of the box I. Dises of cardboard K strengthen the diaphragm. Two air channels, L and M , communicate with the two parts of 1 , and end an be fixed. H^{1} has only one communication, the

end being fixed on a brass lever P, Figs. 5 and 10, so that it can be shifted to or connected with either of the other ends. It is obvious that a movement of B in the direction

of the magnet C will cause air to be expelled from the air passages L and N, and at the same time to be sucked in by
and O , and vice versa.
The phenomena of attraction and repulsion were shown in the most complete manner, and it was also shown that merely the approach of a body, such as a piece of carbon or a tracer near to the diaphragm of one tube caused it to be attracted just as a magnetic needle is by soft iron. FIG. 7.

The tube in Fig. 2 may be straight as in Fig. 7. There are various ways of making the drums and of obtaining similar results which it is not necessary to do more than mention. It may be said here that according to Mr . Stroh's description the phenomenon of attraction due to vibrations is comparable with the magnetic phenomena of repulsion, and the mechanical repulsion with the magnetic attraction; that is when the diaphragms vibrate similarly or in the same phase attraction results, when they vibrate dissimilarly repulsion takes place. In the experiment next described the drums were fixed. The apparatus is shown in Fig. 11, and is almost the same as in Fig. 10, except that the board S replaces the balance. This board has two

brass uprights T T' supporting by friction the brass tubes $\mathrm{U} \mathrm{U}^{1}$, the outer ends of which are connected with the flexible tubes R and S , while drums Y and Z are fixed to their inner ends. Taking a light cork ball C, suspended

FIG. 9.

as shown in Fig. 8 on a light rod resting on a pivot, it will be in certain positions attracted and repelled. Fig. 9 shows the drum as seen from above, and if the back is
placed so as to move in the line $a b$ it is attracted when \mid induces certain phenomena to take place, such as in the the diaphragms vibrate in opposite phase to the central case of a piece of iron becoming magnetic, or that of a position 1; while when vibrating in similar phase it is wire moving through different parts of the field of an
 $\left.\begin{aligned} & \text { Dr. Bjerkness' with a small piece of iron and bar magnets, } \\ & \text { the iron being placed on cork and floating in water }\end{aligned} \right\rvert\, \begin{aligned} & \text { cause changes in their immediate neighbourhood. These } \\ & \text { changes can be investigated as regards direction and }\end{aligned}$

Thus far Mr. Stroh explained that he had followed and corroborated Professor Bjerkness, but his intention was to direct attention to phenomena which, while recognisable when the medium used was air, might be overlooked when the medium for carrying or transmitting the vibrations
amplitude like any other forces, and Mr. Stroh's investigations have shown to him that the diagrams of the lines of vibrating force were very similar to the diagrams of the lines of magnetic force, except that the former were extremely feeble at a short distance from the diaphragms.

was water. The lecturer wanted to ascertain what the The direction and amplitude of the vibrations were ascermechanical movements of the air were which cause this tained by means of a gas jet, the flame of which attraction and repulsion. The pole of a magnet, as is well known, causes some changes in the material in its immediate vicinity, and, in fact, causes what is termed a magnetic field, the entrance into which of metallic bodies

- its more luminous of air, and viewed from above its more luminous upper part forms straight or curved lines. [The diaphragms in Figs. 3 and 10 should not be connected, as incorrectly shown in the engravings.

YACHTS AT THE NAVAL AND SUBMARINE EXHIBITION.
The display of models of yachts at this Exhibition was somewhat disappointing, many of the leading yacht designers and builders not contributing any specimens of their skill. This is much to be regretted, seeing what vast strides have been made in the last few years in the as it is of yachts intended solely for racing purposes, construction are practically useless when any of the yachts built within the last two years are present to compete with them. As a proof of this statement we may mention the Miranda, which has practically destroyed schooner racing in the large class; the Samoena and Vanduara, the champion 90 -ton cutters; the May, Annasona, and Sleuthhound, all built last year, and on whose appearance the existing 40 -ton cutters had to retire from racing ; the Freda and Amalthea, with whom no existing 20 -tonners could compete ; and the Neptune and Buttercup, who carried all before them in the 10 -ton class. Not one of the above-named celebrated vessels was represented at the Naval and Submarine Exhibition, nor have their builders or designers sent any models to show what they pro pose to do in the future. Whether their absence is due to disinclination to exhibit their designs to a discerning public, or whether they were reserving themselves for the exhibition of the Shipwrights' Company, now open, we
cannot say; but must repeat that in an exhibition where everything else pertaining to naval architecture was so well represented, our pleasure navy was very inadequately illustrated.
The two most striking models of yachts were those of the Formosa, 103-ton cutter, formerly the property of the Prince of Wales, built by Ratsey, of Cowes, and modelled by a coast-guardsman named Henry J. Pope, of Hastings; and that of an American schooner yacht, built for speed, by G. A. Polhamens, Nyack, on the Hudson River, New Viaduct. Both models are fully rigged with canvas set and are admirable specimens of workmanship and patience The model of the Formosa is specially worthy of admiration, for the careful manner in which every detail is worked out; but it is doubtful whether the maker will ever be repaid for the enormous amount of time and trouble he has spent upon the model, as the price asked is one which few would be disposed to give for an article of no real utility except to place in a museum as a memento of what an Enclish racing cutter of the present day really is ; and our descendants cutter of the present day really placed in the South Kension Museum, if the time eve placed in the South Kensington Museum, if the time ever arrives, as recently predicted bya contemporary, when steam shall take place similar to the recent revival samg yachts they had been driven off the road by the introduction of rail-
ways. The two models referred to are interesting as representing the distinct types of English and American yachts. The dimensions of the Formosa are - length, 84.50 ft . the American yacht are-length, 104 ft .; beam, 23 ft . 6 in . draught of water, 9 ft ., fitted with a centre board. The former is exactly five times her beam in length, while the latter is a little over four times her beam in length. The displacement of the former greatly exceeds that of the latter, as does her draught of water; and although the American boat may be the faster in light winds and smooth water, we have no doubt that the English yacht would have the recent victories of the 10 -ton yacht Madge in America have proved that the superiority which has been claimed for American yachts ever since the advent in British waters of the famous America in 1851 is a thing of the past, and we wish one of our English yachtsmen would larger scale the triumphs of the little 10 -ton, who will soon be joined in American waters by the well-known 15 -ton Maggie, formerly the property of Mr. Luke Wheele
The Culzean Yacht and Steam Launch Works, Maybole, N.B., exhibited a few models of small yachts, the best of which is that of the Snarleyyow, a 3-tonner, designed by a well-known amateur, Mr. Baden Powell, and a striking illustration of what a very large boat a modern 3 -tonner really is, as compared with those of former days. Another good model is that
Some prettily got-up models were exhibited by Messrs. Watkin and Co., of Blackwall, but none of them are of any celebrated yachts, and although pretty to look at, being painted and coppered, they do not convey as good an idea of the actual lines of the vessels as plain varnished models do.
Yachtsmen will no doubt be interested in observing the future performances of the Mascotte, a 10 -tonner, now building by Messrs. Watkins in the new class of racing yachts, the length of which on the water-line must narrow boat now so much in vogue
The models exhibited by Messrs. Hatcher, Clifford, and Co., of Southampton, are quite unworthy of the fame of in execution, and the only celebrated vessel redresented was the 15 -ton Maggie.
The same may be said of the exhibit of Messrs. Payne and Sons, of Southampton, who sent eight models, but the built in 1879, and boat represented was the 20 -con Lodern boats. A beautiful piece of workmanship is a sailing model of a 15 -ton cutter, on a scale of lin. to the foot, built and planked, exhibited by S. Bishop, of Bristol, the only defect cal sailing, the sail plan is not in accordance with the generally recognised idea of an English cutter yacht. The other yacht models, all of which are only half models, do not call for much notice.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
WEISNEGG'S LABORATORY CONSTANT TEMPERATURE STOVE Sir, -The Ergineer of 23rd December, 1881, describes Weisnegg's laboratory constant temperature stove in use at the plaques, whilst a glass door allows evaporation and other chemical probably on Page's principles-Weisnegg's stove is reported to keep steadily at any desired temperature
I should be grateful if you or some of your readers would kindly
inform me where I can see such a stove, or inform me where I can see such a stove, or one of a similar kind,
self-regulating, if possible at work in London ; if sucs accurate, say to 1 deg. Fah. Also the name and address of the manufacturers, and the approximate price, carriage included, in
London. LawRENGE-HAMILTON, M.R.C.S. 34, Glo

tion of the erpaperi, thisis wes act, even when slack, by the contrac

 4, Westminter Chambern, Victoriastreet,

 the whole operation of making the change being so
scarcely to admit of the winding engines coming to rest.

Now, as this immense output has been obtained in a very large
measure by the adoption and use of this patent banking -which is the invention of Mr. Henry Fisher, of the Olifton Collieries, near here, and where, amongst other collieries, the apparath that this fact should be known in connection with these gratifying results, and a share of the honour given to whom it is
due. Consequently we should be glad if you would insert this in due. Consequently we escould be glad if you would insert this in
the next tissue of your valuable paper for, in the interests of colliery proprietors and the public generally, we think that too much attenWARSOP
such as the one referred to.
Deering-street Ironworks, Nottingham, April 25 th.

SLIDE valves.
Str,- I have read with much interest Mr. John Hackworth lecture on valve gear and slide valves, and I am much surprise
that he should have omitted to mention what I think must have proved good to all users, namely, Church's s ircular slide alveres
have had the opportunity of watching the workin of these valve n two of Messrs. Fowler's 8 -horse power ploughing engines, which have been in use for this last three years and with very bad water
t times, but these valves are now working in the most at times, but these valves are now working in the most perfec
manner without having undergone any readjustment, which is often required in the ordinary square slide valve. I believe they add very much to the power of the engine, and prevent a vast
amount of friction in the excentrics, and, in my opinion, no steam ngine without Church's valve is perfect.
April 25 th.
the strength of buckled plates.
SIR,-In the notice of our exhibits at the Naval and Submarine having seen sooner on account of absence from home, you state
regarding the tests made on our embossed buckled plates that the esults given were with "the flanges being firmly fixed.
This was not so, and on wish to correct he error by submitting to These show in an exagrerated manner the rielding of +
from not being fixed, but on the pressure being withdrawn the plates recovered nearly their original form, which was proved by
accurate measurements after testing. We were limited as to the accurante measurements after testing. We were will be seen by the method we had to adopt of reaching the underside of plate, viz. state these tests were hurriedly got up, and at the time we could not prosecute them further, but we hope soon to have a reliable
and exhaustive test of the comparative strengths of Mallet's plain buckled plates and our embossed plates, conducted by Professo Kennedy, of the London University. It may be said a hydraulic but as both descriptions of buckled plates were tested under the same conditions, the results fairly show their comparative strengths. In taking those pressures from the gauge we had a movable index.
which was fixed only when all was pressed up to position, and which was fixed only when all was pressed up to position, and
began to indicate from zero before any weight that would cause the east deflection was brought on the plates.
Glasgow, April 25 th.
SIR, -I have been too busy to reply to your able article on the
above subject published in a recent issue, and as the result of the above subject published in a recent issue, and as the result of the
works in progress cannot be determined for some months to come I think it premature to hazard an opinion on their succe
you have thought fit to do so as to their absolute failure
The nature of the works is such that when they are completed it is my intention, with the consent of the President and Council, to
ead a paper on the whole subject before the Institution of Civil Engineers. Meanwhile, I wish to correct the statement that aamage has occurred at one of the concrete groynes. Since the placed, still less lost; nor has a plank been started in the timbe structures, though it blew "great guns" last Saturday.
4, Westminster-chambers, Victori
London, S.W., May 3rd.

> STEAM ENGINE ECONOMY.

SiR,-Referring to my letter of the 17th March, Mr. Swift asks SIR, -Refen THE ENGINEER of the 31st March, if I know "of why construction of piston, by any reputease 30 per cent. of fric
would allow of being so tighteneda to cuas." He also asks if I am not mistaken in saying that the
tion simple Corliss engine, mentioned in my letter, drives the mill i As I had not answered his letter Mr. Swift refers to this matte again in last week's Engiverr, and supposes that I did not reply
hecause I I was unable to answer his inquiry about the pistons Will you kindly allow me to explain that in the pair of compound wheel. The indicated horse-power when driving the full load was about 315 horse power, and the power required to drive the engines and
shafting alone was 104.87 indicated horse-power, or one-third o the power of the engines when fully loaded.
lone was excessive, and in order to show that it was and shafting instance of a single-cylinder Corliss engine from which the power was also transmitted by belt from the main fly-wheel. This
Corliss engine when fully loaded would indicate about 500-horse power, and $78 \% 64$-horse power was required to drive the
shanting al
I gave another example of a single Corliss engine which drives a weaving shed, the power when fully loaded being $170^{\circ} 4$ indicated horse-power, and when driving the engine and shatting a
sixth of this, or more exactly, $28^{\circ} 5$ indicated horse-powe
In this case the power is transmitted by gearing. From these
examples, and for other reasons stated in my letter examples, and for other reasons stated in my letter, I concluded
that the large power required to drive Mr. Longridee's trial com pound engines and the shafting alone, was mainly owing to the lightness of one of the pistons, and I explained how the ligh
piston, while wasting a lot of power, would heat up the walls o the cylinder in the same way, or even more than a steam jacket.
As Mr. Longridge did not take this heating into account, his experiments and the conclusions he deduced from them, as regard misleading.
Respecting Mr. Swift's inquiry about light pistons and the makers of them, I may say that inave seen pist 30 lb . pressure
 some of this kind, any respectable maker of pistons can suit him
if he will state with his order the degree of tightness he desires to Bolton, April 18th.

he foundations of medhanics.

SRR,- Your correspondent Mr. Arthur Adams has gone so near
to solving an important problem, without quite solving it, that it ould be a pity to let him remain longer in doubt.
The problem is this-seeing that action and reaction are always tion of a forco?
Put in another way, as the pull on the draw bar between an engine and a train is always precisely balanced by the resistance, why does the train follow the engine
In a third shape; as the pulls at opposite ends of a pit rope are

something more to deal with than the pull. There is another
element to consider. Newton's axiom that "action and reaction are element to consider, Newton's axiom that "action and reaction are
equal and opposite, does not cover the whole ground; and it is just because he overlooked this fact that Mr. Browne, by what I am pulled a cart there must be a greater strain at the collar end than
there was at the cart end of the traces, for otherwise the cart would
"force" convenience In its isall, in what I am going to say, use the word
Fontional "force" in its conventional sense
When any force is brought
balanced by an equal and opposite force on a body, that force is condition of equulilirium oinposite force. The body in then in a
parection of the line or plane
passing through the point passing through the point of operation of the forces.
In order to produce
In order to produce motion, all that is now wanted is the presence
of another body already in motion, which body must come into contact with the body at rest.
In other words, what is known as the pull of a locomotive, or cedent cond does not produce motion, but that pull is an ante-
cential to the production of motion in the required direction. Nothing can produce motion but motion; but At first sight it may appear that I amerefore dreither can produce it. out a difference ; but so far is this from being the case, that I am really laying down the fundamental proposition on which the whole right, $m y$ proposition effectually demolishes the whole hypothesis repulsion.
Let it be supposed that a particle of matter has power to attract another particle, both being at rest. Then one or both give way,
and motion begins. But we know that motion once called into
 he maintains-and properly so-that the effects of forces live. Yet if two bodies previously at rest are put into motion by mutual an indestructible something, and the corollary is that as attrac-
tion is constantly doing this kind of work, the store of motion, and tion is constantly doing this, kind of work, the store of motion, and
therefore of energy, in the universe, is constantly increasing, which is absurd.
In order that one body or particle of matter at rest may be put into previously in motion, and when both are moving the sum of their
motions-in other words, the concrete energy of the two-will be precisely equal to the quantity of motion-that is the energy-possessed at first by the one body
In the case of a locomotive
ome distance, but we ultimately run it down in the furnace. The same e thing may be said of the pit rope.
Reapitulatating, then, I say that a pull or a push is unable to produce motion alone, and that the pull or push must be accompanied by the propinquity of some body in motion.
One result of the development of this proposit
call it a theory, for its truth is simply indisputable--is the shall not is not the result of the attraction of the earth, but is the result of the motion of some form of matter. It follows in like manner that electrical "attraction" and "repulsion" are also the result
of the motion of some form of matter, and it is no small pleasure to me to find scientific opinion gradually, drifting in this ance," and such old-time fallacies, we shall yet on much faster towards a rational conception of what is really going on around us,
The labours of such men as Bjerkness and Stroh are doing much The labours of such men a
to help on the good work.
Of course I cannot venture to ask you, Sir, for space to them now and then; but, even at the risk of tiring your patience out, I will ask leave to make one or two explanations concerning the effect of what is falsely called attraction
Grove, in his address to the British Association in 1866, in
theorising on the cause of the sun's heat, wsed the words ""The Corising on the cause of the sun's heat, used the words, "The sun
may condense gaseous matters as it travels through space, and so heat may be produced." Let us carry this idea of condensation a He say, a fluid, which is, of course, imponderable,
toeiner-that is motions are the cause of gravity, magnetism, sce. Let it be
further supposed that matter has the fuid in much the same way that Grove-and after him Sir W Thomson and other eminent men-hold that the sun could condense gas, and see what follows; we have at once a rush of currents of ether beating down on not the earth alone, but every form of Let us further assume that it is possible to
molecular change in h ha condensation, and we have at once a magnet. Steel makes a permanent magnet because the re-arrangement of the particles once But not so with soft iron; therein the arrangement is not permaA ent. Hence, soft iron makes a temporary magnet. clearly what I mean. To the end of a small tube let a very fine
wire gauze mouthpiece or cap be fitted, as in the sketch. To the

other end drawn down is tied a bit of flexible tubing. This is to be coupled on to an air pump, or some other means of exhausting
the tube. It will now be found by operating on dry fine sawlust, cotton fluff, the motes dancing in the sunbeam, \&ce., that the ube will behave precisely like a magnet, and will possess the
quivalent of a magnetic field. In this anse the perforated gaut end plays the part of a condenser, while the air takes the part of
the ether condensed. If the experiment is carried out with a little care, it is quite possible to take in the unwary, who will asser hat the tube attracts things. It constitutes an interesting jurer in playing his tricks; but the instrument operates solely
because of the rush of air into the tube, and the beating down of currents on it. If a house fly be induced to alight on it, he can no
more leave it than a man can jump off this earth. To himself he more leave it than a man can jump off this earth. To himself he
must appear, if he can think, as though so heavy a fly never before
to to be told that my theory will not account for Iam prepared to be the argument for the moment in silence because I cannot make this letter longer; ; but I think an answer
vill be found in the results of the investigations being made by Mr. Stroh, of which
London, May 1st

Wind Velocity and Direction at the Kew Observatory. at the meeting of the Meteorological Society on the 19th inst.
paper was read on "Barometric Gradients-Wind Velocity Direction at the Kew Observatory," by Mr. G. M. Whipple vestigating the subject of the relation of the force and direction of the wind to the distribution of barometric pressure, the author
discussed the Kew observations for the five years 1875-79 The results show that the rate at which the wind blows increase tion of the gradient in an arith metrical proportion, the mean rate of increase being 1.85 mile per
hour for each additional .0025 in . of difference in the baromete t which the wind crosses the line of gradient at Kew the angl ary with either the steepness of the gradient or the velocity o generally to lie between 40 deg , and 60 dea, the angle is found generally to lie between 40 deg. and 60 deg., the avera
whole series of observations giving a deviation of 52 deg.

RAILWAY MATTERS.

A NEW railway has been opened from Grafton station, in Wilts,
to Andover Junction, in Hants. This is a section of the Swindon, to Andover Junction, in Hants.
Two reports on accidents during heavy fogs last February have
recently been published by the Board of Trade, both of the collisiecenstly beeng on the London, Brighton, and south Coast line, and
soth due to drivers not stopping when they ran over fog signals.
bol both due to drivers not stopping Cardiff this week that the Rhymney Railway had been leased to the Taft Vale, and 10 per cent. guar-
anteed. antee.
or the terms, but it
some time in progress. IT is said that a scheme for an electric rail way, thirty-six miles
in lenthth in the South of England, sis being organised. The rail-
way will run through a district in which there are several waterway will run through a district in which there are several water-
courses, which will be employed for driving the neeessary dynamo machines
The proposed railway from Silloth to Maryort, via Allonby,
will open out new coalfields to the thest will open out new coalfields to the west of Allonby. The coal-pits
to the south of Allonby are now nearly exhausted. The route of the proposed railway was inspected many years ago by the late Sir
Thomas Bouch, C.E., the estimated cost being about \&400 per mile.
The largest increase in the make of steel ingots and rails in 1881 THE largest increase in the make of steel ingots and rails in 1881
appears in the Cleveland district, where 244,986 tonn of ingots were
obtained with fourteen converters, being an advance of 120,986 tons on the production of the preceding year. Of these fourteen
converters, four were working for only a part of the year, and two converters, four were w
for only a few months.
The production of Bessemer steel rails amounted during last
year to $1,023,740$ tons, being an increase of 283,830 tons, or 38 per year to $1,023,740$ tons, being an increase of 283,830 tons, or 88 per
cent., on the output of 1880 . Of these rails 594,419 tons were exported. Seventy per cent. of the Bessemer ingots made in 1881
were manufactured into rails. This is exactly the proportion which the one bore to the other in 1880 .
THE new branch of the North-Eastern Railway from Scarborough
tickering, and thence to Whitsy, has been opened. The line, which is a little more than sixteen miles in length, passes through one of the most beautiful districts in Yorkshire, and opens out a
rich agricultural locality. It brings Scarborough into more direct rich agricultural locality. It brings Scarborough into n
communication with Whitby and the North of England.
A PAPRR on "Our Iron Highways " was read last week before
the Liberal Social Union by Mr. E. J. Watherston, who is still under the impression that we should be better off for cheap railway under the mpression tunat we son if the railways belonged to to the
transport and commuicion the
State. Foreign experience oponts exactly the other way, and our
own experience with the telegraphs does the same. We should own experience with the telegraphs does the same. We should
have had 6 d . telegrams ere this if the lines had belonged to the companies, but the. cost of working by the
any reduction in price for over a dozen years
If the profits earned by the South-Eastern Railway were at all fort of its passengers at some of its stations, the shareholders would not have much trouble in counting their, dividends. As an
instance, a correspondent writes that in going by the South-Eastern instance, a correspondent writes that in oing by the South-Eastern
railuay on the Bromley line passengers, on many trains, have to
change and passengers have to were then, where changes have to be made out the company which is led into spending many thousands on the boring at Folkestone, can only afford about as much shelter for
down trains at Grove Park as a farmer would put out in a field down trains at Grove Park as a farmer would put out in a field
for half-a-dozen cows where there were no large hedges or trees for them to shelter under. The miserable open shed there, is only
about two carriages in length, if it is that, and here ladies have to change in a drenching, driving rain like that of last Saturday from a carriage a long way perhaps from the thing th
ping place, but which cannot be called a shelter.
IF our railway companies would employ a forester and gardener
or two, they might employ their thousands of acres of waste lands for crops, grass, fruit trees, and so on, with profit, so that
they could afford to refuse to be any longer in the position of the they could aftord to refuse to be any longer in the position of the
poor shopkeeper or barber who fills his shop and pastes his walls
over with advertisements ends meet without the small sums obtained by this disfigure ment. At present our rail way companies allow theer stations and
bridges to be so hideously pasted and papered over that perty has the eappearance of pasted and last stagesered overer that the prging poverty.
In many parts of Belgium the land trees and other things many years, and in Wurtemburg, for about
twelve years past, a forester has had charge of the lands. He pays particular attention to planting the slopes of excavations pand embankments to prevent washing and slipping, grows quick fences,
and where tracticable fruit and timber trees. The gardens at the
stations are larvely devoted to fruit stations are largely devoted to fruit, and so made useful and ornamental at once. A profit of about 14s. an acre has, it is said, been
made for the past five years on the ground so utilised. Why should
it not be done in England? A corkrspondent of the Railroad Gazette says :-"There are
thirty-three 'railroad schools' in Russia for the instruction of mployef, established because not very long ago it was impossible to places, and even at this day one-half of all the locomotive engineers on a line about twenty. -fventy mears ago of four road-masters
letters, and had clerks to write their two did not know their locomotive engineers were created out of cooks and others who had out chiefly enginemen and firemen, road-masters, and telools turn most of them sons of railroad employés. The course of study some cases, and there is a p preparatory course of one year probably shoolos are bound to spend two years at least in the service of the
cailroad which supports the seat out of the experimentarts stage sohool. The on the olhools are hardly yet,
has so far tiventy-five graduates in railroad service, founded in 1874, Iv the course of amparison of the new
with the New York roads, the Pailroad new Berlin elevated railroad four times as many men are required for the thicket service in
Berlin as in New Y York. The Journal of the German Railroad
Union t is necessary to have the tickets eying that with any ticket system the train and during the trips, and that this in all that is doane on
the Berlin road. "Yet," the Gazette says, "this is the time much as is done on the New York roads, where the passenger buys a ticket at a window, and a few feet further on, at the entranoe to
the station platform, puts it in a glass box under the eyes of the the station platform, puts it in a glass box under the eyes of the
vateman, and that is the end of the tioket inspection. If there
vere least doubled; for it would then be necessary to see that those different reates for dor different distancess still more labour would be
required, for it would required, for it would be necessary to see that the passenger did
not ride further than his ticket entitled him to, which might be
done on the train, or by insieetion the passenger left, the train. But the New York soads in where concerned to make sure that no passenger can roads on are only train
without a tioket. As all tivkets are alike, they do not care what
car he gets into, or at whet are business of a station is done by two ticket sellers and one gateman," system costs less than one that ensures passengers every comforto The one-class arrangement would not suit in Germany any more
than in ills country

NOTES AND MEMORANDA.

