top, and is fitted with a balanced valve for shutting off the gas when it becomes necessary to clean the flue, at which time the gas is allowed to pass into the air by an opposite passage
connected with a chimney. At a depth equal to half the connected with a chimney. At a depth equal to half the
height of the furnace the gas main passes into a cylinder of $\cdot 58$ metres diameter, terminating below by a funnel and pipe closed by a water joint, where the dust carried over is
deposited, and the purified gas is delivered by a lateral tube to the conduit leading it to the kilns and stoves. The latter are a modified form of Gjers' well-known pattern, latter are a modified form of Gjers' well-known pattern, 106 mm ., giving a 55 metres. The heat attainable is 555 deg. Cent.; but it is not found desirable to go above 340 deg., owing to the eady fusibility of the ore, which is liable to cause obstruc tion at the tuyeres if the blast is too highly heated. The blowing engine, driven by an overshot wheel of about 80-horse power, has two horizontal cylinders, of $1 \cdot 264 \mathrm{~m}$.
diameter and 1.180 m . stroke, the suction valves, which work against counter springs, being placed in the cylinder cones, giving a minimum clearance space. The usual details are very similar to those previously given for furnace No. 14, the materials smelted being calcined spathic ore of about 46 per cent. produce, fluxed when necessary with silicious clay, and puddling and heating furnace cinder. caustic lime is added, which is burnt in the ordinary roasting kilns used for the ore, and charged hot. The fuel used is exclusively charcoal, about three-quarters of it being from soft-coniferous-wood, and one-quarter
from hard wood, principally beech. The former is derived from the forests of Upper Styria, while the latter is drawn from a much wider area, including Southern Styria, soft coal weighs 140 kg . and the hard 230 kg . per cubic metre. The fuel is charged by two wagons at a time, of 0.75 cubic metre capacity, or 1.5 metres per charge, and ther of 750 kg . The ore wagons have conical drop bottoms, which distribute the contents towards the circumference of the furnace, while the charcoal is, if necessary, levelled by
hand. The number of charges passed through the furnace is, under ordinary circumstances, ninety in twenty-four
hours; but with hard driving the number may be in-
creased to 125 -the former corresponding to a production of 30 tons and the latter of 40 tons per day. Under the mout 55 per cent, or 13 cwt per ton of metal produce about 65 per cent., 13 cwt. per ton of metal produced forming a plate about 2 m . square and 57 mm . thick, weighing up to 50 cwt . A piece of solid metal is placed upright in the bed before tapping, forming a handle to when solidified. When cold it is broken up by hand, under a falling weight, into pieces about a foot square, for the refining and puddling furnaces, when the make is, as is usually the case, white refining iron. Occasionally, however, a close, dark gray metal, suited for specially however, a close, dark gray metal, suited for chilled castings, is made.
strong machinery and
The continually increasing difficulty of procuring charcoal in sufficient quantity to meet the demands of the larger modern furnaces has, for many years past, given mineral experiments on the partiase coke has been brough ften from great distances, and it has been sourht to us the local lignites in admixture with charcoal. The furnace at Trofojach was worked for a short time in the spring of 1875 with a mixture of equal parts of Leoben lignite and charcoal, but the result does not seem to have been sufficiently favourable to allow of the method being permanently adopted. Similar trials have been made at different times at Prävali and Zeltweg, but the success does no appear to have been more than an experimental one. At Prävali, where mixed coke and lignite were used, the quantities of equivalent calorific values of the different parts were determined to be 100 kilog. of coke from
Ostrau, in Moravia; 125 kilog. of coke from Fünfkirchen, Hungary; 125 kilog. of lignite from Liescha; the latter material being much inferior in quality to the lignite of Leoben.
The largest experiment in the way of substituting chwechor vegetable fuel, has been made at Klein, Schwechat, near Vienna, where two large blast furnaces for smelting the spathic ore of Eisenerz with coke were erected in 1873 by the Innerberg Haupt Gewerkschaft, and how have now passed, with the other property of that chaft. present Valleys, being situated on the edge of the dreary alluvia plain extending eastwards into Hungary, and constructed onthe Buttgenbach system, where it is sought to preserve the upper part of the furnace by exposing it as much as possible to the air, and the region of the hearth, by the introduction of hollow iron boxes and blind tuyeres which
are kept cool by a continual circulation of water. The furare kept cool by a continual circulation of water. The furnaces are of 285 cubic metres capacity, 19 metres total height,
2.5 metres in diameter at the hearth, 5.70 metres in the boshes, and 3.85 metres at the throat, are blown by four tuyeres, and work with closed hearths and Liirmann slag twyers
As originally constructed there were eight rings of water boxes, of the same shape as the bricks, built into the region between the hearth and the boshes, but
in the last rebuilding of one of the furnaces a smaller in the last rebuilding of one of the furnaces a smaller
number of square bronze water tuyeres have been subnumber of square bronze water tuyeres have been sub-
stituted. They are built into the wall, and are blocked in stituted. They are built into the wall, and are blocked in ront by about 6in. of brickwork, which can be easily eplaced when burnt through. The water circulates from bove downwards in a spiral course and even with the reduced number there is a considerable complication of pipes about the hearth of the furnace. The calcined ores wheportion of raw smalls are brought by railway
 distance and the limest ains and the only, abourna past oren on rey Ded ; one is ko 40 to 0 oke an 40 a y atal made whil. of rey iron the mal per ton tion is increased to 80 of coke and 50 of coal. The oke cons from 8 to 10 per cent. of ash, and about 1 pe follows:-

Carbon combine Carbon graphitic
 Carbon grap Silicon Phosphorus Sulphur
 Manganese

$\begin{array}{cccc}\text { White. Grey Bessemer } \\ 2.830 & \text {... } & \ldots & 0.420\end{array}$

The iron produced is mostly sold to works in Bohemia Moravia, and other provinces, which are without a sufficient supply of pure ores for steel making. A certain
quantity is also used in the steel works at Gratz. Up to the present time, however, the works, whose value consist entirely in their central position between the ore and coke supplies, have not been very successful. They are very ortunately placed, as regards the disposal of the slags, as being in an agricultural country without any stone at hand are por road metal almost as fast as they quence pred, and there is no accumulation of any conse quence about the works,
The Neuberg works, situated about twenty-two mile orth of Eisenerz, immediately below the main chain of the Norian Alps, are supplied with spathic ores from a ward as far as Schwatz in which extend at intervals east famous antimonial and mercurial copper ores which made the fortunes of the Fugger family of Augsburg in the sixteenth century. As might be expected, from this association, the ores are somewhat pyritic; those from Gollrad, Altenberg, Solln, and Bohnkogel, which are smelted at the associated furnaces of Neuberg and Maria Zell, showing by analysis from about 0.5 to 2.4 per cent. of sulphuric acid, which, however, is nearly all eliminated by areful roasting in special kilns with a large admission of
weather for some time before smelting in order that the sulphates found may be washed out by the rain. The high reputation enjoyed
made at the Maria Zell works is probably due to some extent to the presence of sulphur in the ore. According to the analyses furnished to the members of the Iron and Steel Institute, the amount of sulphuric acid in the calcined local ores smelted at Neuberg ranges from 0.003 to 0.377 per cent., while in that imported from Eisenerz it is 0.11 per
The Neuberg works formed the subject of a series of special articles in this journal in the year 1873, in which the main features as still existing were described. Since that time, however, a peculiar process of steel manufacture has been inintroduced, which was shown in action to the Iron and Stee Institute. This is a combination of so-called refining in an open hearth furnace with the Bessemer process. The is blown in the converter for about twenty minutes, when, before it is completely decarburised, it is transferred to another ladle and poured into a fully heated Siemens-Martin furnace, where it is allowed to boil for three or four hours, two or three additions of malleable iron and steel scrap to the extent of about 4 to 5 per cent. being made at intervals, and finally about 5 or 6 per cent. of spiegel and a little erro-manganese if necessary. This process is specially adopted for the production of the harder classes of stee when a quality equal to that made in crucibles is required. It is a somewhat delicate operation, as the success depends chiefly on keeping the metal on the boil during the entire refining period.
The average consumption of materials for the different lasses of steel is as follows:-
100 parts by weight of Bessemer pig require of Calcined ore
Limestone
Charcoal
00 of Bessemer ingots require

Pig iron Iron and

Iron and steel scrap $\left.\begin{array}{r}08.7 \\ 3.7 \\ 0.8\end{array}\right\} 113 \cdot 2$
100 of open hearth spiegel

Mill scale
Lignite and coal $\ldots A^{2}$
00 of refined Bessemer steel require-

Fluid Bessemer metal	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$95 \cdot 0$						
Rolling mill waste	\ldots	\ldots	\ldots	\ldots	4.3	
Ferro-manganese and spiegel	\ldots	\ldots	\ldots	\ldots	$5 \cdot 7$	
Lignite and coal	\ldots	\ldots	\ldots.	\ldots	\ldots	\ldots

The ingots produced in the steel works are almost entirely worked up in the rolling mills and forges attached fo the works, in which puddled iron is also produced in high quality of boiler plates. The more important high quality of boiler plates. The more important
machines in the forges and mills are two large steam hammers of 17 and 6 tons, four smaller ones, a heavy plate mill, driven by a steam engine of 600 -horse power, with inde our 35th volume the adjustment of the rolls-describe 100-horse power, three smaller mills, also driven by water from 50 to 100 -horse power each, two large steam shearing machines, and a hydraulic press of 400 tons power. The urnaces comprise two Bessemer converters of $4 \frac{1}{2}$ tons, two 5 -tons Siemens-Martin furnaces, with auxiliary heating furnaces; three double puddling furnaces, three gas welding furnaces, ten steel ingot heating furnaces and fourteen boilers, twelve of which are heated by the waste lame of the puddling and heating furnaces. The annual productive capacity is about 14,700 tons of finished iron and steel, of which about 7000 tons consist of heavy plates both of iron and steel. Among the principal arge pl $6.145 \mathrm{~m} . \times 2.250 \mathrm{~m}$ ne of $7.200 \mathrm{~m}, \times 1.200 \mathrm{~m} \times 30 \times 15 \mathrm{~mm}$. in soft iron, intended for the frame plate of one of the locomotives now building in Vienna for the Paris, Lyons, and Mediterranean Railway Company; steel shells for torpedoes forged from ingots cast hollow, annealing pots for wire mills, and grinding dises for the Dingey mills used in the Pribram lead mines. The composition of the standard qualities of steel made at Neuberg is represented by the following analysis:

The mechanical properties of the different products are :-

	Elongation per cent.	Ultimate tensile strength. Kilogs. per sq. mm.		
Hard Siemens steel				
Refined Bessemer steel $\}$	15.8	95	22	117
Sword blade steel	20	75		
Medium hard Bessemer steel axle	21	67.5	$29 \cdot 4$	96.9
Medium hard Bessemer steel tire	32	52.2	$51 \cdot 4$	103.6
Soft Bessemer steel plate	25.5	$55 \cdot 3$	$48 \cdot 7$	104.0
Soft Bessemer iron wagon tire	$23 \cdot 6$	$48 \cdot 9$	59.0	107.9
Soft Martin iron plate	$32 \cdot 2$	41.2	$66 \cdot 1$	$107 \cdot 3$
Heavy welded iron plate	23	37.9	$32 \cdot 1$	70.0
Heavy welded iron plate	$27 \cdot 9$	36.0	$31 \cdot 3$	67.3

the two preceding ones, as required by the German Railway Union, whose standard of quality is from 85 to 95 for
The largest forge in the Alpine district is that at Donawitz, near Leoben, which is well placed, being at the mouth of the Vordernberg Valley and near to the Seegraben
mines producing the black lignites of Leoben. This was mines producing the black lignites of Leoben.
originally started in $1836-37$ by Franz Mayr with a single puddling furnace, producing blooms which were finished a the rail mill at Prävali, and has by subsequent additions
and the adoption of steam grown into a very important establishment, containing eighteen puddling furnaces, two open-hearth furnaces, and six rolling mills from 80 to 300 horse power each, with fourteen merchant iron of all kinds to the extent of about 15,000 tons yearly. The chie points of interest are to be found in the puddling furnaces, which are fired with lignite upon step grates, and are provided with an auxiliary bed for heating the metal, and stack boilers for utilising the waste flame. The weight of quality of the metal, and from ten to thirteen heats 2560 to 4500 kilog., with a consumption of fuel of 3300 kilog. These results are in great part due to the high quality of the metal, which is practically free from silicon and to some extent to the careful heating of the metal magnesite loricks, a speciality of the works where they have been made for a great number of years past, and are found to stand well in places where they are exposed to flame only, and not to the scorifying action of oxide of iron. which is calcined, ground, and rendered plastic for mould-
ing by the addition of a little clay as a binding material. The manufacture of cement steel for springs is also carried on at these works, but it is of diminishing importance, owing to the substitution of Martin and Bessemer
steel. In the year 1881, 233 tons of spiral springs were turned out. There is also a department for boiler work in which about 325 tons of boilers and special forgings were produced in 1881. The plates are produced from the forges at Töllerl and Waasen in the neighbouring valleys. Other forges are attached to the works at
S. Peter and Göss, which are employed in the production f scythes and other agricultural implements, and there i also a small sheet mill at Gemeingrube, which is historically
interesting as having existed as a rolling, driven directly interesting as having existed as a roll
by a water-wheel, as far back as 1817 .
Amongst the numerous other establishments of the Alpine Montan Gesellschaft we may mention the Crucible Cast Steel Works at Kapfenberg on the Mur, which did no however, lie within the route of the visitors. Th se are noted for producing the highest quality of crucib.e steel, particularly the harder kinds, among which the so-called manganese steel, containing about 1.5 per cent. of carbon
and 1 per cent. of manganese, is specially noticeable. This Brandt's oing used for the rotating toothed cutters ol randt's hydraulic boring machine in the Pritram mines and the western end of the Arlberg tunnel, the temper being given by immersing the points of the teeth in water when at a low red heat. Crucible cast steel is also
made at Eibiswald, near Marburg, the melting furnaces being on Siemens' principle, and heated with gas from The l
The last, and in many respects one of the most interesting establishments visited in Styria, was the steel rail
mill of the Southern Railway Company at Gratz. This is mill of the Southern Railway Company at Gratz. This is
principally intended for the re-manufacture of the iron rails principally intended for the re-manufacture of the iron rails worn out on the company's lines-which have a total length
of about 1700 miles-into steel by the Siemens-Martin process. The works, which were designed by the manager Herr Prochaska, include two smaller and two larger fur charges, which are modified in several important particulars from those in use elsewhere. The regenerators, instead of being immediately below, are in front of the furnaces, and the gas is introduced at the full temperature of its production without being previously cooled by passing through a rising pipe and horizontal main, which does away with th condensible products. The gas and air admission passage in the furnaces are laid with their axes converging toward the centre of the hearth, both in the horizontal and vertical planes, so that the point of maximum intensity of the flame is in the middle of the bath, which no protects the roof, which will stand from 300 to 600 heats without renewal, the furnaces being kept at work for six or eight months continuously. The charge rails, which are dissolved in a bath composed of one-third grey coke pig from Schwechat and two-thirds white char3 to 4 per cent of spernberg, with a final addition of about contains:-Silicon, 0.3 to 0.4 per cent; carbon, 0.4 to 0.6 per cent.; manganese, 0.45 to 0.65 per cent.

The smaller furnaces make 16 to 18 meltings per week, or about 4000 tons yearly. The consumption of melting coal is about 60 per cent. of the weight of the ingots in the pit about 40 ft in diameter with large anl lale crane The ladle is so deep that the stream of metal would issue with too great a velocity if allowed to flow into the moulds direct, and the current is therefore moderated by interposing a shallow trough with two spouts, which is slung simultaneously, with a corresponding reduction in the velo city of the stream. When the demand for rail ingots is in sufficient to use up the whole of the steel in the ladle, a pro-
portion of ferro-silicon previously melted in a crucible is portion of ferro-silicon previously melted in a crucible is parts of locomotives, crossings, \&c., the addition other parts of locomotives, crossings, \&c., the addition of the
silicon producing perfectly sound castings. The rail ingots of two rail lengths are reheated in a Bicheroux furnace heated with Köllach lignite, having a bed about 25 ft , long
with eight working doors, and an inclination towards the fire-bridge of 10 deg. After passing the cogging mill they mill and heating furnace, where they are relled in to in single length. This mill being merely for the company own requirements, ommon works making rails for sale, but great care is pecial finisho mill with pail rill are entires and ane the
 four years in the mill-The varios re controlled by analysis, and for this purpose special rapid methods are adopted in the laboratory. The the phosphorus determinations are made by gauging the volume of the phospho-molybdate precipitate in narrowbore divided tubes, and the same solution that has served or the carbon determination by Eggertz's method is use oxide of lead, which converts the manganese into per manganate, giving, after rapid filtration through asbestos with the help of an exhausting pump, a rose-coloured soluion, in which the metal is estimated by a standard solution f ferrous sulphate, as in the ordinary method of iron ssaying. In this way a sufficiently accurate determina ion is made in about half an hour, instead of the much onger time required when the result is to be obtained by weighing.
In concluding this brief and imperfect notice of a very arge subject, which may, however, indicate to the reader he rapid manner in which a series of objects of the bighest interest were presented to the visitors in the short space of three days, we must express our thanks to the various officials and managers of the different works, who both by personal explanation and more particularly by the admirable statements prepared for the use of visitors, and rom which most of the details given in the preceding pages have been derived, did so much to render the visit pleasant and profitable.

AUTOMATIC FIRE EXTINGUISHERS
Herewith is illustrated an automatic water jet for fire extinction as made by Messrs. J. and W. Kane, of Philadelphia
Messrs. Kane claim for their invention that the valve has harp, tight-itting sides or gooves to nor are there any fine teeth or perforations liable to become
filled up, so that the danger of sticking on account of any rust or

roughness on the surface is entirely removed. The valve has a causes the water to cover a large circumference. The cap shown on the valve, as closed, is simply placed there as extra precaution gainst dust. It drops off instantly from its own weight, as soon cannot be removed until the solder holding it is melted, when the dust-cup drops, and instantly the valve is at work.

THE STRUCTURE OF IRON AND STEEL. Dr. H. C. Sorby, F.R.S., delivered a very interesting lecture in the Firth "ollege, Sheffeld, on last Saturday night, upon the was a very large audience, which included many of the scientific
men of the district. Dr. So district.
Dr. Sorby said he was first induced to investigate the subject of
his lecture as bearing on the structure of meteoric iron his lecture as bearing on the structure of meteoric iron. Little or much might be learned of the nature of iron and steel by artificial fractures, though these showed more the lines and planes of
weakness and the divisions between the constituent crystals, than weakness and the divisions between the constituent crystals, than
the actual structure of the crystals and their relation to one another It was, therefore, requisite to devise some means of ascertainin
It the exact structure of the metal independent of any lines of
weakness revealed by fractures. The learned lecturer having deakcribed the means adopted by him to ascertain the exact structure of the metals, said as far as could be learned from the careful use of the microscope, various kinds of iron and steel containe
at least well marked constituents. In the first place there was pure iron, and what was probably three well marked compounds of iron,
with varying amounts of carbon or other substances met with in small quantities in different sorts of iron and steel, portion of included slag, well marked crystals of graphite, and
small crystals, which might be silicon. The lecturer then proceeded to exhibit by means of the oxy-hydrogen lamp a con-
iderable number of illustrations of the structure of various kind f artificial iron and steel, some being photographed by Mr. Charle Hoole direct from the preparations, others from drawings by the lecturer, and others from natural prints. Commencing with
various kinds of cast iron, it was shown that their structure was sometimes chiefly modified by the presence of crystalline plates of graphite, over which was deposited what was probably free and the carbon and iron. In other cases the structure was mainly depen thrown off towards the close of the process. In the case of white iron, the principal constituent was probably an intensely hard,
white refined iron, with much carbon associated with which were one or more of the other compounds of iron and carbon pre-
sent in grey iron. The microscopal structure of this white iro tions were of various kinds of wrought iron. The ham mered bloom was shown to consist of irregular mixtures
of crystals of iron and portions of slag. When rolled out
into a bar those portions of slag not squeezed out were drawn out into long threads, but the crystals of iron seen
in the bar were not the original crystals of the bloom, but fresh
crystals formed on the cooling of the bar, since they exhibited
little or no tendency to elongation in the line of the length of the
bar, as would occur if the original crystals were drawn process of rolling. The fibre seen on fracturing such sout by the wrought iron was mainly due to the elongation which occurred during the fracture, and was not characteristic of the unaltered
iron. In connection with this illustrations were shown of the ron. In connection with this illustrations were shown of the
structure of armour-plates, of welded joints, and of all those kinds f iron which are employed in the manufacture of steel by the ess wa cess was, the lecturer pointed out, very striking, the most charac-
eristic feature being the development of a network of flat crystal of an intensely hard compound of iron and carbon, scarcely acted
upon at all by diluted acid, so that the rest of the steel may be upon at all by diluted acid, so that the rest of the steel may be
dissolved away, and this compound left in sufficient relief for exquisite prints to be taken, as from a wood cut. Numerous illus
rations thus taken direct from the iron and steel were exhibited with a lantern, and few microscopical objects are more beautiful than some of the preparations of this cemented blister steel ; since,
when specimens are prepared, some of the constituents gave rise to When specimens are prepared, some of the constituents gave rise to difference between the structure of the outside of the converted
ars where this hard compound of iron and carbon had been developed and of the interior of the bar, was shown to be very reat, this latter being mainly due to recrystallisation of the original steel had a totally different structure, which depended in the first place on large crystals, and in the second place on the minute microsopical structure of these crystals. The principal difterence
between the structure of such an ingot and that of hammered bars was that the whole mass was made more uniform and the grain teel was hardened, in whis still more the case when the hammere mall that it was very difficult to learn much about them by microcopical study. The structure of Bessemer steel ingots was natually different from that of the varieties of steel containing more arbon, and, though of coarser grain, closely approached the struc
ure of some varieties of Swedish iron. This structure upon hammering was greatly altered, and became of fine grain and more
niform. In conclusion, the lecturer exhibited several illustrations the of most varieties of artificial iron that it was a long time before nickel of the same composition as meteoric iron were melted and slowly cooled, but nothing at all resembling the structure of cosest arproach to obtais structure was in the case of iron which had een kept for a long time at a high temperature but not ach hal nelted, under which condition some varieties of iron containing mportant characteristics of meteoric iron, whilst iron containing a ertain amount of carbon crystallised in a manner imperfectly esembling the very perfect crystallisation of meteoric irons. Only
that in these artificial preparations there was crystallisation of arious compounds of iron and carbon, whereas in the meteoric
ron there were varying compounds of iron and nickel. The inference to be drawn from these facts was probably that meteoric iron
had been crystallised very slowly at a temperature below fusion. A ad been crystallised very slowly at a temperature below fusion. earty vote

The tender of Messrs. Mowlem and Burt for carrying out the Hyde Park-corner improvement scheme has been accepted-total,
\&31,000-and they have commenced the work of removing Wellington Lodge, preparatory to its re-erection lower down Constitu-
tion-hill. The other tenders were Messrs. Hill and Higgs, $£ 39,000$, and Mr. W. Webster, $£ 39,727$.

How to Melt Babbitt Metal.-L. F. Lyne in American Ma of Babbitt and other similar anti-friction metals. Workmen who re unaccustomed to mixing or treating metals while in liquid pplying heat dly that the ladle will become red hot befor the metal within it begins to melt. When it has melted a dross
ises to the surface and is skimmed off by the workmen and thrown way. The skimming process is kept up as long as the ladle is kep
n the fire. Now such a course is all heat too suddenly, themetals which fuse at lower degrees of heat sweat out, and are burned before those which melt at higher temperature
become fluid. The dross, as it is commonly called, which rises to the urface, is in many cases the antimony or hardening property the alloy, and should not be thrown away. The surface of the melted metal should be kept covered with fine charcoal, which wil prevent oxidation. A small lump of sal-ammoniac should also be kept upon the surface of the metal. The metal should always be and sink to the bottom of the ladle, and a constantly varyin quality of metal will be the result. By melting the metal slowly nd keeping it properly fluxed as described, it will run sharp, eacl casting will be found uniform throughout, and the metal be of equal hardness. In observing these simple precautions, much of
the dissatisfaction now experienced in using Babbit and other antithe dissatisfaction now experienced in using Babbit and other anti-
friction metals will disappear, and the metal not be condemned
because it simply obeys the laws of nature and separates when mproperly treated."
The Vienna Elevated Railway.- Unless, says the Wiener
Herald, October 15th, 1882, every sign be false, the decision, with regard to the granting the concession of the Stadtbahn stands
already on our threshold, and, in spite of the procrastinating ready on our threshold, and, in spite of the procrastinating
policy of our Gemeinderath, in favour of Messrs. Fogerty and Co. he concession will, as we, in common with the Neue Frie Presse, over the heads of our worthy "Fathers of the City." Strongly as we support the autonomy of the Gemeinde, we are equally glad
that its members will suffer defeat, and in no way grudge Mr. man must have made when he came to Vienna to carry out his plan of providing the city with a railway, such as would not have been more ably thought out, nor better suited to the interests of which Mr. Fogerty stuck to his idea. Everything that common place, narrow-mindedness, short-sightedness and malignity could Every stick, so to speak, that could be found was thrown between
Mr. Fogerty's legs, and all his Mr. Fogerty's legs, and all his goodwill and all his readiness to
comply with every wish of the Gemeinde, and to make the most proper acknowledgment. And at last, when they were almost t bribery had to for wherewithal to annoy Mr. Fogerty, attempts possible. Instead of thanking heaven that foreign capital and constructive capacity can be induced to carry out an undertaking in a position to call it into existence with native powers, the opponents have, in their almost incredible ignorance, employed impossible. It must,therefore, be considered as a truly fortunate circumstance that the Government, less short-sighted than the worthy members of the Gemeinde, and more capable of recognising come to the conclusion to grant him the concession for the Stadtbahn. The Government allows itself, moreover, to be
influenced by other reasons to brirg this question at last influenced by other reasons to bring this question at last to a
settlement. There is reason to fear that the London gentlemen who are interested in this undertaking, if there be any further
delay in its realisation, will withdraw from the business, which would be all the more to be regretted because the financing of the
Stadtbahn is intended to be principally effected by English capitalists. The English not only bring us their good ideas, they

GORDON'S DYNAMO-ELECTRIC MACHINE. The first steam locomotives were crude machines compared with those which were constructed in the course of a few years after their first introduction. Just so, no doubt, will be the case with dynamo machines. The first dynamos were little more than models, and we are only now beginning to realise the fact that it is more economical to construct a dynamo which will ingle horse-power. Then, again, new uses require new designs The design of a pumping engine differs from that of an express locomotive; so the design of a dynamo to supply the
ectric current for a large number of incandescent lamps differs considerably from that designed to supply a large number of arc lamps. A few years ago the success
of incandescent systems was scouted by many and doubted by others. Time has proved that their fears were groundless, and that incandescent lighting is not only an actual
fact, but it is the system towards which almost all eyes and efforts are directed as the great work of the immediate future Directly incandescent lighting became practical and no longer merely an incident of the laboratory, attention began to be directed to its introduction upon a large scale. Gas was already in possession of the field, and usually changes are not made unless the evidence of gain is very strong. There is, however,
stronger incentive to gain than mere economy, and that is fashion
designing dynamos for different purposes. Besides, however, the
electrical matters to be considered in such designs, there remain the purely mechanical details such as the proportion of parts, the strains, \&c., to be brought into play, and these present some
curious problems when taken in connection with the electrical equirements
The latest and most important development of the dynamo electrical machine we illustrate this week on page 316. It is the is designs-in the preparation of which be was constructed from by Mr. Clifford and Mr. Lucas-by the Telegraph Construction nd Maintenance Company at its works at Greenwich. Before proceeding to describe the machine more minutely, it will be well to explain the principle on which it acts in general terms. The central armature is an iron disc, on which are arranged series of wire coils, the wire being coiled in the same plane as the disc. The wires are united in a ring on the central axis, agains which ring bears a gun-metal contact lever, into which is sent current of electricity from two Burgin machines which act a exciters. The armature revolves between the two sides of
frame of cast iron, which carries a number of electro-magnets rame of cast iron, which carries a number of electro-magnets the currents developed in them are led off to the lamps. Thus it will be seen that the field magnets are attached to the armature and move, while the equivalents of the armature coils are at rest There is no commutator, the machine being of the alternatin current type.

