THE GREAT ORGAN AT THE CRYSTAL PALACE The Handel Festival Organ in the Crystal Palace is now being reconstructed and enlarged by its builders, Messrs. Gray and Davison, of Euston-road. It is almost certain that this Organ has been heard by more people than have heard any other musical instrument in the worid. Those living must be few indeed. A large organ is so ingeniously con-

An organ consists of an external case containing within \| known as stops, and that these are named, as Diapasm, it a large number of an external case containg is a separate Oboe, Voix Celeste, and so on. The sounds produced differ wind instrument or pipes, ther but in character or timbre large organs the Crystal Palace instrument will have 4394 pipes, and the the pipes, especially at the mouth, and the character of organist can produce as many sounds. All these pipes the reed pipe is, of course, different from that of the flue may be classed under two heads, namely, (1) flue pipes, and pipe. So much, premised, it will be understood that air (2) reed pipes. The flue pipe is nither more nor less than under presšure must be provided, by admitting which to (2) reed pipes. The flue pipe is neither more nor less than
a whistle, the principle on which it acts and the details of the pipes they are made to sound ; and the duty of

structed, that, regarded merely as a piece of mechanism, it that we shall please a great many of our readers by givin them particulars of the changes now being carried out by Messrs. Gray and Davison. But although organ music is is produced, and we propose here, in order that what we

FRONT ELEVATION

BELLOWS END ELEVATION

have to say concerning the Crystal Palace organ may be \mid The reed pipe is so called because it has at its base a reed divided, that is to say, the outer case contains two or more quite intelligible, to explain as simply and briefly as or vibrating tongue, which gives a peculiar character to the possible the general principles ince tone. Thus the clarionette and bassoon are reed instruthe taste and skill of different makers and the purposes ments. The harmonium is indebted solely to reeds for its for which the organ is designed. This done, we shall give \quad but they are seldom made more than 16 ft . long, which a sketch of the history of the Crystal Palace organ, and $\begin{aligned} & \text { but they are seldom made more than l6ft. long, which } \\ & \text { gives a note in unison with the lowest } \mathrm{C} \text { of the grand }\end{aligned}$ details of the alterary or the Crystal Palace organ, and in it. separate organs, each of which can be played on distinctly from all the others, having its own special key-board. Thus the Crystal Palace organ has four separate sets of instrum and a sel of distinct instruments, namely, the great organ, swell organ, choir organ, solo organ, and pedal organ. Arrangements are, moreover, made, which will be explained further on, by which any two or three of these can be "coupled"
together, so that practically the organist can perform on all five instruments at once if he wishes, or on one only.
Compressed air is always known technically by the organ builder as "wind," and its pressure is expressed in terms of inches of water which it will balance. The pressure varies in large instruments, some pipes requiring a greater pressure than others to make them "speak" properly. The normal pressure in an ordinary church organ is about 3in., and a stop is said to be " on a 3in. wind" or " a 4 in . wind," and so on. The wind is obtained by the aid of large bellows, worked by men, or steam, or water or gas engines. The ellows are called "feeders," and deliver into a large wind chest, loaded at the top to the proper pressure. The bellows and reservoir are rectangular, and made expansive by means of ribs of wood, hinged and gusseted with eather. An illustration of the blowing apparatus for the Crystal Palace organ will be found on page 393. It is worked by three of Joy's water-pressure engines. tands below the organ, as will be gathered from the general ectional iew page 400 . It will be seen that is arge aftair, capable of delivering a vast quantity of wind. it ory the thos vary in the organ, and for this reason four feeders deliver into each primary reservoir. The wind is led away from the reservoirs to the organ by means of wind size We have now to lusion from the various musical pipes rost complex subject with which we have to deal, and if our readers will once grasp this all the rest will be readily understood.
Let us take the case of one pipe only to begin with. The

Fig. 1

pipe A, Fig. 1, stands on the top of a shallow box called the sound board B. Wind is conveyed to this box from the reser reservoir or wind chest by the wind trunk D, and is admitted pipe A is plan F , pipe A is placed a valve called a pallet E, hinged at one end and kept up by a spring F; when up wind cannot get
into the pipe. H is a key; when this key is pressed into the pipe. H is a key; when this key is pressed down by the organist's finger it pulls E open by means of the "tracker" or rod G, and the
sounds so long as H is kept down
Now, we have said that in one
have organ case are included one or more organs. Each organ includes several stops. Thus in the Crystal Palace organ the great organ has nineteen, particulars of which will be found further fifty-eight keys; but each one of these keys must be able to govern each one of the nineteen stops. Each stop is for each key represented by one pipe. that is to say there are nineteen pipes to each key.* It is evident that if the same system were adopted that we have sketched in Fig. 1, each key must be fitted with nineteen separate palletswhich is obviously out of the question. The difficulty is got over very simply and effectually. Let us confine our attention to one key, namely, the middle C of the key board.
The great organ has a sound-board all to itself, standing just inside the front of the organ case, in the middle. This sound-box is large enough to give standing room to 162 pipes. t These pipes are arranged in straight rows from right to left along-eight pipes in each row counting from pipes deep from front to back. Fig. 2 is a diagram intended to make the construction of a sound board intelligible, but it does not show the sound board of any particular organ.

The pipes A B C D E stand on F, as in Fig. 1, bu the box is divided into several longitudinal spaces G by as " by the trackers Y . There is only one pallet to down groove, and the result is that when any key is pressed down

* There are really many more, but as the additional pipes go from thre $\stackrel{\text { pipe only. }}{\dagger}$ This is "Theat organt." strictly true, and there are really four sound boards to the
In the Crystal Palace organ some of the pipes are placed
where there is where there is room at a little distance, the wind being led to them by
tubes. These pipes are said to be "convevanced off."
wind is admitted to the corresponding groove, and thence to all the pipes standing on that groove. In the sketch the pallet for pipe C is pulled down, and all the pipes on the groove controlled by that pallet may be sounding. If we assume the key to be the middle C, then the open diapason, Claribel Hlute, double trumpet, oboe, \&c., will sound each its own middle C.* In this way then it will be readily understood that a single pallet can control as many pipes as there are stops in a sound board. Looked at in a direction at right angles to that in which Fig. 2 appears, Fig. 2 we see the several pipes of but one stop. In Fig. 3 Fig. 2 we see the several pipes of but one stop. In Fig. 3
we see but one pipe each, say the middle C pipe, of seven stops.
We have now to consider the construction and use of what are known as the "draw stops," namely, the handles seen arranged at each side of the organist, and by pulling out or pushing in which he causes the rows of pipes constituting a stop to speak or be slent at will. understood that if nothing more were provided than what we have sketched, as soon as the key was pressed down and the corresponding pallet opened, all pipes
belonging to that key would speak at once. The organ would therefore always be at its full power. There would be no means of modulating intensity of sound, and the effect from a musical aspect would be disastrous, Means are therefore provided to shut off any one row of pipes, Under each row of pipes is placed a slip of mahogany, called a "slider" which may be about 3in. wide and 3 in. thick, varying which may be about 3in. wide and sin. thick, varying
however in size with the pipes it controls. In this are bored fifty-eight holes, onefor each pipe. Thesesliders can bemoved endwise. When in one position they shut all the holes ; when in another they leave them all open. They move in, so to speak, the thickness of the sound board on top of the sound box, the grooves in which they slide being at right angles to the grooves G in Fig. 2. Fig. 3 is supposed to FIG. 3

be a section at right angles to Fig. 2, on the middle C, through an organ sound-board with seven stops. P is the pallet; G is the groove. The black lines E show the ends of the draw stop sliders, which are all supposed to be in now, so that none of the pipes would speak even though the pallet P were opened by the tracker Y
Figures 4 and 5, which are slightly modified from those given in Hopkins and Rimbault's great treatise on the organ, show how the various parts, the principle of whose action is sketched in diagram Figs. 1, 2, and 3, are usually constructed. Fig. 4 is a sectional front view of a
wind chest and sound box. Fig. 5 is a section at right

angles of the same thing to a larger scale. In both E is the draw stop slider, and P the pallets. The air is admitted from the reservoir or wind chest through the bottom or side C or D, an aperture not shown being made
for the purpose. or the purpose.
In large organs the pallets are of necessity of considerable size, because they have to admit air enough to supply each a great many large pipes. Their range of motion is also considerable. The area of a pallet may be as much as 30 would be nearly $\frac{1}{2} \mathrm{lb}$. to the square inch; to open it would, therefore, require a pull of nearly 25 lb . But a good organ * Only what are known as "foundation stops" will give this note, but to pipes from the body of this article.
will speak when the key of a manual is depressed about ${ }_{8} \mathrm{in}$. Consequently there must be a loss of leverage between the key and the pallet, and the result would be an intolerable strain on the fingers of the organist. In the modern instrument the touch is, however, nearly as light as that of a pianoforte, but in the old instruments it was almost impossible to play music requiring rapid execution, save by a very muscular musician, using only a limited number of stops. In large modern organs the organist when he presses down a key does not pull down the pallet in a groove, but a secondary and very small valve, which admits air to what is known as the In Fig. 11 we give illustrations all the heavy work. In Fig. 11 we give illustrations of the pneumatic levers of the great organ at the Crystal Palace. Fig. 6 is

Fig. 6

a section, not of the Crystal Palace pneumatic action, but a diagram intended to illustrate the principle involved. A ittle vellows A is fitted on the top of a box containing two O, which is in These valves are coupled to the back fall When the key is pressed down one of the valves B is opened as shown, while the other is shut. Wind now passes from the chamber C into the bellows, and lifting its top board, pulls on the rod F, which is coupled to the pallet of the key pressed down. The moment the key is paleased by the organist one valve closes and the other
relea opens and permits the air in the space E D to escape, when the bellows at once collapse, and the pallet is closed by the falling of W and F. The work of the organist consists in opening the little valve B , which has an area of not much over one square inch. In Fig. 6 two pneumatic

Fig. 7

levers are shown, the top one closed, the lower one open. A spring is used to keep the valves closed, of the "touch" of the instrument. It is found in practice that the preumatic lever is so quick in then practice most rapid and delicate passages can be played with the difficulty, the pipes speakiug simultaneously with the difficulty, the pipes speaking simultaneously with the them all to pe put in. Ne row hey are disposed Tsually every fifth bellows is placed in the same other Usuall fire there are five or more vertical tier

Fig. 8

The pedal mechanism does not call for special description, pedals being nothing more than enlarged keys; but even to pedals the pneumatic action is now adapted, to lighten the work of the organist. The most important have said that any two or more of the organs can be
coupled to each other ; and this is usually done by coupling the keys. Thus, when the great and swell, for example, are coupled, the keys on the swell manual move when the great manual is played upon, the effect being the same as though there was one player to each organ. There are besides couplers by which one section of a keyboard
is coupled to another. Thus, when the organist plays one set of notes with his fingers, all the same notes one ctave above or below are played at the same time. The pedals, again, can be made to act on the great or other organ, and so on. The arrangements by which this apparently complex work is done are extremely simple.
There are several devices in use ; if we describe one it will There are several devices in use; if we describe one it will suffice. In Fig. 7, A B are the iuner ends of two keys, one,
A being, let us say, for the choir, and the other, B, for the A, being, let us say, for the choir, and the other, B, for the great organ. E is a bar of wood rumning across the organ,
in which bar are as many holes as there are keys. In each in which bar are as many holes as there are keys. In each hole slides a hard wood peg C. The bar E can be partially turned on its axis of the organist. When in the posicion shown by the full ines, the pegs C couple A and B . At is impossible to play is possible to is possible to play on B and not move the keys A. In he former case the pe if work up and dow F the holes in cross-lan E. If, however, the bar the made to evolve through about hosin assume the position shown the dotled ne, and nill no e touched by keys. This arrane has been uperseded by thechan The arrangement of the sound
The arrangement of the sound-boards within an organ case varis the the design of the case, the space available, sc.; and the various trackers radiate in different direc-
tions, and are led off in various ways. We give a section through the Palace organ, which illustrates our meaning. through the Palace organ, which illustrates our meaning.
But all the devices for leading the trackers are very simple, being for the most part bell cranks in wood or iron. The distance to which trackers are led is sometimes very considerable, as much as 80 ft . or 90 ft . not being unknown.
Concerning the music produced by an organ, it is well o explain that the instrument is not a collection of pipes it is true to imitate well-known instruments. There are llute ; but the diapason has no true analogue in a band and the same may be said of many other stops.
In a foot-note we have alluded to the fact that there may be more than one pipe in a given stop to a ture," "sesquialtera," and so on. Their purpose is to sound the harmonics to a foundation note. Thus, when ve put down the middle C key, the diapason sounds C , but he other pipes we have just named sound harmonics to it The harmonic pipes are arranged in rows or "ranks," as they are called. Thus, for instance, we may have one open diapason pipe, two principals, three twelfths, and four ifteenths, or, in all, ten pipes to a single diapason note Again, in a " four-rank" stop we may have, from CC to middle B, tones 19-22-26-29, and so on. Theintroduction of these harmonics adds power and richness to the music, or reasons which will be understood in a moment by those who have studied even the elements of acoustics
The varying character of the sounds produced by different stops is due to the shape and material of the pipes and to some other influences which are not without interest. Thus the voix celeste, usually regarded as the most beautiful and plaintive stop known, owes its charm, curiously enough, to the fact that each note is produced by two pipes, which are first tuned accurately in unison, and then put out of tune by very slightly raising the pitch of one of them. In Fig. 8 we give examples of the form of a few pipes, each of which is named.
We give on page 400 a longitudinal section of the organ, as it would be seen if the front of the case with the key-boards were removed, as well as the seats in the orchestra. The organ stands on a stout platform o loor, 40 ft . wide by about 25 ft . deep, which is supported by timber framing, as shown, rising from the main loor of the Palace. At A will be seen the blowing apparatus, with the water-pressure engines beneath. These engines are extremely simple, and their construction is too well known to need description. They have been supplied y Mr. David Joy, of Anerley Park. At B are shown some of the rods of a few of the draw stops. Right in front, at C , is the pneumatic lever arrangement of the grea organ D , above which is the solo organ E. At the very top is shown the swell organ F. All its pipes
are enclosed in a box, the front of which is fitted with are enclosed in a box, the front of which is fitted with
louvre boards, which can be opened and closed by a pedal, so as to modify or augment the loudness of the sound produced. The lines seen running right and left ar trackers to the sound-boards of the pedal organ G G on each side of the instrument. Many of the pipes
are shown in their places, but a large number are omitted are shown in their places, but a large number are omitted to show those behind, but the sound-boards, with the The choir organ is behind receive the pipes, are shown. The choir organ is behind, and entirely hidden by the great organ. H and H are gangways, by which access is obtained to various portions of organ. T T are wind trunks, All the rest are nearly identical, save in dimensions. Fig, 9 is an enlarged view of the blowing apparatus.

Our readers are now, we venture to hope, in a position to understand what the Crystal Palace organ is. When the first of the series of Handel Festivals was contem plated, it was felt that an organ of considerable power not indeed essential. The original idea was to instrument simply for "filling up" effects in the choruses, \&c., the presence of the full orchestra rendering the more delicate organ effects unnecessary. Later on, however it was thought that by adopting a more comprehensive scheme the organ might be utilised by the Crystal Palace Company as a solo instrument and for general purposes Accordingly a specification was drawn up for a grand organ of four manuals and pedals, and eventually carried out. A portion of the instrument in this form-a large
number of the stops not being inserted, but "prepared or"" only - was finished, and used at the first rehearsal i. 1857, and afterwaras at the first Festival peformance in 1859. The organ was further developed in the year 1871 ,
when some of the " prepared for"" stops were supplied when some of the "prepared for" stops were supplied
It was, however, still left incomplete, and so it has remained until now.
We subjoin the specification of the organ in its reconstructed form:

SPECIFICATION

Four manuals-overhanjing-CC to A, 58 notes and pedals-con-

cave, but not radiating-COC to $F 30$ notes. Pneumatic action t
cach clavier. Tvelve double French vertical feeders sund cach clavier. Twelve double French vertical feeders, supplyin
four bellows, communicating with the various inner vind reselvoirs. Motice power-three of Joy's patent hydraulic engines.

reat organ : Double o
 Large open diapason
 $\begin{array}{lll} & & \\ \text { Ftal } & \ldots & 16\end{array}$

Open diapason
Flute-à-pavillon
Harmonic flute
Claribel flute.
Quint
Flute oc
Twelfth.
Harmonic piccolo.
Mixture, 4 ranks
Furniture, 3 ranhs
Cymbal, 5 ranks
Double trumpet
Posaune
Harmonic trumpet
Clarion
Swell organ :-
Bourdon... ...
Open diapason
Concert flute.
Octave
Octave ${ }^{\text {Flute octaviante }}$
Twelfth
Harmonic flageole
Mixture, 4 ranks.
Furniture, 3 ranks
Contra-fagott
Cornopean
Cornopea
Echo tromba.
Clarion

Choir organ :- Tremulant.

Flute octaviante harmonique
Corno di bassetto
Grand tromba
Carillons
Pedal organ:-

ouplers:
Choir to great. Choir octave.
Solo to pedal. Solo to pedal.
Swell to pedal. Great to pedal
Choir to pedal

ION.

 68 sounding stops, 4394 pipes. 14 mechanical stops, couplers, tremulants, \&c

Total, 82 stops.
The space occupied by the instrument is 40 ft . wide by 24 ft . deep, exclusive of that taken up by the five bellow behind, which have hitherto been ordinarily blown by ten men, supplying the various reservoirs inside the organ
with wind at different pressures. It has now been decided to red atferent pressures. It has now been decided applying entirely new bellows and feeders al respects, applying entirely new bellows and feeders adapted for supplied, as we have said, by three hydravlic power will be $6 \frac{1}{2}$ in, , 51 in $\frac{1}{2} 1 \mathrm{in}$, one of $5_{4} \mathrm{im}$. , and one or $5_{2} \frac{1}{2}$., driven by water from of 100 ll the arranged under the orchestra so as to be seen at work by any visitors to the Crystal Palase who are inspect it. Though in so enormous and at the time lightly constructed a building it will probably same some to learn that this oumang , is not so large as several well-known instrument powerful, favourably situated in smaller and more substantial halls The wind pressures have been revised, and in some departments increased, but not to the exteme to this has been carried in certain rent instances nevertheless believed that the power will prove ample,
without being "blatant" and oppressive from very din, as in some modern organs voiced on the so-called Germa ystems." It has also been an object to avoid the undue predominance of "Reeds" and reedy Gambas, which giv a of the large a the so much the effect of gigantio hawonums. At the same "vaime every variety or tone is at con a, whil mere vasists in the addition of three octaves of carillons ells, enclosed in awell box with Venetion lourres, so ells, enclosel of and range is from camut G upwards. The hammers are put g by the prepre pur Fig 10 is an fig. 10 is but and throughout

Until now there were but two sets of pneumatic lever ne to the great organ and one to the swell for lightening the touch. There will hereafter be five-namely, one to each of the four manual claviers, and one to the pedal clavier. These will be of the most improved modern conanction, with double exhaus. The wind pressures will ange from 4 in . to 12 in , the foundation stops of the grea and swell being on a 6im. wind, " in the reedo raised to sin. in the treble, The be on a 12 in . pressure, and the rest of the solo organ 8 in. Instead of the usual eng system of cosin or drawing our and "Vo to produce was an the for an instrument was and disadvantages and has bee balancing advantages and disadvar the board is subdivided into four sections, each containing it own croup of stops, and by means of four pedals either left ip in their normal position or "hitched down" the wind pither of" fom or admitted to each department by the "ventil." The manual organs as well as the pedal organ are similarly treated.
It may be remarked, as a matter of comparison, that Messrs, Gray and Davison's celebrated organ in the Leed Town Hall, erected in 1859, has 94 sounding stops an 17 couplers, \&c. It is expected that the Crystal Palace
 tion J. to Messrs. Gray and Davison's noble instrument.

HE ELECTRIC LIGHT COMMITTEE

THE following are the recommendations which the Select Com ittee on the Board of Trade and other electric lighting Bills have resolved to make to the House of Commons as the result of their inquiry :-
(1) "That the Board of Trade be empowered to grant licences to local authorities or private undertakers, with the consent of such
local authorities, to supply electricity within a defined area." (2) "That such licences be for any period not exceeding five
years, but may at the expiration of the licence be renewable with such consent as aforesaid.
ders to lo board of Trade be empoweyed to grant provisional consent of such local authorities, for the supply of electricity the such provisional orders shall be subject to confirmation by Parliament." "That notice of any application for a licence or a provisional
(4) "That
order be given by public advertisement in the district, and full order be given by public advertisement in the district, and full
opportunity be given to all parties interested to state their case to
the Board of Trade."
(5) "That no application for a licence or provisional order be
granted until the expiration of three months from the notice of such application
(6) "That no application by any local authority for a provisional
order under this Act be proceeded with until it has been submitted to a meeting of the local authority specially summoned for the purpose by a public notice.
(7) "The licences and provisional orders should carry with them power to break up the streets for the purpose of laying the neces
sary wires."
(8) "That where it has been . That where it has been proved to the satisfaction of the Board of Irade that any area as defined by licence or provisional
order is sufficiently supplied with electric light, and that the supply of gas in such area has ceased to be remunerative, the Board of Trade may be empowered to make an order relieving
either wholly or in part any corporation or gas authority from being either wholly or in part any corporation or
compelled to supply gas within such area.
(9) "That local authorities be empowered to purchase compul sorily the undertaking of the company or person authorised by
provisional order to supply electricity at the end of fifteen years, or at the end of any subsequent period of five years.
(10) "That for the purpose of the (10) "That for the purpose of the purchase of the undertaking, the value of the land, buildings, works, materials, and plant
shall be deemed to be their fair market value at the time of the purchase, due regard being had to their nature and their condition, to their state of repair, to their suitability to the purposes of the undertaking; and where a part only of the undertaking is pur-
chased, to any loss occasioned by severance; but without any chased, to any loss occasioned by severance ; but without any
addition in respect to compulsory purchase, or of goodwill, or of any past or future profits, or of any similar or onsideration."
(11) "That licence and provisional orders should contal regulations :-(a) For securing the safety of the public from injury
to life or from fire ; (b) for inspection. (c) for secula to life or from fire; (b) for inspection; (c) for securing a regular and efficont supply of electricity; (d) for fair prices as experience
may prove to be necessary, and where it has been proved to the Board of Trade that public safety is likely to be endangered, they shall at all times have power to make such further re
may be required for securing the safety of the public."
may be required for securing the safety of the public."
(2) "That overhead wires be forbidden without the consent of the local authority, and where it has been proved to the satisfacany such wire is safety, they may make an order directing it to be removed upon such terms as they may think fit."
(13) "That the local authorities supplying the electric light be
required to keep separate accounts of such undertaking, and to publish them in detail for the information of the ratepaye (14) "That the Board of Trade be required to submit to Parliament an annual report of their proceedings under this Act. (15) "That any undertakings which may be authorised by contained in this Act,"
With respect to the several private Bills referred to them, the thed recommend that clauses dealing The Committee met again on Thursday to go through the clauses of the Board of Trade Bill, and to consider any sug
gestions that may be made upon the above resolutions.

NEW WATERWORKS, CLACTON-ON-SEA.
MR. JABEZ CHURCH, M.I.C.E., WESTMINSTER, ENGINEER.
(For descruption see next page.)

NEW WATERWORKS, CLACTON-ON-SEA.
MR. JABEZ CHURCH, M.I.C.E., WESTMINSTER ENGINEER.

