THE ELECTRIC LIGHTING ACT.

The inventions and improvements of the last five years in the applications of electricity seem to foreshadow a new branch of industrial manufacture, and to open a new field of labour to the engineer. Although legissation has yet to learn that economic science does really point out
certain directions in which legislation should be avoided. The one great incentive to legislation now is "exigency." times proves a blessing in disguise. At times "exigency" extends too far, at others it contracts legislative powers, could be obtained, the Electric Lighting Act of the past
session would be found to be an honest endeavour to hit a session would be found to be an honest endeavou
mean, safe path, and to avoid extreme measures.
The report of the Select Committee, dated 13th June, 1879, recommends that "if corporations and other local authorities have not power under existing statutes to take
up streets and lay wires for street lighting, or other public uses for the electric light, ample power should be given
them for this purpose." Further that " gas companies have them for this purpose." Further that "gas companies have no special claims, to be considered as the future distributors that the time has yet arrived to give general powers to private electric companies to break up the streets unless collected a vast amount of valuable scientific information, by the examination of men who have no claims to a knowledge of electrical matter-men who have been
connected with a number of different companies and done more harm to electric lighting proper than such men as Thomson, Tyndall, Siemens, and Hopkinson, has already become classic, inasmuch as it
showed the opinions, of the highest scientific culture of 1879 upon the position and probable future of the electric light. We insist upon its value, although in most cases the conclusions were erroneous-being drawn
without a knowledge of the wonderful progress which took place during the immediately following years. This Select Committee paved the way for a greater interest in the
Paris Electrical Exhibition, and subsequently that at the crystal Palace. Public opinion favoured legislation somewhat on the lines of the Select Committee, and last session the Electric Lighting Act was passed. This Act permits the Board of Trade from time to time to license any local authority, as defined by the Act, or any company, or person, to supply electricity for public or private purposes, subject
to certain conditions, such, e.g., as (1) the consent of the local authority; (2) the limitation of time of license to seven years, \&cc. The Board of Trade may from time to
time authorise by provisional order any local authority, company, or person, to supply electricity without requiring
such consents as are required to the granting of a license such consents as are required to the granting of a license,
but such order is only granted on complying with certain but such order is only granted on complying with certain
conditions, such, e. , as (1) giving due notice of intention to apply for provisional order; ; (2) having the order con-
firmed by Act of Parliament, \&ce. Provision is made in the Act to enable the Board of Trade to rescind, alter, or repeal rules in relation to the application for licences or
provisional orders. An important clause in the Act, viz, Sect. 6, states that "The undertakers shall be subject to such regulations and conditions as may be inserted in any
license, order, or special Act affecting their undertaking with regard to the following matters :- (α) The limits within which, and the conditions under which a supply
of electricity is to be compulsory or permissive; (b) the securing a regular and effective supply; (c) the securing the safety of the public from personal injury or from fire or otherwise; ((d) the limitation of the prices
to be charged in respect of the supply of electricity; to be charged in respect of the supply of electricity;
(e) the authorising inspection and inquiry from time to time by the Board of Trade and the local authority; (() the enforcement of the due performance of the duties of
the undertakers in relation to the supply of electricity by the undertakers in relation to the supply of electricity by
the imposition of penalties or otherwise, and the revocation of the licence, order, or special act when the undertakers
have, in the opinion of the Board of Trade, practically have, in the opinion of the Board of Trade, practically
failed to carry the powers granted to them into effect within a reasonable time, or discontinued the exercise of such powers; and (g) generally with regard to matters in onnection with the undertakings;" and so on.
The Board of Trade has drawn up
The Board of Trade has drawn up a set of rules for the guidance of those seeking licences or provisional orders.
These rules relate of course more to formalities than to principles, except perhaps as to the principle of publicity, which is insisted upon. Advertisements giving notice of intention to apply to the Board of Trade for licenses or
orders have to be inserted in certain papers, and each appliorders have to be inserted in certain papers, and each appli-
cant must supply a sufficient number of printed copies of such draft orders, \&c., so that copies of each draft order
may be obtained by the public at a cost of not more may be obtained by the public at a cost of not more
than one shilling per copy. The time after which no application was received, and the time for the deposit, \&ce. of the draft orders, in compliance with the Act and rules for this year, has passed, and the draft orders are obtainable on
application. Great interest must necessarily be excited in application. Great interest must necessarily be excited in
the first of these draft orders. It is a step in a new direction, and there is little or nothing to guide the draftsman. Several of the companies are to be congratulated
in having obtained the services of one of the ablest members of the legal profession to draft their arders. The draft orders of these applicants are similar in construction, differing, indeed, only in the details relating to the position of the prospective work and the company. A
careful study of one of the draft provisional orders is con careful study of one of the draft provisional orders is con-
clusive as to the care and anxiety spent upon it to comply with the spirit of the Act, and to be just at once to the public and undertakers. Many of the clauses of such provisional order must necessarily refer to technical details,
and certain expressions will, if the orders meet with the approval of Parliament, become common and stamped into the every-day vocabulary of electric lighting. The draft
provisional order has to give the description of the area of
supply, the powers of the undertakers, the purposes of the supply, the nature and mode of supply, the conditions of supply, compulsory supply, price, measurement, provisions as to testing mains, \&c., as to testing supply, pains and
penalties, regulations as to safety, and so on. The task to describe the above in good legal phraseology is by no means easy; yet we think it has been done satisfactorily. Our attention has been directed to a fact which, so far as we are aware, has not previously been noticed by the
press, that this is the first Act to legalise the distribution of energy-a something not to legalise the distrus far expressed a general opinion on this subject, and must relegate minute criticism to a further opportunity, and till
after the various clauses in the draft order have been given fully or in abstract.
The general powers to be taken under this order are(1) The authority to supply electricity within agiven area; (2) to manufacture, let, sell, supply, erect, and maintain the apparatus for such, and in connection with such supply;
(3) to take up streets, obtain and dispose of works, \&c. The supply of the electricity is to be-
(1) By the "direct system." This is technically known as the multiple arc system. The section describing this system defines certain conductors as "service lines" and "distributing mains." Thus: "The branch conductors leading from such mains to the consumer's premises are herein termed 'service lines,' and the portions of such mains which are used for the purpose of giving origin to service lines are herein termed "distributing mains.
(2) By the "storage system." In this system storage is to be used, the reservoirs for such storage to be upon the premises and in the charge of the undertakers, and not in via charge of the consumers. The reservoirs can be fistem, via charging mains, either by the direct or series s.
continuously or intermittently, as is found desirable.
(3) By either or a combination of the above systems, with earth returns in lieu of a continuous metallic circuit.
(4) By the "series system," or a system under which one consumer is not inde
he is in the direct system.
The distribution is not restricted to these methods, but may be by any method by agreement.
The following section is so important as to require to be given in full:- "The supply of electricity upon any premises shall (except by agreement or as herein otherwise provided) be given at two poles situated thereon at a safe respeonvenient distance from one another in cot a ith the main and the earth as the case may be-and the undertakers shall not, otherwise than by agreement, incur any liability, or be in any way responsible as to the fittings, conductors, or arrangements within the consumer's supplied or otherwise, but their liability shall only extend to securing that the two poles are in a fit and proper condition, and that a proper and efficient supply can be derived therefrom."
This is analogous to the undertaking to supply, say, a positio pressure of water to a certain tap in a certain position, the consumer taking the water from the tap in a order that the mains when once laid should not be disturbed, provision is made for distributing and testing-, boxes at intervals. From these boxes "service lines" radiate, and tests of any or all of the lines from one such
box can be made at the box without disturbing street or householder.
A recent deputation to Mr. Chamberlain learned that the Act was not to be a dead letter, and that if a proviecti order was obtained it was to be acted upon. The sections relating to conditions of supply then are of profitable commercially or unprofitable. If the latter, the public will not support the undertakings with capital, and the whole fabric of electric lighting will melt into thin air. No doubt the idea of many people is to let someone step ind succeed or fail; then, if success is met with, to world. The conditiops proits. This is the wisdom of the ozcur are somewhat as follows:- The undertakers apply
for an order for a district. This district is divided into for an order for a district. This district is divided into
sections, more fully described in the schedules attached to the draft. The undertakers shall loy sindes antain mains such as the system of supply determined on requires in a certain district, shall supply street lamps by the "series" or other system at a price to be agreed upon or fixed by arbitration, so that a fair profit is obtained; they may also lay down mains, \&ce, in the other sections. If within sections, the Board of Trade may "call upon them to lay down and maintain such mains, \&c.," provided they are not called upon to do work where loss is certain. The Trade takes place is clearly defined. Due notice must be given, and upon non-agreement an arbitrator may be
appealed to. In order to obviate the disadvantage that might arise to the public by an undertaker putting into the schedule a number of streets, lanes, \&c., on purpose to
make the optional district non-profitable, the Board of Trade has power to strike out from any section of the schedule "any streets or parts of streets that they may consider it advisable not to include or retain therein."
The supply may be constant or intermittent; it is, however, to be potential between the mains at given points. The difference of potential may be different for different points and
for different hours; 10 per cent. is the maximum variation for different hours; 10 per cent. is the maximum variation
of difference of potential to be allowed. "The resistance of difference of potential to be allowed. "The resistance of the service lines by which the supply is given to any
consumer shall not, except by agreement, be greater than would cause the difference of potential at the positive and negative poles in any consumer's premises to be less than the corresponding difference of potential at the point of junction of the mains and the service lines by which he is supplied, by more than $2 \frac{1}{2}$ per cent. of the corresponding
standard pressure when the maximum current is passing standard pressure when the maximum current is passing
through such service lines." The case of alternate currents
is provided for, as is the time for testing, also when supply ceases, as for example, it may in some busi-
ness districts for a certain time on Sundays and holidays, "unless from the sain time on Sundays and reasonable to provide artificial lighting." With regard to compulsory supply, this is restricted to street lighting
either with incandescent or arc lamps, and to occupiers of either with incandescent or arc lamps, and to occupiers of premises "situate within 50 ft . from any distributing main. In case the maximum current which a consumer reasonably ree seems to be greater than the premises satisfies the undertakers that he really requires such current. If the maximum cur he really requires such the supply may be delivered at more than one pair of poles, so that the maximum current at each pair of poles does not exceed fifty Ampères.
The charge for the supply is to be determined by any of ment:-(1) By the quantity of energy contained in the supply; (2) by the actual quantity of electricity supplied (3) by the number of hours the consumer is supplied (4) by a yearly rent depending on the maximum current required; (5) by a rent depending partly on quantity and partly on maximum current supplied. If the charge is by any other method than quantity supplied the consumer is not to store the energy supplied. Approved meters will be used, and be paid for or rented as are gas meters; such meters to be under the control of the undertakers, to be tested, and it may be compared with, meters, \&c., erected for the purpose by the local authorities.
The regulations for safety are briefly as follows :-(a) The current through any distributing main or service line shall not exceed 2000 Amperes per square inch of section of a pure copper wire of equal conductivity; (b) the
insulation of all distributing mains or service lines shall be such that the leakage is not more than 10 Ampères per mile run; $(c)(d)(e)(f)(g)(h)$ and (i) state that the mains are to be waterproof, and protected from injury, that the supply can be turned off outside a building, satety fusible phail be used in the service lines which cut off the cent , when the current exceeds by more than 100 per intended maximum current which such service lines is nended to supply, the terminals shall be of approved when used shall less than 3in. apart, the earth contact between the two conductors of the distributing main is never to be more than 300 volts, that in any charging main is not to exceed 4000 volts.
In the case of are lighting in series, special arrangements, subject to the approval of the Board of Trade, can be made; and whilst the undertakers supply under settied conditions, the consumers must also use under given condi-
tions. The conductors they use must be such that the current does not exceed 2000 Ampères per square inch of section of a pure copper wire of equal conalong r; must not be naked and unprotected; if laid waterproof, and have an exter fereproof coating also, insulated so that it has a "minimum insulation for the whole building of not less than 5000 ohms per volt in the standard pressure at the junction of the mains and service lines by which the building is supplied."
The conductors shall be lin. or more apart. No porand in the circuit is to be put to earth by the consumer, earth the cases where earth returns are used, not put to vided by the undertakers.
The penalties attached to the breaking or non-compliance with the rules vary from simple pecuniary fines to W
We have dealt with the provisional order more from the cern thint of considering its contents so far as they condetails engineering part of the question, because in such schedules, ast cessariy prewe new eatures. and B simply detail districts and streets in such districts, but C gives definitions and maximum prices. It must be remembered, however, that although X, Y, or Z takes pecessarily the price he will charge. We give Schedule C in full, because of its importance.
The term unit, as used in Schedule C, shall be deemed Ampères flowing under an electro-motive force of one volt during one hour.
ny consumer by the the undertakers shall elect to charge supply given him, they shall be entitled to charge him at quantity up to one hundred units, three pounds fifteen shillings; and for each unit over one hundred units, ninepence per unit
-In case the undertakers shall elect to charge any consumer by the actual quantity of electricity supplied to him, they shall be entitled to charge him according to quantity set forth in Section 1 . of this Schedule; the being taken to be the product of the actual given to him electricity supplied the product of the actual quantity of the point of junction him, and the standard pressure at which he is supplied.
Section III.- In case the undertakers shall elect to charge shall actually use his supply, they shall be entitled he charge him at the rates specified in Section II of thi Schedule; the quantity of electricity supplied to him being calculated on the supposition that the consumer uses the maximum current specified by him under the provisions of Section 27 during all the hours that he has used the supply. the consumer a sum by way of yearly or other rental, they shall be entitled to charge him the rates specified in Section III. of this Schedule; the number of hours during which he has taken the supply being taken to be threefourths of the number of hours during which the supply
was continued during the period to which such rental relates was continued during the period to which suchrental relates,
Section V.-In case the undertakers shall elect to charge
the consumer by the method set forth in Section 34, Subsection (5), they shall be entitled to charge as follows: -At the rate of thirty shillings per annum for every Ampère in the maximum current, in case the supply is and at a price higher in proportion to the standard pressure, in case such pressure is more than 100 volts, and in addition thereto, a chargs

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our

the laws of motion.
SIR,- Will some of your mathematical readers solve the follow2ng problem for me of -Let A in the accompanying engraving be the
oarth, let B be a gun, and C a ball projected from it ; let the
ent
 dotted line represent the influence
of gravity on the shot C. Now, it
is stated in text-boks that if the
shot had momentum enough it is stated in text-books that if the
shot had momentum enough it
would be driven to a point where goourd be driven to a point where
gentum, aund exactly balance mo-
meshot would then mentum, and the shot would then
revolve, for ever round A, the cen-
trifugal force precisely balancing trifugal force precisely balancing
the pull of gravitation. But it
appears to me that the shot could
never tet beyad the sand never get beyond the range of
gravity, and would fall into the moon or some of the planets, or even
the sun, if it got away from the earth. It is admitted that this would take place if the shot was
thrown upwards; I want to know why it will not do so if the shot is projected at a tangent to the earth's circumference.
For hoth state For both statements, in a slightly different form, I would refer
vour readers to Professor Huxley's little work dealing with the your readers to Professor Huxleys little work dealing with the
laws of motion, and not long published.
December 18th.
F. DARE. December 18th.
boiler fubl mconomisers.
Sir, -I notice in The Engineer of December 8th inst. an account of a paper read by Mr. W. E. Miils, before the Liverpool
Engineering Society, ,"alled "Notes on the Mallett System of Controlled Combustion,", which gives a short description of an inven-
tion by Mr. Mallett for burning the smoke generated in boiler furtion by Mr. Mallett for burning the smoke generated in boiler fur-
naces. I have for some time been engaged in projecting and
experimenting with a new invention in the form of an economiser naces. I have forth some ine ntion in the form of an economiser
experimenting with a new invention
for boilers, which has for its object, among other avantages, the burning of the smoke. I cannot see how Mr. Mallett burns the smoke in his invention, because my experience is that the place to
burn the mmoke of a furnace is in the furnace itself, because if the it is useless to try to burn it outside the furnace chamber. I should also think that Mr. Mallett's invention, from the description, would necessitate a good deal of alteration in a boiler, and of course there
would have to be a new perforated septum wall every time the ooiler was let doon for celeaning or repairs, all of which would invention doess burn all the smoke, I do not think it would de tound to save anything like forty-five per cent., because by thə experi-
ments which I have had with my own invention-which embraces more important advantage in an economising point of view than much more than thirty per cent. I may say that my invention is a very much simpler one than Mr. Mallett's, insomuch that it can labour and removed in the same time if necessary, and it is not
and xed to the boiler in any way, nor does it require any alteration in
the boiler. I do not think Mr. Mills is acquainted with my invenbefore the public yet, but I shall be In
In this subject if he will afford me me an opportunity of doing so
EoonomIs North Woolwich, Dec. 18th.

BACK-LASH in Corn mills.

SIR,-It is a fact well known to millwrights that the principle quoted from "Molessorth" by your correspondent, Mr. Gill, is of the gearing in connection therewith, and I generally make the
velocity of the preriphery of the fly-wheel about 50 per cent. in
excess xcess of that of the periphery of the stones - that is to say, that
for millstones 4ft. 4in. diameter, running 140 revolutions per
 ikely lead to good results. I say. likely advisedly, for if 'there is considerabe number of millstones, and the fy-wheel be deficient may be calculated on the above principle, and your correspondent
is, therefore, quite right in asking, "Is it not a matter of I know a case where the of velocity
I
Iurplus of valocity ; still the theck-lash could be heard at the remotest corner of the mill. The fly-wheel was doubbed in weight
without altering the velocity, and the back-lash at once disappeared could multiply instances of an almost similar nature, but perhaps this may be sufficient for your correspondent.
181 , Buchanan-street, Glasgow,

the institute of patent agents.

$\mathrm{SIR},-\mathrm{In}$ my letter on the above subject which appeared in your
ssue of the 8 th inst. I propounded two questions, with the view of eliciting from some responsible member of the Institute a satisfacticiting from some responsible member of the Institute a satisfac-
tory definition of the functions of a patent agent; but as no gentle-
man connected with that body has thought fit to reply to my oune man connected with that body has thought fit to reply to my quues-
tions, I venture, with your permission, to answer them myself, in accordance with my ideas of the analogy existing between the
luties of a patent agent and those of any other professional I submit, then, that a professional man is a man who himself practices a profession. He is not like, say, a a wholesale grocerf,
who find capital to carry on the business, and exercises a certain
who amount of supervision over it, but rarely handles the commodities in which he deals; but he is a man who attends personally to the
professional duties devolving upon him. The public oonsult him on
questions in the solution of which he is suposed to be profient, or entrust him with work requiring professional skill, and they expect that the professional opinions which he ge gives shall be the
conclusions drawn in his own mind from the premises submitted to him, and that the work which he issues shall bear the impress of another mind, or the work which he turnns out is executed by other confidence
Now, let us apply this train of thought to the particular profes-
sion under consideration-that of a patent agent,
is a man sion under consideration-that of a patent agent. A patent agent
is a man who is employed by others to profesionaly assist them
in the obtainment and maintenance of letters patent and to advise on the various questions arising out of letters patent for inventions. In the exercise of these functions heis required to
draw specifications of inyentions, although it is now plainly hinted
that this branch of his duties is quite subsidiary; to prepare reports
and opinions upon questions of validity and infringement, draw disclaimers, and do other important work needing combined legal
and sientific knowledge and training. If, now, he does not pertheir performance to others, how can he be said to practice the profession? surely if heads of departments do the important
work, it is they who are the real patent agents, rather than the
princis is. no answer to this allegation to say that the same thing
exists in other professions. exists in other professions. There is good reason to believe that
such is the case; but two or any number of wrongs do not make
one right.
Much has been said about the impartiality which the promoters of the Institute have observed in inviting the co-operation of quali-
fied practitioners with whom members of the Council were acquainted. fied practitioners with whom members of the Counci were acquainted.
Well, Sir, I will give you as one example a case in point:-A eminent men in the scientific world was formerly and for of years manager in one of the principal patent agency offices, and
in that capacity discharged all the responsible professional duties in that capacity discharged all the responsible professional duties
devolving upon a patent agent. The principal of this establish devolving upon a patent agent. The principal of this establish
ment is an influential member of the Institute, but his former manager was not invited to join, although it is to be presumed that office, no doubt cours sustained the reputation of that gentleman's the same time other gentlemen have been invited, and are now, in
fact, fellows of the Institute who have their respective periods stin the of one the fillows These anomalies must be explained if ever the Instit obtain the confidence of the public. Meanwhile, intending
patentees when they scan the copies of the list of fellows whid patentees when they scan the copies of the list of fellows which it
is proposed widely to circulate, will remember that the profession is proposed widely te circulate, will remember that the profession
contains other respectable honourable men, who, on the score of connected with the Institute, of Patent Agen may
and December 23 rd .

Sns,-You have published a considerable number of letters concerning the recently constituted Institute of Patent Agents. The writers ale point in the same direction; they have one and all the
same object in view. Your correspondents all complain that the admission of members to the Institute is determined by something akin to favouritism ; that, in a word, the new Institute is a mutual excluded because they do not fraternise with or belong to a certain clique. These are grave charges, but they are not graver than
those I anticipated. Such charges are incidents which invariably attend the formation of any new club, body, society, or institute, tages, vexes those who are not received within the sacred precincts Human nature has always talked as your correspondents talk You have not published any complaints from the elected members
of the Institute of Patent Agents that pood men have been left out in the cold. It is only the outsiders who feel the pinch out in the cold. It is only the outsiders who feel the pinch
Those inside the charmed circle hold that they are all right, and members members of the Institute do not reply to outsiders; they take no
notice of them. They have got what they want, and they would not improve their position by explaining why those not elected
have not been chosen members of the new Institute But it happens that there is a public, which is somewhat inter ested in the proceedings of patent agents as a body. There are, in round numbers, 5000 patents granted every year in this country
alone. At the lowest estimate these average $£ 10$ each paid to alone. At the lowest estimate these average $£ 10$ each paid to
patent agents for their services, and quite exclusive of office fees This amounts to $£ 50,000$ a year. Then there are foreign patents, I shall overshoot the mark if I agent is again paic. 1 this stands for $10,00 \mathrm{a}$ year Thus, then, the patent agents of Great Britain draw from the inventing members of the body politic, say, $£ 60,000$ a year. This is a very considerable sum, and it seems more considerable when
we remember that any inventor who has sufficient common sense can comply with the necessary forms, pay the proper fees, patent agent. A patent being secured, at the end of three years £ $£ 0$ has to be paid to prolong it for four years. Now it is only neces sary to take the patent and $£ 50$ to Somerset House, and to pay the
money to a clerk, who endorses the fact that the money has been money to a clerk, who endorses the fact that the money has been
paid on the patent. Ten minutes' work; patent agent's fee,
± 22 s. The same operation over again; patent agent's fee, $£ 33 \mathrm{~s}$. I am quite prepared to admit that the aid of a patent agent saves a
great deal of trouble, and it is, on the whole, worth while to enlist his services; but he must not imagine that he can receive $£ 60,000$ a year and escape criticism. It is argued that patent agents know
how to draw up specifications and that inventors do not. This is true of some inventors and some patent agents; ;itis not universally
true. When a specification has to be drawn with cantion it true. When a specification has to be drawn with caution, it is
usually considered by barrister be employed to settle the specification. There are patent agents who are competent to settle a specification without the aid member of the profession. There are, I think, no special peculiarities about patent agents which exempt them from criticism. I recognise their utility, but I consider myself at liberty to com
ment on their failings ment on their failings.
Up to the year 1852 ne number of patent agents was small, a year he did well. A dozen taken out within the year would justify a young man in marrying, and perhaps keeping a brougham,
with one horse. Since 1852 the number of patents taken out las with one horse. Since 1852 the number of patents taken out lias enormously augmented. It began to increase at once. There was an instantaneous rush of patentees to the Patent-office as soon as
the price of a patent fell from about $£ 300$ to $£ 25$. That is thirty years ago, and for thirty years the inventors of Great Britain and Ireland - not to speak of the numerous foreigners who take out
patents here-have on the whole done very well without an Instipatents here-have on the whole done very well without an Insti-
tute of Patent Agents. These lastdo notoften become bankrupts; no run away with other folks' money. Take it for all in all, the prodess are unobtrusive, and are not found out. For myself I doubt their
existence. I Io not doubt the existence of absolutely incompetent patent agents; but this is quite another thing. After thirty years of peace and contentment, we, however, have an innovation. We that the outsiders- that is, the inventors, the men who pay
the $£ 60,000$ expenses-in a yoar or so, and thus all the Institute fees and the new guild is to understand clearly for whose benefit the new guild is being formed. Up to the present no information
at all has been supplied on this subject. May I hope that the There is only 1 now make for more light may elicit a response utility, viz, by on taking in care that tha a certififute cate of membership is a
certificate of guarantee of the kind. Everyone understands how such a guvild i
formed. Some of the rising men of a profession get hold oldest members, men of renown, and urge them to form an institute. After a great deal of consideration, and bickering, and
disputing, and several meetings have been held, the institute is can elect every one in the profession a member or associate, or they be followed; nor is it expedient. For example, if every patent agent were a member of the Institute, what would be the good ot
being a member? The value of membership depends on it.
exclusiveness. Consequently, a choice must be made, and as
there is no examination or genuine test of ability, who are or wh are not to be members or associates depends on the will of a very "This is an institute selfelected electors say, and with justice we like in it." This is the course which is invariably pursued, and the policy is generally attended with a certain amount of success, fter a while, however, it makes itself obtrusive younger members or outsiders arise in their might. They say lainly, "We will not have anything more to do with a sham. Then enters on its second period of existence, and becomes of value The Institute of Patent Agents is now in the first stage, and to everse natent agent's office; but I know men who have spent years in that time who could not be trusted to draw the specifcation litchen boiler. This is the plain truth; and the plain truth in dist f cases is best spoken. The Institute will probably continue to At length some adventurous spirit will arise and say, "This Insti tute must become an examining body, and membership must be patent agent." Then, and not till then, will the Institute acquir any real dignity and importance. Whether the present Institut contains within itself the germs of success or not I cannot pretend to say. Money wil certainly be wanted, and as every new inember represents mho can pay the fees. Councils newly established adm any one who can pay the fees.
ably eminently virtuous during the first year or two. Men will not be admitted even as associates who, if they will but wait a
little, may find themselves in the presidential chair. Time is requrred to adjust mateers. will prudent counsels guide the opera original grows older it will grow wiser. Are there really patent agent enough to keep up such an institution, candidates enough to make it worth while to appoint an examining body y Perhaps so
Meanwhile I advise those interested to turn a deaf ear to sugges tions for the promotion of a rival body. There is certainly not room enough for two Institutes of Patent Agents; some persons It is s itself on that of the Law Society, and that a charter will be obtained, and perhaps an Act of Yarliament. Powers, in short patents for money fees and not holding the diploma of the Institute patents sor money fees and fifty members of the Institute. That so few men should expect to obtain so many privileges seems
strange. When they have got them they will fix their own fees.
So suppose they double the existing fees, what will happen to the So suppose they double the existing fees, what will happen to the
inventor? He will be simply powerless. We shall be as much in the hands of the patent agents as we are in the hands of the awyers. It is surely time that the invent claim to be regarded a professional man, I shall, with your per mission, say something at another time.
London, December 22nd.

PAIWAY SPEEDS AND FARES.
SIR,-If you can find space in The Engiverr for the accompany-
ing facts about the nine great railways which start from London, I believe they may be of interest to your readers. To compare the speed of the trains, the number of trains, and the price of the tickets.
For the purpose of the following table, I have taken the six and each of six most "up" and three "down," between Londo and the average speeds are, therefore, those of the thirty-six
fastest journexs thus performe fastest journeys thus performed. As the same trains frequently
run to more than one of these towns, their number averaged is less than the number of journeys, and it is fair to remember that the fewest trains may probably show the best averages. The fastest average speed to any one place, is to Nottingham by the Midland at $46^{\circ} \cdot 4$ miles per hour. The highest fares charged are to Folke-
stone and Dover by the South-Eastern expresses, being 3^{\prime} '4d. and 3.3 d . per mile. These tables appear to show finally that the lines are fast and rather expensive, while the southern lines are
both slowest and dearest; and moreover, the South-Eastern, the London, Chatham, and Dover, and the London, Brighton and South Coast, are the only ones on which express fares are charged:-

Railways.					$\begin{gathered} \text { Average } \\ \text { fares } \\ \text { per mile. } \end{gathered}$	
					1st.	2nd.
reat Northern	24	$\begin{array}{\|c} \substack{\text { Miles } \\ \text { per rhr. } \\ 42 \cdot 1} \end{array}$	$\begin{gathered} \text { Miles } \\ \text { per } \mathrm{hr} \text {. } \\ 50 \cdot 3 \end{gathered}$	$\begin{gathered} \text { Miles, } \\ 105 f_{2} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ 1 \cdot 6 \end{gathered}$	d.
land	23	$40 \cdot 6$	$49 \cdot 7$	${ }^{971}$	$1 \cdot 6$	-
and N . Western	27	$39 \cdot 4$	$48 \cdot 2$	${ }^{911}$	17	133
Eastern	23	$38 \cdot 4$	$4_{4} \cdot 8$	$70 \pm$	2.1	$1 \cdot 6$
at Western	21	$37 \cdot 5$	$53 \cdot 2$	1063	$1 \cdot 9$	1.4
and S . Western	22	$36 \cdot 1$	$44 \cdot 3$	${ }^{48} 8$	$2 \cdot 4$	17
c , and Dover	25	34.6	$44 \cdot 5$	78	$2 \cdot 5$	18
B., and S. Coast	32	34.4	$43 \cdot 1$	55]	25	1.8
Eastern .	34	$33 \cdot 7$	44	75	$2 \cdot 4$	1.8

The above figures are based upon the various companies' time
The towns which have been chosen are the following:-
Midland Railway: Nottingham, Leeds, Manchester, Liverpool, Great Northern Railway: Nottingham, Leeds, Manchester, L. and N. Western Railway : Birmingham, Manchester, Liver pool, Holyhead, Glasgow, Edinburgh.
Great Eastern Railway: Norwich, Yarmouth, Ipswich, Colchester, Harwich, Cambridge.
Great Western Railway: Plymouth, Exeter, Bristol, Swansea Birmingham, Birkenhead. Portsmouth, Southampton, Weymouth,
L., C., and Dover Railway: Dover, Canterbury, Ramsgate L., B., and S. Coast Railway: Portsmouth, Hastings, Eastbourne S. Eastern Railway: Dover, Folkestone, Margate, Hastings Reading, Maidstone
December 27 th.