The electric light seems to have become fashionable, and this in addition to its inherent merits as a light. It is said to be, when control. This being the case it was to be expected that machines would be designed to supply the current on a large scale. Under the usual conditions arc lamps have hitherto been arranged in series, that is, one after the other upon the wire
joining the two terminals of the machine. Now, as each lamp joining the two terminals of the machine. Now, as each lamp lamps in series increases the resistance in proportion to the number of lamps. If the resistance of one lamp is represented by x; the resistance of the lamps in series is represented by the resistance x; but n times that electro-motive force equired to overcome the resistance $n x$, the current being onstant, and, of course, the more constant the current the better for the lights. Putting this into the familiar symbols of Ohm's law, $\mathrm{C}=\frac{\mathrm{E}}{\overline{\mathrm{R}}}$, we know at once that to retain C constant when R becomes $n \mathrm{R}$, we must make the numerator $n \mathrm{E}$

Fig. 6
Fig. 7
number of arc lamps in series is high electro-motive force. To number of incandescent lights are under consideration. These lamps are generally arranged in multiple arc, or each lamp pro-
vides a path for the current from terminal to terminal ; or say vides a path for the current from terminal to terminal ; or say
two large main wires are taken from the two terminals of the two large main wires are taken from the two terminals of the
machine, the lamps are strung between these two wires. In the cashine, the lamps are strung between these two wires. In the of 20 Amperes ; the machine is not asked to supply more
current though 100 lamps are in the circuit. It still sends 20 Ampères through the circuit. But taking one incandescent such lamps require 100 Ampères, that is, 1 Ampère through each branch wire and lamp. Hence the machine has to provide quantity in one case and electro-motive force in the other. In the latter case, E represented in the formula $\mathrm{C}=\frac{\mathrm{E}}{\mathrm{R}}$ is constant, and C is increased by diminishing R.
From these remarks it will be seen that a large amount of
knowledge, talent, and ingenuity may be brought into play in

On Wednesday evening a number of gentlemen interested in telegraphy, among whom we may mention Mr. W. Shuter, Mr. Anderson, Mr. Swan, Mr. Crompton, Mr., Dever, Mr. Willoughby Smith, Captain Halpin, Mr. T. Fuller, Mr. Clifford, Mr. Lucas, Mr. Moore, Mr. Willoughby Smith, jun., Mr. William Smith, Edmund Dicker, visited by invitation the works of the Telegraph Construction and Maintenance Company, which has bill, Greenwich, to see the first large Gordon machine which has been constructed. This machine can, with sufficient
power, light 6000 Swan lamps, but this is not at present available the engines used to drive it being a pair with horizontal cylinders, 20 in . stroke, and 16 in . diameter, making about 140 revolu Calabria for picking up ables On Wednesday board the 1300 Swan lamps of over 20 -candle power were in use, lighting up every department of the large works. It will give some idea of the dimensions of the system if we state that there are about 8 miles of wire leads in use.
This is not the first machine made by Mr . Gordon. Mr . Gordon's present machine is an improvement upon an earlier one, In the former machine the revolving rings each carried the same number of magnet coils as the fixed rings carried armature coils, and it was found that an injurious inductive action militated against the efficiency of the machine. If a certain number of
lamps were maintained by one coil, and the circuit of the next coil was then closed, there was a reduction of light in the lamps
core maintained and of the first circuit by some 20 or 30 per cent. The cause of this was in the current circulating in opposite directions in the contiguous coils. In the present machine the armature coils wre twice the number of the magnet coils, hence the magnets act on alter are acting. For example, at the instant whe alternate coils 1, 3 practically idle, and although the coils, $1,3,5$, , \&c., do act upon each other, it is with far less effect in there being comparatively Our illustration of the them, so that the effect is inappreciable Our illustration of the general view of the machine, as seen at description. Its total weight is about 18 tons. The weight of the revolving magnet wheel is 7 tons. The space occupied by the bed-plate is 13 ft . 4 in . by 7 ft. , whilst the diameter of the magnet wheel is 8 ft . 9 in . With 1300 Swan lamps in in quantity. The number of revolutions is 140 per minute which gives a velocity of a little over 60 ft . per second to ary point in the revolving wheel. The revolving magnet coils are magnetised, as we have said, by the current from two Bürgin
machines-one would in reality suffice-conveyed in the way by brushes making contact with the rings L Fig. the usual collars C, Fig. The rings lally of phosph Fig. 1, on the separated from the iron collars by an insulator. The current in the magnets is 19 Ampères, with an electro-motive force o 88 volts. The current in each armature wire is 27.5 Ampères A detail illustration of the armature coil is shown in Fig. 4 Each coil is wound with wire 185 in . diameter, its cross section is 269 square inch, and the total cross section of the 128 coils o wire in quantity is ' $0269 \times 128=3.44$ square inches. The coils may be coupled up in almost any way desired. For
example, if the full 5000 lamps were placed on this machine the 128 coils would be all coupled together for quantity. The f 48 Amprevolutions would be raised to 200 , with a curren otive force as in the magnet's coils, giving the same electroin the armature wire. The armature wire will take a current of 0 Ampères easily. The core of the coil, N , is of wedge shape, ngle forms the thin end of the wedge, and the free edges, which o not quite meet, form the thick end. A wedge-shaped head of -piece is inserted into one end of the folded plate and welded to it, he stem of the Tbeing turned and screwed is passed through a hole the fixed ring, and secured by nuts. A German silver flang rivetted on a shoulder cut on the end of the core. This flang as cut into it slots as nearly as possible in a direction at righ ngles to the currents which may be induced in it. The connec ion of the outer ends of the cores of the coils is made by pronging the cores outwards from the magnet coil, and securin In order that in this plate it is set back some distance, the cores bein correspondingly prolonged. The space between the wire o the coils and the iron plate may be filled up with wooden plates or blocks, which form the second flange of the coil, Fig. 1 The thickness is such that the algebraic sum of the mag netic potentials, induced by the magnetic poles at any poin the fixed iron ring, is as nearly as possible zero. Th wheel consists of two central discs A, and of two cones B, whose bases fit upon the central discs, and through whose apices the main shaft passes. The discs A and cones B, Figs. 2 and 3 , are plate is radial to the wheel at the centre of each segment. The egments are rivetted together with butt strips in the way usual in boiler making. The discs A are kept apart at the centre by cast iron distance piece. At the rim they are kept apart by wrought iron ring. The cones B are of less diameter than the discs, so as to leave a space of flat disc all round exterior to the cones. The cones and disc are separated at the centre by mas ive cast iron bosses, turned square to the shaft where they but gainst the disc, and conical where they butt against the cones he cast iron distance piece D is of somewhat large o it without the heads of the rivets interfering with the bosses. The cones, discs, ring distance piece, and bosses are all firmly rivetted and bolted together, being still furthe trengthened by angle pieces placed between the disc and the
 ith single ones. The butt strips of the cones are placed inside hem, and the rivet heads countersunk, so that the outsides of the cones have perfectly smooth surfaces. The flat outer portion the wheel paceives the magnet cores M, which are 32 in number. Each magnet consists of a cylindrical iron core, of two nd of two pole pieces. The pares right through a hole in and of two pole pieces. The core passes right through a hole in equally on both sides. The brass bobbins are then slipped on one teach side of the disc, and the pole plates being fixed on hold the bobbins in their places. The pole plates are of iron, prefe ably wrought; their sides are not parallel, but form radii of the magnet wheel.
The shatt runs in bearings, preferably of phosphor bronze hich are carried by the side frames. There is a large gap o pening in the sole plate, through which a portion of the whee ravity a pit bent 1 . machine. The end thrust is taken by two loose iron collar laced on he phosphor bronze journals by means of set screws projecting rom the ends of the cast iron bosses. These set screws are ecured by lock nuts. Fixed rings of cast iron carry the fixed coils; each carries sixty-four armature coils. These rings are upported by being bolted to the inside of the gap in the sol late, and by four cast iron struts. They are also tied together y the screwed rods. Lach fixed ring is made in three segments, ne being much smaller than either of the other two. This is readily be got th by remoring the small segment of one of the xed rings, and turning the wheel until the damaged coil come pposite to the gap so produced in the ring the damaged coil can thus quickly be removed and replaced by another
The exciters used to supply the current to the magnet coils re driven by a small separate steam engine. A dark roomig 5-is provided near the machine, in which is a photometer, nd through which the steam pipes of the two engines pass Stop valves are attached to these pipes, so that a man can ontrol them while reading the photometer. A micrometer slow motion is auche the folve whecls, so as to avoid any sudden photomer room, in conventions for -A strophometer for showing the speed of the large dynamo ; an Ayrton's ammeter for showing the strength of the exciting current. and ar showng ene strengti here are two lamps in the photometer, one pressure gauge wo circuits into which the machine is divided. They are lighted iternately by means of switches. If there is any very great differ nces in the number of lights on the two circuits, the one having he fewest lights will be brightest. In practice when the same clas ny great difference in the number of lamps will never be djustment is heate ner prever or lamps on each. An juchine which by ransferred 50 or 100 at a time from the dimmer circuit to the righter one.
The use of a rod or ribbon for winding the coils instead of wire has recently been heard of a good deal. Mr. Gordon has experimented in this direction, and states that the effect of using furthest from the magnet poles is in a field of sensibly les atensity than the portion near to them was that only a ver mall electro-motive force was produced at the ends of the ribbon enormous quantity of horse-power was absorbed, and in two wing to the burning of the insulator. The reason of this is easily understood by looking at the figures, which represent ibbon or rod of copper passing between magnet poles, the irection of motion being supposed perpendicular to the plan of the paper. In Fig. 6 the directions and lengths of the arrow epresent respectively the directions and magnitudes of the lectro-motive force produced, while Fig. 7 shows the direction the current due to them. Thus we see that only a smal most of it is wasted in forming "eddies" in the width of the copper.
After their inspection of this fine machine and the lighting,
 Company's cable constructing works, where they inspected the
various machines at work and the processes employed in coating cable cores，and then building upon these the various insulating and strengthening materials and wires that go to make up the modern submarine cable．Few people have any in an oceanic cable，or for the cables of some of the small but turbulent and soon show that though all the cables used in the world are made by a small number of firms，these few use an enormous quantity of materials of different kinds gathered in from many directions． The central portion of the cable consists of one or several
strands of copper wire，usually coated with gutta－percha by machines which，though simple，are the results of costly experi－ laid on longitudinally and succeeded by a thin brass tape about 0.625 in ．wide，and laid on by simple machines carrying a pair bobbins revolving round the core as it travels，and placed at an angle，which causes the edges of the tape to meet or slightly lap．The brass tape is succeeded by narrow cotton tape steeped in a preserving substance，such as boiled Stockholm tar，and
sometimes other materials of a similar nature．These tapes are sometimes other materials of a similar nature．These tapes are
wound or laid on the core in the same way as the brass tape，and in some cases two are used，the one covering the other，the lay or direction of winding of the outer tape being contrary to that
of the under tape．As the cable so far completed leaves this machine it passes through a mixture of Stockholm tar，\＆c．，and is then covered with a coating of jute yarn，
From the machines which perform this coating the cabl uns into tanks and lies there in water，lengths of about twenty－five miles being in each tank．While in these
tanks the continuity of the core of the cable and its electric resistance are tested by a complete arrangement of test ing apparatus in a separate building．In passing it may b mentioned that some of the 1500 lamps supplied by the monste machine are in this testing department，and though it was ques－ tionable whether the powerful currents passing through a ments employed，it has been found that they have no effect whatever，the expected induction effects being completely vented by the alternating current，and by the eliminating effect of the proximity of the several leads．
As the jute covered，and so far completed，cable leaves these tanks it passes through a machine of large dimensions，by which is covered with gavanised iron wire，The cable passes verti－ cally from one floor to one above through the axis of a machine f bobbins filled with the wire motion similar to that of the moon，so that then are given the same face in the same direction，and thus prevent the wisting or torsion of the wire．Machines for performing this work are usually made with vertical bobbin discs，the cable passing horizontally，but there seems to be some advantages in the arrangement above described．As the wire is wound on by these machines it squeezes the water out of the jute covering， and in its progress the cable passes through a machine by which
it is again payed over with boiled Stockholm tar，\＆c．In this it is again payed over with boiled Stockholm tar，\＆c．In this
condition the cable may be complete for some purposes，but for condition the cable may be complete for some purposes，but for
shore ends it is again coated with two wide jute tapes wound on in opposite directions，and subsequently with one or more coverings of coated iron wire，sometimes as much as in communication by belts and strap shifting gear and brakes， because a fault or break of wire，tape，coating，or any other imperfection making it necessary to stop one，makes it necessary to stop all，for the process is a continuous one from the com－
mencement of the combination of core with tapes．Some idea mencement of the combination of core with tapes．Some idea
of the quantity of materials used at the works may be gathered of the quantity of materials used at the works may be gathered
from the fact that when the company began to adopt the tape covering they could not obtain the quantity required from any ape manufacture there was gross of yards．Of the jute tape about 30 tons per week are used，and over 200 tons of wire are sometimes used per week The repairs of cables cost an immense sum，and some of these machines are always at work in making the cable，with which the without a moment＇s loss of timenance Company are prepared f the Eastern Cable Company in all waters and at all time by means of their fleet of steamships

PNEUMATIC HYDROMETER．

Messrs．W．Reid and Co．，of 5，New London－street，E．C．，are iquids and semi－liquids at a distance hydrometer for measuring liquids and semi－liquids at a distance．This apparatus consist． of a glass water gauge with attached pipe or pipes，and a small
pump to charge the pipe with air．It is made for measuring and pump to charge the pipe with air．It is made for measuring and liquids in seas，rivers，mines，wells，reservoirs，vats，ships＇holds，
and so on．By eharging the pipe leading to the liquid required and so on．By eharging the pipe leading to the liquid required
to be measured with compressed air，which will have a pressure

equal to that due to the head of water above the lower orifice o the immersed pipe，the water in the water gauge rises and falls in unison with that in tank or vat，and the indications are con－ corresponding with an index and pointer，the contents of any number of receptacles can be registered on the same gauge
Thus，on a single indicating dial placed in the captain＇s cabin or Thus，on a single indicating dial placed in the captain＇s cabin or
engine－room，the depth of water in all the bilges，holds，tanks， engine－room，the depth of water in all the bilges，holds，tanks， vat in a brewer＇s store may be indicated in his office simply by momentarily depressing the handle of the charging pump．When moat accuracy is not required the water gauge is not employed，
but only a pressure indicator．As constructed by Messrs．Reid
and Co．，the apparatus is handier than in the form commonly used．
THE COST OF STEAM ON TRAMWAYS．
The Stockton and Darlington steam tramways have now been constant work for upwards of twelve months，and Mr．Robert Sutehall，the manager，gives some very valuable details as to the
running expenses attending the six Merryweather engines of running expenses attending the six Merryweather engines of
the steep gradient and air－condensing pattern．The figures given below include renewals and repairs．The chief gradient are two，varying from 1 in 20 to 1 in 30 ，and a third， 300 yard

Stockton and Darlington Steam Tramways Company，Limited．－Cost of Repairs and Running of Engines for week ending
Monday，July $24 t h, 1882$ ．－Average week．

No．of engine．	Wages．	Repairs and renewals，	Coke．		Coal．		Oil．		Waste．		Total．	$\begin{aligned} & \text { Miles } \\ & \text { run. } \end{aligned}$	$\begin{gathered} \text { No. of } \\ \text { cars } \\ \text { worked. } \end{gathered}$	Cost perengineper mile
			Quantity．		Quantity．		Quantity．		Quantity．					
1．．	$\begin{array}{cc}¢ & \text { s．} \\ 1 & \text { d．} \\ 1 & 15\end{array}$	$\begin{array}{\|lll} \hline \mathcal{L} & \text { s. } & \text { d. } \\ 0 & 11 & 0 \end{array}$	$\begin{gathered} \text { tons. } \\ 0 \\ 0 \end{gathered}{ }_{22}$	¢ s．${ }_{\text {e }}$	$\begin{aligned} & \hline \text { c. qr. } \\ & \begin{array}{c} 1 \mathrm{lb} \\ 0 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{ll}\text { s．} \\ 0 & \text { d．} \\ \text { d }\end{array}$	half pints．		$\mathrm{lb} \text {. }$	$\overline{\text { s. }} \text { d. }$	¢s．			d．
2．．．	1150	${ }_{0} 160$	$\begin{array}{lll}0 & 27\end{array}$	01910	$\begin{array}{llll}0 & 3 & 0\end{array}$	$\begin{array}{ll}0 & 5 \\ 0\end{array}$	19	$\begin{array}{llll}0 & 3 & \\ 0 & 3 & 4\end{array}$	1	${ }_{0}{ }^{8} 4$	$\begin{array}{ll}3 & 6 \\ 3 & 4 \\ 4 & 11\end{array}$	${ }_{310}^{275}$	${ }_{1}^{4}$ cars	＋${ }_{2}^{3.22}$
${ }_{3 . .}$.	1150	015 2	$\begin{array}{ll}0 & 22 \\ 0\end{array}$	0162	$\begin{array}{llll}0 & 3 & 0\end{array}$	${ }_{0} 5$	18	0 3 4 0 3 2	$1 \frac{1}{2}$	0	${ }_{310} 10$	300		${ }_{3} \cdot 15$
4．．．．．	1150	0510	$\begin{array}{lll}0 & 31\end{array}$	129	$\begin{array}{llll}0 & 3 & 0\end{array}$	05	23	0 0 $3_{11} 11$	1	0	${ }_{3} 83$	350	5 days 5	${ }_{2} \cdot 68$
5．．	200	088	027	0199	$\begin{array}{lll}0 & 2 & 0\end{array}$	04	19	$\begin{array}{llll}0 & 3 & 4\end{array}$	$1{ }^{\frac{1}{4}}$	04	3123	345	6 cars ？	${ }_{2} \cdot 85$
${ }^{6}$.	$\begin{array}{lll}1150 \\ 1 & 4 & 0\end{array}$	$015 \quad 2$	$0 \quad 27$	0199	$\begin{array}{llll}0 & 3 & 0\end{array}$	05	19	$\begin{array}{lllll}0 & 3 & 4\end{array}$	$1 \frac{1}{2}$	04	$\begin{array}{lll}3114 \\ 3 & 14 \\ 2\end{array}$	${ }_{325}$	1 day $\}$	3.07
Steam riser ．${ }^{\text {a }}$	$\begin{array}{lll}1 & 4 & 0 \\ 1 & 1 & 0\end{array}$	－	－	二	－	二		二	－	二	2150	－	－	
Coke trimmer．． Cleaner ．．	11	－	－	－	－	－	－	－	－	－		－	－	
Cleaner ．．	010	－										－		
	13100	318	16	5145	00	24	116	103	－	2	2310	1905 ${ }^{\frac{1}{3}}$	－	－

LETTERS TO THE EDITOR

［We do not hold ourselves responsible for the opinions of our correspondents．］

COLLAPSED BOILER FLUES
of the 18th inst．；and as an example of the want of such information being widely diffused，not only amongst firemen，but also amongst heir masters，the proprietors of boilers，I
I met a gentleman who has recently taken
where there are several boilers at work，and，knowing them to be uninsured，I asked him if it was his intention to place them under the care of a company．He answered，＂No，Sir，I should certainly not allow any of your inspectors to take a hammer and chisel into or perhaps several days or weeks．＂I said，＂Whatever company you propose to insure them with，should the inspector find a thin place in a plate，so thin that he considers it dangerous，he wil nock a hole through or be neglecting his duty ；and you ought to peevents an explosion，which would be an incalculable loss ＂Then，＂says the gentleman，＂I will not insure at all，because I know enough about boilers to be well aware that nearly every in plates．＂
This is not a solitary instance，but is a particularly bad case pany has refused to insure his boiler within the past two years and why，previous to that，another company gave them up；and e must also know that the best fireman they ever had about the
place left them on account of the persistence of his master－－the late roprietor－workin
Would it not be wise，under the new Act－Hugh Mason＇s Act－ or all corporations and local authorities to distribute copies of the monthly returns from the Board of Trade showing the causes and xcuse for the ignorance of such men as I have given an instance of Bradford，October 23rd．
electrical standards of measurement．
Sir，－There is a certain gentleman who sometimes writes to be well to invite－if only one knew his real name－to answer your correspondent＂J．B．W．＂The task of enlightening＂J．B．W．＂
has been undertaken，however，by a well－known electrician，J．B． Sprague by name，in the pages of the English Mechanic．No letter －＂J．B．W．＂－is willing to put himself entirely in the hands of his teacher．He must not have＂other ideas，＂at any rate when dealing with electrical units，for the subject is never settled for twelve months together，so that what we talked＂shop＂about yesterday is
consigned to a bottomless limbo to－day．＂J．B．W．＂writes，as Artemus Ward said，＂Sarkastic．＂Does he not know that the writers in the said standard work he quotes are those that sit at the feet of the modern Gamaliels？－I beg pardon，at the feet of the modern mathematical giants－Sir W．Thomson，Lord Railegh，the
late Clerk－Maxwell，Prof．Tait，Prof．Ayrton，Prof．Clausius， Prof．Helmholtz，and so on．Is thy servant a dog that he should despise the teachings of these mighty men？Certainly not；and I
for one thoroughly believe that we shall get clearness and symmetry out of chaos，and this too ere long．Whether the writers understand he masters is another question，but that some strut in borrowed plumes is unmistakeable．I could，I think，explain the standards
of electrical measurement to＂J．B．W．，＂if he would let me begin and go on as I wished，and get rid of those preconceived ideas of his－such，for example，as＂The electro－motive force can unde
no possible circumstances exceed the resistance．＂ no possible circumstances
London，October 23rd．

STR ，－The electrical definitions quoted by＂J．B．W．＂in his etter in last Friday＇s Enginerr，seem to me to be＂some of those
things that no fellow can understand．＂I understand the technical erms he quotes as follows，and five or six years＇study of electricity has not shown me anything incongruous in these definitions：－（1） Potential，or more strictly，difference of potential：the power of
doing work；the quantity and tendency of the electricity in two ressure on a steam boiler，which is really the difference o pressure between all the steam and the atmosphere，not the pressure per square inch only．（2）Electro－motive Force：the useful mean cylinder pressure \times area of piston．（3）Conductivity；the
converse of resistance．（4）Resistance：electrical friction，which， like mechanical friction，causes heat；it also resembles the friction of liquids in pipes．（5）Intensity：high－pressure electricity；a con－ entrated current of great speed，capable of doing effective work current of less speed，giving great power through low resistances， current of less speed，giving great power through low resistances，
but easily checked－intensity and quantity are only another illus－ tration of the mechanical rule，＂What is gained in speed is lost in
power．＂（7）Capacity：to use＂J．B．W．＇s＂simile，the amount of eer that the jug will hold，but except with very，large surfaces or ong lines，it is so small as to be almost infinitesimal；e．g．，if a very the other，the current will flow into it for a perceptible time till it is full，and will then stop．
＂J．B．W．，＂in discussing Ohm＇s law and the equation $\mathrm{C}=\frac{\mathrm{F}}{\mathrm{I}}$
says，＂Let $\mathrm{E}=100$ Volts， $\mathrm{R}=10$ Ohms，then $\mathrm{C}=\frac{100}{10}=10$ ，but 0 what？＂ 10 Ampères， C being the measure of quantity of the that quantity which an electro－motive force，the unit of quantity， is that quantity which an electro－motive force of one volt will drive
through a resistance of one Ohm in one second．I do not make
out his theory that E ought to equal R ，or his illustration of it，for surely in a water pressure，or any other engine，if the resistance to the enginualled he driving power equinorium would result，an the engine would not move．I suppose he means that he has con－
fused E－that is，electro－motive force－tension，or intensity，and internal resistance of battery into one and the same thing，but they are three different things，though very difficult to separate and define．Internal resistance of battery－which，perhaps，might be very loosely called inversely analogous to the heating surface the circuit will take more current than can be generated con inuously，that is，the engine will be too big for its boilers．The internal resistance of most dynamos is so low that this is hardly likely to happen with them，but I suppose the speed would have defined by R ，but by R and C ， wo of which the third may be found．Thus，if an arc lamp requires a current of 40 Ampères and the circuit R is 3 Ohms ， electro－motive force must be 120 Volts．An incandescent lamp， requiring a current of $1 \frac{1}{2}$ Ampères，R of circuit being 60 Ohms ， their working resistance，and the quantity the circuit must have to light them properly，Makers of dynamos know the power of thei machines for given speeds；R of metal circuit is easily found，and the speed of dynamo must then be adjusted to do the work．
I should think that Killingworth Hedge＇s book on＂Electric Lighting would probably supply what＂J．B．W．＂wants，being people＇s；written by a man who was an engineer long and othe took up electricity．I have not seen the last edition，but I hear and improved．
an Electrical Student．

Sir，－May I tell＂J．B．W．＂that if he hasॠbeen trying obtain clear ideas on electricity by simply reading books，it is by no oo through a steady course of experiments he mill find out what it e books try to express．Possibly he will then be able to do One Who Has Tried．
Onkind the service of expressing it clearly．
O． chambers，Vict
October 24th．

the casting of pipes．

SIR，－In your esteemed journal of this week I see there is a practical man has not taken the matter up；but then I am sure men of experience would agree with me，and not with the gentle man who signs himself＂Prior，＂and who has simply had the charge＂of about 80,000 tons of pipes．I am at a loss to know of the moulding，casting， of the moulding，casting，proving，or laying？He says all engi－
neers specify that pipes shall be cast with their sockets down， which is not true，as I can name and show him the specifications of nany eminent engineers of the present day who will have their pipes cast socket up．
＂Prior＂asks if I ever saw a pipe cast．Allow me to inform him
hat I have cast personally－not merely seen them cast－double the quantity he states he has had in＂charge＂and have unpin－ ended far more than this；I have made them in 9 ft ．and 12 ft ， lengths，sockets up and down，and when I say they ar is not more expensive to cast them sockets down it himself，or even went into the cost．Why，the cutting off in sks if I underss an item which makes it more expensive．He annot fill a bottle by passing a fluid through the neck．I can tell to the fancy I know more than he about the flow of metals，and as casting．However，I will ask him if he filled a bottle with water and let it freeze，which would freeze the first，that in the neck or
that in the body？It is the same with iron，and therefore with hat in the body？It is the same with iron，and therefore with
pipe castings．As I have said，I have cast personally many thou－ pipe castings．As I have said，I have cast personally many thou－
sands of tons，and have superintended the moulding，casting， dressing，and varnishing of many other thousands，and have never found any spongy in the socket，because I have always cast two risers or heads on the opposite side of the socket to that where I put the＂git，＂which can be cut off by the dressers ；and for
another reason，the socket is always so much thicker than the Fody．
Further，it is true the socket cannot have＂set＂ ody，it being so much thicker ；therefore，when you cast the ocket down it is useless to put any head on，as it will have set in the body long before the socket，but if you put two risers as I have named on the socket they can then do their work，and you will find of the length of the pipe－will be found sound，as there will be this great quantity of metal on the top to feed it．
Your correspondent must remember that he is talking to a thoroughly practical man，and one that has tried all these things
before he began to talk of them．
Experience．

RHEOSTAT FOR ELECTRIC LAMPS，
Sir，－Referring to the cut and descriptive paragraph in your
issue of October 20th of a rheostat for varying the resistance of incandescent lamp circuits，by means of which the brightness of the individual lamps of an installation can be regulated at will，which instrument is stated by the Scientific American to be the invention
of Mr．Patrick H．Fox，of New York city，I beg to state that an of Mr．Patrick H．Fox，of New York city，I beg to state that an
essentially similar rheostat was designed by me and used at the Earnock Colliery as far back as Augast，1881．The only difference between Mr．Fox＇s regulator and mine is a mere matter of detail．
I employed a travelling contact pressed firmly against the convolu－ tons of wire and actuated by a small crank，in place of the loose collar and set screw used by him．ALFRED R．
30，Hill－street，Garnethill，Glasgow，October 25th．

RAILWAY MATTERS.
The directors of the Madras Railway Company have elected Mr.
Harry J. Thompson, A.K.C., Stud. Inst. C.E., to fill the vacant Harry J. Thompson, A.K.C., Stud. Inst. C.E., to fill the va
appointment of assistant civil engineer on their Indian staff. The Moniteur- Belge of the 16th inst, contained a statement that
meeting was to take place in Paris on the 2th inst. for the
purpose of considering the proposed winding up of the Eames purpose of considering the
Vacuum Brake Company.
ON behalf of the Austro-Hungarian railways, the Lemberg-Zernowitz-Jassy Railway Company have introduceed a new direct
through tariff for the transit of goods from the Austrian frontier to or through Roumania, the goods being by this tariff franked for to or turough Roumania, the gods beeng by this tarit franked for
the Austrian, Hungarian, and Roumanain customs' requirements.
This tariff will necoessarily facilitate and simplify the traftic to a The Austrian, Hungarian, and Roumanann customs requirements.
This sarif will necessilil faicitate and simplify the trafticto a
great extent, and will dobbtless lead to a considerable increase of great extent, and will doubtless lead
trade between the countries named.
Mr. JAMES GowaNs, contractor, of Edinburgh, commenced the
work of laying down the South Shields Corporation tramway at the work of laying down the South Shields Corporation tramway at the
pier promenade on Monday, July 24 th, and finished at Tyne Dooks pier promenade on Monday, July 24 hh, and finished at 1yne Dooks
on Saturday, October 2 sst, this being the exact time allowed for in
his contract, viz, twelve weeks. The length of the tramways laid down, taken as a single line, is st three and a-half miles. The emange,
is fitt. (inin, and the system laid down is that known as "Gowans."
it is 3 ft . Gin, and the system laid down is that known as "Gowans."
The works have been carried out under the direction of Mr.
Matthew Hall, borough engineer. The Magistracy of Vienna have, after an exhaustive discussion during three meetings, at which the project of Ob. Ing. Berger, lecided for the arching in of the Wienfluss, a small stream, a tributary of the Danube, from which Vienna takes its name. It has long
been proposed that this stream should be arched over, and the
project is now brought forward in connection with a Stadtbahn,
 years. The Magistracy recommends the Gemeinderath also to
hcoept the scheme. Herr Berger calculates that he will obtain from the sale of the ground reclaimed by the execution of the project
surplus of three million florins after defraying all expenses. As far as is at present known, the most serious result of the
storm of Tuesday is the destruction of a railway brige on the
Great Western Yailway over the Avon at Cattistock, near Dorchester, just as a train from Bristol was passing over it. One
carriage fell through, but there was no one in it. The driver was everely scalded, and the fireman escaped with a few slight burns.
Some of the passengers were a good deal shaken. The entire bridge, buttresses, and wing walls were swept away by the tremen-
dous rush of water, which flooded the line for a mile, and destroyed good deal of the permanent way. All traffic was suspended for the day, as it was also on the Bridport section of the Great Western
Railway, owing to extensive landslips. Two other bridges further Rai way, owing to extensive landslips. Two other
up the line from Cattistock were also washed away.
MAJOR-GENERAL HUTCHINSON has sent in a report on the causes A the atcicient which occurred shortly before 7 p.m. on the 7 th
Augutt near Ewood Bridge, on the Blackburn and Over Darwen Tramways. In this case as a h heavily laden ear drawn by a steam tight side, and was dragged along a short distance before the engin stopped. The lessons to be derived from this accident, he says, are
(1) the importance of observing very moderate speeds in the descent of sharp Inctince of ; (2) the the necessity moderate speeds in the evescent especially on the roofs of cars; and (3) the importance of havin
the governor examined at short intervals by a competent person, t t
see that it comes into action at the speed laid down in the rules A CORREsponDent writes to the National Car-Builder as
follows:-"A very effective and cheap method of testing locomotive boilers, either in the repairing of them or in new work, has
been invented by Mr. Robert Wiggins, general foreman of the
Cleveland, Columbus, Cincinnatigind Cleveland, Columbus, Cincinnati, and Indianapolis shops, at
Delaware, O. The method consists in completely filling the
boiler with cold water when it is over the pit A. then made with the steam-heating pipes in the pit from any convenient opening in the boiler, the steam turned on, and the water
in the boiler heated. When the water is sufficiently heated to approximate the condition of the boiler when in actual service,
small force pump is connected with the boiler, and as the latter is already full of water, a few strokes of the pump, drawing wate from a bucket, runs the pressure up to any desired height. THERR was a narrow escape outside Abernant tunnel, Vale of
Neaath Railway, Monday night. The last passenger train from Swansea oores an hour, imediately oo coming through the tunnel at forty niles an hour, came into collision with the hind part of a good
train, which had just preceded the passenger train and was bein shunted. Fortunately, one of the men of the goods heard the approaching train, and ran back with his light, enabling the driver
to reverse and slacken considerably. "But query," adds ou correspondent from Wales, "should there no until the 'gods 'was shunted. In shanting a wagon might give
way, and there would be no chance of avoiding a disaster. Is is possible, I do not say it is true, that a signalman long accustomed
to the fact that a train took so many minutes to go through the tunnel would, at the expiration of that time, let the passenger There is such an e
heat of Vera Cruz, with its ordinary temperature of ge great trop in the shade, and the cooler atmosphere of the elevatured upper plains, that it would be imprudent, if not absolutely dangerous, to expose the
train officials of the Mexican Railway to the risks contingent to
worling direct from working direct from the one to the other. Boca del Monte,
mouth of the mountain, stands, as its commencement of the valley which ieads down implies, at the top on o to tower plains.
It is situated near the foot of the smow Zitlaltipetl, whose summit is is of the the snow-capped mountain, peculiar position gives it such a highly rarefied, chilly atmosphere,
ass to be keenly felt even by persons arriving from the direction of
Puebla and the city anderstood how severe from the tropican severe oast. Fould be the effiect on those proceeding
the Mexican line has, therefore, according, or climate purposes,
to the Mexican line has, therefore, according to a paper read before
the Institution of Civil Engineers in Ireland, by W. H. Mivls, to
be divided into three sections- the first, from Vora C. del Macho the second, Paso del Macho tom Boca del Monte Monte and
the third, from Boca del Monte to the city of Mexico and Puebla. THE Canadian Pacific's main line is constructed for a distance of
440 miles west of since May west Messrs. Langdon, whephard, and Co Thave been built
tance was built within fifteen months. The south-western branch of the Canadian Pacific is now built two miles south of Morris, general manager of the Canadian Pacifict, station. that. The Horrne, 1st, 1883, and that take superior wean will be under contract by January
be completed to the Rockies. Mr. Senecal division will
betcon is said to extendingted the North Ghores. Railway to To Tadonssac, and establishing port of the western provinoes of the Dominion. An era in the
progress of Ottwa has been marked by the opening of the Canada
Atlantio Railway, extending from that city to Athantio Railway, extending from that city to Coteau Landing.
The new line considerably shortens the route Montreal. Anrangements have been the completed from ottawa thich Mr. E.
B. Denny, in connection with English capitalists widertaks construction of the Ottawa and Gatineau Valley Railway. Rapid
Railway from Essexleutre to an extroit. The new one line is to bouthern
she ished by November 1st, when Canada Southern trains will run vii
Detroit, instead of $v i i$ Amherstburg as at present.

