THE RESULTS OF TRANSIT OF VENUS EXPEDITIONS.
With the assistance of the map which we give we hope to convey to our readers a general idea as to the measure of success which has attended the observations of the recent transit of Venus. We do this now in preference to waiting longer, because the main points on which we depend are now fairly supplied, for although the observations made in Patagonia, not yet available, are valuable, we
have in Oran a representative of them in a certain measure, have in Oran a representative of them in a certain measure,
and it may be some time before we receive particulars of and it may be some
A few words will explain the map. The transit of Venus across the sun's disc is, of course, visible wherever the sun can be seen. Hence if the sky is clear it can be seen in the whole of that part of the world where it is day. In this map the two dotted curved lines-we may call them circular for convenience-enclose the portions of the
world in daylight when ingress and egress respectively world in daylight when ingress and egress respectively
take place. In the places within the right-hand, or take place. In the places within the right-hand, or easterly one, ingress may be seen. While enus is in
transit the earth revolves sufficiently to cause the lefthand or west dotted line to be in daylight when egress takes place, which is therefore visible at all places within it. That portion of the world where the two enclosed spaces overlap is in daylight both at ingress and egress, and consequently from that part of the globe both ingress and
egress can be seen.
The names only of places where stations were established
are printed. These are not complete, some being selected
southern station from which we have news is at Lisle's method, we have abundant results from the Cape for the accelerated observation, and from Hartford, Washington, Philadelphia, Jamaica, \&c., for the retarded ingress, For egress accelerated, the United States and West Indian stations above mentioned are available, as well as Oran ; and for egress retarded, Wentworth and doubtless others in Australia, as well as the English and American stations in New Zealand. We have reason to expect that these will be greatly strengthened when the reports come in from the south of South America, English American, French Brazilian, and Chilian stations, from Madagascar and the various stations from which we have no direct telegraphic communication. Thus, although Europe, Canada, and part of Australia appear to have been in a great measure under heavy clouds, the weather on the whole for the time of year was fair. We regret that all the preparations in England and France were to no purpose, to say nothing of Spain and Berlin. The to no purpose, to say nothing been attrand Berlin. The clouds here seem almost to have Cheltenham, and the South-W est the transit was seen by Cheltenham, and the Nouth-West the transit was seen by London, Woolwich, and in the Ner, oxford, Cambridge, London, Woolwich, and in the North, wherever prepara-
tions were made for scientific work, heavy clouds pre tions were made for scientific work, heavy clouds pre to Paris, shared the disappointment, as did Berlin Germany, as far as we know, except that uninteresting Germany, as fa
place Potsdam.
place Potsdam.
Having spok
Having spoken thus generally of the situation, we may
say a few words as to results. This we do the rather
few days; yet for years the worthy astronomer who had the records gave neither results nor data. We are not sure whether they have been got yet, but we hope so, as it must be at least twelve years, we think, since the work was done. We are told that some of the foreign astronomers
did not think it worth while to give their 1874 transit of Venus results before those for 1882 could be supplied with them. We shall expect them, however, within ten years of the present date. To do them justice we do not think of the wresent direct them to be kept until those for the next transit in 2004 can be combined with them, because this would be positive procrastination, and, to do most astronomers justice, they work conscientiously, and move on, only mers justice, they work conscientiously, and move on, only
it is slowly. They analyse and correct and investigate and, perhaps, plunge into calculations of probable errors and curves, or make new instruments to measure shrink age, \&c., till an ordinary layman despairs of a conclusion
age, \&c., till an ordinary layman despairs of a conclusion.
tions by regarding the operations as made on base lines This by regarding the operations as made on base lines. values must not be accepted too literally. Although the values of the factors on De Lisle's system may be so method, and were it not for elements which give a speciall high high value to differences of times olcserved, we need hardy say that our base lines would be far too short to be of use for measuring such long distances as that of the De Lisle's meth ror a more full explanation of Halley's and De Lisle's method, and of the nature of a transit of Venus,
we refer our readers to The Engineer of January 9 th and we refer our readers
January 16 th, 1874 .
As to $16 \mathrm{th}, 1874$
As to probable results, we do not expect anything more

in places so obscure that we are not able to fix their locality. We have, however, quite enough for all general purposes. It will be seen at a glance that the great part of the printed names occur in North and South America both ingress and egress are visible. The names of stations are given in upright printing, the nationality of the ouserving parties in italics, and the success obtained is
printed below, being shown by the letter I E or I and E printed below, being shown by the letter I, E or I and E, according to wherter ingress, egress, or both were observed.
P stands altogether. With regard to the value of these results, we may say generally that the observations may be classed method, and (2) those which are available for that of methisle. Without attempting to explain these, the value of the results may be roughly taken in by supposing extending north and south through the portion a base line extending north and south through the portion common to South America and the West Indies, and De Lisle's to depend South America and the West Indies, and De Lisle's to depend
on observations made along the two dotted straight lines extending diagonally across the two dotted circles. When we say observations made along these base lines, we do not mean that the stations are actually on these lines, but, for De The value of their factor in calculation depends on where a The value of their factor in calculation depends on where a ing just in the proportion in which they approach the ends of these lines. It would actually be best if they could be placed on these lines, because they would combine with their factor the greatest possible height of sun above the
horizon for such a factor. Obviously stations near the horizon for such a factor. Obviously stations near the edges of the dotted circles are near the edge of daylight,
and the sun is very low. If all stations were close to and the sun is very low. If all stations were close to the centre, with the sun right overhead, there would be really
no factor. As a station moves along the line or to no factor. As a station moves along the line, or to a point more nearly opposite the extremities of it, its factor
increases, but clearly combines the greatest possible height increases, but claarly combines the greatest possible height for Halley's method we have already fave we observe that from Hartford, Washine have already favourable accounts tine, and Cedar Keys, Puebla, Jamaica, and other West Indian Islands in the north; while the most
because the proceedings of many astronomers are 80 exceedingly deliberate that we rarely get the results until the general public has ceased to te interested in the matter. An astronomer, as far as we can speak from
experience, is a wonderfully painstaking, accurate creature. experience, is a wonderfuly painstaking, accurate creature.
He generally wears spectacles, always writes a small, neat hand, and he is scientific and conscientious, and very often, besides possessing great ability, is an enthusiast over work which is niserably paid. "Why have you adopted the making of reflecting telescopes as a profession ?" we ventured to ask a remarkably able young astronomer with whom we
were working once. "Because I am a lunatic; if there were no lunatics no reflecting telescopes would be made," he replied. With all this astronomers can be very trying. An astronomer has often a deficiency of push about him, and sometimes he appears almost to revel in delay, public as wholly callous to the pressure of an outside public as certain mathematical instrument makers are to
the pressure put upon them by astronomers. It would be a libel on a snail to compare him to such people; perhaps, however, such a man as we have often come across ranks somewhere between a snail and a Turkish official. To give some idea of the rate of progression of instrument making and astronomical work, we may give a few examples. An astronomer ordered an equatorial telescope of moderate di-
mensions from one of the best makers in mensions from one of the best makers in the country, and
wrote one or two years afterwards to inquire how far wrote one or two years afterwards to inquire how far
the work had progressed, and learned-and that in the work had progressed, and learned-and that in a matter-of-course way we believe-that there was no sign of beginning it yet. The transit of Venus
work of 1874 all came home in the spring of 1875 . work of 1874 all came home in the spring of 1875. It was no doubt a heavy job-comparatively speaking it was done quickly. An abbreviated report was drawn out as a return to the House of Commons on July 16th, 1877 ,
the regular report of the stations sent out from Greenwich the regular report of the stations sent out from Greenwich being brought out in 1881, the work of the colonial and Indian stations not being included. Thus there was a
result briefly expressed for the public first given, followed result briefly expressed for the public first given, followed afterwards by a complete report. This was not slow
work; we could name an operation of insignificant extent work; we could name an operation of insignificant extent
that was carried out to determine the longitude of one place at some distance from a colonial observatory. It forms an important link in a chain of longitudes extending a great way round the world. The work of reduction might occupy some hours ; at the longest it might require
than a slight modification of our present estimates of distance based on the transit of 1874, and on other means dependent on the velocity of light or the opposition of the planet Mars. Our old estimate of 95 millions of miles distance to the sun has been long discarded in favour of a smaller result. That arrived at by the 1874 transit is $93,300,000$ miles, but other investigations had led to the expectation of a still smaller distance. Eventually the opposition of Mars may furnish us with the best result because Mars is in opposition so much more frequently than Venus is seen to transit, that it may eventually form the most trustworthy basis for calculation. At present we may consider that the transit of Venus observed in 1874 furnishes us with the best determination we have had of the sun's distance. Ninety-three million three hundred thousand miles may be considered, then, the orthodox distance to the sun until we get the results of the transit of 1882 together with those not yet brought out for 1874. These will probably come at a time when they will attract little public attention. They will, however, in the course of the next ten years doubtless appear in the proceedings of our astronomical societies, and so get into geographical books, and any middle-aged man may expect to hear them from his grandchildren, or perhaps from some precocious School Board child if the world goes on as at present. Junion candidates for the Cambridge local examination this week had the distance to the sun given from the 1874 result.

THE INDICATOR.

 No. III.*Lea's Planimeter Indicator:-This indicator was invented by Mr. Henry Lea, of Birmingham, consulting engineer. Under certain conditions of working the instrument yielded extremely accurate results, but not so under all conditions, hence the invention was abandoned. We place it on ecord as a link in the history of the indicator
The planimeter indicator consists of a combination of a portion of a Richard's indicator with a simple form of planimeter, the latter being so arranged as to be interchangeable with the Richard's parallel motion, which can till be used as hitherto for ascertaining the distribution of the steam within the engine. The planimeter indicator records upon its dials, in plain figures, the sum of the area
in square inches of all the diagrams which the pencil of a Richard's indicator would have produced during the time for which it is kept in operation. By a simple calculation
the sum so recorded may be converted into the mean the sum so recorded may be converted into the mean
indicated horse-power for the whole period of the experiindic
In Fig. 13, page 450, the ordinary steam cylinder and paper drum of a Richard's indicator will be readily recognised. Instead of the usual parallel motion and pencil, a double lever arm A is pivotted at B, and is provided with a spindle C revolving between hard steel centres. Upon the spindle C is fastened the planimeter wheel D , in form the frustrum of a cone, which is made of very hard steel, and which, when brought into contact with the reciprocating paper drum, receives a partly rolling and partly sliding motion, the proportion of each varying with the angle which the spindle makes with the horizontal. The lever arm A is attached at the point E to the piston rod F by means of
links G and a screw coupling H, similar to that used for the Richard's parallel motion. Suppose that the figure which the planimeter wheel has to describe is a rectangle, as shown in Fig. 15, and now let us follow the movement of the wheel, having an axis $c b$ and a fulcrum b. Let the wheel rise from c to d; let it then travel from d to e, its to f; and finally let it return from f to c. The rise $c d$ of the wheel will be neutralised by the fall ef, and the return $f c$ being performed in a direction parallel with the axis $c b$, no rolling motion will be imparted to the wheel, so as to remain as a record when it arrives at e. We have, therefore, only the motion from d to e which can impart any permanent motion of revolution to the planimeter
wheel. This motion will precisely indicate the area of the figure.

The motion of the wheel from d to e may be resolved into two at right angles to each other ; one in the direction of the axis, viz, $d e^{1}$, which is a sliding motion only, and nother from e^{1} to e, which imparts only a rolling motion to the wheel. This rolling motion is equal $d e \times \sin$. a; but $\sin . a=\frac{d c}{r}$ where r is the length of the axis of the
wheel ; therefore, $e e^{1}=d e \times \xrightarrow{d c}$ But $d e \times d c$ is the area
of the rectangle. Suppose n to be the number of revolutions made by the wheel in rolling from d to e, and g to be the radius of the wheel; then $e e^{1}=\frac{d e \times d c}{r}=2 \pi g n$; hence the area of the rectangle $=2 \pi n g r$. Let now the
planimeter wheel follow the boundary $a b c d$ d $f g h$ on planimeter wheel follow the boundary $a b c d e f g h$ on

Fig. 16, it will clearly indicate the total enclosed area, for any length of the steps $b c, c d, d e$, \&c.; and, therefore, also for extremely small steps. Hence, while the planiarea bounded by the curve. In bounded by the curv
In order to record the permanent amount of revolution of the planimeter wheel D , a bevel pinion and wheel con\&ce, of which L records units, L^{1} tens, L^{2} hundreds of revolutions of the spindle C, and so on to the last dial. The planimeter wheel D is made of such a diameter that the plamimeter wheel D is made of on the dials represent the total area in square inches of all the figures which the Richard's pencil would have drawn had it been used instead of the plamimeter apparatus, the same indicator spring being used. respective axes, so as to be readily adjusted to zero by hand at the commencement of an experiment. The instrument is fitted with Darke's patent spring detent-already explained-by the use of which the paper drum is atways
stopped at, and started from, precisely the same spot. The same indicator and piston, piston-rods, spring, and cylinder cover serve for both the old and the new apparatus.
Existing indicators can be fitted with the new apparatus, a slightly larger box being required to admit the new a slight1
portion.
portion.
Thdicator- fowing are instructions for using the planimeter indicator:- (1) Connect the indicator cock with the steam engine cylinder, and connect the cord of the paper drum
with the piston rod or its appurtenances, with the piston rod or its appurtenances, both in the usua manner-as will be explained later on. Copper wire of
about No. 18 B.W.G. is strongly recommended in preference to cord, as it does not stretch while at work. (2) ence to cord, as it does not stretch while at work. (2)
using a spring suited to the pressure of the steam. (3) Stop the paper drum by means of the spring detent, take off the paper, and measure with a fine scale the extreme length of the diagram in inches, and enter the length in your book. (4) Substitute the planimeter apparatus fo the pencil, retaining the same indicator spring. (5) Set the silvered wheel to zero, and turn the planimeter wheel into gentle contact with the paper ; then set all the pointer also to zero. (6) Now turn on the steam cock ; the plani meter wheel will travel up and down the paper-the latte being still held stationary by the detent; but no per manent advance of the pointers will take place. (7)
Release the spring detent of the paper drum. The Release the spring detent of the paper drum. The pointers will now be seen to receive a permanent movemen in one direction or the other. If they move forward and stop at 4258 , as shown by the figures within the dial circles in Fig. 17, that number will be the actual area traversed by the instrument; but if the pointers move backwards and stop at 4258, the actual area will be $10,000-4258=5742$, as shown by the figures outside the dial circles in Fig. 17. The pointers will move in one

b, and also the three points C, E, and C_{1} of the straight E D and C B and mark the three points A F an A ED making $C A, C_{1} A_{1}$, and $E F$ equal to a. The three points A, F, and A_{1} must belong to the ellipse which we want to determine. If, instead of this ellipse, we use the want to determine. If, instead of this ellipse, we use the
circle passing through the above three points, this circle and the ellipse will only have the three common points A, , and A_{1}; and therefore, instead of a straight line EC_{1}, the end of the guide will describe a curve which contains the three points C, E, and C_{1}. This forms the which we have already described in Kraft's indien motion, which we have already described in Kraft's indicator.
A Rosenkranz parallel motion, Fig. 25, is obtained, as already mentioned, by taking $a=\frac{1}{2}$. The point B is not kept in the horizontal line E D, but is compelled to oscillate in a very small arc of the circle described by the lever. The error made by giving the end of the guide his motion is practically nothing.
The lever a, Fig. 21, can turn upon a pivot fixed to the
rm E. The piston-rod is solid, but as light as possible arm E. The piston-rod is solid, but as light as possible, and is connected by a steel
direction when indicating one end of the steam engine cylinder, and in the opposite direction when indicating the other end. This will be easily understood from Fig. 18, different ends of the steam cylinder. The planimeter
dians and

wheel has to move in the direction of the arrows, which are opposite to each other in a and b. (8) Having noticed the time during which the planimeter has worked, you will be able to calculate the indicated horse-power, as will be shown later on.
Boye's Indicator:-The drawings of this indicator are given in Figs. 19 and 20. The reader who has studied the indicators hitherto described will on the first glance be inthe pencil, \&c.?"' In fact, Boye's indicator has both a paper drum and a pencil; but the manner in which these parts are put into motion and their position in the indicator, is are opposite to that of the instruments hitherto described The paper drum receives ins motionts hitherto described tube, in which the steam from the engine is acting the tube, in which the steam from the engine is acting, the movement under the pressure of the steam. The pencil is attached to a mechanism which receives its motion from the engine, and therefore indicates the various positions of the steam piston. In Figs. 19 and 20 A is a standard, to which are attached the various parts of the instrument B is a nozzle, one end of which is connected by means of while the other is attached to cylinder in the usual manner, while the other is attached to a tube of spring steel D, which is connected with the card-drum segment F, by
means of a connecting link E. The steel tube may be means of a connecting link E. The steel tube may be and a set of two or more, answering to different initia steam pressures, may be provided for ach intrument The drum secment F be provided for each instrument adjustable G is 1 which on two points, when are H is an arm firmly fixed to the G, H in an ann forming a guide moving sideways ; I is another standard securely fixed to the arm H by a nut. The arm H, the rod G, and the standard I are attached to a reciprocating part of the engine by means of a connecting rod R , and thus traverses engine by means of a connecting rod R, and thus traverses the standard Iin front of the drum segment. M is a lever moved about 90 deg in standard 1 , so that it may be moved about 90 deg. in a backward direction in order that the cards may be easily removed; the other end of the
lever is arranged to carry the pencil, which is lightly held against the card by a small spring.
21 to 27 represent the drawings of indicator: - Figs. it is described by Herr Rosenkrany himel incator as it is described by Herr Rosenkranz himself in the Z. 170 . In our description we shatl p. inis instrument Rosenkranz's $\begin{aligned} & \text { indicator. The parallel }\end{aligned}$ motion is that of Thompson, with some improvements for the understanding of which we must remind the straight line theory of the Evans Guide. Thus, if straight line B C-Fig. 26 -of a given length l, is moving that the end C always remains on E C, and B on E D, any joint A of BC will describe an ellipse with the the rods E C and E D. If conversely the $-l$, paralle to the rods E C and ED. If conversely the end B is kept on the straight line E D, and the point A is compelled to $b=\mathrm{A} \mathrm{B}$, then the point C , at a distance from it equal to $b=\mathrm{A} \mathrm{B}$, then the point C , at a distance from it equal to point A is at the middle of B C , so that $a=b$, the ellipse will be converted into a circle, of which the centre is F It is this construction which Herr Rosenkranz has adopted or his parallel motion. If a is greater or less than b, the ellipse can only approximately be a circle
$\mathrm{B}=l$ construction of the guide is as follows :- Give
ball-joint with the connecting rod p, which again is in co
nection with the lever H.
By unscrewing the nut r the lever is disconnected from the piston rod. As the whole parallel motion is fixed on the cap F and centred by means of a cone co-axial to the indicator cylinder, its relative position to the axis of the
as is possible in the Richard piston rod will not be altere., These instruments have also
and Thompson indicators. These too short a guide on the cover for the piston rod, and therefore cannot prevent the angular motion of the rod. It is obvious that for the highest position of the piston the guide is shortest, and at the same time the coils of the spring are pressed most closely together, and therefore do not exert their pressure so exactly on the axis of the sticking of the piston to the cylinder, which the diagram shows as a later cut-off.
The changing of the spring is performed by taking hold of the handle K, and unscrewing the plate parallel motion. Having unscrewed the spring and substituted a new one, the instrument is able to indicate the work done for other ranges of pressure in the cylinder to be tested. It must be remarked that the weight of the piston, piston rod, spring, and parallel motion-in other words, all the parts of the instrument which cause seriou momentum-is much less than in Thompson's indicator. The detent motiou of Rosenkranz's instrument is a great ement, and is based on a principle more correc, than that of other constructions known to us. In Darke's instrument the string is hanging loose when using the detent motion, which often causes it to get tangled and broken. Rosenkranz's invention consists in always keep ing the string straight during the motion, which is obtained in the following way. The tube H, with the pulley S, Fig. 23, revolves on the spindle D, and after having been rotated in the one direction by the string is returned by the spring F to its original position. On the tube H revolves another tube H_{1} carrying the paper which. The former is supplied with the coil-spring which brings it against a screw on the pulley tube H^{\prime} is supper drum to follot wheel Z in the same way as in Darke's indicator, and can be encared with the pawl K, Fig. 24, turning on the pivot T, by moving the spring R. When using the detent motion, we stop the paper drum, but not the pulley S , which continues its rotation, and thus keeps the string straight. We can now change the paper without any risk of the string being tangled. As will be remembered from oul description of Kraft's indicator-see December 3rd, 1881 -the fixing of the indicator cylinder to the cock piece is managed by means of a nut f, instead of the usual dif ferential motion. The unscrewing of this nut is done by putting a loose arm into one of the holes at the side, thu obtaining a better purchase, and at the same time preventing any burning of the fingers.
The construction of the nut in Kraft's indicator, how ever, is not a good one, because the indicator cylinder doe not become loose by unscrewing, but it has alterward Rosenkranz has got rid of this fault by constructing the Rosenkranz has got riof this The flange a on the nut M
nut as represented in Fig. 27. The nut as represented in Fig. 27. The flange a on the nut M
situated between the ring c and the flange d, will, when situated between the ring c and the flange d, wil, whe
unscrewing the nut, produce a pressure against d, and thus unscrewing the nut, produce a pressure against d, and thus
raise the tapered piece of the indicator out of the corre saise the tapered piece of the ind conical hole of the cock
spond

Springs and Scales.-It will be remembered from our first article - December 3rd, 1880 -that Her Pichler strongly recommended to divide the scale for the springs by actual trial, and not to use equally divided scales. Herr Rosenkranz was of the same opinion, but lately ho has come wa the conclusion that for good springs the errors made by equally dividing the soles are gill than with the empircal It is quite true that all indicator springs do not chath piston, and this fault may be due to other parts of the instrument We ought the accurate results from the enpirical method, as it assumes the spring to be tested on the instrument itself ; but in carry ing out this test we meet with difficulties which are impos sible to avoid. Those of our readers who ale practically acquainted with the indicator know very well how difficul it is to keep one fixed position of the piston when the steam is pressing upon it. We are also dependent on the accuracy of the pressure-gatge used in testing the spring. the former and the pencil of the indicator, so that jus at the right moment we may turn the paper-drum and thus
get a mark on the paper. By repeating this experiment we shall find that, as a rule, we get different marks for the same pressure, and are thus compelled to take a mean
value. This method must therefore be held a fallacy, especially when we are dealing with water-pressure, in
which case the leakage is much more serious. It seems, which case the leakage is much more serious. It seems,
therefore, that Herr Rosenkranz is right in testing the therefore, that Herr Rosenkranz is right in testing the
spring out of the instrument by means of a dead load, and spring out of the instrument by means of a dead load, and
only adopting such springs as follow the law of proporonly adopting such springs as follow the law of propor-
tionality,, i.e., for which the change of length is proportionality, i.e., for which the change of length is propor-
tionate to the load acting on them. The determination of tionate to the load acting on them. The determination of
the maximum and minimum points, however, must, of the maximum and minimum points, however, must, of
course, be done in the instrument itself under steam-prescourse, be done in the
sure and steam-heat.
sure and steam-heat.
Smith's Indicator.-The indicators hitherto described are all improvements of the original Richard's indicator; and all consist of a tube through which the steam from the steam cylinder enters into the indicator cylinder. To the latter is attached the paper drum. Such an indicator may be regarded as a material system connected to the motor, and
compelled to take part in the reciprocating action of the compelled to take part in the reciprocasillation ongines. latter, or the oscillation ill these motions cause the different parts of the indicator to move relatively to each other, and thus diminish cator to move relatively to each other, and thus
the sensibility of the instrument. The motion of the indicator cylinder is proportional to its moment of inertia about the point of attachment to the engine; and the motion of the paper drum is proportional to its moment of inertia about the point of attachment to the indicator
cylinder. Hence, in constructing indicators the following cylinder. Hence, in constructing indicators the following
rules are to be regarded :- (1) Make the tube connecting rules are to be regarded:- 1) Make the thore connecting
the indicator cylinder to the engine as short as possible ; the indicator cylinder to the engine as short as possible ;
(2) make all the parts of the indicator as light and small as possible, consistent with strength ; (3) bring the paper drum as near to the indicator cylinder as possible. It is
on the basis of Rule 3 that Messrs. Smith have constructed on the basis of Rule 3 that Messrs. Smith have constructed
their indicator, since by making the paper drum co-axial with the indicator cylinder they have brought its moment finertia to a minimum.
Description of the Instrument.-The paper drum surguide, which is parallel to the joint axis. The pencilholder receives its movement from a link C^{1}, connecting it with one end of a lever A.' having its fulcrum at the other
end, and connected at an intermediate point with the head end, and connected at an intermediate point with the head
of the rod of the indicator piston. The length of the of the rod of the indicator piston. The length of the
portion of the lever between the two links is several times portion of the lever between the two links is several times greater than the length between the fulcrum and the link
passing to the head of the piston-rod ; and the movement passing to the head of the piston-rod; and the movement indicator piston. The pencil can be taken off the barrel by means of a hinge on the slotted guide. The paper drum
receives its motion by means of a spring and cord in the receives its motion by means of a spring and cord in the
usual manner. The paper is also fixed in place upon the periphery of the drum by paper clips in the usual way.
Figs. 29 and 30 are drawings of the instrument as it is made by Messrs. Elliott Brothers. A is a screw for con-
necting the stem of the indicator to the cylinder of the necting the stem of the indicator to the cylinder of the
engine by means of double nuts ; B is entrance for steam; engine by means of double nuts ; B is entrance for steam ;
C, piston of indicator; D, stem of indicator ; E , tube or cylinder fitted into D, and within which the piston C works ; F, cap screwed into E, and through which the
piston-rod works ; G, spring screwed to the cap F and to the top of the piston C in the usual way; H is a spring box which contains the spring J , and is made to revolve wheels K K;L is a support for the guide wheels, and also for the spring box-this is able to be turned round so
as to put the wheels in any direction ; M is a nut fixing as to put the wheels in any direction; M is a nut fixing
the parts H and L on the stem D, and locked into place by means of two screws; P is a movable cap held
by means of a pin entering a hole in the flange 0 by means of a pin entering a hole in the flange O
and the cap E. This cap P supports the standard Q of the parallel motion, and the slotted pencil guide B^{1}.
R is the paper drum ; T, handle to slotted guide $B^{1}, b y$ means of which the metallic pencil U may be moved to and from the paper. The pencil passes freely through a hole in a pencil-holder U^{1}, which moves up and down in
the slot of the guide B^{1}. V is a double link connecting the head of the piston-rod with the lever A^{1}, and C^{1} i link connecting A^{1} with the pencil-holder. This link is four times the length of the double link V , and the part of the lever A^{1}, between V and C^{1}, is similarly four times
the length of the part between V and the fulcrum. From this description of the instrument the reader will probably share in our conclusion, that this is undoubtedly the best high-speed indicator hitherto constructed.

THE CHERTEMPS AND DANDEU DYNAMO ELECTRIC MACHINE.
On Monday night a few gentlemen interested in electriinvention of MM. Denis Alexander Chertemps and Louis Dandeu, of Paris. Two machines were exhibited at work under unfavourable circumstances, in a workshop at 35 , Charles-street, Hatton-garden. In that neighbourhood there are a considerable number of buildings in which workshops can be rented, power being supplied from an engine in the basement of the building. Under these conditions it is clear that the tenant of one workshop cannot have control of the engine; and thus, although the inventors could drive their machines, they could not alter the speed in any way. Round the room were fixed ten hung twenty Edison lamps of about 20-candle power. These were fed by a very small machine. The ten Jablochkoff candles were supplied by one a size larger.
Mr. Sabine, of 7 , Great Winchester-street-building reported on this dynamo to Mr. Applegarth, Mansion House-chambers, E.C. He says :
"I have, at your request, tested two of the Chertemps machines which you have at Charles-street, Hatton-garden. In reply to the
questions asked in your letter to me of the 24 th November, Ibeg to
say that. questions
say that
"(1) keeps twenty that the smallest machine-alternating current- 16 -candle lamps incandescent at an expen-
diture of about 2-horse power, as indicated by M.
mometer, which is placed between the steam engine and the machine.
"The me was twenty-five, which number whas then reduced by five at a as twenty-five, which number was then reduced by five at a
The horse-power indicated by the dynamometer fell each
\qquad
(2) The medium-sized machine, when giving alternate currents with its induced bobbins parallel, was put in circuit with fifty-two
Edison A lamps, which were kept incandescent at an average of 17.5 candles with an expenditure of 62 -horse power indicated by the dynamometer. The machine was afterwards connected up so
to give continuous current, the same number of lamps being kept to give continuous current, the same number of lamps being kept
incandescent at an average of 151. candles per lamp, while the
indicated horse-power was 5.1 , showing that in so far as lighting indicated horse-power was 5.1 , showing that in so far as lighting
power goes, circuits with alternate and continuous current
generated by powerated by the same machine give much the same result. In
geach instance over 80 per cent. of the power given to the dynamo each instance over 80 per cent. of the power given to the dynamo
machine was accounted for electrically, and over 65 per cent. was maccine was accounted for electric
accounted for in the lamps alone.
"((3)
ing alternate currente with its induced bobbins in series, and giving alternate currents, was then connected with, and kept in
action ten Jablochkoff lamps, also in series, at a total expenditure of $4 \cdot 9$-horse power, indicated by the dynamometer as being given
to the dynamo machine. The number of lame to the dynamo machine. The number of lamps was changed by
two at a time, and the difference of the power given to the machin two at a time, and the difference of the power given to the machine being observed at the dynamometer, it was seen that the power
employed was always proportional to the number of lamps in cir-
cuit, the machine regulating this antomatically employed was atways proportionat to the number of lamps in cir
cuit, the machine regulating this automatically. When maintain
ing the Jablochkofft lamps, about 80 per cent of the power ing the Jablochkoff lamps, about 80 per cent. of the power given
to the dynamo was accounted for electrically, and, with over fou to the dynamo was accounted for electrically, and, with over four

lamps in circuit, about 65 per cent. was accounted for in the lamps | lamps. |
| :--- |
| alone. |
| in |

"I consider that, having regard to their size and weight, the efficiency of these dynamo machines, both for arc and incandescent
lamps, is very satisfactory "I enclose
two machines
These tests are set forth in the accompanying tables:-
Chertemps (medium-sized) Machine tested with 52 Eidison A Lamps
(French made) connected parallel with short leads.

