ANCIENT COUNTERPARTS TO MODERN INVENTIONS.
The statement that Henry VIII. possessed a breechloader on the Snider system, Mark II., and also a muzzleloading rifle ; that the Spanish Armada carried wrought iron breech-loading guns fixed on pivots, with all recoil hecked, like Krupp's pivot guns ; and that Marshal Vauban had a breech-loading small-arm whose breech closed with an interrupted screw, would probably be treated as statements containing some double meaning or altogether made in joke. Nevertheless we propose to show how very nearly these are sober facts. The pieces themselves, with innumerable other curiosities in artillery, are open to public inspection in the Rotunda Museum on Woolwich Common. The pieces are well arranged and catalogued, thanks chiefly to Sir H. Lefroy, K.C.B. We propose from them to give some illustrations of modern ideas forestalled in ancient imes ; but before doing so we would strongly protest against the use to which such anticipations are apt to be put. We hold that if a successful invention has established its, reputation, it is a most unjustifiable thin to dig out of some obscure corner in a museum som hing that in a measure has the same idea embodied in it, and treat the unfortunate inventor as a sort of pirate by confronting him with a design that he never had seen or heard of-of which the worth was per haps never suspected unti worked out to a successful ssue by the modern inventor. While, however, in no way detracting from the credit of inventors of our time, we cannot fail to see that in very many instances designs subsequently successful have been fairly worked out hundreds of years ago and allowed to drop into disuse. How is this to be accounted for?
We think it is due to the deficiency of machinery and means of reproduction A design might be worke out formerly by a skilfu mechanic which, although ough to modern eyes, an swered fairly well; but the dea of manufacturing the same article by the thousand em wild unless the pat for example, would manifest such faults that simple sound muzzle-loaders would be far preferable. The rough wrought iron guns made of hoops and staves would in the same way give place to those of cast metal. Then the real powers of rapidity of a Snider or a Colt's revolver action might be masked by the imperfec tion of the old-fashioned lock used in connection with them. It is easy to see how designs might remain in the stage of ingenious curiosities until they ceased to at tract attention two hundred years ago-designs which would in the present day quickly assert their superiority because they would be well and easily manufactured. Apparently our an cestors had as much in genuity as ourselves, though circumstances were unfa vourable to their success. It is interesting then to trace out the representatives (many of our best moder designs, while we, at the same time, distinctly repudiate the idea that the existence of the old ones detracts from the claims of the new, unless it can actually copied from them be shown that they were haps rare exceptions, is out of the we hold, with perwere it not so, considerable credit still attaches to the man who can seize what is good in a collection of obsolete arms. To come then to actual designs
We will first take the question of metal and its structural arrangement. Fig. 1 exhibits a remarkable group of

Fig, 2.- GROUP OF ANCIENT BREECH-LOADING GUNS, ordnance also we think that the dificulty was aggravated Museum. It may be seen that this piece is built up of very weak to suit such a gun. In many cases these guns解 comparative ease with which powder was improved. longitudinal pieces of wrought iron running along the were mounted on pivots, where there was no more allow The half-developed breech-loaders with bad, rough joints, bore, like the staves of a narrel, held together by hoops or ance for recoil than in Krupp pivot boat guns. Here, at
guns. They are classed together in the Rotunda Museum, but by the permission of Major Hime, R.A., the secretary of the Royal Artillery Institution, they were grouped specially in order to make the photograph shown in our cút.
The guns marked $\frac{I}{3}, \frac{I}{6}$, and $\frac{I}{7}$-these being their actual
Museum numbers-are some of the oldest to be found in
judged right to cut it open to exhibit its structure. The reech of it is seen in cross-section over the other guns. The interior ring is gun-metal at this portion of the piece the chamber being ind with a cylinder of his material Outside this are longitudinal flat bars, placed like staves of a barrel, but dwo deep, wela the lor leaving interstices which are sealed up with lea. Outsid are thirty-five rings or hoops, averaging $2 \cdot 3 \mathrm{in}$. in width and $1 \cdot 5 \mathrm{in}$. thick near the breech. These have bee burred down while hot a their edges, and the joint
closed. The iron is of excellent quality, giving tenacity of about $55,258 \mathrm{lb}$. to the inch, nearly resem bling that now employed in wrought iron guns-vid R. A. I. catalogues

How far are moder principles embodied in thes primitive designs ? W cannot admit that there wa great merit in the employ ment of wrought iron, be cause in early times might only mean that th perfectly iron was im pann that , tred to gh irn was pre la lal because theadjusted our the strains that ar on known to fall on the
. I.- GRoup of ancient built up wrought iron guns artillery. No. I is a portion of a wrought iron cannon \mid All we can distinctly say is, that the iron was placed so .o adjust tangentia belong to the fourteenth or fifteenth century, strain, and that broze had been employed to bear the ound with others in the sands of Walney, Morecombe erosion of the powder gas at the seat of the charge, wher it unquestionably was better suited to the work than wrought iron with imperfectly closed joints. Thereis however, altogether a considerable measure of science applied to very rough manufacture.
The wrought iron breechloader, No. $\frac{1 I I}{228}$, is remark able. It came out of the Spanish Armada. It has the curious tail-piece running from the breech common to such guns. The chamber may be seen placed on end in front of the piece standing on $\frac{I}{7}$. These chambers were entered into the opening, which was pre sented upwards when the gun was mounted, the gun, in fact, beingslotted throug vertically; the chamber wa then sectred generally by pivot boat guns. Here, at vantage, loading at the breech connected with absence of recoil, in a way that no roughness of manufacture can conceal. The principle of non-recoil was fre quently, of course, embodied in wall pieces on tripod stands. We did not lear breech-loading from the 2 will be seen a similar gun
$\frac{1}{8}$, which looks better made
but it apparently has no been subjected to the same nfluences of weather-in deed, the Armada gun looks as if it had laid under water for a long time, which reminds us, by the way, that there is a breech-loader taken up out of the wreck of the Mary Rose, sunk in 1545 , on which the action of sea-water for nearly 300 years has indeed played havoc.
This gun, in Fig. 2, No. $\frac{1}{8}$ is of the time of Edward IV-A.D. 1461 to 1483. It is made of longitudinal bars of iron hooped with iro rings. The chamber with lifting handle is complete

Fig 4-GROUP OF ANCIENT ARMS.

 ings of wrought iron. Strength in the tangential and The vent is well preserved. e barel below the trumnions. respectively. exterior and interior portions of the gun end in this gun fits andThe serpent cannons, Nos. $\frac{I}{6}$ and $\frac{I}{7}$, are of nearly similar construction. No. $\frac{I}{7}$ having been injured, it was The curious square-shaped projection behind the trunnions appears to be a sort of rough key piece holding the tw "Mons Meg" in Edinnurgh Castle belongs to this period. It is saic century it it was employoed in the thiiegra, of Dumbarton Castle in 1489, and
last fired in 1682, when it was injurec. (See catalogue.)
parts of the gun together. The bolt hole for securing the chamber may be seen in the sid
If we learned nothing in breech-loading from the Spanish Armada, we might apparently at a subsequent date have taken something from the Dutch, judging from No. II , Fig. 2, which is dated 1650. It is a brass breechloader, a very handsome gun. The bore is continued through the cascable, being closed at the breech after loading by a vedge-vide cut-moving horizontaly, bing same general idea as that of Krupp. fort near the mouth of the Gambia river about 1851. The actual wrought iron wedge is modern. The gun $\frac{\text { IX }}{1}$, Fig. 2, is another remarkable one-also classed $\frac{I}{21}$
-it is of wrought iron, beautifully finished, and bears the date of 1619. It is inlaid with gold and silver, and bears the cypher of Louis XIII., with initials M. and R., \&c. The bore is continued from end to end. It has a vertical slot and a vent piece, in which is a vent with the first portion vertical
and last portion horizontal, like that of the first Armstrong and last portion horizontal, like that of the first Armstrong system. Fig. 3 shows the bre
that the breech-piece is worked from a lever below reminding one somewhat of the Martini lever, though it has not much in common with it, having comparatively an awkward motion. The lever B brought down the block A to open the breech. In closing the cap C had a catch which holds into the breecl end of the entire gun. The hinge D is broken, there may have been some special piece
there suited to the descent of there suited to the descent of A in a straight line.
The French wall piece $\frac{X}{1}$ Fig. 2, is an ingenious doublebarrelled one, loading at the breech. The date is about 1690. The barrels are rifled, being grooved with twelve rectangular grooves. Calibre 145 in .; length of rifled por tions of the barrels, 7 ft . $8 \cdot 8 \mathrm{in}$.; length of unrifled portionfor the charge cylinders, $9 \cdot 25 \mathrm{in}$.; total length of piece 8 ft . 8in. The breech bolt carries the motto of Louis XIV. The year 1690 is an early date for a rifle; but there is an earlier specimen-namely, a barrel taken from Hungarian insurgents in 1848, with a date of manufacture on it of 1547 . The grooving is not visible at the muzzle, having been obliterated; but on removing the breech plug six fine grooves, with a twist of 1 in 26, were discovered. earlier date than this can be found in any collection. Danner, of Nuremberg, having been commonly said to have perfected the rifte about 1052 A.D
Our object, however, is to select the special features that e come in in modern times as new, and we would call attention to the group depicted in Fig. 4. The musket IX is a breech-loader. The invention is ascribed to解 aglish example in the Tower that this combinatio fint lock and breech-loading was known in Eng and in the time of James II. The feature we wish point out is the interrupted screw which forms so guns and those adopted in our service during the last thre ears. The interrupted screw was on the front end of the breech block turned up. The corresponding interrupted thread was in the enlarged breech end o the barrel A. The barrel B, with a portion of the stock C attached, was free to slip forward and backward through To close the breech the breech bortion of the sown, the barrel slid home on it, when turned round in the prope position for the interrupted threads to pass through the openings cut away. Then the barrel was turned so far round that the threads engaged and locked, the wood parts of the stock in that position coming fairly together.
This, then, was a very good, business-like breech action, in our opinion far better than many that competed about 1866. That date, however, naturally suggests to us the ask our readers who are familiar with the Snider to look at IX.
attributed to the time of Henry VIII., when we think they cannot fail to be struck with the identity in general idea of this breech-loader with the The
The Snider offered the advantage of adaptation o hammer and lock to firing a central-fire cartridge, and of application of shoe containing breech block to barrel by tapping and screwing without any operation involving the heating of the barrel. These, as well as the sliding
extractor, do not belong to this piece. Nevertheless, the esemblance of the general idea is remarkable. Smallarm No. VIII.
paratively a modern piece,having been proposed by SergeantMajor Moore, R.A., in 1839. The arm is dated 1843. It is recommended subsequently by sir J. Whitworth. The wist is almost identical, being one turn in 29.5 in the calibre being 0.7 lin . This amounts to a spiral of one turn
in forty-one calibres. The Whitworth rifle pattern, 1862, had a twist of one in 20in., with a diameter across angles
of 49 in , which amounts to a spiral of one turn in nearly of 49 in , which amounts to a spiral of one turn in nearly
forty-one calibres. The combination of hexagonal rifling and spiral is, then, almost identical with texagonal rward proposed by Whitworth ; but we have no sort of reason to question the originality of the latter.
If these two last are striking, what will be said of $\frac{V}{27}$
which is a six-chambered revolver pistol of the 17 th century with wheel lock. A casual observer might almost pass it as a Colt's revolver ; diameter of bore, 0.35 in . found examples of rifled-arms, breech-loaders, and a sixchambered revolver. Can we complete the series by anything like the piece that is now finding its way into the equipments of nations, that is a magazine arm. Such an arm is found in $\frac{\text { IX }}{22}$ which is seen on Fig. 4. It is a crude affair, the charges being inserted in succession in the magazine B , probably with tight wads between them. Each charge occupies a given space with its own touch-
hole. The fliut lock is made to slide along a guide bar hole. The tiint lock is made to slide along a guide bar. It
is worked by a trigger in the stock; it is moved forward

Fig. 5.-GROUP OF DEsigns FOR CHECKING AND Storing UP FORCE OF recoil. cannot furn
older than a middle ages.
required, and lower under cover after ceasing firing. No XXV is a gun made to be unscrewed unto six pieces, We 191 furnish the date of the design. Probably it is old as the guns made to unscrew by the Turks in the

We will not tire our reaaders by describing other things good and bad, such as a naval piece discharging seven barrels simultaneously, which is a very poor attempt at a machine gun, if it is one at all; a leather and copper gun, wound round with hempen cord, said to have belonged to Gustavus Adolphus ; and "infernal machines so called, which are awkward forms of machine guns. These things arms the a Gover by any description. The Rotun public free of charge. It is visited as a popular museum by many, but if Woolwich were not out of the way it might be better known to scientific visitors. It certainly contains very interesting designs in war material. In the case of models, of course, we should bear in mind that we have before us only a model, and not necessarily a design that would answer its purpose when worked out, but this does not apply to the case of the arms themselves. We think that it is easy to satisfy ourselves in such a collection that men were as ingenious in designing destructive implements some centuries ago as at the present time. Progress, however, was, as we have said, mainly hampered by the mperfect development of machinery and difficulty of reproduction.

THE ROYAL AGRICUL-
TURAL SOCIETY.
A merting of the Council was held on Wednesday, under the presidency of Mr. J. D. Dent.
The Prince of Wales was present his canacity of member of the Board, and there was a large Board, and there was a large
attendance of other members. Forty-seven new members of the Society were elected. Mr. J. Bowen Jones stated as the sales of hay and barley off the trial fields have not yet been completed, the stewards find itimpossible to report the exact cost of the rials of hay and corn dryers They therefore proposed to postDocember meeting. The present December meeting. The present
estimated loss to the Society was between $£ 1600$ and $£ 1700$, this
to fire the front charge, and drawn along to stops in positions fixed to enable it to fire the other charges, probably in rapid succession if everything went right, but this we should think seldom happened. Other magazines were provided to replace the first when exhausted. In this arm then, crude as it is, we have the idea of a magazine fairly carried out, though struggling with difficulties in mecbanism.
Leaving arms, we will pass on to the question of mounting and working guns.
 Can we find an ancient inventor corresponding to Moncrieff? or can buffers, muzzle pivotting, or overbank arrangements that have latterly come into the service? or, again, guns carried in pieces and united by screwing together in lengths? can find no sign of hydraulics being known, but we can find the remaining ideas fairly represented. In Fig. 5 will be seen a design of Sir William Congreve's $\frac{\text { XXV }}{303}$. The object is to deaden recoil and facilitate working. The gun is suspended on a system of jointed bars A and B attaching it to a directing bar C C, which is pivotted nearly over the muzzle of the gun, traversing along the curved arc, whose end is seen at D . This offered the advantages of deadening recoil, of grood direction, the gun coming back to the position in which it was last fired, and of a very narrow port. We admit that we wonder Sir William, having got so far, did not make his gun a breech-loader. It is to be observed that the weight of the gun would oppose a gradually increasing resistance to the recoil, on much the same principle as that of the Moncrieff counterweight. so ingenious is this design that we think it is quite open to question whether as a breech-loader it might not be made to succeed at the present day. The gun is not here brought under cover,
nor is the work of recoil stored up; but these elements are found in $\frac{\text { XXV }}{81 \frac{1}{2}}$, Fig. 5. Here a gun is made to descend a steep incline by recoil in its descent lifting a counterweight E suspended in front of the carriage by ropes running over pulleys, which, if sufficiently heavy, would run up the gun when required into the firing position. It was intended evidently for siege train work, the lower carriage being a travelling one and having wheels, of which the hinder pair are removed in the figure.
No. $\frac{\text { XXV. }}{274}$ is a design for a pair of overbank carriages, the guns travelling on low carriages, but being raised by a jointed frame of bars to fire over a high parapet when
being in a great measure owing to the protracted inauspicious weather. Mr. Hemsley, as chairman of the Implement Committee, brought up their report, which included a recommendation to postpone the trial of sheaf-binders until 1884, and to offer a prize of $£ 25$ for the most efficient portable straw-compressing and binding machine, to be worked in conjunction
with a thrashing machine to be competed for at York next year This report was adopted Ded Vernon raported the reemmendation of the Dairy Committee that a working dairy similar to that at Carlisle in 1880, be erected and equipped in the York showyard, and worked by the Society; and that a further portion of the machinery-in-motion sheds be set apart for those exhibitors who take space for showing dairy implements at work. Lord Vernon further stated that an offer had been received through the secretary from a member of the Society, who desired to remain anonymous, to give £ 100 in prizes for small dairies to be shown in full work during the show:-Class 1 : For the best equipped dairy, suitable for a farm on which not more than twenty milch cows are kept, and where the principal object is suitable for a farm in which not more than twenty milch cows are kept, and where the principal object is cheese making, $£ 50$ The committee recommend that this offer be accepted with thanks. The report was agreed to. The date of the York meeting was fixed for July 16 th and four following days.
The chairman said it was with great regret that he had to announce the loss, by death, of Mr. C. E. Amos, a member of the Council. The older members of Council were well aware of the very valuable services rendered by that gentleman in connection with the elaborate trials of implements which were carried out years ago. During recent years Mr. Amos had been pre-
vented by ill health from atending the Council meetings regularly, but those who were attending the Council meetings former days knew the indebequs the Society to him letter was read from Mre J. Sutton, in reference to the trials of hay and corn dryers at Reading; that gentleman, it will be remembered, having been the donor of the prize of one hundred guineas offered but not awarded.
Mr. Sutton acknowledged the receipt of the judges' report, and went on to say that having watched the experiments from time to time, was sure those gentiemen could have come to no other decision than they have done, and although had it proved a success it would have been a great pleasure to him, through the offer of the prize suggested by Mr. Jenkins, to have brought to are notice or the agricultural worl the mach vaunted system of artincially drying hay and corn in the stack, it is almost equally experiments undertalen by the Society will prevent a very large aggregate loss of valuable agriculturall produce from the wasteful and unreliable experiments which would have been made throughout the country. Mr. Sutton enclosed his cheque for 100 guineas, either as a special donation towards the great expenses which these trials have entailed on the Society, or to be used by the Council for any other prize or special purpose which may occur to them. It was resolved that instead of applying the 100 guineas towards the expenses of the trials, it should be devoted on some special prize or purpose to be agreed upon with Ar. Dutuon hereaiter.
ments relating from the Foreign Office transmitting documents reating to an international exhibition to be held in Ham-Chandos-Pole-Gell, Mr. R. C. Ransome, Mr. Robert Russell, and Mr. G. M. Allender, were invited to represent the Society at the Exhibition.

RAILWAY MATTERS

THE new scale of fares on the South Australian Government lines is fixed at first－class 2 d ．per mile，and second－class $1+\mathrm{d}$ ．
There are to be no return tickets，and third－class fares have been Some of the reports made to the Railway Department of the
Board of Trade seem very＂much ado about nothing；＂as，for Board of Trade seem very＂much ado about nothing ；＂as，for
instance，one，of nearly six large size Blue－book pages，recently issued anent some bits
the Caledonian Railway．
WE are informed that the Windsor platform of the Waterloo or 8 －candle lamps will be used，the current being furnished by an Edison L－dynamo driven by an Armington and Sims engine．The
THz crowding of the London，Chatham，and Dover Metropolitan
Extension trains at Ludgate－hill at some parts of the day has been Extension trains at Ludgate－hill at some parts of the day has been
the subject of public meetings under the auspices of the Railway
俍 company gets its for there is very little room or time for more trains．
THe prospectus is issued of the Rhondda and Swansea＊Bay
Railway Company，with an authorised capital of $£ 450,000$ ． The object of the ecompany is the construction of a railway，from Valley，to the Swansea Bay Ports．The new railway will reduce
Then The reat Talley to these ports by more than 50 per cent．，in almost all cases．
Vol THe Queensland loan estimates have been presented to the
Assembly，and $£ 1,572,000$ have been provided for railways．The Government has conclued a provisional agreement with Messrs．Shaw and Blyth on behalf of an Australian syndicate for
he formation of a railway by the land grant system，from the
South－Western Railway thirty miles east of Charleville，down the outh－Western Railway，thirty miles east of Charleville，down the
Tarrego to the New South Wales border．A bonus of 10,000 cres a mile is to be granted．
IT is intended to apply to Parliament for powers to construct a
new railway connecting Blackpool with the Cheshire Lines，and new railway connecting Blackpool with the Cheshire Lines，and
thus putting them indirect communication with the Midland
Railway，the Great Northern，and the Manchester，Sheffield，and kailway，the Great Northern，and the Manchester，Sheffield，and cross the eetuary of the Ribble by a high－level swing bridge．A
meeting of representatives of public companies and gentlemen on the west coast has approved of the scheme，and
subscribed for the purpose of promoting the bill．
Goid medals are plentiful in Amiens．At a recent meeting of of ered for the uchievements of the year $1882-83$ ，was one＂A A
of nedial of gold or the discovery of a means of suppression of the
noise occasioned by the production of a vacuum in the Smith brake employed by the railway companies．＂Things in general
must be very nearly perfect to make it necessary to go to this for must be very neary perfect to make the necessar must be growing in power and noise to do and in doing
for a design for a new form of pump？
IN reporting the result of his mquiry into the cause of a
ollision last July at Summerhill Station，Cork，on the Great Southern and Western Railway of Ireland，Major－General
Hutchinson says ：－＂This inquiry has brought to light the objectionable practice of keeping signalmen on duty for periods，in
Tomkinson＇s case－at a level crossing - of twenty－two hours，and in Tyrrell＇s case－at Grattan－hill Junction－of twenty hours at a stretcha．．It the true that these long hours ocour only occasionally to
exchange the night and day duties，but，they ought not to be
allowed to occur under any circimstances， med to ocour her any circumstances，
EARLY on Sunday morning a fatal imitation of the American train－n－－fire accident took place on the Midland Scotch express
leaving Loondon on Saturday night at 9.15 ，and due at Glasgow at soon after 2，the car was found to be full of smoke，and flame soowed themeselves on the top part．Before the train could be
stopped and all the occupants of the car liberated，one，Dr． stopped and all the occupants of the car liberated，one，Dr．
Arthur，who had just returned from Goverment medical service in Ceylon，was fatally burnt，having apparently been hurt before
being burned．The origin of the fire is not yet certain，but the enquiry is proceeding．
The Idaho Statesman says ：－＂The activity of volcanic action
the Snake River lava beds，near the line of the Oregon Short Line Railroad，is driving many of the graders from the work．In an area of about twenty－two square miles，at short distances
apart，smoke and flames of peculiar odour，colour，and shape，issue from the chasms and seams in the lava．The irritating sulphurous agitation of the boiling springs and the general commotion anusual the fields of lava has caused a superstitious fear to take hold of
many of the railroad hands，and they are leaving the section many of the railroad hands，and they are leaving the section
terror－stricken．The whole area has the appearance from a distance f being on fire
The proposal to make a railway between North Derbyshire，i．e． The line will give direct access to a seaport for the shipment of Derbyshire steam coant，and increased facilitiens for the transport of of
ron from North Lincolnshire，and give that district a new coal supply，and open up a lot of ofoal about Worksop．The etotallength
of the railway would not be more than seventy miles，and would make Hull a powerful competitor with the Tyne for thie export of coald
By means of the Barnsley and Hull and the Chesterfield and Huli railways，Hull，as a shipping port，would be placed in command of
the whole of the Great Midand coalfield，extending from oottingham to Leeds－the largest in England．
The bridge accident on the Great Western Railway，to which we referred in our last impression，formed the subject of inquiry
at an inquest held on Friday at Cattistock．Acoording to the
evidence the foundation of the tide structure，which was of wood，easily giving way，as it was only
supported by brick abutments．The rails snapped，and the fire－ box of the engine of the train passing over was penetrated by a
bar 9 ft．long，water and steam thus issuing out and causing the injuries which led to the death of the stoker named Cock，the fire－
man named Kirkby being also severely scalded．Only a few days before the bridge had been inspected and ound fate．＂Aci－1．
dental death＂was the finding of the jury，and no blame was
attached to anybody． M．Grimarnt
M．Grrharnt has been comparing the French and English
railway speeds．Of express trains the mean speed in England， excluding stoppages，xith one exception，exceeds 60 lilos．an hour， the Great Northern partieularly it is ouver 74 kilos．The speed， including stops，is under 5 s kilos．only in one case exxceeds 60 kilos．
in five，and ond the Great Northern it reaches 66 Kilos．
of Filos．
of French express trains，on the other hand，is from 59.5 to $69 \cdot 8$ of French express trains，on the other hand，is from $59 \cdot 5$ to $69 \cdot 8$
kilos．，an hour excluding stops，and only 52.4 to 6.4 kilos．an hour
including stops． 10 per cent．is recognised．Attention is called to the fact that in
 passing－one minut－and in regaining norman l speed－one minute；
or three minutes lost at each junction．In England latitude is arloree minutes lost at each junction．In England latitude is
allowed in this matter．The Scotch expers，which makes
77.16 kios．，passes 144 junctions in the 303 kilos，between London
 Paris to Delle，furnished with continuous brakes，which reduce to
two minutes the time lost in passing junctions，passes fifteen of
these，and its effective speed would be 70 kilos．instead of 65 kilos．