IT has been found that the passage of an electric current through The THE boiling point of zinc was determined by Becquerel, who gav the subject, and his redetermination puts the temperature a 333 deg., thus practically confirming Becquerel.
Refrreriva to a paragraph in our last impression giving the
length of some large bridges, a correspondent-Mr. Wilfred writes that the Victoriaes Bridge at Montreal-at the time of its construction the longest bridge in the worl- is 1993 metres in
length, ironwork only, exclusive of abutments, 8 in. instead
 Buffalo also deserves a place on the list, the length of ironwork
being 575 metres, or considerably more than some of those men being 5
tioned.
The Adalbert silver mine in Pribram, Bohemia, has now been mines in the world. It had been said that the heat made it im
possible to proceed, but Professor Hoefer, residing at Przibram, writes that, "At the greatestessor depth Hoeserer, residing at Preibram 1000 metres below the surface of the earth - the heat is anything but excessive, the
temperature of the rock being $24^{4} 4$ deg. C. $-75^{\circ} 9$ deg. Fah.-and so that the natural merns of ventilation heg. o. suffice for all purposes," facts of considerable interest in the physic of the earths crust
${ }^{\text {THE }}$, Sheffield district shows an advance for the year 1881 o 119,447 tons in the make of ingots and of 94,285 tons in the pro-
duction of rails, the total yield of 392,812 tons of ingots having were inained we for a pat of the with of converters working as in 1880, South Wales has obtained an increase of 76,423 tons on the production of that year, the aggre gate make of ingots having been 384,656 tons, and of rails 305,043
tons. The three districts - Cleveland, Sheffield, and South Wales produced last year $1,042,254$ tons of ingots, or 70 per cent. of the
total make of the United Kingdom.
THE rapid extension of electrical requirements has caused a damp-proof, not costly, and having gocd mechanical properties According to the Electrician, this seems now to have been met by
the recent invention of a material called "insulite." The inventor thas recent invention of a material called "insulite," The enventor
has brocess by which wood, sawdust, cotton-
waste, paper pulp, and other fibrous materials an be conterted into a material perfectly impervious to moisture and acids, easily moulded under pressure into any shape, and capable of being worked or cut into any form. This material is an excellent non cells, telegraph insulators, supports for electric light leads, and telephone work. It afor ds the means of securing perfect insula-
tion at a very much less cost than ebonite or gutta-percha. A smimple new thermometer, said to be very sensitive, has been hardened caoutchouc by heat. It is thus described by Nature:very thin strip of the substanee is attached to a similar strip of copper. The tower en it a fine glass fibre bent at a right angle,
end has attached to it a through which, as the strip bends under heat, motion is imparted displacement of the mirror is obsservell with a ocoon telescope and and
reflected scale, or by the movement of reflected scale, or by the movement of a spot of light. To avoid
sudden changes of temperature, the double strip is inclosed in a metallic case having a slit opposite the strip. In a modification, which the author has not yet tried, the strip is reversed, and the lower end enters a highly resistant liquid, in which it faces a
metallic galvanometer and a Wheatstone bridge.
While many electricians are struggling with new dynamomachines, new lamps and other parts of electrio lighting plant, some few are quietiy doing a good business in making the carbons
for the lamps already made. Much of the process by which these are made is kept serect. In America it is said that many of the M. Gaudoin is said to make them from wrom petroleum refuse The stickrts and slowly heated to drive off the volatile matter. and the final desiccation then macia solutions to remove impurities and the final desiccation then made in a very high temperature in
a reducing atmosphere. The carbonised wood is then soaked in the carbides of hydrogen and the chlorides of carbon under res sure until their pores are completely filled with a homogeneous deposit of nearly pure carbon. The principal difficulty attending
the manufacture of carbons from various materials is the purificathe manufacture of carbons from various materials is the purifica-
tion of these, but with care finely pulverised retort carbon mixed tion of these, but with care finely pulverised retort carbon mixed
with perhass a little coal dust and tar may be employed with very

The following tables from the Board of Trade shipbuilding returne for foring tables from the Board of trade shipbuilding
showish :-1. The numbed, contain figures interesting as showing: : 1 . The number of vessels of all kinds, and their ton-
nage, built in the United Kingdom, from 1872 to 1881 . The figures on hot include any vessels built for foreigners, but do include many
which have been registered first as English ships, and immediately afterwards transferred to a foreign flag. A larger tonnage was production was 20 nage owned in the whole British Empire, and under the British
flag for each of the past five years. These figures gressive but not a rapid increase, except in 1880. The differences 1881 is not so fro the United Kingdom only. The increase for

A Communication on "The Relative Resistances of Land and Stevenson. In In Currents" has been sent to Nature by Mr. Thomas
Se received a grant from the Government Research Fund for the purpose of ascertaining the law of variation of wind velocities at different heights, and he found that the
curves traced out by the velocities in relation to the heights were most nearly represented by the formula $V=v \sqrt{\frac{H+72}{h+72}}$, whe H and h represent respectively the heights in feet of the high and velocities at those levels. Since then he has been making observa-
ver and and wath the view of ascertaining the relative resistance of land from being complete, but he gives the following ressults in the the
meantime, ns they meantime, as they may be interesting :-

MISCELLANEA.

THE average net realised price of steel rails at works during 1870 The average number of Chinese immigrants arriving in Victoria, AN electrical exhibition is to be opened on the 16th September THE tidal range at Kingston, Jamaica, is only from 8 in . to 9 in . and in some way objections, to a proposed dry dock are being
founded on this. A hydraulic dock will overcome all shortness of tidal range.
THe progress at Colombo breakwater during March was greater han during any other month since the work commenced, 202 tt .
having been added to the length of the breakwater, the total
length being now 3362 ft .

Messrs. Merryweather have just supplied an additional steam fire engine to the Metropolitan Fire Brigade. It has patent ball
valves with large openings with a door passage. One man only is required to attend both boiler, engine, and maniputlate the and hose pipes.
Mr. H. SAUNDERS, chief electrician of the Eastern Telegraph the effects of the late magnetio storm which caused so much delay in the despatch of messages. He shows that this storm was almost
universal, and one of the greatest on record, and that a difference universal, and one of the greatest on record, and that a difference
of potential of no less than 40 volts was registered in 25 minutes. Mr. J. K. Foster, Bolton, proposes to extinguish fires by blow ing into a burning building the vitiated atmosphere or products of o which a fan is attached. It is said that experiments prove that the air may be sufficiently deprived of its oxygen in this way to stop combustion. It is proposed to eject steam generated by the ame boiler into the building with the vitiated air:
Some large special machines for cutting loaf sugar and for coffee roasting have been recently erected in new premises in Cork for
Messrs. Newson and Sons by Messrs. Waygood and Co., London Messss. Newson and Sons by Messrs. Waygood and Co., London
The sugar loaves are placed upon a saw table, and held by forks and sawn into slabs ; they then pass to another machine, and are cut into cubes at the rate of a ton and a-half per day. The
different parts of the building are in communication by a large safety hoist by the same makers
The quantity of shedding required for the Royal Agricultural efore the weeding out of equal to that of some previous years xhibits as in 1876-9, is a good deal above that required in 1880 and whilst at Reading this year there will be some $13,017 \mathrm{ft}$. wanted wing to the railway accommodation by three different lines,
namely, the Great Western, South-Western, and South-Eastern, heading show is likely to be a very good one.
GAS-MAKING by the Corporation at Walsall has proved such a Council to levy ning to the credit of the concern, will enable the verage profits in the three years preceding 1880 were The annual last year that average was exceeded by about $£ 2000$. But for ave been made. It is an interesting fact that the works must

HER Majesty's Government have, according to the Standard,
resolved to co-operate with the other nations in establishing a chai of circumpolar magnetical and meteorological observatories. Th Canada, and the general superintendence of the work will entrusted to a committee of the Royal Society, the Royal will bo phical Society being asked to co-operate as far as regards the as not yet been selected. The Swede perronnel of the expedition West Spitzbergen, for the site of their station, which will b nanned by thirteen attendants, and is established at the cost of
Mr. L. O Smith , at disposal of the Academy of science for this purpose. A PAPER was read on Monday before the South Staffordshire Young's Patent Air Locomotive,", which was read by Mr. Henry
Lawrence, of the Grange Ironworks, Durham. The engines, it as stated, were specially adapted for underground haulage owing o their small size and the perfect control which the driver had ove
hem. Incidentally Mr. Lawrence mentioned their mines, and showed how a patent metal had to be used to prever sparks from being tmitted from the wheels when the engine surged
at an incline. He submitted for the consideration of the members at an incline. He submitted for the consideration of the members
(1) Whether sparks would fire gas in a pit, and (2) whether copper rammers were therefore safe, inasmuch as copper could give
oft sparks. The Government allowed copper stemmers and

DR. SIEMenss proposes to defend the Channel tunnel, if con-
sructed, from hostile invasion, by placing the shore ends in com munication with chambers filled with lumps of chalk, and to connect each of them by means of a pipe with a large cistern
filled with dilute muriatic acid. Upon opening the communication this acid would flow into the upper portion of one of the
chambers, and be distributed by perforated pipes over the chat iving rise to a rapid generation of carbonic acid gas, which would human beings throu form an insuperable barrier to the passag acid was turned upon the chalk might, it is proposed, be worke not see why this should always be quite ready and not be unwork would be rather awkward if the than any other scheme, and it would be rather awkward if the acid got to the chalk befor
those passengers who like fresh air best had reached the surface. A Joint committee, representing the Purchase of Property ComLeeds Council generally, was recently appointed by the eeeds Town
Council to inquire into and report upon electric lighting. The report Council to inquire into and report upon electric lighting. The report
of this committee has been compiled by Mr. C. C. Jolifife, deputy carefully.performed work, and is very usefuls as an unbeatiassed
description by a layman of the dift description by a layman of the different systems of lighting, care are, incandescent lamp, \&c. The committee suggests that the new municipal buildings, and especially the library and reading-room, pure light free from heat and from the destructive products of the combustion of gas, but in view of the improvements which are
being continually made the committee decline to recommend system at present
at a fancy dress ball given be by the bachelors in the Assembly
Rooms, Manchester. Light Companester. The rooms were lit by the British Electric In the ballpany, with were their lampsish interming and Gred inamme the machiness chande
Iiers, which had a novel and brilliant effect, showing oft the dresses and flowers to great perfection, while the room remained
cool compared with the tem perature when lit by cool compared with the temperature when lit by gas-an important
feature in ball-room lighting. In the refreshment room thiry feature in ball-room lighting. In the refreshment room thirty-two
lamps hung in Venetian shades of different colours, and the rece lamps hung in enetian shades of different colours, and the recep-
tion room was lighted by an electric chandelier designed for the occasion. The power for driving the dynamo machines was ob-
tained from Messrs. Marshall and Sons' portable engines placed in the yard, and the whole of the arrangements were carried out by
Messrs. H. Bury and G. Tyndall, the company's representatives Messrs. H. Bury and G. Tyndall, the company's representatives

GIRDERS FOR INDIAN STATE RAILWAYS.
HALF GROSS SEOTIGM AT SLEEPER IOF' SPANS HALF SIDE ELEVATION OF CIRDERS 4-OFT SPAN

half plan of cirders quft gpans

SECTION AT BRACING 4O FT SPANS

OONTRAOTS OPEN.

IRONWORK FOR INDIAN STATE RAILWAYS. Tenders are required for ironwork for bridges for the Rangoon and Sittang Valley Metre Gauge Railway. The work required delivery in Epecifcation comprises the construction, supply, and ditions and girder 20 ft , in the 1 , 30 per cent. extra on all rivets required for erecting the bridges in ared for erecting the briages in placed 18 in , apart, centre and centre, and including ine foepers being for loss, are to be supplied with each span, viz., with each 10 ft span forty bolts, with each 20 ft . span seventy bolts, and with each
40 ft span 120 bolts included in the contract. The accompand permanent way are not principal particulars concerning these girders. The wrought the must be of such strength and quality as to be equal to the follow ing tensional strains, and to indicate the following percentage of contraction of the tested area at the point of fracture :-

The iron intended to be used for the rivets must, whilst cold, be All rivet rivet holes may be either drilled or punched, at the option of ther contractor, but any plate or bar in which the holes are not accurately in place will be rejected. The holes through which any one In all cover plates, exceest in webs, the number of plates of bars. 40 ft . spans are to be built with a camber of thain girders of the circle, the upper members being camber of lin., in the arc of a lower, and those of the 20ft. and proportionately longer than the to butt with berfect faces to the true rect accuracy over the whole of the meeting surends of the girders intended to rest on the specified camber. The fectly level, and the rivets countersunk. The henry are to be perare to be to be forged out of one piece of rod or bar and body of all are to be square, and must fit too tightly to be turned by hand nuts to Whitworth's standard thread. length of at least three diameters All the spans are to be ead.
The girders of and perfection of workmanship may beete, so that The girders of the 40ft. spans are to be sent out in two Supposed quantities in one span of $10 f t$.

Web plates Resting plates Angle iron in

Supposed quantities of one span of $20 f t$.

Flat bars in booms
Angle irons in ditto ($\ddot{9} \cdot 2$ lib. per foot)
Web plates
Web plates ${ }_{\text {Stiffeners }}(7 \cdot \mathrm{i} \mathrm{ib}$. per foot) \because
Packings
Angle iron

Rivet heads and spare rivets, say 6 per cent.
No. 70 hook bolts
Total
Supposed quantities in one span of 40

Boom plates Web plates

Boom angle $\ddot{\text { rons }} \boldsymbol{(1 5} \ddot{4} \mathrm{lb}$ per foot)
Stiffeners
Stiffeners ($7 \cdot 1 \mathrm{llb}$. per foot)
Bracing angle irons ($7 \cdot 1 \mathrm{lb}$. per foot $)$
Boom
Angle iron ditto ($\ddot{1} 5 \mathrm{lb} . \ddot{\mathrm{b}}$ per foöt)
Web ditto
Web ditto
End plates
Rivet heads and spare rivets, say 6 per cent.
No. 120 hook bolts
Total

	ewt.		1 b
0	17	0	12
0	15	0	13
0	8	0	24
0	2	0	26
0	1	0	6
0	2	0	18
2	5	3	15
0	2	3	0
2	8	2	15
0	2	0	14
2	10	3	1
f $40 f$			
Ton	cwt.	qr.	1 b
2	5		10
$\frac{1}{2}$	11	1	20
2	8	1	17
0	6	0	10
0	4	2	0
0	3	2	18
0	3	0	4
0	2	0	1
0	1	1	16
0	9	0	16
7			
0	3	2	16

Tenders are to be delivered at the S. $\begin{array}{llllll} & . & 7 & 19 & 0 & 16\end{array}$ India Office, Westminster, S.W., on Tuesday, 9th May, 18 There two p.m., after which hour no tender will be received Council, with the words " to the Secretary of State for India in 40 ft . spans," on the left.ment.

THE JOINTING OF ROCKS

THE following abstract of a paper on "The Jointing of Rocks," in relation to engineering, especially the tunnelling of the Strait of Dover, by Professor William King, D.Sc., professor of mineralogy
and geology, Queen's College, Galway The writer referring in the first instance to his "Report on Joint Royal Irish An in vol. xxv. -1875 -of the "Transactions" of the purely geological aspect, remarked that his investigated of in its question with it entitle him to take a part in the discussion of to one of international which public enterprise has of late elevated feels himself compelled to expresse. At the outset, however, he been sufficiently attended to by the active that rock-joining has posed Channel tunnel.
taken to barkable divisional structure under consideration disruption, is, in the to ordinary cracks or fractures due to rockhaving only a distant relation of Professor King, a phenomenon normal state, jointing is a fissured condition of rocks-th. In its presenting even, smooth, regular, and close-fitting-the fissures planes, often standing vertically or, in an inclined position. Where been acted on by water affected by stratic disturbances, or have or less open, thereby converted into crevices sedimentary, thereby converted into crevices. It divides both more series or systems, each having its respective fissures running over areas hundreds a definite and an independent direction, siderable depths below the their distance from one another from under The fissures vary in

That jointing demands the closest attention on the part of than the fact of the utter failure which rended the other proo opening out, during the famine of $1845-18$, a water communication, about four miles in length, between Lough Corrib and Lough Mask, in the West of Ireland. After an expenditure of $£ 40,000$, it was which the excavation had the carboniferous limestone, through The work had, therefore, to be abandoned ; thus resulting in nothing more than a dry ditch. As regards the chalk and other rocks to be penetrated for the Channel tunnel, Professor King admits that they may not be so highly jointed as the much older deposits are not altogether cree come, require the closest attention From the numerous occurrences, by himself, of faults, true jointing,* ordinary writers and observed age-now fille penith , ary submarine swallow-holes of Pliocene sea shells-and rock porosity in the chalk formations containing Professor King infers that these the chalk formations of Kent, the same deposits, well known to exist at the bottom of the Channel; where some of them cannot but turn out to be sources posed Channel tunnel. the same apprehensions, are to be met with on the giving rise to board of France. Reference may be made to the great lines of fracture which have moulded the river-drainage system of the Bas Boulonnais; and especially to the marvellous jointing-lately represented by the distinguished geelogist, M. Daubré, in his intersects the chalk cliffs near Tréport, north of Dieppe. Still such serious drawbacks Professor King admits must not held as insurmountable. He is fully satisfied that engineering in the present day is quite able to cope with them; but only by an enormous expenditure. It has been proposed to line the tunnel
with concrete; but in his opinion it is absolutely neen wothing short of lining it, and in its entire length, with the that resisting, impervious, and endurable stone should be attempted

The Thomas and Gilohrist Process.-At the Society of Arts last week, a paper was read by Messrs. Sid. Gilchrist Thomas Iron from . Ginchris On the Manufacture of Steel and Ingot nearly nine-tenths of the iron. The authors, after stating that to produce a pig iron unfit for steel making without a process as dephosphorisation, showed that by the new lime process perfect dephosphorisation was produced, so that the steel made from iron. They then actually purer than that made from hematite Bessemer process and the pudding comparison between the basic former process was peculiarly adapted to the manufacture of soft weldable steel, having all the characteristios of puddled iron with considerably greater strength, elasticity, and ductility. It was stated that this soft basic Bessemer steel could be made for some of 7 s . a ton was gained n its subsequent treatment by the economy loss which it undergoes in rolling. The authors stated that narly half a-million tons a year of the new dephosphorised metal were now being made, and that on the Continent works were erecting England the new special works erecting tons a year, while in under 200,000 tons a year. The paper concluded by a capacity of wisdom of allowing continental ironmasters to push querying the of us in the production of this new ingot iron, which was not only cheaper, but immensely superior to puddled iron.

* The "many small faults," and "very marked and constant joints" "the cliffs in many places near Margate" (Whitaker), must be familiar to numbers of the citizens of the metropolis. "Numerous vertical crevices,"
doobtless originally jointing, intersecta a bed of chalk
Dover at the base of Shakespeare's Cliff (W, thick close to

HYDRAULIC LIFTS FOR PASSENGERS AND GOODS.

THE INSTITUTION OF MECHANICAL ENGINEERS.
The spring meeting of this Institution took place on Thursday and Friday, the 20th and 21st ult. After some proceedings, chiefly of a business character, the post
discussion was taken on Mr. E. B. Ellington's paper

On Hydraulic Lifts for Passengers and Goods.
The author began by saying that accidents to lifts, espeially when worked by mechanical means, have been so frequent, that many hesitate to adopt them on account of
the risk involved. But in a rapidly increasing number of cases their use is a necessity, and the risk must be taken. It becomes therefore a question of public importance that this risk should be reduced to a minimum.
Chain Lifts.-The first rudiment of a lift is to be found n the hoisting jigger, as commonly used in the Liverpool
otton warehouses; this consists of a winding drum, a otton warehouses; this consists of a winding drum, a
at-head pulley, and a chain attached to the article to be aised, as shown in Figs. 1 and 2. By adding a cage and a guide to the chain, the apparatus has been developed into a lift. It is worked either by winch handles A, Fig. 2, or
from a lower floor by the endless rope B. When a cage is from a lower floor by the endless rope B. When a cage is
attached the individual entering stakes his life on the security of the chain or rope supporting the cage. Various The favourite plan is to insert above or below this risk. The favourite plan is to insert above or below the cage a safety apparatus to retain the cage in position in case of
the breaking of the chain or rope. Tn the majority of the breaking of the chain or rope. In the majority of
instances, the safety apparatus is found to be a delusion; instances, the safety apparatus is found to be a delusion ;
generally because no apparatus not in constant and necesgenerally because no apparatus not in constant and neces-
sary use is likely to be kept in proper working order, and no safety apparatus provides against all possible accidents to the machinery. In a chain hoist of any kind-where he word chain must be taken to include a hemp or wire rope-the first thing is to be sure of the chain or rope. If a chain be used, it should be of such strength that the ordinary load would not straighten the link out, even
if it were cracked through. If wire ropes are used there if it were cracked through. If wire ropes are used there should be two, each capable of doing the whole work. More accidents arise from the breakage of the attachments
than of the chain. The attachments should be considerably than of the chain. The attachments should be considerably stronger than the chain, and, where practicable, should be by which the chain is hauled in and the cage lifted. There is a certain risk attached to a chain or wire rope which
cannot be removed ; but it will obviously depend upon the mechanism adopted whether other risks are superadded. The chain may be hauled in by machinery worked by hand, steam, air, gas, electricity, or water; but there is machinery used with the first five of these motive powers. Given the gear, it is simply a question as to what force shall drive it. Accidents may happen to any of the mechanisms adopted; and some of the elements of risk with these various sources of power may be here mentioned. (a) Hand-
power lifts are generally fitted with a brake apparatus made up of several pieces ; the giving way of any one of these would probably send the cage down with a run. (b) The steam or air engine, in addition to the risk of breakage in the
brake mechanism, is liable to breakage itself, and in the brake mechanism, is liable to breakage itself, and in the
gearing through which the power is transmitted; while gearing through which the power is transmitted; while clutches to throw the wheels in and out of gear add a
further risk. Steam power is safer with worm gearing, and where steam is used for lowering as well as lifting; but this involves a great waste of power. There is also a danger of overwinding. (c) The gas engine has all the risks attending the use of hand or steam power, and others besides ; owing to the intermittent nature of its working, gearing is unsuitable for the first motion, and straps have to be used, which are the most dangerous of all transmit-
ters. In a lift worked by a gas engine therefore, in addition to the necessary ris of chain, there attending the use of driving straps and gearing in the
working crab and of brake gear, the possibility of overworking crab and of brake gear, the possibility of over-
winding, and the comparatively long time occupied in winding, and the comparatively long time occupied in
starting and stopping. (d) The application of electricity to hoisting is at present only in its infancy, but its (e) Finally there remains hydraulic power; and it is obvious that one source of risk is at once removed by
employing water-pressure, namely, that caused by the use is a brake apparatus ; since in a hydraulic lift the descent is regulated by the speed at which the water used in lifting
is allowed to exhaust. Water power may be employed to is allowed to exhaust. Water power may be employed to
haul the lifting chain through toothed gearing, or by means of straps; in which cases there still remain some of the risks inherent in the other systems. But
by suitable arrangements all such mechanisms may be avoided. Relative safety is only obtained by taking care that the pressure of water on the hydraulic ram is directly transmitted to the hoisting chain. If the power
is so applied, any derangement of the mechanism would is so applied, any derangement of the mechanism would
either mean the stoppage of the lift, or its gradual descent owing to the escape of water from the lift cylinder. In the possible case of a burst cylinder or pipe, the same con with with a positive stop, to prevent overwinding. The perfecimportant element of safety. A single valve suffices for the control of all the motions of such lifts. The form of hydraulic lift which most perfectly fulfils the above Sir W. Armstrong, and known as the hydraulic jigger. Figs. 3 to 6 illustrate this the simplest type
of a high-pressure hydraulic chain lift. In Figs. 3 and 4 the cylinder is horizontal, and the working pressure is therefore constant. There is a loss of effect in this hoist when the cage is at the top. The lifting chain is sometimes when the by letting the cage carry a loose chain below, which is coiled on the ground when the cage is at the bottom, and which is picked up by the cage as it ascends. The accom panying illustration represents the valve gear employed
in the lifts shown at Figs. 3 and 4. Fig. 5 is an
illustration of a hydraulic jigger hoist suitable for moderate pressures. The ram is inverted, and its weight partly balances the weight of the cage. The chain is counterweights. From the counterweights two wire ropes are led to the cage, each being of sufficient strength to carry the weight. The author's experience is that wire ropes are not so reliable as chains, and that it is
desirable where practical to use duplicate ropes. In this