WATER SUPPLY OF
SMALL TOWNS. No. III.
CLACTON-ON-SEA.
The importance of an ample supply of good water to every community, and the certainty be obtained for most places suffering from the want of good water, led us to the belief that descriptions of examples of the works of water supply as carried out in a number of small towns under modern ideas and engiciated. These articles we commenced in The Engineer of the 10th March, p. 181, wherein was described a surface water catchment system, and in that of the 24 th March we described a greensand well supply, both works showing what may be done for small communities. We now give engravings on page 396 and 397 , and the following description, re-
lating to another example of what may be done to supply small populations with a good water supply at a cost which shows that an ample quantity of potable water should be within the reach of every community in the country.
The Clacton-on-Sea Gas and Water Company was formed in 1876 to meet the requirements
of Clacton-on-Sea, which has now become a favourite summer seaside resort. Twenty years since Clacton-on-Sea was but a landing place, consisting of a small village and a landing pier, forming the place of embarkation of the population of a considerable district not then accommodated by the railway which Eastern system. It is now placed within an easy journey from London by railway as well as by boat, and during the past six or seven years the number of its visitors has enormously increased. To accommodate these visitors a few capitalists have converted the village into a small town. The gasworks, works, which are the subjaterthis notice, were designed and carried out by Mr. Jabez Church, M.I.C.E., of Great George-street, Westminster. The water, which is of excellent quality, is obtained from a well sunk into the chalk to a depth of 120 ft ., with a turther boring of 285 ft , making a total depth of 405 ft . from the surface. The well was con-
structed in the following -28ft. of east iron cylinders

4 ft . 6 in . internal diameter were sunk through the top gravel into the underlying clay for the pur pose of shutting out the surface water ; below this brickwork was put in in two half-brick rings, them, finishing at the bottom with an invert through which a wrought iron bore pipe is driven to the required depth. The water tower is 101 ft . high, and about 27 ft . square, built in red bricks with white and black brick string courses. The battlements and top of turret, together with the projecting string courses, are as shown in section the tower, is a cylindrical wrought iron reservoir supported on wrought iron girders. The valves under the tank and the roof are reached by iron ladders.
The pumping machinery, which is designed so that it can be duplicated at any time, is as follows :-The boiler is a singletube Cornish boiler 14 ft . 6 in . The engine is of the diameter. non-condensing type, having a non-condensing type, having a
cylinder $9 \frac{1}{2}$ in. in diameter hy 14 in . stroke, with an outer casing for live steam, and fitted with patent variable expansion excentric and quick speed governors, and indicates 20 -horse power with 60 lb . of steam. The flywheel is 5 ft . 8in. in diameter. The pumps are of the ordinary
deep-well lift kind, with barrels deep-well lift kind, with barrels carried up above water line, so be taken out from the top for repairs, obviating the use of a diver for this purpose. The diameter of the pumps is $8 \frac{1}{4} \mathrm{in}$., stroke 19in., fitted with gunmetal buckets and valves; the
working barrels are fixed 52 ft . under water line, and areactuated by spur gearing carried on a of an ornamental character. There are about 5000 yar of mains. Mr. T. Tilley, of Walbrook, executed the trial bore hole and well and also the main laying. Messrs. H. Young and Co., of London, constructed the machinery and ironwork, and Messrs. Saunders and Son, of Dedham, carried out the brickthe works, which are of substantial character and of first-class workmanship and materials throughout, including land and parliamentary expenses, was $£ 7700$, and as they will amply provide for a summer population
of 5000 , the cost per head will be only about \&1 10s. 9d, which any
small town could well afford;
at Heligoland．For the purpose of distinction some attempts have
recently been made to get two distinct explosions from
亚 recently been made to get two distinct explosions from
one rooket by sending up two charges topether．This
idea it is hoped will soon be made practioally sucessful．
而 The cotton powder that is now made may be hand
with as much safety as gunpowder，and it it is less easily explodeded wy contact with flame；but it has not yet been shown that other
explosive compounds，such as dynamite，lithofracteur，blasting explosive compounds，suctr－alycerine mixture，can be made prac－
gelatine，or any other nitrogle
tically serviceable． mentioned．The Cotton Powder Company are exhibititing in the present Exhibition a kind of signal winch may be fired more
easily，expeditiously，and effectively than a gun，thereby obviating easily，expeditionsy， the need to load every minute． vessel in distress．This consists of a small charge of tonite－
cotton powder－made int into sort of cartridge．When required ot be used one of the cartridges is dropped into a socket；the
to beaman stands aside and pulls a l lanyard attached to a friction
sean tube．By this means a smanll quantity of powder at the base of
the tube is ignited．This ignites a fuse，and causes the charge to shoot up into the air to a height of 6 ooft．The cotton powder shioot explodes，and at the same moment a group of stars are
then
thrown into the air．This form of signal makes the same sound as a cannon，and acts also as a rocket．Many vessels are using this appliance，and the Board o traade have agreed to accept this span
stitution for the gun as a signal in case of ship wreck．This san also be adopted for use in boats．Boats when leaving
cat ant wrecked ship are often without any means of making the they are
seen；but these signals would enable them to do so，and so small that a supply of them can be carried under the seat of a
boat．This signal can be made readily distinguishable at great distances．The lecturer next dealt with signalling by means of
whistles．Whistles are sounded either by steam or by air．Steam whistles．are simplese enough in their arrangement，and require only a boiler for generating steam and a mechanical arrangement for
opening a valve to allow the passage of the steam to the whistle In the case of air whistles it is necessary to have some arrange admission of airs to the whistle．The sound of a whistle is cansed by the vibration of the air contained within the bell，or dome，
or column，the vibration being set up by the impact of a column of steam or air at a ligh pressure．Is is probable that the metal
of the bell or column of air is likewise set in vibration，and gives the timbre or quality to the tone that is emitted
by the whistle．Difference of pitch is obtained by altering the distance between the steam orifice and the lip of the bell．When
these are brought close to eech other－say within lalf an inch－ these are brought close to each other－say within half an inch－
the sound is very shrill．If you increase the distance the sound fog signal has been made in an automatic signal buoy．The sound is produced by the movement of the buyo on the top of the water．
larye tube descends for a considerable distance into the water This tube is open at the end，so that there is a piston of water in the waves，and forces it up through the whistle；and thus the west mis continualyking signals by sound on board steamships． The regulations already quoted specify the whistle for steamers．
It is neeessary that precaution should be taken to insure that whistles give effective sounds．In many cases，when first sounded one hears only a rush of water，which has resulted from the con－ is required to be made in a great hurry．A novel form of whistle， consisting of an organ pipe fitted to a steam pipe，has recently been introduced．It is said that it does not get choked like ordinary
whistles，and that the sound emitted is loud and resonant．Thi Glasgow．Messrs．Smith Brothers，of Hyson Works，Nottinglam， exhibit in the present Exhibition a new form of whishle，in which，
two sounds can be made with one instrument．This is a great two sounds can be made with one instrument．This is a great
desideratum，and may afford the means of making what is so indicate the compass course of a vessel．The next class of instru－ ments to which reference should be made is horns．These originally came from America，and the characteristic of them is that they are
sounded by reeds instead of being sounded in the form of a whistle． Some forms of fog horns are exhibited by Mr．Nathaniel Holmes， put into a stirrup，and worked up and down．The seamen are supposed to be able to work them easily，if they can
stand upright；but that may want a little support to enable
she them to do so．These horns are made with reeds，and are
said to be very effective for certain purposes．Mr．Pilley，of
Birn Burminghan，exhinits a reed horn the characteristics of which
are that it will give either a continuous blast，or a short one as
may be desired．The continuous blast is managed by putting an external chamber round the cylinder and piston，which compresses
the air，and keeping the chamber full of compressed air，so that the air is supposed to go through uniformly，the current being that this is an advantage，for it is often necessary that these thing should stop，and not go on continually．There has been brought
to this country from America an apparatus known as Barker＇s to this country from．America an apparatus known as Barker＇s
marine safety signal．This apparatus has many merits．One is er of its merits is that every signal is sounded automaticaly when once set；and a third advantage is
that with the horn attached it gives a very good sound．
pressed pressed air is employed at a pressure of 6 lb ．to the square inch，
and the sounding principle is a reed for the horn．The inventor says that it can beiqualy well connected with the steamers own
whistle．The main object of the inventor appears to be to bring into use a short code of compass signals，by means of which vessels can indicate to one another their respective courses．This signal system coninains a combination of eight long and short sounds．
Ano in fog is the siren．This also came compressed air，and the principle upon which the sound is made is
 has twelve radial slits，and is fitted into the throat of a long
trumpet．Behind the fixed dise there is fitted a revolving disc against the fixed dise goes throush the of seond or or revolving dise
when the slits of the two dise Mnen the slits of the two dises coincide at certain periods，accord－
ing to the quickness of the rotation．If the pressure is very higl and the rotation is very rapid，the succession of puffs passing
through is very rapid indeed，and a very intense sound is produced cast iron，and the sound tan up by the metal trumpet，which is o beam of great intensity．Since 1874 no fewer than twenty－two
sirens have been placed round our coast，and sixteen have been sirens have been placed round our coast，and sixteen have been put
on board lightships．These are of the greatest service to passing navigation．AtHowth Bailey a gas engine is employed as a motor for compressing air for the siren operatuon here．This arrangement
is there due to Mr．Wigham，of Dublin．Messrs．Stevenson，of
Edinuwh Edinburgh，have s．iggested that a Perkins engine should be used
as a motor for siren sismals，and perhans it will be so used one as a motor for siren signals，and perhaps it will be so used one
day．The adoption of the siren as a sound signal in fogyy weather mayse regared as an important advance in the development of recently added to them，among others a mechanaical moverent by
which Professor Holmes has succeeded in rendering the rotation of the siren cylinder automatic with perfect control of the speed and by which two notes can be has also the duced a couble siren this is not generally cuased at present．of With same instrument，but
sound signasing use of
shere is an increasing necessity for mating use them differ from one another，and it is very useful to have inventors
brought to brought togethe that they may see the various inventions which
have been developed and brought out for the purpose of signaling
by sound，It may be that if instruments are devised sufficiently
accurate to make sound signals which shall be trustworthy and
useful，ultimately the law will be altered to suit those instru－ ments，but inventors must not expect that a change in the law
will be made in favour of their own particular instruments．

THE INSTITUTION OF CIVIL ENGINEERS．
harbours and estuaries on sandy coasts AT the meeting on Tuesday，the 25 th April，Mr．E．Woods，vice－ Estuaries on Sandy Coasts，＂by Mr．L．F．Vernon－Harcourt，M．A． M．Inst．C．E．
This communication contained a concise history of the pro－ orth Sea，between Cal Calais，Gravelines，Dunkirk，Nieuport，Ostend，and Blankenberghe．
These harbours owed their origin to the existence on their sites of an outlet channel communicating with a creek or small lagoon， and maintained by the flux and reflux of the tide and the
drainage waters of the adjacent district．The first artificial works consisted of short timber jetties on each side of the
channel to mark and protect its outlet．By degrees the inland tide－covered areas were reclaimed，and the entrance channel being deprived of the tidal scour，gradually deteriorated Attempts were then made to improve the entrance by prolonging
the parallel jetties into deeper water．These jetties had been made in every case solid at the base，and with open timberwork washing into the channel，as little obstacle as possible might be bearing character of the tidal current along the coast，every advance of the jetties had been followed by a corresponding ntrance of the foreshore．The maintenance ais deepening of the ntrance channel was at the same time promoted by retaining the
nland and tidal waters at high water by sluice gates，which，being opened at low water，released a large volume of water for scouring away the deposit of sand．Sluicing basins，admitting a large nost of these harbours to increase the efficiency of the scouring on the low foreshore near the entrance of Calais Harbour for deepening the entrance channel．The jetties at Dunkirk had been ealising the object of attaining deep water，as the foreshore had dvanced so much as to overlap the western jetty at low－wate eplaced by a series of docks and basins，which，however，had bee designed so as to allow of the same amount of water being available for sluicing．As a bar tended to form just outside the jetty ing this part of thy sand pumps was being resorted to for deepen commenced in 1876；and the quantity of material removed las year amounted to about 314,000 cubic yards．The deepening thus effected had produced a considerable increase in the trade of the port，more especially by admitting vessels of larger tonnage．The
approach channel to Ostend，which was maintained in former time by the tidal scour from extensive marsh lands，had，since thei been improved by parallel improving the depth over the bar beyond the jetties．
A brief comparison was next d 俍
A brief comparison was next drawn between the jetty harbours escribed and other harbours，and was shown that the conti－ nental practice of prolonging parallel jetties and sluicing hal the system of enclosing a large tidal area by solid piers con for instance，at Aberdeen，Dublin，Sunderland，and Lowestoft It was pointed out that the extension of parallel jetties had proved
of no avail，and it was suggested that converging piers aided by sluicing would probably afford the best prospect of maintenance in an unfavourable situation like Dunkirk，whilst dredging would serve to maintain the depth outside he entrance chere as an instance of the conversion of a jetty harbour into a large close water，gave a good prospect of successful maintenance．Madra salur cornished an example of a closed harbour constructed on but，owing to the depth of water－45ft．－into which the piers wer portion of the sand accumulated against the south breakwate during the south－west monsoon，it seemed probable that the fore experience gained at Ymuiden，Port Said，Madras，Karachi，and other harbours，tended to show that a considerable littoral drif harbour with solid piers on a sandy beach．For，provided that the entrance was carried into deep water，the rate of advance of th foreshore continually decreased，and might even reach a positio mall，and the projecting piers tended to produce a scour in front man，and the projecting piers tended to pron the Adour，of the Seine，and of the Maas，were discussed．It was only partially successful，and that the influx of the tide ha been ehecked owing to the jetties at the mouth having been place mbankments，from La Mailleraye to Berville，though producing edly rapid silting up of the estuary as，wiusin thirty－three years，to
have reduced the tidal capacity of the Sine by $272,000,000$ cubic yards，and endangered the approaches to Havre．The shifting by the works，and its maintenance would be imperilled unless the banks were prolonged．It was suggested that the embankment
works should be carried to the mouth，in such a manner as to reduce the diminished tidal capacity as little as pessible，and so as to direct the main chas were then referred to The works at the new cut across Hoek－van Holland，with jetties at right angles to the sore，leading the channel into deep water，and providing the shortes possible channel from Rotterdam to the sea，along the scheer
branch of the Maas．The jetties，composed of fascine work，were aised only to half－tide level，and slightly diverging formed a sor jetty， 2515 yards long，had been made to project beyond the eddy produced by the flood current，which tended to raise a bar
The depth of 23 ft ．at high water，which was anticipated at th mouth，had not been attained．The deficiency in depth had beel attributed by some persons to a too rapid widening out near the mouth．The author，however，ascribed it to the narrowness of the channel between the jetties；to the natural progression of the fore action of the waves；and to the material scoured from the cut in the process of construction having remained near the jetties． training rivers through sandy estuaries，and pointed out that where such works were commenced they had gradually to be
extended，as in the case of the Fen rivers．The Mersey，abor Liverpool，was cited as an instance where training works might imperil the outlet channel．The proposals for training the Scheldt
through its estuary were referred to，and any great reduction of its tidal capacity deprecated．Lastly，a comparison was made
between the methods of improving the outlets of the Maas and the

RAILWAY MATTERS

The boring of the Ariberg tunnel is proceeding rapidly, the rate of advance averaging ten metres daily, which exceeds the average
nade with the St. Gothard by six metres. At this rate boring is made with the St. Gothard by six metres. At
expected to be completed before the end of 1883 .
A LARGE and enthusiastic meeting was held at Wrexham on
Wednesday evening to protest against the action of a committee of
the House of Lords in arbitrarily throwing out, without hearing Weanesday evening to protest against the action of a committee of
the House of Lords in arbitrarily throwing out, without hearing
all the evidence of the promoters, a Bill for the provision of hetter all the evidence of the promoters, a Bill for the provision of better
railiway and dock accommodation in North Wales, and for the con-
struction a central station in Wrexham.
ON and after June 1, the trains on all sections of the Great,
Western Railway, with the exception of the "Flying Dutchman" Western Railway, with the exception of the FAyng Dutchman
and the elimited mail trains, will carry passengers thard thass on
Parliamentary fares. This concession does not include the Brid Pariamentary fares. This concession does not include the Brid
port companies line. Minor alterations in some of the care
between stations west of Bristol will gradually be put in force. A VALLABLE illustrated pamphlet entitled, "Railway Accidents;
their Cause and Prevention," by Mr. Clement E. Stretton, is being their Cause and Prevention,", by Mr. Clement E. Stretton, is being
published by Messrs. Simpkin, Marshall, and Co., London, and by
Messrs. Spencer, Leicester. The author makes a digest of the Messrs. Spencer, Leicester. The author makes a digest of the
causes, results, and veriots on various inlustrative rail way
acoidents, and then discusses the relative value of difterent syster accidents, and then discusses the relative value of difterent systems
of signalling and of continuous brakes. Mr. Stretton takes up the,
railway accident question from the passengers' and engine-drivers' railvay accident question from the passengers' and engine-drivers'
standpints, and being an independent observer his views are
entitled to entitled to consideration.
The Select Committee of the House of Commons has passed the
Bill authorising the Solway Junction Railuay Company to raise
sufficient capital to sufficient capital to reconstruct the viaduct across the Solway
Firth. The nev viaduct will be 1 mile 180 yards in lenth. The oid one was broken down by a mass of icefloes in January of
last year, as described by us at the time. Since then the English
and Scotch sections of this company's railways have been altogether disconnected. The new rididge will be construeted
under the diretion of Mr. Brunlees, C.E., with wrought iron
column instead of cast iron columns instead of cast iron.
Tre second section of the Hundred of Hoo Railway will be
opened for traffic in the course of a few weeks. The pier at Grain,
 for unloading ships. The pier has been constructed in deep
water, there being 2ott. of water at low tide, so that lare mer-
chant ships, and even ironclads of moderate size tould chant ships, and even ironclads of moderate size, could come
alongside at any time, irrespective of the tide. One disadvantage of the site, however, is that it is particularly exposed to the full
force of onclement weather and rough seas. The object of the
directors of the South-Eastern Railway Company in building the directors of the South-Eastern Railway Company in building the
pier is to open up a new traffic with Belgium and the north of FroM a recently published report upon Indian railways for
180-81, it appears that at the commencement of 1881 there were $1880-81$, it appears that at the commencement of 1881 there were
9619 miles of railway open to traffic, and 646 under construction.
During the past year 318 were open to traffic, and the commenceDuring the past year 318 were open to traftic, and the commence-
ment of 1422 miles was sanctioned. At the present time, there-
fore, 9937 miles are open for traffic, and 1482 in course of construcfore, 9937 miles are open for traffic, and 1482 in course of construc-
tion. The total capital outlay on railways to the end of 1883 will
 Railway. It is estimated that the last undertaking will have
yielded a net profit o Government of \&t,133,000 from the time
when it was taken over by the State to the end of the financial
 1881-82. The net charge on account of the State lines for $1882-8$
is estimated at $£ 206,000$.
For Europeans returning from the East vid Naples, the St.
Gothard, Basle, Sstend, or Calais route will be a pleasant one Naples being a, beautiful resting-place, and with some improveshortened. At present it takes from Naples to Milan 25 hours ;
Mhilan to Basie, via the the Gothard, 12 hours ; Basle to Brusesls,
12 hours, and five more to Calais- making in ali 54 hours. This is 12 hours, and five more to Calais-making in all 54 hours. This is
shorter than the route via Marseilles by seven hours, besides the
avoidance of the often rough sea in the Gulf of Lyons. With
and avoidance of the often rough sea in the Gulf of Lyons. With
improvements in the railway lines of Maremma, the line in course
of construction from Spezzia to Parma, and the realisation of the projected direct route from Rome to Naples via Gaeta, the journey
need not oocupy more than 40 hours from Naples to Calais-
ne
 few days a meeting in ot tate tlace place with the object of orging its
fealisation. It is also desired that the question on one or more new stations should be discussed, as the present one would then be
insufficient, and even now is inconveniently far from many parts
of the city
In his report on the trade of Antwerp during last year, Mr.
Consul Grattan points out that the preponderance of that port over the other ports of Northern Europe is likerely to be increased
rather than diminished by the rather than diminished by the opening of the Gothard Tunnel, as
Belgium will in all probability profit by the transfer to this shorter
and cheaper commercial highway of much of the international transit trade at prescent monopolised much of the trene internation vian the
Mount Cenis Tunnel. The overland traftic between North-Vestern Europe, and especiaily England, and Italy, India, and the Levant,
will, of course, be chiefly affected. Mr. Grattan gives the following comparative statement of the distance from the several ports to
Milan, , i the the rival rail way routes:- Calais to Milan, vil Mont
Cenis, 846 miles ; Boulogne to Milan Cenis, 846 miles ; Boulogne to Milan, viia Mont Cenis, 849 miles ;
Ostend to Milan , i Ia St. Gothard, 786 miles. Antwer to Milan,
riid St, Gothard, 736 miles. From this it will be seen that Antwerp possesses an advantage of 83 miles over Boulogene and d 110 miless
over Calais. The route under the Simplon, which France proposes as a set off to the St. Gothard route, would shorten the distance from Calais to Milan to 774 miles, and from Boulogne to Milan to
746 miles, so that Antwerp would still have an advantage of 38
miles over Calais and 10 miles over Boulogne. The traffic rates
mer miles over Calais and 10 miles over Boulogne. The traffic rates
through France are, moreover, higher than on the Belgian and
Alsatian lines. WE have received a copy of a pamphlet of very considerable
dimensions containing "facts from experience", with Cleminson's
flexible wheel base rolling stock flexible wheel base rolling stock. The facts extend over six years
of working of the ssstem as applied to carriages and wagons over
the greater part of the world,
 the Australian lines. We have already fully described Mr. Clemin-
son's system as applied to the royal saloon carriage on the South-
Western Western rail way and on many other railways, in our impression of
the 15 th February, 1878 , and since referred to its application th the 1 threbruary, 1878 , and since reefrred toits application at home
and abrod. The pamplet shows that the system is working with
complete success and economy on 150 railways, consisting of 25 complete success and economy on 150 rail ways, consisting of 25
home 95 foreign, and 30 colonial lines, and on these lines there are
running 26 ergines fitel running 26 engines fitted on the system and over 4000 carriages and
wagons, whili e it appears that there are now over 100 engines buildof the system are chiefly sarrety and and ease in in passing The aund cuatreses,
reduced wear and tear of rails and flanges, and an increased carry. ing capacity in some cases of 35 per cent, w, with a rededction in
weieht of 25 per cent., as ompared with rigid axle rolling stock.
By the use of three my the use of three pairs of wheels on the system, long carriages
may be used, as they are oompletely supported from end to end,
aheel
wheel base stock much more smoothly than the ordinary short

NOTES AND MEMORANDA.

In Bulgaria a post-office has, on an average, to deal with about
16,000 letters annually, an English one has 107,000 , a German one 85,000 .
M. Pierre Manches says he has found that when sulphurous acid is passed into water through which an electric current is con-
ducted, the sulphur is deposited as a yellowish-white powder on the negative pole.
THE Census Bureau revised report of the United States popula tion statistics shows an area of $2,900,170$ square miles. The popu-
lation is $50,55,783$, the number of families $9,945,116$, and of $\mathrm{dwellings} 895,512$, being an average of $17 \frac{1}{1}$ persons to each squai mile.
THE
The following were the revenues of the Australian colonies at
the end of 1881 :-New South Wales, $£ 4.904230$
 Tasmania, £439,780; Western
$£ 3,283,396$; total, $£ 17,069,016$.
The proportion of revenue raised in 1881 by taxation on machinery in the Australian colonies was as follows: - New South Wales,
$£ 1,417,293 ;$ Victoria, $£ 1,690,923$; South Australia, $£ 529,450$; Queensland, £600,236 ; Tasmana,
THE fastest ocean passage on record was recently made by the town in seven days fifty-three minutes. Her outward passag occupied seven days four hours forty-two minutes, making the round voyage of o
thirty-five minutes.
$\underset{\text { A NEW }}{ }$ explosive has been invented by M. Petri, a Viennese engineer. The name given to it is dynamogen, and, according to
the Neue Militarische Blatter, it is likely to compete seriously with gunpowder. The inventor states that it contains neither sulphuric the form of a solid cylinder, which can be increased in quantit without being increased in size, by compression. The rebound of
the guns with which the new explosive has been tried is said to the guns with which the new explosive has been trien is said of
have been very slight. It is also said that the manufacture of dynamogen is simple and without danger, that it preserves its
qualities in the coldest or hottest weather, and that it can be made at 40 per cent. less cost than gunpowder
STANNoUS hydrate may lose its water and become transformed anto crystals of the anhydrous oxide under circumstances which occur either in acid or alkaline liquids. The acids with reference to oxide of tin may be divided into two groups. Those of the one group give, with this oxide, salts which are entirely decomposed by
boiling water, and determine its transformation into the crystallin oxide in consequence of successive reactions. These salts, decomposad themselves, determining the crystallisation of stannous oxide The acids of the esecond class do not give rise to these successive
reactions, and the hydrated stannous oxide never becomes reactions, and the hydrated stannous oxide
anhydrous and crystalline under their influence
The total number of persons engaged in the European postal service in but these two include telegraph officials; England, 34,644 ,
45,444
Anstria-Hungrary 18,666 . Italy 15,83 . postal service in the whole of Europe brings in a surplus of about
$\pm 5,750,000-$ this includes the telegraph service in Germany, France, and Roumania. England has the lion's ssare, about 2s, milions then follow France, Germany, Spain, Italy, de. Russia an
Roumania show considerable deficits; and the Bulgarian deficit is bor pent. of the total expenditure. The postal traffic of Europe given, or 58.8 per cent. in eight years. At this rate in 1888 it the last eight years has greatly exceeded that of the population

AN alleged invention of a German chemist, by which cotton an
woollen fabrics could be coated with a layer of dissolved silk and made to assume the glossy and soft appearance of actual sill goods, was recently described by the Colonies and India. Experi-
ments in a somewhat similar direction appear to have been made by a French chemist, who horer, coats his material with a thi layer of tin instead of silk. He first makes a mixture of zin means of a brush, leaving it tod dry, when the stuff is passed first
through superheated steam, and afterwards through a solution hrough superheated steam, and atterwards through a solution of
chloride of tin. By this means an exceedingly thin layer of tin in spread over the whole side of the fabrie, which is thus rendered
waterproof, and protected against ordinary rough usare. Th utility of the invention probably consists in the preparation
theatrical dresses, and even in the bright " trimmings" the inven tion might find a limited application.
Fros a return published by the Government Statist of Victoria, it appears that, of the 862,346 people who comprised the whole
population of this part of Australia, 499, 499 were born in the colony itself, 147,453 in England and Wales, 48,153 in Scotland, colonies other than Victoria, 11,876 came from Tasmania, 992 from South Australia, 9826 from New South Wales, and 6000 o 7000 from all the other colonies together. A11 other British pos-
sessions claim between them 7148 of of whom 1118 were Canadian
born, 998 East Indians as "British." Of foreigners, the greatest number are Chinese viz, 11,799; Germany comes next with 8571 , Americans third,
with 2343 ; Swedes and Norwegians fourth, with 1375 ; French fifth with 1334; S Swiss sixth, with $1314 ;$ Danes seventh, with 1039 claims to be the birthplace of so many as 400
IT has already been mentioned in this column that certain metallic masses. W. Spring has shown, in the Berichte der deutschi. chem. Gesell., that, when a mixture of bismuth filings, cadmium,
and tin, in the proportions necessary for the formation of Wood's alloy, is subjected to a pressure of 7500 atmospheres, the mass thu metallic block is formed which has all the physical properties the alloy. Its specific gravity, colour, hardness, brittleness, an fracture are the same; and when thrown into water heated to
70 deg. it melts at once. In like manner Roses's metal was made by subjecting the proper mixture of lead, bismuth, and tin to high pressure, a mass resembling brass is finally obtained. sub, Ihewever,
on the of the the and tin will be squirted, and the copper remain,
A sorT alloy which will adhere so firmly to metallic, glass, and invaluable when the articles to be soldered are of such a nature that they cannot bear a high degree of temperature
pulverised copper sulphate, or vitriol of dust, and is ootper, into its orined oninal elements, by
means of metalic zinc. 20, 30 , or 36 parts of thil copper dust according to the hardness desired, are place in a cast iron or having a specific gravity of $1 \cdot 85$. Add to the paste thus formed 70 parts (by weight) of mercury, constantly stirring. When
thoroughly mixed the amalgam must be carefully rinsed in warm
water to remove the ecid water to remove the acid, and then laid aside to cool. In ten or
twelve hours it will be hard enough to scratch tin. When it is to it becomes as soft as wax by kneading it in an iron mortar. In
this ductile state, the Scientific American says, it can be spread upon
any surface, to any surface, to thich, as it cools and hardens, it atheres yery
tenaciossly?