HYDRAULIC BALANCE LIFTS.

SIR,-In his letter dated 19th inst., Mr. Barr endeavours to With the statements some spect of proving our statement as to weights own erroneous, he estimates the weight of the ram and cage you illus trated at 21 cwt., and that of the balance cylinders and rams as
24 cwt. Instead of this the weights really are 23 cwt . and 20 cwt ,

EIGHT-COUPLED LOCOMOTIVE, ST. GOTHARDRAILWAY.

 CONSTRUCTED BY MESSRS. MAFFEI, MUNICH, FROM THE DESIGNS OF HERR J. STOCKER.
respectively. The metal of the balance weights will, as we stated, suffice to make the balance cylinders, \&c.
and rams, and of the parts which they displace from the old type of lift. He provides 18 cwt. of iron, say, 1 cwt . of steel rope,
and two pulleys and bearings, which would not be safe if lighter and two pulleys and bearings, which would not be safe if lighter machinery for $£ 1710 \mathrm{~s}$., or at the rate of 16 s . per cwt. If Mr. Barr will supply and fix at this rate, he will be much sought after. We have only considered the parts mentioned by Mr. Barr, but that gentleman has quite overlooked the guides for the balance weights, and the strong overhead framing required to support the
whole, as well as the greater cost of fixing the gearing he advocates, as against that of fixing our balance cylinders at the ground level. We have had erected a series of our lifts in a building where the walls of the lift wells were so weak, that for the purpose of supporting a dead weight balance lift they must have been rebuilt good enough, and the expense was saved.
We think Mr. Barr's question, implying that the power required to work lifts at a pressure of 700 lb . per square inch, is greater
than that required for 400 lb . in the proportion of 700 to 400 , must be misprinted; but in case your printers are not in error, we that, with the accumulator at 700 lb . pressure, the volume of water to be pumped is only four-sevenths of that required with the accumulator at 400 lb ., and the work to be done in pumping is precisely the same. We would say in this connection, that we
have neither advocated nor used 700 lb . pressure for hydraulic have neither
balance lifts.
Into Mr. Barr's analysis of friction we will not attempt to follow him ; but when he can produce practical results showing dead-weight balance lift we shall be pleased to compare notes
Mr. Barr has been informed that some steel wire ropes have run is not scientific. Can Mr. Barr find a case where "Constantly" diameter running over a pulley 2 ft . diameter-alternately in reverse directions-at a speed of 100 ft . per minute for eight hours per day have worked for eighteen months without sign of failure? This is the sort of test which is involved in their use in a large argument, Mr. Barr finds it desirable to take the purposes of his pressure, viz., 450 lb ., of the lift illustrated. But this he is scarcely entitled to do. For one dead-weight balance lift for passengers erected in connection with an accumulator, twenty have been erected to be driven by low-pressure water from the town mains the high-pressure which alone will enable him to use the small ram on which his arguments respecting cost are based? We did not in our first letter allude to a "larger lift" as Mr. Barr supposes, but to a lift designed to do precisely the same work as that illustrated,
but actuated by water at about 50 lb . pressure per square inch but actuated by water at about 50 lb . pressure per square inch.
According to usual practice such a ram and cage would weigh about 2 tons, and the increased weight will materially affect Mr. Barr's figures. The hydraulic balance lift, however, increases the pressure to any desired amount, and therefore directly reduces cost. Mr. Barr says two weights and two sets of ropes, guides, head-
wheels, bearings, girders, wheels, bearings, girders, \&c., are safer than one. Probably so; but three, or even four, would be safer still. But then, what
about cost and simplicity, for which Mr. Barr has also expressed Mr. Barr still
water to the top of a required. May we remind him that the the additional first cost yydraulic balance lift, and that the relative cost of this is the question under discussion; and farther, that the lift returns either ost. main or to the top of the house without any difference in
Since writing the above we have seen in the Times of the of wire rope. The portion bearing on the question by the failur cussion we quote. "On Saturday morning a now under dis dent, resulting in the loss of three lives, occurred at the Cannock Chase Colliery Company's No. 3 pit, near Brownhills. The pit, in
which 400 men are employed, is one of the best-regulated in the which 400 men are employed, is one of the best-regulated in the
extensive Cannock Chase Colliery district. After the workings had been examined and found safe for the men to descend, the wire rope in the down-cast shaft was tested with a 2 -ton load and found apparently all right. Three men, named Thomas Collis, 50 ; Herbert Grimley, 26 ; and Francis Horton, 19 , then entered the
cage to go down to "fettle" the horses. Immediately after the cage had disappeared from view the wire rope attached to the cage men, was precipitated to the bottom of the shaft, a distance of 150 yards. It is the custom with the owners of the colliery to replace
months." As we have before pointed out, the conditions for using wire rope are far more favourable at collieries than in hotels and $\begin{array}{ll}\text { warehouses. } \\ \text { Queen's-road, Battersea, Dec. 23rd. } & \text { J. G. S. STEV } \\ \text { C. }\end{array}$

PERMANENT WAY, indian state railways.

STR,-In your issue of the 10th ult., page 351, under the heading of "Contracts Open-Permanent Way, Indian State Railways," we notice drawings and specifications of cast iron plate sleepers for the Indian State Railways, metre gauge. As these drawings-
No. 204 and 213 -are exact copies of those furnished by us, the patentees, we are at a loss to understand why everything has appeared excepting the name by which the sleeper now extensively used in this country is known, viz., the "Denham-Olpherts." As mese drawings have appeared in your valuable paper, we think it
may interest you and your readers to know to what extent this form of sleeper has already been adopted in this country. The trunk line from Calcutta to Delhi has upwards of half a million in use of the design marked A on the accompanying lithograph. The State lines have 82,000 of the drawing No. 218 referred to above, referred to represents the "Denham-Olpherts" sleeper with 204 Guildford L. Molesworth's cast iron wedge fastening. As in reproducing the drawings for publication the names of the patentees have been omitted, we shall be obliged by your publishing this letter. Should any further information be desired, it can be had on applicaLondon, S.W.
C. H. DenHam,

Hourah, Bengal, December 5th.
For Denham and Olpherts.

THE ELECTRIC ARC

Sir,-It is to be assumed that, in the case of arc lamps, there is for each some current which is better than any other. What this the lent shall be is determined by the diameter of the carbons and can obtain of the arc. Can any of your readers tell me where 1 largely. Thus Brush lamps, with 12 -millimetre carbons, are generally worked with an arc of about $\frac{t}{3} \mathrm{in}$. long, or less. Indeed the carbon points are all but in contact. Brockie uses an arc of lamps as I have hin works between $\frac{1}{8} \mathrm{in}$. and $\frac{1}{4} \mathrm{in}$. in such of his very variable in length. The André lamps shown in the Crystal Palace worked with $\frac{1}{8} \mathrm{in}$. arcs. There must be some length of arc tell me what it is? Messrs. Ayrton and Perry, and other photometric experimenters, are quite silent on this important point. London, December 27 th. \qquad
CHilled rolls for glazing calenders.
SIR,-It is quite true that English paper-makers are compelled as you quote on p. 449 from a correspondent in Contract this course involves a greater expenditure of time and money than Lhe purchase of English rolls. I believe that some Scotch and rience has not yet gained them sufficient confidence rolls, but expethose from the United States, when and where the greatest economy is required. "Cheap and nasty" spells ruination in the paper trade. 21 Dt. \qquad Paper-maker.

EIGHT-COUPLED ENGINE, ST. GOTHARD RAILWAY.
We publish this week drawings of the 8 -coupled engines now in use for working the heavy traffic of the St. Gothard report published in our issue of November 17th, and are in the lent examples of continental work. The engines were are excel Messrs. Maffei and Co., of Munich, from the designs of Her J. Stocker, locomotive superintendent of the St. Gothard Rail way. The design is founded upon the 8 -coupled mountain engines of the Southern Railway of Austria, the Upper Italian Railway, and the Paris and Lyons Railway-the latter used for the Mont Cenis-but with considerable modifications, which are ing to Herr Stocker himself. The arrangement of the trailsprings, to enable the fire-box to a special disposition of the prings, to enable the fire-box to be properly supported, is a greatly improved, and this was a matter of much importance in order that the engines might run at a sufficient speed through the great tunnel and elsewhere. The whole engine is made as
short as possible, in order that the overhanging weight, beyond the short wheel base, rendered necessary by the curves of the line, may be as small as is practicable. Another point of novelty is the construction of the rear part of the boiler, which is more on the American pattern.
The whole of these fifteen engines were at work by June 1st, 1882. The specification stipulated that they should be able to freque 150 tons on a gradient of 2.7 p . c., but this has been engines 1 y exceeded. It has already happened that two of these engines have hauled a train of 410 tons over the mountain section of the St. Gothard, at a speed of 9 to 12 miles an hour; whilst on the valley section, with gradients of 1 in 100 , one the St. Gothard Railway are perfectly satisfied as reards both the St. Gothard Railway are perfectly satisfied as regards both
The general dimensions of th
table published in our issue of November 15th, but it is here repeated for greater convenience of reference :-

F

Tubes :-No -Length
Widfth
Surface
Outaide diameter
Length between
Heating surface: - - Firee-box tube plates.
Boiler:-Mean diameter of shell Toan diameter or shell $\ddot{\text { Total }}$ leagth, with
Heighoke-bo

Axles:- Diametor of journals
Wheels : Linithoth of oinarnals
Wheels : $=$ Diameter of tread
Engine: $=$ Diameter of cylinder
Stroke

French measures.	English measures.
25 n	7.0 ft .
${ }_{2}^{1.02 \mathrm{~m}} \mathrm{~m}$.	
${ }_{20}^{225}$	da
m.	${ }^{7} 78 \mathrm{sq} . \mathrm{ft}$.
sq. m	2 sq
5 sq . n .	0 s
sq	(1702sq
${ }^{7} \cdot 445 \mathrm{~m}$	24 4.42 ft t.
${ }_{2}^{2 \cdot 100 \mathrm{~m}} 10$	
${ }_{35}^{10 \mathrm{~atm} \text { m. }}$	${ }_{1} 1438 \mathrm{sin}$.
200 mm .	7 7.87in.
${ }_{\substack{240 \\ 1.17 \mathrm{~mm} \\ \hline \\ \text { m }}}$	${ }_{3}^{9} 8.8454$ ift
520 mm .	
610 mm .	${ }_{24} 2.0$ in.
${ }_{\text {c }}^{130 \mathrm{~mm}}$.	5.12in.
tonne	44.0

These figures show very clearly the great power of these engines, having practically 20 in . cylinders and 2 ft . stroke, with the high working pressure of 150 lb . As an illustration it may
be mentioned that the work done by one only of the two cylinders at each stroke would be about $1,000,000$ foot-pounds, or equal to the whole amount stored in the Faure battery which made such a sensation when conveyed from Paris to Glasgow not many months ago.
The general specificatio
The general specification of these engines was the same as for the other types built for the St. Gothard Railway. It presents several points of interest as compared with the ordinary specification of an English locomotive, and we therefore give an
abstract of it. Omitting the mere general and ordinary conditions, the main features are as follows.
The locomotives and tenders are to be constructed according to the dimensions given for each particular class, and may be required beginning the work he is to lay copies of these and of his general drawings before the mapagers of the railway. Any alterations required by them are to be made by the contractor, and the drawings when approved will remain with the company and form the basis of the contract. In addition,
the contractor, at the end of the contract, will supply the contractor, at the end of the contract, will supply a complete
set of drawings to one-tenth scale of the engine set of drawings to one-tenth scale of the engine as built-elevathrough the fire-box and smoke-box-and with all the chief simens sions written upon them. The materials are to be of the best quality; the works supplying them are to be named in the tender, and proof must be given when required that these works are really employed. Tests of strength will be made by the company before use, either in the works of the contractors or in some proving-house which they may select. The tests will be at the cost of the contractor. The various parts will be made of the following materials:-
A. Of crucible steel
the tires for the the tires for the locomotives, the eyes for all the eye-bolts.
spiral ; the pistons, the slide bars, the axle-bo
keys, and the screwed rods for the valve gear.
C, of the screwed rods for the valve gear. piston rings, steam pipes, grate bars, brake blocks, and all parts D. Of copper:- The in

Dil pipes for steam :-The inner fire-box, the horizontal stay bolts, all pipes for steam and water, including those in the smoke-box, the lubricating pipes.
E. Of brass :-The cocks, valves, bearings, regulator slides, he nuts of the valve gear, screws, \&c., including all valves and F. Of plate iron:-The boilers, frames, foot-plate, sides and oof of the cab, cleading plates, the tubes-charcoal iron-and G. Of wrought iron : the wheel skeletons, the crank pins, connecting rod axle oxess, fire-box frames, the axle-boxes, \&c., are to be case-hardened to a depth of a east 0.08 in. The connecting and coupling-rods are to be forged from one piece.
The materials are to be subjected to tests of strength and ductility, as given in the table below. The test pieces are to be
cylinders of 200 mm . in length-say sin. -and at least 20 mm . iameter-•Sin.

Material.

kg. per	kg. per	perct of original	per
sq. mm.	sq. mm.	$\begin{aligned} & \text { rigmal. } \\ & \text { length. } \end{aligned}$	cen 35
35	65	15	25
30	60	15	30
20	36	15	-
18	34	12	-
20	36	18	-
7	20	45	-

The spring steel is to be made into a spring 1 m . long, and square millimetre, without taking any permanent set. The tubes must sustain a pressure, inside and outside, of twenty atmospheres, without any permanent alteration of form. The various especially the axles, axle-boxes, springs, pistons, crossheads, con necting and coupling rods. The screws are to be on the Whitworth system, and are arranged in sets, so as to require as few panners as possible. All nuts within the boiler or smoke-bo
 hardened. The eyes of all expe-bolts tre to be bushed with hardened rings of crucible steel forced in by hydraulic or screm pressure. They are to be kept from turning round, and pro vided with means of lubrication, as are also all other parts expose o wear by friction.
The work is to be done under the inspection of an officer appointed by the company, and the contractor is to notify to the
company the commencement of work upon the boiler and other company the commencement of work upon the boiler and other may be inspected during progress. The boiler is to be tested by water to 50 per cent. above the working pressure in the inspector's
presence. Before the putting in of the tubes, one out of every fifty is to be selected for testing, and if it fails the whole lot may rejected. Every spring is to be tested by a lever apparatus 76 kg . per square millimetre, without taking any permanent set On delivering the locomotives, the contractor must send in the statement of the exact weights which will be upon each axle of hen there is 6 in. of , both when they are quite empty and the water tank and the coal bunkers are quite full. A detailed statement of the weight of each part, and of the weight of the
separate materials composing it, is also to be given.
The engine, when delivered, will be expected to
ay 250 miles -before it is ancented by the com run 400 km . will be, however, a deposit of caution money by the contractor, which will be returned when the engine has been two years in crank pins the period will be four yer
In conclusion, we may express our obligations to Herr Stocker,
d the officials of the St. Gothard Railway at Lucerne, for the kindness in facilitating our reproduction of these valuable drawings.

HARVEY'S HOT BLAST STOVE.
In our last volume-vide page $430-$ we illustrated and combined in one structure, and also one form of separate stove,
designed by Mr. Thomas F. Harver, of Dowlais. We now illustrate on page 484 another design of separate hot-blast stove, and give Mr. Harvey's views concerning it.
For heating the stove, the fuel used is in this, as in nearly al
other instances, the waste gases from the blast furnaces combustion of these gases is effected by means of atmospheric nir in a fire-brick chamber at the bottom of the stove. In order to effect complete combustion of a combustibe gas, it is neces--
sary that the gas and the supporter of combustion be well mixed together. When the fuel is solid, such an coal or coke, the mixing
of the combustible and the air is fairly done by causing the latter to pass between the pieces of the former, as takes place i an ordinary fire-grate ; but gaseous fuel should be divided int small jets and the air into proportionate jets preparatory to congas. In the regenerative system of hot-blast stoves it is impor
tant that the whole of the heat be generated in the hot end the stove, or, in other words, that the combustion of the gases
be effectually done in the combustion chamber. If combustion be effectually done in the combustion chamber. If combustion
be allowed to take place throughout the whole length of the be allowed to take place throughout he whole eungth of the
stove, or nearly so, the chimney end, or what should be the co end of the stove, will be at nearly as high temperature as the escaping to the chimney too hot. Through this cause, that is tardy combustion, owing to incomplete mixture of the air and the gases in the combustion chamber, the chimney valve is sometimes
kept at a temperature of red heat. There is then not only an unnecessary loss of heat up the chimney, but the temperature o
the combustion chamber or hot end of the stove is reduced, an

consequently the tem blast is also lowered.

Itainable by the perfect combustion of blast furnace gases. The of ordinary height may be taken as approximately $\mathrm{CO}^{2} .18$ Co.25 and N. 57 . To convert the carbonic oxide of 1 lb . of such cally be required, but in practice it would probably be found necessary to admit to the combustion chamber 50 per cent. more than the theoretical requirements, or say, 214 lb . of oxygen. In the atmospheric air this oxygen is associated with about 716 lb .
of nitrogen. The products of combustion of 1 lb. of blast furnace gases, with 50 per cent. excess of atmospheric air, will,
therefore, be 1.93 lb or say 2 ib . The specific heat of this mixtherefore, be 1.93 lb ., or say, 2 lb . The specific heat of this mix-
ture of carbonic acid and nitrogen being about 23386 and the uantity of heat generated by the combustion of the carbonic xide of 1 lb . of the furnace gases into carbonic acid being ture of the products of combustion above the temperature ore of the products of combustion above the temperature
of the gases and the air before combustion will therefore be $600=1285$ deg. Cent. $=2314$ deg. Fah.
The regenerator, however, could not be raised to that temperature but by allowing the gases to be burning in the stove for by allowing the products of combustion to escape to the chimney at a high temperature, which would result in loss of heat, unless the regenerator is excessively large and proportionately expensive.
In the stove under consideration, owing to the complete mixture of the air and the gases in the combustion chamber, and
consequent perfect combustion, it is anticipated that the emperature of the hot end will be sufficient to heat the blast t about 1800 deg. or 1900 deg. Fah.; and also that the capacity o without allowing the gases to escape too highly heated to the
wither chimney.
A principal feature in the design that the furnace over the whole area of the flor the stove in split-up portions over the whole area of the floor, and the pro-
ducts of combustion impart their heat to the brickwork of the egenerator in their passage upwards towards the escape valve at the top of the stove, the usual tall brick chimney and culvert leading thereto being dispensed with. This simple arrangement of the stove, moreover, permits the cleaning to be effected with
great facility, the top being the cool end at which the cold blast admitted.
ustion chseen that there are five parallel flues under the combustion chamber, each of which commumicates therewith by out the length of the flues. The gases are admitted. through slide valve, which, together with its seat, is kept cool by circulating water into two of these flues, and the air for supporting combustion is admitted through ordinary wing valves fitted in the cleaning doors into the other three flues. The air and the Sases meet and mix in the port-holes which lead from the fues intrnal area of the bottom part of the stove ; and thorough combustion takes place at the bottom of the stove, and all over the foor, rendering every square foot of heating surface available for any given horizontal plane. The regenerator is supported upon series of semicircular arches bonded well together, and the rches are built in two distinct rings, the under arches being ndependent of the upper ones. The bricks of the upper ring built, and from the top of the arches to within 5 ft . or 6 ft . of the of which are 7in by 9 in. in cross section. The upper part he stove may be built entirely of an inferior quality of fire brick, as the gases are robbed of their heat on their way upward, The chimney valve regulates the velocity
The chion umed being controlled by the gas valve The of gas conamed ated at the top, and passes downwards in a contrary dire ion to that of the heating gases, and the whole capacity of the stove is traversed by the blast which issues through the gas flues, ad through a valv.
he hot blast main.
The stove may be partially cleaned by discharging a gun into closed and allowing a current of cold blast to pass through from op to bottom. The current of blast will drive the dust to the bortho, and it can then be raked out through the doors provided or six weeks dependent upon the quality of the gas cons may be done by workmen standing in the upper part of the tove upon the plate covering the regenerator, and using sarapers or wire brushes to loosen the deposit, a downward current being caused by the cold blast admitted at the top as before described. he downward current may, however, be produced by using a bottom, keeping the top of the stove open; or a steam j may be used at one of the bottom connections to cause the
downward current. In any case no time is wasted in allowing the stove to cool before the operation of cleaning begins, a It is claimed that this closs cool part.
It
t less cost than any other system, and in somes heating surfac half the cost.
The weight of the wrought iron casing is $33 \frac{1}{2}$ tons; the ame for first quality bricks, $9 \times 4 \frac{1}{2} \times 23$, is 27,000 ; the A, B, C, D, E, F, \&c., 51 tons; number of second quaity brick,
\square
LIARDET AND DONNITHORNE'S SECONDARY BATIERY
ON Friday week a number of electricians and others interested in electrical matters were invited to inspect some batteries made Messrs. Liardet and Donnithorne, and exhibited at the offices of Messrs. Wigner and Harland, Holborn Viaduct, where electric currents are supplied by the Edison Company. The batteries hown are on a small scale, most of them, comprising fitty cells, area, while a few, fifteen cells, have an area of one-fifth of quare foot. A cell contains a pair or more of thin lead plates supported on a wood backing. Compounds of lead, consisting hydrochloric acid, with peroxide and sulphate of lead, are held against one side of the sheet of pure metallic lead by placing
the whole in flat porous jars, a pair of jars being placed in each the whole in flat porous jars, a pair of jars being placed in each
cell and surrounded by dilute sulphuric acid. Instead of holding
the compounds of lead against the lead plate by placing them with the plate in porous jars, it is proposed to employ porous copper connecting strip is soldered. Messrs. Wigner and Harland have reported upon these batteries, and they were shown at small scale, as a large pasmuch as the batteries are on a very broken apparently by the expansion of the porous jars were under the influence of charcing as most of the compound and as none of them have been charged more than about five or six times, 1 t and what it is likely to be in practice, or in what form the battery is likely to appear when the detail difficulties which yet appear have been overcome. The inventors seem to think these details of minor importance, but a little more experience with secondary batteries will probably show them that these little done before their represent a formidable quantity of work to be mercially complete. It appears to us that the difficulties combelong to all batteries in which the active material is which against lead plates by supports or wrapping belongs to this battery as much as to the Faure battery. Messrs. Wigner and Harland give the electro-motive force of the battery as 1.9 to $1 \cdot 95$ volts, and that after being charged with a current of 63 Ampère hours, they gave back 54 Ampere hours. A number of other figures as to weight and efficiency are given by Messrs. Wigner and Harland, but as the battery is at present in what may be called the laboratory stage, it would be useless to give
these. THE INSTITUTION OF CIVIL ENGINEERS FOR IRELAND.