hoist, owing to the inverted position of the ram, there is a greater head of water at the end of the stroke than at the commencement. But, the chain being more than twice ascent of the cage at the commencement of the stroke, and compensates the variation in head. The hydraulic jigger is not generally applicable except for high working pres-
sures; and it is often necessary to depart from the simsures; and it is often necessary to depart from the sim-
plicity of this apparatus. In such a case it is best to adhere to the hydraulic cylinder and ram, but to introduce a second chain into the multiplying gear. By doing so there is then the additional risk due to the second chain and its attachments. Figs. 7 and 8 illustrate a low-pres sure hoist, suitable for pressures of 25 lb . to 50 lb . per
square inch, constructed as above described. By putting the cylinder A below ground, and letting the ram work vertically upwards, the greatest economy is secured. The whole of the available head is then utilised, and the extra head of water at the beginning of the stroke compensate
for the extra weight of the lifting chains then to be raised for the extra weight of the lifting chains then to be raised
It is necessary to balance the weight of the ram by counter It is necessary to balance the weight of the ram by counter weights B, to save power and prevent the cage sticking
fast. The winding drum C of this hoist has two diameters. fast. The winding drum C of this hoist has two diameters
The drum winds itself along a screw thread cut in the fixed supporting shaft, the pitch of screw being equal to
the pitch of the lifting chain. Any of the chain lifts which the pitch of the lifting chain. Any of the chain lifts which
have been considered may obviously be adapted for passenger use, without any modification of the mechanism Direct-acting Lifts.-This sufer construction is found in those lifts which are pushed up from below, so that there is always a supporting column under the cage. Lifts have been constructed on this principle and worked by mecha-
nical means, the supporting column being a rack, gearing nical means, the supporting column being a rack, gearing into a pinion at the ground level; or, in another arrangeperiphery, and is drawn up or down by means of a nut a the ground level. Looking to safety alone, it would not be possible to find fault with this latter arrangement; but the practicable speed of working must be extremely slow,
and the power absorbed in friction must be very great. A and the power absorbed in friction must be very great. A
hydraulic lift, with a vertical direct-acting ram, present problems in construction which increase in difficulty as the height of lift is increased and the working pressure reduced. A low-pressure lift of this type has to be made
subject to the following conditions:-(a) A well or bore hole has to be sunk to a depth somewhat greater than th height of the lift, in which well is inserted the lift cylinder ; (b) the ram has to be of an area sufficient, when acted upon by the pressure of water at command, to over come friction, and to raise both the load and the surplus weight, and also the displacement, of the ram increase with its height and diameter; (d) the bottom of the well being usually far below the drainage level, the water used
in working has to be forced up to the drain by the descending working has to be forced up to the drain by the descend ing ram ; (e) the pressure upon the ram at any time between the head of water and the height of lift at that time. Under these conditions it will be seen that, with simple ram, equilibrium cannot be maintained. With a given pressure and load to be lifted, there is a limit to
the height of lift, the pressure on the area of the ram diminishing as the ram ascends. In ascending with a given pressure of water, the ram would run out a certain distance and then stop; and in descending with a given weight it
would descend a certain distance and then stop. It is herefore necessary to balance the weight of the ram and the varying displacement, in all high lifts working with low pressures of water. The usual practice has been to intro-
duce counterweights, and chains travelling over head duce counterweights, and chains travelling over head
sheaves, as shown in Fig. 10. The chains are of suffieient
weight to balance the displacement of the ram. For a considerable portion of its distance from the top, the ram instead of supporting the cage as a column, is
thus really hanging from it; part of the ram is always in tension, while the neutral plane varies in position according to the pressure on the ram. Should the ram break above the neutral plane, or the attachment between the ram and cage give way, the cage would be violently dragged by the counterweight to the top. This danger happened at the This can be prevented by increasing the working pres sure, and by reducing the area, and therefore the displacement, of the ram, leaving only sufficient section to prevent its bending under the load, as shown in Fig. 9. The requisite safety is thus secured, but at an extravagant expendi ture of power, owing to the want of any balance, the
expenditure due to weight of the ram and cage, and to the expenditure due to weight of the ram and cage, and to the loss by displacement, being often five or six times that due to the net load. Messrs. Tommasi and Heurtvisé have designed a balancing arrangement separate from the lift cylinder, as shown in Fig. 11. The lifting cylinder is in hydraulic connection with a second cylinder B of equal capacity, though of shorter stroke. In the second cylinder there is a loaded ram C, of sufficient weight to balance the minimum weight of the lift ram and cage when at the bottom. This heavy ram works through the stuffing-box of a third cylinder D, of the same capacity as B ; and the pressure of water the third cylinder lifts the net load Heavy chains E are attached to the ram C, between the two short cylinders, to balance the varying displacement of the lifting ram as it travels. This plan is satisfactory as regards safety, but the weight and size of the cylinders and moving parts are so great as to render its adoption on a large scale impracticable.
Hydraulic Balance Lifts.-The author has endeavoured to overcome the above-mentioned difficulties, and has
devised an arrangement which appears to him to meet all devised an arrangement which appears to him to meet all
the requirements of a perfectly safe, rapid, and economical lift in thecty safe, rapid, a. econession passenger lift. In this the ram is always in compression
and supporting the load ; the dead weight of the ram and cage is balanced wholly or partly by hydraulic pressure
the displacement of the ram is reduced to a minimum, and the displacement of the ram is reduced to a minimum, and is balanced without any special mechanism ; the weight of the moving parts of the lift is reduced to a minimum ; no part of the machinery or supports is above the cage ; and there is no part of the machinery which, by giving way, in the lift.
This hydraulic balance lift is shown in Fig. 12. The hydraulic lifting cylinder, ram, and cage are as usually made, except that the ram is smaller in diameter. It size is determined by the strength required to carry the As in Tommasi's lift, the lift cylinder A, Fig. 12, is in As in Tommasi's lift, the lift cylinder A, Fig. 12, is in below which is a cylinder C of larger diameter. There i a piston in each, connected by the ram D, Fig. 13. The capacity of the annular space $\mathrm{E} E$ below the upper piston is equal to the maximum displacement of the lift ram A.
The annular area of the lower piston C is sufficient, when subjected to the friction and lift the net load; and the full area B of the upper piston is sufficient, when subjected to the same pressure, to balance within a small amount the weight of
the ram and cage when at the bottom. When the parts the ram and cage when at the bottom. When the parts of the apparatus are properly proportioned, the lift ram and the balance pistons are in equilibrium in every position ; or, in other words, the displacement of the xam of
the lift cylinder is automatically balanced. The mode of the lift cylinder is automatically balanced. The mode of action of the lift is as follows: Assuming the cage to be
at the bottom of its stroke, the valve is opened from the cage by means its stroke, the valve is opened from ther thereby admitto a rope or system of levers, and water at F . The top of the upper piston is always subjected to the same pressure. The pressures on the two pistons thus act in the same sense on water in the annular space E , below the upper piston; and the intensified pressure of this water is transmitted through the pipe H to the lifting ram A, which thereupon ascends. As it ascends, the ram increases in apparent weight, but at the same time the pistons B and C descend, and are thereby subjected to an ncreasing head of water, which increased head, acting upon the large area of the pistons, exactly balances the increase of weight of the ram, or-to state the case more accurately-compensates for the loss of effective head in
the lift cylinder. When the ram reaches the top of its the lift cylinder. When the ram reaches the top of its
stroke, the valve is closed, and the lift stops. On opening the valve to the exhanst, the pressure is relieved from the space above the piston C , while the piston B remains subjected to the working pressure above it, as in ascending. The lift now descends: the weight of the ram and cage, pressing upon the water in the lift cylinder, transmits the pressure to the annular area at the bottom of the piston B , and overbalances the weight of the pistons and the pressure on the top of the piston B. As the lift ram descends into its cylinder, it displaces the water and loses weight, or, in other words, encounters an increased resistance to its
descent. At the same time the two balance pistons ascend, descent. At the same time the two balance pistons ascend, decrease pressure above each of the pressure being in proportion to the increased pressure on the lift ram and the pistons B and C are, as stated, in constant equilibrium. To make good any possible leakage, provision is made for admitting the working pressure through the cock F under the piston C, and so raising it, while the cage is antersifying cher piston B to flow down past the packing leather of that piston and replenish the space E . As a general rule, the part of the lower cylinder underneath the piston C is not filled with water in the regular working of the lift, but is open to the atmosphere. If, however, the cock on pipe F controlling admission is closed, during the descent of the cage, the rising of the piston Creates a vacuum beneath it, which becomes available as lifting power for the next
load is by this means utilised to augment the lifting power in the next ascent of the loaded lift ; or, if the lift is being used for the purpose of lowering goods, the vacuum supplies power enough for raising the empty lift without
the expenditure of any water at all. The author's the expenditure of any water at all. The author's hydraulic balance lift permits of great variety of application; and the proportions of the balance cylinders may be adjusted to suit any working pressure available, without
alteration to the size of the lift ram. This facilitates the alteration to the size of the lift ram. This facilitates the employment of high working pressures; and the system is
therefore particularly adapted for use in connection with public distribution of hydraulic power on the high-pressure or accumulator system, where economy in the use of the power is of vital importance. When working the lift with high pressure, the balance cylinders may be tempo-
rarily disconnected, and the pressure used direct from the rarily disconnected, and the pressure used direct from the
accumulator. The increase of the working pressure accumulator. The increase of the working pressure
reduces the size of the lift cylinder, and also much increases reduces the size of the lift cylinder, and also much increases
the speed of the lift-a matter of much consequence in public offices and other places where large numbers of passengers have to be accommodated. The author has for

|r14!

some time past adopted a working pressure of 200 lb . per square inch and upwards for high direct-acting lifts ; and by so doing has succeeded in working these lifts at a speed
of 200 ft , per minute, and, with a single lift, taking five or of 200 ft . per minute, and, with a single lift, taking five or six people at a time to a height of about 40 ft ., in accommodating as many as 3000 passengers in the course of nine hours. When using high-pressure water from an accumulator for working the hydraulic balance, it is not necessary to use the high-pressure for the balance piston. Water may be taken for this purpose from a supplementary tank, placed at a convenient height ; or the fluid used may with advantage have a higher specific gravity than water. The water is taken from the tank and returned at each ascent and descent of the lift cage. In many cases of highpressure lifts the loss by displacement of the ram is not of sufficient consequence to be considered. Then the arrange-
ment adopted is as shown in Figs. 14 and 15, and the ment adopted is as shown in Figs. 14 and 15, and the
balance cylinders can, if desirable, be placed horizontally. Here the working pressure due to the area of the central pipe acts constantly to balance the minimum weight of
the ram and cage, and the lifting power is obtained by the ram and cage, and the lifting power is obtained by
admitting the working pressure into the outer annular space, and so forcing water from the bottom cylinder to the lift cylinder. Another incidental advantage of the hydraulic balance lift is that the space in the lift well, usually occupied by the counterweights and guides, is available for the cage. Ali head gear is avoided, and no special structural arrangement for carrying the weight from valve chest of Fig, 14. 17 shows the construction of the valve chest of Fig. 14.

Economy of Hydraulic Lifts.-Hydraulic apparatus, as sed in hydraulic lifts, forms a system of mechanism for the transmission of power. A steam engine working an
accumulator gives an efficiency of 75 to 80 per cent. The loss between the work stored in the accumulator and the work done by a direct-acting ram may be taken at 5 to 10 per cent., which would give a final efficiency of, say, 70 per
cent. No geared lifting machinery, driven direct by a steam engine, gives anything approaching so high an efficiency; and the efficiency would again be much lowered if, as in the generality of cases, the steam engine
had to be kept constantly moving. The loss from this latter cause is much greater than the loss arising from the invariability of the hydraulic lifting power. Moreover, hough the power of hydraulic lifts is invariable, yet when fting light loads there is a gain of speed.
Lifts of Large Power:-Fig. 18 and 19 illustrate the directacting hydraulic lifts erected at Seacombe pier on the
Mersey to take the carts and wagons from the floating Mersey to take the carts and wagons from the floating
landing stage to the high level. The height of lift is 32 ft ., and the net load 20 tons. The lifts were designed by Mr . Wm. Carson, M. Inst. C.E., to avoid the long approaches used at Woodside, and at the Liverpool landing stage There is a connecting valve between the two lifts, so that a descending load in one lift may raise the other cage. The The platform upon the cage is double; the upper portion slides longitudinally upon the lower, and is guided to the radius of the bridge connecting the floating
stage with the upper pier. This bridge is hinged at both stage with the upper pier. This bridge is hinged at both
ends, and the guiding ares, Fig.19, are struek with a xadius of

160 ft., equal the length between hinges. Fig. 20, 21, 22 illustrates another arrangement of wagon hoists, constructed for the Midland Railway Company at Whitecross-street
Station on the Metropolitan Railway. The object of the arrangement was topolitan Railway. hoist without sink ing a well, the condition being that the concrete floor of the station should not be touched. There are two lifting rams at each side, placed in hydraulic connection diagonally,
so that either two or four can be used, the lifting force in so that either two or four can be used, the lifting force in either case passing through the centre of gravity of the
platform. When lowering loaded wagons, the water used platform. When lowering loaded wagons, the water used to lift the platform alone, or with only an empty wagon on
it, is returned to the reservoir by the descending load. For such lifts as these, direct-acting hydraulic rams are now almost exclusively used. In the appended Table I. are given the results of a number of observation on the relative economy of hydraulic lifts of different kinds, and working at different pressures.*

In the discussion Mr. Walker said hedid know of instances in which life of workmen had been saved by safety apparatus, though the author said they were not to be trusted, and gearing, he said, might be used without much loss by friction if used at a high speed, and its advantage as to safety was obvious. In reply to the author's remarks upon the use of belts to work hoists, Mr. Walker said he had erected one so worked fifty years ago, and it was still at work. It
was in a very high shaft in a woollen mill, and there are was in a very high shaft in a woollen mill, and there are
hundreds of the kind at work. He referred to the flat hundreds of the kind at work. He referred to the flat link pitch chain as much better for the work than cylinder, as the latter did burst, and joints did blow out.
being quite high enough. He had not found the fric tion of a ram very great. A 9 in . ram with 110 ft . head of water gave only 2 lb . per square inch friction, as
shown by the counterbalances. He thought gas engines shown by the counterbalances. He thought gas engines could be usefully employed for lift purposes. He preferred low-pressure to high-pressure lifts, as with an elevated
tank the lifts could be used when the engine had stopped tank the lifts could be used when the engine had stopped
He did not like working lifts or hoists by worm gearing. He did not like working lifts or hoists by worm gearing. Mr. A. Davis referred to the safety air-tight well at the bottom of the lift by which the descent of a cage was gradually checked on the cushion of air so enclosed, a very important form of safety appliance not referred to in the paper. Mr. Tweddel thought that it might be said Mr. Ellington had rather over-advocated one system at the expense of others. He did not agree with the doubt expressed as to chains generally. When accidents happened it was often due to using chains with too small or no margin of safety. In French lifts there was still a large quantity of chain used, but English engineers had greatly implified lifts of all kinds. He did not agree with the author's remark that the hemp packing acted as a brake if a hydraulic cylinder burst. That must be very expen sive packing, as it would act always as a brake. His experience with wire rope for lifts had been unsatisfactory The ratio of length of the author's lift column to diameter of table was very great, and was calculated to throw great train on the column, especially if the table were to jamb by any cause. Mr. Rich thought that Mr. Ellington had gone in the wrong direction in introducing five times mor packings in his new lift than were required in the ordinary am lift. He had four in his accumulating apparatus, two stuffing boxes and two pistons, besides the ram, and these

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { expt. } \end{gathered}$	$\begin{gathered} \text { Descoip. } \\ \text { of ioipt. } \\ \text { of lift. } \end{gathered}$	$\begin{aligned} & \text { Pressure } \\ & \text { of } \\ & \text { water. } \end{aligned}$	$\begin{gathered} \text { Diameter } \\ \text { of } \\ \text { ram. } \end{gathered}$	$\begin{gathered} \text { Stroke } \\ \text { of } \\ \text { ram. } \end{gathered}$	$\begin{gathered} \text { Height } \\ \text { lift. } \\ \text { lift. } \end{gathered}$	Ratio of height of to stroke	Net load liftod.	Speed of ascent.		Speed descent. Cageempty.	Efficieneyof maehing,ascendingwiltfull load.
								Cage loaded.	$\begin{gathered} \text { Cage } \\ \text { empty. } \end{gathered}$		
	Plate. Fig.	1b. p. sq. in.	In.	ft. in.	ft. in.		Cwt. qr. lb.	Ft. per min.	Ft. per min.	Ft. per min.	Per cent.
1	127	28	14	76	436	5.8	320	40	136	112	$76 \cdot 3$
2	127	30	18	90	450	5	720	28	96	66	77.5
3	1616	331	$\left\{\begin{array}{r}3 \frac{13}{2} \\ 213^{-11}\end{array}\right.$	50 80 8		$6 \cdot 2$	800	35	138	${ }^{47}$ \}	80.0
4	127	34	${ }_{21}{ }_{2}^{18}$	72	574	62	${ }^{9} 000$	29	107	62	78.5
5	127	39	17	92	724	$7 \cdot 9$	600	55	145	98	$79 \cdot 9$
6	1411	3912	6	496	496	1	$\begin{array}{llll}5 & 0 & 23\end{array}$	30	103	57	$76 \cdot 1$
7	1411	40	$8 \frac{1}{15}$	736	736	1	$12 \begin{array}{lll}12 & 20\end{array}$	19	68	71	$78 \cdot 1$
8	12.6	190	131 $\frac{1}{2}$	90	900	10	1300	57	222	62	76.8
9	$14 \quad 11$	200	$4 \frac{4}{4}$	790	790	1	1520	47	235	156	$80 \cdot 6$
10		640		57 0 7 18	570	1	3220	60	265	${ }^{48}$ \}	85.0
10	$17 \quad 18$	640	\{111-688	$71 \frac{1}{2}$		8					85.0
11	$11 \quad 3$	740	$4{ }^{3}$	69		8	800	60	648	81	77\%
12	113	790	5	72	718	10	$\begin{array}{llll}7 & 3 & 18\end{array}$	53	427	82	78.5

Mr. F. Collyer said experience had tanght him that it was practically impossible to make chain goods lifts absolutely safe, and workmen should not be allowed to use them, even when the lifts were fitted with safety apparatus. He had found a modification of the safety apparatus introduced by Sir W. Armstrong, namely, a cam and rack, very satisfacpaper, both should be adjusted to the same tension, as if a tight one broke and the load came on the slack one, it would be likely to break it. In many instances the attachment between rope and cage was the cause of accident There need be no loss by steam hoists in working when the load was descending, as by means of a valve box between the cylinders the descent might be controlled without the use of steam, and that with only one lever. Mr. Collyer did not fully describe the arrangement. He said he was constantly using hoists running at 250 ft . to 300 ft . per
minute, and he used an arrangement that threw the lift out of gear when it reached the top, and so overwinding was prevented, and with the safety apparatus to which he referred the fall was not more than from 3in, to 5 in. Overwinding, as in the case of the fatal accident at the Grand Hotel, Paris, might belprevented by winding off the chain as it wound on in the ascent of the lift, by using a large drum below and winding off from the bottom of the cage thus should not pass balanced at any position. 14 in. to 18 in. diameter. Any height of lift by direct-acting ram could be effected by providing a second lift, commencing from the upper level of the first. Referring to the breaking of balance chains, and to the separation of the cage from the hydraulic ram, as at Paris, he knew no instance in which that occurred with a well-made lift, and that at Paris was, as most often is the case in France, badly constructed. Chains should not be connected at the centre of the cage. simplicy the author's arrangement complicated, while minute for passenger lifts far too high, from 100 to 150 * The efficiency of the machine $=\quad$ Weight lifted \times height There are, however, three elements to be considered of (1) The friction
of the machine during ascent ; (2) the net load lifted ; (3) the friction of
of of the machine during ascent, (2) the net load lifted; (3) the friction of
the machine during descent, represented by the additional load lifted
in the in the unbalanced weight of, represented by the additional load lifted
as abo. in calculating the efficiency
as abe toad only is taken, the total loss by frietion both in
ascending and descending is debited to to the ascending and descending is debited to the ascent alone. The per-
centage of efficiency in the table assumes the friction during ascent and
descent to be equal, and gives the efficiency during ascent only
in practice would be a cause of much trouble, and he should think not more than 60 per cent, efficiency would be obtained. Heurtvise had gone in the same direction risk in the case of the bursting of a cylinder. He agreed that to prevent workmen using goods hoists would cause inconvenience, but people now must be wary of trusting their servants' lives in lifts which they thought unsafe for passenger purposes. He had never known of a case where an accident was prevented by a safety catch. Geared lifts generally broke at some distant part of the mechanism and left some residual strain on the rope or chain which prevented the safety gear from coming into play. For efficiencies of 76 to 80 per cent. were mentioned, but these must be with very slow speeds; for high speed and high efficiency very large pipes must be used. Mr. Gregory was surprised to find from the remarks of Mr. Davis that the safety air cushion well was so much in use in the States He knew of one case where the well was not made stron enough, as was found by some friends of his who tried it experimentally, and "were taken out to the nearest hospita for which they had any preference." This showed that the well needs to be strongly made.
Mr. Head referred to steam cylinder lifts used in foundries, and said that the objection to them was that if by any cause the lift stuck at one part of the stroke the results, and a case and the lift ran away, perhaps with bad down. Steam had been turned off, and presently the lift dropped with a crash. Such a thing, he said, could not happen with water. He then described a blast furnace lift, with a separate engine and rope gear, used by Messrs, Samuelson and Co., double ropes being used.

Mr . Ellington replied to the discussion, and the Pre sident summed it up in remarks which, briefly, were strene effect that most accidents were due to insufficien His experience with in them, and lifts were now being made with a chain for lifting the load, and having a wire rope running alongside over separate pulleys, the wire rope being attached to the safety apparatus-an arrangement which gave additiona safety. A paper was then read "On Appliances for Work Gorman. It was announced by the Pr, by Mr. W. A summer meeting of the Institution will take place in Leeds, commencing on Tuesday, the 15th August

HYD.RAULIC LIFTS FOR PASSENGERSAND GOOD.S.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addressed to the public, and intended for in insertion in in inquiry column, must, in an all
cases, be accompanied by a large envelope legibly directed by the uriter to himself, and bearing a 1 d. postage stamp, in order the writier to himself and bearing a d. postage stamp, in order that
ansvers received by us may be forwarded to their destination.
No notice vill be taken of communications which do not comply with these instructions.
* We cannot undertake to return dravings or manuscripts; we $*_{*}^{*}$ must therefore request correspondents to keep copies. contarning questions, must be acoompanied by the name and
address of the writer, ot necessarily for pubbication, mut as a
proof of good faith. No notice whatever will be taken of anonymous communications
R. J. ..- -We cannot do better. than advise you to read the cheap and
excellent tittle woork by Box "On Mill Gearing," pubbished by Messrs. Spon, sof Clarining-crosos.
Stown Sivivo Mic

Rope driving gear.
 minute, the horizontal distanct.
and the ortical distance oft.
Huddersfield, May

maignens hydraulic Jack

a great plate mill.

SCREW PROPELLERS.

IDD'S WATERELEVATOR

 [Mr. Kidd has interpreted our meaning accurately.-ED. E.]
 It credit ocour, an extra chargrgo of two shilitings and sixpence per annum woill
be made. The ExviskEr is registered for transmission abroad. Coth cases for binding The Enoinger Volume, price 2s. 6d. each

 increased rates.
Remittance
by
Remittance by Post-oftce Order. - Australia, Belgium, Brasil, British
Colubhin, British Guina, Cannda, Cate of Good Hope Denmark,
Eyypt, France, Germany, Gibraltar, Ital , Malt

 Mauritius, Sandwich I Isess, \&2 sis.

ents cannot be inserted unless Delivered b
oclock on Thurssay Evening in each Week.

MEETINGS NEXT WEEK.

report of the Council and the financial statement for 1881 will be pre-
sented.
Sorutioneers will b beapointed to examine the voting list. The
The

 John Perry.

 Waste-S S
ander
preside.

THE ENGINEER.

MAY 5, 1882.

plough and plough fitting marks.

A CASE of very considerable importance to agricultura implement makers, great and small, has been decided last week by the judgment given by Vice-Chancellor Bacon in It is a decision under the law of trade marks and concerns agricultural engineers and implement makers in particular, and one which must affect the procedure of many loca founders who now manufacture wearing parts to fit ploughs by celebrated makers, and marked with the marks of these
makers. Messrs. Ransomes, Head, and Jefferies were the plaintiffs, and the defendants ad Joslin, ironmongers and founders, Hadleigh. The de-
fendants had been, like many others, in the habit of fendants had been, like many others, in the habit of
making the shares, lands or slades, rests, and other wear ing parts to fit various ploughs made by Messrs. Ransomes, Head, and Jeffries, and they had cast upon or in
these parts, the letters and figures which the plaintiffs these parts, the letters and figures which the plaintiffis
had from the first manufacture of these ploughs used to had from the first manufacture of these ploughs used to
designate and distinguish them as their manufacture and from each other. The various marks so adopted by the plaintiffs had become their trade marks, and they had a significance which does not attach to all trade marks, as
they not only served as systematic marks by which the ploughs and their fittings and duplicate fittings could always be distinguished, but they indicated the form purpose, and date of origin of these ploughs. In the case
just decided, the well-known Newcastle series of ploughs and theirrmarks were typically the ground of action, themark being "R N D", "RNE," "R ND H," R N F," "W R N E, and so on." "R" signifying to the makers the name Ran-
some, " N " Neweastle, "W" wood, and the "D," "E" "F," some, "N" Newcastle, " W" wood, and the "D," "E," F, ploughs marked with these letters were designed, as for instance, for light land, for heavy land, for general purposes for deep ploughing, and so on. This particular series of ploughs, five in number, came out at the Newcastle meet-
ing of the Royal Agricultural Society in 1864, and there won four out of the six first prizes offered by the Society and in 1868 they won a prize in each of the seven divisions in which prizes were given; and besides these prizes
they have taken a great many elsewhere. These facts alone gave the ploughs great celebrity amongst all vendors and users of agricultural implements, and to speak
of an "R N F" plough was to speak of the ploughs made at the Orwell Works. This has been the case with other of the Ipswich ploughs, and notably so for nearly forty
years of the remarkably successful " Y L" plough. The marks thus not only gave indication of the particular order of the ploughs and of the marks of their
fittings, but indicated also the name of the makers. They are thus distinctly trade marks, and in their various combinations were registered in 1877 as such under
the Trade Marks Registration Act of 1875 . At various the Trade Marks Registration Act of 1875 . At various
times the plaintiffs had warned agricultural implement makers and founders that these marks were their property under the Act, and had in their catalogues warned farmers against purchasing wearing parts not made by them, as
they could not be responsible for their quality or accuracy of fitting. The defendsints, however, continued to make these parts and to mark them with the some marks as those used by the plaintiffs, and thus farmers could not tell whether they obtained the plaintiffs' or other makes of parts. The plaintiffs alleged that owing to the shares, or shares and other parts made of improperly selected metal, but still having their marks, their reputation had been damaged, and they, therefore,
for these reasons and those already referred to brought for these reasons and those already referred to brought
the action "to restrain the defendants, their agents, the action "to restrain the defendants, their agents,
servants, and workmen, from making, or causing to be made, any ploughs or parts of ploughs marked with combinations of the letters " R N F ," or with any other letters figures, signs, or marks which are or purport to represent that they are made by the plaintiffs, and from selling any ploughs or parts of ploughs marked with any such combinations of letters, except such as have been made by the plaintiffs; and also from in any manner imitating or the defendants the said combinations of letters, or any letters or figures or marks used by the plaintiffs upon ploughs or parts of ploughs made by the plaintiffs, and
from parting with out of the defend from parting with out of the defendants possession any
ploughs or parts of ploughs made by the defendants which have thereon such combinations of letters and figures or arks as aforesaid.'
The defendants contended that the marks were not trade marks, and that they only signified that a plough was of a particular pattern and shape, and not that it was contended that wearing parts maker. They further binations of letters had for years been openly and with full knowledge of the plaintiffs manufactured and sold in
various parts of the country. The defendants also moved to rectify the register of trade marks by striking out those trade marks which they were said to have infringed as being publici juris and improperly registered. The action bumerous affid were heard together, and the evidence and Mr . Howard and many other well-known manufacturers of ploughs were examined, and at the conclusion of the trial, which, as we have said, occupied ten days, the ViceChancellor reserved judgment.
This was given on Saturday last, and although the question to be determined was simply whether or not the plaintiffs were entitled to the exclusive use of the combinations of letters which they have so long used, and now claimed as their trade mark, it was not a simple matter to determine, and the Vice-Chancellor's judgment, which glanced over the whole of the main features of the very extensive evidence, would occupy nearly two of our pages
if we could spare the space. He considered that the plaintiffs had proved that they always used these marks as trade marks, and had established their right to these combinations of letters as their trade marks. He therefore ruled that they were entitled to the relief they sought from the defendants, and with costs against them. The motion he also dismissed with costs to be paid by defendants, whom he also ruled should
Part of the evidence for the defendants was meant to show that the plaintiffs had abandoned their right or acquiesced in their infringement; but this broke down because it was proved that the plaintiffs had constantly in their catalogues asserted it and had previously obtained an injunction against a founder for the same infringement. Another
point of their evidence was to show that the plaintiffs had fraudulently attached the word "patent" to their ploughs. This the defendants urged with the intention of disentitling the plaintiffs from the relief which they might only bise have obtained ; but it was shown that the word had patent used on parts of ploughs which were the subject of shares, as Robert Ransome had, in 1803, received grants of letters patent for making cast iron chilled shares as now generally made. It was also argued on the part of the defendants that to grant the plaintifffs the relief they claimed would be to put a stop to the business of the defendants and other manufacturers who had for a long time been in the habit of doing that of which the plaintiffs complained In remarking upon this part of the defence, his lordship said :- "No doubt if this were the deserve serioct of granting the relief sought it would ground for this as for any other of the topics of the defence; for if it be true, as one of the defendants had said, that some farmers or purchasers of parts of ploughs prefer those made by the defendants to those of the customers, while as to all the rest of the world they may make and sell as many parts of ploughs as they can, of such material and of such weight as they think fit, with no other restriction than that they must not for the future put upon their goods the marks by which the plaintiffts' manufacture is distinguished and known by the
The judgment in this case thus determines that any founders may make the wearing parts for the ploughs of use the distinctive mark, letters, used by the manufacturer of the ploughs, and also, of course, provided that the parts are not the subject of an unexpired patent.
the ventilation of the st. gothard tunnel.
While the theoretical aspect of the problem of ventilating long tunnels has been fully investigated, there is little because the number of really long tunnels requiring specia arrangements for ventilating them is comparatively few. The subject possesses a special interest just now while the Channel tunnel is under consideration. The St. Gothard annel, short as is the time during which it has been is so much needed of the practical in that the revilts obtained are anything but encouraging for Sir Edward Watkin M. Bridel encor chief to St Gotha Railway Company, has just made public in the Reve Génerale des Chemins de fer, a report on the working of the tunnel, to which we shall come in a moment; but in the first instance it will be well to refresh our readers' memory concerning the tunnel, and the railway of which it forms the most important part. There are Railway proper some tuncos 2000 yart Railway proper, some of them over 2000 yards long. The
Oelberg tunnel is 6400 ft . long. Between Erstfield and Geeschenen there are sixteen tunnels, $4 \frac{1}{2}$ miles in combined length, in a distance of twenty-eight miles. In the Wasen district the line rises 446 ft . by means of three "spiral" tunnels - that is to say, curved tunnels-respectively $4800 \mathrm{ft} ., 3375 \mathrm{ft}$., and 3590 ft . long. The radius of curvatur is 1312 ft ., and the incline averages about 1 in 42 . The great tunnel passes through the Alps between Goeschenen the railways of Airolo on the south. It serves to total length is 9.2585 miles. The line rises to a summit within the tumel 190 yards long which is about heve above the level of the seng 47.46 is Goeschenen, and 8.09 yards. gradient is at the rate of 1 in 172 and the southern th rate of 1 in 1000. This system of construction was adopted for the sake of drainae and the conditions are vis lar to those which must abtain in thamel tund the same reasons. The conditions are, however, unfavourable to ventilation.
Returning now to M. Bridel's report we find that the traftic through the tunnel is at present very small, because the lines giving access to it are not fully opened. It is worked at present by two 12 -ton tank engines, intended
ultimately to work the branch line from Cadenazzo to