NOTES AND MEMORANDA.
THE use of papier maché as the body of railway whels is is
lescribed in a patent specification dated 14th June, , 184, of a
Hent Mr. Henson, who had made many improvements in railwa
apparatus.
 England and Scotland, 1088; south coast, 503 ; west coasts
England and Sootland, and coast of Irleand, 987; north coast
Sootland, 82 ; and other parts, 202 . Total, 2862 . AT"
 the period of accelerated and verr irregular velocity occoompanied regular propagation, in a tube closed at one end, and having its combustible gaseous contents- biosxide of nitrogen, and sulp hide
of carbon-lit at the other. A vibratory novement is indicated he amplitude increasing as the last third of the tube's length is neared-where is one of the ventral segments of vibration. The
mean velocity of rapidity of the vibrations increase.
The 3575 wrecks, casualties, and collisions, reported as having
ccuured on and near the coasts of the United Kingdom duving the ocurred on and near the coasts of the United Kingdom during the
year 1880-81, comprised 4297 vessels. The number is larger than
ine previous year by 1159 , In the previous year by 1159, and is in excess of the casualtie reported, because in cases of collision two or more ships are, of
course, involved in one casualty. Thus 713 were collisions, and
asen 2262 were wrecks and casualties other than collisions. On subdividing these latter disasters, we find that 636 were wrecks, \&e.,
resulting in total loss, 670 were casualties resulting in serious damage, and 1556 weree minor werecidents. During the year 1879-8 Che wrecks and casualties other than collisions on and near our
coasts numbered 1916 or 946 less than the number reported coasts numbered 1916, or 946 less than the
during the twelve months now under disussion.
The largest State in the civilised world is Texas, which boasts an Mrea of 274,356 square miles; the smallest is the little State of
Monaco in Europe, which has only an area of six square miles The Austrian Empire contains 240,943 square miles; the German mpire, 212,091 ; Franee, 204,091 ; spain, 177,781; Sweden,
168,042; California, 157,801 ; Dakota, 150, 932 ; territory of
Iontana, 143776 .

 ,0994; territory of Washington, 69,994; Indian territory, 68,991, Missouri, 65,350 ; Turkey in Europe, 62,028 ; then come a number
of otherAmerian States, after which are Roumania, 45,$642 ;$ Bosnia and Herzegovina, 28,125 ; Bulgaria, 24,$360 ;$ Servia,
Netherlands, 20,$527 ;$ Greece, 19,941, Switzerland

Denmark, 14,553; Eas and Montenegro, 1770 .

IT appears by the measurements recently taken by Government ssurveyors that the great lakes of North America boast the follow-
ing vast relative capacities:- Lake Superior is 335 miles in length,
and its greatest breadth is and its greatest breadth is 160 miles, mean depth, 688 ft .; eleva-
tion, 827 ftt; area, 82,000 square miles. The greatest length of
Lake Michiman is 300 miles ;its it is generally very narrow as compared with Lake Superior ; mean depth, 690 ft .; elevation, 506 ft t; , area, 23,000 square miles. The
reatest length of Lake $H u r o n ~ i s ~$
300 greatest length of Lake Huron is 300 miles; its greatest breadth,
60 miles ; mean depth, 600 oft.; elevation, $2744 t \mathrm{tt}$; a area, 20,000 quare miles. ghe greatest ength of Lake
greatest breadth, 80 miles $;$ mean depth, 84 ft ; elevation, 26 ift.
rea, area, 6000 square miles. The greatest length, of Lake Ontario
180 miles; its greatest breadth is 65 miles ;its mean depth
500 ft ; elevation, 661 ft .; area, 6000 square miles. The total sooft. ; elevation, 261 ft .; area, 6000 square miles. The total o
these five great lakes is $126 \overline{\mathrm{D}}$ miles, covering an area of upward these five great lakes is $126 \overline{0}$ miles, covering an
of 135000 square miles, thus affording natural
navigation beyond any other part of the world.
THe annual iron produce of the world is calculated from the yield from all the more important countries has been ascertaine ap to the year 1881. In regard to the others, it is assumed that the yield has not fallen of since the latest ifires reported. Fo
the year 1881 the yield of Great Britain was $8,377,361$ gross tons Belgium, 222,288 ; Austria-Hungary, for $1880,448,685$; ; Sweden
 o,000; Japan, 10,$000 ;$ and all other countries, 46,000 . Under
"other countries. are included Canada, Switzerland, and Mexico,
each producing about 7500 tons per year, and Norway with 4000 tons per year. The grand total is 19, year, and Norway, with Great Britain, the
United States. United states, Germany, and France, produce no less than 88.4
per cent. of the world's iron supply; the first two 64.3 per cent.,
and Great Britain alone and Great Britain alone 43 per cent. The chief consumer is the
United States, taking 29 per cent.; Great Britain comes next with $23^{\prime} 4$ per cent.; and these two use more than half the whole supply Mr. A. J. Hadcock, A. Inst. Chem, recently related the follow-ing:-A kettle filled with boiling water was hung in the hottes
room of some Turkish baths with the lid on. The temperature the surrounding air was 262 deg. Fah. After about an hour the
temperature of the water was taken, and indicated, as was expected, 212 deg. The kettle was then re-hung with the lid off The temperature of the room was now 252 deg. In twent
minutes the temperature of the water had fallen to 185 thirty minutes to 178 deg., in forty-five minutes to 170 deg.,., and
was evidently still falling.' The manager stated that it generally fell finally to about 140 deg., when a point of equilibrium seemed Haddock supposes this loss of heat was due to rapid vaporisation, and conversion of the sensible heat of the water into the latent heat of steam, and as dry air is a very bad conductor of heat-
one of the worst known-the heat required to convert a portion the water into steam had to be abstracted from the remainder this explanation it is well known thate if water is placed is of an air-pump, and the air is exhausted, the rapid evaporation The Bor THE British Association Committee on underground tempera
tures in thir last rerort adopt 6 fftt. per degree rise in temperature or 0.01566 of a degree per foot depth To betain an temperature, to the rate at which heat escapes annually from the earth, the reduce the above rate of increase ${ }^{01566}$ to Centigrade degrees pe
centimetre of depth. For this puryose we must multiply by 0182 iving 000285. To calculate the rate of escape of heat, this mus with a Committee of the British Association, has made a very extensive and valuable series of direct measurements of the concertainty to his results by selecting as two of the subjects of his
experiments the Calton Hill Trap and Craigleith sondston experiments the Calton Hill Trap and Craigleith sandstone, to
which Sir William Thomson's determinations apply. From com-
bining Prof. Herschel's deterninations with those Thomson, 0058 is adopted as the mean conductivity of the outer
crust of the earth, which, being multiplied by the mean rate
of increase, 000285 sives the tow of heat in
 a year, which is approximately $31 \frac{1}{2}$ millions, we have 1633×315
$\times 10 .+41.4 \times 41.4$. This, then, is the British Association Committee's estimate of the average number of gramme degrees
heat that escape annually through each square centimetre of
horizontal

MISCELLANEA.
WITH reference to the collisions on and near our coasts during
the year, sixty-three of the 713 collisions were between two steamships , both under way; 148 between staeam and bailing
vessels, both being under way; and seventy-two between steamships under way and steam or sailing vessels at anchor. THE first number of The Wheclman, a new American monthly
periodical devoted to the interests and amusement of velocipedesprians, is exceedingly well got up, after the manner of Soribner's sand
the as goocuas the first, it will no doubt acquire a rapidly extending circu
Messrs. liffe and Son, Coventry, are the English publishers.
THE order for the large centrifugal pumping machinery has been
entrusted by the director3 of Messrs. Hills' Dry Dooks Company, entrusted by the cirrectors of Messrs. Hills Dry Dooks Company,
for their new dock at Cardiff, to Messrs. W. H. Allen and Co, of York-street works, Lambeth. This dock will contain 2,131,312 gallons of water to be emptied in three hours. It will be over
tooft. in length and will be the largest dock in that neighbourhood. The following resolution was passed unanimously at a very full
meeting, on the 23 rd inst., of the Whitechapel District Board of Works, which embraces all the eastern boundary of the City :-
"That this Board learns with great disappointment that the ngineer of the Metroololitan Board of Works, in preparing plans
or the much needed bridge across the Thames at the Tower, has made them for a high-level bridge." THE fitth annual report of the Board of Commissioners of State survey is progressing with very creditable speed. The report is
signed by the director, Mr. James T. Gardiner, and is accompanied signed by the director, Mr. James I. Gardiner, and is accompanied
by a series of excellently executed triangulation maps relating to Eastern New York, Central New York, Hudson River, Troy to
Albany, Albany to New Baltimore, and of New Baltimore to Albany,
Hudson.
Noriong since we werepromised articles for various purposes made of cotton. On the other hand, very recently, consisting cinietty or comprill hasbeenstarsed the object of manufacturing cotton from wood. A contemporary says the process has long since passed the experimental stage, and it is said that the thread thus made is equally as fine in quality as
the best manufactured article mad considerbly best mandoored artide and considerably cheaper. The wreck abstract for $1880-81$ shows the number of lives lost
on or near our coasts was 984 during the twelve months. Of these sixty-six were lost in vessels that foundered, ninety-six and 237 in missing vessels. The remaining $10 \pm$ lives were lost from various causes, such as through being washed overboard in
heavy seas, explosions, \&c. Of the 238 shins from which the 984 heavy seas, explosions, \&c. Of the 238 ships from which the 984
ives were lost, 208 were British, involving the loss of 852 lives, ives were lost, 208 were British, involving the loss
and thirty were foreign, causing the loss of 132 lives
WASTE pipe and fixture ventilation in houses, offices, and public now, and although there seems to be a rood deal of room for sim plification, a very effective system applied to some buildings in
New York is described in the Americin New York is described in the American Sanitary Eingineer, as
carried out by Messss. Barran and Duggan, under Mr. J. M. Slade, rchitect, and Professor Clark. A special ventilating shaft is built
with the building, and a current is induced by heated air from tove in the basement through a central pipe ; and with this shaft the apartments are ventilated. Ventilating pipes from urinals, \&c., are also kept warm, and an upward current induced, by means of
an encircling pipe kept hot in a smoke flue, or by exhaust steam. A company has been formed called the Midland, Western, and
Metropolitan Canal Carrying Company, Limited, with a capital of £200,000, for tha eprropose of providing, increased facilitieies for the
carriage and distribution of merchandise between the ports of Bristoo and and the Western and Midland Counties, and senerally for carrying on the business of carriers by river, canal,
railway, and otherwise, and for the warehousing of goods. The company has acquired a lease, with the option of purchase, of the
Wilts and Berks Canal, about sixty-nine miles, from a junction with the Kennet and Avon Canal at Semington, near Bath, to the ings, reservoirs, wharves, and works held in connection therewith. NEW Zealand will not have much trouble about coal supply for
some time if the following from a contemporary is true :-" Among the coal mines rapidly being developed in New Zealand is one
siuated near the town of Westport, on the west coast of the situated near the town of Westport, on the west coast of the
Middle Island, which is distinguished by two remarkable, if not
 mous deposits are placed, and can be easily worked at an altitude are exposed on the facest of the sea liffs and. and be be of these seams
with the greatest ease by tunnelling. There is the further advantage that
the coal can be loaded on board ship and the empties brought back
According to L'Electrician, the halls of the five laboratories of the Scientific School at Aix la Chapelle are heated by air, and the temperature is regulated by electric thermometers which transmit s below 17 deg. $62 \cdot 6$ deag. Fab. - to o when, when it exceeds
9 deg.- 66.2 deg. Fah. The absence of the caretaker has heen provided for by call bells, which are operated at the same time as he indicators. The great amphitheatre can be lighted either by
as or the electric light from Siemens ing a panel behind the professor's table, a ground glass is exposed,
which facilitates the use of the electric light for projecting chemical or physical experiments. A quantity machine is employed for laboratory of quantitative analysis and into the grand amphi-

Aт a meeting of the Wednesbury Local Board on the 23rd inst., a resolution was passed approving of a united drainage scheme for
the parishes of Wednesbury portion of Sedgley. Mr. Pritchard, C.E., whose scheme is to be
 portion of Sedgley; that a suitable site for the outfall works would cost of the outfall works and outfall sewer from Bescot to out fall-including about 1110 acres of land-and the cost of preparing
it, would be $\$ 25,000$; and the total cost of sewering the districts named would be-Tipton, twenty-two miles of town sewers and apportionment of outfall sewer and works, $£ 32,000$; Wednesbury,
eighteen miles, 228,$00 ;$, Darlaston, ten milise, $£ 15,000$; and
Sedgley, three miles, Sedgley, three miles, $£ 4500$, making a total cost of $£ 79,500$.
employed on the long-cours receive a premium on the distance sailed, nearly all the shipowning companies have added largely to
their fleets, and many new steamship companies have been The great majority of high-class steamships built abroad during the nd several of the yards in that district have now on the Clyde hand for our neighbours. Although the bounty system has been
the means of largely increasing French tonna nterprising companies, whose vessels are not engaged in the long brated Fraissinet company of Marseilles. This company has recently added 16,000 tons of British-built steamers to its line,
six of which vessels have been built by Messrs. A. M'Millan and Son, Tookyard, Dumbarton, which firm launched on the 11th inst.,
the Taurus, 1800 tons and 1500 -horse power, for this company, and have still two similar vessels building for the same fleet to trade in
the Mediterranean and Black Sea.

ON A NEW ARC ELECTRIC LAMP.* By Mr. W. H. Preece.
Electric lamps on the arc principle are almost as numerous as the trees in the forest, and it is rather refreshing to come upon as the current flows, and it is the variation in their consumption which occasions the flickering and irregularity of the light that is
so irritating to the eye. Special mechanical contrivances, or reguso irritating to the eye. Special mechanical contrivancet, or regu-
lators, have to be used to compensate for this destruction of the carbons, as in the Siemens and Brush type, or else refractory
materials have to be combined with the carbons, as in the Jablochkoff candle and in the lamp Soleil. The steadiness of the light depends upon the regularity with which the carbons are
moved towards each other as they are consumed, so as to maintain moved towards each other as they are consumed, so as to maintain
the electric resistance and constant quantity. Each lamp must
brought into play by switch C D, Figs, 4 and 6, which can be placed
at E or D . When it is at E , the negative terminal A is in communication with the positive terminal B, through the resistance R, which equals the resistance of the lamp, which is therefore out of circuit. When it is at D the cut-off acts automatically to do the same thing. This is done by a solenoid V, which has two coils,
the one of thick wire offering no resistance, and the other the one of thick wire offering no resistance, and the other of
2000 ohms resistance. The fine wire connects the terminals A^{\prime} and B. The solenoid has a movable soft iron core suspended by the spring U. It has a cross piece of iron, which can dip into two mercury cups, G and K, when the core is sucked into the solenoid. The lamp, the terminal A is placed in connection with the termin to the lamp, the terminal A is placed in connection with the terminal way as it was done by the switch CD.
Electrical Arrangement.-The mode in which several lamps are Electrical Arrangement. - The mode in which several lamps are
connected up in series is shown by the Fig. 5 . The + lead is con-
only about 01 to 02 milim. If this is not sufficient to restore
equilibrium it is repeated continually equilibrium it is repeated continually until equilibrium is obtained. invisible to the eye, but sufficient to provide for the consumption of the carbons. The balance acts precisely like the key of a Morse machine, and the brake precisely like the sounder-receiver so well known in telegraphy. It emits the same kind of sounds, and acts
automatically like a skilled and faithful telegraphist. The contact automatically like a skilled and faithful telegraphist. The contact
between N T and H is never completely broken; the sparks are very feeble, and the contacts do not oxidise. The resistances inserted are so considerable that heating cannot occur, while the portion of the current abstracted for the control is so small that it
may be neglected. This regulation, by very may be neglected. This regulation, by very small and short suc-
cessive steps, offers several advantages-(1) It is imperceptible to the eye ; (2) it does not affect the main current; (3) any sudden instantaneous variation of the main current does not allow a too near approach of the carbon points.
Let now an accident occur-for instance, a carbon is broken. At once the automatic cut-off acts, the current passes through the
resistance R instead of passing through the lamp. The current through the fine coil is suddenly increased, the rod is drawn in, contact is made at G and K, and the current is sent through the resistance R. As soon as contact is again made by the carbons,
the current in the coil S is increased, that in V diminished, and the antagonistic spring U breaks the contact at G and K . The is almost invisible, because the relighting I have seen this lamp in action, and its constancy and steadiness leave nothing to be desired.

NEW YORK STATE SURVEY.

The accompanying engraving shows the method adopted in the New York State Survey of marking trigonometrical State Survey stations, as described in the fifth annual report by the director, Mr. J. T. Gardiner. The underground centre-mark is letters N. Y. S. S. upon its base, and the small hole in the centre of the base marks the precise centre of the station. The surface mark is a granite monument 4 ft . long and 6 in . square, weighing about 180 lb . This monument is sunk vertically $3 \frac{1}{\mathrm{f}} \mathrm{ft}$ The bottom of the stone is separated from the pot below by about 3 in . of earth. The part of the monument remaining above the surface of the ground presents the form of a cube whose side is 6 in .; this portion only of the monument is dressed smooth. The the stone and the number of upon two of the vertical faces of is placed upon one of the remaining faces. Diagonal lines are in the vertical of the centre mark below. It is to the level top of the stone that the height of the station is referred. The granite of which these monuments are formed is of a variety not to be found in the State, and its peculiar appearance readily enables the station to be identified. As an additional securits, and to enable any dis-

placement of the monument by frost, \&c., to be ascertained, two reference pots are placed at a distance of 3 ft . from the station centre and $1 \frac{1}{2} \mathrm{ft}$. below the surface of the ground. These pots are like the one below the monument, but bear strongly-marked arrows upon their bases. The arrows point toward the station centre. The angle between the pots is approximately 90 deg., the cardinal points. In all cases the magnetic bearing of each pot is taken, so that if but one pot should be found the station centre could be recovered with accuracy. It is best, however, to resort to measurement from both pots.
The usual method of marking, here described, must at times be modified. When rock is struck near the surface the centre pot is replaced by a copper bolt; sometimes both reference pots are also replaced by copper bolts. It may be conenient to alter the distance of the reference pots in order to find soil enough to permit of their being
sunk. Very rarely the centre bolt is placed at the sunk. Very rarely the centre bolt is placed at the
surface of the rock and the monument is placed at one side, where a sufficient depth of soil may be found. In this one side, where a sufficient depth of soil may be found. In this case the
monument merely serves as a witness mark to enable the centre bolt to be recovered. In all cases careful notes are made of the distances and directions, and a sketch is also made showing the position of the station in relation to the surrounding country In most cases measurements and directions are taken to permanent objects in the vicinity, such as farm corners, houses, large boulders, \&c. When the station is occupied for the purpose of measuring the angles of the triangulation, it is customary for the like house corners, gables of barns, church spires, \&c., which may be visible within a mile or two of the station. By the aid of these angles, without recourse to measured distances, the station could be recovered very nearly should the monument be maliciously removed, and by digging the underground marks could be
found. As a final resort, the angles of the triangulation could found. As a final resort, the angles of the triangulation could be remeasured from neighbouring trigonometrical stations, and the station centre thus recovered even if all the marks should have been entirely removed.

A rumour coming from Rome states that the firm of Rubattino at Genoa is disposed to sell the T
French Government for $11,000,000$.

THE NEW BRIDGE OVER THE THAMESAT PUTNEY. SIR JOSEPH BAZALGETTE, AND Mr. E. BAZALGETTE, MM. INST, C.E., ENGINEERS.
(For description see page 315.)

THE ELY ACCIDENT.
GENERAL HUTChiNson has reported to the Board of Trade on
he accident which occurred on the Great Eastern Railway on the 28th July at Stretham Fen. It will be remembered that in this case, as the 5.15 p.m. down express train from Liverpool-street to
Norwich was running at a speed of between forty-five and fifty Norwish was running at a speed of between forty-five and fifty
miles an hour across Stretham Fen between Cambridge and Ely, mee engine, tender, and seven front vehicles, out of the eleven
composing the train, left the rails. The engine and tender ran composing the train, left the rails. The engine and tender ran
about 112 yards after leaving the rails, turned over on the left side, about 112 yards after leaving the rails, turned over on the left side, foot of a low bank on which the railway is carried. The vehicle next the tender, a third-class brake van, separated from it, and was thrown across both up and down lines, but remained upright,
the five next vehicles were thrown on their sides in the positions hown in the accompanying diagram; the seventh vehicle, ails with two pairs of wheels; the rear four vehicles remained on the rails as if stopped in an ordinary manner. Eleven passengers
were more or less severely injured; in three cases both legs were were more or less severely injured, in three cases both ied were 7th August. The driver was severely shaken and had some ribs
broken, the fireman was hurt in the hip and shaken, and the front guard was much shaken. The engine, No. 609, a new engine

OONTRAOTS OPEN.

GASHOLDER AT SLOUGH.
The Slough Gas and Coke Company want tenders for work to be done in thereconstruction of No. 2 gasholder on the following specifiation :-It is intended to reconstruct the holder in its telescopic orm, utilising as much of the existing material as may be found desirable. Such new work as it is considered will be wanted is herein set forth, but should variation be found necessary as the work proceeds, the work involved will have to be allowed or paid
or, as the case may be, on a schedule of prices to be submitted or, as the case
vith the tender
in
The dimensions of the holder are:--Inner lift, 0 ft. 3in. diameter by 12 ft . deep; outer lift, 42 ftt . diameter by $12 \mathrm{ft}$. . deep; tank
lift, 43 ft diameter by 12 ft . deep. Should it be found, on clearing out the tank, that these dimensions are not exact, the new holder will have to be altered accordingly. The contractor to take his own dimensions.
Outside Fr.
Outside Framing: Columns, Crirders, dc.- -The balance-weights,
hains, wheels, \&ce, to be removed and placed in store in the gat The columns, girders, and guide rails to be examined for soundness and strength, and, if found necessary, to be repaired and strengthened.
shall be carried out by the contractor so
completed to its true intent and meaning.
nd to be the best of thai required to be supplied by the contractor engine, lifting gear, \&c., to be provided, brought to, and removed om the works by the contractor at his own expense

解

Alterations.-The engineer has power to alter, during erection, as he may think proper ; the value of such alteration shall be
allowed for or deducted as the oase may be. lowed for or deducted as the oase may be.
e work, for accidents, \&c. Maintenance.- -Before giving up holder to the company the con-
ractor shall prove the same perfectly sound by filling it with air ractor shall prove the same perfectiy sound by filling it with air nd allowing it to remain for seven calendar days, atter which it is nd testing to be repeated after company have taken over holder. The contractor shall maintain and keep the holder in repair, gas tight and workable, for twelve calendar months.
Time- - The work to be completed in three months from date of order; if not so completed, the contractor to pay company the sum
of $£ 10$ Disputes.-Disputes to be referred to the company's
whose decision shall be final and binding to both parties.

which had commenced running in February, and had a fourwheeled leading bogie, single driving wheels, and six-wneeled tender, was but little damaged ; 15 in. of the right life guard was
broken off, and the left one bent ; there was the mark of a blow on the inside of the axle-box of the right leading bogie wheel, and a piece of stell about 5 Lin. long and lin. wide had been sheared off the
inside of the lip of the tire of the left leading bogie wheel. The back of the tank of the tender was knocked in. The accompany-
ng diaram shows the position of the train after the accident ing diagram shows the position of the train after the accident.
The Westinghouse automatio brake was fitted to the driving and trailing wheels of the engine, to all the tender wheels, and to
four wheels on each of the vehicles composing the train, except those of the Brighton Company's saloon, under which there were trake pipes only.
From an inspe
areful consideration of the scene of this accident, and from a son sees no reason to doubt but that the accident was caused by the left leading bogie wheel of the engine of the 5.15 p.m. down express train, when travelling over Stretham Fen at the rate of about fifty miles an hour, having been heavily struck by the
balance-weight of the reversing gear of the engine of the 4.40 p.m. ap express train-travelling at about the same rate of speed-
which weight had become detached from the reversing shaft of its engine just before the trains met, had then struck and broken the
right leading axle-box and damad right leading axle-box and damaged the footstep of the carriage in
the up train next but one to the engine, and had then been pro the up train next but one to the engine, and had then been pro-
jected across to the down line just as the engine of the down train reached the spot. The blow with which the left leading bogie
wheel of the engine of the down train was struck by the balanceWhee of the engine of the down train was struck by the balanceflange of the steel tire, a piece 5tin. long and 1in. mean width
seems also to have bulged outwards the left rail of the down line shaving off from the inner edge of the top flange of the rail a piece of iron about 1lin. long and ${ }^{\text {pind. }}$. wide. The balance-weight after striking the engine appears next to have made a dished markcoloured red with the red paint from the balance-weight-on a
sleeper of the down line close to the inside of the left rail, fourteen to rest in the 4 ft . space of the down line forty-eight yard on the to rest in the 4 ft . space of the down line forty-eight yards on the
Ely side of this mark. After being struck by the balance-weight, the engine sems at once to have left the rails with one or more of its left
wheels outside the left rail the to wheels outside the left rail, then to have diverged to the left, and
finally went down the low bank, and, with its tender, turned over finally went down the low bank, and, with its tender, turned over
on the left side, after having run about 12 yards from the spot
where it was first struck by the vehicles were thrown into the position marked on the diagram the first, second, and fourth, comparatively lighter than the others, being so badly damaged as to be incapable of repair ; the seventh
vehicle left the rails with its front and middle wheels t the four rear venicles kept the rails, and were almost uninjured. It appears the up train they saw edriver and fireman that just as they passed come towards them from the up train, and that the driver had just time to shut off steam and apply the Westinghouse brake on him from the tender. The front guard, occupying the sixth
vehicle from the engine, feeling his van , ive a sudden lurch grasped a partition, and as he was doing so noticed that the brak pressure gauge needle, which had indicated 65 lb . when he started
from Cambridge, had from Cambridge, had gone to zero. There is no reason
to doubt that the driver did, as he states, apply the automatic continuous brake just before the engine left the rails s supposcalled into play upon the first severance of one of the couplings,
the remarkable manner in which the four rear vehicles train were brought to rest from a speed of about fifty miles an rails or any telescoping, must be attributed to the fact of the brak having been very quick in its action and automatic ; owing to the
first of these qualities the least possible time was lost in the first of these qualities the least possible time was lost in the retarding effect being transmitted to the rear of the train, and
owing to the second the brake action was kept up after communication with the engine was severed. Without a brake of this description it is almost certain that the fate of the rear vehicles would have been more or less like that of the front ones, on which and that the damage to these latter would have make itself felt, than it was. We have already in our impression for August 4th illustrated the balance-weight and explained how it was detached and we need not repeat here what we have said. The case is interesting as showing how important a part a good automatic brake
can play in saving life under the most adverse circumstances.