MISCELLANEA.

THE Royal Agricultural Show at Reading commences on Monday,
Oth July, and closes on the following Friday evening. A New Town Hall, Free Library, Reading-room, and School of t Reading. at Reading
AT the coming Congress of the Sanitary Institute of Great
Britain at Newcastle-upon-Tyne, Captain Douglas Galton, R.E. Britain at Newceastle-u. will be president.
The prospectus is issued of the Ship Kaising and Salvage Associaacquiring Meossprs. Clark is to and Starned with widh a capital of $£ 100,000$ for
anglish and foreign paten rights for raising vessels and removing submarine obstructions.
A coursse of eight elementary lectures on "Strains in Ironwork, is to be given by Mr. Henry Adams, Assoc. M. Inst. O.E., in the
hall of the Society of Engineers, 6 , Westminster-chambers, S.W on Tuesday and Friday evenings, 6.30 to 8 p.m., commencing this (Friday) evening, 2nd June.
Is the submarine operations connected with the raising of the
vessel La Provence, sunk in the Bosphorus, a telephone was added o the diver's dress, one of the glasses of the helmet being replaced by a conper plate, in which a telephone was inserted, so that the
diver had only to turn his head slightly in order to receive his

We understand that the Dee Oil Company, of Leadenhallstreet, E.C., and Saltney, near Chester, has just succeeded in obtaining the contract for the years 1882-3 for the whole consump-
tion of cylinder oil for H. M. Admiralty. This is the third year in succession that the company has obtained this contract. The
India Service Royal Mail Steamship India Service Royal Nailway Company's Holyhead boats are also using it in preference to any other valve or cylinder oil.
THE work of lifting the new great bell at St. Paul's was com-
pleted at noon on the 31st ult, the actual operation having taken pleted at noon on the 31st ult, the actual operation having taken across the opening in the vaulting of the tower to support it, and to enable the ropes to be removed. These supports were in positaking its seat firmly with a slight creaking noise as the beams felt the heavy burthen settling itself upon them. To-morrow "Great
Paul" may be expected to be heard Paul ay be expected to bo
Thr Council of the Society of Telegraph Engineers have deter-
nined that the Society shall offer three premiums annually for the best original paper sent in to the Society on telegraphic or electrical subjects during the session by any person not being a member
of the Council of the Society. The first premium will be called the Society's premium, value $£ 10$; second premium will be called the Paris Electricial Exhibition premium, value $£ 5$; third premium
will be cabled the Fahie premium, value $£ 5$. The premiums will consist of books or ocsientific apparatus. The first premiums will
be awarded in 1883 for the best pupers sent in between this date and the end of May next.
In Austria many of the roads are under the supervision of the Government, and the money required for them is stated in the
Council Budget. The material used for mending the roads in Lower Austria is of a very inferior quality, so much so that some years ago a reward was offered for the discovery of some suitable
and more solid substance, but without practical result Bohemia really good material-basalt-is obtainable, also in Moravia, Silesia, and the Tyrol, where granite, gneiss, and hard
limeston 5,275 kilos., and a decree of 1843 ordered that these roads should have a maximum width of $9 \cdot 48$ metres- -ftt . More recently this
has been increased to 12 metres.
STEPS are being taken by the Dover Town Council and the Dover Company to transfer their Flushing service to Dover permanently If this were done it would necessitate the construction of additional dock accommodation in order to be able to berth the vessels in the harbour, there being ample room at the Admiralty Pier for embarn
ing and discharging passengers. The most important alterations, ing and discharging passengers. The department of the service, the signments of goods being inadequate to the requirements. The
Coumbil H Harbour Board have offered to give the company very facility to enable then to provide the to thich por which port th
borough Pier .
Evglasp imports some 10,000 tons of cork per annum, and the of many stoppers and substitutes for corks, such as pluys of wood whose fibres have been specially softened for the purpose, indiarubber, and other materials. The French Goverriment are
giving special encouragement to the platataion of the cork-oak in
Algeria, and the same thing will, no doubt be done in Tuni but the Colonies says, the tree will grow equally well in India Central America, the West Indies, many parts of Africa and Australia, might loy the foundats an of he planters in our possessions tucin some of these trees and starting their systematic cultivation. The magnificent growth, mast valuable one and easily cultivate form an ornament in any

Ir is stated that a new lamp combining gas and electricity, giving Iremarkably economical results, has been brought out. It wwill be remembered that some years ago gas burners were not uncommon
which had a small piece of platinum foil arranged on the burner so as to be burned in the flame. When this was heated by a gas tiame
burner, and caused an improvement in the light. The new lamp
is essentially it is stated, this burner harranged so that a small current of electricity is passed through the platinum. The gas is
first lighted, and this heats the platinum, the resistance of which irst lighted, asd this heats the platinum, the eresistance of which
is thus increased, so that a current which would when the platinum is cold, be freely transmitted, now heats the platinum to incandescence, and thus in turn heats the issuing gas to a very high tem-
perature, so that a light equal to 30 candles is, it is said, obtained by the consumption of 2 cubic feet of gas per hour, and a small
electric current. If this is the case, the existing gas fittings are all
. utilisable, and a secondary battery of no great number of
elements, and charged with a current of about $2 \frac{1}{2}$ volts E.M.F., would supply the current needed.
Accorning to a copy of the rules relating to the grant of lands
in the Tavoy district of British Burmuda, which we have received from the Secretary of State for India through Sir houis Mallet,
waste lands, covered waste lands, colvered at present with forest, bamboos, or grass, are
available for plantations of coffee, tea, cinchona, or spices at altitudes varying from 100ft. to 6800 ft . above the sea in the Tavoy region is between the 13th and 14th parallels of Herd. The lands are mostly withing thirty to fofity miles of the
yearer station of Thayetchoung on the Tavoy river. Mail
steame steamers ply between Thayetchoung and Moulmein or Rangoon
once a weeks inwards and outward, beginning from the 1st January, 1882 . Grants of land in lots ranging from 100 to 1200
Jond acres can be had for planting tea, coffee, cinchona, or spices on
application to the Deputy-Commissioner of Tavoy. Copies of the Act and rules can be obtained by intending planters on application
to the Deputy-Commissioner of Tavoy, the Commissioner of Te the Deputy-Commissioner of Tavoy, the Commissioner of
Tenasserim at Moulmein, or the Secretariat, Rangoom. A grantee
will become proprietor of his grant as soon will become proprietor of his grant as soon as he brings
under cultivation one-third of the area thereof. The only payment which a grantee will have to make, on receiving his grant,
will be eight amnas an aere fer the oosts of survey and demareation?

SECTION THROUGH THE GREAT ORGANAT THE CRYSTALPALACE. messrs. gray and davison, builders, euston road, london.

For description see page 393.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to *inform correspondents that letters of inquiry addressed to the public, and intended for ansertion invelope legiblyndirected by the uriter to himself, and bearing a d. postage stamp, in order that
ansvers reecived by us may be forvorded to their destination.
No notice vill be talen of communications which do not comply answert
No notive wive be tathen
Nith these instructions.

you see
KIvesin
"M Mised

 embodied in whole or in part in the machines of Burgin, Brush, Gramm
S. Siemens, ,cce
E. The greatest speed attained by large torpedo engines is about 620 rev
 Hammersmith,, has
believer H godson's.
lutions unlooded.
HevRns.-The obets sill carry the weight. We cannot see that expansion of
the tube wiill in any way afect the strains, except that by a sliphtin increase

 in such a casse special arrangements must be made for obtaining a vacuum
to befein vith
c. c . We do not quite understand your question concerning the limits

shellac machinery.

common road steam carriages.
(To the Editor of The Engineer.)
Sire -1 I shall be much olige if any of the readers of The Evanger
will tell me where T can obtain a light road engine, to work by steam or
 Kensington, May 30th.
SUBSCRIPTIONS.
 it credit ocecur, an extrac charge of two shillings and sixpence per a Many Volumes of THe Enginerer can be had price 18s. each.
Forvign Subscriptions for Thin Paper Copies viill, untilif further notice, be
received as the ratas given belov:- Forerion Subcribers paying in oudunce

 India, e22 0s. 6 d .

ADVERTISEMENTS.

*The charge tor Advertisements of four lines and under 2s three shillings,

 Advertisements cannot be inserted unless Dellivered
oclock on Thursday Evening in each Week.
** Letters relating to to

THE ENGINEER.

JUNE 2, 1882
Steel for structures
Engineers when preparing designs for roofs, bridges and indeed all kinds of metallic structures, no longer fea to use steel. It is probable that the worst is known con-
cerning it ; indeed, Sir Henry Bessemer's noteworthy statements on this point will not soon be forgotten, and this being the case, it is now employed with a daily
increasing freedom. But there is good reason to think ncreasing freedom. But there is good reason to think
that it is being used without due discretion ; in some case without sufficient caution, and others with too much; and without sufficient caution, and others with too much; and
it seems that the time has arrived when engineers will do well to consider in what direction they are going, and
whether their present practice in connection with steel
does or does not need revision. In steel, when properly which can be made to vary in its characteristics through a comparatively wide range. For the moment we shall shut out all reference to the hard tool steels, and confine our attention to the softer steels, which take the shape of bars, plates, rods, and angles. Now such steels can be had with a breaking strength varying between 28 tons and 45 tons to the square inch, and an elongation varying between 25 per cent. and 5 per cent., while the limit of elasticity is anything but narrow. In practice engineers usually specify for a steel with about 30 to 31 tons tensile strength, and an elongation of 15 to 18 per cent., and they metal is to the enormous difference which can exist between variou kinds of steel, and thus bring the whole produce of the steel makers of the world down to a dead level of uniformity We think it can be shown that this is bad policy, and that it would be far better to specify in every case for that type the structure in which the steel is to be employed
So far as the civil engineer is concerned, there are only two principal conditions under which steel or iron is used. It may be exposed to a quiescent, or statical, load, or it may in a said that a high wind may now and then produce dynamical strains. But in a railway bridge the strains are well, every train which passes putting the whole bridg into motion. The paths described by the various portion of the bridge are involved to a degree. An American engineer hás recently carried out some experiments with very simple apparatus, by which a bridge is made to register its movements automatically when a train passes, and this apparatus shows that the bridge not only moves up and down, but that as a train enters upon a girder, the rain learder is moved forwards and returns again as the of the bridge have small linear values, but they are non the less real ; and when we find a joint or a bar moving through a distance of even one-eighth of an inch only, we are fully justified in regarding the strain produced as
dynamical, and the bridge does work, which is more than dynamical, and the bridge does work, which is more than can be said of the roof, let us say, of the Midland terminus
at St Pancras. Now it seems to be clear that a steel at St. Pancras. Now it seems to be clear that a steel
which will do very well for a roof is not the steel which which will do very well for a roof is not the steel which
will do for a bridge. If we take a steel capable of stand ing 45 tons to the square inch, and loaded with a static strain of 15 tons to the square inch, it should be quite safe in the form of a roof, but it would not perhaps be safe in a bridge. In this last, a 32 -ton steel, loaded to 10 tons on the square inch, ought to be perfectly safe, provided proper
care is used in the manufacture of the metal. We should care is used in the manufacture of the metal. We should not have the least hesitation in using a hard strong steel in a roof, while in a briage nothing would induce us to employ anything but a ductile, and therefore a soft stee.. Each is right in its own place. But to limit the engineer to the ase of a low steel in a roof is simply to deprive him of one-half the advantages which the new material can confer upon him
It may be urged that it can never be safe to use a metal with but 5 per cent. or so of elongation. We confess we do not see the force of this assertion. The steel tie-bar of stretching of which it is capable would save the roof if its destruction were imminent. Let us take, for example, roor winn the coratively moderate span or the Le as suppose that the tie-roos coupling the feet of the principals is also about 100t. long, and that it is of very mil the limit of elasticity will be about 15 or 16 tons, probably ess; the extension is 25 per cent. In other words, th bar is supposed to be capable of stretching 25 ft . before it one foot the side walls of the building would be driven outwards, and the ruin of the structure would be almost as complete as though it fell down bodily? Of course we shall be told that the ductility of the metal is never exevidence that the metal is not brittle. But we reply that an exidence that the metal is not brithle. But we reply that an
extension of but 5 per cent., when taken with other characteristics of the steel, supplies ample evidence that th metal is ductile enough for the intended purpose. And it will not be found easy to maintain that a roof, the breakin strength of the tie-rods of which is 45 tons to the squar stand but 31 tons to the square inch. The actual strain to be brought on in either case must be a direct tensile strain, and neither the one material nor the other can b called brittle, or be said to be incapable of bearing such shocks or strains as a roof may be submitted to. Even when we come to speak of bridges, it is by no means clear as some persons would have us suppose that the low steel must be much superior to the high steel. There isin exist ence an abundance of iron bridges the metal in which would not give an extension of 5 per cent., but no one appears to think that they are anything but perfectly safe. Hundreds of boilers are made year after year, the power of extension in the plates of which is practically nothing-1 or 2 per cent. perhaps, yet these boilers while new never explode team hammer would probably not last two hours. The difference in absolute strength between a low and a high steel is so great that much may be said in favour of the latter so long as it retains a useful amount of ductility It is well known that if the engineer will rest content with the paratively small range of extension before fracture at a maker can supply a tremendously strong materiad there are comparatively boundless opportunities at the dispnsal of the engineer for producing roofs of large span There ought to be no risk whatever in loading such stee as we have in our minds up to 15 tons on the inch static load, and a very few calculations will show that it is prac-
ticable under such conditions to make roofs of small or
moderate span at very moderate cost indeed; while, on the other hand, roofs of gigantic dimensions become possible, It must not be forgotten, however, that in dealing with steel of small scantling, nothing but first-rate workmanship will suffice. Everything intended to bear a tensile strai and joints must not only be of ample size but very carefully fitted; and as there will be a small margin-by comparison with some iron structures - for corrosion, great pains should be taken with the painting, and the design should be of such a character that every portion may be
We need hardly add that all we have said is based on the assumption that the steel is what it pretends to be, namely, of first-rate quality throughout. Nor is it to be supposed that the figures we have given, such as 45 tons to the square inch, 15 tons, and 5 per cent., are more than illustrative. They Our contention is that as innumerable qualities of goo steels are in the market, the engineer should vary his practice by availing himself of the opportunities which the steel makers afford him. He now uses precisely the same type of steel in a roof that a mechanical engine would put into a crank shaft or a steam hammer piston The Board of Trade heve at last consented to the putting of strains of $6 \frac{1}{2}$ tons per square inch on steel in bridge. We hope to see the limit raised ere long to 10 tons. If 10 tons are safe in a bridge, 12 or 14 tons are safe in a roof. wind only plea that can be urged against thi that those streivy strains. than those conditioned by elastic pressure; and if this is so they need cause no alarm. They have nothing in common with those set up in brial joints on a bad bit of permanent way.

the morality of boiler insuranci

The inquest on the Radcliffe boiler explosion, particulars of which we published last week, brings again to the front an accusation which has frequently been made against boiler insurance associations working for proit, namely, that their system is directly conducive to accident. This notion appears to be persistently advocated, if it was not actually originated, by Mr. Fletcher, the chief engineer of comparatively Steam Users Association, which, alhough tions in boiler inspection is the oldest of these inspection societies, and claims pre-eminence in point of respectability from the fact that the profits of the undertaking are not divided among shareholders, or even among its members--
as in the mutual boiler insurance companies-but are as in the mutual boiler insurance companies-but are
devoted to the establishment of a reserve fund, the increase of the salaries of the officials, occasional experiments, and the dissemination of reports. The value attached to the system by steam users may be gauged by unpre-
judiced observers from the fact that while some 4000 judiced observers from the fact that while some 4000
boilers are under Mr. Fletcher's supervision, ten times boilers are under Mr. Fletcher's supervision, ten eimes
that number are insured by the joint stock companies, one company alone having 20,000 boilers on its books. The some some quarters, and is systematically advanced when an
insured boiler explodes. In connection with the Radcliffe explosion a contemporary, for example, trotted out explosion a contemporary, for example, trotted out
this pet theory last week, notwithstanding the fact that the counsel engaged at the inquest for the owners of the boiler, signally failed to establish, to the satisfaction of the jury, the applicability of the
theory in this instance. The jury, after a patient and exhaustive inquiry extending over three days, while returning a verdict of accidental death, blamed the manager of the works, as he had not given the insurance company reasonable facilities for the examination of the boiler fact which it is suggestive to note our contemporary carefully suppresses, while professing to lay the judgment in apportioning blame. We may say at once that, after consideration of the whole of the facts, we entirely agree with the jury. The mmediate cause of the accident was quite clear. It was length of plate above the seating having wasted until there was not sound metal enough left to stand the pressure of the steam. It was impossible to say how long very active corrosion had been going on, but it was generally conceded that in all probability an examination by a competent inspector any time within the past twelve months, an the defects and prevented the explosion. As will be seet on reference to last examination of the boile in the flues by the insuranco company was made on 5 th January 1880 when portion of the plate were found to be corroding where in contact with the seating, which was damp. The attention of the owners was directed to this, and they were recommended to take efficient means for the prevention of the dampness. He direct evidence that any attention at all was paid by inquest ; but from the fact that leakage from a cold-water pipe passing through the flues at the back of the boiler the discovered and stopped, and that no further reference insurance inspector who months, obtaining such information as he was able with the boiler under steam, the probability that they did not entirely disregard it may be placed to their credit. The suspicion of the insurance company's representatives as to continued neglect of the boiler and seatings appears at all events to have been allayed, but as a measure of precaution the attention of the firm was frequently directed-six times in all since January, 1880-to the importance of having the boiler examined externally and in the flues, been forwarded ten months before the explosion, pressing for an "early" opportunity to make such an examination, and the firm were told that until this was carried out it was impossible to furnish them with information as to the
condition of the boiler. The Christmas of 1880, and the Whitsuntide of 1881, together with any local holidays and other occasions which no doubt afforded opportunities for
cleaning out the boiler were entirely disregarded, and it cleaning out the boiler were entirely disregarded, and it
was not until Saturday, the 31st of December last, that was not until Saturday, the 31st of December last, that
the firm sent to the insurance company a notice, which was practically no notice at all, that they might examine the boiler on the following Tuesday. Owing to Sunday and the Monday, which was kept as a holiday, intervening, the notice was not received until the day when the examination was to be made, and from the pressure of
work at the moment, it was found impossible to send an inspector in time. Had the firm under these circumstances taken the not very extraordinary course of spending a few
shillings in the engagement of an ordinary boiler maker to examine the boiler before starting again, the accident would in all probability have been prevented. Nothing of the kind, however, was done, and notwithstanding
subsequent pressing request from the insurance con subsequent pressing request from the insurance
pany for an opportunity to examine the boiler, facts were proved in open court and are beyond These facts were proved in open court and are beyond dispute,
and to any ordinary mind it would appear that so far from deserving censure the insurance company really deserves credit for the pains they took to keep the boilerNowner out of danger.
where the owner where the owner was informed in the plainest possible
language that the insurance company could give him no language that the insurance company could give him no
information as to the condition of his boiler, pressing him at the same time for an opportunity to examine it, could at the same time for an opportunity to examiler than the granting of a policy on his life would make him negligent of the ordinary means of preserving his own existence,
presuming him to be ordinarily sane. It is amazing to presuming him to be ordinarily sane. It is amazing to by a juryman put forward in support of a contrary
notion. "What," asked the juryman, "would you have done had the insurance company threatened to cancel the insurance if you did not grant an opportunity for a insurance if you did not grant an opportunity for a
thorough examination of the boiler ?" "I would have got it ready at once " was the reply. None but a child would expect any other reply from a man after the explosion, and
with a verdict of manslaughter possibly hanging over him. A better judgment of what he would have done under such circumstances can be found by looking at what was actually insured for only $£ 100$, and on being asked by the Board of Trade officer present why it was insured for so smail an amount, the manager replied, "The object sought was bility from their shoulders on to the insurance company. Letters put in by the firm themselves showed that prior to 1878 the boiler was allowed to work for eleven years without a thorough examination. From the evidence produced at the inquest it appears that this would certainly not now management; but what can be said of a firm who avowedly insured for the sake of inspection and allowed the boiler to go eleven years without it? Would they have taken greater care had the mysterious influence attributed by a contemporary to the $£ 100$ insurance been with-
drawn, and the insurance company had been merely engaged to inspect the boiler? A case which o curred the year before iast furrishes a reply. A
boiler exploded from simple corrosion of the shell at Ruabon, and ordinarily careful inspection would have discovered the defect. Six people were killed, and thirteen nine years under the supervision of the Midland Boiler Insurance Company, which had a contract for its inspection without insurance. The owners here had allowed the
boiler to work for the last five years of its existence without a thorough examination being made by the Boiler Insurance Company, which was willing and anxious to carry out users who will not take ordinary care of their boilers unless compelled to do so by law, and it is matter of surprise to us, looking at the very considerable proportion of this class
of accidents that occur, that explosions among insured boilers should be so few.

LeICester flood works.

The opening of the Abbey Park by their Royal Highnesses the Prince and Princess of Wales on Whitsun Monday last may
practically be considered as the opening of the first section of the laportant engineering works which have been in progress for the leicester. From an early period the river Soar has been formed into a series of ponds for the purposes of mill power, there being
seventeen mills on the Soar from its source to the iunction with the river Trent, a length of about forty miles. Some of these ponds have been rendered navigable by the construc
tion of canal locks, the lifts being adapted to the tion of canal locks, the lifts being adapted to the ancient fall
of the respective mills. The area drained by the Soar above Leicester is about 90,000 acres, the distance of the limit of the about 3000ft. above, the Soar at Leeicester, and in periods of heavy rainfall floods rapidly accumulate and discharge through the
borough at a very considerable velocity, the volume of water sometimes amounting to as much as 400,000 cube feet per
minute. The discharge obstructed by artificial dams canal embankments, contracted weirs and bridges, overflows the banks of the adjoining lands down the valley, which is comparatively
level and from 800 ft . to 2000 ft . in breadth. The inhabitants of the low-lying thickly populated. districts have been very seriously, at times to the depth of 4 t . of such serious and disastrous floods was a subject which has
engaged the attention of the Town Council and the inhabitants of Leicester for very many years. The advice and assistance of the most eminent engineers was obtained, and eventually works
embracing the purchase of the water right of mills, the embracing the purchase of the water right of mills, the
straightening, widening, and deepening of the river, the removal
of old weirs and obstructions to the have been completed, and have drained the site of the Abbey Park so as to admit of a beautiful pleasure ground being formed
works in the western part of the town are completed, Leicester
will be permanently relieved from a serious periodical will be permanently relieved from a serious periodical
grievance. The section of the works for the prevention of grievance. The section of the works for the prevention of
floods was most severely tested by the extraordinary flood in Hloods was most severely tested by the extraordinary floon in
July, 1880; when the flood water was several feet deep in the July, 1880 ; when the flood water was several feet deep in the
western part of the town streets, while the site of theworks and the Abbey Park were absolutely free from flood. Still below Leicester there were about 11,000 acres in the Soar Valley immersed in
water to the depth of several feet ; and in order that this valley may be permanently relieved it is very necessary that works
similar to those executed by the Corporation of Leicester should be continued down to the Trent, a distance of about twenty-two miles. The river works were executed by Messsrs. Benton and Woodiwiss, of Derby ; the canal works, by Messrs. Whittaken
Brothers, of Leeds ; the park. works, by Messrs. Barrow, Son, of Elvaston, landscape gardeners, the engineer being Mr. F. Griffith total the engineer of flood works to the Corporation; and the $£ 25,000$ expended upon the formation of the park and the
purchase of land and the abolition of the right to water for the purchase of land a

the northern chemical trad

The condition of the chemical trade of the North of England, owing to the adoption of various new processes in other disprocess almost universally adopted in the North of England is that of Leblanc, and the development of the ammonia process has so increased the production of alkali and certain classes of
chemicals that for several years prices have been falling, and it chemicals that for several years prices have been falling, and it is
stated that few if any of the chemical works on the Tyne have stated that few if any of the chemical works on the tyne have
been making a profit for a considerable period, whilst in several instances a loss has been actually incurred in carrying on the works. Nor is the future more promising, for the over pro-
duction which is taking place is likely, it is feared, to bring down prices to a still more unprofitable level. Various suggestions have been made to meet the difficulty-reduction of the output
and the obtaining attempt to induce a restriction of the output a little while ago failed, and though it is possible that it will be renewed, it is not
expected to yield much result. The two chief raw materials expected to yield much result. The two chief raw materials
that reduced prices are possible in, are sulphur and sat. The former is a monopoly, in the hands on
three great companies who import it, and though it is known that one of the three is favourable to a reduction, and that to a join in such a movement, which needs the consent From the present source of the supply of salt, little relief can be hoped-that supply coming from Cheshire and Durham-but
the utilisation of the salt deposits of the south-east of Durbam are expected to give to the deposits of the south-east of Durham much cheaper supply, the saving in the cost of railway carriage alone being very considerable. Unless relief from this source can be obtained, the only course for the Tyne makers to take
will, it is urged, be that of restriction of the output-either by a combination of the makers in the district, or by the longer process of the survival of the fittest. It remains to be
seen which course will be ultimately adopted, but it cannot be concealed that
the Tyne is critical.