	Alternate current.	Continuou current.
Main circuit (external): Current per lamp Potential-difference $=c=$ Potential-difference	$4 \cdot 03$	$\begin{gathered} 0.6 \mathrm{a} . \\ 31 . \mathrm{s}^{2 \mathrm{ai}} \\ 83 \mathrm{vg} \end{gathered}$
P. accounted for in 52 lamps		$3 \cdot 48$
Main circuit (internal) Current (as before)	${ }_{3}^{35 \cdot 4 \mathrm{a}} 0$	${ }^{31.3 \mathrm{a}} 0$.
rrent (as before) $=$ (sistance of ffere bob		
$\begin{gathered} \text { H.P. P. accou } \\ \frac{r \cdot c^{2}}{746}=v_{1} \end{gathered}$	0.50	$0 \cdot 39$
Magnetising circuit: Current in magneti	${ }_{7}^{6 \cdot 5 \mathrm{am}}$.	${ }^{6.5} 5.4 \mathrm{w}$.
accounted for in this amount		
ded $\ddot{0}$	$\begin{gathered} 0.42 \\ 49 \mathrm{kro} \\ 49 \mathrm{kilog} . \\ 6.2 .2 \\ 6.2 \\ 4.95 \end{gathered}$	
Pull on dynamometer $=k=\ldots$		
Speed of dynamometer-revs. per min.		
H.P. accounted for electrically ($w+w_{1}+$		
Proportion of H.P. electrically accounte $w^{w+w_{1}+w_{2}}$		
Proportion of H.P. accounted for in lamps alone	0.80	0.84
Horizontal (front) candle-power of one lamp (average)	0.65	0.68
	$17 \cdot 5$	15.

Chertemps (medium-sized) Dynamo Machine tested with Jablochloof
Candles Connected in serics
No. of lamps in circuit $=n=10 \mid$

I. Main circuit
Current in

Current in ampères $=c=$
Internal resistanee in ioms $\quad \ddot{=}$
H.P. accounted for internally

External potential-difference of lamps
-volts $=\mathrm{E}=$.
H.P. ácounted for in lamps $=\frac{.}{7}$
$=v_{1}=$

Magnetising (field) circuit

speed of dynamo

$\quad=w_{0}$.
H.P. accounted
$w_{1}+\psi_{2}=$
Proportion of H.P.
Ior $=\ddot{\text { Iitto accounted for in lamps }} \ddot{=}$
Horizont
lamp*

${ }_{7}^{5 \cdot 5}$	${ }_{7}^{5 \cdot 5}$	$5 \cdot 3$ $7 \cdot 3$	$\begin{aligned} & 5 \cdot 0 \\ & 7 \cdot 3 \end{aligned}$	$\stackrel{5}{7 \cdot 0}$
0.30	$0 \cdot 30$	$0 \cdot 27$	0.24	0.24
430	344	258	168	88
3. 16	$2 \cdot 53$	$1 \cdot 93$	$1 \cdot 15$	0.60
${ }^{5 \cdot 4}$	$5 \cdot 0$ $7 \cdot 4$	$\begin{aligned} & 4 \cdot 6 \\ & 7 \cdot 4 \end{aligned}$	$\frac{4 \cdot 1}{7 \cdot 4}$	${ }_{7}^{3} \cdot 7$
0.29	0.25	0.21	0.17	$0 \cdot 1$
$\begin{aligned} & 1242 \\ & 42 \end{aligned}$	$\overline{1230}$	$\begin{array}{\|c} 12366 \\ 32 \end{array}$	$\begin{aligned} & 1260 \\ & 28 \end{aligned}$	${ }_{24}^{18}$
665	666	678	676	678
$4 \cdot 9$	$3 \cdot 7$	3.0	$2 \cdot 0$	1.2
3.75	3.08	$2 \cdot 41$	1.56	0.98
${ }^{0.77}$	$\begin{aligned} & 0.83 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.57 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.50 \end{aligned}$
289	334	32	308	279

* Thality.

The special advantages claimed for the new machine are that it is cheap, simple, and efficient, and that within certain limits it can be used at will either as a quantity or an intensity machine; and it can be made to give either claimed that the commutator is so constructed as to sparking to a minimum or do away with it altogether; and sparking to a minimum or do away with it altogether; and
most important of all, it is advanced that the current given most important of all, it is advanced that the current given
by the machine is automatically determined as to quantity by the work done. To make this more readily intelligible, by the work done. To make this more readily intelligible,
let us suppose that a given machine is feeding 200 incanlesc suppose that a given machine is feeding 200 incan-
descent lamps; the current will amount to, say, 250 descent lamps; the current will amount to, say, 250
Ampères, and the electro-motive force will be, say, 45 volts If now one-half the lamps be switched out, the whole current of 250 Ampères will be thrown on the remaining lamps, and the result may be their destruction, unless the speed of the engine isreduced at the same time that the witch ing out takes place. It is claimed for the Burgin compound
machinemadeby Mr. Crompton, and for the Ferrantimachin machinemade by Mr. Crompton, and for the Ferrantimachine, that both will automatically regulate the current to the work Ferranti machine, and as regards the Burgin tried with a Ferranti machine, and as regards the Burgin machine, its
ously determined limits. In the case of the Chertemps and Dandeu dynamo-electric machines, the adjustment appears from the experiments wo saw tried, and from Mr. Sabine report given below, to have in practice no limits. The have said, 20 lamps, the current being, we suppose, about ${ }_{25}$ have said, 20 lamps, the current being, we suppose, about 25 Amperes. These lamps were hung across two wires in multiple arc. They were all taken off, one after the other, without affecting those which at any time remained alight. When the first three had been removed, the remaining fifteen became a little brighter, but not much,
and no further change took place, the last lamp of the and no further change took place, the last lamp of the
twenty burning just as it did at first. Thus the current which at first traversed twenty lamps, was, apparently, at last all concentrated on one without injuring it. In reality the current was reduced as the lamps were taken out of circuit. They were then all replaced, and each lit up as it was hooked on the parallel wires, without attaining an lighted one after the other, none of them getting too much lighted one after the other, none of them getting too much
or too little current. The speed at which the machines ran or too little current. The speed at which the machines ran
was constant, because the engine had other machines to drive
Weillustrate the dynamo-electric machine by the engravings on page 446. Before proceeding to describe it minutely, it may be well to explain in general terms the principle on of the Gausts itself to the work done. The machine is rotate Gordon type; that is to say, the field magnet rest. One the equivalent of the armature remains at the field bobin or he rmature is reserved to exite pendent exciter used by Gramme, Ferranti, Gordon, and others, but this bobbin is not competent to saturate the field magnets. Now as the resistance in the lamp circuit is increased, the power of the exciting bobbin is augmented and the current in the lamp circuit augments at the same time ; but this only occurs because thefield magnets were not saturated to begin with. If they were, no further effect would be got. Let us suppose, for example, that in a Gramme machine the exciter was driven at such a speed
that to drive it faster would not increase the power of the excited machine certain limits the main current would be fixed, no matter what the resistance. But let us suppose that the main machine, and that as resistance was put in put out of the lamp circuit theinfluence of the exciter varied, and we have conditions very similar to those which exist in the Chertemps and Dandeu machine. It must not be thought that we have here given a precise exposition of the theory of the machine; we have only indicated the general principle which, as we understand the inventor, is that and electricians will have be consistent with known fact We may now proceed to describe the machine whic appears to deserve the attention of electricians. Fig. 1 is a front elevation, and Fig. 2 is a plan; Fig. 3 is a trans-
verse vertical section taken in the line 1,2 of Figs, 1 and 2, and Fig. 4 is an elevation of the commutator end of the machine. A is a horizontal shaft mounted in plummer blocks B B ${ }^{1}$ secured to a base B^{2}. This shaft carries a pair of cast iron disss C C ${ }^{1}$. Fitted to the inner face of each arranged in a circle and forming together the rotary fields of the machines. These hollow electro-magnets are made fast to their dises by bolts or nuts. Between them is fixed a stationary armature composed of a block or plate E of wood pierced through with a ring of holes, the axis of which ring corresponds with the axis of the field magnets. The diameter also of the ring of holes is such as to insure their standing opposite the field magnets as these magnets are rotated. The ring of holes in the block E is fitted with bobbins F, which project out from opposite sides of the
block of insulating material. The coils of these bobbins are wound upon a core of iron composed of several tubes fitting the one within the other, as shown in the sectional view, Fig. 4^{b}, the object being to allow of access of air to the fig. inter, and thereby to avoid the heating of the bobbins and also to reduce the weight of metal employed to a minimum. The engraving shows the fixed armature as formed with six bobbins, the wires of which are conducted up to pairs of metal blocks $e e^{1}$ mounted This block is built up in pieces, as shown at Fig. 3, to firmly terers ourts are bound frnap troid strap, which passes and hirmly to the bed-plate. Made flock and holds it bindingly to thed means of one of which leads off to a pair of brushes or rubbers G, and the remainder to the lamps. The rubbers G are mounted adjustably on the plummer block B^{1}, and are intended to supply a current led off from what may be termed the "exciting bobbin to a commutator H in connection with the whole of the field magnets. This commutator receives alternating currents from the exciting to rectify and transmit as a continuous current to the field magnets. For this purpose the commutator is so con structed that in its rotation one section shall not leave the rubber or brush until the next adjacent section is in
contact with the same rubber and brush contact with the same rubber and brush. Figs. 5 and 6
show the commutator detached from the machine, Fig. 5 being an end view and Fig. 6 a side view representing the two parts of which the commutator is composed, separated. The commutator may be described as composed of two hollow cylinders, each with a closed end, their peripheries being so cut away as to permit of their interlocking to the
full length of the cylinders. The number of interlocking parts of the of the cylinders. The number of interlocking parts of the commutator depends upon the number of
electro-magnets contained in the field, and the number of bobbins in the armature. We have said that the number of bobbins shown in the drawing of the armature is six, and that there are also six pairs of electro-magnets in the rotating field. This necessitates the use of a corresponding number of interlocking parts in the commutator, viz,
three for each cylindrical counterpart of the commutator.

THECHERTEMPS AND DANDEU DYNAMO ELECTRICMACHINE.

These interlocking parts, marked h and h^{1} respectively, are tapered in steps, as shown in the engraving, and when fitted together, as at Fig. 2, upon the shaft A, and insulated therefrom and from each other, together form a hollow cylinder with a smooth periphery, upon the pposite sides of which the rubbers G bear. One portion sides of which the rubbers G bear. One terminal of the field, and the other portion is connected with the other terminal. Thus when the machine in action a current of electricity is passed from the armature through the rubbers G and commutator H to the field magnets. As, however, the commutator presents practically but two surfaces to the rubbers, and these in succession continuous electric currents will be transmitted o the field. By adjusting the commutator relatively to the field magnets, and theruby insuring the shifting of the ubbers from the middle step of serment to the middle tep of the next adjacent segment at the moment that the field magnets are passing the space between the armature bobbins, and consequently through neutral points it is claimed that all liability to "sparking" will be points, it is have said that the wires of the armature bobbins are led up to the pairs of blocks ee ${ }^{1}$. These blocks are fitted with clamping screws for connecting thereto the wires of the different circuits. In order, however, to combine together two or more currents of the working circuits, according to the work in hand, a forked sliding piece K, which is made to under-run binding screws fitted to the several blocks, and thereby to couple them up as required, is provided. To provide for closing a lamp circuit when broken by accident, and thereby to avoid the heating of the metal core of the armature bobbin, and the consequent injury to the coil thereon, within each lamp circuit is placed a small electro-magnet, as illustrated in Figs. 7 and 8 in front and side elevations. These electro-magnets I are carried by bracket pieces screwed to the block E^{*} and they overle a plate K^{1} which is attached to a lever hinged to the block E^{*}. This plate K ${ }^{1}$ overlies a pair of terminal blocks the currents generated in the bobbin connected therewith. When the machine is set in action the currents passing to one of the terminal blocks will be divided, a portion passing to the opposite terminal by the plate K^{1}, and the other portion passing around the electro-magnet 1 , and so on to being by this means excited will lift the electro-magnet retain it in means excited will lift the plate K and
unbroken. So soon, however, as the breaking of the circuit takes plac, whether by accident or otherwise, the plate K^{1} will fall and close the circuit, cutting out the broken portion. The English patent is No. 1747, 1882.

The Newman Testimonial.-It has been determined to commemorate the services and death of Mr. Edward Newman, late chief engineer at Portsmouth Dockyard, in a useful and permanen way. At present the engineering branch of the Navy lacks the prizes and inducements to application which the others possess ar the executive branch, the Goodenough gold medal is annually in seamanship, passes the best examination of his year in gunnery The Beaufort testimonial, again, which is represented by instruments or books, is bestowed upon the officer who, in qualifying fo the rank of lieutenant, passes the best examination at the Royal Naval College in subjects connected with navigation. For the
medical branch, also, there is the gold medal which was estamedical branch, also, there is the gold medal which was esta
blished by Sir Gilbert Blane in 1830, and which every two year becomes the property of the medical officer who can produce the most approved journal of his practice while in medical charge of a ship of war. The Newman testimonial is intended to reward in a similar way distinguished merit in young engineers. It will take
the shape of $£ 10$ worth of books, and will be annually bestowed upon the engineer student who shall receive the highest number of marks in practical engineering while passing out of the Marl borough training ship for the prescribed course at the Royal Naval College, Greenwich. About $£ 300$ will have to be raised.
Dynamo-electric Machinery.-On Monday evening, the 6th inst., Professor Sylvanus P. Thompson delivered the first of a
course of three Cantor lectures for the session 1882-83 "s electric Machinery," in the Hall of the Society of Arts. He said that the name "dynamo-electric machine" was first applied by Dr. Werner Siemens in a communication made in January, 1867, to the Berlin Academy. He there described a machine for generat ing electric currents by the application of mechanical power, the
currents being induced in the coils on rotating an armature by the currents being induced in the coils on rotating an armature by the currents so generated. Since the great development of electric lighting it had been found convenient to use the generating machines in certain combinations in which the self-exciting principl was abandoned. The main principle of the dynamo-electric machine was due to Faraday, who, by moving conductors across
magnetic field, caused currents to be excited within those conductors As the term was now applied, dynamo-electric machines were machines for converting energy in the form of mechanical powe into energy in the form of electric currents by the operation o setting conductors in the form of coils of copper wire to rotate in magnetic field. The machines might be divided into three classes, an uniform field of force upon an axis in the plane of the coil or one parallel to such axis. The second consisted of machines in which there was the translation of the coils to different parts of a field of unequal strength or opposite sign. The third class, which
had not yet come into practical use, was where the rotation of the conductor was accompanied by an endless increase in the lines of orce cut, this being effected by one part of the conductor sliding on machine was the best, he would say that none was theoretically perfect, one might be better for one class of work, and another for a different description. This, however, he might say, that every y di was in favour of big machines. The lecture was last he gave the second leeture experiments. On Monday evening last he gave of the succeeding lecture is "The Dynamo as a Motor."
The Society of Engineers.- The twenty-eighth annual general meeting of the members of the Society of Engineers was held on Monday evening last, the 11th inst., in the Society's Hall,
Victoria-street, Westminster. The chair was occupied by Mr. Jabez Church, president. The following gentlemen were ballotted for and duly elected as the council and officers for the ensuing year, viz:-As president, Mr. Jabez Church; as vice-presidents, Mr. F. E. Duckham, Mr. Arthur Rigg, and Mr. C. Gandon; as ordinary members of Council, Mr. R. Berridge, Mr. Perry F.
Nursey, Mr. A. F. Phillips, Mr. W. Schonheyder, Mr. Arthur T. Nursey, Mr. A. F. Phillips, Mr. W. Schonheyder, Mr. Arthur T.
Walmisley, Mr. T. H. Hovenden, Mr. Henry Robinson, and Mr. Walmisley, Mr. I. H. Hovenden, Mr. Henry Robinson, and Mr. members of council; as honorary secretary and treasurer, Mr. Alfred Williams; and as auditor, Mr. Alfred Lass. The proceedings terminated by a general vote of thanks to the council and officers for 1882, which was duly acknowledged by the chairman.
On Wednesday evening the annual dinner of the Society was held at the Guildhall Tavern, Gresham-street, Mr. Jabez Church, C.E., president, in the chair. Among the guests present were the secretary to the Chinese Legation, Fung Yee-Messrs. Perry F. Nursey, S. Cutler, R. Berridge, A. F. Phillips, and A. T. Walmisley, members of the council ; Messrs. R. P. Spice, B. Latham, and Charles
Horsley, past presidents; Mr. Alfred Williams, hon. secretary, and and Mr. B. Reed, secretary. After the usual loyal and patriotic toasts, Mr. C. A. White, replying for "The Army and Navy," the president gave "Success to the Society of Engineers," and said that engineers, from the mechanical to the civi, were now of a learned profession-one not looked down upon, but considered as our colonies or in foreign countries, there was to be seen their handiwork. Their works were often in advance of civilisation; and wherever they were set down in men's midst civilisation was the result. During the past year the Society of Engineers had progressed in numbers very satisfactorily. The papers which had been read, and the visits to Portsmouth and other places which year had been productive of valuable results. He thought a very wise step had been taken in inaugurating lectures for the instruction of young members of the Society and of the profession, and he urged them to embrace the opportunity afforded them for real, earnest, and beneficial work. Mr. Alfred Williams replied, and having been enabled to have trips that practical experience might be gained. He trusted more would be done in that and similar directions. "The President" and other toasts followed.

SNYDER'S 5-H.P. VERTICAL BOILER.

We illustrate above the American boiler we referred to in our imTression for Nov, 24 th . The outside diameter of the boiler is 30 in . The material used for the central shell of the boiler, to which are conthe steam, is $\frac{5}{1} \mathrm{i} \mathrm{in}$. lap welded wrought iron tubing. The lap welding of the edges together forms a perfect joint. The top and bottom caps are screewed on with a taper thread, the side tubes are held by bushings threaded inside and out to fit the taper threads on the outside of the small tubes, and the holes in the central shell
which receive them. The stay is fastened in the same way to the top and bottom heads. Every joint in the boiler being screwed together, removing the dome top, fittings, and lifting the boilcr out of the casings gives free access to the louter boiler and tubes. By clamping a lever on the flat top-with dome removed-and securing the bottom in a press or vice, the caps can be removed, facturer says. But this is boino so screwed to the centre shell, it must be so rusted in that it is impossible to disconnect it, and under the most advantageous condition it takes about four days to examine thoroughly the interior of the boiler. A double casing is used; the inner one extends from the top of the boiler downwards behind the fire-
brick lining of the furnace and terminates below the grate; the brick lining of the furnace and terminates below the grate; the
outer casing which supports the weight of the boiler is of iron. A brass band which extends entirely around the top of the boiler is arranged as a register or damper, so that it can be turned sufficiently to open or close communication with the outside air through numerous small holes. Where it is desired to economise fuel by closing the ash-pit door and opening the register or damper band
at the top, the air which feeds the fire enters through the holes in the damper band, and passing downwards between the casings, absorbs heat which would be otherwise lost, and returns it to the
furnace. furnace.
The dimensions and proportions of the 5-horse power boiler are as follows :-

Snyder's Little Giant Boiler.	
Outside diameter of boiler	.. 30in.
Diameter of main boiler or centr	$15 i$
Height of boiler over all	
Length of central shell.	4 ft
Diameter of side tubes ..	in.
Length of side tubes	39 in . to
Heating surface (effective) . $\quad \ddot{ }$	
Grate surface (weight of grate 63 lb .)	3.01 square feet.
Heating surface of central shell	17.9 square feet.
Heating surfaces of tubes	. 70.05 square feet
Aree of central sheli	. 27 square
Area of steam pipe ..	
Area of chimney	0.54
Area of water line	$1 \cdot 38$ square feet.
lume of water in boiler	. 4.08 cubic feet.
eam room	
oportion of heating to grate surface	

A NEW INSULATOR.

The accompanying engraving illustrates a new self-binding teleLewis, of 28, Hamilton-street, Birksulator, invented by Mr. J. S. Doulton and Co., and by Messrs. Bourne and Son. The binding is effected by hooking on the line an iron clip of horseshoe shape, and then inserting the coarse conical screw, which is formed on the end of the insulator, between the clip and line wire. On giving the insulator a turn and a-quarter it becomes fixed in its position, and all chafing and friction are entirely overcome, and cut or broken wires are prevented from "running
back," If in some districts it is considered desirable, the clip may be dispensed with and the binding effected with No. 8 wire It may also be soldered fast to the line, but the insulator may disturbing the binder. When the insulator is screwed in, the line wire is slightly bent, and owing to the weight of the wire or the tensile strain on it, the tendency is continually to straighten the wire, and it is thus kept tight. The porcelain is kept clean and free from the usual coating of rust, partly, the inventor says,

because the iron clip which encircles the insulator is galvanised after it is bent to shape, and partly because of the total absence
of friction and "working " of the wires. This insulator is the only one that can be applied in any position whatever, and upon any sized wire, without the use of tools.

Launch at barrow.-The steamship Esk, built for the Royal Mail Steam Packet Company, was launched from the Barrow 30ft. broad and 24 ft , 30 ft . broad, and $24 \frac{\mathrm{f}}{\mathrm{ft}}$. depth of hold. The Esk is a three-masted
schooner, spar decked, classed 100 A at Lloyd's, and is schooner, spar decked,
make 13 knots per hour.
They have a curious way of clearing away wrecks in Ireland. On Monday afternoon an attempt was made to blow up the steamship Silkstone, which had sunk in the Suir opposite Waterford Quay. The force of the explosion was so great that the
windows in every house on the quay, the principal city, were smashed to pieces, and goods and articles of furniture dashed about the shops and houses in every direction. So great was the amount of damage done that the shutters were put up in every shop. Nor did the windows in the upper stories escape. Several shop assistants were knocked off their legs. A Times
correspondent says the principal business concerns of "seen completely wrecked, but leaves it to be inferred that the "silkstone" remained monolithic.

LETTERS TO THE EDITOR.
[We do not hold ourselves responsible for the opinions of our correspondents.
aUtomatic brakes.
SIR,-I enclose you a sketch of a triple valve for use with a

continuous air brake on railway trains. If you think it is worthy
of mention in THE ENGINEER, I would beg of you to insert it. of mention in The Engineer, I would beg of you to insert it.
53, Holmhead-street, Glasgow,
THE SIEMENS DIRECT PROCESS.
SIR,-In thís letter I desire to embody the result of a long practical experience of the working of Siemens' direct process, by making wrought iron direct from the ore, and of making metallic Ton for the Spongy Iron and Purifying Company, at Landore and The ore to be smelted is broken up into fragments not exceeding the size of peas or beans, to it is added lime or other fluxing material, in such a proportion that the gangue contained in the
ore and flux combines with only a little oxide of iron into fluid ore and flux combines with only a little oxide of iron into fluid
slag. A charge, say 20 cwt . of ore, 12 cwt . of roll or hammer scale, slag. A charge, say 20 cwt . of ore, 12 cwt . of roll or hammer scale,
together with 6 cwt . of soft free coal well mixed together, is charged into the furnace when fully heated. The coal is charged with the ore ; during the first hour very little gas is required, but after this the rotative velocity is increased, together with the heat, for a short
time. At this stage a rapid reaction is the result; the peroxide of time. At this stage a rapid reaction is the result; the peroxide of
iron being reduced to magnetic oxide commences to fuse, and at the iron being reduced to magnetic oxide commences to fuse, and at the while the fluxing materials form a fluid slag with the silicious gangue of the ore. The slow rotative action is again resorted to, whereby the mass of iron is turned over and over, presenting con-
tinually new surfaces to the heated lining and to the flame within the tinually new surfaces to the heated lining and to the flame within the
rotator. As soon as the metal is gathered together a little the slag is rotator. As soon as the metal is gathered together a little the slag is
tapped, which brings with it sulphur and phosphorus. The velocity at this point is increased to one revolution in five minutes, so balls. These are taken and shingled with a steam hammer or squeezers into a bloom, which, when reheated, will roll into a bar similar to an ordinary puddled one. I may say that the balls must be worked work as common puddled iron. work as common pud the
bstract report shows that I he coal used in the producers, the Dr. Siemens said could be done in his paper before the Mechanical Engineers in 1873, that is, one ton of iron made to one ton of producer coal used. With the direct process, I would suggest that
Siemens' open hearth furnaces are worked in connection with this Siemens' open hearth furnaces are worked in connection with this
process, as all the small ore can be utilised and the blooms can be used also to a great advantage and profit. As regards the statement made by Mr. G. W. Maynard, that the blooms are only fit for the open hearth furnace, I must differ, as I have worked the blooms which have been rolled into good merchant bars. The following is
the analyses :-Iron, $99 \cdot 1988$; silicon, $\cdot 400$; carbon, $\cdot 150$; phos. phorus, 0502 ; sulphur, trace; manganese, 201 ; fracture ; phos

A great deal has been said respecting the class of bricks to be used
in the lining of these rotative furnaces. Experience has proved that the drum should have a $3 \frac{1}{2}$ in. best fire brick all round, the ends to have a few bauxite or magnesia bricks just where the balls
are mostly wearing. After testing the magnesia bricks made at Landore side by side with the bauxite, I find that the magnesia
stand the best. Added to this is an oxide lining of about 2in. in stand the best. Added to this is an oxide lining of about 2 in. in
thickness, made with scale and ore. Then I venture to state with proper care and management the rotators can be kept in working of that period probably the rings may want renewing, which would only cause a delay of about three days; so that with, the cost being be a commercial success. It has been proved without doubt that the chemical results are all that could be desired.
The furnace is arranged in the following
The furnace is arranged in the following manner :- The gas is
made in two ordinary Siemens' producers, size 8 ft . by 7 ft . by 7 ft ., made in two ordinary Siemens' producers, size 8 ft . by 7 ft . by 7 ft .,
which are at the back of the regenerators. The gas comes
through a fire-brick flue straight into the furnace. There are two hrough a fire-brick flue straight into the furnace. There are two chambers filled with bricks forming a checquer-work from top to
bottom, size 19 ft .6 in . high by 7 ft 6in. wide by 10 ft . long. These
are called regenerators, and are worked alternately, the waste
heat from the furnace passing through first one chamber and then heat from the furnace passing through first one chamber and then the other for certain periods, making the chequer-work hot; by this
means we get hot air, and thus the furnace is heated to a high and 10 ft . 4in. long; there are four $1 \frac{1}{1} \mathrm{in}$. diameter pipes for circulating water front to back, keeping the tubes cool, which have two large bends in f
This is one of the greatest improvements that has been made
ince the working of plant at Towcester, as there is no danger now ince the working of plant at lowcester, as there is no danger now
of having a sliding charge. There is also a water cylinder at the of having a sliding charge. There is also a water cylinder at the $1 \frac{1}{2}$ in. pipes, which serves as a reservoir, for keeping top pipes full of
water, and especially for keeping the ring and back end of furnace cool.
The furnace is revolved on four wheels driven by a small pinion working into a large spur wheel, which is in segments, and fixed
to furnace by means of brackets. The furnace is carried on a
movable carriage for convenience of removing, for repairs, \&c. The movable carriage for convenience of removing, for repairs, \&c. The the time the furnace is working, and then when ready to charge, a
slide is removed, and the furnace is charged in about ten minutes.

I give the following as an approximate cost of a ton of iron made
by this process-that is, by working two rotators jointly :-

Total $\overline{\ldots 1129} 9$
New Steel Works, Landore
December, 1882.
Jas. Davis, Mill Manager.
he legal educational status of civil engineers, SIR,-The subject of defining what should be the education of
civil engineer-or, rather, should there be any legal definition who is and who is not an engineer-is not a new question; it has
been debated for many years, and yet seems as far from a satisfactory settlement as ever. On the one side we have those who profession is heir, and on the other side there are numbers who, from either selfishness, apathy, or indifference, treat all proposals
for improvement with remarks that what was good enough for them is surely good enough for the newer and yet future members of the profession. The mere establishment of an examination
test, or the erection of dozens of technical schools for the training ome method be taken to prevent persons from practising as civil engineers who have not been duly qualified.
If all the institutions and societies to which civil engineers attach themselves really desired to get the profession legalised,
such an important step could be done, and could be done with more justice to the present practitioners than would be the case shall not be the equal property of the President of the Institution
of Civil Engineers and of any village plumber who assumes the title in order to act as engineer and surveyor to some local board. The following principles would form a basis on which
such changes might be made:-(A) That all civil engineers who are ist as legally members of the profession should be placed upon a list as legally qualified civil engineers to practice in the United
Kingdom and the Colonies. (B) That after a certain datenoperson
shall be admitted upon such list unless he has produced evidence of having been- (1) a pupil under a legally qualified civil engineer for a period of three years, or has in some other way been made
acquainted with such duties; and (2) has passed two professional examinations.
A committee of the various engineering societies should decide who were bona fide members of the professions, as well as settle
the range of the examinations, such a body being nominated by the range of the examinations, such a body being nominated by
the Act of Parliament which should give force to the proposals. before the termination of pupilage, and those who qualify at it
should be deemed legally fit to act as assistants, resident engineers, \&c.
Preliminary examination:--(1) Physical science; (2) mechanical
science; (3) manufacture of metals, \&c.; (4) science; (3) manufacture of metals, \&cc.; ; (4) engineering drawing;
(5) calculation of strains; (6) uses and properties of materials;
(7) surveying and mensuration. Each candidate ought to qualify (5) calculation of strains; (6) uses and properties of materials;
(7) surveying and mensuration. Each candidate ought to qualify
in four out of these seven subjects.
in four out of these seven subjects.
Final examination:-(1) Physical science; (2) mechanioal science;
8) strength and uses of materials; (4) general principles of con-
struction. Each candidate ought to qualify in two of these fou subjects.
The candidate should then select, according to his previous experience, \&ce., to be examined either thoroughly in one or show
marked proficiency in at least two of the following branches of civil engineering:- engineering: Railway engineering; (b) harbour, dock, and se engineering; (c) water supply; (d) drainage and sewage disposal,
(e) road, street, and tramway engineering; (f) telegraphic engineering; (g) gas and lighting engineering. In the examination in
each of these strictly professional subjects credit should be equally
divided between-(a) Estimates, quantities, and calculations divided between-(a) Estimates, quantities, and calculations; (b)
designs, sketches, and specifications; and (c) general historical

The subjects for professional examinations have been set fort at some length, the object being to sketch a scheme which would
possess sufficient elasticity to meet the requirements of a profession which adds to its duties new branches of construction as fast a scientific men can prove their ut
Westminster, December 6th.