Locarno, which is $7 \frac{1}{2}$ miles long and has a ruling gradient of 1 in 528 . These two engines are found quite powerful enough for the work at present being done. They take
four trains each way through the tunnel during each twenty-four hours, and the ventilation is found to be very good. M. Bridel estimates the number of travellers for January as 3277 , for February as 4300 , and for March as 9100 , and that about thirty trains per day will traverse the tunnel, and he hopes that the work can be done without closed up during the time the tunnel is being run through. This seems to be hoping a great deal, for it is scarcely possible that an engine can haula heavypassenger train for nine miles
without drawing breath, if we may use the words. That M. Bridel is not too confident that he will realise his hopes is, however, proved by the fact that he is casting about for
a substitute for the ordinary engine. He has tried pressed air engine, the capacity of which was 7.6 cubic metres, while that of its tender was 18.15 cubic metres. The pressure was 180 lb . This sufficed to take a train of
50 tons a distance of but little over a mile. Here a reservoir 50 tons a distance of but little over a mile. Here a reservoir
was provided with a capacity of 60 cubic metres. The pressure was restored by drawing from this reservoir, and
the engine then ran another mile, when a second rese permitted a total distance of about 6000 yards to be traversed. It is quite evident that such mechanism as this will not answer. A much higher pressure must be carried, but then the weight of the engine and its tender must be much increased. M. Bridel has practically rejected com-
pressed air, and turned his attention to electricity. He pressed air, and turned his attention to electricity. He
has communicated with Messrs. Siemens, and after a long correspondence these gentlemen suggest the erection within the tunnel of a copper rod or rail about lin. in diameter, on
which shall run a little chariot, connected with the electrical which shall run a little chariot, connected with the electrical
motor carriage or dynamo engine. Through this copper rod a motor carriage or dynamo engine. Through this copper rod a
currentis to besent obtained from an installation of dynamos worked by turbines supplied with water by the mountain
torrents. The rails will make the return circuit. The torrents. The rails will make the return circuit. The
little chariot will, of course, be the contact maker on the little chariot will, of course, be the contact maker on the
positive side. The arrangement is, in short, very similar o that employed in the Berlin Electric Railway. Each dynamo engine is to be of about 100 indicated horse-power,
and two, three, or more are to be attached to each train, as and two, three, or more are to be attached to each train, as
required. Messrs. Siemens believe that they can guarantee required. Messrs. Siemens believe that they can guarantee
a return of 50 per cent. of the whole power expended in a return of 50 per cent. of the whole power expended in
useful effect. The length in the tunnel is to be 15 kilos., or $9 \cdot 3$ miles, the copper rod is to weigh $4 \cdot 25$ kilos. per metre, $9 \cdot 3$ miles, the copper rod is to weigh $4 \cdot 25$ kilos. per metre, In case the scheme does not succeed, the loss will amount to 80,000f. only, Messrs. Siemens, we presume, taking the plant off the hands of the railway company.
M. Bridel holds that the work can be carried on with ordinary locomotives until the system of haulage by elec-
tricity has been brought to perfection, or at least reduced tricity has been brought to perfection, or at least reduced
into a thoroughly practical shape. In the tunnels to which we have already referred, the difficulty of providing ventilation will, it is stated, be even greater than
in the long tunnel, because in them two engines must in the long tunnel, because in them two engines must
always be used, one at each end of the train, and the nclines being very heavy, the engines will be worked to full power. The drivers of the engines at the tail end of the trains will be worst off, and M. Bridel will adopt a plan
in daily use on other continental lines, and fit his engines with reservoirs of pure air, from which the drivers and stokers will draw breath through flexible pipes and mouthpieces. M. Bridel states that in winter the tunnel is filled with a dense fog. The air entering at one opening
and moving slowly through the tunnel at first becomes heated, but it rapidly cools down again as it nears the exit. Moisture is precipitated, as we have said, in the form of a dense cloud; and the fog, M. Bridel believes, will
always be present in winter, no matter what mode of locomotion is provided.
Here, then
Here, then, we find that in practice a tunnel of over nine miles long can be readily worked at the rate of four
trains a day without any inconvenience, but when this number is increased to thirty trains per day the engineer-in-chief anticipates trouble. But thirty trains per day is little more than one per hour, and bearing in mind that
the St. Gothard tunnel is not half the length of that to the St. Gothard tunnel is not half the length of that to
be made under the Channel, and that it is placed high up in the mountains, where strong breezes will blow across or into its mouths, so giving it a chance of being naturally
ventilated, it will be seen that all the conditions are very much more favourable than those which can obtain in the case of the low-lying Channel tunnel. The experience acquired in the Mont Cenis tunnel again is very unfavour-
able. M. Kossuth, in the Annales des Mines, has published a long paper on the ventilation of this tunnel, in which he suggests the utilisation of the abundant water power
in driving ventilating mechanism. M. Pessel's views on the subject we have referred to in our first impression for this year. On the Paris, Lyons, and Mediterranean Railway the ventilation in the long tunnels is so bad that the engines working in them are all fitted with Rouquairolle's air reservoir apparatus for the protection of the drivers
and firemen. All the practical evidence to be obtained ooes to the same point, namely, that the Channel tunnel could not possibly be worked with ordinary locomotives.
But all the world knows that no attempt has been made to prove that other means of working it at moderate cost are ready to hand. The choice is limited ; we have electricity
and compressed air. While the work of boring is suspended in obedience to the wishes of Parliament, Sir Edward Watkin would do well to expend some of his surplus energy in explaining definitely how the line is to be worked it should be made.

estimating the weights of girders,

THE estimation of the approximate weight of a framed struc ture from a strain diagram of the structure assumed in the first rities on bridge strains during the past few monthe, and since Mr. Am Ende's paper on the subject to which we referred in
uri impression of the 3rd of June, 1881, p. 411, Mr. Stoney has returned to the subject, and MII. J. H. W. Buck has sent a short
paper to the Institution of Civil Engineers, which has been
printed with the papers that were not read. After reviewing th methods of Mr. W. Anderson, Professor Unwin, Mr. B. Baker and Mr. B. B. Stoney, he comes to the conclusion that the
formula proposed by either of these are very restricted in their cope. Instead, therefore, of offering formule for approximatin in the first instance to the weight of a bridge for given work, and system by which during the process of designing the structure it may be given the necessary strength in its members yy success
sive accretions. His formula is based upon the following
considerations.--Let the fixed distributed considerations:-Let the fixed distributed load $=W$ and $W Q$, the weight of a girder of the proposed type of the strength required
to carry W , but not its own weight in addition. Making $a=\mathrm{W} Q$ then the total weight of a girder to carry W and its own weight $\frac{\mathrm{W} a}{\mathrm{~W}-a}$. Now let $b=$ the weight of the additional material necessary to enable the girder to carry the moving load, but not the weight b in addition, then $\frac{(\mathrm{W}+b) a}{\mathrm{~W}-a}=$ the weight of a girde of the strength required to carry $W+b$ and its own weight i addition. The increment b, hitherto only considered as part of
the fixed load, has now to be considered in respect of the moving load. The total weight thus becomes $\frac{W}{W}(a+b)$. Now, neglect
ing some of the steps, we have the following application when of a girder of the strength necessary to carry the fixed load W but not its own weight in addition, and note the sectional area of each member. Let the weight of this girder=a. (2) Multiply the sectional area of each member by W . When there i a moving load or wind pressure acting longitudinally, as in the dimensions roof principal of large dimensions:-(1) Find the dimensions as in the abore case, including in a bridge its propor
tion of the floor, lateral bracing rails, \&ce. (2) Multiply the sectional area of each member by $\frac{\bar{W}-a}{}$. (3) Find the additiona material required in each member to enable the girder to carry
the moving load-in the moving load-in a roof to resist the action of the wind-and
also in any new members which may be required for the same purpose, and note the sectional area of each member. Let the (4) Multiply the sectional area of every member, except the new (a) the additional assigning to each member the increment of sectional area due to it, and inserting the new members, if any. For small structures
(1) Find the dimensions of each part of required to carry the moving load, but not its own weight in addition, and note the sectional area of each member. Let the weight of this girder $=b-$ merely note this. (2) Find the dimensions of each part of a girder of the strength required to carry
$\mathrm{W}+b$, but not its own weight in addition. Let the weight of $\mathrm{W}+b$, but not its own weight in addition. Let the weight of
this girder $=c$. (3) Multiply the sectional area of each member as found in (2) by $\frac{\mathrm{W}+b}{(\mathrm{~W}+b)-c}$. (4) Add the material found in (1), allotting to each member the increment of sectional area
due to it. If (1) has more members than (2), insert the additional members.

NORTHERN MINERAL PROPERTIES,

The sale of the Rosedale estate, with its vast and valuable beds of minerals, is another indication of the revival of the mining of eight years ago many of the companies that had been formed idle for years. It is one of the greatest of the proofs of the revival that one by one these properties are now finding purchasers.
During the last three weeks the commencement or sale of three such concerns has beeneens commencement or sale of three pool Blast Furnaces, the recommencement of the North Yorkshir Ironworks, and the sale now of the great mineral estate of Rosedale Abbey. Indeed, with perhaps three comparatively small excep-
tions, it may be ssid that the whole of the collapsed estates and works have found purchasers, and it is evident that they have works save ound purchasers, and it is evident that they have
been sold at prices that must make their profitable working much more sure than those prices at which nine years ago some of the companies purchased them. At the same time in many the property an become productive, though there is no doubt that as the demand increases there will be preparations
to make them increase the output of mineral and of metal. It to make them increase the output of mineral and of metal. It
remains to be seen how far that demand will rise, and how far the conditions of price will be altered so as to allow of the extension of the output. Mure and more the metal trades seem and the forges which orest, seem to be likely to have a longer lease of prosperity than others. As prices rise, of course, furnaces that have been idle can be future a consideration that seems likely to much affect the output of the mines or the iron-producing establishments. But the North is increasingly becoming the great reservoir from which is drawn a very large proportion of the crude iron of the world,
and hence its mineral and metallurgical and hence its mineral and metallurgical properties will be that have been yielding such very large outputs for the past thirty years must at least be approaching nearer exnaustion, and that are now opened out-mines such as those to the upon those earliest opened, as well as others such as Rosedale. It is true that in some of what are called old mines there is ironstone to yield years of output, but at the same time the fact that they are now considered old bespeaks the time when they will cease to produce, and gives to the mines that have long been idle a greater value
their resources

LITERATURE

The Preservation of Life and Property from Fire. By J. H.
Hesthman. London : Simpkin, Marshall, and Co., 1882 . The author of this little volume has added another to the numerous branches of the engineering profession, namely, that of a "fire engineer." Most engineers of considerable experience in the construction of buildings
would be considered competent to advise on the means to would be considered competent to advise on the means to
be adopted to prevent loss of life and property from fire, but Mr. Heathman's book shows that on this subject, as on others, the engineer who devotes his attention almost exclusively to one thing is very likely to acquire information and practical experience not to be obtained other-
wise even by the most competent men. Bis book may be
described as a collection of observations or hints on apparently every possible cause and means of preventing fire; the modes of extinguishing fire; and on the precauhousehol should be taken by engineers and architects, fires as far as possible, or to reduce the loss of life and property when fires do break out. It is thus a book which architects, engineers, and builders should read, in order that many of the hints which could be most inexpensively carried out when designing new buildings should be known to them, and which property owners and householders
should read, so as to be conversant with the means of should read, so as to be conversant with the means of tions to which attention should be given generally in order to reduce the risk of fire. Section II. is "concerning the preservation of life from fire, aiding endangered persons to escape from burning buildings." Section III. is on "the prevention of outbreaks of fire from resulting in extensive conflagrations." Section IV. contains "useful information concerning artificial illuminating agents and the action of heat." An appendix consists of a general code of instruc-保 flled up by the wner of the book wath the given to be the nearest fire engine station, salvage corps station, fire escape, water hospital. Even this last is a useful part of the book, for as the binding is a bright red, and the title is printed in large letters on the back, it is a work easily to be distinguished from others, so that with this page well marked and properly filled up, loss of time in finding the required addresses in case of fire should be avoided. In the section dealing with the use of iron in the construction of buildngs there is a collection of useful information or fom using light i apon, prevent anyone tected by plaster, brickwork, or concrete from the actio f fire. It is often remarked that it is the fireproof buildings that are burnt to the ground, while those which do not pretend to be fireproof often come out of a fire with but comparatively small damage. This has arisen from the fact that comparatively little heating will so decrease the strength of insufficiently covered iron joists and beams or bressummers, that soon after a fire has fairly broken out the floors and other parts fall down. Some figures are given by the author showing the loss of transverse strength of ast and wrought iron when heated. Readers must observe that the temperatures are given in Centigrade degrees, which, perhaps, is a mistake, as many of those to whom the book appeals are not familiarly acquainted with this scale. It is also a mistake to say that wrought iron plates attain their maximum strength at 16 deg., while with wrought iron rods the temperature is 160 deg. with out some qualification, for the statement is obviousl untrue, unless the plates are subject to buckling strain appens to be childings, but it should ee so stated generaise the remark is misleading. Anothe reason for the easy failure of modern so-called fire-proo buildings is the fact that so many or them are fitted with shafts for lifts, which act as furnace flues for rapidly heat ing the joists and other ionwork about then, Some use ful remarks are made concerning these lift shafts and openings. The author seems to agree with Captain Shaw in his remarks concerning the use of timber and iron beams, and says that heavy timber, especially hard timber is probably moretrustworthy in case of fire than iron, unles the latter is well protected. Heavy wood beams are no easily ignited, and even when ignited take a long time to burn away so as to be dangerously weakened, especially which one and its application is described, while they are not injured by water as is cast iron.

The Naval Architects' and Shripbuilders' Pocket-book of Rules, Sormule, Edition. London : Crosby Lockwood and Co.
Molesworth's pocket-book of engineering formule is so well known that if we say that this new pocket-book is to the naval architect and shipbuilder what the former to the engineer, we shall probably sufficiently indicate it or elementary character than M more of and and in the latter part enginee ships. and a useful vocabulary of technical terms used in shipbuilding in French and English. It is a book which those for whom it particularly compiled.

BOOKS RECEIVED

ol. 1xvii. London: The Institution. 1882. Tivil Engineers. Modern Metrology: A Manual of the Metrical Units and Sys. 1882
ces, and Administration subjects conneected with shipbuil Cing for the purposes of war
sur London: Longmans, Green and Co. 1882.
A Treatise on Rivers and Canals
and the Desion, Constin Improvement of Rivers, and the Design, Construction, and Develop-
ment of Canals. By Leveson Francis Vernon-Harcourt, M.I.C.E.
Vol. i. Text, Vol. $i \mathrm{i}$. Plates. Oxford: The Clarendon Press. 1882. Marine Steam Engine: A Treatise for the use of Engineering Students and Officersof the Royal Nacy. By Richard Sennett, A Treatise on Mathematics as applied to the Constructive Arts Crosby Lockwood and Co. 1882
A. Practical Treatise on the Joints Mrade and Used by Builders.

Worked Examination Questions in Plane Geometrical Drawing for the Use of Candidates for the Royal Military Academy, sic. By
F. Edward Hulme, F.L.S., F.S.A. London: Longmans, Green
End Eo. 1882 . and Co. 1882
A. Treatise on Elementary Trigonometry. By Rev. J. B. Lock,
M.A. London : Macmillan and Co. 1882. An Elemontary Treatise on Conic Lections. By Charles Smith,
M.A. London: Macmillan and Co. 1882. Scheme for Amending the Drainage of Portsmouth on the "Shone Pneumatic Sewerage System." By Isaac Sl
Willis. ,.E. London: E. and F. N. Spon.
Transations of the Nation Transactions of the National Association for the Promotion of
Social Science. Dublin Meeting, 1881. London: Longmans, Green, and Co.
Steam Heating for Buildings, or Hints to Steam Fitters. By W.
Bald win Second Edition. London: E. and F. N. Spon . J. Bald win. Seond Edition. London: E. and F. N. Spon. 1882 .
The Iron, Stel, and Allied Trades in 1881. A nnul Report to
The Members of the British Iron Trade Association. London : E. the Members, of the Bri
and F. N. Spon. 1822.
City of London Dire
and City of Sondon Dircctory for 1882. London : Messrs. W. H.
Ond L. Colingridge. City Preas Office. the Decision of the U.S.
Re-issucd Patents : Comments on the

 By Thos. Dixon. Bradford: J. Brown.
Hand und Huelfshuch fuer Metallarbeiter. I. Lieferung. Vienna: A. Hartleben.
Der Praktische Eisen und Eisenwaarenkeimer. By Von Eduard Der Praktische Eisen und Eisen
Taping. Viena. A. Hartleben.
Hydrompaphical Surverinu: : a D
Hydrographical Surveying: a a Description of the Means Employed
in Constructing Marine Charts. By Captain W. J. L. Wharton, in Constructing Marine Charts. By Captain
R.N. London: John Murray and Co 1882.
Hint for Investors: an Explanation of the Mode of Transacting
Business on the Stoce Exchange. By W. M. Playford. London:
Crosby Lockwood and Co. 1882.

LEGAL INTELLIGENCE.

HIGH COURT OF JUSTICE.-CHANCERY DIVISION. (Before Mr: Justior Fry.)

Thrs is an action brought by the United Telephone Company,
Limited, against Messrs. Harrison, Cox-Walker, and Co., whic carry on business as telegraph engineers and manufacturers at
Darlington, to restrain them from infringing certain letters patent now belonging to the plaintiff company. The first of these patents is that granted to Wm. Morgan-Brown as a communication from
Alex. Graham Bell, dated the 9th December, 1876 , No. 4765
This
This patent was dealt with by disclat
as so amended claims as follows :
(1) The method herein described of producing or transmitting musical notes by means of undulatory currents of electricity, whereby two or more telegraphic signals or messages can be trans-
mitted simultaneously over a single circuit in the same or opposite directions.
(2) In a system of multiple telegraphy wherein undulatory cur-
rents of electricity are employed, the employment of receiving rents of electricity are employed, the employment of receiving
instrunants, the armatures of which are tuned to definite pitches
so as to vibrate only when a sound of like pitch is transmitted substantially as described.
(3) A system of telegraphy in which the receiver is set in vibra-
tion by the employment of undulatory currents of electricity, substantially as set forth.
(4) The combination, substantially as set forth, of a permanent magnet or other body capable of inductive action with a closed
circuit, so that the vibration of the one shall occasion electrical undulations in the other or in itself, and this I claim whether the permanent magnet be ses in vibration in the neighbourhood of the
conducting wire forming the circuit, or whether the conducting conducting wire forming the circuit, or whether the conducting
wire be set in vibration in the neighbourhood of the permanent wire be set in vibration in the neighbourhood of the permanent
magnet, or whether the conducting wire and the permanent neighbourhood.
current by the vibration or motion of bodies capable of inductive action, or by the vibration or motion of the conducting wire itself in the neighbourhood of such bodies, as set forth
circuit by gradually increasing and diminishing the resistance of the circuit, or by yradually increasing and diminishing the power
of the battery as set forth. of the battery, as set forth.
(7) The method of transm
(7) The method of transmitting vocal or other sounds electrically
by causing the intensity of an electrical current by causing the intensity of an electrical current to vary in a
manner proportional to the variations of density produced in the air by the siad sounds.
(8) The method of tr
(8) The method of transmitting vocal or other sounds electrically
by causing the intensity and polarity of an electrical current to vary in a manner proportional to to the velocity and and the direction of (9) The union upon and by means of an electric circuit of two more telephones constructed for operation substantially as
described, so that if the plate armature of any one of the said instruments be moved in any manner the armatures of all the
other telephones upon the same circuit will be moved in like manner, and if the transmitting armature be moved or vibrated by the armature of the ofher telephones upon the circuit.
(10) In a system of electric telegraph or telephony, consisting of
transmitting and receiving instruments united upo an transmitting and receiving instruments united upon an electric
circuit, cloimm the production in the armature of each receiving nstrument of any given motion by subjecting said armature to an
attraction varying in intensity, however such variation may be pro duced in the magnet, and hence I claim the production of any given sound or sounds from the armature of the receiving instru-
ment by subjecting said armature to an attraction varying in ment by subjecting said armature to an attraction varying in,
intensity yin such manner as to throw the armature into that form vibration that characterises the given sound or sounds.
(11) The combination with an electro-mamet of
or steel or other material capable of inductive action which can be thrown into vibration by the movement of surrounding air, or by (12) In combination with.
of adjustine means herein described or their mechanical equivalents ouching they may be set as closely together as possible. (13) In an electric telephone the combination with the plate of a
magnet having coils upon the end or ends of the magnet nearest magnet having ciils upon the end or
lescribed, of a sounding box, substantially as herein shown and
(15) In combination with an electric telephone, as herein
(lescribed, the employment of a speaking or hearing tube for onLescribed, the employment of a speaking or hearing tube for con-
vering sounds to or from the telephone, substantially as set forth.
(16) In an electric telephone the combination (16) In an electric telephone the combination with a permanent magnet and plate armature of a sort iron
core for the coil, substantially as described.
(17) In a system of telegraphy in which
(17) In a system of telegraphy in which the vibrating receiver
operates the circuit breaker of a local circuit independent of said operates the circuit breaker of a local circuit independent of said
receiver, as described, a vibratory circuit breaker for said local circuit, consisting of a light spring arm, whose free end overlaps the
reed or vibrating portion of the receiver in combination with a portion of the receiver in combination with a contact tip or point
in said circuit with which the spring arm makes and breaks conact, substantially as set forth.
(18) The autograph tel
(18) The autograph telegraph comprising the combination of a
series of transmiters and transmitting bristles or wires, a single
main wie recoivers taned to a pitch to vibrate in unison with the succession of electric tuned to a pitch to vibrate in unison with the succession of electric
impulses transmitted from their respeetive transmitters, vibratory
circuit-breakers, one for each receiver, and a local circuit and
receiving bristle for each vibratory circuit-breaker, the series o bristles resting upon prepared paper
substantially as shown and described.
This patent was in 24 th September, 1878 , assigned to the Tele August, 1880 , assigned the patent to the United Company, the present plaintifif. The next patent sued upon is one dated the
30 th July, 1877, No. 2909, granted to Thos. Alva Edison. This wain on 23rd March, 1881. The patent was assigned to the
again
Edison Telephone Company. Limited, on the 2nd Aucust, 1879, and by that company to the plaintiiff company on the 12th July, 1880 The claim of the inventor as set forth in the specification is "In combination with a diaphragm or tympan of electric tension regu the resistance in a closed circuit, substantially as set forth in the said specification
The particular breaches complained of was the salc to the Lan the H anni Yorsnire haw trandy telephones, know a reecivers. The defendants by their defence dispute the validity o tion, as to the former patent, by prior letters patent

 America,
country before the date of Morgan-Brown's patent, by publication
in the English Mechanic, of 11th August, 1876 : Nature, of September, 1876 ; in a paparer on "Researches in Teelephony," by A. G.
Bell, published in the proceedings of the American Academy of Arts
 Telegraphen Vereins; in the Report on the Philadelphia Exhibi-
tion for 1876, pages 130, 131; the New York Tribune, of 9 th November, 1876 ; and by the use by Sir W. Thomson, at the
meeting of the British Association in August, 1876 ; and as to patent granted to Edison in America on 12th August, 1873, No

 "Electricity," pp. 257, 258; by the patent No. 158,787, 19th Jan-
uary, 1875, granted in Amerioa to Edison; in Sprague's "Treatise
on Electricity," at p. 104 ; and by the manufacture of Reis's tele The infringing teldephones are alleged to infringe Bell's patent in
The in mitter. Mr. Aston, Q.C., Mr. Webster, Q.C., Mr. Cozens Hardy, Q.C.
and Mr. Moulton were for the plaintiff company, and Mr. J. Pearhead for the defendants.
The case was opened at considerable length by Mr. Aston, who
gave an elaborate history of the invention, and is still proceeding gave an elaborate history of the invention, and is still proceeding
having reached the stage of the defendant's opening. We will suffice to give a general outline of the evidence as given o behalf of the plaintiff company
Shir Friderick Branywerl, the plaintiffis' first witness, stated that Bell's instrument works well in quiet places, with no grea,
disturbing influence, at a distance of 300 or 400 yards. Edison' disturbing in suence, at ats Bell's and adapts the principle of the microphone, and actually can make an instrument speak at phenomenon which Hughes in his microphone and Edison in hi telephone have turned to account is that bodies which have feebl
electric conducting power have sensibly increased or diminishe econducting power according as they are more or less under pressure. f the Edison transmitter and the Bell receiver. The Edison transmitter has in the first place a "tympan," as
he describes it, of mica, a non-conducting substance, which is mechanically connected with a stratum of lamp-black called current; thus, every vibration of the mica disc affects the pressure on the stratum of lamp-black and causes an undulatory alteration
in the strength of the voltaic current, corresponding exactly to the in the strength of the voltaic current, corresponding exactly to the
air vibrations of speech in the same way as in Bell's instrument only intensified. It will, no doubt, be contended by the defendant on the Edison part of the case that the Hecifictionsmitter
which they use of the material used for the "tension regulator." In Hunning"'
transmitter the material used is fine coke in minute hard lumps; transmitter the material used is fine coke in minute hard lumps;
in Edison's instrument lamp-black is put in compressed into a lozenge. Upon the Bell part of the case, on the contrary, it would
appear that the main defence relied upon is that by exhibiting
an instrument given him ty Pell -at the meetive the British Association at Glasgow in the autumn of 1876, and describing it in his inaugural address, Sir
William Thompson published the invention so as to avoid a subse quent patent. In that instrument the receiver and transmitter and receiver in their perfected form. The tympanum of the transmitter was a membrane of goldbeater's skin, with a piece of watch-
spring attached to give magnetic action. In place of a tympanum at the receiving end was a metal disc, free except at one part; and
 free plate or "tongue" at the other. Sir F. Bramwell, Sir nesses, all say that the membranous tympanum was defective in being subject to the influence of moisture and tempera-
ture, and therefore requiring frequent adjustment, and that the free "tongue" was defective as having a period of vibration of its
own which would with the sound of the voice. The plaintiffs' witnesses point out
that the systems alleged by the defendants to be anticipations all depend on what is called the make and break system, and are capable of transmitting pitch but not quality. A tune can be
played on an instrument at the listener's end of the circuit by an operator at the
articulate articulate speech. Sir William Thomson, Dr. Hopkinson, F.R.S.,
Mr. Imray, Mr. Joonson (Mr. Eidsonss representative), and Mr.
Hoit (a formal winess) have also been examined.