LITERATURE

On Vibratory Motion and Sound. By Professor J. D. Evereitr, F.R.S. (Longmans.) 1882.

The publication of this excellent treatise comes very opportunely just at the moment when the experiments of
Bjerkness and Stroh have drawn special attention to the phenomena of vibrations, whether in water or air ; and to all those who, being interested in those experiments, wish to follow out the ideas which they suggest, we commend the perusal of this book. The theory of vibratory or some special subject, usually sound or light, and is also connected with very high mathematics, which make it alarming to the ordinary reader. The theory is, however, quite capable of being studied by all who have mastered
the elements of dynamics - the class for whom Professo Everett has or dyamics-the class fer whom We believ there are manyecially written his treatise. We bent, but who yet have very indistinct and imperfect ideas as to the real nature and properties of an undulation. This arises in part from the way in which the subject
is presented when in a popular form. We are almost is presented, when in a popular form. We are almost
always bidden to drop a stone into still water, to watch the wavelets which spring up around the spot of its fall, and swim away in ever-widening circles
till they are broken up and lost; and from this to contill they are broken up and lost; and from this to con-
struct our ideas of the wave motion to which sound and light are alike said to be due. But while there is of course some likeness between the wavelet on the pond and the undulation in the air or the ether, the differences between them are too large to be neglected even for a moment. The wavelet is in two dimensions only-that is, it is propagated along the level surface of the water: the undulation spreads out in all directions from the centre of disturbance-unless where the elastic medium is cat off by some solid body-its shape at any instant being thus a sphere instead of a circle. The wavelet is shattered and dissipated to nothing the moment it strikes the shore: if the unduatio meets a solid body it divides into two parts, one or which is reflected back from the surface and retwo whither it came, into the interior of the body. The wavelet starts with into the ively hish thedy. The whill comparatively high and steep crest, which rapidly dwindles
down as the circle expands, till it melts into the still surface of the pool. The undulation travels at a speed which is almost immeasurably greater, and to a distance which the path of each atom of water, as the wavelet passes through it, is a vertical rise and fall-in other words, its itself is propagated. The same is held to be true of those ethereal undulations which make up heat and light, although the exact direction of their motion is yet a doubtful There the particles of air behave like those of india-rubber in a buffer or draw spring. They are first forcibly driven
their own elasticity, to a point beyond their original posi tion of rest. A better notion of the facts will, perhaps,
be gained by imagining that we have a series of thin india-rubber balls, enclosed concentrically one within the other, and that a pinch of gunpowder is fired at the centre. Clearly the first effect will be that the imermost ball will expand outwards in all directions, each point on the surface moving along the radius of the sphere ; when the force of the explosion is expended, the sphere will contract again
as suddenly as it expanded, oscillating inwards and outas suddenly as it expanded, oscillating inwards and out-
wards alternately, until it comes to rest. Meanwhile, the second ball will have been pushed outwards by the expansion of the first, and in an exactly similar manner ; it will contracted ans by upon the have contracted again by its own elasticity. Thus a wave, so to strough the series, the distance between each pair of balls being first lessened and then increased again, and thus forming a condensation, followed by a rarefaction. If
we now suppose the balls to lose their solidity, though not their elasticity, and to become mere contiguous films of air, we have here the whole phenomena of a wave A wave of light or heat cannot be so simply represented, surface will be at right angles to the radius, and not along it. In our ignorance of the exact nature of these vibrations, any new physical illustration might possibly lead astray almost as much as the old one of a pond wavelet appears to have done.

It may be objected, perhaps, that if the exact form of the ether undulations be thus unknown, it must be impos sible to examine them scientifically or draw any valid conclusions concerning them. To any one who makes this ob book. Not that he will there find any precise discussion of the vibrations in the case of the ether, which forms no part of the plan; but, besides obtaining a correct idea of the difference between longitudinal and transverse vibrations, he will see how the motion of any vibrating particle, whether that motion be of the one clas su metric may always be expressed by a is so small as to me only condition be a the sible with sufficient accuracy by the well-known formula called Hooke's I restore the particle to its original position of cuilibrium must be supposed to vary as the distance through which it has moved from that position. If this distance-or the amplitude of the vibrations, as it is called-be sufficiently small, this may be assumed to hold, whatever the actual law of force may be; and then the motion can readily be shown to possess a certain definite character, to w
name of simple harmonic motion has been given
The principal object of Professor Everett's book is to set forth the theory of this motion in its various ramificamanner, chiefly by simple geometrical methods The bool, however, is by no illustration of the composition of harmonic motions, he describes the worke of the familiar pantacraph we believe it should be written, the pentegraph, being essentially an arrangement of five linked points. Again, the similar composition of two harmonic motions is shown to account for the phenomena of what are called "beats"
in music and of spring and neap tides ; and later the practical application of the latter fact is brought out by a description of the tide-predicting apparatus of Sir William Thomson and Mr. Roberts. A diagram shows a set of tides for the port of Beypore, as "ground out" by one of these instruments, belonging to the Indian Governtheory of vibrations are the crank and connecting rod, the link reversing gear, and various contrivauces for producing simple harmonic motion on a large scale, such as Donkin's harmonograph, and an elegant adaptation of the pantagraph invented by the author.
One point may be referred to in conclusion, which is sometines a dificulty to the student, namely, the energy that a lark can be heard sincing in the air at any distance up to a quarter of a mile, it is obvious that we have here globe of air, half a mile in diameter, the whole of which is thrown into agitation by the effect of the bird's voice. It may well seem that this is almost incredible. But an investication into the case shows that the energy expended in producing any particular vibration varies as the square of the amplitude--that is, the distance through which the particle swings ; and as in the case of sound this distance is excessively minute, it follows that the energy required is excessively minute also. It must be remembered that one original exertion of energy by the bird serves to pro duce vibration in all the concentric shells of the suppose case one after another; and also that the friction in the longitudinal vibrations, such as those of sound, probably m, the particles approaching to and receding
from each other without any action of the character o shearing taking place. To all those interested in this question, or any others relating to vibratory motion, we Everett's elegant and masterly treatise.

THE ST. GOTHARD RAILWAY

The railway passage of the Alps from Switzerland to Italy is at last an accomplished fact, and in a few days express trains will be running from Calais via Rheims and Bâle to Milan, without change of carriages. Already the northwards, have been received with banquets and festivities at Lucerne, and have carried their Swiss friends back with them to enjoy similar welcome at Milan. It is true, as our readers will remember, that this ceremony in no sense celebrates the completion of the great tunnel,
which was opened for local traffic some time back which was opened for local traffic some time back. Nor
does it assure the complete and enduring success of tho
project, at any rate from a commercial point of view.
There are questions yet to be solved, such as the keeping There are questions yet to be solved, such as the keeping
open of the approaches on both sides throughout the winter, the regular working of the traffic over the steep inclines and curves, especially within the "screw tunnels"
which have been used to facilitate the ascent of the which have been used to facilitate the ascent of the
mountains, and last, but not least, the ventilation of the great tunnel itself. As to this last, we have the assurance of our correspondent who traversed it a few days before the opening, that the air within was at that time very fair;
but it is still doubtful how far this will be true when the increased service of trains comes into play. This matter, however, we have dealt with only recently. Meanwhile the opening of the line throughout is at least a very
definite step in its progress, and renders this a fitting definite step in its progress, and renders this a fitting opportunity to put before
great engineering work.
The idea of a railway between Switzerland and Italy appears to date back as far as 1840 , but it was first put into a practical form in 1865, when the Italian Government
appointed a commission to study the question. This appointed a commission to study the question. This
commission reported in favour of the St. Gothard as Fagainst the two competing routes of the Spliigen and the traffic from one side of the Alps to the other, and through traftic from the North of Europe to India and the East Their report decided the Italians, and eventually the
Germans and Swiss also, in favour of this route ; and at Germans and Swiss also, in favour of this route ; and at
last, in October, 1869, a scheme for the building and working of a St. Gothard Railway was agreed upon, in a
conference at Berne, between representatives of Italy, Switzerland, North Germany, Baden, and Wurtemburg Two years more of negotiations elapsed before the Sit Gothard Railway Company was formally constituted and
began to work. The great tumnel, the especial feature of the began to work. The great tunnel, the especial feature of the
scheme, was begun in June, 1872, and was completed, after 912 years ceaseless labour, towards the end of last year, being opened for traftic on 1st January, 1882. The
works of this tunnel, which have been often described, will not be touched upon in the present article.
The valley of the Reuss, up which the railway passes level of the Lake of Lucerne, with more level stretche between. The original project was to surmount these steps by inclined planes worked on some special system, the pass. But it was soon recognised that neither time nor money would be saved by this latter plan. It was called the "Installation," that is, the dwellings of the workmen- 3000 to 4000 in number-the buildings for engines and other motors, for workshops, stores, and
offices of all kinds. To build these in the desolate regions of the higher Alps would be enormously expensive; and
during the winter it would be difficult or impossible to find water for the supply of the engines. The rigorous climate would further increase greatly the difficulty and expense of keeping the men at work. For such reasons
long tunnel without shafts was decided on. At the same time the maximum gradient was fixed at $2 \cdot 6$ per
cent.-about 1 in 40 -and the idea of employing any special mode of traction, such as that of Fell, Agudio, or As early as 1850 a line between Göschenen and Airolo was laid out on paper and discussed by a Swiss engineer, Herr Miiller. This idea was subsequently taken up and worked
out more fully, in 1864, by two engineers of Baden, Beck and Gerwig, and was finally adopted in the international scheme above mentioned. Gerwig was for four years
engineer of the line, during which time a careful survey was prepared on a scale of 1 to 5000 on the northern side, and 1 to 2500 on the southern, and a trace of the railway laid out upon it. His successor, an engineer from North
Germany named Hellwug, had this trace marked out upon the actual ground; a footway was constructed along it, wherever possible, and cross sections, to a scale of 1 to
100 , were taken at intervals. But this trace, which was mainly carried along the face of the precipices on one side of the valley at a height of about 300ft. above the road, proved to present such formidable difficulties of construc-
tion that Hellwug resolved to abandon it, and to adopt the principle of utilising every favourable stretch of ground at the bottom, on whichever side of the stream it might lie,
thus obtaining the advantages of vicinity to the road, and avoiding of torrents, falls of stones, \&c. Where the gradient would become too steep to allow this course to be followed he had recourse-as his predecessors had also proposed-to arti-
ficial lengthening of the line by means of curved tonnels ficial lengthening of the line by means of curved tunnels
pierced in the walls of the valley. In 1876 he published in German, French, and Italian a report embodying these proposals, and tracing out a route which, with small
exceptions, has been actually adhered to. It will be een, however, how much this preliminary work, which might well have been gone through earlier, delayed tious and extraordinary result that the great tunnel, the nagnum opus of he undertaking, was corplete and open When Hellwug set fairly to work in 1876 , the whole task f connecting the northern end of the tunnel at Gole task of connecting the northern end of the tunnel at Göschenen with Biasca, in the Ticino Valley, had still to be done. Looking first to the northern slope, the worst portion was hat from Göschenen to Silenen, where the line had to fall of 1 in 30 . As the maximum admissible gradient was 1 in 40, a lengthening of about $6 \frac{3}{2}$ kilos. was necessary; and no Brenner, by which this could be cheaply effected. The lengthening must be done within the valley itself. Now this valley, between Göschenen and Fluelen, has four principal an average fall of 5,7 per cont., and is 6 kilos. long. It extends through the well-known gorge of the Devil's Bridge; and from the great height of the crags on each
side jits climate is unusually severe, and avalanches have to
be provided against. The second division, from Pfaffen-
sprung to Meitschlingen, is about 5 kilos. long, and is very steep in the upper part-where the Reuss makes two
cataracts but comparatively level in the lower. The rocks are lower, but more treacherous, the granite being richer in mica, and on the east side the fall of stones is serious danger. The third division, reaching to the mouth
of the Maderaven Thal at Amsteg, is 4 kilos. long, having of the Maderaven Thal at Amsteg, is 4 kilos. long, having
fall of $7 \frac{3}{4}$ per cent. in the upper part, and only 1.8 in the lower. The river is in a narrow winding cleft between steep precipices, and it is exposed to dan
gerous avalanches from the Bristenstock, which rise gerous avalanches from one the eastern side. The fourth division, from Amsteg to Fluelen, is 17 kilos. long, and has falley is also much greater, and the difficulties are trifling in comparison.
Looking at these natural features, Gerwig had proposed to begin the incline far down in this last division$9 \frac{1}{2}$ kilos, north of Fluelen-so as to have attained a considerable altitude by the time the more difficult part wa reached. This, however, involved very lofy viacucts ove
the lateral valleys, and other difficulties. Hellwug started the mountain part of his own line $2 \frac{1}{2}$ kilos. higher up, keeping the mountain part lof 20 m . to 30 m . lower throughout, and so getting easier viaducts and better foundations
In the next division he abandoned the right bankwhere Gerwig's trace had lain-on account of the dangerous proximity of the Bristenstock, and chose the left, where from avalanches. By this route he reduced the length in tunnel by more than two-thirds as compared with the former project; but as he reached Pfaffenspung at a level about 50 m . lower, it was necessary to make good this extra rise, and this he accomplished by a spiral tunnel a the level of his predecessor's trace, he followed it pretty closely to Wattingen, keeping, however, a rise of 1 in 40, while that of the valley bed is about 1 in 18. Consequently at the latter place there are still 220 m . left to for this, at 1 in 40,9 kilos. length is necessary, while the valley itself allows 4 kilos, only. The extra distance is igzag, having the station of Wasen in the middle of in a very convenient position. This zigzag passes over in a very converient position, Thes ent extreme difficulties itself.
Let us now suppose ourselves to have attained by this means the level of Göschenen, to have traversed the great tunnel, and to be considering how to effect a descent on is a total fall of 849 m . in a length of 36 kilos. Thes conditions appear much
orthern side, as the length is sufficient to allow a uniform radient of less that 1 in 40 . Such a line was actually laid out by Gerwig; but its construction proved to be otal fall of the valley is accomplished. Here, again, fou stages may be reckoned. The uppermost-from Airolo to Stalvedro - is only 1 kilo. long, and has a very moderate course for the line. In the next-Stalvedro to Dazio-th valley narrows to a ravine, and there is considerable dange rom falling rocks, especially where several lateral torrent debouch into the valley, generally almost dry, but in flood time sweeping down vast masses of debris. In the beginning of the third division-Dazio to Giornico-the Ticino notheal deng, chiery in a narrow gorge, from 1125 kilo From thescending no slope is less, but, especially on the left bank, several lateral torrents descend steeply into the main valley. In the last division-Giornico to Biasca-the inter again has a fall of about 1 in 10 for 1 kilo., and the ners a gorge 3 kilos. long, where it has a fall of about There are several lateral valleys and torrents, which bring great quantities of rubbish into the main valley, often much damage. This is especially the eyase on the right bank, where there are also continuous precipices of gneiss making the construction of the rainway here-as originally intended-quite impracticable. Here, however, it must
have gone, if a regular gradient from Biasca to Airolo was to be observed Gerwig proposed to overcome the difficulty by starting the 1 in 40 gradient 4 $4 \frac{1}{2}$ kilos. above Biasca, and making it take a long return zigzag, giving it height nough to attain the level of Dazio without any furthe change. But this line entailed the passing of Giornico at
a vast height-over 500ft.-above the valley, and the traversing a most dangerous piece of ground at the left bank between Dazio and Faido, where the rocks are so cleft and faulted that the torrents are swallowed up altogether, and only reappear in the bed of the Ticino gorge at Dazio could easily be crossed by a bridge of only 80 ft . span, and that the ground on the right bank a ar as Faido was not impassible. Here, however, the right bank becomes impracticable, and it is absolutely
necessary to re-cross the river, which at this point would be some 350 ft . below the line. Happily the ground permits of the line describing a circle, o which, however, about 1500 yards would be in tumnel, and former level. By this means the main danger of the original route might have been avoided, but the detailed plans and estimates showed so very unfavourably, that it was finally resolved to follow the same principle as on the orthern side, namely, o keep as closely as possible to the Dazio and Giornico by spiral tunnels. Hence the downward course of the line, as actually constructed, is as follows:-The incline begins immediately on leaving the tation at Airolo, and the right bank of the river is continuous. Here the railway crosses to the left bank by 3 bridge 60 m : wide, and approaches the top of the Dario

Gorge at a height of only 15 ft . above the stream. Passing his, and a tunnel 500m. long, it re-appears, now at a height of 300 m . radius, of which about 260 deg . is described within the bowels of the mountain. The length of this spiral tunnel is 1567 m ., and it has a fall of 2.3 per cent., or 1 in 44. The line emerges at a height of 3oft. above the river, which it then crosses to the right bank, attaining a
kind of terrace, which it follows for 12
$\frac{1}{2}$ kilos. further. By this time the river, in its continual fall, has reached a level about 250 ft . below the line ; and to make this up anothe spiral is necessary, having a radius partly of 300 and partly of 400 m ., and comprising a tunnel of 1560 m . in length. Below this the line crosses the valley by an embankment 200 m . long and 80 ft . high, with a bridge over the Ticino of about 230 ft . span. The comparatively easy ground on the left bank is now reached, but several debris ang torrents have hereto be brided, and queduct 50ft span Sweeping ound the turn faid in a deep cutting, the line follows the course of the valley about midway between the post road and the side slopes of the mountain, to the station of Livergo, and for about 2 kilos. further. Here, however, the river, descending in series of cascades, is already 300 ft . below the railway, and resh devices are necessary. The line first passes behind specially dangerous torrent, La Lune, by a tunnel 466 m .
ong, crosses another torrent, the Piano Tondo, by viaduct of several spans, and comes upon the upper spiral tunnel, which bends through an angle of 280 deg., with a radius of 300 m ., and has a total length of 1568 m . Emerging from thence it crosses the road, and then the Piano Tondo for the second time, and a little furthe and 1546 m 噱 crosses the Ticino by a bridge of about 220 ft . span, and enters upon a gentle slope at the foot of the great moraines of the St. Peregrinsberg, over which it is carried for 3 kilos. without any serious difficulty. At the end of his it again crosses the Ticino by a bridge widened by Bodio, which may be considered as the foot of the great southern incline. A large stone embankment, to ward off any possible danger of the inception of floods from the violent torrent of the Vallone, is the last work of special character on the
The above sketch will at least be enough to show the peculiar difficulties which had to be encountered in carrying a line over the St. Gothard pass. On the question whether the mode of overcoming them, proposed by Hell watu, and finally carried is due to his memory-for his death has lately been announced-that a clear explanation should be given. It max and influ gradient of the line was due towever, that this decision had been some eight years before he took command of the works; carryierore he was only responsible for the mode of get the it out. Whethed when subsequent investigatio had she decision modinus, difficulties which it entailed, we are of course unable to say. In our own opinion it was at least a matter of deep regret that a rule laid down in 1869 should be rigidly adhered to ten years later, in spite of the enormous expense involved, and in spite of the act that the orercoming steep gradients had made when the haulag he intirna. ing gradient of 1 in 40 , should have been departed from, and some special means of traction substituted, it was in this, where the bottom of the valley, or and where also the difficulties of a line winding up th sides of a mountain were insuperable It cannot but reganded as a dis worable. It camno the vorld dhat aisgrace to the engineering talent of the hauling the trafticans stould save been forchcoming say of 1 in 10 , aud so up these steps by a direct incline, say, expedient af driving spiral tunnels into the bow the arth for the ming sprose of reaching a different level The first the mere purpose of reaching a diflerent nd their maintenance cannot but be attended with mucl difficulty and expense. The civil engineer may, of course plead that no less costly way was open to him, so long a he 1 in 40 gradien remained imperative. We will gran for the lis the the the the was the case. If the furnish means by wid furnish means by which steeper gradients might have bee used without danger or inconvenience. For ourselves, what has been done, more especially in the Alps, as to the onstruction and working of mountain railways, will show any unprejudiced mind that there more than one nethod in existence by which the difficulty might hav bubmitted, which would have reduced the cost of construction probably by one-third; but they were not listened to The true cause must be found, we believe, in the timidity routine which are characteristi igh official positions, and which are sure to be present i of an international character. Their baleful effects will be felt, probably for ever by ail those who are pecuniarily interested in the great undertaking we have endeavoured to describe.

The Cleator Moor Water Supply.-After a considerable amount of agitation on the part of the inhabitants at Cleator
Moor, which contains a population of over 11,000 , it has been
decided to proceed with the construction of decided to proceed with the construction of a reservoir for that
own at Meadley Farm, to hold $40,000,000$ gallons of water. Fo a long time past the population have been greatly inconvenienced
Murray, of Amman, is looked upon with much satisfaction.

MERCHANT STEAM VESSELS AT THE SHIPWRIGHTS' EXHIBITION.

III.