He mexican railw

[Concluded from page 474.]
Engines.-A glance at the section, and examination of the work the traffic efficiently the engines must vary in power according to the different divisions of the line. Outline diagrams are given of the seven types of engines in use on the railway. All of them
are constructed for burning wood, as the costo of coal the sea carriage, is too great to allow of its general use as fuel. Type No. 11 is an engine of the ordinary American pattern with wheeled bogie truck in front, and four coupled wheels 5 ft . diameter
behind. tender has eight wheels, composed of two bogie This class of engine is suitable for passenger trains onl wheels. the upper plains. Type No. 2 is an English pattern of eng and on with radiating axle-ino. by 22 in., a pair of wheels in front fitted behind. The tender has six fixed wheels, with brakes applied to goods trains on the upper plains. Type No. 3 is a very excellent class of American enine, wel adapted for heavy passenger trains wheeled bogie truck in front, and six coupled wheels. 4 ft . 7in. diameter behind. This arrangement of six wheels admits of good
distribution of the weight, and as the front pair are without flanges on the tires, the engine is able to pass easily round very The tender has eight wheels in two porie trucks with hrikt. 3in Type No. 4 is an American engine, generally known as the
"Mogul" pattern. It is designed more particularly for passenger or goods trains on heavy inclines. It has a two-wheel pony truck
in front, and six coupled wheels 4 ft . . in. diameter behind, the flanges being turned off the middle pair of coupled wheels. The cylinels are outside, and are 17 min . by 2 tin . ll The tender has eight
wheels is a French goods engine of the ordinary six-wheeled coupled pattern, with outside cylinders 18in. by 26 in., and wheels 4 ft . 3in. diameter. It is a strong, well-built engine, and capable of doing excellent work with heavy goods trains on easy curves. It has a
six-wheeled tender with brakes to all the wheels. Type No. 6 is a "ry powerful class of American engine, generally known as the "Consolidation"" pattern. It is specially designed for working at
low speeds on very heavy inclines. It has outside cylinders 20in.
 leading pair and the last pair but one are without flanges on the tires; in this way the weight is distributed over a great length, and the wheel base for passing round sharp curves is reduced to 9 ft. The tender has eight wheels on two bogie trucks, with brakes to all Wheels. Type $\begin{aligned} & \text { eir is a double bogie, double boiler, four-cylinder } \\ & \text { engine of the Fairlie pattern, with outside cylinders } 16 \text { bin. by 22in. }\end{aligned}$ engine of the Fairlie pattern, with outside cy linders 16 in. by 22 in.
Each bogie truck consists the centre pairs of each being without flanges on the tires. Brakes are fitted to all the twelve wheels. This engine is without tender, boilers and the water in side tanks. These engines are reserved for working the very heavy inclines of 1 in 25 between Orizava and
Boca del Monte. In the engines of types Nos. $1,3,4$, and 6 , the wheels of the bogies are all of the solid chilled cast iron diso pattern, and the coupled wheels are of cast iron with strong steel
tires. Types Nos. 2, 5, and 7, have wrought iron wheels with steel tires. As the engines are all wood burners, they are fitted with
wide topped smoke stacks and approved form of spark arresters. Of the above types of engines Nos. 3, 4, and 5, are found best Nos. 4 and 6 between Paso del Macho and Orizava; No. 7 for the upper plains between Boca del Monte, Mexico, and Puebla. In addition to the strong hand-power brakes on all the tenders, the
engines working the heavy inclines, as well as the regular passenger engines working the heavy inclines, as witted steam brakes, and also with the Westinghouse brake.
Carriages.-The carriage stock is arranged for the accommodation of first, second, and third-class passenger traffic. There are two types of stock in use-the ordinary English pattern, in which the
carriage is divided into compartments with doors at the sides, and the American pattern, with neatly furnished, but more attention is paid to the provisions for coolness than for warmth. In the first-class carriages the cushions are covered with light-coloured canvas or brown holland, which not only has the advantage of being cool without collecting dust, but
can be readily removed and washed. The seats of the second-class carriages are covered either with leather or light-coloured woollen carriages are clain wooden seats of convenient form are used for the
material,
third-class. The side windows, as well as the upper part of the doors of all the carriages, are made to open. On the opening of the earlier completed sections of the line all the carriages sent out
were of the ordinary short English four-wheel type, and it was only in later years that long carriages of the American pattern were heavy inced. When completing the construction of the con the open ing through of the entire line, it became necessary to decide upon the best way of utilising the carriage stock on hand. It was clear
that the short four-wheeled, rigid-wheel base carriages, which had served so well on the upper plain, or on the lower line near Vera Cruz, would never do for passing round the sharp curves of 325 ft .
and 400 ft . radius in the Cumbres and Chiquihuite. Neither would it be prudent to discard them altogether as useless, as they were too many in number, and really in excellent condition. It splice the carriages together in pairs, and to make in this way one
long carriage, with an American four-wheeled bogie truck at each
end. This idea was carried out, and with most excellent results.
The main frames of the carriages were of wrought iron, and were spliced or fished together with strong wrought iron joint plates 3 ft .
fin, long, securely rivetted, thus making each of the main frames in. long, securely rivetted, thus making each of the main frames
into one continuous piece or girder. To assist in stiffening these laced, and carefully adjusted under the carriages. The carriage boced, and which were of teak, were also strongly bolted together at
the sides and roof. A four-wheeled centre pin bogie truck was placed at each end of the carriage. In addition to the Westing. Rouse brake, which is fitted up on the carriages of the Mexican
Railway, a hand brake-wheel was place oo the top of the
whina airriage, which applies the brake shoes, which are of chicing of two
all the eight wheels at once. The result of this sples
cariages together has been a perfect success, and all those thus reated are found to be very easy both, for passengers an
permanent way. They pass smoothly round the sharp curves in the permanent way. They pass smoothly round the sharp curves in the
mountain range, and are found to be equally efficient on the comparatively level and straight road on the upper plains, where the run-
ning speed is much faster than on the more difficult parts of the line. It may be interesting to mention here that for two or three months,
during an alteration in one of the tunnels, some of these spliced during an alteration in one of the tunnels, some of these spliced
carriages forming the through trains had to pass daily round three emporary curves of 150ft. radius., are 46 ft . 3 in . long, and carry 74 passengers. They have three first-class compartments, each ach. The spliced carriages combining second and third-class, are
4 ft . 9 in. long, and carry 90 passengers. They have nine compart 4tt. 9in. Iong, and carry 90 passengers. They have nine compartholding ten each. In the same manner most efficient brake vans have been made by splicing two of the original vehicles together.
In each of the long vans thus obtained, one compartment was The first-class carriages of the American pattern have the seat the third-class the seats ne seat under each lineat of windows, and a double row back to back andrail on the outside platform at both ends of each America arriage. A powerful brake van is always placed at the end of the解 the carriages on the engine.
Wayons.
ow-sided open wagons, cattle wagons, covered traftic there angons, and pecially fitted wagons for the conveyance of "pulque," or national
beer of the country. The above stock is made up of two descrip-fions-first, the short four-wheel wagon of the ordinary English pattern, with which the earlier-opened sections of the line were
upplied ; and second, the long American pattern of was four-wheeled bogie truck at each end, which type was adopted ince been accepted as the standard class of wagon best suited for the traffic. All the wagons are fitted with hand brake-wheels,
hlaced conveniently on the top in the case of the covered wayons, placed conveniently on the top in the case of the covered wagons,
and about 3 ft above the floor of the open wagons. Experience has hown that oak timber, whether British or American, is altogether unsuited for the construction of wagons for Mexico. Although
carefully selected and of the best description, it deteriorates so rapidly that in three or four years large heavy frames and uprights
quite lose their strength, and become decayed and unreliable. For this reason good pine timber is used for all the style of building covered wagons with the upright framework placed The great tropical heat of the lower portion of the line, and the xtremely rarefied atmosphere arising from the great altitude of the apper plains, reduce all the wood work of the rolling stock to such o fire. Small red-hot sparks from the wood-burning engines strike
 soon fanned into a flame by the speed of the train. In a few
sine
ninutes the woodwork is in minutes the wodwork is in a blaze, and before the train can be
stopped and assistance procured, the entire wagon and most of its stopped and assistance procured, the entire wagon and most of its
contents are destroyed. Atter trying ineffectually several plans oo remedy this defect, the author had to rebuild a large number In these wagons by placing the boarding outside the upright fram-
nng and vertically, and without any base moulding or other pro jecting pieces which might give a loggment for falling sparks.
diagram sketch is given of one of the long American class of for the requirements of the traffic. It it is 26 ft. . 9 in. long by ftt . 9 in. contain about 1440 . hubic feet of loading space, and is inteandemed to carry about fifteen tons of general merchandise. It has a fourWhee bogie truck at each end, and a hand-wheel brake at the top,
which applies the brake shoes to all the eight wheels. The upright
framing is placed inside and the vertical boording boarding is also placed horizontally inside the wagon to a height
of about 5 ft . for protection of upright framing and facility of loading. It is an excellent class of wagon for genera work, an especially for long journeys, runs very steadily, and is easy on the
permanent way. It weighs when empty about $9 \frac{2}{2}$ tons. For
cor comparison, a diagram sketch to same scale is shown of one of tle ordinary covered wagons on four fixed wheels in use on the
5ft. 3ing gaug of the Irish rail)
long by 7 ft . 3in. wins. whise by 6 ft . 6 in. high wagon is about 13 ftt . Sin. measurements, and contains about 565 cubic feet of loading space wagon must be provided with a brake, and one that can be applied
while the vehicle is in motion. The side lever brake of this contry liul the vehicle is in motion. The side lever brake of this oountry
would be useless except when shunting in a station. Various descriptions have been tried, but the one now adopted, both for
carriages and wagons, as the simplest and most efticient, is the rdinary American car brake, consisting of a small horizontal hand
wheel fixed to a vertical wought iron shaft about 1 tin. in diameter The upper end of this shaft is supported by a bracket just below
the hand wheel, and the lower end has a small collar and is stepped into a bracket properly secured to the under frame. One
end of a short piece of chain is fastened to the shaft, and the connected with the brake levers. The turning of the hand whee coils the chain round the shaft, draws the light rods forward, and
puts on the brakes. By means of a small ratchet wheel and pawl onveniently placed for working by the brakesman's foot the amount of application can be easily regulated, and the brake kept
on as long as required. The diameter of the hand wheel or possibility of skidding the wheels. Under the vehicle are stron bow springs, which are in their normal position when the brake is
off, and are compressed when the brake is put on. So soon as the pawl and ratchet are disengaged by the foot, the vertical shaft is description of hand brake is perhaps the simplest which can b ratchet keep it on, and the bow springs take it onf when to to longer
required. It is very inexpensive to make and easy to keep in required. It in is very inexpensive to make and easy to keep in
order.
or
 description can be used to resist the severe strains, Two kinds of
wheels are employed one is the wrought iron spoke wheel with
steel tires, and the other the chilled cast iron disc wheel. The
fite steel tires, and the other the chilled cast iron disc wheel. The
former is so well know as to require no description. The latter is fine chilled surface being given to the tread, while the centre and lisc remain of a softer and more flexible nature. Special appli-
ances, and long experience enable the makers to turn out these
wheels remarkably true on the circumference, and the chilled por-
tion, which extends about gin, into the metal, is very unif The wheels are bored out very carefully, and forced on the axles
by hydraulic pressure. No keys are used. by hydraulic pressure. No keys are used. These wheels are strong
and reliable, and well suited for rough and heavy work, as well as for lighter service. They are not affected by variations in tempera-
ture, and from their almost universal adoption in the Unite ture, and from their almost universal adoption in the United
States and Canada, it is fair to presume they are considered the best wheels to withstand the very severe frost of a North American
winter. They give a long life or train mileage, though much
depend more upon the description of work to which it is exposed. From hilled cer of statistics compiled it appears that the life of goo 130,000 miles according to the description of line, load, and gradients. When no longer fit for use they can be recast into
wheels or worked up into other first-class castings, for which they make the very best foundry metal. Annexed to this paper will be be
found the abstract results of a series of experiments made with number of cast iron test bars, including four bars of the Salisbur iron so much used for first-class cast iron ciilled wheels in
America. The experiments were made by Mr. Kirkaldy, with the exception of the last two, which were made by Mr. Forbes and Mr. Abel. It will be noted that not only did the Salisbury iron sustain a much d greater breaking stress, but its sult
than doubbe that of any of the other bars.
no
the grandeur and beauty, and variations in climate of to describe through which this rail way Geographically spealine the country between Vera Cruz and the upper plain is designated by
the inhabitants under three distinct zones. the inhabitants under three distinct zones: - The lower is termed
the "tierra caliente," or hot country ; the intermediate, the "tierra templadid", or temperate country; and the upper plains, as have all the heat and luxuriant vegetation of the tropics. Man of the ravines are ever fine, especially the valley of the Chiquibuite, which is a perfect picture of floral beauty. Here the trees are other coloured parasites climbing to the tops of the highest branches The ground is a carpet of wild flowers of every hue; and curious birds, strange insects, and rare specimens of reptile life are met with at every turn. As we proceed further, passing large plantations for of the "tierra templada,", sich in the fruits and flowers of its
the own more salubrious temperature. Tobacco, pineapples, mangoes,
nd bananas are grown here in large quantities. From Cordovat Orizava the district is more thickly populated, and the greater rugged character met with lower down. The town of Orizava beautifully located in a large plain, surrounded by mountains, and or the Ver Cruza and lovely climate make it a favourite resort months. As we journey onwards up the steep inclines of the Cumbres, we meet with nature on the grandest scale. The line tantly obtain twists and turns to gain length that we conNearing Boca del Mol Mover-varying peeps or thailway rung a narrow lecge cut in ine rocky mountain slope, and from this place,
perched some 1600 t.t. above Maltrata, the traveller looks down almost perpendicularly upon the little town spread of insecurity which the passenger at first feels when he hears the engine labouring up the heavy incline, he cannot fail to be charmed with the glorious panorama passing before him. The wonderful
transparency of the atmosphere, which renders distant objects so distinct, contributes most materially in producing scenic pietures rarely met with. The term "tierra fria," or cold country, as applied to the upper plains, must only be taken in a comparative
sense. Far from being really cold, the temperature is agree-
sense, far from belng really cold, the temperature is agree-
ably warm, and rarely are the days in winter colder than with
us in May; or in summer, hotter than our June. The scenery
of
of the
of the narrow mountain passes, but it is nevertheless very interesting. The soil is rich in fruits and vegetables, and produces fair
crops of grain, but there is much room for improvement in the methods of agriculture. In many districts the only cultivated or 8 ft . high, from which is extracted the "pulque," or favourite drink of the country. Prominent amidst the bold outlines of the
distant hills stand the two great snow-topped mountains of "Ixtaxihuatt" and "Popocatepett," the former over 16, 10000ft., and the latter over 17,000ft. high. So coneppicuous are these two great
land marks that they are clearly seen in the city of Mexico Puebla, and other much more distant places. Although in the midst of a volcanic region, Mexico appears to have enjoyed for many years a special immunity from earthquakes. Shocks are
frequently felt, but never of a very dangerous character, and the inhabitants have not been deterred from erecting lofty churches some of these slightly bent, or out of the perpendicular, but this trifling injury is all that appears to have ever taken place.
Worlving or trafic arrangements.- In arranging the traffic movements, one of the important points to be kept in view is to organise the service in such a way that no trains shall have to run in the
dark on the section between Orizava and Boca del Monte this division of the line being naturally more exposed to dangers from falling rocks, trees, and other obstructions. This restriction is several of the principal trains, and through trains, perform pare of their journey during the night. All the engines are furnished with very powerful head lamps, most of them with reflectors 33 in . in advance of the engine. Indeed, without these powerful head lights it would be almost impossible to work night trains in a
country where the railway is unfenced, and where people and cattle have such a propensity for walking on the line. A reference to the section will show that there is no difficulty in working the
traffic on the comparatively level plains between Mexico and Boca del Monte, and that all the heavy work is below the latter place. It is not easy at the first glance to comprehend thoroughly the haulage work to be done in ascending to this great
summit level of over 8000ft. Our home experience, where nature is on such a much smaller scale, affords us scarcely any similar practice for comparison. We have, it is true, a few isolated
 a vivid recollection of the labour undergone in reaching the undertaking; and yet these mountains, the former about the height of the summit level t. above sea level, are only half haul the trains on the Mexican Railway. The 1 in 33 gradient between Paso del Macho and Orizava are very severe, but the
heaviest work for the engines is, of course, on the long 1 in 25 portion it is considered very good work for one of the four-cylinder double-bogie engines to haul a train containing 90 tons of actual
freight or paying load, exclusive of weight of engine and wagons The work can be better understood when we keep in mind that the engine of such a train has to stop at intermediate points to take in passenger trains from the lower to the upper line can be worked taken up to Boca del Monte in several trains, and there formed upper plains. In descending the incline the length of train the upper plains. In descending the incline, the length of train pre-
sents no difficulty, as, with the excellent brake power at command the number of carriages or wagons is immaterial. The line
is worked throughout by telegraph, on the absolute block
system, without any train staff. A code of signalling has
been carefully arranged, and an entry of every transaction been carefully arranged, and an entry of every transaction
or train movement is duly recorded in a book kept for that purpose by telegraph, his duty is to fill in a special form, giving the names of stations from and too which it applies, inserming date and times,
ond then attach his signature. This form is then handed to the
of station master, who examines. it, and if found correct, signs it, and hands it to the guard of train, who in like manner signs it and
hands it personally to the engine driver. The form is then place in a brass case with a glass front, fixed in a conspicuous place on received, are placed one over the other-in this way, the lates issued is always in view. These forms are printed on pink paper
for the up journey, and on yellow paper for the down journey. The writer introduced the above system of line-clear tickets with th sew of insuring, as far as poss the
safe orders for the movement of the and signing of the papers by three different persons may
at first appear a little irksome, but the three-fold checkat first appear a little irksome, but the three-fold check
ing is found to be most valuable, and the importance o the safe working warrants the taking of every precaution. The
arrangement is found to work most satisfactorily and to be very simple in its management. No two trains, even if going in the same airection, are allowed to be on the one section at the same time Every train despatched with a line clear ticket must arrive at its
destination before another can be started. For the working of the traffic on the heavy inclines between Boca del Monte, Orizava, and Paso del Macho, special gangs of brakesmen are appointed. Upon
the arrival of a down train at the summit station at Boca del Monte, it is put in charge of a foreman of brakesmen, who care fully examines all the brakes, and places a proper number of men
according to the description and length of the train. In the case of the passenger trains, which are fitted wind merely hold them selves in readiness in case of a failure in the air-brakes, requiring their immediate attention to the hand-brakes. Occasionally the hand-brakes alone, without assistance from the Westinghouse The goods trains are taken down by the hand-brakes alone. On the brakesmen, and the hand-wheels can te worked when the mee are seated. The vertical shaft passes up through a foot-board is on the level of this foot-board. When the brake ends of two wagons come together, one man can easily work the two hand
wheels. When ascending the steep inclines the brakesmen have al to be at their post, and ready to bring the train to a stand should any unforaseen obstruction be met with on the line. They have also to pull up and hold the train while the engine takes fuel and wate conveyel in as anny hours as it formerly rercuired days ; and the rapid transit has opened out a market for many commodities necessary speedy conveyance was hitherto impossible. Many branches of industry previously limited in extent have now the
means of development, and year by year new channels of enter prise are opening out which owe their existence and success excess of the exports, but as the advantages of increased much in become more and more understeod it is resonable to eupect that the latter will be largely increased, without any diminution of the former. In conclusion, the writer hopes that some of the particu-
lars in the preceding remarks will be found of interest to thmembers of this Institution. They show how the Mexican Rail way, one
successfuly worked with heavy gradients and sharp curves. It will be observed that in conside the detains referred to in this paper there has been a in this country. These changes have been made after very careful fully justified th

Mexican Railway--Main Line.
List of Stations with the Distances from Vera Cruz and Correspond

English miles from Vera Cruz.	Stations.	$\begin{gathered} \text { Heights } \\ \text { in } \\ \text { inglish } \\ \text { feet } \\ \text { feove } \\ \text { sea } \\ \text { level. } \end{gathered}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { English } \\ \text { filios } \\ \text { frorm } \\ \text { CCuzz. } \end{array}$	Stations.	$\begin{aligned} & \text { Heights } \\ & \text { in } \\ & \text { Enghish } \\ & \text { fieose } \\ & \text { above } \\ & \text { seal } \\ & \text { level. } \end{aligned}$
-	Vera Cruz	6	-	Acocotla (summit)	09
$9 \frac{9}{4}$	Tejeria	106	1763	Apizaco	09
19	La Purga..	146	186 ${ }^{2}$	Guadalupe H	8132
$2{ }^{20}$	Soledad ..	305	1931	Soltepec ..	8224
${ }^{394}$	Camaron..	1117	2054	Apam.. ..	8157
474	Paso del Macho	1559	215]	Irolo ..	8044
${ }^{53 \frac{1}{4}}$	Atoyac .	1511	2214	Ometusco..	77
${ }^{653}$	Cordova	2712	225]	La Palma.	7897
${ }^{7}{ }_{3}^{3}$	Fortin	3308	229	Otumba	7706
52	Orizava	4026	236	S. Juan Teotihuacan	7483
943	Maltrata ..	5549	243	Tepexpan ..	7363
1074	Boca del Monte	7922	2634	Mexico (eity)	7346
126	San Andres	7971		Apizaco ..	7909
139	Rinconada	7732	10롳	Santa Ana..	7505
1501	San Marcos	7784	214	Panzacola.	7189
161	Huamantla	8160	2994	Puebla	7067

APPENDIX.

Average of a large number of Staffordshire bars in 1873	$29 \cdot 45$	0.340
Do. do. do. 1876	28.55	0.309
Do. do. Glasgow bars in 1871	31.76	0:314
Do. do. ${ }^{\text {d }}$, 1876	$30 \cdot 91$	0-308
	36:31	$0 \cdot 623$
Four bars of Salisbury iron, cast by the Barnum. Richardson Co., Lime Rock, Conn, U.S.A. ..	32.24	0.671
Richardson Co., Lime Rock, Conn, U.S.A.	$37 \cdot 50$	0.670
	360	0.720

The Metrobological Society.-At the meeting of this Society on the 20th inst., papers were read on "Popular Weather
Prognostics." by the Hon. M. Aberoromby, F.M.S., and Mr. W. Marriott, F.M.S. The authors point out (1) that prognostics,
will never be superseded for use at sea and other solitary situations; and (2) that prognostics can be usefully combined with charts in synoptic forecasting, especially in certain classes of showers and
thunderstorms, which do not affect the reading of the barometer The second paper was on "Report on the Phenological Observation
for the Year 1882 ," by the Rev, T. A. Preston, M.A., F.M.S.
PATENTHOT BLAST STOVE.

CAVE'S MASH TUN FOR RAW GRAIN AND MALT.

In a recent notice of the Brewing Exhibition, reference was and thoroughly mix the raw material with the malt. Thus, by made to the mash tun exhibited by Messrs. Llewellin and for mashing either malt alone or malt in conjunction with raw grain, and produces a complete conversion without the aid of any

nd thoroughly mix the raw material with the malt. Thus, by can be raised to a boiling point, which is necessary for bursting
can the starch cells, and by shutting off the steam and admit-
the ting cold water to the ploughs the temperature can be readily reduced. In using this tun, maize or other raw grain with a very small proportion of malt are mashed together at a low initial temperature. Steam is then admitted into the ploughs, raising the temperature of the mash to a certain point at which it is for a short time allowed to stew ; the heat is then raised to boiling point, and the mash is boiled for a short period in order to urst the starch cells. The steam being then shut off, educes the temperature to the normal mashing heat. A small additional quantity of malt is then mashed in A small additional quantity of malt is then mashed manner. By this arrangement the brewer has perfect control over his heats, without fear of injury to his mash, as in the case of steam jackets or coils. These steam ploughs and fittings can be adapted to existing mash tuns, whether wood or iron. They have been in operation in several breweries for many months past, and beers brewed by aid of them even in the hot weather have turned out most satisfactory. The mash tun was fitted with Cave's patent false bottoms, which we illusble in plan and section. These bottoms are made of cast iron, with holes about lin in diameter, lined with inserted copper thimbles perforated at the tops. By this means strong false bottoms may be used, and yet the perforations through which the wort is strained may be very small. Similar copper inserted false bottoms are made for existing tuns and hop backs.

AYRTON AND PERRY'S DYNAMOMETER.

Some time since-in The Engineer, 5th August, 1881-we gave a diagram showing the principle of this dynamometer, gave a diagram showing the principle of Messrs. Ayrton and Perry. The accompanying engraving shows it as worked out practically and made by Mr. A. R. Sennett, Hatton-garden, London. It is for the purpose of measuring the power transmitted by belting from one machine to another. F is a pulley rigidly fixed to the shaft C D, turning in two plummer blocks carried by A frames resting on the floor or by brackets fastened to the wall ; g is a loose pulley, and H is a pulley loose on the shaft but joined by the spiral springs B to a ribbed plate E , which is rigidly fixed to the shaft C D. The other driven machine on H, or vice vers a; hence the pull to drive the machine is transmitted through the spiral springs, which are consequently stretched, and the amount of stretch measuring the twisting force transmitted. To measure this stretching the following device is employed-An arm fixed to the plate E on a mall link motion, seen at the right hand lower corner of the figure, and which causes a bright bead A at the end of the left
arm to approach towards the centre. Consequently the radial
motion of the bead A records on a magnified scale the extension of the spiral springs. As the bead revolves a bright circle of light is seen, the radius of which diminishes as the pull on the springs is increased. Hence the horse-power being transmitte graduated scale supplied with the instrument the radius of the circle of light described by the bright revolving bead and the speed of rotation.
To obtain great delicacy for powers varying within certain limits from that normally transmitted, the arm carrying the bead is made slightly flexible, so that when no power is being transmitted, the bead is pressed with a certain force against th rim of the front plate, hence the plate does not commence is being transmitted, and its whole radial motion therefore is completed for a certain additional transmitted horse-power the necessary addition depending on the power of the springs and the leverage of the circle motion. Consequently a large change in the radius of the circle of light is preduced by a small change in the transmitted horse-power.

Further, one of the pins in the links can be taken out and put into another hole, which has the effect of greatly altering the leverage of the links, thus increasing the magnification and causing the motion of the bead to be completed for another range of power-for example, the springs and link motion may be arranged so that with one of the adjustments the bead may commence to move when 8 -horse power is being transmitted, and may complete its whole motion from the circumference to the With the adjustment, the bead may start moving when 4 -horse power is being transmitted, and the entire travel of the bead from circumference to centre completed by the transmitted horsepower increasing from 4 to 6 .
Fig. 2 shows a dynamometer coupling. The plate C carried by one of the shafts of the coupling is attached to the plate carried by the other by means of the spiral springs, and the stretching of these is therefore a measure of the transmitted twist. The angular motion of the one plate C relatively to the other causes the bright bead B to approach the centre, and as before, the radius of the circle of light measures the horse-power
transmitted at any particular speed. The arm E carrying the bead is also, as before, slightly flexible, so that when no power is being transmitted the bead B is pressed with a certain force against the rim of the larger plate.

THE RAOUL AXLE BOX
The accompanying engraving illustrates an axle box which is now being used a good deal in the United States. It will be

end stopped, the stop being secured with a removable clamp. The journal may be made any desired length and diameter. It is claimed that the life of the axle is doubled, the expense of
brasses and lubricants enormously reduced, and wear of brasses, and hot-boxes obviated. It is now in successful operation on trucks of engines, tenders, passenger and freight cars. It is manufactured by the Ramapo Wheel and Foundry Company Ramapo, N.Y.

MARSTON'S PATENT VERTICAL BOILER. We illustrate by the accompanying engraving a 16 -horse power vertical boiler, used to supply steam for machinery in motion at will be understood at a glance. The advantages claimed for this boiler are: (1) That there is a large amount of effective heating surface in a small space with a perfect circulation of the water, thereby minimising the tendency which these small boilers have to prime; (2) every part where deposit or incrustation is likely to take place is thoroughly accessable; (3) the ends of the tubes

SECTIONAL ELEVATION

are not exposed to the action of the fire, which is the case with most boilers of the class, and which is the fruitful source of endless trouble and expense; (4) the perfect circulation of the water continually washing the interior of the tubes, the tendency to corrode and wear out is entirely obviated, and thus the tubes will practically last as long as any other part of the boiler; proshould it become necessary; (5) the fire-box is made entirely without rivets or overlapping joints, and of a form capable of resisting a very great pressure; (6) by the arrangement of the tubes the gases are divided into thin sheets, and are rendered very effective by having to travel by a circuitous route to the smoke box. We have no information as to the evaporative powers of this boilers

RAILWAY MATTERS.

THE Mysore Government have sanctioned the construction of a tramway from Mercara to th
will have the eflecto of bringin
tion with Bangalore by rail.
Experrmenvs on lighting trains by electricity are being made on
the Paris, Lyons, and Mediterranean Railway, with, it is said, an A Gramme Lyons, and Mwediterranean Rain lway, with, it it is said, and The experimental train consists ofs two frrst-c-cass carriages and two
vans, the carriages and front van only being lighted-so far, it is vanse experimentarial carres
said, with success.
A provisional committee, with Mr. Charles Boysset, vice--
president of the French Chamber, as president, has been formed
for organising an international exhibition of appliancees calculated or organising an international exhibition of appliances calculated
o ensure the safety of railway passengers, to be held in the Palais
 admitted are:-
various brakes. The steam engine is about to be introduced on the new
three-mile tram way conneecting Birmingham and Aston. MIajor
Hutchinson has Hutchinson has recently inspected both the line and the engine.
 Birmingham correspondent says, it surpassed expectations.
From the report of Major Marindin on the derailment of the
Great Eastern down express engine and train, near Helpringham, Great Eastern down express engine and train, near Helpringham,
on the Great Northern and Great Eastern Joint Railway, on the
5th October, it appears that the accident-which resulted in Sith October, it appears that the accident-which resulted in injury to fourteen persons, and would probabiy have been a most
disastrous accident had it not been for the continuous air-pressure
brake with which it was fitted-was due to slight sinkings and inequalities in the permanent way.
AN International Railroad Conference was held at Berne on the
16th of October to obtain uniformity of permanent way and rolling 16th of October to obtain uniformity of permanent way and rolling
stock, so as tor make possible a more complete interchange of cars
among the different countries of Central Earone mong the different countries of Central Europe. The opening of the Gothard Railway makes it desirable that cars should run
through between Italy and Germany across sivizerland, and the
completion of the Arlberg Railway will make interchanges between completion of the Arlberg Railway will m
Austria and Switzerland almost neeessary
Our Birmingham correspondent says:- "Prominent among the
valuable contracts upon which the constructive engineers of this valuable contracts upon which the constructive engineers of this
district are just now engaged is the esteel bridge to span the Ganges,
in India to in India, to which reference has previously been made in this
report, and which is being manufactured by the Patent Shaft and
Axletree Company. The first section, weighing about 1200 tons has just been turned out, and spans about 320 ft . When completed
the bridge will consist of nearly 10 , 00 tons the bridge will "
THE Moscow-Kursk Railway Company has suffered a total loss
The of not less than haif a milion roubles by the catastrophe at Mzensk,
according to the computation of the Homburger Nachricten. One
quarter of this sum is loss of traffic, and a like proportion is quarter of this sum is loss of traffic, and a like proportion is
represented by the sums paid to other railway companies for the transport of goods during the temporary interruption of traffic.
There were thintry-five compensation claims settled for a total sum
of 38 , balance of the sum named.
On Sunday morning the big wall at the Central Station, Liver-
pool, running from Newington Bridge to the tunnel mouth, fell, with a large quantity of the material behind it, on to the rails and
station platform, and so large was the quantity of materials that
several hundred men hard at work for about fiftee soveral hundred men hard at work Yor about fifteen hours
only cleared one line. The ijiou Opera House has been closed in
consequence of the possible danger to which it and other buildings consequence of the soft sandone retained by the wall are subjectede The
on the
remaining part of the wall has been strutted, but it is likely that a good deal will have to be taken down unless the back pressure
can be relieved by piercing the walls or by other means, THE extensive alterations and additions that are taking the New-street station, Birmingham, of the London and Northof the north tunnel extending from the Navigation-street Bridge.
Sunday, the 18th inst., was selected for this operation, and by the employment of between 300 and 400 men, and making every arrangement beforehand that was possible to facilitate progress,
the wholo of the work was completed between 7 a.m. and 6 p.m., traffic, which had been suspended ate 3.30 a.m.. The matererial
removed was estimated at about 400 tons, but this is only a third of what will have to be removed.
ON Friday the 16th inst, before Captain Douglas Galton, C.B., an
inuiry wasconcluded at the Surveyor's Institution Great George inquiry was concluded at the Surveyor's Institution, Great George-
street, Westminster, which had been held by order of the Board of Trade, under Section 12 of the Metropolitan District Railway
 of Works. Under the powers conferred by this Act, the engineer
of the railway, Mr. Barry, prepared a scheme for the ventilation of the railway, Mr. Barry, prepared a scheme for the ventiation
of the lines between Sloane-square station and the Mansion House, by means of twenty ventilators, of which four would be placed in
the epublic gardens on the Embankment, and most of the others in public roadways, so constructed as to serve the purpose of refuges.
To this scheme the Board of Works and the City authorities
strongly strongly objected, the former of whom submitted a scheme
through their engineer, Sir Joseph Bazalgette, by which they held In support of these two efchemes a large amount of evidence was
that thats. In support of these two schemes a large amount of evidence was
taken during the six days which the inquiry lasted, and at the conclusion Captain Galton intimated his intention of viewing the
railway tunnel between the Mansion House Station and Blackfriars Bridge the next day, and hoped to be able to make his award by THE London and North-Western Railway Company has com-
pleted the stupendous pile of warehouses which are being provided pe Regent-road too accommodate the ocnstantly-i-icreasing traffic,
inwards and outwards, of the Bootle Docks, the latest extension of Bhe dock system of the port of Liverpool, These warehouses, the
Bootle Times says, are the third Targest on the London and
North-Western system, being 290ft in length by 150th North-Western system, being 290 ft . in length by 15 .5tt. in
width, ind 7 fott in height, and comprising altogether upwards of
four four acres of flooring. There is a basement floor of 280 oft. by 50 oft. The elevation fronting Regent-rood is carried upon moulded cast
iron columns, between which lorries can back in and be clear of
the footpath whilst they are upper floors. At the back of this there is also a covered way or tupnel containing one line of rails, to enable the company to run
goods trains from the warehouses to their land on the other side of goods trains from the warehouses to their land on the other side of
Church-street. At the back of the tunnel is a paved roadway 48ft.
wide with trawide with trap-doors over, so that lorries may load or discharge
under cover through trap-doors communicating with every foor.
Then comes a platform over the basement Then comes a platform over the basement, 290 ft . by by fot. in
extent, specially designed for storing tin and other valuable metals
which would be injured by exposure. Past this platform is a road which would be injured by exposure. Past this platform is a road
with two lines of rails, with crossings and turntables at each end,
and and from the wagons on these lines goods will be hoisted to the
upper floors. There are 700 tons of cast iron columns and
stanchions, and 2600 tons of wrought girders being 3200 . Hydravic machinery for the purpose of
raising and lowering goods is fixed in the roof, and on the platform floor there is a series of cranes. The manipulation of railway
truckss and wagons from one part to another, and in and out of the warehouse, wil be effected by
which there is a great number.