NOTES AND MEMORANDA．

During some recent trials of Kelway＇s electric log on board the
team tug Pixie，a number of runs gave a mean of 7.2724 knots， while the same distance by actual measurement was $7 \cdot 2768$ ；the
difference is thus 0.0044 ，which is probably the nearest approach to difference is thus 0.0044 ，whic
accuracy obtained by any log．
THE loss of life，on and near the coasts of the United Kingdom，collision cases included，was，during the past wreck
register year，as follows ：－East coast， 585 ；south coast， 94 ； west coast， 162 ；north coast， 54 ；other parts of the coast， 89 ．
Total 984 ．It will thus be sen that the greatest loss of life happesen，as usuil，on the east coast of Mghand
RED RIvER，a great tributary of the Mississipi，rises in North－
West Texas，and enters the Mississippi 341 miles above its Its length is 1200 miles，and its hasin 97,000 square miles in mouth． Its lengtur is the eal．Eight miles below its source it is 2700 ftt ．wide． Itts sources are in a barren plain，the Llano Estacado，in Texas，
Steamers of 4 ft ．draught can ascend to Shreveport， 330 miles from the mouth of the rive
The American Miller gives the following rule for computing the contents of a hopper，the rule apparently relating to the lower
square or rectangular conical portion only ：－Multiply the length by the breadth in inches，and this product of one－dit by 2150 the the number of cubic inches in a bushel－and the quatient thus
obtained will be the contents of the hopper in bushels． obtained will be the contents of the hopper in bushels．
To produce＂crackle＂s surface glass，a French inventor，M．Bay，
covers the surface of a sheet of glass with a paste made of covers the surface of a sheet of glass with a paste made of some
coarse－grained flux，or easily fused glass，and placed on a a table in a nuftle，and subjected to a high temperature．When the coating is coating separates itself and leaves the irregular surface．By pro－
tecting some parts of the glass from contact with the flux，designs tecting some parts of the glass from cont
and lettering may be left in smooth glass．
THe specific volume of the different constituents of green woods has been estimated by M．Hartig to be as follows，per 1000 parts：
Hard green wood，fibre stuff， 441 ；water， 247 ；air， 312 ．Soft green wood，fibre stuff， 279 ；water， 317 ；air， 404 ．Evergreen wood，fibre
stuff， 270 ；water， 335 ；air， 395. A certain amount of water－ 8 per cent．of all－is included with the fibre stuff，showing that
about one－third only of the mass of the wood is solid stuft；the remainder is either water or air space．This is quoted in some
articies on painting in the Railroad Gazete to show hew articles on painting in the Railroad Gazette，to show how necessary
it is that wood should be in a normal state of dryness before painting．
THE practicability of photographing landscapes from the window of a train running at a rate of even forty miles an hour has been
recently proved by Dr．Caudéze，who uses what he calls a gyro－ recently proved bu Dro．Caudeze，who uses what he calls a gyro－
graph for the purpos．The apparatus comprises a copper tube similar to that which carries the lenses in ordinary cameras，but
the lenses are placed on opposite sides parallel to the axis．Within is a slutter presenting two quadrangular apertures，which，
according to the position of the shutter，do or do not let pass the light rays in making a quarter of a turn．This rotary movement is obtained by means of a spring liberated from a catch．An A RECENT article in the American Cle
A RECENT article in the American Chemical Journal contains
the results of some investigations，by Mr．C．W．Marsh methods of water analysis．One important result is，that when the free and albumenoid ammonia were determined by the
usual method，the amounts of the two added together was found to be consid erably smaller than the total ammonia found when the oxidising mixture was added at the beginning of the operation，
before the water was boiled．This clearly indicated that in the first stage of the process，as usually conducted，there passed over with the free ammonia some nitrogenous substance，capable of yielding ammonia with permanganate of potash．
The ages of the vessels wrecked during the year $1880-81$ are
thus given in the＂Register．＂Excluding foreign ships and colli－ thus given in the Register．Excluding foreign ships and a colli－
sion cases， 146 disasters happened to nearly new ships，and 322 to ships from three to seven years of age．Then there were 506 fifteen to thirty years old．Then follow 463 old ships from thirty
to fifty years old．Having passed the service of half a century，we come to the very old ships，vizi，fifty－nine between fifty and sixty years old，thif eighty，seven from eighty to ninety，five from ninety to 100 ，and
six upwards of 100 years old；while the ages of eighty－three are six upwan
Nor long since a good deal was heard of a new and secret pro
cess for extracting gold and silver，and Mr．W．Crookes，F．R．S． wrote to a daily contemporary to say that it was probably the
sodium amalgam process，tried long since．The patent specification of L．F．Gowans，recently published，shows that accoording to his
invention a muller fitted to a suspended vertical hollow revolvin shaft rotates in a copper pan of rather larger diameter，but
similar contour containing mercury．The ore，fed into the revolving shaft，from a hopper，passes．down，ore，fed in into the
over and through the mercury，and eventually escanes over and through the mercury，and eventually escapes over the
edge of the pan．With mundic ores，sodium amalgam is added to
the ANoTher application of centrifugal force is made in that． AxoTmin apphice to namely to ing on the dyes by hand，a process which had several disadvantages
to avoid which Herr Joserp Kristen，of Briun，the Dyer says， has patented a process in which the skin to be dyed is fixed on the
centre of a horizontally rotating disc，the colour is also fed on the centre，and by the rapid revolution of the disc is spread
equally over the whole surface．The colour is forced on to the disc by means of a pump，oo it merely flows from a reservoir
standing at a higher level．The excess of colour driven off at the edges of the revolving disc is collected and used over again until the skin is fully dyed．To
from ten to fifteen minutes．
The third largest tributary of the Mississippi is the Arkansas river．Its course is west of South Park，in the Rocky Mountains，
where it is $10,000 f t$ ，above the reduced one－half in the first 150 miles．It flows first east and
reducel south－east，and enters the Mississippi at Napoleon， 575 miles in a
direct line from New Orleans ；its width varies from 150 ft ．to dizooft．Large vessels can ascend with ease to Fort Smith，at the boundary line of Arkansas and the Indian Territory， 508 miles 884 miles．The Ohio River is another fine tributary．It it in sevi－
gable from Pittsburg，Philadelphia，to its junction with the gable from Pittsburg，Philadelphia，to its junction with the
Mississippi at Cairo，Illinois，a distance of 1021 miles．The width Mississippi at Cairo，Hilinois，a distance of 1021 miles．The width
of the river varies from 500 yards to 1400 yards．The traffic of
the Ohi is the Ohio is enormou
river，the Mississippi
AT present we believe it has not been found possible to make an ink for cancelling stamps that is really indelible．．Dr．W．Reissig，
of Munich，has，however，it is said，reeently made an ink for
cancelli cancelling stamps which is totally indelible，and the least trace of it
can be detected chemically．It consists of sixteen reat can be detected chemically．It consists of sixteen parts of
boiled linseed－oil varnish，six parts of the finest lamp－black，and
from two to five from two to five parts of perchlolide of iron．Diluted with one－
eighth the quantity of boiled oil varnish，it can be used for a stamp．
Of course it can only Of course it can only be used with rubber stamps，as metallic would be destroyed by the chlorine in the ink．To avoid this the
perchloride of iron may be dissolved in absolute perchloride of iron may be dissolved in absolute alcohol，and
enough pulverised metallic ion added to reduce it to the protochloride，which is rapidly dried and added to the ink．
Instead of the chloride other salts of protoxide or peroxide of
iron can be used．The iron unites with the cellulose and the sizing of the paper，so that it can easily be detected even after
the ink has all ben washed off．The jounnal of Chemical Industry

MISCELLANEA． A 6iv．breech－loading gun burst in the batteries at Shoe－
buryness during range practice on the 26 th inst．One gunner was
badly hurt，and several other men were stunned． Is is stated that the works of the submarine railway betwee Calais and Dover are going on，and the gallery is now 445 yards
in length．Since the heading has been under the sea there has
haen been，it is said，no leakage．Colonel Beaumont＇s boring machine is The Holborn Restaurant，which will be one of the finest in the Is to whem the alterations now in course have been completed， is to be lit throughout by the Edison Electric Light Company
About 1000 lamps in all will be used，partly of eight and partly of
sixteen candles Messrs．Chables Churohill and Co．，whose catalogue of tools， hand and machine，makes every manager，foreman，and amateur，
feel dreadfully badly off for the neecessary things with which to do a job properly，have removed their coveted stocks to new ware a job proper ly，have removed their
houses at 21，Cross－street，Finsbury．
On Monday afternoon the officials and workmen in the employ nent of Messrs．Wigham，Richardson，and Co．，Neptune Ship and
Engine Building Works，Walker，presented an address to Mr．C． D．Christie，one of the members of the firm，in commemoration
the twenty－fifth anniversary of his wedding－day Tuly
The London Chamber of Commerce informs us that it is pre－
pared to exhibit in its Council Room any maps，plans，or models， of bridges，tunnels，or other proposed means of communication across the Thames，below London Bridge，and to receive any com－ munications bearing upon the subject，
various projects．
Th．Peterborough Corporation have appointed Mr．W．Matthews，
A．M．I．C．C．E．，as borough engineer，and under his superintendence
a complete overhaul is being made of the engines，\＆c．，connected
a a complete overhaul is being made of the engines，\＆c．，connected
with the Water and Sewage Works．The works have recently been inspected and reported upon by Mr．The Borks have recently
Lightfoot，M．I．C．E．， A PAMPHLET，entitled＂The Doomed Comet and the World＇s
End＂，by Mr Wyman and Sons．To some extent it is a history of comets with． explanations of their movements，and particularly it refers to the comet at present to be seen，and shows that its fall into the sun
will be accompanied by very small increase in solar energy affecting this world．
Messrs．Adams and Stilitard are publishing a well－executed the British Association a group of about fifty of the members of phe bre being occupied by Dr．Siemens．The potoograph is pub－
plished in several sizes，and are exceptionally clear even in the smallest．The Southampton arms，Dr．Siemens＇crest，and two The formation is announced of the＂French Electrical Power manufacture and so on of the Faure accumulator，of which or deal has been said in this country，but of which，oxceedingly yittle has been seen．Mr．Simon Phillipart，well known in connection
with the Faure battery in this country，is the first－mentioned sub－ with the Faure battery in this country，is the first－mentioned sub
scriber in this big capital French company，a capital which most people would say it is utterly impossible to employ in Faure battery aking
ON Tuesday afternoon the Birmingham Corporation，met to mendation of their Gas Comemittee，deciding not to apply
for a provisional order themselves but to support the appli for a provisional order themselves，but to support the appli
cation of the companies，subject to certain satisfactory con ditions being granter by these．A motion of an exactly opposite day，and an amendment was carried similar in effect to the Bir－ mam resting last wisk of the Todmorden Iocal Board for the purpose of considering the provisions of the Electric Lighting Act the Board having received notices from several companies of thei－
intention to apply for provisional orders or licences to supply the intention to apply for provisional orders or licences to supply the
district with electricity for public and private purposes，passed a esolution to make application to the Board of Trade for a provi sional order empowering the Todmorden Local Board to supply electricity for public and private purposes，and that Mr．J．Newton，
engineer，Manchester，be employed to assist the clerk in framing a scheme．
The International Inventors＇Institute will open a permanen exhibition on the 1st of December in Dashwood House，New Broad－
street，London，E．C．It will be open from 9 a．m．to 5 p．m．free，解 tions，and specimens and samples of manufactures．Catalogues
will be published monthly，and the Institute is to afford an agency on commission or the sae of patent rights．It does not seem clear
why samples or specimens of manufactures should be on exhibi－ tion，unless the Institute is to degenerate into a mere commercial The Postmaster－General has just contracted with Messrs．D．J office an irron screw steamer，specially constructed for the laying
and repairing of telegraph cables．This vessel has long been much and repairing of telegraph cables．．inis vessel has long been much
wanted，and will be built from designs by Mr．Joseph H．Ritchie Fenchurch－street，London．The principal particulars of the vessel
are ：－Length， 240 ft ．；；breadth， 3 fitt ；deepth，20ft．；to be propelled a lenth of stroke of 4sin．To meet the requirements．of the
special work to be performed，the steamer will be fitted with three circular telegraph cable tanks and a dooble bottom for water
ballast，with fittings adjusted to trim the ship as the cable is
AT the fortnightly meeting of the Manchester Association o AT the fortnightly meeting of the Manchester Association of
Employers，Foremen，and Draughtsmen，held on Saturday，Bull＇s process of making iron and steel direct from the ore was brough erore the members by Vaughan W．Jones，who read a paper on
the subject similar to the one supplied to the members of the Iro and Steel Institute．The advantages claimed for the process are
that iron and steel ingots can be produced in any idstrict at a cost
much lower than the most inferior pis iron；but as yet the process has not been actually in operation in this country，and considerable disappointment was expressed by the meeting tha
Mr．Bull，who was present，was not able to lay before the mem bers any tangible results as to its practical working．The pape was one of doubt as to whether the resullts anticipated by the the quality in the material produced．
The Saxon Minister for Internal Affairs has issued a circular to the boiler inspectors under his jurisdiction，which states that
modern science has designed various methods of arriving at the smokeless combustion of fuel combined with economy in the quan
tity used tity used．It is remarked that notwithstanding this fact much
damage is often done by smoke to the districts immediately adjacent都 Instructions as to the prevention of smoke as far as possible，which
were issued by the Government in 1871，are carried into effect is expected that the example of the Saxon authorities，and 1 is expected that the example of the Saxon authorities will be
followed in other parts of Germany．The relative perfection解 a rrangements existing in England is referred to，showing what can be effected by legislative measures；while the recent exhibition
in London of smoke－consuming apparatus is considered to proved that the practical part of the question has been fully solved by modern scientific research．This shows that the Saxon Minister
does not know much about it．

EXHIBITSAT THE MUNICH ELECTRICAL EXHIBITION.

EDISON'S DYNAMO.

THE MUNICH ELECTRICAL EXHIBITION.
No. I.
We have already briefly alluded to the recent Electrical Exhibition at Munich, and although much might be said concerning the apparatus exhibited, provided we had space to spar or the description of old instruments, we shall restrict ou eature of interest. The accomparatus which present some new plan of the exhibition, the numbers showing the position of the principal exhibits, or the principal points of interest. Thus the pace indicated by 1 was filled with the steam engines, engines for the most part in a state of senile decay. Edison, however, had managed to obtain a good example of Ruston and Proctor's
struck. The resistance of the coils B 3 being much greater than those of A A, a small portion of the current only passes through hem, they being arranged, in fact, to act as a shunt to the main current. The action of the coils B B raises the armature E, which is fastened to the brake F. When this brake is lifted the train of wheels is liberated and the lamp feeds. The focussing arrangement is, we believe, that part of the lamp which shows
recent progress. A flexible wire cord is fixed in a groove in the rack rod, passed up the groove over pulleys Y_{1}, then down the side tube over other pulleys $Y_{2} Y_{3} Y_{4}$ to Z, where it is fixed. The pulley Y_{4} is pivotted on the frame carrying the lower carbon S . It will be seen that by this arrangement when the top carbon holder rises the lower one falls, and vice vers a One of the arc lamps was used to light up the chapel No. 6 on

PLAN OF THE EXHIBITION BUILDING.

plan. This chapel was built to represent a mediæval structure, ltar. kneeling figure to represent a cardinal in front of the roof, and threw a broad band of golden rays over the kneeling figure. The realism was carried further in that the soft strains of the organ filled the structure. The whole presented one of the most effective exhibits we have ever witnessed, and we should imagine will have given a favourable impression as to the capabilities of the electric light in such position to a very large
number of visitors. number of visitors.
The current of the second Bürgin was used, as we have said, Mor Maxim or Swan incandescent lamps. The merits of the have been experimenting with Maxim as well as with Swan lamps for many months, and have, therefore, strong grounds for our conclusions that they are good. So far we have found the Maxim has a fair life, and where run so as to give 45 or 50 -candle power it is economical. The lamps at Munich were
arranged to light a furniture showroom. The Swan amps

CROMPTON'S ARC LAMP
exhibited at Munich were of a new kind. His ordinary lamp give about 20 candles. New ones have, however, been designed and made to give some 40 candles, some 100 candles. The increased candle-power is obtained by increasing the resistance of the carbon filament and the electro-motive force of the dynamo, keeping the current through the carbon about the same as in the ordinary lamps. The lamps exhibited were greatly about 80 ohms, and that it requince of this new lamp to be Ampères in order to give thequal 10 candle exhibition of incandescent lamps was found in the Edison exhibit. The Edison rooms, No, 5 plan, the greatest part of the restaurant No. 7 plan, the stage of the theatre No. 4 plan, and partly towards the latter part of the Exhibition the body of the theatre No. 3 plan, were all lighted by these lamps. The street directly opposite the entrance to the Exhibition was similarly lighted. Each street pillar carried three 16-candle power lamps, and the light compared very favourably with that of gas. These street lamps were driven by a separate machine, the motive power being obtained from a double cylinder opposite side of the building to the machine used to obtain the current for the lamps in the building. The only special feature in this exhibit was the dynamo, which is of a typ not well known in England. The machines used at the Crystal Palace were 60 -light ma chines, known as the Z machine ; the K ma chine, that used at Munich, is somewhat simi lar to three Z machines combined. Our engrav ing shows the K machine. It has six of the extended cores, which together form the coil of the field magnets, with massive pole pieces,
between which revolves the armature. The between which revolves the armature. The fact that the Edison Z machine is termed a 60 . light machine;' while three of these forming the $180=70$ lights. As we have previously stated, the great interest in this Exhibition is in the result of the tests, which have been carefully and exhaustively taken. The cables from the machines to the testing room and elsewhere have been freely supplied by Messrs. Berthoud and Borel. The cables manufactured by these gentle men are intended specially to be water-tight. The copper con ductor or conductors is covered with cotton wound in opposite directions, after which it is dipped into an insulating liquid at a high temperature, 350 deg . Fah. to 400 deg . Fah. The wate and the insulating material arin of parafine penetrates everywhere From the tank it is taken to an ingenious machine and covered with a cylinder of lead. The lead, in fact, is squirted around the covered conductor

We have had some tests taken with short pieces of this wire, which show that the insulation is fairly good, but it will be necessary to make further tests before giving nu merical results.

THROUGH THE ALPS BY LOCOMOTIVE.

AN ENGINEER'S TRIP OVER THE ST. GOT ARD.
My first article closed at Brunnen, where the St. Gothar Railway first descends upon the far-famed lake of The Four opposite the great rock on which the Swiss, with their genius for national monuments, have cut deep a simple inscription in honour of the poet of William Tell. A little further down i of the precipitous range of limestone crags along which our further course must lie. The making of the "Axenstrasse," or
terrace road, which winds along these slopes from Brumnen to terrace road, which winds along these slopes from Brumnen to
Fluelen, was long a wonder of road engineering; and the making of the railway which follows the same line as the road-" under it and over it," as the engine-driver remarked-is a more remarkable feat still. In the distance of about seven miles there are no
fewer than ten tumnels, two of them of considerable length ; and the remainder is entirely in cutting or sidelong embankment. Nothing could be more brilliant than the change, as the engino
shot out of one of these tunnels into the bright sunshine, with shot out of one of these tunnels into the bright sunshine, with
the great crags rising on one's left, the green waters of the lake lapping upon the stones twenty feet below on one's right, and leading the eye across to the green and wooded slopes of the
Ritili and the Seelisberg. Nor were the tunnels themselves without their interest. Sometimes a sidelong adit, made to
convey débris to the lake during construction, let in a stream of convey debrris to the lake during construction, let in a stream of
light a few feet in breadth ; and the result was to present to the eye as we approached a perfect and ever enlargi, buction onshine
tunnel, done not in ink upon cartridge paper, but in sunshe tunnel, done not in ink upon cartridge paper, but in sunshine
upon darkness. At another time, the tunnel being straight, the
further end became immedintly ribile further end became immediately visible as a regularly shaped
spot of light, with the rails, like two converging ribbons of silver rippling towards it from below our feet. Most of these tunnels are in solid rock; but some are through débris, and so short a
distance below the surface that open cutting would seem far more natural. There is, however, very good reason for the tunnelling. These cliffs, though not broken by any deep or wide
valleys, lave at intervals streams passing down them from the valleys, , ave at intervals streams passing down them from the
higher, .. . als above; and these streams, though usually mere rivulets, may ny hour become furious torrents, bearing with
them vast quantities of earth, stones, timber, \&c., and capable of blocking or sweeping away a railway almost in no time. On my nearly half a mile along a temporary path above the river, opposite side had some two months before brought down a vast
influx of debris, that had filled up the bottom of the valley and caused the destruction of the road. We need not go further than the Axenstrasse itself to find a case in point. The line was originally carried in the open past one of these torrents, and
close above the lake ; but soon after its construction the torrent close above the lake; but soon after its construction the torrent
rose one day, washed away a strip of land between the lake and the line, and let the latter down into the water. In re-constructing it, the engineers took the prudent course of taking it
rather more inland, and burrowing underneath their enemy in a rather more
We halt for a moment at the picturesque village of Fluelen, valley bottom of the Reuss to Ersstfeld. Here the real tug of war is to commence, and the engine is changed. I am now on a
six-coupled engine, with separate tender, and working at the very high pressure of $9 \frac{1}{2}$ atm. The tender is filled, not with ordinary coal, but with bricks of some kind of compressed fuel
obtained from Germany; this appears to be a new experiment obtained from Germany; this appears to be a new experiment,
and, according to the driver's judgment, it is by no means a successful one. Possibly this may in part have been prejudice, certainly there seemed no difficulty in keeping steam during the heavy work before us. We rise through meadows and orchards, of Amsteg. Much of this part of the journey is in sidelong steep, formed in loose glacier detritus. To prevent these from
ster steep, cormed in loose glacier detritus. To prevent these from
slipping they are rossed diagonally by rows of aascines or brush-
wood, about 3ft. apart, firmly planted; they are then, I presume, sown with grass seed, as some, which could not have been more than two or three years in existence, were already turfed over
and made quite secure. The method seems a good one, as I and made quite secure. The method seems a good one, as I
saw no instance where a slope so protected had failed. At Amsteg the flat bottom of the valley shrinks to vanishing point, and the great gorge begins, which leads without a break past the Devil's Bridge to Andermatt. The line has now risen some
20oft. above the stream, and here, driving through the Windgelle tunnel- 180 yards long-we come out full a the wart the
deep ravine by which the waters of the Maderaner Thal descend ceep ravine by which the waters of the Maderaner Thal descend on a lattice girs.er viaduct of two spans, each about 150ft., with
the lateral torrent flowing below us at a depth of 180 ft , and the lateral torrent flowing below us at a depth of 180 ft ., and
plunging into the main valley on our right. These viaducts are never provided with parapets of any kind, and these flooring is not
usually filled in, so that the eye looks straight fown into the usually filled in, so that the eye looks straight lown into the
depth below oness feet. At this spot begins the full rigour of the ascent. The gradient steepens to 1 in 40 ; the speed falls to, sa
nine miles an hour ; and tunnels, cuttings, and viaducts succee nine miles an hour ; and tunnels, cuttings, and viaducts succeed
each other in rapid suceession. Sometimes we are on one bank of the main river, sometimes on the other, sometimes spanning a lateral ravine, or the river gorge itself; sometimes burrowing tracks of the Bristenstock. After passing the station of -Kehrtunnel is the German word-which are the distinguishing feature of the St. Gothard line. Of the nature and motives of their construction I need not here speak at length. At
first sight, if it be desired to surmount a steep declivity in the floor of a narrow valley, no expedient could well seem more clumsy and costly than to dive into the mountain
wall on one side or the other, and make wall on one side or the other, and make a spiral turn
a mile or so long within it, for the mere sake of gaining some
150tt in wertion 150ft. in vertical height, without advancing a single inch thereby
towards the journey's end. In the present case the matter is even worse, for the train returns to the daylight some way lower down the valley than the spot where it entered, so that it runs for some distance parallel to and directly above the track it has
already measured. There was, however, as one learns when on the spot, more method than would at first be suspected in the madness of the Swiss engineers. In the first place, the working
of heavy traffic over gradients much steeper than 1 in 40 would of heavy traffic over gradients much steeper parising one, and the constructors of such a line were naturally anxious to try as
few experiments as they could. Again, when the great difffew experiments as they could. Again, when the great diffi-
culties of constructing a line in the open, in such a position as
this, is considered it will be this, is considered, it will be found that the first cost of tumnel-
ing is not so greatly in excess as would be supposed, while the
cost of maintenance is of course successsual a steep peradient line mune might rmaller. Lastly have been, it wowever
no doubt have afforded a handle for competitors to assert that
$\left\lvert\, \begin{aligned} & \text { the St. Gothard was a sort of toy railway after all, not fit for the } \\ & \text { resular conveyance of heavy through traftic }\end{aligned}\right.$ regular conveyance of heavy through traftic, especially in goods;
and probably this reason it was, beyond any others, which
weighed adhere to the standard 1 in 40 gradient throughout.
Be this as it may, the spiral tunnels are an accomplished fact,
and I have now traversed the first of them, bearing the some what difficult title of Pfaffensprung. Its length is about 1600 yards, so that the radius of the curve is not over 300 yards; yet there is no noise or sensation of grinding, as the engine makes its way through the darkness, and one might imagine oneself to be moving in a straight line all the time. As the wheel base o the engine is apparently fixed, this can only be due to the prac-
tice of widening the gauge on curves, which, with the moderate speeds here used, is doubtless to be recommended this moderate which was pierced through in A pril, 1881, is remarkable as that in which the "Brandt" hydraulic rock borer first made it reputation. This borer, which is now employed at the east end of the great Arlberg tunnel, does not act, like most other machines, by percussion; but the end of the tool, being pressed
against the rock and rotated by hydraulic pressure, grinds it way in after the fashion of a drill. Having emerged from its mouth, and recovered the distance lost during our journey in darkness, we soon reach another short tumnel, and come out upon the opening of the Sustenthal on our right, with the little village of Wasen perched above the junction. Close to this village a rail tholds straicht forward over the tou to ning from the Susten-the Mayen-Reuss-and some distance beyond turn sharply to the left, crosses the Reuss once more, and plunge into the tunnel of Wattingen. This is the second spiral tunnel, having a length of about 1200 yards, and in plan a little more than a semicircle. We emerge again upon the Reuss, further on, and at about 80ft. higher level than where we entered, and cross to
the left bank then, curving still more round, we a uietly pursue the left bank ; then, curving still more round, we quietly pursue
our way down the valley, in the exactly opposite direction to our way down the valley, in the exactly opposite direction to
that of our destination. The word "down" is, however, equivocal, for we are still continuing to rise at our regular gradient Wasen, which we had looked we come back to the station at before Asch b rif halt herre up to some qui before. After a brief hat here we resume our journey, still in
the wrong direction ; we pass an artificial tunnel, 65 yards long, the line, cross the Mayen-Reuss by the second or middle bridge at the great height of 260 it . above the stream, and curving little to the left enter the Leggistein tunnel. This tunnel passes for 1200 yards on a sharp curve through granite of the finest description, which was much admired during its construction. On emerging we find that we have completed rather more than
a semicircle, and have once more our faces southwards ; so that for the third and last time we find ourselves crossing the MayenReuss, by the upper bridge, which, owing to the narrowness of
the cleft through which it foams, is only some 60 yards in length. It will be seen that we have thus made a gigantic zigzag, each arm of which is a full mile in length ; so that we tingen tunnel, though from a considerably increased ele evation Our way now lies straightforward; we pass the mile-long Naxberg tunnel, see the post road come creeping up the side of the mountain to our own level, and at last, turning off steam, run gently into the station at

RAIL MILL REVERSING ENGINES.
The engraving we give on page 334 is taken from a photograph of a pair of eng ines recently constructed by Messrs. W. and J brief reference was made in our Lancashire Notes a short time back. Owing to the high prices of fuel it was deemed expedient to construct the engines on the compound principle, to work in connection with an independent condenser and air pump, which are of sufficiently large dimensions to be available for the whole of the engines in the works. As will be seen from the illustration
the engines are horizontal, on the tandem principle, the high the engines are horizontal, on the tandem principle, the highthe engine, with the low-pressure cylinder placed in the rear o the low-pressure cylinders. The front cover of the low-pressure cylinder is put in from the inside, so that by simply slackening the nuts in the front of the same and loosening the back covers withdrannders, both the pistons with their roas can be easily two pieces, and the crank pins have a diameter of 18in. The
steam is distributed to the high-pressure cylinder by means of the ordinary three-ported slide valve, the pressure on the back being relieved by a simple arrangement. The steam admission and exhaust in connection with the low-pressure cylinder are controlled by piston valves having a diameter of 118in,, of the
special type which Messrs. Galloway have been constructing for upwards of twelve years. The cylinders in which the piston valves work have the ports straight nstead oi slant, and the valves ratchet fixed on the end of the valve spindle, thus ensuring a ratchet fixed on the end of the valve spinale, thus ensuring valves sht link, controlled by a hydraulic cylinder operated from the stage above. The high-pressure cylinders have a diameter of 3312in., whilst the low-pressure cylinders are 59in. diameter, and
the stroke is 4ft. The engines, as shown by our illustration, are the stroke is $4 \mathrm{ft}$. . The engines, as shown by our illustration, are
of the most solid and substantial construction, and weigh of the most solid and
approximately 200 tons.