THE PROGRESS OF ELECTRIC LIGHTING.

SIR, -In these days, when every word written on the electric
light is eagerly scanned by your readers I was light is eagerly scannediy your readers, t was surprised to find in misleading article as that headed "The Progress of Electric Light ing." You throughout attempt to show that those now directing the of them, treading on very uncertain ground. Such an opinion so forcibly expressed is, I contend, most unfair to these gentlemen your criticism, I feel strongly the necessity of pointing them out. Throughout the third paragraph of your article you gird at the because their answers to certain queries put to them by Mr. Stayton as to the cost of lighting the Chelsea district do not
with one another Now, may I as
systems as the Brush, Jablochkoff, Pilsen, \&o-all of which supply currents of high electro-motive force, and depend largely on ar lighting-could harmonise with those from Siemens, Swan, and entirely depend on incandescent lighting? Do not you see that the difference in the size of the proposed conductors, which to Every pupil who attends Messrs. Ayrton and Perry's classes could have told you this much, and that there is no such necessity for
"someone to be wrong," as you appear to think. You could also have been informed from the same source that the above-mentioned
difference in the electro-motive force of the currents could account for the variety of the answers regarding the number of account for the variety of the answers regarding the number of generating stations cons
working of the district.
Again, your remark "t
Again, your remark "that the Jablochkoff Company is really the only one which has had much practical experience," is of such a
invidious character that I cannot allow it to We all owe the Jablochkoff system a debt of gratitude for its early efforts in introducing the electric light in a feasible form ; but no one in the least degree cognisant of the later developments of
electric lighting-which have been almost entirely in the direction of incandescent lighting for indoor use-would have seriously con-
nected the Jablochkoff Company with the subject. The warmest supporters of the Jabloching it to any considerable extent as a means of lighting the houses of Chelsea as well as the streets.
One thing is quite certain
Stayton's queries very intelligibly, as, judging by the figures quoted in the last paragraph of your article, Mr. Stayton has answers to his well-considered questions, the framework of an
estimate which in all probability is as near the mark as anyone estimate which in all probability is as near the mark as anyon
could have attained in the present state of our knowledge.
London, December 13th. An Eleotrio Light Engineer.
[If our correspondent had had an opportunity of reading Mr
Stayton's report, it is possible that he would not have found it necessary to write to us as he has done. When his criticisms are paragraph of the article he condemns, and that he regards the las four lines of that paragraph as those which most strongly manifest deal. These lines run: "Some one must be wrong in this matter of the dimensions of conductors if some one else is right, and we con
fess that we cannot resist the conviction that Dr. Siemens is in error." Our correspondent holds that the inconsistency in dimen-
sions is explained by the circumstance that the size of the conductor must be determined by the nature of the lamp employed We agree with him that this fact is known to every pupil wh
attends Messrs. Ayrton and Perry's school, and we ask him t take our word for it that we have been familiar with this truth
perhaps quite as long as he has been himself. If he had read carefully what we have written he would have found that what h has said is quite beside the question. He would have learned, for
example, that while the Metropolitan Brush Company and Messrs. example, that while the Metropolitan Brush Company and Messrs,
Siemens Brothers both propose to use incandescent and arc lamps, the former suggests leads $\frac{1}{2}$ in. to $\frac{3}{2}$ in. diameter, while Messrs.
Siemens Bros. want leads In. in diameter. In other words, the latter gentlemen want leads from a little more than two to fou times as heavy as the former. We repeat that if the Brush Com-
pany is right in this case, Messrs. Siemens are wrong Further more we may point out that what Chelsea wants is electric light The very circumstance that some firms propose to use arcs an
others incandescent lights is a clear proof that unanimity o opinion on the subject of supplying the wants of Chelsea does no exist among electrical engineers. The Jablochkoff Company is no
doubt competent to take care of itself without aid from us ; but if our correspondent will turn to Mr. Stayton's report he will see private company actually has the temerity to contemplate private houses with electric candles. No other company has had may add that no other has on the whole attained a measure o success equal to that shown by the lighting of the Thames
Embankment. Our correspondent has not even taken the trouble the Jablefully what we have written. We have not said that much practical experience," Our precise words are: "So far a the report goes it is difficult to resist the conclusion that the
Jablochkof Company is really the only one which has much pracicaling in a businesslike way." This is a very different questio ment from that to which our correspondent takes exception. Ed. E.]

the institute of patent agents,

Sir,- I have read with interest the letters signed "M. Inst. C.E." an Institute of Patent Agents is not, I think, a question whic need now be argued. Such an Institute is formed; but the
manner of conducting it may fairly and with great advantage b manner
I need not here repeat in full the qualifications which are a Fellow of the Institute. They were stated by the President a the inaugural meeting. Now, Sir, is it or is it not a fact that certain original members do not possess any single one of the three
qualifications? I challenge the Council to show that certa qualificats have either (a) practised and acquired cood rat certain patent agent for five years, (b) been engaged for seven years as a examination in patent law, \&c. I myself do not assert or even

I only say they are not qua
expressed in their own rules
Further, is it or is it not a fact that one if not more applications have been made for admission to the Institute, and the applicant curty refnsed because he did not come up exactly to one or more
of the stated necessary qualifications? Whether the case cited by "P. A." applies to any particular person, or is merely imaginary,
I do not know, but I can say that if such a person has an existence I know of another-a competent draughtsman, a competent searcher, -who could teach him his competent and honourable patent agent of necessary "qualifications" to admit of his becoming a Fellow of the Institute of Patent Agents.
Inner Temple, E.C., December 12th.

SIR, -The remarks of your correspondent, "Mem. Inst. M.E.," certainly contain truth. There is no doubt there are many respectagents, who do not appear to have been asked to join the Institute. did not see my own agent among the list of Fellows, and on
asking him the reason, he told me he had never been invited to join. I know this gentleman to be thoroughly respectable and
efficient, and know further that certain Fellows of the Institute are, and have been, very glad of his assistance in many difficult cases. This I merely quote as one example. If the Fellowship be
a bona fide guarantee of efficiency, may I ask how many of the a bond fide guarantee of efficiency, may I ask how many of the
gentlemen comprising the Institute are thoroughly acquainted with, say, electricity? Some few I know are, but there are others who
would appear to know very little about it-at least perusal of would appear to know very little about
some specifications appears to warrant this.
May I suggest to those of the respectable agents, who have not heir own to join, that they form a Society of Patent Agents for excluding doubtful names-to organise such an institution. The noble Institution of Civil Engineers has not debarred other-and
maller but still useful-societies being organised; such as the smaller but still useful-societies being organised; such as the Society of Engineers,
Your correspondent, I

through not being connected with such an institution.

on my suggestion. It would have been more judicious had the Institute acted with more impartiality, and not laid themselves open London, December 13th.

HYDRAULIC BALANCE LIFTS

SIR,-I am glad to see the subject of hydraulic balance lifts discussed in your paper; the term is in itself a wide one, and, stricty which have little in common with the small passenger lifts under discussion. I was, however, in want of a distinctive title for a new description of direct-acting lift, which I began to use about
two years ago, and eventually determined to call it the "Hydraulic two years ago, and eventually determined to call it the "Hydraulic
Balance Lift." Full descriptions of the original types of these lifts were published by yourself in the abstract of my paper on
"Hydraulic Lifts for Passengers and Goods," read at the meeting of the Institution of Mechanical Engineers last January. Thename Hydraulic Balance Lift" appears to have commended itself to placed before the public. I do not propose to enter into the merits of the so-called improvements on my invention, as there has been at present, I believe, hardly any experience of lifts of this class except those which have been made by the Hydraulic Engineering Company under my patents. As several of these have been at
work for from twelve to eighteen months, I am able to state that they have fully answered their purpose. Improvements in
detail have been made from time to time, and further experience will, no doubt, suggest others, but they have proved
the most economical lifts with which I have had anything to do, and I speak from an extended experience in this
class of machinery. On the other hand, I am not so sure that Mr. Stevens will find that contract prices and cost prices do always
fit each other easily; my experience is that a chain-balanced lift is in many cases the less expensive in first cost. There are, however, many who require the best and safest lifts, even if the cost is a little more to begin with, and it is by this class of person that
hydraulic balance lifts are likely to be chiefly used. I would refer those of your readers who are interested in the subject to the
"Proceedings" of the Institution of Mechanical Engineers, for the main arguments which go to show that the more the use of chains and ropes can be avoided the better, and therefore that a system which does away with them altogether is prima facie to be preBefore I introdu
sehore I ints were made for this system it was only very rarely that such lifts were made for passenger use. Almost the only one in
London is that at the Civil Service Supply Association in Bedfordstreet, which was erected by the Hydraulic Engineering Company some years ago. This lift carries nearly, 500,000 persons per annum, making 400 to 500 journeys a day. It has never required
repair. Compare this with another, that at Palace-chambers, by repair. Compare this with another, that at Palace-chambers, by ram, but with wire ropes and balance weights. The wire ropes require to be renewed at least every twelve months. The addition of an hydraulic balance to either of these lifts only necessitates
having a second shorter ram in motion, and the wear and tear is having a second sho
As to efficiency, Mr. Stevens states 78 per cent. as that of an but on the same basis I have found hydraulic balance lifts give as much as 85 per cent.; but Mr. Stevens is probably right as to the efficiency of the balance, as illustrated in your recent issue. My point is that, when properly constructed, there is a real economy
in the use of my hydraulic balance lifts as compared with those

I am afraid I am trespassing too much on your space; but should like to add a few words stating the chief objects I had in view in designing these arrangements. First, I considered the
type-the details have since been improved-of lifts as erected at Bedford-street the best and safest conceivable, and wished all passenger lifts to be similar, if possible. Secondly, I was aware of for hydraulic power purposes. The scheme of supplying London with public hydraulic power was occupying my attention, and it
was important that direct-acting ram lifts worked with highpressure should not only be safe and handy, but economical in consumption of power. This object has been attained, and as the
General Hydraulic Power Company is now carrying out the contemplated works in London, I have no doubt that hydraulic balance lifts will be extensively used and appreciated. Where
low-pressure water only is available the hydraulic balance enables something of the effect of a high-pressure supply to be obtained.
Thirdly, it is essential that in the case of high lifts the varying weight of the lift ram during motion should be balanced. With appliances, but simply by adopting proper proportion of parts. my specification produces this peculiar effect, and, as in the chain balanced ram lift, it is obtained without any special appals on proportion. but depends also on proportion.
would adopt the hydraulic balance. I can only say that several have already done so, and amongst others Mr. F. W. Webb, the distinguished mechanical engineer of the London and NorthWestern Railway. But no engineer of experience would advocate
any system to the exclusion of all others, and there are numerous ich I should myself be content with a chain lift or a wire rope lift. I maintain, however, that the hydraulio balance
lift is the safest type yet constructed, and that where life is at
stake it is especially to be preferred. E. B. EtLiven
stake it is especially to be preferred.
Palase-ohambers, Bridgestreet, Westminster, Deo, 13th.

RAILWAY MATTERS.

THE plans for the Great Western Railway Company's extension
in South Staffordshire exhibit a branch line from Coseley-road Station at Bialston to a point near the Birmingham Canal at Spring
Vale Furnaces. This line will cross the London and North-Western Vale Furr
Railway.
The following new lines are passed for working by the French
Tinister of Public Works: State Rail ways, Port Boulez and Port de Pilez, 15 kilometres; Northern Company, Lens and Armentières, 12 kilomemeres; Eastern Company, Chatililon-ssr-Seine and Is-sur-
Tille, 70 killometres; and Revgny and Vouziers, 81 killometres.
IT is understood that at a representative meeting of the chief
railway companies, to be held in London on January 4th, the subrailway companies, to be held in London on January 4 th, the sub-
ject of the issue of blank consignment notes to traders will be disussed, with a view to a probable reform. Traders in various parts
of the kingdom complain that the present practice is liable to much of the
abuse.

A PARLIAMENTARY return just issued shows that there are now
in the United Kingdom twenty-six tramways belonging to local authorities, the total length open of which is 150 miles 71 chains,
and upon which the total amount expended has been $£ 1,860,742$, whilst to tram ways belonging to other than local authorities there
are 109, with a length of 413 miles 31 chains, and upon which has The plans of the proposed" ""Midland, Birmingham, Wolverwill be commenced by a junction with the Shrewsbury and Hereampton and Walsall branch of the Midland Railway at Willenhall. At Rough Hills the plans show a branch line by a long curve
towards Wolverhampton, which comes into the London and NorthWestern line, and Wolverhampton will be reached by this branch.
The jury engaged on the inquiry respecting the death of the
platelayers killed by the fall of a brick bridge at Bromley having, flater hearing the evide expressed their opinion "that the deceased men met with their
deaths accidentally, but that there was an error in judgment on the part of those responsible in not seeing that proper steps were taken
to support the south arch or otherwise to prevent the sudden falling of the bridge." From the evidence as recorded this want of judgment is not apparent, and the men who were killed
ordered not to go under the arch which fell and killed them.
WR have received a copy of the "Railway Diary and Officials'
Directory" for 1883. This diary is well got up, and contains besides the calendar and diary, a list of the directors and officers of the independent lines of rail way in the United Kingdom ; the
weekly traffic returns for 1882 , with blank columns for 1883; and an abstract of four half-years' accounts of some of the princinal companies ; as well as salaries, interest, annuity, wages, and other
tables; postal, stock, stamp, City ofticers, and other information.
The diary is arranged with a week on a page, the page being crown The diary is arranged with a week on a page, the page being crown
8vo. It is bound in cloth, and is one of the cheapest diaries
published. It has one fault. The back has an advertisement upon published. It has one fault. The back has an advertisement
it instead of the name of the diary and directory as a book.
THE Weser Zeitung has recently published an interesting article
 London to Dover, and claims that for speed on short distances it
is therefore proved that Germany is not behind England. The regulations in France and Austria enjoin a maximum speed-on
gradients of not more than 5 per 1000 of forty-seven miles an our. Under exceptional circumstances a speed of fifty-six miles an hour is allowed the conditions under which it is proposed to
run at this speed are ssuch as to make it relatively safe. In
Germany a maximum speed of fifty-six miles an hour is recognised, Qermany a maximum speed of firty-six miles an hour is recognised,
but is not apparently attained by any of the trains whose speed is
quoted to illustrate the preeeding remarks.
Mr. W. Granthan, Q.C., M.P., headed a deputation last
week to the directors of the London, Chatham, and Dover
Railway Company on the question of the overcrowding of trains Railway Company on the question of the overcrowding of trains,
If the directors were unable to increase the number of trains, the
deputation salked for deputation asked for an increase in the number of carriages
attached to trains between Moorgate-street and Brixton and Snowhill and Peckham between the hours of 7.33 and 9.28 a.m. and
5 to 9.30 p.m. Mr. Forbes, hairman to the company, said it was
easier to admit the whole chirga easier to admit the whole charge than to find a remedy. The new station, but it would not be ready for two years. Mr. Dresser
Rogers contended that the enormous traffic on the line was no Rogers contended that the enormous traffic on the line was no
answer to the grievance, and application would have to be made to
Parliament on the question. In Parliament on the question. In one instance. 113 pe
in a third-class carriage only intended to hold sixty.
A serious collision occurred on the main line of the Manchester,
Sheffield, and Lincolnshire Railway at Dinting Junction oon Monday afternoon. The 4.15s slow passenger train from Manchester
for New Holland was standing at Dinting station discharging for New Holland was standing at Dinting station discharging
passengers for Glossop. The rearg guard, named Calvert, had just
got in the brake van and the train was got in the brake van and the train was about to proceed, when he he
heard two sharp whistles indicating danger. Looking round he saw the Liverpool express comining vorer thanger. Loiaduct, whing round here crosses
he Glossop Valley at a height of 7 tft. The express was traveling the Glossop Valley at a height of 77ft. The express was travelling
at a rate of about forty miles an hour, and came so suddenly round
the curve that it was impossible to avert a collision or the curve that it was impossible to avert a collision or even to
decrease the speed. Calvert had barely time to ump from his van
and run up the embankment before the expes deshed int his brake, completely telescoping it and rearing it ox ond end. The force
bres of the collisision was such that the earriage next on toit, at third folasee
was also telescoped, and the engine at the other end was dislodged from its shackles and sent spinning down ther eline. TThe driver,
William Ulyett, of Sheffield, jumped off and escaped unhurt, but the stoker, George Warner, also of Sheffield, who remained on the
engine, had his arm injured. Two compartments of the telescoped
third-class carriage were completely third-class carriage were completely smashed. They contained
three passengers, who were all seriously injured. One man was
killed. Mr. J. W. Biluinghurst, vestry clerk of St. Miildred's, Poultry,
writes to the Times thus:-"I am requested by the churchwardens
 important thoroughfares in of Lonkeepers in some of the most
deposited with mens have been
dis representing the the deposited with me, as representing the above pprisishes, and relate
to the Mid-Metropolitan Railway-a proposed line from Lancastergate, in the West, to Aldgate, by an underground tunnel under
the roadways of orfordstreet, Holborn. Newgate-street, Cheap-
side, the Poultry, Cornhill, and Leadenhall-street. To
 what will be the loss to the unfortunate oecupsiors of shopss and
other premises in these, perhaps, the most highly-rented streets in London? The traffic would be stopped, or nearly so, for months
during the construction of the railway; many shopkeepers must be during the construction of the railway; many shopkeepers must be
simply ruined, and, as the law stands, the railway company would
not be liable for one penny by way of compensation. This must
 Who bring forward a scheme, for their own profit, which would be
so disastrous to the interests of thousands, must be told at once
what resistance they the matter should be publicly discussed, because erery few notictices to
to
occupiers--perhapsnotany-have been ocoupiers-perhaps notany- have been, given, andowners of property
so seriously menaced are as yet unaware that such a railway is contemplated. These observations apply equatlly to tha railway is con-

- that of the Wame
terterloo and Charing-cross Electric Railway (Exten-

NOTES AND MEMORANDA. A CoRRRSPONDENT in Paris says:- "You are probably not aware
hat india-rubber is now adulterated with finely pulverised cork. that india-rubber is now adulterated with fine y pulverised cork
Pulverised oork is worth about 2 dhd per th, while the india-rubber
to which it is added "flooting more.
Profrssor O . Silvemstri, of Catania, has found that the basaltic lava, in the neighbourhood of Etna, contains small geodes
filled with crystallised paraffine.
The paraftine is in large translucent plates of waxy appearance and yellowish-white colour
with a melting point of 56 deg . It is soluble in ether and i A PATENT
sisting of 3 parts of granted in Germany for a leather lac, con colouring matter, added to a filtered solution of 80 parts of shellac in 15 parts of alcohol. The whole is evaporated in a vacuum to
the constituency of syrup. This lac is put on the leather with brushes,
spirit lac.

M. Du

M. DUNAS recommends water saturated with alum for extin gives to objects wet with it, which prevents contact with the oxygen of the air, and thus diminishese the rapidity of the combus-
tion. The Minister of the Interior has recommended that the fire men of the French towns be supplied with facilities to use such solutions of alum
A PapRe was recently read before the Academié des Sciencés on
Electro-chemical Deposits of Various Electro-chemical Deposits of Various Colours, Produced on
Precious Metals for Jewellery," by M. Weil. He presented pieces of gold and silver jewellery, polychromised industrially with oxides of copper, by his processes. The colours resist friction, dry
moist air, air vitiated by sulphuretted hydrogen or coal gas, an moist air, air vitiated by sulphuretted hydrogen or coal gas, and
light. M. Edm. Becquerel recalled the colorations obtained by his

For drilling glass M. Gougy, of Paris, says it is not sufficient t t
know that spirits of turpentine, or spirits of turpentine with garlic forms the best lubricant for the drill. The drill must have certain form. An ordinary drill will often split the glass. three-cornered saw-file sharpened up to a point like a three-cornered
scraper is often recommended, but M. Gougy says the best drill is scraper is often recommended, but AI. Gougy says the best drill is
the three-cornered file sharpened in this way, but with one corne the three-cornered file sharpened in this way, bua with one corner
taken off, so that the cross section of the drill near the point is that of a truncated cone, and the
from 5 to 1 millimetre in width.
The Registrar-General's return for the week ending December 2nd shows that the annual rate of mortality in that week in
twenty-eight great towns of England and Wales averaged 22.3 per 10,0 of their aggregate population, which is estimated at
$8,46,571$ persons in the middle of this year. The six healthiest places were and Derby In, Portsmouth, Leicester, Birkenhead, Bradford registered. Allowing for increase of population, the births were
76 and the deaths 142 below the average numbers in the corresponding weeks of the last ten years. The annual rate of
mortality from all causes, which had been equal to $20.0,21 \cdot 1$, and 22.5 in the three preceding weeks, declined again to 215 last week averaged 20.5 per thousand, against 20.7 and 20.8 in the corre averaging periods of 1880 and 1881 .
A German chemist named Puscher states that he has met with great success in using glycerine together with glue. While gene-
rally, after the drying of the glue, the thing to which it is applie rally, after the drying of the glue, the thing to which it is applied
is liable to break, tear, or spring off, if a quantity of glycerine equal to a quarter of the quantity of glue be mixed together, that for lining leather, for making globe frames, and for smoothing parchment and chalk paper. He also used it for polishing, mixing
wax with clycerine, and using it as an underground for laving wax with glycerine, and using it as an underground for laying on
aniline red colour. The red was found to exceed all colours in which glycerine is not used. The glycerine has also some proper-
ties in common with india-rubber, for it will blot out pencil marks from paper, so as to leave no mark whatever. The Boston Journal of Chemistry says a paste made of starch, glycerine, and gypsum
will maintain its plasticity and adhesiveness longer than any othe cement, and therefore recommends itself for cementing chemical instruments and apparatus used by pharmacists,
STATEMENTIS on the melting point of selenium are at variance,
for it sometimes becomes soft long before it is really fluid. When or crystalline, with a leaden gray to reddish violet colour. In this
form it melts at 217 deg. (23 deg. Fah) without softening. According to Bettendorff and Wuillner, the amorphous selenium begins to soften between 40 deg . and 50 deg. . . (104 deg .
to 122 deg. Fah.). Berzelius says it softens when warmed, at
Be 100 deg. O. (212 deg. Fah.) it is semi-fluid, and perfectly liquid at a sealing wax, so that it may, but on cooing rema elastic, trans parent threads. Sace says that selenium has no definite melting
point, for it softens and hardens gradually; that it probably melts point, for it softens and hardens gradually; that it probably melts
at 200 deg. C. (392 deg. Fah.), for at that temperature it ceases to adhere to the bulb of the thermometer. The Scientific American
says says it is completely melted at 250 deg. C. (482 deg. F
cooled to 150 deg. C. (302 Fah.) it is entirely solid.
SOMF interesting statistics have been communicated to the Times
by a Berlin correspondent as to the experiment tried this year of establishing summer post and telegraph offices on mountain peaks,
and other remote and solitary spots in Germany much visited by tourists. The result has been such as to encourage a repetition thus forwarded; more than 23,000 of the former alone having bee despatched from the Bastei, a lofty precipice in the Saxon
Switzerland. From the Wartburg, in Thuringia, 20,000 letters Giant Mountains, from the Brocken, in the Harz, 16,000, and so telegrams respectively. The inventiveness of Dr . Stephan 127 of officials fromeral of the Mmpire, Martin's-le-Grand hotorious. Several bodie
wave come over to Berlin within the last year or two Post-office-an institution in
could find little to criticise.
AT the last meeting of the Chemical Society, Mr. Toms read a papel analysed various samples of hay, and contrasted them has analysis of ensilase, i.e.,.grass buried whilst green in a water-tight
pit or "" silo," and subjected to pressure. It is well known to chemists that hay-making is not a mere drying of grass, but tha a fermentation also takes place, which developes the well-known
perfume of hay, and during which the grass loses its
 cent.; free acetic acid, $1: 89$; sugar, $3 \cdot 42$; starch, $12 \cdot 46$; gum and
mucilage, 27.25 . A. A specimen of rown
the last, but from a portion of the stack from the sheme rick as had heated, con the last, but from a portion of the stack which had heated, con-
tained fatty matters, 426 per cent.. aldehyde, which formed a
mirror with ammonia silver nitrate. 6.94 ; starch, 3.42 ; gum and muciage, 24.77. More than two
thirds of the stand been converted into had thus disappeared, and apparently ha analysed: One differed verry little from orrimary or enssiliage wer seon
was brown, and smelt strongly of tobacoo, it contained mor was brown, and smelt strongly of tobacco, it contained more
acetic acid and sugar, but less starch; the third specimen repre
sented foder tained starch-sugar, but was not acid, but was mouldy. Mr.
O'Sullivan did not think that the author had proved the presence

MISCELLANEA.

The American papers received at Cork on Monday night announce the deaths of Samuel Remington, the inventor of the
Remington riffe, and of Mr. Henry C. Murphy, president of the trustees of the Great Brooklyn Briage.
1 FEW days since the steamer Polam left London for Galatz with Co., for the Roumanian Government, for service on the Danube. These torpedo boats are of the size u urually termed second-class,
Thd had a speed on the official trial of sixteen and e and had a speed on the official trial of sixteen and a-half knots.
A correspondent in the Contract Journal asks, "How it is our
paper makers are compelled to go to America for the best chilled olls for glazing calenders?", and says, "Neither our English nor Scotch engineers can, or do, produce any as good as the Americans.
It appears strange, but it is nevertheless true." We may ask, is T
THE following notice to Parliamentary agents has been issued
from the Committee Clerks' Office, House of Lords, viz: :- "The Parliamentary Office will be open on Saturday, December 16, from 11 a.m. to $8 \mathrm{p} . \mathrm{m}$., for the reception of Bills to be depositod under
Standing Order 32; and the agents are particularly requested to ly in the day as possible,
AN automatic electrical appliance for giving notice of the
approach of trains, invented by M. Mors, has been successfully approach of trains, invented by M. Mors, has been successfully
tried on the Paris-Lyon-Mediterranee line. It consists of a box filled with mercury placed under the rail at the required distance
firem well; the trepidation, caused by the train passing over it
frem gitates the mercury, and forms contact with the wir communi ating with the bell, thus causing it to ring
The North Staffordshire Mining Institute have decided to comnumicate with other institutes with a view to taking action upon
the reeent ruling of the Lord Chief Justice in the case of Plant the Cheadle Valley Colliery Company. In that decision the word ing of the Act, that a certificated manager must daily inspect every
part of the working of a mine, was interpreted literally, and the North Staffordshire engineers contend that the carrying out of such a regulation is an absolute imposinilit.
The Ship Canal Gazette, of which we have received the fourth issue, published by John Heywood, Manchester, shows that a six
teen-page paper may be filled week after week with matter con cerning one important industrial scheme. It might be suggested that the Gazeette could useaululy occupy some. of its space swath more
tetailed techical and statistical information concerning the canal detailed technical and statistical information concerning the canal and its working; but this, perhaps, is to be given hereatter. The
ssue of the eth inst, says :- "The event of the week has been
he official approval of the ship canal by the Manchester Corpora-

WE are informed that on Saturday, shortly after the Prince of Porter and Co. were able to reach their strong room, the entrance to which is secured by a pair of Chubb''s massive steel doors.
With very little trouble Messrs. Chubb's men opened the doors, and the room was then entered by the directors, who found all the contents uninjured. Several tons of books were quickly removed, room, the books which were lying outside the safes were uninjured

THE extensive railway carriage building works of Messrs. Brown, Marshalls, and Co., Limited, at Salsley, near Birmingham, extend iighting is effected by means of forty Brush arc lights of 2000
nominal candle-power each, driven by one of Fowler's 16 N.H.P. semi-portable engines, the work having been carried out by the
Birmingham and Warwickshire Brush Electric Light and Powe Company, Limited. The result is very satisfactory, both as regards efficiency and economy. This is believed to be one of the largest, and Messrs. Brown, Marshalls, and Co. have concluded a contract with the Birmingham and Warwickshire Company, extending over light, which though many times more efficient, will compare avourably, as regards cost, with their previous illumination by
as, and, when added to this, the character and quality of the light are taken into consideration, and the general cheerfulness and
stimulating effect which an abundant supply of good light has upon workmen, it is apprehended that a positive saving can be shown
by the increased amount of work which can be turned out in given number of hours.
H.M.S. Dolphin, the first of two similar vessels built by Messrs. Raylton Dixon and Co., for H.M. Navy, under the superinten
dence of Mr. J. G. Allen, Admiralty overseer, assisted by Mr Adam, was recently launched. The chief dimensions are-Dis-
placement, 1000 tons; engines of 750 -horse power; armament, two bin. breech-loading guns, placed in forecastle and poop for chase ooat gun, and two Gardner guns, which are somewhat similar to Condor, which did such excellent service at the Marabout Forts. She is built on the composite principle, that is, she has iron frames, of tealk 3in. each, copper fastened and sorew bolted to the frames, tem and keel of English oak, bottom covered with copper up to
 W. Hawthorn, and will be put on board at Middlesbrough Dock where they were much admired. This is the seventeenth vessel be launched in about five weelss. They H.M.S. Wanderer wild ing and to lay down nineteen steamers, mostly of large size, some The arrangement consistin
cups used for meterological purposes and an electric current acted upon at each revolution of the cups, which was described by Mr.
Ooseph Thompson at the last Wigan meeting Geological Society, and which he proposes to introduce into mines for the purpose of recording on the surface at any moment
the state of the ventilation in the meting of the society in Manine, was under discussion at
was very favourably commented upon. The che $5 t h$ inst., and
whiection raised was the liability of the mechanism of the cups to be in said he proposed to overcome by enclosing the mechanism in a dust-
sut proof box, which might be made air-tight if required. It was
suggested whether governors might not he attached which would indicate any partial stoppage of the air; but Mr. Thompson, whilst admitting the great importance of securing such a means of giving
an alarm in case of the ventilation being wrong, said he hid not at
nresent see how it could be andied present see how it could be appied to his arrangement. Nr.
De Rance, of the Geological Survey, at the same meeting read an
interesting communication with reference to an important discovery of manganese ore near Abergele, in Denbighshire, occurring in the
old red sandstone. The deposit, he explained, ocurred in a bed and not in a vein, as in the ordinary way, and reached a thickness
of 17 ft of solid ore. The deposit had been opened out by the
Abeet Abergele Hematite Company, and its existence had previously
ben so little suspected that the ore had actually been used for
paving purposes. He was of opinion that close investigation of similar localities throughout North Wales wound lead to to the diss
covery of other deposits of like nature, which would be of great
 facture of Bessemer steel by the spiegeleisen process. The source
of this ore, he was of opinlot, was the basemtnt beds themselves,
the metal heing conventrated by the percolation of water down

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

LEIPSIC.-A. TWietmerer, Bookselier.