In two of our recent issues we have given a brief description of some of the largest steam vessels engaged in the ocean passenger and cargo traffic, models of which were exhibited Fishmongers' Hall. There are many other very fine vessels, models of which have been exhibited, but not for competition, which well deserve attention, and to some of
these we shall briefly allude before noticing some of the these we shall briefly allude before noticing
principal exhibits in the competitive sections.
The first of these is the steel passenger steamer Parisian Clasgow, built in 1880 by Messrs. R. Napier and Sons, o Glasgow, for the Allan line. This vessel's dimensions are,
length over all, $450 \mathrm{ft} . ;$ breadth, 46 ft .; depth moulded, 36 ft ; and she was, until the launch of the gigantic Servia, the largest vessel afloat that had been buile of steel. Her designed by Mr. Kirk, the senior partner of the firm of Messrs. R. Napier and Sons, and are capable of develop-
ing 6200 indicated horse-power. The vessel has realised a speed of nearly sixteen knots. She is constructed on the cellular longitudinal system similar to that adopted in the tion, being capable of taking 150 first-class, 36 second-class, and 1150 steerage passengers, and the saloons and first in the list which had been made by the Admiralty of steamers available to be employed as Government cruisers in time of war.
One of the latest additions to the fleet of the Union full model of the screw steamer Moor, recently built for that company's South African passenger and mail service, near Glasgow, and exhibited by the builders. This vesse is of the following principal dimensions:-Length, 365 ft .; breadth, 45 ft . 6 in ; depth of hold, 29 ft ; and the gross
tonnage exceeds 3900 tons. Her engines are of the compound surface condensing type, and indicated on the speed nd 85 lb . steam pressure. The vessel attained a speed $\frac{1}{\text { nearly } 15 \frac{1}{2} \text { knots on the measured mile. The Moor, like }}$ other vessels recently built for the Union Company strongly built. She has a cellular double bottom capable of holding when filled nearly 500 tons of water. The precautions which have been taken in this vessel to pre-
vent loss through collision or striking on rocks, are of an unusually complete character. She is divided into separate water-tight divisions in the hold by means of eight bulk
heads, and these arrangements are, it is understood, i excess of the Admiralty requirements to entitle her to a place on the list of steamers suitable for service as
Government cruisers. The Moor has considerable passenge accommodation, and this it is claimed has received special improvements, which doubtless the great experience of the Union Company in the requirements of the passenger trade The vessel has berths for about 170 first-class passengers, and an equal number of second and third-class passengers.
The models and pictures exhibited by the Peninsular and Oriental Steam Navigation Company formed a very fine and interesting collection, including some of the latest of
the many recent additions to their large fleet of mail steamers, as well as the two pioneers of the Peninsular
mail service. The latter are the wood paddle steamers, William Fawcett, 300 tons, and Royal Tar, 400 tons, with which in 1837 the Peninsular Company, as it was called at
that time, commenced its contract for carrying the mails that time, commenced its contract for carrying the mails
between Falmouth and the Peninsular ports. These vessels appear to have performed their work with great regularity, which was far in advance of the service as
carried out by the previously-employed sailing and steam mail packets, and it may be considered that the good work done by the William Fawcett and Royal Tar was the germ
of the extensive operations now so successfully carried out of the extensive operations now so successfully carried out
by the great firm into which the old Peninsular Company has developed, and which carries the mails not only exhibits of the Peninsular and Oriental Company are therefore, of more than ordinary interest from an historical point of view, and indicate very forcibly the development
which has taken place in the size and engine power of the which has taken place in the size and engine power of the
company's mail steamers since the days of the Royal Tar. In the model of the Tanjore, 2263 tons, presented steamer previous to the opening of the Suez Canal. She was built in 1865; her length is 300 ft ; breadth, 38 ft ;
depth moulded, 28 ft . 6 in.; indicated horse-power, 2000 . The steamers T, 28 fran. 6 in .; indicated horse-power, 2000 in the Company's collection, belong to a later period, namely, after the opening of the Suez Canal. These vessels are greater power than the Tanjore, and were built in 1874 . the following dimensions:-Length, 40oft.; breadth, 42 ft .; the following dimensions:-Length, 400ft.; breadth, 42ft.;
depth, 33 ft . Her engines were capable of developing 800-horse power.
Sor instance, the latest additions are of still larger power Cor instance, the Rome, recently built by Messrs. Caird and
Co., has a gross tonnage of 5013 tons. Her length is
43oft.; breadth, 44 ft.; and moulded engines, which were also built by Messrs. Caird, The of
about 5000 indicated horse-power is still under construction, is a vessel of about equal
size and engine power to the size and engine power to the Rome, and both are very
fine specimens of naval architecture. Some idea of the growth of the fleet of the Peninsular and Oriental Company may be obtained from the fact that while in 1840 gross tonnage of 7180 tons and 2330 -horse power, this has since grown to a fleet about seven times as numerous, con-
sisting of large iron and steel steamers, having a collective sisting of large iron and steel steamers, having a collective
tonnage of 10,000 tons and 150,000 indicated horse-power,
with a maximum speed in some of the latest vessels of
nearly 16 knots. In all, the Peninsular and Oriental Company's fleet was represented by no less than eleven models,
some of them, such as that of the Clyde, being very some of them, such as that of the Clyde,
elegantly finished specimens of model work.
elegantly finished specimens of model work.
Our want of space precludes an extended reference to the remaining models of steam vessels not entered for by Messrrs W. Denny and Brothers of Dumbaril Messrs. R. and H. Green, of Blackwall; Messrs. A McMillan and Sons, of Dumbarton, and other shipbuilders In the competitive division of steamers, Section B, we noticed that in most of the classes the competitors were conspicuous on account of their small number
conspicuous on account of their small number.
Class 1 of thissection wasdevoted to models of mail steamers for the Atlantic trade, and although there were so many splendid models of such steamers in the Exhibition, yetthere was only one that was entitled to compete actually entered or competition in this class among the two included in McMillan and Sons, of Dumbarton, and was awarded the distinction of honourable mention. The vessel is proposed to be 600 ft . in length between the perpendiculars ; breadth, 70 ft .; depth moulded, 37 ftt . 9 in .; and to be 10,000 tons gross measurement. She is to have twin screws, her engines are intended to develope $20,000-\mathrm{horse}$ power, and
the vessel is expected to attain a speed of 20 knots . The design provides for a watertight bulkhead, and transvers bulkheads to divide the vessel into 44 separate sections, and each deck is to be made separately watertight. She is to carry 600 first-class passengers and 700 emigrants. It is displacement is draught is to be at which the intended speed is to eargo the vessel could carry across the Atlantic There would not, we think, be any difficulty in driving a vessel of the proposed dimensions at 20 knots on a power, but it is thought that it would be somewhat doubtful whether sufficient cargo could be carried at a reasonable draught, say 26 ft ., to make such a heavilypowered vessel sufficiently profitable. However, leaving length of the vessel and her comparatively low side above water she would be likely to ship seas with greater readiness than desirable in a passenger steamer for the Atlantic would Moreover her immense proportionate breawa and her unusual length as compared with her depth would make it necessary to provide extraordinary means to ensure the necessary strength at the gunwale. But these points, we apprehend, have been pretty satisfactorily explained in the particulars placed in the hands of the gentlemen who acted as judges in the competition, otherwise such a favourable award could not have been given.
In Class 2, again, only two models were entered for competition. This class is for steamers for the direct mail service to Australia in 32 days. The first model, which iner Andral the gold medal, is that of the new Orient recently built by Messrs. John Elder and Co., of Glasgow The model is exhibited by Mr . J. Shepherd, the designer to the Orient Company. The lines of the vessel are of beautiful form, and suggestive of great speed, and the
model itself is an elegant piece of work, and well worthy of model itself is an elegant piece of work, and well worthy of the prize it gained. The Austral ising 455 ft . between perpendiculars; her breadth extreme is 48 ftt . 3 in.; and her moulded depth 37 ft. ; ton nage gross, 5588 tons. Her displacement at her load indicated horse-power is 6300 . The Austral is constructed of steel on the cellular system of double bottom for water ballast. She is subdivided into sixty-two watertight com partments up to the height of the main deck, and th passenger space is further divided into separate fire-proo compartments, and we understand the pumping arrange ments are of unusual completeness. Her engines are com pound inverted surface condensing, with a high-pressure cylinder of 62in. diameter, while the two low-pressure cylinders have a diameter of 86im., and the stroke is 60in, Each of the fou boilers has six huaces fired from each high speed of 17.75 knots, with an indicated horse-powe of 6300 , at a steam pressure, 95 lb ., and during a six hours' run she made an average of $17 \frac{1}{2}$ knots an hour, with coal consumption as low as 1.67 lb . per indicated horsepower per hour, a resut which her builders and owners dation for 120 saloon passengers, 130 second-class, and dation for 120 salo
300 other passenger
The other model, exhibited in this class by Mr. J. Elmslie Elmslie, of London, is of a vessel of practically the same di mensions as the Austral, and somewhat greater engin power; the model does not show lines so
In Class 3 , for steamers of the largest class for trading between Europe and the East, via Suez Canal, there were again only two exhibitors. Messrs. Short Bros., of Sunderland, exhibited a model of a flush spar deck steamship to carry cargo only and fitted with water ballast; and Messsed a half model of the screw steamer Aberdeen, 3616 tons, recently built for them by Messrs. Robert Napier and -a gold medal. She is a very handsome vessel with prize lines. Length, $350 \mathrm{ft} . ;$ breadth, 44 ft .; depth moulded, 33 ft . The Aberdeen has been designed win a view to her trial trip she attained amaxim sped of 13.74 k o Her engines are Mr . Kirk's new type of triple expanive engines, and work up to about 125 lb . pressure in the highest pressure cylinder. A full description of these engines was given in a paper read by Mr. Kirk at the It was anticipated that this system of triple expansion ofs. the originally high-pressure steam would admit of a considerable economy in the consumption of coal, a matter of
great importance in vessels engaged on such long voyages as from London to Australia. The results of the speed trials on her completion so far fully confirmed this anticiAustralia, where she has lately arrived via the Cape, Austraia, where she has lately arrived ria cos cape, saving of about 12 per cent. on the average consumption
of coal in ocean voyages has been effected, which is without doubt a great stride in the direction of economy in coal consumption.
lass 4 was set apart for Atlantic grain and cattle steamer and in this division there were eight models of vessel entered. Currie included one exhibit, No. 24, of Messrs Castle, employed in the Cape trade. These steamers we have previously alluded to, and it seems to us that such vessels hardly come within the scope of this class. There was also a model, No. 25, of an Copenhagen, and one of the Grecian Monarch, recently built for the Monarch line, to which we have already referred, a handsome, well-finished specimen of mode was exhibited by Mr. John Mutch, of London of model for the cattle and grain trade. Messrs. Short Bros. exhi bited three models for competition; and Messrs. R. and H Green, of Blackwall, also exhibited a model of a vessel for the same trade to go 10 knots an hour at sea and carry 2700 tons weight.
In Section C, Class 1, for steamers for short sea pas Norway, were awarded the gold medal for a of Stavenger cargo steamer for the Baltic trade. Length, 143ft breadth, 23 ft .; depth, 12 ft . 8 in . These builders exhibite two other models of vessels for the same trade; and Mr H. C. Kundsen, of the same port, exhibited a model of a steamer 155 ft . long, having accommodation for thirty firstNorway obtained the bronze medal for a model of composite screw steamer for the passenger trade.
A model was also exhibited in this class, by Mr. George for passeng, of New Cross, of a high-speed paddle steame, vessel are : length, 400 ft .; breadth, 40 ft .; depth, extreme 19ft. 6 in. ; and draught of water, 12 ft . At this draught the displacement is to be 2467 tons. The engines by which this vessel is to be propelled, at a speed of thirty miles per hour, are to be of 14,000 to 16,000 indicated horsedesign, we should like to know something more about the weight of these powerful engines ; and considering her appear depth in relation to her great length, it would steamer than one for short sea passage
In section C C, for light draught river steamers, two models were exhibited. One is of a stern wheel steamer, the river Mass. Yarrow and Co., of Poplar, London, for are: length, 130 ft .; breadth, 28 ftt .; mean draughension 18in. This vessel is propelled by mance mhe the rate of fifteen miles an hour. She is divided into number of watertight compartments, to localise any damage of the might be incurred through striking rocks in the bed of the shallow river on which she runs. This model was deservedly awarded the gold medal
The other model is of a steam ferry boat, employed for the conveyance of teams and passengers between Boston
and East Boston. This model was awarded a silver medal and represents one of the most complete of the many steam ferry-boats used in Boston harbour:
In concluding this notice of the exhibits in the classes relating to merchant steamers, we must record our satis faction at the able and impartial manner in which the judges appointed awarded the prizes to the success ful competitors, and we believe their decisions will mee with general approval. So far, at any rate, as the collection of models of merchant steamers is concerned, the promoters of the Exhibition have secured a well-deserve A. D. Lewis, who is a warden of the Shipwrights' Com pany, certainly merit the hearty appreciation of the publi who take any interest in the success and progress of our mercantile marine

Bremye's VALVE Gear.-The address of Mr. Bremme, whose
valve gear we illustrated last weelk, is 23 , Lightbody-street, Liver val.
Annval Dinner of the Old Pupils of Mressrs. Easton and ANDERSoN.-This dinner was held on Friday evening, the 26th annual dinners. Covers. were laid for for
firm were as usual entertained as guests
Naval Enginker Appointmennts.-The following appointments have been made at the Admiralty:-John A. Lodene, chief
engineer, to the Indus, additional, for the Black Prince vice engineer, to the Indus, additional, for the Black Prince, vice
Elgar; and Henry W. Elgar, chef engineer, to the Indus,
additional, for Reserve, vice Ladge; Alfred Long, engineer, to the additional, for Reserve, viee Ladge; Alfred Long, engineer, to the
Achilles, viiee Pattison, Goorge Whiteroft, to the Serapis, vice
Leveson; and Frederick W. J. Airey, clerk, to the Revenge, vice

Boring for Iron Ore in Cumberland.-In the iron mining districts of Cumberland a great amount of activity has been going on for some time past in the development of the mines and the
opening out of new fields. The Crossfield Iron Company has been successful in its boring operations in the vicinity of Crossfiel is extencing its No. 10 pit. In the Frizington district several companies are prosecuting a search, and in most instances the outlay has been to some purpose, as new shafts are being sunk at
several places. The Moresby Coal Company has found a good ington.
The Conversazione of the Instirution of Civil Engingers, Civil Enguneers wancersazione of the President on the the Institution of Lady Arrsstrong, in the South Kensington Museum. The museum was at different parts most profusely and tastefully decorated with
plants and shrubs of very various kinds, and the large number plants and shrubs of very various kinds, and the large number of
guests were entertained by the Hungarian band and the band of
the Royal Engineers guests were enteraners, as well as by pianoforte recitals, while
the Royal Enginer
refreshments were provided on a princely scale in the buffets of the museum and in a marquae a specially erected for the purpose.

LETTERS TO THE EDITOR

[We do not hold ourselves responsible for the opinions of our

correspondents.]
 the foundations of mechanios

SIR, -I am just leaving London for a short, holiday, and can
only aford a short and hurried reply to " Φ. I. 's. very courteus
letter in this week's issue. I have first to thank him for classing letter in this week's issue. "I have first to thank him for classsing
myself and Dr. Lodge as "eminent authorities on dynamics," but fear we can neither of us claim that title. As to the real
authorities, I wish " Φ. II." had heard Sir Wm. Thomson, the

 dations of the subject, but upon even the terminology used in dis-
cussing it. If " Φ. Π." will only consult the authorities
civen at the end of my articles, I assure him that he will find I am correct Nor need I take up space in showing again what I have fully
one into in those articles, namely, that force is expended, not gone into in those articles, namely, that force is expended, not
only in overcoming resistance, but also in generating motion, and
that it is only thus that the conservation of energy comes to be that is only thus that the conservation of energy comes to be
true. What is measured by the resistance is not generally the
whole effort, but the balanced part of the effort; and if the whole effort is thus balanced, then the body remains at rest. The force exerted by a steam engine is measured, as every practical engineer
knows, by the area of the cylinder multiplied into the steam pres-sure-a quantity quite independent of the resistance. Suppose
we have two engines and trains, exactly alike, and starting from rest at the same moment, but one of them having 150 lib. pressure
in the cylinders and the other 100 lb : does "" $\Phi . \pi$." really hold hat the one is exerting no more force than the other, becuse th With regard to the
one, including every kind of influence which one body may have no another. If Newton had meant, in his Third Law 2 , to speak of
force only, he would certainly have used the word ${ }^{\text {Vis }}$," as he he not always force.
Tagree with " Φ. Π." so far as that motion is never destroyed conservation : but I d deny that that effect is always motion. Instances to the contrary are numerous. Take that of heat comend of a minute the heating body will have parted with a certain quantity of heat, and therefore has lost motion; but the ice is not in motion as a whole, neither are its particles in any intenser
motion than before, for their temperature is the same. The motion of heat has produced its effect no doubt, but that effect is not
 except through the pull on the drawbar.
Westminster, May 26 th.

SIR, - Your correspondent, " Φ. Π.," has not shown, nor, as far
as I see, has he tried to show, that the law of gravity, as generally understood, implies a creation of additional motion in the universe,
nor that the amount of motive power expended in the separation of bodies is not restured in the passage of these bodies to their former position. I quite see the difsicultty, as he doose, of under-
standing how bodies can reci rocally, and by strictly inherent force attract to themselves other distant bodies, and that the use of the term "attraction" does not define or describe intelligibly any
connecting means by which distant bodies move towards each connecting means by which distant bodies move towards each
other. But if the term attraction be received simply as expressing he tendency of bodies to move as though they were purled or to be, then I do not see that such motion, whether by pull or prosh, nergy.
But, onderable, bodies shoould structural character of the simplest tituted of parts whose movements, both in relative amount and in direction, must be consistent with and might indi-
cate thir struature if adequate means of magnifying them
visually were available. These relative movements are provisualy were available. These relative movements are pro-
bably what determines their peouliar properties, and their special
relations to other bodies constituent parts forms a most formidable barrier to analysis, or investigation of those "modes of motion" of which ponderable
bodies are constructed or built up; and the proposition that bodies are compounded of moving parts, and that the diminished spaces which different bodies occupy withe equal masses of matter, epressive intensity, which causes more rapidly recurrent transit of their atomic parts through the same spaces, this view is one which
has much to favour it as a reasonable conjecture ; and it is in has much to favour it as a reasonable conjecture ; and it is in
reference to this view that I would suggest your correspondent,
" "\$. ח.,", should look for that
As an illustration, let us suppose a spherical envelope or bubble of, say, 1ftu diameter, whose shell shall admit of being uniformly If wradually diminished suppese external pressure down to 1 in . diameter. tself a definite amount of matter in motion, and that this motion cannot be reduced in amount by diminishing its sphere of operation;
then the diminution of the bubble to 1in. diameter will necessitate a more rapidly recurrent internal movement of the matter contained or as energy conserved or stored, but cannot possibly be understood as any loss or gain of motion, in the sense of quantity or of amount transits through the same or the remaining space must be more frequent.
to that extent is consistent with the nature of the motion, and evident that, for the purpose of imparting motion to and from Professor Crookes has indicated the presence of fluid bodies of extreme minuteness of subdivision of mass, and which would thus impart great fitness to receive and to transmit the motions of rela-
tively denser bodies to and from each other. And though the tively denser bodies to and from each other. And though the
rarity of the fluid referred to be most surprising, yet it is thought there may be other more refined media still.
From these considerations the one question which obtrudes itself is, whether, like the bubble, molecular combinations have not
definite paths which their special movements secure for them, and thus give to distinct combinations a distinct identity

CORN MILL MACHINERY AND BREAD.

Sir,-At the last two meetings of the Institution of Civil Engineers, some very interesting papers on corn mill machinery, by account of the length of the papers, one important point in con-
nection with the use of improved milling and dressing machinery stitution of the finished flour produced by the system of high grinding-with roller mills-and silk dressing.
Some people may consider that this is a medical question, and out of place in a journal devoted to engineering, but I venture to matters of house sanitation, that they may with advantage to both professions work together in matters connected with food finely dressed flour, whilst it has advantageously lost the rough
and nearly all of the third and fourth coatings, containing as they
do nitrogenous substances, so neecssary for the formation of bone and muscle. When it
borne in corne inmilden-live priancipally on bread in some form or othe
ciall and further that whilst growing they require a large portion o
bone and tissue-forming material than at a later period, I think engineers and medical men will agree with me in stating that the processes involved in preparing bread from grain should be suc its ancient name, "the staff of life," and that the changes in th extended conposi "high frinding", wre well wortly to follow an oxtended "high grinding" are well worthy the attentio Simon, or Harding, on the composition of flour prepared by th Hungarian system would be valuable
It should be borne in mind that in Hungary, where this syste was first introduced, rye bread is eaten very largely by all classes, bread.
The accompanying table is from Dr. Parkes' "Hygiene," fifti edition, p. 222 , and show
parts of flour and bran :-

may be the 100.0 ,
It may be noted that the above figures are the means of fourtee made were ground in the ordinary stone mills, and was not nearly so finely dressed as is now the custom. The finely dressed flour o the new system produced by roller mills contains even less of the glutinous and salt-containing coats than the samples analysed.
Stephen H. Terry, Assoc. Mem. Inst. C.E.
London, 25th May
[Our correspondent should bear in mind that it is not what is value of a food. Bran is practically indigestible by most stomachs and, therefore, notwithstanding the apparent value of its con stituents, its worth as a food is very small.-ED. E.]

- american patents

SIR,-Every week you give us extracts from the American
Patent-office Journal, which I read with much interest envy you the task involved in picking out something really good
from the vast mass of absurdities or trivialities patented every week
in the States.
My objectnow is to call attention to the utter inutility of the United
States examination of patents for novelty. States examination of patents for novelty. Every week antiquated
inventions are patented without a question. I venture to send you two from the last Journal which has reached this country :"258,125. Mechanical movement. Charles H. Roberts, Evans-
ville, Ind. Filed Feb. 15th, 1882. (No model.) Claim : (1) The

combination of the crosshead B and rods A and C with the shaft F^{3} crank E, pin e^{\prime}, and block D, substantially as described. (2) The
combination of the crosshead B, strap H, and guide-rod G with the shaft F, crank E, pin e^{\prime}, and block D , substantially as described."
Here we have the dog link, as fitted in thousands of donkey pumps, patented.
The ne
The next is a reaI gem. What possible form of endless belt
remains now to be patented for this purpose? I shall not know remains now to be patented for this purpose ? I shall not know
until next week's Journal is published :- ' 258,190 . Fertiliser feed for grain drills. Alfred H. Worrest, Salisbury Township, Lancaste
County, Pa. Filed Nov. 19th, 1881. (No model.) Claim : In a
(No

fertiliser feeder, the endless belt B, composed of the plates P, each having one flanged edge e, linked together, all constructed, arranged, and operating substantially as shown and described, for the purpose cited. Only a few weeks ago a man obtained a patent for the use
of riggers and belts in driving machinery. of riggers and belts in driving machinery.
London, May 30th.
the identification of ships.
SIR,-The German brig Fredericke, Captain Stramwitz, of
Stralsund, has arrived in the Tyne, and reports having passed a capsised vessel in lat. 56.37 long. 3.50 E . from Greenwich, with keel upwards,
not damaged.
Captain Stramwitz is evidently a very careful, observant man, and has done his part well in endeavouring to secure the identification of the unfortunate "bottom upwards." But why shoul it be necessary for such crualt? Whe taken, and wish doubtf result? Why should captains have to measure keels in, perhaps,
rough seas, and from the look of the bottom guess at the rig of lost ship? If owners would take the simple, cheap, and obvious precaution of painting in large letters the name, number, and owning port on the bottom as well as on the upper parts of their
vessels, they might be certain of tidings of them whenever they vessels, they might be certain of tidings of them whenever they
were in the unfortunate predicament of the supposed schooner. Perhaps they have never thought of the expedient. Peria
hey have, but do not care to put it in practice. Many a man at death leaves his affairs in a hopeless muddle because during his lifetime he could not face the task of making his will. Many a one seems to think that making post obit arrangements has some
mysterious effect in bringing about the undesired end. Perhaps mysterious effect in bringing aboling that in adopting Perhaps tion they might diminish the stability of their ships ; or perhaps they hesitate to give to the strange denizens of the deep so much may be, I think the Board of Trade or Lloyds' Underwritery
mat Association, or whoever the proper authority may be, might well insist on ships being properly marked on all their parts ; so that whatever of them might be found or seen, identification should be
immediately possible without the trouble good Captain Stramwit
was put to.
Redcar, May 29th.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS
(From our own Correspondent.) THE experiments which are being made in this district to ascertain steel by the Thomas-Gilchrist process are proceeding satisfactorily.
It has been demonstrated that our cinder pigs at 37s. 6 d . or 38 s . per ton-the cheapest in the country-are a very fair sample of a ganese and low in sulphur, in fact they often contain as much as 3 to 4 per cent. of phosphorus.
Upon 'Ohange in Wolverhan to-day-Thursday-there were ston yesterday and in Birmingham hat had been rolled from an ingot obtained from such iron melted of the Patent Shaft and Axletree Company, at Wednesbury, by the committee of ironmasters, who, with Mr. Thomas, are conducting the experiments. The bar was an inch across and half an inch thick, and it had been tested to compete with a bar of high-class merchant iron. Doubled up under a heavy sledge-hammer it
showed no signs of breaking; broken in another part and then e-welded, it was afterwards bent in the weld, yet showed no fracture. The experiments are still in progress.
Because of these experiments certain makers did not hesitate to
ask $£ 21 \mathrm{~s}$. 3 d . and $£ 22 \mathrm{~s} .6 \mathrm{~d}$. for cinder sorts plentiful at $£ 212 \mathrm{~s}$. 6 d . up to $£ 32 \mathrm{~s}, 6 \mathrm{~d}$ scorts. Part-mines were all-mine iron might have been got at different rates from $£ 3$ 10s.
down to $£ 3$ Бs., 'and occasionally $£ 3$ s. Leicestershire and Derbyshire iron was plentiful at from ton and Leicestershire and Derbyshire iron was plentiful at from $£ 210 \mathrm{~s}$.
down to $£ 27 \mathrm{~s} .6 \mathrm{~d}$. easy. Bessemer sorts ranged from £3 7s. 6 d .
down to $£ 3$. Few people would look at the higher quotation which vas that named by the agents of the Barrow company, while $£ 3$ ss., but no less, would have been readily taken by the repre-
sentative of the Tredegar Company; and buyers made known that they were procuring Wigan hematites at the $£ 3$ in favourable pur-
Most of the mills at which sheets for galvanising and deep stamping are rolled have begun again after the holidays; and the heavy sections of marked iron are turned out, are fairly well supplied with orders. Narrow plates for girders and also angle and tee iron are better off for work; but boiler-plate orders are sought Sheets needed by the galvanisers were to-day stronger in Yet there was no quotable change upon the week. The Association of Sheet-makers are holding well together, and it is to the expectation of buyers at a distance that the combination will enable higher rates to be got that the recently improved demand is largely due. No more in other denominations than in sheets is there any
quotable change upon the week. The sheet-makers find no diffiquotable change upon the week. The sheet-makers find no difficiation was started by about 10s. per ton on the earlier minimum.
The galvanised sheet trade shows decidedly more activity ; orders both on home and foreign account coming in more freely than has been the case for some time. Prices too are firmer. Bundled and delivered irms are asking £.g., are F14 10s. at lowest, and some of price ; and for $28 \mathrm{w} . \mathrm{g}$. £ 18 10 s . to $£ 19$. Delivery in Liverpol is
5 s . under these prices. The recent heavy consignments from England have affected the Australian market in such a manner that holders are willing to part with their goods at prices which mean a reduction of 5s. per ton. This is checking work on Some heavy roofing orders are being executed by Messrs. More-
wood and Co., of the Lion Galvanising Works, Birmingham. The firm have received from one of the largest manufacturers of spinning machinery in this country an order for the whole of the roofing
for extensive spinning mills to be erected in Madras. The framework and large gutters are stamped by special hydraulic machinery and are painted. The total weight is about 700 tons, and the order is worth some £9000. A great feature in their special type of
roofing is the large proportion of steel used, strength combined roofing is the large proportion of steel used, strength combined
with lightness being thereby attained. A still larger contract is in works in the Middlesbrough district The of a large new steel type, and covered with corrugated sheets. On this order and on the one previously mentioned full time is being made at the firm's
Woodford Ironworks, Soho. At the Lion Galvanising Works, Birmingham, orders for galvanised sheets are being got out rapidly. full time without being able to supply nearly all their requirements. Amongst the foreign railway work which is under execution in the district, I may mention three fixed spans and a swing bridge for Mexico. The London and North-Western, the South-Western, bridge and roofing work just now.
One local engineering firm has a large bridge in hand for Australia, besides large numbers of building girders for Adelaide and spacious iron roofs for the East Indies, under the auspices of the
Crown Agents for the Colonies. Another district firm is now executing an order for some large gasometers and various appliances for different parts of our colonial possessions.
Although the tube trade generally is quiet and without much
prospect of further business at present, some few of the chief firms are busy. The total requirements this year of the London and North-Western Company are estimated to run to 2000 tons, and eonacts are now being let,
for Kimberley, South Africa, is als some $£ 20,000$, for water-pipes Messrs. James Russell and Sons, Limited, of the Crown Tube Works, Wednesbury, are busy on tube orders for Australia and
Canada, and on iron telegraph posts for India. One of the most Canada, and on iron telegraph posts
recent orders for pipes booked is one
be tested at 300 lb
Lightironwork for the carriage trade is being turned out in large
quantities in the Wednesbury district. Messrs. John Rigby and Sons have some heavy orders in this department.
Constructive gas ironwork is affording a fair amount of employ-
ment. For the Dudley Gas Company and for the Tottenham Gas-㲘 the Bradford Gas Company.
The Monmore-lane Iron
The Monmore-lane Iron Company, of Willenhall, is increasing its capacity by laying down a new rolling mill. The engineering Messrs. Onions Bros.
The directors of the Pelsall Coal and Iron Company have issued report showing a net profit on the past year's working amounting to £9618 15s. .1d., and a dividend of 5 per cent.
Dulness continues to characterise the local coal trade. The only semblance of activity is in the demand for forge and furnace coal,
and for this great competition and underselling exists. The demand for slack and locomotive steam coal has somewhat fallen off. There is less call for fuel on account of the local glass works, because of the depression now existing in the superior branches of
manufacture in that industry. Some of the glass houses are sarcely making four days per week. House-coal buyers are The Hanley Colliery Company, Limited, has reached the ten-feet coal. The company has been drawing coal from the upper seams for some months. At a depth of 426 yards, it has now come upon
what are known as the "lower series" of the North Staffordshire coal-field. It is calculated that enough fuel has been found to 500 tons has been the amount raised; but the firm is laying down fresh plant and fresh machinery with a view to winning 1000 tons
daily. The factories and workshops of the Hanley district have
and they are consequently looking for benefit now that fuel can b btained at home.
The Staffordshi
 The com
rental
£ 6240 .