NOTES AND MEMORANDA.

AT the November meeting of the trustees of the East River
Bridge, it was reported that the total cost of the bridge up to the me is $£ 2,809,136$.
THE engineer constructing the Washington monument reports
that it reaches a height of 340 ft ., 90 ft having been added this year that it reaches a height of 340ft., 90ft having been added this year.
He expects that it will be finished in 1884 , the total height being
 Company has 214 miles; Lambeth, 1363 ; Southwark and Vaux-
hall, 117 , West Middesex, $86 \frac{1}{2}$; Kent, 85 ; East London, 85 ;
From the report of the United States
From the report of the United States Commissioner of Agriculture 260,000 copies of special reports printed by the department. The statistical division estimates the following as the yield of 1882:-
Corn, $1,635,000,000$ bushels; wheat, $400,000,000$ bushels: oats, orn, $1,635,000,000$ bushels; wheat, $400,000,000$ bushels; oats,
$470,000,000$ bushels; barley, $45,000,000$ bushels; rye, $20,000,000$ Ond bulwweat $12,000,000$ hushel
RubbER packing may be made steam and air-tight, the Enginerer-
ing and Mining Journal says, by brushing it over with tion of powdered resin in ten times its weight of strong water of ammonia. At first this solution is a viscid, sticky, mass, which,
however, after three or four weeks, becomes thinner and fit for use. The liquadidsticks easily to rubber, as well as to wood and metal.
Tt hardens as soon as the ammonia evaporates, and becomes perIt harcens as soon as the a
Dr. RUsskilu, of the Chemical Laboratory at St. Bartholomew's time carrying on extensive exmmeriments which has been for some London fogs, at the request of the Meteorological Council of the
Royal Society, states that he has already obtained results showing that the increase in the amount of carbonic acid in the air of the City during fogs in some cases amounted to
a -half times the quantity ordinarily present.

THE relative longevity in various occupations has not yet been

 nade ofrom the census returns of 1881 . In 1851 it appears thatout of every thousand persons between the ages of twenty-five and out of every thousand persons between the ases of according to the
fifty-five, forty died on anerage. Clasified and
most favourable mortality, and increasing downward the returns
 Above the average: (7) m
butchers ; (11) liquor dealer
For a black aniline ink, the "Journal" of the Society of in 100 parts water, and if the solution is very blue add a few drops of an aqueous solytion of Bismarck brown. With the addition of
5 per ent. of glycerine it becomes a copying ink. For a black
 Follar a deep black by adding nigrosin.
For waterproofing brick walls the following has been given.
Dissolve soft paraffine wax in benzoline spirit in the proportion of Dissolve soft paraftine wax in benzoline spirit in the proportion of
about 1 part of the former to 4 or 5 parts of the latter by weight.
Into a tin or metallic keg place 1 gallon of henzoline spirit, then mix $1 \frac{1}{2} 1 \mathrm{lb}$. or 2 2lb. wax, and when well hot pour into the spirit.
Apply the solution to the walls whilst warm with a whitewash brush. To prevent the solution from chilling, it is best to place
the tin in a pail of warm water, but on no account should the the tin in a pail of warm water, but on no account should the
spirit be brought into the house, or near to a light, or a serious
accident might occur. AT a recent meeting of the Acodémie des Sciences, M. Bertrand reported hare he had been present with M. Du Moncel at experiments
which appeared toabsolutely confirm the lated by M. Marcel Duprez, viz. : - (1) The intensity of an electric
current remaining the same, whatever be the speed of the motor current remaining the same, whatever be the speed of the motor,
the static effiort doess not change; and (2) in a machine worked by a current, the speed may be doubled, quadrupled, or decupled, with-
out the intensity of the current varying M. Du Moncel added that during the experiments the resistance of the circuit had been
varied without changing the intensity of the current.
AT a recent meeting of the Paris Academy of Sciences a paper
was read on "The Range of Sounds in Air," by M. Allard. wxperiments with different instruments yielded the result that the according to the law of the square of the distance. The second cause of enfeebleness is considered to lie in the non-homogeneous influence of wind, very different ranges, varying, $e . g$., from two to twenty nautical miles. For small augmentations of range the
work required increases very rapidly. The differences of range work required increases very rapidly. The differences
for different pitches within the octave are little sensible.
read a recent meeting of the Physical Society Dr. James Moser read a paper on "A General Method of Strengthening Telephonic
Currents." This consists in forming a primary circuit of the teephone transmitter or derived circuit, a set of induction bobbins in derived circoit, and a charged secondary battery, the whole
circuit having a very low resistance. Each primary bobbin has a
secondary quantity to of telephones in deperived circuit to the earth or return wire. In this way one line wire serves to supply a arge number of separate
telephones, a hundred being employed by Dr. Moser to transmit telephones, a hundred being employed by Dr. Moser to transmit
music from the Hippodrome in Paris to the Place Vendome. The reduced by subdivision among the separate telephones.
For making luminous paint the following has been given:-Take
oyster shells and clean them with warm water; put them into the fire for half an hour; at the end of that time take them out and let them cool. When quite cool pound them fine, and take away
any gray parts, as they are of no use. Put the powder in a crucible
with cement with sand made into a stiff paste with beer. When dry put over the fire and bake for an hour. Wait until quite cold
before opening the lid. The product ought to be white. You must separate all gray parts, as they are not luminous. Make a
sifter in the muslin very loosely across it, The tie around, put a piece of very fine
powder into the top and rake about until only the put the remains; open the pot and you will find a very small powder. Mix into it a thin paint with gum water, as two thin applications are
better than one thick one. This will give a paint that will remain luminous far
during the day
AN important agricultural and manufacturing industry is about to be diveloped in the Western States of America, namely, the
cultiviation of flax and manufacture of the fibre. The area planted
 55,000 ; Nebraska, 50,000 ; and Wisconsin, 44,500. Yet upon all
this area burned or allowed to rot. The yield of seed was about $8,000,000$
bushels, valued bushels, valued at about eight millions of dallars. The total
acreage of flax in Europe, where the fibre is utilised, amounted,
the The the Times says, in 1880 , to $3,334,329$, and the value of the fibre
produced to $108,408,000$ dollars. The average money vield per acre in flax-seed, therefore, in the Western States, was only about
seven dollars, as a a ainst an average yield in Europe for fibre alone of thirty-two dollars. Belgium, on an area one-eighth as great as
that that given to flax in the Western American States, annually pro-
duces 1,00,000 dollars more; and France, with one-seventh of the
area, produces annually $3,000,000$ dollars more

MISCELLANEA

AT the Cornwall Mining Institute Exhibition, held lately at
Camborne, Messrs. John Warner and Sons were awarded a silver Camborne, Messrs. John Warner and Sons were awarded a silver
medal and were much praised for their exhibit of mine pumping medal and were much praised for their
machinery and pumps and mining tools.
The Corporation of Pembroke, South Wales, acting as the Urban
Sanitary Authority, have appointed Mr. W. Barns Kinsey, C.E London, their consulting engineer, and have instructed him to prepare plans for the water supply of the town.
Tram promoters of the Dudley, Sedgley, and Wolverhampton of the Board of Trade refusing the use of steam. They will ask for the employment of " mechanical p,
speed not to exceed ten miles an hour"
THE draft of a copyright convention has now been agreed upon between France and Germany, who have been represented in
Berlin by special Commissioners; though it will be some time before the convention is complete. It seems that one of the
chief difficulties was the question of translations, about which ermany was inclined to take a more indulgent view than France. Durivg the year 1882 Messrs. Raylton Dixon and Co., Cleve-
land Dockyard, Middlesbrough, have launched eighteen vessels of a gross tonnage of 27,249 tons and 2755 nominal horse-power. The power; one gun vensel., 1000 toners displacement, $200-$ horrse power,
two hopper barges, 313 tons each; one paddle steamer, 118 tons, 40 -horse power.
Durivg a recent tornado in Brewer, Me., a plank was blown with thick, that the board, the Scientific American says, penetrated some distance through the wall into the water. It was found that the
board was wedged in so closely that the water did not leak and board was wedged in so closely that the water did not leak, and
the owner simply sawed the plank off, leaving the wall of the cistern all right.
EarLy on the morning of the 21 st inst, while a batch of about
twenty-five miners were being raised mund, the rope broke and the cage containing the workmen fell to the bottom of the shaft-a distance of 1800 oft. All were instantaneously killed. The calamity is ascribed to the over-
weighting of the cage, which ought not to have taken up more THRER immense dredgers for excavating the Panama Canal are It is believed that this is the largest dredge in the world, , being
100ft. long, 6oft. in breadth, and 12 ft . in depth. It is named "Count de" Lesseps." The seond of these boots will be launched
in February, and the third in March next. They will cost, with their machinery, altogether $£ 80,000$
The Griffin Car Wheel Company, of Detroit, Mich., has been for the past three months turning out 150 wheels per day, of all
kinds and diameters, with straight or coneless tread, on orders from railway companies, so that their economy and practicability is in a fair way to be tested. All the wheels of these patterns are
33in. in diameter on the tread line. The outside inch of the edge
. of the tread is bevelled or coned of the outside inch of the eage vent the chipping off of the tread when passing over frogs, \&ce.
NoNE of the local authorities in the east of London will avail themAct, and a Milie-end Old Town committee is of opinion that " both the Act of Pariament and the Board of Trade rules show that the stood that it is impossible for the powers to fix anything definite to be done by applicants to supply electricitit.") The committee
does not seem to understand the part to be taken by the local

AT noon of the 14th inst. there was launched from Messrs. Harland and Wolffss shipsuilding yard a splendid screw steamer
called the British Princess, This is the seventh steamer built by this sirm fo
vessel, whi vessel, which is built of steel, is a sister ship to the British Prince,
launched in the early part of the present year, and already favourlaunched in the early part of the present year, and already favour-
ably known for quick passages. The dimensions of the ship, which
will have four masts, are:-Length, 420 ft . breadth, 4 42tt, and tomnage about 4000 . The engines and boilers have been made by
the builders. She is to trade between Liverpool and Philadelphia. Spraking of the sinking of the Austral, the Adelaide Evening
Jourral, of November 11th, says:- The Austral has been busily coaling for some time from lighters moored alongsidide of her. The
coal, howerer, had been placed in the bunkers on the starboard side, which gave the vessel a list, and as the weight gradually were, unfortunately, left open, and immediately they reached the
level of the water level of the water a torrent poured into her, which no human
skill could counteract. The vessel gradually filled and settled down by probably 2 ft ., and her masts being, of course, almost entirely

A curious dispute has arisen in Germany as to an invention conlished in the Hamburyer Nachrichten, the German National Bank some time ago purchased from Professor Scheibler, of Berlin, for
$1,000,000$ marks- $£ 50,000-a$ process for obtaining sugar from molasses by means of strontianite; at the same time securing the right of the first offer of such further discoveries as the professo process which renders the previous one almost worthless. The bank has commenced legal proceedings for the invalidation of the
new patent instead of acquiring it by a further expenditure of capital. It has been rumoured that Professor Scheibler will work chpe patent himse
therious difficulty
ON Tuesday, the 26th. inst., a new Cunard liner, the Aurania,
was launched from the yard of Messrs. J. and G. Thomson, Clyde7500 . The new vessel, which is built entirely of steel, is of 39 ft . in depth. She has eleven water-tight bulkheads, all carried up to the deck. She will carry enormous sail, and will be indeShe will have accommodation for 500 first-class passengers. Her forecastle is 97 ft . long and her poop 7 fft . long, and the promenade
deck is roomy and will be clear of danger, inasmuch as the twelve boats will be carried high up. All the deckhouses are built of iron, and all the openings to the engine and boiler-room are protected by
double casings. The ship will be lighted by 600 Swan electric lights, and the propelling engines are capable of developing about
10,000 horse-power. The vessel, when launched, was named by
"I HAVE been told,", said Mr. Dubious, watching the great steam hammer in the rolling mill, "that a good hammerman can
break the
 "I can do it, sir," replied the man." "And will you?" "replied
Mr. Dubious, drawing out his watch. "Come, I am anxious to see
it trien rose up to its full height and the next instant all its ponderous weight, with a crashing force that shook the ground for an acre round,
came down on that watch. "There, sir," said the hammernan quietly, "if you don't believe that, crystal is broken, just stoon
down and you can see it tsticking to the hammere." Mr. Dubious
swallowed a whole procession of lumps and gasps before he could swallowed a whole procession of lumps and gasps before he could
speak. "But forgot to say," he exclaimed, "that it was to break
the crystal without injuring the watch." "O Oh " hammerman, "yes, I know I have heard that rubbish myself, but
it's all gammon. I dont believe it can be done. But you can
break the crystal every time."-Burlington Havkeye.

EIGHT-COUPLED LOCOMOTIVE, ST. GOTHARD RAILWAY.

Dec. 29, 1882.
THE ENGINEER.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

LEIPSIC--A. TWiETMEYER, Bookseller.

PUBLISHER'S NOTIOE.

* With this week's number is issued as a Supplement, an illus-
tration of an Eight-Coupled Locomotive, St. Gothard Railuay. tration of an Eight-Coupled Locomotive, St. Gothard Railuay.,
Every oopy as issued by the Pubisher contains this Supplement,
and subscribers are and subscrive
receive it.

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all
cases, be coccompanied by a large envelope legibly directed by the cases, e accompanied by a darge envelope legioty directed oy the
uriter to himself and bearing ald, postage stamp, in order that
ansvers received by us may be forvarded to their destination. answers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply No notice will be taken
with these instructions
** We cannot undertake to return drawings or manuscripts; we ${ }^{*}$ All letters intended for insertion ecp copies. contaruning questions, must be accompanied by the name and
address of the oviter, not necessarily for publication, but as a proof of good faith. No notice whatever will be taken anonymous communications.

heating apparatus for churches.
 district where frost is exceptionally severe, sometimes res.
ENegistering
Heg. below
Deroro.
December 22nd.

RAG-CUTTING MACHINE.
SRe, I I want a machine for cutting up old rags into very small pieces,
devil will not do, as it leaves the rags in shreds, which hang together, devil wif nou doo, asst ieaves the rag sh shreds, which hang together
Can any of your corropondents tell me whether there is a machinine made
W. suitable for the purpose?

sUBSCRIPTIONS.

SUBSCRIPTIONS.
THe Exarnwer can be had, oy order from any neesagent in town or counstry
at the various railocay stations ; or it cann, if preefred, be supplied direct

Cloth cases for binding Tue Exarnerr Volume, price 23. 6d.
A complete set of The Exankrr can be had on application.

ADVERTISEMENTS

THE ENGINEER.

DEOEMBER 29, 1882.

flying machines.

Last week we noticed a curious little book by an author who has not thought good to make his name public.
We have said of this book that it is a prose poem, and We have said of this book that it is a prose poem, and
this we think may be held of a great deal that has been written concerning flying. In all ages man has desired to emulate the bird. Indeed, it would not be too much to
say that for five thousand or six thousand years he has been trying to fit himself with wings which will carry him through the air. Persistent failure has
attended every enterprise of this kind ; and the hopes which have been formed that the constructive powers possessed by modern engineers would solve the
problem have all been disappointed. We are probably no nearer to flying now than we were a thousand years ago; yet the questions unsolved are not without
interest, and it may even serve a good purpose if we place looked by labourers in this particular path of mechanical enterprise.
It is generally assumed that because birds can fly men ought to be able to fly. The operations effected by the bird
are just as mechanical as those of the man who walks on dry
land or swims in the sea. If only we could perceive precisely what it is a bird's wings do, then we could fly. Now, this seems to us to be a very specious and shallow argument.
It is not probable that there is anything occult or mysterious about the action of a bird's wing. So far as the slower birds, such as the rook, are concerned, it is very easy to watch every movement of the wings, and
we believe it is more than probable, not only that the wings of many model flying machines act just as do those of the rook or other birds; but that, as far as mere ascension is concerned, almost any species of wing action will serve. For example, we may cite the sixpenny toy called a
"flying bat," which is nothing more than a very light "flying bat," which is nothing more than a very light
screw propeller. This will rise nearly a hundred feet in the screw propeller. This will rise nearly a hundred feet in the
air if well made, flutter about for a while, and descend. The wing of a bird offers less resistance to the air when it ascends than it does when it descends; and furthermore it is quite probable that in all cases, and it is certain
that in some cases, the down stroke is made far more rapidly than the up stroke, and produces thereby stronger reaction. This seems to be the whole secret of wing action. When we come to deal with the elegances,
as we may call them, of flight, we have to do with the as we may call them, of flight, we have to do with the
idiosyncracy of the flyer. The rook may be said to idiosyncracy of the flyer. The rook may be said to resemble a heavy Dutch farmer, skating to and from
market, in straight lines, while the swallow is like the market, in straight lines, while the swallow is like the
most accomplished figure skater that it is possible to magine ties in styles of tying with varieties in gait. The hippopotamus, for example, can walk and even run-so can the deer. In both cases the processes, as a series of mechanical operations, are very similar; ; but from any other point of
view they are quite different. We have no doubt that if view they are quite different. We have no doubt that if men could once fy, we should soon have as many surged there is nothing mysterious about wing motion, and simple up and down flapping will at least suffice to raise a bird in the air, why should not men fly? The answer is machiney are not strong enough. If we consider birds as machines, we see in the first place that they are all com-
paratively small. There is no bird of flight which weighs as much as even a very light man; but there are
many birds which are far stronger than men. The albatross, is, we believe, the largest-we do not mean the heaviest-bird of flight in existence. Its wings measure sometimes as much as 13 ft . from tip to
tip, but the total weight of the bird seldom if ever exceeds 28 lb ., or one-sixth that of a powerful man. But the albatross can keep its wings in motion for a whole day, while the strongest man would be exhausted if he had
to keep beating the air with them for half-an-hour. There are many birds with limited or no powers of flying which weigh much more; but we shall not be far wrong if we say that the maximum weight of any natural flying machine,
which can fly well, does not exceed, say, 30 lb . Now this which can fly well, does not exceed, say, 30 lb . Now this
is a very important truth, because it goes to show that that is a very important truth, because it goes to show that that
is about the limit of weight beyond which the air cannot be utilised for bird flight. Nature does not make many mistakes; or, in other words, the conditions under which species are developed are such that everything goes as far as it can go in size and speed. If it cannot go further,
that is because certain conditions interfere to prevent it If it were possible, we should have birds much larger and heavier than the albatross, or the condor, or the eagle. We may rest certain that the roc of Eastern story
is a mechanically impossible creature. The reason why huge birds do not exist is this: It is well known that the strength of every machine rapidly decreases as it increases in dimensions. Thus, for example, the crank-shaft and other parts of a model steam engine, if all made to scale,
are immensely stronger than would be these of a similar engine made with the same proportions and twelve times the size. Let us apply this to the albatross, and suppose that its wing, instead of being some 6 ft . long,
was 12 ft . long. All the bones being doubled in length was 12 ft . long. All the bones being doubled in length
would be doubled in weight; but they would also have to would be doubled in weight; but they would also have to
be at least doubled in strength, which represents another duplication; so that an albatross with ead of wing of 26 ft . instead of 13 ft . must weigh, not 28 lb ., but four times
as much, or 112 lb . at the very least. Nor would the aug as much, or 112 lb . at the very least. Nor would the augmentation stop here, for the area of the wing would have
to be altered. Merely to double its length would not suffice to be altered. Merely to double its length would not suffice; its breadth must, ceteris paribus, also be doubled, and thus
we have four times the area; but this would again double the strength or weight of the bones, and a very little calculation will suffice to show that a bird with a spread of wing of 28 ft . could not weigh less than 2 cwt., instead of 28 lb . Next comes the question, is it possible to get as much
proportion out of 2 cwt as we can out of 28 lb ? A great deal has been written from time to time about the effect of the wind on inclined planes in
keeping birds afloat in the air. Those who have a competent knowledge of the laws of dynamics are, however, aware that the inclined plane action cannot alone keep a bird from falling to the ground. The action is at best just that of the wind on a kite; and the equivalent of
the string must be provided or the bird will be carried away, just as a kite is when the string breaks. Birds, when sailing, are either going with the wind or are using up momentum acquired by previous rapid motion. The work
done by the bird will vary continually; but it is strictly analogous to that of a swimmer, who, carrying a load, has to keep himself affoat by his own exertions. There is no way out of this. Nothing is got from the air in the way of
help, save when upward currents strike the flying bird help, save when upward currents strike the flying bird; the decking of a bridge lifted in a cale well knows, Returning then to our albatross, the work it does is equivalent to continually lifting 28 lb . The idea that the
bird is buoyant in the air is a delusion. If it weighs dead 281 lb ., it will weigh living 28 lb ., and the variation in the displacement of the dead and living bird cannot represent
more, at the most, than an ounce. In round numbers more, at the most, than an ounce. In round numbers
13 cubic feet of air weigh 1 lb . The albatross therefore represents no less than $13 \times 28=364$ cubic feet of air, while its entire displacement is probably at most 4 cubic feet,
An increase in dimensions of one-fourth when alive as
compared with the same bird dead, would represent about $\frac{1}{300}$ of its weight saved by extra buoyancy which is nothing. The weight of the bird then may be regarded in exactly the same light as the weight on a brake driven by a portable engine. The brake wheel is always trying to lift it up. The power expended is mea-
sured by the distance passed over by any point in the rim sured by the distance passed over by any point in the rim
of the brake wheel in one minute, multiplied by the weight and divided by 33,000 per horse-power. Now, i we could tell the distance passed over by the bird's wings at each stroke, and the number of them, we
should, knowing its weight, be able to estimate the power expended. We cannot do this in the case of the condor or albatross; but bearing in mind the small specific gravity of air, we shall not be very far wide of the mark if we say that an albatross pro bably possesses as much muscular energy as a man The utmost load that a man working at a crane cradle can
put forth for a day's work is 20 lb . at a crank handle put forth for a day's work is 20 lb . at a crank handle
making about 3ft. per second; and nearly all the muscles making about 3 ft . per second; and nearly all the muscles of the body are engaged in this work. It will be seen
that if even half this work is got out of the very much smaller muscles of the albatross, the energy of the muscles -on whatever it depends-must be very much greater than it is in man. The pectoral muscles of the swallow weig much more than all the other muscles in its body put
together, and in all birds which fly well, it will be found that the muscles actuating the wings are relatively enor mous in dimensions. But not only is this the case; the bird works at a higher pressure, if we may use the words, than any other animal. Its temperature is considerably above 98°, that of man and the mammalia generally; and al the swift birds live on food capable of giving out much energy while concentrated as to dimensions. Thus the swal lows, eagles, hawks, vultures, cce., are all carnivorous. Again it will be found that the arrangements for aerating the blood in birds are extremely complete, and this is on reason no doubt for their high temperature. In othe words, we lave in the bird a mackine burning concentrated fuel in a large grate at a tremendous rate, and developing a very large power in a small space. There is no engine in existence, certainly no steam engine and boiler combined, which, weight for weight, gives out anything like the mechanical power exhibited by, let us say, the albatross, It is then simply for lack of muscular power that man can never fly. There is no combination of wings or arrangements of any kind which will compensate for thi fact. Whether he can produce a machine to supplement his own want of force remains to be seen. Sueh a moto cannot, we think, be diven by steam. It is, how wot impossible that a machine might be made which would be aused to fly means a sall electric motor wow very high speed and worked by the aid of a couple of wire from the ground. This, however, would hardly be flying in the true sense of the word. That wings and suchlik things can be made we have no doubt; and experiment enough have been made to prove that, if power enough be
available, flight can be achieved. When a machine can be made as each pound of a bird, flying may be possible-not til then.

pumping engines

Aт one time the relative merits and demerits of Cornish and of rotary pumping engines were keenly discussed The subject has lost some of its interest, becaus the Cornish engine has been practically supplanted by the differentia engine, invented by Mr. Henry Davey, and manufactured by Messrs. Hathorn, Davey, and Co., of Leeds. But thi type of engine has not supplanted the rotary engine, and the relative merits of the two are still open to discussion, and are keenly contested. It is not our purpose here to pronounce an opinion on this part of the subject, but we think that something may be said with benefit in the way of explaining why the Cornish engine burns morefuel in performing a givenduty than either of the other types of engine and in doing this we shall indirectly explain to what the economy of the latter engines is due. In one word rotating and differential engines are both more economical sion. It 1 none b ing engine; but it will be found on analysis that the rotating and differential engines are not so superior to the Cornish engine as might be supposed when we consider how great is the difference in the range of expansion in the cylinders of each type. The Cornish engine usually worked with an initial cylinder pressure of about 40 lb . above the atmosphere. This was sometimes a good deal exceeded, but little advantage was derived from the use of steam of aug mented density. The steam was usually cut off at nearly half-stroke, the expansion being about two-fold. A few engines worked with greater ranges of expansion, but not many; and before proceeding further it is well to explain,

In the case of the Cornish engine the steam did little or no pumping during the indoor stroke. That is to say, while the piston was descending water might be raised by suction some 20 ft . or so; but the bulk of the work done consisted in forcing the water up the rising mains, and with this the steam had nothing directly to do. The work of the steam was expended in lifting many tons of pump rods, and the descent of these rods forced the water
up the mains. Thus the load on the engine was constant. up the mains. Thus the load on the engine was constant The same spears had to be moved at every indoor stroke. In the case of an 80in. engine, for example, with a 10ft. stroke, working with 40 lb . steam, the gross pressure on the piston would be, at the beginning of the indoor stroke, about 120 tons, which would be reduced at the end of the stroke to 60 tons. The gross resistance to the piston could not exceed the average load on it, which would be about 96 tons. Allowing for friction and other resistances, the actual weight available for lifting water would be about
85 tons of pump spears 85 tons of pump spears, \&c. But extra weight in
the shape of balance bobs had to be added to equalise the the shape of balance bobs had to be added to equalise the
motion of the engine. The velocity with which any
body will move varies, other things being equal
precisely as the force varies. Thus we know that if the 85 tons of pump spears, of which we are speaking drop of 16 ft ., they would acquire by the action of gr vity-in other words, by their own weight-a velocity of 32 ft . per second; but the steam in a Cornish engine play he part of gravity, and if the press, or, say, 170 tons, the ods would rise with a continually increasing velocity, and f the stroke were 16 ft . long and lasted onesecond the velocit cquired would be 32 ft . per second, corresponding to 1920 ft , of piston per minute, which is very much greater than too, that every portion of the machine would have to
be made to bear an extra strain, the work being xpended in giving velocity to the pump spears, which velocity would be of no practical value as far as
pumping the water was concerned. It will be understood from what we have said that if much expansion is to be employed in the Cornish engine heavy weights
must be put in motion to prevent the piston from going must be put in motion to prevent the piston from going team expanded, the pressure would fall rapidly, and the engine would have to depend for the completion of its stroke on the momentum of the moving spears. On thei upward rush, in fact, would hang the whole working of
the engine. If now there was no limit to the speed which they might be permitted to acquire, a Cornish engine might be made to work with a light moving load and must be lept down, it was essential to supply mass in the shape of balance bobs to absorb motion at one
time and give it out another. In practice, however, it wa found that to put 200 or 300 tons of wood and iron in motion and stop it again six or eight times per minute, involved a good deal of trouble and expense, and so it was expansion and small moving mass, and to keep the pres sure and consequently the speed of the piston during the indoor stroke tolerably uniform. When we turn to the rotative engine we find all the conditions altered. We
have then double-acting pumps, or their equivalent in two sets of single-acting pumps; the engine is double-acting and pumps direct without the intervention of a weight, an a large fly-wheet is provided, which takes up and gives out motion as wanted. The value of mass in a regulato im weighing 20 tons, and moving with an angula velocity of 900 ft . per minute, would represent as much energy as 80 tons of pump spears moving at 450 ft . per
minute. Thus, when the weight is disposed in the shape of a fly-wheel, it is infinitely more easily dealt with than when it appears in the shape of a set of pump spears and balance bobs; and accordingly ranges of expansion,
increased to six, seven, or even eight-fold, are possible with rotating pumping engines, although they are quite ut of the question with the Cornish engine
Turning to the differential engine, we find that it is with out a fly-wheel, and yet it does not even require the weigh a set of pump spears to enable it to be worked expansively Mr. Davey secures his object much as Woolf and Hornblowe did, only in a far more complete way. He uses compound ylinders, and this keeps the average load on both pistons, taken together, comparatively constant, and so he is able t t expand steam even as much as eight times without trouble
There are certain advantages connected with the working There are certain advantages connected with the working
of pumps which must not be confounded with the per formance of the engine, in favour of the non-rotativ engine, and by the suppression of the fly-wheel and crank shaft a cheaper job can be made; but the main reason why
the differential engine is a success is that it is a compound engine, and thereby permits steam to be used expansivel ithout needing a great weight of spears.
he best Cornish engines give a duty of 80 millions, It is said that one engine attained a duty of 112 millions but this is problematical; and the engine split its cylinder of working a Cornish engine with a fer the experimen was never a Cornish engine with a five-fold expansio was never repeated. A duty of 80 millions represents
$714,285 \mathrm{lb}$. raised 1 ft . high by a pound of coal, and is equivalent to about 3 lb . of coal per horse-power per hou indicated. This performance has only been excelled by few exceptionally fine rotative engines, and the average performance of such machines does not exceed by much tha the Cornish engine. A duty of 90 millions will represen he best that has been done by all but a very few nu differential engines. The hyperbolic logarithm of the number which represents a given ratio of expansion may
be taken to represent the extra work got out of a pound of steam by expanding it instead of working at full stroke Now, the hyperbolic log. of the ratio of expansion in th host econowal Cornish enghe is b931--hat is to say, i would be 1 , but expanded three times its efficiency becomes 1.693; but the hyperbolic logarithm of the ratio expansion in the best is pexpade 1 lold stean unpanded being 1 , Thus if the duty of the Cornish engine was 80 millions, en re the 160 is nothing of the kind. Because of cylinder condensa on the ful advantage can never be obtained from expan on, but the Cormish engin the is less cyimde xplained in this the Cornish engine one side of the piston and one end of the ylinder never have any communication with the concylinder never have any communication with the con-
denser, and so its cooling influence is cut off. It is worth considering whether a considerable advantage might not obtained from naig a compound enge, the the other two low-pressure, these last being single-acting Cornish engines in the full sense of the word. No doubt, a very considerable advantage might be gained by compounding ordinary Cornish engines. We have not heard
that the differential gear has been fitted to Cornish engines with considerable benefit

pure atr and density of population.