PUBLISHER'S NOTIOE.

* With this weel's number is issuud as a Supplement, an illus-
tration of an American Mogul Locomotive, Neuffoundland tration of an American Mogul Locomotive, Newfoundand
Railpray. Every copy as issued oy te Publisher cootains this
Supplement, and subscribers' are requested to notify the fact should Supplement, and it
they not receive it.

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 1d. postage stamp, in order that ansvers received by us may be forvoarded to their destination.
No notice vill be taken of communications which do not comply No notice wiil be taken

** We cannot undertake to return drawings or m

 $* *$ All letters intented for insertstion in in TTre Enverinker, * Al letters intended for insertion in THR ENGINRER, orcontaning questions, must be acompanied by the name and
address of the writer, not necesararily for pubbication, but as a
proof of good faith. No notice whatever will be taken of anonym
J. O. G . J
Patent."

cementivg leather to iron

SUBSCRIPTION

loth cases for binding THe Exgiverr Volume, price 2s. 6 . each.

MEETINGS NEXT WEEE

THE ENGINEER

DEOEMBER $15,1882$.

obstacles in the way of electric lighting In our last impression we dealt at some length with the for the Chelsea Vestry Board. Mr. Stayton considers in general terms the difficulties which stand in the way of the general adoption of the electric light in Chelsea, and what he has said, and the information on the subject which he publishes, are worth more consideration here than we have yet given them. We have already called attention to his estimate for lighting Chelsea, viz.,
$£ 375,000$. He does not give particulars of the way in which the sum is made up, but we may presume that it is obtained by merely extending the items of his smaller estimate for lighting a portion of the district, namely, $£ 85,000$. Of this $£ 25,000$ is for conductors, or very nearly
conductors for the whole of Chelsea would amount to $\pm 112,500$. Whether three-tenths of the entire outlay on an electric light installation is too great a proportion for the
conductors we are not prepared to say, but if we read this conductors we are not prepared to say, but if we read this
statement in connection with that made by Dr. Siemens, statement in connection with that made by Dr. Siemens,
in his address published in our pages last week, it will be readily understood that the paramount obstacle at present to the extension of electric lighting is the cost of laying it on, so to speak; and this is much greater when incan-
descent lamps are used than it is when arc lamps are descent lamps are used than it is when arc lamps are
employed. This may not be clear to engineers and others employed. This may not be clear to engineers and others simple explanation. The capacity of a wire as a con ductor of electricity may be said to refer only to the quan tity of electricity sent through it. Quantity is measured
by Coulombs, a Coulomb being the quantity of electricity by Coulombs, a Coulomb being the quantity of electricity
equivalent to one Ampère per second. In practice, equivalent to one Ampère per second. In practice,
however, the Coulomb is never used. The time unit is taken as understood. Certain relations exist between the number of Amperes of current that any given wire can
conduct and the heating of that wire, and the heating is, conduct and the heating of that wire, and the heating is,
so far as is known, only a function of quantity, and has nothing to do with electro-motive force or tension; that is to say, a wire will be heated just as much by transmitting a current, say, of 10 Ampères with an electro-motive force
of 5 volts as it would be if the current had an electroof 5 volts as it would be il the current had an electro-
motive force of 200 volts. Much the same thing may be said of a steam pipe. Its temperature is no exalted in the same ratio as the pressure of th steam passing through it. Thus the temperature o
5 lb . steam is 228 deg., while that of steam of 150 lb . is 366 deg. We have a rise in temperature here of but 138 deg.; but it is evident that the pipe is in any given period-as second or an hour-transmitting thirty times as much power when the high-pressure steam passes through as it is when the low-pressure steam is flowing. In the case of electricity it is desirable, as pointed out by Dr. Siemens, that the current should have a high electro-motive force,
because the higher it is the greater, other things being because the higher it is the greater, other things being
equal, is the amount of work in lighting that any given conductor can perform. The efficiency of a cur rent can be measured in horse-power by multiplying
the number of Ampères by the electro-motive force in the number of Ampères by the electro-motive force in
volts and dividing by 746 . Thus let us suppose that the volts and dividing by 746 . Thus let us suppose that the
current which a given wire will just bear without undue heating is 45 Ampères. If the electro-motive force of thi current be 10 volts, then $\frac{10 \times 45}{746}=0 \cdot 6$-horse power nearly. If the electro-motive force were augmented to 250 volts we should have $\frac{250 \times 45}{746}=15$-horse power nearly, the work done by the wire being twenty-five times as much in the latter case as in the forme
Now, unfortunately, the incandescent system does not require a high electro-motive force; indeed, cannot deal
with it. About 45 volts is the measure of the current with which incandescent lamps can deal; and if the dynamo sends them a current of higher tension it must be reduced by working the lamps in multiple arc, or othe devices known to electricians, such as subdividing the current from a given machine, or winding for quantity rather than intensity, but these devices in practice mean more wire and consequently more outlay. In the case of the arc lamp, however, the matter stands on a different
footing. These lamps can deal with and like high tension electricity, and they are always worked in series; that is to say, the current passes successively through a number of them, the quantity remaining the same but its electromotive force being reduced at each lamp. Consequently
the facilities which exist for transmitting electricity over given conductor for are lighting are very much greater than is the case when incandescent lamps are used. Furthermore the quantity of light is out of can be obtained with incandescent lamps. Thus it may be taken as certain that 1000 candles, real not expended in the lamp; but it is well known that not lamps can at terms of light-giving functions, the arc lamp is at least five times as effective as its rival. But inasmuch as incandescent lamps must be used, it now remains for conductors, and this appears to be supplied by the secondary battery. Secondary batteries have been regarded chiefly as storage batteries-means by which electricity, and with it light and power, might be carried about from place to Faure's ine anticipations formed concerning wat been realised; but an unannounced use for secondary batteries has turned up. There appears to be little difficulty in using them as regulators. Thus a number of them might be laid down in any given district at what station termed sub-sthese batteries with high centra electricity, 500 volts or more if need be, and they would give out as they were called upon currents of much lower tension, which would be conveyed over short lengths of than sketch the general idea involved; for little is known certainly concerning the proper conditions for such working. It remains to be seen, too, whether there will or will not be much loss of efficiency ; yet it is clear that if a regulator battery, as we must call it, takes in a current volts, and gives out 100 an electro-motive force of 150 force of but 50 volts, a tremendous loss will be incurred We do not say that any such result is to be feared but that some loss will take place is certain. Concerning these batteries we may reprod subject. His sixteenth question to the various companies he consulted was- "Does your system include the use of accumulators; if so, of what kind and where are they to be fixed?" The replies ran as
mulators of the usual kind, although we are not dependent on them. They would be fixed at each house having the light, or at convenient intervals in or along the lines joining the lamps or with the generators. Details not yet decided." Edison: "We do not recognise the use of accumulators as economical or necessary in the Edison system of distribution." Jablochkoff : "No accumulators necessary." Swan: "We propose to use accumulators as
soon as they are fairly in the market. We consider they will be a most useful adjunct, but should be unable to tender for them at the present time." Ferranti and Co. district like Chelsea." Pilsen-Joel : "It is advisable in many instances to use accumulators." Siemens: "It might be advisable to use accumulators which would either be fixed in the houses or at the station, or in both
Even though the conductor difficulty was got over another obstacle to electric lighting exists which must soon be deal 1 , much each householder ought to pay. The equivalent of the gas-
meter must be forthcoming; but nothing likely to answer in meter must be fortheoming; but nothing likely o a answer in practice has yet been invented. There are several current meters known to electricians, but they will not answer Mr. Stayton says :-"The Edison electro-deposit meter has been devised to measure electricity by mean plates, which are carefully weighed before being placed in are taken out and weighed, and the 1 th part of the current consumed is thus ascertained. It is obvious that a slight error or defect might prove a gigantic discrepancy in the total, and further, a householder would apparently be unable to check either the daily consumption or the calculations of a company, as under this system the plates
are removed from the meter and taken to the office and weighed, new plates being inserted." We have not the east doubt that a sooner it is done the better. In conclusion we may say that we have called attention to but two of the more prominent obstacles which stand in the way of the extension of the electric light. We cannot avoid alluding to one other which is not of a technical nature-we refer to the reckless system of financing, which has distinguished the operations of but too many companies ostensibly formed to introduce new inventions. But the time cannot now be far distant when sound enterprise will be cleared from the growth of rash speculation which has surrounded and almost choked it. In finance, as in other matters here is a law of survival of the fittest, and ere long the public will be in a position to form an opinion concerning the enterprises which are and are not likely to survive.

the institution of civil engineers

The annual meeting of the Institution of Civil Engineers takes place on Tuesday next, when the members will elect the rusient and Councl for the coming year. There are no Associng questions to discuss; the designation and rights of and the Midbers seem to have been successf Council as eligible will dates put forward by the present usual dul decorum. As regards the government of the Institution, the system of making up a "house list" has, on the whole, proved convenient and useful; without it a who number or the members and associates who v the ession would find it be an undesirable tendency to form cliques for the advancement of particular men. But the house list is justifiable only so long as it is fairly representative, affording sufficient range of choice to the members, and to this end it who not be restricted to names preferred by the Counci o substitute nhe list. the right of the list, and that right of voting for a less number than the prescribed fifteen, which in its effect on the election of a tood candidate is not always appreciated and umbers privileges, but the graceful anticipation of any popular wish by widening the field of selection would, if done voluntarily by the Council, really render their own seat at the table more secure. Some plan by which the members of Council should retire by rotation, though eligible on future occasions, is worth consideration
It is questionable whether the present method of choos ing a president is the best that is possible. The list of difficulty. for the Council may be made up without much fffice, and there are always enough eligible men outside the fifteen who hold office who may with propriety be included but any selection by the Council of one among themselves for the highest honour of all would impose an invidious task which may well be avoided. The present method of escaping this delieate duty, by naming in the house list for the post only the senior vice-president, is open to objection, or now that the custom, introduced when Mr. Bateman was president, seems established, of holding office only for one year instead of for two years as formerly, the supply of suitable candidates. For, according to this system,
 sident, or at any rate have the refusal of it, although it can hardly be doubted that many who are most properly elected to the lesser dignity are not, in the opinion even of those who chose them for the Council, the right men for the President's chair. It may be considered whether it would not be better, instead of presenting one name only, to nominate three, say, the president whose one year of office expiring, and the two senior vice-presidents; or, as nother plan, to nominate no one, but to let the office of President fall to the vice president who receives the reatest number of votes for that office
At present the Institution stands high in public esteem of no time were engineers more necessary to the interests of the community; works of magnitude and importance grow in number every year; vast sums of money are
invested in enterprises almost entirely on faith in the engineer whose name is appended to a prospectus, and the

President of the Institution for the time being, in that he, by his election to that office has the supposed approval of all his brethren, carries the greatest weight of all. Noblesse oblige
One leading characteristic of the English engineer is One leading characteristic of the English engineer it
the permanence and solidity of his works as compared with those of his compeers in newer countries; and a man
strong in his position will decline to have his hands forced by eager promoters who desire an undue cheapness, and will even more scrupulously abstain from influencing sub-
scriptions to his own schemes by fallacious estimates of scriptions to his own schemes by fallacious estimates of
cost. But in the engineering, as in other professions, there are short cuts to fame, and there is no greater enemy
to the profession than he who, venturing on hazardous to the profession than he who, venturing on hazardous
methods, or allowing too narrow a margin of safety methods, or allowing too narrow a margin of safety
in his structures, discredits, by the temporary success in his structures, discredits, by the temporary success There have been too many failures in recent years by this lowering of the standard of quality; and our English freedom
from that paternal supervision and interference of Government engineers which obtains in foreign countries is at stake, for loss of life as well as property are distinctly
traceable to faulty design and cheap construction. Memtraceable to faulty design and cheap construction. Mem-
bers of the Institute should give due weight to such considerations in making their choice. For our own part we should like to see a less rigid adherence to a pre-
scribed order of election. If it be deemed best on the whole that one year rather than two should be the term of office-and good reasons are not wanting why eminent
and busy men should prefer the shorter term-at any rate and busy men should prefer the shorter term-at any rate
an occasional exception to such a rule would be advantageous; and it is desirable that members in filling up
their balloting papers should remember that they may their balloting papers should remember that they may insert the name of any one they please, whether he has
held office already or not, who is in other respects eligible held office already or not, who is in other respe
according to the simple rules of the Institution.
the hydraulic power of the rhone.
The question of utilising, to a reasonable extent, the hydraulic power of the Rhone at Germany has lately assumed a remarkable development, to which the attention of
engineers may well be directed. In its present form the engineers may well be directed. In its present form the
question arose from certain claims put forward by the question arose from certain claims put forward by the of Geneva. These claims date back to the beginning of
the eighteenth century, and have culminated in a lawsuit, the eighteenth century, and have culminated in a lawsuit,
brought by the Vaudois Government against that of Geneva before the Federal Tribunal. The Vaudois Government ascribe the increase of floods to works con-
structed in 1839-42 to obtain hydraulic power for the benefit of the water service of Geneva. The Genevan authorities, on the contrary, maintain that the floods were in no way affected by the works in question, adding that
the deepening of the bed of the Rhone, which had been brought about by their construction, would have been a more than sufficient compensation, even if the level of the lake could be effected by any but meteorological causes.
In 1873 the Canton de Vaud obtained a report from M. Legler, engineer to the Linth Canal in Glarus, and Professor Pestalozzi, of Zurich, upon the best means for pre-
venting the floods on the lake, paying, at the same time, venting the floods on the lake, paying, at the same time,
due regard to the wants of the hydraulic service of Geneva Somewhat later the Geneva State Council -or Ministry as we should term it-was offered the Henneberg scheme, so
called from one of the principal promoters. By this scheme it was intended, with a view to promoting new industrial enterprises in Geneva, to create a much larger motive force
than MM. Legler and Pestalozzi proposed to maintain, and at he same time to diminish the floods. The scheme met with little public support. Its practicability, indeed, was not contested, but it appeared doubtful whether the creation of hydraulic power was sufficient of itself to call into
existence new industries. Nevertheless the Council, hoping thereby to conciliate the Vaudois, submitted to the Grand Cantonal Council-or State Parliament-a Bill Company. But they did not attain their object. On the one hand they had scarcely presented the Bill when the Canton de Vaud formally opened hostilities; and on the
other, the Henneberg Company, finding itself unable to furnish the required guarantees, demanded that the matter should be indefinitely postponed. So the question rested during 1879 and 1880 , although the lawsuit con-
tinued. In the beginning of 1881 , however, M. Henneberg and his friends, backed this time by an important foreign company, again put forward their scheme, and again the
Council of the State submitted the question to the Grand Council. The Commission appointed to examine it did not present their report till January, 1882, when, contrary to protect the interests of the City of Geneva and of the various manufacturers, and they agreed with the promoters
in opposing certain measures which other members of the Assembly wished to see adopted.
Public opinion was averse to seeing the interests of the town sacrificed to those of a foreign company, and began
to pronounce loudly against the scheme. Gradually the idea that the concession suggested should be granted to the municipality itself gained ground; and some letters in favour of this idea by M. Merle d'Aubigne, director of the effiect that the grand council was compelled to adjourn juncture the municipal elections took place, and resulted in itself to undertake the scheme, in preference to incurring the onerous conditions with which it was threatened. M. Legler was appointed to report on the question by the new and partly because he already possessed much information Henneberg scheme, was equally advantageous. The commission appointed to receive it obtained also an opinion
from M. Arthur Achard, a well-known engineer of Geneva, which was in its favour. These preliminaries being Turrettini, member of council to an the report of M. should be placed in their hands, and to this the Grand

Council assented on September 30th. It is hoped that these events will tend to conciliate the Canton de Vaud,
as the scheme now in hand will accomplish those changes in the current of the Rhone which they desire, and there seems no reason why they should persist in fighting for that which they may obtain amicably
So much for the history or the subject, which is very intens of politics law and engineering ret mixed up questions of politics, law, and engineering get mixed up in our complicated state of society, and act and re-act upon each other. The actual engineering problem has now to be considered, as set forth in the reports of M. Legler and
M. Achard. The problem may be stated thus:- To M. Achard. The problem may be stated thus :-To
utilise at Geneva as much of the hydraulic power existing in the Rhone as is possible without injury to the dwellers on the Lake of Geneva. The original project proposed with this aim, to work the hydraulic motors for ten hours per day only, impounding the waters in the lake for the
rest of the twenty-four whenever there was any fear of a deficiency; and its promoters counted on thus obtaining an average of 7200 -horse power. This, however, necessitated
the keeping of the mean level of the lake so high as seriously to interfere with the drainage and cultivation of the marshy land along its shores. M. Legier's plan is to keep the motors always at work, unless this should be
found undesirable during the winter. He takes as a basis a calculation by which the total discharge from the lake is $99 \mathrm{cb} . \mathrm{m}$. per second when the level is 1.50 m . above datum, and 325 cb . m . when the level is 3 m . above datum. This dis charge takes place through two channels, one on each side
of the "Island," so wel' known to all residents visitors at Geneva. Of these the left-hand branch is that which it is proposed to form into what the report styles "the industrial channel." For this purpose
it is to be deepened to 4.50 m . below datum, and widened where necessary to 36 m ., so as to make it in all respect equal to the right hand branch. On this will be built, immediately below the present Port de la Coulouvreniere, a large house for the turbines; and below this it will take
the form of a wide tail-channel, separated from the othe the form of a wide tail-channel, separated from the other This tail-race will have a fall of 1 in the stream. the upper end of the island, below the Pont de la Machine, a weir with movable needles, placed across the right branch,
will enable any required part of the discharge to will enable any required part of the discharge to be
diverted into the left or industrial channel. Between the lower end of the island and the turbine house will be Iongitudinal weir with a number of sluices, by aid of which any water which has entered the industrial channel but is not required for the turbines, may be diverted laterally into the right hand channel. By properly operating these two weirs, the power delivered to the turbines can be kept perfectly regular, whilst at the same time the variations in
the level of the lake are never allowed to exceed the limit the level of the lake are never allowed to exceed the limits
which have been found to offer full security to all interests concerned. This regulation is very necessary in view of the sudden variations in discharge. Thus in April and May the discharge is at its minimum 100 cb . m. per second and the fall at its maximum- 2.62 m .-but in June and chargo owing of course to the melting of the snows, the dis its minimum 1 maximum of be possible to obtain a power of 2700 -horse power, working day and night, and 7000 -horse power if the work is concenwith on ten hours, as proposed by M. Nitcer. Che wepresent fixed weir at the Pont de la Machine, will practically be open from June to September, and closed from October to May.
The mode proposed to utilise the power thus afforded efficiency ol turbines of 3.71 m . diameter, having an 63 -horse power. For the proposed total of 2700 -horse power there would be 30 such turbines, grouped in pairs to a single vertical shaft. Each of these would geared $20,000 \mathrm{f}$., and the cost of the masonry, machinery, \&c., which would be required for them, may be taken at $40,000 \mathrm{of}$. per with house, \&c., $1,800,000$ gives for 30 turbines, complete 200,000 f. for dredging below the turbines, and 100,000 f. right bank. 180,000f, for the dyke between the right th left branches, above and below the turbine house and $70,000 \mathrm{f}$. for contingencies. This gives a total of $2,500,000$ f., just $£ 100,000$, as the first cost for providing 2700 -horse power gross, or, say, 1850 -horse power net. To this has,
of course, to be added the cost of the transmission of this wer to the manufactories where it is to be utilised. e much greater than would be required in enumerated tions where turbines might be placed on a river such a the Rhone, and that the exigencies of maintaining the proper levels have prevented the work from being carried theless, if anything like the maximum of economy. Never add even $£ 10,000$ to cover maintenance and renewals and losses, it will appear that the town of Geneva will have cost of a constant service of 1850 -horse power at a yearly attending the same power if obtained by steam? It is a power per hour is a fair allowance to make penny per hoise steam power, including interest, depreciation, and all expenses whatever. But 1850 -horse power calculated on this basis gives a total of $£ 67,525$ per annum; and how power in going day and night-which disadvantage may on the side of water-power is much over 50 per cent From this point of view it certainly seems little less than inheritance in coal at so reckless a rate, the water-power of our rivers, which costs us nothing, is almost wholly
running to waste; and especially should this be taken to heart by those who are interested in the welfare of Ireland,
things cheap. Is it too much to hope that the enterprise thus thrust, so to speak, on the town of Geneva, may
awaken other cities and other countries to consider the wealth of power which they are systematically neglecting?

aluminium,

No metal nor any commodities of metal manufactured in and around Birmingham is at the present time in so active request as aluminium and its various alloys, produced by the Aluminium
Crown Metal Works Company, Hollywood. The works have been built some five years, yet the invention has been perfected ony about a year and a-half, and it was but recently that the demand is so freely expressed market. Already, however, the orders that have accumulated on the books cannot be executed. The author and patentee of the invention which this company metal chief proprietor of the concern. He has spent upon the works and apparatus some $£ 30,000$, and in securing patents a furthe Warwickshe . Hollywood, in the midst of the agriculture of Warwickshire and away from the railway, is now the only place Former attempts in this country ore believed to have inded an unproductive aggregate outlay of between one and two million sterling, and France had become the main source of supply So great a revolution has been effected in the manufacture that instead of resorting to precipitation, which means the production in nine months of a ton of aluminium at a cost of $£ 1000, \mathrm{Mr}$. Webster, by the employment first of calcining furnaces for treat.et ground aluminium and pitch, and subsequently of vertica ton of aluminium in a week at a cost of \&100. Indeed, it is claimed that there is not only a saving of nine-tenths in the method of precipitation, and an analysis made by Mr. Jones, the borough analyst of Wolverhampton, would seem to support that claim. The metal need not now be confined to the manufacture for mical and mathematical instruments, watch chains, bushing ar machinery, and the like, but can be used for purposes m wide range. Messrs. Webster and Co. claim that
a their aluminium bronze, which is a combination of aluminium and tin, nickel and copper, has greater puwer of resistance than the best gun-metal, and that it is very much lighter. The square inch against the 28 tons resisting power of gun-metal The lowest resistance recorded for this bronze is 36 tons. Samples of wire made from the bronze have been sent to London
and Glasgow for telegraph coils, and they are being used for electric telegraph purposes in some parts of London. Mr Webster has also succeeded in accomplishing the very difficult
operation of uniting aluminium with other metals by a welding or soldering process For the whling of aluminim jewellery the demand is so great that the company assert that they "cannot supply one-hundredth part of the requirements."
times
ever, ever, be effected at Hollywood, for six new retorts are now in patentees from manufacturers at home, who desire to use the patents; and from America and the European Continent heavy syndicate tendered for the sole right o manufacture. A French patent for France - for the right to make in the United States the offer from France was exceeded. Belgians and Germans are hardly less enthusiastic in their wish to possess exclusive rights in their countries respectively.
well-decked and flush-decked vessels
AT the north-eastern ports the capacities and comparative
safety of well-decked and flush-decked vessels are being safety of well-decked and flush-decked vessels are being
keenly criticised-the recent loss of one of the former class having revived an old controversy. Judging by the test of experience, the advocates of the well-decked essels do notseem
to lose in the dispute, but one point seems to be forgotten in it. It is the contention of the advocates of the well deck, or what may be, perhaps, better called the single-deck type of
cargo vessel, that they are safer in a storm than the other, especially when the cargo is grain or other cargo in bulk. On
the other hand, the advocates of the flush-deck type remark that the other hand, the advocates of the flush-deck type remark that
the well is a source of danger, as it may be filled with water the well is a source of danger, as it may be falled with water
by a sea, and the additional burden may be disastrous. But it is verlooked that in the records of loss we have little or no indication of the type of build of the vessel, and, indeed, the whole system of the reporting of loss of vessels, and the inquiry
thereinto, is loose in the highest degree. It will be well if we turn from what can scarcely be settled by any ex cathedra chinery by which we have our maritime losses recorded and investigated. The reports that are made from time to time by the courts of inquiry figure at the period in the newspapers, but the causes of loss, or the types of vessel lost, and there is a still greater defection in the fact that the losses of vessels with all the crew are simply given up as mysteries that cannot be fathomed,
which would yield no result to the investigator. One thing that is needed is that we should have a list kept up from time to time of all the vessels removed from the registry, the causes of removalland where from loss, of the type of vessel, cargo, and
other allied facts. It is experience that must ultimately decide all such controversies, but we have not as yet the adequate
alt to those who are interested in it. During the past two years there has been an anxious dependence upon Pariament for some decision has yet been given, and it is questionable whether it would not be well for the great vessel insurance societies to take ecords facts as to the actual results of the working and loss of the various types of vessels.
the coal trade of itaiz.
Complannts have been published in the German press that the high tariffs current on the Italian railways, connected with the industry from gaining all the advantages which were expected from the completion of that important engineering work. The distance from Chiasso to Milan is only about 32^{2}. miles, and the charge for coal over this small length of railway is ss. J.. per ton. ho rates levied on the Italian lines are descrived as eeng dhout the talian authorities are awakening to a sense of the importance of cheap and abundant supply of coal to the various industries of the country. The leading mine owners of Westphalia lately
asked the permission of the Milan Chamber of Commerce to
in order that Italian consumers might become more familiar with the qualities of German coal. The success of a like experiment at Hamburg in 1878 was an example of a nature to encourage
such a step. On that occasion the prejudice which existed gaainst German coal was completely destroyed. The Milan authorities fell in with the idea, but have rather extended its scope, and have, it is said, determined upon holding an International Coal Exhibition. It is hardly expected that the needful arrangements can be completed at an earlier period than the autumn of 1883 . The German press speaks hopefully of the
capacity which the mines of Westphalia and the Saarbrick discapacity which the mines of Westphalia and the Saarbriuck dis-
trict possess to compete successfully with the products of the trict possess to compete successfully with the prod
English coal mining industry on this neutral ground.

miners' wages.

Messrs. Pickard and Frith, the Union officials at Barnsley, are not alarmed by the threatened reduction of miners' wages, nd are not only continuing to advocate the restriction of the output, but are determined tent. This is a brave policy, and Mr. Pickard takes it on ground which concerns both the coalowner and the collier. He believes that if the coal-getter is paid more money in wages, the coalowner is bound to get more money for his coal. In this way as much as the collier ; and there is no doubt he has imbued the reat body of the mining population with his views on that score Railway companies have long had their "hards" or locomotiv uel far too cheap, and as they consume the bulk of the har coal, it is obvious that the first thing the coalowners have to do is to renew no arrangements with the railway companies except on remunerative terms. Manufacturing coal has also been too
cheap, and latterly it has been scarce. These considerations have cheap, and latterly it has been scarce. These considerations have large consumers of locomotive and manufacturing coal, for it hould be remembered that the output of house coal is only onepoint clear at present is that there is trouble ahead in the coal industry of this country.

aUstralian artillery experiments

The Governments of Victoria and New South Wales have purchased a 6in. compound plate from Messrs. Cammell and
Co. They have also ordered some of Palliser's new ribbed and Co. They have also ordered some of Palliser's new ribbed and
jacketted shot. The plate and the shot are ready, and the two Governments have applied to the Secretary of State for the Colonies to obtain permission to use the 80 -pounder Palliser gun at Shoeburyness, and to have the experiments carried out under the Ordnance Committee. It appears that fifty Palliser 80 -pounder
hell guns-converted 68 -pounders-are mounted on the sea faces at Melbourne and Sydney. The colonial authorities have aces at Melbourne and Sydney. The colonial authorities have the possibility of penetrating such armour as may be carried by an enemy's cruiser visiting Australian waters. On the ramparts of Quebec are similar Palliser guns, but lighter, from which have
been fired 115 lb . shot and 80 lb . shells with $37 \frac{1}{1} \mathrm{lb}$. and $27 \frac{1}{2} \mathrm{lb}$. been fired 115 lb . shot and 80 lb . shells with $37 \frac{1}{2} \mathrm{lb}$. and $27 \frac{1}{2} \mathrm{lb}$.
charges of R.L.G. powder, so that there is abundance of strength charges of R.L.G. powder, so that there is abundance of strength for heavier tests than those in contemplation even with this class or the velocity of the shot may be increased when slower powder is adopted.

LITERATURE。

Measures, Weights, and Moneys of all Nations, and an Analysis the Christian, Hebrew, and Mahometan Calendars. By Crosby Lockwood and Co.
This is a new edition of a well-known volume in Weale's series. It has been revised, and received some additions,
and is a useful volume. It is a pity, however, that it does ot give any of the Birmingham or other standard wire and sheet gauges, and as a book of reference its value might be much increased if it had a good index.

BOOKS RECEIVED.