The Institution of Civie Enginerrs of Ireland.-On
Tuesday, 24 th ult., the members of this Institution entertained Mr. Alexander McDonnell, M. Inst. C.E.- - past president- at dinner at the Shelborne Hotel, and also presented him with an
address containing a copy of the following resolution:address containing a copy of the following resolution:-Resolved,
"That we heartily congratulate our past president, Alexander McDonnell, on his appointment as locomotive engineer to the North-Eastern Railway, and we feel sure that the capacity and knowledge displayed by him for so many years in a similar position
an the Great Southern and Western Railway of Ireland will ensure his success in the performance of more extended duties. amongst us, which is enhanced by our recollection of the great interest always taken by him in the progress of the Institution,
and especially evinced when he held the office of our president in and especially evinced when he held the oftice of our president in
the years 1875 and 1876 . We can assure him that in leaving Ireland he carries wii him the cordial wishes of the m those present at the dinner were Sir Robert Kane, Sin John
tentaigne, Dr. Robert McDonnell, Messrs. Parke Neville, presi dent, B. B. Stoney, Howard Grubb, Rev. J. A. Galbraith,
S.F.T.C.D.; G. F. Y.itzerald, F.T.C., Dr. Cameron, J. C.
Smith, hon. sec.; J. A. F. Aspinall, Robert Manning, Thomas Smith, hon. sec.; J. A. F. Aspinall, Robert Manning, Momas
Fitzgerald, John Bailey, R. R. Greene, J. . Park, M. Atock, J.
Tighe, W. G. Strype, S. W. Haughton, ce. Messss. . W. . . Mills
and Kennett Bailey were unavoidably prevented from being present.

LETTERS TO THE EDITOR

[We do not hold ourselves responsible for the opinions of our

the pressures of fluids in motion.

SIR,-The importance of a knowledge of the pressures to be expected from fluids in motion is, to engineers, very great.
Engineers, having to work ultimately with matter in various forms, under various conditions, and after having various and variously roduced motions, are generally careful to const nowled nathematician pursues his studies as of mere abstractions, an practically deals with the numerical values of physical actions an efiects, taking but little trouble to understand these latter as the formula to his, perhaps crude ollow such formula wherever, in the various mechanical manipula tions it is capable of, it may lead, as if he were dealing wit Now, hysical facts themselves.
xpression of $\mathrm{M} v$ in ways been a difficulty in mechanics as to th expression of $M v$ in terms of pressure. Since Huysen taught, an
Newton accepted, terms Mv as proportionate measures of, as sup posed, impetus, styled momentum, a mere mathematician would each that pressures resulting from arrestment of matter in motio would be proportionate as are terms Mv. But engineers, who hav diefly to deal with the work of matter in motion, soon perrrestment of matter in motion, must be proportionate as aro terms $\mathrm{M} v^{2}$; for, the theory of "work" agrees with actual practice and both theory and practice show that if they were to be movin freely with a velocity which would suffice to carry it lott. above
the earth's surface, it would conserve power of the kind that the earth's surface, 10 conserve power of the kind tha 1 f matter of infinite inelasticity were to arrest its motion, sucl notion would be arrested instantaneously, and its effect could only be stated as pressure, such as
mass commencing to have motion.
But still such indefinite final pressure would be equivalent to Be work conserved in the 1 ton in motion, and quantities of work
being proportional, as are terms $M v^{2}$, so final pressures experience on the arrestme
as are terms $M v$
To get over the discrepancies of the mathematical and the
engineering theories as to pressure, the "coefficient" of gravity $=$ 32 ft . has been devised, the formula $\frac{v^{2}}{32} \times$ weight $=\mathrm{P}$, or pres sure, has been accepted, and the results are confirmatory of the engineers' theory as to p,
ment of mass in motion.
But whilst the formula just named correctly gives us pressure proportionate, as are terms Mv , it errs othertise, as can be plainl For, let us take the case of the system that is adopted for supply ng water to locomotive engines. In such system simple calcula
tion will suffice to show us the height water will be raised to, a whatever speed the engine may be travelling. The formula ${ }_{2}$ affords us the means of learning the height. Thus, if an engine were travelling at the rate of, say, 10rt. per secona, water woud pipe lowered into the trough, a height of 1.5625 ftt ; the engin stand four times that height; at 30ft. per second nine times, and so on, as per table in after part of this letter.
Now, similarly, but oppositely, if water were moving towards
the locomotive pipe whilst the latter might be stationary, it would obey the same law and mount up in the pipe to a height proportionate to the square of its velocity of motion. Any pump in notion could mount or have its power so utilised as to caus equivalent terms $\frac{M v^{2}}{2}$, and different velocities of motion would ndicate different powers to raise from our earth's surface to heights We see, then, that in the case of a moving fluid it can either cause its own mass or an equivalent to rise to certain heights propor-
ionate as are the terms of its velocities of motion squared, or it
 of the same heights.
In the latter case the columns of water exactly counterbalance moving at different velocities, and so we can ultimately state the pressure of flowing water in terms of the pressure due to the "head " it contains. Thus if water be flowing at the rate of 10 ft , per second, on of $1.5625 \times 62.3 \mathrm{lb}$. per square foot; but the pressure being due to "head" of water sustained, and different "heads" sustained by water moving with different velocities being proportionate as are exerted by moving water are as the squares of the velocities of its motion.

The foregoing agrees with all engineering practice and our theo All that has been advanced does and will agree with physical facts, exemplified in the locom
In actual practice, bends in pipes and viscosity of water may min, but the pre the row would not be affected. Below is a table of different velocities of water in motion, and
he "heads" and the consequent pressures sustained :-

Velocities in		Heads in feet.	Pressures in pound: per square foot.
feet per second.	miles per hour.		
5	$3 \cdot 4$	-39061	$23 \cdot 835937$
10	$6 \cdot 8$	1.5625	$95 \cdot 34375$
15	10.2	3.5155	$214 \cdot 5234$
20	$13 \cdot 6$	6.25	$381 \cdot 375$
30	20.4	14.0625	$858 \cdot 09378$
40	$27 \cdot 2$	25	$1525 \cdot 5$

Water, then, flowing at different velocities, would sustain ing water would sustain to such, as per above table, but flow heads" We could have water flowing and impinging against oard of 1 square foot of surface, or we could move the board in proportionate to the squares of the velocities of either motions, and agree with our deductions and table. Any fluid in motio would exert pressures or sustable, but proportionate as its weight to that of , or its actual weight is about 0765 lb . per cubic foot; then following table will show the "heads" of its own or equiva
lent substance, and the pressures due to such "heads," that air in

Velocities in		"Heads."	Pressures in pounds per square foot.
feet per second.	miles per hour.		
10 20 20 30 40 50 60 70 80 90 100 110 1100 1100 140 150 180 200	$\begin{aligned} & 6 \cdot 8 \\ & 13 \cdot 6 \\ & 20 \cdot 4 \\ & 27 \cdot 4 \\ & 34 \cdot 2 \\ & 40 \cdot 8 \\ & 47 \cdot 6 \\ & 54 \cdot 4 \\ & 61 \cdot 4 \\ & 68 \\ & 74 \cdot 2 \\ & 81 \cdot 8 \\ & 88 \cdot 6 \\ & 95 \cdot 4 \\ & 102 \cdot 2 \\ & 108 \cdot 8 \\ & 129 \cdot 4 \\ & 136 \end{aligned}$	$1 \cdot 5625$ $6 \cdot 25$ $14 \cdot 0625$ 25 $39 \cdot 0625$ $56 \cdot 25$ $76 \cdot 5625$ $100 \cdot 525$ $126 \cdot 5625$ $156 \cdot 25$ 189.0625 225 $264 \cdot 0625$ $306 \cdot 25$ 351.5625 400 $506 \cdot 25$ 625	

Then, as it may be rather a difficulty to conceive "head" of air, the equivalent $\frac{1}{827} \mathrm{lb}$. head of water may be substituted.
The above table will show pressures of about one-half those found by Hawksley's formula-given in a paper before the G Sec-
tion of the British Association's meeting book, $1881-$ and will be
found to differ materially from the table in "Molesworth;" but found to differ materially from the table in "Molesworth;" but
nevertheless, it has been rigidly deduced, and will agree with fact and experiment.
resulting from the impacts of solid projectiles in motion pressures 14, Grosvenor-place, Chester, October 28 th.

ELECTRICAL STANDARDS OF MEASUREMENT

Sus, - I have read with satisfaction to myself your article entitiled "Dyne," bearing upon the mysteries of the electrical art thhough the lamentations of your correspondent, "J. B. W.," pub-
lished in your previous issue, and have noted the invitation of astounded by "J. B. W.'s" equation $\mathrm{C}=\frac{1}{1}$ or zero (!) that I am under the impression that "Omega's" deep researches would be of small avail in such a case without more elementary instruc-
tion, and I, "Alpha," therefore venture to make one practical suggestion.
I have just received a little pamphlet, by Mr. A. B. Holmes,
entitled "The Electric Light Popularly Explained," and published entitled "The Electric Light Popularly Explained," and published
by Bemrose and Sons, which seems to me to treat of these by Bemrose and Sons, which seems to me to treat of these
mysteries in terms within the comprehension of engineers of ordi-
nary intelligence and education, and I believe that "J. B. W." and nary intelligence and education, and I believe that " J . B. W. W. and
many of your readers would, like myself, derive instruction-I many of your readers would, like mysel
might almost say relief-from its perusal.
October 28 th.

October 28th.

Sir,--It is not my intention to take part in the discussion which I am glad to see has commenced in your pages on standards and made by your correspondent, "An Electrical Student," to pass unlaw, because the electro-motive force must be always equal to the resistance, "An Electrical Student" replies that if the force erreor, and I may point out that authorities as high as Newton,
Pambour, and Rankine, all show that a force cannot exceed resistance. In Newton's words, "action and reaction are equal resistance offered by a piston to the steam pressing on it is precisely tration of the meaning of all this, I may point out, that if a rope is tied to a boat, a certain force can be exerted in the way of pulling that rope; if now the rope be cut the resistance vanishes, and so
does the force. I have gone very fully into this question in letters which you courteously published in your impressions for June 9th and June 30th, and your correspondent will, if he refers to these apparent equilibrium.
Your corresponden
what it is Ohm's law is intended to convey, perhaps, because he has failed to comprehend what the term electro-motive force means.
Although it is commonly enough said to be analogous to head of water, it is not strictly so-but I shall leave the discussion of such points to others. I may, however, explain for "J. B. W's." benefit simple formula :-Let the-power expended in any case by a very any particular case, by means well known to electricians; let the
resistance also be ascertained, then $\mathrm{C}=\frac{\mathrm{E}}{\mathrm{B}}$ and $\frac{\mathrm{CE}}{746}=$ the horsepower. Thus, for example, let the resistance of a given arc lamp be 4 ohms, and the electro-motive force 40 volts, then $C=\frac{40}{4}=10$ and $\frac{10 \times 40}{746}=\frac{400}{746}=\cdot 536$-horse power nearly.
Ф. П.

London, October 30th.
Sir,-As some question has been raised on the meaning of such words as " current," "electro-motive" force, "intensity," and so
on, perhaps the following passage from Ganot's "Physics" may be on, perhaps the following passage from Ganot's "Physics" may be
of service to your correspondents. It places the theory of the
current in a light somewhat different from that usually received:"When a plate of zinc and a plate of copper are partially immersed in dilute sulphuric acid a disturbance of the electrical themid, the opposite electrical conditions of the two plates discharge and as rapidly discharged; and as these successive charges and
discharges take place at such infinitely small intervals of time that discharges take place at such infinitely small intervals of time that by a current. . . But the existence of this current is purely mode of explaining the phenomena developed in the wire." Professor Ayrton has recently stated his opinion that electric
currents are transmitted wholly on the outside of conductors, but currents are transmitted. wholly on the outside of conductors, but length and the sectional ar
Ganot defines electro-motive force " as the force produced by the difference in chemical action on two metals in a liquid."
an obstacle. Thus, for instance, the current has to leap over the space between the two carbons of an arc lamp, and if it lacks
electro-motive force it cannot take the requisite jump. Electromotive force alone will not do work, and quantity of electricity alone will not do work. The two must be combined; but the quantity of electricity which can flow through any medium offering
resistance is also measured by the electro-motive force of the current. For $\mathrm{C}=\frac{\mathrm{F}}{\mathrm{R}}$. If, for example, we double E , it is clear that we also double O. Therefore C may be taken under the
given limitations to mean quantity, and E to mean intensity. But Ganot says "the quan quantity of electricity which in any unit of
time flows through a section of the circuit is called the intensity of
the current';" and he uses I instead of C, and lays down Ohm's law in
the following terms :- "The intensity of the current is equal to the the following terms:- "The intensity of the current is equal to the the simple formula, $I=\frac{\mathrm{E}}{\mathrm{R}}$ " But he has already defined, as we have seen, quantity as synonymous with intensity. Therefore, if we let Q stand for quantity, we can write the formula, $Q=\frac{\mathrm{E}}{\mathrm{R}}$, which appears to me to be more, satisfactory than the somewhat vague
C. The division, when worked out numerically, gives us some. The division, when worked out numerically, gives us
thing. Your correspondent "J. B. W." wants to know what.
Let E be 50 volts means that we have a quantity of electricity represented
by 10. This result is a purely arbitrary thing known as the Ampere; but before we can do anything with this Ampere, which may be taken to represent, say, a given quantity of water, we
must multiply it by its electro-motive force, which is equivalent to head, and we then get an expression of energy. Thus 10 Ampères multiplied by 50 volts gives 500 , and this 500 divided by the in-
variable constant 746 will give the horse-power represented by the current. I cannot occupy your space by explaining whence this
746 is obtained. It is, I may say, purely a deduction from the 746 is obtained. It is, 1 may say, purely a deduction from the
550 foot-second mula is $\mathrm{P}=\frac{\mathrm{C} \mathrm{E}}{746}$, but I prefer to write it $\mathrm{P}=\frac{\mathrm{Q} \mathrm{E}}{746}$, which means quantity multiplied by head and divided by 746 gives horse-power ;
a statement far more intelligible than that current or intensity a statement far more intelligible than
multiplied by head gives horse-power.
It is proper to state that the Ampère is defined by electricians
as the current produced by an electro-motive force of a circuit whose total resistance is one ohm, and the unit of quantity is the Coulomb, which is the quantity of electricity transported in one second by one Ampère. Thus Amperes multiplied by seconds give Coulombs. The Coulomb is, however, never used
by electric light engineers, who only need the ohm, the volt, and by electric light engineers, who only need the ohm, the volt, and
the Ampere in their calculations, and it will be readily understoo the Ampère in their calculations, and it will be readily understood
that the Ampère is, as I have put it, really a sufficient measure of quantity. " W." may want to know why the volts are used twice as multipliers. He will understand this if he bears in mind that, in the case of electricity, we have no means of measuring the quantity which passes through a circuit save its electro-motive force. In
other words, this is the same thing as measuring the water delivered through a pipe by the head. Given the diameter
of the pipe-which is the analogue of R -and the head-which is of the pipe-which is the analogue of R -and the head-which is water delivered in a given time. To calculate the work which this quantity of water can do we must again multiply the quantity by
the head. In precisely the same way we first find the quantity in Ampères by the aid of the electro-motive force, and we then find the energy of the Ampères by multiplying them, in their turn, by
the electro-motive force. But the mere fact that a given machine is receiving or transmitting so many Ampères really means nothing, save this, that as the heating of a conductor appears to depend
solely on the quantity of electricity passing through, and not at all solely on the quantity of electricity passing through, ane
on the electro-motive force, we can, if the Ampere current is known, predicate the amount of heating which will take place.
I think that "J. B. W.'s", troubles have all arisen from the indefinite use of " C " and "I." I met with the same perplexities
myself. Let it be once understood that $\mathrm{C} \frac{\mathrm{E}}{\mathrm{D}}$ merely means that the quantity of electricity passing through any conductor is found by dividing the electro-motive force by the resistance, and all
will become clear. In other words, C should be written, as I have said, Q.
Brixton, October 31st.

GORDON'S DYNAMO-ELECTRIC MACHINE
Sir,-I have had two opportunities of seeing the dynamo illus-
trated in The Enginerr last week, at work, and I was pleased with its performance. The design and workmanship of the machine are alike admirable, and itave no doubt that the Gordon tions which, to ask for some infor
The machine is now being run at Greenwich at about half
speed. The two Burgin exciters are also run at slow speeds speed. The two Burgin exciters are also run at slow speeds.
The lamps sustained in action are about 1500 in number. When the machine is in full work it can keep about 5000 going, and allowing eight lamps to a horse-power this represents, say, 625 -horse power.
The power now expended is, I believe, about 180 -horse power Even at the slow velocity of 140 revolutions per minute the cast iron framing becomes so hot that the hand can scarcely be borne on
it, and there is a strong smell of melting shellac in the dynamo room. I understand that Mr. Gordon proposes to cast the rames of his dynamos hollow and to circulate water through
them. This will keep them cool, but will there not be a great loss of power? Perbaps Mr. Gordon will explain how much
may be lost in this way or, rather, how little. The heating manifests itself in a curious way. The magnets secured to the framework are spaced off from it by distance pieces, through which pass
the bolts, shown very clearly in your engraving. The armature in revolving causes a strongradial current of air, and this keeps the outside of the stationary magnets quite cool ; but the cores of these outside of the stationary magnets quite cool; but the cores of these
magnets must be very hot indeed, because the warming up of the
frame is due entirely to the transmission of heat through the bolts. rrame is due entirely to the transmission of heat through the bolts.
This species of heating is just what is to be expected from an alternating current machine. It has not necessarily anything to do that when a bar of iron is rapidly magnetised and demagnetised it becomes hot. In the alternating current machine the magnet cores are powerfully magnetised and demagnetised with great rapidity, and as a consequence it seems to me that they must get very hot;
and that in the case of the Gordon dynamo, unless means aretaken to conduct the heat away rapidly, the insulation on the wires next the cores must suffer, although the outer coils may be quite cold.
When the machine is driven up to its full power the heating will be tremendous, and cold water will have to be freely used to keep it down. That it can be kept down I fully believc, but this will the water. I am certain this point must have struck many of your readers as well as myself, and I hope Mr. Gordon will give us Again, it the matter.
machine in the shape of induced currents. If we have two wires running parallel to each other-parallelism is not necessary -when set up in the other, which last is but momentary. At the instant the current ceases to flow in the first one, a second induced momentary current is set up in the second wire. Now, with con-
tinuous current machines there is no induction worth mentioning; but in the alternating current machine there must be induction, must cause loss of energy. Again, there are eight miles of leads in the Telegraph Construction and Maintenance Company's works,
this wire has all to be emptied and filled again with electricity this wire has all to be emptied and filled again with electricityWhat I mean-many times in a second; the incessant reversal of to say what loss of energy, if any, is caused by this alternating action in the machine, the leads, and the lamps? Lastly, is it not
possible to fit a commutator to the machine and so get rid of the whole difficulty?
Great George-street, Westminster, 1882,
THE BOARD OF TRADE AND BOILER EXPLOSIONS
Srr,--You will probably have seen the "Report of the Prelimi-
nary Inquiry"" of the Board of Trade under the new Act, of what

Way of a fusible plug in a furmace crown of a "Laneaghire" boiler.
As the boiler in ouestion was insured with us I I wrote a letter to AS the boier in question was insured with us, I wrote a letter to
the assistant-seeretary, Marine Department, Board of Trade, and reeived a reply thereto; copies of these I subjoin. When the Act was submitted to Parliament, Is strongly urged the promoters to defnina a boilere explosion, pointing out that serious
misconception might result if this were not done , but either misconception might result if this were not done; but either from
fear of committing themselves, or otherwise, my suggestion was not adopted by them. I much regret this.
The case above referred to is an illustration of the absurd manner in which the Aot may be misapplied. If judiciouly carried out it
may be of great service. We have investigated the cuuse of the
Wen may be of great service. We have invesigated he ause oflind
piuz giving way, and find it did not arise from the cause explained plug giving way, and find it did not anise for the eause explaine
by the Board of Trade Inspector, but from that referred to in my It is not simply because we have an interest in the boilers, \&e. that Id Irect your acteantion to this matter, but that pubbio atten, tion may be aroused to what will prove a system of serious annoy nce
Manchester, November 1st.

 It it to bo regretted that tho genleman who investigated the matter
did not tatonco designate this ocourrenco ina proper ramner instead oid

 attendant rust and roar, might be called an explosion. induded, and can

 Juciciaims that the coming out of the pluy referred to has been due to
overheating, onsequunt upon deposit
room the water. The turnaces of the boiler hive siffered from depositit, consequent on overheating which
Fusibibe plugs are often metec out ond

Board of Trade, Marine Department,
oct, 20th, 1882.

 THOMAS GRAY.
To the Manager of the National Boiler Insurance Company,

King's Colliege Enginekring Society.-At a general meeting did College on the opened by Mr. E. H. Horne, and terminated much in favour of electricity. There was a large attendance of students of the Yoyne Torno
Voyage of Torprdo Boats. -The Brazilian Government
dispatched to the Brazils during August last four torpedo boat dispatched to the Brazils during August last four torpedo boat
built by Messrs. Yarrow and Co. These vessels, we understand have arrived at Rio de Janeiro in perfect safety, havin encountered very severe weather during a portion of their voyage it will be remembered that a short time since we gave an account
of the official trial of one of these, when a speed of 20.3 knots an hour was obtained with a load of twelve and a-half tons during a continuous run of three hours, which is the highest speed eve recorded under such severe conditions of trial. The above torpedo Argentine Government are, we believe, the only torpedo boats that have ever made Naval Evaineer Amporntwwers -
ing appointments the Asia, additional, for the Volcano; W. H. Moon, engineer, to the Indus, additional, for the Himalaya, vice Brumage ; John T. Morgan, engineer, to the Tenedos ; Jeremiah P. Lloyd, engineer
to the Northampton ; William Bromley (a) engineer, to the Indus additional, for Coastguard, vice Jones ; Joseph W. Allen, engineer,
to the Tenedos ; Richard J. P. Jones and Benjamin J. Barnes, engineers, to the Northampton ; Percy J. L. Bolland and James A Reynolds, engineers, to the Northampton, for temporary service
Alfred J. Nye, assistant engineer, to the Hercules, additional, for the Lively, vice Allen ; Sylvester Rawling, assistant engineer, to Northampton ; James M. Thompson, assistant engineer, to the Traotion Engines on the Highway.-Mr. Dodson, President is to receive an influential depurelative to the use and licensing of traction engines. In Yorkshire Derbysire, and other parts of the country, great damage, it is stated, has been done to the highways by these traction engines,
and the public safety endangered. The accident, resulting in the , was the origin of the agitation, which has been promoted by many influential people - and it do not much object to them until they are sufficiently well-to-do
to be influential. A preliminary meeting is to be held at to be influential. A preliminary meeting is to be held at the
Grand Hotel, Trafalgar-square, and the deputation-which will consist of public bodies from various parts of the country-wil include several Members of Parliament. At the interview a
memorial, signed by 9000 persons, will be presented on behalf of memorial, signed by 9000 persons, will be presented on behalf of ment and consolidation of the law into one Act, and for a bette
system of licensing.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.
In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of in in ury addressed to the
public, and intended for insertion in this pubtic, and intended for insertion in this this column, must, in al al
cases, be ccompanied by a lare enelope leobily directed by the ases, be accompanied by a large envelope coperiol aime in order that ansvors received by us may be forvarded to their dessination.
No notice vill be taken of communications which do not comply *We cannot unders.

*must therefore request correspondents to keep copies. contauning questions, must be accompanied by the name and proof of good faith. N

 . F. W,

 gatester
the . . . oind.
D.
years woith a mitmo hove secrveed a reguular apprenticecship for at at least thiree

 ErratuM. - In our last impression, page, 318 , column 2 , line 13 , for $\mathrm{F}={ }_{32}{ }_{32} \cdot 2 t$
read $\mathrm{F}=\mathrm{W} v$ Clark's "Manual of Rules, Tables, and Data," page 284.

CARBONS FOR THE ELECTRIC LIGHT.

 (To the Bditor of The Bngineer.) Srip, -Can any reader tell me whend Rouart corbons for arc lamps?
London, November 2nd.

Who invented the stuffing-box
 (To the Bditor of The Engineer.)

MEETINGS NEXT WEER.

