July 6, 1883.

THE PRODUCTION OF IRON BY THE SIEMENS DIRECT PROCESS FROM MAGNETIC IRON SAND.
The production of wrought iron and steel from ore direct, without the intervention of the blast furnace, is a subject constantly occupying the attention of many metallurgists. In the blast furnace two operations are accomplished. First the removal of the solid impurities in the ore used, by
fluxes, and in the form of slag. Secondly, the reduction fluxes, and in the form of slag. Secondeo, the oxide of iron it contains, by deoxidation, to the of the oxide of iron it contains, by deoxidation, to the
state of metallic iron. This, combined operation with the common ores is an furnace, but the resulting pig iron is somewhat impure,
containing always a greater or less percentage both of carbon and silicon. For the production of wrought iron these substances have afterwards to be removed by the operation known as puda iron with fresh portions of oxide of iron, to oxidise and thus remove the carbon and silicon it contains. If how fly and ore then consists almost entirely in the second process effected in the blast furnace ; that is to say, the reduction of oxide of iron by deoxidation to metallic iron. This can be accomplished at a comparatively low temperature-about 800 Fah.-and a higher temperature is only necessary afterwards to melt and agglomerate the particles o metallic iron thus formed.
The method of reduction usually proposed in all direct processes is by the admixture of solid carbon, in the form into a fine state of division by grinding in bing brought an intimate mixture of the particles, and thus facilitat the chemical action which takes place. Numerous pro cesses and forms of apparatus have been proposed to effect this object, but the practical difficulties have been threefold. First, the difficulty of bringing the heat to bear on a powder, which, owing to the interstices between the particles, is always an exceedigy the prevention of the particles of iron once formed being again reooxidised; and thirdly, the difficulty when melted, form a highly acid slag, containing a very large percentage of iron
One of the earliest attempts at the production of pure iron direct was by what is known as Blair's process, modifications of which have formed the basis of many subsequent attempts in the same direction. This process charcoal, both finely powdered, in close retorts of peculia construction. In this way the iron was reduced to metallic state in the form of spongy iron, which was after wards agglomerated in a melting furnace. The process,
however, was abandoned, owing chiefly to the difficulty of however, was abandoned, owing chiefly to the difficulty of the proper regulation of the heat, which of the retort, or so great as to cause a partial melting of the mixture near the sides, which was afterwards removed with difficulty. was found also that unless the iron ore used was nearly
pure, besides being free from phosphorus and sulphur, pure, besides being free from phosphorus and sulphur,
the loss of iron in the slag in melting was very great, and the quality of the iron itself was defective, being generally what is known as red short.
It occurred to Dr. Siemens that the chief difficulties in
the direct process would be overcome by the direct process would be overcome by the use of a rotary furnace, which would accomplish the double object
of thoroughly exposing the mixture of iron ore with coal of thoroughly exposing the mixture of iron ore with coal
or charcoal to thenecessary heat by constantly turning itover, or charcoal tothenecessary heat by constantly y turning itover,
and also afterwards agglomerate the particles of metallic and also afterwards agglomerate the particles of metainc
iron formed in the furnace, by rolling them together whilst in a pasty, half-melted state. In this way
balls of metallic iron would be formed, in exactly balls of metallic iron would be formed, in exactly
the same way as the operation is done by hand in the same way as the operation is done by hand in
an ordinary puddling furnace. After many experiments this furnace, which has been previously noticed large scale. The third difficulty, however, was still experienced; the necessity of having, if possible, a pure impurities would form no slag. Attention bely been turned to the magnetic iron sand deposits which exist in some places on the sea coast in large quantities, though generally on the upper portions of the river, so mixed with ordinary sand as to be with difficulty separated from it. Lower down the river, however, the deposits are more extensive and purer. At Moisic, near the bay of Canada, there is a continuous broad belt of iron sand on the surface of the beach, some three miles long, and several feet deep, containing equal to 55 per cent. of metallic and sulphur
The separation of these magnetic sands from all their impurities has been recently accomplished by a very
ingenious invention of Mr. Edison. This machine is simply a hopper, fixed at an elevation, and so arranged as to allow the magnetic sand it contains, previously dried to prevent any cohesion of the particles, to fall from a long narrow opening at the bottom of it in a thin continuous stream. Electro magnets are placed at right angles to of magnetic iron arranged as to simply dellect the grains come in contan when falling, without allowing thic iron thus falls into a receptacle at one side, whilst the impurities, consisting of sand, titaniferous iron, \&c., fall in a direct line, and are thus separated. So complete is the arrangement that a single separator, requiring only a 3 -horse power engine to elevate to the hopper and drive the dynamo necessary to supply the magnetic current, will pass through 70 tons a day of sand, giving a product, when fairly pure magnetic sand is operated upon, containing only about 2 per cent. of impurity. If passed through a second time, an almost pure magnetic oxide is the result
-that is to say, an article containing 72 parts of metallic iron, combined with 28 parts of oxygen. Some of this
separated magnetic iron ore, containing about 2 per cent. of impurity, has recently been worked in the Siemens otary Company, with the following results :-After a few trial temperature for working this material in the rotator, temperature for appeared that a chargo 25 owl. of charcoal, gave the bes results. The whole time required for the operation, from first charging the furnace to withdrawal of the rough puddled balls, was on an average 3 hours 45 minutes, The yield, in the case of the small coal charges, was about 18 cwt . of rough balls ; in the case of charco in weight may probably to some extent be accounted for by the impurities in the coal, and less perfect decomposition, as compared with the charges made with charcoal. The finished charges usually came out in the form of six or seven balls, some of them weighing over 3 cwt . They were mostly at once thrown, whilst red-hot, into the steel, for which purpose they were found to be very suitable, and gave excellent results. One of the balls, however, from a charge made with coal, was roughy ham in iro $96 \cdot 95$; slag, 3.04 ; phosphorus, $\cdot 002$; sulphur, $\cdot 03$; carbonaceous matter, 17 ; manganese, trace. Probably the small quantity of phosphorus and sulphur contained in this sample was combined with the slag, and would be got rid of by reworking the billet in the usual manner. One of the billets from a charge made with charcoal was afterwards reheated, and simply rolled into a inished bar, without piling and reheating again as usually done. The testing, the tensile strain was found to be 21.5 tons per square inch, with 23 per cent. of elongation
From these statistics it would appear that when working upon pure magnetic iron sand, each of Dr. Siemen rotary furnaces would produce six charges daily, with produce of five tons per day of rough puddled bars, or say about thirty tons per week of shingled blooms. The fue used in the gas generator for heating the furnace comes to as nearly as possible one ton of coal per ton of puddted balls made ; and the wages, when worring the rotators in pairs, with proper mechanical elevators for chargng, would be about six shillings per ton of rough puddled balls produced. It seems probable, from these experiments, that the manufacture of fine qualities of iron and steel win before long be carried out on a large scale in the siemen rotator, and that pure magnetic iron sand will considerably magnetic oxide of iron to metallic iron is accomplished magnetic oxide of iron to metallic iron is accomplished of iron. Owing also to the fact of the magnetic oxide of iron. Owing also to the fact of the magnetic oxide less coal or charcoal in the process of reduction to metallic iron.

THE ENGINEERING AND METAL TRADES EXHIBITION
No. I.

This Exhibition opened to the public on Thursday. We ave referred to its general character elsewhere. Amongst worth and Co., Limited, who show a great number of objects made of fluid-pressed steel, afterwards forged to the required shape by hydraulic pressure. Among them is a hollow propeller shaft, 55 ft . long, weighing $15 \frac{1}{2}$ tons, which is stated to be 28 per cent. lighter and 30 per cent. stronger than it would be if made of solid wrought iron. This is a fine piece of work, but we question the advisability of making a screw shaft of such great length, not only on account of the difficulty in handling it, but on account of the great cost of renewal compared with what it would be if two or three separate lengths were used instead. It is well known that Sir Joseph Whitworth and Co. have given great attention to the production of hollow
displays, are again present, this time with a novelty in th shape of a large single-front marine boiler-one of eigh being made for the Royal Mail steamship Moselle-which is fitted up inside as a miniature boudoir, and lighted wit incandescent lamps supplied with electricity from bat teries. This boiler has two mild steel Fox's patent cor rugated furnace flues, $3 \mathrm{ft} .7 \frac{1}{2} \mathrm{in}$. diameter, the corrugations being rolled at one heat in Fox's corrugating mill. The end plates are each in three pieces. ${ }^{\text {. }}$. for the attachmen ound the outside to a deples in the bottom front plate rugated flues are titted, are flanged to depth of 3 inin. Reversed flanged plates, with short retur pubes, are attached to the back end of the flues. A secon plate flanged all round forms the back of the fire-box or ombution chamber, and this is curved to meet. top flange of tube plate, thus avoiding a seam of rivet form crown of core collapsing. Th shell is made of mild steel plates $\frac{15}{1.5} \mathrm{in}$. thick, in thre rings, each of three plates. The whole of the material is Leeds Forge "Special" mild steel, and the workmanship is shown in oughout. Foxs patent corrugated knows and so widl great variety of form, but are so well 1 an in stance of their as to need no further commer. shortness of water, a furnace cut from one of the boilers the Assyrian Monarch is exhibited. In this case the fur nace became red hot and gradually came down in two pockets, drawing out the corrugations until the plate wa straight. It then quietly tore open and relieved the boile without injury to anyone. A case of samples of Leed Forge "special "mild steel for boilers and special" stee for furnaces is interesting. These plates have been care fully tested, and show a resistance of about 24 tons per square inch for the last-named quality, with an elongation of from 3 in . to $3 \frac{3}{3} \mathrm{in}$. in a length of 10 in . There are six samples cut from the welded portion of six different fur naces, three having been welded oy Fox's machine heate by ordinary coal gas, and three in the usual way in a cok fire; the former on being tested were found to have resistance within 6 per cent. of that of the original plat while in the latter the streng wa

Messrs, John Fowler and Co., of Leeds, show sample ored both patent portalry purposes in whicountry and abrt way would be tield sible. In this rilway the rails are rigidly secured to metallic seers, the jointing being effected by steel chai metate sleepons hor and by rivelu a ling the dilling and purhits of the rails form, so and 1 and ment and mel ditiously laying the line without having to rely on expe ditiously layng the way be lo labour. he she maplied fo clearing hay hi gated meads of herily then destructive achively used by planters in cotton and carga plantations, in diamond fields, and in mining districts and plantaios, collieries description of traffic has been much appreciated. Speci wagons have been designed for use with thisrail way,for conveying sugar-cane, Indian wheat, cotton, and other similar crops, to the nill; and various forms of these are exhibited
Some of the wagons are almost entirely and steel, combining lightness and strength, and these may he used for caryig metering which ore and these may timber. There is also a portable turntable, 3 ft . 6 in . dia meter, and a narrow-gauge second-class passenger car to carry ten persons, on four wheels, with a driver's plat form at each end, which is intended for the use of colonists planters, and employers, for providing easy means of communication between villages and outlying stations in a colony, or for facilitating the carrying on of industrial operations
Messrs. W. B. Dick and Co., of Leadenhall-street, ex-

shafts, a form of which they are strong advocates, and for which they claim considerable advantage, inasmuch as it enables the forging to be more thoroughly done, gives more elasticity, and is more trustworthy when subjected to suaden stresses. The same principle is applied to crank portion a large example of which is shown, the crank pin Fluid-pressed hollow, as well as the main body of the shaf. the linerssed steel has also been recently introdaced for first made and marine engine cylinders, a hoop seing forging. A cylinder enlarged to the required sin. long made in this manner, is exhibited. There is also a steel air vessel 14 in . diameter, as used by the Government for storing the compressed air for the Whitehead torpedoes, a number of various pieces of guns and projectiles, and a large assortment of surface plates and standard gauges and measures, for which the firm is so famous,
The Leeds Forge Company, who at all recent exhibitions have been conspicuous for their large and interesting
hibitalocomotive for the 2 ft .6 in . gauge, intended for Burmah, This engine has 6 in. cylinders, 12 in . stroke, and a saddle wheel feature about it is the valye $5 \frac{1}{2}$ tons. The most noteworthy will be seen that it closely resembles Joy's, a swinging link taking the place of the curved incline. It would be very difficult to make the action of this gear intelligible by a description. The radiating crank P is fitted into a projection on the connecting rod at a point about two-thirds from the crosshead centre, and the movable point A is actuated by an overhung crank, E , on the main crank pin of the engine. The quadrant I forms part of the slide valve rod Q, the link or links C vibrating from a iixed centre, and as the die is raised or lowered in the quadrant
the engine goes forward or backward. Messrs. Dick exhibit a large sectional working model, which illustrates the action of the gear very clearly.
New designs of vertical and horizontal steam engines are
shown by Mr. A. W. Harrison, of Abergavenny. These engines have cylinders oscillating on trunnions, and the piston-rod being connected directly on to the crank, compactness is secured, and the connecting-rod with its crossworks and motion bars dispensed with. The slide valve instead of being enclosed in a chest it slides engine, but cylinder and steam chest, and can be seen at work, the advantage claimed being the reduction of a considerable amount of friction by lessening the area upon which the steam pressure acts. Another feature is the arrangement by which the valve can be taken out for examination or repairs by merely slackening one nut about a turn, instead of having to break joint and take off a cover. The engines are made in all forms-vertical and horizontal, fixed on boilers, and separate-and are stated have given great satisfaction. We hope to illustrate a launch engine on this principle shortly.
Messrs. Joseph Wright and Co., Tipton, show the Berryman feed-water heater and the Berryman condenser. Though no doubt familiar to most of our readers, we illustrate the feed-water heater below, the engraving showing one of a set supplied to the Monkbridge

BERRYMAN'S HEATER
Iron Company. In this case Messrs. Wright guaranteed a saving of 5000 tons of coal per annum, a result which The new patent fuly realised after nine months working improvements, is a great addition to former patents. Among other advantages it improves the appearance of the heater, and saves a costly foundation, and no pipes are required beneath the floor level for carrying off the condensed steam water.
Messrs, James Gibbs and Co., London, in addition to their specialities in gun-metal engine and boiler fittings, show two new and useful tools, viz., Wicksteed's cylinder boring machine and Wicksteed's tube stretcher. The

WICKSTEED'S BORING MACHINE.
former tool has been designed for re-boring out the cylinders of engines in their places, in order to avoid the and as will be seen from the illustration engineer's shop, feature about it is the method of attachment which is so arranged as to suit different sizes of cylinders without any special preparation. As this tool can less time than it would take to set the be applied in lathe, it should meet with a good reception at cylinder in a of engineering firms who make a speciality the hands work, and should also prove of service to other repairing steam engines who, owing to the trouble of cylinders bored out in place, often prefer to incur the loss
of fuel resulting from the waste of steam in a worn cylinder rather than the loss of time and expense attendant in taking stretching apparatus consists of be re-bored. The tube through the tube to be stretcbed and attached to each end by malleable iron clasps, which hold the tube absoutely tight without injury. It is then put into the fire and heated, the screw being turned until the required ength is obtained. The tube is stretched without injury and it is done in a quarter the time required by the old method, without any hammering.
box, they are turned down over the top of a plate placed in the fire-box and delivered into a flue at ground level. During a two days' trial with a boiler of this construction an average evaporation of 10.93 lb . of water fromand at 212 deg . Fah. was, we are told, obtained per pound of coal, with orditoking.
An ingeniously simple form of boiler shell drilling Salford, Manchester, and is illustralden and Brooke, of engraving, as made under Mr. Brland' by the annexed machines for the purpose have been rather costly, but that we illustrate has been designed to work inside a the two holes the two holes at the oppothe same time, and thus requires no heary framing requires no heavy framing, the boile foring the The two drill spindlest. tate in tions, in order the drecground the same way will ground the same way will machine is driven by machine is driven by means of a rope running compensating wick or slide, so that weight and slide, so that the machine which it is placed The whichine is place. The pended by the suspone, and the from rope, and one rope from the driver spindle passes
round and drives the two drill pulleys. The tirht. drill pulleys. The tightness of this rope may weight of the lower part of the machine, or some pull may be put upon it and maintained by the vertical rods which carry the countershaft bearinge There is no gearing in the machine except the worm and worm wheel for giving the automatic feed. The worm is easily feed. The of gear so that feeding maybe done by hand. The machine can be stopped without arresting the motion of the driving rope, and as the weight of the machine is balanced by the weight attached to the weight attached to
the compensensating slide pulley bearing overbead, no special appliance is required for raising or lowering the machine.