W_{E} owe a great deal to investigators of the many hygienic questions, the solutions of which have afforded us increased
comfort in our houses, and more particularly to those who have done the work of efficient drainage and ventilation ever, Dr. J. Parkin, of Brighton, is right in what he says in a yet to learn on the relation between fresh air and certain classes of diseases. In a leading article in the above-mentioned contemporary, it is remarked, while referring to the healthiness of London when compared to other cities less populous, that
"London is now almost an exception to the rule that the nortality increases with the density of the population." Dr Parkin, however, says "that London is not an exception to the rule, but is, on the contrary, a striking example of a rule that is
almost universal, no fact being better established in all malarious most universal, no fact being better established in all malarious nd unheallthy situations than the superior healthiness of town hen compared with the surrounding districts. More than this, it will often be found that the thinly populated part of a town
is more liable to disease than the densely populated disWithin Nowhere is this better observed than in Rome ristocratic districts of Rome, with a scattered population, that ever prevails, rather than in the more densely populated dis-
ricts. In the Ghetto, situated on the banks of the Tiber, where he Jews reside -and to which they were confined during th tite Pontifical Government-where they swarm like bees in hive, and where the streets are so narrow that it is impossible for carriage to pass through, fever is almost unknown, although Anither result constantly tion. Anower result constanul observed in Italy is still more or some reason it has been found that the few attendents left in harge of the building have been in certain situations invariably ttacked with fever. When, however, the former inmates, or other in the samenumber, have returned, the fever hasimmediately ceased he same result has been observed during the prevalence of the pidemic cholera, the ravages of which have been in an inver atio with population, as is more particularly apparent in those ann form. Thus at Kingston, the capital of Jamaica, the death uring the first 1850 Royal and Falmouth, small towns, they amounted to a Royal and Falmouth, small towns, they amounted to a third
At Port Maria two-thirds of the population were cut off ix hundred out of nine hundred. In the small villages, or settle ments, the mortality was still greater. At Orange Cove eighty out of a population of one hundred died, but at Batchelor
Hall, situated on a calcareous plateau, five or six hundred fee bove the level of the sea, seventy out of seventy-three residen were cut off, although a medical man was residing there at the time. It is thus evident to every unprejudiced person that
density of population-within certain well-defined limits, those in which the oxygen of the atmosphere is in its normal or nearl normal proportion-instead of being injurious during the prevaence of endemic and epidemic diseases, is actually beneficial conclusion, although in direet opposition to the prevalen Father of Medicine,,, Hippocrates, viz., 'Aer est omnium, rex. torborumque causa.' Dr. Parkin's facts will no doubt lead to he narrow-streeted, closely-packed towns on the Continent hav not the highest death rates.

LUDGATB-HILL STATTON is one of the most crowded and uncomfortable of stations in the whole world at certain periods of the day. Complaints have been made over and over again, but tation is built. This is not true, for apart from the possibility of running longer trains, the discomfort of the passengers at the Ludgate--1 station would be much lessened if there was som the kind. On the two platforms are sprinkled about half-a dozen porters. These generally gravitate into knots of thre r so, and when trains come in to either platform they o consist of the names of the stations to which the trains are destined. No one ever knows whether this is so nnouncements of the destinations of the two trains closely one after the other, justs as one dog sets a whole pack howling one fter the other. Sometimes it is possible to discover 'mid the disconcerted din that one porter is shrieking "all thir" behind" nd thir' class 'nfront." Passengers are not helped at all, have grown old and cunning in the use of Ludgate-hil
tation. Now if there was any attempt made to dire he labour available at the station, the condition of should be taught not to congregate into a lump on an area of bout three square feet, but should dispose themselves throughout the length of a platform, which may be easily done, for the length of the train is known. Secondly, they should not all baw out the sume lon f just fetched in from the streets, clearly sive the name of the station and then the route of the outgoing train. If they were thus stationed along the platform before trains came in the passengers might be quietly sorted, so that there need not be any unning in every direction under the sun when a train comes in The noise of these undrilled porters or station-men is perhaps most hideous when it happens, as it does sometimes, that two up rrains and a down train reach the platform nearly the same time If these men were drilled to do their work in a systematic way instead of joining in guerilla warfare of unintelligible words in each others train appears, cen so bas as endeavoured by runging mortle rains between Ludgate and Leughborough to lessen the confu sion and crush, but much of the usefulness of these trains is lost because the station-men are not properly drilled to instruct up trains. A little discipline and on nuch improve matters at Ludgate at very little cost.
thb winter electric exhibition at the royal QUARIUM, WESTMINSTER.
We understand that this Exhibition is shortly to be opened For this purpose motive power, to the amount of nearly $00-1$
horses, has been provided by the directors of the Aquarium, and horses, has been provided by the directors of the Aquarium, and
is being laid down in the buildings specially erected as machine
annexes. The body of the hall of the Aquarium will be devoted to arc lighting, which will be represented by fourteen or
fifteen systems, of which several are new. The space fifteen systems, of which several are new. The space
underneath the galleries, and the galleries themselves,
have been subdivided into courts, for the purpose of
隹 have been subdivided into courts, for the purpose of
exhibiting the several systems of incandescent lighting and
fittin fittings applicable to it. The ground floor of the whole of the bitors for the purpose of displaying the different out to exhielectric application, the most notable feature of which will be machinery by transmission of power. The Dining Annexe will be lighted by Messrs. Ferranti, Thompson, and Ince, with 350 incandescent lights actuated by one of their new dynamo machines. There is a series of five courts fitted up for the display of the Edison system. All the other courts are occupied by other firms to illus the whole of the premies of thes the exhibition, which will wery fairly represent all the pied for systems of lighting and transmission of power. The Metropolitan Brush Company has contracted to light up the Tmperial Theatre during the course of the exhibition, and we understand that the installation will be ready by the 6th January. In conclusion, it may be said that the exhibition promises to be one not only easily accessible, but at the same time one which will place before the public not only most of the standard systems of
electric lighting, but also many new departures of novelty and interest.

electric lighting.

An illustration of the absolute necessity for secondary afforded last week when the Ediso machines and engines by which a considerable district round the Edison Company's establishment on the Holborn Viaduct is lighted were by some means rendered hors de combat, and the whole of the consumers had for some time to resort to gas. This is not the only instance of the kind, and experience with machinery of almost any sort shows that although engines may be successfully made to rui without stopping for a considerable number of days, or even for weeks, it is not oten that a combination of high-speed engines, for and at n with the ocasional stope Flectric cumulators are thus of an utmost importance on an electric lighting installation in order that the machines mey be stoped for a few minutes without affecting the light, and also in order that incandescent lamps may receive a uniorm current, and not that variable current which breaks so many.

LITERATURE.

The Practice of Commercial Organic Analysis: a Treatise on the Assaying the Various Organic Chemicals and Products employed
in the Arts, Manufactures, Medicine, dc., vith Concise Methods for the Detection and Determination of their Impurities, Adulteration, and Products of Decomposition. By ALFred A.
Aluen. Vol. II. Hydrocarbons, Fixed Oils and Fats, Sugar, Starch, and its Isomers, Alkaloids and Organic Bases, dcc. The author, in proceeding to the preparation of vol. ii. of this work, found the subject grow so much under his hands that he has felt himself compelled to omit all mention of dyes and colouring matters, and coal gas, and the method employed for its examination. Animal products,
including blood, milk, urine, gelatine, wool, \&c. \&c., have also been omitted, or the discussion of these bodies deferred, till a third volume shall be found requisite. Under the heading "Hydrocarbons," we read of "olefins" and "vaselene," and we cannot congratulate the author on the introduction of new spelling of these words; if we are to begin to alter the spelling of words to render them
more scientific, it would be difficult to say where we should more sc
In benzol testing he recommends that the sample should be boiled in a retort over the naked flame of a Bunsen burner, and says that the lamp-that is, the Bunsen burner-should be placed in a deep tin basin containing sand or sawdust, in order to absorb the benzol in the event of the retort cracking. We cannot think this a
good method; the breaking of such a retort under these good method; the breaking of such a retort under these wircumstances is a terrible event. In such experiments we, with a galvan current, cot the botlom or the retort on the outside with copper and then the boiling and distilla-
tion can be carried on with perfect safety. This, of course tion can be carried on with perfect safety. This, of course, applies to petroleum, carbon disulphide, and all liquids of a similar kind.
We are glad to find, under the heading " Malt-sugar," a
notice of the excellent researches of Mr. C. P. O'Sullivan. notice of the excellent researches of Mr. C. P. O'Sullivan.
This is the first occasion in which we have come across any This is the first occasion in which we have come ac
reference to them in a book of applied chemistry.
The assay of gun-cotton is sometimes of importance with a view of judging of its tendency to decompose. "In
testing gun-cotton for free acids, \&c., we are told: "If sulphuric acid, be present, on evaporating this liquid to dryness at 100 deg. C., a small fragment of immersed filter paper will be charred." We should have thought In tean of certain test would have suggested itself. In trealing of the volatile akkaloids of vegetable origin, years since prepared synthetically, although in the case of years since prepared synthetically, although in the case of of that body was far less.
It is pointed out in the assay of aniline dyes that arsenic is a common impurity fochsine and oler divatives, and the process for detecting its presence is given. But sent to us by a large chemical firm, which were all made without any arsenic whatever being used in the manufac ture of any of them.

The few points to which we have called attention are, however, but small drawbacks in a book which contains much that is useful.

> AT a recent meeting of the Académie des Sciences, M. Marey
nade a communication as to the new process of M. Charles Petit, made a communication as to the new process of h. Charles Petit,
called similigravure, for reproducing photograph on metal, so as
to print from them in the same way as from, and concurvently

STAND PIPE AT THE CALUMET MINE, LAKE MICHIGAN, U.S. The conditions under which this structure had to be built
were such as do not in this country obtain for stand pipes, such a permanent character a need to be constructed in a very solid style; but although tower at the Calumet such which is subject to the very across Lake Michigan, rendered necessary a very strong ture, yet the intense cold of the northern winter, frequently reaching 40 deg. below zero, by sheathing the stand pip with wood. This material has thus the present cheapness made to meet the seseral de mands upon it, a minimum of
 ase of. The object of the available head of water in fire emergencies, when in the case of such an isolated community as this, the property would be entirely dependent on its own resources. The wrought iron tube, 80 ft . high, having the lowest seven plates of $\frac{3}{5} \mathrm{in}$.
thick, the next seven of $\frac{5}{16} \mathrm{in}$., and the top seven of $\frac{1}{4} \frac{1}{1} \mathrm{in}$., is and the top ring at its foot, which is bolted it and part of the vartical framing. Through a nozzle in this base communication is made with the water supply pipe which runs through Theoctagonal framingar he tube has the inner stickn bin. by 6 in. section, and the outer, which are adzed to the octagonal shape, of 8 in . by 8 in . tuff. A spiral stairway is carried round between the re thus tied framings, which gether, being also bolted to gether at the spliced joints. ron boxes on the base plates, through to them, the oute legs are held down by long verthed bolts taking on to a some distance up the leg. The vertical tube has no staying,
being clear of the wood framing
all round. The whole framing is braced diagonally, and lin bolts pass round the whole eight posts, engaging in straps cut into
them. The structure is sheathed diagonally with lin. stuff nailed hem. The structure is sheathed diagonally with 1 in . stuff nailed calculated to resist wind pressure of 50 lb . per square who alculated to resist wind pressure of 50 lb . per square foot.
The materials used were all woodwork, $10,100 \mathrm{ft}$ board meas all ironwork, including all bolts, $40,000 \mathrm{lb}$. weight ; cost of ironwork, 2100 dols. It is possible that a strong yet cheap tower this description might be found to fulfil all the necessities of some small towns, and certainly of large isolated works in this country, and for this reason we illustrate it.

THE DETERMINATION OF ORGANIC MATTER IN POTABLE WATER. By Professor J. W. Mallet
A rew months since Dr. J. W. Mallet, F.R.S., Professor of
Chemistry and Physics in the University of Virginia, was called pon to report to the National Board of Health on the "Determinasanitary questions are occupying a greater." This and other sanitary questions are occupying a great deal of attention in
America, and we now quote from the American Sanitary Engineer those portions which may be of special interest to analysts and others who have not access to the original, published as a supple-
ment to the American National Board of Health Bulletin, No. 19 . ment to the American National Board of Health Bulletin, No. 19 .
General Conclusions. (1) It is not possible to decide absoGeneral Conclusions.- (1) It is not possible to decide abso-
Iutely upon the wholesomeness or unwholesomeness of a drinkamined for the estimation of organic matter or its constituents. (2) I would even go further, and say that in judging the sanitary character of a water, not only must such processes be used in connection with the investigation of other evidence of a more general sort, as to the source and history of weighing the reasons for accepting or rejecting a water not manifestly unfit for drinking on other grounds. (3) There are no sound grounds on which to establish such general standards of
purity as have been proposed, looking to exact amounts of organic arbon or nitrogen, "albuminoid ammonia," oxygen of perdrawn by the application of such standards are arbitrary, and may be misleading. (4) Two entirely legitimate directions seem to be open for the useful examination, by chemical means, of the of very gross pollution, such as the contamination of the detection of very gross pollution, such as the contamination of the water of leakage of drains, \&c.; and secondly, the periodical examination of a water supply, as of a great city, in order that the normal or usual character of the water having been previously ascertained, any suspicious changes which from time to time may occur, shall
be promptly detected and their cause investigated. (5) In connec tion with this latter application of water analysis there seems to be no objection to the establishment of local "standards
of purity" for drinking water based on sufficintly thoren examination of the water suppply in its usual conghi-
tion. (6) With the facts of this investigation before
inclined to atten careful determination special and very great importance I am ar drinking. If I had entrusted to me the charge of watch ing a large city water supply I should use all three of
principal processes for the examination of the organic matter present, each gives a certain amount of ingmation which the use of simpler means of investigation, the albuminoid ammonia and permanganate processes might be employed together, but in no case should only one of these methods be resorted to, such a course entailing practically the neglect of carbon on the one hand, nitrog orner.
Examination of Water Samples in General.- (1) Great care
should be taken that water samples be placed in analyst and their examination begun with the least possible delay after they have been collected. The changes which take place, sometimes rapidly, on keeping, may seriously affect the results,
especially in the case of waters much polluted by foul especially in the case of waters much polluted by foul organic
matter. It is very desirable that, besides examining a water in its matter. It is very desirable that, besides examining a water in its
perfectly fresh condition, samples of it should be set aside, in halfperfectly fresh condition, samples of it should be set aside, in half-
filled but glass-stoppered bottles, for some time, say, ten or twelve
days, and one of these examined every day or two days, and one of these examined every day or two so as to trace
the character and extent of the changes undergone. Not only may the character and extent of the changes undergone. Not only may
conclusions be drawn from such a series of observations as to the general stability or decomposability of the organic matter present, but light will oe thrown upon the changes which may be expected use, as in cisterns and wells, during periods of drought, or care-
lessly allowed to remain stagnant in pitchers, water coolers, \&c. Combustion Process.-(1) In applying this process, no matter how skilled or well trained the analyst may be, duplicate or even
triplicate concordant results should be insisted upon before triplicate concordant results should be insisted upon before accept-
ing the determinations as trustworthy. (2) In order to avoid the ing the determinations as trustworthy. (2) In order to avoid the evaporation of ammonia derived from coal gas, the bath should be heated by steam brought in a small closed pipe from a distant boiler, perferably situated in another room, and the waste steam aff to a safe distance.
Alluminoid Ammonia Process.-In order to avoid the uncertain albuminoid," it should of ammonia, whether "free" or distillation be stopped when, and not before, the last measure of istillate collected contains less than a certain proportion, say This would, in many cases, involve the necessity of replenishing the liquid contents of the retort with ammonia free water. (2) In order to diminish the loss of amines or other volatile forms of nitrogenous matter, a separate distillation should be made with alkaline permanganate added at once in addition to the usual course of treatment prescribed by Wanklyn-distillation begun permanganate. The results of the two separate distillations should then be compared. (3) In reporting the results obtained by the albuminoid ammonia process, including the determination of free ammonia, the evolution of ammonia as col
measures of distillate should always be given.
Permanganate Process.-(1) In view of the evidence obtained rendering probable the loss of organic matter by volatilisation in Tidy form of the process is rather to be a recommended than that of Kubel, if but one be used. (2) On the other hand, the advantage of more extended oxidising action, and the greater general
accordance of the results by the Kubel process with those for organic carbon by the combustion process, make it desirable, that,
as far as possible, the same advantages should be secured by
substituting the influence of time for that of temperature, and that the time during which the permanganate is allowed to act in the
Tidy process should be increased to at least twelve, better to Tidy process should be increased to at least twelve, better to
twenty-four hours, several determinations-on different samples twenty-four hours, several determinations-on different samples
set aside at the same time-being made at such intermediate intervals as one, three, six, nine, and twelve hours in order to trace the progress of the oxidation.
Combustion Process.-(1) I would propose to evaporate the water not under ordinary pressure and in contact with the atmosphere, as usual, but as the specimens of water were evaporated for the
biological experiments, in a closed vessel immersed in a water bath and connected with a good-water jet-air pump, so as to secure a nearly complete removal of air, with a condensing worm to dispose in part of the aqueous vapour given off. It would not do to simply place the water in a flask, since the residue could not be removed
for combustion, but it would not be difficult to arrange for combustion, but it would not be difficult to arrange a suitable
vacuum vessel, with wide mouth and tightly clamped on cover, within which might be placed the usual glass dish to receive the water, and the feed might be managed through a nearly capillary tube with a glass stop-cock. By such an arrangement the evaporation might be effected within a moderate time at
a fixed temperature much lower than the boiling point, thus probably reducing any loss from simple volatilisation of
organic matter; the nearly complete exclusion of air would tend to really diminish or do away with loss of organic matter by oxidation, and permit of large reduction in the quantity of sulphurous acid used; for the same reason the tendency to formation of sulphuric acid would be reduced to a minimum,
and the absorption of ammonia from the atmosphere about the dish would be altogether prevented. In testing this last-named effect, two bulb tubes containing pure sulphuric acid might be interposed between the vacuum chamber and the pump, the con tents of the one to be tested for ammonia given off from the water, those of the other to guard against any trace of ammonia
coming back from the outside air during irregular action of stream of water. (2) In order to avoid loss during the evaporation of readily volatile substances, such as butyric, valerianic, \&c. acids, to dispense with the necessity for the uncertain and unsatisfactory correction for ammonia lost by dissociation to get rid of the influence on the determination of organic nitrogen of any
errors in the determination of the total ammonia, and to avoid corresponding difficulties arising from the presence of nitrates if these be allowed to remain, it might be well to evaporate at firs with the addition of a small excess of magnesia-as recommended by Lechartier-thus removing all ammonia; and then the water having been brought down to a small volume add a moderate
excess only of sulphuric acid with a drop of a solution of a ferrous salt-as directed by Frankland-and complete the evaporation to dryness, the whole process to be carried out in a jet pump vacuum,
as above suggested. (3) Further as above suggested. (3) Further experiments are desirable in
order to completely determine the merits and defects of the order to completely determine the merits and defects of the
Williams- "copper-zinc couple "-method for the removal of nitrates. (4) Some preliminary experiments of my own seemed to evaporating to a small bulk with no great excess of phosphorous or hypo-phosphorous acid, guarding against the evolution of phosphu-
retted hydrogen by the low temperature employed, retted hydrogen by the low temperature employed, then adding
magnesia in small excess and completing the evaporation, thus leaving the residue in a pulverulent instead of esticky condition, combustion withom the dish, and probably allowing of complete small excess of phosphite or hypophosphite, and without any
wrapping up of carbon particles. This plan deserves to be carewrapping up
fully tested.
Albuminoid Ammonia Process, including determination of Free Ammonia.- (1) In order to prevent, or at least to largely reduce
and render uniform the loss of ammonia from imperfect condensation, I would prefer to effect the distillation, not by a lamp flame, but in a retort of uniformly determined shape and size, uniformly immersed in a bath of saline solution or other suitable material
kept at a uniform temperature-say 102 deg. or 105 deg . C.-by kept at a uniform temperature-say 102 deg. or 105 deg . C.-by means of steam, and to condense in a glass worm surrounded by temperature, not exceeding, say, 5 deg . C . (2) It would be perhaps
still better to conduct the distillation in a completely closed apparatus between the retort and the far end of the fully effective condensing tube, with a glass stop-cock to draw off the distillate in
successive measured portions, and a little safety valve-mercury or other-near the cold end to prevent any dangerous difference of external and internal pressure. (3) In the determination of fre ammonia with a view to distinguishing as sharply as possible that found by beta really existing as such or in ammoniacal salts and try a closed distilling apparatus connected with a-water well to pump, so as to maintain a partial vacuum within, keeping the the whole of the ammonia in much below 100 deg . C., and collecting taining rather weak mineral acid, interposed between the condenser advantage of no This would, however, be attended with the dis of ammonia to be traced by its collection in separate successive measures of distilate, and it would become necessary to ascertain whether the application of the Nessler test would be in any way
interfered with by the sodium salts formed from the acid used to interfered with by the sodium salts formed from the acid used to collect the ammonia. in in order to overcome, if possible, the ammonia, namely, the ready breaking up of urea-and free amides-when present, on heating with sodium carbonate, it would be well to ascertain at how low a temperature and within what time, if at all, ammonia really existing in ammoniacal salts could be completely driven off from an extremely dilute solution by adding a small excess of magnesia and maintaining a of small depth, with bulb tubes of acid between the liquid and the pump to intercept the ammonia and guard tubes to prevent any being received from the air ; in other words, to ascertain whether Schlesing's method for the determination of ammonia admits of
being applied to such excessively minute analyst is concerned with. (5) In the conduct of the albuminoidammonia process proper, i.e., the distillation with alkaline perthe retort be maintained constant, by original volume of liquid in through a nearly capillary tube with a glass stop-cock ammoniamatter is so large as to wholly or in wreat the amount of organic charge of alkaline permanganate, I would determine by the usual nary experiment at about what rate the reagent is used up, and would then progressively supply its solution, instead of simply pure water, at such a
as possible unaltered.
Permanganate Process.-(1) The principle involved in the last paragraph applies also to this process. Instead of using a fixed charge only when the former has been completely reduced, there should be pixed excess at the end of the action, or rather there Hence, when a preliminary experiment has shown that more than the usual charge of permanganate will be needed, and about the rate at which it will be consumed for the final experiment, additional permanganate solution should be gradually dripped in, from a nearly capilary tube, at such a rate as to maintain the original process be carried on at a pretty nearly fixed temperature. If the approximately at this point during the time required for the action.

Mr. WalmisLer will deliver his opening lecture at the Society,
of Engineers on January 8th, "On Land Surveying and Levelling."

THE IRON, COAL, AND GENERAL TRADES
OF BIRMINGHAM, WOLVERHAMPTON, AND OF BIRMINGHAM,

(From our own Correspondent.)