On the 27th ult, at Brixton, in his 75th year, Joun SAMurg S for 33 years Superintendent of the City of London Gas Company

THE ENGINEER

NOVEMBER 3,1882

condensing and non-condensing engines

In our impression for Feb. 11th, 1881, appeared an article on the value of a vacuum, in which we endeavoured to show exactly what the steam engine gains in the way of economy from a condenser. We then explained that the condensation of 1 lb . of steam in the cylinder would neutralise all the gain to be derived from condensing 3 lb . of steam in the condenser. In the last volume of the Revue Universelle will be found a short and interesting paper-translated into French by M. Doerfel-from the entitled Sur l'Inutileté de la Condensation. The autho has taken for his text an experiment carried out in the United States on two Corliss engines, one with and the other without a condenser, and of identical dimensions,
with the exception that the condensing engine had a cylinder 50 per cent. larger in diameter than its fellow. The condensing engine had a cylinder 24in. diameter, and a piston stroke of 4 ft . The non-condensing engine had a cylinder 16 in . diameter, with the same stroke. The pressure in the first engine was 63 lb ., and in the non-condens ing engine 67 lb . on the square inch. The steam was expanded nearly eight times in the condensing engine and 4.36 times in the non-condensing engine. Swo and contrary to what might have been expected, the condensing engine required more fuel than its fellow. Mr. Isherwood has already dealt with these experiments, and Professor Schmidt adopts his figures, from the condensing that the unfavourable result obcessive condensation in the cylinder, brought about by the cooling influence of the condenser. The calculation has been made in rather an unusual way, and is open to criticism.
We find from Mr. Isherwood's figures that the feedwater required per hour per indicated horse-power by the condensing engine-which we shall call A-amounted to
$25 \frac{1}{2}$ lb., while the non-condensing engine-which we shall call B-used a fraction over 29 lb . Thus neither engine had any pretensions to be called economical. But when we come to examine the performance of the two engines required $22 \frac{1}{2} \mathrm{lb}$., while B needed but $18 \frac{1}{2} \mathrm{lb}$. of feed-water The absolute power of an engine means the work expended in overcoming all resistances; and in the case of the noncondensing engine part of the resistance-and that a very considerable part-was expended in overcoming the resistance of the atmosphere. Thus in the case of the engine B much more work was done than was accounted for by the indicator, while in the case of A the unaccounted-for work, as we may call it, was comparatively small. So far as the esting enough. the steam is concerned, the resu wants the greatest return he can get from his fuel, it is of little practical importance. When the back pressure of the air is not removed, condensation in the cylinder is reduced and the steam does its work to more advantage; but, unfortunately, it is not working solely for its owner. On the contrary, it is expending energy uselessly on the atmosphere. It remains to be seen whether any conditions can arise under which the loss of power in this way would cylinder condensation ; and it ought not to be difficult to ascertain the conditions under which such a result is a jacketted cylinder, nearly all the steam used ought to be accounted for by the indicator. We may take a piston with one square foot area, making 500 ft .
of piston speed per minute, neglecting clearance. engine will use, let us say, 100 cubic feet of steam per minute, of which 10 will be condensed, and the remainder available for work. Let the absolute pressure be weight used per hour will be $23 \times 100=23 \mathrm{lb}$. The steam will be expanded five times, and its average pressure will be 52 lb . on the square inch, but deducting 2 lb . as equivalent to the loss by cylinder condensation-although it will not appear practically in this way-we have $\frac{50 \times 144 \times 500}{33,000}=109$-horse power, and $\frac{23 \times 60}{109}=$ 12.75 lb . of water per horse per hour. But from the 109-H.P. has to be taken the work expended in overcoming the back pressure, which cannot be much less than 16 lb . on the square inch. Now $\frac{144 \times 16 \times 500}{33000}=$
$=35$, in
round numbers, and $109-35=74$, which is the indicated horse-power and, $\frac{23 \times 60}{74}=18.6 \mathrm{lb}$. of water. If, now, everything else remaining unaltered, a condenser was added, the back pressure would fall to about 3 lb ., and we should have $\frac{144 \times 3 \times 500}{33,000}=$ in round numbers 6 -horse power, and $109-6=103$, and $\frac{23 \times 60}{103}=13.4 \mathrm{lb}$. nearly. Thus the practical relative economy of the engine
with and without a condenser would stand as $13 \cdot 4$ to $18 \cdot 6$, with and without a condenser would stand as 13.4 to 18.6 , and cylinder condensation must reach $18 \cdot 6-13 \cdot 4=$
$5 \cdot 2 \mathrm{lb}$. per indicated horse-power per hour before the denser ceases to be a means of economy. It is true that there are one or two other matters to be thought of, such as the work done by the air pump, and the fact that with
the non-condensing engine the feed-water may be heated the non-condensing engine the feed-water may be heated
boiling hot, while with the condensing engine it cannot;
but these are things of small import, and the whole question centres on the one point-can or cannot condensa-
tion in the cylinder be kept below the point stated? The tion in the cylinder be kept below the point stated The answer must be in the affirmative. We have cited time which prove this. Recently, however, a very instructive case in point has come under our notice. The engines and boilers at the Old Steam Flour Mills, Birmingham, hav recently had some alterations made in them, and in regular work between September 13th and the 21st they gave the following results:-Duration of trial 88 hours ; average steam pressure in boilens, 63 lb ., averag nitial pressure in engine, 57 lb .; pounds of coal used per hour, 738 ; pounds of feed-water used per hour, 4843 emperature of feed water passing donkey pump, 82 deg Fah.; temperature of feed-water from economiser, 132 deg ah.; revolutions per minute, 453 , imdicated horse-power, ; vacuum, 26.50 in .; pounds of feed-water per horse hour, 3. The engines are a pair compound horizontal, with cranks at right angles and an intermediate receiver. The ylinders are 20 in . and 38in. diameter and 4 ft . stroke There is a plain slide valve on the high-pressure cylinder with cut-off plates on the back, adjustable by a wheel outsid the valve-box. There is a plain slide valve to the low-pres sure cylinder. The air pump is single-acting, and worke rom the back end of low-pressure piston rod by a bell crank. The pump is 24 in . diameter, 20 in . stroke ; the condensing water is supplied by an artesian well 150ft. deep, in. bore; is drawn therefrom by a double-action pump 10in. bore, 18 in . stroke, making 50 double strokes per minute. This pump delivers into an underground tank, whence it is drawn by the air pump. The boilers used during the trial are two plain Lancashire, with two internal flues ft . 6 in . diameter, shell 28 ft . long, 7 ft . diameter ; no wate tubes. The safety valves were weighted to 65 lb . pe square inch. Green's economiser, with 96 pipes, is fitted A separate duplicate boiler was used for working th donkey pump, the flame, \&c., from which passed through bye-flue direct to the chimney. The coal is what is termed "rough slack," and costs delivered 6s. 6d. per ton During the trial the mill was doing its ordinary work with ine pairs of stones, seven sets of Gantz and Bucholt nd other rolls, silks, purifiers, elevatons, chain hoists, an on. The cylnders, it is wort notice, are not jacketted, but carefully covered with non-conducting material.
Here it will be seen that the total consumption of working with very little cylinder condensation. But the effective pressure our calculation. We are unable to say how much of the steam is accounted for by the indicator, as we do not know the amount of clearance, and the cut-off is not lean. The low-pressure diagram is excellent, and the high-pressure diagram very good.
It is impossible to meet with a steam engine in which no cylinder condensation takes place; but, as we have said he conditions under which a condenser proves unecono ical must be rare. Such cases are, however, by no mean wanting, and we have given more than one example of this truth in our pages. In many cases, however, the condenser is simply useless, doing as much harm as good It will generally be found, however, that under such cir cumstances the engines are too big for their work, and
the prevention of smoke from domestic fires.
The advent of the London fog may be daily expected. As far back at least as the memory of the oldest inhabitant extends, London was the privileged and exclusive possesso of a peculiar fog of special texture-a fog unrivalled fo ears, however, Liverpool and Mancheaster fogs for themselves, very nearly equal in abominable characteristics to the metropolitan article ; and, strange to say, Paris has followed suit. Although smoke does not cause fogs, it imparts to them the pestiferous characteristics and superlative dinginess which have given those of England a world-wide reputation. Accordingly we shall, in the course of the next few months, hear a great deal about smoke abatement. In summer the subject is put by on a shelf. In the first place there are no fogs in inder, Liverpool, and Manchester in summer; and, in郎 second place, there are hardly any house fires to im out of mind "" the smoke if there were. . abeyance. But as soon as winter is upon us men begin to talk about fog and smoke, and so the question is taken of the shelf, cleaned up, and galvanised into life; and nothing comes of it, until spring arrives and fogs disappear, and the question is again relegated to obscurity. This goes on year it not about time venture to ask, will it go on always some intelligent fashion? Has not enough been done in the way of talking, and writing, and suggesting, to prove they cannot be had, then it is useless to argue about them any further. If they can be had, let them be produced, and made available.
Many months ago an exhibition was held at South Kensington, at which were supposed to be shown all the had up to that time been produce with considerable flourish of trumpets, as is the fashion of South Kensington. A committee of experts was appointed to examine and report on the results obtained. It was stated Grates of exhibitors that the whole problem woity could invent, or the spirit of ugliness suggest, were shown in some in the neighbourhood of the Horticultural Gardens were rude enough to threaten to prosecute the Exhibition Committee under the Smoke Nuisance Act. They certainly did not believe in the grates exhibited. But the visitors within the colonades of the Horticultural Gardens had not the same opportunities for arriving at facts as those out-
side. It is true that clouds of smoke now and then
eddied through the building ; but this, it was explained, was caused by cross draughts, such as would not exist a dwelling-house. Again, the grates were always in the hands of skilled attendants, and as for the most part good heavy fires were made up in the grates in the
morning, little firing took place during the day. However, people consoled themselves with the belief that no matter how the visitor might be gulled or mistaken, there was, promptly issue a report, and then the truth would b known. But no report has ever been published. We have made diligent inquiries as to why the document in question According to one statement the report is in type, but the committee are doing their bestto obtain advertisements, and when these have been got together the report will be published. The principle involved is that followed by ertain omnibus conductors; they will not move until their vehicle is full. According to other statements there is no eport in existence; nothing but certain tisjointed here was nothing exhibited worth reporting about. It is hardly perhaps necessary to add that the non-publication of the report is a distinct breach of faith with the exhibitors, to say nothing of the public. Medals have been awarded, but no one quite knows why. If it were worth
while, a vigorous demand might be made for the production of the report. We are disposed to think, however, that it atisfactory to all parties that, bad, good, or indifferent, should be produced.
Leaving the South Kensington Smoke Abatement equired. At this season let us consider what it is that is freplaces pour forth volumes of light smoke into the air The smoke from ordinary dwelling-houses is a very different hing from the smoke evolved from a factory chimney. Ther is, to begin with, no want of air, such as may exist in a secure the combustion of the flying particles of carbon, but the chimneys act beneficently, and great quantities of soot ow repeat that it is impossible to design an open fire which vill not evolve smoke at least when the fire is first lighted There are certain forms of grate more or less complex in lready ignited, and these act fairly well by preventing th volution of that yellow smoke given off by raw coal when first put on a fire, and which is mainly composed of steam ions to such grates which are fatal to their general adoption t is possible to burn coal without smoke in close ut the game is not worth the candle-Dwellers in London, at all events, will never give up the cheerful open or urging will have the slightest effect in this direction. The want of an open fire in an English gratified, no matter how much theorists may rave about it. It follows that there are only two remedies warming appliances. The first is the use of gas as fuel, the second is the use of smokeless fuel. Now it so happens that the employment of gas in this way has ar for years and they have simply effected nothing. The percentage of houses heated solely by gas in England is infinitesimal. In the first place the price steps into the way. A ton of ordinary gas can be iot fro clear that as the coke is left behind the gas cannot contain as much heat as the coal, but the $10,000 \mathrm{ft}$. of gas represent o the consumer about 30s. A ton of coal when all the and this coke is quite as efficient, ton for ton, in heating as coal, but the man using gas for heating does not get be burned to more advantage than the coal, and that the omparison is all in its favour. This may be so, but the open fireplace in which gas can thus be burned has yet to be invented. The nearest approach to it is the wellknown arrangement with burners and imitation cinders
made of asbestos. No one outside the lists of enthusiasts says that this is a satisfactory substitute for the open fire. We think we can put gas on one side ; if so we have nothing left for consideration but the possibility f using smokeless fuel.
There are two varieties of smokeless fuel availablehave already very fully explained For reasons which we extreme degree that anthracite will ever come into favour as a fuel in London. Is the case quite the same with that the only solution of the London smoke difficulty seems to lie in the substitution of coke for coal as fuel; but we are by no means sanguine that it will ever be would hardly answer the purpose; immense quantities of it are, however, used as fuel in London, especially since the gas companies found out that when broken into small pieces people would buy it who before would not have it at scale it would have to be specially made. Some millions of tons of coal would have to be converted each year for heavy, unless some means could be devised for utilising the products of distillation. The 14 cwt . or so of coke did and the cost of carbonising it besides, and the 14 cwt. of coke would not do more heating than 14 cwt of coal an increased outlay for fuel which the metropolitan householder would not like. He would prefer to take his chance of fogs rather than pay 6 d . a ton more for coal or other the question of the prevention of the emission of smoke by
house fires, we are met by apparently insuperable diffi-
culties. There are, in fact, a multitude sidered. The open fire must be retained ; that is imperative. Can an open fire be made to burn without proThe answore, more in less, with bituminons coal? certain complex grates have been made which partially effect the required purpose; but they are not worth the trouble and expense incurred by their use. design, the grate or stove must al porteasing will suffice to dimensions, or firplace. Then cheapness must be considered. We shall be over the mark if we assert that a grate for the people must not exceed $£ 5$ in price. This limits the field of invention very closely. The only true remedy consists in washing the smoke, and this could be effected easily enough in some cases. Thus all ne fires of a terrace of dwelling-houses might be made to communicate with a detached chimney common to them
all, and the smoke in ascending this chimney might be washed the smoke in ascending this chime could not be applied to any extent in existing large towns. It must not be forgotten, as regards the prevention of smoke, that even if all the flying carbon particles which render products of combustion black were to be burned up, everything would not be gained. Fogs in London would, it is true, be cleaner, but they would not be less pungent; neither the peculiar acid nor the sulphurous acid, which now give absent. The outlook to a London fog, would be factory. Perhaps someone will arise and solve the whole problem, and tell us how to burn coal without making smoke in our dwelling-houses. Meanwhile, we should like to have the report of the South Kensington Smoke Abatement Committee; they ought to have had admirable opportunities of acquiring information which it is time was made public. The latest authoritative announce ment concerning it is this:-"The reports of the experts who gave their valuable services as jurors, together with the details of the tests, are now in print, and have undergone final revision." But nothing is said as to the date o publication. We are also informed that, "Encouraged by the practical success of the exhibition held in South Kensington, and the connected exhibition subsequently held in Manchester, the Smoke Abatement Committee has now resolved itself into a Smoke Abatement Institute which has been duly incorporated and authorised by the Board of Trade, and the details of the proposed mode o action of the Institute will shortly be published." Mr. Hart, the chairman of the new Institute, seems to be South Kensington Exhibition lay has not been defined The best result obtained being, it appears, that "many of the kitcheners tested are found to be practically smoke less, even when consuming ordinary sofl coal; and that the means exist for converting, at moderate expense, ordigreat extent, suppress the production of smoke. How far householders will be willing to impose upon themselves alteright inconvenience and expense involved in these sequently qualified by the statement that, "It must not be forgotten that, in the opinion of the most eminen authorities, a fully satisfactory result will only be achieved when our present methods of consuming coal for warming our houses are so completely revolutionised that the use o cheap and economical gaseous fuel on principles such as those successfully applied by Dr. Siemens in his now well-known coke and gas fire." This is very like an admission that coal cannot be burned in our dwellinghouses without smoke. We have already expressed our tuted for thcerning the gas fires which are to be substiwhich is being written and published on this subject, we may cite a letter from Mr. Bartlett which appeared in the Times on the 25th ult. Mr. Bartlett proposes to solve Act of Parliament, requiring thate expedienture shor building erected within the metropolitan area shall be supplied with stoves or furnaces which consume their own trict , and, further, that it shall be the duty of the diseffectually carried out," Seeing that exist which comply with the conditions laid down, this would be tantamount to abolishing the open fireplace by Act of Parliament. Can absurdity go further?
the international electrical conference.
As far back as the year 1861 the British Association undernational standards of electrical measurement. Fver inter British Association has been endeavouring fruitlessly to arrive at a final result, and it has always been baffled by the defects in the systems proposed, and by the want of agreement among elec-
tricians and others most concerned. Not only indeed have disputes arisen concerning the nature of the unit to be adopted, but concerning the name which it shall receive ; thus what was once known as a Weber, namely, the current produced by 1 volt,
in a circuit having 1 ohm resistance, is now called an Ampère ; in a circuit having 1 ohm resistance, is now called an Ampere,
and the change was not made without a battle. Persistent and the change was not made without a battle. Persisten measure which they did not like, and which have nothing recommend them. During the electrical exhibition last year at Paris an attempt was made to get certain points settled, but
without success. During the present year the Internationa Conference has continued its labours without arriving at any result, and anter passing certain more or less meaning-
less resolutions, it has adjourned until October, 1883. less resolutions, it has adjourned until October, 1883 .
The great fight has been over the ohm standard. For some
time back has been represented by the resistance at zero Centigrade of a column of mercury 1.0486 metres long,
and 1 millimetre in diameter, or 41.261 lin . nearly in length by 0.039 in. in diameter; but there is reason to conclude that this is
incorrect. One of the resolutions to which we have referred is to the effect that at present there is not a sufficient concord of opinion to enable the numerical value of the ohm to be definitely
fixed in terms of the length of a mercurial column, and that

Governments be appealed to by France to encourage further
research on the subject. The section for "Electrical Currents and Lightning Conductors" resolved that Government should treospheric electricity that regur systematic observations atmospheric electricity; that it is important for the study of f the telegraphic system evhy country; that wires independen study of earth currents; and that, so provided for the special subterranean telegraphic lines, particularly those running north and west, should be utilised for the same those running north being instituted on the same day in the various countries. The section for "Fixing a standard of Light" expressed the opinion that the light emitted by melting platinum would furnish an absolute standard. In closing the Conference, M. Cochery, the Postal Minister, assured the members that the Frencin Government would endeavour to give effect to their resolutions by hoped that the twelve months for which the Conference is adjourned will be sufficient for the searches in the various departments in questior to be completed. For ourselves, we do homogeneity in the Conference and a manifestation ef jealousies which must prove fatal to its work. It is fortunate that prac
tical electricians manage to get on very well without the aid o the Conference.

URSTING OF KRUPP 11 -inch and woolwich 6 -inch guns
Two serious cases of guns bursting have been recently ne of our own. The information received is as and the othe reported from Wilhelmshaven that on October 18th, firin Trupp's mounted the platform of a 28 cm . -1 lin.- gun of steel barrel of the gun burst. As it was a case of proof firing, the detachment were under cover and no one was hurt. The harge was $58 \mathrm{~kg} .-128 \mathrm{lb}$. - of powder, the largest employed in 2200 lb .-flew to a distant of over 100 metres, with jury, however. The strictest inquiry is to be institute mediately with regard to this accident At Sho bive hursday, October 26 th, a 6 in. new type gun-Mark II. we
 af 38 lb . of P_{2} powder-burst at about its 250 th round in front the powder chamber. The breech is reported not to hav distance of 20 , although fragments of the barrel were standin ound the run did not suffer much, only man being injure ufficiently to go to hospital. It may be seen that there is a experimental element in both these cases. The Krupp gun was eing tried under circumstances when it was consdered that wa though apparently ment. The Gun Factory gun has already been superseded by pattern Mark III., weighing 2 cwt. more than Mark II. gun evertheless, unquestionably the accidents are both such as
 each case has taken place in a barrel of steel.

the furness railway.

The probable acquirement by the Midland Railway Company o e Furness line would be another proof of thetendency of railway back over thirty years-the first Act for its incorporation on mall scale being passed in 1844, and others in later years elonating it, until it now holds possession of that rich iron field from by Barrow to Whitehaven-one of the richest of our ow its capital approaches $£ 6,000,000$, and the length of th line authorised is 180 miles. It is chiefly a mineral linemineral traffic giving it more than two-thirds of the entir evenue, though its passenger traffic is growing. Of late ther in morevement the and and and and satisfactory dividend for several years. Indeed the Fur Railway may be said to be in the north-west of England miniature North-Eastern Railway. The acquirement of the rail way by the Midland would give to that company what it ha ong desired-a great and growing port, and would be of the the Furness also, for the. And ther ould not find their dividends fluctuate so much as tor ecessarily done with the prosperity or the reverse of the iro hesitated peedily effect by a comparatively small company would be ps name from the that great and influential railway that take that company the benefit of a direct access to the lakes, and that benefit cannot be too greatly estimated, when to it is added解 that the Furness has also a large traffic with the Isle of the interests of the public in the districts served be well pro tected.

The use of electricity has often been proposed as a motiv y Professor Ayrton. Indeed, it appears that the improvement y Professor Ay in ar advanced that tricycles cannot only be lighted, but also pro pelled solely by electricity, as was from the tricycle ridden ast week by Professor Ayrton in the City. The Faure accumu motion was produced by one of Professors Ayrton and Perry's newly patented electro-motors placed under the seat of the rider. Using ne of these special made tricycle electro-motors and the newes added to a tricycle to light and propel it electrically is only $1 \frac{1}{2}$ cwt., a little more than that of one additional person. In the were entirely electricity being the sole proplling agency; but with ordinary electric tricycles it may be desirable to leave the treadles, so that hile electric propulion ane is used on the level, the rider can, steep having to get out and ignominiously push his tricycle up the hill before him.
the lifiting stage at madison theatre, new york,
Somethivg has been heard in this country of very novel stage no details have been published. The arrangements as carried no details have been published. York, are very ingenious. In place of the usual fixed stage a framework is constructed, which
may be best described as a box having two open sides-that is
the front and back of stage. This forms two platforms or stages, and it is lowered or hoisted by steam power vertically, the operation occupying but ten seconds, and the material saving of time
to the audience being mueh appreciated, the upper platform being arranged for use in the next scene, while the lower one is eing acted upon. When that is fimished with, the whole lowered into an excavation below, bringing the upper stage on a
level with the footlights. The arrangements in rear are necessarily three floors-one level with stage, one above, and one
below. Of these two latter only scene-shifters' apparatus are necessary, the centro floor, as usual, being devoted to actors'
necessities, with this advantage, that it is left entirely clear for necessities, with the from froe from scene shifters' arrangements.

LITERATURE.

Applied Mechanics. By Henry T. Bovey, M.A., Professor of Civil Engineering,
Montreal. 1882.
How far the scope of this work really answers to its title may be judged by the following list of its chapters :-
Frames, Roofs, Bridges, Suspension Bridges, Arched Frames, Roofs, Bridges, Suspension Bridges, Arched
Ribs, Details of Construction. It will be seen that Ribs, Details of Construction. It will be seen that
a young engineer, buying the work in hopes of finding it a complete course of applied mechanics, such as is contained in the works of Rankine and others, would have
reason to feel himself aggrieved. The providing and reason to feel himself aggrieved. The providing an
designing of means for bridging over a space is a ver important point of applied mechanics, but it is scarcely
the whole of it. The book should have been called a the whole of it. The book should have been called
treatise on roofs and bridges. With this restriction, may be commended as containing a good deal of useful information on the forms and joints of roof trusses, the modes of allowing for wind pressure - the value or which the author, after a sweeping condemnation of all anemometers, iixes at
40 lb . per square foot-bridge trusses of various kinds, 40 lb . per square foot-bridge trusses of various kinds,
suspension bridges, and arches. As a Cambridge graduate suspension bridges, and arches. As a Cambridge graduate
who has migrated to Canada, the author would seem to have exceptional opportunities for comparing European with American practice in bridge-building-a comparison
which ought to be made exhaustively, and could not fail to yield valuable results. Of these opportunities we cannot say that he has altogether availed himself, and we
suspect that his practical knowledge has been chiefly suspect that his practical knowledge has been chenly
acquired since he left this country. He goos carefully into the different trusses-Howe, and gives a sketch of wire rope suspension bridges,
but he assumes that a girder bridge must necessarily be but he assumes that a girder bridge must necessariy be
for a railway, he says little or nothing upon plate webs, and scarcely does more than touch the controversy as to the advantages of pin or rivet connections. It is true he gives a dissertation on the strength of rivetted joints, but in this he seems to ignore all hat has been lately done in England to advance our knowledge on this subject. On
the whole, while there is undoubtedly much in the book the whole, while there is undoubtedy much in the book
that is useful, it is rather hard to say to what class of practical engineers, desirous of studying the subject of trusses, then the copious supply of examples to be worked out seems rather unnecessary. For junior
students, on the other hand, these would be valuable, but students, on the other hand, these would be valuable, but
to make a text book suitable for such readers much more is wanted in the way of preliminary information and statement of principles. Nor is the little we have by any
means as clear and satisfactory as it might be. For means as clear and satisfactory as it might be. For
instance, it is difficult to reconcile the description of the funicular polygon on p. 2 with the definition of the line of resistance on p. 1. Again, on p. 12 , in speaking of a
strutted king-postroof, we find the following:-"A portion of the weight upon the rafters is transmitted through the struts to the king-post, which again transmits it to the
rafters to act partly as a vertical pressure upon the supports rafters to act partly as a vertical pressure upon the supports
and partly as a tension in the tie beam." On this we must remark that the king-post certainly cannot transmit to the it, and that all weight on the rafters must be not only partly but wholly represented by a vertical pressure on the supports. Such blemishes as these-not to speak of
minor ones in the numbering, of figures-should be removed, and the whole preliminary mater rewritten, thus be made a valuable introduction to roof and bridgework, though it will still fall far short of a complete work, though it will sthll
treatise on applied mechanics.

Grundzige der Graphischen Statik, und deren Amwendung an
Continuirlichen Trügern. By Dr. Karl Stetzel. Graz, 1882 . Iv a review, some time back, of Captain Clarke's "Graphic Statics," we expressed our regret that writers on this subject should insist on applying the graphical method over
the whole domain of mechanics, instead of being content to use it in cases where it possesses real advantages. The present short treatise, coming to us from the ancient and pleasant capital of Styria, carries out the principle we con-
tended for in its fullest extent. In fact, it can hardly be said to be a work on the principles of graphic statics except in so far as these apply to the particular class of problems aimed at, viz, those relating to continuous
girders. The author begins by assuming the truth of the girders. The author begins by assuming the truth of the
parallelogram of forces, describes its graphic representation, and then goes on to give those of the funicular polygon and polygon of forces. The properties of these, as they are demonstrated, are exemplified by applying them to
various cases of ordinary girders. He then gives a short various cases of ordinary girders. He then gives a short nary principles of elasticity to be known-shows how to construct the funicular polygon for this case. In finding
the vertical axis, he follows a method given in 1868 by the vertical axis, he follows a method given in 1868 by
Professor Mohr, of Stuttgart. Methods are then given, in Professor Mohr, of Stuttgart. Methods are then given, in
girders of uniform section, for finding the deflection, girders of uniform section, for finding the deflection,
bending moments, \&cc., under various cases of loading, special bending moments, \&c., under various cases of loading, special
reference being made to those where some spans may be reference being made to those where some spans may be
taken as altogether unloaded, and also where there is uniform loading over part of the girder only. The influence of unequal height in the supports is then considered,
and finally a few words are said on girders with variable and finally a few words are said on girders with variable
section. The question of live loads, which is of high
importance in almost all practical cases of continuous girders, is not, however, treated at all ; and the work must
therefore be pronounced incomplete in both the subjects therefore be pronounced incomplete in both the subjects
covered by its title. It is a promising fragment, and one is therefore the more disappointed that it is a fragment only.