Messrs. Lewis Olrick and Co., Leadenhall-street, E.C., exhibit several of Mather and Platt's specialities, such as mall engines, pistons, and boring tools, all of which are well known and need no description. They also have one of the latest improved Blake's crushers, in which all tensile strains are taken on wrought iron and steel instead of given iron. A perspective view of this machine is understood. The movable jaw is suspended in a threesided framework of cast iron with a broad base, forming sided froment part of the machine in a broad base, forming crushed. The back piece or toggle block is also of cast iron, and is connected by two strong wrought iron or cast tie-bolts to the part in front, the tie-bolts also serving as regulators to adjust the jaw opening according as the material is required to be crushed coarse or fine. The front and rear casting; are supported on timbers, to the

BLAKE'S CRUSHER.

A number of Portland patentrotarysteam engines, pumps, A number of Portland patentrotarysteam engines, pumps,
and blowers, are shown by Messrs. Goldschmidt, Hahlo, and Co., of Manchester, who claim that they have now overcome all the difficulties experienced by previous nventors in this direction. The principle and general design is precisely the same in both engines, pumps, and
blowers, and will be readily understood by reference
\qquad
ander understood by reference

underside of which are bolted the boxes carrying the main excentric shaft. This breaker can be run at a higher rate of speed than the old form of crusher with cast iron frames, and will consequently do a greater amount of work. Messrs. Olrick also show a Field boiler of 25 -horse powerone of three built for the Edison Electric Light Company. We illustrate this in section in next column, and it will be seen that instead of the products of combustion escaping
direct to the chimney through an uptake above the fire-
to the illustration of the patent direct-acting steam steam pump which we give on page 3 . The
pistons consist of semicircular revolving vanes of a pistons consist of semicircular revolving vanes of a form which can be readily turned and shaped by machinery, so as to insure a good fit in the cylinder. There is no packing of any kind, except at the ends against the cylinder covers, where there are small metal strips kept
up by steel springs, and the only leakage that can take place is between the cylindrical centre boss of one revolver

ROTARY STEAM PUMP AND ENGINE. messrs. GOLDSCHMIDt, HAHLO, and CO., ENGINEERS.

and the periphery of the other; but as both are circular and very narrow, they are easily adjusted, so that the entire leakage, when running at full speed, is claimed to beno more than in ordinary steam engines. The steam may act during the whole revolution, or may be cut off and allowed to expand. One of the chief advantages claimed by the inventors is an arrangement for automatically counterbalancing what they call the axial pressure, which, it is stated, acts very prejudicially in ordinary rotary engines and pumps, by causing friction and great wear and tear. This is accomplished by

providing the cylinder covers with balancing cylinders to receive the ends of the pistons, which are elongated for this purpose and truly turned. Small channels are formed to connect the delivery end of the pumps, or the steam inlet channels are provided to connect the cylinders, and similar the exhaust of the engines. The pressure thus admitted to

KIRKALDY'S CONDENSER--Fig
the balancing cylinders acts on the pistons in the opposite direction to that in the working cylinder, and the respective areas are adjusted in such a manner as to balance the thrust on the shaft. All the bushes are of phosphor bronze, the shafts of steel, and the pinions of case-hardened wrought iron; and we are informed that highlysatisfactory results are being obtained with both engines and pumps, the efficiency of each being considerably above that previously given in similar machinery.
The sectional engravings given herewith illustrate the construction of the "compactum" condenser or still for producing drinking-water from sea-water, made by Mr^{2} J. Kirkaldy, West India Dock-road, London. Our engraving shows the four-cylinder condenser, but it is made with either one, two, or four cylinders. Fig. 1 is an elevation partly sectional, and Fig. 2 a plan also partly in section. Steam to be condensed enters the coils, at A becoming condensed passes to the bottom, and thence through the filter material B at the bottom, from whence it passes away at \mathbf{E}. The cold water enters at \mathbf{C}, and
together with the hot-air engine, we hope to illustrate at a future time, and we will content ourselves with merely saying at present that Messis. is at least fully sustained.
design and good workmanship
Messrs. W. and J. Player, of Birmingham, exhibit several forging and planishing hammers, some of which bench-planishing machine for electro-plate manufacturers coppersmiths, tin-plate workers, and others not requiring so heavy a hammer as has generally been made, is illus so hed below. It is an extremely handy tool, and can
trated

player planisher.
principle is the same as that of the larger hammers, he blow being capable of variation extremely light tap for polishing, and light or heavy blows are given at the same speed, which, the makers state, is not accomplished by any other machine. It is driven by a belt pulley, which causes the driving disc with its trunnion to revolve, so mparting a rocking motion to the lever which carries the hammer head or tup. The lever fulcrum is carricd able slot on the frame, and is capable of movement either towards the hammer head, or away froming or diminishing the length of stroke, and consequently the intensity of the hollow cylinder, closed at both ends, with a slot in front for the admission of air and clearance of pin. Inside this is an air-tight plunger or piston the rocking lever, compresses the air admitted through the slot in front of the head at forming a cushion, which takes away all liability to jar. minute, and can be started and stopped mstanty. also illustrate
same makers,
Messrs. Davis and Co., Limited, Commercial-road, E. exhibit a number of steam and hand-steering apparatus, The most conspicuous of these is a combined steam and The most conspicuous or a vessel of 2800 tons, and of a type which is being supplied to Sir W. G. Armstrong, type which is being supplied to and others. The steam cylinders drive a short crank shaft, which is connected by worm gear to the barrel on which the rudder chains by worm gear the steam, on its way to the valve chests of the two cylinders, passes through a valve, by which the direction of the steam and exhaust can be reversed. The spindle of this valve is coupled to a shaft provided with a hand wheel, the end of the shaft having a screw formed on it working in a nut, carrying at one end a worm wheel gearing into a worm on the crank shaft. Supposing the engine to be stationary, the rotation of the hand wheel will shift the reversing valve, and so start the engine; but the moment the drum revolves, the nut working on the screw brings the valve back to the neutral position, and so cuts off the admission of steam. The gear thus follows the motion of the hand wheel.
Messrs. Thomas Robinson and Co., Limited, Rochdale, show one of their improved combined vertical engines with boiler, designed specially for saw mills where small power is required. The frame is in one strong casting,
supported independently of the boiler, and the cylinder supported independently of the boiler, and the cylinder area and boiler capacity are very large for their nominal powers. The same firm exhibit several of their woodworking machines, among which we may specially mention a combined hand and power feed planing machine adapted for planing panels, scantling, \&ce; a patent continuous feed saw bench which can be used either for deep or flat cutting, and in which the timber to be cut is fed by means of a fluted roller carried at the end of a radial arm swinging on a pillar bracket in front of the machine and capable of movement to and from the saw, so that the roller can be adjusted to suit the various diameters; and an improved universal woodworker, suitable for joiners, pattern or cabinet-makers, fo planing, jointing, and tracing up short lengths of troving also for morticing, boring, sawing, tongueing, grooving and rebating. For planing and join front he tmber is fed over the cutter-block by hand, the fos they are raised above the cutcer being arm the cutter to and lowered they approach or recede from the cutter to keep the opening as narrow as possible. There is also an improved moulding, shaping, and recessing fouch in orna working all kinds of mouldings, such as aterns, \&cc.
One of the greatest novelties in the Exhibition is a set of hydraulic punching and rivetting plant, by Messrs. Higginhydraulic punching anpol, which has quite recently been
son and Co., Liverpoolic brought out. The principle can be applied to any hydraulic brought out. machine tool, in which the pressure is only required at machine for a short period of tine, such, for instance, as is the case in punching, shearing, bending, and rivetting, and it is carried out in the following manner. The maahines are of the usual construction so far as the framing piping coming from and returning to a set of pumps
driven by a belt in the ordinary way, and provided with a fy-wheel. At each machine is a valve by which the water from the pump can either be permitted to circulate is not in the line of main pipes, as it does when the too or bottom operation, or else it can be diverted to the top or boted
of the hydraulic piston according as the ram is required to of the hydraulic piston according as he out or in, a communication being opened at the travel out or in, a communication being opened and same return pipe, so as to allow the water to escape. The action is as follows :-The pump is kept continuously running and forces a stream of water through the main pipe, past the machines, and back to the suction tank. As soon, however, as the attendant operan one of side of the diverts the water is the the the the the piston, a resistance is setarded, and the momentum of the flypeed is somewhat retarde, a wheel called into play, so producing a pressure which
reaches its maximum when the plate is being punched or reaches its maximum when the plate is being punched or sheared, or the rivet headed, and which is only equal in seen that beyond the running of the pumps against the slight pressure necessary to force the water through the slight pressure necessary to force the water through is being performed, and then only in proportion to the result being perror
obtained. Of course the mere utilisation of momentum for giving the blow in machine rivetting is not a new idea It is carried out in Tweddell's plant, where by having an accumulator with a very long stroke, the velocity acquired in the descent through the first part of the stroke, when the resistance at the machine is small, is taken advantage of to increase the pressure considerably above that given by the weights just at the time the greatest work is being done; and in McColl's rivetter, where a fly-wheel at each machine is called up the beauty the work through the medium- of does away with th accumulator and has only one fly-wheel at the pumps fo working a whole plant of machines, so obtaining the ad vantage of extreme simplicity and lowness in irrst cost, well as a considerable saving in power compared with what is required when an accumulator with constant resistance is used. It is stated that two or three machines can be used simultaneously, and overflow or safety valves are fitted to each, so that different pressures may be used in each piston, according to the work to be done
A very efficient lubricator for engine cylinders is shown by Messss. BoultBrothers, King William-street, E.C. Itis on the "sight feed" principle, and as the oil goes up through the water in a gauge glass, a drop at a time, the engineer can find out the number of drops per the ruird by his engine, and keep the oil flowing at the required rate. There is also an automatic arrangement for starting and stopping the feed of oil simultaneously withe so as to avoid all loss, when the machinery is at rest.
A large Lancashire boiler, 2 H.l.long, and 7 mi . 6 in. diameter, is exhibited by Messrs. J. Hopkison fues, 3 ft., diameter field. It is fled win crossed by cone tubes, and has one Hop pound safecy patent auxiliary valve for higg
The Kirkstall Forge Company, in addition to a display of rolled shafting and spindles, exhibits a collection of Butler's patent frictional couplings, and an arrangement of 2 in. shafts connected with them, and having at the ends weighted levers, throwing a torsional stress of twelve tons upon either end of the coupling, to show how this can be met by friction alone without the assistance of keys in the couplings.
In the gallery are a number of drawings, patterns, and models made by the students at the Crystal Palace school, many of which, especially the drawings, show a very fain the subjects; indeed, bridge drawings are exceedingly well done. We model which, for the most part, are ill-designed and clumsy. It seems a pity to have permitted the students to turn ou such a hideous steam engine as that exhibited, for there is scarcely a single part that would pass muster even in a little country engineering shop, much less in one of our considered to be the first essential in making good work.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
old and new atlantic steamers.
SIR,-In the article under the above heading in your last issue you draw a comparison between the performances of the Alaska
and Britannic on the last outward voyages of the two ships, very much in favour of the latter, and from the results obtained deduce hat a very extraordinary increase in her sped mainly ascribed to by a moderate increase of power, a conclusion mainly yacribed
the superiority of the Britannic's model over that of her great competitor. I think exception can be taken both to your premises and deductions.
First, youns have under-estimated by at least 400 the Britannio's
indicated horse-power. Mr. F. C. Marshall in the table No. 1 indicated horse-power. Mr. F. C. Marshall in the table No.
attached to his paper read before the Institution of Mechanical Engineers, at Newcastle, in 1881 ; Mr. Maginnis-at that time on Ene Whine Star Ensineering Staff-in a paper read before the
the White
Liverpol Liverpool Engineering Society a few years ago; and Messss. Ismay,
Imrie, and Co. in the information supplied with the model of this ship exhibited last year at the Shipwrights' Company's Exhibition, all unite in calling her 4900 indicated horse-power, and on this particular voyage there was every reason for driving neck
 put back with a flaw in her shafl, sae best she could. Now, as to a ate, and inad the trease of power, you say if the Britannic's horse power were increased one-third she would steam seventeen knots that is, a 5000 ton ship would be propelled seventeen knots witl formance after all. The Fulda, a new North German Lloyd steamer, on her passage went from the Clyde to Bremerhaven last horse-power of 6200 , and the Arizona herself has done the same horse-power of 6200 , and the Arizona herself has done the same
speed on 6000 ; but neither of these ships has ever been able to
maintain their speed over the whole of an Atlantic run, and I fail
to see why the Britannic should be so specially favoured that she
alone of all the vessels in the trade is to be credited with the to see why the Britannic should be so specially favoured that she
alone of all the vessels in the trade is to be credited with the
ability to maintain her measured mile speed under all conditions of ocean navigation. The Britannic has the same proportion of
breadth to length and depth as the Alaska, and the proportion of gross tonnage is about the same also, so it is hard to see where the better model comes in; and, on the other hand, it is the
opinion of all modern naval architects that any increase opinion of all modern naval architects that any increase yy a large increase in the tonnage of the vessel. Again,
you state that by increasing this ship's horse-power by twoyou state that by increasing this ship's horse-power by two-
thirds, 700 -indicated horse power by your calculation, 8160 by mine,
she would, according to Mr. Froude travel $3 \cdot 4$ knots per hour f she would, according to Mr. Froude, travel $3 \cdot 4$ knots per hour faster,
and make the passage in six days five hours, steaming $18 \cdot 6$ knots. She might attain that speed on the measured mile, but it is doubtful. on the mile, with 8237 indicated horse-power, and the steamed $18^{\circ} 4$ according to your argument, with a displacement of 8500 could
travel $18 \cdot 6$ at sea, with 8160 indicated horse-power travel 186 at sea, with 8160 indicated horse-power. Not long ago
you said that Mr. Biles knew as much about a ship as any man you said that Mr. Biles knew as much about a ship as any man,
and Mr. Biles says a ship of eight and a-half beams to length, and correspondingly fine ends-in fact, such a ship as the Stirling power than a ship of ten beams to length, like the Britannic; and now you turn round and prove that according to Mr. Froude this latter ship could easily be made to leave all her competitors
nowhere. If this theory of increasing a ship's speed 3.4 knots by an increase of two-thirds of her power, and 1.5 knots by an increase of one-third, is applicable to one ship it is evidently applicable to
another. Let us apply it to the Arizona's speed, 17 knots on measured mile, indicated horse-power 6000, which increased by twothirds becomes 10,000 , and the speed $20 \cdot 4$ knots; again increase this
last by one-third, and we have indicated horse-power 13,300 , speed of ship 22 knots. I think that this is about your argument, and yet Mr. Pearce is building a ship-the Oregon- 2200 tons bigger horse-power, in the hope of beating the Alaska by half a knot per hour, when, according to your theory and figures, he could
easily beat her by six knots by simply putting these 13,500 -horse power engines into a similar ship to the Arizona, which, I think,
reaches the reductio ad absurdum. It is no easy matter to get deck crew for the Alaska in the winter, but it would take a powerful imagination to picture the state of affairs on board the
Britannic while making a passage of six days five hours during the Atlantic during the major portion of last winter.
May I be permitted to intrude a little further on your space to
offer a very few remarks anent your criticism of Mr. Seaton's new offer a very few remarks anent your criticism of Mr. Seaton's new
book. You quote his formula for finding the effective horse-power of a pair of compound engines, and after expressing a doubt as to ment. I have tried the formula myself on several engines with and as to the example you give, no modern engine builder would entertain for one moment the notion of constructing a pair of
engines with 40 in. and 80 in . cylinders, 48 in . stroke, to work at
80 lb , pressure with 60 rever 80 in . with 48 in , stroke ; for example, Mr. Wigham Richardson's
Ville d'Oran, which, with 75 lb . steam and 69 revolutions, indiand another for the reduced pressure, and then see how the formula Burgomeester den Fex, with eyglines lately for the Chin, and 80in., and and 48 in . stroke, working at 100 lb . pressure, and the Barrow Company for a cattle boat, the same cylinders and 80 lb . pressure : but in every
case the revolutions are far in excess of 60 , so your case is purely Again, speaking of friction, you complain that Mr. Seaton totall gnores tail rods. It would be a good job if several other people Under Mr. Seaton's supervision there havo two pairs of engines for Atlantic cargo boats, in which, perhaps, the
ength of stroke bears a larger proportion to the diameter of the ylinders than in any screw ships in our mercantile marine. Thes being thrown about" by the rolling of the ship, the tail rods are nd valves can be overhauled in port is a heavy set off the piston maginary good the tail rods do at sea. But the most inexplicable part of your criticism is your statement that Mr. Seaton's practical nformation is not equal to his theoretical knowledge. Here we firm, turning out all sorts and classes of vessels, and yet of limited practical experience. Earle's is not a place like the great engine engine exactly resembling its"neighbours except in dimensions, and power, but an establishment where ships are built for special ser therefore a place in which, if the manager did not know very much about what other engineers did when he first took charge, he woul very soon have to learn, nolens volens, and as far as my judgment
will enable me to express an opinion, I think that much of the work turned out by Mr. Seaton at Earle's would be very profitably studied by men holding responsible positions in works of much
greater pretensions than the Hull shop. Lastly, anent your with that editorial acumen that enables one man another man means a certain thing when he says exactly the only beg leave to call to your recollection that at the time the a lengthy article, demonstrating, beyond the shadow of a doubt that these ships could not be driven at a high speed by a single in all'these ships, and since that article was written, behold the Alaska, with a screw 23 ft . 3 in . in diameter and 34 ft . 6 in . pitch,
bas run to New York from Queenstown in six days twenty-two hours, indicating over 10,000-horse power, and stranger still, the lays four hours, steaming time, indicating nearly 8000 -horse power, with a propeller 22 ft . 4 in . diameter and 31 ft . pitch. I sadly fear your claim to be an authority on propellers must remain doubtful for
some little time longer; but this is, no doubt, one of those subjects about which you say that "disputes rage," and as Mr. Froude is dead, and has no successor, every man may claim to know as much
Wn the matter as his neighbours.
W. Moss. n the matter as his neighbours.
Sheileroad, Liverpool, July 3rd.
> [We publish Mr. Moss's letter because we think it desirable that rently lacks the power of drawing deductions with discrimination and of reading with care. The absurd construction which he has escape our readers, although Mr. Moss is, no doubt, unaware that he has written concerning Mr. Seaton, we are willing to take his oreat tor it that Mr. Seaton is an eminently practical man; but we We are glad to hear that Mr. Seaton has successfully dispensed ead with care is demonstrated by the paragraph, "no modern ongine builder would entertain for one moment the notion of con
structing a pair of engines with 40in. by 80in. cylinders, 48in.
troke, to work at 80 lb . pressure with 60 revolutions, question are his, not ours, so that according to Mr. Moss, Mr.
Seaton is not a modern engine builder. Perhaps Mr. Seaton when
he has read Mr. Moss's lett
from my friends."-ED. E.]
MACHINERY EXHIBITS AT THE FISHERIES EXHIBITION. SIR,-May I ask you to do me the favour of inserting the follow I in your next issue?
see by your issue of the 15 th inst. that my steam capstans at "Steam as being in same class as other steam capstans there, viz. Steam Trawling Smack Machinery." Although partially correct, has been to design and adapt steam hauling to that much larger number of fishing vessels called "drifters," such as herring an mackerel boats, which comprise more than half of the fishing
vessels of the kingdom, and earn in like proportion of the value When their relative positions are considered, and it is borne in mind that the trawlers can get their gear by hand capstan in the average space of two hours, and the drifters, under best conditions
average five hours-and very frequently, on account of weather, the crews are nine hours at the capstan, hauling their two to thre miles of gear on board-it will be seen that their requirements for
steam capstans are greater than the trawlers. Further, the drifters" are much smaller vessels, and have to carry ten times as much gear in bulk as the "trawlers," besides leaving space for
the fish caught and salt to preserve same with at sea; the about 55 tons. In many cases the vessels are primarily built and used for drift fishing, and when such seasons are over adapted for
trawling. Where, therefore, the space is of such paramount trawling. Where, therefore, the space is of such paramount he cabin; and although I have fitted up great numbers of these oiler with ? ll necessary gear, occupying only up for engines and 2 in. square on
bent
the cabir iloor-but in such craft have always considered it the cabir iloor-but in such craft have always considered it what is well known by all interested in the trade-how important accessibility to the power applied.
Permit me here to express my regret that your inspection of my
exhibits should have been made during the absence of both ttendant and myself. 1 also regret that you did not distinguis my boiler, which you criticise as being like the "Sharpe-Palmer
patent exhibited by Messrs. Abbott; in fact, both were made to my order and requirement, excepting the manhole door-se
enclosed tracing and other matter for your information.
The Fisheries Ironworks, Gorleston,
H. I. C. Keymer. The Fisheries Ironworks, Gorlest
Great Yarmouth, June 26th.
the running expenses of tramway locomotives.
SIR,-Having read a statement on page 492 of your last issue, he, vertical boiler, "of which so much has been said," evidently companies in this country, will you kindly allow us, through the medium of your paper, to say that the tramway upon which the engines named are working is an exceptionally easy one to work
for a steam line, it being comparatively level. If the same engines or a steam line, it being comparatively level. If the same engines engines, viz., the Rochdale and Littleborough, the Nottingham
District, and the Huddersfield Tramways, with gradients of 1 in $11 \frac{1}{2}$, the cost would work out very different indeed to $3 \cdot 12 \mathrm{~d}$. per mile, as stated. Our largest class of engine, now on the Manchester 20 , is working at ach weighing $3 \frac{1}{4}$ tons empty, on gradients of 1 in coasion one of the above engines drew three cars, each 314 tons,
nd carrying 299 school children and 20 adult passengers, from and carrying 299 school children and 20 adult passengers, from
Berry to Blackford Bridge, up a gradient of 1 in 20, stopping and
starting on same, witnessed by the Mayor of Bury and other genHolme House Foundry, Wigan July Holme House Foundry, Wigan, July 3rd