THe gatherings on 'Change in Wolverhampton yesterday and in
Birmingham this-Thursday-afternoon were not large, nor was here much new business transacted. Buyers are waiting till the
quarterly meetings before placing orders of much size.
These are
and ixed to come orf in woiver
Birmingham on January 11th.
Some of the mills and forge
Some of the mills and forges resumed work after the holidays on Wednesday night, and a few others to-day. Certain works now
idle would have re-started but that they have been prevented by special circumstances, such as repairs to canal basins, repairs to
works, machinery, \&c. These concerns, together with others who works, machinery, cce. These concerns,
arestandiner stang the whole of this week because the order boorsk are
only sparsely filled, will, however, begin again actively next only
Mpanday
Mhen
Sheets and strips are the descriptions of rolled iron which are in Change to-day pressing for execution of orders. These buyers Change to-day pressing for execution of orders. Well as actual
included merchants doing a large export trade as
home consumers. Sheet prices were $£ 8$ to $£ 8$ s. for singles, and home consumers. Sheet prices were $£ 8$ to $£ 85$ s. for singles, and
$£ 915 \mathrm{~s}$ to $£ 10$ 5s. for lattens. Gas strip was easy at $£ 6$ 15s. per ton at the works.
Laking the last few months into review, it may safely be asserted improvement. The quotation for such iron remained to-day at
$£ 810 \mathrm{~s}$, and the price for boiler plates was without alteration at £9 to £9 910 s.
The Earl of Dudley's common bars, rolled at the Round Oa
Works, are still $\$ 812 \mathrm{~s}$. 6 d . per ton, while the other " list" houses, with two exceptions, quote £8. The exceptions are the New
British Iron Company, and M Messrs. Phillip Williams and Sons,
both oth of whom still quote $£ 710$. Bars of medium quality are $£ 7$ £6 15s., and common bars $£ 610 \mathrm{~s}$. to $£ 67 \mathrm{~s}$. 6 d . easy.
Hoop makers begin the new year with, upon the
mount of work on their books, part of it on ancount of Australia, the United States,
Native to $£ 7$ at works.
Native pig iron makers report business quiet, with prospects not
very bright. All-mine pigs are quoted 67. 6. for best hot blast sorts, and 65 s. would in actual business be aceepted by some
 Northampton, Derbyshire, Leicester, and South Yorkssire brands,
vendors of these descriptions anticipate a big business in a week or
two They are, therefore firm in their quotations 47 sta . 6 d . is the minimum quotation for Northampton and Derbyshire sorts, 50 s is asked for Leicestershire pigss, and 62s. 6 . for Thorncliffe - South
Yorkshire. Only little business is doing in hematites. Prices ange from 65s. to 70s., according to make.
Coal prices were not particularly strong this afternoon. Domestic
coal raised from the thick seams on Cannock Chase was quoted :Best deep, 11 s . per ton at the pits, long weight; best one-way, 10 s . quotations were : - Best, 9s. $6 \mathrm{~d} . ;$ best one-way, $8 \mathrm{~s} .6 \mathrm{~d} . ;$ and cobbles, ton long weafordshite torge coal was quated at 7s. to 7s. 6d. per and Cannock Chase common forge at Wages of finishe
award of Alderman Avery, of Birmingham, President of the Mill and Forge Wages Board, advance on January 1st 3 d . per ton to puddlers and $2 \frac{1}{\frac{1}{2}}$ per cent. to millmen.
With the new year the manufacture of electric light machinery will be begun in Wolverhampton on a style and a scale that augurs
well for the new industry. The manufacturers are the Wolverhampton Electric Light Storage and Engineering Company, who have laid down extensive engineering shops and platht for the purrove.
The company will manufacture dynamo machines, high-speed steam The company will manufacture dynamo machines, high-speed steam engines for running the same, storage batteries, electric motors for
driving mall domestic machinery of any kind, \&c. The batteries England and abroad, the chief feature being the rapid method of preparing the plates. These are chemically and not mechanically
prepared, and hence are not liable to fall to pieces. Under this prepared, and hence are not liable to fall to pieces. Unter this
method of preparation, the company claim to obtain in as sinort a method of preparation, the company claim to obtain in as sinort a pany is manufacturing in preparation of its stock 250 plate
Messrs. Hughes, Johnson, and Co., who were formerly foremen over considerable departments atMessrs. Tangye's, and who havenow
started as hydraulic and general engineers at Langley, Oldbury, are turning their attention particularly to brewery, brick
Galvanisers have plenty of orders to begin the new year upon,
especiall in the corrugated sheet departments which yill appecialy in the corrugated sheet departments, which will quickly
again be busy in supplying the needs of nearly all the markets of
Sheets-in bundles of the world. Sheets-in bundles of 22 to
c14 5 s . to $£ 15$ per ton delivered at outports.
In consequence of the decision of the Birmingham Corporation panies excepting one have resigned their electric lighting comown. The persevering firm is the Crompton Winfiald Electric
Light Company, of Birmingham. They have just applied to the Board of Trade for the requisite provisional order, to the issue of
which the Corporation can object any time within the rext months. The company seeks power to supply the light to private
houses and streets of the borough. It divides the town into six sections. The first it undertakes to supply within three
years, the second within five years, and so on at intervals of two years, the whole being completed within eleven years. These are the legal limits, but if the application is granted the work will
probably be completed much more quickly. The powers the
company 6s. Sd. for a quantity of of electricity equavivalent in lighting power to
1000 t. of 15 -candle gas. The present average price of 1000 ft . of suoft. of i5-candle gas. The present average price of poort. of
such gas is about 2 s. 6 . The first cost of the lighting plant is
estimated at $£ 40$. The Midland, Birmingham, Wolverhampton, and Milford Junction Railway Bill gives the capital of the company at $£ 1,250,000$.
The railways are required to be completed within five years, and the company seek running powers over several lines already made, circumstance which will be much appreciated by traders. The scale for coal, coke, lime, ironstone, iron ore, pig iron, bar iron,
and iron castings-not manufactured into utensils- $\&$ co., is $1 \frac{1}{2} d$. per ton per mile.

NOTES FROM LANCASHIRE.
Manchester. -In the iron trade and the various allied branches of industry in this district, although the year closes with less activity
than it began, it has on the whole been one of considerable activity.
So far as the engineering trades are concerned, the year commenced So far as the engineering trades are concorned, the year commence
well and though subsequent operations have not been a realisation of airiat was looked forward to trom the weight of the original ment generally to the important industries of the district. Loco-
motive builders have been exceptionally busy all through the year Rolling stocks abroad had been allowed to work down, and almost simultaneously nearly every railway company in Europe seemed to
arrive at the conclusion that worn-out plant required replacing.
India, the colonies, and South America have also been large India, the colonies, and South America have also been large
customerrs, and for the home railways a considerable amount of
work has been given out. Carriage builders, and manufacturers
of other rolling stock, have also shared in the activity. The
iron shipbuilding trade has been another branch of trade iron shipbuilding trade has been another branch of trade
in which an aborormal state of activity has prevailed. Thi
is still maintained so far as boolked orders are concerned, bu is still maintained so far as booked orders are concernec,
inquiries are falling off, and this has been brought abo
by the high prices which shipbuilders are now compelled ayk in consequuncence of the enormous spring which has tatken place
in wages. Cotton machinists have been fairly well occupied, some of the firms with specialities having been very busy, but in this the close of the year, and some of the works have been put on
short time. The boiler-making trade has been generally The heavy tool trade has been uncommonly active, and of foreign work especially there has been a great deal in hand, France having
been a large customer in this direction. Light tool makers have also had plenty of work, and there have been a considerable plant. The orders given out in connection with of gas motectric, which appear to be be in
Tavour for driving purpeses in connection with electric lighting, has
faver favour for driving purposes in connection with electric lighting, has of industry in this district.
have not been quite so fully employed of work. The year closes with a falling trade a verery faily, althoungh
not to an extent to couse any present alarm with regard to the future. As to the results of the year's operations, the men have certainly secured their full share of any advantage which has
been derived from the activity of trade. Early in the year they obtained a return of what they lost in wages during the period of depression following 1877, and an advance of 2 s . per week in
wages extended through all the engineering branches of trade in Lancashire, whilst in the iron shipbuilding trades the men to a large
extent have been able to command pretty near their own terms. The upward movement in wages has, however, not represented a corresponding improvement in the profits which employers have reen able to realise upon the finished work, but was conceded
rather on the basis of anticipations. which have since proved to have been at least premature; with increased wages, the men have
also had full work. The number of members on the books of the Amalgamated Society of Engineers in this district in receipt of twelve months, whilst the Boiler Makers' Society has paid no home donations whatever during the year, any member falling out of
work being found employment elsewhere. The result has been that both these organisations representing the men have been
enabled to accumulate considerable funds during the year, and in the case of the Amalgamated Society of Engineers it is estimated that this will amount
or the twelve months.
In the iron trade the year also opened with a brisk demand, and as this had been going on during the preceding November and
December, makers had already so many orders on their books that then on the basis of 5 1s. to 0 万2s. less 2 I for local and district brands of pig iron, and $£ 7$ per ton for bars delivered equal to Manchester,
but a general advance upon these figures was looked forward to. During January large sales were made at advancing prices, and Lancashire, 53 ss . to 54 s . for Lincolnshire, and up to 55 ss . and 56 s . for Derbyshire pig iron less $2 \frac{1}{y}$ delivered, whilst the quotations for
finished iron, following the quarterly meetings, got up to tio 5 s per
ton, and subsequently the wages of the finished inconworkers were ton, anc subsequently the wages of the finished ircnworkers were
avvanced $7 \frac{7}{2}$ per cent. This was the highest point reached during he year, but to a large extent the top prices represented little more to an exceedingly limited extent. The large buying which
had been going on for two or three months had so fully
covered the requirements of consumers that they were under no covered the requirements of consumers that they were under no
necessity of coming into the market, and were certainly not Inclined to give out orders in anticipation at the advanced rates.
A complete lull in trade followed, which extended over the ensuing two or three months, until prices got down to a comparatively low
point, which again induced buyers to come into the market. For a time makers were kept going with their contracts; but as these tion commenced for any business coming into the market. Lincoln. shire and Derbyshire makers, who were underselling the local brands, got down to as low as 4 st .6 . to 45 s. less 2 L , and were
able to secure the bulk of the orders which the low prices now tempted buyers to give out. During May and June a large busi-
ness was done in district brands, and makers again attempted to realise better prices. Lancashire makers, whose prices had got ground; but gradualli, ythey were able to fill up their order-books at the low figures, and ultimately to follow the upward movement in
values. By gradual advances of 1s. and 1s. 6d. per ton district varands of pig iran got un during the second half of the year to 49s. and 50s. for Lincoinshire, and 52s. and 53s. for Derbyshire,
less $2 \downarrow$, but it was not until about the commencement of November that Lancashire makers put up their quotations, when in one
advance of between 4s. and $5 s$. per ton, they were raised to 50 s . and 5 sos. 6 d , less $2 \frac{2}{2}$ delivered. Business was again checked by the prices which makers were asking, and there was a repetition of the course of trade following the January advance. At the top figures very
little iron was sold. November found makers easier in their prices, and in December a renewal of the downward movement was again
inaugurated by the district makers, Lincolnshire brands being reduced to 4 ss . 4 d . and 4 ss s. 4 d . less 2 s , , with some brands of Derby-
shire offering at 48 s .6 d . to 49 s . Lancashire makers followed by shire offering at 48s. 6d. to 49s. Lancashir makers followed by
bringing their quotations down to 48s. and 49s. less $2 \frac{1}{2}$ delivered equal to Manchester. With the close of the year orders to a moderate extent have been placed for district brands on the basis
of the above figures, which has tended to give a somewhat better tone to the market and a more hopeful feeling with regard to the
future
In the finished iron trade prices during the first half of the year
 values until the September quarterly meetings got quotations up
to $\& 6$ 15s. per ton, but it was very soon found that this figure could not be maintained, and during October and November makers as
a rule got down to $\& 6$ 10s., at which they have since held, although come in very slowly, and there has As regards the general results of the business done in pig and
finished iron during the year, they may be said to have been fairly satisfactory. Although the weight of an enormous production has persistently forced prices back whenever any material advance has
been attempted, still a better average of values has been realised been attemptec, still a better average of values has heene large,
than in 181. The volumeo actual trade done has been lare
and there has been a marked absence of speculation. Even with and there has been a marked absence of speculation. Even with
an increased output local makers have been able to find a market for their pig iron, and the forges have been kept mostly well
employed for the whole tweve months. The market at Man-
chester on Wednesday practically brought the onerations of the chester on Wednesday practically brought the operations of the
year to a close, but there was nothing doing to alter the prices I
have already quoted, the market being much of a nominal character have already quoted, the market being much of a nominal character
both as regards attendance and business. If anything chowever, the less favourable character of the erports from Glasgow had a
depressing eftect upon the hopeful tendency towards improvement depressing effect puon the hoperui tendeend o prior to the holidays.
for the ensuing year which had been noticeable So far as the coal trade is concerned the year opened unfavour-
ably During the preeeding autumn consumers had laid in large
stocks in anticipation of wages difificulties with the men, and the subsequent exceptional milddess of the winter enabled them in
many cases to work on with these until well into the spring. The
demand for house-fire purposes during the wintermonths was scarcely equal to the average summer requirements, pits had to go on short equal and stockskacumulated. Summer opened with heavy stocks
time the hands of colliery proprietors, although the activity in
on
the iron trade and other coal-consuming branches of industry had
brought a good demand into the market for the lower qualities of
round round coal, and fuel supplies were so abundant that all round
prices were forced down to a very low point. Yorkshire and Derby and tions, prices which in January were on the basis of 9s. 6 d . to 10 s . for
best coals, 7s. 6d. to 8s. for seconds, 6s. 3d. to 6s. 9 d . for common

 the result of over-production, prevailed throughout, trade all
through the summer, and neither the protracted strikes in North
Wales or $S t$. commence Helens had any effect in improving values. With advance of wages worked a wonderful change in the market. Con-
sumers. as in the preceding autumn, again toolk alarm at the prospects of a strike, orders were rushed in to cover requirements in anticipation, and prices were steadily forced upwards, until, with
the commencement of November, colliery proprietors in many and generally the advance averaged from 1s. 6d. to 2 s . per ton. the men, but it soon became evident that the basis of the upward movement was a temporary inflation of the market, and not an
established improvement in trade. Although a moderate advance surrendor the excessive advances which were put on. With the
close of the year an improvement in the demand has tended to steady the market, and pit quotations average 10 s . to 10s. 6 d . for
best coals, 7. 6 d to s s. for seconds, 6. to 7 s . for common, s .9 d. course which prices will take is still very uncertain. Barron. - Very little of note has taken place during the week,
owing to the Christmas holidays. New business is, of course, slack in consequence, but makers are very fully employed, and have sufficient orders to maintain a brisk activity for some time.
The outlook for spring is good, and gives promises of seing
smelters busily engazed Prices are a shade lower Nos 3 being quoted at 55s. to 56 s . per ton net at works, and No. 3
forge, 54 s . The output of metal continues heavy. Steel makers are busy, but nothing of any moment to note in connection witn
this industry. Iron ore and coal steady. Shipping quiet.

NOTES FROM SCOTLAND

(From our own Correspondent.)

The Glasgow warrant market was closed from Friday till Tues-
day afternoon for Christmas. Up till Friday the tone of business had been improving, chiefly on account of considerable speculative purchases of warrants having taken place; but on that day the
market beeame disorganised through the failure of Messrs, Reiffenstein and Harmens, brokers, who had called a meeting of their creditors the same forenoon, having previously suspended payment.
The results of the failure, as far as our market is concerned, were soon discovered not to be very serious, and it was hoped that a speedily take place. But, as I have said, the market was closed till Tuesday.
On Friday evening the Associated Ironmasters issued their report actual figures from nine-tenths of the owners of blast furnaces in Scotland, and had to make up an estimate of the remaining one-tenth, which can implicitly be accepted as correct or all prac
tical purposes. The masters found that the production of pig iron, mas, 18 s. makers' hands, also including hematite, was at this date 226,421 tons. These figures showed that in the course of the year there
had been a reduction of 49,655 tons in the production, and a the aver of 86,393 ions in the sto and those presently in operation at 112. These figures, of course,
were correct, but they did not include the consumption at home the exports, or the imports, and consequently the annual report of Brokers was eagerly looked for. It was issued on Tuesday afternoon, just as the market opened, and although it was highly favour declined 6 d per tery detail, the quotations of warrants speedily resulting from the failure above mentioned, and partly to the desire of some speculators to realise as soon as possible. The following
table eives the Iron Merchants'statistics, with the figures of the

It will be observed that the only difference in the figures of pro duction, as compared with those of the ironmasters, is that the
brokers have struck off the odd 345 tons, thus arriving at round figures, and making the decrease 50,000 tons. There is a total 18,582 tons in Connal's stocks added to that of makers, shows a those at Christmas 1881 ment of production by $12 \frac{1}{2}$ per cent. during nine months of the
the med
tenars but asthe above figures show, also very largely from increased year; but, as the above figures show, also very largely from increased
consumption at home and heavier consignments abroad. The average price of mixed numbers of warrants during the year has been
 date last year 52 s . 4 d . On the 9 th J January last-the highest price touched on the 20th April. In the course of the year there were 42,000 in 1881 , being a reduction of 75,000 tons. Of this amount 180,000 tons was consumed
malleable iron and steel works
Business was done on Wednesday at 48s. 11d. to 48s. 9d. cash.
To-day-Thursday-transactions were effected at 48s. 10d. to The malleable iron trade is fairly active, and it has good proless pressure of with shipboiding orders, but Jixess Dixon, Limited, in pursuance of a resolution adopted some two years ago, but which they could not conveniently carry out at the time, are
withdrawing from the malleable trade, and giving up their malleable works both at Govan and Coatbridge. This will throw a large trade are so busy that they should not be long in finding situations.
The coal trade is gradually recovering from the derangement
caused by the recent stormy weather.

THE NORTH OF ENGLAND
Clevon our oon Correspondent.
HE Cleveland market held at Middlesbrough naturally have been expected. Many habitual attenders were away holiday-making, and those the time in friendly conversation and seasonable congratulations than in buying or selling. The
tone of the market, such as it was, was decidedly flat. News of a depressed feeling at Glasgow
tended to confirm and increase this, and buyers
 irtually unsaleable.
Man that in pir iron Plade was no better \&6 10s. free in trucks, less $2 \frac{1}{2}$ per cent. discount, but buyers would not give the price, and nothing
was done. Bars and angles might be had for ave been sold as low as $£ 512 \mathrm{~s}$. 6 . where the section is a desirable one and the order worth having, Light sections still command from $£ 5$ Cleveland market will be held on Wednesweek, instead of Tuesday as ordinarily
A partial trial of the electric light was made at
Messrs. Bell Bros., Page Bank Colliery, on Wedresday, the 20th inst. Several lamps were lighted at and about the bottom of the two
shafts, and were found to be far more powerful as illuminators than the lamps which had previ-
ously been in use.
The shipbuidding trade continues to be very
brisk on the Tees and at the Hartlepools. brisk on the Tees and at the Hartlepools.
Returns bave been issued showing the number of nage is considerably in advance of that turned
out last year. Messrs. Richardson, Duck, and
Co., of South Stockton, have built eight iron screw steamers, with a, gross registerede tonnange
of 16,182 and 1799 nominal horse-power. At North Stockton Messrs. M. Pearse and Co. have launched eleven vessels of 17,696 gross tonnage
and 1680 nominal horse-power. In 1881 Messrs. iichardson, Duck, and Coo's output tonnage was 17,338, and Messrs. Pearse and Co.'s $15,971$.
Both henese firms have in hand work which wili keen them employed far into the new year. At At
kiddlesbrough Messrs. Raylton, Dixon, and Co., have built during the year eighteen vessels of
various kinds, with a gross tonnage of 27,249 and various kinds, with a gross tonnage of 27,249 and
2755 -horse power. At Hartlepool Messrs. Wm.
Grat Gray and Co. have buit twenty-one vessels
during the year, the gross tonnage being 38,209 , an increase of four vessels and upwards of
b000 tons over the previous year. Messrs. E . Withy and Cor have turned out twelve steamers, amounting to 21,905 tons and $1975-$ horse power,
being an increase of one vessel and 4000 tons over 18t. At Messrs. Irvine and Co.'s yard six
teamers have been built with a tonnage of 7253 nd $660-$ horse power. The total tonnage built at the Hartlepools during 1882 is therefore 67,367 ,
as against 56,541 last year. In 1879 the total was only 27,644.
It is said that Mr. Edward Withy, of the
Middleton Shipyard, Hartlepool, intends to try the experiment of employing females in his draw ing office.
The ass
The associated employers connected with the larth of England Board of Arbitration have of tions which they think it desirable should be made in the rules of the Board. It is admitted by both masters and men that considerable
change is needed, as difficulties are continually change is needed, as difficulties are continually
arising which the Board is unable to deal with. The working expenses under the existing arrangement are also far too heavy, and many abuses
exist. The employers have issued the following propositions for the consideration of the IronArbitration Committee of employers and operaNorth of England: (1) The committee to be composed of six from each side, members of and
selected by the Employers' and Operatives' Associations respectively, (2) To be peseided over by
an independent person mutually selected. (3) The expense of paying representatives, officials, eparately, Joint expense be borne by each side joint committees, acoountant, and shorthand ployers and operatives. (4) The reeognition of employers class and operative classonly, or mainly
through their respective associations forcement of joint decisions and the awards of (6) To meet (6) To meet joint expenses one penny per man
per four weeks to be deducted, the employers contributing an equal amount. The money to be
banked in the names of two treasurerseach side. Any surplus remaining at the close o the year to be divided equally and paid over to
the funds of the Employers and Operatives The standing committee held a meeting a sider the ahove, but no definite conclusions wer come to. The rule most objected to by the
operatives is that by which the Board would con sist of only six employers and six employéss
Under the present arrangement the men twenty-three representives, viz, one from each

It is not unlikely that the above rule will be Withirawn, and that the representation will be
allowed to remain as herebeorer. At the same
time the duties and operative delegates will be strictly defined, and it will be no longer possible for them to make a living out of their fees and without working. As
much as $£ 7$ to $£ 8$ per week has hitherto mueh as $f 7$ to ef8 per week has hitherto been
reeoived by some of them for adjusting grievance and attending meetings !

WALES \& ADJOINING COUNTIES. (From our own Correspondent.) THE great tin-plate failures of the winter of
1882 will long be remembered. I fear we hav
not seen the end of them, but even up to the pre-
sent the list is a grim one; 28 works stopped, sent the list is a griim oun, work or impoverished
20,000 people thrown out of 20,000 people thrown out of work orimporersined,
and a derease in make of 150,000 boxes of tin-
plate of all kinds weekly. This is a different plate of arriving at a limitation of make from
form of arremled by makers. The results
that that comtemplated by makers. The results, to stiffen. I shall thoroughly expect to see
good spring trade.
Large consignments of tinood spring trade. Large consignments of tin
plate continue to be made. Speculation is active Possibly one or two may resume, under nee direction; as regards the mass, liabilities and expenses will eat them all up
The iron trade generally i
5000 tons iron and stael let let Cardiff last week
lat and the supply of foreign ores has been wel kept up.
During a reeent dearth of arrivals frem Bilbao consequent on the stormy weather, the possibility
was discussed of Welsh ore coming into use agai was discussed of Welsi ore coming into use agaul
under the Thomas-Gilchrist patent. This would only be resorted to in great need, and when ore
of Bilbao and Elba were not to be had. Th of Bilbao and Elba were not to be had. The
Welsh ore, with its 23 per cent. to 27 per cent. o iron, would entail an ex
poor results at the best.
I look forward confidently to a brisk in the new year. Indications are good, and the market is firm with upward tendency. Busines
during the last few days has been quiet, principally during the last few days has bee
on account of Christmas time.
Great expectations exist about the projecte railways, though it is thought that the modified
tariff of the Taff Vale will seriously Barry scheme. So far we have on the carpet the Barry scheme, the Treherbert and Swansea Bay and the Newport and Rhondda, which may
be regarded as accomplished facts, the Grea Western and Rhymney connection with Merthy which is also decided on, and the South Wales, and which will come on early the largest portions of the Newport and Rhondd
Railway, now in course of formation is spanning the Taff. This has been a great hindrance, but I am glad to see that the chie
difficulties have been mastered. The viaduct o the new section of the Great Western to Merthy There is now a rush
me last week and prices pitwood; 18,000 tons Maenclochog Railway, Pembrokeshire, is to be The for general traffic in January
The Neatu Commissioners announce the change of present cha

THE SHEFFIELD DISTRICT

Work generally ceased for the Christmas holidays on Saturday, and during the week the day the works will again be in full swing, but, so fa as I can learn, there will be no great bulk o
orders to carry forward to the new year. Manufacturers have been aiming at clearing off thei orders as far as possible; and there has been no great influx of work during the closing months of hhe year. Advantage is usially taken of the
holidays to make repairs and alterations to ma chinery, and boiler-makers have a busy time of it. been joined by a considerable number in Yorkshire, Derbyshire, and the surrounding district, Liability Act, to establish a coal exchange. The Board of Trade to omit the word "Limited" from its title. There will be a library and read-ing-room, with other accommodation, in which persons engaged in the coal and kindred trades,
in Manchester and the neighbourhood, may meet in Manchester and the neighbourhood, may meet the interests of the coal and other industries. The Claycross colliers do not take kindly to the new safety lamp arrangements. At first 200
miners declined the lamps, and struck sainst their use. At a recent meeting, the chairman said he was fully convinced that the use of the There oumbt, was disadvantageous to the men. for the use of the lamps e 3 d . per ton ad or wedging where shots could not be fired. Another speaker said there were men in the pit of whom the safety lamps would mean a reduction
fron the company be asked to withdraw the lamps did not find a seconder, but another resolution was passed declaring the men entitled to an advance fhere the tan on the present tonnage in all pits Mr, Thomas Hansel.
rim of Messrs, Steel has retired from the Limited, steel rail manufacturers, Phonix Bes-
semer Works, The Ickles, Rotherham. Mr. semer Works, The Iokles, Rotherham. Mr.
Hampton's interest, I believe, has been acquired Hampton's interest,
for the existing partners, the company being in every sense, except that it is under the Limited he cl Republic has beenth the prine year , the Argentign customer. At Dronfield the people, hoping against hope, to Workington. They have heard that Messrs. movement, namely, to retain the Dronfield Works and remove the Penistone establishment, "because the lease at Penistone is on the point
of expiring." There is no ground whatever for this idea. The premises at Penistone are freehold, and Dronfield may rest assured that by the
31st of March the steel works will be taken away oot and branch
During the
During the last year our Government have Armour-plates, on the compound system, have been supplied for the Collingwood, Majestic Conqueror, Imperieuse, Colossys, Edinburgh, and
Rodney. Steel plates have also been made at Rodney. Steel plates have also been made at
Sheffield for the Agamemnon, the Ajax, Warspite, and the Howe, building at Chatham.
Compound armour, it is expected, will also soon be required for the Admiral Beat will also soon be required for the Admiral Benbow, for which
ship the Thames Shipbuilding Company have
taken the contract.

THE PATENT JOURNAL.

** It has come to our rotice that some applicants of the
Patent-ofice Sales Department, for Patent Speciifcations,

Applications for Letters Patent.

 *When patentrs have been "communicated," thenamo and address of the communicating party are
printed in italics.

Making PApre Bacs, E. K. Dutine

 S006. EXTracting Gold from Pyrites, J. Plaisted,
London
S057. Drying Salt, dec., S. Pitt.-(r. G. Sturke, Mon-

 20th December, 1882
6009. SAFET-V-VLVE, J. Williams, London.
6o70. PREsSING HorNs and Hoors, D. Stewart, Aber-
deen N.B.

 Gomperty and Meinrath, Hanover.),
6074. Autonasic RALIWAY Coupling, E. N. Brereton,

 London. Shears, E. Nunan, London.
6o82. Hasi. Eiverro Motoks, L. Miline and L. B. Miller, Lond. Eleotro Morors, L. Milne and L. B. Miller
6084. Regeulators for Steam Engines, E. Edwards 6055. TELEPRHONIC APPARATUS, W. R. Lake.-(M.

-
6093. Loons for Weaving, J. Laird, Forfar.
6094. Double-driving Tricycless, S. Leo and M.

 Hemsley, Kettering:
609s. SkwINe MAchives, B. J. B. Mills.-(c. Vernai

 Bossomaier, London.
6103. ADMINISTRIING Medicine

 son.-(J. L. Bopp du Pont, Parisis.), W.P. Thompson.

22nd December, 1882.

 Wanger, London
6119. Dish Coven A. G. Hewett, Sheffield.
6120. EDUCATIONAL APPARATUS, A. J. Boult.

 Hackney. $23 r d$ December, 1882
134. Prebervingo Animal and Veabtable Matter, J.

 Cleveland, U.S.)
142. BunNing Gas for Cooking, \&c., J. W. Plunkett, Lit3. Driniverctina Coarpounds, I. S. McDougall, Man-
chester.

 mingham. . B. Fawcott, Kidderminster.

Invention
Deposit of otected for Six Months on
Oomplete Specifications. mos. CAR-Couphinges, A. J. Boult, London.-A. Com-
munication from C. Mack, Flint Michigan, U.S.-

Notices of Intention to Proceed with (Last day for fling opposition, 12 th. January, 1883.)

 August 1882.
4007. Covirivour Cexpriveal Maccinves. Fi. Wirth,
Frankfort-onthe-Main.