SOCIETY OF ENGINEERS
the utilisation of tidal energy.
Ar a meeting of the Society of Engineers, held on Monday even
ng last in the Society's hall, Victoria-street, Westminster Jabez Church, president, in the chair, a paper, was read on "The
Utilisation of Tidal Energy," by Mr. Arthur Oates. The author commenced by stating that the recent great advance in the appli-
cation of electricity to the storage and transmission of mechanical py the employment attention to be diroc ehanomising our coal with which nature has endowed us. The most important of these
is the tide, especially to this country, with ins is the tide, especially to this country, with its extensive seaboard
and comparatively trifing amount of inland water-power, and where the wind is proverbially variable, for on the tides we may
rely for the supply of a vast and unfailing amount of energy
through every season. After
to render us independent of all other sources, but dismisses from
consideration the great and extensive horizontal motions of tide Water, as the vertical motions, or rise and fall, could be more economically utilised. He then proceeded to explain how the energy
of the rise and fall over a given area is calculated, and
gave a table gave a table which shor a given aproximately is calculated, power and
value of the tidal energy derivable from one square mile of
ver sea at six different ranges, viz, every 5 ft. from five to thirty, which
will include most of will include most of those which occur on our coasts. The power
siven in the table is about 26 per cent. of the theoretical amount. civen in the table is about 26 per cent. of the theoretical alount
The adoption of this proportion greatiy simplifies the calculations, as it allows just a quarter of the theoretical energy of a lunar day percentage will probably be obtained in practice, as it will allow of nearly half the power being wasted by its storage and transmission, if
the efficiency of the first motors be only 50 per cent. In the table the energy is expressed in horse-power and the figures represent that of 69 supericial mile; it increases as the square of the range, from 469 at 5 tt , to 16,895 at 30 ft . range. The value of the power as
siven increases from $£ 2345$ to $£ 844,475$, reckoned at $£ 5$ per horsepower per annum, which sum the author believes could be
realised by its sale, as it could be used continuously for that mount. The capital which could be profitably employed in
utilising the power of a square mile, and the number of superficial yards of sea required to produce 1 -horse power at the
different ranges, are also given in the table. The means which could be employed in utilising the rise and fall of tides are almost innumerable. Of these the tidal dam seems the most
likely to come into general practical use, therefore the rest of the paper was devoted to the consideration of it. It would consist of In any position whenere it would enclose, or ir isclatat, a a portion of the the
sea, so as to exclude the tide water until near the time of high
and water, when its fall into the inclosure would be utilised by suitThe water would then be retained by the dam in the enclosure
The the way. After a reference to the main features and requirements of
tidal dams, the author said that the greatest difficulties conected with them would be the short time during which the hotors could work if a large proportion of the energy had to be
utilised, and their constantly decereasing power whilst doing owing to the decreasing head of water as the enclosure emptied
or filled. The latter ould easily be met ; but the former is more serious, as it would power required during the time accumulators to store the ourse in practice it would not be necessary to limit the working of the motors to exactly the periods of high and low water,
but if they were allowed to work an hour at these times, five sixths of the energy would still have to be stored if required able from an enclosure was required, the time of utilising could be and as the demand for it increased, more capital could be sunk in the provision of motors and accumulators. Some sectional
Irawings were given to illustrate the nature of the proposed tidal dam, ' which could be constructed of iron, and consist of larg vertical cylinders sunk into the sea bed, and reaching to low-water
level ; these would have openings at each side for the ingress and egress of the water, and contain the motors, on which it would act隹 ontain the dynamo or magneto-electric machines, and the accunulators to convert and store the power. Many varieties of motor Their shafts are vertical, and would work a which would drive the generators; the decreasing power would be met by starting fresh motors or stopping some of the machines by Only a brief reference was made to the arrangement of the elecbranch of the subject, which ought to be dealt with by those then given of how the tides could be utilised for other purposes than the generation of electricity, such as pumping a supply of irrigating land, After desseribing the most important
nodifications of the tidal dam, and the probable effect it would ave on the currents and sea bed in its neighbourhood, some of its structural details were considered, and the mode of
constructing the class of dam illustrated described. The
remainder fermainder of the paper dealt with the choice of a suitable location for a tidal dam, and described the qualifications which ought
to be possessed by it, in order to render the works an engineering reat, and the physical fartures at the of the tide shouliently favourable to render the works of small cost as compared with the value of the power obtainable. In order to ensure
financial success, the dam should be made to yield a dividend in addition to that accruing from the sale or use of the power, in example, a road or railway could be carried aeross an inlet by it, estuary, it would improve the navigation of the river by maintaining it at high-water Ievel a sufficient period to enable larger vessels allow. By serving for some of these purposes in addition to its hich would not be interfered with by them-the tidal dam could be made to prove a successful speculation, even i
it failed to profitably utilise the tides; therefore it will be especiall desirable to have the first dam favourably situated, so as coservingly inspire the connidence of the capitalist. The autho
coting his beliet that in future the design and coll struction of tide civil engineering, and that the utilisation of tidal energy will prove a remunerative field of investment to the capitalist, and a great
economic gain to the countries employing it.

TENDERS

SEWERAGE WORKS AT CHIPPING WYCOMBE, BUCKS LisT of tenders for the construction of the works of sewerage and
seevage disposal for the borough of Chipping Wyoombe, Bucks. Mr. Baldwn Latian, C.E., F.G.S., engineer for the works.

Corivith Canal.- The prospectus is issued of the Société Inter
nationale du Canal Maritime de Corinthe, the capital being $30,000,000$ of, in shares of 500 . each. The company is formed for constructing a canal across the Isthmus of Corinth, thus effecting
a very material shortening of the route from the Mediterranean
and the Adriatic to Greeee, Turkey, and the Black Sea ports.

COLLAPSIBLE BOAT FOR THE CAPE MAIL STEAMER SPARTAN.
CONSTRUCTED BY THE BERTHON BOAT COMPANY, ROMSEY, HAMPSHIRE.

NAVAL AND SUBMARINE EXHIBITION

 LECTURES. the berthon collapsible boatThis boat was exhibited and described by its inventor, the Rev. E. L. Berthon, M.A., in a lecture delivered on Thursday evening, the 13th of April. The discourse was entitled "On the Supply of an Abundance of Lifeboats to the Royal Navy and Mercantile Abundance of Lifeboats to the Royal Navy and Mercantile
Marine." Mr. Berthon, in introducing the subject, remarked that his audience would agree that the subject which was intended to be illustrated most prominently at the present Naval Exhibition we illustrated most prominently at the present Naval Exhibition was the means of saving life at sea. He believed that every thinking person would be convinced that something more must be done than has at present been accomplished. In the last few years ships are getting larger and larger, and the number of passengers which the ships carry is increasing in still greater proportion ; but until recently it has been impossible to supply those ships with adequate life-saving apparatus in the shape of boats. Rafts, lifebuoys, floating mattresses, and inflated necklaces, are very excellent
articles, for they will sustain shipwrecked lersons in the articles, for they will sustain shipwrecked persons in the water, so
that they may have a chance of being picked up; but they only serve as temporary refuges, and they may merely lead to a lingering death unless boats are at hand to take the people out of the water. What is needed is sufficient boat accommodation to save all hands on board. Two typical shipwrecks which ocue Cospatrick, illustrate the great need which exists for more boat accommodation than is now provided. The Northfleet was an American ship of about 1000 tons, and her crew and passengers tion for not much to 496 persons; but she had boat accommodaCospatrick was of about the sane quarter of that number. The cospartick was of about the same tonnage, and she also had about
500 persons on board. At the Board of Trade inquiries which followed the loss of these ships the owners were held perfectly harmless and exonerated from all blame, because it was discovered that the boat accommodation was up to the requirements of the Act of Parliament, that requirement being that a 1000 ton
vessel should carry boats capable of holding 140 persons, the Northfleet the boats were so crowded when the order was given to lower them that the davits were actually bent down with the weight of the people. Nearly all the people on board the Northfleet perished through an insufficiency of boats. The Cospatrick the coast of Africa. The orew-44 in number-did all they could
to extinguish the flames. After the fire had burst through the deck, and had even caught the rigging, the chief officer said to the "ommander, Captain Elsey, "Shall I put out the boats? "No," replied the captain, "put out the fire," Some very utterance of the captain, but perhaps the captain upid quite right. There were on board more than 440 men, women, to lower the boats those boats would have been swamped by the people jumping into them. Only one boat left the ship, and that contained thirty-one persons. This boat was picked up, after thirteen days, with only three survivors. If there had been boats enough to
would have been very different. If it was known that the boat accommodation on board a vessel was sufficient, discipline could be maintained, and the passengers could be got into the boats without confusion. So long as the law remains

as it is with regard to the proportion of boat accommodation to be carried by passenger ships, so long will the present awful are leaving our shores at the rate of about 280,000 a year, and at one time the number reached 1000 persons every day. The ships of all our large steam companies carry admirable boats so
far as the boats themselves are concerned, but they are not sufficient in number to save a quarter of the people on board, Even small boats will live in a rough sea if they are properly managed. In the wreck of the London, a dingy 14ft. long, under clever management, was the means of saving fourteen people. carried by the Spartan being exhibited in the Hall had been pany's vessels, and had done admirable work in Algoa Bay. She had been used to keep up communication with the shore, and had stood up to her canvas and taken the sea in a
most remarkable way, while other boats were almost swamped.

The Berthon boat, when folded up, occupies about one-fifth or one sixth of the space occupied by an ordinary wooden boat. The ribs are of wood, and run longitudinally instead of transversely, and are jointed at the stem and the stern, and the space between the ribs is filled up with canvas instead of planking. A second layer of canvas is placed inside, and thus there is formed a boat within a
boat. This arrangement also divides the whole of the body of th boat into compartments, the number of which corresponds with the number of the spaces between the adjacent timbers. The timbers stand out in radiating planes when the boat is open, and lie down in vertical planes when the boat is shut. The shu boat occupies only one-sixth of the open width. As soon an
the weight is brought on to the spans the boat opens of its own accord. A Berthon boat will stand an amount of knocking about which would be sufficient to destroy a boat of ordinary construction. The gunwales and all the timber are formed of a highly elastic and very expensive kind of wood. This material is cut into strips and steamed, and then bent
in moulds and rivetted with copper rivets ; and thus a complete in moulds and rivetted with copper rivets ; and thus a complete
bow is formed. The boats are provided with good keels and good bow is formed.
bilge keels, and if they strike the ground they escape without damage, for although they are made of canvas, they are not flimsy. A sharp stone may cut a hole in the canvas, but even in this case the boat does not go down, for the shell is divided into eight com-
partments, and the entry of water is restricted to the wounded partments, and the entry of water is restricted to the wounded
compartment. A large boat, capable of holding forty men, had been cast off and lowered at sea by two men in 1 min . 20 sec . The lecturer had no doubt that with a proper crew the operation could be performed in half that time. One of the Berthon boats was put on board the Teuton on the very morning that she sailed on her
last voyage. The Teuton was wrecked off the southern coast of last voyage. The Teuton was wrecked of the southern coast of
Africa, about forty-five miles from the Cape, and a statement has gone abroad that the Berthon boat failed on that occasion; but this statement is altogether erroneous, for the fact is that no attempt was made to open the boat, and much less to lowe it. It went down bodily with the ship. The lecturer
was led to the invention of this boat was led to the invention of this boat many years ago
by an accident which occurred in connection with the loss by an accident which occurred in connection with the los
of the Orion in the year 1849. Within a fortnight after its construction he submitted a model to the Admiralty Superintendent at Portsmouth, and it was reported upon in the most favourable manner. One of those boats capable of holding 350 men was supplied to the unfortunate Great Eastern, but no
ship in the world would require a boat of that size now. The shipowning interest had been opposed to the introduction of the folding boat, not because they were afraid of the expense which would be entailed by the adoption of it, but because in the present
state of the law shipowners were practically irresponsible for loss
of life by shipwreck if they carried the number of boats at present prescribed by Act of Parliament．If it were demonstrated that by
the adoption of the Berthon boat passenger ships would be able o carry a sufficient number of boats to hold all all the people on
board，the blame would be upon shipowners in the event of loss board，the blame would be upon shipowners in the event of loss of
life beeing occasioned through a deficiency of boats．Nothing will bring about a change in this respect but a a change in the law．That
noble pattern of humanity Admiral Sir William Mends，had said noble pattern of humanity，Admiral Sir William Mends，had said
that he never saw a troopship go to sea wwithout a sigh and a pang，
for，while there might be two thousand men，women，and children for，while there might be two thousand men，women，and children
on board，the vessel could only carry fourteen boats，and these
would carry only 550 people．During the last five years all the would carry only 550 people．During the last five eears all the the
troopphips have carried a sufficient number of Berthon boats
for 600 men，besides the usual supply of boats of the for 600 men，besides the usual supply of boats of the
ordinary character．He hopes the time is not far distant when
all passenger ships will be required to carry adequate boat ail persons on board．The Berthon boats pleasure purposes as well as for the saving of life．Thetrey have
been adapted to the saving of the lives of crews engaged in the
most dangerous of all possible expeditions－namely torped
 devised a form of boat suitable for this purpose，and in conse
quence of the limited space available for storage these boats quence of the limited space availabie for storage these boats
are made in haves，the division being transerse．Alt the
torpedo boats belonging to England are now furnished with this form of divided boat，and the French Government，the Italian Government，and two or three others have followed suit．Only on the
day of the lecture he received an order from the Greek Govern－ ment to supply twenty－one of the boats for the torpedo craft in ment to supply twent－one ore he boats
the Pireus，and several have been ordered for the Chinese．A
large boat Slft．by sft．3in．，in three parts，so as to be stowed between decks out of the reach of an enemy＇s shot，is carried by
H．M．S．Inflexible．This boat is remarkable for its carrying powe as well as its excollent sea－going qualities，and stands up well under an amount or sail tuat would be dangerous in common
boats．Our engravings how the boat of the Spartan stowed against
the ship＇s side with sails，oars，and water breakers．The boat is also shown opened at the ends of the davits and ready for launch－ ing．When stowed it is covered by a tarpaulin－shown partly cut
off－and occupies a spaco only some inches thick．The remaining ongravings are a sheer plan and cross section．Our engravings were
ont
ong sketched from the boat as exhibited，combined wit
structure representing a portion of the Spartan＇s side．

THE IRON，COAL，AND GENERAL TRADES OTHER DISTRIOTS．

From our own Correspondent．）
THE mills and forges are still insufficiently supplied with orders， yet merchants are offering some good parcels for export．The markets from which the demand is coming are Australia，and New Zealand，South America，India，and some parts of the Continent，
particularly Russia，Italy，and Spain．The work booked this week on the Wolverhampton and Birmingham Exchanges has
included orders such as these，but the contracts accepted have not included orders such as these，but the contracts accepted have not
been so numerous as would have been the case if prices had been more favourable to makers．It is this matter
Medium and common bar makers are faiml．
Mactively employed，
mut the＂list＂houses complain $£ 7$ to $£ 6$ s． 5 ．may be said to be
 common sorts．The list prices for plating bars are ：－Ordinary，\＆8：
best，$£ 9$ 10s．；and best turning bars，$£ 11$ per ton．In actual busi－ ness，however，thesese prices are scaracely being realised．
Iron of engineers＇sections，such as T and rivet ir
demand．Ordinary qualities of T iron are priced at $£ 715 \mathrm{~s}$ ．to $£ 8$ ， while＂marked＂sorts are $£ 8$ 10s．to $£ 9$ 10s．per ton．Rivet iron
of ordinary descriptions is quoted at $£ 8$ to $£ 810$ s，＂＂marked＂at of ordinary descriptions is quoted at $£ 8$ to $£ 8$
$£ 9$ to $£ 910 \mathrm{~s}$ ，and best best at $£ 915 \mathrm{~s}$ ．to $£ 10$ ．
The Buenos Ayres hoop makers reported this afternoou they are
making some god shipments，as also to Australia and to certain making some good shipments，as alsporto Australia and to certain
parts of Europe
Inquiries from the United States are not，how－ ever，coming forward with much vigour．Prices r
£6 7s． 6 d, with business ocaasionally done at less．
not progress rapidly In in consequence of the larre production do not progress rapidid．In consequence of the large number of the
makers an inconsiderable difficulty is experienced in arriving at
anything like a unanimous conclusion anything like a unanimous conclusion，and the scheme which was to come minto force this week is still officially postponed．A further
special meeting was，however，held this afternoon，at which action special meeting was，however，held this afternoon，at which action
was taken which will bring the desired end more，nearly to conclu－
sion．Sheets of a maximum of 24 w．g．were $£ 1515 \mathrm{~s}$ ，and upwards sion．Sheets of a maximum of 24 w．g．．we
siond
and of maxinum 27 w．g．． 9 15s．upwards．
Thin－stamping－s．e．t．
Thin－stamping－shieet makers reported a steady business at satisfactory prices．＂Severn＂singles were quoted a at \＆12 per ton，
while the best singles of the same firm－E．P．and W．Baldwin－ were quoted at $£ 1$ ，and their double best $£ 1$ per ton．Charcoal
shetet rolled by the well－known firm of E ．T．Wrigh and Sons，of
the Monmoor Works，were quoted $£ 16$ ． 10 s．to $£ 17$ ，while best the Monmoor Works，were quoted £16 10 s．to ± 11 ，while best
charcoal sheets－Wm．Barrows and Sons－were $£ 195$ ． Tin－plate makers reported that alike the Australian and the
United States＇demand was quieter，yet that for the present their mills were steadily occupied alike for the markets just named and for the Continent．Prices of East Woreectersshire makes remained
officially at 23s．per box for charcoals and 2ls，and 22s．for coke sorts，but these rates were not obtainable，and in actual transactions
prices had to be regulated by the nature of the specification，\＆o． Makers hereabout do not seem to expect that any very definite Welsh makers；still they are hopeful upon the matter．
Pigs showed a little revival in a few makes．Maker
last week unable to effect sales reported transactions this week
The＂Willingswort
 cinder pigs were 37 s ． 6 d ．to tos．The drop in one of the leading
brands of all－mines，announced last wekk，，has virtually brought
down other best native makers to the same level，namely， 67 s ． 6 d.
 （Northampton）pigs are quoted at 52 s ．6d．delivered，but the figure
is beyond the market by quite 2 s． ．per ton．
In Wolverhampton and Birmingham in were hampered by the wages＇complication in the the North of oonsumers England．
Twice the Staffordshire ironworkers have broken the sliding scale agreement when it suited them．Under the circumstances the
conviction throughout the trade is that $i t$ will be uns conviction throughout the trade is that it will be unsafe to conclude
that any othher decision than that which may follow upon the
further revolt against the Conciliation have to regulate the wages anrangement Board in the North will
iron centres．Prices would have been weakere the Midland both to－day and yesterday but for this uncertainty．
The recent revolt is for the present overlooked by
and there is a disposision to pivesent overlooked by the employers
being faithful to to their agreements．Under opportunity of being faithful to their agreements．Under these circumstances
Mr．R．Chamberlains consent to act again as arbitrator to the
board．would be welcomed by masters as well as by men．The question to be submitted to the new arbitrator would ry rolate．to the
application of the men，preferred at last Thursday＇s meeting，that
there should be a new waes basis per ton to puddlers．This it was proposed to bring about by
making the sum，plus the average price of bars，one shilling instead
of，as at present，sixpence．
The difficulty in holding
matters hardly more settled than they were before the Wages

Board was formed，and it is sadly hampering business．Customer
are complaining of the strike conditions which it is again neeessar
to to insert into contracts，and they talk of seeking to place with Belgian firms orders embracing considerable lots．
The wages troubles are giving zast to the expe
sing made with the viv the experiments which ar the making of steel by the basic Bessemer method．The state ment of Messrs．Thomas and Gilchrist before the Society of Arts－ that up to the stage of the puddled bar the metal can be produced
at much under the cost of iron in that partially manufactured at much under the cost of iron in that partially manufactured
state，and that in the subsequent stages there would be a reduction state，and tor at at the same time that the metal is equally malleable
of 7 s ．per and equally weldable with the product of the old iron forge－has in this part of the kingdom．
froghess in the north and south de in the effort which is being pu forth in the north and south Staffordshire at the present time t the
nduce the ironworkers to ioin in the insurance scheme put forth ny the Employers＇Liability Assurance Corporation（Limited）． There is no falling off in the excellence of the prospects of full
work at the heavy cable and anchor works in the Brierley Hill At the South Staffordshire Mines Drainage Commissioners Bill for obtaining increased rating powers by the Commissioner would be considered by a Select Committee of the House of Lord on the 5th inst．The members of the Commission representing the
Earl of Dudley and the Patent Shaft and Axletree Company expressed their unwillingness to carry their opposition into the meeting was therefore arranged，in the hope that a compromis may be effected．

NOTES FROM LANCASHIRE

Manchester：－The iron trade of this district continues exceed ingly dull．At Manchester on Tuesday there was an extremely price asked for both forge and foundry qualities delivered equal t Hanchester；but even this low figure does not attract buyers．
few small sales were reported in lincolnshire at about．46s． 6 d ．to 47 s ．per ton，less $2 \frac{2}{2}$ ，delivered here，which， far as Derbyshire iron is concerned，represents a drop of about 1 is per ton upon recent quotations．District brands are，however
competing with the local makes at lower figures than the above competing with the local makes at lower figures than the above
Middlesbrough iron was nominally quoted at about 51 s．per ton ne cash delivered equal to Manchester．
on old contracts，and in some cassere working for the most part good deliveries st make，they are holding out for $£ 615 \mathrm{~s}$ ．per toi for bars delivered into the Manchester district．Specifications，
however，are not coming in very freely，and with an absence also of new orders prices are decidedly easier，and local bars can be good staffordshire plates at $£ 87 \mathrm{~s}$ ． 6 d ．to $£ 810 \mathrm{~s}$ ．per ton delivere
gen equal to Manchester．
Thear that engineers in this district have in some cases recently been securing tolerably good orders，and generally sufficient new
work continues coming in to keep this branch of trade well employed． Messs Richond and Chandler， chester，are erecting large new works from the designs of Messrs
Corbett and Sons，which works will have a floor area of about 8000 Corbett and Sons，which works will have a floor area of about 8000
square yards and occupy square yards，and occupy a site covering about 3300 yards．The works
do not include any foundry，and are simply for putting together and mishing the various im
The London and North Western Railway Company has erected at its Crewe works a large new foundry，which is to be opened this
month with a great demonstration．This foundry will be fitted up month with a great demonstration．（his foundry wil be itted u_{1} with two of the improved cranes manufactured by Messrs．Craven
Bros．，of Manchester，a description of which I gave in my notes on visit to their works recentl
 or common house coals，4s．9d．to 5s．3d．for steam and forge
coals，4s． 6 d ．to 4s． 9 d ．for burgy，3s．9d．to 4 s ．3d．for best slack and 3s．to 3s．6d．for ordinary qualities．
Barrow．－Pis iron，I notice，this we and so faras new businessis concerned I am informed that it is practi－ cally at a standstill．Makers，however，have sufficient work for some months to come，and consequently are not at present suffering from
the eabove－named cause．Furnaces，as I am informed，maintain their yield，the output being large，and there are very heavy deliverie the amount of exports during the last few weeks，and from th information I have gained I have reason to know that large parcel The early shipment to America and other places are being prepared
The price not quite so good，No． 1 Bessemer being 54 s ． 6 d ． at the ports on the west coast，with a three monthss delivery． In the steel trade I have not heard of new orders being booked o
ny extent，but there is nevertheless a brisk employment．The prices show a depreciation this week of 2s．6d．a ton，averag samples being quoted at $£ 517 \mathrm{~s} .6 \mathrm{~d}$ ．net．Several new orders hav
come to hand in the shipbuilding trade which have imparted fie to this industry；and boiler－macing engineering，and foundry branches are also participating in the improvement．There is
uiet demand for iron ore at from 13s． 6 d ．to 15 s ．per ton， there appears to be a good business being done in the export o foreign ore．A busy employment is noted amongst railway rolling
stock makers，and the traffic is very brisk on the railways．There The tin－plate works belonging to Nessrs．Wanufacturing purposes ington，have again been stopped，and there is no prospect of thei being started again for some time to come