telegraph and telephone wires,

SIR,-How to deal with telegraphic and telephonic wires is a authorities. If they are to be put underground, additions or repairs so frequently required could not be made without continual would have to be made at enormous expense.
A scheme has occurred to me which I think might be placed
before the public for consideration, It is as follows corporation to map out its district for main or trunk lines of telegraphic wires, all converging to a common centre, from which main trunk lines shall radiate say north, south, east, west, and at
other intermediate points of the compass, or in such other directions as may be most convenient. Each single wire at its beginning roperly laid out-shall join the nearest main or trum line. Say, or instance, a wire commencing in the south of the district, which, required to go west, would have to pass to the nearest trunk or
main line in the south, then along the south trunk line to the entral station, where it would be coonected with one on the west wire than would be required to pass in a straight line between the two termini, but the advantages and convenience of the main line route, and the small cost of fixing, and repair, and inspection upon
them, and the better state of order and insulation, would compenthem, and the better state of orde
sate for the extra length of wire.
The main lines would
The main lines would have to be carried on sufficiently high two supporting structures with cross lattice girders between them,
to carry vertieal bars, to which the insulators for the wires would to carry vertieal bars, to which the insulators for the wires would manent platfor
The supporting structures would have to be fixed on good founda tions, and so designed that additions could be made to the height
to provide for additional wires when tequired. The wires to be rranged in a series of horizontal rows, one row above the others, carried on insulators attached to vertical bars having wheels or
slides or other arrangements to move upon the lengthway of the cross carrying girders, so that all the vertical bars for the wires could be slid or moved for a foot or two apart to give a clear between them when required for repairs or renewal. The main
lines of wires, if thought desirable, might pass directly over and in lines of wires, if thought desirable, might pass directly over and in
the direction of the streets, in which case the iron structures would require to have their foundations on the side walks-they need not
be much more in the way than lamp-posts, and could be made to ct as such-and when carried high enough they would be con nected across the street by the lattice girders. There might be objections to street lines, in case of any of the wires breaking, but
they would fall lengthway of the street, and this would be less
dangerous than wires falling dangerous than wires falling across the street. The chances of wires breaking on such a main line as that proposed would be small,
as they could be so easily inspected and repaired or replaced. If not form any great obstruction to light or sunshine. If the main which might be preferred, the walls of these would have to be altered, strengthened, or built specially for the purpose, and to
form part of the building, and prepared to carry the supporting structures. The foundations and structures for the mapporting
would in the first instance be expensive, because they to be made strong and extensive enough to be capable of enlarge-
tures as those proposed were made, the cost of fixing additional
wires would only be a little more than the onst of the wire wires would only be a little more than the onst of the wire.
The main lines would have to be eated The main lines would have to be erected and maintained by a
ompany or corroration, who would charge a rent for each wire. The lowest Postofrite rate for wires is $s 5$ per mile in the ountry.

 main or trunk lines would only cost a small fraction of such sum.
Even 500 wires on a trunk line would bring in 42500, at $£ 5$, Which is $£ 2$ less than the Post-ofice rate for over-house wires out on London, therefore I Ithink main trunk liverof of wires, as pro-
oosed, might be erected at very much less than the present cost, at the same time getting rid alm ort entirely of the present system of objectionable overhead wires fixed anyhow, and passing in all
directions.
P. L. Manchester, June 30th.

elephant boilers,

SIR,-T have just read your article, and whilst agreeing with a rreat deal of what you say upon the merits of the eiephatht boiners, speak from long experienco of the latter, and could refer you to
nany instances of it working for ten, fiften, or twenty years, and sarrely a peny spent upon repairs
 muot puffed up and recommended py bumpectors and chief inspeco-
mors
ors cors of insurance companies? Then as to the elephant boiler, 1
oold refer yout to a case where I myself put in a p pair more than
midt thirty years ago, and not many years since I happened to visitit the lown and found them at work doing well. But, sir, the elephant
ike all other externally-fired boilers, sive way just beaasus they are externally fred, and are liable, of
oourse, to dangers not known with internally fired boiless, whether of the Eancashire or any other kind.
As to the insuranae companies you remark upon, they are glad
o get hold of any sort of boiles, good, bad, and indifferent, and to et tobld of any sort of boilers, good, bad, and indifierent, and
the faster they blow up the better for the ompanies. I must say am very yuch surprised that you cannot see this. John Swirt.
Iron Exchange, Birmingham,
July

Sir,-It would doubtless be an advantage to steam users if there was some authority that they could refer to to ascertain the merits
of steam boilers. Fifty years ago the variety was limited to about half-a-dozen, now they are endiess, and difficult to say which is best the various sorts. Although I nove had an opportunity of testing ental tests for the past forty years, and have a long record to lass hastily, as so much depends upon their situation, the fue oilers, they have got into disfavour in this country ; their chie are se much room, and the next is the difficulty in keeping the brick ation gets reduced. It is not uncommon to find the tube patched that hang over the furnace; their duty per pound of coa
s about 2 lb . less than the Cornish boiler. They and are mearect, a considera ton in a flour mills running night and day. Economy in coal conJuly 3rd own against the modern classes. W. A. Martin.

SIR, - I agree with all that you have written in favour of ele-
phant boilers, and I am glad to see that you have taken the subject of their merits up.
oiler-setters do not understand the peculiarities of the elephant boiler. Thus, I have found them set so that the circulation o of the utmost importance that these tubes should be laid on light incline, so that the circulation in them may be excellent. ieces, and the furnace gets out of shape and the boiler is blamed themi s bad as can be.
On this side of the Channel we understand matters better. The oo much favour with fair play, and this is the reason why it enjoys properly made and us. As examples of what elephant boiler nly been adopted works of the railway company here. These hav engineers of the line to be better than any other type. Indeed all ar this it will be found that engineers have but one opinion, nd this is that the elephant
generator for land purposes.
Rouen, July 3rd. \qquad
Sir,- The remarks in your leading article of last week's issue on ware of their great economic pared to a Cornish or Lancashire boiler, independent of the les the elephant boiler work at the same time, consequently the strain is equalised and one of them for a great many years, and should not wish to chang hem for an
July 4th.

THE annual meeting of the River Witham Commissioners was held n Tuesday, the 8rd inst., at the Witham office, Boston. The engi works and the enlargement of the grand sluice were making rapid
progress. The latter work will be completed for the passage of the
winter flods.
Railway Bibliography in Rubsia.-We have received the three first numbers of a journal for railway bibliography published railway journal, Jelegnodorpinoye Dyelo, and entitled "Biblio \checkmark bibiography than the "Mittheilungen aus der Tagesliteratur des Eisen ahnwesens," and we had always considered this publication as his Russian journal is certainly a more periodicals to be. Bu besides, it appears in weekly numbers of quarto size, and compris ing from ten to twelve pages, while the "Mittheilungen" appear
but monthly and in octavo form. The "Bibliographitchesky Oukasatel " is practically an index to the periodical railway litera taly, Switzerland, Belgium and Russia being fully repreastria, We regret that publication is in the Russian character, as it wil be accessible to a much smaller circle of readers than if it had been in German or French. The journal is most conveniently arranged of general interest contained in the fifty journals which everything are analysed and referred to. The editor has also adopted a very detailed and careful system of headings. Russia is as yet a zoung and growing country. We hope that she may a vail herself af, the
facilities now afforded her of studying contemporazy, railway literature, and set about opening out her vast country and give as

SWAN BREWERY, WALHAM GREEN.