Electric Light Arithmetic. By R. E. Day, M.A. London acmillan and Co
roceedings of the Institution of Civil Engineers. Minutes of Proc
Vol. lxx. Edited
Institution.
Stationary Engine Drivinq; a Practical Manual for Engineers Stationary Engine Drivinq; a Practical Manual for Engineers
in Charge of Stationary Engines. By Michael Reynolds. Second
edition. London: Crosby Lockwood and Co. 1882. Transactions of the Sanitary Institute of Great Britain. Vol.
ii. 1881-2. Edited by H. C. Burdett, F.L.S., and F. S. B. F. de Chaumont, M.D. London: Ed. Stanford. 1882 .
Police and Fire. Journal of Public Safety. A Weelly Record of Police Administration, Fire Prevention and Extinction, Insur-
ance, and Ambulance Work. Conducted by Jenkin Ingram.
Vol. ii. June, 1881, to May, 1882. London: Bookseller's-row. Vol, ii. June, 1881, to May, 1882. London : Bookseller's-row.
1882.
Cutting Toots Worked by Hand and Machine. By R. H. Smith, Cutting Tools Worked by Hand and Machine. By R. H. Smith,
Professor of Engineering, Mason Science College. London

 Institute of Actuaries' Text Book of the Principles of Interest, Life
Annuities, and Assurances. Part I. By William Suttin, M.A. Annuities, and Assurances. Part I. By William Suttin, M.A.
London: C. and E. Layton. 1882.
Gold: Its Occurvence and Extraction. By Alfred G. Lock. Gold: Its Occurrence and Extraction. By Alfred G. Lock.
London: E. and F. N. Spon. 188.
The Engineer and Building Trades Almanack and Artizans' The Engineer and Building Trades Almanack and Artizans'
Hand-book for 1883. Manchester: A. Heywood and Son; and
London : Simpkin, Marshall and Co.
Repertorium der Journal Literatur. der Eisenbahn Technik. Repertorium der Journal Literatur der Eisenbahn Technik.
Herausgegeben von Franz Woaz, Regierungs-Baumeister. I.

THE CRYSTAL PALACE GAS AND ELECTRICAL EXHIBITION No. I.
The Electrical Exhibition at the Crystal Palace last winter was a great success, and the directors of the Crystal Palace Company determined to repeat that success this winter if possible. It very soon became evident that the electricians would notsupply enough material for the required purpose, and it was therefore determined that the rival light-gas-would also have an opportunity of showing what it could do. The exhibition was to have been opened long ago ; but delay succeeded delay, and it was not unti Wednesday, the 13th inst., that the exhibition was form ally opened by the Lord Mayor. We regret to say that the exhibition cannot for a moment be compared with its predecessor. What it may become further on we cannot pretend to say; but the number of exhibitors is very small, and on Wednesday very few of them were ready to make any display. In fact, the exhibition, such as it is,
was to the last degree incomplete, as far as those who was to the last degree incomplete, as far as those who
professed to give light were concerned. Our notice of the professed to give light were concerned. Our notice

We may say at once that electricity is hardly represented at all. There is one semi-portable and one portable engine in the large shed at the tropical end of the building, which last winter held Messrs. Robey and Co.s engines. These
two have been retained apparently to work a set of arc lamps of the Fyffe-Main pattern, shown by the Light Corporation, London, S.E. Messrs. Strode show a goo collection of gas fittings and lamps, and they have three arc lamps, McKenzie's patent, hanging on a wire line
across the intersection of the nave with the transept. The across the intersection of the nave with the transept. The
Duplex Electric Light Company is fitting up the Roman Court, and will, so far as we can see, have the most attractive exhibit in the Palace; but its arrangements are not nearly complete. At present no other firms are exhibiting the electric light in action.
The north nave is given up to
The north nave is given up to electricity, and the south nave to gas. We can dismiss this latter very quickly by
stating that while there are several stands, hardly one of them is in a condition to be seen. Up to the last momen the carpenter and the gas-fitter were hard at work, and they will not complete operations for a week or two at least. The most prominent exhibits are those of Messrs, Sugg and Bray, who are lighting the south nave on system: closely resembling each other, a description of which we must, as a matter of course, reserve. Another prominent object is a huge buoy, fitted up on Pintsch's system, to
give a light for about six weeks without refilling, and the end of a railway carriage fitted with apparatus to give light for forty hours continuously. We have so fully described Mr. Pintsch's apparatus that it is unnecessary to
say more concerning it just now. That part of the building say more concerning it just now. That part of the building stood last winter is now being fitted up with all kinds of gas stoves and apparatus for cooking by gas, but the packing cases are not yet all opened.
Returning to the north nave, we find many cases and
tands complete and worth notice. The Electric Lightin Supply and Fitting Company shows several well-made switches and safety cut-outs; one of these last deserves notice. When lead wire or foil is used for this purpose it sometimes ignites, instead of melting, and flashes up. The
cut-out shown consists of a strip of foil clipped between two mico for use the Franklin-Burgin machine, which is said to be an improvement on the ordinary Burgin; the only differ ence we have found is that the original machine lies flat and the Franklin stands on end.
Messrs. Dent, of the Strand, show a non-magnetisible lever watch, going, resting on the poles of a large per
manent magnet. They also show a well-made relay and some other apparatus worth notice.
Mr. Meyer, of Exchange-buildings, Liverpool, shows his between two tiles and the space filled up with asphalte pu pitch, as shown in the accompanying sketch, which is a cross section of a flat tile main, as we suppose we may call it. A BC are
hard clazed tiles about 12 in. square. the ends of the wires, while E is the asphalte or
will be seen that by using tiles of the shape B any number of stories, so to speak, may be built up. Close to wood of a hollow kerb to be made of cast iron, to hold wires; but we were unable to find the name of the exhibitor.

The Electric Light Carbon Company shows a case of well-made carbons for arc lamps, from 5 to 20 millimetres not but the We cannot say whether these are good o carbons has done much to push the incandescent lamp into carbons has done much to push the incandescent
favour, and to retard the use of the arc lamp.
At the stand of Messrs. Jonas and Colyer, of Sheffield will be found specimens of steel bars specially manufac tured with which to make magnets. We commend these specimens to the attention of every one interested in steel The character of the fracture is very unlike that of any so extremely fine that it gives no idea of crystalline texture, unless very minutely examined, and the homogeneous character of the metal is remarkable
Messrs. Doulton sincw a good deal of pottery of some interest to electricians, such, for example, as D retorts fo Meating carbons in, accumulator battery cells, and such like. Messrs. Johnson, of Oxford-street, have a stand in this
portion of the building, in which will be found some curious specimens of mica and mica lamp chimneys, which curious specimens of mica and mica lamp chimneys, which
at first sight cannot be distinguished from glass, These
are said to be unbreakable and indestructible. They are extremely transparent and well made.
Messrs. Legrand and Sutcliff, of Bunhill-row, show telegraph posts and the means of driving them, closely resembling that adopted in putting down their well-known tube wells.

We have now said all that admits of being said at resent concerning a very inadequate exhibition. We hope that before we return to the subject more space will lighting, at all events, will be fully represented.

THE SYNTHESIS OF THEOBROMINE AND COFFEINE-(CAFFEINE).
WE recently had occasion to direct attention to some important syntheses which have of late been accomplished, especially those of tyrosine and uric acid. Two more instances have now been made known. Theobromine, the crystalline body present in cacao beans, and first recognised by caffeine, first met with by Runge in 1820, and afterwards found identical with caffeine are the two bodies which the shown to be now succeeded in producing artificially. Mr. Emil Fischer has or a long time busied himself with the investigation of the constitution of the caffeine contained in coffee and tea, and a short time since he arrived at a structural formula for this base, which he found to be:

He it is who has now succeeded in preparing the base artificially He has not, it is true, succeeded as yet in preparing it from the elements composing it, but from a body of quite other origin, a substance present in urine, in meat, in the muscular part, that is to say, and in guano, to wit xanthine. The three bodies
xanthine $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$, theobromine $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{0}$ (the alkaloid present xanthine $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$, theobromine $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$ (the alkaloid present in cacao), and caffeine $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$, are closely related to each
other in point of constitution. The last two differ in formula other in point of constitution. The last two differ in formula
by CH_{2}, and the first and second by $\mathrm{C}_{2} \mathrm{H}_{4}$ or $2 \times \mathrm{CH}_{2}$; and it by CH_{2}, and the first and second by $\mathrm{C}_{2} \mathrm{H}_{4}$ or $2 \times \mathrm{CH}_{2}$; and it be converted the one into the other by taking an atom of hydrogen out of theobromine and inserting in its place the methyl group CH_{3}. He brought about this change by treating argentic
$\underset{\text { Argentic theobromine. Methyl iodide. }}{\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Ag} \mathrm{N}} \mathrm{O}_{4} \mathrm{O}_{2}+\underset{\text { Argentic iodide. }}{\mathrm{CH}_{3} \mathrm{I}} \underset{\text { Caffeine. }}{\mathrm{AgI}}+\underset{\mathrm{C}_{8}}{\mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}}$ In a similar way Strecker tried in vain to obtain theobromine lucky bytreating the lead salt of salt with methyl iodide to produce theobromine as shown below
$\underset{\text { Plumbic xanthine. }}{\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~Pb}}+2 \mathrm{CH}_{3} \mathrm{I}=\underset{\substack{\text { Plumbic. } \\ \text { iodide. }}}{\mathrm{PbI}_{2}}+\underset{\text { Theobromine. }}{\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}}$
The theobromine, thus artificially obtained, is in every respect When with that of the natural alkaloid of the cacao bean iodide it is changed into caffeine, and thus the characteristic alkaloids of cacao, of coffee, and of tea, had now been artificially prepared out of guano.

TENDERS.

TADCASTER BREWERY.
For extension of plant in the brewhouse department at the Tadcaster Brewery, for Mr. J. Smith. Messrs. Scamell and Colyer, $\begin{array}{lllllll}\text { Contract No. 4. } & & £ & \text { s. } & \text { d. } \\ \text { Messrs. }\end{array}$
Messrs. Ramsden and Sons, London-accepted (.. $257 \quad 0 \quad 0$

South Krnsington Museum.-Visitors during the week ending Dec. 9th, 1882 :-On Monday, Tuesday, and Saturday, free, from $10 \mathrm{a} . \mathrm{m}$. to $10 \mathrm{p} . \mathrm{m}$. , Museum, 7877 ; mercantile marine, Indian and Friday, admission 6d., from 10 a.m. till 4 p.m., Museum, 179. Total, 11,626. Average of corresponding week in former
years, 12,167 . Total from the opening of the Museum, $21,515,072$. Eleotric Lighting.-At a recent special meeting of the City Commissioners of Sewers held at Guildhall for the dispatch of
business, Mr. G. M. Felton, the chairman, presiding, Mr. Moore proposed the rescinding of two resolutions which had been passed
at a previous meeting, viz. :- "That while the Commission is in favour of electric lighting in the abstract, it is advisable to allow all further experiments to be conducted at the risk of the lighting secondly, "That the Remembrancer be instructed to appear on the application of the electric lighting companies, and secure clauses
protecting public and private rights." This was carried by a small protecting public and private rights." This was carried by a small majority, and there then arose a discussion as previous motion. The chairman, being at issue with the officers of neeting vacated and the majority of the Court, had at the last Lord Mayor and the Recorder, he returned to his position and declared the motion carried. On the motion of Mr. Stoneham it a select committee be appointed to inquire into the necessary steps to be taken to enable the Commission to become the undertakers City of London under the provisions of the Electric Lighting Act, 1882, to report forthwith to the Commission, and that in the
meantime the Remembrancer be instructed to oppose all other neantime the Remembrancer be instructed to oppose all other
applications." The question of electric lighting was considered at applications. The question of electric lighting, Chas considered at members present being Sir Charles Dilke, M.P., Sir Henry Gordon, consideration the notices received from several electric light companies of their intention to apply for provisional orders for the
district, together with an elaborate report upon the whole question by Mr. G. H. Stayton, C.E., their surveyor. Mr. Stayton estimates the cost of a complete installation for Chelsea at $£ 375,000$, eport concluded with the following recommendations, which were unanimously adopted :- "That it is not desirable to apply for a
icence or to consent to an application for a licence until the draft has been approved by the Vestry; that it is desirable to support the application of any company likely to carry out the undertaking
properly ; and that the solicitors be instructed to watch the progress of the applications and to oppose them unless satisfactory

9

the gradient of the line at present being 1 in 436 . The
head way will be the same as at the first diversion, which is
culing height throughout, all other crossings being higher than the ruling height throughout, all other crossings being higher than
6 Het. Here a length of two miles one furlong will be con-
structed. At the third deviation, near Warrington, the War-
rington, Altrincham, and Stockport line will have to be
depressed, and passed under the canal, with approaching
gradients of 1 in 60 . The tumnel under the canal, which will
be level, will be 165 yards long, and it is probable that some
provision will have to be made for the removal of whatever sub-
soil water may gravitate to the lowest part of the tunnel.
The fourth diversion-that of the Cheshire LinesRailw, which
runs from Liverpool to join the Midland at Marple - will carry
the railway over the canal with a clear headway of 84ft., and a
and
maximum gradient of will have to be construct to accomplish this diversion.
The fifth and last railway diversion will be that of the Cheshire Lines Railway from Manchester to Liverpool, the highest gradient
of which will be 1 in 114 . The entire length of railway that will have to be reconstructed will be nine miles seven furlongs.
The most important item of structural detail will be the
 canal at Barton. The existing aqueduct, whes Brindley, and considered in his day to be a triumph
by James
of engineering, is a stone structure of the most ordinary kind.
 proposes to meet the means of which the canal boats will be able to pass ove
duct, by mean
the ship canal so long as no ships are passing. This arrangemen
would render the construction of a pier in the middle of th
 further, it is not unlikely that difticulties would be found
arise in keeping the ends of the caisson, and of the canal where
it would connect with the caisson, perfectly water-tight. In
preparing plans for submission to Parliament, it is obviously

could without difficulty be devised, and all interruption to traffic in both canals avoided. A cardinal point to be
kept in view if the undertaking is to become a commercial kept in view if the undertaking is the avoidance of anything and everything that will in the least degree hinder or delay the free passage of vessels from Manchester to Liverpool, and the most perfect appliances will therefore be necessary for insuring rapidity in passing vessels through the locks, and avoiding the interference of cross traffic. The locks themselves, though they have been made the subject of objection by the few cavilers who have been found to scoff at the undertaking, will have but little effect in detaining ships, for, as Mr. Leader Williams remarks in his report, "the rise by lockage above ordinary spring tides at Irlam will be 35 ft . by wo locks. There are few docks which are not entered by a lock, and as a vessel going up on high tides to Manchester will pass the Latchford Lock when the gates are open, it will only have to pass one lock more than usual at
seaports." seaports."
The question of the supply of water for lockage is one of no small importance. There is, perhaps, hardly a stream in England the discharge of which is less uniform than that of the Irwell. The country at the head of the valley is very steep, and the rainfall escapes rapidy, a moderately heavy fall, lasting for seven or eight hours, sufficing to fill the river channel up to the margin. These freshets, however, very soon pass away, and the discharge becomes in dry weather small as compared with the area of the watershed. n shore discharge of the Irwell at the head of the canal will be found insufficient to provide the comparatively large quantity of water that will be n
vessels of heavy tonnage.
The engineer has not lost sight of this difficulty, and is prepared to make provisions for meeting it. He proposes exst construct the upper the drauth of the vessels as extra depth over and above the draught or the vessels as will enable him to impound water for the supply of the Cartor and from the river Mersey for the supply of the Irlam pound. Thirdly, to construt sloces and calverts from one lock the locks adjoining, so as to use a portion of the water used for lockage twice over; and, fourthly, the steam power employed for opening and closing the gates can,
when not employed for that purpose, be made available for raising water from one reach to another. Should these expedients after all be found insufficient to meet the from the Mersey, near Stretford, to the head of the canal. from the Mersey, near Stretford, to the head of the canal. We purpose comp

MESSRS. R. \& W. HAWTHORN'S EXHIBITS AT THE NORTH-EAST COAST EXHIBITION.
Anongas the most prominent exhibitors at the North-East Coast Exhibition, Messrs. R. \& W. Hawthorn may bs ranked, and no firm went to more trouble and expense to make the entire nent of their exhibits was a pair of engines which have been built for H.M. gunboat Dolphin. They are of the horizontal direct-acting type, with cylinders 32 in . and 58 in , diameter respectively, with a stroke of 24 in . The cylinders have liners made of Whitworth's fluid compressed steel ; the pistons are of cast steel ; and the piston and connecting rods as well as the crank shaft are made of forged steel. There is no bed-plate, for as the intention was to design a very light pair of engines, the different parts are to be bolted to the ship's floors. Steam is supplied to the cylinders by piston valves, which in turn are worked by Marshall's valve gear. The condenser is con-
structed entirely of brass, and contains a cooling surface of structed entirely of brass, and contains a cooling surface of
1500 square feet. The circulating water is forced through the tubes by one of Gwynne's centrifugal pumps, which is driven by an independent engine. The air pump and the bilge pumps are all of brass, and are worked direct from the crossheads, having the same stroke as the steam pistons. The engines are intended to indicate about 750 -horse power, the revolutions being 120, with this exhibit were also shown a double-cylinder, doubleacting donkey engine, with cylinders $4 \frac{1}{2} \mathrm{in}$. diameter, stroke 5 in., and diameters of pumps 3 in, and the auxiliary bilge and fireengine for
cylinder.
The engines of the Royal Danish gunboat Crousund are a pair of inclined direct-acting twin screw engines, of the same design as those built by this firm for the Chinese gunboats Epsilon, 132 in . and 24 in . respectively, and have a stroke cylinders are pistons are of cast steel, and all the forgings throughout the pistons are of cast steel, and all the forgings throughout the
engines are of steel ; the air, circulating, and feed pumps are all worked direct from the crossheads. When making 250 revolutions, and with a working pressure of 100 lb ., these engines are designed to indicate some 400 -horse power.

The shafting for a twin screw vessel of 7000 indicated horsepower which was exhibited consisted of one-half that which is required for the engines-that is to say, the shafting required
for one pair of engines - and consists of a thrust, intermediate and tail end shafts. The thrust and intermediate shafts are together 38 ft .6 in . long, and are 12 in . in diameter, while the tail end shaft is some $48 \mathrm{ft} .6 \mathrm{in}. \mathrm{long} ,\mathrm{and} \mathrm{with} \mathrm{a} \mathrm{diameter} \mathrm{of} 12 \frac{1}{2} \mathrm{in}$.; they have been forged of Krupp's steel, and each shaft has a hole $4 \frac{1}{2}$ in. in diameter through the centre of it from end to
end. The tail end shaft is coupled to the intermediate shaft means of a cone fitted with a socket with feathers to prevent means of a cone fitted with a socket with feathers to prevent the erd of the socket on the intermediate shaft, to prevent fore and aft motion. This is necessitated through the shaft, on account of its great length, having to be got into place from the after end of the shaft tube.
Photographs were exhibited of some of the marine engines turned out by the firm, including those of the Talabot and the motives built by the firm : (1) Great Eastern express locomotives. These engines were designed by Mr. Adams, the present locomotive superintendent of the London and SouthWestern Railway, whose object was to get one which should
combine speed with power. The cylinders are 18 in. diameter, and have a stroke of 26 in . The engine is carried on a bogie and four wheels coupled, 6 ft . 1 in . in diameter. (2) Is a locomotive of American "Mogul" type, and was designed by Mr. Clemin son, C.E., for the Newfoundland Railway. This engine is illus

BAGSHAW'S FRICTION HOIST AND BRAKE.

trated by our supplement. The wheelsare smaller and the speed is less than that of the usual type of English engines, but the boiler and fire-box are very large. The wheels are of cast iron, frames, while the elasticity of the whole engine is still further increased by carrying it on Cleminson's wheel base, which
permits all of the wheels to bear upon the road however uneven. permits all of the wheels to bear upon the road however uneven
The boiler is of steel ; the engine has a wooden cab for the comThe boiler is of steel ; the engine has a wooden cab for the com-spark-arresting chimney, the cow-catcher, the large head lamp, spark-arresting chimney, the cow-catcher, the large head lamp,
and the bell, give it a characteristic and thoroughly American appearance ; the engine has six 40 in . coupled wheels, and a two wheeled truck in front.
The firm also showed (3) photographs of alocomotive crane. The crane consists of a steam cylinder sunk in the top of the fire box and worked by a simple motion from the foot-plate. The end of the piston-rod controls the short end of a lever which forms the jib. When the engine is drawing a train or shunting, the jib lies at rest behind the chimney, and in no way affects the working of the engine, so that it is then no more nor less than an ordinary locomotive; but when the trucks are at their desti-
nation the locomotive can go from one to another, unload them, nation the locomotive can go from one to another, unload them,
and stack or reload the goods as desired, thus acting as a crane. The fourth photograph showed a tank locomotive of the ordinary type in use in England for contractors, collieries, \&c., and the fifth is an American engine for the same purpose.

BAGSHAW'S FRICTION HOIST AND BRAKE. The accompanying engravings show an arrangement of friction gear designed by Messrs. J. Bagshaw and Sons, Batley, for the severe duty of hoisting, and catching twenty times per minute a It is a combination of the well-known Addyman and the
It It is a combination of the well-known Addyman and the
Weston clutches, and is applied to a patent machine made by Messrs. Varrell, Elwell, and Middleton, Paris, for chopping Messrs. Varrell, Elwell, and Middleton, Paris, for chopping
planks 2 ft . 8 in . wide, 10 ft . long, and lin. thick. The pulley is 6 ft . diameter, 2 ft . broad, attached to Addyman's clutch, which by the simple insertion or withdrawal of the wedge acts as a
fast or loose pulley, and thereby starts or stops the shaft with-

out moving the belt-a necessity when the belts are of great width. It may be connected or disconnected instantly whilst in has no end thrust. By lubricating the surfaces also, wear and tear are reduced to a minimum, and smoothness in starting is insured. Its action will readily be understood. The wedge A when inserted opens out the levers B B and expands the friction ring C-at right angles to the direction of thrust-which consequently grips the boss of pulley D over the whole inner surface On withdrawing the wedge, the Weston brake, consisting of a series of wrought iron discs, is brought into play by means of a rock shaft connected by levers to a toggle joint.
The peculiar advantage of the Weston brat
Trictional peculiar advantage of the Weston brake is that the frictional effect of any pressure applied is repeated as many the remarkable result is obtained of an in consequence of which total amount of friction with the same pressure. These clutches or brakes are now made up to 1000 -horse power.

PNEUMATIC PULVERISER.
The following is taken from the American Engineering and Mining Journal :-"After quite a long period of experimental work, a pulveriser which possesses striking features has been reduced to a practical form. Our accompanying illustration will serve to explain the principles of its construction, which are certainly simple; and
from our examination of it when working at the establishment of the Pneumatic Pulveriser Company, in this city, we believe that it has unusual merit. Briefly, the action of the pulveriser depends upon the attrition of the particles
of material to be reduced to of material to be reduced to
powder produced by two currents powder produced by two currents
of it being hurled against one of it being hurled against one
another. The particles are thus another. The particles are thus
made to act upon one another, and so the great cause of trouble in so the great cause of trouble in
stamps and pulverisers of all kinds, with but one exception, the exposure of important parts of the machinery to constant wear, is done away with. It is a principle
which we believe is more and more ecognised as an important one, that it is best to allow rock to grind rock, instead of causing attrition by the grinding action of rock upon some hard metal surface. In the pneumatic pulveriser the action is as follows :-The rock or ore, presumably reduced
to $\frac{1}{4} \mathrm{in}$. size by a crusher and a pair of rolls, is fed into the hopper A, from which it is distributed A, from which it is distributed B B, one being on each side
of the machine. Simultaneously high-pressure superheated steam flows from the main pipe G through two branches into the nozzles H H, and partially enters the tubes $\mathrm{C} C$. The steam flowing from these nozzles creates a suction- 10 in. to $12 \frac{1}{2}$ in. have been observed-which draws the rock into the tube, and steam and rock issue

in a steady current from the mouths of the tubes C C, which are placed $3 \frac{1}{2} \mathrm{in}$. apart and are very carefully placed in a line. The two currents, meeting with great force, cause the rock to be
pulverised and the powder to be carried off by the pulverised and the powder to be carried off by the hot current of steam through the pipe E, while the coarser stuff is taken through F to an elevator to be screened. Plugs K permit of
easy access to the nozzles, and a door in the casing of the
machine makes it possible to get readily at the tubes C C. The
steam is generated in a Schutte and Goeerring sectional boiler,
in which it is also superheated to about 800 deg. Fah. The in which it is also superheated to about 800 deg . Fah. The pressure varies, or course, according the character of the rock.
When pulverising marble at the time of our visit it was 150 b .
at the machines. We are informed that for quartz it ranges at the machines. We are informed that for quartz it ranges
between 1601 lb and 180 lb . per square inch. The only parts
liable to wear are the tubes C C , the action of the machine tendliable to wear are the tubes $\mathrm{C} C$, the action of the machine tend-
ing to enlarge the orifice gradually. When in a true line -and
this is carefully provided for-the flanges of these tubes are litsle affected, and they serve really only to protect against
stray particles. We have examined worn tubes and the stray particles. We have examined worn tubes and the
interior of the machine, and have found few evidences of wear. interior of the macuine, and have of ordinary cast iron, weighing
These tubes are rough castings
about
ilb. each. We are informed that for quartz they wear out at
at the rate of one pair per five to seven tons of rock crushed,
and for marble per twenty to thirty tons. When the machine is started it is first heated up by passing steam through it, allowing it to escape through the exhaust pipe J specially pro-
vided for that purpose. Two machines are used to do the work of pulverising, the first working on $\frac{1}{4}$ in. material and reducing
down to 60 in . mesh, through which from one-third to one-half is bolted. The larger material from the first machine goes
to a second one, to which any coarse material is also returned. to a second one, to which any coarse material is also returned.
A very important advantage of this pulveriser is that it works dry and without creating dust, except in the elevating ing on marble, and have found them dry and the material
hot. It appears, too, that the action of the superhot. It appears, too, that the action of the supersome beneficial effect on sulphuret ores. As to the capacity of
two machines, working with
ind. material, we are informed thai they can pulverise from $1 \frac{1}{2}$ to 2 tons of marbele and about $\frac{3}{3}$ ton
of quartz per hour, the consumption of fuel being 125 lb . of an quartza per hour, the consumption of fuel per hour. The machines themselves are small and light, and readily got at. They weigh about 400 lb . each in
small pieces. The boiler weighs $10,000 \mathrm{lb}$., the heaviest parts small pieces. The boiler weighs $10,000 \mathrm{lb}$., the heaviest parts
being the mud and steam-drums, weighing 175 lb . With pulleys and pipe connections the entire plant is estimated to weigh $12,450 \mathrm{lb}$.
crushing of gold and silver ores. Where fuel is expensive dry water-power available, it is suggested that compressed air be substituted for steam, although of course provision would have
to be made in such a case for the condensation of the moisture in the compressed air, in order to avoid troublesome formation of ice and water at the nozzles.