FRIEDRICH WOEHLER.

AT the age of eighty-two years and full of honour, after a life actively devoted to scientinc work of the highest and most accucontemporary to establishing the principles on which an exact science like
to his rest.
After he had worked for some time with Berzelius in Sweden, he taught chemistry from 1825 to 1831 at the polytechnic
school in Berlin ; then till 1836 he was stationed at the higher school in Berlin; then till 1836 he was stationed at the higher
polytechnic school at Cassel, and then he became ordinary polytechnic school at Cassel, and then he became ordinary
professor of chemistry in the University of Göttingen, where he remained till his death. He was born on
Eschersheim, near Frankfort-on-the-Main.
Until the year 1828 it was believed that organic substances could only be formed under the influence of the evital force in the
bodies of animals and plants. It was Wöhler who proved by bodies of animals and plants. It was Wöler who proved by this view could not be maintained. This discovery has always been considered as one of the most important contributions to our
scientific knowledge. By showing that ammonium cyanate can become urea by an internal arrangement of its atoms, without become urea by an internal arrangement of its atoms, without
gaining or losing in weight, Wöhler furnished one of the first and best examples of isomerism which helped to demoish the
view that equality of composition could not co-exist in two bodies A and B with differences in their respective physical and chemical properties. Two years later, in 1830, Wöhler on cyanic and cyanuric acid and on urea. Berzelius, in his report to the Swedish Academy of Sciences, called it the most important of all researches in physics, chemistry, and mineralogy published
in that year. The results obtained were quite unexpected, and furnished additional and most important evidence in favour of the doctrine of isomerism. In the year 1834, Wohler and
Liebig published an investigation of the oil of bitter almonds, They prove by their experiments that a group of carbon, hydrogen, and oxygen atoms can behave like an element, take chemical compounds. Thus the foundation was laid of the doctrine of compound radicles, a doctrine which has had and has still the most profound influence on the development of chemistry -so much so that its importance can hardly be exagge-
rated. Since the discovery of potassium by Davy it was assumed that. alumina also, the basis of clay, contained a metal in com-
the disce bination with oxyen. Davy, Oerstedt, and Berzelius attempted the extraction of this metal, but could not succeed. Wöhler then worked on the same subject, and discovered the metal Yttrium, Beryllium, and Titanium, the observation that silicium can be obtained in crystals, and that some meteoric stones con-
tain organic matter. He analysed a number of meteorites, for many years wrote the digest on the literature of meteorites private collection of meteoric stones and irons existing. Wöhler and Sainte Claire Deville discovered the crystalline form of boron, and Wobler and Buff the hydrogen compounds of silicium
and a lower oxide of the same element. This is by no means and a tower oxide of the same ecement. This is by no means a
full statement of Wöhler's scientific work; it even does not mention all the discoveries which have had great influence on the theory of chemistry. The mere titles of the papers would fill several closely-printed pages. The journals of every year
from 1820 to 1881 contain contributions from his pen, and even his minor publications are always interesting. As was truly the Royal Society that a Copley Medal should be conferred upon him : "for two or three of his researches he deserves the highest absolutely overwhelming. Had he never lived the aspect of chemistry would be very different from that it is now.
While sojourning at Cassel, Wöhler made
While sojourning at Cassel, Wöhler made, among other
chemical discoveries, one for obtaining the metal nickel in state of purity, and with two attached friends, he founded factory there for the preparation of the metal.
Among the works which he published were "Grundriss der Organischen Chemie," Berlin, 1840. Nor must mention "Praktischen Uebringen der Chemischen Analyse," Berlin, 1854, and the "Lehrbuch der Chemie," Dresden, 1825 . At a sitting of the Academy, held on 2nd October, 1882, M. Jean Baptiste Dumas, the permanent secretary, with profound
regret, made known the intelligence of the death of the illus trious foreign associate, Friedrich Wöhler, professor in the UniYersity of Gottingen. He said:- Friedrich Wohler, the
favourite pupil of Berzelius, had followed in the lines and favourite pupil of berzelius, had followed in the lines and
methods of work of his master. From 1821 till his last year he has continuously published memoirs or simple notes, always
remarkable for their exactness, and often of such a nature they took among contemporaneous production the first rank by their importance, their novelty, or their fulness. Employed chiefly, during his sojourn in Sweden, in work on mineral chemistry, he has remained all his life the undisputed chief in this branch of science in German universities. This preparation and pre-occupation, which one might have thought sufficient to
occupy his time, did not, however, prevent him from taking the chief part in the development of organic chemistry and of filling
" His enter erares herions
roduced by the unemected diccovery by which sonsation enabled to make artificially, and by a purely chemical method, formations or combinations giving birth to substances which until then, had only been met with in animals or plants, have since been obtained, but the artificial formation of urea still of creation. All chemists know and admire the classical memoir in which Wöhler and Liebig some time after made known the nature of the benzoic series, and connected them with the
radicles of which we may consider them as being the derivatives comparable with products of a mineral nature. Their memoirs on the derivatives of uric acid, a prolific source of new and hands of their successors.

This is not a moment when we should pretend to review the work which M. Wöhler has done in mineral chemistry. Among the 240 papers which he has published in scientific journals, there turned to account. We need only confine ourselves to the dis-
our confrére, Henry Deville, soon gave a place near the noble
metals. United by a rivalty which would have divided less notals, United by a rivary which would have divided less noble minds, thees two great chemists carried on together their
researches in chemistry and joined their forces to clear up points and remained closely united, which each year only strengthened.
"The reader will pardon me a souvenir entirely personal. We were eorn, M. Wöhler and I, in 1800 . I am his senior by a few
days. Our scientific life began at the same date, and during sixty years everything has combined to bind more closely the links of brotherhood which has existed for so long a time."

OONTRAOTS OPEN.

The East Indian Railway Co. requires tenders for the supply of twenty-five locomotive engines, each engine to have inside cylinders, 18 in . diameter and 24 in . stroke, and six wheels 5 ff t. diameter, all coupled; wheel base 15ft., gauge 5ft. 6in. (Indent
$48)$. (1) The work comprised in this specification consists of twenty-five locomotive engines without tenders, suited to the 5 ft . Gin. gauge. The engines are to be built in general accordance
with the drawings marked 1960 , Nos. 1 to 148 , which are exhibited with this specification subject to such alterations as are named in this specification, or may be directed subsequently by the com actor whose tender is accepted mus make his own copy of the drawings, and must prepare, at his own
costs from them, from the specification, and from the instructions of the company's engineer, a complete set of detail drawings which are to be in every respect as suall be approved by the com-
pany's engineer. The contractor is to be entirely responsible for pany's engineer. The contractor in respects, notwithstanding any
the efficiency of the engines in all remer approval which the company's engineer may have given of the detail drawings prepared by the contractor; ; and the company do
not guarantee the accuracy of the drawing exhbibited. (2) The
general dimensions and capacity of the engines are as follows:-

Matericls. - (3) The whole of the boiler plates which are flanged
or otherwise worked in the fire, the rivets used in the boilers, and also all other parts specially mentioned in the specification must also all other parts specially mentioned in the specification must
be of Lowmoor iron, supplied by the Lowmoor Iron Company. The emainder of the plates, angle irons, bars, and rivets to be used in those engines, except in the platforms, tanks, smoke-boxes, chim plates are to be of Lowmoor, Bowling, Farnley, or Taylor Brothers best quality of iron obtained from the makers. Frame plates are
to be of Yorkshire quality, made by Messrs Cammell, Messrs. Sii T. Brown and Co., or the Park Gate Iron Company, or makers. equal character in the opinion of the company's engineer. All
other plates and all angle irons must be of best best, made by some manufacturer approved by the company's engineer, unless other wise specified. All plates and angle irons are to be legibly marked they can be seen when the part of the engines in which it is used is finished. The cast iron used in all articles having working sur faces is to be made from cold blast pig iron, and must be close grained, hard, tough, and perfectly free from all defects and
blemishes. The india-rubber is to be of the best quality, obtained of the makers from whis company's plates, copper and brass tubing, steel, and all other materials, are to be submitted to the company's engineer, and must be approved by
him before the orders for the materials are arranged. Wher him before the orders for the materials are arranged. Where
brass is not otherwise specified, it must be good tough metal. Gunmetal is to be composed five parts copper and one part tin. Al
steel used in this contract is to be made of Swedish guality, approved by the company's engineer, properly converted
in this country by cementation, and then cast in small crucibles unless other steel be specially mentioned. The company's enginee order to satisfy himself that the kinds of may think advisable in actually used throughout the contract. actually used throughout the contract
Boiler Barrel.- (4) The barrel of the $\frac{7}{7} \mathrm{in}$. and one $\frac{1}{\mathrm{i}}$ in. plates, in three rings, each of one plate, arranged
telescopically, the least internal diameter being fft. 3in. The
vertical seams are to be lap-jointed and single rivetted, $2 \frac{1}{2}$ in. lap,
 13 inn. pitch of rivets, and $\frac{3}{3} \mathrm{in}$. diameter of rivets. The longitudina
seams are to be jointed and double rivetted, with inside and out side butt strips, 7 in. wide by $\frac{3}{3} \mathrm{in}$. thick. The butt strins are to be so rolled that the fibre of the iron may be in the same direction as
in the plates they connect. The joint of the middle plate will b in the plates they connect. The joint of the middle plate will be the opening to the edges of the plates, and be $\frac{1}{2}$ in. thick; the joints plate is to be in. thick, flanged for the front the and secured to the boiler, barrel by an angle-iron ring, bored, faced,
and turned on the edges. When finished this angle-iron ring must be nowhere less than $\frac{1}{1} \mathrm{i}$ in. thick, and it must be zig-zag rivetted t the barrel, but single rivetted to the tube plate. A wrought iron
ring, 2ft. inside diameter, made of one plate sin. thick, welded
and flanged, is to be rivetted to barrel. A dome of the same diameter, and made in the same way of 5 in. plate, having a corresponding flange, is to be bolted to the
upper flange of the ring. The meeting flanges of ring and dome upper flange of the ring. The meeting flanges of ring and dome
must be turned all over, and the joint scraped perfectly true, and when finished they must be each lin. thick. The joint must be plugs are to be inserted in the smoke-box tube plate, fire-box shell, and in any other place they are required.
cut at thet which a wrought iron ring flanged at each edg oiler barrel, ove The flange on the boiler must be not less than $2 \frac{3}{3} \mathrm{in}$. wide by $\frac{9}{\mathrm{o}} \mathrm{in}$. ring and cover are to be turned and faced to make the joint, and the cover is to be fitted with a gland cock worked from the foot plate, and a copper discharge pipe carried out to the front of the
cylinder.-(6) The fire-box casing is to be raised above the level of to be made to be made in one plate $\frac{1}{2} \mathrm{in}$. thick. The front plate is to $\frac{5}{5}$ in.
thick, and back plate $\frac{1}{2} \mathrm{in}$. thick. The front plate is to be flanged and double rivetted to the boiler barrel and to the fire-box casing.

The back plate the side plates.

Sajety Valves.-(7) A hole not larger than 1ft. 11 in. in diameter

 is to be made in the top of the fire-box casing, over which awrought iron ring is to be rivetted. The upper face of the ring is
to be to be turned and faced, and finished to form the seating for a pair
of Ramsbottom safety valves, made in one casting.-(8) Boiler
Stelt Staying: The front tube plate is to be stayed by a deep tee iron
rivetted across the tube plate inside the boiler. The the back plate of the fire-box casing is to be stayed to the barrel of
the boiler and to the front tube plate. Palm stays will also be fixed to the boiler barrel and the front plate of fire-box.-(9) Boiler by angle irons rivetted on the sides of the fire-box shell, and sup-
ported by wrought iron brackets fixed to the frame plates. A
steadying stay is also to be fixed on back of fire-box shell,
and held by suitable attachment to frame or cross stay. Al

 \%

 a

 o

 ㅂ H o

 an dit min

路

grating of teak is to cover the footplate. A lamp and holdier
must b bived to the stay plate between the frames, to illuminate
the the valve motion.

 each end of its stroke. All joints are to be planed or sturned, and
seraped toa t turu surface. All the bolts securing the oylinders
Sto be driven in as tight as possiblele, and have nuts on the inside inull
glands and packing rings to be of gun-metal. All the nuts in the

 be of cast iron, of a spotter description than the oylinders, an
turned tin. smaller than the chliner. The orings are to be o o

 and the bolts are to be made of Lowmoor iron. These rooss, and

 he crosshead will be of wrought iron, and t

 sides, and bolted to the
with cold turned rivests.
 held on the shaft by wrough tiron iotss. The exxentrics are to be be gun-metal liner. The excentric rods are to have butt ends, and
 the excentris. The butts and rod one to be planed and all bolts The edrtsp through the straps are to have the
the stres
Vale Notion, - All parts of the link motion, from valve spind

 the surfaces true to one another, and there must be no spring or
 of iron, zin. diameter, must be put with all articles in the furnac

 Engine injectors. There will be wo ini jectors, No. .10 size, of the
Gresham and The Thard pattern, and of gun-metal the cones bein
 must be marked from awn topppere, and the pipes are to be so ungee
form in length that they

Wheect lodidise. -The bodies of the wheels are to be forged with
solid arms and bosses, and neatly finished. The bosser are to be soidarms and bosses, and neatly finished. The bosses are to be
bored out, and the rim rounh turued. The wheels are then to be

 moter of the wheel centres are to be turned to a gauge, to ensure
alt being exactly like in diameter. The ehbels are eto be forced on
the the axles by a hydraulic pressure of 12 tons per inch of diameter Tires. -The tires are to be made from stel of the highest
repute for locomotive purposes by manufacturers, and in a mimher

 square inch to of or orisile test fail to stand a strain, or should the perrentage of tens reduc

 manufacturers of the engines, after the delivery of the batch from Which the sires testedare taken; and hhemust find all neeessary testing company's eninger, and be at all cost of the testing, and must
return the tiries to the firm who made them, it the tested tires should fail to stand the specified tests. All rejected tires will be
 ow heat, one-thousandth part of the diameter being allowed for
contraction. They are to be secured to the rims with soft steel
stud bolts, tapped into the rims and tires. The balance
are not to be forged solid with wheels. They must be of cast
iron, fitted into the wheels, and held by plates and bolts. The iron, fitted into the whels, and held by plates and bolts. The
axles are to be of faggotted Yorkshire iron, and made by the Lowmoor Company, or Messrs. Taylor Brothers, and must be turned
all over and finished bright. The axles are to be guaranteed to run
150,000 miles for each straight axle, and 100 , all over and finished bright. The axxes are to be guaranteed to run
150,000 miles for each straight axle, and 100,000 miles for each
crank axle, and each axle is to be stamped with the word "f guarancrank axle, and each a all is to be stamped with the word "guaran-
teed, "and mileage it has to run. Any axle which, before it has
run this mileage, shows any defect which, in the opinion of the run this mileage, shows any defect which, in the opinion of the
company's socomotive superintendent, makes it desirable that the xle shoula be taken out of the engine, is to be replaced by an axle
of the same make, and under the same guarantee. The contractor is to accept the statement of the locomorive superintendent as to
the mileage run by the axle replacement of which is claimed. The the mileage run by the axle replacement of which is claimed. The
axle to be delivered to the company in any port in England named by the company free of cost.
Crank Pins.- The crank pins are to be of hammered iron, and case-hardened; they are to pe forced into the wheels by hydraulic pressure, and carefully rivetted over on the inside. The axle-boxes
are to be of cast iron, with gun-metal bearings. The axle-box
puides are to be guides are to be of cast steel, with top and sides in one piece. They
are to be hard and close-grained castings, and free from defects of all descriptions. The faces against the frames and axle-boxes are guides rivetted to the frames with cold turned rivets countersunk on the guides and on the outside of the frame. The axle-boxes
are to fit the backs of the guides, so as to support their own weight, are to frit the backs of the guides, so as to support their own weight.
Bearing Springs.-The steel of which the springs are to be made is to comply, on analysis, with the following conditions. Its carbon phosphorus, sulphur, must not be present in preater proportions phan .00 per cent. each, and the e manganenes must not exceed 6 per per
cent. One plate in every 100 springs will be subject to complete analysi by a metalluryist, selected by the company's engineer.
Should the analysis shiow the carbon, silicon, phosphoris, manganese in the steel to exceed the specified maximum, or should the carbon fall short of the specified maximum, the lot of springs
from which the plate was taken will be rejecter. All rejected springs will be marked in some easily-distinguishable manner, but
not so as to render them unsaleable to other parties. Each sprin not so as to render them unsaleable to other parties. Each spring
is to be etested before being put into itt place, by being brought
down straight several times, ous form without damage or permanent set. The sprin to be provided with screw adjustments of a description satisfactory to the company's engineer. The spring link brackets are to be
rivetted to the frames with cold turned rivets. A brake block is to efixed in front of each of the wheels, the whole to be worked
steam cylinder placed on the left-hand side of the engine. must be fitted with a regulating or reducing valve of approved
make, so that the brake pressure is easily regulated by the enginemake, so that the brake pressure is easily regulated by the engine
driver. All the working parts are to be case-hardened. The
docks are to be of cast iron, and must clip the flanges of the blocks are to be of cast iron, and must clip the flanges of the
wheels. The brake is to be arranged so that a screw worked by Auning Cab.-An
Auving Cab.-An awning is to be provided over the foot-plate,
the roof of which will be of wrought iron, No. 16 B.W. G. for the outer, and well-seasoned teak for the inner covering. The sides of
the cab are to be formed of sheet iron, with open panels above the handrail level. At the front of the cab, on each side, a plazed
window will be placed. A wrought iron weather screen, with two windows 13in. diameter, will be fixed at the top of the fire-box
shell.- Buffer Plank and Buffers : The buffer plank at the front end is to be of wrought iron 1 in. thick and 15 in. deep. It is to
be bolted to 4 2in. angle irons rivetted on each side of each frame plate. The draw hook is to be fitted with a draw spring, oonsisting
of india-rubber cylinders of approved strength. The buffer heads plungers, and boxes are to be entirely of wrought iron. They are
to be fitted with india-rubber cylinders. The whole to be of dimensions and strength to be approved by the company's engineer.
The india-rubber springs are to be guaranteed to stand without injury for three years and a-half from the date of the last delivery under this contract; all springs failing within that period are to be replaced by springs under some guarantee. The trailing footplate is to be of cast iron of sufficient weight to make an equal load
on the three axles. It is to be slotted out at the end to allow the on the three axles. It is to be slotted out at the end to allow the
drawbar and safety links to play. The drawbar is to be connected to the engine close up to the fire-box, and is on be at least 2 thin. weld. The safety links are to be of sectional area equal to the Lamps and Brackets. - Two wrought iron brackets are to be fixed on the platform at the front end of the engine. One large head
lamp, with a 9in. glass, two side lamps, with 6in. bulls-eye glasses, one red and one white, two gauge lamps, one lamp for to be furnished with each engine. Each engine is to be supplied with a teak box with padlock, and containing a complete set of
screw keys from $\frac{\text { sind }}{18}$ in. to 1 inin., one large and one small monkey screw keys from sid. to tin., one large and one small monke
wrench, both worked by arew, one heavy and one hand hammer,
one lead and one conper hammer and 12in. and 14in. -copisels, pin, and copper punches, and other use-
ul hand tools. Each engine is to be supplied with the hecessar fur hand tools. Each engine is to be suppried with the necessary scraper, long shoovel, 'wire tube brush, foot-plate, brush, and coal shovel, a 20 -ton traversing
oil bottle, and an oil feeder.
General: Means of Lubrication.-All working parts are to be furnished whe the most approved fashion, which are to be to the
satisfaction of the company's engineer. Oil cups are to be forged or cast on where possinhe, and in all parts made of wrought iron, unless otherwise specined. The oil cups are to be worked out of the part below its proper strength. When lubricators are forged on solid, the syphon pipes must be also solid. Whenever possible
cover must be put on the lubricators and oil cups. Each cylinder is to be provided with a self-acting lubricator to oil the piston when
running without steam, and a l lubricator on the displacement
principle for oing the principle for oiling the slide valves. A lubricator is to be provided
or each slide bar; also one above each piston gland and one above each valve spindle gland, with a small pipe from each leading to
the rods.- Bolts, Nuts, and Flanges: All bolts, heads, and nuts whether black or polished, are to be made to Whitworth's standard
gauges, and screwed to his standard pitch. Articles requiring a nuts. All to be made to one of the standard sizes o Painting and Stamping-- Beofore being cleaded the boiler and
fre-box must have two thick coats of red lead and boiled oil, the first coat to be put on when the boiler is hot. The wood cleading is also to have one coat of red lead before the iron plates are put
on. The cleading plates, frames, splashers, platforms, and wheels, and all other parts of the engine and tender not got up bright, are
after having been thoroughly filled up and rubbed-down to a goo surface, to have two coats of lead colour. Every part of the engine
is to is to be marked to its place, to have the number of the engine on
it, and the letters E.I.R. The makers name-plate must not be
larger than 6in. by tin. by the company's engineer. The woodwork is to be sand-papered and varnished twice, and the outer face of the upper roof is to
have three coats of white-lead paint. Each engine is to have fixed in a suitable position a plate with the letters E.I.R., and such other numbers and marks cast on it as the company's engineer may
direct. Generally the engines are to be completed in the best style of locomotive work, care being taken that all the parts of any one engine may be interchangeable with the corresponding parts of any
of the ether engines, and all usual parts and fittings are to be supplied, whether mentioned or not in this specification, without charge beyond the contract amount.
Erection and Testing-
Erection and Testing. - Each engine is to be erected complete,
ready for running, on the works of the maker; and it is to be be
tried in steam in the presence of the company's engineer or his
deputy, to whom notice must be given before the trial. The pres.
sure on the boiler during the test is to be kept at 1401b, per suare sure on the boiler during the test is to be kept at rovil. per equare
inht. Should any part of the engine or boiler require alteration, or any defect appear during the trial, the defect must be made
 to the company's engineer. The boiler is to to tested when finished,
before being mounted on the frames, to 2001 b . per square inch by before being mounted on the frames, to 200 lb , per square inch by
hydraulio pressure. The weights upon each wheel, when the engine is full and light, are to be carefully ascertained separately
by a tory. Any part of the work which is found to be in any way
defective, or not in acoordance with the tests or other require. ments of this specification, will be rejected. The contractor must provide, free of charge, all tools and labour required by the com
panys engineer for the inspection of the work. pany's enginer for the inspection of the work
Preparation for shipment and Packing. - Atter been tested, and the company's engineer, or his deputy, hase intimated his approval of them, they are to be taken to pieees and

 ysinderss with platiorm plates and buffer planks, may be shipped
in one piece, care bein otherwise protect them from damage in such a manner as shall be satifacatory to the company's engineer. Each pair of wheles, with
its axle and oranks, is to be shipect in one piee, the axle , with its axle and cranks, is to be shipped in one piece, the axle journal
 other parts. including the awning, are to be packed in strong cases
lined with tin, well soldered down, the case containing the lamps being further packed with straw in a crate all parts and cases
are to be distinctly marked with their weights and tive and slispinn marks as m we dire tive and shippng marks as may be directied. hhe costs of packing
and marking ns well as the costs of delivery the amount at which the contractor tenders to supply the engines. Drawings.- The contractor is to furnish, with the second engine, three complite sets of detair and general drawings of the engines,
exanatl exactly as made, on tracing cloth of double elepphant size. Each
set is to be to
 In the amount of the tender
The engines are to be constructed and delivered as follows :-
weeks from the date of acceptance of tender. The first four engines are to be delivered within - weeks, and the
remainder thenceforward at the rate of one engine every week remainer entinecerormand whole is completed. The whole contract
until shall be completed within - weeks from the date of acceept ance of tender. Tenders are to be delivered at the offices of the
companv, Nicholas-lane, London, E.C., on the the 9 ghh November,
 with the words "Tender for Loocomotives" on the envelope. The
general conditions are as usual in this company's specifications.