SWAN BREWERY, WALHAM GREEN, S.W. THis brewery, of which we give illustrations in the present
number, has recently been erected by Messrs. Stansfeld and Co., number, has recently been erected by Messrs. Stansfeld and Co., on a site in the Fulham-road, near their former premises, com-
prising about three acres, and in close proximity to the Metro-
politan District Extension Railway, from which it is intended to ponstruct a short siding to run directly into the brewery yard. construct a sort siding to run directly into the brew shaft, \&c..,
The boiler and copper house, brew house, chimney
occupy the margin of the site opposite the entrance gates ; at occupy the margin of the site opposite the entrance gates; ; and loading-out stage, and at the opposite side, the stables for
forty-two horsses, forage stores, chaff-cutting room, carpenter's forty-two horses, forage stores, chaff-cutting room, carpenter's
shop, and foreman's dwelling-house, and along the frontage adjacent to the Fulham-road has been erected a commodious and imposing block of buildings, containing the commercial offices, wine
and spirit stores, manager's residence, \&e. The centre part of
the courtyard thus enclosed is covered with a light zinc and iron the courtyard thus enclosed is covered with a light zinc and iron
roof, carried on cast iron columns, and accommodates the caskwashing apparatus, cooperage, \&c., which, as well as the loadingwashing apparatus, coperase,
out arrangement is, as will be observed, of an exceptionally com-
modious character, rendered especially necessary for the efficient modious character, rendered especially necessary for the efficient
conduct of the business of the brewery, by the very mixed nature of its operations, which comprise, in addition to the ordinary
public-house trade, large deliveries to private consumers, as well public-house trade, large deliveries to private consumers, as well
as the supply of wines, spirits, bottled beers, and mineral waters. The brewery is one of the comparatively small number built
expressly to carry out what is known as the "skimming" expressly to carry out what is known as the "skimming
system, which differs from all others in so far that the fermentasystem, which differs from all others
tion is not carried out entirely in one vessel, , but is begun in the
fermenting squares and completed in the skimming backs. It fermenting squares and completed in the skimming backs.
is contended by those who advocate this system that it tends produce a cleaner and brighter article than any other, while, as plicity of small vessels, with the almost insuperable difficulty of keeping them thoroughly clean, which characterises the latter.
In arrangement the brewery is distinguished by extreme simIn arrangement the brewery is distinguished by extreme sim-
plicity, free from any twists or odd corners, and wholly in the reach of the master's eye. The water supply is ample, of the purest quality, and is obtained from two wells, one of them used
exclusively for brewing purposes, being sunk into the water-bearing chalk to a total depth of 450 ft ., the other used for caskwashing and cleaning purposes, being 200it. deep. The con-
struction of the brewery throughout is of the most substantial description, cast iron columns, wrought iron girders, concrete arches, asphalte flooring, cast iron stairs, and iron roofs being used throughout wherever applicable, while even portions of the
plant usually constructed of wood, such as malt hoppers, grist cases, \&c., are here made of iron.
The plant is practically a double set, all the more vulnerable
parts being in duplicate, so that any breakdown would be partial, parts being in duplicate, so that any breakdown would be partial,
and would only cause the curtailment instead of the entire stoppage of operations, while by placing the coppers and boilers
in a separate building on the ground level, provided with in a separate building on the ground level, provided with ample
means of ventilation, the annoyance of the steam and dirt, means of ventilation, the annoyance of the steam and dirt,
inseparable from this part of the business, penetrating into the other portions of the brewery is entirely avoided. The motive power is supplied by a 25 -horse power horizontal engine, con-
structed by Messrs., Marshall and Sons, Gainsborough, fitted with Hartuell's patent governors and automatic expansion valve
gear. The boilers supplying steam to the engine, hot liquor tank, gear. The boilers supplying steam to the engine, hot liquor tank,
cask steaming, \&co, are two in number, 25 ft . long by 7 ft diameter, of the Lancashire type of the most modern and approved style, with Galloway tubes, Adamson's rings, and flanged joints
in the flues, and full mountings, including Asheroft low-water alarum, fusible plugs, \&c. A spur pinion on the crank shaft of alarum, fusible plugs,
the engine working in a mortice wheel gives motion to an under-
ground shaft which actuates the deep well pumps. These are Ground shaat which actuate three-throw, with gun-metal barrels and copper rods. From the crank shaft a pair of bevel wheels drives the upright shamt, which extends the whole height of the brewhouse, , iviving
off power at different levels as required. In the copper-house are set two open-fire wort coppers, each capable of boiling 130 barrels of wort, and surrounded by a commodious side stage of cast iron gratings supported on wrought iron girders, and
approached from the ground floor by iron stairs. Adjoining the coppers is the hop back, of English oak fitted with copper false bottom, and in the engine-room adjoining are situared the wort
pumps, which are three-throw, with gun-metal barrels in strong pumps, which are
cast iron frames.
In the mill room on the ground floor, next the engine-room, are placed the malt rolls, capable of crushing 25 quarters per its turn is supplied from the malt store by an iron shoot. Between the ropllis and mam hopper is placed the malt screen, and
alongide the former is situated the elevator or Jacob's lader, alongside the former is situated the elevator or Jacob's ladder,
which delivers the ground grist into an archimedean screw extending over and discharging into either of two grist hoppers, situated one over each mash tun. Besides the malt hopper, there
are situated on the first floor the brewers' room, laboratory, sampling room, and copper safes for spend taps from mash tuns.
On the second floor of brewhouse are situated two mash tuns, one of cast iron, with internal rake machine and Steel's mashing maof cast iron, with internal rake machine and Steel's mashing ma-
chine of the usual construction, and the other of English oak, chine of the usual construction, and the other of English oak,
with copper false bottom, internal rake machine entirely con-
structed of gun-metal, and Steel's machine of copper and gunmetal
On the refrigerator stage, or third floor of beerhouse, are two
Baudelot's refrigerators of ample power, and on the same level is situated the hot liquor tank, containing 160 barrels, constructed of Bessemer steel plates, and heated by a steam jacket, supplied
with steam direct from the boilers, as well as by an internal coil, utilising the exhaust steam from the engine. The entire area of partments, but provided with means of communication from one to another. Above the roof of fermenting house, but adjacent main cold liquor tank, supplied from the well by the pump already mentioned, and supfliciently high to give an efficient service at considerable pressure throughout every portion of the
premises. The basement of fermenting house forms a portion of the beer cellar, and is floored with a mixture of clay and chalk well mixed and rammed in, which stands the constant
rolling of the casks better than other materials which have rolling of the casks better than other materials which have
been used. An hydraulic lift, capable of lifting one ton in
weight, and worked direct from the main tank, raises the casks from the cellar to the loading-out stange, the waste
water being delivered into the surface well, and thence pumped up and used for cask washing, \&e. The ground beer store, and the first floor is occupied by the skimming backs, which are constructed of Welsh slate, and fitted with skimming apparatus and attemperators. Between the skimming backs, at a Welsh slate. squares of English oak, fitted with attemperators, while on the
third floor and in the roof over are located the malt and hop
stores, furnished with a powerful frictional geared hoist. The loading-out stage, with cellar underneath, extends along the whole ength or we mern which serves the double purpose of protecting it from the weather and keeping the bee store and fermenting house cool. In the pipe fitting arrangements great care has been taken to utilise all conte steam for heating purposes. The plant is a 50 -quarter set, with ample space requen the every department in wood and iron the shaft ing turned, and all the fittings of the neatest and completest kind The buildings, which are of red bricks, with Corsehill stone dressings, covered with Brosely tiles, have a picturesque ensenote
not usually associated with works of this class. The whole of the buildings, machinery, plant, \&c., have been constructed from the designs of Mr. William Bradford, Carlton-chambers, 12 have been carried on throughout. Messrs. G. H. and A, Bywaters, of King-street, Regent-street, were the building contractors; Messrs. H. Young and Co., Pimlico, executed the con-
tructional ironwork and wells and pumps ; Messrs. H. Pontifex and Sons, King's Cross, the mill wright and engineer's work,
coppersmith work, and pipe work ; Mr. James Oxley, of Frome he woodback work and gun-metal mashing machine, \&cc.; and Messrs. Brindley and Co., the slate backs.

KIANGNAN ARSENAL.

In view of a possible war between France and China, a may not prove uninteresting to our readers. There are four arsenals in the Celestial Empire, viz, the Kiangnan, Tientsin, Foochow, and Nanking Arsenals; but the two largest are those
of Foochow and Kiangnan. The latter is situated about three miles from the foreign settlement at Shanghai, and is on the banks of the muddy Hwangpoo. It comprises a small shis of the size of the gunboats built in England for the Chinese Government. Attached thereto are a capital dry dock and engineering works, including a small-arms factory, shot and shell oundry, gun and carriage factory, and a large brass and ironthree miles further up the river, and on the same side, are extensive powder works and a cartridge department. The entire arsenal covers an area of considerably Mavarin named Li Mingling, who takes his instructions from both Lin K'un-yi, the of Kiang-su, Kiang-si, and An-hui - and Li Hung Chang, the viceroy of Chih-li and governor of Tientsin.
With the exception of the small-arms factory, there is an Englishman or a Scotchman at the head of every department. For instance, Mr. John Mackenzie, from Armstrong's Works at
Newcastle, and who was formerly superintendent of the Turkish arsenal, has charge of the heavy ordnance department; Mr. William Newton, also from Armstrong s, takes the shot and shell
department; Mr. Samuel Ballard the cartridge factory, Mr. John department; Mr. Samuel Ballard the cartridge factory, Mr. John
Atkinson the powder works, while Mr. John Rennie superintends the shipbuilding yard. Mr. John M. Allen is superintendent marine engineer, and Herr Leo Brettcheineider is military instructor. Otherwise the whole arsenal is worked by China even to foremen and engineers. The small-arms factory has no its late superintendent died exclusively by the Chinese.
Throughout the various departments, and at the powder manufactory at Loong-wha, there are from 2500 to 3000 men employed, and although none of them have to serve any-
thing like a formal apprenticeship to the particular branch that they follow, such as English artisans do, there is a general consensus of opinion amongst the heads of departments that comparison with that of our mechanics at home. The only difference there is between the two-if, indeed, there be a difference at all-is that the Celestials will not work under high pressure, but will take their own time over everything, no matter what its urgency; and they have their own secret societies, which, after not do too much work or take too little pay. The scale of remuneration ranges from 2 dols. to 3 dols. a week to the coolies, to 70 dols., 80 dols., and 90 dols. a month to the foremen, the meand that they live mainly on rice and similarly inexpensive dishes, and, hadang togeen that they have abundant opportunities for saving money. Their hours of labour average nine a day, and they leave off two hours hearlier on Saturdays, and have Sundays entirely to themselves. As workpeople their steadiness can be relied upon, for they do opium smoking. The chief difficulty experienced by Europeans in dealing with Chinese mechanics, is that they have an almost invincible repugnance to innovations, improvements, or, in fact,
anything new. We understand that the supplies for the maintenance of this arsenal are derived from two-tenths of the evenues of the Imperial Maritime Changhai
During the past two years the Heavy Ordnance Department at Kiangnan Arsenal has turned out eighteen 40 -pounders on the Armstrong principle, half of which have gone to Tientsin and the
other half to Nanking. A 120 -pounder, 7 in, in interior diameter polygrooved according to the latest system at home, though not in the latest style for length of gun, is now ready for proof, and material is in store for twenty more of such guns and twenty 80 -pounders, which are to be manufactured in due course; but as these guns are turned out only at the rate of one every month or six weeks, it is impossible to say when they will be finished. All the raw material for these guns is brought out
in bars of iron and steel from England, and, as is done at in bars of iron and steel from England, and, as is done at then welded into solid coils, bored and turned preparatory to their being contracted on the steel barrels, their thousandth part of an inch. The 40-pounders which have been finished are beautifully bronzed, and mounted upon rear-chock
carriages of the British service pattern. They are made principally of mahogany and tastefully polished, and were also constructed in the Arsenal. There is a capital foundry here, second to none in the world, and it is capable of turning out ten times the amount of work it does-only three or four tons of pig iron a day being at present used for casting. Projectiles are manufactured for every description of gun, and these, too, could be made in much greater quantities than they are. In the smallarms factory there are about two hundred men engaged, who
contrive amongst them, under native direction, to turn out ten contrive amongst them, under native direction, to turn out ten
rifles a day, with bayonets complete. Probably all the work done at the other arsenals would not more than double the resulta
obtained from the Kiangnan Arsenal, as Foochow Arsenal is chiefly
devoted toshipbuilding. Cartridgesareat presentmanufactured in the Kiangnan Arsenal at the rate of $25,000 \mathrm{a}$ a day. The great fault to be found with the arsenal-apart from the lack of energy manifested in its work by the Chinese officials-is one that is common to most other arsenals, namely, that its sheds and buildings are too scattered, thus preventing operations being carried on in a sufficiently systematic manner, and leading, consequently, to great waste of both time and labour. This has has been built piece by piece as occasion required. However, so ar as the gun factory, the shot and shell factory, and the small rms factory are concerned, they are entirely upon European models, while the work produced, so far as a casual observer can arms manufactured here is at present enshrouded in some mystery, as few, if any, troops can be seen with them.

ROYAL SOCIETY OF NEW SOUTH WALES.
THE annual meeting was held May 2nd. The number of new number of ordinary members upon the roll to date 486. At the esolved to award the Clarke Mer Baron Ferdinand von Mueller, K.C.M.G., F.R.S., Government ootanist, Melbourne ; and at the same meeting the council
awarded the prize of $£ 25$, which had been offered for the best comnunication prize the "Influence of Australian Climates and Pastures upon the Growth of Wool," to Dr. Ross, M.L.A., Molong, Wales" to Mr. John Fraser, B.A., West Maitland.
During the year the Society held ten meetings, at which the
following papers were read, viz:- "Annual Address," by H. C. following papers were read, viz: "- "Annual Address," by H. . H .
Russell, B.A., F.R.A.S., dec. "On the Geology of the Hawkes. Tropical Rains," by H. C . Russell, B.A., F.R.A.S., \&o. "On the Determining Progress of New South Wales during the Years 1872 to 1881 ," by Christopher Rolleston, C.M.G. On some Marine Fossils of the the Woods, F.G.S.,. F.L.L. "On French Geographical Societies and New Holland," by James Manning. "On the Ashes of some Epiphytic Ferns," by W. A. Dixon, F.C.S., \&cc. "On a Fossil
Plant Formation in Central Oueensland," by Rev. J. E. Tenison Woods, F.G.S., \&c. The medical and microscopical sections hela regular monthly meetings. The sum expended upon the library
during the year was $£ 422$ 12s. 10d. At the annual meeting
M. Louis Pasteur, M.D. M. Louis Pasteur, M.D., was unanimously elected as honorary
member of the Society to fill the vacancy caused by the death member of the Society to fill the vacancy caused by the death of
the late Dr. Charles Darwin, M.A., F.R.S., and Dr. Ottokar Feistmantel, of Calcutta, was elected a corresponding member. Names of the new council $=$ President, Hon. J. Smith, $\mathrm{S} . \mathrm{M} . \mathrm{G}_{\text {., }}$
M.D., M.L. Vice-presidents, Charles Moore, F.L.S. W. A. Dixon, F.C.S. Hon. treasurer, H. G. A. Wright, M.R.C.S.S.E.
Hon. seceretaries, Professor Liversidge, F.i.S.S., F.G.S., \&e.; Dr. Leibius, M.A., F.C.S. Members of Council, Robert Hunt, F.G.S., \&c.; Dr. W. Morris, Frederick Poolman, P. R.
Rolieston, C.M.G.; H. C. Russell, B.A., F.R.A.S.

A New Light Railway.-Tenders have been reecived for the and Great Eastern joint line at Blankney, between Lincoln and Sleaford, to the populous village of Billinghay, the length of the
line being 7.77 miles long. That of Messrs. Benton and Woodiwiss, Derby, has been accepted, the amount being $£ 42,3525 \mathrm{~s} .4 \mathrm{~d}$. The contract includes the whole of the works, station buildings, signals, Westminster, and Samuel Abbott, Lincoln, are joint engineers; The engines, will, of course, have to be "light," like contractors"
as the load is limited to 8 tons on a pair of wheels, but the ordinary carriages and wagons can pass over, the line being the ordinary gauge, 4ft. 81in. We believe only one light line, in
Norfolk has as yet been eonstructed, but the Great Northern and Great Eastern companies hope the new line will meet the require-
ments of agricultural districts, and no doubt a great deal is to be done in this direction.
Washing the SUrfaces of Plastre Casts.-Puscher recommends that the surface of the cast be coated over and over again
with an alcoholic solution of potassium stearate. The stearic acid unites with the lime of the plaster, forming calcium stearate, and gypsum, while at the same time coating on the sulphuric acid of the gypsum unites with the potash of the potassium stearate and forms potassium sulphate, which passes into the interior of the gypsum mass, and by combining with it, hardens it. Sodium stearate, or our
ordinary soan, cannot therefore be employed because the sodium ordinary soap, cannot therefore be employed because the sodium
sulphate, which is thereby formed, will not chemically combine sulphate, which is thereby formed,
with the plaster; but in moist weather, or when the gypsum is wasied, will crystallise out, and thereby forms a crust, and does not make the surface waterproof. A potassium stearate soap does not occur in commerce, and we are therefore compelled to prepare
it ourselves, and this is done in the following manner:--Three parts of caustic potash is to be dissolved in thirty-five parts of hot
pat water and nine parts of stearic acid of the best quality are added
to it. In a few minutes the stearic acid will have dissolved, and by constant stirring it will soon have combined with the potash to form a dense clear soap-like glue. We have now to add to this an equal weight of water and of alcohol of 95 per cent. strength,
and the clear thinly fluid solution, as clear as water, is to be placed in a vessel containing lukewarm water to warm it. The plaster cast, which has been previously somewhat warmed, is to be
repeatedly covered with the solution with a brush or a sponge until, in fact, the cast will take up no more of the solution, when it is to be placed on one side for two or three hours. By that time the
alcohol will have evaporated and the plaster cast can now be washed with water and a sponge. If the water becomes very strongly coloured, it is a sign that the washing has been commenced too soon and the potassium soap has not yet been entirely decomposed, in which case the plaster cast, after having been dried, is again to be placed aside to dry for five or six hours, may again be washed with water. The plaster cast obtains by this treatment a waterproof
crust of a beautiful white and marble-like appearance, which has more or less lustre, according as the surface is rubbed more or less
sharply with a cloth or brushed with a soft brush. If in place of sharply with a cloth or brushed with a soft brush. If in place of
caustic potash, caustic ammonia is employed in quantity sufficient to make the soap solution clear, and the requisite quantity of alcohol be then added, it is found that the plaster cast, which may be treated with this solution, has a still white, more waterproof, marble-like crust, after subsequent treatment with water. Old plaster casts must be cleaned beforehand; they should be treated
with a three per cent. solution of potash solution, which destroys with a three per cent. solution of potash solution, which destroys
the surface of the plaster. The caustic lime thus produced is then removed by treatment with water, and takes with it the dirty crust. The plaster cast thus purified is then to be dried in the air before it is washed down with the alcoholic potassium stearate,
which otherwise will not be able to penetrate sufficiently deeply,
A plaster figure, 0.75 metre in height, requires a solution of
1.3 grammes of potassium oxide in 40 grammes of water.