THROUGH THE ALPS BY LOCOMOTIVE.

an engineer's trip over the s'r. gothard.
It might be thought that, as the mountain section of the Ticino Valley ends at Biasca, therefore our mountain experiences
would do the same. That will be true very shortly, even if it is not would do the same. That will be true very shortly, even if it is not
true already; but it was not true t the time of my visit. The main line of the St. Gothard is intended to follow, as would be expected, the main valley of the Ticino, and passing along the
left bank of the Lago Maggiore, by Pino, will unite at Arona
with the present network of Italian railways. But this latter portion was not completed by the time the rest of the line was open for traffic, and meanwhile advantage was taken of a branch
known as the Monte Cenere line, which, leaving the Ticino Valley near Bellinzona, passes over, or rather through, the mountains to Lugano, and was now to traverse, and I was well
It is this route which I was
content that it should be so, for it can hardly fail to be content that it should be so, for it can hardly fail to be
more interesting than the main line, beautiful though the Lago Maggiore undoubtedly is.
At Biasca I had the opportunity of seeing scattered about the
station yard almost all the types of locomotives described in station yard almost all the types of locomotives described in
the report of which all abstract was published in THE ENGINEER
of November 17th. of November 17th. The most noteworthy point about them,
at a mere cursory glance, was the small size of the wheels and
consequent consequent lowness of the engines $-a$ point which, on a a riilway
of heavy grades and moderate speeds, has doubtless its advantages. Our own engine was here changed, and not for the better as regards the driver; for the pew one, a short, military-looking
Italian, was the only surly specimen of his class I have met with Italian, was the only surly specimen of his class I have met with
on the Continent. His locomotive was an eight-coupled tender engine built by Maffei, of Munich, with 10 atmospheres pressure;
the regulator valve was leaking very badly, and there was the regulator valve was leaking very badiy,
altogether a want of smartness about the whole concern. A A similar engine, puffing out equal volumes of dense black smoke,
followed in our wake, and behind it came the train, now enlarged followed in our wake, and behind it came the train, now enlarged
to a goodly series of some twenty carriages. As far as Bellinzona, however, there does not seem much need for so much
tractive power. The lower valley of the Ticino-called locally the Riviera- is a wide, flat vale, between pleasing but somewhat monotonous hills, and somewhat resembles the well-known
valley of the Rhone about Sion. Nor is the resemblance lessened when we reach Bellinzona, which reaclls Sion in several
particulars. It is the capital of the Canton Tessin, as Sion is of particulars. It is the capital of the Canton Tessin, as Sion is of
the Canton Valais; the town lies in the middle of the valley, but, like Sion, is grouped round a picturesque and irregular
ridge of rock, which strikes up through the flat vale without any ridge of rock, which strikes up through the flat vale without any
connection with the mountain slopes on either hand; and this ridge, again like Sion, is crowned with no less than three ranges
of buildings-palaces at once and fortresses-which seem to dominate the whole of the lowlands around them. The difference is nate the whole of the lowlands around them. The difference is nativeprince-bishops of the Valais, at Bellinzona they weretenanted
until lately by foreign governors sent over the Alps from Uri and Unterwalden, who, if all tales be true, went near to rival the
Ueeds of oppression that, in much earlier days, had driven their deeds of oppression that, in much earlier days, had driven their
own cantons to seek and win their freedom. But I canown cantons to seek and win their freedom. But I can-
not dwell on this singular chapter of Swiss history. We have already left Bellinzona behind us, halted at the next station,
Giubiasco, and then, making a traverse to the left in a rapid S Giubiasco, and then, making a traverse to the left in a rapid S
curve, find ourselves beginning to rise along the slopes which
border the valley border the valley on its eastern side. The next twenty minutes offer, perhaps, the most charming piece of railway travelling with
which I am acquainted in any country. At a steep and steady gradient the line mounts higher and higher alopg the gready
Alpine slope ; now by pastures dotted with goats and cattle ; now Alpine slope; now by pastures dotted with goats and cattle; now
through noble woods of oak and chestnut; now tunnelling through none spur; now winding round another; now clingingng to
the hillside on a narrow terrace, with steep fascined slopes stretching far above us ; now on a light and lofty girder bridge, spanning one of the many torrents that seam the mountain with deep
gullies, hardly noticed from below. These torrents come thickly, one bridge succeeding another with bewildering rapidity; and in almost every case the bridge itself is probably the less expensive
part of the work to be done. For at least fifty yards above and part of the work to be done. For at least fitty yarrs above and
below the actual crossing place the bed of the torrent is turned into a great artificial trough, whose sides stand up like
walls above the level of the adjacent woodland, while the inner mortar or cement, and most elaborately fitted and dovetailed into each other. Such are the works necessary to make safe an Alpine torrent, and to carry a railway trough even the lower
foot-hills of an Alpine range. Nor are the things to be sen
beside and beneath us the only objects of interest. Look backbeside and beneath us the only objects of interest. Look back-
wards, and the eye follows the ascending and winding grade of wards, and the eye follows the ascending and winding grade on
the railway till it rests on the castles of Bellinzona, standing each on its own crag, and dominating the town below. Look
forwards, and far below, intersecting the vast green carpet of the vale, spread flat beneath us, is the straight course of the main
St. Gothard line, leading the eye to a bay of blue waters, which St. Gothard line, leading the eye to a bay of blue waters, which
belong to the largest, and not the least lovely, of the famous belong of Italy.
But this exquisite journey draws to its close, for we are
approaching the great tunnel of the Monte Cenere. We have apready passed through four tunnels, the longest of which-the
areassino, 445 yards-is very remarkable from the height of the Recassino, 445 yards-is very remarkable from the height of the temperature within at.
ture, but my note at the time was that it could not have been short of 100 deg. Fah. Certainly the air was moist and oppres-
sive to a degree one seldom experiences outside a hothouse sive to a degree one seldom experiences outside a hothouse,
The new driver--for we had once more changed engines at Bellinzona, and a singularly bright and intelligent young Italian in a blouse was now beside me-told me that this tunnel was always the
worst and hottest on the line, and that this was ascribed to the dampness of the rocks, as at once exhaling moisture themselves into dampiress on the rocks, as at once exnaling moisture themselves into as they would otherwise have done. This would seem to give hint to those who have the making of long tunnels in the future, k., that by every possible means-such as keeping the wallin close up to the excavation, drying the compressed air, dc.--the should keep a dry hat which is their worst foe
the oppressive heat wer
In the Monte Cenere tumnel itself- 1720
ometer readings, taken at about equal intervals during 2 ther of $3 \frac{1}{2} \mathrm{~mm}$., were as follow :- 69 deg., 77 deg., 76 deg., 78 deg.,
80 deg., 79 deg., 69 deg. It 80 deg., 79 deg., 69 deg. It is remarkable that the rise of 11 deg. is about equal to, even slightly greater than, that in the nine
miles of the great tunnel itself, whilst the gradual increase in the first half, and sudden drop at the exit, are no douht to be explained in the same way, namely, that the foul air was after entering the tumnel the line makes a sharp curve to the left, so as to change its direction into one nearly at right angles to the Ticino, and from thenceforward the end of the tunnel is clearly in view. As we approach it the effect is very peculiar, for a
downward gradient of 1 in 40 begins exactly under the portal arch, and from a little distance within one might suppose that the tunnel opened on the brink of a precipice. As we come
to the portal, the downward road becomes visible, and in a moment more we are bowling down the trough of the lovely V al Agno, with chestnuts and acacias overhanging the line, and rich pastures stretching up to meet graceful woodlands, amid all
the characteristics of sub-alpine scenery. We have here some seven miles of a 1 in 40 gradient without a single break. After stopping once, at Taverne, the ridge to our left lowers conpassing a long cutting, with a considerable tunnel in the middle we run out upon a new scene altogether. To our right the ground rises in a gentle slope to the crest of the ridges we have shore, brown with the tiled roofs of an Italian town, and is then lost in a great expanse of steel-grey waters ; beyond this rise
loftier and steeper ridges, rich at the base with vineyards and olives, and clothed almost to the summit with a dense growth forest; while right in front of us there shoots into the sky
great irregular cone of limestone, wooded over its sides an great irregular cone of limestone, wooded over its sides and
shoulders, but bare at the top, on which a white hotel is plainl visible. We heve come to one of the loveliest spots in Italy The town is Lugano; the lake is that which in common parlanc bears the same name, but is properly called Ceresio, and the
conical peak is the Monte Salvatore. The view before us can hardly be surpassed by that from any railway station in the It is not my business to describe Lugano-the richness of its gardens, the coolness of its wine caves, or the beauty of its abandon the railway for a time, and take to the steamers and diligences which convey the traveller over and among the Italian I have only one engineering point to record, namely that thos on the lake of Lugano carried an excellent device for lowering the funnel when necessary. The funnel is held up by a screwed capable of being turned by bevel gear and winch handles. The nclination of the rod. By this arrangement to the varying can raise or lower the funnel in a very short time with perfect steadiness and certainty, and without any of the hurry, pushing, ever a steamer nears a bridge at high water. The rail way, after leaving Lugano, winds round the base of the
MonteSalvatore, and then takes advantage of a causeway, originall constructed for the post road, to cross to the eastern bank of the
lake. Then, winding along the bay of Maroggia, beneath the well-known Monte Generoso, it follows the line of the post roa Chiausso, and thence to Como, a considerabe Italian frontier at upper end of the far-famed lake to which it gives its name. It was here that I rejoined the line. It was late on a lovely we hurried up to the station and boarded a long train in waiting, it was some time before I discovered that this was not the local train had expected to catch, but the day express from Lucerne period of its course. The driver was naturally anxious to get
to his journey's end, and on getting the signal he took us briskly times exceeded forty miles an morry pace, which certainly examine the engine, but it had certainly one defect in the shap of insufficient leverage to the rertaulaty one defect in the shand and vigorous driver to put on or shut off steam. The line was first a cutting with a steep ascent of 1.8 in 100 ; then it descended sharply into a forest of acacias, through which we ran for some mountains we had left, they were already far behind, and but
dimly visible. Now, however, we come out into brilliant monight, flooding the great level plain of Lombardy, through which we are sweeping. No curves now, no gradients, no stoppages,
save once when three red lights appeared ahead of us far down the straight road, and the driver whistled, shut off steam, and drew up cautiously to a little country station. Here I found
that of the three red lights, which had puzzled me, one only was that of the three red lights, which had puzzled me, one only was
a signal, and the other two belonged to a goods train, which was
waiting our arrival on a siding. There seems considerable pro-
bability of confusion from this arrangement the train all but halted at the platform; somebody-I believe an officer of justice on his return to Milan-sprang on board, and away we went again, hard as ever. Soon we are running in a
cutting between vertical walls, with houses and gardens looking down on us from either side. Then we pass rapidly, on the level, through what are clearly the suburbs of a great city, and
forthwith there gleams in front of us the facade of a huge station, lighted by the intense glow of three large electric lamps, like globes of white fire; while, directly above these, hung like a full orb of the harvest moon. So striking a seene made a fitting end to a pleasant journey, for the St. Gothard express has

THE IRON, COAL, AND GENERAL TRADES
OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
somewhat this week by the severity of the weather. There is no Bars are in bers since last week.
Bars are in better demand this week than last. There is, there-
fore, less difficulty this week in getting $£ 8$ and $£ 812 \mathrm{~s}$. 6 d fo special marked bars. At the same time the firms who are accept ing $£ 710 \mathrm{~s}$. can see the farthest ahead. Good bars were to be had
on 'Change this afternoon at $£ 712 \mathrm{~s}$. 6 d . to $£ 710 \mathrm{~s}$. Common bars on Change this afternoon at $£ \ddagger 12 \mathrm{~s}$,
were $£ 610 \mathrm{~s}$. to $£ 67 \mathrm{~s}$. 6 d . and $£ 65 \mathrm{~s}$.
Hoops were without change, at $£ 7$ per ton. The price . $£ 615 \mathrm{~s}$, but supplies might have been obtained at $£ 610 \mathrm{l}$ s.
Sheet firms report a great number of inquiries in consequence of the rapid growth in the number of galvanising and corrugating
firms. Galvanisers' "doubles" are £9 per ton and upwards, and "trebles" £10 per ton upwards.
The galvanisers themselves reported a steady output, but not as to the condition of the ment. The more satisfactory new welcomed. Prices were nominal on the basis of £14 10s. to $£ 15$ for 22 to 24 w.g., in bundles, delivered at outports. Spelter was
firmer, consequent upon supplies being less abundant now that the firmer, consequent upon supples being
northern ports are blocked by the ice.
Boiler plates were again £9 to $£ 9$ 10s., according to brand
In the pig iron market Derbyshire and Northampton sorts brought
from 47 s .6 d to 50 s . Hematites were stagnant at 65 s . to 67 s .6 d .,
and quotations were scarcely more than nominal. and quotations were scarcely more than nominal.
Native pig makers reported that sales of all-mine sorts were tomers ; 65s. to 67 s . 6 d . was the average price for pigs of thi quality. Second-class na
common sorts 42 s . 6 d . to 40
Coal was rather scarce for immediate deliveries, and prices rather stronger
The colliers continue to agitate for a further advance in wages
Having been unsuccessful in their application for a rise Having been unsuccessful in their application for a rise on the 1s
inst. they have now instructed their secretary to write to the Chairman of the Coal Trade, requesting him to advance wages a
further 4d. and 2d. per day or "stint" in the thick and thin coal seams respectively on January 1 st .
The ironmasters are again agitating for a reform in what they term "the absurdity" in the provisions of the Weights and
Measures Act, which prevents the legal employment of 1 cwt weights. This is an old ground of dispute between our ironmasters and the Board of Trade, and it has now been decided to bring the
matter before the Associated Chambers of Commerce at their next meeting.
Another attempt is being made to drain the valuable coal seams which for twelve years have been lying in the Bromley Pound in
the Kingswinford district. The pumping engine which the Kingswinford district. The pumping engine which has been
fixed is one with Davy's differential gear. The shafts have been
widened and substantially widened and substantially lined with brickwork, and the platform pumps are now being put in. All the plant is of a high-class
description, and it is said that the engine can be well relied on to drain the pound
Blasting experiments have recently been conducted at the Mining Institute for that district, with the patent water cartridge of Mr. James Macnab, of London; and on Monday a report was This showed that in none of the trials had the cartridge been successful in preventing sparks and flame when powder was used the ordinary method. The first experiment may be specified as a The charge was $10 \frac{1}{2}$ oz, of ordin a hole 4 ft . deep and 2 in . diameter. -the water cartridge being 18 in . long and fired in the ordinary way. A little clay was placed between the powder and the wate cartridge, also a The result was about the same as in the ordinary
sand tamping. Ther blasting-a great many small sparks were seen.
The Wolverhampton Chamber of Commerce
a fresh concession from the army authorities in the matter of hardware supplies for the service. Mr. Nepean, Director of Army
Contracts, has arranged with the Chamber that in future hard wares to the bulk of 5 tons and upwards shall be delivered from the South Staffordshire district by canal to Woolwich at the same rates as are now charged for Staffordshire to London. These and other alterations involve a reduction of about 8 s. Sd. per ton on
the freightage cost of hardwares sent from South Staffordshire to Woolwich.

NOTES FROM LANCASHIRE.

Manchester.-Makers have at length had to give way to the con tinued downward pressure of the market, and during the past
week there has been a fall in the price of pig iron, which, however, does not seem to have gone far enough to meet the views of buyers, and has had little or no effect in bringing forward busi-
ness. Lincolnshire smelters have been the first to make the downward movement, and they have come down about 1s. 6 d . per ton. Well regard to Derbyshire brands it is difficult to say what the selling price actually is, as there has been so little doing in these some cases to the level of Lincolnshire iron. Lancashire maker have not yet followed the downward movement by any announced
reduction of list rates, but this is a step which is only deferred until they are able to ascertain what is really being done in other brands. Forge proprietors are still nominally holding for late rates, but the lowering in the price of raw material must have
some corresponding effect on finished iron.
The announcement of the reduction in Lincolnshire prices was The announcement of the reduction in Lincolnshire prices was
made at the Friday's market, but did not lead to any business being done, and on Tuesday there was again an absence of demand. Foz Lincolnshire iron delivered equal to Manchester makers were quoting 47 s . 4 d . to 48 s . 4 d . per ton less $2 \frac{1}{2}$, bringing their prices down
to about old rates, but they could not do business at these figures, Buyers still hold back in the belief thatfurther reductions will have to be conceded, and there was not much disposition even to make
offers. Where offers were forthcoming they were at less money offers. Where offers were forthoming they were at less money
than makers were asking, and the probabilities are that weak sellers wan makers were asking, and the probabilities are that weak sellers
will come down to buyers' terms rather than miss orders. For
Derbyshire brands quotations vary considerably, but where makers will come down to buyers' terms rather than miss orders. For
Derbyshire brands quotations vary considerably, but where makers
are in the market to sell they are asking about the same price as

 to take.
In the conitition of the fintised iron trade there is no material

Although loaal engineering firms here and there are reported to
 this diatritit bing now in storbtrime the monthly retuns sent in

 there are really noneos out of employment. The num bor or members

An exopptionaly masive foring has just been oompleted at the
 laving an interonal liomemeter of of Sin
The annual meting of the members of the Manenhester Asooiar

It ounld saracely be eeppoteded that Botton stoold take the same Thanhester; but situate asitis on the direct route of the railway tranait to jiverepol, the oot of whion the oonstrution of the Canal would tend to radede, the sinit of opposition to the sheme
 the invitation of the Masyor of Nainheseter tos send representativives

Another Tanasabiris scheme for the improvement of river navi

 louth end of the victoria cuap, and about halta:-mile above the Chain Cana a a entanao fookt sooft.in in length, is propesed. By

 pply for the neeessary pariamentary powers

One remarkable efied of the s.owstom liat woek was that the noir was dhyen with sulu toroe thorong tho anerures in the look moatinery. At the Contral station and st. Peteris © ohureh the looks were also fafeeted in simiar maner, and an
The reent severa weather has naturally hatithe offeot thimulang the demand tor hieb beterer ciasese of round ooal for
 reather has, hoveroce, gvon a cocect to any howwwart movement
 Ros. for
 being thrown upon the home market. There are also very hant thons ying on the railway sidess at Averpool Coal tor ship
 The reports winich havo

 Nase would batempteat beiret the ensuing spring.

 Oor some tew months atane stonks remain small, at

 thano at steel Works are turning out a larger amount of meta

THE SHEFFIELD DISTRICT.

Conrespondent)

The severe weather which prevailed during last week, and still
ontinues, has considerably interfered with business ay dis continues, has considerably interfered with business, by dis
organising the railways. There is no likelihood now of any effort to reduce colliers' wages receiving general support in South York-
shire this season. In the first place, the severe weather has again given a fillip to the house coal trade, and prices are again firmer.
Apart from that a large proportion of the Yorkshire coalowners are disinclined to re-open the wages' question at present. They are meeting with very fair success in obtaining better prices. The
largest coalowners in South Yorkshire are Messrs, John Brown and Co., the Aldwarke Main and Car House Collieries. Their outpu this year will exceed that of the Thornclife Company-Messrs
Newton, Chambers, and Co. Messrs. Brown and Co., I am informed, are among the coalowners who are opposed to any im mediat disturbance of the present arrangement. Though agree conceded until coolowners could afford it, they are disposed "to only six weeks' trial, to declare the existing arrangement a failure The home coal trade, it is important to remember, is only one-fift Following oal raised in the country,
and the coroner's jury, the Claycross the use of naked lights and served out Belgian safety lamps to it
miners. The men employed in the Partho miners. The men employed in the Parkhouse pit, where the
explosion ocurred, accepted them without demur, but in No. 2 pit
over 200 coal- etters struck work and threw the pit idle over 200 coal-getters struck work and threw the pit idle on the 8 pt On the 11th inst., finding the masters determined, the men
thought better of it, and accepted the lamps. I remember, afte
the Swaithe Main explosion the Swaithe Main explosion, when 165 lives were lost, the miners,
though working in the fiery Barnsley seam, were very reluctant to though working in the fiery Barnsley seam, were very reluctant to
abandon the use of powder in blasting coal in favour of the wedge system. Blasting is the speedy process, and the men
generally content to risk a good deal for better wage results.
The skating season has set in, and the skate merchants are busy One firm has sent out in two days this weeks 22,000 pairs, and alto
gether fully 50,000 pairs have been sent out to country merchants by the special dealers. The old clog skate still maintains its popu by the special dealers. The old clog skate still maintains its popu
larity the only other novelty which has made itt way in this dis
tris make, chiefly German; anything over 1s. a pair is preferred o English manufacture.

THE NORTH OF ENGLAND.
OnLy a small amount of business was transacted at the Cleve land iron market held at Middlesbrough on Tuesday last. Prices were about the same as last week. The tone of the market was no
firmer, and buyers still show little disposition to purchase. It i not likely that much buying or selling will be done until after Christmas. Merchants were quoting 42s. 9d. to 43s. per ton for
No. 3 g.m.b. for prompt f.o.b. delivery, and would not take less than the former figure. Some makers quoted 43s. 6d. to 44s. for No. 3
but the anything under 44s. There is no demand for warrants. The severe weather of the last few days has interfered with regular
working at the shipyards and bridge-building works. The whole of the hands employed by the Consett Iron Company at its mill The stock of Cleveland off through the storm. Middlesbrough has been reduced 77 tons during the week, the amount in stock on Moonday night being 100,734
Owing to the storm weather the quantity of
Owing to the stormy weather the quantity of iron exported this month from the Tees is so far exceedingly small. Up to Monday
night only 21,795 tons of pig iron and 5997 tons of manufactured In th been slipped
the finished iron trade there is a scarcity of specifications, due re a little more disposed to buy and bridge yards. Consumers have given out a few orders, but these will not be sufficient to kee the mills fully going very long. It is expected that nearly all the
plate and bar mills will be laid off for at least a week at Christmas. Prices quoted for finished iron are the same as last week, viz: :Ship plates, $£ 610 \mathrm{~s}$. to $£ 6$ 15s. per ton; angles for shipbuilding
$£ 517 \mathrm{~s}$. 6 d .; and common bars, $£ 6$ to $£ 62 \mathrm{~s}$. 6 d ., free on trucks a works, less $2 \frac{1}{2}$ per cent. discount. Puddled bars are $£ 4$ net. facture of steel plates by the Siemens process on a somewhat
It is expected that the blast furnaces at Seaton Carew, near Hartlepool, belonging to the Seaton Carew Iron Company, will be
put to work in March next. These furnaces were formerly the put to work in March next. These furnaces were formerly the property of the Hartlepool Iron Company, and have been standing
idle for a considerable length of time. New hot blast stoves on the Massicks and Crooke's principle are being erected. Thre works at Jarrow, and are said to be working well.
The second meeting of the session of the Cleveland Institution of Engineers was held on Monday evening last. There was a good
attendance of members. Mr. F. F. Jones, the new president occupied the chair. He informed the meeting that a large majority of the members had agreed to assist in freeing the present year. Mr. John Gjers read a paper on orche The Suceessful the Soaking-pit Process.". Mr. (Fjers said it was easy and practical
thy initial heat. The universal practice at steel works wad been to emps" at the Darlington Steel and Iron Co.'s works, and soo ingots every twelve hours were now treated in these pits. The ingots,
after removal of the moulds, are placed in the pits and remain after removal of the moulds, are placed in the pits and remain
there for about twenty minutes. By that time they have a uniform temperature throughout, and are sufficiently hot to be
easily rolled in the blooming mill, and fanishing mill, The eoonomicall advantagwer are ore obvious, After
fin. Gjers' paper had been discussed, Mr. Charles Wood read his
""N Notes upon Carbon and other Deposits from Blast Furnace
Gases." This paper was of great interest, and led to a most
animated discoussion.
Messrs. Rixon and Co., of Middlesbrough, the builders of H.M.S. Tourmaline, have orders from the Government for two small war vessels of 1000 tons displacement each. The first of
these, called the Dolphin, was launched on Saturday last, and it it the water in about six weeks. These vessels are built on the com-
posits posite principle, the shell consisting of the stel, and the frames o iron, The stems and leels are of EEnglisho ook, and the bottoms
are covered with shets of copper below the water-line. They are
to be fitted with heen to be fitted with horizontal engines of 750 indicated horse-power,
made by R. and W. Hawthorn, of Newcastle. Each vessel will be armed with two six-inch and two five-inch breech-loading guns, a
seven pounder boat gun, and two Gardner guns. Messrs. R.
Dixon and Co. are very busy. and on order nineteen large steamers, some over 4000 tons burden Messrs. Bell Bres, of Port Clarence, are making rapid progress
with their salt industry, and have just purchased a salt royalty extending over 2000 acres. In addition to their present works they intend to erect chemical works close by. The new salt works, which and turn out, with nine evaporating pans, 350 to 400 tons of salt
per week. This is all sent to chemical works on the Tyne. Provi ion was been made for increasing the number of pans to twent
which would give a weekly output of about 1000 tons. Messrs
Bell Bros. hope to utilise the waste heat from the blast furnaces in
prod proucing

NOTES FROM SCOTLAND
THE tone of the iron market this week has been less satisfactory, this being the result mainly of the drawback occasioned to business
by the stormy weather. The shipping trade in pig iron has suffered resent the demand from abroad is quiet. There is a marked falling off in the business done with the Continent, a circumstance, however, which need excite no surprise, as it is quite usual at the
present season. The past week's shipments show a decrease of about 2500 tons in the quantities of pir iron despatchece to the
United States, and it is perhaps a little unfortunate that the exports in that direction should decline at a time when freights have been reduced to a figure which would afford more encourage
ment to shippers. There has been much less iron taken out of tore this week, owing to the interruption of the shipping trade,
but very considerable purchases of pigs have been made by home onsumers for forward delivery in case of a rise in price. The
ondition of business in the warrant market has heen inanimate, Business was done in the warrant market on Friday forenoon at
49, 2d. to 49s, cash, and 49s. 4dd. to 49 s . 1 l d. one month, the
 8s. 1013d. one month. On Monday business was done in the fore
noon at 48 s . $10 \mathrm{l} \frac{\mathrm{d}}{\mathrm{d}}$. to 48 s . 9 d . cash, and 49 s . one month, and in the fuesday's ma
 48 s .9 d and 48 s . $11 \frac{1}{1}$ d. cash, and 49s. 1d. one month. To-day-ThursThe prices of makers 'iron are a shade easier this week, although
and here is little change in the actual quotations, which are as
 Summerlee, 63s. 6d. and $53 \mathrm{~s} .6 \mathrm{~d} . ;$ Calder, 62 s . 6d. and 52 s .6 d .
Carnbroe, 56 s . 6d. and 51 s ; Clyde, 54 s , and 51 s .; Monkland 1s. and 48s. 6 d .; Quarter, and Govan, each 50s. and 48s. 6d.
 The malleable iron trade is quiet, but there is plenty of work in naking considerable purchases of the raw material, Th two been the shipbuildidig and marine engineering trades are great, and as
many of the shipbuilders have work in hand which will carry them hrough the greater part of next year, makers of angles, plates, \&c. are certain of a continuance of employment. The general engl-
neering trades are still busy, makers of locomotives, sugar-crushing nachinery, stationary engines and boilers, are all for the most tracts in course of execution by cast iron pipe makers, although
they are quite in a position to receive additions to their present rders. The hardware trades are also in a fairly active state although complaining much of excessive competition. The pas
week's shipments of iron manufactures from Glaskow comprised machinery to the value of $£ 16,600 ;$ sewing machines, $£ 5900$
other iron manufactures, $£ 25,700$ and steel goods valued at $£ 2000$ The coal trade is brisk as regaras the home inquiry, but the heavy nowstorm has greatly retarded the traffic on the different railways.
As to the question of wages in the mining trade readers may be As to the question of wages in the mining trade, readers may be 6d. a day some time ago, the advance was not conceded by the iron masters either to their colliers or ironstone miners. The ironmasters coliners are now in some cases pressing for an increase, a
hey fear that if it is not obtained it many months. These remarks apply to the West of Scotland. In
Fife, on the other hand, the coalmasters are represented as con templating the necessity of reducing wages at no distant date.
A considerable number of fresh shipbuilding contracts have been

WALES AND ADJOINING COUNTIES.
I DID not expect that the cool stagnation would last long, and every direction there has been the greatest animation. Inoticed this especially on the Taff Vale a few days ago. Continual trains
of coal with scarcely a break is now the rule. From the Ponty of coal with scarcely a break is now the rule. From the Ponty
pridd Junction, into which flows the Merthyr, Aberdare, and Rhondda coals, on several days it was only by excellent traffic management that serious blocks and mishaps were avoiced. Price coals continues. Small coal, too, is in demand. Renewed interest has already been given in the bituminous coal districts by the
Cardiff and Monmouthshire Valleys railway project. The Gwerna Colliery Company, for example, is belng launched well. The new railway, which will have the strong support of the Marquis of
Bute, Rhymney and Taff Vale Railway, will command an area of one hundred square miles of virgin coal, estimated to amount to There has been something like a collapse of South Wales tin-
plate works Nothing else can be expected when it is notoriou pate works. Nothing else can be expected when it is notoriou
that makers have been losing one shilling per box on every box o tin-plate sold. With all such it was only a question of time, and tells me that he hears about a dozen in all are doomed to go to the wall. Many have e held up bravely and so honourably, that to it it
be hoped they will resume business. Bidulph, Wood, and Jevons, of Briton Ferry; Forrester, of Swansea; and Morris, of Llan-
geunech and LIanelly, are the principal so far, but several smaller I fear many of the coal merchants and pig iron makers have The Daltar Lock and Safe Manufactory is to be started at Car
diff, and will employ several hundred oreratives. diff, and will employ several hundred operatives. I hear that the
Bute Dock management is open to encourage small or even large industries by giving sites on liberal terms. A new company, called the South Wales Storage Company tin-plate, \&c., and make advances on same. It is being well sup ported by influential capitalists.
It has been annoul
It has been announced that the Cwmavon copper and ironworks
have been purchased by Messrs. Leech and Coo, of Neath, but this t Pontardulais. Coliery managers and owners regard the ambulance theory with would be only to make matters worse than they are now. Mr.
Abraham has had several interviews with the principals on the and it is now generally understood that if a company of ledge the movement will be a success., prices firm, and inquiries much more satisfactory than last week.
Why do not our Welsh farmers go in for growing pitwood? The fact is some have tried, but as they gave the young trees no shelte
from the west the wood became stunted. A dwarf wall that would shelter until three or four years old is all that is required All local industries are looking up, and even in the face of the

the patent journal.

 Condensed from the Journal of the Commissioners of have caused much unnecessary trouble and a annoyance,
both to themselvese and to ot ofe Patent-aftice ofticialas, by giving the number of the page of ThE Exidiekr
oflich the Specification they require is referred to, insteal
 efer io the pages, in place of turning to those pagges an

Applications for Letters Patent. *When patents have been "communicated," the printed in italics.

5776. Driving Gear, de., for Sewing Machines,

 A86. Sankstron, Jonkoping, sweenen,
 Groth.-(C. A. Sahlström, Jönköping, Sweden.)
5788. Preparivg ExTACT
Groth.-(C. A. Sahlström, fönköpining, Sweden.).

 5793. Matrresses, S. K. Ibbetson, Southsea.
5794. Filulive Sacks, H. J. Haddan.-(L. and E. Lo place, Issoudun.)

Birmingham. 5796. ELECTRIO Windsor, U.S.)

 Windsor, U.S.)59797. PRMARY Voltac Batteries, T. Jones, London
59798. Rerrigerating Machinkry, W. H. Wood and G
Richmond New (ink Us. Richmond, New Yorke, U.S.
59799. Cake for Cattie Food,
59800. Cake
on-Trent.
5800 . Signalling on Railw. Liverpool.
5801 Treating and Dyeing Loose Wool, dc., T. Fox,
jun. Wellingto. jun., Wellington.
59801. Coupling Apparatus, E. Lumley, London.
59802. DRAW-OFF APPARATUS for REEEPTACLES

 5807. METALLC INLAD WORK, A. M. Clark.-(W.
Edge, Newark, U.S.) Wurers, A. H. Robinson, Dublin
59803. GAs and other BURNER, 6th December, 1882
59804. Treating Hydrochloric Acid, J. Hargreaves
and T. Robinson, Widnes. and Treating Spol Heaps of Collieries, L. H.
Armour, Gateshead-on-Tyne. Armour, Gateshead-on-Tyne.
59805. Cassing and MARRING of Casing for MEAL, T. and
T. G. Bowick, Bedford. 5812. FIITERS, H. Rawlings, London.
59806. Drying Corn, dc., J. E. Fox, Glo
59807. Gen
59808. Drying Corn, de., J. E. Fox, Gloucester.
59809. Gas-Lighting by Electrictry, J. A. Koerber,
London. London.
59810. FunNACES, O. D. Orvis, New York, U.S.
59811. Governors for STEAM and other Motive Power
ENGGINES, F. J. Burrell, Thetford. Engines, F. J. Burrell, Thetford.
59812. MLILING APparavs, . H. Carter, London.
59813. Combing Machives, F. Ambler, Bradford. 5819. Gas Motor Engines, G. Whittaker, Manchester.
59814. Mechanism for Playing Pianorortes, A. Capra, 5821. Consers, J. R. Ajax, London.
59815. Borties, \&c., J. T. Creasy, London.
59816. HoLDING and Fixing the GLobes, \& 5823. Holding and Fixing the Globes, \&c., of Lamps,
T. Carpenter, Birmingham.
59817. TRAMWAY CARs, E. C. Wickes and F. E. B. Beau-
mont, London. mont, London.
59818. Gas Motor Engines, F. J. Odling, Derby.
59819. HEATING ApARATUS, A. G. V. Harcourt, Oxford.
59820. CLEANING IRON, C. A. T. Rollason, Birmingham, and C. A. Rollason, Aston.
59821. Mues for SpINING, T. Knowles, Blackburn.
59822. MILD STEEL, W. Prosser, Newcastle-upon-Tyne 5823. MILD STEEL, W. Prosser, Newcastle-upon-Tyne.
59823. Brake for Carrages, E. Robinson, Cheshunt.
59824. CoNFETIONERY, W. R. Lake.-(Thiele and Holz hause, Magdeburg.)
S832. STEAM GENERATORs, W. R. Lake.-(J. C. Stead,
59825. INCAN, U.S. Brooklyn, U.SOENT E
J. Warneaves, London.

th December, 1882.