IHE IRON, COAL, AND GENERAL TRADES

 OTHER DISTRICTS.
From our Correspondent)

To-DAY upon 'Change in Birmingham, and yesterday in Wolverof the low prices which some iron merchants are accepting Thes merchants have bought upon terms which permit them to sell at prices only a little in advance of those which makers quoted before houses at the quarterly meetings. It was not of the marked ba this afternoon or yesterday, to get the full advance for any upon the basis of $£ 8$ per ton as the crucial bar rat
The business done related largely to hoops and small sections of angles and bars, together with plates for bridge and girder and tank making. There were hoop firms who reported some excellent new business on export account, one firm having booked in the past five the price named to us was equal to $£ 7$ per ton at the works. A some heavy work on the anvil.
Angles of the usual bridge-building sections were easy to buy a $£ 710 \mathrm{~s}$. The prices which makers of girder and bridge plates wer cult to secure, notwithstanding that there is more demand for thi description of iron this wan last. High-class boiler plates were not to be had at under $£ 910$ s,
The sheet makers reported themselves all full of work for some the alack in fillng orders for the galvansers and shipment in nor yesterday did they do much new business. Nor were galvanised The week's mail from the Cape ha Australia, moreover, still testify to the weakening effects of accu have have receded 12 s . 6 d . per ton on the fortnight. Still the galva
nisers reported a better business on home account, mainly for the agricultural shires. The stamping sheet orders are keeping the mills of the chief firms fully occupied, mainly on Australian continental, and United States account. There is plenty of com petition, but makers prices are fully upheld. Sheets of Siemens prices quite $£ 3$ below those of charcoal iron. At such a figure stee are being rolled by the Hope Company of Tipton from hooms and ingots supplied by Messrs. Tangye, Limited, of Birming by 3 ft ., and find that the steel will bear rolling to the thinnes
even of paper. Messrs. H. P. Parkes and Ross, of Tipton, have recently
despatched cables of 2 in. and 3 in. iron, and are now engaged upon

The makers of tanks for storing water and oil are mostly busy. well supplied with roofing orders, mostly upon home account, and well supplied with rooing orders, mostly upon home account, and
during the week some rather good orders have come to hand fo ordinary iron roofing for India, one order relating to somewhat

Makers of iron wire rods were this afternoon unable to report fencing wire is worth more by some 7 s . 6 d . per ton than it was a fortnight ago. Best puddled wire rods were quoted to-day $£ 815 \mathrm{~s}$,
per ton, and second best $£ 77 \mathrm{~s}$. 6 d ., delivered equal to Birmingham Tin-plate-making is suffering by reason of the competition from
South Wales. Owing to the unprofitable prices which rule the market, the Osier Bed Iron Company, Wolverhampton, proposes to close its tin-plate department altogether, and has given
month's notice to terminate its engagements with the men 11 this branch to the number of eighty. The firm will keep on the Pig iron is quiet, yet prices are upheld. Some makers of
Staffordshire all-mine hot-blast sorts are asking as high a figure as $£ 315 \mathrm{~s}$. per ton ; cold-blast keeps firm at $£ 410 \mathrm{~s}$. A new brand upon the market this week is the "Fenton," made by the
North Staffordshire Coal and Iron Company, which is quoted at Ins. for forge sorts.
In the coal trade business is fairly active. The Cannock Chase owners, with the view of giving their men another advance of about
3d. "per day " or stint, were asking to-day a further rise of 1 s , per ton. The new quotations were:-"Deep" sorts delivered on
truck, best, $11 \mathrm{~s} . ;$ seconds, 10 s .; cobbles, 9 s . per ton. "Shellow:"
best, 10 s .; seconds, 9 s ; ; cobbles, 8 s , per ton; but realised prices were
 of 6 d ., and upon rough slack of 1 s . laid their claim for a 10 per cent. advance before the South
Staffordshire Mill and Forge Wages Board, meeting in Wolver-
hampton. They urged that trade had improved, that selling prices hampton. They urged that trade had improved, that selling prices
of iron had been declared up, and that labour was searce. They strengthened theiric claim by btatand that labour was scarce. They strengthened their claim by stating that the North of England men
were already receiving $2 \pm$ per cent. . oroe than the Stafforddhire
men, and were now asking a further advance of 72 per cent. But
the and the masters refused to advanee upon the present rate of 8s. per
ton for puddling, short weight, arguing that with marked bars ton for puddling, short weiehht, arguing that with marked bars
nominally at \&8 that was a fair wage. It was ultimately resolved
to call in the new president, Alderman Avery, of Birmingham, to ocaitrate.
The operatives engaged in the Worcestershire and Staffordshire
chain trade have resolved to come out on strike unless their masters concede them an increase of 10 per cent. in wages. During
the past eighteen months or so these operatives have, the masters the past eighteen months or so these operatives have, the masters
assert, recevive advances amounting to almost 80 per cent. Owing
o the activity in the shipbuilding yards, there is at date a large o the activity in th.
lemand for chains.
The executive of the South Staffordshire and Worcestershire
Operative Nailmakers' Association resolved on Monday to pive Operative Nailmakers' Association resolved on Monday to give
the employers fourteen days notice for an advance in wages to the extent of 10 per cent. on wrought nails, and 3 d . per 1000 on horse
nails. This decision affects some 30,000 workpeople. The Darlaston nut and bolt makers have granted to the opera-
tives an average advance of 10 per cent. upon all swaged bolts, tives an average advance of 10 per cent. upon all swaged bolts,
cap, cheese, countersunk, and American, from fin, to tin. bolts,
both inclusive, and a similar advance on tin. to sin. swagred square both inclusive, and a similar advance on fin. to sin. swagged square teme effect uron all work made atter October 26th, 1882, and to
remain in force until June 1st, 1883, subject to a calendar month's notice on either side
Several of the din
Several of the difificulties that surround the Electric Lighting Act
vere cleared up on Tuesday. A numerons deputation trion were cleared up on Tuesday. A numerous deputation from the
various local boards and other authorities in the neighbourhood of
 reasonable time the granting of provisional orders authorising companies or individuals to supply the electric light wishinn
the districts represented by the deputation. The President declared it impossible to grant the request. The deputation not deprive them of the right of af searing before the Beard
of Trade and obtaining provisions to protect themselves just as they could do in the case of tramway orders. Alves juthough as
the Board had power to issue more than one provisional order for the same area, it was not at all likely, said the right hon. gentleman, that they would do so. In the event of a company
having secured a provisional order for a system which soon became obsolete in consequence of further discoveries in the science, the ts case would be dealt with upon its merits. But if it was found
that the existing undertakers had faithfully discharged their work and spent large sums of money, their interests could certainly not be overlooked by the Board of Trade. The President warmly panies for local board districts should allow the company to light only restricted areas. If this were done the local authority could
more readily become purchasers of the undertaking than as though more readily become purchasers of the undertaking
the license were extended over a considerable area.

NOTES FROM LANCASHIRE,

(From our oun Correspondent.)

Manchester:-In the iron market here there is a continued absence of animation. Makers both of pig and manufactured iron
are well sold, consumers are mostly well covered for the remainder
of the year, and there is a disposition, at least for the present, to fork off contracts before entering into further transactions, except for such small odd lots as buyers are compelled to place out. The on to offer, are not pressing sellers; but where inquiries are made come up to the full present prices. Just now it seems to be a ay take.
The Manchester iron market on Tuesday was well attended, but the actual business stirring was very limited. In Lancashire pig $2 \frac{1}{2}$ per cent. for forge and foundry qualities delivered equal to Manchester, and at these figures, which are slightly below the full ome cases are a trifle easier to buy. Lincolnshire forge iron could now be got at about 49 s . 6 d . to 50 s , and foundry qualities at
50 s .6 d . to 51 s ., less $2 \frac{1}{2}$, delivered here. Derbyshire brands are being offered at 6 d . to 1 s . per ton above these figures, although one or two makers who are fully sold still quote 53s. to 54s., less $2 \frac{1}{2}$. The Lancashire forges continue busily employed on orders in
hand, and in some cases buyers find it difficult to get full deliveries on account of their contracts. In some quarters, however, I hear eports of a slackening offi in the quantity of new orders coming in, export, the shipping trade is not quite so brisk as it was. One or into the Manchester district, but these figures are little more than nominal, $£ 615 \mathrm{~s}$. representing about the average price for good
qualities, but inferior brands are to be bought as low as $£ 610 \mathrm{~s}$. in prices, ranging from 3d. to 6d. per ton on engine classes of fuel to 1s. per ton on round coals. So far the demand has been good, and colliery proprietors, largely as the result of the restriction of the ff. The actual pressure of demand, however, shows indications of decreasing, and very general doubts are expressed as to whether
the advanced prices can be long maintained. If the men abandon the restriction of the get and the pits return to their full abandinary output, there is little doubt that supplies will again very soon over-
take the demand. The present quotations at the pit mouth are about as under :-Best coal, 11s.; seconds, 8s, 6d. to 9 s .; common burgy, 4 s . 9 d . to 5 s . $3 \mathrm{~d} . ;$ and good slack, 3 s . 9 d . to 4 s . 3 d . per ton. Accompanying the advance in prices there has been an advance
in wages equal to about 10 per cent., which is regulated in different districts according to the varying methods of payment. In the the advance is 2 d . per ton, and 2d. per yard on straight work, the underground daymen receiving an advance of 1 s . per week, but no shire districts, where the men are paid so much per ton, the advance
will vary in different seams from $2 \frac{1}{2} \mathrm{~d}$. to 4 d . per ton, and the will vary in different seams from $2 \frac{1}{2} d$. to 4 d . per ton, and the
average for ordinary work may be given at about 3d. per ton. This is the second advance the men have received within a period of about twelve months, the last advance being given towards the
close of 1881, and in represents a total recovery of from 20 to
22 per cent. from the lowest wages ruling during the period of 22 per cent. from the lowest wages ruling during the period of the demand remaining steady and the business doing being very strong, owing to the large requirements of steel makers in this and other districts. There is also a steady trade in forge qualities of
metal. The price of Bessemer iron may be quoted for mixed
parcels at 57 s . 6 d ., and large consignments for three monthss
delivery are reported at this figure. The output of both iron and
steel is very large, and it is not probable that it will be necessary to
reduce it in face of the fact that during the last few days the The steamer Normandy for a French firm, 6000 tons burthen, the largest mercantile steamer in the French shipping trade, was launched at Barrow on Saturday. She was alongside the City of
Rome in the docks at Barrow. The latter steamer is about to for saloons, and give her greater speed at the same time. I wil The rumour that the Midland Railway Company is likely to purchase the Furness railways is confirmed. The docks at Barrow
will doubtless receive a great impetus so far as inland trade is oncerned if a transfer takes place.

THE SHEFFIELD DISTRICT.

(From our own Correspondent.)

AlL these concessions-in Derbyshire and Lancashire-em-
bolden the South Yorkshire delegates to stand out for 10 per cent. at least, and on this basis I anticipate an advance will have
to be given if a strike is to be averted." The result has justified these words, which are an extract from last week's letter. At the adjourned conference of miners' delegates, held at Rotherham las
Monday, the advance of 15 per cent. was advocated as right and just; but a resolution was passed agreeing to accept 10 per cent., and to reserve the balance- 5 per cent.-till some convenient
season. Next day the South Yorkshire coalowners met at Sheffield. At the previous meeting, it will be remembered, they offered a with the sliding scale. This was altogether rejected by the men On Tuesday a resolution was carried declaring that the coalowner still considered that the present price of coal was not a sufficient ground for the advance asked for by the workmen; but with the an advance of 10 per cent. to the underground workmen from November 2nd, "with the hope that it may be found that such an increase in the p
Thus the crisis in the coal trade is past, and a strike is averted. The notices would have expired this week, and a compromise has
just been effected in the nick of time. Elaborate arrangements had been made for a strike. The officials of the Yorkshire Miners ${ }^{\prime}$ Association looked forward to that calamity with a light heart, so
far as support to the men was concerned. They said that 164,000 miners were actually getting the advance, and had promised assistance. The districts from which levies would have been
drawn, and the number of miners who would have contributed, were:- North and East Lancashire, 23,394; West Lancashire, shire, 2898; Nottinghamshire, 9896 ; North Staffordshire, 12,338
South Staffordshire, 14,351. Worcester South. Staffordshire, 14,351; Worcestershire, 2375 ; Scotland
(East), 26,926 ; Scotland (West), 12,825. An arrangement has
not yet been made at the Barrow Collieries, the men brought out their tools on Tuesday. Hopes are entertained that the masters will give the 10 per cent., and it is expected that a similar arrangement will be made at Thorncliffe and other ford Collieries, near Barnsley ; Ollerton Bywater, in the West Riding, have followed suit, and the 10 per cent. is certain to been to raise the price of coal 1s. to 1s. 3d. per ton, which makes
an advance, including the 10d. obtained on the 1st of October, of 1 s .10 d . to 2 s . 1 d . per to
A deputation from the Town Council of Sheffield, headed by the Mayor, Mr. Michael Hunter, had an interview with the President
of the Board of Trade, at Whitehall, on Tuesday. The deputation was accompanied by Mr. Conrad Cooke, consulting engineer. The object of the interview-to which representatives of the press were
not admitted - was to consult the President of the Board of Trade as to the position in which corporations like Sheffield were placed
by the Electric Lighting Act, and by the rules of the Board for the application for power to use the electric light. The Sheffiel up the streets or to create a monopoly that would pass into the hands of any person or company, but the local authorities had a difficulty in preparing a scheme to submit to the Board of Irade
for themselves obtaining a provisional order. A chief object of for themselves obtaining a provisional order. A chief object of
the deputation was to see whether they could not have the condiwould so relaxed as to give them more time to accomplish out no hope of postponing or materially modifying the operation of
an Act so recently passed as that on the subject of electric lighting. an Act so recently passed as that on the subject of electric lighting.
A deputation representing Birmingham waited upon Mr. Ohamber A deputation rear a similar purpose
which closed last Thursday, Sheffield suitable for their purposes very scarce, owing, no doubt, to quantities being still locked up in Egypt in consequence of the late
war. There were only sixty-six tons on offer, being about half of the weight usually put up, and making the smallest sale on record, highest prices ever realised were paid at the present sale, being no less than $£ 100$ a ton advance on the prices at the previous sale.
Sheffield ivory has advanced 120 per cent in four years, and the stocks in the country were never known to be so low as they are
now. Large African teeth advanced $£ 4$, small teeth, £3; East Indian, £4; and Egyptian, £7. Hard Egyptian ivory fetched $£ 1200$; and several parcels of Angola realised no less than $£ 1360$ a ton. In consequence of these repeated advances, the ivory cutters
are raising quotations for handles for the fourth time this year.

THE NORTH OF ENGLAND,

(From our oun Corresomdent.)

Sinoe last week scarcely anything fresh has transpired in con-
nection with the Cleveland iron trade. At the market held at Middlesbrough on Tuesday both makers and merchants adhered steadfastly to the prices they have recently been quoting, in spite
of the reported fluctuations of the Glasgow market. Very little for delivery during this year, and they are not inclined to accept Merchants find difficulty in getting their present needs supplied, and cannot therefore accept many additional orders. Producers
in the combination will not take less than 45 s. per ton for No. 3 g.m.b., whilst mers ans ans 44s. 6d. per ton Buyers are offering 44s. 3d. for the spring of next year, but
cannot find anyone willing to book at that figure. The quantity of Cleveland iron in Messrs. Connals' store on Monday night was
102,848 tons, being a decrease of 1048 tons since the previous Monday.
Owing to the stormy weather, shipments from the Tees fell of during the last few days of October. The total, however, amounte
to 99,645 tons In September the quantity exported was 100,838 tons, and in August, 95,861 tons. The total for the three month been done before in three consecutive months,
In the manufactured iron trade prices are firm, but very fev
orders are being placed. Inquiries are numerous but orders are being placed. Inquiries are numerous, but consumers do not at present seem inclined to pay the higher rates quoted
There is little likelihood of these being reduced, considering that the cost of production has been increased. Ship plates ar
$£ 6112 \mathrm{s}$.6 d . to $£ 7$ per ton; angles, $£ 6$; and common bars, $£ 65 \mathrm{~s}$.
all less 2 d per cent. discount, and free on trucks at makers' works. all less $2 \frac{1}{2}$ per cent. discount, and free on trucks at makers' works
Puddled bars are $£ 42 \mathrm{~s} .6 \mathrm{~d}$. per ton net. Puddled bars are £4 2s. 6d. per ton net.
No change has taken place in the steel rail trade. Prices are
very low, and libtle business is being done.

Worksers have been received by Mr. C. Wood, of the Tees IronIt is reported that a new ship-yard will be started at Walker-on Tyne in a short time. The gentlemen who are taking the matte The are already connected with the shipbuilding trade on the Tyne. o 1200 men will be employed in the yard.
orks was held on Saturday last, when addresses we Consett Iron to the advantage and benefits to be derived from unionism and submitting disputes to arbitration. Only about one-half of the men at these works are connected with the union. The non-union men were strongly urged to join and give their support to the union
and Board. The following resolution was unanimously carried:"That it having been proved that the principles of unionism are hereby pledge ourselves to rally round and support the Board o Arbitration." The appointment of Sir J. W. Pease as arbitrato
The President of the
The President of the Board of Arbitration received a reply on s arbitrator in the present wages dispute. The hon, baronet say that if both parties think his services will be of use in the settle ment of the questions arising in so large and important an industry,
he feels that he ought not to decline, provided that the time for taking the evidence can be settled so as to meet mutual con
early date.
The official returns of the metal shipments from the Tees for October show that 43,219 tons of pig iron and 12,097 tons of manu-
factured iron and steel were sent to English ports. Scotland alone took 27,140 tons of pig iron. To foreign ports the quantity of pig 13,530 tons. The bulk of the pig iron was shipped as follows :Germany, 23,478 tons; Holland, 9827 tons; France, 9297 tons Norway and Sweden, 2774 tons; and Italy, 1200 tons.

NOTES FROM SCOTLAND.

(From our own Correspondent.)
THE iron market has been dull almost during the entire week which have been slightly on the decline. The amount of the ship ments compares favourably with that last year, but falls short o market. Some merchants report that they have purchased pig iron on somewhat easier terms; but the demand still continue
good both for home consumption and export. The withdrawals o amount to 2000 tons. There are some changes in the number furnaces in blast, but they are not so great as to very materially
alter the amount of the production. The week's shipments alter the amount of the production. The week's shipments
amounted to 12,116 tons, as against 13,058 in the preceding week, and 11,981 tons in the corresponding week of last year. The for some weeks, but these imports are still very much behind what they were twelve months ago.
Business was done in the warrant market on Friday forenoon a
50 s . 11 d . to 50 s . 10 d . and 51 s . cash, and 51 s . $1 \frac{1}{2} \mathrm{~d}$. to 51 s . $2 \frac{1}{2} \mathrm{~d}$. on month ; the afternoon quotations being 50 s . $1 \frac{1}{2}$. to 50 s . 91 d . cash actions were effected at 51 s . 1d. to 50 s . 11d . one month, and 50 s . $10 \frac{1}{2} \mathrm{~d}$. to 50 s . 8 d . cash. The same afternoon business was
done at 50 s . 8 d . to $50 \mathrm{~s} .5 \frac{1}{2}$ d. cash, and 50 s . $10 \frac{1}{2} \mathrm{~d}$. to 50 s . $8 \frac{1}{2} \mathrm{~d}$. one month. Tuesday's market was flat, with business in the forenoon
at 50 s . $5 \frac{1}{2} \mathrm{~d}$. to 50 s . $3 \frac{1}{2} \mathrm{~d}$. and again 50 s . $5 \frac{1}{2} \mathrm{~d}$. cash, and 50 s . 8 d . to $50 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$. and again 50 s . 8 d . one month, the afternoon prices being flat on Wednesday, with business down to 50 s . 2 d . cash, while to-day-Thursday-there was a further decline to 49 s . $11 \frac{1}{2} d$, Thich are as follows:-Gartsherrie, quotations of makers' iron, Calder, 64 s and 54 s. ; Carnbroe, 58 s . 6 d . and 52 s . $6 \mathrm{~d} . ;$ Clyde,
55 s . and 5 s . 6 d ; Monkland, 52 s . 3 d , and 50 s .3 d ; Quarter, 52 s . 66s. and 56 s . 6d. . Carron, at Grangemouth, 53 s . and 52 s . (specially 66s. and $56 \mathrm{~s} .6 \mathrm{~d} . ;$ Carron, at Grangemouth, 53s. and 52s. (specially
selected, 57 s .6 d .); Kinneil, at Bo'ness, 51s. and 49s. 6d. Glengar
Dalmellington, 53 s . 6 d , and 51 s .6 d .
The malleable trade continues active, and so does almost every There has been some difficulty in the way of floating the aledonian Steel and Iron Company, the object of which was to and. For reasons best known to themselves, the directors hav agreed not to allot the shares. But although the formation of the company is not to be proceeded with, the basic system will, it is
believed, be introduced by the Glasgow Iron Company, which holds a icence for the purpose, and it is expected that its ironworks a some talk of another effort being made to form a limited company of the Caledonian Steel and Iron te that had in hand the formation iron circles in Scotland there does not appear to be much factured on the Sehalf of the "basic" process. The steel manu tion, and there does not seem to be any objection to it even on the score of economy
There is much activity in the coal trade. Both on the east and
west coast the shipping inquiry has been very brisk, and at several west coast the shipping inquiry has been very brisk, and at several
of the ports the facilities for transit and shipment are not equal to argoes. Loud complain for the inadequate service of trucks available for carrying the coals from the pits to the ships' sides The clearances at the different s. per ton at the pits, and f.o.b. they are again somewhat higher.
Free on board at Glasgow, per ton, they are as follows:-Main coal, 7s. 3d. to 7 s .9 d ; ell, 8 s . to 9 s .; splint, 7 s . 9 d . to 8 s .9 d .; and The coalmasters of Lanarkshire are prepared to concede an
Tdvance of 6 d . per day to the miners in a week hence, provided advance of 6 d . per day to the miners in a week hence, provided
that in the interval they succeed in establishing an advance of 1 s .
per ton in the price of coals. will be able to secure such an advance all over, but in any case it is not believed that the wages difference in the West will lead to a
strike. The fact is that at a number of the collieries the miner are gradually having their wages advanced by 1 d . and 2 d . at a
time; and if trade continues active they are likely soon to be in possession of all they have asked, as the athe colliers in Fife and Clackmannan are dissatisfied with the offer of 10 per cent. increase, arguing that it will not bring them up to the wages paid in June but at the same time they are prepared to take what they can get, in the meantime restricting their labour until they obtain wha
they desire. It is doubtful, however, whether such an arrangemen will be satisfactory to the employers.
During the past month seventeen vessels, with an aggregate
onnage of 25,220 , were launched from the Clyde Shipbuilding yards, as compared with fifteen vessels, of 15,100 tons, in October 1881. The ten months' launches are 225 vessels, with a total of
294,017 tons, as against 168 vessels of 257,708 tons in the corre-
sponding period of last year.

WALES \& ADJOINING COUNTIES (From our ovo Correspondent.) The prospectus of the Rhondda and Swansea
Bay Railway is now before the public : capital, Bay Railway is now before the public; capital,
E450,000; borrowing powers, $£ 150,000$; shares, £10. This promises to be quickly floated. The connection between so rich a colliery district as
the Rhondda with a great industrial quarter like Swansea must be a paying one. Swansea in radius of four ines has 100 works, in which
thirty-eight varied industries are carried on, and 20,000 persons employed.
I note in a return lately made that last year 21,000 tons of copper, valued at over a million and a half, were smetted at swansea ; the gold, silver and yellow metal produced in the town realised
$£ 237,000$. Add to this the results of other industries and its important anthracite coal field, and we have a tolerably good safeguard for a payin railway. The Taff Vale, too, with its great
resource and its new lines, need not fear. I fully resource and its new ines, need not fear. 1 fully expeot to see re opening fresh ground shortiy in a sion on foot that the line now forming from
Rhondda to Newport will become Taff Vale
property.
The coal and iron industries are in excellent
and condition, and in every direction there is the
fullest activity. The shipping has been somewhat retarded by storms of late, and a slight falling off in coal exports may be noticed. Prices for best coals are firm at from 10 s. 6d. to 12 s.,
f.o.b.; some classes of coal at 9 s. 6 d., f.o.b. The tendency is deoidedly upwards, good and long particularly brisk, and house-coal collieries are
 of a few weeks, that one or two important sinkings will take place in the Monmouthshire house-coal district. One of these would be by
the Powell Duffryn, of which Sir George Elliot is now the principal.
There is a good deal of life and hopefulness in most of the Welsh industries, saving that of tinplate, which maintains a sluggish condition; and though an occasional spurt
lowed speedily by
Iron ore, principally from Spain, maintains fair trade, though of late the cargoes arriving have been meagre.
A good deal of interest has been excited at Cardiff by the inspection of the double-bottomed coal for Algoa Bay, She is a Clyde vessel with double bottom, constructed on the longitudina girder principle, and made to contain 300 tons of
water ballast, Cardiff owners are beginning to water ballast. Cardift owners are beginning to regard this mode of ballasting with favour.
is a fine specimen of marine architecture.
${ }^{1 s}$ Several minor disputes
late in the coal trade, but instead of tending to the protracted length of the North Walian dis putes, all have been amicably settled. On dispute with the Aberdare Rhondda men was reforred the arbitration of Mr. Rhys, J.P. tive to arrangements with medical officers, ha been arranged after a brief strike, and work was resumed this week. I have known times when such matters would not so easily be settled. The colliery should as the miners' delerate pointed out, be decided by the majority of the colliers and not by a minority, or, in other words, the owner and officials of a colliery. There is likelihood of the demand of the North Wales I see that 100 of the Wrexham colliers, North Wales, have been sent to Assam to develope the coal of that country.
The Neath Harbour Commissioners are issuing fresh debentures at 5 per cent. New and im
portant works are in contemplation The shipment of iron during the been satisfactory, and important carge week has for Norway, India, Africa, Egypt, and New York. Most of the railway enterprises are at a stand on account of the weather. The Newport and
Rhondda is now a certainty for next year, the principal bridge, that over the Taff, being in very backward state. This property should have been the first work not the last. During the summer months bridgework over the impetuous Welsh streams is simple e.1ough, but in aut
and winter there is no work more difficult.

THE PATENT JOURNAL.

$*$ It has come to our notice that some applicants of the
Patent-office Sales Department, for Patent Specifcations Patent-afice Sales Department, for Patent Specitications
have caused much unnecessary trouble and ancow both to themselves and to the Patent-pitice officials, by
giving the number of the page of THE ENGINEER

 refer to the pages, in place of turning to those pages and
inding the numbers of the Specitcation

Applications for Letters Patent. *. When patents have been "communicated", the
name and address of the communicating party are
printed in italice 552. 24th October, 1882.
 Coke, \&o, J. Hislop, Glasgow.
 5057. Machines for Serving Ropr with Yare, J. H.
Nute, New
Glasgow, Nova

 067. Treativa Certain Waste Materials, E. Davies 5068. Lhavid Meprers, J. C. Mewburn.-(A. S. St. Alibn, Paris.)
 Brixton. Ungurisch, Ostra, Austria.) Lake.-(B. Droyfuss, Nenc

Walters, Bristol.
575. Masuracturing Cokrs, P. Jensen.-(Messrs Beatus, Petersen, and Company, Copenhagen.).
5076. MANUPACTURE of Coke, J. Jameson, Neweastle-
upon-Tyne.
sorp. Pkviar
Tod

oot9. Motive.powEr APPARATUS, W. H. Avis, Pole
gate, Sussex
gatat, Susex.
5080 Wurciss,
W. Clark. -(J. W. Bell, Conovingo,

London.) 25 th October, 1882.
5083. Glass and Metal Plates, de., A. A. Hely

2088. Apparatus for Moumple

 T. P. EPancs, East Greanwich.
Sog. ELECTRIC GREERATORS, E. Jones, Battersea. 26th October, 1882.
oos. Gas Apraratus for Automatically giving an ALARMA at any required Hour, H. and 1. A. Greono,
London
som. Using Ordinary Argand Burners, H. and T. A. Greene, London.

 Sog. SEocomary Battrries, R. Hammond and L.

 London.
10. Rorary
Engerves and Pumps, T. S. Greenaway
 hiat. Prpparation of Matertals for Use in Electrio
INsuluation, M. Bauer, L. Brouard, and J. Ancel,
 27th October, 1882.
5107. Indroating Tearprature in Buildings, W. T.
Goolden and C. F. Casella, Loondon. Goolden and C. F. Casella, London.
si0s. GALVANIC BATTERIES, P. P. de F. d'Humy Clapham Rise.
S109. Brushes for Curative Purposes, E. Parr and J.