RAILWAY MATTERS.

The large bridge over the Nerbudda, on the Bhopal State Rail
way, has been finished. Its total length is about half a mile, A TrEATY has been made for mutual working between the
Northern, Southern, Eastern, and Paris, Lyons, Mediteranean ailway companies of France
AT a railway league meeting held at Port Douglas, Queensland, track up the coast range over which a railway to Herberton could

Bort driver and stoker of a light goods engine on the line of the
Irish mail of the London and North-Western Railway were found fast asleep last week on their engine. The men had been on duty
fifteen hours. fifteen hours.
THE Colombo, Ceylon, municipal authorities have sanotioned the construction of, tramways through the main street of the native the fort, but will not consent for the present that lines shall be the fort, but will not consent for the p.
laid along the Galle Face and Kollupitya.
THE first sod of the Gravesend Railway was turned by Lady
Waterlow on Saturday last. The new line will be about five miles long, and there will be stations at Southfleet and near Rosherville. The deep-water pier with whioh the line will b
connected at Gravesend is an important part of the scheme. Ov Sunday evern while the Cornish mail train war run
the rate of about thirty miles an hour round a rather sharn curve near Menhenot, the last carriage, whinh was empty, suddenly
left the rails, dragging with it a fish wagon. The train was quickly stopped, but not before the permanent way had been
IN a report to the Board of Trade on a collision which oocurred
on the 16th April, between Dunleer and Drogheda, on the Great on tre 16th April, between Dunleer and Drogheda, on the Great
Northern Railway of Ireland, Major-General Hutchinson says :"Inthern Railway of Ireland, Major-General Hutchinson says :-
acting driver of the passenger train had had command of a quickly
actions brake, he would no doubt have been able to stop acting continuous brake, he woul"
before reaching the goods train."
ON the railways of the United States the average of the
accidents per day for April were 3.53 accidents, 0.87 killed, accidents per day for April were 3.53 accidents, 0.87 killed
and 3.80 injured; for the year there were 4.27 accidents, 1.16
kill killed, and $4 \cdot 92$ injured. The average casualties per accident were,
for the month, 0.245 killed and 1.075 injured; for the year, 0.22 ,
killed and $1 \cdot 151$ injured. The averages per month for the year were 130 accidents, 55 killed, and 150 injured. April was below
the average, not only in accidents, but also in killed and injured. ON Tuesday the French Government voted 4,677,000f. ((1887, Fo80)
for continuing work on the Senegal rail way and forts. M. Ferry for continuing work on the Senegal rail xay and forts. M. Ferry
admitted that the expense had been considerably underestimated - 133 kilometres of railway, and an expendidure of sixteen millions having been omitted -but gaid that this was due to want of ex-
perience of railway making in the desert, . He deprecated the
abandonment of five or six forts, the last raised on the banks of abandonment of five or six forts, the last raised on the banks of
the Niger, and urged that railway saved the expense of mules
the
and asses in viotualling, while the recent history of South Algeria and asses in viotualiling, while the recent history of
had shown the great military advantage of railways.
On Tuesday afternoon one of the most serious tramcar accidents
occurred at Huddersfield that has yet happened. Five persons were killed, and about sixteen seriously injured. The road to Huddersfield town from Lindley is on a falling gradient nearly all the way,
and the last half-mile is very steep, and ends swith two very aww. ward curves. On Tuesday a car from Lindleev, with a Wilkinson's
engine in front, came down the hill at a high speed, and on one engine in front, came down the hill at a high speed, and on one
of the curves referred to, left the line and turned over. The
The persons on the top were thrown with great violence to the ground,
and were cut and bruised terribly. Those inside were thrown into a confused heap, and also badly injured.
 thousand three hundred kilometres of new lines are conceded to
the company, which will bear the expense of oonstruction up to S0,ooof. per kilometre. It will also repay the 205 millions
recived from the State, under guarantee of interest, and will ifve 50 millions for lines already made; but it transfers certain short
lines to the State The company, engages to construet 20 kilo-
metres a year while it is guaranteed 6 bfi. dividend, and will give metres a year while it is guaranteed sbi. dividend, and will ive
up too the State toothird of any excess over 7if. M.. Rannal
urged the Committee to report on this and the other conventions before the prorogation, which, he said, coutd not be
deferred beyond July 21 st , on account of the Departmental
defrei Council elections.
Aish Corresponderv of the Nethraska State Jourrnal wrou a descrites :- "I road
Coquille City, ond and a wooden tramway was run up from the head of Coquaine Bay. The mines gave out, but the tram way was leat. I
heard there was a railroad, and when I got there the train had backed up to the end of the track. Well, you would have died to tramway had got an old engine out of the mine and mounted it on
hand car and connected the driving shaft with the handle. This wand car and coniected and tender. The baggaage, mail and e eppressc cars,
wand the passenger coaches, were comprised in two rubble cars, such as are used in the section for corrring tools, rails, \&co. The old man was a no less wonderful combination than the train. He was
the company and the working force of the road. President, vice president, stockholders, agent, conductor, engineer, fireman, an peanut boy, were all comprised in his lank form. He never had
any trouble with the stockholders, and he carried the general office in his hat. My fellow passenger raised an umbrella when he got on board, and on my inquiry as to the need of an umbrella, said soound out water worer right. in a perfect shower. We We got along, how- how
ever, very well, and would have made the trip as quickly as we could have walkedit, if the train had not stopped when we were about half way and waited half a,
with us to finish his supper,"
A RRPORT has been published on the accident which occurred on
the 20th April to a train of empty carringes belonging to the London and South-Western of emilway carringes belonging to the
Company, at the Snow-hill
sidings of the London, Chatham, and Dover Railway Company, sidings of the London, Chatham, and Dover Railway Company,
when the engine-driver, fireman, and one puard of the train we When the engine-driver, fireman, and one guard of the train were pit, and it and two front carriages were badly damaged, as well as
the engine turntable in the pit. In the return to the Board of
Trade from the London, Chatham, and Dover
 control of the empty train through not properly applying the control of the empty train through not properly applying the
vacuum and other brakes, and the engine fell into the turntable
pit. Colonet Yolland says: - " A careful consideration of the statements of the men induces me to think that there is no evidence
shatever to prove that there was any failure in the working of but there is most distinct evidence given by the driver himself to show that he did not understand the proper mode of working it
and used it most improperly while running through the Snow-hil and used it most improperly while erumning through the Snow-hill
station in pulling of the brake setter three or four times, and it was found at 'off', immediately after the accident happened.
The brake should have been moderately applied in regalating the
speed of the train down the steepp incline of 1 in 40 , whereas
 clear from this accident, that no untrained engine-driver should
be permitted to do drive a passenger train fitted with the automatic
vacuum brake,"

NOTES AND MEMORANDA.

A tov of wheat or seeds may now be sent from Delhi to Howrah,
distance of 954 miles, for $\& 1$. 9 s . 11 dd d., equal to $0 \cdot 3765 \mathrm{~d}$. per ton per mile.
Thr annual death-rate in London last week was $17 \cdot 16$ per thou-
and of the population, and in the twenty-eight great towns of England and Wales it averaged $18^{\circ} 7$ per thousasand.
AT the salt borehole of the Neweastle Chemical Company, near red sandstone has been reached at a depth of 90 oft., and more rapid work will now take place with the diamond bore, but it will be

THE number of miles of streets which contain water mains constantly charged, and upon which hydrants for fire purpoges could
 ion, 48; ; Lambeth, 136 ${ }^{2}$; Chelsea, 68 , making a total length of 811 $\frac{1}{2}$ miles.
TAKINa the average amount of organic impurity contained in a given volume of the Kent Company's water during the nine years
ending December, 1876, as unity, the proportional amount conending December, 1876 , as unity, the proportional amount con-
tained in an equal volume of water supplied by each of the Board of Health during May last was:-Kent, ' 9 ; Colne Valley,
 tion, $2 \cdot 6$ E East
3.2 ; Lambeth,
$3 \cdot 6$.
Br a reeent analysis of tobacco smoke, MM. G. Le Bon and G Noel have extracted bottles of-(1) Prussic acid; (2) an alkaloid of nicotine, since one-twentieth of a drop destroys animal life; (3) aromatic principles, which are as yet undetermined, but which con-
tribute, with the alkaloid, to give the smoke its perfume. The tribute, with the alkaloid, to give the smoke its perfume. The
alkaloid appears to be identical with collidine, which has been alkaloid appears to be identioal with collidine, which has been physiologic
anknown.
THE gross increase in tonnage passing through the Suez Canal during the past three years is $1,866,151$ tons, towards which
ritish tonage contributed $1,990,931$ tons ; and, while the nerease in the total numbers of vessels was nghi, the nincease in English ships was 755. Nearly ten tons of English shipping used ngish ships passed through for every French ship. The act but their tonnage was 269,048 tons greater; and, while the French
steamers increased in the same period from only 123 to 197 , their stamers increased in the same period from only 123 to 19, their
tonnage was rather more than doubled, having increased from
191,139 to 382,555 tons, showing the rapid increase in the size of stamers.
SPEAkING of the liquefaction of oxygen and nitrogen, the freezing of alcohol and sulphide of carbon by the use of liquefied
ethylene, used by M . Wroblewski and K . Ollszewski, as already recorded in this, column, the Scientitio American says ;-Air con-
tains by weight, approximately, 23 parts of oxygen and 77 parts nitrogen. It is common to compress it to a far greater degree air locomotives, a compression of the air to 1000 lb . to the square xperienced in the liquefaction of oxygen and nitrogen has been to btain a sufficiently low temperature in conjunction with compression. This obstacle now appears to be removed, and a variety substances may be expected.
To preserve steel gun-barrels by coating them thinly with cyanides of the alkalies a are replaced by organic acids and
lycerine. According to M. Weil, these baths requir and y organic elements, and can be used continuously when they are tage, owing to peroxide of copper. They possess, also, ${ }^{\text {a }}$, dis tage, owing to the property inherent in organic alkaloids, of dis-
solving the peroxide of iron without attacking the metallic iron itself, of cleansing the steel before the commencement of the cop-
pering process, and more perfectly than can be done mechanically, The coppering is effected by putting porous clay vessels filled with caustic soda ye, in which zinc plates have been immersed, in the
basin containing the organic copper base-alkaloid-and the steel.
The zinc plates are connected by a thick copper wire with the steel basin containing the organic coppe
The zinc plates are connected by a
articles to be coated with copper.
M. P. Germarn proposes to use the various degrees of resistance temperatures, and under different rays of the spectrum, to the egulation of the temperature, in muffles for enamelling painted lements, which receives the heat directly from the muffle. The opposite pole is connected with the wall of a porous vessel, full of
water, which maintains a sensibly constant temperature. The thermo-electric current increases in potential proportionally to the
elevation of the temperature in the muffle. The selenium brought into the circuit, but it remains comparatively unaffected until the muffle has reached the proper luminous temperature, when it allows the current to pass and to give a signal by means of
bell. We should imagine that a much simpler could be made by aking advantage of the rise in the pressure of steam by rise in emperature.

A GERMAN chemist, Herr Maximilian zingler, has just patented a new process for manufacturing a substitute for gutta-percha.
About 50 kilos, of powdered copal and $7 \frac{1}{t}$ to 15 kilos, of sublimed sulphur are mixed with about double the quantity of oil of turpentine, or with 55 to 66 litres of petroleum, and heated in a boiler provided with a stirring apparatus to a temperature of
122 deg. to 150 deg. O., and stirred until completely dissolved. The mass is then allowed to cool to 38 deg. O ., and is then mixed ittle alcohol and wood spirit has been added. The mass is then heated to the former temperature- 122 deg. to 150 deg . O. -until
it is a thin fluid. It is then boiled with a 15 to 25 per cent. solution it is a thin fluid. It is then boiled with a 15 to 25 per cent. solution
of nutgall or catechu, to which about half a kilo. of ammonia has een added. After boiling for several hours the mass is cooled off, dried. It is claimed that the product is produced much cheaper
and cannot be detected from the real article. It is said to wear equally as well.
A NRW bichromate battery has been devised by Signor Luigi luid consists of $2 \frac{1}{4}$ lb. of potash, half a gallon of hydrochloric acid ind a gailing water, when all the acid is added at ond dissolved thus obtained, consisting of a mixture of chloride of pottassium and bichromate of potash, which forms no crystals. The battery yphon for charging. It contains six rectangular glass cells with holes in the bottoms, which rest upon glass plates permitting of the
circulation of the liquid. The elements consist of one zine and wo carbon plates, separated by a small band of india-rubber and
clamped together. A six-cell battery is capable of producing a current of the same intensity as six small Bunsen elements. Three
uch batteries will keep in incandescence an eight-candle such batteries will keep in incandescence an eight-candle Edison
lamp of slight resistance, and eight of them will maintain a good
arc lamp. This battery is said to require no attention, while the liquid is not liable to change, and gives put no smell ; nor is there
need to amalgamate the zinc.

MISCELLANEA

THE Select Committee on the Manchester Ship Canal Bill has THE The Canal Ironworks and attached cottages, Gravesend,
Kirksite the new Tilbury Docks, will be sold by Messrs. Wheatley
Koulty, on the 11th inst. Kirk, Price, and Goulty, on the 11th inst.
The number of visitors to the Fisheries Exhibition on Saturday last was 19,684, making a total for last week of 82,489. The total
number from the opening of the Exhibition has been 609,753 . THE Darlaston Local Board haveinstructed Mr. E. Pritchard, C.E to prepare a scheme, with an estimate of the cost thereof, of
dealing with the sewage of the town, with the view of meeting the requirements of the Birmingham Corporation.
The Select Committee of the House of Commons appointed to inquire into the merits of the Bills promoted by the Commissioners
of Sewers and the Metropolitan Board of Works to compel the demolition of the District Railway ventilators, gave their decision on Wednesday afternoon, when the chairman announced that the
Committee were not prepared to pass either of the Bills without amendment.
AN iron screw steamer, the Badsworth, of the following
dimensions, was launched on the 25th ult. by Messrs. Oswald Mordaunt and Co., Southampton:-Length, extreme, $276 \mathrm{ft} . ;$
breadth, 36 ft .; depth to floors, upper deck, 24 ft . 6 in . The vessel is spar decked with poop, two small briages, cylinders 30 in . and 60 in ., with a stroke of compound, having
supplied by two boilers 13 ft , diameter, with a working pressure of supplied
90 lb .