TENDERS.

SEWERAGE WORKS AT HOYLAKE AND WEST KIRBY TENDERS for sewerage works at Hoylake and West Kirby for

Ornamental Caps.-Caps and finials similar to

 Removing Exxisting Holder be provided and fixed.Rexisting holl
 required for the reconstruction shall not be destroyed. The old ld material shall remain the in the yard. It is intended that all

 to be of angle iron, 4in. by 4in. by $\frac{1}{3}$ in.,
put together in convenient lengths.
The points to be butted and covered bed
2 ft. long.
Curb Irons. - The cup to be formed of Curb Irons. - The cup to be formed of
channel iron 7 in. by 2 2in. by fin. put
sin ogether in the same way as the top curr
The vertical plates to be 14in. wide by B.W.G. surrounded at top by a bar of
fround iron $1 \frac{1}{2}$ in. by
inin.
The plates to be lap-jointed.
Vertical Stay.
Vertical Stays, Roof Framing, \&ce.-It is intended that the whole of this interior
framework be utilised in the re-construc${ }_{\text {tion. }}^{\text {Crown Plates. }}$ - The centre plate to be 3 ft . diameter by 9 B.W.G. The outside row to
be 15 in. wioe by 9 B.W.G., except for a be $15 i n$. wioe by 9 B. W.G., except for a
length of 2 ft . where each guide carriage comes, where it will be toin. thick. The
cemainder to be No. 16 B.W.G. remainder to be No. 16 B.W.G.
Side Plates.- The top and botom rows
to be 2 ft . wide by 12 B .W.G. The four intermediate erows to be $16 \mathrm{~B} . \mathrm{B} . \mathrm{W}$. .G.
Manhole. The
Mane pipes 4ft. by 1 ftt . 6in., oval in shape,
surrounded by a ring 3in. by ${ }^{3}$ in., and
and covered with a plate 9 B.W.W.G., fastened
down by stud bolts \bar{g} in. diameter, placed down by stud bolts sinin. diameter, placed holder will be utilised, but the cheeks o the top carriages will have to be new and
formed of wrought iron. The bases to be formed of wrought iron. The bases to be
fixed to outside row of crown plates by Outer Holder: Grip Irons. - The grip
to be in all points the reversed counterpart of the cup of inner holder.
Bottom Curb. The bot
Bottom Curr. - The bottom curb to be of angle iron 4in. by 4in. by sin., put toge
in the same manner as the top curb. Plates. - The top and bottom rows to be
2 ft . wide by 12 B.W.G. The four intermediate rows to be 16 B.W.G. Guides and Guide Rollers.-The guide
carriages and rollers and all guide plates
and bars of old holders to be utilised in
the reconstruction.
Quaclity of Work: Iron.-All iron to be equal to best Stafiord-
shire, and capable of tensile strain before breaking of not less than Shire, and capable of tensile strain before breaking of not less than
20 tons per square inch of section.
Work- All rivet holes to be punched or drilled perfectly true and of the evact size of the rivets, and in such a position that the will correctly face each other without drifting, ivivets, de.-The ioints of all angle and other irons to be butted Rivets, cre. -The joints of all angle and other iinns the butted
and covered with plates 2 ft . long, of the same sectional area as the parts jointed. The oints of plates to be lapped. Rivets to be
used where practicabie, of which the following are to be relative sizes :-

All rivets to be snap-headed, and those over ${ }^{\text {fingin. diameter to be }}$ extend to within 1 in. of extreme edge. Of plates on to plates other to be and over to be 1 Iin., and of thin plates on to each usual manner, and the joints of the heavy plates and inons in the caulked, No.9 B.W.B. plates to weigh $6 \cdot 24$ lb, No. No. 12, $4 \cdot 38$ lb.;

of boiled oil well parked into the mande thated two coats of boiled oil well worked into them. All other ironwork to have
two coats of oxide paint. When the erection is completed the interior of the holder to have two coats of tar-provided by the company - well boiled and put on hot; the exterior of both old and new work to have two coats of oxide paint of approved colour; the old work to be first cleaned down and prepared.
cylindrical, of the dimensions given abovere, subject, however, to such variations as the size of the tank may render necessary. well as any others that during the progress of the work being found necessary may be supplied to the contractor. All operations that
are neecssany for the proper completion of the work, whether
described in this specifontion or delineated in the dro

Payment.-Payment will be made, as certinfed by the engineer only to the extent of 80 per cent., on or before the 10th of each nonth, on the value of the work so completed during the preceding the other half at the end of twelve months from the date of the completion of contract, provided the work has proved satisfactory.
Tenders. - Tenders to be sent in, addressed to the chairman of the Slough Gas and Coke Company, at the office of the company, High-street, Slough, on or before the 31st of October, 1882, to contain a lump sum for the work described in this specification, and
schedule of the price per cent, to be allowed, and also of the price per cent. to be charged for all old and new material respec
tively used over and above the quantities herein provided for.

THE NEW PRINCETON TELESCOPE.
Thr great telescope of the college of New Jersey, as it stands in refractors in use, and is by far the largest belonging to any collegiate institution. Halsted Observatory was built some fourteen year ago, at a cost of about 56,000 dols. In making the alterations lecessary for the reception of the new telescope some 5000 dols. 26,000 dols. This sum was contributed by the friends of the college the largest donors being Mr. Robert Bonner, and Mr. R. L. stuart, of New York, who gave respectively 10,000 dols. and 6000 dols port, Mass.; and all the appointments of the observatory are of elescope is mounted, is 39 ft , in diameter. The apparatus for turning the dome and opening the shutter is driven by a 4 -horse power gas engine, which also actuates a small-Edison-dynamo
nachine for operating the electric lamps used in illuminating the building and furnishing electric currents for various spectroscopic purposes.
The following data respecting the telescope have been kindly furnished by Professor C. A. Young: The diameter of the object-
glass is 23 in. The radius of the curvature of the crown glass lens glass is 23 in. The radius of the curvature of the crown glass lens,
outside surface, is $265 \cdot 8 \mathrm{in}$; ; inner surface, $81 \cdot 9 \mathrm{in}$. These surfaces are both convex. The flint glass lens-concave on both sides - has or the surface next the crown lens a radius of 73 • 4 in. That of the surface next the eye is 222% in. The distance between the lenses is
7% Fin. The focal length is 30 oft. lin. The steel tube of the telescope has a length of 288 tt . and a diameter of $33 i n$. in the
middle. The length of the polar axis is 10ft.; diameter at bearings, middle. The length of the polar axis is 10 tt .; diameter at bearings,
Sin. and Gin. The diameter of the coarse hour circle is 3oin.; of the fine hour circle, 28 in . The length of the declination axis is
 The driving weight of the clockwork weighs 320 lb ., and has a drives the telescope is 40 in. The centrifugal regulator or governo weighs 22 lb , and revolves once in seven-tenths of a second. The weight is taken off the lower pivot by floating the regulator in mercury. The weight of the telescope and mounting is about seven
tons. The height of the centre of motion above the floor is 2oft. 9in. The declination circle is read from the eye end of the telescope by microscopes 9tt. long position and double-image micrometers of the best construction. under the supervision of Mr. Cristie, the Astronomer-Royal, upo the same plan as that of the instrument for some time in use at instrument, with three -so 6ft. long, and weighs, with its appendages, about 150 lb . For the present it is expected this telescope will be devoted mainly, though nor the purpe te stiar spectroscopy.
For the purpose of comparison the following facts with regard to two instruments excelling the Princeton telescope are now in use, owned by Mr. Newhall, of Neweastle-on-Tyne; and the 26 in . equatorial, made by the Clarks, at the Naval Observatory,
Washington. The third larger instrument, made by Grubb, of
Dubhin Dublin, and having an aperture of 27 in ., is now in process of mounting at Vienna. The instrument nearest in size below the
Princeton telescope, now in use is the Strassburg refrector, witl Princeton telescope, now in use, is the Strassburg refractor, with
an aperture of 19 in . There are in process of construction five arger instruments, namely: The Poulkowa telescope, 30 in., and telescope, 26 iin.; both by the Clarks. The Henry Brothers, in Paris, are making a 29 in. telesoope for the Nice
Observatory, and another, of the same size, for the National Observatory at Paris. One of the discs of glass-the crown-fo the Lick teescope, to be 36in. in diameter, has been received by rinding This gigantie instrum when finished, is to be erected on Mount Hamilton, California.-Scientific American

The Eligutric Lighting Act, 1882.-The following alterations have been made in the Board of Trade Rules:-Rule V.-The purposes of the licence or order" have been omitted. Rule IX.order to make the meaning more clear-- he have been altered in

THE NEW BRIDGE AT PUTNEY.

(Continued from Page 291.)

 New Severs.- A n new brick sewer 4ft. high by 2 ft . 8in. wide andinn in thickness, built in Portland cement and surrounded with Portland cement concrete, as shown, is to be constructed under
the main Fulham approach road, from Bistiop'swalk to Highstreet, to be connected by a bell-mouth junction with the existing sewer in that street.
Draw Dock, -A ne and on the river side of the Windsor-street approach. The road shall start at its lower end from the forsereshore at the point t on eneral plan, and shall be carried along the foreshore paraliel to in 13 , and shall be returned thence at right angles towards Wind sor-street, and double back to the foot of the Windsor-street
approach at i on plan. The raised roadway from the lower end y approach at i on plan. ing raised roaway from the ower end
 bedded before the concrete is set. From k to Windsor-street the pon rortland cement concrete foundation, and surmounted with parapet of brickwork in lias lime mortar, capped with Portland
tone cap. The roadway is to be formed of broken Guernsey sranite 7in. in depth, and laid upon a hard core of brick rubsibs
or other approved material 12in, in thickness, as described elsewhere for carriage-ways.
Remoral of Original Aqueduct : Description.-The general plan pied by an aqueduct, which comprises nine spans, gradually pied by an aquuduct, which comprises nine spans, gradually
diminishing from 9oft. at the centre to 60 oft. at the extremities.
The whole of these spans consist chiefly of two longitudinal The whole of these spans consist chiefly of two longitudinal
wrought iron-plate girders with transverse bearers upon their lower wrought iron-plate girders with transverse bearers upon their lower
flanges, which support two 2fin. and two 12in. water mains. The superstructure of this aqueduct is supported at each of its
extremities upon a brick abutment chamber, and across the river upon eight piers, each formed of six cast iron screw piles braced
together and sunk about 14 ft . below the surface of the river bed. he soffit levels of the superstructure or the clear headways unde t the centre span to 16 ft . at the extremities. The maximum longitudinal and transverse dimensions of the timber fender around the bases of the piers are about 22 ft. and 9 att. respectively.
Removal. - At a date to be determined by the engineer the whoi of the materials comprised in this aqued byt shall become the property of the contractor, who shall remove every portion of thi
aqueduct, and all wood or iron piling found in the bed of the
(iver extending over or adjoining the whole area occupied by the river extend
new bridge.
Temporary use of.-The contractor shall be permitted to make such temporary use of the existing aqueduct as may, in the judg
ment of the engineer, be considered advisable for facilitating the onstruction of the new bridge.
Removal of old Putney Bridge and of the temporary aqueduct.The contractor shall entirely remore old Putney Bridege, and the tol-houses situated at its notrhern and sotuthern
Disposal.- The whole of the materials comprised in or connected
vith the aforenamed structures shall, from the commencement o their demolition, become the property of the contractor.
Time of Remocal.-The removal of old Putney Bridge and the jjo entivenpory aqueduct shall nond he entire completion of the new granite bridge and its approach
coads; nor until after the diversion of all the water from the temporary aqueducct throught the pern
under the footways of the new bridge.
Piles. - Every portion of the wood and iron piling, and all pile
stumps adjoining oc connected with the aforesaid structures, shall
be entirely removed from e entirely removed from the river bed.
rdinary timber cofferdams, wrought iron caissons shall be pro ided for the oonstruction of each of the four bridge piers. These
aissons-of which three shall be employed in the constre caissons-of which three shall be employed in the construction o
every pier-shall correspond with the dimensions and details furevery pier-shail correspond with the dimensions and details fur-
nished upon contrat drawings -see pages 292 and 293. Each
complete caisson shall be built up with two-upper and owerdetachable caissonson of different construction; upper and bath power-
dhall be provided with halves of a horizontal water-tight joint, by shall e provided with halves of a horizontal, water-tight joint , ,
means of which they may be bolted together, and afterwards means of
Lower Caisson.-The lower caisson shall be principally utilised extent required for tho construction of each pier, and the opper
caisson shall be bolted to it for the exclusion of the tide during the construction of the pier. The lower caisson shall be constructed
with a cutting edge at bottom, and shall consist of two stict rolled wrought iron plates rivetted together. The external iro
 the descent of the caisson with Portland cement concrete com
posed of one measure of cement to four meansures of Thames
ballast. Each skin shall be built up with in. rivets at 2in. pitch, the horizontal joint of the lower plate
overlapping the upper plate. The skins shall be connected and
stiffened tiffened around the caisson at vertical intervals generally of 3ft. 6in., as shown by horizontal frames consisting of 3in. by 3in.
by sim. longitudinal and diagonal angle irons. The lower
bxtremity of internal skin extremity of internal skin of the lower caisson shall be connected
with the outer skin of the caisson by cranking it to form a wedge-shaped cutting edge, as shown in detail on drawing
No. 8 and this part of the caisson shall be stiftened by vertical
cusset plates tin. thick, placed 4 st. apart
 irons 5in. by 2 iin. by tin, secured horizontally against and com-
pletely around the internal projecting edge of the external plating. The cutting edge shall be further stiffened in its external face by
in. plate $12 i \mathrm{in}$. wide, rivetted to t it around the caisson with its upper extremity shall measure about 26 fft . in height. Upper Caison,- The upper caisson shall be about 33 ft . in height,
and consist of one skin tin. thike, stiftened at varying intervals by
internal horizontal nternal horizontal girders rivetted entirely around each caisson, 3in, by 3in. by sin., and a 3in. plate of varying widths as
shown, and the outer flange of two angles of the same dimen
sions, and the skin sions, and the skin of the caisson. These girders are connected
together and stiffened by of the girders by anglo irons 3n. by 3in. by Sine, and to the
skin by angle ions 3in. by 2in. by sin. The phates are
siffened at their inner edge by two vertical L-irons, 3in, by 2 lin stiffenee
by gin.
Erect Erection and Lovering.-The caissons used in the construction
of every pier shall be erected upon and lowered upon the river bed
from a atimber platform supported upon piling driven space to be occupied by the piers. Each caisson shall be separately lowered upon the river hed -previously prepared by dredging-by
means of four lowering screws attadhed at the corners of eac caisson. The soil shall be excavated from the interior by improved
Mirioy or by Brace and Batho dredgers. During its descent the
weight of each oiss necessary by solididy filling the internal 3ft. Gin. space between the kins with concrete.
foundation level its cutting elges shall at once be gradually under pinned by excavating the soil -by manual labour 3 ft . below and
2ft. beyond the external cotting edges. All freshly exped foun-
dation surfaces of clay shall beimmediately covered with 12in. con-
crete, so as to exclude the air and prevent crumbling of the clay.
The entire lengths of the caisson cutting edges shall be underpinned gradually by projecting outwards upon the beds of concrete
12in. thick, previously prepared, Bramley Fall stones 2 ft. thick, and measuring 4ft. by 4tt, as shown upon the contract drawings.
The concrete shall then be gradually filled in layers 12in. thick nto the interiors of the lower caissons until it is brought flush with their uppere extremities, and from this point the brick footing Bond for Piers.- Each pier having been separately constructed by means of three caissons, shall be afterwards bonded together in
the width of the pier below low-water level with continuous bond stones of Bramley Fall 3 ft . by 3 ftt . by 6 ft . in length, or by cast iron ribbed plates, as may be determined by the engineer. Above
these bond stones the masonry and brickwork of the superstructure shall aleo be bonded-atter the removal of the upper caissons-by Oothings provided for th
required by the engineer
ITronvork. -The whole of the ironwork shall be of good quality and shall be subjected to such tests, at the contractor's expense, as the engineer may di
perfectily watertight.
ions is to be excavated to the de.-The ground for the founda such greater or less depths as the engineer shall direct; but the value of any additional work is to ob added to and of any reduc-
tion of work deducted from the contract amount as elsevhere protion of work deducted from the contract amount as elsewhere pro-
vided. The sides of all excavations are in all cases to be pro-
 of the permanent works.
Foundation of Piers.-The foundations for the piers shall conFoundation of Piers.-The foundations for the piers shall con-
sit of masses of concrete and Bramley Fall stones as shown upon the drawings. The concrete in the foundations of the piers shall in the proportions of six to one respectively. No concrete shall be put into any portion of the work through
nd excavations shall be first pumped dry
Foundations of Approaches.- The concrete in the foundations of He approach arches and retaining walls shall, except where other-
wise described, consist of Portland cement and ballast incorporated in the proportions of eight to one. Wood Dams.-Timber Doms for Abutments.-The foundations
for the northern and southern bridge abutments shall be executed nder the shelter of whole tide dams, each consisting of double ines of whole pile timbers spaced 4ft. apart in the clear, and the
ntervening spaces filled with clay puddle, or, if in the judgment of the engineer found sufficient, of a single line of closely driven piles each 12 in. by 12 in., which shall be properly caulked on the
uter face and rendered perfectly water-tight. The dams shall outer face and rendered perfectly water-tight. The dams shal fom the abutment trenches, to be sunk behind the dams. Each external lines of whole timber walings, bolted securely together with sufficient nuts and washers, and sufficiently strutted to resist the pressure of the tide, and protected from impacts from craft by
efficient floating booms. The joints of the dams below the bed level of the river shall be rendered water-tight by excavating a trench about 3ft. deep, or more if necessary, previous to driving
and filling the same with clay, into which the piles may be driven Abutments.- The abutments are to be constructed of granite
ashlar facing, backed with the best quality of picked stock brickork set in Portland cement mortar, two of sand to one of cement, contract drawings No. 6 and 7. The masonry is to be composed of horizontal courses of headers and stretchers alternately, below Trinity high water, the headers to be ont less than fitt in depth rom the face, and itt . in width on the eace, and the stretchers no
more than ftt. 6in. in length on the face, , or less than 1ft. 9in. in epth from the face, and rom the face. The vertical height of the courses to be as shown in the drawings. The stones in the alternate courses are to break ond with a lap of not less than 12 in. All the concrete used in the
butments shall be composed of six of Thames ballast to Portland cement. The whole of the exposed face of granite
Pat nd fine axed on the face, the quality of the work being equal to that of the granite of the Victoria Embankment. The horizontal
bed joints are to be fine dressed and splayed 2 in. each way; but er vertical joints are to be plain and perfectly straight and fin preserve its full dimensions, and to be fair picked and straight be
tween. The whole of the masonry is to be set flush in beds o mortar, composed of one of Portland cement to one of sand, and
properly grouted. The joints not to exceed 1 in. in thickess lose grained granite, to be approved by the engineer. The several stones are to be worked of the form and dimensions shown on the
contract drawings, the faces, beds, and joints being true, and out ashlar works. acoording to the directions of the engineer, and slate nd when considered necessary by the engineer. All mouldel courses are to be fine chisesel dressed, to the triene form shown in the rawings, and equal to the work on the Victoria Embankment.
fight of steps shall be formed on the east side of the Surre olid York stone stens and landings, fair tops shall consist surfaces, and set in Portland cement mortar on brick walls, also in rrought irom fence leaded into steps and landings, strengthene by a sufficient number of wrought iron stays.
Piers.-The piers are to be constructed of
with brickwork in all respects similar to that already mpecified fo drawings. The abbutments and piers are to be carried up to tonether o that the whole five arches may be carried over simultaneously
Drains of stoneware pipes of 6in. and 9in. diameter are to b drawings, the joints being made with Portland cement, care bein taken that no cement shall be left projecting in the interior of the
pipes. Ciroular holes Gin. in diameter, are to be out through the shlas granite facing, at the level shown, to form the outlets to cast iron gully gratings. each of the brides piers shall be weighted with pigs, iron-railway rails, or other approved materials to be imposed thereon. The
period during which the test loads shall remain, the weight of he test loads, and the method of loading each, pier shall in all
cases be determined or approved by the engineer. Any subsidence of the piers during construction, or in consequence of the super
imposed test loads, shall be accurately observed and immediatel
Centres.--The centres of each arch are to consist of nine ribs of
wrought iron, of the forms and dimensions shown upon the draw ings, one of which is given at page 292 .
Timbering to Main or Centre Span.-Span of centre arch is 144 ft , and the centreing is to be fixed in the position as shown on the of span of not less than 55ft. giving a clear headway of centre in
one centre and l1ft. at the sides of this opening, measured from Trinity high-water level.
Piles, dic. - The main piles or supports next the centre are to b
driven to a depth of not less than 2oft. into the bed of the river or to such depth as the engineer shall deem neeessary, it being
understood that each pilie is to take a load of not more than 15 tons.
All All piles are of Memel or Dantzic fir, not less than 14inin on any
side, and the timber is to be carrefuly selected, straight, and fre
from shakes or loose knots, wany edges, or other defects, and must
be submitted to the engineer's approval before being fixed under the pile engine. The eight piles forming together one main sup-
tor port are to be driven together-that is to say, no single pile is to
be driven its complete depth without its neighbour being driven to nearly the same distance at the same time. Care must be taken that the pless are guided close together when they are being driven,
and are to be kept perpendicular and in a true line in the positions, as shown on the drawing, of 5ft, 8in. from centre to centre. When
the eight piles are driven to their proper depth they are to be securely cramped together with twenty wrought iron timber dogs to each sapport, anf ave lel, so as to give a perfectly true and even
the heads san of
bearing to the cross-head piece, which is to be set true and carefully on each four piles, so as to distribute the weight uniformly on each single pile. All piles are to be shod with wrought iron shoes, not
less than 15 lb. each, and strong iron hoops also to the heads, the 1iron tin. broad by lin. thick.
Sills and Wedges.-On the
there are two to each support-is to be set the lower and upper sill, both of elm, and to be of carefully selected timber, as between
these sills are to be placed the wedges; and the "bearing surfaces" these sills are to be placed the wedges; and the "bearing surfaces"
between the wedges and that come on the cross-heads must be adzed to a true and regular line, so as to allow of the same thickness of wedges throughout, and the parts that are directly under the cast iron bed-plate to be of one uniform level. When the
lower sill is fixed in position, and securely fastened with dogs driven in the sides and to each cross-head, the wedres are to be placed in the sides and to each cross-head, the wedges are to be placed
longitudinally with it, and care taken to have them fixed across the centre line of the girders. These wedges are to be of oak, selected imber fully seasoned, and are to be carefully sawn to the given form, and a template is to be submitted for the engineer's approval before they are iixed. When the wedges are fixed te uop sil is to be placed in position on the top of them, but care must be taken
that the distance between the sills before the girders are fixed is not less than 1 ft ., so as to have as little raising of the girders by the wedges as possible, and to have as much lowering space tor the sirders as can be obtained when the centres are struck. Between ine main support and the single pile that carries the end of the sirder an intermediate set of piles or supports to be criven under ine, and to be dogged securely together. The single pile next to the masonry is to be placed upright in position, and in the pocket据 in the masonry, and the foot of the pile sawn of square, so as the piles are fixed in their proper on position concrete. the. He hen ain.
"sin.
"stringers" are to be fixed, care being taken that the faces or parts of timber that are in contact are to come close together olts, with tin. square washers sin. thick, and in no case any mall packing or make-up pieces are to be used. In every alter-
nate bay, or 11 ft . 4 in . apart, is to be fixed crossed single bracing 2in. by 6in. as shown, bolted securely to the top, and halt-way lown the piles, and fixed between the 12 by 12 stringers. The entire faces of the 50 ft . opening are to be covered with 12 by 6
baling pieces, fixed 12in, apart, and to be securely spiked to the baling pieces, fixed 12in. apart, and to be securely spiked to the
main piles, and all corners or unevenness is to be adzed off, so as afford a smoth passage to any craft going through the open-
ing. When all the piles are driven, and all bracing and walings
re fixed complete, the girders A may be fixed or built in their places, namely, fitt, Sin. apart from centre to centre, care being
taken that the east iron bed-plates come over the centre of the taken th
supports
Wrou
ated inht-iron Work.--All the wrought iron work shall be exedimensions, as given. The plates forming the webs and flanges of the girders are to be carefully sheared to size, and planed at joints s as to butt closely. All angle irons one the top and bottom flanges of the girders are to be neatly and truly corved as drawn, especially the top flanges on
which are placed the laggings. Great care is to be taken that all the rivets shall accurately fit the rivet holes, and all rivetting shall be taken for connecting and securing together all the different parts of the ironwork, such as girders, bracing, stiffening plates
 at of hand, the threads of all screws being well cut of ample length. It is meant to be understood that the ironwork used for vere being fixed for permanent work. The cast iron bed-plates on made of good sound metal, free from defects, and bolted to the bottom flange of the girder by four lin. bolts in each case. After piee of timber 9in. by 3in. is to be fixed on the top flange
of each girder, with holes uto out for the rivet heade, and shaped
out to ride over the cover plates, \&c. This packing is to be bolted down at intervals, and a true line adzed or formed on the top side,
so as to carry the 12in. by 4in. laggings evenly under the entire
 sawn baulk by two saw cuts. They must be one uniform section
throughout, and are to be spiked by 7 in. spikes, 6 in. apart, to the the girders. The hggings are to project 3 ft . on each side of the face line of the arch,
o as to form a regular footway outside the arch after the face acking about 9int thick, to steady the girder in its place, and hetween this packing and the masonry is to be placed a washer or
cushion, consisting of eight folds of tin. felt or of 2 in . india-rubber. Before any of the arch stones are fixed it must be ascertaineed inding.
Centreing for Intermediate and Shore Arches.-The centre open Ings or waterways are to be left 30 ft . clear between the walings on
the face of the main supports in each case, and all piles, stringers ills, wedges, cross bearings, walings, packing pieces, and general
imber work, are to be selected and fixed complete under the same onditions as heretofore specifiel for the timbering of the centre arch, with the exception that the main two sets of supports next nly in eache support, these are to be driven fons. sint: apart, as in in acy. The wrought iron work in all the girders, bracing bolts, onditions as heretofore described for the centre arch.
Dotphins.- - No. 20 dolphins are to be bill, olphins are to consist of five main piles, 14in. by 14in. to each, the timber and construction of them is to be under the every way tions as those for the centreing, care being taken that the shee each arch, so as to leave no obstruction to any passing craft. The pex dolphin of the floating
4in. by 14in., driven in their position as shown, with bracing complete, and of which there are eight in number, four on either
ide, and in a line with the centre of the piers. Between the apex dolphin and that next the opening on each side of each arch
sto be placed four fenders, as shown, consisting of two vertical to be placed four fenders, as shown, consisting of two vertical piles
with distance pieces between to form a guide for the floating
(To be continued.)

Iv twenty years-between 1861 and 1881-the number of IN twenty years-between 186 and $181-$ the number of
whitish and foreign life was lost, was that 3347 , reme tesulting in in the oun ous ooss of 15,695 from
lives.

GORDON'S DYNAMO ELECTRIC MACHINE.
messrs. the telegraph construction and maintenance company, greenwich, engineers.
(For description see page 309.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, ve find it necessary to
inform correspondents that letters of inquiry addressed to the public, and intended for insertion in this column, must, in ald answerr received by us may be forvertded to their destination.
No notice will be taken of communications which do not comply with these instructions.

** We cannot undertake to return drawings or ma. ${ }^{*}$ * All letters intended for insertion in The Enginekr, or contanning questions, must be accompanied by the name and address of the writer, not necesarily for pubbication, ut as a proof of good faith anonymous communications. notice whatever will be taken of

orucible steel castings.

 (To the Elitor of The Engineer.) moulding, melting, and po
mayy siussribers besides
Exeter.

THE EFFICIENCY OF TURBINES.

SUBSCRIPTIONS.

horse-power. Can they be
Freshford, october 18th.

 Coth casses for binding The Enorinerr Volume, price 2s. 6d. eca

adVERTISEMENTS.

THE ENGINEER.