 Parris.
113. BRAKE for CARRIAGES, E. Edwards.-(M. Dirat,

 5121. Machinery for Winding Linen, \&c., J. H. Pickles, Burnley.
5122. ELETrRIC Curbent Genkrators, S. P. Thomp-

 5129. Iseudating Conductors of Eibctricity, c. w

 5133. Traveling Trunk, D. Vinall, Brighton.
5134. ADvimive

28th october, 1882.

 Vienna.) 30 th october, 1882.
5143. Takiva up or ADvosting the Brasssg of Locono
TIVE ENaINE CoNNECTING RoDs, W. L. Hunt, West

5150. Drawisg Corks from Bottules, A. Olsson, Sand
viken, Sweden.

Huddersfield.
515s. Producise, ©c., Electrioctry, J. D. F. Andrews,

F. G. Hornig Dresden.)

Fiechter.- (J. Weber and Co., Uster, Sviteerland.),
5161. RoLLING CYLNDERS of IRos, do., B. Walke
5162. Removing Smoke, de., from Tunsels, J. i.

 Camberwell Rich Recrivers, H. Alabaster, South

 Inventions Protected for Six Months on
Deposit of Complete Specifications.

 cation from, High Holborn, London,- A communi
Octorer 1882 F . D. Cumnver, Detroit, U.S. -23 C .

Patents on which the Stamp Duty of $£ 50$ 414. GAs-BURNERS, T. Heron, Manchester.- 29 th
October, 1879 .

 T44. Covering Selvags of Fivished Fabrics,
Worrall, Manchester. -21 sis November, 1879.

 479. Separating Solid Matter from Sewage, Gi
 4370. Draw Gear of Rallivar Rolling Stock, J.
Wallace, Wigan.- -27 tho octooer, 1879 .

 4624. SEomernt Wheels, J. Barbour, Belfast.-13th
 4397. MMARISG PAPER, W. F. Nast, London. $-29 t h$ ${ }^{4436 .}$ PRiduciva Alumiviva Bronze, J. Webster,

 3715. Machines for Printrivg Measurivg Tapes, w.
Chesterman, Sheffield -26th
October, 1875 .

 - 29 Ath october, 1875 .

Notices of Intention to Proceed with
 London.-211st June, 18822 for Same, W. Lake, London.
2948.

 328s. BRaADixg MActinss, W. R. Lake London,-A

 L15e. APPARAADU fors Suppiving Ink, G. R. Hughes and

 42en Workiva
September, 1882 .

 4438. BLind Roill Furvirure, J. W. Andrews, Whittle-
 Skrivanow, Paris.-19th September, 1882 .
4664 DRIVIING Screw
Puths, T. Wrightson and W.
 4653. Cheocinge Arrival of Enployes, W. Llewellin,

 hiebrich..-20th october, 1882.
3009. Domestro Firepracices, W. S. Morton, Edin-

 3027. .rtrivig for Horsseriogs, J. Vernon, Newton
Stewart, N.B. $-27 t h$ June 1882 .
 3037. Machive for Syrivarig Leaves, J. A. Drake
and R. Muirhead, Maidstone. -27 thl June, 1882. 3045. Sitioing Matrital AppaRatus, J. B. Whytehead 3060 SECuRING Burrovs, , sco., to Boors, E. C. Barron,
 3080. STop VALves, J. A. and J. Hopkinson, Hudders-

 3120. GAIVANIC BATTERIES, J. H. Davies, Ipswich.- $-1 s t$ 312. Coantivg Meral Surpangs with Allovs, A. Clark,
London.-Com. from C. Haegele. 1 st July, is82.

 A com. from A. Knandt. - 12 tht july, 1882 ,
 Hyde. -14th July, 1882. . Smallwood and E. W.

 3620. Horssshor, F. H. F. Engel, Germany- -A com-
munication from o. Iampe.- -318 J July, 1882.

 4256. ORNAMENTINGGGLASS, \&o., W. H. R. Toye, Lon-
don. - Tth September, 1882 .

Patents Sealed.
 1740. STovi ${ }^{27 t h}$ October, 1882.)

1740. Srove, A. Browne, Southampton-buildings,
London. $-12 t h$ Apri, 1882.

 Grimsby-1.t May, 1882.

 ${ }^{2 \times 24}$ mingham.
 mingham. 1 Bht May, 1882.1.

 Acerington.-14th June, 1882.
1741. MAKING Boots, P. Lehany, London.-21st June, 1882. Weighing Machines, H. E. Newton, London.-
1742. Whe,
26th June, 1882 . 3272. Shooting Seats, H. F. Beaumont, Hudders
field. -10 th $J u l y, 1882$. ${ }^{3301 .}$ Preserving Ships, \&c., from Corrosion, T. S Webb, London.-12th July, 1882.
1743. Wool-CARDING ENGINES, E. G. Brewer, London.
22nd July, 1882. 3509. Drawing Roulers, A. J. Boult, London.-24th

 ${ }^{4} 133.13$.
 (List of Letters Patent which passed the Great Seal on the
31st October, 1882.) 2051. Washing Wool, \&c., T. J. Mullings, London,
and W. Whiteley, Lockwood.-1 st May, 1882 . 2056. Controlling Distribution of SEWage, J. H Shipway, Birmingham.-1st May, 1882.
1744. SToppers for Bottles, J. Bussey, London.-2nd May, 1882 .
1745. PREPARING CoFFEE, G. W. von Nawrocki, Ger-
many.-2nd May, 1882. 2069. Constcting Healds in Looms, J. Aspinall Ravensthorpe.-2nd May, 1882.
1746. PREPARING WooL, H. H. Lake, London.-2nd May, 1882. . Propellers, A. J. Davison, Sunderland.
1747. SoEEW 2086. Deoboriser, \&c., O. Bowen and A. Miller, Lon don. - 3rd May, 188 .
1748. Producine Arificial Marble, R. Guelton,
Brighton.-4th May, Brighton.-4th May, 1882 .
1749. IroNs, G. W. von Nacki, Germany.-4th May. Coating Metal Plates, H. F. Taylor, Neath,
and G. Leyshon, Tividale. 4 th May, 1882. 2107. Electric Safety apparatus for Theatres, \&c.
P. Jensen, P. Jensen, London.-4th May, 1882 .
1750. CoLLAPPIBEE BoxEs, H. J. Haddan, London.-
5th May, 1882. 2127. MECHANICAL Playing of Pianos, \&e., R. H
Bishop and W. Down, London. - 5th May, 1882 . Hat, E. C. C. Stanford, Glasgow,-6th May, 1888 .
1751. SAFETY PiNs, G. F. Redfern, London.-6th May, 166. Utinising Heat, \&c., T. Charlton and J. Wright,
London. $-9 t h$ Mav, 1882. London.-9th May, 1882. STFAMHIP SCEWs,
G.ermany.- 10 th May, 1882 . von Nawrocki, 220.. Curing Gapes in Pheasants, J. H. Clark
Tardebigge.-10th May, 261. Fercules for Umbrelias, W. H. Beck, London 2343. Sewing Heavy Fabrics, W. R. Lake, London.
$-18 t h$ May, 1882 . 2433. Reciprocating Shettle Sewing Machines, A
Greenwood, Leeds.-23rd May, 1882 . 2536. SECURING Scales to Blades, H. H. and G. H.
Taylor, Sheffield. $-27 t h$ May, 1882. Taylor, Sheffield. - 27th May, 1882 .
1752. SEWING MACHINEY, A. Greenwood and J. W.
Ramsden, Leeds. $-3 r d$ June, 1882. Ramsden, Leeds.-3rd June, 1882.
1753. Portable SoLEs for Boors, G. H. Ellis, London.
-7 th. June, 1882 . 2668. Portable Chaff Engines, R. Maynard, Whittles 2919. Form of Cable Traction Tramways, J. Wright, 2979. BALL, ©c., Jorsts, H. J. Haddan, London.3344. SELf-Acting Window Blind, W. S. Laycock,
Sheffiel. 1 tht July, 1182.
1754. GAs Motor Engines, C. D. Abel, London.-19th | 3762. UTiIIsing Force of Liquids, E. E. H. Rousseau |
| :--- |
| Paris. | 3835. ALUM, \&c., P. and F. M. Spence, Manchester.-

11th August, 1882 .
 List of Specifications published during the
week ending October 28th, 1882 .

 *** Specifications will be forwarded by post from the
Patent-office on receipt of the amount of price and postage. Sums exceeding 1s. must be remitted by
Post-office order, made payable at the Pcst-oftice, , 5,
High Holborn, to Mr. H. Reader Lack her Majesty, ost-oftice order, made payable at the Pcst-otfice,
High Holborn, to Mr. H. Reader Lack, her Majesty's
Patent-office, Southampton-buildings, Chancery-lane,

ABSTRAOTS OF SPEOIFIOATIONS.

 Prepared by ourselves expressly for The Enginker atoftice of Her Majesty's Commissioners of Patents.
920. Making and Utilising the Gases arising from
the Distillation of Coal, R. and J. Dempster.THE DIstillation of CoAL, R.and J. Dempster.-
25th February, 1882.-(Provisional protection not The gas retorts are erected in the immediate neigh-
bourhood of the boilers and furnaces, and the gases, bourhood of the boilers and furnaces, and the gases,
after passing through the condensers and scrubbers, are conv.
938. Prevention of Railway Accidents caused by
Breakage of Draw-bars W. H. Turnbull, Staf ord.-27th February, 1882.-(Provisional protection This consists in the use of a draw-bar with eye-holes
on each side of the head to receive chains, which are n each side of the head to
fastened to the headstock.
O46. Cutting Holes in and Shaping Met
YLates, J. Rowland,
In
Sunderland. -4 th March 1882. $6 d$.
This relates to appliances to cut circular, oval, or e cut to any desired shape externally ; and it consists, First, in the application to shearing machines for
straight cutting of two fixed blades, either fitted straight cutting of two fixed blades, either fitted
separately, or forming together the jaws of a die, into
the space between which the moving shear blade the space between which the moving shear blade enters; and Secondly, in the use of a curved moving
shear blade in combination with two curved fixed
blades, between which the moving blade enters to blades, the cut.
1103. Carding Engines, A. Holden, Gorton.-7th
March, 1882. $6 d$. This relates to machinery for cleaning cotton and
other fibre, a main cylinder with roller and clearers of rdinary construction being employed. A clearer or the licker-in, which is set to the main cylinder, and is cleaned by the clearer, in front purities from the clearer. Over the spaces between
the ordinary clearer rollers and the preceding working the ordinary clearer rollers and the preceding working
rollers are placed plates or doctors, the edges of which
are close to the front of the clearers, and extend back are close to the front of the clearers, and extend back
to the preceding working rollers. A card roller or o the preceding. working rollers, A card roller or
clearer is placed over the junction of themain cylinder
nd doffer.
1109. SEcuring on to Buldings Sheets of Zinc,
Metal, \&c., T. W. Hellivell, Brighouse. -7 th March,

The edge of each sheet is turned up at right angles
the sheet, and the turned-up parts of two adjoinng sheets, are placed together, with a small space and over the tops of the flanges a cap is placed, and a
screw, nail, or bolt passed through its top between the turned-up edges, and
supporting the sheets.
1146. Actions of Pianofortes, de., A. Squire, Cam-den-rood.--9th March, 1882. 6d.,
This relates particularly to check repetition actions, This relates particularly to check repetition actions,
and consists in the combination of a bevel on the top of the jack or hopper, and a strap of leather fixed to
he butt, the other end being hooked to a spring regulated by a serew, wedge, band, bent wire, or stift
ioint. The invention further relates to the use of brought to bear on the back or front of the sounding
board, so as to force the same out and cause it to board, so as to force the same out and cause it to
become rigid or otherwise at will, and thereby increase the power and tone of the instrument. Electro-mag-
thetic or magnetic steel wires are used, and the names
ne netic or magnetic steel wires are used, and the names
of the notes are lettered on the rails or beam. 191. Improvements Relating to Dynamo or
Magneto-electric
Machines for the Generative Capacity of such Machines,
T. J. Handford, London.-11th March, 1882 . - (A
communication form communication from T. A. Edison, Menlo Park, Newo
Jersey U.S.) 6. . This relates to means for automatically regulating the generative cat. In connection with each group of
ights in cith amps this device is provided. One method is to place
lame an electro-magnet in one of the branch conductors,
having an armature lever retracted by a spring, and round a diestance in the field additional field circuit, the result in either case being
an increase in energy of the fifld magnet by the an increase in energy of the field magnet by the
closure of the circuit controlled by each of these electro-magnets. Each of these magnets is so con-
structed with relation to its armature that it will not the lamps of the groups have have been turned on, so that the additional energy given to the field magnet by the operation of the devices connected with each
group will be sufficient for the supply of all the lamps of the group
1193. Crushing or Breaking Stone, Ore, \&c., W.
R. Lake, London -11 th March, 1882 . - (communi R. Lake, London.-11th March, 1882 --(A communi-
cation from. T. A. Blake, New Haven, U.S.)-(Not This recedates to to ". ${ }^{2 d \text {. }}$. ${ }^{\text {plake crushers," and it consists in }}$ the introduction of hanging jaws between the ordinary
fixed jaw and the movable jaws, the object being to
prevent the clogging of the jaws.
315. Condensed Milk, \&c., W. F. Sweetland, HenThe object is to to manufacture condensed milk with-
Tht the use of additional sugar, and it consists in concentrating the milk in a vacuum pan, and then adding
a concentrated watery solution of a gelatinous \cdot sub-
1322. Drying by Cold Process Printing on Tin,
Zind, Brass, \&c., H. Mathieson, Mile End. $-18 t h$

March, 1882. 2d. printing on metal. According to this invention, 2 oz .
of borate of manganese and 2 drachms of sulphide of manganese are boiled for two hours in one gallon lin-
seed oil, the scum being removed during the process. seed oil, the scum being removed during the process.
When cool the dregs are mixed with Frankfort-black, so When toorm a thick paste, which is rendered fit for
as to for
printing by the addition of a suitable quantity of the oiled oil.
323. Transferring Printed Designs from Paper,
de., So Sheers of Tin, Zinc, Brass, \&c., H. A sheet of ordinary paper is dipped into a solution of sugar, water, gum, and glue, after which it is
varnished on one side. The paper then receives its
impression from a lithographic stone, and a varnish tint is applied, the impression being transferred to
the metal sheet in a lithographic press, the bed of
which is heated to about 200 deg. Fah. The paper
itself can be removed by saturating the sheet with
cold water.

1328. Improvements in Electric Signalling Appa
RATUS, AppICABLE ALSO TO OTHER PURPOESE, L.

Crossley, Halifax, J. F. Harrison, Bradford, and W
Emmoth, Halifax. 1 1th March, 1882.6 .d.
This invention relates to improvements in This invention relates to improvements in magneto-
electric signalling apparatus, and also to a means for connecting and disconnecting telephonic wires. The
inventors claim (1) the application to the axis of the inventors claim (1) the application to the axis of the
revolving coil of a magneto-electric call bell of one or more cams, whereby, in addition to the ordinary call
signal, a distinct and separate one may be transmitted.
(2) (2) The employment in combination with the abov
apparatus of relays in the central exchange offic whereby a subscriber will be enabled to disconnect his
wire from that of the last subscriber with whom he wire from that of the last subscriber with whom he
spoke, and place both lines in connection with the
switchboard without the intervention of the operator 1335. Springs for Railway Vehicles, \&c., A. tion from J. D. Thomas and L. F. Requa, Ne This relates to the use of an improved form of air spring for buffers, or for supporting the bodies of car
riages, and it consists of a hollow vessel of rubber charged with a mass of compressed air, and held at its
opposite ends only, with its sides free to expand an contract, a suitable web or frame of canvas or other
fabric being imbedded in the rubber walls of the vessel.
1341. Thrust Bearings for Screw Propeller
Shafts, \&c., J. Wills, Leicester.-20th March, 1882 This consists of a bearing in which a series of balls or rollers are arranged to freely rotate between th
end of the shaft, or a disc on the end of same or fixe at any convenient part thereof, and a corresponding
stationary disc. The balls are kept in position by being inserted in recesses in a plate or cage, whic
will revolve with the rollers independently of the shaft, and placed between the rotating shaft and the fixed disc, or they may be placed in recesses in the
disc on the shaft, and bear against and travel on the
stationary disc. 1344. Supporting and adjusting the back Rests
 This consists in supporting and adjusting the guide capable of being rotated.
1345. Coupling For Joining Lengits of Wire, D,
Brener, Brixton.- 20 th March, 1882 .-(Not pro The end of the wires to be joined are each inserted n angle to prevent it slipping out. The two piece tudinal strain on the wires tends to increase the gri of the coupling
1347. An Improved Machine for Generating
Electric Curents, \&c., S. E. Phillips, Charlton

This relates to an improved construction of machin for generating electric currents, whereby a given
wight of metal, as wire, preferably of square or
angular shape, can be wound into a smaller space than angular shape, can
at present known.
1350. Looms, A. Priestman and J. Ackroyd, Bradford The object is to arrange the warp brake apparatus
so as to let off the warp from the beam with more so as to let off the warp from the beam with mor
regularity, and consequently to weave fabrics more嫘iformy than at present. The brake ropes are the ends of the warp beams in the usual placed right across the loom parallel with the beam,
To this bar weighted levers are attached, so as to b easily adjusted. The warp passes from the bean to the sley and healds.
1351. Binding For Scafroldings, J. Rettie, Hatton
garden. -20 th March, 1882. $4 d$. A chain is used to bind two poles together, one en
having a hook to take into any link after passin having a hook to take into any link after passing
round the poles. On the chain is a loose piece of
tubing, which is placed in position in a line with the tubing, which is placed in position in a line with the
junction of the poles, and a triangular or other
wedge-shaped piece is forced in between it and the
poles. Apparatus for Receiving Money, \&e., H. T.
1352. A.
Davis, Nevoington.-20th March, 1882.-(Not pro ceeded with.) $2 d$.
This relates to apparatus for receiving fares on passenger to insert his fare in the apparatus and see that the amount is correctly registered.
1353. Hoisting Crabs AND Lifis, A. Clark, Oxford
street. -20 th March, 1882 . (Not proceeded voith $)$ The object is to dispense with the drum on whic the lifting chain is usually wound, and it consists in the use of a toothed pulley mounted on the main axi
in place of the drum, in combination with a pair of guide pulleys for the chain placed at either side of
the toothed pulley. The lifting chain is led over the guide pulleys, and beneath the toothed pulley, with
which it is kept in contact, one end of the chain bein attached to the weight to be raised and the other end
falling in a heap on the ground 1354. Treatment of Flour, dec., H. F. F. Engel, Ham-
burg.-20th. March, 1882.-(A communication from F. Lange, Pruasio.) $4 d$.
The object is to treat th
form mouldod structure, can bed articles, which are of ver while at about can deg. ©. . they again become plastic and it consists in mixing the flour with water, glue,
plaster of Paris, and any suitable colours to form plaster which is shaped to the required form by heated
panter
moulds or rollers. 1357. SEcGRING Door-kNoBs To Spindles, J. Thom,
Wolverhampton. -21 st March, 1882.-(Not proceeded The spindle is square and formed with a screw thread on its angles, and on it works a collar or nut
with an externally screwed end. The end of the knob has a screwed recess to fit the collar or nut, the threads
on the spindle and the collar or nut being in opposite
1364. Wheels, J. Taylor, Wigan. -21 st March, 1882

The rim may be in segments or in one piece, and to fit a recess formed in the cander side of the tire
which is shrunk on to the rim spokes are capped with metal and screw into the cap while the other ends have sq
recesses in the boss or nave.
1465. Improvements in Carbons for Electric
Lamps, A. Smith, Brockley, Kent. $-27 t h$ March,

To produce carbon filaments the inventor passes
through the liquid furfurol or fucusol hydrochlori acid gases in excess. The reaction produces a blac
liquid, which is enclosed between two glass plates After the material is set the plates are wedged apar
and the one to which the film adheres placed in col water to detach the carbon sheet. Subsequent pro
cesses of stamping, dc., produce the required filament Carbons for arc lamps are also included in this
invention. 1366. An Improved Method of and Means po
Workive Telephonic and Telegraphic Apara
TUs, A, This relarch, $1882 .{ }^{-21 s t}$. ${ }^{2}$. This relates to a means for working telephonic
receivers by the varying strength of an electric field,
when such instruments are not in or connected with when such instruments are not in or connected with
a circuit. The invention is carried into practice by
means of telephonic receivers or other delicate instru
ments provided with suitable inductors which connect
two surfaces of different potentials in the electric two surfaces of different potentials in the electric
field of a charged body, which is in communication
with the transmitting instruments. 1860. Gas Motor Engines, H. Sumner, Manchester.Combustible gas or vapourand air are drawn together by an outstroke of the engine into chamber A, the gas
entering by small holes so as to break up the current and mix intimately with the air. The mixture passes to

the cylinder E , through valve B , and passage D , the camer After the charge has been compressed and
ignited and has performed its office in propelling the piston, the products of combustion are emitted
through valve N , placed beside the inlet valve on th hrough valve N, placed beside the inlet valve on the
being worer, oo as to be easily removable and capable o
brom one set of cams C placed side by

side on a revolving piece H, and adjustable one to the
other. The piece H is carried on a side shaft driven rom the crank shaft. The charge is ignited by slid M, operated by an excentric on the side shaft, and
which can be set to bring the slide into operation at
the proper instant, whether the engine be running in the proper instant, wheth
one direction or the other
1367. An Improved Method of and Means fon
Providing Ground or Earth Connections for Electric Circuirs, A A. B. Dolbear, Somerville
Massachusetts, U.S.-21st March, The object of this invention is to render all "earths" of the same potential, and so avoid currents caused by
the difference of potential between two earths in circuit. The invention consists in conductors leading
from various " earths" to some large body of water such as the sea, so as to ensure a like potential for 1368. Improvements in Electrical Cables, A. EL
Dolbear, Somerville, Masachusetts, U.S. -2111. The inventor surrounds the conductors of his cables with an air space, instead of imbedding them in a non1370. Spinning Machinery, J. M. Howson, near
Bradford. -21 st March, 1882. 6d. The object is to adapt frames now used for spinning
ong stapled fibre to spin short stapled fibre, and for the better spinning of long stapled fibre, and it con machine so that the thread or yarn that is being spum is brought into direct line from the nip of the roller
with the vertical spindles. Two modes of effecting escribed
1371. Tairing Measuremgnts for Cutting Cloth,
J. Baier, New North-moad.-21st March, 1882.-(Not This relates to the construction of an adjustable of fit different people, and provided with flexible rods, by means of which the edges of the pattern can be
brought to any desired points to give the desired conbrought to any desired points to give the desired con-
figuration, when the whole of the rods are secured by
clamp. clamps.
1372. Corvins, \&c., H. R. Allen, Indianapolis, U.S.-
21st March, 1882. -(Not proceeded vith.) $2 d$. This consists in the construction of coffins and other articles from paper pulp shaped in suitable
press or dies. To render the pulp impervious to
water, rosin, pitch, or other suitable material may be water,
added.
1373.
$21 s t$
1373. Railway Chairs,
21st March, 1882. 6d. Bridgevater, Watford.This relates to improvements on patent No. 2599,
A.D. 1869 , in which the face of the jaw of the chair, against which the wedge was to be brought in contact,
was formed with horizontal ribs which provented a vertical movement of the wedge but offered no
bstruction to the movement of the wedge endwise. To remedy this the face is now cast with horizontal
or vertical recesses which allow of the wedge, when driven home, expanding from its compressed state,
and, by entering the recess, prevent endwise motion. 1374. Looms for Wraving, J. Stanafeld, Colne.-21st This relates to simple means of changing the order of succession in which the healds are a atuated in
weaving, so as to give a positive steady action in the
upward and downward movement of the healds or
hodales and alowow of the working of throe. fourt

 traado is searred a band passing over pulle
fon the top rail and a tatached to the heads.
 This ralates to improvements in ineks, wheroby

 376. Spurs Honve op Casse, do. W. Watts, Baw
 This oonsists in fitting a tube into tho splle hole

This sonsistaty. Firiti, it ithe production of ammonia carbonacoous minerrals containing nitrogen, by decom

 combustion of carbon and aitr, as will burn the carbon

 In the oistern, in which thel levelis isept onstatat by

 not required to a a titithold the shoroter log

 usually emplosed in such manafacture, and it it on
 vulanised indiar rubber through whioh the twinio (of ${ }_{1384}$ Wie Wacoss, W. Marel, London. $-22 n$. Thha hinidedernas of the framo on which the wagon

2ditivental drum is mounted on a shaft working in

 1390

 The corset has two straps at the back. which after
veing crosesea are passed over the shoulderss and then

the ammonitacal and phosphatit ealts
the valuco of the dopoosit as a manure

 of boot uppers and simimilar articices.
1399. Cossrructior or Fuvxacrs, de... J. Burch ${ }^{\text {sisent }}$.

 of tho inivertion ralates to the oo sistruction pand

 timo of furid ed edminuted, or solid substancess the
Third part relates to the mamer and means employed

for introducing compressed air into the hearth or
refining chamber whilst the metal is under process, refining chamber whilst the metal is under process,
with a view to change the nature of the product either to pure malleable iron or steel ; and the Fourth part
relates to the special mechanism employed for imparting to the hearth or refining chamber the requisite reciprocating or swinging motions, either regular or
intermittent, as best suited to effect the required change upon the metal in process. The drawing is a the heating crucible and details.
1401. Locking Devices for Miners' Safety Lamps,
J. McKellar Main, Cumberland.-23rd March, 1882 . This relates to a lock) ${ }^{2 d}$.
This relates to a locking apparatus whereby the
amp cannot be opened without being taken to the 1403. Gas Burners, J. Levois, Stepney.-23rd March This consists essentially in the arrangement and construction of platinum wire gauze burners for conpressure) for the production of light and heat, in such manner as to prevent the transmission of heat from
the burner to the supply pipe by the introduction of the burner to the supply pipe by the introduction of
steatite or other non-conductor of heat between the burner and the supply pipe.
1406. Corkscrews, IW.
23rd March, 1882. 2 d

This relatas to to the employment of a cone, whereby
everal corks may be drawn without loss of time, each several corks may be drawn without loss of time, each
cork forcing the preceding one up the cone and
eventually splitting it, when it falls from the cone. 1407. Automatic Gear for the Prevention of
Overwinding, W. T. Levis, aberdare, and W. H .