Within the past six months the use of steel nails, the Boston into the market about a year ago, and found an immediate sale. One by one the leading nail companies of this State took up this No of manufacture, until all now produce steel nails regularly.
Nachinery was required. The knives for cutting the steel plates dull much quicker than on ironwork, but otherwise the
cost of manufacture is not increased beyond the first cost of the steel bloom as compared with pig or scrap iron, which is used in making iron nails. At first the extra cost of steel nails was $1 \frac{1}{2}$ cents
per 1 lb, or 1.50 dols. per keg, but it has now been reduced to one
duar exura. Have Hod seen ulem yeu il uno counury

The Wakefield Corporation Waterworks Committee have deter Jackson, of Bolton, to make another e. C.E., of London, and Mr. site for new waterworks along with Mr. Filliter, of Leeds, the engineer for the scheme. It is said that the discovery of the fact
that the coal has been won from under the site of the reservoir will necessitate the formation of puddle tr of the reservoir, and that instead of the cost being only $£ 40,000$, it
will be at least $£ 100,000$. In order to minimise the alarming additional cost it has been suggested that the size of the reservoir
should be considerably reduced, and that instead of being formed should be considerably reduced, and that instead of being formed
to contain, $320,000,000$ gallons of water, it should be made to hold $35,000,000$
THE port of London over-sea trade for the week ended June 23rd entered in, 145. Number of vessels entered out, 142; number of steamers entered out, 96 . Number of cargo vessels cleared out, vessels entered in, 146,657\%; tonnage of steamers entered in, 104,966, Tonnage of vessels entered out, 91,606 ; tonnage of steamers entered steamers cleared out, 66,049 . Total number of British vessels cleared out, 107; British tonnage cleared out, 70,873 . Number of
British steamers cleared out, 81 ; tonnage of British steamers cleared out, 52,585 . Number of British sailers cleared out, 26 ; tonnage
Brewers have occasionally endeavoured to replace wood by
some more suitable material. Stone is used sometimes in the North of England; slate, in spite of its first cost, which is considerable, is fast growing into favour; and glass has also been
recommended. The Brevers' Guardian proposes the use of glass, but thinks that its expense, the difficulty of obtaining it in sufficiently large sheets of the requisite strength, and its excessive
liability to fracture, are too great to make its use liability to fracture, are too great to make its use practicable. it cannot be obtained at a moderate expense tablets of a moderate size might be glazed together in a suitable framework by means of
some insoluble and odourless cement. Fermenting squares, racking vats, yeast stillions odourless cement. Fermenting squares, racerial, would seem to meet all the requirements of the brewer, and would certainly be preferable to any other material,
perhaps, of slate, in the matter of cleanliness.
AT the closing meeting of the session of the Meteorological Society Series of Experiments on the Distribution of Pressure upon Flat
Surfaces Perpendicularly Exposed to the Wind," by Richard H, Curtis, FM.s. The resur very closely with those of the former experiments. Another paper
was read "On the Reduction of Wind Records," by the Hon. Ralph Abercromby, F.M.S. The author discusses the significance quantity, the quantity from from anemographic records relative frequency, the mean and annual velocity, the mean
velocity velocity from different quarters, the resultant, and the mean and
diurnal direction of the wind. A paper was also read "On River Temperatures as compared with Air Temperatures at Greenwich
and Bremen," by Robert H. Scott, M.A., F.R.S. The author compares the results given in a recent paper by Sir G. B. Airy on a and those of air temperature taken at Greenwich with those published by Herr von Freeden for the temperature of the Weser
as compared with that of the air at Elsfleda, olose to Bremen, for the ten years 1858-67.
The Stratford-upon-Avon Town Council have decided upon a out from the design of Mr. E. Pritchard, C.E. The water suppply
out will be abstracted from Snitterfield Brook at a point near the Wolds. From this point the water will be taken by means of an
underground conduit to a reservoir, and will be decanted from the reservoir to filter beds and from thence by means of $7 \mathrm{in} ., 6 \mathrm{in} ., 4 \mathrm{in} .$, and 3in. mains to the whole town. The reservoir will have a
maximum depth of 22 ft . and will have a water area of 4 a .1 r . 20 p ., maximum depth of 22 ft . and will have a water area of 4 a . 1 r . 20 p .,
and will contain when flled $15,500,000$ gallons. In the exavation water available for the town supply will be met with; this is prowater available for the town supply wir be med
posed to be conveyed direct to the filter beds, or the supply main,
and is proposed to be quite independent of the reservoir. being, in and is proposed to be quite independent of the reservoir. being, in
fact, a supplementary supply, entirely distinct from the brook. Of course it is impossible to determine, until actual excavation takes place, what may be the probable volume of water from this
source. The drainage area contributing to the Snitterfield Brook at the proposed point of abstraction is approximately 700 acres; this,
with an average annual rainfall of 27 in . and assuming one-third only finding its way to the brook, would give a quantity per proposed at 15 gallons per 24 hours per head of the population. prope mains having the capacity to admit of a supply sufficient for a population of 12,000 . The water level of the reservoir when
full is 290 ft . above mean sea level, or nearly 159 ft . above surface level of the ground in front of the Town Hall of Stratford-on-
Avon; the water level of the filter being 27 lft level. The total estimated cost of this work is $£ 18,000$, and of the
sewerage works $£ 5500$,

IMPROVED GIFFARD COLD AIR MACHINES. the general engine and boiler company, london, engineers,
(For description see page 16.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

 The Enainer can be had, by order, from any.

at the various vailzaay stations, or it can any if pressagent in tovon or country from the office on the folloving terms (paid in advapplied direct Half-yearly tince):-

 Foreign Subscriptions for Thin Paper Copies voill, until further notice, be
received at the rates given below:- Foreign Subscribers paying in advanc at the published rates will reeeive Tre Exarsere weeky a nd post-frcee
Suscriptions s ont by Post-afice order must ee accompanied by letter of
advie to the Publisher. Thick Paper Copies may be had, if preferred, at
increased rates. increased rates.
Remittance bost-ofice order. - Australia, Belpium, Brazil, British
Columbia, British Guiana. Canada, Cape oof Good Hope, Denmark,
Egypt, France, Germany, Gibraltar, Italy, Malta, Natal, Netherlands, Columbia, British Guiana, Canada, Cape, of Good, Hope, Denmark,
Egyt, France, Germany, Gibratar, Italy, Malta, Natal, Netherlands,
Newt Brunswick, Newfoundland, New South Wales, New Zealand,

 ADVERTISEMENTS.
${ }^{*}$ The charge for Advertisements of four lines and under is three shillings,
charged tios afterwards one shilling and sixpence; odd lines are

 Advertisements cannot be Inserted unless Delivered before Six
o'clock on Thursday Evening in each Week.
Letters relating to Advertisements and the Publishing Department of the Letters relating to Advertisements and the Publishing Department of the
paper are to be addressed to tope Publisiser, MM. George Leopold Riche, all
other Letters to be addressed to the Bditor of THE ENGINEER, 163, Strand.

THE ENGINEER.

JULY 6, 1883

the catastrophe on the clyde

The capsizing of the Daphne within a few seconds after she left the launching ways is probably an unparalleled event; whether it was or was not also inexcusable remains
to be seen. The Daphne is a screw steamer of about 500 tons, built for the Glasgow and Londonderry Steam Packet Company by Messrs. Alexander Stephens and Sons,
Linthouse, Glasgow. She is 175 ft . long, 25 ft . and $13 \frac{1}{2} \mathrm{ft}$. deep. The ship left the ways at about halfpast eleven a.m. quite successfully, but she had scarcely over on her port side, and sank in less than the turned At the time of the launch she had about 150 workmen and about 50 others on board, and according to the latest ad vices it seems that 150 of these men have been drowned. It is stated that not a single plumber has been left on Messrs. Stephens' books. Into the descriptive details of the catastrophe it is not our province to enter; but it is our
province to consider to what the event was inquiry which will be carried out under Scotch law differs in many respects from our own coroner's inquest, and the proceedings may be greatly prolonged. Without anticithe facts as they stand. The most prominent fact is that the ship capsized, and the logical deduction-also a matter of fact-is that she had not sufficient stability. On these two points there is no room for any dispute. Why she on which no opinion can be pronounced until evidence has been taken. An inquiry into this point will form a legitimate exercise for the jury called upon to pronounce There is no reason for us to say at present.
There is no reason to conclude that the builders were
not competent in the fullest sense of the term. The shipyard of Messrs. Stephens and Sons is one of the most complete in the world. Ships are turned out of it by the
score. As has not been inaptly said, "Messrs. Stephens and Sons weave ships." Their plant for making marine engines is all but perfect. The use of the chisel or the
file is almost unknown in their yard. The slips are commanded by powerful traversing cranes competent to large-in the erecting shop, carry it to the hull, and drop arge-in the erecting shop, carry it to the hull, and drop
it in. Ships have not infrequently been launched at Linthouse with steam up. Some of our daily contempocircumstance that she had her machinery on board, At the time of launching her engines only were in position, as it was intended to put her boilers presence of her engines ought to have made her more stable than the reverse; and in any case, the launching of
steamers with engines and boilers in is a thing of daily
orcurrence. We fear that the explanation of the catastrophe is simply that the Daphne was an exceptionally tender ship-that is to say, a craft with little or no initial stability. Recently, and we think unwisely, a number of for example, which nearly capsized in Australia, was vessel with little or no initial stability. stated that the City of Rome is not safe with
less than 1000 tons of coal or cargo on board. In a paper "On Curves of Stability of some Mail
Steamers," read by Mr. Biles before the Institution of Steamers," read by Mr. Biles before the Institution of
Naval Architects in April, 1882, mention is made of the Thames, the property of the Peninsular and Oriental Company. She is 392 ft . long, 42 ft . beam, and 34 ft . deep. On a mean draught of 19 ft . this ship had so little stability that
she heeled 12 deg. to port or starboard, according to which she heeled 12 deg. to port or starboard, according to which way a moderate breeze was blowing. In the course of the
discussion which followed, Mr. Henwood mentioned a ship 250 ft . long, which, when empty, had a list of $11 \frac{1}{2} \mathrm{deg}$. to starboard, and he brought her upright by shifting 13 tons of dead weight on her upper deck. It must be clearly
understood that these ships of small initial stability are not necessarily unstable or unsafe when they are loaded; but demned. They are unstable because they are too digh-to speak in popular language-for their width and before they can be considered safe they must be brought far down in the water. If we put
a board flatwise on the water, it will be extremely difficult to overset it, while it would be impossible to make the same board swim upright, with one edge up and the other immersed. Let us suppose that the board is a foot wide, and ten feet long. If now it be sawn in two, and the trips nailed together, we shall have a compound plank, 6 in . deep and 2 in . wide, and the addition of a small
amount of lead on one edge would suffice to make this structure swim with one edge up; without the, lead this would be impossible. The tender ship is in a similar ot the Daphne turned It has been stated that the reason why by a cable fixed to an anchor, provided to prevent her from going too far. S, far as we have learned the arrangeClyds for launching were like those always adopted on the cable chains the hawse-pipes on either side depended just sufficient slack, allowing for the distance the anchors were expected to drag, to pull up the vessel when she reached the middle of the channel, which at this point has a breadth of about 500 ft . Assuming that she was a tender ship, it is quite possible that the check in question would heel her over. Mr. Henwood made a ship stand up with 13 tons of dead weight, and it is evident that the initial staweight. anchor and cable might mut on sufficient easy to see that an the Daphne until her side lights were submerged ; her sinking would follow as a matter of course. But the obvious answer to this line of reasoning is that she ought not to over It has also bre lumber on her deck, but no amount of lumber which could be carried under the conditions ought to have upset the ship.

號 been lost ships has been pushed too far. If no lives had equanimity if not regard the upsetting of the Daphne with and heavy losses of steamers Recently there have been many all hands, and left not a trace behind. There is some reason to think that these steamers capsized. It is at least certain that in some cases owners have pushed their desire for deep ships to a length which has been earnestly deprecated by shipbuilders of eminence-among others, Messrs. Denny
and Co. The foundering of the Daphne will perhaps do some is trg to convince shipowners that they are going too far. It may that a ship which cannot be launched without risk may be loaded so as to be perfectly safe; but it is also true reverse of safe. The rase of the Daphner her quite the ansafe to take liberties with small steamers, while that of together, they appear same lesson for large craft. Taken together, they ap
screw steamers.

electric lighting.