THE NORTH OF ENGLAND．
THE battle between the ironmasters and the＂bears＂which of Sir J．W．Peease，were the two great topics of conversation at
the Cleveland iron market held at Middesbrough on Treesday
the thereof might be characterised as animated． Notwithstanding the strike，which must have the effect of throw
ing a quantity of pig iron on to the market，and of reiieving the pressure of consumers for immediate delivery，the＂bears＂ssem
to be getting more and more pushed into a corner．Their great gether failing them．The latter victory of the ironmasters，and are refusing to sell at low prices
consequently the＂bears＂have been forced to come to the iron masters terms in many instances，in order to keep their customer going．The ice once broken，they are getting used to adopt the
course which previously they strenuously resisted．Consumers complaining loudly of the difificulty they have in obtaining
deliveries from merchants ；at least they did so p to the end last week．Now they have ceased to press until the terminatio of the strike enables them，to set their works going once more． weeks since，for delivery over the third and fourth quarters at low prices，seem now to have ceased．Makers adhere to their previous
price of t3s． 6 dd for prompt delivery for No． g．m．．Those
within and those without the combination are equally firm．Mer－
dants prices may be considered to be 43s．，and warrant holders keep what they hold for the pro sent，and until they can realise higher prices．
The stock of iron in Connal＇s warrant store is now 147,249 tons， The shipments for April have been published．As to pig iron， o ports within this country to faringo countries， 68,909 to 18 ipe abogether．Of manufactured iron and steel， 14,358 tons went show a decrease of 20,928 tons of pig iron，a part of which is accounted for by there being one day less，and part due to the Easter holicays．
The manufactured iron tra
The manufactured iron trade is at a complete standstill owing the strike，which has before been alluded to．On Friday last
the Board of Arbitration sat at Darlington，and received and adoptea by a large majority，including both employers and opera－ ppointed some days before to consider commithestion of puddler xtras．The report referred to made some very distinct concessions
to the workmen．It had been ascertained that the extras paid hroughout the district amounted on an average to about 1s． that allowances，though in a somewhat new form，should
nade which would amount to about 2 s ．per ton．The realisation of this amount was，however，made to depend partly on the steady working of puddlers and underhand
every day during the week．Notwithstanding the adop twis scale of extras by the Board of Arbitratio it at once and to have determined to resist it to the utmost．As
far as their views can be learnt，this extraordinary and apparently nreasonable action is to be explained as follows：－The employens delegates desire to make extras proportional to steadiness，and so encourage industry and large production．The ironworkers，how－ ever，desire to give equal benefits to unsteady workmen，and say
that the tendency of any scale should be to facilitate restriction of make and small productions．They declare they would rather be ale on Monday than work at any price，in order that less puddled bars may be made，and that the demand for their labour may con－
sequently increase．Their motto is＂less work and Under these circumstances，and whilst Sir J．W．Pease＇s award was
Und五 not forthcoming，the ironworkers held meetings，and pretty eneraish ded，and added fuel to the Monday，May 1st，the awara was eview of thacts submitted for the consideration of the arbi rator，and then proceeded to award：－（1）That no advance be siven on the past quarter；（ 2 ）that no advance be given upon the current quarter ；（3）that an advance of $2 \frac{1}{2}$ per cent．be given on
the first half of the following quarter，and 5 per cent． econd half thereof ；and（4）that the special claim of the higher aid workmen for a $7 \frac{1}{2}$ per cent．advance be not entertained．They
operatives professed to be bitterly disappointed with this award．The struck work inmediately throughout the whole of the North of Eng－ land，and began to relieve theirf feelings by holding meetings．At these
they denounced the award，the arbitrator，and some of their own they denounced the award，the arbitrator，and some of their own
officials，and called for a new arbitrator and a new award；and etermined not to go to work until this new award was known umed at the Skerne Ironworks and Messrs．Fry，Janso and Co．s，Darlington，where it has not been the custom for a long
 was not to the front．On Wednesday morning the workmen at he new scale of extras，but they demand a reconsideration of the whole question by the Board，and threaten to withdraw from the ere still on strike on Wednestertained．The remaining works recommencing．Meanwhile the iron manufacturers seem to farce，and the time and labour they are continually expending over it is entirely thrown away．They are therefore reorganising and strengthening their association or union．It is understood that he North of It will include almost every manufacturer in subscribed to be utilised in resisting une samablu an compensating any of the members who may be victimised or other wise unfairly dealt with by their workmen．It seems to be quite clear that the Board of Arbitration is powerless to enforce its own decisions，and has fallen into contempt on both sides．The next vealthy combination．

THE SHEFFIELD DISTRICT

Mr．W．S．Davr，chairman－and joint－managing director with Mr．David Davy－of Messrs．Davy Bros．，Limited，engineers，
Park Ironworks，Sheffield，has resigned his position to become the Yark Ironworks，sheffield，has resigned his position to become the
veneral manager of the Barrow Hematite Iron and Steel Com－ eneral manager
pany，Limited．The post was vacant by a readjustment of offices， evote his attenti Josiah Smith，the late general manager，to to be £3500 a year．At Messrs．Davy Brothers，Mr．David Davy， 1 understand，will succeed to the vacant chairmanship．
Charles Cammell and Co of the Cre Atlas Works，and Messrs． addition to the order from the Dutch Government noticed veek，an ex new war－ship the Italia，which is to be armoured with 19in．of steel－faced plates on the＂Ellis＂and＂Wilson＂systems．Test
plates for the Italia were being made at both establishments，and it was anticipated that the plates would be tried against the 100 －ton of the Italia without further deley The order is for about 1800 tons，divided between the two com－

Tess

Messrs．Joseph Rogers and Son，Limited，the well－known street on a most extensive scale for the production of in Poin nade table knives，to compete with the American machine－made In the market the rapid advances in the value of ivory are causing 28me uneasiness．At the last quarterly sale，which closed on the
28th ult．，there were only 81 tons offered－including 10 tons in April， 1881 ，previous auctions－as against 122 tons offere tinued scarcity of Cape－only $1 \frac{1}{2}$ tons－and the limited supply
of West Coast African－11 tons．From Zanzibar and Bom－ from Malta．All descrintit tons have gone up from $£ 3$ to $£ 4$ per owt．，and the ivory cutters have解基 year to raise their prices．The 13 tons for the correspending period of tont last yearp．Mr．W．W．
Wostenholm，Holly－street，Sheffield has ewer than 522 tusks，which he says，will all he cleared out thim no ight．These tusks represent 276 elephants，and if one ivory cutter lone can get through so many in so short a time，there is some
fear of the elephant being relegated to the lost species of $\underset{\text { I notic }}{\text { animals．}}$
I notice from a South American paper that Messrs．Ward and Payne＇s exhibit of edge tools，sheep shears，\＆c．．．ats．the Buanos
Ayres Exhibition is spoken of as one of the finest displays in the
whole building

NOTES FROM SCOTLAND,

(From our ovo Correspondent.)

THE Clasgow iron market becamenesteady towards the close of the past week, and as No. 3 special
brands had become somewhat scarce, the prices of that class of iron began to strengthen. In the
beginning of the present week the feeling in the market was also strong, in consequence chiefly of the very heavy shipments then reported, these
having exceeded 18,000 tons for the week, as comhaving exceecede 18,000 the prece the week, as, compared with 14,000 in the preceank of last, year. To date the shipments since Christmas are fully 30,000 tons more than they were at the same
time last year. Business with Canada has within time last year. Business with Canada has writhin,
the past week or two very materially improved, the past week or two very materially improven,
and while America is dull, the orders from the Continent are of greater importance. At the
moment it is somewhat difficult to forecast the course of the market, seeing that while the facts mentioned, as well as others that might be the are still increasing at the rate of upwards of 2000 tons per week. If the wages dispute in Cleveland were likely to be of any duration, there is no doubt that it would indirectly affect our market and improve the value of iron; but
it is not likely that this quarrel will be prolonged Business was done in the warrant market on Friday morring at from 47s. 2d. to 47s. 4d. cash, and 47 s s. 4d. d. to 47 s .6 d. one month; the after-
noon quotations being 47 s . $3 \frac{1}{2 d \mathrm{~d}, \text { cash, and }}$ 47s. 8d. eight days. Monday On Tuesday the tone of business was strong, with transactions in the morning at 47 s .6 d. to 47 s . $7 \frac{1}{2} \mathrm{~d}$ c. cash, and
47 s .9 d . to 47 s . 10. one. one month ; the market
 y-business done an 47s. $3 \frac{2}{2} \mathrm{~d}$. cash to 47 s . $7 \frac{7}{2} \mathrm{~d}$. one month. Certain quatities of makers' iron being scarce,
as above stated, and the shipping trade being very heavy, the quotations are to some exten

 58s. 6d. and 54s. 6 d . 4 Car.; Shotts at Leith,
 garnock at Ardrossan, 511.s. 6d. and 4.s.s. 6 d . ${ }^{48 \mathrm{~s} .} 6 \mathrm{~d}$. and 47 s . tained in the condition of the malleable iron The coal trade continues very active, a large The Fife and Claclmg done.
has resolved that from this weik begin to restrict their work to five days per week ${ }^{\text {of }}$ The eight hours each.
Tion has held its tenth Gas Managers' Association has held its tenth annual meeting at Dalzell. A number of interesting papers was read, and discussions took place on the illuminating power of gas, the general opinion seeming
to be that in Scotland the standard of illumi nation should not be less than twenty-five

WALES \& ADJOINING COUNTIES. (From our own Correspondent.)
The prominent feature of the past week has
been the sliding scale discussion. Messrs been the sliding scale discussion. Messrs.
Burnyeat Brown and Co., of the Aberghorki
Cone the Ocean Coxpected to follow in the track o meeting held on Saturday last at Cardiff, in order to revise the scale of the Associated
Masters, Mr. W. T. Lewis in the chair. It appeared, however, that the house-coall men
dissent from being bound by a scale whicl affects also the steam-coal men, and for the present the movement is in abeyance.
men of the Goal Mill ane an straighteners of these works and the that the rain are acting together to get an advance of
wages. There is not so good a demand for steel rails. Business in fact in most branches of iron and $\stackrel{\text { several planned re-starts are again hanging fire }}{W}$ Mr. Martin will shortly management of Dowlais his entry is looked forward to with pleasant I have not
Chave not much improvement to record in con-
nection with tin-plate. The demand is feebl nection with tin-plate. The demand is feeble,
and prices offered low.
The newl Bute Dock ject of interest. A hard fought contest is ex peoted.
I am glad to note that Treherbert Foundry is parts of the country for the hauling ensinom a A good find of the best Mynyddysluy taken place at Llancaiach, and a good round sum of money has been offered for the taking. The
house coal pits of the Cwmfelin Valley are turning out well. This is being watcored is to berest successor of the Rhondda. The exports fro Cardiff, Swansea, and Newport have been fully
sustained. Cardiff and Newport have been exsustained. Cardiff and Newport have been ex-
ceptionally active. Prices, too, are well main-
tained.

Charing-cross and Cannon-street Railwa of the House of Commons sanctioned the pre amble of the South-Eastern Railway Bill, which
proposes to widen the present proposes to widen the present line from Cannon-
street Railway to Charing-cross, and also to widen the Charing-cross and the Cannon-street railway Charing-cross bridge should not be widened by more than 48ft.

THE PATENT JOURNAL.

 ** It has come to ourr notice that some applicants of the Patent-0fice sales Department, for Patent Specitications,ave caused much unnecesaryy trouble and annovance both to themselves and to the Patent-otice onticials, by
piving the mumber of the page of THE ENMINER which the Speciitcation they require is refereed to, instean
of giving the proper number of the Specification. T The mistake has been made by booking ot The Exicationern
Inder and giving the numbers there found, vhich only refer to the papes, in ploce of turning
tinding the numbers of the Specifcation

Applications for Letters Patent

** When patents have been "communieated" the name and a
printed in i

25 th April, 1882
1946.
1947:
1949:
1990:
94. Cokre, J. Jamesonk, Newceastie-on-Tym Wing.

 1959. ORNAMENTAL SURFACEs, J. Noad, East Ham, and
H: Salomon, London.

 1963. SURGIOA
Antwerp.)

26th April, 1882.
1964. Brakrs for Carriages, A. Areher, Liverpool.
1965. HEAD Covering, C. Naish. $-(W$. Gotuas, Noorvay,

 27th April, 1882
1982. Removable Cartridge Magazines, G. Vaughan. 19s3. (J. Werndl, Austria.)

 France.)
1991. Toous for Cutring Pipes, C. D. Abel.-(T. J. W.

1994. Mechanical Telegraphs, W. Chadburn, Li
19095. Heating Metal, H. H. Andrew, Sheffield.

2001. M M NHoLe Coverss, F. Dyer, London.
2003. Prevvativa Fouling of ALre CASks, E. Caddick
2004. BRoochrs, J. G. Rollason, Birmingham
2005. METALII HANDDLES, C. J. Gibbs, Smethy
A. Sponcr, Wes 28 th A mrill 1882
2006. Ventilating Greenhouses, M. Willshaw, Lenton

2009. Rallway SIoNalunge, E. J. Chabrel, London,
2010. SHozs, D., P., and N. Fraser, Arbroatb.

Johnston, Govan,
2012. RAItsiske Brer, J. Forbes, Coventry, and J.
Hamilton, Smethwick.

2016. Giove Fasterirss, W. J. Walden, Kingsland.
2017. Mosancs, H. J. Haddan. -(GG. Stanley, U.S.).

 wing Gas from Manss, T. Thorp, Whitefield,
G. Marsh, Oldhamis.
inesting Ginss, c. J. Bishop. St. Helens.

2030. ELusectrical Switches, R. Brougham, London. 29 th April, 1882.
2031. SprivLEs, G. Golland, Nottingham.
2032. Locks, A. . . Clark. -(A. Parise,
203. LLorss, A. M. Clark. - (A. Parise, Paris, and C
2033. Skect, ,taly.)

2046. WindLassss, At B. Byow, 1882.

 2052. Entectrical Generators, T. J. Handford.-(T.
 205. RoTa RY MiLLs, J. A. A. Buchholz, London.
2055. Boors, J. Kents, Bagnal.
2056. DIsTr 2056. Distribulivg Sewabe, J. Shipway, Birmingham.
2057. GAs Exinks, C. M. Sombart, Germany.

Belgium.)
2060. Foc Horss, A. L. Wharton, East Grimsby.
Inventions Protected for Six Months
Deposit of Complete
Specifications.
 Boston, U.S.-22nd April, 1882
1970. Nur Locks, J. T. King, Liverpool--A commu-
nication from S. Gissinger, Pittsburgh, U.S. $-26 t_{h}$

Patents on which the Stamp Duty of

 10̄70. Screw Propellers, N. D. Spartali, Liverpool. 29th April, 1879.1769. FILTER Plates, H. E. Newton, London.-5th
May, 1879. 1635. Electric Light, J. MacKenzie, London.-25t April, 1879.
1770. IRoN, G. E. Dering, Lockleys.- 29 th April, 1879 ,
1771. Bexting, F. Walton, Twickenham.-2nd May, 1640. Composing Type, F. Wicks, Glasgow. -26 th
April, 1879. April, 1879. April, 1879.
1772. Pumpe, Cieper, Berlin.- $18 t$ May, 1879 .
1773. Rolling TEA Leaf, W. Jackson, Gainsbo -3rd May, 1879. 1709. CARDING WooL, I. Holden, Bradford.- 30 th April 1879. Melting Iron, W. H. Fryer, Coleford.-30th
April, 1879. April, 1879.
1774. HAy-cock Moulding, H. A. Bonneville, London. 2051. Propelising Ships, P. M. Justice, London. -22 nu May, 1879.
1775. Parallel Staple, J. Pattison, Sheffield. $-28 t /$ l April, 1879.
1776. Boots, J. H. Johnson, London.-28th April, 1879 .
1777. OBTAINING Soda, J. Townsend, Glasgow,- 30 th April, 1879.
1778. BoILERS for PAPER-MAKING, G. : Sinclair, Leith

- -30th April, 1879. 1711. STELE, S. G. Thomas, London.- 30 th Aprilo,'1879.

1733. ILLumiNating Gas, R. S. Ripley, London.-1 1743. Brakes for Winding Engines, T. Burns, West Leigh.- $2 n d$ May, 1879 .
1734. MACHINERY for Engines, T. Coltman, Leicester.
 701. ConDENSING, AIR, T. Cartledge, Manchester.-
30th April, 1879 .

Patents on which the Stamp Duty o
\&ló has been paid. 1523. Winding Sewing Threads, J. P. Kerr, Paisley 1529. FURNACE GRATES, T. Henderson, Birkenhead. 201. Glass-Meltivg Furnaces, C. W. Siemens, Lon
don. $-28 t h$ April, don. - 28 th April, 3875 , 1756. Breech-Loaping SmaLl-ArMs, W. Anson and
J. Deeley, Birmingham. -1 th May, 11775 .
1695. Excavator, J. Deas, Glasgow, and A. Nairn, Crosshill. - ith May, 1875.
618. WARPNG, J. J. and G. Ashworth, Pendleton.
1st May, 1st May, 1875.
1726. IoE, J. Siddeley and F. N. Mackay, Liverpool.-
10th May, 1875.

Notices of Intention to Proceed with Last day for flling opposition 19th May, 1882. 5611. Rolling Muls, E. Edwards, London.-A com. 5623. Measuring Elecrric Curements, C. A. Carus-
Wilson, London. $23 r d$ December. Wilson, London.-23rd December, 1881.
562s. K NITriva MACHINES, L. A. Groth, London.-A
com. from G. T. Grosser:-23rd December. com. from G. T. Grosser.- $23 r d$ December, 1881.
5636. KEYLESS WATCHEs, C. H. Errington, Coventry. 5640. Printing MAchines, A. Godfrey, Clapton.-23rd December, 1881 .
5676. DRESING Hides, \&c., W. Morgan-Brown, Lon-
don.-Com, from F. Batchelder.- 27 th December, 1881 5677. Opening Doors, \&c., J. Barrett, Eastburn. 27th December, 1881 .
568. Sinvember, 1881. Mi. December, 1881.
5680. MIDLINISS Purieres, C. D. Abel, London.-A
com. from C. Oberdorfer and C. Hönig.- 27 th December, 1881.
5687. Controling Electriorty, C. A. Carus-Wilson, London. - 27th December, 1881. 1 . A. Carus-Wilson,
688. CYMAPs, C. F. Varley, Bexley Heath, and F.
H. Varley, London, H. Varley, London.-27th DDecember, 1881 . December, 1881.
13. CoAsing SHIPs' Bortoms, W. G. Little, Doncaster,
and B. Nickels, London.-2nd January, and B. Nickels, London.-2nd January, 1882 .
Liseters,
Londonasing the HEAT of FUEL, G. D. Panuary, 1882 . 363. Rotary Motion, A. M. Clark, London.-A com-
munication from F, munication from F. Eibing-24th January,
48s. FINGR RINGs, W. R. Lake, London.-A commu-
nication from R. J. La Grange.nication from R. J. La Grange, - 31 st January, 1882.
504. RAILWAY BRAKE, H. H. Lake, London.
from A. Rudolff and M. von Pichler.-1st February, 1882. 776. Marine Enaines, G. A. P. H. Duncan, London.-
17th February, 1882. 17th February, 1888.
 cation from J. McCarroll.-21st February, 1882 .
1009. SHIPs, H. H. Lake, London. A communication
from A. P. Bliven.-2nd March, 1882. from A.P. Biven, 2nd March, 1882. J J. Mackenzie, London.-7th March, 1882 .
1993. SULPHUR, F. B. Rawes, Stratford.-22nd March, 1486. Bortless, D, Rylands, Stairfoot, near Barnsley.-
28th March, 1882 . 281. Strach, \&c., H. H. Lake, London, - A com.
from E. Wilhelm. - 1 st A Aril, 1882 . from E. Wilhelm.- 1 st April, 1882 .
1615. UTiLISING WATER-POWER, E. Davies, London.-
3rd April, 1882.
1635. Mrectanicas Tors, W. R. Lake, London.-
communieation from W. A . Webber, G. B. Kelly

 1932. SELF-LEVELLIING Ships' Berths, A. A. Young

Last day for sling opposition, 23rd May, 1882.
5681. Dyvano Machines, J. Richardson, Lincoln.-
27 tith Deember 1881 . 5686 COT-OFF Y Atives, H. H. Lake, London.-A com.

comm Co. $\rightarrow 20 t h$ December, 1888i
and Geneste, Hersche
20 .

-30 , December, 1881. 5726 . WINDIEG Michives, R. Speight and T. Speight 735. Heative Water, T. Drake, Huddersfield.-31st
 TUBE EXPAADERs, G. Allix, Poplar, London.- -2 nd January, 1882
S. Sop, G. Payne, Millwall, London.-3rd January,
isse Packisg for Sturfing
head. $-4 t \mathrm{l}$, Januury, 1882 .

 46. Opank Fireriaces, w. Haughton, Middle Temple 73. Hondon. - H the January, 1882 ,
 151. Cork-brasiding Machines, C. J. Leclere, London.

 556. Skevinso Windows, E. Verity, J. M. Verity, and B. Banks, Leeds.-4hl February, 18s2.
643. Gas Bunker, J. W. Plunkett, London. -10 the 955. Redoding Mgrats, F. Wirth, Frankfort-on-the
Main.-Com. from H.' Rơssler.- 2 Thth February, 1882 . 1101, Mexaluic Packing, G. Holcroft, Manchoster

 1346. Bumley, London. -1 Sth Marech, 1882. C. M. Taylor, Snaresbrook. -20 th 1374. Looms for Weaving, J. Stansfield, Colne.-21s

 London--A communication from A. F. Johnso
 March, 1882.
1558. Goversions, E. Truman, Grantham. - 31 st March, 1882.
1561. PPRIFTING CoAL GAs,
J. Walker, Leeds.--31s 1582. Producing Copres of Writinas, M. Farmer
Middlesex,-31st March, 1882.

 1675. SLIDE VALVEs, D. Halpin, London.- -6 th April,
1892. WIRE for Lockets, \&co., E. Richardson, Birming

Patents Sealed

(List of Letters Patent whichich passed the Great Seal on the 474. Extractring Fat from Bones, E. Edwards, Lon dion. -29th october; 1881. Lockey, Northwich. - 18
 4785. Preventing Incoustation in Boilers, E. Ed

 Nottingham. - 3rd November, 1881 .
4816. CANDLES, L. A. Groth, London.- 3 rd November
18si 4824. Elegtrpio Current Metrers, C. A. Carus-Wilson,
London 4825. DYYیM Mo Macerinks, C. \AA. Carus-Wilson, London.
 4886. Extinguishing Fire, W. E. Yitzmaurice, Brus-

 4876. Vertiliating, w. Teague, Illogan.-8th November, 4004. Consuming SMoke, E. P. Alexander, London.-
 5049. Bearings for Axies, W. R. Lake, London. -17 th
 5317. Tunxemunicg Machinery, T. English, Hawley.-

592. Treativo Whent, J. A. A. Buchholz, Vauxhall,

 ${ }^{91 \text { i. Rebruprerons, }}$, II J. Haddan, Kensington. $-25 t h$
 ary,
(List of Lett
(List of Letters Patent which passed the Great Seal on

 4890. Nut-Lockiser, 4841. PIAvoenber, 1881 . 484t. CLEvemsiver, 18sti.

 4848. Locris, sco., H. Gibbons and A. Anthony, Hun-

 tri7. Piokuriso Stert, T. H. Cobley, Dunstable, and

 London.-15th Novenber, 1881 . 1 .
503s. Curillaume, Paris, -17 thi
 5081.' STEREotyping Apparatus, F. Harrild, London.
 S131. Sember, 1881.

 5238. Wassimge G. F. Fedfern, London.-2nd Decem-
ber, 1881.

 172. Covoreme, J. Jackson, London.-12th January,

 ${ }^{\text {657. B. Avvist F. Fanury. Wright and }} 1882$. 0 . Wright, Dudley. -10 th

 833. PERPErruat CALEEDDARs, P. M. Justice, London.-

 899. Cotroo Lapping Machives, W. R. Lake, London.

 February, 1882 . Lake, Southampton-buildings, Lon-
97. Gas, W. Re
don. $-28 t h$ Teirruary, 1882.

 List of Specifications published during the
week ending April 29th, 1882.