NOTES FROM LANCASHIRE.
Manchester--So far as actual business is concerned there is bu little to report this week, Whitsuntide being the annual holiday
this district, when work as regards nearly every description this district, when work as regards nearry every description of sumpended, except for one or two days at
industrial ocoupation ise
the outside, and market transactions are curtailed to the narrowest the outside, and
possible limits.
Tuesday, which is the only 'Change day this week, brought together only a very thin attendance in the Manchester iron
market, with very little business doing and prices nominally un-
changed, although sellers in some cases could be found at a trifte
 below only in exceptional cases have they been disposed to go below these figures to secure orders. In Lincolnshire
ron, which is now the chaepest brand coming into this market, and with which local makers find it very dificicult to compete,
sellers have been offering at prices ranging from 44s. 6 c . to 455 . for
forge, and 45 s . 6 d . to 46 s . for foundry less 2 d delivered here, and forree, and 45s. 6 d . to 46 s . for foundry less $2 \frac{1}{2}$ delivered here, and nee the Other distriot brands for the seresent seen to te de ouring the this
week. week. Other district brands or the present seem to be out
market in the ofaco of the low pries ruling for Lincolnshire.
The finished iron trade continues very quiet so far as ba The finished iron trade continues very quiet so far as bar iron
makers are concerned, and in some cases they would now be willing o book prompt speciicications for good orders at $£ 6$ 5s. to $£ 67 \mathrm{~s}$. 6 d . per ton delivered into the Manchester district. Plates and sheet.
have been meeting with a moderate inquiry at about $£ 9$ to $£ 9$ os.
for best boiler plates and $£ 7$ 15s. to $£ 8$ for common qualities, ond for best boiler plates and $£ 715 \mathrm{~s}$. to $£ 8$ for common qualities, and
about $£ 85$. per ton for good Staffordshire sheets delivered into this district. One or two good orders for points and crossings, one
for the Hull Dook Company and another for the Table Bay Harour, have also been placed in this district.
There is almost a general cessation of work for the Whitsuntide holidays both at the ironworks and in the engineering shops of the district, which, apart from special work, is in most cases extending
over the whole of the week. The holidays, however, are not, as the ase has been during recent years, coming upon the engineerin trades at east as a welcome reeease from over-production. Works establishments have been running overtime for a considerable
period. Locomotive builders generally are very busy, and in this period. Locomotive builders generally are very busy, and in this
branch of trade although there are comparatively few enģines at present being buing into the market during the past fortnightht for
inquiries cor the
export to to colonies and the Continent, and deliveries on account export to the colonies and the Continent, and deliveries on account of large orders for
being commenced.
During the past week I have had an opportunity of inspecting a practical application of electric lighting to a large engineering
works in this district. Messrs. Mather and Platt, of Salford, who are undertaking the manufacture, for the Edison Company, of
electric lighting plant, including specially designed engines for driving the dynamos, have illustrated in their own works, on similar circumstances, the special adaptability of the Edison incan descent lamp for all the requirements of a large engineering
establishment. At present the firm have in their workshops eighty-one lamps in a circuit, and fifty-three in the offices, making
total of 134 lights, the electricity for which is induced from by a six nominal horse power single cylinder engine o the ordinary type manufactured by themselves. The lamps,
whioh consist of a thin filament of carbon, hermetically
sealed in small pear-shaped glass globes are for the most patit sealed in small pear-shaped glass globes, are for the most part carried on the now disused flexible gas brackets, although a few
special chandeliers have been fitted up in the offices, and have so far worked so satisfactorily, without any interruption by breakdown, that Messss. Mather and Platt, who o equire upwards of 1000 olights for the whole of their works, intend carrying the system through-
out, and it is estimated that this will be effiected at an outlay, ncluding the cost of engine power and necessary replacement o
amps, not greater than is already entailed by the use of gas, whils much better light will be secured. In passing through the works the most noticeable feature was the perfect steadiness of the lights, whilst thereadiness with which they could be brought into any position and the full light concentrated by means of small paper shades upon
any particular point was an important advantage, both in the ny particular point was an important advantage, both in the
drawing office, where the draughtsmen could work without shadow, and at the fitters' benches, where the men could bring the lights close upon any special portion of their work in a manner which
would be altogether impossible with gas. Messrs. Mather and Platt have certainly afforded a very satisfactory illustration of the adaptability of electric lighting to engineering works; and another
matter of interest to engineers is the opening which the gradual introduction of electric lighting is affording for the manufacture of
high-class machinery and other plant requisite for carrying out the system.
A new lattice girder bridge, with a single span of 125ft., crossing
the Irwell between Pendleton and Broughton, which has been the Irwell between Pendleton and Broughton, which has been
erected from the designs of Mr. Arthur Jacob, the Salford borough
enginer engineer, will be opened this week by the Mayor of Salford. The
new bridge, which will be called the Cromwell-road Bridge, has cost $£ 10,000$
In the coal trade pits have been stopped for the greater part of actually interfered with by the holidays, the pressure of the holiday excursion traffic on the localal lines, and the stoppage
of various sections of the canals for repairs, almost completely stop the usual means of transit from the collieries. Apart from
this the general stoppage of works canses this the general stoppage of works causes to a large extent a tem-
porary suspension of requirements for manufacturing pa porary suspension of requirements for manufacturing purposes,
and the season of the year keeps down the demand for house fire consumption. In the Mancenester dinstriet the princoipal colliery
firms are this month making reductions on their pit and wharf prices, averaging, as a arule, from about 5 d . on most classes of fuel
for manufacturing purposes up to 10 , for manufacturing purposes up to 10d. per ton on best coal, but
until business is resumed after the holidays it is scarcely possible to say what effect this will have on the market, or whether t
movement will be followed to any extent in other districts. Barrovi- - The slight improvement I was able to note las
still continues in the still continues in the hematite pig iron market of this district. The
demand has improved from several quarters, but not much new business is doing, partly on account of the scarceity of second-hand parcels and partly because of the present low prices. The pro-
duction of iron at the furnaces remains about the same, and smelters do not appear to be making any serious efforts
to reduce it. One furnace has been blown out the week in this district in order on minimise out output a of metal in large parcels to America, is only slow for the time of
the year, a very heavy tonnage is being sent by small craft to the year, a very heavy tonnage is being sent by small craft to
Liverpool where it is transhipped. The price for No. 1 Bessemer
 fered with the progress of business, and it is possible some sort of a
revival may take place when they are over. The activity in the revival may take place when they are over. The activity in the
steel trade is fully maintained, although new business is limited. Prices are again down 2 s . 6 d . per ton. There is nothing new
relating to iron shipbuilders, except that inquiries are being made
in fair numbers. Other industries in steady employment. Iron ore quiet at unchanged prices.
The North Lonsdale ITon blown out another furnace. There are now three furnaces in blas A companys has been formed in London to work the coal pits at
Workington belonging to Mr. Curwen, which have been closed for The railway in course of construction from Preston to Southpo has just been opened for traffic as far as Longton, four miles south of Preston. A stone bridge is being constructed over the Ribble
t Preston, and when this is completed the whole length of the ew line will be opened out.
Considerable progress has been made with the work of repairing
he Whitehaven wet dock, and it is expected to be ready for traffic in a few days.

THE SHEFFIELD DISTRICT.

THis has been a week of holidays, so far. Usually, the Sheffiel This year, owing to the very fine weather, there has literally been o work done up to the time of my writing, except in one or two
departments, which can scarcely be said to "stand " at any time Engineers and boiler-makers have been very busy making the usua repairs for which holiday-time affords favourable opportunity.
At the Toledo Steel Works-Messrs. J. H. Andrew and Co steel melter named Michael Smith lost his life on Sunday mornan old boiler was being removed, a breakdown caused it to tilt
against the wall, and Smith, suddenly stepping out of an office against the wall, and smith, suddenly stepping out of an office crushed to death. It says a great deal for the carefulness of the
engineering and boiler-making firms that so few accidents the difficult work of renewing, repairing, and removing the many heavy masses of machinery in the various Sheffield works.
The Sheffield Telephone Exchange makes. very rapid progress, thanks in a large measure to the attention given to it by the man week--the 24 th inst. - I am informed, there were 240 message sent in one hour, between ten and eleven o'cock. The day return was 1294. On the following day-Thursday-there wer
1290 messages. These are the two lighest days on record Messrs. Tasker, Sons, and Co. have recently made several interhousehold purposes. These experiments have been suggested by visits to the Electrical Exhibition at London. I saw several the electric light in our dwellings, to be turned on and off with the facility of gas. The want of this power is a dinficulty in dealing have to be supplied from a common centre, the town being divide into circuits for the purpose
The alleged frauds upon the Shefield Wagon Company, Limited, for which their late secretary, Mr. J. Unwin Wing, accountant, amount to a larger sum than was at first anticipated. The but as $£ 4000$ has been repaid, the net loss will be $£ 26,000$. Th company is in good condition, and has a reserve of uncalled capital
far more than sufficient to meet the deficiency, if it required to all it up, which it does not.
A great strike of ironworkers for an advance of wages is
threatened in the United States. This may cause another bis boom upon the iron industries of this country, in which case cer-
tain concerns which are now somewhat languid will reeeive a fillip. A slight drawback to this pleasing
the American market is over-stocked.
Rails are again flatter, in consequence of the extreme competition causing makers to cut prices very keenly. Several contracts have recently been taken as low as $£ 512$ s. 6 d . per ton, and I hear of
others at $£ 5$ 15s. Profitable work is not possible at such prices in the fae
wages.
The Pa
wages. Parkgate Ironworks are very busily employed in the produc tion of plates and bars. Additional puddling furnaces-about
dozen of them-in the old rail mill have been brought into use. These furnaces have been idle for five or six years. Generally however, the iron trade is flat, buyers still holding off, in the hop
of lower quotations ruling.

THE NORTH OF ENGLAND

The Cleveland irom market at Middlesbrough on Tuesday last was but poorly attended. It could scarcely have been otherwise o
Whit-Tuesday, and considering that it was one of the days appointed for Redcar races. The market was soon over, as those
who attended it evidently considered the day was not one for
The improved feeling previously reported was fully maintained.
The improved feeling previously reported was fully maintained. been "bearing" the market had been covering their sales very
largely during the previous week. This they did by giving the makers' prices. They paid, it was said, 43 s . 6 d . per ton for their
purchases from makers within the ring, and 43 s . for those from some res. The transactions were The total so bought amounts to from 10,000 to 11,000 tons, and
was all for early deli yery. This sequel to the lonz-continued figh has very much strengthened the position of the ironmasters, a a has made them firmer than ever in their quotations. The price of
No. 3 g.m.b. must be taken to be 43 s . 6 d . f.o.b. Middlesbrough, forge iron being 1s. less, and warrants from 4ss. ad. to tes. ©..
The manufactured iron trade remains about the same as regard prices, viz, $£ 75 \mathrm{~s}$. for ship plates, and $£ 610 \mathrm{~s}$. for angles and bars.
There is, however, a better tone discernible, in sympathy with there improvement in pig iron. There are more enquiries and great pressure for immediate delivery. The recent strike of ironworkers had the effect of preventing the manufacture of a large
quantity of iron, the want of which is now being felt, and full list prices are being given in many cases if quick delivery be suaranteed. Most of the manufactured ironworks were in opera-
tion on Tuesday, the ironworkers having contented themselve with Monday only as a holiday. The employers are glad of the extra day to get on with pressing contracts, and the workmen
having exhausted all their funds in the recent strike were also glad to work. They do not care for holidays without money to spend As well as Ahe stootton mills, \quad r, they were idle on Tuesday as well as Monday.
The South Stock
all hands that it will close for a month. It will be remember that these works were recently re-started for the manufacture of angles and bars. The finishing mills will not be ready until July, ane temporary demand for puddled bar which sprung up a short time since. That demand has now disappeared; hence the decision arrived at. The release of a certain number of puddlers
just as the hot weather is coming on will be very helpful to the other manufacturers, who usually suffer in their forge departments
at this time of the year from that cause, as well as owing to the number of their men for militia purposes.
wards. Coal trade is extremely flat, and prices are tending downrestrictions, acoidents compensations, and low prices, there is no
profit obtainable, although they are gradually exhausting their

Mr. Charles Hill, managing director of the Stockton Malleable
Iron Company, has been seriously ill for several weeks. It is to hoped that summer weather will restore him to health. His unusual energy and ability as an iron maker, as well as the great
length of time he has ocupied a leading position in the trade
nake him one of the best make him one of the best known and most respected inhabitants 0 ${ }_{A}$ most disastrous
fire occurred a few days since at the South Stockton shipyard belonging to Messrs. Richardson, Spence, and co. Athough close to the river, water could be obtained only
with difficulty, because the tide was at the lowest. Unfortunately from some unexplained reason, there was also no pressure on the
mains of the Corporation Waterworks. Conseguently the fire had mains of the Corporation Waterworrs. Consequently the fire hal
its own way for some time, and burned down the joiner's shop, store house, and moutling loft The damage is estimated at $\& 20,000$,
most ar all of which is covered by insurance. TTe fire commenced at ten o'clock at night, but Mr. Richardson, the managing partner,
knew nothing of it till he arrived by train at Stockton the next new nothil
morning.

NOTES FROM SCOTLAND,

(From our oon Correspondent.)

Busiswss in the Glasgow iron market was considerably inter
rupted in the earlier part of the week owing to the holidays. The warrant market was closed from Wednesday till Tuesday, and the export business as well as the home trade appears to have thee now an impression that the amount of the foreign trade will be rather less during the summer months, as is, indeed, usually the
case. The additions to stocks have not been very large, and some strength has been imparted to the market by the intimation that a steam vessel has been chartered, in addition to the ordinary lines out to the consigners being a freight charge of 4 s . per ton less than that charged by the ordinarary steamers.
When the warrant market closed for
inst., business had been done at from 4 the holidays on the 24 th On Friday forenoon the market was stronger, with business at afternoon quotations being 47s. 4 d . to 47 s .3 d . cash, and the tone
of the market then somewhat quieter. On Wednesday the marke was steady, with business from 477s. 2d. to 47s. 3 d cass. To-day-Thursday-the
There is not much change in the quotations of makers' iron,

 48s. 6 d and 47 s .; ; Quarter, do., do.. GGovan at Broomielaw, 49 s .
and 47 s .; Shotts at Leith, 59 s . and 54 s . $6 \mathrm{c} . ;$ Carron
 rossan, 51 s .6 d . and 48 s .6 d .; Eglinton, 48 s . 6 d . and 46 s . 6 d. ; Dal-
mellington, 48 s . and 47 s . The malleable trade is still well supplied with work, although time several of the makers have been selling bars at rather les money, and they have now issued circulars formally intimating a
reduction of 5 s . to 10 s . per ton. It is expected that the other makers will follow suit
some exceptions.
The coal trade in the Glasgow district is in a satisfactory state for the season of the year, the shipments being comparatively
large, and prices, though they cannot be said to be advancing, are firm. There is also a large $\begin{aligned} & \text { and western ports, and it is worthy of special note that the ship }\end{aligned}$ ments at Burntisland during the week have amounted to the large
total of 17,455 tons. All the Fife collieries have been very busy since last week's conference on the wages question, and in some instances prices are quoted rather higher. The miners in Fifeshire
have consented to stop the system of restricting production, and on this condition the employers have returned them the recent reduction of $12 \frac{1}{2}$ per cent. A similar concession has also now been made to the miners of the Lothians.
In a large number of branches connected with the iron trade
fresh demands are being made by workmen for an advance of
wages An increase has been wages. An increase has been given by Messrs. Herry Murray and
Co., shipbuilders, Dumbarton, to their rivetters. The fitters turners, smiths, and pattern-makers, employed by the engineers of
Kirkcaldy, have requested an advance of $1 \frac{13}{2}$. per hour. The operative engineers in the works of the calceonian Railway Company, s. .on 13d. per hour, and a strike for a sisimilar increase has
advance
ocurred among the Glasgow iron dressers shipjoiners, who presently receive 7 d . per hour, have demanded an additional $\frac{1}{2} d$. , and de the week.
In the aggregate tonnage of 32,000 tons, have been launched from the
Clyde shipbuilding yards, as 36,000 tons in the corresponding m med The death has taken place, at a ripe age, of Mr. Wm. Neilson, head of the extensive firm of the of ossend ron and steel Company.
Mrr. Neilson was the founder of this firm, which he originated

WALES AND ADJOINING COUNTIES

The great event of the present week is the gathering of the Bath and est of England Agricultural Show at Cardifi. The first of a high orde
The process of hay harvesting by steam, shown by Mr. Charles
Phillips, of Newport, excited general interest; and his hay elevator came in for commendation. The grubbers, ploughs,
harrows, were of the frst field was Thomas's Patent Lift. A Anteworthy fact was the close and intelligent examination given by the Glamorganshire farmers to the various scientific appliances for aiding agriculture, and in
good harvest be obtained this year I shall expect that substantial purchases will be made from the various northern and midland The engineering world took great notice of the pulsometers which were erected and placed in action on the field.
The coal trade of the past week has
From Cardiff, Newport, and week has been exceptionally good. The demand fordif alone shipping 47,000 tons. assured by one of the leading coalowners of the Cardiff district this week that in all respects the coal trade as regards first qualities is
excellent and the demand larger than has been known. For seconds the inquiry is not so good.
The iron trade is dull. Little fresh business to hand, but makers are not quoting low, as there is a prospect of a good trade in a little
time.

Find of Coal at Workington.--In one of Mr. Mulcaster s coal pits at Workington workmen have been engaged for a long time in deepening it to try and find a thicker seam. A large
amount of money has been expended in the effort, and the
result has proved the correctness of the surmises, as a fine thick

THE PATENT JOURNAL.

Applications for Letters Patent. namen pand antants have of oen "communicated" the
nerinted in italices.
pommunicating party are 19. Electric ${ }^{233 r d}$ May, 1882 ,
 2421. ExH1
London.
 444. Exgines, A. Pattie and G. Robertson, Glasgow.
4255. ELLETrIC Lamps, J. Barrier and F. Lavernéde,
Paris.

 Paris.)
242. DA

dilectrrc Lasps, J. Wetter. - (L. Nothomb,
Husi,
H. A. Bonneville,-(J. Lajeunesse and E.

 2469. Shutril Box, W. Thompson.- (E. Lepainteurr,
Paris.)
470. Alarm Clocks, w. R. Lake.-(Jerome and co.

 2475. Rearing Machines, T. Tulpin, London.
2476. Rotary EmiNe, W. Southwood, Blackheath. 25th May, 1882.
J. Smith, Liver

$$
\text { 26tl May, } 1882
$$

249. Driunvg Mriats, A. Higginson, Liverpool.

 27th May, 1882.

Inventions Protected for Six Months on
Deposit of Complete S pecifications. 235s. ConsBrxa WooL, O. D. Abel, Southampton- build
ings, London. $-A$ communication from F. C. Glaser

 buildings, London.-A communication from J. B.
Wallace, Ansonia, U.S. $-222 n d$ May, 1882 . 2429. Water
2430. Calloiniva 1882 .

Patents on which the stamp Duty of 203s. Trip Motioxs, J. Edge, Bolton-le-Moors.-22nd May, 11779
2063. SLIDNE NALvEs, P. Everitt, Great Ryburgh.206. Mord May, 1879. M .
 2093. GikAPrLE Buck Bers, T. Hodge, Kingston-upon24ull. Trassiminsion APPARATUs, J. Hopkinson, Lon

 1897. Flour, \&ce., J. Higginbottom and E. Hutchin-
2094.

 2121. Auronamic Clutch, C. J. B. Ward, London.-
 2321. ELLecrraciry, J. D. F. Andrews, Charlton,- -1 the 2113. Attactinina Sheet Zinc, C. F. Henwood, London.

shon- soul May, 1879.

Patents on which the Stamp Duty o

 1955. Purification of Gas, G. T. Livesey, Surrey.-
 May, 1875.
1931. BRAKE Apparatus, o. G. Bolitho, Cornwall.
193s. Insuluatisa Courpousds, F. Field, Lambeth, and R. Talling, Cornwall.-27th May, 1875.
2077. FIItrens, J. F. Crease, Eastney. $-2 n d$ June, 1875,

Notices of Intention to Proceed with Applications.
Last day Jor fulng opposition 16 th June, 1882
20 Ih January, ${ }^{1882}$.
 ary.
35688 .
Brestring Progress of Shirs, A. A. Reddie, London
 390. Trurr., 1888, ,V. R. Lake, London.- - communication
from E. W. W. Johison.

 989. TITocking Deviores, c. Bolle, Berlin. -1 st Marrch

 Last day for flling opposition, 20th June, 1882 . 5239. Haryakrig Machines, W. N. Nicholson and w.
Mather, Nottingham. $-30 t h$ November, 1881. 371. Printing Machines, T. G. and J. Dawson, Otle,

430. Rovina Maccirserv, W. R. Lake, London,-A - A.
communiction from W. E. Whitelead and A.

 117. SADDLEs, W. R. Lake, London.-A communica-

 Frussia, - tht Februarry, 1882. Wood and J. Green-

 We. C. A. Hozzapfel, Newcastle-upon-Tyne.-18t

 1058. AL. EMINIDI, J. Morris, Udaingston.- 4 thl March
 1415 Shitrs Rupd hes, Sir J. E. Commerell, London.

 293. Marchinge Gex ime, H. Clegg, Accrington.-4th
 18882. 18. marthen. -17 the April, 11882 . London. - A communi2083. Lutagace Labels, C. Keith, Inverness.- $-3 r d$
 Carmichael, Glasgow, - 4 th May, 1882. 1 . 1858.2. Revorving Harrows, E. Button, Stanway. -6 th
21 May, 1882. 2145. CABinsts or Cases, A. Black, Paisley.-6th May,

 Lucius, and Brining.-9th May, 1882.
22^{232} GENERATING ELECTRIC CORRENTS, J. M. stuart,

Patents Sealed.