SUMMER nights do not direct attention to electric lighting; and corporations, as well as private individuals time being in the relative values of two systems of illumination. For this, among other reasons, little or nothing passed done just now in electric lighting. But we hav now so near that we ought to make provision for them. The time is opportune enough, therefore, for and its prospects of success. These last are not as encouraging as is desirable. In certain quarters attempts are made to put things in a pleasant aspect. vicious example. For nearly two years the flectried this many forms has been before the public; and enormous sums have been, nominally at least, subscribed to work various patents and different systems. It has been estimated that considerably over two millions sterling has been actually subscribed, and in some shape or way spent, in connection that there is very little to must be admitted, we that A sixth-rate gasworks would give more light than all the electrical apparatus in Great Britain put together. A few railway stations, as for example, the Great Northern, Great Wadly lern, and Great Eastern termini, are more or less badly lighted by now old fashioned are lamps. In lamps. A small district round Holborn Viaduct is lighted on the incandescent system by the Edison Company,
two have been lighted on the same system by the Swan Company, and this is really about all the commercial lighting Exhibition, seen. There is a fine display at the Fisherie minster Aquarium ; much less remarkable at the est electric lighting, and not commercial installations. What is true of London is yet more true of the country. No ighting into private houses made in introducing electric we have of the popular use of electric lighting is supplied by a few small installations in the Strand and at Brixton, arc lamps being almost exclusively used incandescent lamps are to be found in one or two hotels and restaurants; and the Brighton Pavilion will, it is hoped be lighted in the same way in a few weeks. But when we have summed all up, the work done by the electrical engiy the as a drop in the ocean compared with that done very unas engineers. W e know tividuals; but it is the truth an unpalatable truth, perhaps, but one that may as well be told now as further on.
The question why the use of the electric light does not extend naturally suggests itself. Many answers may be given, uncertain Parliamentary action may be cited among eeded no confidence in it lear, but too troublesome. Householders are accustomed to turn a tap and light their gas, and the gas is always
ready when wanted. No private householder will use team engine and dynamo when be can have gas, and he does not obtain the light in this way he cannot, it seems, have it at all, at least up to the present. As to
the expense of the electric light, there are really next to no the expense of the electric light, there are really next to no
data to go upon. No one can tell, for example, whether data to go upon. No one can tell, for example, whether
the Edison Company is lighting the Holborn district at a loss or not ; and the same thing may be said of every ompany actually doing work at a price ; but there is very od reason to think that in all cases the cost of electric ghting is under-estimated, because electricians and electriedge which is a rule, quite lack the commercial knowdge which is essential to an accurate estimate. As an example, we may say that we saw not long since an esti-
mate for the power required to run a certain number of re lamps, which was based on the power spent in the lamps, with 10 per cent. added for contingencies. Nothing was allowed for engiue friction, the resistance of belts or
shafts, and the efficiency of the dynamo was taken at 90 per cent. The proper estimate in this case would have 90 per cent, The proper estimate in this case would have
been to regard the power expended in the lamps as 40 per ent. of the indicated horse-power required
Tghting are recent utterances on the subject of electric lighting are those of Mr. Gordon, who read a paper on the
subject before the Society of Arts subject before the Society of Arts. Mr. Gordon is manager of the electric light department of the Telegcaph electrician, and the inventor of a capital dynamo; but this did not prevent him from saying much with which we cannot agree. We do not refer so much to the speak, as to the engineering part. Here we must quote Mr. Gordon:- "In putting up a plant for 10,000 lights, in the middle of a populous town-a town of wealthy houses, where the inhabitants do not at all like smoke and waste steam-there are a great many matters to be attended to." Mr. Gordon gives a diagram, showing three engines of the marine type, each driving a huge dynamo. The engines stand side by side, with the the only way, perhaps not the best way in which it could be worked out, but it is one way which has recom could tself to us. There is the plant, an end elevation, and an elevation of the boiler house. Of course, we have to get our boilers in pretty close ; there are seven boilers here Then there is the dynamo house with three dynamos, each working 5000 lights, two to be always at work, and one in reserve, the whole plant being designed for 10,000 . Then we have an arrangement so that the mains are laid double ynamo, and hay, each house has half its lights from ou earthquake upalf from another, so that, supposing a hen only half the lights would go out; the town would not be put in darkness. There is one class of accident which may occur to any machine, and it is, I think, about the only difficulty which large dynamos are liable to, that getting a hot bearing. But an engine-driver is not earing going for he cannot keep an engine with a hot finds be has a for a quarter of an hour ; and supposing he pare dynamo, get the speed of that the same as the speed on the other, start the exciting engines, get the pressures constant, then pull over the switch, and all that will happen will be a slight jump in the light, and then the
engineer may instantly stop the heated dynamo and attend engineer may instantly stop the heated dynamo and attend
to the bearing. The engines are condensing engines, each dynamo to have two, and they will require about 510 indicated horse-power when at full work. Each engine is so as to give about 550 -horse 275 indicated horse-power, sufficient reserve. Again, there are available, which is $4 \frac{1}{2}$ boilers would give sufficient power, so that there will be always two boilers standing quite idle, which can be cleaned. There is a large crane running along the roof, which we use to put the machinery into its place, and to lift any part of it as may be required for repairs." all his leads, alchough it is well known that doubling leads is one of the greatest foes of the electric light. He has provided only 50 per cent. more plant than is required, and it is enough to point out that if one dynamo broke down, and the engine driving another dynamo as well, he could only supply half light. It is no use to argue that such a the plant of the Edison Company in Holborn. Furthermore, he insists on having condensing engines. "If you ond want 10 or 20,50 or even 100 -horse power, you may
air, and you hear no more about it: but if you have over $1000-\mathrm{hm}$ pow the air, two or three unpleasant things will happen. First, you will choke the chimney, because the effect of the steam will be to cake the soot, and so spoil the draught, and some
day you would find the furnace would not draw ; secondly, day you would find the furnace would not draw ; secondly, a fog to which our present fogs would be as nothing, and a fog to which our present fogs would be as nothing, and
that would be a bad introduction of the electric light, one of the great arguments in favour of which has been that it of the great arguments in favour of which has been that it the waste steam is all condensed, and goes away in
the form of water. It is a hard saying to say there the form of water. It is a hard saying to say there must be condensing engines, because condensing engines
very greatly increase the first cost; but in spite of this, I very greatly increase the first cost; but in spite of this, I say we must make up our minds that if we have the elecengines. We must remember, too, that there is a special
clause in the Electric Lighting Act, and in the draft Proclause in the Electric Lighting Act, and in the draft Proconferred on a corporate or other body, are in any way to be regarded as a protection to them against being indicted for a nuisance, if they should cause one. Therefore, we must arrange the plant so as not to cause a nuisance. With distance than with gas, so that we cannot place our electric lighting machines at a great distance from the town. About half a mile radius is a convenient dist
therefore the stations must be tolerably central."
It may be highly desirable to have condensing engines, but not for the reasons stated by Mr. Gordon. We never before heard of the exhaust steam from an engine collecting condensing water is to be had? There are not a few
districts in which the cost of water would be greater than districts in which the cost of water would be greater than
that of coal. If it be, indeed, true that electric light engines that of coal. If it be, indeed, true that electric light engines to an already over-burthened system.
If Mr. Gordon spoke as an engineer of experience, he would say that to work such a plant as he speaks of econo-
mically, he ought, as far as possible, to work it conmically, he ought, as far as possible, to work it con-
tinuously. With two dynamos and engines-that is to tinuously. With two dynamos and engines-that is to costly leads-he would get a much better in the sense of a safer result by supplementing his dynamos with
secondary batteries. But Mr. Gordon's machine gives an secondary batteries. But Mr. Gordon's machine gives an batteries, and, in the course of the discussion which
followed the reading of his paper, he said:- "Storage followed the reading of his paper, he said:-"Storage was not analogous to pumping gas into gas reservoirs. analogy to storing energy was winding up a spring or pumping up water to a high cistern. Suppose you had a steam engine which worked a quantity of machinery in a large factory, what would be thought if some one came to you and said if your engine broke down the shop must stop, so you must have storage; and told you to take off the belt, use the engine to pump water into a high reser-
voir, and let the water run down again, and turn a turbine, voir, and let the water run down again, and turn a turbine down? They would not think much of the practical nature of such advice; and if he added, you must pump it
into a cistern which leaks very badly, they would think into a cistern whim."
This is scarcely a fair picture; but even as it is we are content to say that the advice given would be good.
Under certain circumstances it would be advisable to pump water even into a leaky cistern. Let us ask Mr rordon what he would think of a gas company which had but two enormous retorts to supply 10,000 lamps and pro-
vided no gas-holder? He would say the manager of such vided no gas-holder? He would say the manager of such contingencies. We see a strict analogy between Mr contingencies. We see a strict analogy between Mr force energy into storage batteries during the day, he can
depend on a moderate amount of plant to keep his light going at night. It is possible that until the storage battery is used freely there will be no electric lighting done worth talking about. But it may be argued with much force that there is yet no storage battery available
So much the worse for the electric light. We are quite willing to concede that a battery of uncertain durability which costs $£ 300$ and lights twenty-five incandescent lamps to 16 -candle power for a few hours, will not help elec tricians much, but such a battery certainly does not
represent finality in this direction. However, if it did
Hole represent finality in this direction. However, if it did,
Mr . Gordon's solution of the whole difficulty is not the true one. We prefer Mr. Crompton's plan of using a comparatively large number of engines and dynamos, and so subdividing the

the engineering exhibition

Yesterday the Engineering Exhibition in the Agricultural Hall, Islington, set on foot by Mr. Barnett, was opened to the public. On Wednesday afternoon there
was a private view for members of the press and a few was a private view for members of the press and a few
specially invited visitors. It will, of course, be remembered that Mr. Barnett last year organised an exhibition largely devoted to marine engineering, which was eminently successful, especially from the exhibitors' point
of sight, and we see no reason to doubt that the present of sight, and we see no reason to doubt that the present
exhibition will be equally satisfactory. Mr. Barnett has exhibition will be equally satisfactory. Mr. Barnett has siderable change of programme; and those who visit the Agricultural Hall during the next ten days will find much that they have not seen before. We regard with some
regret, however, the absence of all the models of naval regret, however, the absence of all the models of naval
architecture which last year proved so attractive. It is true that room could not be found for them in the main
body of the hall, but space was available for them in the body of the hall, but space was available for them in the
galleries. It is possible, however, that considering the galleries. It is possible, however, that considering the
existence of the Fisheries Exhibition, Mr. Barnett has acted wis
The contents of the Agricultural Hall are, in a ver
strict sense of the word, engineering in their character
There is a good collection of machine tools, althoug nothing with the exception of a hydraulic rivetter, and one or two smaller exhibits, can be regarded as strictly contents of the building, and it must suffice to say that Mr. Barnett, aided by Mr. D. K. Clark, Mr. D'Alton, and the other members of a competent and ample staff, seem to have left nothing undone to satisfy both exhibitors and the public. Nothing is more appreciated by both than an honest determination on the part of the organisers of exhibitions of this kind to do full justice to them; and the experience obtained of Mr. Barnett's management during his last year's exhibition has evidently been satisfactory. If it was not, certainly exhibitors would not have done as they have done this year. The character of the exhibits is, upon the whole, of the most superior description. Thus, the exhibit of Sir Joseph Whitworth and Co. is, in itself, worth a journey to see; indeed, few more splendid displays of steel work have ever been got together than this. The exhibit of the Leeds Forge Company is another wonder in its way, and it may be taken as
an evidence of the appreciation of the firm for Mr an evidence of the appreciation of the firm for Mr.
Barnet's exhibition that the cost of this exhibit will, we have reason to believe, exceed $£ 1000$.
That exhibitions as a whole have done this country harm is an opinion entertained by many engineers and manufacturers who ought to be competent to speak with accuracy on this point. They hold that the International Exhibition of 1851 taught foreigners a great deal too much. It is, however, too late in the day to deal with this question now. Even if those who condemn exhibitions are right, the mischief has been done, and nothing we can show now will teach the intelligent foreigner much that he does not already know or cannot easily learn. It remains to us to make our exhibits invariably of such a class that the national reputation may be kept up. In many respects both English design and English workmanship are
still greatly in advance of anything produced abroad; still greatly in advance of anything produced abroad; andines. It is unfortunately true that indifferent exhibits may do much to lower the tone of an exhibition and to may do much to lower the tone of an exhibition and to that there is nothing bad in design, material, or workmanship to be found in the Agricultural Hall ; that would be to assert too much. But we can safely say that there is that the exhibition of last year, followed by its copy on the Tyne, gave a high character to these undertakigs, and it yne, gave a high character to these undertakings, and it pete with such firms is the greatest represented at the Agricultural Hall this year in greatest represented at the andicuitural Hall this year in excellence of design, material, and workmanship may appear a serious undertaking ; but acts as a stimulus, and promotes the production of good work. It will not do to be beaten; and it is fully understood that as much merit may be found in a little launch engine as in a huge steel forging by Whitworth or Krupp, only the merit is of a different kind. Let it be felt that an Exhibition is really to contain first-class exhibits sent by firms of world-wide reputation, and the tone of the undertaking becomes elevated. None but those who know that they will not disgrace themselves will show at all, and each exhibitor will do his best to make or maintain his reputation. For this reason Mr. Barnett is to be congratulated nd presence of much that is to be foun no doubt that he will find year by year that the exhibits grow in importance and value.
One of the most attractive points about the present great variety of the outside public is concerned, is the ame things produced and reproduced over and over again with small modifications. On the contrary, almost the whole range of mechanical engineering is fully repre ented-from a locomotive to a gland packing, from a steam pump to the latest novelty in lubricators, everything wil be found; and those interested in engineering, even emotely, who cannot succeed in spending pleasant hour
in the Agricultural Hall must, we think, be hard to please The organisation of the place is as nearly as possible perfect in every respect, and this is a most important point think, make a mistake.

basic steel at amsterdam.

England, France, Germany, Austria, and Belgium have all alike contributed specimens of basic steel to the Amsterdam Exhibition. The specimens have been got together by Messrs, testify to a capability by this metal which, viewed in the light o The British specimens from the Patent Shaft and Axle-tree Company's Works, at Wednesbury, are designed to show the applicability of the steel to locomotive tubes, tin-plates, Galloway tubes, and rivets. France contributes striking illustration of the ductility and the malleabity of the metal. The specimens of
plates from the Creusot Works have borne the severest punishment including the flanging 6 in . by $6 \frac{1}{2} \mathrm{in}$. deep of a central hole, and the edges of a plate 59 in . thick, and 165 lb . in weight; and beaten out, the unflanged portion into a stride or A-shape, while the flange bility of the angle iron appears in the sample bent hot into an S -shape, the upper possessing a smaller radius than the lower curve. The quality of the rails, made also by Messrs. Schneider, 110 lb . The handling of the basic plant by the Hoerde Hutten 110 lb . The handling of the basic plant by the Hoerde Hutte
Verein, Germany, is shown mainly in a large collection of rail sections, tram rails, and sleepers, together with some plates Similar sections come from the Teplitzer Walzwerk, of Teplitz which the The tenacity of the steel comes out in the manner in ing. Demonstrative of the different degrees of hardness which the metal can be made to acquire is the circumstance that the carbon in the rails is 0.35 per cent., and that in the rolled
sleepers 0.08 per cent. Test pieces made from the sleeper material a tensile strength of from 25.4 to 27.6 tons per per square inch
arengation of between 29 and 33 per cent., and a contraction of
area of between 53 and 63 per cent. Tubes flanged and bent close, cold, yet without sign of fracture, are the contribution from a second Austrian steel works, the Witkowitzer Bergbau The Belgian contribution finest to the ordinary thick
Renory, Ougrée. The conten to 0.15 per cent.

PRICE AND PROFIT ON GAS.
A statement of the price of gas over a period of twenty-six years, and of the profit on its production over the bulk of that time, has been compiled at Middlesbrough. In the year thousand cubic feet; in 1860 it was reduced to 5 s , ; and successive reductions brought it down to 3s. a little more than ten year ago. After being stationary for a year or two it was raised in
the period of the coal famine to 3 s . 5d., but successive reduc tions brought it down to 2 s , 6 d . last year, and this year ther has been the further reduction to 2s. 3d., whilst that absurdity meter rent, has been discontinued. A neighbouring boroug has cheaper gas even than this, but it cannot be said that gas in the north Yorkshire town named has been dear for a considerabl period; and it is interesting to notice that there has been a con tinuous growth in the consumption and a continuous enlarge ment of the profits. Very naturally there has been an in-
crease of the capital invested in the manufacture, and the crease of the capital invested in the manufacture, and the
interest paid, and the redemption money are greater. But interest paid, and the redemption money are greater. But
despite that the profit after paying these-the profit that despite that the profit after paying these-the profit that Corporation of the town-that profit has been increased from of the in the year 1867 to $£ 4536$ for the last year. The statistic but for the year ending in, but not with 1880, the gas made was 147 millions of cubic feet. In the following year it rose 12 millions of feet, and in the last year reported on there was a still larger increase that brought up the total make for the year to 178 millions. A table is given of the cost of the manufacture but as this is for a very limited period, it may be sufficient to 2 s . 3 d and that bye-products sold realised over $1 \mathrm{~s}, 4 \mathrm{~d}$, m 2s. 3d., and cost of the gas was below 1 s ., and there was the the substantial balance to pay interest from. It is evident tha gas at a low rate is the most profitable to the maker, and that large as has been the consumption, there is a still larger area of supply that may be entered with cheaper gas.

BOOKS RECEIVED.

A Chronological History of the Origin and Development of Steam
Navigation. By George H. Preble, Rear Admiral U.S.N. Philadelphia: Hamersly and Co. London : Trübner and Co. and Motion. By Walter R. Browne, M.A. London: Charles Die Kriegsschiffibauten, 1881-82. Zusammengestellt von J. F. von Kronenfels, K. K. Hauptmann, D.R. Das Schwimmende
Flottenmaterial der Seemächt. Erster ergänzungsband. Wien. PestLeipzig: A. Hartleben, 1883.
Practical Treatise on the Strength of Materials. By Thomas Box. London: E. and F. N. Spon, 1883 . The Young Man's Assistant to Cotton Spinning, Revised and
Enlarged. By A. Prestwich. London and Manchester: John Enlarged. By A. Prestwich. London and Manchester: John
Heywood, 1883.
Society of Engineers: Transactions for 1882. London: E, and D. Spon, 1883 ,
Duncal. for British and Foreign Tramcar Companies,
1883. London: Effingham, Wilson, and Co., 1883 , 1883. London: Effingham, Wilson, and Co., 1883.
Elementary Applied Mechanics. Part II. By Thos. Alexander, C.E., and A. W. Watson, D.E. London: Macmillan and Co., 1883 ,
The New Principles of Natural Philosophy. By W. L. Gordon, Lathe Work: A Practical Treatise on the Tools, Appliances, and
Processes employed in the Art of Turning. By Paul N. The North-East Ports and the Bristol Channel. By W. Clark Russell. Neweastle: Andrew Reid.
The Theories and Practice of Centrifugal Ventilating Machines.
By Daniel Murgue. Translated by A. L. Stevenson. London: By Daniel Murgue.
E. and F. N. Spon, 188
E. and F. N. Spon, 1883.
Life of Sir William E. Logan, Kt., LL.D., F.R.S. Compiled by
Bernard J. Harrington, B.A., P.R.D.

WILLIAM SPOTTISWOODE.