The The gear is so arranged that if the cage is being off steam or move over his reversing lever in proper
time, then one or other or both of these operations are performed automatically, the lever or levers being case, and the winding engickine so stopped by the time the cage arrives at the top of the ply, or further than
slowed down, so that if the engine runs fur it ought it may then be stopped (without risk or
damage) by the ordinary steam or other self-acting damage) by the ordina
brakes in common use.
1408. Instrument to Facilitate the Administra-
tion of Fluids in the Stomach, TIon of Fluids in the Stomach, F. Kingston, St.
John's, Kent. $-23 r d$ March, 1882. 4 . This relates to an instrument for administering 1409. Armour Plates for Ships, \&c., H. Reusch,
Prussia.-23rd March, 1882. 6d. This consists partly in the use of ledges or side pieces, made either separate from or cast in one piece
with the iron shell plate, in the latter case the said
hell plate being made of the size desired for the stel casting, thereby avoiding the previous manipulation he said ledges or sic
1410. Means of Ingress and Egress to Theatres,
de., in Case of Fire, A. Scott, oxford-street.-23rd

This relates partly to the use of balconies on each foor, with staircases connecting them.
1411. Flyers Employed in Spinning, R. R. Sykes,
Oleckheaton.-23rd March, 1882.-(Not proceeded

A ring or flange is placed on the top of the flyer,
aving a hook or hole formed in a stud, through having a
which the y
the bobbin
1413. Umbrellas, \&c., J. Willis, Bournemouth.-23rd
March, 1882. $6 d$. . This relates principally to the manufacture of the
bottom tip ends of the ribs. 1414. Pulleys And Whekls, G. IV. Benyon, Reading. The pulley is constructed with a rim or flange
turned inward from or connected to the periphery, and projecting inwards from the periphery toward the axis, the rims or flanges on the opposite sides o
the pulley being either parallel or inclined inwards or
outwards.
1415. SHIPs' RudDERS, Sir J. E. Commerell.-23rd This relates to a rudder consisting of a blade formed in sections, each of which has a sooket jointed to it,
the several sections of the blade being connected to
the rudder post by passing their sockets over or on to the rudder po
the sid post.
1416. BinNACless, W. R. and C. A. Williams, Neroport. This consists in the combination with a binnacle of
a transparent compass and of reflectors or mirrors so arranged that the image of the compass card will be
1418. Wenvivo Loons. A. Rollason, Loowd, Mases. Thisi relatas, Firtot to means for divining looms

418

free. E and F are fulcrum rods at the back and front of the loom, and on them work levers G and H con-
nected by rodd, several holes being made in the
levers so as to vary the extent of motion. J are the levers so as to vary cone ected to two of the levers by
harness shats, ach connect which act directly on the shafts. Cams K actuat
rote the levers. L are two driving bands actuating th
shuttle-driver, and are guided by rollers M , and drive by levers N which are actuated from the cam shaft by
toothed wheels and tappets. The levers N are yoked toothed wheels and tappets. The levers N
together by a cord 0 passing over rollers P .
1419. Spinning, F. Ripley and T. H. Brigg, Bradford.

- 24 th March, 1882.6 d . A rotating spindle is employed, on which is a filer
and cup or its equivalent. The cup is encircled by the
ordinary "ring" and traveller. The spindle receives ordinary "ring" and traveller. The spinde receives
its rotation from the legs of the flyer by means of a
notched disc or cross pin; the rotation of the cup on
flyer, within the ring, gives what may be termed
frictional aid and ensures the traveller being carried

4419

by the induced motion past or beyond a line centra
with the spindle ; the upper edge of the above the ring. In order to assist in the action of the apparatus and make efficiency complete, the ring and
its rail are traversed. The upper portion of the spindle is detachable for the
and piecing up broken "ends.
1420. Mandeacture of Ice for Domestic Use, R. P The object of this invention is the application to
domestic use of the process of freezing by anhydrou domestic use of the process of freezing by anhydrous
sulphurous acid by means of an apparatus capable of
producing in ten minutes a kilogramme of ice 1421. Combined Nail Cutter and Cleniner, J. I.
Jones, London.-24th March, 1882.-(Not proceede Thith.) $2 d$.
The nails and als also cleaning them. 1422. Umbrellas, J. Miniére, Paris.-24th Marci
1882.-(Complete.)
6d. 1882.-(Complete.). 6 d . . for the runners, by means of which the umbrellas or
1427. Variable Expansion Gear for Link Motion
Engines, T. English, near Dartford. $-24 t h$ March,

This relates to improvements in variable expansion gear for link motion engines in which the travel of
the slide valve is regulated by shifting the link block
along the link. A is the crank shaft

excentrises B are fixed at an obtuse angle to the crank,
the excess over the right angle beeng the angular
advance of the exentric. C is the link jointed the the
excentric rods, and at its central point, or point of

 shin ink blook, the position of which in the link

 Yith a colk or valve to enahal thin pasage thero.

 wheel is raised and lowered upon or with the main
shaft, and the blades of the wheel are adapted to be adjusted to suit the wheel to the rapidity of move-
ment of the vessel. It further consists of the shaft frame adapted to be secured to the side of the evessel,
of the means for locking the wheel in position for
action, and of the construction, arrangement, and
combination of parts. 1431. Machinery for the Preparation or Copper
Plates used in Pottery Engating, T. Smith, Stoke-on-Trent. - 24 thh March, 1882 . $6 d$.
This relates to machinery in which the plates are
Theld in frames of various sizes to suit the various-sized held in frames of various sizes to suit the various-sized
plates beneath successive stones and burnishers, both the frames and the stones or burnishers reciprocating
horizontally but at different speeds, and in directions t right angles to each othe
1433. Rollers for Washing, Printing, Spinning,
Carding, \&c., J. Leevthzaaite, Halifax.-$-24 t h$ March, This relates to the employment of Parksine, xylo-
nite, or other analogous paste or compound for covering nite, or other analogous paste or
the rollers. 1882. 6d. 6 . E. G. Banner, London. -24 th March The sewers are divided into sections, separated from
each other by traps, and each such section is provided
with, at one end, an inlet or inlets of any with, at one end, an inlet or inlets of any suitable
construction for air to enter the sewer in any convenient manner, and at the tother sewd a shaft or
shafts of suitable diameter (according to the size of
the sewer) provided with means, such as cowls or other appliances, for exhausting air and gases
from the serer, o that they shall be discharged into
the atmosphere at a much higher level than is now the atm
usual.
1435 .
1435. Chimney Flues, B. Finch, Westminster.-25th
March, 1882.-(Not proceeded with.) $2 d$. This consists in constructing the flues of glazed urther, in providing a ventilator flue extending from the basement to the chimney-top, and serving to
ventilate each room through perforations in the flue
level with the ceiling. 1436. Adapting Certain Parts of Ships' Furniture
for Use in Saving Life, J. N. Cressy, Glasgov.This consists 2882 . 6 d. useful for saving life by constructing them with open application thereto of cork, and having wire nettin fixed across, but so as to leave an opening at the
middle to receive the person to be supported in the 438. Stoppers for Botiles, H. Barrett, London.This relates to improvements in the screw stoppers described in patents No. 4184, A.D. 1879, and No. 5154,
A.D. 1881, and it consists, First, in replacing the thread on the stopper by two or more projections
which engage with the thread in the neck of the with a valve which wwill allow the bottles to be follled
wither
through the stopper, hrough the stom 1440. Spreading Manure, \&c., R. G. Garvie and H.
Slinner, Aberdeen. $-25 t h$ March, 1882. 6d. The machine consists of a hopper containing the
manure and mounted on wheels, one side of same being formed through a grating, through which pass
rows of spikes worked by cranks on a shaft extending through the hopper, and driven by gearing from a
second shaft actuated by a chain and wheels from the second shaft actuated by a chain and wheels from the
hub of the wheel. The spikes are fixed on bars
attached to the crank shaft, and by the antion fithe cranks throw out the manure from the hopper, and
are cleaned in passing through the grating.
second series of spikes on a rocking shat near th
ton top of the hopper are caused to oscillate and traverse
through between the lower spikes, and prevent the 1441. Exhausting AIR FROM GLASS OR OTHER
VEssELS, E. Edzaards, London. - 25 th March M, 1882.
$-(A$ communication from P. Clere and A. Hemot, Paris.) (Nommunication froceded voith. P. Cere and A. Hemot,
(N.
This relates to apparatus in) which a column of
Trcury is employed to exhaust air from glass or other mercury is employed to exhaust air from glass or other
vessels, and it consists of a tube with a reservoir at its upper end, while its lower end communicates by a
flexibie tube with another reservoir having a valle at
top. The second reservoir can be raised and lowered by means of a chain and wheels. The tube communi-
cates with a barometer tube having a bulb at top and commumicating with two other tubes, one of which
constitutes a a Geissler's's tube, while the other con-
tains caustio potash. The end of the barometer tube
is connected with the vessel to be exhausted. is connected with the vessel to be exhausted.
1443. Measuring and Indioatina the Rate or
Motion of Ships, ©c., J. Armstroong, Nero Svindon ejector or ejectors are fitted near the keel of the vessel, and a parmed o that as the vessel passes through
the water a partial frmed therein propor-
tionate to the speed of the vessel, and the extent of
which can be readily measured.

 reach down against the
thtachment to to the drum.

 coap. 1 It is allowed to stan
fhlorine or alkaline chloride.
 This consists of an arraggenent of phrts in the
headstocok of the mult or twiner, by which the haok-

 carriage, so that the rollerr may rotate and the carriage versed
1447. Dyering Textile Fabrics, J. W. Hepvorth, near
Leeds.-25th March, 1882.- ((Not proceeded with.) $2 d$. This relates to machines to dye fabrics in continuous A.D. 1873 ; and consists in improvements to enabile the
f abrics to be dyed evenly. A vessel contains rollers abrics to be dyed evenly. A vessel contains rollers
laced near the bottom amongst the dye liquor, and a a queeze a portion of the dye from the piece, but so as to cool it and remove the superfluous dye; the fabric
is passed from the delivery rollers through a trough
in which a stream of cold water is kept running. 1448. Plating and Sticking Machines, J. Dowling,
London.-25th March, 1882.-(Not proceded vith.) This relates to improvements on patent No. 4587,
The excentric to actuate the knives, whereby both of them an be actualed so that one move until the form knife has formed its plait. Further improvements two lengths of fabric together by means of a moist or 449. APP

Chelsea.-25th March, 1882.-(Not proceeded woith.)
2ina This consists of an elastic tip to be placed on the the other end being open to receive the cigar.
1450. Syphon Botiles for Aerated Beverages, H. cation from E. Musitsky, Hungury.) 6 d.
al the parts of the mechanism with which the of are made of glass or caoutchouc nd rings of soft caoutchouc are used in such
manner that a perfectly gas-tight closure is effected. 1452. Chucks, \&e., J. M. Alling, London. - 25 th
March, 1882. - (A communication from A. Y. Alling,

This relates to improvements in chucks, designed more particularly to be employed in the decoration of he centreing jaws of the chuck with an elastic cushion pottery ware, fro the purpose of compensating for the regularities in the outline of the latter. It also con-
ists in the construction and arrangement of mechanism for operating the centreing jaws.
1454. Apparatus for Raising Liguids, G. Macaulay-
Cruikshank, Glasgov. -27 th March, 1882 .- A comfrola Grée, Algiers) The invention embraces various arrangements of apparatus for communicating a to-and-fro motion to
the receptacle for the liquids, and by which the quid is raised and discharged from above at certain periods in the motion of the receptacle, the bottom of onfining a certain quantity of liquid and imparting on it a certain vuancity, is, when the receptacle
to descends, opened by the
1458. Tanning Hides, A. C. Henderson, London.-
27th March, 1882.-(A communication from C. Bez and Sons, Léran, France.) bd. De This relates to the tanning of hides by aid of a con-
tinuous flow or current of tannic liquor. 1460. Producing Transparent Block Ice, c. D. This consists in a method of agitating the water in the freezing chambers during the process of freezing
by a paddle or paddles.
461. Man
461. Manufacture of Explosive Compounds, \&c., This relates to improvements in the manufacture f explosive compounds having peroxide of nitrogen
for a base, and in means and apparatus for utilising uch explosive compounds.
1463. Dress AND Equipment of Divers, W. H.
Skipper, London. $-27 t h$ March, 1882. 4d. Skipper, London- 27 th March, 1882. . 4 d.
The inventor claims the mode of attaching the sulcanised india-rubber collar-piece of the dress to the
shoutior-piece and breast-plate of a helmet, forming a
portion of the equipment of a diver. 1464. Improvements in Electric Piles or Bat
(A communication from G Chaperon, d'Alosno Mines, Province de Huelva, Spain.) $4 d$.
The improved battery consists of a positive pole by oxide of copper, built up and maintained by a bag
of hemp. The exciting liquid is composed of a soluof hemp. The exciting liquid is composed of a solu-
tion of caustic soda or potash, zinc forming the negation of ca
tive pole.
1467. Lubricants, F. Field, Beckenham.-27th March,
1882 - (Not proceded with.) 1882 - (Not proceeded with.). $2 d$.
Substances known as stearate of stearate of zinc which may contain oleates of the same metals,
are dissolved in the heay hydrocaron oils, and also
in neutral, animal, or vegetable oils, under the appliin neutral, animal, or vegetable oils, under the appli-
cation of gentle heat. 1488 Fireproof AND Waterproof Plates, C. D.
Abel, London.- 27 th March, 1882 .-(A communication from J. Nagel, Hungary) $4 d$. . . fire and water-proof plates from a combination of
amianthus or asbestos with annealed oxide of zinc.
470. Construction of Furnaces, \&c., J. Hodgkinson, Botton.- 27 th March, 1882 . 8d.
This relates to an arrangement of sif-cleaning fire-
bars, which are arranged transversely in the flue on endless chains or
1471. Metallio Packing for Piston Rod Sturfing-
boxes, \&c.,
W. V. Ley, Liverpool. $-27 t h$ March, Metal, such as white metal, in a molecular condition, or equivalent lubricant.
1473. Moreen Fabrics, E. H. Wade, Bradford.-27th
March, 1882 . $2 d$. The inventor claims the combination of an unsized
ouble-twisted moreen warp, made from materials double-twisted moreen warp, made from materials
which have been dyed the same or different colours
previous to being spun, with yarn that has been dyed previous to being woven, or with metallic tinsels either
alone or in combination,
1469. TUBE BEaders, J. A. Frieake and T. McCormick,
London. - $27 t h$ March, 1882 . 6 d.
The object of this invention is to provide in a tube beading tool of the kind described in patent No. 2374,
dated 19th June, 1877, means of automatically releas-

ing the gripping pieces E, and the inventors claim pieces E , fitted to slide along inclined beds on the head H engaging in notches of the pieces E.
1476. Ornamenting China and Earthenware, \&o.
H. Doulton, Lambeth, and J. Slater, Burslem, Staf ford. - 2 thth March, 1882 . $2 d$. . 2 earthenware and other pottery by impressing textile
fabric, such as lace, upon the clay together with the application of colour, or coloured clay, and pressing the clay or other moulds.
1477. Harvesting Machines, B. Samuelson and W.
G. Manwaring, Banbury.-27th March, 1882.6d.
This consists partly in the application of a binding
device having reciprocating packers to harvesters in device having reciprocating packers to harvesters in
which the grain is delivered to the said binding device by means of elevators, such packers being placed above the table on which the grain is bound.
1484. Tin-plates, C. S. B. Gardner, Neath. -28 th This consists in chilling the plate immediately after it issues from the rollers working in the molten tin,
for the purpose of producing a crystallised tin-plate. 1487. Machinery for Cutting Metals, IW. W. Hulse, This relates chiefly to the means whereby the tool or
cutter is rotated, and has its position adjusted or varied, and also to the apparatus on which the work
to be operated 488. Looms, and Jolgkin

March, 1882. 6d. . Hodgkinson, Blackburn.-28th The upper extremity of the rocking lever carrying sponding grooves or recesses, one at the front and another at the back, which receive a cross-bar or pivot
formed upon the end of the catch or pawl. The pivo formed upon the end of the catch or pawl. The pivot
is arranged to fit easily within either of the grooves or is arranged to fit easily within either of the grooves or
recesses, and is held therein by a suitable formed
metal cap secured to the rocking lever by a screw bolt and nu
. Metallic Shingles, W. R. Lake, London. -28 th March, 1882.- (A com
Nev Canoda, U.S.)
The invention consists in providing a projection or
hook on each side of the point of the shingle by making a slit in the metal on each side just below the lower ends of the hollow ribs which extend along
the inclined edges, and in springing up the metal at the obtuse corners of each shingle, so that the hook ing edges of the two underlying shingles, and thereb 1506. Apparatus for Making Ice by Means of Cold
Air, J. J. Coleman, Glasgovo.- 29 March, March, 1882 . The inventor claims the combination or arrange
The of parts for applying cold air in making ice ; and consisting of a series of chambers protected by non conducting walls and covers, fitted for receiving
moulds or boxes in which the ice is to be formed, and provided with doors or valves in connection with
passages, by means of which the cold air is made to passages, by means of which the cold air is made to
pass sucessively through the chambers, with periodical change
in regular rotation
1512. Ladders, T. Jones, Sedgley.-29th March, 1882 This consists of two wooden side bars fitted with 1518. Pment number of tubular iron or metal rung. Projeceriles
arch, $1882.6 d$
The object is to produce a shot having a body of design, with an outside or exterior of such hardnes that it shall be capable of cutting its way into the
hardest faced armour plate that can possibly be mad and worked to a ship's side.
1536. Bedsteads, dc., J. Reynolds, Worcester.-30th This relates to improvements in the combination of mechanism for adjusting the movable frames or parts
of the bed bottom to the required position most con venient to the invalid.
1541. Treatment of Coal Gas, \&ce, for Obtaining
Benzole, This consists in the treatment of coal gas and
similar gases by passing the same through pipes or suitable vessels heated to a bright redness.
3291. Musical Instruments, G. Downing, London.-
11th July, 1882. - (A communication from M. Gally,

This relates to the general construction and arrang ment of mechanical musical instruments, some of th improvements being also applicable to instrument
operated by manual keys. 3815. Coating Wire with Copper, \&c., W. R. Lake.

- 1 ath July, $1882 .-$ (A communication from T Wallace, New Haven, U.S.) - (Complete.) $6 d$.
This relates to an improved method of covering wire with an electro deposit of copper or other metal,
and to the apparatus to be employed, and it consists, First, in causing a coil of wire to revolve, so that the lytic solution fontinuously at one place an electro which the wire is an electrode, travel through it in
spiral course, and passout at another place, receiving
the deposit of metal in its course; Secondly, in the spiral course, and pass out at another place, receiving
the deposit of metal in its course ; Secondly, in the
use of apparatus consisting of a tank to receive the volutions of which are kept separate by guiding
devices, and suitable mechanism to drive such roller
and volutions of which are kept separate by guiding
devices, and suitable mechanism to drive such roller
and thereby feed the wire progressively through the

1554. Treatment of Grain For Use in Brewing
B. Beanes, London.- 30 Mh March, 1882 . $4 d$.
This relates to the impor This relates to the improvements in the treatmen
of grain preparatory to its use for brewing or othe
purpose purposes, consisting in steeping the said grain in a
solution of an acid or acid compound, and thereafter
subjecting it to the subjecting it to the action of heat.
1555. Rolling Bars of Steel, Iron, \&c., A. Riche.
Jeumont, France. 5 th April, 1882.-(Complete.) 4d.
The inventor claims, First, the use of rolls, one
with a disc carrying a circular projection, the other
roll having a corresponding groove ; Secondly, the rolthad of producing without welding articles in, iron,
methel,
steel, or other metal by using a pair of rolls made steel, or ofther metal by using a p
according to the above description.
1556. Improvements in Apparatus for the Trans
mission And Reproduction of Sounds by Elec
Trictry, $I V$. C. Barney, London. $-13 t h$ May, 1882 . TRIIITY, IV. Ce Barney, London.-13th May, 1882 .
6d. This relates to improvements on the original instru-
ment of Phillip Reiss, in order to make it articulate
well.

SELEOTED AMERICAN PATENTS.

 From the United States' Patent office 'Official Gazelt 265,519. Requlator for Dynamo-electric. MaCHiNEs, John W. Langley, Ann Arbor, Mich.CHINES, John W. La
Filed March 9th, 1882 . Briff.-Improvement on letters patent No. 247,664,
dated SSeptember 27th, 1881. Magnetic plates are sup
ported within the influence of the field magnets in ported a manner that when the field magnets are too
such man men
strongly charged the plates will be drawn towar strongly charged the plates will be drawn toward
them, and by closing the magnetic circuit diminish
their strength. A counterpoise for these plates is hung their strength. A counterpoise for these plates is hung
to a swinging lever, the face of which is a curve o
such form that the effect of the counterpois
will will always have a certain relation to the strength of
the magnets. Claim.-(1) In combination with the

poles of a dynamo electric machine and a magnetic weightacting over and througha curved lever connected
with to be attracted by said poles, the same away from the poles, as and for the purpose set forth. (2) In combination with the poles B and magnetic metal plates L , the weight A and curved
lever P, so connected with plates L that said weight
offers an increasing offers an increasing resistance as plates L approac said poles B, as and for the purposes set forth. (3)
The combination of the poles B, magnetic meta plates L , pivatted arm S , pivotted connecting rods D ,
curved lever P , strap E , and weight A , as and for the purposes set forth
265,747. Stop Motion for Steam Engines, Georg
W. Briggs, Denver, Colo. - Filed 26 hth May, 1882 . Claim.- The combination, substantially as before se forth, of a reciprocating rod provided with a depres
sion or notch, a sleeve or socket adapted to transmit
265.747

the motion of such rod, and a cam pivotted to th through a hole in the sleeve for the purpose of locking , Newport, R.I. - Filed 7th March, 1881,
Claim. An electric lamp, the light-producin
portion of which consists of a thin and broad strip o petal having its edges shaped to a geometrical curv
265.790

such metal, so as to produce a uniform illumination
throughout every portion of said strip, substantiall as and for the purporsespecified. (2) An electric lamp,
the light-giving portion of which is composed of a flat the light-giving portion of which is composed of a flat
strip of metal, broadest in the centre of its length
and gradually decreasing in breadth from the centre
to each end th
pose specified.
265,648
265,648. STEAM INJEGTOR, Garner C. Williams, Ellen-
ville, N. Y. Filed 16th January, 1880.-Reneweed
15th Claim. - (1), In a steam injector, a water-inlet port and the same chamber, constructed and combined to perate substantially as and for the purposes specified.
(2) In a steam injector, a steam nozzle and a waternlet port opening into one and the same chamber, and an overflow port opening out of said chamber, contructed and combined to operate substantially as and
for the purposes specified. (3) The combination, in a steam injector, of the water-inlet port, the overflow
port, and the steam nozze, all in one and the same chamber, and arranged relatively to one another as
described, whereby water ontering the chamber will
submerge the injector nozzle before it can pass out

through the overflow, substantially as set forth. (4)
In a steam injector, the combination of a steam nozzle and a water-inlet port opening into one and the same chamber, an overflow port opening out of said
chamber, and a partition between said ports, so that vater entering the chamber froum the inlet port must
ow over the steam nozzle and partition before it can pass out of the overflow port, substantially as and for
the purposes set forth. (5) In a steam injector, the the purposes set forth. (5) In a steam injector, the
combination of a steam nozzle and a water-inlet port opening into one and the same chamber, an overflow
port opening out of said chamber, a combining tube, and a shield interposed between the steam nozzle and
the combining tube, substantially as and for the the combining tube, substantially as and for the
purposes set forth. (6) In a steam injector, the com-
bination, with the overflow port, of an overflow valve pening outward under the pressure of the steam in
he injector when the water is not flowing to the boiler and closed by the pressure of the water when
it is foowing into the boiler, substantially as and for
the purposes described.

CONTENTS.
The Engineer, Nov. 3rd, 1882.
Ancient Counterparts of Modern Inventions page
 Rallway Matters...
Notes and memuranda
Nater

8
327
$\therefore 328$
.329
329
.329

The Munich Ëlectrical Exhibition. \because No. $\ddot{\mathrm{I}}$. Through the Alps by Loconotive \quad.. $\quad . . \quad$.. 332 Letters to the Edit
PRERSURE OF FLUIDS IN MOTION ${ }^{332}$

GORDON'S DYNAMO-ELECTRIC M MCHINE | The Board of Trade and Bollek Explosions 333 |
| :--- |
| Electrical Standards of Measurements | Leading articles- Condensing and non-condensing Engines .. Prevention of Smone from Domestic Fires. 335

The International Electrical Congess $\quad 336$
Bursting of Kpupe 11in. and Woolwich 6in
The Furness Railway
 York..
Applied Mechanics. By H. T. Bovey ..
Grundzaege der Graphischen Statik. ${ }^{337}$ Stetzel
FRIEDRICH
Contran
Comer
${ }_{.1}^{337}$
\qquad
 The Iron, Coal, and Gegera trade or bial
w mingham, Wolverhampton, and District.. Notes from Lancashire
Notes from the North of England
Notes from Scotland
Notes from Wales and Adjoining Counties
 Abstracts of Aatent Specifications. (ilus.).
(Illustrated.)....\quad.. ..
Inagraphs- Institution of Civil Engineers, Ireland
King's College Engineering Society
Voyage of Torpedo Boats...
Naval Engineer Appointments
Traction Engines on the Highway
The river Missouri may be navigated as far as
the Great Falls, a distance of 3127 miles from the point where it joins the Mississippi.
South Kensington Musedu.--Visitors during Tuesday, and Saturday, free, from 10 a.m. to 10 p.m., Museum, 8257 ; mercantile marine, Indian section, and other collections, 2409. On Wednesday, Thursday, and Friday, admission
d., from 10 a.m. till 4 p.m., Museum, 1457; mercantile marine, Indian section, and other collections, 309. Total, 12,432. Average in corresponding week in former years, 14,309 . Total
from the opening of the Museum, $21,435,307$.
Epps's Cocoa.-Grateful and Comforting. "By a thorough knowledge of the natural laws which govern the operations of digestion and nutrition, and by a careful application of the fine
properties of well-selected Cocoa, Mr. Epps has provided our breakfast tables with a delicately favoured beverage which may save us many heavy doctors' bills. It is by the judicious use of such articles of diet that a constitution may be gradually built up until strong enough to resist
every tendency to disease. Hundreds of subtle maladies are floating around us ready to attack wherever there is a weak point. We may escape many a fatal shaft by keeping ourselves well
fortified with pure blood and a properly nourished frame."- Civil Service Gazette.-Made simply labelled -"JAMEs EPPS AND Co., Homœopathic labelled- Lames EPPS AND Co.
Chemists, London."-[ADVT. $]$