ABSTRAOTS OF SPEOIFIOATIONS. Preparace by oursedvese expresty for The Exariver at the
ofice of Her Majestys Commissioners of Patents.
 This consists in the combination with unctuous
materials of the medicinal properties obtained from
the the pl
3691

This relates to a vessel for aerial navigation in the form of a cylinder with conical end or in the form of
a shutlle, constructed upon one general frame work of metal rods, tubes, or the ine, anc covered wan or ond
cosed in an onvope of thin metal sill, can or
other suitable material. The vessel is divided into a gas field,
partments.

 on each side of the stage, one of the receivers
being connected with
bainamitter on the one
the side, and the other with a transmittor on the other
side and this way tho listener con detect by the
variations in the sounds transmitted to either ear on Variations in the sounds transmitted to either ear on
which side of the stase the speaker is. To avoid the shocks cocasioned by walking on the stage, the trans
shiters
mitters are paced in boxe, the bottoms of which ard Alled with head, and which rest in in caoutchooc blocks
As batteries will not hat dast during a long performance without polarisation, the inventor employs a distribut
ing apparts by menns of which a fresh bittery fo
 interrupters being placed in circuit to provent any
noise in the receivers being occasioned by the change
no bateries I

 secret messages by electro-magnetic telegraph instrux
ments over ordinary telegranh wires. The inventors
use three instruments : one by which the sender of the
und message himself prepares it for transmission by means
of indentations made by the machine on a strip o paper; a second, which the indented paper passes
through, , nnd thereby causes the thir or reeeiving
instrument with which it is con one telegraph wires, to operate automatically and receeive and print the message. The receiver prints the mes
sage in ordinary alphabetical letters whilst it is con cealed from view and enclosing and addressing it for
deli delivery. The invention
and
with
detail drawings.
3870. Washing and Tomer Cabiner, B. R. Johnsom This consists essentially in the combination of a fall down fapp or front, the basin fixed upon satd fapp on
front and tilting therexith into a vertical position, and
the 3887. Fountain Pex-holders, D. H. Sparling, old
 ink reservoir in which silides a piston, or packed
plunger, or rod, so that the reservoir can be charged by drawing the piston rod outwards and the ink be
supplied to the pen by pressing on the piston or by suppiried to the
admitting air.
 AND IN Batteries Consectrd therbwith, A. J J.
Hallam, Salford, and J. Walsh, over Darven Lancashire. - 8 th
withth.) September, 1881.- (Not proceeded The inventors above each gas jet, the current leaping across from
pin to pin and pin to pin and igniting the gas. The invention also
relates to a meens for lighting large districtu at once by means of sliding o ontactst at a a entro
an improved battery for this purpose.
3925. Locking Devices for the Roors of Carri-
 Acording to one arrangement, the ribs of the hood are the fornt rib has a a spring extension beyond its
and
pivot provided with a stud, which as the rib is raised pivot provided with a stud, which as the rib is raised
moves over the plate and springs into one or other of a series of holes or recesses formed in the plate, where.
by the rib is held in the position into which it is
mo
 shifted up or down when force is applied thereto by
hand.
 The electrodes are of lead or other suitable material
which are, or may be, conted with, or have to, or packed therevin, spongy, precipitated, or reduced

[3926

sheets, roughened, serrated, or indented, composed of
lead, pratinum, or carbon, upon, in, or against which lead, platinum, or carbon, upon, in, or against which
plates spongy or frold divided olead or orides or
other salts or compounds of lead, or other suitable substances or compounds, are, or
figures show some forms adopted.

$\left\lvert\, \begin{aligned} & \text { which the signals sare produced by radiophonic effects } \\ & \text { The figure shows two stations } \mathrm{A} \text { and } \mathrm{A}^{1} \text { separated by by }\end{aligned}\right.$
 seouring apparatus are arranged. A continuous
surrent from battery. P passes successively from
chen

 continted theo openiyngs round an axisel, X, A diaphragm O of
the same size as opening in wheel is fixed to a rigid
to shaft forming a prolongation of key lever M, and
when ant rest closes thbo ovenings, thereby cheking
the radiations from shurce S . The movement of M consequently aldernately allows and prevents the
passage of radiations to selenium receiver R1, and pro.
duces variations in its resistance, and therefore in

the intensity of the current passing through said

 gure shows the various arrangements of lenses and receivers. Various modifications of the above with
details of the apparatus are described and illustrated specification.
3939. Worm Gearing for Driving Washing and Mrivaing Machings, Cranes, Windasses, \&ce.,
A. Shave, near Huddersfield. $-12 t l \mid$ September, 18si. This consists in the combination of two worm wheels
in gear with each other and in gear with two worms. 3952. LarzBoans, J. Wetter, Nee Wandsworth. - 13 th
September, $1881 .-(A$ communication from G. B. Berrell, Pem neylvania, U.S.). $6 d$.
hemispherical parts connected by exterior flanges, and secured together by bolts, and constructed with a
ballast plate and keel, forming integral parts thereof, thas estid bata boin bing provided with suitable propelling,
tteering and ventilating mechanism. steening, and veniang mechanism
3961. Construction of Drainagr for the Purpose,
of Destroying Noxious Gases, de., R. H. Reeves, Isl of Wight. -1 lth September, 1881. . $6 d$.
The trapping may be done by means of angue or the sewase, the portion of the drain beneath the
tongue or ehutter being dished or hollowed out so as
 se ensure the gas bei.
sewage in the drain.
3970. PrRanBGLaAToRs,
14th September, 1881.

This consists in the combination with the body and Cles of annular flanged guiding plates, which are pro-
vided, the one with a series of circumferential locking which are so secured to the parts as to connection, and as to allow of them being freely
turned into any required relative positions and auto turned into any required reatitive posisitions and auto
matically locked therein, with a facility of being freely turned into any other required position and automati3978. Churn, dec., W. Rainbov, Luton.-15th SeptemThis, consisist mainly in the combination of a rotary agitator or beater revolving in a vessel of square or
other reectangular form, the form of the vessel being such as to prevent the liquid acquiring a rotary motion by being carried round with the agitator, and to check the rotation of the liquid.
3998. Handiss For Kivivs, Forss, dc., G. Renton
Shetield. 16 Sth September, 18811 . (Complete.)

A hollow matal case is filled with hard wood, bone
hornor or tip, the former beily stamped in two halves horn, or tip, the ormer being stamped in two hal ves,
which are soldered together after the insertion of the
wood
 Thist releptestem the the arranning or combining together
of the water supply, discharge, and other ayparatus of of the water supply, discharge, and other at paratus of or
or connected with baths, sinks, or other vessels for
onshinc purposes
 This relatess to improvements on patents No. 2542,
dated 2nd July, 1877, and No. 2598, datedeh 2sth June,
ato

 described, having on the upper part thereor, a tube
Jhich forms aprot of the amme asting as the plate, and
through which tube the main screw of the machine is passed. An second part relates especially to the form
pand dispositoon of the cams by means of which the
blow is delivered by the machine.
 This consists in turning the beil bil in two or more
directions, with, by prefence, carbard bands. and
dite to which bands a hook or other oonvenient fastener
is afifixed for the purpose of attachment to a lady's

 to make a fast pile.

a current in the same direction, whist the surround
ing coil is traversed at each half revolution ly roverso currents.
 (Not proceceded with.) 2 .
A leaf of tobacco is used instead of paper.

This relates to a case or covering of india-rubber or
similar elastic material.

 This relates to rack and pinion jacks, and has for its
object to reduce the friction of the rack in in its guides
by using two pinious instend of one. 18 instead of one.
$H / \times 5$.

 able arms, upon which to hold skeins of various
lengths, which arms are mounted upon a swivelling 1eengus, which will conveniently support and contang
device, whin
the adusting mechanism, and provide for clamping the adjusting mechanism, and provide for clamping
the apparatus to a table, board, or the like.
 Throceededed with. the employment of a weighted lift
valve, which the covers the flush pipe at the bottom of the cistern. Latpovements in and Consectrd with
4034. Tint
 Mhenlo Park of Nevo evsey, U...S.) id. to regulate the

electric engine in a shunt circuit. Upon the shaft of
its armature is a a governor G , to which is oconected swarmature is a governor G, to which is connected
sependser L. The pipeod ormature and goveror
depen the current in the shunt and main depends upon the current in the shunt gon main
circuit. If the current is too olittle the speed falls,
governo goverror bulls drop, moving L into contact with \&
or 9, cutting them out of circuit, and causing an or g, culting them out of circuit, and causing an
incrased current througt the field coils, and con.
sequent increase of generative capacity, R to R^{3} are resistance boxes.
4035. Treatment of Substanges for the Manu-
 This relates to improvements in the manufacture of of biphosphato of aluminina, crystatiline, or minneral yum,
or syrup obtained from a mineral known as bauxite, to render those substances into a substance of a more 4036. Claar Lhaptres, W.

 fase provided for holding the same closed, a a tubere provided with a spring eath spiral spring and a tubuurar cap for holding a candile, a
siotted and curvect partition, having a correspondingly
 armed wheel pivotted to the case for rasising the fuse,
a curved arm attached to the cover for igniting the fuse, and a curved spring for raising the cover quickly,
whereby a fuse will be ignited and a candle
lighted by

 de Kabath, Paris.)
This invent or claims t
gated sheets of lead.
4038. Expression of Juior froan Suaar Cane, W.
Thomson, J. Mylne, London, and J. B. Alliott, Not.
 combination of two vertical rolls, either plain or striated, and a flange o to prevent the escape of cane
donwwards, but which will allow the expressed juice
to drop. Modifications are described. 4039. Corsers, H. . . Nerton, London. -19 th Septem.
ber, 1881.- A communication from M. Cohn, New This relates to a corset in which a pooket is formed In either or each of the bosom-swells for the reception
 TTh hel is constructed in two parts, consisting of stitutes the wearing surface.
4041. GLasss Bortiles, \&c., H. Codd, London.- 19 th This relates to obottles ifted with screwed pluss to and it consists in forming a threaded recess in the
and side of the bottle, so that when the plug is removed
it may be serowed into the recess, and will not get
lost. 4042. Gas axd Oil Stoves, S. Clark, Islington.-19th This relates to means whereby a more perfoct com-
bustion is obtained, and the products of combustion are more completely rendered innocuous by condensa-
tion, and by reocontat with the flames of the burner
or or lamp thay
fore adopted
 This relates to a y ylindriacal can with btifinening
hoops, and a diss of wood attached to the bottom. A handle esprese also to foree down the lid and secure
it tightly, the lid being recessed to contain ice to keep
the milk cool. 4044. Crusss, J. M. Hill, Devon.- 20 oth Septenber,
1881.- (Not proceeded vith.) 22 .

 This conisist partly in the onontruction of a com-
 to a band ono, or forming part of the piok shaft by
means of one, two, or more vertical or or logitudidind
 4050 sprixcs

 4051. DRvivinc Mrcume
 friving meechais simple and oompact form of double

 with it engages a movable pin working in a socket in
themovable heel, which is thus prevented from turnin when in use.
4054 . Conc
4054. Concrete Materials, B. de pass, London.20th September, 1881. ((A communication from W
Hunt, Nevor York.) (Not proceded roith.) 2d. This relates to a concrete material composed of asphaltum and mineral oil treated with heat and com-
pressed into blocks for building and paving purposes 4055. Combination Furniture, \&c., F. and W .
Parker, London.-20th September, 1881. 6 . This consists in a combined ottoman, box, couch 4056. Wet
st Spinning Frames, J. Erskine, Tyrone.
eptember, 1881. $6 d$. . This relates chiefly to the application of cleaning or spinning frames, for the treatment of flax, hemp, and
other similar substances. 4057. Improvements in the Production and Em
ployment of Continuous Electric Currents in PLOYMENT OF CONTINUOUS ELECTRIO CURRENTS IN
RHILWAY CARRAGE, E., AND N APARATUS USED
THEREFOR, \&C., H. E. Newton, London.-20th Sep. tember, 1881 . (A communutiation from the Societ
Universelle d Electricité Tommasi Parin) This consists in the combination of a dynamo
machine driven by belting from the axle of the battery, an interrupter, and electric lamps, in such way that a continuous current shall be supplied to the 4059. Improvements in Electrical Bath Appa-
Ratus to be Usid For the Aplication of Elec
Tricity to Horses and other Animals, H. H.
 cation from.
with.)
4d.
This is an improvement on the electro-magnetic
bath apparatus described in patent No. 1107, dated for March, , 881, so as to render the same applicable
for animals, and especially horses. for
4060. Regulative the Discharge of Secondary
Batreries, tic, A. A. M. Clark, London. - 20 th Sep-
tember, 1881.-(A communication from N. de Habath, Paris.) 6d. (A.
The discharge is regulated by varying the
resistances, such as varying the height of the liquid

 Λ A horizontal diaztum hazana.) ad series of curved blunt

 4086. Fisoor Boxss, J. Carter. Seljost--21st Septem.

a glance. The coins can be removed through a sliti in
the bottom of the cylinders.

 weeping roller for removing the focks or fibres from the ancy roier, and transme with the top card
soasent bo abre tispenser a
provent a proper supervision of the machine.

 and a signal, are so combined that the movement of
the switch will cause the generator to actuate the 4070
O7O. Improvements in and Relativa to Indicatinc
Apparatus or Sicinlis for Railway Swrches or

 closed as well as the switch. $A n$ approaching train
will actuate the generator, from which a current will sill actuate the generator, from winl fall and indicate
besent the tign, which wete
safety, if the switch, be closed.. If it be open, the ircuit will be broken, no current will be sent to the signal, which will consequently remain at danger,
warning the driver of the train that the switch is open.
 In or der to produce a cloth which is soft to the the
hand, light, firm, and can be produced at al aitto cost,
woollen or angola wefts are woven into a leno or gauze woollen or angola wefts are woven into a leno or gauze,
warp.
4072 . Manuracture of CoLoured Sized Yarns, F.
 This relates to dyeing and sizing yarns of cotton or
other vegetable fibre, and consists in impregnating other vegtable fibro, and consists in impreegnatiding n suspension from 6 to 8 oz. of fiour, and then exposing the impregnated yarns to the
action of stean or other moist heat tor anout ten mininutes, so as to burst the cells of the farinaceous
mubstance and thicken the colour or mordant upon the substance and thicken the colour or mordant upon the
yarms, which thus become sized and dyed at the same 4073. Show-CAsEs For Nersles, \&c., A. W. . L.
Redaie-21st September, 1881.- (A communnication
rom L. . . Blood, New York.) - (Not proceeded
withth.
consists. in the combination of a box or case This consists in the combination of a box or case
formed with cells having their upper portions open at the front, spring pushers being arranged in each cell also the back of the cell, and having an open centre
and front to permit of the top paper of needles being displayed, and to permit of tho finger being placed upon the top paper to draw it outwards, securing
devices being provided to hold the retainers down pon the tops of the ce

Wanner, London.- 21 st September, 1881,- (Not pro -
ceeded vith.) $2 d$ This relates. to the production of a fabric having the
like embroidery stitch pattern on its opposite sides, nnd eapabio ofy being stith padtern on in its oppositite sides
with either side out 4075. Woopen Boxss, \&c., J. Womersley, Norwich.This rollates to improvements on patent No. 3141 ,
d. 1872 and consists in forming the four sides o wooden boones from one length of wood by cutting
wrooves at the parts to form the corners, such grooves groing formed of tamitemircular form at the bottom, and
bein
the sides bein V -shaped. A machine is described for the sides being V-sh.
cutting the grooves.
 A number of cigarette pape proceeded vith.) 2 . 2 . furnished with a hinged lidid on the inner face of which
is a spring to press on the top paper. The end of the is a spring to press on the top paper. The end of the
spring is coated with an adhesiv substaneo so as to
carry with it the top paper when the lid is opened. 4077. Holding and Controlunve Bund and other
Sminuar Cords, Sir C C. H. Pernell, Cormazall. $\rightarrow 218 t$ The tember, 1881. - (Not proceeded vilh.) 2 d . . of wood, the compression of which acting upon the
string regulates the oction of the bind, one of the
the string regulates the action
platuo buig fixed to tho win
ctuated by screw pressure
4079. Motive Power Apparatus Actuated by
 The horse is attlached by bharnoss to a posta nd stands on a movabie chin parsing over wheels on transverse
enders.
shats. As the horse tries to move forwards he forces the floor backwards and so actuates the transvers
 Pemberton, jun., Warring iton. 22 nd September This relates to means for making a kind of barbed wiro fencing, and it consists in passing the wire from
a coil mounted on a reel to two sets of straightening
solls Yolls, thence over a punch worked by a cam, then
throght mechnim which inserts a steel ribbon inte
the punched doles then the punched holes, then between dioe which cut or
the piece of ribbon and stamp it into the desired barl
forme form, pressing the barbs alternately to opposite sides

or cup around the central pillar of the said valve, and
with a weighted shell or cap without spper opening
so that the escaping steam or water is directed down-
ward into the sidichannel or cup. An opening in the side of the said channel or cup is provided with a
spout which curves outwrd and ownward, through
shich the stem Which the steam or water is discharged in a downward
direction on to the fire. The invention further sists in providing the valve with one or more lifting
air-inlet valves, so as to prevent the formation of air-inlet valyes, so as to prevent the formation
vacuum within the boiler or hot-water apparatus.
4082. Stran Genbrator Furnaczs, \&c., L. Shaw and
P. T. Fletcher, Manchester.-22nd September, 1881.

The object is to promote the combustion of the fuel, so as and anod the emission or smoke to a greate extent,
and it consist in constructing or bod of treso or fro.
brick between the backe end of the grate and the brick between the back end of the grate and the
bridge, which is placed further back than usual, and an air inlot passage is formed between the end of the
grate and the bed. The latter is covered with a layer of incal
flowing from the and the procucts of combustion fowing from the furnace meet the upward issuing
cournt of heated air, and mixing with it becomes
consumed as it passes over the be bof incondesces 4083. Measurina Water, W. Richards, Norwood-
 high or lowed pressure ane and reteristering the oa betuar luan piston meters with a metal cylinder closed at top an bottom and made in several parts. This cylinder
divided into three chambers by fixed partitions
with central orifices, the lower chamber containing th piston sliamg on a whin a fange at its lower part and a knob at top, and
which acts upon the covers of the valves. The middle chamber also contains a piston fixed to a vertical tube extending through the upper partition and sliding
upon the rod mentioned. This tube is connected to the lower valve cover. In the upper chamber is the water inlet provided with a guard to roduce any suit
abble prossure, and also containing a valve-box with able prossure, and also containing a valve-box with
seets for two vaves, each having three ports and fitted
with 4084. Racquers, A. Hoagkinson, Manchester:-22na This consists in passing the cords or strings through the frame of the racquet, so o that they are level with
the top of the frame, either on one side only, or on both sides.
4085.
 This relates to the dies for shaping clay, and conplate with grooves on its acting surface commumica ting with a pipe supplied with lubricating material and having porous matanginal arranged in front covering
the whole surfaces thereof. 4088. Gas Exannes, J. Atkinson, Finsbury Park.This relates to engines in which power is obtained
by the ignition and subsequent expansion of a com bostible mixture of gas and air. The cylinder 1 is
fixed in a water tank 2 forming the base of the en and in it works a piston connected to the crank pin.
Air is drawn in through valve 5 with a little water regulated by a cock, the compressed air being delijvered
through valve 7 to the compressed air chamber 8 , fron

which it passes by valve 9 to the power end of the
clinder, the valve being operated by a cam 10 and Iever, such cam also operating the gas admission valve.
14 which is actuated or disengaged by the governor. 14 which is actuated or disengaged by the governor.
The gas pases py pipe 18, and mixin with the eir is
conveyed by another pipe to the cylinder ; 20 is the
 Ignition side 2 28 18 driven from crank 29 , and the cam
3oreglutase the exhaust both being fixed on shaft 35
driven from the orank shaft.
087. Cutrivg Holess in Mrrat Platrs, J. H. Smiles,
stockton-on-Tees. $-22 n d$ Septemben 18si. Thiscoctonsists essentianly in apparatus. for cutting
circular or elliptical holes, or both (taper or not), in netal plates, the said apparatus being provided wi

a spindle attachable to, or connectable directly with, upright forming the working centre of the minae or
 The objecct of this invention is to fo first disinfect or deodorise sewage and different animal refuse, and the
extract the nitrogen from them under the form of mmonia or ammoniacal salts, and it consists in treating the matters with an astringent, such as tannin,
gall nuts or other tannink material and by the
adition of a small quantity of milk of lime the
sulphohydric acid is rendered practically inodorous,
after which sulphate of iron or manganese is added to fix the ammonia by forming a a sulphanes of that base
The The mixurure is then mixed with an alkaline liquor
and milk of lime and heated in a vessel, the vapours being condensed
 The power for operating the brakes is obtained from the motion of the training isele by employing the rotary
motion of the axiles to coil a chain upon a barrel on the axxe, such ohatio having one end fixed to the carrying another drum connected by a chain or rod
with the lever by which the brake blocks are applied 4090. Cubans
${ }^{-22 n d}$ September, 18 Iss, \&c., W. Saunders, Stepnea To a block or omor or of triangular formed a handle is
secured, and to the opposite to carry an india- rubberer roller, which acts as as "squeegee." On the side of the block which comes
nearest thh surface to be cleaned is attached an
 To impara. the to-and.fro motion to the sickle of a
"Marsh harvester" a lever is fitted to vibrate on a stud, and to one end of it a Pitman rod is attached The mechanism for actuating the binding the sparative
 the rear to the front of the machine, and it crank
in the midde to tive a to-and-fo motion to
packing leeres packin levers. At the rear end of this shaft is
chan wheel, to which a chain
putends from bevel pinion to drive the the front this shaft carries carries a pinion and clutch to drive the bindiog
mechanism. The invention also relates to means 1 maintaining a proper tension of the canvas webs or aprons; and, further, to means for octaining a morro
perfect tontrol hook in the hook device described in patent No. 8
A.D. 1880 .

 This invention is intended to avoid the pressure o the wires of a cable enclosed in a lead pipe, where
their insulation is endangered, which is effected forming the intervening lead, walls, which separato
the various wires, of material which is wholly or partly the various wires, of material
added to the body of the pipe

This codssists essentially in the combination of parts
forming the improved pump, in which the barrels of two horizontal or multi-acting pumps aro place
opposite to one another in a horizontal or incline opposite to one another in a horizontal or inctine
direction, and having a common valve box with on

set of valves and with or without fixed pump barre covers, and containing the working gear for actuatin
the pistons. The drawing shows a longitudinal vertical section of one arrangement.
 from J. A. Heuse and G. Jounnny, Paris.) $6 d$.
This relates tom onchines or printing various colours
upon upon a continuous web, and it consists in leading
such web of paper from the reel to a cylinder which are devices for securing the registering of the separate colours. The paper goes thence to a smal
roller from which it passes tangentially to a blanket cylinder in direct frictional connection with two cyinders carrying the pates bearing the design to be
printed. The paper receives one colour from the first
cyilinder which it, passes to a drying apparatus, and is dried in
 This relates to strengthening the bottom of the box by means of pins passed through the ends and botton
and then rivetted oser 4098. Steam Boiler furnaces, W. Ireland, Macclea This consists in the use and application to steam 4098

boiler and other furnaces of a hollow or cellular bridg c, formed of a series of separate air passages fittee
with grids or gratings F , and each communicatin with the ashpit D.
 This relates to improvements on the "Molinier machines, so that the skin may be worked simultan-
eously upon both sides and consiss in paciugaseond
knife cylinder under the ordinary indiacrubber roller,
and another india-rubber roller beneath the ordinary
knife cyllinder.
4100. Beer, H. A. Bonneville, Parik. 28 rd September,
1881.- (A communication from D. Cornilliac, vife of A. Ralu, Paris.) (Not proceeded with.) $2 d$.
This relates to the andition of the febrifuge, antiseptic, stomachic, and antisppasmodic principlese of
orange peel, lemon peel, angelica root, and of the
flowers pend leaves of wormwood to that peculity flowers and leaves of wormwood to that peculiarly
refreshing analeptio and depuratory beverage beer,
and to gaseifying the beer thus produced.' 4101. Clensisisg, Polishing, Colouring, and Dyring
Buldinos, Ec., Baron G. J. C. Liebhaber, France This relates to the, use of sulphuric and hydrochlorio acid for cleansing stone and other materials, suitable desired colour.
4103. Combined Cramp, Naid Driver, Punch and
Gatoe for Use when Workin Fion Gavge for Use when Working Floorisa and
otter Boards, J. Hardinge, Westminster.-23rd September, 1881.-(Not proceded with.) $4 d$. This relates to a metal cramp actuated by a ratchet
motion by pawls hinged in the upper part, and work-
ing in a serrated tongue having also a breast-plate to motion by pawis hinged in the upper part, and work-
ing in a serrated tongue having also a breast-plate to
press horizontally against the unnailed boatds. The press horizontally against the unnailed boards. The upper part and front end of the cramp has two arms,
between which is swung a shoe to receive a lever or
tube in which works a piston forming the nail driver. tube in which works a piston forming the nail driver.
4104. Poverrisige and Treating of Diamondierous
 The diamond-bearing earth is first softened or
treated by steam, hot water, or very dilute acid within treated by steam, hot water, or very dilute acid within
the machine, in which it is conveyed or fed forward to
beating rolls to be broken up, and thence to sieves or beating rolls to be broken up, and thence to sieves or
gratings and a crushing cylinder or cylinders to
break down the softer earthy matter while leaving he diamonds or hard stone unbroke

 This consists in a new method of winding thread on
paper tubes by covering the inner layers of thread by
the outer layers, so that every successive layer is
longer than the procoding one and completely covers it.
 This relates, First, to a spring appliance placed
between the lamp and the bicycle, so as to prevent
the lamp being extinguished when travelling over between the lamp and the bicycle, so as to prevent
the lamp being extingished when travelling over
rough roads; and Secondly, to the means for attaching the lamp to the axile
2ird September, issi. A. (Not proceceded vith.) Park.This relates to means for causing the ribs when closed
to lie in close proximity to the stick, and consists in
making the stretchers lie within recesses in the notch, making the stretchers iie within recesses in the notch,
and form a receptacle or channel for the ribs which lie
within the stretchers. 109. Corting Rol
4109. CURTAIN RoLlers, \&c., M. F. Rust, London.-
This September, 1881.- (Not proceded ovith.) $2 d$.
2d. This relates to rollers in which cords, levers, ratchet
Wheels, and pawls are employed for winding and un-
winding the curtain from the roller. The rolle is of
wood, with metal axes to work in the brackets, which wood, with metal axes to work in the brackets, which
may be placed either vertically or horizontally. One
end has a spool to receive the cord, and also a ratchet end has a spool to receive the cord, and also a ratchet
wheel to hold the curtain in any position by a pawl
attached to the cord lever. 4111. Dressing CAsEs,
23rd
September, 1881.
$6 d$.
wings are caused to swing outwards on the raising o he lid, the bottom drawer remaining stationary; and trays.
 This remates to an arrangement of printing rollers so
to allow of printing in one machine two or more colours on the sliver of fibrous substances, and it con sists in the use of an ordinary slubbing printing
machine, which delivers the fibres in a thin flat sliver through the gill-box to the first printing roller, sup
plied with colour by a felt-covered roller revolving in
a colour-box, the sliver a colour-box, the sliver passing between the printing
roller and a roller covered with india-rubber. The
sliver then passes to a second printing roller and
res
4113. Machinert for Tuneris
4113. Machiserr for Tunnelling, \&c., J. D. Brun
ton, Westminster.- 23 der September, 1881. sd.
This relates to improvements on Brunton's tun nelling machine, and consists, First, in an improved
method of supporting the machine in the tunnel so method of supporting the machine in the tunnel so
as to render it more steady, and at the same time not
to interfere with its continuous progression; Secondly, to interfere with its continuous progression; Secondly,
to an improved method of lubricating the chucks and
parts adjacent thereto; Thirdly, to a method of applying water to the face of the tunnel while exca
vating; and Fourthly, to the construction and arrange ment of the chucks and cutters.
4114. Rasising And Forcing Water, \&c., W. Rain-
bovo. 23 . This consists in injecting steam or air into the pipe
that communicates with the water to be raised, and causing it to pass through
which leads to the delive which leads to the delivery pipe.
4115. Flood VAlves For Drain
The object is to prevent the inrond of high tides and floods into buildings through the drain pipe, and it
consists in forming a valve chamber in the drain pipe,
and placing within it a ball float, which, when the valve chamber is
in the drain pipe
4116. Drawing Corks prom Botrles, J. W. Notting
ham, Surrey.-24th September, 1881.-(Not proceded An ordinary corkscrew is fitted to turn in a collar
fixed at one end of a slotted lever acted upon by a
combination of other combination of other levers, one of which is antached
to a standard upon a circular collar or ring to encircle
the neck of the bottle the neck of the bottle.
4118. Giving Change yon Mongy, G. B. Absell,
Kentish Toorn,-24th September, 18si. Bd. This relates to apparatus in which, on a coin being
dropped into the proper receptacle, coins of smaller denomination are given in exchange, and it consiste in causing the coin inserted to operate mechanism
whereby a plate placed under the reepptaces for the
coins to be given in exchange is released, and can be moved forward so as to allow the requisite coins to
pass out of the case. If the coin is not inserted in its
proper receptacle, the plate remains locked. 4119. Laths For Venetian Blinde, A. M. Ross,
Edinburgh. $-24 t h$ September, 1881.- (Not proceded weith.) $2 d$.
The laths are
of any desired colour or design
Chenehanical Cuting or Dividiva or side

This consists in prodiding the intervals formed
between two groups of threads in weaving chenille with a guide formed of two threads, and which con
stitute an intermediate strand, and between which the stitution an indermediate strand, and between which th
cunt
insure regularity of forma are made to pass, so as insure regularity of cutting.
4121 . Drivisa
4121. Driviso Bicycles and other Velocipedes, 7
Gd. Heath, jun,, Glamorgan.-24th September, 1881.
6d.