(List of Letters Patent which poassed the Great Seal on the
26th May, 1882 .) 2439. Preprariva Moss Pexat, F. Versmann, New
Chariton.-2nd Juñ, 1881.
 22nd November , 1881.
5185. Electric Lamps, E. G. Brewer, London.-28th
 -28th November, 1881. November, 1881 .
5205. Drmingaratus, C. Stuart, Fenny Strat101.. SEINI No MACHINES, J. Hunt and J. S. Fairfax,
London. $-29 t h$ November, 1881. London.-29th November, 1881 .
212. ANMAL CHARCOAL, T. Hadfield, Liverpool.-29th November, 1881.
Scis., F. W. Fox, Windhill, Yorkshire,
 Noverimber, 1888 . ${ }^{\text {2 }}$. Constructing Dams, J. Thomas, Bangor.- -30 th November, 1881 .
5232. HEATMG Aparatus, W. Hutchinson, Clapton
Park.- 30 hth November , 18S1. 5243. BuRNERS of OII LAsps, W. Foxcroft, Birming-
ham, and J. Titley, Wolverhampton.-30th Novem5247. Where Pads, J. F. Walters, London.-30th
November, 1881. November, 1881. . Elkington, London.-30th Novem-
5250 . HarRows, J. b250. Harrows, J. Elkington, London.-30th Novem-
ber, 1881.
5266. Regiving Apparatus, A. M. Clark, London.1st December, 1881 .
288. WARDOBES,
Dece. Deceember, 1881.
5325. STEAM Bollers, H. Sharp, Bolton.-6th Decem-
ber, 1881 . 3er, Sec.
W.' Sigand and Batteries, D. G. FitzGerald, C. H.
Wigs, and W. W. Beaumont, London.-6th 5358. WHEELS and AxLe-Boxes, W. R. Lake, London.万ith December, 1881.
5381. Waltr-lose Apparatus, D. Gill, Weston-super-Mare.-9th December, 1881.
5477. Electrio Lamps, W. R. Lake, London.-14th December, 1881. .
5538. FIRE-ARMS, T. Nordenfelt, London.- 17 th Decem-
ber, 1881. 5593. DyNamo-electric Machines, L. S. Powell, Not
ting-hill, London. $-218 t$ Deceanber ting-hill, London.-21st December, 1881 .
5594. KNITTING Machines, B. J. B. Mills, London.-

 986. DYNamo-ELEGTRIC Machings, W. H. Akester, and
T. B. Barnes, Glasgow.-1st March, 18s2. 11. Pr. Protrocring Harsours, J. Shields, Perth.-Sth
March, 1882 . 1230. ELEVATORS or Lifts, P. M. Justice, London.14th March, 1882. (List of Letters Patent wohich passed the Great Seal on
the 30th May, 1882.) 47so. Eleotrio Convotrops, A. T. Woodward, New
York, U.S. 1 Ist Novenber, 1881 . 5060. Preventing Accidents in Hoists, S. Empsall,
Halifax. 19 Ih November, 1881 5253. TRIOCOLERS, I. T. Townsend, Coventry. $-18 t$
December, 1881. 525ecember, 1881. W. Merrall, Morton.-1st December; 1874. Insecr Powner, A. C. Henderson, London. -2 nd
December, 1ss1. 5287. Velocipedes, C. Beger, Berlin.-3rd December; 5297. Blackivg Leather, H. H. Lake, London.- 3 rel
December, 1881. 5307. OLI, \&c., J. Darling, Glasgow,-5th Decenber;
 5327. RIVET PEG, J. Hewitt, Leicester,-6th December 5332. Printing Machines, J. J. Allen, Halifax.-6th 5372. PAPER BAAS, F. D. Bumstead, Hednesford.-8th 5378. Looms, W. H., E., and J. Smith, Kidderminster. 5382. Automatically Lighting Gas, F. Wirth, Ger-
many.-9th December, 1881 . 5388. CUTTING Loar SUGAR, J. M. Day, W. R. Green,
and H. C. Walker. London, -9th December 18s1, and. CouNTERS for MuLEs, D. ath December, 1881,
ham. -13 th December. 1881 . H . Orme, Old 5447. GLove Fastening, J. Hinks, T. Hooper, and F.
R. Baker, Birmingham.- $13 t /$ December, 1881. 5451. SEcoNDARY Batteries, J. Pitkin, Clerkenwell. 5452. Electrical Batteries, W. R. Lake, London.-
13th December, 1881 . 5455. SCREW Propercle 1881 . December, 1881.
5536. DYNAMO-ELECTRIC Machines, J. E. H. Gordon,
Kensington.-17th December, 1881. Kensington. -17 th
5608. December, 1881.
Boxks, de., W. R. Lake, London. $-22 n d$ Deceember, 1881 .
5617. Cyanverts Cyanides of Metals, J. H. John-
son, London.-22nd December, 1881 . 5667. Colleoting Electric Currents, S. A. Varley,
Hatfield - 24 th Decenber, 1881. Hicle Axues, C. Pieper, Berlin.-6th January 119. Explosives, W. F. Reid, Stowmarket, and D Johnson, Chester.- 8 th
624. Drawruary, 1882 .
DAR, ©., 65. ExCeAvating STony Materlais, P. W. D'Alton,
London.-10th February, 1882 . 712. Cartrider Macarzines, G. E. Vaughan, London.
 Leigh, Manchester.- 1 st March, 1882 .
990. CHECKING APPAAATUS, G. F. Redfern, London,

- 1 st March, 1882 . 1094. Sockers, E. H. Johnson, London.-7th March, 110s. SAFETY Pins, W. R. Lake, London.-7th March, 1150. Holding Lawn Tennis Nets, J. Osmond, Kent. -9th March, 1882 .

1259. WEAVING TAPE LADDERS, J. Carr, Manchester.-
-15 th March, 1882 . 1377. Obtaining Amyonia, W. Young, Peebles, and G.
T. Beilby, Midcalder.-21st March, 1882 . March, 1859 E AFers, A. G. Gos, London.-25th 1503. ClLesiniva Cotton, A. M. Clark, London.-28th
March, 1882 . 1515. StEam Motors, W. R. Rowan, London.-29t/u 1633. Magazine Fire-arms, w. R. Lake, London.-4th
April, 1882 . List of Specifications published during the
week ending May 27 th, 1882 .
 $* *$ Specifications will be forwarded by post from
the Patent-oticico on receipt of the amount of price and postage. Sums exceeding 1s. must be remitted by
Post-office order, made payable at the Post-ofice, 5 ,
High Holborn, to Mr. H. Reader Patent-office, Southampton-buildings, Chancery-lane
London.

ABSTRAOTS OF SPEOIFICATIONS.

 Thirour relate, Frist, to means opptevertilitation, adid
consists in forming a chamber above the window consists in forming a chamber above the window
frame, the top sash being extended to thin in suok
chamber: and Secondly, to cunsing the sashes to toivot
 4388. Rapidir Extractiva Catorge vor
 This relates to the use of chains connected to the
piston, and to the ends of the cylinder, and which are heated by the fluid employed, while heaped ul
together: but which, when together, ; but which, when they aro spread out in the
cyinder, keep up the temperature of the fluid.
 Elastic pads to enter recesses in the shoe are formed
on the inner surface of spongy rubber, so as to rende it more soft and elastic, and better adapted to protect
the frog of the horse 's oot. the frog of the horsis sfoot, The phad is perforated to
allow of free ventilition, and the under surface is
cheoueres chequered so that it may pick up and retain grit from
the road, and thus give a better foot-hold. 4425. Heating Roons, Grebnhouses, \&o., T. Stokoe, A serines of hot-air tubes are phaced one over the
other and communicate with a chamber heated by by other and communicate with a chamber heated bya
gas time. They are enclosed bo other tubes filled
with water, and communicating with a boiler sur.
rounding the heating chamber.

 propelled by endless travelling wire ropes arranged in
a tube laid between the running raiss and it ocnists
in me
 rumning side py sile, and supporteo the car are spoke
runheils, which projecon the town of through a slotin the tube
whe 4439. Improvenents IN Inoandesgent Elecrric

 rollers carrying the endesss band. The figure explains

the invention. The top carbon only is in circuit. The

 arranges that it can be passed up into the interior of
the lamp and made to touch the lasss it it ithen
caused to rub the surface by the attraction of a strong caused to rub the sur

 ment of the astatic cores of electro-magnots in such ar
manner that thioir armatures ara atracte. whatever
be the direction of the currents through theiri coils
 it consists of a simple bar magnet bent at its middale
so as to bring its two opposite poles nearly together
 a coil of insulated wire e currents of either direction
will then attrat an are ature presented the the poles.
the purposes.

 This invention relhtes to an arrangement of the line wires and their connections at the exchange, so as to
facilitate the making and breaking telephonic conneotions. The figure shows a section of a a switch-board.
nite
Wire P at back of boord is

continued upwards in a flexible conductor C , passing over a puley at top and attached to motal ring A A
having
and collar by which the strain of S is pulled against insulated metal bar T, and is in ele ectrical con
tact therowith. DD , ©C., are insulated metal b front of board with metal hooks, on which ring A can
be hooked. Bar T is connected through a call and telephone receiver to battery, D being in connection
with subscribers' lines. with subscribers ' ines. To connect two subseribers
two rings A are pulled down and hooked on to same
bor
4454. Improvenextrs in Instrumants for Measuriso

 No. 4762 (11878). First, as regards the genar gamenter
therein described, in which the needles were of soft
 by employing a part of the currente for manneedising
purposes, and the rest ns usual for deflection. Thh invention also refers to improvements on the inventor' which have passed consistimg of anantectitro of ceprentent
cell with reversing apparatus actuated by the weight of metal trecording
by the current
 portud by the change of specific gravity due in the hollow or provided with metal. The elecectrode is made so that the normal weight and ofted wedertod atem, jus
immerses the lower part of the stem, while the im
ind sion of the stem juste quitpioisestem, the mile the immer
Various other methods of casry in ond added are described and illustrated, together with reversin the meter circuit varies and a heater and thee a ing the temperature.

 the quantity of olectricieity passeded through a registering by means of clockwork with an escapememt gevornued by
a pendulum or balance, the oscillations of which are its coil in the electrical circuit, so that according an
 to the clock work shows by suitable indicices the quan
tity of electricity that has passed in a given time.
tity Theter.
 This consiots, in maki. 4 ing . the bottle in two parts, one
to receive the acid and the other the alkali, so that the two may be poured out and mixed as required.
 Thand, France.- 1 17th october, 1881 . $6 d$. rangement to carding engines, them so that the dust will be carried on to tone outructid o
the mill during the carding operation. The of the card cylinder and its rollerston from the top dow to the floor is encased, and the body of the cylinder ih
onneeted with an air chamber fitted with an exhaus
4542. Verooripenss, F. W. Ficket, Surrey. -18 th octo
ber, 1881.
 ny convenient point, and an a greater or ress distance 2ceelerators containing mercury
4545. STEaA. Boilers, G. Hill, Liverpool.-18th octo-
ber. 1881. The object is to provide a steam boiler with a large steam generating surface in a small compass, and in
whinh brick work can bee ilisensed with ant that can
always be beadily
and

drical continuation B, to the outer end of which the
smoke-box C is applied. The fire-box D is arranged

 a current of air into the combustion chamber above
the fre-box, which is preferably made taper and fitted with a a curved top.

 pany, Neve York. 6 bd. in applying to a pulley
The invention consits
 novement of its own either slightly faster or slower
than that of the pulley, and in placing against the said
 pressure imparted to a spring or springs by an arm or

arms transmitt ing the movement of the shaft to the
pulley, or $v i c e ~ v e r s a, ~ w i l l ~ c o n t r o l ~ t h e ~ m o v e m e n t ~ o f ~ t h e ~$ pulley, or vice versa, will control the movement of the
salid pencil holder and causs it to mark on the dial
the the parying positions of said pencil, the poncil-holder
revolving with the pulley. The dial plate has an tial speed between the pencil-holder and the difial one is enabled to make progressive lines on the dial, indi-
cating the variations of power transmitted. The figure cating the variations of pow.
will show how this is done.
4559. Inprovemients in Apparatus for Generating

4559

lamp. The figures show the mode of construction
the armature of the machine. It is formed of thamber of cast iron discs A, wider at their bosses thus leaving a space betwe

B. Fach disc is provided with a series of grooves, in
whitich eight coils of insulated wires are wound, so as of form four circuits. Fig. 1 shows the construction
of the commutator, Fig. 2 being a section of the armature. With regard to the lamp the inventor allimas
the use for regulating the field of an electrode of a

roller, in conjunction with an inclined surface in a moving part controlied by a magnet and a a fixed arm,
the arrangement being such that when the moving part controlled by the magnet moves beyond a certain
point the roller is forced by the arm out of contact with the electrode, and the Iatter is liberated.
 The bolt of the (lock is formed with a hook-like recess, and the chain is connected at one end to the
staplebox of the ock, and the free end has a hook to engage with the recess in the bolt.

Lendan:- October 1881-4 Amenteavion from T. A. Edison, Menlo Parrk, U.S.). $6 d$.
The object of this invention is to furnish for determining the aggregate consumption of elece,
tricity in a distribution system from the central station where no indinivinual meters are emploentral or
for ascertaining at the central station the moryectess
 meters, so as to compare the meter accounts, and also
at the same time to determine the amount of leakage.

At the central station a metor is placed which will At the central station a metor is placed which will
yive the total current generate by the dynmo and
throw into the main ciratuit, and also a meter for recording the total leaka, e, the, differenceo between the
ecords of the two being the total amount consumed

 shunt olly y definite proportion of the current through
the meters. he meters.

This. consists, First, in the application of water steam saturated with a hydro-carburet for the elimina-d
tion of metalloids contained in molten iron; and
 carbure
4578.

Lonhodat, Frankifort.) 10 d.
 ments consisting in a mantle or double casing, a very
 cooking pur
unsightly.
4587. Pharring Machinss, J. Dowling, London.-
20th october, 1881. 6 d . This relatest toplaiting machines with a reciprocating
knife, and consists, First, in the application of the
 rocking shatt has a slotted arm extending down, and
to it the rod is attached, so as to be capababe of adjustnent to vary the width or ars for pressing the material
fion clutch and two roller
 knife to cause the knite to give the necossary prossure
on the amtrial, the ever bein yrive byan oxeentric
on the driving shaft; Fourthly, two rockinc shatts and knives, phaced one over the other, may yo used, to form a box plait or a double box plait.

A chest of of wod has apertures to observe the pro-
cess, and to it the grit is introuced through a hopper fra controm one to the other of a sereies of chambers
dommunicating by slots through the bottom of each,
com the material being acted upon as it falls by a current fixed or adjustable prisms, and fall downwards through a second series of chambers, being again acted upon by
a current of air. Suitable dischange openings are of the case.
4595. SAsH FAstrverrs, J. G. Chillingworth, London.
 liding bolt is fitted, and serves to securre the hinged
4596. Washing Botruiss, J. J. Harvey, Kidderminster.

and gravel, stone, or shot. A frame carrying a
receptacle for the bottles at each end is mounted on a
4598. Watrr-oloskrs, G. Pitt, Sutton. -20 th october,
18si.- (A communication from Dr. j. Finck, Baden Baden.
The object tis
The object is to render closets absolutely inodorous,
and to provent them being centros of infection in
ind hnouses. The soil pipe descends into a chamber fille

with water to with water to a level to cover the end of the pipe | provided at the tom end of the chamburber. Thew bottom |
| :--- |
| of the chamber is inclined, and the oxit opening is | itted with a stopper, which, when remored, allows

the contents of the chme leading to a a d the chamber to escape to a condult 4509. Food For Horses, CATTLE, \&c., J. H. Cox
Matlock, -20 Oth October, 18s1. $4 d$, This relates to the manuffacture of a condensed food consisting of an admixture of grains with condiments
and other substances in certain proportions, which
 4600. Velocipedis, a. singer, Coventri, This relates, First, to an improved pedal, by means
of which the prats on which the foot rotse reste raised
clear of the parts through which the spindle passes clear of the parts through which the sindole passes,
and Secondy, to an improved form of detachable and Secondiy, to an improved form of detachable
handerod chiofly applicaboto bicyoles, and especialy
applicabbe where the the handle rod is required to be be
 mequired.
red
 The design is painted in ordinary oil colour on on a glutinous and saccharine body, in which colourso of the esired tints have been mixed. The coating, when
dry, has a layer of oil colour or varnish applied to represent the soft shades, and to blend with the the pro.
vious colours, when the whole is protected by a backing of cement, air-proof and water-proof.

 tilting the barrels to open the breech. In breech-
cylinder fire-arms the axial motion of the breat cylinder is checked by fitting the " gate" on it Hnere edge with a too th, which extends into the path
of the ratchet teeth on the end of the breech cylin. der, and acts as a yielding stop to the progress of the 4603. Frre-aratrs, Captain T. E. Clarke, Minehead The grate is open and the smoke is made to pass
down through the fire and up through two side tubes chimney. Air can circulate round the grate so as to be heated before entering the room.
4604. Finishivg Corn in Thrashiva Machines,
E. Foden, Chester.--2lst october 18si This relatest to the method of separating chaff and
other light
substances from
grain in thrashing machines, and alaso for separating or sorting thas el ilight
from the heavier grain.
Instead of employing riddles or sieves mechanically agitated or working in conjunc-
tion witt tion with a blast, a fan is used, in combination with a
creeper and vertical pipe through whith creeper and vertical pipe, through which the grain
and chaf fall after passing through a scourer or screen
and meeting the den and meoting the trastught from the than, ther light grain
and other light particles are carried with the current
and to the fan, while the haeavy carried descends into an
ordinary sen
orat tieal pipe, and the fan is formed with a sliding valve
to remalte the ari presure. The ribbed lining of
the scourer is made in two parts, capabale of reversal.
. 4606. T®a, J. C. Marillier, Nice.-21st October, 1881.

Thi leaves of the tea plat have the neecssary
degreo of withering imparted to them regularly and
rapidly by placing them in a specinl airtioght ehm
 sides exievp at frowt, where it is fitted with a
fitting air-ticht. Trays are
Trays receive the leave and a partial vacuum is caused in
such chamber an causes the leaves to wither. 4608. Gas Exainss, W. Watson, Leeds,-21st october The cylinder C provided with piston and rod is
attached t ta framework, and below it is a chamber G to receive the explosive gases prior to explosion, tho shown in Fig. ${ }^{2,}$, and consisting of a contral tube H ,
within a tube I , the air being caused to pass through

small holes so as to divide it, and thereby effect a
more perfect mixture.
 and No. 2919 , A.D. . 1881. A valve L is fitted orer the
inlet for the gas and air, and the cylinder is provided 4609. Ventilativg, Heatisg, and Cooulive, J. Court
Brompton-round $-21 s t$ October, 1881.-

 for the kitchen or other fire which is in constant use,
a space being left between the chimney and the inside
 ventilated. By thes
caused in the shaft.
4610. Door Locks, J. Mathisen, Norvay.- 21 st Octo-

 round and enclosed in a a tube fastened to the partitions
of the lock, the axle being rigidily comnected to a bolt of the lock the axle bieing rigidily conmented to a bolt
arme workint between two shoulders in the lock
bolt arm acts on an intermediate lever with two
pro.

is fitted with a projecting pin nuided in the partition
and surrounded by a spring to support the elatch when

 This relates to pillo fabrics in which two pieces of
the fabric are woven together face to face, being conneted by the pile, whith is afterwards cout by knives,
nid it relates to means for regulating the letting in of the pile warp and the tension upon
looms for manufacturing such fabrics.
4614. Treating and Utilising Firbous Peat, \&co.,
J. A. London, Lonion. -21 st
October, 1881. - (Not
 vender it suitable for use as a sub
litter for horses and other animals.
 ormed with inclined groves in the interiror torececeive
 the tube, and the plug when tu
on it and secure it in position.
 Thistoer retasesto to the construction and arrangement
of apparatus to dry agricultural produce by currents if apparatus to dry agricultural produce bi burrents
if heated air acting on the same while it is aitated,
nit it consists in the combination on one vehicle of
 furnaces and anesf wort heating the boilire and and
blowing it alo
working the tan and the drying apparatus.

A balanced guard plate or valve is fitted within and forms the underside or the shoo or the letter-box, so
that tiflds to permit the insertio of letters, but
tilts into a posit on to
to close the shoot when weight
 opening in the shoot below the valve, and are pivotted
soan to iold and allow letters to pass, but prevent
their withdrawal. 4820. Cistrrn

 ather bail valve. The water outlet tis at the bottom,
and in surrounded by ind iancrber ring to torm
seat for the ball valve. The float lever is pivotted to the chamber, and its rear end is curved up so as to
beoar against and lift the ball valve from its seat as the
float falls.

Arrance) 4d. 4 did ind is formed with central semi circular depression, the middle one being on one side
of the axis of main boyd, and the end ones on the
the opposite side. Side depressions of semicircular form
are allo made in the card The card thus made can 4826 .

This consists, First, of a a battery of stamps driven by means of chain wheels, and endless chains from
steam emine sinecondy, of a novel construction of amalgamating boxes, into which the pulverised quart
flows from the stam flows from the stamps, and the gold in it is extracted
by means of mercury; Thirdy, of novel methods o constructing and arranging the parts or buddles o
concentrating apparatus, in which the gold remaining
 4829. Gland Stuffing-boxers For Watrr Anip 1881.16 d.
A applied to water valves, this consists a a lose interna1 stuufing boxa or receetaclele for packing, which
when is inserted into the outer or usual stuffing-box, its
lower part pressing upon a flexible ring in the bottom of the outer stuffing boor, so that the ghand cover, on
being screwed down, forms a tight joint.
 So as to close the entrance openings of fences, the
end of the inione wres are attacheod ot o vertical and
portable spinde, the lower end of which is tapered so portable spindle, the lower end of which is tapered so
ns to inserti
tin in its bearing, and also to force it into
 hook at top to receive the op oratale spindide, whic
carries a ratchet, with which a pawl on the top hoo engages. To secure the line wries to the standards inserted in staples, the ends of whic
through the slots and turned back.
 The van consists of four sections: First, it forms
trolley with lock-up well beneath to convey pictures

 tugether it forms a complete furnitures van, which will
 This relataes to a method of constructing batteries by the use of peroxide of lega, scondary other
metalite oxide packed upon or round piees of metal, or corrugated, and fixed to trames of wood pertoented a porous material are then packed around the oxides.
TThin hheests of fead are attached to one or both sides
of the element. 4883. Shirs' Davirs, \&co, R. B. U. H. J. Duncan.Ships' davits are made with a single sestem. or column
carrying two or more heads springing from the to carrying two or more heads springing from the top,
the dant being fixed in the ordinary manmer, and by
turning it the boat is swhung out ready for 1 lowering. turning it the boat is swung out ready for Io towering
Speceil. menes for disengaging the boat when lowered
are described.

 Is inis relates to the manufucture of a material which

 LEAD, or
1881.
$4 d$.
This relates. to improvements on patent No. 2807
A.D. 1877 . The operation is carried on in an oven o A.D. 1877. The operation is carried on in an oven o,
reverberatory furnace, the ore being frits calcined o not, and then in the state ofe of a fine porder mider mixed with any suitable chloride, preferably yail, and placed in the
furnace in a vessel ined with brick and there treated
with eul with sulphuric acid, gentle firing being employed to
complete the volatilisation of the antimonious or other complete the volatiinsation of the antimononous or other
volatile chlorides.
cone chimmey or a s. sitatabe condenser, from which the
ciloride of antimony may be collected and metallic antimony extracted Compounds contanining ocopper
and nickel with other metals capabie of forming volatile chlorides may also be treated in this manner

Theiles.) s.o. sids
Thirst, in the form of the pasteboard
Lank, whereby the box is rendered sufficiently strong to retain its shape wistentored tho use of stiftening
pieces ; Secondy, in the method of rendering the lid
 An imner box is caused to slide within an outer case,
and when drawn out it causes the top lid to be bent backwards, and when released the elasticit
forces the inner box within the case again.
4637. Rorary Apparatus, A. J. Boult, London.-
22nd october, 18s1.- (A communication from L.

A a pponilined to ar purp, prance. this codsists of a cylinder
enclosing two wings mounted on a shaft passing through the cylinder, motion being imparted to the
wings by an arrangement of four bars or inks formin a jointed aundriateral. Two of the links are shorter
than the others, and the latter are coupled close to the cylinder, while the former are coupled and attached
to the eperiphery of a wheel driven by means, and the centre of which is in a line bisecting
the angle formed by the two short links, and on the
tin links meet with the me meeting point of the the the sho

Thid. relates to button hole machines, and consists,
First, in cutting the hole in the cloth before being sewn; and Seondly, in lengthening the carrying feed
plate to the front of the machine and jointing anothe
 4640. Roasting, Grinding, and Mix

 leading to o veveniliting chamber to carry off the pro ducts or combustion and vapour.
byiture of theas as and ainined
grinding mill is fitted with magnets to prevent the passage of nails to the interior. The mixing apparatuss
Tonsists of a drum provided at each end with a sirin) consists of a drum provided at each end with a spiral
worm, radualy diminishig in diametor a they
approach the centre of the drum, where they intersect.
4642

 partial vacuum kept up in a pipe oonnected with the
train pipe is in existence and fully operative on the partian pipe i.
train pipipe.
4643 . Sro

A central (Not pillar suceated worthth. by a circular foot has
rames radiating from it, and fitted with hooks to Irames radiating from ity
carry the boots or shoes.
4645 . .
 near Berlin.). (Not troceeded dith.). 2 .d. wood into finely profiled pillars, ©ce. The rough pieces
or bars are arranged in a kind of endess bed which 1eads them slowly past revolving cutters the thars
peing clamped so that they can be turned to 90 deg

 This relates to bottles with internal ball stoppers,

 washer of india-rubber and a bottom washer of cork.
The bottle below the neek is formed with ar rectangular shoulder, so as to prevent the return of the ball into
the eeck while pouring out the liquid.