OOTOBER 27, 1882.

the responsibilities of steam users. A Cornish boiler, about 20 ft . in length, exploded on Monday week, at the works of the Stephenson Tube Company Liverpool-street, Birmingham, and caused the death o three men. At the adjourned inquest, held on tuesday,
upon the bodies of these men, the jury found a verdict of upon the bodies of these men, Mesedale, chief engineer ;
manslaughter against Mr. Mosed and severely censured Mr. Everitt for not having the the engineer will have to stand his trial, it would be wrong to express any opinion concerning his guilt or innocence;
 who tre quite as much to blame, and who nevertheless escape scot free. We have often pointed out that the scape scor who refuses to take proper precutions to prevent boiler explosions is a very guilty man, and we see vent boiler explosions is a very guilty man, and we see
no reason why we should modify that statement. While it may, perhaps, be conceded that a boiler explosion does now and then take place concerning which there is some little mystery, it is certain that nine hun-
dred and ninety-nine explosions out of a thousand dred and ninety-nine explosions out of a thousand
are the results of strictly preventible causes. In a
word, they would not have taken place if the boilers word, they would not have taken place if the boilers
which gave way had been properly examined ; properly treated ; and properly repaired. This truth has been dinned into the ears of the steam users of Great Britain. No one worth hearing has ever attempted to say that the statement is not true; and we are happy to add that a
great number of steam users act on the proposition, and by enforcing adequate inspection, even at a good deal o inconvenience, they ensure safety for themselves, their workpeople, and their neighbours. But there are, we atributed the great bulk of the annual roll of deaths maimings, and bruisings which the various insurance and assurance companies publish from time to time. The conscientious steam user foes nomischie ; the unconscientious escapes scot free. It is worth considering whether this system may not be got rid of.
Before any good can be done it will be necessary to go to the root of the whole matter, and to dig up the reasons
which operate to make men use unsafe boilers. If more powerful reasons can be brought to bear in favour of he use of safe boilers only, then some good will be done but we must fully understand the relative inmportance and power of the causes which induce the use of bad boilers before any measures sufficiently strong to defeat them can inspection by experiested safeguard is, no doubt, coly peten by the great majority of steam users by insuring their boilers. To the practice of insuring there are, however, three great objections. In the first place, inspectors come renience and put the manufacturers to considerable inconcharge ; secondly, the inspectors insist on repairs being made, which cost money and interfere with work ; and lastly, insuring a boiler puts a very heavy responsibility proposition first So long as a boiler is not inspected and reported upon by a competent man the owner need not know much about it. The bottom of a Lancashire boiler may, for example, be eaten away until it is as thin as a sixpence, but when the inevitable explosion oo ts, bu may plead, and with nor will the public at large even hold that he is to blame But on the contrary, if an inspector hand him a written report on the condition of his boiler, from which he learns that it is dangerous to use it, and if, after he has received that report, he takes no adequate steps to repair or renew the boiler, and an explosion occurs and causes death, coroner's jury will be very likely to return an awkward verdict; and thinking. meri will say that the boiler owner has been guilty of criminal neglect very nearly approaching murder in its guilt. This is a responsibility which many men desire, no doubt, to avoid ; going on the principle
that it is not always wise to know too much. Concerning the other two reasons why men are reluctant to insure, we need say but little here. Boiler insurance companies as a rule give as little trouble as they can. There are, of course, exceptions, but the companies and their engineers are not in such cases in fault; the trouble is caused by injudicious subordinates. There is, however, another reason which wo have not yet lealt with, which no doubt operates powerfully to keep en from insuring. This is the fact hat boilers even in deplorable condition may sometimes be worked for year boiler carrying 45 lb is not an uncommon thing to find a boiler carrying 45 lb . or 50 lb . worn so thin, that nothing keeps a lhe medfeather brick woll plate rests. When brick wall on which the defective plate peril to his mind. He lones that the boiler has pro perlly been wach. Hows that the boiler has proIt did not explode in 1881 why should it explode in then? The plates when the boiler was first made were 1882 . deal stronger than was needed to carry the stated pressure and one of the reasons why such thick plates were used was to provide a margin for this very corrosion. Thus will the steam user argue with himself, and he can make insurance somewhat reluctantly we will say. The inspector insurance, somewhat reluctantly we will say. The inspector
reports to his company that the furnace shows signs of weakness. It is a quarter or half an inch flat for some portion of its length. The boiler cannot be accepted might and denounces the inspector and the company's
$\left\lvert\, \begin{aligned} & \text { engineer and the whole system of insurance, and stoutly } \\ & \text { maintains that to his certain knowledse the flue has sha }\end{aligned}\right.$ flat place in it for the last five years He entirely ad looks the circumstance that the longer the flat place has been there the worse for the boiler. His argument is that if the boiler worlied without exploding for five years, it will not explode at all because of the flat place in the flue at all events. The inspector's contention is that the flat place a weak place, and that at any moment it may give way. of course the inspector is right and the steam user is wrong; yet if an explosion occurred, and someone were killed, it would be very difficult to get a coroner's jury to take any view but that of the owner. He will maintain that because the boiler with the flat place in the flue did not explode for five years, he had a right to expect that it vould not explode at all, and that in consequence he is not responsible for the deaths which have taken place. But it hould be obvious that as the whole boiler was undergoing a gradual process of deterioration, the chances were that the small margin of safety once possessed by the flat place probably vanished have been going away by degrees, course of five years. A modification of this style of reasoning is not without its influence. It is very difficult to induce steam users to believe that a boiler can be burst save either as a result of shortness of water or some occult cause ; and , point with triumph to boilers patch pieces of carpet and scraps of plate iron held in place by a istricts boiler to they as they are. Furthermore, it is well known that a multitude of flues collapse every year without causing an exploion or loss of life ; and thence-returning to the flue with the lat place-it will be argued concerning it that to repair it is quite unnecessary, for if the worst comes to the worst here will only be a collapse, not an explosion.
Such reasoning as this would, perhaps, be convincing if it were not now and then refuted by the thunder of an explosion, the roar of falling buildings, and the shrieks of he wounded. The axiom may be laid down that no boiler ny part of which is out of shape or corroded ever so little, is as safe as it ought to be. It is not that the evil a it exists this week is very serious, perhaps; but who an say to what magnitude it will have grown in month? We suppose that there are very few steam users indeed who would not look on a longitudinal crack in bottom plate of a boiler, no matter how short that crack was, without grave misgivings. But a craek running in from the edge of a plate, and only, say, lin. long, is apparently a very insignificant defect indeed ; yet it is known that such crack will act just as does the nick made by a draper with a pair of scissors in the side of the piece of cotton cloth which he wishes to tear across. The crack may extend at a moments notice , even so with corrosion. This having small beginnings may proceed with astound ing rapidity after remaining almost dormant for months. The same statement is true of flat places in furnace crown and flues. All this ought to be known to steam users, and we believe indeed that the boiler owners who do not know it the year 1882 might be counted on the fingers. If they know it, then they cannot escape from responsibility. So certain is this, and so fully has it been proved that with proper inspection and repairs boiler explosions can be wholly, or nearly so, averted, that it is quite safe to assume in all cases that the owner of an exploded boiler or his manager is in faut, that, in a word, either the one o he other is directly responsible for the occurrence, and in hould proceedings the onus of proving his innocence hould be thown on the boiler owner, not the onus of proving his guilt on someone else-such, for example, as
the relatives of slain men, who seek compensation. We have said before that explosions will take place even in the best-managed works, but under such circumstances the wners and their subordinates will have no difficulty what ver in showing that they were free from blame Th umber of such explosions is, however, so very small that hey are of little or no importance
The one thing now universally needed is the punishment of those who by their parsimony or carelessness permi boier explosions to take place. ore Goul nvarialy being held when a boarr gorpler United Kingdom. This may do some good, but until ade quate punishment is inflicted on guilty parties there will quate punishment is inflicted on guilty parties there wil imprisonment with hard labour would do more to prevent boiler explosions in the present day than any other device which it is possible to adopt.
the dyne.
The letter signed "J. B. W.," which we published last week, on electrical measurements, is, we have reason to now, in no sense or way the unique utterance of a desire for information. The great body of engineers, young and ld, understand next to nothing of the language spoken by lectricians; and even among electricians themselves we ind diversity of opinion, obscurrity of diction, and lack of ucidity of style, all of which things tend yet more to confuse the minds of men who, already trained to think in one way, now find themselves compelled to think in another, At a suitable time we shall explain precisely what electrica detail detail a key to the language used by electricians. But before coming to details something may, we think, be said re a do words it speriappre of words, it oncerning the way 1 which electricians make their calcu ations and the basis on which their figures-we had The
The po say he multiplies it either by er two ways; that is ats say, he mates, and ets an expression for energy. For example, $33,000 \mathrm{lb}$ lifted $33,000 \mathrm{ft}$. in a minute is obviously the same
thing, so is 550 lb . lifted 1 ft . high in one second, for $\frac{33,000}{60}=550$. Again, if we want to know how much work is accumulated in a falling body, we use the formula $\frac{\mathrm{W} v^{2}}{2 g}$, where W is the weight of the body, v its velocity in feet per second, and g the accelerating force of gravity.
It will be seen almost at a glance that this formula is only It will be seen almost at a glance that this formula is only
an expression for the height from which a body must fall o acquire the stated velocity; because the velocity of a falling body multiplied by itseif and divided by 64, gives
the height from which the body has descended, and this the height from which the body has descended, and tois
multiplied by W, the weight of the body, gives the footpounds stored up in it-that is to say, the resistance which Thus, let the weight be 1000 lb . and the velocity 100 ft . per $10,000,000$, and $\frac{10,000,000}{64}=156,250$ foot-pounds. But
this is precisely the same thing as multiplying the height 156.25 ft ., from which the body must have fallen to acquire
the velocity of 100 ft . per second, by 1000 its weight in pounds. The heat unit of the engineer is the pound-degree, that is to say, the quantity of heat necessary to raise 11 .
of water 1 deg. Fah. Mr. Joule, by a masterly investigation, proved that this heat was equivalent to 772 footpounds. In other words, as much mechanical energy is
expended in heating 1 lb . of water 1 deg. as would suffice to lift that pound of water to more than twice the height of the cross on the top of St. Paul's. The foot-
pound, the thermal unit, and Joule's equivalent, have become engraved in the mode of thought of the English engineer. They have theen especially so because they give figures of considerpurposes.
Now, the electricians in preparing their standards have rejected the foot-pound ; rejected the British thermal unit,
and rejected g. In other words, they have for the time being, at all events, adopted an entirely new nomenclature, and entirely new standards wherewith to measure the amount, degree, and quantity of the form of and propositions on which the calculations were based were worked out by a small knot of Frenchmen and
Germans. Sir W . Thomson is Germans. Sir . has been heartily accepted all round. On the contrary, it nay be regarded as used provisionally, and a committee of the British Association are to a large extent answerable for forcing on unwilling men a system which they did not
want, and which entails in practice considerable inconvenince. The standard adopted, instead of the foot-pound, the centimetre-gramme-second-that is to say, the force $15 \cdot 42$ grains, for one second, would impart to it a velocity o 1 centimetre, or 394 in ., in one second. It will be seen at ties. Engineers are not in the habit of estimating pressures in fractions of ounces-for example, in grains-and the velocity is out of all proportion slow as compared with the calculate the force which, acting for one second, was required to impart a velocity of 394 of an inch to $15 \cdot 42$ grains of matter. This force is one 980th of a gramme, and the Dyne may be and is used instead of g. Before explaining what we mean by this, it may be worth while
to say a few words concerning the reasons why such to say a few words concerning the reasons why
minute standards of measurement were adopted.
When electricians were first called to formulate their thoughts concerning the dynamics of electricity, they had
only telegraph work in hand. The dynamo-electric only telegraph work in hand. The dynamo-electric
machine was little more than a curious toy; the arc amp was the subject of a rare laboratory experiment, and the incandescent lamp had, of course, no existence.
Mr. Holmes, it is true, was labouring to illuminate lighthouses, but the electricians did not then concern themselve with him or his doings. The forces engaged in telegraph work are excessively minute; a message has been sent
through the first Atlantic cable with a battery consisting of a single cell, composed of a lady's thimble with a little strip of platinum foilin it, and a few drops of acidulated water.
The foot-pound, therefore, was held properly enough to be The foot-pound, therefore, was held properly enough to be
too large a unit, and the centimetre-gramme-second was adopted, and Englishmen who see nothing but good in the metrical system were delighted with it. This, then, is
apparently the reason why the Dyne was adopted ; but from the first moment that the electric light began to apparent that the Dyne and a!l its congeners were ridiculously small for the great forces to be dealt with and deveoped by the dynamo. Electricians get over the difficulty by multiplying their units by millions and thousands of milWe may now return to the
We may now return to the Dyne, and explain especially for the benefit of our younger readers what is the analogy
between it and q. We know that the force which must between it and g. We know that the force which must ee exerted for one second on any body to give it a velocity
of 32 tt . in a second is equal to its own weight, and this is true no matter in what direction we desire the body to move. Thus, for example, if we want to make a cannon driving force can be applied for only one second, then it force ef 100 lhe wilied of the shot. Th oher words, space of one second will impart to that body a velocity o 32 ft . per second. It must be clearly understood that we the dealing here with what is known as "mass," that is, the quantity of matter in a body, which quantity is exphot, is moved horizontally, it is clear that the weight of
she body can neither accelerate in thor retard ti such circumstances that a push equal to the weight of the
body is needed to give it a velocity of 32 ft . per second Many of our readers will no doubt say that we are dealing avdue length wiow what every one understands, but we it, and this is specially true of men at opposite ends of the nofession; that is to say, of the student who is just entering taught what we are trying to teach here. At the risk of being wearisome to a few, we hope to lee useful to a good nany. To resume, it may be worth while to explain here given mass of matter in a given time is easily found by the following simple formula: $-\mathrm{F}=\frac{\mathrm{W} v^{2}}{32 \cdot 2 t}$. Here W is the weight, v the velocity in feet per second, t the time in seconds during which the force is acting, and F the force. We have written elsewhere thoughout this article 32 only, but the velocity acquired by a body under he influence of a driving force equal to its own weight acting for one second is more accurately $32 \cdot 2 \mathrm{ft}$. It will now be seen by those who have followed us so far that the Dyne is neither denoted by q. Instead of using the convenient factor, the weight of the body moved, we use the 980 th part of that other words, we substitute for 32.2 the fraction $\frac{32 \cdot 2}{980}=0.0338$, which does not commend itself very forcibly to the engineer at all events. Possibly some of our readers may fancy that we have attached too much importance to the Dyne ; yet this is not the case. In almost all dynamical calculations we have to use the convenient actor g, and in the same way the Dyne continually turns up in electric calculations. Volts, Ohms, and Ampères all bear an intimate relation to the Dyne, and until the true meaning of the word-which has been coined from dynamics-has been mastered, it is useless to attempt to
advance far in the study of practical electricity. For ourselves we confess that we regard the Dyne and
he centimetre-gramme-second with much disfavour. They originated to a considerable extent in the pedantry of a small knot of scientific and quasi scientific men, who either had never heard of the foot-pound, or deliberately rejected nding the smalless of the quanticies used in telegraply, it would have been very naltered, as it is now, at the very outset. It is, we think, impossible to find a single good feature about the scheme, because it does not even secure the deciDyne, being the 0.001 part of gravity, is the $980 t h$. It is no pointed out, there is nothing like a universal consensus of opinion in favour of the centimetre-gramme-second nd the whole subject is to be re-opened at Paris ere long Indeed, the discussions which have already been held on the subject have been sufficiently stirring in some cases to lead to the hope that the subject will be fully re-considered tudent of electricity, be he old or young, must try to content himself with the centimetre-gramme-second and the Dyne.
fluctuations in coal shipments.
The fluctuations that take place in the extent of the shipments of coals from the chief shipping ports of the north-east are rather remarkable when unexplained. In the e first place they
are changed from month to month by the state of the weather, and the increase or the contrary in the number of the vessels that bear hem. But there is a further cause of the beenn of conced, an for the use of vessels engaged in the foreign trade. In our official tatistics we have the total of the tonnage shipped for this latter purpose, but none of the details of the ports it has been shipped
t. It is to be hoped that this defect will be supplied early, and then there will be the materials for a full comparison of the coal hipments of the chief ports. But apart from any change that ports are increasing their shipments much more than those of the north-east. This may be due to the obstacles that are hrown in the way of the shipment of British coal to some
of the countries of the Continent. Cardiff now takes the lead in regard to the exports of coal, but the large
addition that the home shipments give to the foreign trade rom Newcastle allows that port to retain its position in the front rank of coal shipping places. Similarly there is a rivalry
between Newport and Sunderland; and between West Hartlebetween Newport and Sunderland; and between West Hartle-
pool and one of the smaller ports of Wales. It is not difficult to prace the causes of the coal shipment being chiefly carried on rom a few such ports, but the fact that there is a growing comparatively distant from the coal-fields, is rather significant unless that shipment is for the use of vessels in the foreign trade that call there to take in bunker coals. It is rather difficult to ascertain what is the present movement in the coal trade in regard to shipments; but it would seem to be probable that the tonnage shipped on the Tyne and at Sunderland, as well as at West
Hartlepool, will increase, whilst that of the smaller ports will Hartlepool, will increase, whilst that of the smaller ports will will apply to ports in other districts. At the same time the cheapness or the contrary of the coals will have its effect, and th hare of the ttempt succeeds a considerable part of the tonnare of coal may in the future be shipped there for London-possibly to the injury of sunderland-but there may be, on the contrary, a grown in demand that will give employment es anlt, but in some way the coal trade seems on the eve of change so far as shipments ar concerned.
rod magic.
The controversy which rages from time to time in the daily papers respecting the merits of the divining rod has again come it. A gentleman at Cheltenham writes in its favour; other -"The suggestion that all mineral veins having been found by experiments to be conductors of electricity is scarcely a sufficient defence of the successful use of the divining rod in discovering formations are mineral formations. As I have lately superin-
tended the sinking of a deep well at Hambleton Hall, Oakham, viere in the neighbourhood, the experience gained will of thosably eo of interest to all who might be tempted to depend upon thi node of finding water. The knowledge I had previously gained of the geological formation of the district showed that the waterbearing formation of the rock bed was overlaid by the upper lias
clay about 20oft. in thickness, and as there could be no doubt clay about 200 ft . in thickness, and as there could be no doubt Whatever that a good supply of water would be found anywhere in sanctioning the sinking of a well on the line of the spring water at a depth of about 100 ft, as suggested by the water-sping discoverer, the result of the boring conclusively proved the correctness of the theory suggested by a knowledge of the geological formation; the water was only found by boring urface, The only two points that give interest to th controversy are the shape of the rod, and the manner in which electricity is mixed up in the question. At earlier times we were told that the twig was double and one arm of it was held in each hand, as a ploughfices, one end being held in either hand. Again, the statement in the letter just quoted that all mineal veins have been found by experiment to be conductors of electricity, will not gain general acceptance. It happens to be uite otherwise. While, for example, pyrilusite, manganite,
nd Braunite conduct electricity, Hausmannite does not allow the current to pass; and of the ores containing iron, specular iron re, brown iron ore, chrome iron ore, spathic iron ore, and Lievrite oppose its passage entirely. Zinc-blende, moreover does not conduct electricity. But the whole subject is outside the par excellence, when brought up from Véran to Paris, was sue essfully and utterly exposed. Those who take an interest in he past history of the rod cannot do better than consult the Dictionnaire des Merveilles de la Nature; and perhaps the best authority on the subject is a small volume published at Amsteram in 1693, called "A Treatise on the Divining Rod, and its Usefulness for the Discovery of Springs of Water, Minerals, Hidden Treasures, Robbers, and Fugitive Murderers. Togethe with the Principles which Explain the Phenomena, the most
Obscure in Nature. By M. L. L. de Vallemont, Priest and Doctor in Theology." Four years ago a certain Mdme. Cried the action of thed in Paris and it pointed o the presence of gold in a building known as the Bank of
France, in the coffers of which by law a considerable "metallic reserve" must always be kept.
the value of colliery property in south yorkshire. On Wednesday afternoon last a very large and influential company composed of colliery owners, mineral proprietors and Hotel, interested in the coal trade assemhled at the King's Head or sale. Barnsley, where the Mitchell Main Colliery was ofered of late years been thoroughly tested, three of the largest collieries in the district having been brought under the hammer and withdrawn. These included the South Kirby Colliery,
Thorp's. Gauber Hall, and the Dodworth and Silkstone Collieries floated a few years ago with a nominal capital ain Colliery, sunk but a few years ago by the late Mr. Joseph Mitchell, of Swaithe, Mr. Josse, the well-known coal importer of fine Junction, between Barnsley and Wombwell, and has cost $£ 121,425$ 15s. The Barnsley seam is worked, and is 8 ft . in
thickness. The colliery was offered for sale by an order the Court of Chancery in consequence of the death hip of the partners necessitating a dissolution of partner 358 and a realisation of the partnership assets. At first ave been won up to the close of June last, making the reld still to get about $2,400,000$ tons, which can be raised from last amounted to $£ 5422$, and the purchaser would have the dvantage of being able to overtake this. The winding shaft is itted with a pair of horizontal engines, 34in. cylinders and ft. stroke, whilst at the upcast shaft there is a large Guibal tan, capable of passing 130,000 cubic feet of air per minute
through the workings. There are fifty-two newly erected coke vens, on the beehive pattern, whilst the surface plant is laid out being worked to a profit, is now turning out 4000 tons of coal per week. The bidding opened at $£ 10,000$, and progressed until the sum reached $£ 21,500$, at which sum it was withdrawn, no
eserve being named. The last bidder was Mr. Thomas Wilkinson, corn factor, of Barnsley, who, it is stated, was acting on
behalf of Mr. Josse, of Grimsby.
the dispute in the coal trade.
One point of the dispute is not sufficiently kept in view by
he employers. The men, per Mr. Pickard-who seems to take the employers. The men, per Mr. Pickard-who seems to take "All you have to is pay us 15 per cent, more wages, and then you must increse pay us 1 per cent. more wages, and then you must increase ore, and thus put the employers in a position to give more fo oal getting. It is needless talking to them about the low price fuel. They admit all that, and say emphatically, "We mean 5 per cent, and this is our way of altering it. Once give us p. Undoubtedly this argument would hold good for the ies : but whof orkshire and Derbyshire and adjoining coun by which South Yorkshire coalowners and coal-getters mainly va, and when the Yorkshire coal now is so handicapped by rail at 4s. per ton less? A point which came out very clearly at the calowners meeting was that the South Yorkshire miners, with heir present wages, are earning more money than those in other解 men were lasing for so unless they earned more money there,

LITERATURE.

The Law Relating to Electric Lighting. By George Spencer Bower, B.A., of the Inner Temple, Barrister-at-Law, and
Walter Webb, Solicitor, of the Supreme Court. London Sampson, Low, Marston, Searle, and Rivington. 1882.
The object of the authors of this book has evidently been
very numerous class which comprises projectors and investors in the shares of electric companies. Strictly
speaking, it is a legal work, dealing mainly with the speaking, it is a legal work, dealing mainly with the technicalities of the recently-passed Electric Lighting Act; but it possesses a scope really far wider than that, and may be termed a vade mecum for all who are financially or otherwise interested in the many projects for the supply of electricity now before the public, and seeking its suffrage.
The authors acknowledge that to a considerable extent the authors acknowledge that to a considerable extent their labours can only be deemed tentative ; but so, correspondingly, is the Act with the elucidations of which they profess to deal. The whole scheme of the supply of electricity for lighting or motive power is still in its infancy ; of inexperience. It was questionable, indeed, in the minds of many if this new science was so far advanced as to call for the legal recognition it received by the passing of the for the legal recognition it received by the passing of the application has created rendered it necessary that a somewhat wild enthusiasm should be placed under proper control. The Act above referred to was therefore passed after the most careful inquiry, and consideration of the best opinions that could be obtained from experts and others, and in spite of many difficulties arising from conflict of interests, the Act is, perhaps, well fitted on the apart from a few clauses, but little that is new to legislation. Portions of former Acts relating to gas and water supply, of the Lands Clauses Acts, and other general enactments protective of public interests, have been embodied in it, and these having long borne the test of experience, have needed but slight comment from the authors.
The impression raised by the perusal of this book is a foreshadowing of many complications likely to arise, and, to a great extent, from possible varied interpolations of those clauses which deal solely with the speciality of the to direct attention, with explanations which they consider will probably be accepted. Were it only, therefore, as affording a guide among the shoals and quicksands of legal phraseology as applied in this instance, the book ander review will prove to be most useful. Scientific echnicalities have been avoided almost entirely, the few employed being only such as are in the most current use and therefore not at all calculated to embarrass the unscientific reader. After a short preface, explanatory of the objects of the work undertaken, a considerable section is devoted, under the heading of "Introduction," to a sketch of the circumstances which led to the framing of the Act ; as also of the evidence upon which many of its leading provisions have been based. This evidence we find quoted at considerable length-a course which greatly aids the reader in estimating the value and justness of the several restraints imposed or concessions made, although of course incapable of use in putting a construction upon the Follow
Following the "Introduction" comes the Electric Lighting Act itself, each section being printed in bold type, and having subjoined the elucidatory notes of the joint for they show how many important questions or they show. how many important questions may arise from provisions when Following th inal in clearness.
Following containing the rules made by the Board of Trade with respect to appliations for licences and provisional orders. As regards ness how the proceedings of intending out with clearcompanies or municipal authorities-will be hampered by the insistence on the statent proposed supply statement of maximum price for the extent to which electricity will tive to estimate the amount of the demand, and cons specula unsafe to fix a price for it, as so much must densendently the relative consumption within authorised areas the, at present, unsolved problem of the popular Nor has of electricity escaped attention. in the popular meterage as one which, at present, involves the whole scheme of general electric lighting in a prima tacie disadvantageous position as compared with cas. Throughout the whoul work, indeed, every opportunity is afforded to readers to orm a fair judgment as to the hindrances to success which hould be taken into account by intending investors in electric companies' shares.
The closing pages are devoted to the form of provisional order or licence to be sought from the Board of Trade, a ery copious and well-arranged index succeeding. A very pioneer only of further information on the same subject which the authors promise, as experience with electric lighting developes new questions and difficulties. That such will arise is tolerably certain, from information as to those already existing with which Messrs. Bower and Webb's work has furnished us. No one contemplating the purchase of electric shares should fail to be aware of these, and we cannot do better than to recommend to them the perusal of the subject of this review. The book has the rudiments of a standard work on the subject of which it treats.

BOOKS RECETVED.

Hand Railing and Staircasing. By F. O. Creswell. London
Cassell, Petter, and Galpin.
Minutes of Proceedings of the Institution of Civil Engineers. Enstitution. 1882. Vol. lxx. Journal of the Iron and Steel Institute. No. 1 of 1882. London
E. and F. N. Spon. 1882, Transactions of the Society of Engineers for 1881. London: E and F. N. Spon. 1882.
Proceedings of the United States Naval Institution. No. 1
Vol. iii. 1882, Die Berechnung des Schiffsi
London: David Nutt. 1882.

- Won Mor. Wiehn

Proceedings of the Association of Municipal and Sanitary Engi-
neers and Surveyors. Vol. viii., 1881-82. Edited by Thos. Cole London: E. and F. N. Spon. 1882.

AERIAL ELECTRICAL TRAMWAYS.

The following abstract of a paper read before the Société des Ingenieurs Civils, Paris, is of interest, though mainly descriptive of a project of M. J. Chretien, who, in conjunction with M Felix, came before the public a few years ago with an application of electricity to the purposes of agriculture. He says :-It is quite unnecessary to attempt to demonstrate the necessity of establishing new means of circulation and transport in Paris. the various schemes proposed to afford such means, and the choice that should be made among them. All these solutions may be grouped into two classes, viz., underground railways and aërial tramways, the latter term being taken to denominate elevated railways constructed along public ways. I feel an invincible repugnance towards any scheme of subterranean railways, and that repugnance is certainly shared by the large
majority of the Parisian public. The objections to any such majority of the Parisian public. The objections to any such
scheme on the score of hygiene, of the safety of the scheme on the score of hygiene, of the safety of the travelling
public, and of the difficulties and expense of construction, are public, and of the difficulties and expense of construction, are
surely sufficient to obtain its condemnation. When add surely sufficient to obtain its condemnation. When addiwere sent from there to inspect the Metropolitan Railway in London. On their return, however, they decided on aërial tramways. Why should we imitate that of which London furnishes the only example, rather than follow New York, Phila-
delphia, Rotterdam, Berlin, \&c ? M. Shaller has told us here
vehicular traffic is interdicted, such as we find in the exterior boulevards, ac., and at 40 to 50 metres apart in 5 to 6 metres, but it may be reduced to 4 or increased to 8 if desired. The resistance of the viaduct to rupture and flexion may be easily examined approximately. The greatest twisting strain will be when two carriages pass the middle of the span upon one side only. It will tend to distort the section into the dotted position of Fig. 3. The greatest direct bending strain would be when two pairs of carriages occupy the middle of a span, one pair upon each line. Let Pe the weight of the two carriages, acting as in the Fig. 3 ; this will give rise to
transverse strains at the girders A indicate by the small letters $a b c$. Let p be a force, which, acting at A, would produce the same result. Now we may consider the axis O as sufficiently rigid, and taking moments about that axis, we get the equation-
$p+\mathrm{A} \mathrm{O}=a+\mathrm{AO}+b \times \mathrm{BO}+c \times \mathrm{CO}$
In the short spans we may have- $\mathrm{A}=\mathrm{B}=\mathrm{CO}$
and therefore, since the reactions are proportional to these-
$a=b=c=\frac{p}{3}$
In the long spans, as it is not convenient to make the girders A forms. I propose in that case to make the system sufficiently

PROPOSED ELECTRIC AERIAL TRAMWAY FOR PARIS.

that Mr. Fowler, the constructor of the London Metropolitan Railway, frankly declared that if he had the work to do again
he would use the aërial system. I am therefore most unrehe would use the aërial system. I am therefore most unre-
servedly a partisan of aërial tramways, and the object of this servedy a partisan of aerial tramways, and the object of thin
communication is to prove that they offer an easy and advan tageous solution, looked at from all points of view.
Conditions to be fulfilled.-The true solution consists in establishing a network of routes along which carriages shall traverse the town, with the advantage over omnibuses of transporting more rapidly a much greater number of passengers, and of not obstructing the roads, already over-crowded with traffic. To avoid waiting, there should be a large number of carriages succeeding each other very closely, and running as quickly and
cheaply as possible. To effect this I would construct an elaborate cheaply as possible. To effect this I would construct an elaborate
network of railways, formed of a number of distinct lines crossing each other as often as possible in different planes, and having common stations at the crossing points. Upon thi people should succeed carriages with accomals of one minute If necessary two carriages could be coupled together, accommo dating 100 passengers.
Capacity of Transport.-The above conditions would realise what we may call the maximum capacity of transport of a railway where the stations are very frequent and the stream of pasrowding at the stations to be feared, the departures would be less frequent, the stoppages longer, and the final result less satis actory. With the system of two carriages coupled as above t passengers a minute might be circulated along each lin say twelve miles per hour. Taking account of the changing periods upon double this number per minute, moving at say twenty-four miles per hour. This, however, is more than it is expedient to hope for. The hypothesis that two passengers would on each journey be accommodated for each seat provided is not extravagant if we consider the number carried by existing tram and bus lines. Without doubt, at some places and times, the
above power of transport would be insufficient, but a work of above power of transport would be insufficient, but a work of his magnitude cannot be made to provide for quite an excep he statere 100 . To give an ined way per minute, it may be stated that in the large streets with pavements four metres wide-Rue Lafayette for example-each pavement wil scarcely allow passage to 50 persons per minute each way. It may be pointed out, too, that this power of transport compares favourably with that of existing railways, even those where the traffic is great, as upon the lines to Versailles, St. Germain, Vincennes, \&c.
Lightness of Construction.-One important consideration in favour of this scheme is the lightness of the moving masses compared to those of a railway, and consequently the lightness and legance that may be exhibited by the structure erected to carry
Mode of Construction. -That which I have adopted consists in columns. Figs. 1 and 2 give sections of this viaduct row of columns are to be placed 15 metres apart, in any space where
rigid, so that nearly all the strain shall be taken by C, for which purpose C O may be made
$\operatorname{ing} a$ and b, we shall have-
> $\times \mathrm{CO}=p \times \mathrm{A} 0$

$$
c=\frac{p \times \mathrm{AO}}{\mathrm{CO}}
$$

As to the columns supporting the lines, they have to bear a compressive strain, which reaches its maximum when two pairs of vehicles meet immediately above them. When a single pair
arrive there the resultant strain will not be, as before, along the axis, but will act in some other direction as at R , the position of which may be readily found. If P, as before, be the weight of the pair of vehicles, Q the weight due to the girders$\begin{array}{lrl}\text { Then the force } & \mathrm{R} & =\mathrm{P}+\mathrm{Q} \\ \text { and } \\ \text { or } & \mathrm{P} \times \mathrm{L} & =(\mathrm{P}+\mathrm{Q}) l \\ \text { Q } & \mathrm{Q}=\mathrm{P}(\mathrm{L}-l)\end{array}$
Now, approximately -

$\mathrm{Q}=5 \mathrm{P}$

and
$l=\frac{\mathrm{L}}{6}$
Now if we suppose that $L=1 \cdot 20 \mathrm{~m}$. then $l=\cdot 20 \mathrm{~m}$. This would permit the use of columns less than those proposed, as far as ions that the
Stations.-These will be 400 metres apart, and the figure will show that it is not impossible to give them a certain elegance of form.
Velocity.-The velocity need have no limits, except those imposed by the frequency of stopping. If we suppose that forty seconds is taken up in passing between two stations, this will give toppage to be as in London, thirty. velocity will be 20 kilometres per hour, which is about two a-half times quicker than an pennibus, Moreover, since the an pelling force will be such that it may be drawn upon to almost any required extent, the velocity may be increased as much as may be considered necessary
Traction.-The force of electricity, though little used for such purpose, is that which I propose to apply. There is nothing so simple, sure, and economical as this mode of traction, and it only equires to be tried to be approved. Four years ago, before any one cation of ectricity to any such thog, in tried to make a first appli ramway from the Port Maillot to the Jardind'Acclim an electric director, M. Geoffroy St. Hilaire assured a sufficient traffic, and t would have been made if it had been possible to obtain per mission to lay it down. Already there are two such lines at Berlin and one at Portrush in Ireland. They are being made at Vienna, Wiesbaden, Turin, Milan, in Wales, at London, at Yandwoort in Holland, at the mines of Yankeroda in Saxony, and probably at various other places. Our turn must surely be oon. There is no doubt that electric machines will give better results when they are made of greater power. Our first results circumstances call for the use of them of 100 -horse more, their results will certainly be much better.