4017. Making Glucose from STARch, H. J. Haddan,
London.- Com. from L. Virneisel.- 22 nd A A Agust, $1 \mathrm{SB8}$
. August, 1882. Apparatus, W. R. Lake, London.-A
4031. HEATING Appan.
com. from M. J. Walsh.- $22 n$ d August, 1882. com. from M. . . Walsh. 222 nd A August, 1882.
4032. Glass Botcen. A August, 1882 .
4040. Mechanical Stokers, J. Proctor, Burnley.- $23 r$ A042. STEEL for Corsets, \&c., J. S. W. Whitehead, 4044. TELEPHoNE RECEIVING Apparatus, R. and M
Theiler, London. $-23 r d$ A Ald Theiler, London.-23rd August, 1882 .
4053. SLEEPER CHARS, J. McL. Blair, Glasgow.-24th August, 1882 . Cans, H. J. Haddan, London.-A com.
4061. CovERS of
from Schneider and Lemp. 24 the August, 1882. from Schneider and Lemp. - 2 tth, August, 1882 .
4062. SEWING MACHINEs, H. Haddan, London.
com. from J. A. Doering. - $24 t h$ A Auqust, 1882. com. from J. A. Doering- - 24 th A August, 1882.
4079. SECONDARY Batteries, L. H. M. Somzé, Brus seis. 25 th A August, 1882 .
4080. ELECTRIC MEASRING, \&c., Apparatus, S. H.
Emmens, London

 4127. ELLECTRIC INDIC
2203. Augut, 1882.
42. DRYING WAste M
 communication from J. Brown and J. Brown, jun.-
5th September, 8882
4328. Cock, W. Bright, Fer 4328. Cock, W. Bright, Exeter.-12th September, 1882 .
4393. MoDIFICATION of MUSGAL Sounds J. Burnet,
London.- 1 thl September, 1882. London. - 15 th September, 1882 .
4458. CARBoN CoNDUTORS, W . Lake, London.-A
com. from E. Weston.-19th September, 1882 . com. from E. Weston. - $19 t h$ September, 1882.
443. BIIYCLES,
ber, 1882 . ber, 1882.
4487. Treat
 CHINES, I. Nasch, London.-22nd September, 1882 .
572. APPARATOS for MAKING GAs, S. Chandler, Lon-
don. -26 th Septenber, don. - 26th September, 1882 .
4643. Converting REIPROCA
Rotary into
Rotary into Recrirnocatina Motion, W. R. Lake,
London.- A communication from J.'J. Larroque, 29th September, 1882 .
 munication from H., G. E., and C. F. Cutler, and
B. T. Thompson. -5 th
October, 1882 .

 don.-A com. from A. Iehl. -23rd October. 1882 .
 November, 1882. Frames, S. Scherer, London.-6th
W361. Washng, de., Machines, R. P. Rothwell, Lytham.- 10 th November, 1882,
504 . MAKING INCANDESCENT ELEGTRIC LAMPS, A. Swan,
 from G. Stollwerck.-20th November, 1882.
5546. Coo.LING APPARATVS, S. P. Wilding, Lond
com. from G. Stollwerck.- $22 n d$ November, 188 com. from G. Stollwerck. - 22 nd November, 1882 .
6606. TAKING Soundings, F. Suteliffe, Liverpool.- 25 th
 28th November, 1882 .
6667 C Cotrina TuBE, S. Soodby, sen., Wolverhampton. 717. Distiluling Coal, G. E. Davis, Manchester. -30 th
November, 1882.
5727. Ranskring, \&ce., Railway Wagons, G. Tay-
lor, Penarth. $-18 t$ December, 1882 .
 December, 1882 .
516. Looms, W. Adam, Kidderminster.- 11 th December,
1882 . (Last day for fling opposition, 16th January, 1883.) 4006. Velocipedes, J. Stassen, London.-21st August,
1882. Barrels, \&c., W. R. Lake, London. - A com-
4009 .
munication from F. Myers. munication from F. Myers. - 21 st Auoust, 1882 . son.- $222 n d$ August, 1882.
4026. SKATES, C. G. Beddoe, London.-22nd August,
1882. 183. Carbureting Llluminating Gas, C. Crozat,
Eastcheap.- $22 n d$ August, 1882 . 4034. GenEration, de., of ELEETRICITY, J. S. Williams,
London. - 22nd August, 1882 . 1041. PReparing Cortion, de., W. Lord, Todmorden.
-23rd August, 1882 . 4043. Moulds for Casting Nails, S. Williams, Aston.
$-23 \mathrm{M} \cdot \mathrm{d}$ August, 1882 . 4058. Lath Bugoors, \&c., A. C. Andrews, Birmingham.
-24ust 1882 . 24th August, 1882 .
4072. FILTERING APPARATUS, J. F. C. Farquhar and W.
Oldham, London.-25th August, 1882.
 4086. Rallway Carriages, \&c., W. J. Bennett and
C. H. Rosher, London. $26 t h$ August, 1882 . August, 1882.
4117. Washing Lawn Tennis Balls, A. S. Openshaw, Birmingham.-29th August, 1882, Harrington, Ryde.
4119. PropelLING SHIPs, de., G. F. Harigh
-29th Auvist, 1882 . -20 th Auqust, 1882.
4120. SELu-INDICATING TeA URN, \&c., R. W. Raphael,
Balnamore.-29th August, 1882.
 4163. FIITERS, A. M. Clark, London,-A communica-
tion from W. Maynard. - 1 ste August, 1882 .
 265. Wheptember, 1882.
293. MUuThPLe. cylinder Engines, F. Wynne, Lon-
don. - 9 th don. -9 th September, 1882 .
4368. VENETIAN WINDow Blinds, G. S. Marshall, Bir-
mingham. -1 thth September, 1882.
 535. Dynamo-electric Machines, F. C. Glaser,
Berlin.-A communication from C. Zipernowsky and M. Deri.- 23 rd September, 1882. . Mipernowsky
4538. Punkryirg GAsEs, H. Symons, Totnes.-23rd September, 1882 . Gases, Harriages, H. Downie, Corstor-
4657. Brakes for
phine. -30 th September. 1882 phine. - 30th September, 1882.
(669. STEAM GENERATORS, W. Clark, London. - A com-
munication from M. Hervier.- 30 th September, 1882.

 Dorking.-28th Novenber, 1882.
567. Colourive Matters, C. D. Ekman, London.-
29th November. 1882. 29th November. 1882 .
5703. SEwING MACHINES, M. Gandy, Liverpool.- 30 th
November, 1882 . November, 1882 .
5807. METALLLC INLALD Work, A. M. Clark, London.
A com. from W. C. Edge.- 5 th December, 1882. A com. from W. C. Edge. 5 th December, 1882 .
Tth. RowLocks for
December, 1882. BoAs, C. M. Morris, Lowestoft. 7th December, 1882 .
584. RING Spinnig, Frasiss, J. Young and E.
Furness, Mellor.-9th December, 1882. 55. Car Couplings, A. J. Boult, London.-A com-
muniation from C. Mack.-19th December, 1882 . munication from C. Mack. - 19th December, 1888.
6085. TeLEPHoNIC. APPARATUS, W. R. Lake, London.
A com. from M. F. Tyler.-20tl/ December, 1882 .

Patents Sealed.
(List of Letters Patent which passed the Great Seal on the
22nd December, 1882.) 2983. Making Trowels, A. Reaney, Sheffield.-23rd June, 1882 .
2955. Thrahing Machines, E. Foden, Sandbach.-
23rd June, 1882 2993. Prevernivg Incrustation in Steam Bollers, E.
Field \& W. L. Thompson, London. $-24 t h$ June, 1882 . Field \& W. L. Thompson, London.-2tth June, 1882 .
年 June Brewing of Beer, E. R. Moritz, London.-
299. Oil Can for Lubricating Machinery, G Cornut and A. Castelin, Paris.- $24 t h$ June, 1882 .
000 . KITchen Ravges, G. Dawson and C. Butcher, Thorncliffe.- 24th June, 1882 . June, 1882.
3004. Protectiva Tapholes, L. J. Prosser, London.-
24th. 24th June, 1882. Lamps, w. E. Debenham, London.26th June, 1882 .
3017. Sortisg Graiv, \&c., A. J. Boult, London.-26th
June, 1882. June, 1882.
O23. VELOcIPDEs, G. Moss, Barbican.-27tho June,
1882. 1032. SAFETY Lamps, W. Jenkins and D. Morgan,
Treorky.-27th June, 1882 . O33. Producing Carbons, F. S. Isaac, London.- 27 th June, 1882.
SYBRING
337. SYRINGing the Leaves of Plants, J. A. Drake
and R. Muirhead, Maidstone.-
 Sheftield. -28 tor $J u n e, 1882$.
3057. CHUCKs for Tuning Lathes, H. H. Lake, Lon-
don.
 Berlin,-29th June, 1882 .
3075. FURNACES of STEAM Boilers, W. Bell, Lancaster.
29th June, 1882 . 3086. Printing Ink, F. Wirth, Germany.-30th June 1888. Combing WooL, \&c., J. W. Bradley and J. Wood,
Bradford. - -30th June, 1882 Bradford.- 30 th June, 1882. Wig, Liverpool.- 3 rd
3125. CARBONATE of Soda, C. Wigg,
July, 1882. 3136. SHackles, R. M. Ruck, Chatham.-3rd July,
1842. 4. Barb Wire for Fences, F. C. Glaser, Berlin.
th. July, 1882 .
4. Stul for Liquids Containing Ammonia, W. A 64. Still for Liquids Containing Ammonia, W. A
Barlow.-4th July, 1882
3. FItrering Water, J. H. Topham, Manchester.-
 Crowe, and W. James, Chester.-7th July, 1882 .
324. AxLEs,
July, 1882 . 3274. DRIVING Gear for Locomotives, J. H. Johnson,
LLondon. -11th July, 1882 . J. Haddan, London.- 11 th
327s. Booo Burnishing, H. J. S278. Boor Burnishing, H. J. Haddan, London.-11th
July, 1182.
332. Cocks, \&c., J. W. Restler, Nunhead.-15th July,
1882. 1887. Cocks, \&c., D. R. Ashton, Clapton.-19th July, 3174. Couplings for Shafts, H. Smith and C. Harri-
son. -21st July, 1882 .
3491. son. - 21 st July, 1882 .
3491. Phorograp His Image, E. G. Colton, London.-
22nd July, 1882.
3541. Producing Methylquinoline from Ortho NITRO-BENZYLIDENacetone, J. Erskine, Glasgow.
$26 t h$ unly, 1882.
3620 . Horseshoes, F. H. F. Engel, Hamburg.- $31 \mathrm{~s} t$ July, 1882. -9th August, AP82. Dudley. - 11 th August, 1882 .
ham.-14th August, 1882. . 3908. Combustible GAsEs, W. S. Sutherland, Birmin
ham. -16 th
August, 1882 . ham. - 16 th A August, 1882 .
3922. Cluck REINs, A. M. Clark, London.-16th
August, 1882. 4046. ELEctric Arc Lamps, J. K. D. Mackenzie,
Halifax.-23rd August, 1882. Halifax.-23rd August, 1882.
4256. ORNAMETING GLASs, \&C., W. H. R. Toye, Lon-
don. 7 th September, 1882. don. - 7 th September, 1882 .
4364. CASTII ALKALIEs, de , W. L. Wise, London.14th September, 1882 . J. H. Johnson, London.-14th
4386. LEAD-HODERS, J. September, 1882. . S. Sawrey, A. Attwood, and H.
452.. Pumps, J. Sterne
Woodbourne, Ulverston.-23rd September, 1882. Tweddell, London, Machines for Shearing, R. H. 4596. Measuring, di., Electric Cureents, S. Z. de
Ferranti and A Thompson, London.-27th Septemberr, 1882 .
665. ELECT
September, 1882. 706. Apparatus for Making Paper Bags, W. L. Wise,
London, -3rd October, 1882 .

 New York, U.S. - 7 th October, 1882 .
4806. HARVESTING MAcHINES, J. Hornsby, J. Innocent
and G. T. Rutter, Grantham. $-9 t h$ October, 1882 . 4812. INCUBATOR, T. Grantham. - Christy, London. October, 10882 . 10 . October,
1882. 4821. Vivesel for Transporting Barges, \&c., C. D
Abel, London.- 10 oth October, 1882.
 30th October, 1882.
5217. Splitive WILLow-wITHEs, \&c., J. Y. Johnson,
London. 1 st November, 1882,

** Specifications will be forwarded by post from the
Patent-office on receipt of the amount of price and Patetige. mice on receipt of the amount of price and
postag. Sums exceeding 1s. must be remitted by Post-office order, made payable at the Post-ofice, ,
High Holborn, to Mr. H. Reader Lack, her Majesty's
Patent-office, Southampton-buildings, Chancery-lane, London.

ABSTRAOTS OF SPEOIFIOATIONS. Prepared by ourselves expressly for The Engineer at the
ofice of Her Majesty's Commissioners of Patents.
2183. Machines for Dressing Sluk, \&c., A. M. M.
Clark, London.- 9 th May, 1882.- (A communication from La Cie. Générale de Teinturerie et Apprèts SysThe invention relates to a machine for dressing or stiffening silk or other fabrics in a uniform manner
by causing the fabric to pass through the trough in
which the dressing is contained in a state of tension, which the dressing is contained in a state of tension,
and spread out to the full width, so as to avoid creases 2275
2275. Bedsteads, Couches, \&e., For Invalids,
Welton, London. $-15 t h$ May, 1882 . This relates partly to the combination of a frame carrying a support for the person using the appa-
ratus, with toothed racks and pinions or screws and
hubs or their equivalents. 2276. Apparatus for obtaining Heat and Light FROM GAS, A. H. Hearington, L.
1882. (Not proceeded ooith.) 4 d.
This relates to burners in which
This relates to burners in which inflammable gas, 2277 . Produoing Pictures on Stone, Glass, Metai,
dc., H. J. Haddan, Kensington - 15 th May, 1882 .This relates to (A from E. Godard, Paris.) $4 d$. This relates to a process of producing images in
vitrifiable colours on glass, wood, marble, metal, and
other surfaces. other surfaces.
2279. Prigking up Apparatus for Leather-Stitch-
Ing Machines, J. Day, Staford. 15 th May, 1882 . Thd invention comprises the use of a tool called a
Tricker which has a chisel-shap by devices to the vibrating arm of the stitchin machine in such a manner that as work is moved
along by the feeding device the said tool will "prick along by the feeding device the said tool will "prick
up" or divide the stitches from each other, will pro-
duce a mark adjacent to duce a mark adjacent to each stitch, or will imitate
duplicate stitches, either or all of which operation dupicate stitches, either or all
will be performed more rapidly
they can now be done by hand.
2280. Bottle Filling Machines, c. M. Sombart
Germany. $-15 t h$ May, 1882. - (A communication from This relates to the application of a bottle-filling
machine to the self-acting bottle stopping machin machine to the self-acting bottle stopping machine
described in patent No. 3615, A.D. 1881 , so that bottles
can be filled and corked in a self-acting 2281. Fire-Escapes, J. Gordon, Leeds. $-15 t h$ May $1882 .-(N o t ~ p r o c e d e d e d ~ w i t h)$.
$2 d$ d.
This reates to the use of springs, so as to balance the weight of the ladder, which is mounted in bearing 2282. Velocipedes,

Green, Smethwick,-15. and May, J. Brookes and M
voith. 1882 .-(Not proceded As applied to tricycles the invention consists of a
front driving wheel and two side wheels, the forme being arranged so that it can be thrown out of the centre line at will. The frame is jointed so that it
may fold up. An arrangement of differential gear is
provided for ascending inclines. Other improvement provided for a
are deseribed.
2289. Manufacture of Metal Plates, Wire, \&ce,
T. Boven and C. Jenkins, Glamorgan.-16th May, 1882.-(Not proceeded with.) 2 da . then pickled, by which means the scale or oxide is
more asily removed. 2290. Winding Yarn or Turead, B. M. Knox, Kil This refers especially to means for winding or "binding" of the thread on to the bobbins, and for automatically stopping the motion o
any bobbin, and so prevent the breaking of the thread
when passes over a long lever, and when the tension is too great the lever is depressed, and, through a suitable
arrangement, shifts the belt from the fast to the loose arrange
pulley.
2291.
2291. MotJve Power, IV. Anyon and J. Lund, Man-
chester. - 16 th May, 1882 - - (Not proceded voith.) $2 d$. The object is to utilise exhaust or waste steam to
produce motive power, and it consists in causing the steam to act on an arrangement of cones similar to an
exhaust injector, and thus force water into a closed vessel containing water and air at a pressure of several assospheres, the air being utilised to force the water
atrom the vessel on to a turbine or other hydraulic 2292. Woven Fabrics, E. Briggs, Bradford.-16th May, 1882.2 2d. silk textile fabrics manufactured
This relates to sith
with warps made of thrown silk, and with silk in the with warps made of thrown silk, and with silk in the sum, and a weft of spun silk and single thread, and
not two or more folds, and it is made of Tussore or
Turkestan silks. 2293. Improved Means of Insulating, Covering,
and Coating Wires, de., A. Shippey, Ladbrooke-grove-rood, London, and R. P Punshon, Brighton.-
$-16 t h$ May, 1882. -(Not proceded 2oith.) $2 d$.
The inventors mix powdered glass and sod silicate The inventers mix powdered glass and soda silicate
in equal parts, and when moist coat the wires with
he mixture. Asbestos paper soaked in melted the mixture. Asbestos paper soaked in melted
paraffine ozokerit is next wound on, and after that a
solution of gutta-percha dissolved in benzole is solution
applied.
2294. Disintegrating Apparatus, R. Prentice.-16th This relates to apparatus for breaking up lumps of larly such as are liable to become pasty when sub-
jected jected to rubbing, and it consists of a drum mounted
on an axis, and, to which a number of spikes are
hinged. The drum is enclosed in a case containing hinged. The drum is enclosed in a case containing
the material to be acted upon, and as the drum
revolves the spikes are caused to stand out and act on revolves the
the material.
2296. Compound Funnels For the Economical
UTILISATION OF Heat, F. Livet, Notting Hill.-16th
May, 1882.- (Void.)

This relates to the use of a metal pipe or funnel so constructed as to impart a rotary motion to the gases
as they come from the furnace below, whereby their
the as they come from the furnace below, whereby their
velocity towards the exit is retarded and more time
allowed for their combustion. 2297. Utilising the Residues from Refining of
Cotton Sex Oil, J. Longmore, Liverpool.-16th May, 1882 . - (Not proceeded vith.) $2 d$.
The object it to utilise the "Mucilage" precipi-
tated when cotton seed oil is treated with caustic soda, tated when cotton seed oil is treated with caustic soda,
and it consists in dissolving it in water and adding
salt, whereby the soapy matter is separated from the
colouring matter, and the latter is then precipitated
by adding an acid to the liquor. The soapy matter is
treated so as to form soap, and the colouring matter is treated so as to form soap, and the
utilised for any suitable purposes.
2298. Improvements in Apparatus for Operating
Sewing Machines by Electricty, IV. R. Lake,
London.-16th May,

London. -1 thth May, 1882- - (A communication from
J. Kearney, San Francisco, U.S.A.)-(Not proceededl with.) 2 d .
This relates the combination of batteries with
conductors leading to electro-mate conductors leading to electro-magnets having arma-
tures, said armatures being connected to conneeting rods attached to the moving parts of the machine.
When the current passes, motion is imparted to the
armatures, and thence by the connecting-rods to the machine
2299. Cabinet or Stands For Sewing Machines,
de., W. R. Lake, London. 16 Lhi May, $1882 .-$ (A
communication from A. Fit*-Gerald, Fairfield, U.S.)

This relates to tables or stands with revolving top
portions upon which the machine is mounted, to
afford means for concealing the same when desired. 2300. Preventing the Passage of Heat to or from
Pipes, 凶c., W. T. Whiteman, London. 16 th May, May
1882.-(A communication from J. L. Lee, Newo York.) This. relates essentially to the use of lampblack for
repelling moisture and acting as a non-conductor of 2301. Fastenings For Gloves, Boots, Shoess, \&c.,
Hinks, T. Hooper, and S. G. Moore, Birminghan

Hinks, T. Hooper, and S. G. Moore, Birmingham.A plate fixed to one side of the article to be fastened
carries hinged arm, which is thrown back and passed
hrough an eyelet hole in the other side of the article. through an eyelet hole in the other side of the article.
The arm is then turned on its pivot, and pulls the two sides together, the end of the arm being curved, so as
to take over the outer end of the plate with a spring 2304. Washive Dishes, de., R. Bramwell, Bays.
 brushes and caused to revolve in a casing.
2310. Reversible and Combined School-desk, Seat,
and Tale, W. R. Thomas, Peterborough. -17 th It is proposed to construct the seat with a movable
back, so arranged as to be readily adapted to form
either a desk, board, or table as required. 2311. Improvements Connected with Submarine
Cable Garapnels, dic., Sir Jas. Anderson and W. This relates to improvements in cable grapnels, Whereby when the cable is caught in the prongs of the
grapnel, it can be acted on by means of induction, so

that signals can be exchanged through the cable with
the shore end. The grapnel rope, as will be seen from the shore end. The grapnel rope, as will be seen from
the illustration, is provided with two insulated wires leading to a coil in the prong. The invention also
elates to an improved swivel for grapnel lines. 2313. Tables, G. W. von Naworocki, Berlin.-17th
May, 1882.-(A communication from L. Schnietzer, The object is to render tables suitable for use as
a desk, and it consists in hinging the top to the under
fre desk, and it consists in hinging the top to the under
frame, and providing suitable means whereby the
other side can be secured in a raised position, so as to produce any desired degree of slope.
2314. Coverings for Carriages and Perambulators,
G. W. von Naworocki, Berlin. -17 th May, 1882. communication from L. Schmetser, Germanay.). 6 .
According to this invention the ribs are each made of three wooden parts, viz., a top part and two side
parts, which are connected and held together by bent parts, which are connected and held together by bent
metal springs or strips. Other improvements are 2315. Marking Out the Lines on Lawn Tennis
Courts, W. Burrows and G. Davson, Leeds. 17 th

May, 1882.6 d .
brush is caused to revolve in a trough of suitable marking composition by means of a travelling wheel of tie rrame of the apparatus, and deposits such com-
position on the marking roller, which also forms one
of the supporting rollers of the apparatus. 2321. Memorandum and Letter Forms and Case,
B. C. Scott, Regent's Park.-17th May, 1882.-(ProThis relates to a sheet of paper perforated a short
distance from the edges, and gummed beyond, so that distance from the edges, and gummed beyond, so that
when the letter is written in the centre, and the sheet
folded the edge olded, the edges can be gummed together, so as to
form a sealed enclosure. To open the paper the edges 2322. Steam Stering Enaines, G. Robson, Sunder
land.- 17 th May, 1882. This relates to the construction of steering gear and ontrolled automatically by the engine operating the valves which admit steam to the cylinders, is con-
trolled by manual power applied to a shaft, which is not affected by the working of the engine.

The air which it is necessary to admit to the cask as
the liquor is drawn off is not allowed to come in conthe liquor is drawn off is not allowed to come in con-
tact with the liquor, but is made to enter an elastic
bag fixed in the cask. A refrigerator is provided to bag ixed in th
2324. STEAM Boilers, F. H. F. Fngel, Hamburg.-
17th May, 1822. - A communication from A. W.
Schultze and G. Meyer, Hamburg.-(Not proceded

This relates to boilers in which secondary steam is produced by heating the water of the corresponding
boiler by primary steam obtaine by the directly
firing of a main boiler, and it consists in forming the firing of a main boiler, and it consists in forming the
boiler of three coneentrically arranged boilers and montles, the inner one being heated by fire, and the
middle and outer ones by steam from the first boiler. 2326. Driving and Steering Machinery, \&c., C.
Truman, Birmingham. -17 th May, 1882.-(Not pro-

This relates partly to the use of a roller clutch for riving velocipedes; also to the means for steering the

 same,shafts.
2327.
327. Fixing Knobs and Handles to Spindles, \&e.,
Th. H. P. Dennis, Chelmaford. -17 th May, 1882. $6 d$. . The knobs are attached to the spindles by means of 2329. Gas Engines, W. B. Hutchinson, Islington.-
18th May, 1882. 8d.

This relates to gas engines in which the charge is
drawn into the working cylinder by the up stroke of
 upon the air-admission duct, between the air valve
and the opening of the duct into the cylinder, an auto-
matic metal lift valve, so as to prevent the products of matic metal lift valve, so as to prevent the products of
combustion coming into contact with the india-rubber
zir valve, and so destroy it. A similar plan is adopted to valve, and so destroy it. A similar plan is adopted
to protect the gas-admission value. The invention
urther relates to the ignition valve, the slide valve further relates to the innition valve, the slide valve,
and the combination of the parts forming the improved engine.
2330. Employes, W. B. ARe Levellin, AND Departure or
18sistol.- $18 t h$ May, 1882.- (Not proceeded with.) $2 d$.
This relates to improvements on patent No. 2472,
A.D. 1881, and consists, First, in providing a shoot to A.D. 188 , and consists, First, in providing a shot to
canale check to be inserted from the opposite side of
the wall that on which the apparatus is situated;
Secondly, in providing an open circular hopper to Secondly, in providing an open circular hopper to
enable any number of checks to be passed in at once:
Thirdly, in curving the bottom of the check-box so as naable any number of checks to be passed in at once
Thirdy, in curving the bottom of the check-box so as
to canse the checks to roll towards the circumference to calise the checks to roll towards the circui
Fourthly, in hinging the bottom and securin
catch. Other improvements are described.
2331. Combined Spring Matrress and Bedstead,
S. Isaces, Birmingham. 18 th May, 1882 . $6 d$. This eonsists in fitting the bedposts directly to the
spring mattress, so as to avoid the necessity of making apring mattress, so as to avoid the
botom or frame to the bedstead.
2332. ADusTi
2332. Adjustable Reclining Chairs, J. Covan,
Liverpool.- $18 t h$ May, $1882.8 d .1$. 8 .
This relates to the use of a novel arrangement o This relates to the use of a novel arrangement of
parallel motion bars to enable the back to be set at
any desired inclination to the seat. any desired inclination to the seat. 2333. Cruising Canoes and Lefy draught Vessels,
J. T. Grindrod, Liverpool.-18th May, 1882 com munnication from E. Jocksson, Manilla.) 6 d.
This consists essentiall in hollowing out or concav-
ing the bottom of the vessel.
2336. Improvements in Dynamo Machines and
apparatub for Lighting Raliway Carriages by
 M. Byllesby, New York.) $6 d$.
This relates to the lighting of railway carriages, \&c.
by the combination of a generator, storate by the combination of a generator, storage batteries,
and switches for operating the same. The chief fea-
ture of the invention is an automatic circuit director, ture of the invention is an automatic circuit director,
which provides a means of changing the circuit con-
wections of the nections of the dynamo, so that the polarity of the
field-magnet shall remain the same, and the current field-magnet shall remain the same, and the current
in the main line always flow in the same direction, no
matter which way the armature may be revolved. matter which way the armature may be revolved.
2337. Engines Operated by the Expansive Force
of AIr or Gas, H. Guthrie, Manchester.-18th May, 1882.- (Not proceeded with.) 2 .
This consists mainly in the emplo duced and burnt under pressure, such fuel are introconnected with a cellinder in such a manner that
the products of combustion passing from the fire are the products of combustion passing from the fire are
employed as the medium for driving the machinery,
the object being to expand the air so used directly by the combustion of cheap solid fuel.
2341. Metallic Tubes for Steam Boilers, W. E
Everitt, Birmingham.- $18 t h$ May, 1882.-(Not proThe object is to give to the metallic tubes elasti-
city. 2342. Gas Engines, W. Watson, Harrogate.-18th
May, 1882.-(Not proceeded voth.)
$2 d$. In these improvements the inventor employs a
cylinder constructed in a similar manner to that of cylinder constructed in a similar manner to that or
an ordinary steam engine, and uses the steam chest as
the mixing and igniting or exploding chamber. He also employs ports and slide valv
ordinary steam engine cylinders.
2343. Machines for Sewing Carpet, \&c., W. R.
Lake, London.- 18 .th May, 1882 .- (A communication fiom G. Goxina, Califorma.). $6 d$.
This relates to sewing machines
This relates to sewing machines adapted to move
upon a cable or rope along the edge of the material to
ve sewed as the stitches are formed. be sewed as the stitches are formed.
2344. Hammerless Breech-Loading Fire-arms,
Woodzard, Birmingham.- $18 t h$ May, 1882. 6d. This relates partly to improvements on patent No bination of look and cooking mechanism; Secondly
the use of an elongated lever pin; Thirdly, the use o
a vertically sliding peg for retaining the hammers at a vertically sliding peg for retaining the hammers at
full cook; Fourthly, the use of a atrong spring other
than the main spring to effect the cocking of a gun. 2346. Overmantles of Chimney Pieces, G. H. Hay 2346. Overmantles of Chimney Pieces, G. H. Hay-
vood, Lomdon.- 18 Mh May, $1882.6 d$.
This consists in making overmantels of metal with the back hollow, so as to make it as high as possible
and formed with recesses to receive mirrors, pictures, or panels.
2347. ADJUSTABLE Holder for Holding CAndles
In Candlesticks, E. Edwards, London.-18th May,
 and Co., Berlin.)-(Not proceeded with.) 2 d .
This relates to an apparatus for holding candles
different sizes. 2348. Improvements in Incandescent Electric
Lamps, S. H. Emmens, Argyll-street.- $18 t h$ May,
1882. $6 d$. This relates to the construction of electric lamps
having carbon conductors rendered luminous in having carbon conductors rendered luminous in a
vacuum. The improverents consist in enclosing in
each glass bulb a series of carbons connected in various ways, the object being to give a better diffused
light, and by means of switchese and short circuiting
to regulate the quantity of light. to regulat
2349. Im
2349. Improvements in Electrical Apparatus, S.
H. Emmens, Argyll-street, Middlesex.-18th May,

17is relates to a novel construction of the cores of
electro-magnets. The cores are composed as follows: Insulated copper wires are laid side by side, and trans-
versely on these are laid iron wires side by side; this versely on these are lailled up in a direction parallel
double layer is then rolle to the iron wires, thus forming a ma
core imbedded in the exciting circuit.
2350. Horse Collars, H. J. Haddan, Kensington.-
18th May, 1882.-(A communication from R. Fesch and Co., Leipzig.)- (Not proceceded veith.) 2 . Fe. Fesch
The object is to make horse collars lighter than
usual, and also adjustable. 2351. Saggres or Setters used in the baking of
Porgelain, \&c., A. J. Boult, London.-18th May,