5834. Pipe Couplings, D. Drummond, Lenrie. 5835. UTilising Iron Slags, C. Pieper.-(C. Scheibler, Berlin.

 5840. SEWING MAcHINE, T. J. Denne, Holmesdale.
5841. REDUEING the FRICTiON between WATER and
SUBMERGED Bodies, F. H. F. Engel.-(G. de Laval,
Stockholm.) Stockhotm.)
Syl HoREs.
Sykes, Lincoln. W. Sykes, Boxmoor, and H. J.
 for Lighting and Heating, J. J. Royle, Manchester.
5845. Hexing Boors and ShoEs, J. Keats.- (V. 5846. Rowlocks for Boats, C. W. Morris, Lowestoft.
5847. TiME, \&C., INDICATING APPARATUS, C. H. and C. W. Thompson, London.
5848. IIDURAITNG Artificial Stone, \&c., J. W. Butler,
Blackheath. 5849. Connecting and Disconnecting Animals from
Wheeled Vehioles, J. Rexford, Edmonton. 8th December, 1882.
5850. Electro-magnets, V. W. Blanchard, New York.
E851. Ventlativg Siatr, F. A. Binney, Bowdon.
5852. Converting Wheeled Vehicles into Sledges, F. A. Binney, Manchester.
5853. VELOCIPRDEs, W. R. Pidgeon, Holmwood.
5854. METALLIC ALLoYs, W. Keep, Corwwall
 5855. Fire-Grates, dc., T. E. Parker, London.
5856. DIaphragms for Gas Governors, \&c., G. Porter,
London.
5857. STAMPS for Fing Wills, Birmingham.
5858. Whems, E. A. Tice, Clapham.
5859. Apparavis for Displaying Notices, de., Bruckner, London.
580.. BVSks for STAYs, \&c., W. H. Symington, Market
Harborough.

5866. ElEcTric Commutators, J. Gordon, jun., Dundee 5867. OrDNANCE, A. M. Clark. (A. H. J. Suel, Paris.) 5868. PREVENTING AcIDENTS with Circular SAws, J. H. Johnson.-(A. I. A. M. Trincano, Paris.) 589. Bex, dc., J. Armstrong, Clapham. 8870. TELEPHONEs, W. R. Lake. (A. E. Dolbear, U.S.)

 9th December, 1882.5871. Lenses for Lanterns, R. E. Frank.-(L. Mic-
ciullo, Italy.) ciullo, Italy.)
5872. SGIGALING Apparatus, J. Sansom. Glasgow.
5873. Prevering Corrosion in Steam Bollers, J. B.
Hannay Glasgow, Hannay, Glasgow.
5874. RIng Spinning and Doubling Frames, J. Young 5874. Ring Spinning and Doubling Frames, J. Young
and E. Furrisis, Mellor.
5875. Preparing Waxes and Olis for Lubrioating
PURPeses, J. Hanmay, Glasgow. PURPESES, J. B. Hannay, Glasgow.
5876. V ENTILATING BuILDINGS, T. H. Thompson, Man chester.
5877. Perambulators, W. Hatchman, London.
5878. Iron Permanent Ways, J. E. Walsh.-(C. Ver hoesen, Utrecht.)
5879. JoINTS, BEARERS, \&c., J. E. Walsh - (M. G.
Mitter and Dr. L. A. Hoffiman, Berlin.) Mitter and Dr. L. A. Hoftiman, Berlin.)
5880. Convming Soke, H. C. Paterson, Glasgow.
5881. MANUFACTURING SIZEs. J. W. Harland, London.
 883. Spring Motors for SEwiNg Machines, A. M
Clark.-(J.B.T. Baudouin, H. L. Mathieu, and A. F.
Conchin, Paris.) Clark.-(J.
Conchin, Pari
5882. Combust 5884. Combustion Moperator for Stoves, \&e., W. H.
Beck.-(C.J. Petit- Badret, Paris.).
5883. Controling the Discharge of Water, \&c., W. 5. Controulung the DIscHarge of Water, \&c.,
. . Schonheyder, Shepherd's-bush.
5884. Boots and Shoes, H. Craston, London. FETY VALVER, A. Haigh, Halifiax.
EEL, J. A. Jones, Middlesbrough-on-Tee OORS, A. . She
 ailway Signalingeres, Lamps and Spectacles, J. Marshall, Linslade.
ShIPs' and other LaMps, E. Martin, London.
MEDICAL TROUGH-PENS or Boxes for Live Sto J. P. Smith, London.
5885. Musical Instrument, F. W. Wolff, London.
5886. Lighting, \&c., Apparatus, P. R. Allen, London.
5887. Piren 5900. Pipe-cutter, W. R. Lake.- (G. Duhayon, Paris.)
5888. Belt FAstenkrs, W. H. Sleep, St. Germans.

$$
\text { 11th December, } 1882 .
$$

5902. Preventing Corrosion of Botions of
B. Hannay, Glasgow.
5903. OII, \&c., CANs, T. S. Marriage, Reigate.
5904. Looms for WEAVING, A. Smith, Bingley.
5905. Tricyole, E. de Pass.-(G, Mil) 5905. Tricyole, E. de Pass.- (G. Milczeevski and L
Maschann, Frankfort-on-he-Maine.)
5906. Measuring CHANs, H. J. Haddan.-(G. Féton, France.)
S907. TYPE-pressing Machines, H. J. Haddan.-(E.
Berger, Berger, Leipzzig.)
5907. ToBaccorpes
5908. BEDSTEAD, A. | 5 |
| :--- |
| 5 |
| 5 |
| 5 |
| 5 |
| 5 |
| 5 |
| 5 | mann, Hamburg.)
5909. PUMPS, T. F. Stenon, Handsworth.
5910. FIRE-ARMS, J. S. Jarmann, London.
 Brönnèr, Frankfort-on-the-Maine.)
5911. OxDIIINNG TEXTLE FABRICS, C. D. Abel.-(G)
Witz Rouen) 5915. Protecting Buildings Against Fire, J. M 5916. Looms for WEAVING, W. Adam, Kidderminster. Inventions Protected for Six Months
Deposit of Complete Specifications. 5798. ReFrigerativg Machinery, W. H. Wood and
Richmond, New York, U.S. -5 th December, 1882.
5912. Whees. W. R. Lake, London. A communica
tion from F. S. Smith, Cleveland, U.S.- 5 th Decem
ber, 1882 . tion from F. S. Smith, Cleveland, U.S.-5th Decem-
ber, 1882.
5913. ELECROOMAGNETS, , V. W. Blanchard, New York,
U.S. - 8th December, 1882.

Patents on which the Stamp Duty of $£ 50$ 4981. Safery Lamps, W. Smethurst, Bryan. - 5 th
December, 1879. 5000 .Treative Yarns, A. Pollock, Dumbarton.-6th
December, 1879. 5003. CoLouring Matters, J. A. Dixon, Glasgow.-
6th December. 1879 .
5005. Steam Enges, J. Gillett, Melksham December, 1879.
429. PACKING-cASEs, T. Cockcroft, Birkenhead.-20th
November, 1879. 4996. INDICATORs for Prime Movers, J. H. Storey and J. W. Kenyon, Manchester.-6th Jecember, 1879.
4998. MARKING WovkN GooDs, J. Duxbury, Man
chester.-6th December, 1879. chester.-6th December, 1879.
5006 UNLOADINGG GRAIN, \&c., J. Gillett, Melksham.-
6th December. 6th December, 187 ,
5023. PAPER-FOLDIT
5023. Paper-folding Apparatus, W. Conquest, Lon
don. -8 th December, 1879 . don.-8th December, 1879.
5107. Tramwar and Road-car Traction, A. S. Halli
die, Liverpool. $13 t h$ December, 1879 . 5007. Portable Cooring Ranges, D. Wilson, London.
-6 thi December, 1879. 5013. GUNPowDER, H. H. Lake, London.-6th Decem
ber, 18979 .
5075. DISTILING APPARATUs, Dr. H. Grineberg
 D150. Iron and STEEL, C. W. Siemens, London.-16t
and December, 18A9.
5176. BaLL CAsTors, G. W. Heath, Crayford.- 17 th
December, 1879. 5285. Axles, W. Morgan-brown, London. -27 th Decem
ber, 1879.
5019. Combing, \&e., Fibrous Materials, S. C. Lister,
 December, 1879. Evines, E. C. Mills, Dunham, and
5052. GAs Motor Engies
H. H. Haley, Moston -10th, December, 1879. 1 . 1 tham, December
1879. 188.
5020.
187
5 5040. Winding, \&c., Apparatus, T. Hardy, Poole, an
W. M'I. Cranston, London,-9th December, 1879 .
5054. Lock Nuts, D. Halpin, Shepherd's-bush, December, 1878, D. Halpin, Shepherd s-bush.-10 5174. METAL PIPRS and RoDs, F. A. Clark, Hammer
smith. 17 thecember, 1879.1 Der
5299. Tramways, F. C. Glaser, Berlin.-29th December 1879.
5305. Colouring Matters for Dyerng, \&c., J. H
Johnson, London. $-29 t h$ December, 1879. Johns STANDS for DEceavTers, \&c., G. W. Betjemann
5059.
London. - $10 t$ December, 1879. Liondon. Sulpire of Lime, R. Powell, Liverpool.-13t
December, 1879. 5153. Signal Buoys, E. E. Mann, Lawrence, U.S.-
$-16 t h$ December, 1879.

Patents on which the Stamp Duty of $£ 100$

4458. Rotary Engines, R. Hodson, Blackwall. -22 nd
December, 1875 .
 STEAM, R. Walker, London.-7th December, 1875 .
4297. RALWAY and other CARRIAGES, U. Scott, Lon-
don. - 11 tht December, 1875 .
4391. Concentativg Sulpuric Acid, dc., M. Pren-
 4309. Expansion Joint for Tubular Fire-bars, F. R.
Elis, Liverpool. $-11 t h$ December, 1875 .

Notices of Intention to Proceed with Last day for flling opposition, 29th December, 1882.
3533. TAPs, W. Hunt, Scarborough.- 25 th July, 1882 . 362. TUBE EXPANDERS for STEAM BoILERS, G. Son-
nenthal, London. - A communication from P P Revollon. $-2 n d$ August, 1882 .
3671. Workive Raliway Swrithe, \&c., P. Prince,
London.-2nd August 3681. Facilitating Telephonic Communication, J Cowan, Garston. - 2nd August, 1882 .
3691. CHANNELS or Courses for Elbctrical, \&c.
WIRES, G. M. Edwards, London. $-2 n d$ August, 1882. 6992. Tension or Friction Winding-on Motions for Tapeing, đe., Machinery, Y. Duxbury, jun., Over 3694. WAGON or LURRY, E. Hollingworth, Dobcross.3699. Bells for Bicycles, \&c., J. Harrison, Birming 3701. Preventing Down Dravget in Chimneys, de.,
C. E. Hanewald, London.-A communication from
F. Healment F. Haszelmann.- -3rd August, 1882 .
Mos. MaING IcE, T. Watts, Newport, and W. A
 Küstner, Hamburg.-4th August, 1882 .
3714. SuLPHERoUs ANHYDRIDE, S. Pitt, Sutton.-A
communication from the Compagnie Industrielle des communication from the Compagnie Indus
Procédés Raoul Pictet. 4 th August, 1882 . Taylor, London.-4th August, 1882.
3730. REGULATING the SPEEED of BtcYcLEs, \& \&., J. G.
Horsey and T. Bell, London. -5 the August, 1882. Horsey and T. Bell, London.-5th August, 1882.
3731. REcoverivg TIN from Scrap Trveruat, A. T.
Becks, Aston, near Birmingham.-5th August, 1882 Becks, Aston, near Birmingham.-5th August, 1882 .
H736. HEATING and Coounvg FLUIDs, W. and G. Law-
rence, London.- 5 th August, 1882. rence, London.-5th August, 1882 .
3739. Rotary Engines, J. G. Jones, London.-5th August, 1882. \&c., Woven FABRICs, D. Guille, Lon-
3744. PANTING,
don.- 5 th Augut, 1882 . don. - 5 th August, 1882 .
3745. RequLating the FLow of GASES, \&c., R. Macin-
trre
 don.-Com. from A. Hutchinson.- 5 th August, 1882 .
3750. DENTL PLATES, \&c., J. H. Gartrell, Penzance.-
5th August, 1882. 573. Combined Houder and Swirch for Incandescent
ELECRIC LaMps, C. E. Sibley, London.-5th August,
1882 3754. Furnaces for Utilising the Waste Heat from
Gasworke, W. R. Lake, London.-A communication from Cher Pompée de Bondini.- 5 th August, 1882 .
3757. LIGHT-EMITTING Conductors for Electric LiahtING Purposes, R. Werdermann, London. - $\begin{gathered}\text { A th } \\ \text { A } 759 \text { gust, } 1882 .\end{gathered}$ 3759. Perforating Cheques, \&c., P. Jensen, London.
Com. from O. A. Ericsson.- 7 th A August, 1882. Glaser, Berlin.-A communication from P. J. F.
 nede, Paris.-8th August, 1882.
373. SULPITEE, \&\&., for BLEACHING PURPoses, J.
Imray, London.-A communication from F. C. Imray, London.-A communication from
Kudelski. 8 th August, 1882 .
378s. SEwING MAcHNES J. Imray, London.-A com-
munication from Messrs. Grimme, Natalis, and Co.
 J. S. Beeman, We. Taylor, and F. King, London.
1oth August, 1882. 3813. Requlativg, ic., Elegtric Currents, J. S.
Beeman, W. Taylor, and F. King, London.-10th
 A819. Gas Engines, J. McGillivray, Glasgow.-10th 3841. ARM-PIT Dress Shields, W. R. Lake, London.-
Com. from I. A. Cantield. 11 th August, 1882 .
3875. Treating Cotron, \&c., E. de Pass, London.-
Com from H, Anthoni Com. from H. Anthoni.-1th munication from W.'J. Varley.-15th August, 1882 .
4153. CARPET FASTENER, E. Edwards, London.-A communication from J. A. Wilmot.- 31 st August, 1882.
4270. GENERATING ELEcTRICTTY, \&e., W. R Lake, Lon-
don. don.-Com. from E. Brard.- Tth September, 1882.
4459. TREATING MIDDLINGS, W. R. Lake, London.-A
communication from C, Brown.
 1918. Disintegrating Fabrics, I. C. Watson, Leeds.1067. Treating Certain Waste Materials, E
Davies, London. $24 t h$ october, 1882 .
5105. ELEctric Lighting, P. Cardew, Chatham.- 26 th
october. 1882 . 5238. APPARATUS to be Used in Connection with
Lamps, \&ce., A. H. Robinson, Dublin.-2nd Novem-
ber, 1882 . 5464. Spinning, \&c., Fibrous Materials, J. B. and
T. H. Dewhurst and R. Cornthwaite, Skipton.- 10 th 5499. RaLWAY SLeepers, W. E. Pedley, Old Bromp-
ton. 18 th November, 1882 . ton. -18 th November, 1888 .
5512. BARBED WIRE, O. W. Malet, London.-A commu-
nication from F. B, Malet nication from F. B. Malet.- 20 oth November, 1882.
5550. CENTR VALVES, R. Dempster, jun., Elland.
22nd November, 1882.
(Last day for filing opposition, 2nd January, 1883.) 3531. Communicating in Railway Trains, F. Hoe,
Burton-on-Trent.- $25 t h$
Ruth

 188. .
378gulating Apparatus for Steam Engines, H
Davey,

 way, Bristol.- 9 th August, 1882 .
3798. Pores and STAKES. W. A. Barlow, London.-A
communication from F. Börner. - $9 t h$ August, 1882 . 3800. Boxes, P. Jensen, London.-A communicatio
from D. L. Caillat. -9th August, 1882 . 3803. TELEPHONIC. AtpARATUS, S . P. Thompson,
Bristol. 9 th August, 1882 . from J. J. D. Trenor.- 1 Oth h Arogust, 1882 .
3821. Elf
1882. 3822. Batteries for Storing Electricity, F. Mori, Leeds. - 10 th A August, 1882.
385. ELECRIC Morors, S. H. Emmens, London.-
10th August, 1882. 10th August, 1882.
3833. Con BING FIres, G. Little, J. Green, and J.
Fletcher, Oldham, and T. C. Eastwood, Bradford.-
11th August, 1882.
3550. Hermeticalur Closing Boxns, to. A. J. Boult,
London.-A communication from
P. D.
 3890.
1882.
3891. 1889. Basic Fireproof Materials, H. Ulsmann, Prussia. - 15 th August, 1882 .
. 952. GAs STovers, J. F. C. Norm and A. H. P. S.
Wortley, London. -1 Sth August 957. AUTTOMATII PUMP or Boukr Ferder, E. T.
Hughes, London.-Com. from the Automatic Boiler Hughes, London.-Com. from the Automatic Boiler
and Engine Company.- $18 t h$ August, 1882 .
4076. Rotary Enaines and Pưpr, W. Bspeut, 4105. Looms for Wersving, J. Dawson, Dukinfield.28th August,
460. OpERTING upon the ATmosphere of Apart-
Ments, W. Wightingale, Southport.- 30 th September, 1882. Carriages, J. Vavasseur, London.-13th 4908. FILLING, \&c., Botrless, A. Macdonell, Newry, 4re. Motive-power ENGINEs, D. Clerk, Glasgow.-
18th October, 1882. 5009. Destroying Solid Impurities from Textile
Materials, 0 . Imray, London.-Com. from La Société Harmel Freres, 21 London.-Com. October, 1882 . from La
Latina
 ham. - 26th October, 1882 . S. de Chaligny.- 27 th October, 1882.
518. GAs-moros ENGINs, T. Ashbury, H. Sumner,
W. October, 1882 .
525. Treatic Coal, \&c., G. R. Hislop, Paisley.-3rd 5537. DRYING GRAIN, \&c., W. R. Lake, London.Com. from F. W. Wiesebrock.-21st November, 1882 .
5572. ANTISEPTICC, \&c.. C. T. Kinzzett and M.
Zingler, London.-23rd November, 1882 . Zingler, London.- -23rd November, 1882. ber, 1882.
562 . TubuLar Stean Generators, C. D. Abel, Lon-
don.-A communication from L. C. Uhler.- $27 t h$ November, 1882 .
5714. PAPER, W. C. Horne, Old Charlton,- 30 th Novem-
ber. ber, A882.
5850. ELECTRO-MaGNETS, V. W. Blanchard, New York.

- 8 th December, 1882 .

Patents Sealed

 (List of Letters Patent which passed the8th December, 1882.)
2503. Leads for Pencils, G. Daubenspeck, London.26th May, 1882. 2737. Antifriotion Bearings for Vehicle Wheels,
W. J. Brewer, London.-10th June, 1882 . W. J. Brewer, London.-10th June, 1882.
Hila. ADJUşING the RoLlers of RoLLER Mils, J.
Higginbottom and O. Stuart, Liverpool.-10th June, 1882. Finishing Textile Fabrics, E. Edwards, Lon2750. MINERS' Sune, 1882 . 2752. Electric Lamps, J. Lane, London.- -12 th June 1882. GAS-MoTor Enginss, C. T. Wordsworth, Leeds,
and J. Wolstenholme, Radeliffe. -12th June, 1882. and J. Wolstenholme, Radcliffe. 12 th June, 1882.
and
754 . APPARATVS to PRINT, \&c., SGGR MEDALS

 Lo4d SINGE-RAIL RAILWAYS, \&c., A. M. Clark, Lon-
don. -12 th June, 1882. 2788. VEHICLES for FAclititating the Unloading of
TIMBER, \&e., E. Rayner, Liverpool-- 14 th June, 1882 . 2789. SUPPLYING ARE to FURNACES of SEEAM BolLERS,
\&c., J. Howden, Glasgow.-14th June, 1882 .
 N. ORNAMENTING, \&e., DESIGNS On TIN Plates, A.
N. Hopkins, T. Baker, and T. W. Burt, Birming
hane 1882.
So6. SECuRING SHEETS of Glass, \&c., S. Deards, 2806. SECURING SHEETS of Glass, \&c., S. Deards,
Harlow. 14 the June, 1882 . Guilleaume, Cologne, Ger-
2827. WIRE Ropes, F. C. Gut
 Bristol.- 16 th June, 1882 .
8ENERATORS, A. D. Barclay,
Kilmarno Boilers or Gels -1 Gth Kilmarnock. - 16 th June, 1882 .
2849. PRESES or Liguids from
SEEDS, \&C., J. H. Hehresing . Johnson. London. - 16 th June, 1882 , SEEDS, d.c., J. H. Johnson, London. -16 th June, 1882 , Dezille, London. - 17 th' ' June, 1882 .
2878. DRY CENTE
17. 17th June, 1882 .
2880. SEWING MACHINES, W. Fairweather, Manchester.
-19 th June 1882 . 2931. UMBRELLAS, \&c., B. J. B. Mills, London.-20th June, 1882 .
93. SUsFending or Mounting Electroliers, \&c., A.
 2944. Carts, \&e., W. March, London.-21st June, 1882.
2955. Treating Nitrogenous Maters to Obtain Use-
FUL Products, J. C. Mewburn, London.-21st June, 030. Floating Lights, C. D. Abel, London.-27th June, 1882 .
306i. MAGNETIC Compasses, F. Betbeder, London.-
28th. June, 3162. Dressing or Preparing Ores, F. Wirth, Frank fort-on-the-Maine, Germany.-4th July, 1882.
3182. SEOURING, むe., MAIL BAGS, A. M. Clark, London
 602. Clearing Wool and other Textile Fibre from Fragments of STRAW, \&c., Matter, O. Imray,
London.-29th July, 1882. \&c., into Packets, H.

 Green, H. C. Walker, and R. Curr, Walthamstow,
August, 1882. and W. T. Scott, Stratford. -2nd September, 1882 .
4240. LIFTS and, Honss, J. S. Stevens and C. G.
Major, London, and D. P. Edwards, Roath. 6 . September, 1888 .
4258. SETTING-UP Distributing TYPe, J. C. Mew-
burn, Lindon

 91. Dysamo-mLectric Machines, W. R. Lake, London. 80. Gerating, \&c., Electricity, W. R. Lake, Lon
don - 6 th January, 1888.
1501. Preparing Tablets for Printing, F. Rath, Lon2000. Life-sAVING, ©C., Appliances, D. P. P. de la Sala, London.- 27 th April, 1882 .
277c. CarBoNs for ELETRIC CANDLEs, \&c., F. H
Varley, London. Varley, London. -13th June, 1882 . Float, Maldon.-
2779. HAyMAKING Machines, J. C.
13th June, 1882 . 2796. Boovant Speed Wheel, W. Teague, jun, Tin
croft, Redruth. 14 th June, 1882 . croft, Redruth. - 14th June, 1882 .
2797. AboMINAL BeLt, W. A. Barlow, London.-14th
June, 1882 . June, 1882 .
203. DYNamo-electric Machines, F. L. Willard, Lon
don. $14 t h$ June, 1882 .
 2808. Fluting Metal Rollers, J. A. A. Buchholz,
Loondon- 144 June, 1882.
2810. Ratchet Braces, T. W. Cheesbrough, London 2826. LeAd, F. J. Cheesbrough, London. -15 th June,
1882. 2828. ATTACHing Knobs and Handles to their
Spindles, E H. Baxter, Birmingham.-15th June,
1882. 1882.
2832. FLAP Valves, E. Edwards, Lendon. -15 th June,
1882 , 1882. PaNELS, \&c, J. H. Browne, Cleobury Mortimer.
-16th June, 1882. Hoors, S. A. Say, London.-16th
2855. ADJUSTING Dors,
June, 1882. June, 1882 .
F. MEtEorological Indicating, \&c., Machines,
F. F. Engel, Hamburg. -16th June, 1882.
285\%. In. 2857. INJECTORS, A. H. Smith, Nottingham. -17 th
June, 1822 . SADLE
2558. SAFETY SADDEEBARS, R. S. Garden, London. 2058. Safety Saddle-bars, R. S. Garden, London.-
17th June. 1882.
2870. CaLorio Engine, A. M. Clark, London.-17th
June, 1882. 2887. Coonting, \&c., Apparatus, F. Petersen and J.
H. Dinsmore, Liverpool. -19th June, 1882 .
2943. Primary, ©.., Ganvanic Batreries and Cells,
H. Aron, Berlin.-21st Junne, 1882. H. Aron, Berlin.-2
2947. BICYOLES, ©C., J. S. Edge, jun., and F. W. Tice
hur. Birming hurst, Birmingham.-21st June, 1882 .
2967. SHoE, \&c., FASTENERS, H. J. Haddan, London. 1-20. Skd Juning Butrons, \&c., E. C. Barron, London.
-2sth June, 1882. 3090. SELF-ACTING Mules, C. A. Barlow, Manchester.
-30 th June, 1882. 3120. Gallanio Batteries, J. H. Davies, Ipswich.-
1st July, 1882 . 3122. Coating, \&co., Certain Metal Surfaces, A. M.
Clark, London. 1 st Juy, 1882 .
3306. Scrapers,. A. Lowcock, Shrewsbury, and J.
 Lake, London,-12th July, 1882 .
3320. SAFETY APPARTUS for LIFTS, A. M. Clark, London. -12 th July, 1882 . A152. SUPPLY of INK to Pens, G. R. Hughes and T.
Carwardine, London.-31st August, 188.2 . Carwardine, London.-31st August, 1882.
4438. BLIND RoLLER FURNITURE, J. W. Andrews,
Whittlesea.-19th September, 1882. Whittlesea.-19th September, 1882 .
4515. Looms for WEAVING, W. Smith, Heywood.- 21 st
September, 1882 . 4653. Cheoling. the Periodical Arrival, \&c., of
Employees, W. M. Llewellin, Bristol.- 30 oth Septem-
ber, 1882 . List of Specifications published during the
week ending December $9 \mathrm{~h}, 1882$.

** Specifications will be forwarded by post from the
Patent-otice on receitt of the amount of price and pastage. Sums exceeding ls. must be remitee and
Sy
Post-office order, made payable at the Post-oftice,,
High Holborn, to Mr. H. Reader Lack, her Majesty'
Patent-office, Southampter High Holborn, to Mr. H. Reader Lack, her Majesty'
Patent-office, Southampton-buildings, Chancery-lane
London.

ABSTRAOTS OF SPEOIFIOATIONS.

 Pepared by ourselves expressly for The Engineer at theofice of Her Majesty's Commissioners of Patents. 965. ManUfacture of $\overline{\text { Hats, }}$, dc., E. C. Vickers, Lon-
don.-28th February, 1882 .- (A communication from
S. Gutmacher, Paris). allowed.) $2 d$.
The bod. of that is covered with a coating of
composition, which is embossed to give the hat the composition, which is embossed
appearance of straw, leghorn, $\mathbb{}$.
R39. Utilising Cast-off Articles or Garments fo-
Remanuactue into Textise Fabrics, G. Hydill Re-manupacture into Texile Fabrics, G. Rydill
Shefileld.- 20 th March, 1882.- (Provisional protection
not allowed.) not allowed.) $2 d$.
The articles are unt
threads are utilised.
1355. Combined Pantomimic Trick and Packinc CASE, A. H. Love, Brixton.- $21115 t$ March, PACKINC
(Provisional protection not allowed.) $2 d$. This relates to the construction of the case,
1381. Marine Enaine Governor, J. J. Tyler, Bromley
by-Boov.- 22 nd March, This relates to the employment of a pendulum for
actuating valve regulating admission of pressure, so as to work a piston either from condenser or from 1545. Lamps, C. D. Aria and J. Davies, London.-
30th March,
alloved.) $2 d$. 1882 .-(Provisional protection not This consists in substituting for the cup or saucer of glass, \&c, a cage or netting of wirework or the
like over or arouud which are arranged artificial
flowers. 1565. Ornamentation of Various Articles, J. B.
Duboiz, Maule, France.- 31st March, 1882.-(Pro-
visional proteclion not alloned) visional protection not alloreed.). $2 d$.
Leaves of various plants are treatain the
skeleton, which is then employed for
$\left|\begin{array}{c}\text { 1573. Husp Sonkess, M. O. Hund, London.-31st } \\ \text { March, 1882.-(Provisional protection not allowed.) }\end{array}\right|$ This relates to the construction of hand-screens,
and to the manner of exhibiting photographic por-
traits. 1759. Dinner and other Table Plates, W. F. and
G. Plant, Moseley.-13th A pril, 1882.-(Provisional G. Plant, Mosetey.-130 no allowed.) Ad. $2 d$. 1882.-(Provisional
prots are formed in the rim for reception of salt, \&c. 1827. Slate, Slab, or Tile Roofing, W. P. Thomp-
son, Liverpool.- 1 thth April, 1882- - Acommunication tection not allowed.) $2 d$. treble, are only laid single with a sufficient lap.
are laid in the form of diamonds or fish-scales. 1847. Apparatus Enployed in Printing,
Haskins, London. -18 th April, 1882 .-(Void.) One part relates to the distribution of the ink in
cylinder printing machinery in which two cylinder are employed. Another part relates to the means for securing the printing surfaces or plates or block
carrying the same to the type or main cylinder. A
third part relates to the holding of the sheets to hirrd part relates to the holding of the sheets to belivery of the printed sheet. Other
mprovements are described mprovements are described.
1953. Memorial Plates for Tombs, \&c., H. J. Had-
dan, London.- 25 Lh April, 1832 - A communication
from B. Olive, Paris.)-(Provisional protection not
alloved.) 2d. 2 .
This consists in an ornamental frame or plate adapted
to receive a photographic or other portrait and an inscription.
1964. Brakes for Wheeled Carriages, A. Archer, This relates to a brake band worked by a lever. 1978. Decortication of the Chinese Nethle, \&c.
W. R. Lake, London.- 26th April, 1882.- (Acommu
nication from P. A. Favier, Villefranche, France.