Price of Places.-I have calculated that on a line of 5 or 6 kilometres length, 10 c . Would be a remunerative fare, such a line carrying from 60,000 to 80,000 passengers a day. With an elaborate system of connected lines, some parts of which would,
of course, be less remunerative than others, I would recommend a uniform fare of 15c. the viaduct and station is one million francs per kilometre, with the small spans of 15 metres. With the large spans of 50 metre it would be one and a-half millions. The cost of electricity rolling stock, electrical conductors, \&c., would be about 250,000 per kilometre, the system being assumed of a certain extent. Working Expenses.-Under this head would be the employes, depending in number upon the number of stations and carriages in circulation, and the motive power. This latter would be loss due to electricity at 50 per cent., this item would not exceed 3 c . or 4c. per carriage and per kilometre.
Objections.-These may be expressed thus : (1) The column would obstruct the traffic. (2) The aërial system would endanger the security of the passengers upon the road below (3) The construction would affect the beauty of our capital. The projector combats these objections seriatim, and in a decidedly courageous manner.
Conclusions. -The system of transport described above has for essentials: (1) It is a means of locomotion of which the capacity
is equal to any existing railway. (2) It supplies better than any other the requirements of the Parisian traffic, by the frequent succession of and the velocity of the carriages. (3) It is a means at once agreeable and economical. (4) It is immediately applicable to a large number of busy roads. (5) The offer made to the town, to make a first application of the system upon the boulevards Voltaire, Magenta, Richard Lenoir, and the Contresarpe, expects no sort of subvention. The town, on the contrary, would draw a revenue from it, under the form of "redevance регсие.'

THE BREWING EXHIBITION.
In the Exhibition was a large quantity of the machinery employed in the manufacture and bottling of aërated waters, a trade which seems still to be increasing with great strides, Amongst these were a few novelties, including a new and ingenious machine for labelling bottles was exhibited by Messrs. Barnett and Foster, who had a very fine display
of machinery. This is illustrated by the annexed engravof machinery. This is illustrated by the annexed engrav

barnett and foster's labelling machine.
ing. Operated by means, of a treadle is a central spindle, to which is fixed a radial arm, seen in the engraving, carrying a conical roller. This roller alternately runs over the gum pads shown on the table of the machine and the packet of labels which are lightly held in the boxes on the opposite sides
of the table, one being clearly seen under the bottle in the perator's hand. A supply of gum is placed in the vessel above the table, and the radial arm moves the valves of the gum delivery cocks at each revolution, and gets a small supply of gum. This is uniformly spread by rolling over the pads, and the conical roller then runs over the label and gums it. The operator then rolls a bottle over the label, and it comes away leaving the ext label exposed to the roller. One operator may sit on each side of the machine
The largest exhibition of machinery and apparatus was made by Messrs. H. Stopes and Co., of Southwark-street, who had a exhibition of drawings, apparatus and brewers' requirements, all illuminated by the Edison incandescent lamps driven by a

Clayton and Shuttleworth portable engine and an Edison dynamo. Messrs. Stopes and Co. are paying particular attention to the introduction of electric lighting into breweries and maltings, especially as electric motors may become very valuable for rent parts of maltings. Schaeffer's magnetic separating inparatus as illustrated herewith wasshown in various sizes, and several boxes full of pieces of iron wire, nails, bolts, nuts, pieces of the drum and
concave of peg and beater drum thrashing machines, as extracted from barley, maize, \&c., before passing into the mash tun, were the previous week or two in London breweries, and showing that these magnetic screens, as they are called, are as necessary in the brewery and malting, for the prevention of the mixture of these substances with cattle food, as in the mill, except that in the mill they save not only the damage to the mill, machinery, and stones, but prevent dangerous sparking, which may lead to fata explosions of mill dust. The separator consists of a number of permanent horseshoe magnets, which are embedded in the trough beneath the hopper, the poles of the magnets being seen just
below the bottom of the hopper, as they pass through and are fush with the face of a nickel-plated sliding surface. The same firm exhibited a number of drawings of breweries and maltings, special attention being directed to the employment of double drying floors, and of conical-bottomed steeping tanks, by which the steeped barley may without labour be run on to the growing floors.

When the piston heads GH are at the half of their outward stroke the excentric moves the valve pistons J and J to close the communication between W and the X , and to open a communication through the pipes N and P' between the space in the cylinder E which is behind the piston head G, and between the space Y which lies in the cylinder E between the outer side of the piston head H and the cylinder cover Z. The exhaust products are forced by the back stroke of the piston head G and at the same time drawn by the inward stroke of the piston head H into this space Y, where they rapidly contract to below atmospheric pressure, forming a vacuum, which may be led into a condenser and a more. Trfect vacuum phained It will be seen that the essentially novel features of the encine consist in the arrangement of the two pistons J and J and the ring valves K and K^{1}, and their method of action for determining the admission of a charge into one portion of a cylinder and for its transfer to another portion of the same cylinder, and regu-

SIMON'S GAS ENGINE

Several new gas engines were exhibited ; one by Mr. Louis Simon,
in Wertenbruch. The characteristic details of this engine we illus trate herewith. Fig. 1 is a horizontal section of the cylinder and valve box, and Fig. 2, an end view ; Fig. 3, a vertical section of the valve box ; Fig. 4, a vertical cross section along the line列 time:-When the trunk piston F travelling in the cylinder E travels outward, that is, towards the crank, gas and air pass int the space through between the trunk F and the walls of the cylinder, being drawn in through the port T, which is placed in communication with port L, into which gas and air are admitted by suitable pipes opened and closed by a rotating valve actuated by a governor. To form a communication between the ports L and T, the valve piston J bearing the ring valve K is moved inwards by means of an excentric suitably adjusted. On the oack stroke of the piston this excentric moves the valve piston J
outwards until by means of the ring K, which is somewhat wider than the port T , communication with L has been closed and communication through T with the space W between the trunk V and the walls of the valve box I established. The back stroke of the piston head H therefore compresses the gas and air previously drawn in by it into the space W. The excentric now imparts a backward movement to the pistons J and J^{1} on the trunk V, and the contents of W are placed in communication through the port X with the cylinder E behind the power head G of the piston F. At the same time the port T is closed to W and opened to the ing through the port X into the cylinder E the compressed mixture of gas and air traverses the perforated plates R, between which are layers of wire gauze to prevent the fire going back into the space W. At Q the mixture encounters a flame lighted before starting the engine and supplied with compressed gas and air from the receiver S by means of a pipe. In some cases the compressed mixture is exploded by means of an external flame lighting a travelling flame carried in one of the many forms of
slide valves. The receiver S is fed from the space W through a slide valves. The receiver S is fed from the space W through a
small back pressure valve. When it reaches the flame the mixmall back pressure valve. When it reaches the flame the mixbehind the At the same time a fresh charge is being drawn in
lating the exhaust, and the utilisation of the contraction obtainable by transferring the exhaust products to a receiver or to the ront end of the cylinder
Another new gas engine was exhibited, which is the

TKINSON'S GAS ENGINE

nvention of Mr. J. Atkinson. It was exhibited by Messrs Browne and Boby for the British Gas Engine Company. It is hat it is by the annexed engraving, from which it wil be seen shown more in detail in the diagram annexed, and this is driven
by a crank pin in a small disc on the end of the crankshaft, by by a crank pin in a small disc on the end of the crankshaft, by
shifting which the engine may at a few minutes' notice be made to
run in either direction. The valve A has on it an air passage B run in either direction. The valve A Aas on it an air passage B ,
gas passage C , and igniting port D , the operation of which will be sufficiently evident. By means of steel rods F F, a bar G is
carried below this valve, and an exhaust valve E held in any carried below this valve, and an exhaust valve E held in any
position by friction. This valve is operated alternately by the position by friction. This valve is operated alternately by the
lower end of the valve A, and by the bar G, so that it remains stationary during a considerable part of the revolution of the engine. Air and gas having been drawn into the cylinder during
the first part of the stroke of the engine through the ports B and C, air is allowed to pass into the cylinder through a valve in the cover on one side of the rectangular cistern in which the cylinder is placed, this air port being uncovered by the trunk piston and consisting of a number of small holes covered by a Hlat piece of india-rubber, with a movement of under 1 딩. There is thus atmospheric pressure in the cylinder and not a partial
vacuum at the time of ignition, as is sometimes the case, owing to the small area of the inlet ports and the quick movement of the piston. With this engine one ignition is made at every revolution. The exhaust valve covers and uncovers a port indicated by dotted lines and communicating with the pipe shown
below the small square box on the valve case, in which is placed the igniting flame.

GRAFTON'S TIPPING TRUCK.

The accompanying engravings represent a new form of double tipping truck, designed specially for mining work, and such as almost every shape and description are in extensive use, each
being more or less applicable to the work to be performed, but none approaching anything like meeting the requirements.

The truck here illustrated has been made by Mr. Henry Graftyy the diagram and perspective view herewith. Fig. 1 is as end elevation; Fig. 2 shows the angle the truck body assumes
when tipped. From these it will be seen that the body of the truck is mounted upon double incline Λ standards, terminating in upturned ends to limit the travel of the body while being
tipped. At either end are placed lever catches, which securely tipped. At either end are placed lever catches, which securely
lock the truck body in its central position, and at the centre of

the body is fixed a chain to limit the angle of tipping, by adjusting which the inclination of the truck body can be varied as required. The action of the truck and mode of discharging the load is as follows :-The attendant whose duty it is to tip the wagons first raises the lever-the one on the opposite side of
the truck to that on which the load has to be discharged -and at the same moment pushes the body of the truck with sufficient force to start it; the remainder of the tipping having been effected by gravitation, the empty body returns and locks itself it its normal position. It will thus be seen that one man could tipa whole train of these wagons in but little more time than it
would take him to walk along it, the empties righting themselves would take him to walk along it, the empties righting themselves as soon as the load has been discharged.

Phosphor Bronze SLIDE VALvES.-The Phosphor Bronze Co.
exhibited some phosphor bronze slide valves at the North-east Coast Exhibition. Amongst them was a pair of slide valves, No. 845 express engine of the North-Eastern Railway Co., after six and a-half years'
working, during whioh the engine has run 261,182 miles from
Newcastle to Edinburgh, and Newcastie to Edinburgh, and vice versa. They have now been Mr. Fletcher, , ssistant locomotieve superintendentent, sives the follow.
ing upon these slides and another pair still at work in No. 844

 thickness of theses slides was 1in., and they are worn town to go in. thick. Gun-metal slides rarely exceed eight months' work when
they are worn out. The cylinder faces are, we are informed, in theantiful condition, the wearing being as art should be on the valves.
beat The ensines Nos. Si4 and 845 are of the following dimensions:-
Cylinders, Cylinders, 7 Tin. diameter by 2 itin stroke. Four coupled wheens. 7 ,
diat.
diameter, working pressure 140 lb . per square inch. Weight of engine in working pressure 140 ib. per square inch. Weight of
26 tons 4 cwt.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

(From our ovo Correspondent.)

Finished iron makers maintain a bold front in resisting the efforts of some merchants who are trying to "bear" the market and this strength on the part of makers is by no means withou
effect ; for on Change in Birmingham this-Thursday-a ternoo and in Wolverhannpton yesterday, buyers were loss reluctant to declared at the quarterly meetings. were not conceded by buyers, proportion of the advance was given. This conceded proportion
varied from 5 s . up, occasionally, to 7 s.
v. per ton. When purchasers were unprepared to offer such a rise sellers very generally
retused to book; and many demanded the full 10s. The firm other than those known as the "list" houses are mostly full of
work, and can see some way ahead. They therefore prefer to wait work, and can see some way ahead. They theref
for turther orders, rather than aceept old prices.
The makers of sheets for the gal
chant sheets, continue particularly strong.

1hos. to $£ 1010$ ss. Co., of Soho, Birmingham, one of the firms who have declare,
the 1 s. advance, are as here :- Wodford " brand up to $20 \mathrm{w.g}$.

 gauges running the same as charcoals. These prices include
delivery in Liverpool Plate makers reoported a better demand alike for tank and
boiler qualities. The quotation for the former was \&8 10s. oriler qualities. The quotation for the former was $£ 8$ 10s,
o $£ 85 \mathrm{~s}$. per ton, and for the latter $£ 9$ to $£ 910 \mathrm{~s}$. The thin-stamping-sheet makers keep steadily employed on
home and foreign account at £13 to £14 per ton. home and foreign account at $£ 13$ to $£ 14$ per ton.
The irregularity in the quotations of the marked bar houses making use of in their efforts to "talk down the market." The firm, to whom I last week made reference as having followed the
fexample of Messrs. Phillip Williams and Sons in declining to advance prices is the New British Iron Company.
I am now in receipt of a circular which has be
firm, in which they say:-"We beg to inform you that our prices irn, iLion' iron for the present, and until further notice, will remain
of follows, viz.: 'Lion' bars, $£ 7$ 10s.; ditto hoops, $£$; ; and ditto sheets and bars, 29 per ton at the works, subject to usual extra and approval of quantities and specifications.
A third "list" iron house who make no.
quarter are Messrs. Jno. Bradley and Co. Throughout the past quarter they have been quoting their bars, which are of a special quality, at 10 s . per ton in advance of other houses. The advance
now declared by the bulk of the trade brings them up to Messrs. hraw dect's price of \&8, which remains without alteration. Marked ar prices of South stafford
$£ 710 \mathrm{~s}$, to $£ 8$ and $£ 8$ 12s. 6 d .
Messss. Robert Heath and Sons, Stoke-on-Trent, who have also declared the 10 s. rise, state their new prices as: :-Flats, rounds, and squares, $£ 7$ 10s.; best ditto, $£ 8$; double best ditto, $£ 9$; angle
iron $\ddagger 8 ;$ best dito, 88 10.s.; Tiron, $£ 8 ;$ bridge or tank plates,
c9, best E8; 5s.; bridge and tram 10 10s.; best hoops, $£ 8$; best waved hoops, The medium and common bar trade is without much change on
the week. Common bars are $£ 610 \mathrm{~s}$. to $£ 6$ 15s.; ordinary hoops, the week. Common bars are $£ 6$ 10s. to $£ 6$ 15s.; ordinary hoops,
$£ 7$, and cooper's hoops, $£ 7 \overline{\mathrm{~s}}$. Gas strip is quoted $£ 615 \mathrm{l}$. easy, t7, and cooper's hoops, £7 5 s.
but with an improving inquiry.
Pigs were slow of sale both in Birmingham and Wolverhampton, yet vendors s and makers uphelel for recent quatations. All-mine
sorts were held for from 67s. 6 d . to 70 s ., part-mine at from 60 s .
 native cinder iron descended to 42s. 6 d . The "Castle" brand rose
 55 s . Tredegar hematites were 70 s., which was about the price for
nearly all the steel as well as the best iron-making hematites offered.
Coal
ral manufacturing as for household, as well folities. The smelting and general manutacturing as for household qualities. The supply has been
sensibly curtailed by the heavy rain and snow of Tuesday, which
have have stopped sederal pits. By the same cause the thin sheet and
the tin-plate works of Messrs. E. P. and W. Baldwin, on the the tin-plate works of Messrs. E. P. and W. Baldwin, on the
banks of the Stour, have been temporarily suspended. 111s. coninues to be the maximum price of furnace coal. The more gene8s. the 7 s. is the pricic mostly asked for good forge coal.
The enter of
South Staffordshire Mines Drainage Commissioners has been fixed to take place at the Commissioners' Offices in Wolverhampton on

The Mayor of Birmingham, Alderman Avery, has intimated his willingness to accept the office of president of the Mill and Forge
Wages' Board, and the Board has been summoned for Monday next, in Wolverhampton, to consider the notice which the ironworkers have handed in for an advance.
The engineering trades of Birmingham and the district keep work, new contracts are not taking the place of those executed with the alacrity which could be desired. A considerable proportion of
the work of this sort just now under execution is on account of home railway companies. Engineers have generally full work up negotiation are contracts on account of New Zealand and Africa. he completion of the contract which Messrs. Carter, Ford, and Co., Limited, of Darlaston, have had on their books for large iro domes.
The
trict is $£ 12$ per ton and un for iron roof work on trucks in this disprice is $£ 12$ 10s. per ton onwards.
The Roumanian Gol
The Roumanian Government have given out a contract for the manufacture of a good quantity of cartridge machinery, and the
work has fallen to Messrs. James Archdale and Co., of Birmingham, the producers of machinery for gun manufacture
Among their orders are light pumps to the order of the South Staffordshire Mines Drainage Commissioners. The pumps are to be used in connection with the scheme of that body for pumping
surface-water at five different stations, so as to drain a portion of the eleven square miles of surface which have been swagged by
mining below the natural outfalls the water from which no mining below the natural outfials, the water from which now
finds its way into the mines. The Commissioners have arranged to enlarge one station, erected two new stations, and attach drainage, making six surface pumps to be put into operation at once. The quantity of water which will be raised is great, but the lift is so small that it will not involve much steam power, hence the pumps which have been ordered from Messrs. Tangye are only about 4 to 6 -hiorse power each.
The Commissioners had many
Ihe Commissioners had many offers of pumps before placing the
order, but there was some difficulty in the selection, inasmuch as the pumps needed were not for pumping under the pressure of water equal to the steam pressure, but for throwing large
quantities to a little height. The pumps, therefore, have to be quantities to a little height. The pumps, therefore, have to be
twice the area of the pistons.

Messrs. Tangye are also active on heary pumps, and on engine
nd boilers, the orders being alike to home and colonial orders and boilers, the orders being alike to home and colonial orderes
The colonial business of this firm, indeed is steadily increasing The colonial business of this irm, indeed, is steadily increasing
and their machine tools are also in larger request, not only from
the the colonies, but from continental Europe, particularly Spain ; the United States is also a good buyer.
Large pumping and marine engines are finding full employmen for Messrs. Watt and Co.; on steam engines of easy size, together
with mechanical stokers and pumps, Messss. Piercy and Co., of the with mechanical stokers and pumps. Messrs. Piercy and Co., or the
Broad-street Engine Works, are steadily occupied ; in hydraulic and lifting machinery, a big business at date is being done by
Messrs. William Causer and Co., of Soho and refrigerating machinery, gasometers, boilers, \&o., are keeping the Atlas Works and the
active.
Birmingham will shortly start its first steam tramway. The new line which is now nearly completed will connect Birmingham
with Aston, a suburb some four miles out of the town, and the proprietors are the Birmingham and Aston Tramway Company Limited. The line will be part double and part single, and the groove is very narrow, and interferes less with the general
rehicular traffic than that of the old form of rail. They have been supplied by the Darlington Iron Company, and the iron
sleepers upon which they are laid by the Patent Nut and Bolt sleepers upon which they are laid by the Patent Nut and Bolt
Company, Smeth wick. The engines which will be used are those ompany, Smethwick. The engines which which the machinery is entirely hidden from view. When loaded the engines weigh seven
tons each. The rate of speed will not be allowed to exceed eight miles an hour.
Next Tuesday Next Tuesday the Birmingham Corporation are to consider an
exhaustive report
 committee recommend to the Councilectric tho application shall be be
code the them to the Board of Trade for the supply of electricity made by them to the Board of Trade for the supply of electricity Cor lighting purposes, but that subbect to satisfactory conditions
being appointed, the Council should support applications by one or electric lighting comp
The General Purposes Committee of the Wolverhampton Cor poration, on the contrary, recommend their Council to apply for
the Provisional Order to suply the town if he Provisional Order to supply the town if they deem well, in rder to prevent a monopoly. This recommendation will be co
idered by the Wolverhampton Town Council also on Tuesday. The coroner's inquiry on Monday into the boiler explosion of October 9th, at the Stephenson Tube Wo rkss Birmingham, of Mr.
Wm. E. Everitt, resulted in a verdict of manslaughter against Mr. Henry Mosedale, who for eighteen years had been Mr. Everitt’ chief engineer. Mr. Everitt hinself was also censured by the
 ne, and that last July it was pronounced to be unsafe by Messrs. Piggott and Co., engineers, of Birmingham, and also by an
inspector of the Manchester Boiler Insurance and Steam Power Company. A new boiler was ordered, but owing to some delay
in the acceptance of the contract it had not been delivered up to the time of the explosion.
A fortnight before the
A fortnight before the accident the boiler was found to be leaking, and sharps were put into the water, after which it was
allowed to go on working. Mr. H. G. T. Piercy, of the Broad-street
Engine Wo Engine Works, Birmingham, who had made an examination on on each side of the flue were greatly corroded, and that though
隹 they were originally 3in. thick, they had near the edges of the rent
worn to the thinness of an old sixpence. Mr. Mosedale urges that worn to the thinness of an ond sixpence. Mr Mosed of the deceased engine-driver.
he had relied upon the judgment of the
by the Birmingham staniendasv. commited to the warwiok assizes

The "dollied" section of East Worcestershire chain-makers gav a fortnight's notice on Saturday for an advance of wages. Should they be successful in obtaining this increase, the other section of
chain-makers will, it is believed, immediately take action to also an advance.
Circulars have this week been received by employers in the brass
trade of Birmingham and district from the National Society Amalgamated Brassworkers. reeuesting an advance in waetes for casting work, and sumitting a a new list of prices, involving
considerable increases in chandelier, common work, filure is announced of Messrs. Jones, ironmasters, of the
The faile Buffery Ironworks, Dudley; the Eagle Ironworks, Westbromwich; the Green-lane Furnaces, Walsall; the Buftery Colliery and Brickliabilities estimated at $£ 76,000$. The greater portion is secured and the assets, without including securities held by creditors, are estimated at \&t10,000.
The Hamst
The Hamstead Colliery Company, Limited, has just struck good quality, and is of the uniform thickness of 24ft. The preparatory gate roading has been driven from No. 1 shaft to within a short distance of the western boundary, about 800 yards from the
shaft ; and north of the shaft a pair of roads, 956 yards in length have been made.
A representative conference of miners at Horseley Heath have
made arrangements for a general conference to be held in Novemnace arrangements for a general conference to be held in Novem-
ber, and have promised also to help the Salop and Cannock miners in their effortsto secure an advance. A mass meeting of coliliers, held to receive the report of this representative conference, passed
a resolution against the evils of over-production, and urged the a resolution against the evils of over-production, and urged the
establishment of a union of all the men in South Staffordshire and East W orcestershire.
In accorcancere with our intimation of last week, the Local Board
of Wednesbury have this of a united drainage union for the towns of Wednesbury Tipton Darlaston, and a portion of Sedgley ; and a special drainage commirtee of the Board has been appo
from the other districts affected.

NOTES FROM LANCASHIRE.

(From our ovon Correspondent.)

Manchester.- In the iron trade of this district the course of busiand just at present the market has been pushed up by a rush of eavy buying, which has left makers, on the one hand, full of
orders for the remainder of the year, and consumers, on the other hand, pretty well covered for a similar period. Prices, of course, at the there are very few orders offiering at the increased prices. Makers, having as a rule three months' orders on hand, are not anxious to seol, stric the outlook for the future would not seem to warrant a too strict adierence to full prices where business is wanted. It can adhered to, and where makers have to come into the market they find that concessions are necessary to secure orders. There was only a quiet market at Manchester on Tuesday, and prices, but the tend the the slightly. makers of pig iron since their advance in prices have been doing very little, and they would now be open to book orders on the basis of about 50 s. per ton, less $2 \frac{1}{2}$ delivered equal to Manchester. For Lincolnshire iron the average price is 50 s. to 51 s . less 2 s , but
for some of the Derbyshire brands 1 s , to 2 s , per ton above these for some of the Derbyshire brands 1s. to 2s. per ton above these
figures is still being asked ; in north country and Scotch iron there has been comparatively little or nothing doing, and for these
brands prices are regulated by the Middlesbrough and Glasgow markets.