Porcelain, \&e., A. J. Boult, London.--18th May,
$1882 .-$ (A communication fiom G. Heubach, near Cologne.)-(Not proceeded woith.) $2 d$.
This relates partly to the employmen
similar to that used for copying writings. 2353. Water Conductors or Spouts, de., J. T.
King, Liverpool. 19 . 19 May, 1882 . (A communica-
tion from G. K. Reber, Pittsturg, and T. W. Irvin, tion from G. K. Reber,
Allegheny, U. R $^{\circ} 6 d$.
This relates to sheet.
This relates to sheet metal conductors or spouts the purpose of carrying rain water from the roof to
the ground, or to tanks or other receptacles. It
further relates to attachments further relates to attachments for securing the said
pipes or conductors to the houses or buildings. pipes or conductors to the houses or buildings.
2354. Manuracture of Napped and Fret Hats, H
Heravd and W. Harrison, Stockport.-19th May, Heraud and W. Harrison, Stoch
1882.- (Not proceeded vith.). $2 d$.
This relates partly to an apparatus for rolling and
scalding the hats after the nap has been applied to scalding the hats after the nap has been applied to
the hat body, in order to cause the fur to adhere
thereto. 2355. Machinery for Cutting the Teeth of Files,
P. Bwens, Cheltenham,-19th May, P. Bwens, Cheltenham.- 19 th May, 1882 . $6 d$.
This relates to improvents on patent No. 181 ,
A.D. 1878 . Instead of fixing the tool-box which cop-
tains the cutting chisel and appliances for moving it
so that the chisisel strikes the blank always at one
fixed angle, means are provided for varying tbe fixed angle, means are provided for varying toe sizes and characters of the teeth struck up by the
chisel. For this purpose the tool-box A carrying the

chisel B and its driving appliances is mounted so that
tean be turned partly round on the main shaft C as it can axe turned partiy round on the main shatd at
an axis, flanges on cheeks D being provided with
setting screws or nuts E, so as to hold the tool-box in setting screws or nuts E, so as to hold the tool-box in
the attitude to which it is turned, the direction of the
chisel being thus adjustable as desired within a certain chisel be
range.
2356.
Eme.
2356. Slide Valves or Steam Engines, de.,
Emery, Erith. $-19 t h$ May, 1882 . $8 d$. The chief object is to neutralise the pressure on the
back of sliding valves of steam or other motive power

steam, after passing through an ordinary fixen stenm
pipe A, passes through the sliding steam pipe B to the slide valve D, and while so passing is prevented from
escaping into the atmosphere by means of the gland r stuffing-box C , through which the sliding steam
ipe moves backwards and forwards, the back of slide valve D being boxed over. The steam is distributed,
as in other engines, into the ports $\mathrm{F}^{1} \mathrm{~F}^{2}$ alternately by

2356

means of the slide valve D, the inner portion of which portion by what is termed a movable e valve chest. In order to keep the valve tight to its face and prevent
any leakage of steam, its back is pressed upon by
means of four set screws which work in tho pieces GG , which extend over the back of the valve,
and are bolted to projections cast solid with cylinder. 2357. Apparatus for Enabling Persons to Ascend
Hag PLaces For Reviding, \&e., T. W. W.
Barrett, London. $-19 t h$ May, 1882.Barrett, Lon
with. $2 l$.
This relates to with gas or air of sufficient buoy of a balloon inflated to raise a double cord over the top of the chimney or spire, each of the
lower portions or ends of the cord being under the contro.
apart.
2358.
2358. Strap or Belt Fasteners, B. Marsden, Man-
chester.-19th May, 1882.-(A communication from This consists in the use of two plates capable of
being drawn together by means of a screw or screws. 2361. Velocipedes, G. D. Macdouguld, Dundee-19t May, 1882.8 .
This consists, Finst, in the use of slides in con-
nection with two bars or levers having pedals at one end of their extremities; Secondly, in a method of construction whereby the advantages of an open front
to a three-wheeld machine may be obtained without
the use of forks and heads. Other improvements are the use of
described.
Water, c. Wooducard, Leeds.-19th By May, 1882. 8d d. This relates to apparatus mainly designed for use in
connection with hydraulic engines for blowing organs.
2364. Werdermann, Princes-street.-19th May, 1882. This relates to a machine for producing currents of
great magnitude. The armature is constructed with a core consisting of ninety-two parts iron and eight parts nickel in the shape of a ring. The central por-
tion has a boss on which are fixed a series of dicss and
segments of wood placed between metal cheelks, The
armature is provided with helices of insulated copper
wire wound in a direction parallel toits atsis so as to
form a series of small bobbins, the terminal wire of form a series of small bobbins, the terminal wire of
one bobbin being soldered to the terminal wire of the next To every two bobbins a conductor is connected,
and these conductors ore arranged so as to form a disc, and are fixed either on the shatt or boss; they revolve with the armature, and a series of collectors collect
the currents. The armature revolves between alter
nate magnet poles. 2365. Cemings, W. R. Lake, London.- 19 th May,
1882.-(A communication from J. Budd, Boston, This consists essentially in constructing ceilings of
ornamental glass, which may be tinted in any desired colour, or coloured to represent wood, marble, stone,
or other material, and which, when dirty, can be easily cleaned.
2366. Preventing Explosions in Steam Boilers MINES, \&8., T. Sheehan, Great Portland-street. $-19 t h$
May, 182.22 .
A case containing a mixture of hydrate of lime and A case containing a mix ture of hydrate of lime and
inely.powdered charcoal is inserted in the upper part
of the boiler, or in the mine or other place, and serves of the boiler, or in the mine or other place, and serves
to prevent explosion by absorbing or decomposing explosive matter
2367. Apparatus ror Air-Filtering or Dust-col-
Lecting, J. S. Brandstaetter, Liverpool.- $-19 t h$ May,

This apparatus consists of a chamber whose top,
bottom, and all the sides, perpendicular to one plane, are formed of an endless band, so travelling on roller
that the two edges of the band are obliged by
mechanism to travel at the same speed. 2368. Indicators yor Steam Engines, G. Hambruch This relates partly to the manner in which the
alternating or onesided steam pressure in the cylinalternating or one-sided steam pressure in the cylin-
der is transmitted to the indicator piston and the
pencil pencil, and partly also to the tr
piston stroke to the diagram sheet
2370. Improvements in Electric
Brockie, Brixton.-19th May, 1882 . $8 d$. . The First part of this invention relates to a method
for preventing the too close feeding of carbouns. This
is shown in the figure. A is a differential solenoid which directly operates carbon holder B. When th core of A arrives at a certain point a tooth of escape
wheel E will be permitted to escape, and carbon rod
C will therefore descend a certain length; this will C will therefore descend a certain length; this will
then cause the core to draw down the lower carbon
and another tooth of the wheel E to escape, but this

2370

second escapement may represent a much smaller
feed than the former by placing the teeth at different intervals. When the current ceases the anchor escapement K is taken out of gear altogether, and the
top carbon descends till it meets the lower one. The Second part of the invention relates to improvements
in double carbon lamps, and to various mechanical detains
2371. Velocipedes, \&e., L. H. Curtoiz, Loughborough
-19th May, 1882.-(Not proceded voith.) 22.
 velocities of the treadle shaft and driving wheels fo
the purpose of gaining power. 2372. ManuFacture of Syrup from Date Fruit T. Webb, Clapton Park.- 19 Mh May, 1882. 2d.
This consists in the manufature from date fruit of a syrup, by the enploymen beer, vinegar, and British wine can be made in
time und at less cost than is the case at present.
2373. Clump Soles for Buots and Shoess, L. V.
Patin, Paris. $-19 t h$ May, 1882 .-(Not proceeded

The clumps are made of wood covered with leather
2375. AIR PUMPs, C. N. Gimingham, Newcastle-rpon-
Tyne, - 19 Math May, 1882. 6d. The object is to provide an air pump whereby a
high vacuum may be obtained without the circulation of mercury
2376. Preparation of Clabet for Combination
with Lemonade, ec. $-19 t h$ May, 1882.- (Not proceeded with.) 2 d .
Claret is filtered and blended with ordinary syru and sugar, and then put into lemonade, de. 2377. Gullies, H. Kelly, Hampstead.-20th May, 1882 .
4. Taste pipes discharge into onich the rain water and
visconnecting and
ventilating chamber which also prevents splashing 2378. Composition for Preserving Leather, de.,
W. E. Gedge, London. $-20 t h$ May, 1882 .- (A com munication from J.M. M. .F. Granger, Paris., Ad. principal elements is tannic acid.
2379. Consuming Smoke, \&c., H. C. Paterson, Lon
don. -200 M May, 1882 - (Not t proceded eith.)
2d. riages.
2380. VELOCIPEDES, A. Phillips,
May, 1882. 6d. This relates to the construction of a double-drivin
velocipede or tricyele which will drive backwards
o forwards, and
steering purposes.
2381. Hot Blast Stoves, E. A. Coovper, London.2381. HoT May, 1882 , $6 d$.
The invent of apparatus for clean ing the passages of regenerative hot-blast stoves,
which is provided with means of adjusting the
angular direction of the cleaning brush andits distance from the door on the side of the stove, and with
means of working the brush from outside the stove. 2382. Axles for Carriages, \&c., J. Gordon, jun.,
Dundee.-28th May, 1882 . $4 d$. The axle A of iron or steel is surrounded by a box
made in two parts, the inner cylindrical sleeve B through which are bored a number of round hole each fitted with a plug P of antifriction metal or com
pound, such as metalline, and the outer sheath C

Which is fitted tight on B after the holes are plugged plugs inserted in holes in the end of the box presented
towards the collar. The nut E , which is screwed on the end of the axle, has a number of the metallic
plugs inserted in holes in its face presenting them
selves towards the end of the box selves towards the end of the boxe B.. The neenting them
vented from turning by means of a staple F. 2383. Cocks or Valves,
20 th May. 1882. Paris.)-(Not proceeded with.) $2 d$.
Tuch manner that the construction of cocks or valves in they are fully open.
2384. Improvements in Signalling apparatus for
Railway and otyer Purpobes, W. E. Langdon

The objec
man to bring inte operation on the papassing of a train
at a given point an audible signal. To this end a
wire is provided between the signal-box and the signalling point (the signal post or elsewhere), and
connected at the latter to a relay; at the signal-box it
it is connected to a commutator and battery, by which
the relay may be brought into use. The relay is used
to bring into operation a local circuit. In this local circuit is provided a commutator actuated by the passing tran, together with a gong, or a detonator or
fuse, to give an audible signal. Where a signal post
is employed the is employed the expression of this audible signal is dependent upon the position of the armature of the
relay, the position of the signal, and the passing of
the the train over a given point.
2385. Hose and Pipe Couplings, T. L. Daltry, StretThis relates to a locking device for coupling hose 2386. Drawing apparatus for Continuous SpinNing Machines, L A. Groth, Londoninoous - 2 Spin May-
1882,-(A communication from R. Sehrke, Berlin.) The object is the drawing the slubbings from the either a false twist, which is taken out again by the aetion of the spinning spindles, or a light preliminary
twist, which is continued and completed by the

spinning spindles, and it consists in the use of the which may consist of several diameters of a cone or of
a double cone with channels cut therein. This wheel
and may also
together.
2387. Mechanical Cab, N. D. Spartali, Liverpool.-
20ih May, 1882 . This relates to the construction of a mechanical cab of the occupant or occupants.
2389. Purses, Portemonnaies, \&c., F. Wirth, Frankjort.- 20 th May, 1882 .- (A communication
from P. Sternberg, Frankfort.- (Not pioceeded vith.) This relates to the construction of the frame, which 2390
390. Improvements in Apparatus for Lighting Lomps. IN Railway Carriages, J. Binsieanger,
Lomdon- 20 th May, $1882 .-$ Not proceeded with.) $2 d$.
This relates to the combination of batteries, induc. tion coils, むc., so as to produce sparks which shall
就 ignite the gas, \&c., or the lamps are lighted by means
of incandescent platinum. 2391. Improvements in the Construotion of
Secondary Batteries, J. Pitkin, Clerkenvell.-20th May, 1882. $6 d$.
This relates to
patent No. 5451, dated 13th December, 1881 ; and consists in an improved holder or frame to contain the consists of laths of ebonite, wood, sc., fixed across
the two sides of a suitable frame, the laths being placed obliquely and siightly overlapping one another
-as in Venetian blinds-so as to leave interstices through which the liquid has free acce
being inclined inwards and downwards.
2392. Screws for Wagon-buildivg, Shipbuilding,
\&e., S. I. and A. Adams, Ronford.-20th May,

The invention consists in a screw, of which the head or the upper portion thereof is removable from not for unscrewing the screw it therefrom.
 This relates to improvements in the construction of 2395. Fireplacess, H. Greenhouse.-22nd May, 1882.The sides, back, and and hearth up to the throat of the fue are constructed in solid fire-clay.
397. Improvements in the Application of Elec-
tricity as a Detector in the Safely Closing of
Windows and Doors, de., B, Coyle, Dublin. $-22 n d$
May, $1882.6 d$.
Relatees to means for giving alarm when a door or
vindow is opened; and consists essentially in contact pieces, which close an electric circuit, in which are a
battery and bell, when a door or window is opened. 2398. Compound Pumps For Air AND Vapour, H.
Egells and W. A. Kux, Berlin. $-22 n d$ May, 1882 .

This relates to the compound pump for air and
vapour described in patent No. 1801, A.D. 1881 ; and it vapour described in patent to. 1801, A.D. sonsing mechanism
consists in so constructing the opration
that either of them may be operated independently of the other one.
2409. Improvements in Electric Accumulators,
sce., H. H. Lake, London. - 22nd May, 1882 . . A
communication from H. Lory, Paris.) -(Not proceded

The inventor divides the space between the lead plates of an ordinary Plante accumulator into equal
parts by a porous partition, and fills the two comparts by a porous partition, and fills the two com-
partments so formed with lead turnings, \&c., and
hen pours acidulated water into the vesssl. 2413. Lawn Mowers, R. Kirkman, jun., Leicester.22nd May, 1882 . $6 d$.
This consists in propeling lawn mowers by means shaft, from which rotary motion is conveyed to the cutting and travelling parts of the machine, and
which cranks and pedals are actuated by the feet of
person sitting over the machine. 2414. Improvements in the Preparation of In-
sulating Materais, ${ }^{\text {sutead. }}$ Dr. J. A. Fleming, HampThis has reference partly to the inventor's former patents, No. Deember, 1881 . The First part of the preferably English poplar) is desiccated in a vacuum
or otherwise, and then impregnated under pressume with a mixture of melted bitumen incorporated with sund anthracene types. The material thus prepared is
then shaped to the required form. According to the then shaped to the required form.. According to the
Second part of the invention, finely divided wood or
ther vegetable fibrous material is used. 2425. Improvements in Incandescent Eleotric
Lamps, dc., J. J. Barrier and F. T. de Lavernéde, Paris.-23rd May, 1882. 6d.
The inventors claim the construction of an incan-
lescent lamp with horizontal or vertical carbongs,

THE ENGINEER.

admitting of supplying tho lamp with a variable
number of carbons, and of renowing them as desired, Also of burning one or more carbons at a time and in
prolonging the burning of tho lamp by using one
ty of tha horizontal IIne of incandescence. Also the the
substitution of the vacuum by the production by hurio aefd gas, whech abororb the oxygen and thus preserve the carbons.

A. Knutson, Broookly, U., U.S.) $\begin{aligned} & \text { Bd. }\end{aligned}$

This r ralatos to a combination of telegraph printing
instruments with timepiecos corrected and controlied
 act in unison to print upon
station letters or symbols.
2429. Water-mgters, B. D. Hecaley, Brighouse.- 23 rd

This relates to improvements on patent No. 2081 ,

This. consists essentially of the wooden hub A, A,
having nortises B, and with circumferential metallic having mortises B, and with circumferential metallic
band C , provided with mortises C^{1}, one for each of the

Tip

mortises B, but larger than the same, so as to form
ledges A I on the wooden hub at each mortise for the
spokes to bear upon. 2454. Rotary Cutrers, H. A. Bonneville, London.-
24th May, 1882.- (A communication from B. Saloman and E. Armant, Montreal, Canada.) Bd.
The invention consists in substituting for a shaft, as a means for the cutter to revolve upon, a pair of eyes
or lugs projecting from the cutter stock and counter-
 sunk in said rotary cutter, so that they may not be
more than flush with the sides of same, and in rotating said cutter by means of a gear wheel intermeshing
with the teeth of said cutter. The drawing shows a 2457. Determining Geo of Vesermining Geographically the Situation May, 1882.- (A communication from J. J. Oginaga, This relates to the method and apparatus employed
or determining the position of a vessel while at sea by means of two observations taken of suitable
heevennly bodies, which obsorvations are subsequently
utilised, and by means of an adjustable globe or sphere provided with suitable graduated bars or strips
representing the meridian and equator, and an illu-
mination verniers, the quadrant, together with the requisite
determined. 2471. Ma
. Meldola, London. $-24 t h$ May Colouring Matters, matters by the redue manufacture of blue colouring onjunetion with dimethylaniline and other tertiary the addition of mine dust and sulphide, with or without he addition of zinc dust and the oxidation of the pro-
ducts thus formed by means of ferric chloride or other
vitable oxidising materials. 2536. Securing the "Scales" to the Tangs or
Blades or Cutlery, H. H, and G. H. Taylor, ShefThis consists of the method of securing the scales
the tangs or blades of articles of to the tangs or blades of articles of curtlery by means
of metal poured while in a molten state through
on convenient openings into dovetailed or undercut
apertures, or recesses formed in the inner faces of the
scales, the metal in each recess of the apeles, the metal in each receess of the opposite scales
seiling connected through openings made in the tangs.
ber
 communication from Dr. C. Koenig, Germany.) $4 d$.
This consists First, in the production of the trisulaphthol, and of its mono and di-sulphonic acids ; (2) in the production of azo colouring matters by com-
fining the trisulphonic acids of alpha and beta
taphthol with aromatic diazo compounds. 2565. Improvements in Dynamo - Electric Ma-
chines, A. J. Jarman, London.--1st May, 1882 . The improvements consist in a new form of arma-
ture comprising an outer or thin sheet iron cylinder nclosing an inner divided aid separate cylinder of
hin sheet iron, an annular air space existing between the inner and outer cylinders, The outing cylindereen is
continuous. The inner one is divided at its centre so is to form practically two short cylinders. The
nventor claims the covering of armature and field
vith thin sheet silver or other good conducting with thin sheet silver or other good conducting metal;
iuso the employment of two cylinders, so wound as
to supply a tension or quantity current, or both togeto supply a tonsion or
ther at the same time.
 The inventor claims the regulation of the current
derivable from dynamo machines by causing the pole aps or pieces to advance or recede from each othe other
mid from the armature which they enclose; also the
ind ustment of such poole caps by means of screws.

roll, and it consists, First, in the combining together
of two webs after they are printed for the purpose o cutting them together, and secondly, in, bringing
together any number travelting sheots, the to
ohinism being adjustable to bring together sheets of any size.
2811.
2811. Lubricators, B. J. B. Mills, London. 14 thi
June, $1882 .-(A$ communication from O. H. Jevell, The object is to produce a lubricator provided with
 that oction of the machinery, a certain quantitity, of ofil
twith each stroke through one or several check valve With each stroke thraugh one or several check valves
placed between thisçump and the parto or parts to be
lubricated
3046. ABstractiva GoLD AND Siver from their
OREs, R. Barker, Seacombe.-2sth June, 1882. 6 .d. ORES, R. Barker, Seacombe.-2sth June, 1882 . 6 .
This relates to improvements in the methods of abstrating gold amprovements ing theo mee ther ores
combined action of electricity and mercury.
3156. Evoraving Macoiness H. J. Haddan, Kensing,
ton.- $4 t h$ Jull, 1882.- A A communication from

The Frist part relates to that class of engravin machines which are arranged to operate on the prin-
ciplo of the pantograph; Seocondy, to the production
of seriptletters by means of tracing with If script letters by means of tracing with a diamond etehing ground laid upon the surface of the plate to be engraved upon, and then subjecting the surface of the
plate laid bare by the said point to the action of a

 manner that the opening or closing of the lid, cover,
or door is effected by the single movement of the lever
catcer
3489. Transforming Taffia and Rum into Coonac

 reducing their degree of alacoholic strenth or by
manceration, and tho incorporation of tessenco or ther
of cognac ; Secondy, the transformation of taflia and
 poratio

 novel system of excavator permitting the opening
of trenches or cutting sideways, end ways, in flank or obliquoly, having a pivotting show ons special con-
struction for the discharge or ejectment of the matestruction for the disconarge or ejectment of the mate-
rinls, and with platform permiting action or work-
ing in all directions. 3876. Suidivic Gai
 This consists in combining with p gate of suitable
construction an improved dovice for supporting it and
allowing it to slide and be freely turned at will : allowing it to silide and be freely turned at will; a
latch of peculiar construction, whereby the gate may
 ing it in closing, and retaining it in a horizontal posi-
tion.
3702

 arranging the series of blades so that they are placed
in front or cear of the axis which bears the next
series of blades.

 3881. Luprovements

 acts as an armature wound with a con oy which the
aro sis shunted. The aramatro, by onnetion with a
lever, carries a elutch in which the upper carbon is held. The conducting wires leading to the lamp are
contained fine copper wire cord surrounded by jutut fibrof
Copper wrires laid over this form the second conductor,
on whien on which again is laid more jute, and over the jute,
ootttonic The Mhole is oncased in a d double tube of lead,
in which steel wires in whion steel wires are embedad.

Pitterson, Chicago, $U . S$.$) . 6 \mathrm{~d}$ in telephone circuits,
This relates to improvment in
switchbords, switchboards, keys, plugs, we. A Wheatstone bridge
transmitting arrangement is claimed by the inventor amongst other things.
3898. Brew
 This consists in in producing the
malt, hops, and hulless maize malt.
3904. BLeaonisa, C. Toppan, Salem, V.S.- 1 15th
 Yabric with a solution of ohloride of lime and water,
airing the samee then washing th fabric in a solution
of hot water and " sinapetroline" No. 2. 3905. Setriso and Intensifying the Colours of
Dyed or Prixtrd Fibrics, C. Toppan, Salem, $U . S$. This consisists in passing the the goods or fabrics into and through a solution of warm water and " sinape-
troiline" No. 2then calendering the same upon heated
rolls on .

 struction of balances.
3959. Transon ADJUstrurs And Looks, G. J. Dicke
8on, Nev York.-18l/ August, 1882 .-(Complete.)

This relates to automatic devices for adjusting and

3944. SAsi FAstrvers, , G. J. Dichson, Albany, U.S.-
The Alth Auphts.1882. (Complete.)
6d. The objects are First, to providea a fastening dovice that cannot be cisengage by means of a thin instru:
ment inserted, from the outer side of the window
throun ment inserte, from the outer side of the window,
through the joint betwen the upper and lower samh,
Secondly, to aftord facilities for bringing thwe meating Secondidy to afriord facilities for sringing the meeting
rails of the uper and lower sahhes into exat ocin.
cidence ; and Thirdly, to provide means for securely looking, the sashes when ontirell means coser, and securely
they are left slightly open for the purpose of ventila 3987 . Wator Cranss, A. M. Clark, London. - 18 thi
Ainast, 1882 . (A communication from Wh. C Edge
 This consists of a chain composed solely of links that
have buligig out portions, said chan bing flat
throughout, with the exception of projecting ribs on
tro
 18822- - communication from H. W. South huorth This relatesest, improvements in needle instruments
for transmitting electric signals, and consists in a novel arrangement of of circuit-closing devices an
means
for as to causo simultaneouseand aqual deffection of all all
the neadles on one circuit.

 This consists essentially in subjecting the etones or
mourdded pieoses to to impremated with bituminous
products, products, to the action of intense heat, vacuum, and
pressure 4094. Mangraturve or Stargh, Grape Sugar, \&o, W. R. Lake, London -26 th August, 1882. - (A com
munication from W. T. Jebb, Butalo, U.S.)

This relates to the manufacture of starch from the production of solid, grape sugar and liquid glucose preparing it for consumption ; and to the treatment
of the refuse for preparing it to be used as food for 4095. Uabrblla, Parasol, and Sunshade Mount-
 This consists, Paris.) First, of of slidete. with an uppor ring or rim having noteches in it for tho reception of the ends
of the forked stretchers, so that these can be bound by one and the same binding wire ; seconciy, if a second
tube or slid addusted in the first, having a cap with apertures, through which anif the stretchers pass, an
which cap covers the first piece.
 This comprises. improved construction of the hollow
screw for operating the carrier, the sloted tube screw for operating the carrier, the slotted tube
aranged within the bore of the said screv, and the
interior tubular carrier, whereby the unused piece of
隹

30th August, 1882.- (A communication from M. V.
 and irrecers up and down stroke of a steam engine gas, or other motive power engine, or of a pump, in
order to obtain an equitable and round wearing away 4155. Evaporation of Lreunds, \&c., Adalbert, Baron
of Podevils, Munich, - 31st August, 1882 . (Com Thite.e.) sid.
tion ontly of an appartus for the evapora
tion pids pat various degrees of pressure or vacuum by means of heating surfaces kept free from incrusta tion by fixed or elastic scrapers.
4249 .

This consists in the mothod of convering bone
black and similar granulated substances by forcin water into the vessel containing the substance and
through a pipe comnected with the lower part of said heroug a p pipe connected wesined place.
vessel and leading to the der 4501. Embrodidering Machines, A. M. Clarve, Londom
 pended all inc irame of embroidering mactines and for
maticilly in any direction in the same plane, and
pert performing this movement for every new estith o
serires of stitches to be made through the fabric, an
it cos

 slides to move ; and Third
ing the beams and slides.

5387 . Stean Enarinss, dee., H. B. Young, London.-
9ti December, 1881.
dd.

This relates to improvements in the arrangemen
and construction of steam engines and in driving dual
 cylinder rigit-angled crank engines-compound or
non-compond ond to and, and in the modo of con
municating the motion from the pistons to to A special valve regulates the exit of the spent staam
from the cylinder to the condenser. To drive dual propellers two crank shafts are used and placed one
aboot the other, the uppor one ateuated by the ongine
and the lower one connected by bods to it. On the upper crank shaft is a wheel gearing with anothe
wheel Wheel on the tubular screw shaft, Upon a con
tion of the under shaft the dual screw is fixed.

SELEOTED AMERICAN PATENTS.

 Claim.- (1) In a dynamo-electric machine, an arma.
ture core composed of a disc the thickness of which

does not exceed one-third its diameter, and having
substantially yolid centre or interior, and having coil

passage throurh it of an electric current in the
manner described, an electrolytic solution of metalic art, and a positive element composed of comminuted battery, the carmon. (in) in of a seondary or storage
negative eloment of of lead, an electrolytic solution of metallic salt, and a
positive element composed of comminuted or powdered carbon. (4) In a secondary or storage
battery, the combination of a neantive olement oom-
posed of spongy lead, a solution of sulphate of copper, posed of poongy lead, a solition of sulphate of copper,
and a poitive element of comminute or finly
divided carbon, or carbon and metal, in a loose state, as set forth.
268,401. Machine for Sharpaning the Edazs or
 and other inplements, the combinntion of a bed or
anvil die having a bevelled face and a rooking die

268401

having a bevelled face, the latter carried by a pivotted
lever, and arranged above the bed die to coact therowith, substantially as and for the purpose specified.

CONTENTS.

The Enginere, Dec. 29th, 1882. page
Tie Electric Liohting A
Tre Laws of Mortos
Boller furl beonomiske
Back Lask in Cory Mur
The Institute of Patent Aönvis
Railiway Sperd and Farks
Hypravino Balance Litris

 Harvers Hor-igiais siove
 CAVES MASH-TUN For Raw Graint, (miustrated)
 ALLWA M MATtrrs.
Nözs A AD MEMORANDA
Miscellanea

Flying Machines

Pure air and Density of Population
Ludgate-hill Station
The Winter Electric exhibition at
Westminster
Elestrio Lighting arium
Litrerature
The Deter
Potable Whitation of Organio Matter in ${ }^{48}$

The Iron, Coal, and General Träde ö of bi
minghan, Wolverhampton, and District
Notes from Lañashir
Notes from Scotand
Notres from the North of Englan
Notes from Wales and adjoinina
he fatracts of Patent Specifications.
Abstracts of Patent Specipications. (Ilus.).
Astracts of Patent American Spectications
(Ilustrated.)
South Kensington MUSkum.-Visitors during the week ending Dec. 23 rd , 1882 :-On Monday,
Tuesday, and Saturday, free, from 10 a.m. to 10 p.m., Museum, 6 5S6; mercantile marine, Wednesday, Thursday, and Friday, admission
6d., from 10 a.m. till 4 p.m., Museum, 1208; mercantile marine, Indian section, and other
collections, 169 . Total, 9719 Average sponding week in former years, 10,485 . Total
from the opening of the Museum, $21,539,331$.
Epps's Cocoa. - Graterul and Comforting. which govern the operations of digestion and nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epps has
provided our breakfast tables with a delicately tlavoured beverage which may save us many
heavy doctors' bills. It is by the judicious use of such articles of diet that a constitution may be gradually built up until strong enough to resist maladies are floating around us ready to attack many a fatal shaft by koint. We may escape
meeping ourselves well fortified with pure blood and a properly nourished
frame." - Civil Service Gazette. Made simply with boiling water or milk. Sold only in packets Chemists, London."-[ADVT, $]$