The vesse at the lower part is formed with a double joined together below the deck line by asingle upper
stern forming a continuation of the hull. The object is to increase the speed and efficiency of yessels pro-
pelled by ba pair of screw propellers and to reduce 4848 T 4848. Tuess, H. J. Haddan, Kensington.- 2 2th october,
1851.-(A. communication from A. Vuillaume, This reates to the shape of the tile, which is rhom-
 The object of the invention is to afford the advantage of a reversible front and cuifs to a sirit, or of a rever

 Which prevents the bed from following the movements a cone on a movable rundie of india-rubber, which
causes the bed to remain always in a perpendicular Position, notwithstanding the movements or motion
of the ship. Other mechanism placed in the boxes prevents the effeets of the pitching by maintaining
alawy at the same sevel thit obto of of the interior
box, which supports the whole system 4652. Shrps' SLerpive Bertis, W. R. Lake, London.
-24 Ath October, $1881 .-(A$ communication from D.
 is suspended upon its lon 1 gitudidall axis, so that ith thas
no end play, while the bottom is suspended upon its transyerse axis and from the frame, the result being

 Metal uprights are employed which are notched to to
reecive the wires upon apocectin falae or edge and
each noteh is also adapted to receive a trasserse each noteh is also adapted to roecive a transserse
locking piee. Whan the wires have been placed in
the notches the locking pieces are inserted to secure
tem 465. Regerveative Hor-biast Stoves, J. Hartley, This consinstrin dives. diding the boty of of the etove into
wo or more horizontal divisions or chambers, and arranging in the said divisions or ochanberss a packing
ar checquering of fire bricks separated int more sections or short chambers, each of the said
sections or short chambers of the packing or checquering opening at both ends into dust chanmerres, $\begin{aligned} & \text { which } \\ & \text { are } \\ & \text { doused in combination with clearing holes and }\end{aligned}$
 This relates to a method of making glass tiles, so
hhat the ornament, pitcture, or deocration is protected by the glass on both sidides, and also to the method of
fixing blass or other tiles by a step or lap combined
witha metal tag or tongue.
 1881. (Not proceeded with.) $2 d$. framing, which bar or rod has acrankeed arm at each
fnd projecting over or under the buffers and extend ing to the outside of the venicle. Attached to about
the eentre of this rod or bar, and capable of turning with it, is a link or coupling hook, so that when the
rod or bar is turned from the outside of the vehicle by and
dropped on a projecting hook on the onposite earriage,
and so coupte them together. T_{0} uncouple the he link ank arm and rod is turned so as to raise detent in the propecting hook on the opposite carriage,
when the hook or link is allowed to drop by its own weight and there remain attached
until again required for coupling up.

This consists in combining a strip of metal com-
posed of an alloy of platinum and iridium - through which a current of electricity is made to pass-with
多-burner, so that the former is heated by the latter it being found that the heat from the burner offects
 4861 .
 Thid relates to the arrangement and construction of apparatus whereby the heels of boots, shoes, and other
siminar artices my be olamped and seoured in posi
tion upon the sole whilst being nai ed or pegged

disposed compartments, which are connected to eacil
 4663 Burners ror Gas Stovers
4663. BuNNERs For Gas Sroves for coriva, \&c. This consisist in constructing the uburors. for gas
stoves with movable perforated crowns or caps and special ducts or openings,
being more readily cleaned.

 measuring resistance.

 air and water ingress. 4666. Minging Mea

 This. consists partly in in constructing a shoe having
deep slots or sockets for the reception of removable piates or gripping surfaces furnished with dowels,
which are secured in the sockets by transverse bolts on which are secured in the sockets by transverse bolts o
pins having split or forked ends to prevent their work
ing ing out.
4669. Brakes for Wheried Vkhicliss, W. H.
Marks, London. -2 bth October, 1881. $6 d$. This consists in the application of the brake between the brake bei
convenient.
 This consists in takking the steam generated in th of a cill or other form, are placed along the crown o
ohe fun
 4676. Wire Roprs, J. Hoason, sl. Helen \&, Lañcastern This consisistseri in forming a are for the rope by coill
 round which are wound preferably eight surrad.
the requisite size to give the thickness required. 4677. Scorew NuTs, de. .W. H. Levis and W. A
clark, Surrey.-25th october, 18s1. $6 d$. This consists partly in the construction of a nut with a projecting arm whitin shall prevent the said
nut from turng when situtad insio and w whitin
moderate distance of the sides or bottom of a tank or 4680.

 bar, and to the other end of the bar is attached
counterpoise ; this bar is balanced on a fulcrum so counterpoise in it in h horizontal position while the
that it remand
atmoshere is in its normal condition. The addition to the atmosphere of explosive gas, which is is lighter
than air, will cause the gotob to fall and the addition
to the atmosphere of heavy to the atmosphere of heary gas will 'cause the globe to
rise.

 which is inserted in the scarf. By this means the
scarf is prevented from shifting.
 This rellates to the combinantion with a balloon of
framovork applineos for the ourpose of displaying
advertisem ant signals and means of lamps carried theroly.
4885. Honssshors, . Dyer London.-26th October, This consists of a horseshoe made of india-rubber,
gutta-percha, leanther, or other resilient or partially

 This relates to a new article of manufacture made of asbestos fibre foreed in a bot or manses, afterwards
moistened and pressed into a solid and compact form.
 This cocsainists of on an elastic caster for furnituro in
which the rod or spindle is supported and guided in a socket inserted in the leg of the piece of furniture, a
spring being interposed bebweon the ond of the socket
and the oxtromity of the rod or spindle

 Thith. Tlatan . e an improvement in revolvers with
 triggen
4692.

 held in position by a spring or springs, or by guides.
A lever, cam, wedge, or like device is conneected to the board, so as when moved to cause the lath to project
from the surface of the board. When the lever or other device is unacted on, the spring or springs
draw the lath into the reess or
Irove.
 device. The o ther end of the said rod projects
beyond the end of the board.

 grain, conl, salt, and various othor oubstances, and
consists in accomplishing this object by creating
 air through a pipe, channel, or passages through
whith the material is to pass to be conveged to the
required destination.

 Hapron, tive notice of frres, se. The inventor makes
uns of Ritchies's or other system of periodic time conlrol from a a entral station, and adapts to the coil
trolling and controlle clocks eleotric oontacts, which

 The normal clock is allowed then to regulate the con-
trolled coock, ond
atter
fow seond thrown into the previous telephone circuit. At night
tho ine can be ornected to fire or burglar alarms in
this wa, ur utilised in other ways described in the
specification. 4696. Makivg The Jornts or Prips, \&ce, J. A.
Eaton, London,-27th October, 1881. 6d.
 The pipes have spigot ends, and over the butting ends
is placed a sockeet formed with excentric holes sat the is nas and a alarger concentric hole in the middle, so
that while the top of the end holes rests on the pipe, he middle hole leaves a space to receive the molten mating sheet metal sookete ts, the ends. are tinted wise of
uxith
excentric discs capable of being turned so as to nearly
 The object is to or tor teane cans so that the smoke
can escape from whichever side the air current may Come, and consists in forming two exits, one at the
top and one at the base of the app the adjoining surfaces being so curved as to deflect the wind outwards,
and therey produce a suiction on the products of
combustion 4700. STean Enaines, S. Geoghegan, Dublin, and J.
Sturgeon, Westminster:-27th octoeer, 18s1. ©d. This reales, Firitst to a method of heetaing the eteam
Cylinder by live steam applied internaly, instead of in and external jacteat in thphed mannern hatith, insto usuad of
employed ; and Secondy, to a mode of balancing the

4700]

weight of pistons as ordinarily applied, The drawing
shows a section of a long cylinder where the double

with a
water. 4699. Mashing and Preparing Maize, Rice, \&e.
 Which a vertical shaft carrying radial arms, rakes,
tines is caused to revolve and agitate the grain. The
shaft is made hollow, and also carries a coil through
4701. Fish Hoors and Crochet Hooks, T. Morgan This relates to machinery for barbing or bearding sists of a hopper in which pieces of wire pointed a one end are placed, and are delivered one at a tim
into cross grooves in a feeding drum moving in vertical is ime, anted. The ends of the wires projec
motion the
above the face of the drum, and when they reach th highest point of the drum, s rotation during the rest
the wires are barbed by means of a grooved bed t the wires are barbed by means of a grooved bed to
support the pointed end of the wire, and which i
carried to and fro over a slide over which works holder to grip the pointed end on the bed. On the opposite side of the feeding drux
carrying a barbing cutter or tool.
4702. Sulphate of Lime, J. Young, Renfreev, N.B.-
27th October, 1881. $2 d$. To a solution of chloride of lime is added a solution
of the sulphate of an alkali or earth, the result of the of the sulphate of an alkali or earth, the result of the
reaction being that sulphate of lime is precipitated and the compound
remains in solution.
4704. Chandeliers or Sliding Pendant Lamps, G
W. von Navo.ocki, Berlin.- 27 th october, 1881.--

Thany.) $6 d$. by a cross bar from which the smoke arrester is
suspended, while the ends of the tubes are fitted with suspended, whin the ends of the tubes are firted wod
stuffing-boxes, through which side the vertical rods
of a frame joined by a cross bar at the lower end and the lamp.
4708. Knife-boards, H. C. de Berenger.- 27 th October The knife-board consists of a wooden board covered
with leather, kamptulicon, or other tough substance, with leather, camptuicon, or other and are afterwards
through which holes are punched
filled in with emery or other cleansing or polishing powde
4709. Stoppering Botrles, G. Kemp, Swinton, Yorks
-27 th October, 1881 - (Not proceded with.) $2 d$. The neck of the bottle is made taper and is of such
a shape that the end of the cork abuts against a portion of the neck, so that the internal pressure is
conducted against the side of the cork, which will be conducted against the side of the cork, which will be
held firmly in place until partially withdrawn, when
the pressure will act on the end of the cork and force the pressure
it forward.
4711. Figured Fabrics, J. Makin and J. E. Johnson-
Ferguson, Bolton.-27th October, 1881. $6 d$. This relates to the manufacture of figured fabrics wherein a raised white figure is produced on a
coloured ground, the colours being reversed at the back. The fabric is made with two shuttles, on
carrying a coarse weft and the other a fine weft. carrying a coarse weft and the other a fine wett. I
takes four picks to form the pattern. There are als
two warps, one fine and one coarse. 4712. Ass Pans, C. Ezard, Bradford. -27 th October
1881. $4 d$. The body of the screen of the ash pan is made
entirely of cast iron with a curved moulding in front The upper portion is Hat, and slopes slightly forward
and has radiating apertures cast therein, through which when open the ashes fall into the pan. A curved
slide of polished steel opens and closes the apertures in
the sereens
4713. Weaving Certain Figured Fabrics, J.
Makin and J. B. Jolinson-Ferguson, Bolton.-27th
October, 1881. $2 d$. This relates to a method of weaving fignred fabrics
of the class described in patent No. 7111, A.D. 1881 ,
. the object being to produce the same with one shuttle patter
4715. Wax Paper or Clotr, W. R. Lake, London.-
27th October, 1881.-(A communication from W. B . The object is to manufacture paper or cloth saturated with paraffine or a mixture of paraffine and resin, for
the purpose of wrapping up and protecting all sub-
stances which are affected by atmospheric changes stances which are affected by atmospheric changes
The paperis fed from a roll, and passes through ten
sion siaxing solution. It It also passes through equalising
wand
and compressing rolls, the lower one of which revolve and compressing ro.
in the heated wax.
4724. Apparatus Employed to Discharge the
Water of Condensation from Steam Pipes, H
 The apparatus comprises a metal ball H which is in constant communication with the steam conduit or
receptacle by means of the pipe G. The water of con-
densation from the steam conduit or receptacle accumulates gradually in this ball, thereby increasing it weight and causing the lever which carries the ball
to turn on its bearings. By this motion a little
discharge valve J, the lift of which can be regulated by

a stuall screw I , is opened, and the water allowed to
escape from the ball through the pipe T . As the ball
begins to begins to rise again and shuts the valve J before the
water has been completely driven out from the ball,
the inlet of the passage T is always blocked by water, thereby preventing any escape of steam from the
same.
47.25 . Flushing Water-closets, \&c., H. Skerrette Birmingham. - 28th October, ,1881. 6c, 6 . H. Skerrett,
The cistern has a capacity to contain about the
quantity of water to be discharged at a time to the
pan of the closet. In the cistern is a syphon formed in
one piece therewith, the bend being preferably one piece therewith, the bend being preferably
flattened out at top, in order to diminish the height
which the water will require to rise to in the cistern. The flattened bend comes within a short distance of the top of the cistern, and it contains the same cubical
apacity in cross section as that of the legs of the capacity in cross section as that of the legs of the
syphon; the short leg of the syphon opens into the =wetsuatis $=5=4$
 Gas, P. Jensen, London.-28th October, 1881.-(A
communication from the European Water Gas Com-
pany, Limited, Stockholm.)-(Not proceeded with.) The object is to utilise the waste heat of open hearth, cast steel, welding, puddling, and glass fur-
naces, while at the same time a considerably higher temperature than hitherto is maintained therein.
The high temperature is obtained by the use of water cas.
ton, Westminster. $-28 t h$ ectober, 1881 . 4 . 4 . At a distance from the working face in the open pumping machinery is provided to supply water at
considerable pressure, which is led to the working considerable pressure, which is led to the working
face, and actuates an hydraulic motor which drives the face, and actuates an hand also mills or crusher, by
exaavating machine and
which the débris is broken up or reduced, and mixing which the debris is broken up or r
with the used water is discharged.
734. Combing Cotton, P. C. Marsden and W. 4734. Combing CotTon, P. C. Marsad and
Pendlebury, Bolton.-29th October, 1881 . $6 d$.
The object is to increase the amount and improve The object is to increase the amount and improve
the quality of the work done by combing machines, linders and providing two comb sections and two futed sections for each cylinder. The combs in the
comb section, instead of being all set at the same angle, are placed at diffierent angles, the front comb
being almost tangential to the circumference, while
the he angle of each succeeding comb gradually increases,
o that the last comb of each section is at angle of about 60 deg. The cam which actuates the steel roller has a
double set of groves to correspond with the four double set of grooves to correspond with the four
sections, while the following cams are also made
double-acting, viz., the leather roller cam, feed cam, double-acting, viz., the leather roller cam, feed cam,
top comb cam, and the nipping cam, by which means op comb cam, and the nipping cam,
the whole of the combing process is performed twice
each revolution of the combing cylinder. 4738. Appliances for Use with the Shoes of
Horses, de., ,o PREVENT SLIP PING, . W. Elliott, Liverpool, and A. B. Stayner, She fitild.- 29 th Octo-
ber, 1881. - (Not proceded vith.) ber, 1881. - (Not proceeded worth.). $2 d$.
Trevent slipping, and it consists in forming the nails eyond the 4739. Pros and Screws for Violins, \&ce., J. Wallis, The shank of the peg or screw is of metal, and passes
through the sides of the head or scroll between Which the strings are attached, the outer end passing by two collars mounted on the shank and capable of
being tightened up by a screw nut sunk into the head of the peg, an
metal shank.
4747. Wigs, Perurrs, \&c., J. H. Johnson, London.-
-29th October, 1881.-(A communication tren This consists in forming wigs and other coverings 4749. Spring Balances, J. Linacre, Brecon, South
Wales.-29th Wales.- 29 th October, 1888.6 .
This relates to spring balances in which the weight ists in improvements in such balances, adapted for weighing heavy bodies, such as coal, and whereby
the sum or total weight of the several weighings is
4751. Hand Perforating Machines, L. A. R. Cler,
Paris.-31st October, 1881 .-(Not proceeded with.)

This relates to perforating machine for copying and multiplying all kinds of drawings, and consists of a nd whired
4754. Fences, Gates, \&c., D. Rovell, Westminster.The longitudinal rails are of tubular metal, and consist of two pieces of concave form joined together
at the edges, and the uprights are either of wood or suitable section.
4755. Anchors, F. H. F. Engel, Hamburg.- 31 st Octo-
ber, 1881.- (A communication from A.) and A. The object is to prevent the anchor stock being
fouled by the cable, and also to increase the effectiveness of the anchor to turn on the ground and get hold of the bottom as soon as the cable is hauled home,
and it consists in forming the stock of heart--shape,
the anchor itself being constructed with one arm.
4756. Drawing off Aerated Bottled Liquids from
Bottiks Having Intrrnal Stoperss, S. Pitt, Sutton.- 31 st October, 1881. - (A communication from
P. Hathavay, Nevo York.) 6d. This relates to a stand for holding bottles containing aërated liquids, and it consists of a plug over which internal stopper from its seat. The plug leads to a
cock which allows the liquid to be drawn off as
required The base of the bottle, which is turned upwards, is supported by a coverer which is turned
lownwards by means of a pivotted lever is 4762. Production of Enamels on Earthenware,
Glass, de., E. W. Heaton, Kent, and F. Bolas, Chiszick.- 31 st October, 188.. $4 d$.
According to this invention one or more the
aterials ordinarily used for producing vitrified namels is mixed with a phosphorescent substance such as will, after exposure to light, remain luminous
for some hours. Some of this mixture is placed on the
object to be enamelled bject to be enamelled, after which. it is exposed to a 4763. Foldina Pated Siem

Ch63. Folding Printed Sheets of Paper. W.
Conquest, London. -31 Slst october, 1881. . $6 d$.
The object is to make the action of the folding rollers in carrying off the printed sheets that are
tucked into them by the folding blade more certain, and it consists in adapting to each roller two or more
elastic rings which projeet above the surface of the oller, so that when the two rollers are in position
heir rings touch. The folding blade passes into the spaces between the rings, being cute awas at the part
where it would meet such rings, whereby the sheets
whe where it would meet such rings, whereby the sheets
are forced into the bite of the rings and are carried
forward by them to receive the next fold or to be
delivered. 4775. Improvements in Electric Lamp, H. A. Bonne-
ville, Paris and London. -1 st November, 1881.-(A communication from L. Daft, Neov Yorke.). 48.1 . 4 . A
This, consists in in inprovents in arc lamps
Thich the upper carbon is regulated by being held in w tubular rod which is attachated to by being held in
are of an
electro-magnet by clips of platinum or porcelain. The
carbon descends by electro-magnet by clips of platinum or porcelain. The
carbon descends by gravity. The lower carbon is sus-
tained in a tube containing mercury, which tends to orce it up as it is consumed. This carbon is also sup-
plied with regulating or detaining clips. The inventor plso claims means for hanging lamps by by elastic invetaltic
suspension devices which also form part of the circuit suspension de
of the lamp.
4808. Breech-loading Fire-arms, \&c., H. Simon,
Manchester--3rd November, 1881.-(A) communica-Manchester.- 3 rd November, 1881.-(A communica-
tion from F Vetteri, Paris.)
This relates to breech-loading fire-arms in which the
breech is closed by a sliding bolt, and consists mainl
in the application to such fire-arms of mechanism and
devices whe devices whereby they are made to act as repeating
rifles, supplying the cartridges from a magazin formed in the front part of the stock underneath the the
barrel, the invention being applicable to new and als to existing fire-arms.
4853. Shaping Metals, J. Whitehouse and
Birmingham. -5 th November, 1881. $8 d$.

This relates especially to machinery for shapin
articles usually made by spinning, and it consists in fixing on a lathe spindle a chuck to hold the wide en are three rolls having in longitudinal section the lath of the counter part of the article e o be produced. The
rolls are situated at nearly equidistant points round rone axis of the blank to be operated uponts and ar
tharried by supports capable of moving towards an carried by supports capable of moving towards and
from the axis of the lathe, being actuated by means on
a right and left-handed screw worked by he mhel from the axis of the lathe, being actuated by means
The rolls can letthanded screw worked by hand wheel.
The in a direction parallel to th lathe axi
4864. Steam Generators, C. D. Abel, London.-7t
November: 1881. (A communication from
Schulte Austria) Sch utte, Austria.) $6 d$.
This relates to "Tentrink" boilers, in which a hori its top side with an upper cylindrical chamber, so tha the steam rises from the former to the latter, the within a correspondingly inclined transverse flue in
the lower chamber, round the entire surface of which the lower chamber, round the entire surface of whic
the flames and hot gases are made to play. In such

4864

boilers a space extends the whole length of the to
side of the lower chamber and is occupied by steam so that the part of the boiler covering such spac becomes rapidly burnt away by the flames passin
over it, to obviate which such steam space is restricte to a comparatively small portion of the crown, on
mode of effecting this being shown in the drawing, and consisting of making the shell larger in diameter may me made targest at the ends. If desired, the steam rising
me highest the highest part. The transverse flue containing the
fire grate is made less inclined than usual, so that the fire grate is made less inclined than usual, so t.
top edge of the flue is some distance below the
the crown and is always covered with water.
5084. Botrues, \&c., J. Pattison, Kennington.-21 In the neck a decreasing or tapering orifice leading
to the inside of the bottle is formed, and has a screv thread to receive the stopper which is similarly formed or india-rubber washer, against which the under side
ondeaded id reces to recive a cor of the stopper head bears.
 From B. B. Hotchkiss, Paris. - (Complete.). $6 d$.
The object is, Firrt, to produce by one single motion the opening of the breech, the extraction and ejectio by another single motion the closing of the breech an the throwing of the trigger in gear, so that the gun
is ready for firing; and it consists in the use of a long
sliding breech block operated by the partial or com sliding breech block operated by the partial or com-
plete rotation of a lever attached to the breech receiver, and connected to the bockich by a shaft and crank, pro
vided with a stud working in a slot in the breech block; the motion of the lever is utilised for workin extractor ; Secondly, to provide convenenient and stateady
means of directing and firing the gun, and consisting in attaching to the rear of the gun a shoulder piece o a pistol grip, which is seized by the right hand, so a
to enable him to use with stesdiness his entire wigh to enable him to use with steadiness his entire weigh
to direct the arm; Thirdly, to means for ejecting the
fired cartridge and introducing a new one without to direct the arm, inirdy, to means for ejecting the
fired cartridge and introducing a new one withou
interfering with the man who points and fires the gun interfering with the man who points and fires the gun,
and consisting in providing the upper face of the and consisting in providing the upper face
horizontal arm of the stock with a bed or trough to
guide cartridges to horizontal arm of the stock with a bed or trough
guide cartridges to the chamber when the breech i
open; an inclined aperture under the trough provide open; an inclined aperture under the
a free passage for the ejected cartridge
650. Vrlocipedes, H. A. Dufrene, Paris.-10th Febry-
ary, 1882. - (A communication from A. Mange, France.)-(Complete.) $4 d$. weight of the rider is utilised as motive power, and it consists of a forked frame carrying the driving whee shaft, while the other end is provided with a socket in which turns the fork carrying the hind or steering
wheel. The saddle is mounted on a rod which slides upand down, and is jointed to an arm on the centra shaft, to which the treadles are also
nected to the driving wheel by rods.

SELEOTED AMERIOAN PATENTS.

From the United sates Patent office ofricial Gazetle.

257,629. Injector Condenser, Jerome Wheelock,
Worcester, Mass.-Filed 23rd January, 1882.
Claim.- (1) In an injector condenser, the combina tion, whin lip, a cone projecting downward within sai annular lip, a cone projecting downward within saic
lip, of a conical shell extending below said cone and
water chamber, and a discharge pipe connected to the 257629

lower and small end of said conical shell, substantiall as
chamber in an injector condenser, of a sediment trap
and and a fussh pipe, substantially as described. (3) Th
combination, with the conical main shell in an injecto condenser and a discharge pipe connected to the
lower end of said shell, of a tapered nozzze extending
downwardly within said discharge pipe, and in comdownwardly within said discharge pipe and in com-
munication at its upper end with the interior of the
conical shell, substantially as described.

257,687. Trelephone Transmirter, James P. Free-
man, Treat T. Prosser, and H. B. Prosser. Chicago nan, Treat T. Prosser, and H. B. Prosser. Chicago,
Il.., assignors to the Home Telephone Company, of
Illinois.- Filed 22nd October, 1880. Illinois. - Filele 22 ned October, , 880.
Claim. - (1) A tension regulator composed of a com-
pressed compound of steel filings, coke, lamp-black pressed compound of steel filings, coke, lamp-black,
and balsam of fir, substantiall as before specified.
(2) The combination, substantially as before specified, 257.687

of the spring arm, the button secured in a ring thereof,
nd the platinum fail strips inserted between the button and its encircling ring. (3) The combination,
substantially as before specified, of the spring arm cabryintially as before specified, of the spring arm
carthe button or tension regulator, the rigidly secured but somewhat elastic non-conducting bracket
supporting said arm, and the adjusting screw acting d bracket.

257,799. Regulator for Blowing Engines, Thomas
F. Hitherbee, Port Henry, N. Y.--Filed $8 t / \mathrm{February}$,
Claim.-A blast furnace blowing engine having an
air cylinder C connecting with a blast pipe, a steam

ylinder E having piston F and a speed governor der C, whereby a given volume of air may be main-
tained regardless of the steam pressure and the air
cesistance, as described.

CONTENTS.

Comparative Resilience of Various Kinds F. pine, 64 ; cedar, 66 ; chestnut, 73 ; larch, 84 ; beech, 86. By resilience is
pringing back or toughness.
The rate of taxation per head of population in
the Australian colonies is as follows:- New South Wales, $£ 119 \mathrm{~s} .44 \mathrm{~d} . ;$ Victoria, $£ 20 \mathrm{~s}$. 2 d d .; South Australia, £2 0s. $0 \frac{1}{2} \mathrm{~d} . ;$ Queensland, £2 14s. 1d.;
Tasmania, £2 13s. $7 \frac{1}{4} \mathrm{~d}$. ; Western Australia, Tasmania, £2 $£$ 5s. 9 d .; New Zealand, $£ 34 \mathrm{~s}$. 9 d . Australia, General

South Kensington Museum.-Visitors during the week ending May 27 th, $1882:-$ On Monday,
Tuesday, and Saturday, free, from 10 a.m. to puilding materials, and other collections, 3462 , building materials, and other collections, 3462.
On Wednesday, Thursday, and Friday, admission 6d., from 10 a.m. till 6 p.m., Museum, 2408 ; mercantile marine, building materials, and other
collections, 499. Total, 16,829 . Average of correponding week in former years, 16,978. Total