Finished iron makers are all very full of work, but there is still low selling in the market not only amongst merchants who are
willing to come it at under the recent advance, but amongst
 good local brands the average price at which business can be done is abont $£ 6$ 15s. delivered into the Manchester district. Hoops
average $£ 75 \mathrm{~s}$; local made sheets, $£ 812 \mathrm{~s}$. 6 d . to $£ 815 \mathrm{~s}$; and good Staffordshire qualities about $£ 9$ per ton.
Founders generally appear to be fairly
of the local firms report a falling of in the quantity of wor giving out.
There is
the engineering trades the engineering trades. Most branctes continuea actively employed,
the only point to notice being that the new work in prospect is no so large in quantity. The slackening off in the iron shipbuilding
trade, due to the fact that shipowners are not disposed to give out further contracts on the basis of presest quot quotaisons, wi
have an effect upon other allied branches of industry The large locomotive building firms in this district continue very busy, hoth on home and foreidg work wand I heard a report on
'Change that Messrs. Beyer and Peacock have orders in hand which will keep them fully going for several yaers ordo come. The firm
wive, I understand, reeently received large orders from have, I understand, recently received large orders from seeveral
English railway companies, and have in hand the construction of English railway companies, and have in hand the construction of
upwards of 100 engines for the Midand and the Lancashire and
Yorkshire Companies. Other locomotive builders in the district Yorkshire Companies. Other locomotive builders in the district
are also full of work, including orders for the Continent, India,
and South America and South America.
As Warrington is, next to Manchester, the most important
manufacturing centre directly affected by the proposed ship canal, manufacturing entre e directly affected by the proposed ship canal,
a few particulars respecting the iron and engineering trades carried a few particulars respecting the iron and engineering trades carried
on in the district, whiel I gathered this week during a visit to
some of the principal establishments, will be of interest. The some of the principal establishments, will be of interest. The
importance of Warrington as an iron centre may be estimated from
the fact that it contains finished ironworks which are second to none in the kingdom, the Dallam and Beessey forges, owned by the Patson and Karger krowlection of mand Coal Company, Cimited, turning
out iron, apart from the
rolling of rails, than any rolling of rails, than any other similar works in the country. These
forges occupy an area of about 24 acres, and give employment to about forges occupy an area of about 24 acres, and give employment to abou
2000 hands. Looking over one week'sreturns, foound that 1712 tons of finished iron were turned out from eighteen mills, sixty tons of besides a large quantity of bridge girders and general engineering work, and the total production of finished ironwork for one year
was 8, , ooo tons. The works are laid out chiefly for finished iron work purely, a large proportion of the puddled bars being supplied
from the furnaces at Wigan, and bars, hoops, sheets, and wire stitute the staple class of goorls produced. I can only indicate very briefly the character of the works. At Bewsey there are
three forges with forty pudding furnaces, three 19in. roll trains driven by three engines with 22 in. cylinders, 3 ft . 6 in. stroke of three tons double-acting, one scrapping forge with four furnaeces;
21 in. roll train, 2 iin. cylinder engine with 3 ft. 6in. stroke, and one four ton double-acting hammer ; three hoop mills with six furnaces,
and three pairs of coupled engines of from 18in. up to 24in.
cylinders cylinder engines with 5ft, stroke, and having fly-wheels averaging
he excentionally heavy weight of sixty tons : one wire mill wits two of Siemens' gas furnaces, a pair of 36in. cylinder engines
with 3 ft . 6 in . stroke, and a 9in. roll train. The steam power which, except five hand fired in the wire mill, are kept going
by the waste heat from the furnaces. At the Dallam Works where the plant includes twenty-ight boilers, there are two forges with thirty furnaces, two three ton hammers,
two 17in. roll trains, two engines of 22in. and 25in. cylinders, four by eight furnaces, and driven by engines with cylinders ranging from 20 in . up to 30 in . diameter, with 2 ft . 6 in. stroke ; a plate mill with two furnaces, 21 in. roll train, one 30 in. cylinder engine, with
5 ft . stroke, and fly-wheel weighing 60 tons ; an axle forge, with one furnace and a helve or tiit hammer; a foundry, with thre rass foundry, fitting shop pattern shop, and a larceen hearier shop, At the Dallam Forge engineering work, as well as the production
of finished iron, is an important feature, and in bridge and tank construction the firm have turned out a large quantity o mportant work for which special plant is laid dow, but this I ron works in the district is that owned by Messrs. Monks, Hall and Co., Limited, which from a comparatively smail beginning, in
1874 have enlarged gradually, and at the present time are being considerably extended with the eview of rolling steel rods and hoops, whilst new fitting and engineers shops are also being added.
present the works are laid out for producing 350 to 400 tons present
finished iron wer week, consisting of bars, hoops, and wire rods of
pord the ordinary run of sizes. The plant consists of twenty-six form, three mills, a 9 in. merchant mill, 8 in. hoop mill, and a wire rod
mill. Steam power is obtained from twenty-one boilers, in nineteen ${ }_{\text {mhich }}$ mitis generated by the waste heat from the furnaces n the rema ing two being hand-fired for occasional use. Amongst the plant I
noticed a couple of the Gidlow rocking furnaces, which I under stand have been found to work satisfactorily, and I may add, as point which will probably interest other manufacturers, tha
Messrs. Monks and Hall, after an experience of driving by direat yearing, which was the constant cause of breakdowns, have now introduced almost throughout their works driving by cotton belts,
change which, I was informed, had been in every sense satisfactory. The works are admirably laid out for the quick despatel I was informed, the firm have been able to roll the iron and delive it on board vessel at Liverpool ; and with the extensions now in progress, which will increase the number of puddling furnaces to making trade, and arrington is also a great centre of the wire 1000 tons per week. Amongst the principal firms may be men tioned the Whitecross Company, with works capable of turning out from 500 to 600 tons of wire rods per week; Messrs. Rylands
Bros, the Hayebridge Company, Messrs. Wm. Smith and Sons, Bros, the Hayebridge Company, Messrs. Wm. Smith and Sons,
the Warrington Wire Rope Company, and W. D. Horton and Co There are also considerable engineering works in the neighbourStubbs and Co,., Melvin and Whittle, Newell and Barker, R, R,
Kitchen, and Smethurst. It will thus be seen that War-rington-forms an in centre line of the proposed improved navigation, and the scheme,
which would no doubt give a great impetus to the local industries is being warmly taken up in the district. It is even suggested that Warrington should form the port for Manchester, and be connected by a plate tramway for the transit of goods.
The threatened strike in the coal
anticipated, has been averted by a compromist his district, as masters. A general advance of 10 per cent. in wages is being as business is coneerned, all classes of coal are in good demand and still scarce, slack being the only description of fuel which at
all hangs on the market. The advance in wages is bo panied by an upward movement in prices of from $6 d$ t. to s.s. per ton, scarcely allows of any definite quotations being given.
Barrow. - In the hematite pig iron trade there is
of tone, and the business done is of considerable extent. Makess are kept very busy, and the output of the works exoen into imme-
diate oonsumption by rail or sea, There are but a few funnaces out
of blast, and there has been an augmentation in the number o hese producing iron. There is little change in prices, No.
Bessemer being 59 s . per ton net, and N. 3 forge 57 s . but in some
cases ases higher values are aske, owing to the large number of orders any additional orders coming in. The stocks are small, and are
likely to remain so on account of the heavy deliveries which are likely to remain so on account of the heavy deliveres which are
being made, both on home and foreign account. Steel makers are very active, and have just received new orders of importance,
Prices firm. New orders are being booked by the iron shipbuilders and inquiries about new work are numerous. There is a good
demand for iron ore at improved prices, 14 s . per ton being abou the average. There is a good employment in the coal and cok

THE SHEFFIELD DISTRICT.

A CRITITAL stage has been reached in the coal dispute. The Soutt Yorkshire coolowners have met and reiterated their assertions
that the price of cool has not trisen so os to justify the demands of the men for an advance of wages, but with the object of avoiding
strik sent., this advance to continue in force till Christmas next ; at tha time the masters propose that the average selling price for th period of six months during the last two years that by the men, and such 5 per cent. already conceded shall be continued if an advance of 8d. per ton is shown over the basis price, and if the price be more or less than 8 d . a ton, the wages to be
advanced or reduced accordingly. The 5 per cent. is to be paid on advanced or reduced accordingly. The 5 per cent. is to be paid on
the frist pay day in November. ffer resolution is practically a repetition tion of 5 per cent. advance to be immediately conceded. Coal owners tell me that this is their ultimatum, and if the men are so 11-2dir perts. The chairman of one of the largest colliery firms in
theit stated at the meeting that after searching the books of his company very carefully, he found the total advance in the value of coal to he giving of. the sliding scal 2 2drance of $2 \downarrow$ per cent. on every $4 d$, per to increase in the eelling price of coal-is clearly made as an earnest
endeavour to prevent a strike, with all its attendant misery and
I.

I am doubtful if the miners, or rather the miners' delegates who utterances on public occasions, and the employers themselves have ound matters complicated by the action
districts, notably in Derbyshire and Lancashire. The Derbyshir on 122 per cent. Then West Lan, orering advances varying from. to $12 \frac{1}{2}$ per cent. Then West I.ancashire and South-west Lancashir
ollowed this week with 10 per cent. It is not true, however, that 10 per cent. has been offered in West Yorkshire. A meeting called for the 27 th at Leeds, when the question will be considerec.
All thes All these concessions embolden the South Yorkshire delegates
stand out for 10 per cent. at least, and on this basis I anticipate a advance will have to be eiven if a strike is on ob eaverted. A
present 24,768 colliers in West and South Yorkshire have handed
in notices demanding 15 per cent. advance. 900 tons of iron deckplates for the Lepanto, sister ship to the Italia, is expected this Cyolops Works. The leading armour for this vessel will not be
setiled for some time. Italy is in the market for 4000 tons more -thin-steel ship-plates, angles, \&c.
-the -steel ship-piates, angles, dce. solicit an interview with Mr. Joseph Chamberlain, M.P., the
President of the Board of Trade, in reference to the effect of the
St Electric Lighting Act, and the rules that have been-issued in Conrad Cooke, electrical engineer, has been retained to advise the committee on the best means of carrying out the resolutions of the For the Albion Steel and Wi
e obtained be obtained, but very fair prices were got the other day for the
fixed and loose machinery, working plant, tools, and materials. Bu a horizontal high-pressure steam engine, with 24 in. cylinder, fetche
e92; a pair ditto 2 ilin. and 2 tin. . ylinders, $£ 140$; roll turning
 auctioneers failed to obtain a bid.
Sheffield cutlery manufacturers and dealers in hafting material failed to obtain much ivory at the Liverpool sales last week. The quantity was the smallest ever offered, and
higher for small and large teeth respectively.

THE NORTH OF ENGLAND.
(From ou
The Cleveland iron market, held at Middlesbrough on Tuesday Cast, was well attended, and business was slighthly more e active than
it had been during the previous week. The prices which have ruled steadily for a month past were fully maintained. There was a certain amount of inquiry for delivery over the first quarter o
next year, and some business was done by makers outside the com bination at 44s. 6d. per ton for No. 3 g.m.b. The leading smelters will not at present entertain offers for next year's delivery, and
will not accept less than 45 s. per ton for delivery during the remainder of the present year. Merchants will take 44s. 6 d. to for prompt delivery.
Warrants are stili in poor request, and buyers will not give more for them than they offered last week, viz., 44s. 3d. per ton for
Connal's No. 3 f.o.b. warrants. The stock of Cleveland iron in Messrs. Connal's store on Monday
night was 103,896 tons, being a decrease of 722 tons for the week night was 103,896 tons, being a decrease of 722 tons for the week. and it is now probable that the amount exported during the month will exceed 100,000 tonst as they amosodid last month. Up to Mon-
day
nimht the day night
76,000 tons.
The finished iron trade is still very quiet. What business is beivg transacted, however, is at somewhat higher prices. Bars
have been advanced 5 s . per ton, and are now $£ 6$ 5. ps. per ton. Shin plates are $£ 615 \mathrm{~s}$. to $£ 7$, and angles for shipbuilding are $£ 6$-al .o.t. at makers works, less $2 \frac{2}{}$ per cent.
yoted for heavy sections is $£ 52 \mathrm{~s}$, 6 d . to $£ 55$. The activity in the shippuilding, trade continues on the Tees, Wear, and Tyne. On the latter river there are at the present time
upward of fifty vessels being built between Scotswood and Shields. upwards of firty vessels being built between Scotswood and
The yards are all fully occupied on the other rivers named. acepted the invitation of Sir Edward Wattin to inspect the works of the Channel Tunnel at Dover, and have fixed Saturday, November the 18 th, for their visit.
A meeting of the North of England Board of Arbitration and Conciliation was held at Darlington, on Monday last, for the pur-
pose of receiving Mr. Waterhouse's report as to the sales for the past quarter, and for discussing the steps to be taken with regard to the wages question. Mr. Waterhouse's ascertainment shows
that the total quantity of iron of all classes sold during the three that the total quantity or iron was 159,855 tons. Of this 917
months ending September 30 wh was 159
tons were rails; 113,215 tons plates; 14,226 tons bars; and 31,397

Abstract

Excluding rails, the average price was $£ 6$ ss. 7 d. per ton This return shows an improvement on the previous quarter This return shows an improvement on the previous quarter o 1s. 6 d on an all classes of iron, and 1 s. 7 d. on bars, angles nd plates. After some discussion it was found that bett employers and employed still held to their claims, the forme or a reduction and the latter for an advance, and it wa unanimously argeed to let the whole matter go before a apacity was then brought up, and it was found that the operative delegates had unanimously agreed to propose Sir J. W. Pease. he employers, after consulting together for a short time, decided do accept the arbitrator chosen by the men. After some furthe discussion, the following resolution was carried, viz: :" "That in iew of the improbability of the arbitrator's decision being pub lished by the termination of the present wages agreement on th 28th inst., the present rate of wages shall continue to be paid until such time as the award shall be given, and that the arbitrator hall have power to fix the date when any changs he may make in wages shall take effect, provided that the date be not earlier than period over which the arbitrator's award should extend but understood that the operatives were to consider the matter, and be prepared to make a suggestion when they go before the arbitrator. The question of the re-establishment of a sliding scale is postponed intil after the a ward shall have been given. At a Council meeting of the Cleveland Institute of Engineers held on Tuesday last Mr. E. F. Jones, of the firm of Jones Dunning, and Co., ironmasters, Middlesbrough, was elected presi- dent for the ensuing two years. Mr. Jones is one of the oldest members of the Institute, and has been always a constant attende mportant muestion of breaking up of blast furnace slag and sendin it out to sea at minimum cost. Itis not unlikely that in his presidential The old wil give the result of his experience in this direction. Conservancy programme for the ensuing session is a very attractive one, and ncludes a paper on the Channel tunnel, by Major Beaumont matter, and will no doubt give forcible expression to their views A meeting was held at the Literary and Philosophical Hall, Middlesbrough, on Monday evening, to consider a proposal that technical school should be commenced in the town. Messrs. B. Samuelson, M.P., Isaac Wilson, M.P., Professor Stuart, of Camwere present, and took part in the proceedings. A resolution wa eventually, passed to the effect that, "the time had now arrived when Middlesbrough must have a technical school," and measure vill no doubt be at once taken to give effect to this decision

NOTES FROM SCOTLAND.
THE pig iron trade continues very active, a large business being
done both on home and foreign account. In warrants, however there is a tendency to decline owing to speculative causes. The shipping trade in very well maintained, and thenere are good orders
coming to hand to be implemented in succeeding weeks. Since last eport an additional furnace has been lighted at the Eglinton Iron vorks, so that there are now 114 in blast, as compared with 105 a 1300 tons in Connal's stores, and a further decrease is contemplated the production, although it has been considerably increased, being yet insufficient, as is generally believed, to meet current wants.
Business was done in the warrant market on Friday forenoon at Business was done in the warrant market on Friday forenoon at
from 50 s . $8 \frac{\mathrm{p}}{2} \mathrm{~d}$. to 50 s . 102 d d. cash, and 51 s . one month, the afterroon quotations being 50s. 9d. to 50s. 8d., and again 50s. 9d. cash,
and 51s. to 50s. 11d. and 51s. one month. On Monday, the market was dull, with business in the forenoon at 50s. 8d. to
50 s. 6 d . cash, and 50 s . 10d. one month, the afternoon's figures

 To-day-Thursday-being a Church holiday the iron market was
closed.
The demand for makers' iron being strong, the quotations are

 8s. 6d. a
The arrival of Middlesbrough pigs at Grangemouth for the week have been i485 tons as compared with 6180 in
The malleable iron and steel trades continue busy, with perhaps
not quite so many orders

 The general engineering trade is very brisk, a large suplly of
foreign orders being at present in course of execution, as well as a bood business on home account. In the course of the past two
weeks the iron and steel despatched from Glasgow alone, were valued at £120,000. They cocomotives, slleepers, \&c., and a a great variety of general hardware In the coal trade there is a very good business being done at the to 8s. 3d.; oplint, 7s. 3d. to 8s. steam, 7s. 6d. to 8s. 6d. These quotations are given at an average of 6 s .9 d . per ton in some
quarters, but I have reason to believe that they are considerably higher. The miners have not been working quite so regularly as railway wagons, has considerably interfered with shipments, which however, are still on a large scale
The wages question in the mining trade appears to be gradually approaching a settlement, and there now seems good ground for
hoping that strikes will be averted. The demand of the miners in the different districts has been for an addition of 15 per cent. to their present wages. In the counties of Fife and Clackmannan the employers have conceded a rise of 10 per cent., and the probability
is that in a short time a similar concession will be made all over the country.
The strike
ow existed for about joiners in the Clyde shipbuilding trade has sowing much determination to corry their points. What the men
want is an advance of a halfpenny per hour, making their pay 7 7d. A few days ano some friendson of the mene mapproang thed Sir Ponald
Currie, M.P., at Perth, and requested him to view of effecting a settliement. He expuressed his readine wiss to place whatever influenee he had tat the disposal of both parties. It is
greatly to be hoped that the dificiculty may be speedily arranged as it must impede the finishing of new vessels, and entail consider-
able hardships upon a large class of men. Of course the employers an hardly be held responsible for this, seing that the operatives
eft their employment of their

WALES \& ADJOINING COUNTIES. (From our own Correspondent.)
The steel works are all busy, and several of the THE steel works are all busy, and severai of the
larger ones hold substantial orders that will take
them until March to execute. I am told that them until March to execute. I am told that
there is a slight falling off lately in the receipt of fresh business, so that some degree of doubt exists
as to what may happen after March. At present we are safe for plenty of work, and prices are stiff, and looking up. It is possibly prices are to an increased stiffness in price that new orders prove, or otherwise. Cargoes left this week for Canada, America, and India, and a good deal of
home trade is being done, as well as with the Colonies and foreign markets.
Tin-plate is flagging again, and so far I have not heard that the decision of the Birmingham meeting to advance 1 s . a box has been carried.
This may be owing in part to a lack of union amongst makers, but principally to a slackness in requirement.
There has been a good deal of work at the new steel works at Tredegar this week, and it is said mills. Good iron orders are also coming in at these works.
Three furnaces on the newest principle are now well advanced at Cyfarthfa, and operations are beginning for further changes.
The management at the new
The management at the new steel works,
Landore, have offered to take charge of the Landore, have offered to take charge of the had a salutary effect on the men who are still remaining out on strike. The manager had pre-
viously offered these men a fair advance, on viously offered these men a fair advance, on
what appears a reasonably adjusted scale, and now refuses to deviate from this offer, so a settlement may be regarded as certain.
The "Earl Spencer Steamship Company" has been launched, capital $£ 23,000$, in $£ 235$ shares. The subscribers are all leading Cardiff shippers.
A movement has been started by the Taff Vale Railway workmen to obtain a reduction in their hours of labour, and this has been favourably
received by the chairman of directors. It is received by the chairman of directors. It is
certain that in cases where proved hardship exists that some concession will be made are looking up. This satisfactory stat generally is owing to the prosperous condition of the coal trade. In one branch only of the trade has there been any flagging during the week, and that is in
anthracite, which is generally dull about this time of the year. Extreme briskness has characterise the ports of Cardiff, Swansea, and Newport, and the total exports have amounted to 214,753 tons. This, in addition to a very heavy transport over railways, shows the healthy vitality at present
existing in the coal trade of Wales. Coalowners are watching the action of the Northern coal owners, and quite prepared to utilise the advantages. Merthyr Vale with its double shaft, Harris Naviga
their outputs.
I saw a fine train of coal this week from Penrhiwceiber, Mountain Ash. This is proving a magnificent taking.
In proof of the prosperity at present existing amongst Cardiff coalowners and shipowners, I am realising $£ 50,000$ per annum. He has command of fine coals, has agents in all parts of the world, and, in fact, commands the situation.
The movement for buying up the Bute Docks and forming a Cardiff Harbour Trust of Bute that he cannot enter into the negotiations proposed by the Mayor and Corporation of Cardiff,
but it would seem from the tenour of his letter that if a thoroughly well-grounded
scheme were formulated the creation of the scheme were formulated the creation of the As it is, it must, in the course of things, be some years before the movers can see their dreams
realised. The Bute Docks are already worth several millions sterling, and have not reached tive capacity. Thelopment or highest remunera to sweep away, vested privileges to be put aside, and "system" to come into earnest operation It is not often that one sees a going and pros perous concern looking for a buyer. Latterly the
Pit timber is steadily advancing. Liter demand has been very great, and imports small.
Patent fuel is doing well. Last week the Patent fuel is doing well. Last
export from Swansea was considerable.

THE PATENT JOURNAL

Condensed Patents.

** It has come to our notice that some applicants of the
Patent.ontice Sales Department, for Patent Specificiations,
have caused much unnecessary trouble and annojance,
both to themselves and to the Patent-antice officialis, by giving the number and the the Patent-aftice officials, by
which the Specification they require is referred to, ins at of giving the proper number of the Specificatotion. Thestead
mistake has been made by looking at THE ENGNEER
Index, and giving the numbers there found anhich only Index, and giving the numbers there found, which only
refer to the papes, in place of turning to those pages and
finding the numbers of the Specification.

Applications for Letters Patent.

* When patents have been "communicated." the
name and address of the communicating party are
printed in italics.
17 th October, 1882.

fossés, Paris. Motors, A. G. Dick

4932. Clocs, , , Dickles, Halifax.
4933. Buckles, F. J. Candy, Highfield

 Seving Machine Company, Boston, U.S.). -(J. C. .
Theirriont, Pask BaLA MaE, A. J. Broult. - (J. C. Theirrion, Passy Grigny, France.)
4934. WIC-TRMMERS, A. J. Boult.-(IV. c. Seaton,

Copenhagent.)
4935. Blastiva

M
4956
4957

49558 495 H
 4859

 4961
49623
4963

 4980. Cooking Raxgess, H. McRuer, Glasgow,
498.i Govervine, de., the Flow of Ftuins,
Glas
 Kitel and Company, Steinschonan, Austria-Hungary.)
 J. Hilson, London.
4996. Making Irov,
 Wednesbury.
4991. SECONDR Barterises, J. . . Liardet, Brockley,
and T. Donnithorne, London.

 Kiershaw, Lancaster. D. Pellegrin, London
500. Alprantus for Making Confectionkry, C. F.
Miller, Magdeburg.

 21st October, 1882.
So06. Appicacina of
Sientilel.
sons.
Looss,
 Societe Harmel Frieres, Val des Bois, Marne, France)
5010 PERRMNETM, WAY, F. Nowell and A. K. Smith,

 23 2rd October, 1882.
5029. Erveloprs, R. B. Hayward, London.
5030 MANUPACTURINe Asivero
 ${ }_{1}^{503}$ Tyne. Controlurva Horses, J. c. Mewburn.-(c. von

 Grove Park, Kent.
5040. APpasatus Employmd in Treating Rags, P. P.

 Inventions Protected for Six Months on
Deposit of Complete Specifications.

 Patents on which the Stamp Duty of $£ 50$ 4211. Couvtre STass, do. H. H. Lake, London. -17 th
October, 1879.

 3655. Lit for oul Cass , J. Kaye, Kirkstall.- $-19 t h$ Sep-
tember 1879. tenber, 8879 .
4205. WERMASEMT WAY, J. Kerr, London. -17 th October,
1879 , 1859. STEAM NAvvies, J. T. Parlour, London. -17 th
october, 1879. October, 1879.
427. List finsing, W. E. Teale, Worsley. -17 th
October, 1879. J. Haddan, London.- -20 th

 2274. GRinding, do., Caustic Alkaliss, W. J. Men-

 273. Skeorina Touses in Plattes, w. Tully, London.

 Patents on which the Stamp Duty of $£ 100$ 3675. Apphying Indi-Rubber to Fabrics, J. Barrow,
 ${ }^{1875}{ }^{3625} \mathrm{~S}_{\text {SiFES }}$. de. . S. Chatwood, Bolton.- 19 th october,

Notices of Intention to Proceed with Last day for flling opposition, 10th November, 1882.
 2798. Buovant. Sperd Wheri, W. Teague, jun., Tin-
eroft. Redruth. -1 tht $J u n e, 18 s 2$.

 don. 15 Sh June 1882. Reglation of Veloctity, H

 Burt, London. -16 tht June, 1882 .
 A. H. Smith, Nottingham.- $-17 t$
 2867. GAs REaUL ATors, ©....A. J. Boult, London.
communication from P. Parsy. $-17 t h$ June, 1882.

 20, don,-A communication from Dr. H. Buttner. $-19 t \mathrm{th}$
Junn
 2912. Regriation of Eligetric Covrents, S. H
 2014. ELL Jurre, 1882 LAMPs, S. H. Emmens, London. -20 th 2919. Hune 1882. Gisg Gear, w. J. Brewer, London.-20ti

Last day for flling opposition, 14th November, 1882.
2503. Leans for Pexcis, G. Daubenspeck, London.-
26th May, 1882 . 2603. Masv, 1888 . 182. . 1
 Tovote.-19th June, 1882. Mone PRoDCING a Contrinvous Curbext of Arr, \&o.
E. Edwards, London. - A communication from F

 ${ }_{J}^{2916.0 \text { ChiLDREN's Cots, } 1882 .}$ G. W. Moon, London.- 20 th 2920. CLEAssirsg, \&c., Skiss from Potators, C. L.
Hancock, Dudley. -20 th June, 1882.

 2943. Berkr for Converiva Corfins, C. D. Goldie, St.
Ives. $-218 t$ June. 1882.
 Electrio Currents, C. A. Carus

 2964. Verooripexps, \&c., W. Morgan-Brown, London--

 cher Fabriken.-29th June, 1882.
3125. CARBoNATE of Soda, C. Wigg, Liverpool.-3rd
 communication from H. Hochstrate, - 4 tho Juhy, 188,
323. F Furrivive WATRE, J. H. Topham, Manchester.-

 1837. Cocks and Vaives, D. R. Ashton, London. $-19 t h$

 29th July, 1882 .

 Auqust, 1882,
4097. WHELS, J.

 tember, 1882.
4885. GAs Esinss,
J. Atkinson, London. $-15 t h$ Sep.

4697. Makisg
0ctober, 1882.

Patents Sealed

List of Letters Patent which peased the Great Seal on the 1916. BRicks, \&c., T. A. Riggs, Aldeburgh.-22nd
 1921. "Mordant" for Dyeing Blues, s. Musgrave,

 ham. -24th April, 1882.
1977. Coke, J. Jameson, Akenside Hill.- -25 th April, 1948. Converting Lreutid into Sprav, L. H. Armour,

 2183. DREssing
May, 1882.
234. Lliferpreserving Bed or Mattress, A. M. Clark,

 ${ }^{1882}$ 187. Treating, de., Clay, J. Gillespie, Garnkirk.-
 (List of Letters Patent which passed the Greal Seal on the
24 thl 0 october, 1882.)

 1950. -6th April, 1882 . Aprril, 1882 .

 ${ }^{1968 \text {. Conibined Steam Enaine and Boiler, E. }}$

 9999. Stronivg Eltcrrric Cureents, J. B. Rogers, Lon-

 2039. Wrril, 1882. Drid Drawing Pens, M. Fischer, Prussia
 1888.
2015. Wirpanssss, \&e., A. B. Brown, Edinburgh. -1 st
May. 1882 .

 2072. Electric Lights, T. J. Handford, London.-2nd
May, 1882.
2120. URINALS, W. MeGill, London.-5th May, 1882 .

 281. LLBBRCA Tons, B. J. B. Mills, London. -14 th June,
 foot. $222 n d$ June, 1882.
313. SPIINNIIG FRAMEs, A. A. M. Clark, London. -4 th
July, 1882.

 $* *$ Specifications will be forwarded by post from the
Patent-office on receipt of the amount of price and

 Post-oice
High Holb
Patento-oficic
London.