This relates to a mothod of applying the driving
force to velocipedes, whereby the rate between the
distance travelled by the peripherry of the driving
wheel and by the pedals may be varied as required wheel and by the pedals may be varied as required
and it consiss in applying to the driving axle two
drums, each free to pavolve in drums, each free with it by means of ratchets and pawls. To each to the pedal lever, so that they can be shifted along
the the latter and fixed at various distances from the
thus varying the speed of the driving wheel.
4122. Pocket Combriation Kive, Fork, AND
Spoon, L. A. Groth, London.-24th September, 1881 (A communication This consists of a knife, , fork, and spoon so combine the bowl of the spoon only being outside the handle.
 This coceded wists in the employment of an elastic closing This consists in the employment of an elastic closing
vessels of of a gripping appliance on bottle or pot-like
vorcelain, or other suitable material vessels of glass, porcelain, or other suitable material
the rim or flange of the neek of such vessels being
formed with projections at opposite sides to form hold fasts for the gripping appliance, which consists of
capsule with arms to pass under the projections and elastic pad.
ri Combing Wool and other Fibres, J. F. Har
 arge circular comb that by means of one a pair of draw
ing off rollers practically the whole of the combed ing off rollors practically the whole on opair of draw
tutt is sembed and drawn into a sliver of top, no
combed fringe being left combed fringe being left as hitherto on the inside of
the large circular comb after the said rollers have
drawn the sliver, thereby obviating the necessity of drawn the sliver, thereby obviating the neceessity of
employing an additional pair of drawing-off rollers
and consequently of drawing off two slivers as at
4128. Condensing Vapours Arising from the
Evaporation of Cane Juice, dc., A. Chapman, Liverpool. - 24 th September, 1881. . d . A. Chapman,
The object is to effect economy in the water employed for condensing the vapours arising from the
evaporation of cane juice or other liquors, and it con-
sists in sists in combining an open surface condenderer with
other parts, so that the vapour condensed in the tubes may be returned in the shape of water over the tubes,
mand so be utilised to condense the further vapour
entering the tubes.
 nication from P. A. Charpentier, Paris.) $2 d$. .
The wire through which an electric current is to pass and cause an alarm to sound in case of fire, con-
sists of two copper wires, the ends of which will be
connected by means of a metallic soldering effected by
4129. SpinNinga, Doubling, And Preparing Cotron,
\&c., J. Bastov, Bradford. $-24 t h$ September, 1881 .

This relates to " cap spinning," the objects being to obtain greater uniformity of twist, and enable a longer
length to be spun on one bobbin; and it consists in the use of apparatus which will vary the speed of the
rollers delivering the fibre to the cap spindles, as the amount of yarn or the diameter on the bobbins is effecting this consists of a pair of driving cones which
act as an intermediate gearing between the act as an intermediate gearing between the driving
shaft and the wheels actuating the delivery rollers, one cone being geared to the driving selaft and the oother
to the delivery rollers, with a driving strap passing
over the two cor to the delivery ro.
over the two cones.
4130. Mandfacture of Pulp from Cardboard, \&c.,
W. C. Horne, Bexley.-2th September, 1881.-(Not The oobject is to produce cardboard, \&c., which
hall be both luminous and damp-proof, and it consists adding to the pulp a phosphoresescent powder, and 4131. Manufacture or Treatamnt of Lace Curtains, ${ }_{2 d}$ de., W. C. Horne, Bexley.-24th September, 1881. This relates to means for rendering lace curtains
and other analogous articles luminous and dampproof by treating them with phosphore
4132. Opening Asbestos, \&c., J. Allport, London,
and A. Hollings, Salford.-26tl/ September, 1881 .

The blocks of asbestos are subjected to a compound knuckle-like action, one being a tearing or drawing
motion in one directio:, and the other a motion variod, a suitable form consisting cffect this may be two toothed
collers of pyramidal form caused to rotate with equal rollers of pyramidal form caused to rotate with equal
or differential surface speed, and one caused to traverse or differential surface speed, and one caused to traverse
laterally a short distance whilst rotating by means of a cam or otherwise.
4133. Purification of Illuminating Gas, \&c., L.
Wr ight, Beckton.-26th September, 1881 .- ((0 oid.

As the gas leaves the hydraulic main on the way fter which it is heated to from 400 deg. to 500 de Fah. by passing through tubes heated by to the waste
products of combustion from the retorts. The gas is hen cooled and passed thro
ing moist animal chsrcoal.
4134. Altering and adjusting the Anale of Toilet
Looking-GLasses, de., B. W. Blmalie, St. Leomards-On-Sea.-26th September, 1881 . 6d. 6 .
The stand consists of an under stationary frame carrying the standards, and a movable or sliding frame to
which the bottom of the glass is attached by a hinge. 4135. Shoes for Warming the Feet, G. H. Bllis.
London.-26th September, 1881 ,-(Not proceded voith.) $2 d$. the shoes are made of a hollow cas
The oolos of
apable of being filled with hot water for the purpos
warming the feet. warming the feet.
4136. Applances For Heating by Steam, W. Trus-
well, Shefiteld.- 26 th September, 1881. 6d. This relates to apparatus for heating buildings by
means of low-pressure steam, and it consists of a boiler of any suitable construction to which is con-
nected a water supply pipe provided with a back-
pressure valve, such pipe being also connected to pressure valve, such pipe being also connected to a
supply cistern close at top and communicating near
the bottom with a feed cistern the supply which is controlled by a ball tap. A chamber con-
nected by a pipe with the boiler is fixed above the level of the water supply, and one or more circulatin and return it to the supply cistern, which is fixed at
such a height that the pressure of water will raise the such a height that the pressuu
back-presure aalveand keep
ciently charged with water.
4137. Obtainino Motive Power by Means of ComThis consists in the system or notive power by burning a combustible of of or vapour
under pressure, wherein air and the compressed and are burned continuously, and an ngine is worked like a steam engine by the increase
pressure due to the burning.

$\left\lvert\, \begin{aligned} & \text { essential constituents protoxide of lead, boracic acid } \\ & \text { and silicic acid, and and varying in composition from } \\ & 73.3 \text { per cent protoride }\end{aligned}\right.$ 73.3 per cent. protoxide of lead, $14 \cdot 6$ per cent. boracic
acid, and 6.1 per cent. silicic acid, to 893 per cent.
protoxide of lear protoxide of lead, 7.5 per cent. boracic acid, and 3.2 per
cent. silicic acid, and applying such compounds to the
siticles under treatment, preferably when held in articles under treatment, preferably when held in
suspension in water or paraffine oil as a bath under 4140. Mules yor Spinsing Woot, Corton, \&c., T.
H. Blamires, Huddersfeld. -266 h
September, 1881 . This relates to the employment of apparatus whe
the return or back scroll band is dispensed with.
4142. Construction of Wheels or Pulleys, c. F.
Brodie, Aberdeen.-26th September, 1881.-(Not pro-

The wheels with.) $2 d$ d. able rims or tires
4143. Prodvction of Embromery, J. Renals, Lon-
don. -26 th September, 1881.- (Acommunication from J. Steiger, Herisan, Sloitzerland.) ${ }^{\text {did. }}$
This relates to the production of guipure embroidery This relates to the production of guipure embroi
nd the embroidery upon loose or open fabrics,
is net, by means of the embroidery machines.
4144. Apparatus for Cheoking the Receipt op
Money Taken for the Use of Publio Water closers, dc., J. N. Maskelyne, London.- 26 th Sep
tember, 1881, 6d Applied to the inside of the door of the water-closet
or lavatory is a bolt to be shot by the person using the 4145. Sockers For Castors, D. Mackie and J. C.
Jopson, Brrmingham.-26th September, 1881.-(Not proceeded with.) $2 d$.
The sockets are made solid, drawn from wrough 4147. Roasting Coffee, Chicory, \&c., W. R. Lake,
 chicory, cocoa, and other like substances, by hot a
4148. Joints or Apparatus for Suspending
SUpporting Swing Looking Glasses, de.,

Skerrett, Birmingham. - 26 th September, 1881.-(N
proceded vith.) 2 .
According to one arrangement the axis of the joint
According to one arrangement the axis of the joint
on which the swing looking glass turns is made split
or divided longitudinally nearly through its whe or divided longitudinally nearly through its whole
length, the solid or undivided end being attached to a carrying plate which is affixed in a central position
to the side or edge of the frame of the swing looking
4149. Treating Copper and Producing thereby
New Metal or Alloy, A. Getchell, Boston, U. 26th September, 1881.-(Not proceeded with.) 2 .
This consists in adding to the copper when at o
near a red heat a composition composed of potash (o soda), alum, bone dust (or other phosphate), and zin
(or tin). 4150 . 50. Apparatus for Displaying Clothing in Sho
Windows and Other Places, F. Mcilvenna, Liver This relates to a means for dispensing with the se 4151. Fireplaces and Grates for Warming Room dc., W. P. Thompson, Liverpool.- 27 th September
1881.- (A communication from J. M. Cook, Cincinnati The fireplace grate is constructed of a back-plate, smoke-flue projecting through an opening in said back-
plate, and a fire-box inclosing and retaining frame which forms an ornamental front, and is perforated to
allow the heat radiated from the rear of the fire-bo to enter the room,
4152. Apparatus for Heating Dwelling-houses,
\&.., W. R Lkee, Londoon. - 2th September, 1881.-
 Air is employed as a cirrulating or heating fluid.
The air is given a continuous and rapid movement in an endless path through a heater, suitable conducting pipes and sheet metal radator
4153. STop Cocks For Liquids and Gases, H. Hughes
Loughborough. $-27 t h$ September 188 , This relates to the insertion of an india-rubber or
elastic lining cemented or fastened in the stop cock. 4155. Navigable Vessels, \&c., C. Simpson, Liverpool.
-27 th September, 1881.- (Not proceeded woith.) $2 d$. This relates to a new construction or adaptation of
the hull of a ship or vessel to make it suitable for a novel system of and apparatus for propelling by the
action of steam, and the alternate ejection and indrawal of water.
4158. Rotary Blowers and Pumpg, F. M. Roots,
Connersville,
U.S. -27 th

This relates to rotary blowing engines and pumps in which two or more rotating abutments co-act together
and with the shell in which they are encased to force a current of air or gas in one direction without permit-
ting backward escape under pressure. The case con-

4158

sists of two semi-cylindrical flanged shells A secured
between end-plates, and in it the rotating abutments are mounted one above the other, the form of whic djust the abutment shafts in case the bearings wear unequally.
4160. Tunnelling and Rock-boring Machinery, F,
B. Doering, Trefrivo, North Wales.-27th September
1881 6d This consists partly in the combination with the the purpose of effecting the turning of the parts, fo certainty; also constructing rock drills or boring
machines with a piston valve at each end of the cylinder, and with a port at eech end at right of thes
to the cylinder. Other improvements are described
oelating to the air cthe 4162. Manufacture of Paper Pulp, H. Oltick, Lom
 The invention is applicable to boilers of any form
but by preference spherical, revolving on suitable hori zontal trunnions, and adapted to receive a liber quanity of stock and to expose it to the action of
chemicals with heat. Steam is admitted through the
trunnions and through passages connecting therefrom,
trunnons to podits which come alternatoly t the
lowest and higbest points of the booler as the lattor 4163. Thearuwat or Rrawns' Waste, ©o., A.G.
 timous matter contained therean is recoreredina a solid
or bemisoid form, and tho flud portion in a bright 4164

 extra seond hand aro shown with the ordiarary hand
 preferred.

 This consists sin using the cyindiders, valves, and all

 has antached to this top a ding by which the rouser is
attachod and manipulated.
 This reatedeteto onpplying pedalas for actuating eertain

 TThis onsidits in inting anglied guide plateses in front

 4178. Surzribativa Stun

Thitid rohates to gelf.stripping carding engines. the
 also th set each that separastaly

Thi bard pulp is led botwen t wo travelifg wires
orear larger routre, and when set the wires that then

 or ronsted sand is added so to absorb the moisture and the clay is then made up into bricks, pipes, tiles,
ce., such articles, after the first burning, being ato, wed to articles, and then reburnt at a much, higher
temperaturo. Pipes thus formed may be used temperature. Pipes thus formed may be used as
boiner tubes, being frist encosed in iron pipes. Whe
Tinchine for moulding the articles is is rovided with machine for moulaing the articles is provided with
plungers and a ram worked by cams, , so as to force the clay through dies, preferably of polished platee
glass, the openings in suuch dies being smaller at the supply end, and for a cortain distance, and
correct size of the article at the delivery end
4185. Trearing Catcanrous Bricess, F. H. F. Engel, from J. A. A. Renck, Germany.) 4d. by the slacking of any lime cracking or breaking ury
Sing burned, they are brout contain after being burned, they are brought direct from the oven
whilst still warm and placea in pits, which ore the and kilis it witar. Without causing ther the brinioss with the track lime and and kilss it, without causing the bricks to crack, and
when the operation is completed the bricks are
 Phisumanh, conist in the maer. manuacture of German yeast
This
tran from grains by the application of sulphuri
ruuriatic acid, or sour clarified wash residue.
 This relates to the heating of water in circulating pipes for supplying buths, ©CO, and consists principally
to applying or directing the flame of a burning mixture of gas and air against the outside of a por-
tion of the circulating pipe itself which passe through the burner.
 by removing the noceossity of power orthast the stean condenser through the same channel by which it entered, a special passage governed by a slidie valv
being provided for this purpose. 4192. Veviliating Ships or V

Archer, Nepmber, $1881-(A$ communinication . Johnson,
 from which air is expelied through surtabie outiee
valves com munnacting with the atospere and
drawn in through inlet valves communicetine wit drawn in through inlet valves communicating with
the ship's hold, the rolling motion of the ship bein the silised to alternately exhaust and compress the air
utill at the opposite ends of the syphon pipo

shis consists in working the cook or valve of the subjiission and emission of which are timed by clockwork wound up by each stroke of the piston. 4195. Conpond of Mixture for conting the

Rusz, C. J. Davidson, Wolverhampton.-29th Sep-
 solved camphor in 2 quarts of linseed oil, and to the

 terebine.
as, J. Miniere, Paris.-29th Septem. This revatese to a on umbrella which can be closed with
one hand, and consists of three parts $:-$ First, a spring for keeping the umbrella open; secondly, a traction wire which operates the spring; and thirdly, devices for proventing the
tion of the spring.
4198. Armour-platres for Shrps, de., W. R. Lake,
London. $-29 t h$ September, 1881 . ((communnication from H. Reusch, Dillingen-on-the.Saar, Germany.
Thete, intimate connection of the base of the armoursteel cast on the same, is considerably promoted or
increased by treating the surface of the said base with alkaline silicates or boracic salts.
4200. Brushes for Domestic And Medrax Pur-
posss, A. Bottin, Brusels. $-29 t h$ September, 1881.(Not proceeled with.) $2 d$.
The back is made hollow so as to serve as a reserYoir or receiver for any desired liquid, and a number
of hollow toeth perforated at the ends or points are
substituted for the haits substituted for the hairs in ordinary brushes, so that
when the brush is in use the liquid, by passing int the hollow teeth and out through, by passing into

4201 . Oxide of IroN, \&o., E. A. Parn
 Thist place, to the production of oxide of iolate, in the the Firrst place, to the production of oxide of iron from
sulphates of iron-ferous and forric and Secondy,
to the production of ouide of fron for to the production of oxide of iron from the chloride acid is employed for pickling the iron plates
4203. Vessel or Applance for Heating or Re
 Thember, 1885. 6 d . .
 Om a pockee the reception of a bottle, flask of the bags oncontain hot water or or onter liquild,
means being provided for filling in such liquid.
 This consistst in an application for seauring casestituting at orce a staybar and fastener inacecessible from outside.
 Fixed on the base peedate of the machine is a pair of guide reils upon which a needie ereceiving plate arving
raised sides works. Upon the said guide erais is sup-
ponted ported a rectangular compound hopper, the said hopper
consisting of a box open at top and bottom and vequided by a series of vertical parallet platess into thite the arent sizos to be counted and arranged he compound hopper isocuppied by a roller or cylinder
 oller is provided with eppessions. and the endeeth of an a
 notion is simultaneooskyly given and forwards, rotary roiners, the motion of the rack being limited to the
range
each rolleress.
4206. Wassiva CLorriss, \&c., T. W. Waller. Hanley.
$-29 t h$ September, 1881.-(Not proceeded with.) $2 d$. This rillatest to the oonstruction of sell- acting wasi-
 Thenera.) 6d. This consists in a special form for the bottom of
botats The corves are always of the parabola family,
with one 4212. Purifying Sewage, P. Spence, Manchester:29.th September 18181 . the
this consists, Firstification of sewago, fitter allowing grint thereto of salts of and alumina and iron in sufficient tuantity to make a clear
and nearly colourless effluent, and the recovery of the
 same or in a similar process; ; Secondy, in the use of
the residual magma after separating the recovered

The improvements are based upon the fact that Thwe improverents are based upon the fact that of ammonia and carbon as primary, products, the
iodine, bromide, and other salts being regarded as
 This relates to fire-extinguishing apparatus of that
class in which pipes arranged within a building are classis in which pipes arranged within a building are
connected with a water main or supply, and provided
 to a cortain degree, cuase or allow the said valves to
open and distribute the water from the said pines 4223. Gas Moror Exgines, C. W. King.-30th

4223

non-conducting material, for producing hot product expansion in a cyinde
 This relates to the construction of a weighbridge.
 from H. Wratt, Neo York.). 4 .
This consist This consists partly in the consolidation of all blocks by mixing therewith metallic iron in commi
nuted or divided form, and causing this iron to rust and then form hydrated, oxide or a bassic salt in the inter-
stices of the mass by admixture with a saline solution.
 from L. May, Ungarisch Ostra, Austro-Hungary.)
This consists of a wheel whose nave is constructed entirely of iron, steel, or other malleable metal, and
is composed of a tube and rings of angle iron or other
metal metal pieces.

This relates to those (Nut wreced.
This relates to those purses with a metal rim or
foldining-up clasp, but unlike thoses, it is composed
ne one flat pieceos. of eather, of round, or oval, or oveen of
irregular soune form irregular square form. When opened, it lies out
fatt, the contents being open, as upon a dish or plate.

Vertically throu vhith) the $2 d$.
perforating pins, pressing diaes a, honde is drilled, into which a tube is
serewed with its lowe being provided with end bot the upper end of this tube
pins to pass through. pins to pass through. The pins are fastened with
their foot in a circular block fitting into the said tube and which is pressed upward against the bottom o the tube ey a cyind provided with a serowed neock,
which turns in a female screw-thread cut into the
lower lower part of the hole in the pin-supporting beam.
 castle-upon-Tyne. -1st october, 1881. $6 d$.

 This consists, First, in making safety valves cylinextremities on the seat, which latter is fixed to the筒位 a little belo w the dome, with the siston or valves inside Which divides the chamber into two parts, one the the other portion, constituting the seat chamber, and the
other, upper part, which is limited below by the pistona
4226. Wrspow Sashrs And Frases, C. Hook, Somer-
set.-30th September, $1881 .-($ Not This consists in suspending both sashes from the the window frame
4366 . P vewat

This consists in combining with a non-automatio
pipe and cylinder on a carriage a pipe and cylinde

arranged to work automatically, the cylinder having
an opening governed by a cook' or valve connected to an opening governed by a cook or valve connected to
a piston or flexible diaphragm subject to the pressure in the non-automatic pipe.

SELEOTED AMERIOAN PATENTS.
From the United States' Patent office Official Gazette
255,449. Metal-borivg Machine, Daniel W. Pedrick,
Philadelphia, Pa.-Filed December 20th, 1881 Claim.- (1) In an apparatus for boring cylinders the plate having a central opening for the passage of a
boring bar, a bearing or thrust plate having a central socket for the reception of a feed screw, and coupling
rods by which said plates are connected one with tho rother. (2) In an apparatus for boring cylinders the
combination, substantially as set forth, of a boring

constructed and combined substantially as and for th constructed and combined substantially as and for the
purpose herein shown and specified. (2) The combina-
tion, with a fixed pair of anchors, of a snatch-block carriage, engine, and chains conneeting the snatcl block with the engine, as described, so carriage wit anchor has beennects sitted to and coupled with the nex
anchor, the snatch-block carriage may be drow int anchor, the snatch-block carriage may be drawn int its operative position in a line with anchor and th its operative position in a the latter and the chains
engine by the operation of the lathen
which connect it with the snatch block, , tubstantially which connect it with the snatch block, substantiall
as and for the purpose herein shown and set forth.

CONTENTS.
The Engineer, May 5th, 1882.
The Shipwrights' Exhibition-Models of Ships page

 YACHTS AT THE NAVAL AND SUBMARINE Ex $\ddot{\text { EHIBI- }}$

Weisnega's Laboratory
Constant TEmperature
Stoves
Low's Drawing Board 32
Unloading Pit Cages.
strength of Buckled plated
Brighton beach.
Steam Engine Economy
Foundations of Meceanics
Ratlway Matters .
Notes and Memoranda
$\because \quad . \quad 32$
with the rail, said bearing having a rigid connection
with the rail, as at C, and being free from said rail at 255.518

all other points, substantially as and for the purpose 255,575. Berr Cooler, Charles J. Boff, Boston, Mass.
-Filed Auqust 15th, 1881 . Claim.-(1) In a beer cooler the combination of two ongitudinal pipes, a series of transverse pipes inter-
secting the longitudinal pipes at points between the

ends of the latter, and a series of removable plugs at points opposite the ends of the transverse pipes,
and constructed to direct the flow of beer from the longitudinal into the transererse pipes, all substantially
in the manner and for the purposes set forth 255,587. Steam Plogghisg, Fritz Brutsche, Berlin, Claim.-(1) The snatch block carriage mounted upon
swivelled wheels I II, and composed of a frame $Q Q^{1}$, sheave P, having pinion, cog wheel, concentric pulley, band, shaft, sheave or pulley R, keyed upon said shaft
and provided with the clutch, band drum S , vertically adjustable upon shaft, means for adjusting said drum,
clutch fixed in the bottom plate of the carriage frame
255.582

-

E

317
bar, a feed screw concentric therewith, a gear jhe boring bar longitudinally on the feed screw without rotating with the boring bar, a sectional or divided
nut pivotted to said gear, and a clamp by which said nut may be made to either engage with or be removed 255.497. I

Claim. Diehl, Blizabeth, N.J.- Filed January 10th, 1882. hermetically-closed electric glamp a consisting of a the globe and placed in circuit with the light-giving part, and a primary coil arranged exterior to said
globe and in inductive relation to the secondary coil,

CONTRATS OPEN-
Ironwork for Indian State Railways. (Illus-
trated)

Hydnaulio Lifts for Goods and Passengers.
Leading Articles

Ventilation of the St. Gothard Tunnel
Esticating the Weights of Girders
32
29

Estimating the Weights of Girders
Northern Mineral Properties
.. ${ }^{329}$
Literature-
Preservation of Life and Property from Fire
The Naval Architects' and Shipbuilders' Pocket-
$\underset{\text { book }}{\text { Books RECEIVED }}$.
Books Received
Leal Inter intigence

Sewerage Works at Chipping Wycombe 32
The Berthon Collapsible Boat. (Illustrated.)..
The Iron, Coal, AND General Trades of
Notrs from Lancashire
substantially as set forth. (2) The combination of a sion made integral therewith, and secondary coil
supported at the interior of the extension and placed in circuit with the light-giving part, and of a primary in circuit with the light-giving part, and in a primary
coil arranged exterior to the globe and in relation to the secondary coil, substantially as specified. 255,518. Spindle-strep Rail for Spinning Frames,
2rist, 1881 .
Brief.-The step rail is provided with yielding spring bearings, which, when in engagement with a set screw,
clasp the step rigidly, thus permitting the vertical
adjustment of said step. Claim.-A spindle-step rail
A, provided with a clasping bearing B, which is cast
255.497

The patent Journal
abtracts of Patent
tratedifications. (̈llus.

PARAGRAPHS-
Whind Pressures and Velocities
The Thomas and Gilchrist Proc
$\begin{aligned} & \text { The Thomas and Gilchrist Process } \\ & \text { Corinth Canal }\end{aligned} \quad . . \quad . \quad . . \quad 32$
Charing-cross and "Cannon- $\ddot{\text { Bridgeet }}{ }^{\circ}$ Raiilway ${ }^{3}$

\qquad

5

[^0]
[^0]: .