Gd.
This consists essentially in the division of the mechanical operations into two parts, viz. Firirst, the
decortication to deprive the stalk of its internal decortication to deprive the stalk or bruising of
woody portion, and then the crushing or brom
he bark or outer portion to free it from the external pellicle which covers it.
1981. Apparatus for Charging Hand-printing
Blocks with Colour, A. M. Clark, London.-26tl April, 1882.- (A communication from J. Hutchison,
Newark, U.S.) 6 d .
This consists of a box containing as many rollers as
there are separate patterns on the printing block, these rollers each dipping in separate colour boxes, and mounted on shafts provided at the ends with friction rollers on which a frame rests for carrying the printed
block. By moving this block over the rollers the
distance of one pattern field, each pattern will be distance of one pattern field, each pattern will be
provided with its colour, and thus a number of provided with its colour, and thus a number of
colours can be applied on the block in operation. 2009. Railway Signalling Apparatus, B. J.
Chabrel, London.-28th April, 1882.-(Not proceeded Thit relates partly to apparatus for causing an
audible signal upon the engine to be sounded at required times and places, such apparatus being
worked by the signalman in the ordinary way of worked by the signalman in the ordinary
working the semaphore signals now employed.
2039. Writing and Drawing Pens, M. Fischer
Halle-on-the-Saale, Prussia.-29th A pril, 1882. $8 d$ One part relates to the peculiar form of the slit of nny penholder wherein the pen is put and held;
Second part consists in the application of a ring, or
everal rings to the handle of any penholder ; ; Third mprovement consists in arranging the front piece o a penholder, which carries the pen, to turn upon a
rivet, like the blade of a knife. Several other im-
provements are described.
2085. Screw Propellers, \&c., J. Davison, Sunder This consists, First, in forming the blades of screw propellers with corrugations forming sectors of con
centric circles, at suitable intervals over the whole surface of the blades. The corrugations on the driving
face may form groves with sides of equal or unequal angles, but they preferably form a series of steps, the
distance between which is considerably greater than distance between which is considerably greater than
the depth of each step. The corrugations of the back

Num

surface follow those on the front surface, but the
angles are rounded. The dotted lines in the drawing show a section of one blade on the radial centre line
from boss to point. The invention further consists in making the stern pipes or tubes with openings on in
upper portion fitted with removable doors, so as to enable the propeller shaft to be examined.
2092. Lmprovements in Elegtric Light Apparatus,
o. Lever, Boodon, Cheshire.- $3 r d$ May, 1882. $8 d$. This relates to are lamps, and more particularly to
clutch for regulating the arc. The clutch is shown clutch for regulating the arc. The clutch is shown
the figure. The are struck as follows, C being

the upper carbon:- When no current is passing, carbon
C is raised a certain distance by the action of spring D on A and B; when, however. the current is turned
on, F, which is a high resistance shunted electro magnet, is energised, and attracts A; the gripping
piece B falls to a right angle position and allows
carbon C to descend until it touches the carbon C to descend until it touches the lower carbon,
then the current is diverted from magnet F, and D gain pulls down its end of A and raises B, this grips
C, and the arc is struck. In this manner also the arc
s regulated. The inventur also claims a means is regulated. The inventur also claims a means of
shunting the current past a lamp, or from one pair of 2101. Railway and Thamway Wheele, de., r. Hadfield, London,- 4 th Mav, 1882 . $4 d$.
This consists in the makking railway, tram way, or other similar wheel with either wrought, rolled, or
forged steel or iron spokes, united or welded to a cast
steel tire. 2112. Exhibiting Advertisements, J. Hickisson,
Hackney.-5th May, 1882 .- Not proceded voith.) This relates to a frame in which suitable tablets or
lates bearing advertisements may be inserted,
suitable means being provided for illuminating the
same at night 2119. Caloulating Instrument, A. J. Boult, London.

- 5 May. 1832 .- (A communication from G. Charpentier-Page, Valaioie, France.)-(Not proceeded
with. $2 d$.
The instrument is based on the same principals as 2121. Water-closet Basins, dc.., T. W. Hellivell,
Brighouse--5th May, 1882. 6d. The objects are, First, to construct water-closet
basins so that they can be used as water-closet basins basins so that they can be used as water-closet basins
and as urinals, S Secondly, to oonvey the noxious gases
aw $d y$ which issue from water-closet basins and their away wh
fittings.

2125. Improved Method of Producing
Currents for General Purposes,
K. Payzelskid

Corrents For General Purposes, K. Parzelski,
Warsarv, Russia.-5th May, 1882.-(Aot proceded
The inventor digs two large holes in the earth close together or "thousands of miles away," deep enough
to always have water in them. In one of these he places zinc, and in the other carbon, coal, or some
metal. The two are then connected by a wire. He also propos
purpose.
2126. Gas Motor Engines, S. Worssam, London.- 5 th

May, 1882 . $6 d$.
This relates to a gator engine wherein a motive
power cylinder and a pump for the compression of the explosive mixture are arranged end to end in one and the same axial line, the respective pistons being both fixed on one piston rod; the use of a slide valve
arranged to oscillate or partially rotate around the 2127.
2127. Apparatus for Mechanical Playing of Key-
Board Istrumets, . H. Bishop and IV. Down
London Sith This relates to improvements in apparatus for mechanicalaty striking the keys of in apparazatus and such
like instruments, the principal objects being to reduce he cost and simplify the construction of the appa-
ratus; to provide for the regulation at will of the force with, which the keys are struck, thus producing the effect of crescendo and diminuendo; and to facilitate
the insertion and removal of the metallic web or plate the insertion and removal of the metalic web or plate
of perforated music, by which the movements of the
strikerg are strikers are governed.
2128. Improvements in Regulating and Utilising
Electric Currents, W. Arthur, Cork-street,

The inventor provides a group of accumulators of
qual resistance with each group of lamps in any
The inventor provides a group or accumus in any
equalistance with each group of lamps which he causes the current to flow when circuit, into which he causes the current to flow when
the lamps are turned out, thus preventing any bad
effects on the effects on the generator by the throwing of such
amps out of circuit. Each group of lamps has its
2129. Mercurial Air PuMps, D. Johnson, Chester, and
S. C. Tisley, Brompton-road. - 5 th May, "1882. $6 d$,
This. relates to improvements on "Sprengle's This relates to improvements on "Sprengle's
pump," by which the quantity of mercury and the power required to produce a given result are reduced
a better vacuum is produced, and the apparatus is a better vacuum is producee, and the apparatus is
rendered capable of being worked more rapidly than
the ordinary the ordinary apparatus and by means of any suit-
able motor. The invention consists, First, in enclos able motor. The invention consists, First, in enclos-
ing the upper ends of the dropping tubes in an air-
tight chamber to which the article to be exhausted is connected, and from which it can be disconnected
without admitting air to the chamber, and causing the mercury to pass to said chamber from the vessel
at the lower end of dropping tubes without being xposed to contact with air. The invention further
relates to Geissler pumps, and consists in substituting a flexible box containing mercury for the ordinary
lifting bulb, and alternately forcing the tercury lifting bulb, and alternately forcing the mercury into
the tubes and exhausting chamber and allowing it to return therefrom, by alternately compressing the bag and allowing it to expand, for which purpose it is
placed in a closed chamber, to which steam, compressed air, or water under p
and then allowed to escaje.
2131. Leads for Pencils, G. Daubenspeck, London.-
5th May, 1882. - (Not proceeded zoith.) $2 d$. This consists in combining together violet of aniline,
oxide of alumina, or some equivalent substance, and soap. Construction of Stoves AND Lamps, F. J.
2133. Cont
Duggan, Bristol.- 6 th May, 1882 . 10 d . This relates to several improvements in the con-
struction of stoves and lamps, whereby the same are
rendered more suitable for burning petroleum and rendered more suitable for burning petroleum and
other oils. 2134. Wet Gas Meters and Low-pressure Water-
Meters, W. C. Parkinson, City-road.-6th May, This consists mainly in dividing the measuring drum into three compartments only instead of four
as hitherto, provided with three inlet and three out-
let hoods suitably shaped and arranged. let hoods suitably shaped and arranged. 2135. An Improved Process for Forming Lead for
Secondary Batteries, T. Cuttriss, Leeds,-6th May, 1882.-(Partly a a communication from C.
Cuttriss, Duxoury, Mass., U.S.A.) $4 d$. The inventor rapidly coatst lead plates with peroxide
in the following manner:-In a vessel contaning in the following manner:-In a vessel containing
dilute sulphuric acid he places a porous pot containing
a solution composed as follows: Saturated solution of a solution composed as follows: Saturated solution of
bichromate of potash in water, 100 parts; sulphuric
 with the positive pole of a battery. A plate of metal
or carbon being placed in the outer vessel is connected
to the negative pole of the battery or carbon being placed in the outer vessel is connected
to the negative pole of the battery. The circuit is
then completed, the result being that peroxide of lead then completed, the result being that peroxide of lead
is rapidly and thickly formed on the lead plate. 2137. Revolving Harrows, Clod Crushers, and
Forks, \&c., E. Button, Stainvay, Essex. $-6 t h$ May, This relates to improvements in the general con-
struction of the machine. 2139. Velocipedes, B. Bennett, Coventry.-6th May. This relates principally to improvements in the
driving and steering gearing. 2141. Apparatus for Teaching the Rudiments of
Music, B. M. Basson, Slough. -6 th May, 1882.(Not proceeded with.) 2d.
This relates to a board upon which separate musical 2143. Boiling or Preparing Esparto Grass, de.
Used in the ManuFacture of Paper, D. Smith and C. Robertson, Sydney.- (Not proceeded dith.) $2 d$.
This relates to the application of a multitubular This relates to the application of a multitubular
steam chest or chamber in the bottom of the boiler
used for the boiling or preparing or esparto, \&c. 2140. Sarety Pins, G. F. Redfern, Finsbury.-6th
May, 1882.-(A communtication from F. S. Peshine, Thevark, relates to a new form of shield for the point of
the pin, and formed in one piece of wire with the pin itself.
2144. Improvements in Eleotric Lamps, J. H. John
 This relates to arc lamps. Each carbon is vertical
and fixed in a socket on a conducting plate. Two cups containing mercury are providecting plate. Two
ducting plather conducting plate. One carbon is carried in a socket
attached to horizontal plate supported by a pair of
legs or pivots, the lower extremities of which are attached to a horizontal plate supported by a pair of
legs or pivots, the lower extremities of which are
immersed in the mercury. This carbon leans against The other upright carbon when no current passes.
When, however, they are in circuit the current passes
up the stationary and down the mpovable carbon, the
parallel but opposite current in which causes it to
move away and establish 2146. Liquid Measuring and Registering Appa-
matus, E. G. Rivers, Thornton Heath.-6th May, 1882. $6 d$.
This consists of a cup or vessel having a two-way plug or tap passing through the same, in combination with 2147. Tomeco Peuce
-6th May, 1882. $4 d$. . L. James, Wanstead Park. This consists in constructing vulcanised india-
rubber tobacco pouches with a cap piece opening
laterally of the pouch 2148. Tricycles, de., W. Dawes and J. Tankard, The object is the production of a tricycle or other
vehicle, in which the muscular power of both the legs and arms of the rider is, or may be, employed for pro pelling, and a means is also embodied in the arrangeguiding or steering can at the sa
and safely effected as heretofore
2149. Apparatus for Separating and Purifying
Midinings in the ManuFacture of Flove, J.
Beal, Shefield. -6 the May, 1882.-(Not proceded

This consists chiefly in the arrangement and use of horizontal rotary beaters in conjunction with an
exhaust fan, a sieve, and other known appliances used in similar machinery
2150. SElf-closing Valves For Closets, \&c., A.
Sureet, London.-6th May, 1882.-(Not proceded Thisth.) $2 d$.
Thelates to improvements in the construction of
diaphragm valves. 2151. Gas Producers, F. W. Dick and G. S. Packer,
Glasgow.-8th May, 1882.-(Not proceeded with.) This relates to improvements in the general con-
struction of the gas producer. 2152. Combistion of Fuel and Consumption of
Smoke, W. Beasley, Birminghann.-8th May, 1882 . Underneath the dead-plate C and the fire-grate D is
fitted the trough E , which forms a channel $\mathrm{E}^{1}, \mathrm{E}^{2}, \mathrm{E}^{3}$, which passes longitudinally along to E^{4}, leaving the gap between Es and the bridgg, which may vary in
length. Upon the front of the fire-door F is fixed a box

or cover H , which projects downwards to H 1 , and
continues under to H^{2} to make junction with the edge of the front end trough E , thus forming an interna itself is perforated or has a large hole in fits body 2153. Penholder, IV. Sinclair, East Linton.-8th This relates to means for preventing the fingers
becoming dirty. 2155 Pipe Connections, C. L. Hett, Brigg, Lincoln-
shire.This relates to improvements in pipe couplings. 2156. Preparation of Photographic Plates, F.
Wirth, Frankfort. - 8 th May, 1882 .- (A communica tion from G. Meisenbach, Munich.) $4 d$.
The inventor claims the one or more times exerted moving or shifting of the hatched plate on the exertod graphic negative or positive plate during the produc-
tion of the definite negative or pooitive form, from block is made.
2157. Composition for Cleaning, Colouring, ¿ce,
Stone Stairs, Hearthstone, \&c, J. M. Gray, Kingston-upon-Hull.-8th May, 1882.-(Not pro-
ceeded vith.) 2d. The composition consists of pipe-clay, Paris white,
whiting, China clay, mixed together, to which is added
ultramarine and 2158. Lamps for Bicycles, \&c., H. F. D. Miller,
Birmingham. - - th May, 18s This consists in the construction, combination, and
arrangement of parts, whereby the body or bulk of arrangement of parts, whereby the body or bulk of
the lamp is o reduced that it can be passed through
the spokes of the vehicles and arranged upon the
axis or shaft, and secured with the employment of one han
2159.
2159. Apparatus for Automatically Playing
Pianofortes, A. Wilkinson, Bradford.--8th May, This consists in the construction and employment
of an oscillating cylinder, over which is passed an endless apron, or an apron without having the ends
secured together; the apron being made of calico or secured together; the apron being made of calico or
any other suitable textile fabric and covered with a paper face, in which are punched holes and fitted
with pegs, according to the notes of the music to be 2161. Refining Sugar, A. Scott, jun., J. D. Scott, and
T. R. Ogivie, Greenock:- $9 t h$ May, 1882. 4d. This consists in a process for separating gummy and
other insoluble matters from saccharine solutions, wherein an insoluble compound or salt of an alkaline 2162. Shoes For Horses, \&e., R. C. Eames, West-
minster.- 9 th May, 1882 .- (Not proceded with.) $2 d$. This relates to the formation of a groove or grooves
on the working face, which grooves are pierced at
certain distances apart. The grooves are filled in with india-rubber.
2163. PYROMETER, A. Sauvé, Testminster. - 9 th
May, $1882 .-($ A communication from B. M. Amagat, The invention is based on the principle that when a rather thin metallic tube is kept in contact with a
heated body, if a current of water flows at the same time through this tube at a proper speed the increase
of temperature of the water is limited to a few 2164.
2164. Apparatus for Regulating and Controlling THE FLow OF Water, \&c., T. S. Borrodaile, Loon-
don, and E. J. C. Welch, Westminster.-9th May,
1882. 6d. In the drawing A is the body or casing, B the inlet
for the fluid whose flow has to be controlled, and C the outlet. D is a piston working in a box or cylinder
having communication with the inlet passage B1 at having communication with the inlet passage Bl at
one end, and with the outlet passage Ol at the other.
The bore E through the middle of the piston is in this case the controlling oritice or passage. The small
grooves in the piston itself are to receive any small grooves in the piston itself are to receive any small
particles of dirt which might otherwise jam the piston.
In the present case the piston itself also forms the In the present case the piston itself also forms the
outlet checking valve, for as it rises it closes the out-
let orifice C 1, and checks the outward flow of the
maintained at the same amount as that below it, less an
amount due to the weight of the piston itself, and this
being constant the difference of the pressures at B^{1}

B' $^{\prime}$
and $\mathrm{Cl}^{\text {is constant also, and the water flows through }}$
the controlist orifice E at a constant velocity. 2165. Holders for Progranmes, do., F. Steits,

 nedium, and converting the said energy into a motive

 toothed cylinder made to revolve within a stationar)
outside shell with recesses between said eylinder and
 pressure on the inside of said cylinder, and preventing
the friction whinh would otherwise restut trom the
steam tressing said cylinder against said outside
 quer, Paris.s.-(Provisional protection not allowed.)
This consists in attaching to a board, \&c., a number
 This relates to improvements on patent No. 654 , 1 ,
dated 14th February, 1880 , and consists in dispensing
with some or all of the 2171. Cooulng or Rebrigerating, W. P. Thompson,
 in comprossing gas or fluid to a liquuid, form at on
 duct to another point, and there connecting the con
taining vessel with an oxphenion ooil or ohamber, and
opening communication between the two. 2174. TRIrcyouss, \&c.. C. Harvay and

This consists partly in the driving gear of tricycles
and other velocipedes, with the purpose of quickening the speed upoon levelel roads, , nad of gaining addititional
 are described
2175. Honssseoss, A. Vanderkerken and J. Mans,
Brusels. This consists in a shoe for horses, \&e., providen
with a channeel filled with india-rubber in in combination with a spl.
2176. Machine for Making Wrar Bale Bands, A.
W. L. Reddie, London. $-9 t h$ May, 1882 .- (A commu:
Mi. LL Reddie, London.-9th May, 1882-(A commu2-
nication rom
G. Nicholson, Nev The bale bands consist of a pin of wire of the
required length, and the fastening device consists of an oblong link provided with two holes or oeses. The
invention consists in a machine for producing the
the
 This consists in the purification of water by pre-
cipitating soluble and other impurities contained in such water by means of soluble sulphates of alumina
or alumina and iron when the water contains bi-caror anamina of lime or lime and mangesia, or when pre-
boned so as to contain such salts of lime or lime and
pare pared so as
magnesia.
2178. Colouring Mattrgs for Dyering and Print

Luciuss, and Brining, Höchst-an-Main, Germany.)
4d Tha object is the production of alpha-naphthylamine-
trisulpho-acid, and the further production of a yellow dye-stuff therefrom.
 London.- 9 th May, 1882. $6 d$
This refers to apparatus in which a fan or sorew in the water is connected by a rexibie conneection, such
as a orr or tine to counting or recoring mechanimm
placed on board a a hhip or navigable vessel where the speed of such is to be receorded, or connoected tore omeme stationary object wh.
is to be ascertained.
2186. Improvements in Incandescent Electrical This relates toe improvements. in the construction of
the holders of incandescent lamps, wherreby they are simplitied, and the lamps
and replace 2189.
2189. Apparatus for Sharpaning Razors And
Knives, A. Payme, Bast Moulsey. $-10 t h$ May, 1882.

This r relates to apparatus in which a pair of rollers is emproyod.
 The object is to enabie a rail way train to work its
own signals automatically, so that as it passes a asignal own signals automaticaly, so that as it passes a signal
post it trall raise the signal up to the "danger posi-
tion, and at the same time lower the last signal into the "line clear" position.
2191. Appanatus for Finishiva and Vilovrisg
 carries the hat uderent as required when finishing
or exentric mevouring" the brim and body, or a true circular
or motion as required when finishing or velouring
tip or central portion of the crown of the hat.
 tion from T. Holliday, Barcelona.)-(Not proceeded This consists in condensing nitric acid in iron
vessels in which concentrated sulphuric acidi is preriously placed, the sides of the vessels being pro.
tected against the action of the gases by a lining of stone, tives, or other raid das-resiting matering, and
the corers of the vessels being composed of similar materials.
2195.
 T his relates to the use of signals on the locomotives
$\left\lvert\, \begin{aligned} & \text { operated and controlled from the signal-boxes by } \\ & \text { means of a special apparatus or derice placed on the } \\ & \text { mine }\end{aligned}\right.$ line at suxtable intervals, and con with the move or not tovers, the signal when the train is passing.
It is preferred to employ suitable registering mechan. im in combinanationp with sthe shignal, and also toc cause
the steam whistle to be opened simultaneouly with
the

the actuating of the signal. The actuating device consists of the frame A composed of the curved bars
united by cross bars and operated by the lever D lead ing to the signal-box, so as to place it in either of thrae positions, and thererby cause the signal to indicate
ndanger," "caution," or "line clear." 2196. MACOINERY F For WrNoriva Corton AND ortikr
YARN AND THRAD, H. C. Hill and H. H. Brown, Staleybridge. -10 th May, 1882 . $6 d$.
On the ordinary faller shaft are fixed spring levers, or flexible or other guides, one to eech sping leve, and
at one end of the shaft is fixed a lever which it
 machine is in motion the faller shaft is turned backward and forward by the cam acting on the lever fixed
atits ond, and the end of each spring lever or guide
through which the yarn or thread passes that presses

against the spool or spinale, is moved up and down,
thus winding the yarp or thread spirally on the spool nus wale, so that it is traverraded from end to end of of
or spind
the spoo trobin the spool or bobbin. The chase or pitch of the thread
 sude presses agg wound it causes the yarn to be wound
the yarn is being woun
on the spool as nearly as is practicable the exact dis. on the spool as nearly as is
tance traversed by the lever
2197. Axchors, C. Martin, Brighton.-10th May, 1882. This. relates to improvements on patent No. 11632,
A.D. 1872 , one form or modification being shown in the drawing, The fluke piece or pair of arms A is secured
in the head of shank B by a shoulder C on one side, and a key D passing completely through the fluk pieco on ring in irecesses F formed in the face of the
and wank head, and which limit the angular movement
shat of the fulue, piece. The key is in troduced through
groove E leading from the outside of the shank head

2197

into one of the rocesses F. The journal of the fluke
piece A has a groove round it to reduce the bearing surface. The shank heand has slightly projecting ribs straight taper from shoulder to point, mat the flutes as
are bevelled so as to have a lozenge-shaped section. The fixed arms G are curved, and are also of a curved 2198. Machinery Emploved in the Preparation of
Hides, Skins, AND LEATHER, J. S. and B. Stocks, The inventors claim the arrangement, construction, and anprication of a hollow drum, cylinder or beam,
havint in combination a pressure bar and parts con-
nected therevith for nected therewith for retaining the material in
 The serew bladies are made with paraboles, and on
the convex side they are furnished with ribs or paddles, which are arranged holically parallel to each

other. A three-bladed screw of that sort is shown in
the drawings. Fig. 1 shows a perspective view, and
 2200. Indicating a Shrp's Position by the Display
of SIowai Liohts, A. Wi. Tuer, London, and f. Clieminson, Westminster-10th Map, 11882. sd.
This relates to the arrangement of the lamps to
show white lights only, so contrived that the white
port signal shall be readily distinguishable from the 2201. Ruord signa. 2201. Rairway Siosils, A. W. Tuer, London, and J.
Cleminson, Westminster. 10 oth May, 1882 ,
 semaphore
within it.

This cond May, 1882. 6 . ${ }^{-104}$.
 or combustible vapour and air, such engines being
double-acting, an explosion of compressed air, gas and air, or compressed combustible vapour and air being
effocted at both ends of tho working cylinder, thereby actuating the in and out stroke of the cylinder piston. 2203. Printing Machines or Pressss, W. R. Lake,
London. $-10 t h$ May, 1882. - (A communication fron
 ing press which shall print two sheets for each double
stroke of the bed, and deliver the sheets from the two cyinders alternately at each end of the press, at a
cyich higher rate of speed, and at the same time acomplish much more accurate work
2205. Compound for Curing "Gapes" in Phea-
sants, ©co., J. H. Clark, Tarbiggen -10 th May, 1882. The compound is about 12 oz, quicklime, 1 thoz, orz
fowers of sulphur, 1 oz, assafetida, and 1 grain arsenious acid.

Roithe.) 2. .
The sececres are placed on trucks and filled by means of sleeves.
2209 .

 2212. WIRE Woven Fabric, G. Arnold, Hallfax.- 10 th
May, 1882. 6 . This relates to the improvement in the manufacture
of wire woven fabrics, comprising the employment of st wire wire ore iron and sat complisising the empinioyment of
seing afterwards hardened and tempered. the steel
bel 2213. Tíeatment for Softening, Uniatring, ¿e.,
Hides And Skins, A. M. Clark, Lomdon.-10th Mary.). 4.0 .
This communication from J . L. Moret,
This relates to the chemical treatment of the hides and sking
2215. SIGHTs For Rifles and Shot Guns when both
EYES ARE
KEPT
OPEN,
T. Thisis ralates partiy to a sight for small arms having
a number of notches on one side thereof. 2216. Supplying Watre to Watrr-closerts, t. c.
Summers, Portsea.-11th May, 1882 .
6d. This relates to the use of a hydraulic piston or
plunger, in combination with a rocking or oscillating seat, which with whe the other parts makes the system of
supply and regulation perfectly automatio. 2217. KNIFE CLEANER, H. Wooduarard, Lo
 Tre cieaner consids of wood, or other suitable material, enclosed in a frame. The upper two blocks are
movabele and are rovided on their interior oropposed
faces with leathor or other suitable poishish 2210

The object is to to cause or facilitate the escape of the
 cused to pass through an apparatus that will divide casting ladle, wherein further agitation is effected by the falling streams of molten metal.
 This rellates to ornamenting ribbons by means of lithography.
2227. Pabinatic Brake Apparatus for Ralways
F. W. Eames, Leeds. -11 th May, 1882. $8 d$. . This relates mainly to an improved construction of double-acting pneumatic lever for railway brakes,
which lever permits of being exhausted or of receiving compressed air on opposite sides of the flexible
diaphragm. 2234. Liferpreserving Bed or Matrress for Use
on Board Smi, A. M. clark, London $-111 t h ~ M a y, ~$
 This. relatest to to buoyant frame-bound life-preserving
mattress, having a removable filing piece or portion and constructed and provided with means whereby it
may readily be converted from a bed into a boat or mayt.
raft
2236. ALcohoirc Beverage, J. H. Loden, Leiden,
Holland. -11 th May, 18s2, The beverage is prepared by the fermentation of a presenco of rugar or or llucose and tartaric acid in the
and sorrel paste.
Brazil, or yellow, or fustic wood,
and 2239. Separatina
 from molasses and syrup by causing the orugur to
combine as a comparatively low temperature with combine at a comparatively low temperature with
hydrate of strontio to monosachararate of strontiof from which the pure sugar may readily be obtaine

May, 1882 - (A communication from C. Rumpot
 diazo and diazo-azo derivatives of the aromatic hydro carbons on aqueous solutions of naphthylamine, erfected
by means or with the aid of acidss or by the reation
 of the said aromatic hydrocarbons on such solutions on
the said naphthlamines and by subsequent sulphonisa hio said naphthlam
tion of the product.

SELEOTED AMERIOAN PATENTS.

From the United states' Patent ofice oftcicil Gazeltc.
 Claim.-(1) In the spiral shearing punch A, the
cutting face, having a part E , removed between the

centre and first cutting point of the periphery, sub
stantially stantially as and for the purpose set forth. (2) In the
spiral she earing punch A two first cutivg point a
opposite sides of the periphery united by pirats
cutting face, having parts E , removed between the
centre and first cutting poins, substantially as and
fon th for the purpose set forth. (3) In the spiral shearing
punch A, a central bearing or narrow base A, and a punch A, a central bearing or narrow base A, and al
contr ooint Bi together forming the mechanical
centre of the tooi, combined with a guiaing or easing
 phery with the
purpose ese forth.
267,837. Addustable and Detachable Handle for Filed July Ist, IB82. Claim,- -he ombination, with the handle beam of
a plough or other implement, of handle C , having

slotted attaching and adjusting plate D, said handle
beitg pitvathoted to the hand beam at E and stay-
bolted through slot F , as described.
 Claim-In a hydrocarbon motor, a cylinder pro.
longed beyond the working stroke of the piston sufficiently to prevent the combustion agrainst the working

face of such piston from directly heating that portion
of the cylinder beyond such working stroke, in com-
of a designedly large, surface to such pron prolonged and
to and a designedy large, surface to such prolonged and
unheated portion of the cyinder, and on water circula-
tion, subsstantially as ssown and described. tion, substantially as shown and described

CONTENTS.
The Enginerr, Dec. 15th, 1882 Page The Resuuts of the Transit of Venvs. (Hllus- 443

Raydravio balanoe lif

Misoblianka ...
OBsTI
 The Instivution of Civl Enginerrs
Thi Hypaulio Power of the Rhone

Australian artillery Experinentis :. .. 453
Measure and Weights

 Thendrs

Bagshaw's Friction Hoist and brake.. (̈llus
trated.)

NOTES FROM LANCAABIRE
NOTES FROM SHEFFIELD
Notrs from Sheffield $\because \because \because \quad \because$
Notes from the North of England
Notes From scotland .. $\because{ }^{\circ}$
 Abstracts of patent ipecifications. (Illus.)
(Illustrated.). (Illustrated.)
PARAGRAPHS-
ARAGRAPHS-
The Newman Testimonial
Dynamo-electric Machinery
Society of Engineers
Clearing away a Wreck at Waterford
Clearing away a W
Electric Lighting.
Epps's Cocoa.-Graterul and Comforting. which a govern the operations of digestion and nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epps has provided our breakfast heavy doctors' bills. It is by the judicious use of such articles of diet that a constitution may be gradually built up until strong enough to resist
every tendency to disease. Hundreds of subtle every tendency to disease. Hud us ready to attack
maladies are floating around wherever there is a weak point. We may escape
many a fatal shaft by keeping ourselves well many a fatal pha blood and a properly nourished
fortified with pur
frame." - Civil Service Gazette. - Made simply with boiling water or milk. Sold only in packets labelled-"James EpPS AND Co., Homœopathic
Chemists, London."-[ADVI. 7