ABSTRAOTS OF SPEOIFIOATIONS.

 evared by ourselves expressly for The Exainker at theofice of Her Majestys Comisisioners of Patents.
322. GLLoves, W. Dible, Regent-street.-2112t January, This oonsists in the formation of on poice ein the pal ofter tickets.
or
oth
332. ATHLErTIC Boors AxD Sioss, H. and T. Craston,
London-23rd January, 1882. - (Provisional protec thion not allowed.). 2d.
This consists in making such boots and shoes of 370. Fin

 Triler formed wits ith groinges so soncrete spodurfaces as sities o
projections on the surface of same, and thus preven projections.
slippping.
394. Isolating Fire and Smoke prom the Aud-
toriva in Theatres, sce., H. M. Bennett, Livert
 Tons consists in placing a perforated water pipe
along the top of the eurtain drop, so that when the latter is lowered and the water supply turned on a
sheet of water runs over the same and separates the sheet of water runs over the
stage from the auditorium.
636. PorTo

 and so formed as to prevent the liquid flowing out
therefrom.

 moulding dough and placing it in the oven, and it
consists in in the use of suitable apparatus for effecting
the 644. B
644. BRacrs For TRoUsers, J. H. Jolnson, London.-
10th February, 1882.- (A communuication from J. . Garand, Paris. - (Provisional protection not The object is to prevent the dragging or falling out
of shape of trousers, and it consists in the use of braces
 846. Weld ress Tues
 This relates to machinery for producing tubes, rods,
or bars with the fibre of the metal in a helical direce-
ot tion to prevent the longitudinal splitting of the tubes According to one arrangement the metal in a molten
or plastic condition is placed in vessel A, the end or head piece X of which carries a hollow die Y formed
with helical grooves. The rod B projects through the

846

die and is secured to the lower end of vessel A, and
forms an annular passage between it and the die. Pressure is exerted on the metal in vessel A by means
of hydraulic ramss U, which force the headd piece X into
O vessel A, thereby causing the metal to issue in the
form of a tube between the die Y and rod B, the fibr

 allowed. $2 d$.
This onsists is marking the back of the goods
rom end to end so as to show the number of yards from end onsists in in mars anking the bow back of the goods
remaining on the roll or folded upe number of yards

sulphate of strontium and barium sy by the application a pit or chamber stove heated by burning grases
nto which superheated stean of such a temperatur thonducted that the alkadine earths are reduced to eated steam at two difforent levels, that is at the the
upper level bblast pipes in the stove will, and at the
uwer level by cross pipes provided with holes
 Hoor so as to fit it for drawing out the melted mass.

 ture inductively magnatised in frintional ; ontatat with
the surfaces of iron discs, with mechanism for com the surfaces of iron discs, with me me
municating motion to the armature.
1092. Machinery biploved in Knitrive Machines, This relates to cloth knitting machines, the object being to produce firmer knitted fabrics which cannot
bo pulled out or strothen tin the widh ond which
have a better appearacheo and finish, and it consists in have abination of paratst for palacing a a thrand at thene bail
of the knitted fabric during the process of knitting in such a manner so as to fasten the longitudinal
threans together and prevent elasticity in the direction of the wogeth.
oge . Tho

 the plung
Two oother
oppor
and at right angles thereto also have their plungers
conneted and a slot formed to embrace the crank pin ,
conich id
 water is admitted to the four cylinders in succession,
and acts on the crank so as to cause it to rovolve. 1072. Carriages for Navai and Firld Ordvance,
T. Nordenfelt, London . 6 th The object is to check the recoil from guns, and to carry
moderate d quichound. Cok a abain to fring position with
bined with bined with abydraulic bufter The thunnions of the
gun are carried upon a lever A , of which the fulcrum gun are carried upon a lever \dot{A}, of which the fulcrum
is at Λ^{1}, so that the lower end of the lever is drawn

 surrounded by the spiral springs. D D, and Elon is adisc,
through which the rod freely passes. F is a cylinder hrough which the rod freely passes. Fis a cylinder,
in which the piston, the springs, and the disc are con: taned. The end cover of the cylinder F is secured to
he gin carriage by b bolt, on which the cylinder is able to rock slightly to accommodate itself to the posi
ion of the

 bric acid and malic ac
1128. Coxtrolulivg ine Flow or Watrr from 1882 - (Not proceeded dith.) $2 d$.
A syphon tube is fixed on the cistern, and its longer byas a short stand pipe at the 10 wire is connected Upon the head of the syphon is an air valve balanced
to
its seating, and to it a a lever is soctuated by atloat and line, so that the valve may be
and adjusted to allow any desired flow of water from the distern before the action of the float in descending nd prevents any further flow of water.
 Drvies and F. H. W. Higgins, London.-Sth March
The object of this invention is to render the signals
made from street fire alarm boxes self-interpreting.
 electro--magnet actuating a propelment moves an
index or indicator each time that the circuit is Index or and a series of signal posts with cams which
opened
intermit the current a pre-arranged number of times
 when a puil is drawn out. Aso a receiving instru-
ment, writh arangements for acknowleding the cal
by reversal of the current through the lins, without aftecting the propelment.

 groved drum to another, so as to leave every alternate
groove empty when coiling in one irection, and then
1eading the rope back from one dry leading the rope back from one drum to, the other
in the opposite direction, and filling up the vacant grooves.
1142. Improvements in Means for Reguating the

Ine futsiration heio. In shows one mode of carryIng out tused thvention. narm in the conductors 1 and 2 . Suppose it were to increase in electro-motive force,
then E would attract F, so closing the circuit through I and D ; lever H is then caused ${ }^{\text {to }}$ vibrate, the circuit being alternately broken by the electro-magnet
attracting sitand thus throwiny the circuit ontroller
N to one side, and made by the action of spring L

drawing back H, and thus throwing N to the opposite ratchet whel, and worm whee shouvn, mover the
brushos away from the line of maximum gereation
until the normal current and candle power is restored

close the circuit through D1, and so restore the
normal current.
 Thiso, Parasi.) (Not proceeded with.) 2 . 2 . cord or chain from the drum, the axle of which is
connected by a train of wheels to the machine to be 1152.

 moth going and returning galong the same side or
edge of the crop; and it consists, First, in construct ing the machine to accomplish, thiss by making the the
cuntug and deilery apparatus capable of pivotting
 machine to the other; Secondly, in making the finger
bar and reciprocating cutter bar capable of working either side eppwards; and Thirdly, in the constructing

 Nevark,, U.S. $)$-10th March, 1882.6 . 6.
In this arrangement Mr. Weston has one set of feed-regulating magnots with two sets of carbons, the
fatter boing brought into circoit as recurired, The
feed and adjustment is hy means of cluten mechanism.
 This consists of a metal lining for protecting the interior of graves.
1171. Improvements in Mechanism for Regulating

 The carbons are separated by attraction of armature
F by magnet G. When the arc is too long the fine

wire magnet Gl^{1} becomes the most powerful, and reppls
its armature ${ }^{10}$, this withdraws the pin D^{2} from the cross arm H, which latter is released and the carbbons
are allowed the are anowed to descend. As they approach the
current throgh the thick
strongest, D^{1} is again attracted, and D^{2} beromes the the
sirest H.
 The improvement is said to be in the reducing the
number of joints between the platinum and glass. number of joints between the platinum and glass,
The neck of the glass is onstructed with a tube of
glass inserted therein forming alind of inner neek 1173. Inprovements in Seowdiry Battrries or
Eiberric Acourulators, J. H. Johnson, London.
 This relates to improvements in secondary batteries,
whereby oxidation of the binding screws, clamps, đce., wher and coseout imerfect contact and serews, ciamps, \&e. aroorded IIt onssists mainy in iorming each plate so
that it constitutes one element with one pole on one that it constitutes one element with
side and the other on the other side.
1174. Liproveminats iv and Relative to the
Generation, Distribution, ece, of Electrictuy

 and pipes for supplying water iu towns, as a means of
driving turbines, which in turn drive dynna
 mulators, and
1175 . Rooprisg Matreriass, \&e., E. B. Bduarrds. Liver
 fictule ware composed of well vitrified silicate of
alumina and silica with or without other ingredients. 1176. Spoons, T. F. D. Heap and J. Rettie, London.-
 ing it in the shape of a scoop, and making the bottom.
movable, so that when drawn back the food or medimovable, so that when dra
cine falls into the mouth.
1177. TeLEprones, J. D. Husbands, London.-10th A tubular mouthpiece in combination with a loose
contact consisting of carbon or other suitable material, so pataecolditween the eleotrodeses to timirophonically
regulate the strength of the currents without a dia-
 1882.-(A communnication rrom P. and B. Depoully, Paris.) (Not proceated with.) 2 .
The metho of heating onsing in the apparatus containing the matterse to ob e henetosing in the an
envelope or jacket to which steam is supplied, the jacket being heated by a fire
1179. Machinery for Dybing, A. M. Clark, London.
-10 ati March, 1882. (A communication from J.
 rollers to support the skeins to be dyed, and mechanism for raising and lowering such frames to introduce and
remove the yarn, with clamping devices to clamp the
 placed in the vat and serves to keep
uniform strength in all parts of the vat 1181. Implements foo Pruning, de.e. J. Ridal, CrossThe objoct tis to obtain graater cutting power and
produce a cleaner cutting action, and it consists in pitting at the tail end of the too blade a pin projecting
into a long slot in the bottom blade, so that as the
the latter is moved up and down it actuates the top blade
so as to
caves it to move in the opposite direction. 1182. Bottunng Aerated Wattrg, J. T. Hayes, Wall-

 waterwayn from che cyinder sy surroumnd and oox, and the the
around the duct leading from the cylinder. The
The
 $\hat{0}$ Mill cemone

 and

㫦

 may bomad, and awaith ieat ounare ore thit

 vitn andive

 This ratiatata apparatus for gaybig fina artioes

In the top dibo whid hit tomed mith a dormead

be shipped or unshipped and lowered into the water

 of one modification, in which a sliding frame carri
1232. Bricks or Blocks por Building Walls, \&c
J. H. Johnson, London.-14th March, 182.
communication from F. Bander, Paris.)-(Not pr
ceeded with.) $2 d$.
The object is to enab
The object is to enable a structure to be built with great solidity, economy, and rapidity, without the use
of mortar or binding cement, and it consists in the
use of bricks or blocks formed with projection use of bricks or blocks fo
recesses so as to interlock.
1235. Rousing And Aerating Beise, H. Long,
Bristo, and H. Aplin, Redfield, Gloucester.-14th March, 1882 . 6 d.
A vertical cylinder is arranged in the vat, and in it centre is an axis carrying a screw at its lower end,
while pipes pass from an air reservoir to the bottom while pipes pass from an air reservoir to the bottom
of the vat. The screw is caused to revolve by suitable 1243. Looms for Weaving, J. C. Fielden, Manchester, and R. H. Harrison, Duckinfield, Cheshire.
14th March, 188 . 6 .
This relates to "letting-off motions," the object being to increase the regularity of letting off the
yarns from the warp beam. To one end of the bean toothed worm wheel is attached, and is driven by in opposite directions, and between which a pawl leve can turn freely and carries two pawis, one movement
of the lever actuating both. The lever is moved in
one direction by a small crank on a shaft geared with one direction by a small crank on a shaft geared with
the tappet shaft of the loom, and in the opposite the tappet shaft of the loom, and in the opposite
direction by a spring or weight. The yarn presses on
a stop pawl, and if the pressure increases raises the a stop pawi, and if the pressure increases raises the
same, when the spring or weight drives forward the 1246. Automatic or Meghanical Musical Instrucommunication from G. IV. Turner, Boston, U.S.)
This relates to mechanical musical instruments, the
playing of which is automatically effected by the pas sage of a perforated strip or sheet, and it consists
partly in an instrument with bellows, wind chest partly in an instrument with bellows, wind chest
reeds, and chambers, with passages communicating
vith the reeds, and with a series of valve-actuating fingers controlled by the perforated sheet, and with vected to a suppach of the fingers and flexibly conits seat and in its movements to open and close the
air passage leading to the reed pertaining to such
valve. 1247. Cutting Shafts or Bars of Metal, \&c., W.
Cook, Glasgoov. -15 th March, 1882 .-(Not proceded Thith.) y .lat. to apparatus specially applicable for
cutting off the ends of boiler stays, studs, \&c., after they are fixed and tightened in position, and on to the part to be cut off, and over which a second ring
is mounted, so that it may be rotated. The second ring carries the cutter,
screw, wedge, or spring.
1248. Rotating Drum for Tobacco-outting Ma-
chines, T. Cope and
W W. Brever, Liverpool. -15 th March, 18882.04 . 4 . yielding, and durable surface, easily renewable and
adapted to preserve the cutting edge of the knife, to
lo largely reduce noise in working, and to prevent
chipping and uneven cutting away. The body of the
drum is of metal and covered with a ring of caoutchouc other elastic yielding
March, 1882 - ((Not proceceded woith.) $2 d$.
This relates to brushes in which it is required to making the handle of the brush hollow, and conneet ing it by a flexible tube to the water supply.
1254. An Improved Telegraph Relay, J. Ebel, Net
Charlton. -15 hith March, 1882.4 . In carrying out this invention the inventor emwire, within which he places a compound soft iron
core. The centre part of this soft iron core. The centre part of this soft iron core moves
freely on pivots, and is prolonged on both ends in the
form of tongues or armatures. Adjacent to each of the upper and lower armatures he arranges stee
horsseshoe magnets, which are so placed with regar
o the armatures that they can vibrate bet to the armatures that they can vibrate between their
poles. If a feeble current is produced in the wire
bobbin it will magnetise and induce magnetism in the iron centre core and armatures, and will consequently
1256. Looms for Weaving, L. Greemoood, Hawick,
N.B.-15th March, 1882. 6d. This relates more especially to the arrangement of at each side of the loom, and to forming the shattles to suit the improved boxes, and it consists in forming
the shelves so that the weft threads cannot enter between the flanges and the shuttles and the cutting ng flangeses are turned down instead of oup, so that the the helves have the appearance of being inverted, and the hrough which the weft thread passes from the shuttle is made in the centre of the shuttle at its lower edge.
The shuttle is formed wider at the lower face than at The shutte is ormed the outer edge projects over the
its upper face, , that the
flange of the shelf below. The picker is also inverted flange of the shelf below. The picker is also inverted
or cut on its upper side to clear the flanges of the
shelves of shuttle boxes. 1257. STop Valve, W. Whiteley, near Hudder afteld. $-\overline{\text { 15. }}$
15th March, $1882-(A$ communication from R. Pratt, Hartford, U.S.) - (Complete.) 4d.
The drawing is a section showing the valve closed.
is the shell, which contains the parts forming the

hinged on a pin D passing through the shell from the
outside. E is a rotating disc, constituting the part of the valve which rests upon the valve seat. The
clapper C is secured to a link, the upper part of
which is grooved or nilled to receive a collar I formed
at the bottom of the valve at the bottom of the
the stuffing-box K .
1258. Treating Diseases of the Thront, Lungs,
and Chest,

March, 1882. 6d.
The object is the curative treatment of diseases of
the lungs by inhaling heated unmoistened air medi-
cated by drugs and medicines.
1260. STAMPING TYPE Moulds, E. A. Brydges, Berlin. 1260. STamping Type Moulds, E. A. Brydges, Berlin.

- 15 th March, 1882 .- (A communication from H.

The object is to avoid having to set the work up in type and taking a mould therefrom from which to pro-
duce the stereotype plates, and it consists in the use
of a machine in which the different letters, duce the stereotype plates, and it consists in the use
of a machine in which the different leters, \&c., are
successivily impressed in the material to form the suculssively impressed in the material to
mould.
1267 . Tools for Cuting or Finishing Boiler
1267. Tools For Cutting OR Finishing Boiler
STAYs, R. Davidsont Glasgove. $16 t h$ March, 1882 .

- (Not proceeded oith.). $2 d$
A frame can be fixed in position on the stay and A frame can be fixed in position on the stay and
carries a movable tool holder which can be revolved or
reciprocated so as to cause the tool to cut the projectreciprocated so as to co
ing end of the stay.

1269. Fitting the Tuning Pins of Pranofortes,
Wilde, Nottingham. -16 th March, $1882.6 d$. The object is to render the pins less liable to turn in
their holes after the strings have been tightened up, their holes after the string pave hinching plate actuated by screws to bind on the stems of the pins, and hold them
so as to prevent them from turning back. 1270. TeNs Peg, J. Jaques, London.-16th March,
1882.-(A communication from J. Wixiter, Switzer-land.)-(Not proceeded with.). 2d.
This relates to the construction of a tent peg for astening cords, ropes, chains, or the like to the 1271. Improvements in Telephones, A. W. Rose,
London. -16 th March, 1882. 4d. This relates to a combined transmitter and receiver, as well as magnetic signalling apparatus, the parts of
which are arranged so that they can be readily made
in the factory, and so placed as to be convenient for in the factory
manipulation.
1270. Looms for Weaving, T. Knowles, Blackburn.This relates to an arrangement of the swell so that its action upon the shuttle may be more gradual and
uniform than heretofore.
 This ron March, 1882.the details of an incandescent lamp. The carbon is made of a fibre of any suitable plant, especially grown
in distilled water, and so free from mineral and 1275. Lamps for Bicycles, \&c., H. F. D. Miller,
Birningham. -16 March, Mar with.) $2 d$.
This refers. to apparatus for attaching lamps to
ficycles and tricycles, \&c., so that the lamp may bicycles and tricycles,
always be kept in an upright position.
1271. G Burners, J. W. Willmot, Brixton, and T 1276. Gas Burners, J. W. Willmot, Brixton, and T.
Leehmann, Camden-squarre.-16th March, 1882.The object is to construct the burner or the holder adjacent thereto, in such a manner as that upon the
gas flame being blown out or otherwise extinguished gas flame being blown out or otherwise extinguished,
or upon the main cock being turned off, the exit of 1277. Obtaining Valuable Products from Furnace
Gases, J. and J. Aldie, Glasgow. -16 th March, 1882.- (Not proceeded with.) $2 d$.
This refers to a process for utilising the nitrogen contained in the gases of or from furnaces, such as of
blast and other furraces, or of siemens gas-producers, by convert
products.
1272. Lirting J Acks, F. H. F. Engel, Hamburg.-16th
March, 1882.-(A communication from J. F. W.

Marcl, 1882--(A communication from J. F. F. W.
Schulze, Hamburg.)-(Not proceeded woith.). 2d.
This relates This relates to rack and pinion jacks, and has for its
bject to reduce the friction of the rack in its guides
by using two pinions instead of oneas formerly applied by using
to jacks.
1280. Production of a Soarlet Colouring Matter
upon VEGEtable or Silk Fibre, \&t., D. Davson

Milnsbridge.-16th March, 1882.-(Not proceeded
The invention consists in producing a new scarlet
colouring matter upon vegetable or siik fibre, also in producing thates aidon new colotaring or matter in an a precipi-
pate form, so that it ing, calico printing, and similar purposes.
1281. Effectina the Colpression in Moulds and
Dellyery of substances to be visd as Foel,
W. Harding and W. Watkins, Sunderland.-16th

March, 882 . $6 d$.
This relates to the construction of a machine, in
which a revolving table is omployed, and which is
capable of a step.bys.tep motion in suitable framing.
This tabli is providad with moulds.
 Tho apparatus onsists in asuitable easo with a guide
 Whori thay are removed rom the case and placeed on

 in rem orea from the case and helel upon the rail whon
orer and for any len tho of time revirurd
 The prindipal obiect is to searro a certain and
uniform action of the hopper 1 Hy, so that when the

 Thises.ated to improvem ts in the attachment of

 with graiter faciility y than is posisibe i.
hammerleses guns as itherto constructed.
1295. ADJUSTRank Forinis Chati, R. Smith, Weat This relltes to the general construction of the chair

 This relat
Tor unt ing:
1208 isp 1298. MistaI Lassts, J. Martie, London. 17 trth March
 1209. Appanatus for verin Drativa Patruras gon
 $\underset{\substack{\text { miser } \\ \text { marker. }}}{\text { mind }}$
1301. Metinulo Boxes for Holding Alumestany

 tulerum for any kind of herer to break tho tho
should a soldered ioint be used and lift the lid.
 This relates to an electrolier so constructed that tho with the conduacting wires by by pringss, and sum so lights 1803

 Thn object of this invention is to onable one or
more
wires of a asstem to
bo used
for tolephon

 secondary wiro of the inductition coil is smodififed dt

 reasitance
1304. Trinasivg Machives T. and W. Nader This onsists in the arrangement tor giving motion Hons without intervening levers and connecting rod

 ores by silutions of alkalino hydarates, carbononetes, of
sulphides, tor the removal of rarenic and chlorine

 1308. Antrivial Hatcouso Macise, M. Arrold,

instrument for ascertaining distances other than
astronomical.
1310. Ciroolar Bobbin Ner Machines, W. H. Beck,
 This relates to machines to produce tissues with true lace grounds, whereas those produced in existing
machines are only imitations.
 The onject is to move tho driving bedit from the fast
to the lose pulloy as the carriage is going out when it
 the mechanism so that when the main driving belt on
the countershaft is traversed on to the loose pulley the countershaft is traversed on to the loose putey
to stop the male by means of the stopping and starting
handide the frots-mentioned belt will in the act of to stop the mule by means of the stoppill in the act of
handol, the orst-mentioned bet wil
stopping the mule be traversed from the fast to the losese pulley.
1312. Opening and Closing Carriage Heaps, T. c.
Towns, ceceded with.). $2 d$.
This consists of a lever working from the hend This consists of a lever working from the head
pillar and haod prop ontothe cant riil, , hand bent so as
admit the fall-back of the cant rail in which it works by means of a slot and pin.
1313. Wrire Rope Coopurise, E. A. Leitzmann and
O. Borchart, Germany. -1 sth March, 1882.-(Not pro-

 Thas relates, First, to apparatus for forming the
types in on ontinuous band or chain, each link. of
which consists of one type of aletter, the connections types in a continuous band or chain, each link of
which consiss of one type of a letert, heo coneections
of the links being formed by the insertion of seral threads or wires running parallel through the whole
chain ; Secondly, to apparatus for setting type consistst in winding the chain of each letter or on roll,
and by touching key, feding one type forward,
and When a small saw serors it from the chain. A Aom.
posing stikl then catches the type and places it in the
desired position.

 name, trade marlk, or other desigg.
1318. Gas Moror Enaines,
$18 t h$ March, 1882.
$6 d$.

The primary object is to remove the whole of the
products of combustion from the eylinder after each explosion, and at the same time provide sufficient
space behind the piston when at the end of its inptroke to contain the charge of compressed combus-
stre

 The invention further consists in equalising the
rotary motion of the crank shaft by forming apartial
vacuum behind the working piston and the com-

 Jelly, Liver.
This rellates.
This.
This relates to a portable froe-escape arranged for
use as a bedstan, but which in the case of fire, by
attachin attaching one e ond to the window-silil and or oftring, the
other part
ladder. 1321.
 readily taken to pieces and ppacked up it an small
compass, and the numbers are exhibited on such boards when in use by causing strips of canvasuch (on
which the requisite numbers are written) to travel in thich the requisiste numbe front of orifces in the board.
1324 Inprovenexts in Electric Lamps, J. D. F. This relates to improvements on the inventors
patent No. 1522 (818) for regulating the carbons in
arc limps
 arbon. Also to an incandedecent camp lamp consisting of a thin plate of carbon clamped at opposite edges
between loops of the conducting wires.

 joint to be made
i326.
 The objects are, First, to construct a continuous
fushbing trap by permanontly reducing the sectional
area of the throat drough the trap with the ordinary run of sewvige and thereby proportionately increase the velocitita and
the head of water which causes it ; and Secondly, in making the mouth of thatese tra with and soctondily,
inclination upwards from the throat, in order thno if necessary to remorevany sunbtanceat, from order thithat the

 Along telephone wires without interfering with the
telephones in circuit. 1329. Woven Farrics, R. Bailey and W. Waller,
Ovenden, and L. J . Corosiley, Halijaz.-18th March,

 1330. Machivery mapoovi iv min Mantuaing.
 suitatle material together by means of rivets that

 Acocring to one arrangement the tire is of U .
ection, the reeess being large enough to fit over the ordinarytire of the wheel, and the shice flayere tro
jecting outwards The thrir may be in one piece or in jecting outwards. The tire may be in one piece or in
two sections, and the meetine ens are drawn together
by serews passing through lugs on the flanges. In

 ${ }_{\text {chid }}^{6 d .}$ relates to a case or receptacle for ink-holders having the form of a simple tube withorout any indi-
cation of tho mode of oponity
Several arrangements are siown.
 The object is to make such head covering lighter and more durable, and to avoid cracking, and it con-
sists in making them of a foundation of a sheet sists in making them of a foundation of a sheet of
cork with an onter oovering of cloth, and a lining of
horssehair fabric attached to the cork by means of an
and
 The object is to fo facilitate the construction of of
trenches for draining land and other purposes, and it consists in the whe of a cutter arrangeo verticialy, and
the blades of which are of serowtion and section.
The unter is cunsed to The cutter is caused to revolve while it is moved alon.
the e ine of the trench Behind the cutter is a shield the line of the trench Behind the cutter if a shield
to direct the material removed to the surface of the ground; when it is prevented from falling back into
the trench by a shoe or plough.like cover, which the trench by a shoe or plough.like cove
follows up the cutter and covers the trench.
 The outside of the neck of the bottlo is scrow-
threaded, while the inside is formed with a shoulder. A capsule screws over the en eck and carries a disc of of
cork, india-rubber, or other suitable material inside, which becomes compressed between the shouldar and
the top of the capsule, as the latter is screwed home. 1348. Gas Lraht and Heating, T. Thorp, Whitefeld. This consisiststa, in constricucting gas-burning apparatus
so that the gas is led into a chamber, whence it flows through a series of upright tubes and is burnt as it issues from the top, forming a ring shaped or Argand
flame. The air for combustion is lid to the interior
of the bore of the burner throughan a heating chamber round whion
the products of combustion pass on their way to th chimney, and is then doflected upward, so as to enter deflector surrrounds the air supply tubes and is inside the flame, while another is outside and
flame, which does not require a chimney.
 March, $1882 .-$ (Not proceeded with.) $2 d$.
The inventors 'telephone receiver ons onst on an electro-magnert, to one ophole of flyiver is fonsisist a stem on or
knob, which can be conveniently inserted in the ear. The vibrations are thus communicated directly to the
walls of the ear, doing away with a diphragn 1358. CUTring Mortirs Hourss in Wood, J. J
Hall, Nottingham. -21 at March , 1882. 6 . A template of the required length, and with the side of the wood abutting upon the fance of the
machine. The fence has a top proiectinn the widt
mity machine. The fence has a stop projecting the width
equal to the space occupied by the chisel when in the
pose position to cut the ends of the mortise holes. This
stop projects from the face of the fence into the open
ings in the templates ings in the templates, , wh which means the peitece or
wood can have the mortises completed without marl ing the wood as usual. The reversal of the chisesl is
effected automatically by the falling of the bed of the 1359. Brakes for
 In the vehicle on which the brake mechanism is
mounted, a hand wheel is arranged, and actuates a
lever through a lever through a chain, the lever being connected to
one arm of a bell-crank lever pivotted to one arm of a beli-crank lever pivotted to the under
frame of the vehicle, and the other arm of which is
conne comnected by turo rods to a t longitududinaly of which biar.
To the latter are attached two other rods united to
and
 double-crank levers, each arm of which is by a rod
conneoted to o bebll crank lover. These alast levers are
by each connected by a rod and intermediate arms to by each heonnected.
tovo brake blocks.

1362

sleeper; ; and, Secondly, to the employment of the grip
platase E. Modifications are described.
 The object is to form a valve for air compressors
Whisch will be simple in its attion and have but litle friction, and as applied to the inlet valve it consists
of a lever, one end of which moves on a fixed pivot on of a lever, one end of which moves on a fixed pivot on
the end the the compressor. The lever is also pivoted
to a slide with suitabie ports, and which works behind inlet ports in the compressor. The outer end
of the lever is atcuuted by a cam driven from the fly-
whee
 Portsea. -22nd March, $1882.6 d$.
This consists in forming chimney tops or ventilators of a series of frustra of cones surfounded by the
oenvelope placed so that any draught aused by the
wind is converted into a current upward or downthe central shaft of the chimney 1417. Excavating or Dregaivg Under Water, W This relates, First, to a system of dredging re
semblinc ploughing, by means of two windingengines

 which the material is taken from the bed of the it is drawn to and fro. The material is removed from
the sides by steam dredging hopper barges, connisting the sides bby steam dredging hopper barges, consisting
of a basket.shaped digger nearly hemisherici in
shape and lowered open by grvitation and closed by shape, and lowered
hydraulic pressure
 March, 1882. 8d. B . On a truunion on either side of the machine at or
near the centre of gravt, aloeve is fitted so that
the truunnion can revorve therine and to this sleeve is jointed, by meanns of two parallel links, a bar bat
projectig beyond the tivks, such a distanee that
its end is nearly above the centre of

 direoction within required rimpoint and in any required
If diviven by hydraulic or orthitted by the jointing
same may be supplied through the trumnion, to which
it may be oonducted along the bar, either links made
hollow for this holloy bo conducted alo.
hollor this purpose.
1478. SUGAR, J. H. Johnson, London.-27th March,
1882.
6. (Acommunication from M. Weinrich, Vienna.) The object is to effect the quick and economical
manufacture of refined sugar in rectangular sticks, simultaneously with sugar in lumps, in and by means
of coentrifugal mahe mines The sticks ane made in
mauld of centrifugal machines. The sticks ard made in
moulds divided
the
by suitabie partitions, and seoured to the drum of the centrifutual manchine, the space
between them being filled in with raw or mashed or squeezed sugar; and whilil in whe machinn of is in motion
oither water for the operation of liquoring.
1511. BRerco-Loadrisg Smat-ARMs, T. W. Webley, This relates, First, to the employment in double
drop-down guns of a a side hand lever acting through the under side of the body, and the depression of Tump on the under side of the barrel the return
motion of the such bolt being produced by a coiled

 such bolt sliding in recesses in the bridie and lock
plates, and being urged towards the tumbler by a plates, and being urged towards the tumbler by a
spring, the turaed end crossis the bake of the
tumbler and engaging with anotech therein. To with-
 tous is also described, and consists of a slidining boilt in
front of the tumbler, and formed partly round and
and pant of that,
leave it free.
lot
1577. Copprer Tubes, T. Walker, Birmingham.-31st This consisists. in manufacturing copper tubes by raising a disc of copper into a hoilow ecind der, closed
at one end the operation of raising forcing or
drawing through dies worked prefrably by hydrantic drawing through dies worked preferably by hydraulic
power, the end of the hollow cylinder being cut off or

2238. Boiler And otrer Furnaors, J. H. Johnson,
London.- 11 th May 1882 ,- (A communication from

2238

a damper or system of dampers; Secondly, in the
 the application and use of exhaust steam for heating
and ventilating purposes. The drawing shows a nd ventilating purposes. The
longitudinal section of the furnace.

 arterwards arbonised, is madad use of. In the accom-
panying ilustration, the filament Fis fixed on ocper
conductors D D terminating in coils C Co these con-

unctors are cemented to two platinum wires E E E.
When the carbons are fitted into D D D they are fixed by a cement composed as follows: $;$ graphite, 50 parts;
calcined borax, 17 parts ; inseed oil varnish, 13 parts refractory clay, 20 parts. Carbon is subsequently
deposited in the pores of the filament by various neans.

Mc Tighe, Pittsburgh, U.S.) $6 d$.
nnd is resigigned to improve the method of making and and is designed to mprove the me elaing improvements
fiting the parts
in the construction of the armar alure, which is annular, Ind the construction or the armatare of a number of
and
itted
 issoalating matorial having one or more integral collurs perforated longitudinaly with a circolar series
of holos in commination with a series of motal rods
and placed in said perforations and rotained by the collar
or collars $;$ also in the construction and disposition of reoliars ; also in
he field magnet.

SELEOTED AMERICAN PATENTS

265,423. Metrod of Operativa Gas Enaines in

Clain.- - (1) The mothod herein deseribed for using
gas in connection with the torpedo boat, which consists in takinin liquid from the reservoiit and expand
ins it into gas in lhen pasing it to the engine, substantianly as
thescribed. (2) The combination, with a torpedo boat, descrinean and liquid creservoir, of coiled pipes arranged
enc iome in contact with the sea wator, as deseribed.
(3) The combination of a torpedo boat with an expan-
sion chamber, consisting, of a series of pipes arranged

265.423

on the outside of said boat and in contact with the
sea water, substantially as described. 265,775. Eliccrric Arc Lieht, Thomas A. Edison,
Menlo Park, N.J.-Filed 28th November, 1881.Keincoo (1) In Augus, 1 sos

 action the action of the magnet, substantially as se
forth. (2) In an electric arc lamp, the combination

the main circuit containing the carbons and an electro-
 stantuaty as and for the purpose set forth, ${ }^{(3)}$ (3) In
regulating mechanism for electric are ilights, the olectric hentiong coil and dexpansiblo in inosing oh
substantiall as and for the purpose set forth.

CONTENTS
The Enginerr, Oct. 27th, 1882.

Coluapsed Bolure Tubrs \quad.......

Rhbostat for Electric Lampa
Notes AND MEMORANDA

Lending Artioles-

Notrs from Lancashire
Notes from the North of Eäiand
Notres from the nothin of
Notrs froan Sherficid.
Notes from Scotiland
Notrs from Wales and Ädjöning C̈ountile

Abstracts of angrican Patent Specifications.
(Illustrated.).
Structure of Tron and Steel
How to Melt Babbitt Metal
The Vienna Elevated Railway.
Phosphor Bronze Slide Valves

Efps's Cocoa.-Grateful and Comforting. which aovern the operations of digestion and nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epps has
provided our breakfast tables with a delicately flavoured beverage which may save us many
heavy doctors' bills. It is by the judicious use of such artioles of diet that a constitution may be gradually built up until strong enough to resist
every tendency to disease. Hundreds of subtle maladies are floating around us ready to attack wherever there is a weak point. We may escape
many a fatal shaft by keeping ourselves well fortified with pure blood and a properly nourished rame." Civil Service Gazette- - Made simply
with boiling water or milk. Sold only in packets labelled-"JAMES EEPPS AND Co., Homeopathic Chemists, London."-[ADVT. 1