Yesterday the remains of the President of the Royal Society were laid in Westminster Abbey, near the burial place of one of his ancestors, J

who died in 1639 . His extraordina

His extraordinary private worth is known only to the few; the industry and self-denial of his early days, his fidelity to friends, ledge and to duty.
Mr. Spottiswoode was born in 1825, and was the descendant Queen's printing-office, to yis father was the head of the and it became under his direction one of the best-managed establishments of the kind in existence. After spending some time at a school kept by Mr. Buckland-brother of Dean Buck-
land-he went to Eton. Here, however, he stayed but a short land-he went to Eton. Here, however, he stayed but a short
time; he and his brother attempted some chemical experi-ments-in which detonation played a prominent part-at a time hen science had no place appears, however, was attached to the brothers, who were trans-
ferred to Harrow. Thence he went to Balliol, and in 1845 he took a first-class in Mathematics, and in 1847 he took the Senior University Mathematical Scholarship. Although on quitting college he entered upon the active management of the business of the Queen's printers, resigned to him by his father, he still
ectured at Balliol, and jater on was appointed examiner in the Mathematical schools
But Mr. Spottiswoode was almost as accomplished as a linguist a mathematician, and so good an Oriental scholar that he was
urged to undertake an edition of a great work on Indian astrourged to undertake an edition of a great work on Indian astroAsiatic Society. In 1856 he visited Eastern Russia, and the first book by which he became generally known was his "Tarantass Journey through Eastern Russia," a work so full of observation, and written in such a vivacious and graphic style, that its readers
might well have hoped for a succession of such volumes from the ame pen.
His earliest scientific work consisted of five quarto pamphlets,
published in 1847, under the title of " Meditations published in 1847, under the title of "Meditationes Analyticæ," and since this date scarcely a year has passed without a co which he was interested. Many appeal only to specialists, and
purely physical work, fellow students, both in this country and abroad, admit that he showed an intellect, not only of the highest training, but of rare clearness, penetration, and even originality. and this fae has been termed the incarnation of symmetry, matis feature of his mind comes out, not only in his mathenected with polarised light, and certain forms of electrical nected with polarised light, and certain forms of electrical the great bulk of Spottiswoode's researches was given to the scientific world through the medium of the Royal Society and such journals as the "Philosophical Magazine," his many-sidedness find him reading a other channels of publication. Thus, we "Typical Mountain Ranges, an application of the Calculus Probabilities to Physical Geography," to the Musical Society a lecture on "Beats and Combination Tones," and to the Astronomical Society one on "A Method of Determining Longitude" In 1871 he became treasurer of the Royal Society, of which he had been at the date of his death-from Roman fever-president for four years. To be president of the Royal Society is much, but, great as the honour of that presidency is, probably few to whom the honour has fallen have shown so full and wide a capaHe knew the He knew and appreciated the ways and cities of many people, his nativade; he had been polished by use; he was, above all things, courtesy had been polished relied use; he was, above all things, a man to be believer in religion, and his name is not one which will be lightly weighed in the conflict which it is sometimes attempted to set up between the two. He was tolerant, but he was not tolerant to that point which reaches intolerance. As to his personal relations this is not the place to dwell upon them. But it would be equally out of place to make no mention of the fine and unfailing courtesy and kindness, the sincere and complete unselfishness which endeared him to people of all ages who came in any
way under his influence.

SIR EDWARD SABINE

The death last week, at Richmond, of General Sir Edward Sabine, ex-President of the Royal Society, at an age which only lacks five years of a century, carries us back to a time which, He was, we find to our surprise, some sixty years ago working in the company of such men as Wollaston, John Dalton, Peter Barlow, Pond, the Astronomer Royal, Mr. Airy, and Mr. Owen, while the activity of his life was maintained to make him a contemporary of such men as Spottiswoode, Cayley, Huxley, Tyndall, and others. He was born in Dublin, October 14th, 1788; his family is stated to have come originally from Italy, at the Royal Military Colleges of Narmandy. He was trained obtained hiscommission in1803, and raceived and Woolwich, and Much active service he does not appear to have seen y event in his military career being in connection with the cam paign against the United States-1813-16-when, in 1814, he commanded the batteries at the siege of Fort Erie. He was later on, about half a century ago-1830-on duty in Ireland during the disturbances of that time. He became Lieut.Colonel in 1841, Lieut.-General in 1859, and he retired with the rank of General in 1874. Very early in his life he took the greatest interest in physical science, especially in the subject of Transactions" of the and a reference to the "Philosophical he pursued this branch of experimental show how indefatigably rest of his life. During the American Campaign he distinguished himself by exceeding his orders; but the offence was forgiven through the brilliancy of the result which attended it. The war concluded, he was appointed astronomer in Ross's Arctic Expedition in 1818, and accompanied Parry's Expedition in 1819-20 in the same capacity. For the next few years he was employed by the Government to make pendulum experiments near the equator and in the north, and he published the results in 1824. In 1825 of a joint commission betw John Herschel the British members ments, to determine the precise differench and English Governthe observatories of Paris and Greenwich, by means of rocket signals; and in 1827 he was engaged in determining by direct observation the difference in the lengths of the seconds pendulum at Paris and at Greenwich, and of the magnetic force of the earth at those two stations. For many years after this, to verify his theories and complete his knowledge he carried on experiments in magnetism, and with the pendulum in different latitudes in all parts of the globe, from the equator to the Arctic Circle, and regular reports were and 1837 he presented to the British Association. In 1836 magnetic survey of the British Islands, and a report of the the a tions of the magnetic force in different parts of the the varia in 1840 he still deals with the great subject of terrestrial magnetism, and thirty-two years later be was working in the same direction, and in 1872 we find him bringing before the Royal Society his thirteenth contribution on the subject of terrestrial magnetism. It is not probable that Sabine had no distinct idea of simply benefitting navigation by his researches, mmeasurably good and satisfactory as such an idea would have been, but or pursuing science for its own sake, for the mere desire of adding to a correct knowledge of the multifarious A result of his wordt
James Ross, in command of the Erebus and Tespatch of Captain energetic survey of the Antarctic res. and terror, to make an observatories were established at St. Helena, the Cape and Van Diemen's Land. The reports were sent home and the results were reduced and published; and among other relations which Sabine did much to establish, were those between certain magnetic phenomena and sunspots, and the influence of the magnetic action. of the sun and moon upon the earth. Nor must we forget别 prent conception of the exact gure of the earth.
Sabine was elected to the Royal Society so long ago as 1818 , Benjamin Brodie in the presidens and succeeded the late Sir for several years, and so late as 1870 presided at held the post versazione. In 1879 he lost the accomplished and congenial wife whom he had married upwards of half-a-century before She it號 849-58
He was made K.C.B. in 1869, had the Prussian order pour te merite, the Italiau of Sts. Mauria and Lazaro, and the Brazilian had been elected had received the Copley and Royal medals, and academies and societies of Europember of many of the principal Sabine will ever hold a high place and Amnica. The name of Nabine will ever hold a high place in the annals of science and the
history of parigation.

TRIAL OF A SINGLE CRANK THRASHING MACHINE.
A year ago, at Reading, the judges found themselves constrained to depart a little, only a little, from the no trial policy of the council of the Royal Agricultural Society. Ahich the riddles mas exhibited by Messrs. Nalder, in and the shater boxes used as connecting rods thes saving bearings and presumably power. There was obviously sufficient novelty and promise in the arrangement to make it impossible to pass the machine over, and the judges awarded the makers a silver medal. But before or after this was done, a little farce in the way of a trial was

MANTLE'S SINGLE CRANK THRASHING MACHINE.-Figs. I and 2.
played. Some straw was procured, and some corn and grass seeds. The machine was started, and the already the corn-barley or wheat-and the grass seed ; thus constructing a sort of synthetic puzzle grass seed; thus conpowers of the machine were puzzle on which the analytic The three ingredients seem to have gone through the machine with sufficient celerity to show that they had done it before, and to have separated with enough distinctness to indicate proficiency in that also ; at any rate, the judges were satisfied that these things would all go through the machine, and they were able to award the silver medal to Messrs, Nalder without any of the uncomfortable excitement of a competitive trial. The simplicity of the test was its leading leature. It is quite unnecessary to insist plicated superfluous superfluous refinements as quantity, time, and power,
amongt all those used in agriculture, is a long time, and if no improvement has been made it is desirable to know even that. Thrashing machines do not pay to make so. Yet they true, because all or nearly all the makers say much simpler are afraid to attempt the production of a make. Thrashing with, and so long as trade is fairly good, a manufacturer will not risk the outlay almost always incident upon the construction of a thrasher new in general arrangement in whole or in part. It is hardly possible to predict what will be the result of any material modification; a satisfactory result can only be obtained by experiment; it cannot, as in steam engine work, be calculated upon. It is therefore excusable on the part of thrasher makers that so long as no special inducement exists, and trade remains good, they should prefer to move exactly upon the lines of the machines they have proved to work well. This, hows
were imported into the discussion of the trials as elements affording comparative indications of the value of the severa machines. These with different machines in 1875 . As no real tests have been made for 80 many we readily we readily agreed to be present at the trial of a machine which was recently made in a small pllace instrated Denmark, with the machine which we 20th and described in our impression of the by Mr. A. W 1882, as designed and constructed by Mr. A. W. Mantle, an English resident in EckernFrom the year 1875 to the year 1883, without of a class of machine which takes a prominent place

ever, is of course not the view of the Royal Agricultural Society, the object of which is to encourage improvements which will effect economy in labour and power. We may, perhaps, therefore expect that a gold medal will soon be
offered by the Society for the best new thrashing machine offered by the Society for the best new thrashing machine
which will give a good sample and good quantity, without thie present size and weight, and without the expenditure of the enormous amount of power at present required, compared with the power actually employed in the thash-
ing itself. At Cardiff-there are no official trials to refer to since 1875 -the easiest running machine took 52 per cent. of the power required to drive it when thrashing to run it empty, while the several machines tried took from run it empty, while the several machines tried took from
52 to 77 per cent.; or, in other words, the thrashing machine does a smaller amount of actual work per unit of work done upon it than almost any other sort of machine. It has been estimated that 40 per cent. of the whole power required is absorbed by the drum, the shakers, caving required is absorbed dressing shoe taking another 40 per cent., leaving 20 p
The machine we illustrate now was recently tried on the farm of Herr Hermann Beek, Hoffnungsthal, near Eckern förde, in that part of Denmark which is now Prussian, The trial was made with barley, which, though stacked in one of the monster barns common in these parts, was coagh, The machine is fitted with a drum 5 ft . in length and 21 in in diameter, and as will be seen from the sectional elevation which we reproduce for convenience of reference, the shaker consists simply of a large open sieve rigidly connected to the caving riddle and jog board leading the grain to the dressing shoe, which is also connected to riddle and shaker, the whole being worked by one crank. The second dressing shoe shown in section in both longitudinal and transverse sections, Figs. 1 and 2, is worked from the same crank shaft, and though not of the same weight as the shakers, riddle, and dressing shoe, has been made with cast iron sides with the object of giving it approximately the same weight, as will be seen from the figures given below; so that the two sets of parts may neutralise the effect which their reciprocation would otherwise have on the steadiness of the machine, though, of course, one set moves in the opposite direction to the other on either stroke. The shakers and attached parts weigh 724 lb ., and the second dressing apparatus 721 lb . The whole
weighs about 3 tons 10 cwt ., made up as follows:-

Equal to 7190 lb ., or 3 tons 10 owt. 2 qrs. 171 b . ${ }^{7190}$ The drum weighs 385 lb , and the concave 310 lb . The shaker is 9 ft . in length and the width of the machine,
namely, 5 ft , giving an area of 45 square feet, the stroke namely, 5ft., giving an area of 45 square feet, the stroke of the crank that drives it being 3in. It consists of a light frame, with thin hoop iron dropped into saw cuts, to form
one large grid, instead of the several parts having separate one large grid, instead of the several parts having separate
movements, as in machines as generally made. The riddles move 6 ft . by 4 ft . 7in., the effective area being 27.5 square feet, the holes being cylindrical and normal to the surface, and the wood not grooved. In the lower shoe the chaff sieve is 3 ft . 4 in . by 1 ft .7 in ., giving an area of 5.27 square feet, the stroke being the same as the riddles and shaker; the lower sieves are $1 \mathrm{ft}$.3.5 inn . by $3 \mathrm{ft}$. . 4in., the area being 4.3 square feet. The two sieves in the upper part of the
second dressing shoe are 24 in . by 21 in. within the frames having an effective area each of 3.5 square feet. The long finishing sieve L, which delivers into the separate spout bins, takes the place of the more generally used rotary screen, and has an effective length of 42in, and width of 2 lin., or an area of $6 \cdot 125$ square feet.
Having these leading dimensions we may compare the different parts, in respect of area, developed area, and velocities, with those of the machines of our well-known makers. The drum spindle is fitted with a 7 in . pulley, and during the short trial we recently made was driven by a nominal 6-horse portable engine by Messrs. Marshall, Sons, and Co., fitted with a 5 ft. fly-wheel. It is fitted with adjustable governor connections, so that the speed can be
altered by throttling the steam at a higher or lower speed. altered by throttling the steam at a higher or lower speed.
When thrashing it was set so as to When thrashing it was set so as to run at 115 revolutions per minute giving a drum speed of 985 revolutions per
minute, and a drum surface velocity of 5417 ft . per minute. minute, and a drum surface velocity of 5417ft. per minute.
Following the data and the method of comparison given in Following the data and the method of comparison given in
a paper read before the Institution of Mechanical Engia paper read before the Institution of Mechanical Engi-
neers in April, 1881, this circumferential velocity is found neers in April, 1881, this circumferential velocity is found
to be less than the mean of the speeds adopted by eleven to be less than the mean of the speeds adopted by eleven
makers, in the proportion of 5417 to 5998 , though one of makers, in the proportion of 5417 to 5998, though one of
the makers referred to in the above-mentioned paper adopt the makers referred to in the above-mentioned paper adopt
5471 as the speed. The developed drum surface-that is 5471 as the speed. The developed drum surface-that is
to say, the product of the circumference of the drum by its length and by its circumferential velocity, is $27,087 \mathrm{ft}$., which is only a little in excess of the mean of the same
value for $4 \mathrm{ft}$. . 6 in . English machines above referred to, which is $26,917 \mathrm{ft}$. This value is a more complete indication of the thrashing capacity of the machine than simply the drum velocity. The area, developed area, and velocities of the other parts of the machine, which have to deal with it in order to obtain a systematic relation between the it in order to obtain a systematic relation between the
whole of the parts,
As already stated, the shaker is one large open grid, and
As already stated, the shaker is one large open grid, and is not composed of several distinct sections having rela-
tive motions. It is therefore not easy to compare this with machines fitted with box shakers. It would seem, however, that the velocity or feet moved through per minute by this shaker should at least equal that of the separate unit of time by the English shaker is greater than is neeges-
sary, which is not likely to be the case. The speed adopted by Mr. Mantle is, however, less than that in the English hakers in the proportion of 117 ft . per minute to 127 ft , which is the average of ten machines. The effectiveness
of the shaking will, however, depend on the number of of the shaking will, however, depend on the number of
hakes given to the straw per unit of time, or in other words, upon the number of strokes per minute; and this, in Mr. Mantle's machine, is 468, as compared with 346 in the English machine, the stroke being only 3in., as compared with a mean stroke of $4 \cdot 4 \mathrm{in}$. With shakers, then, it is a question whether the speed in feet per minute should be taken as the basis of calculation and comparison, or the number of strokes per unit of time; but if we take the ormer, and refer it to the drum velocity, namely, 5417 ft . per minute, we find that the reciprocal of the relation between the velocities is $\frac{117}{5417}=0.0213$, which is rather higher than the reciprocal or coefficient of shaker speed given in the above-mentioned paper, which is 0.02125 , the average English drum velocity being the higher, as already mentioned. The area of the shaker is $9 \times 5=45 \mathrm{ft}$., and $45 \times 117=5265 \mathrm{ft}$. of developed surface, or an area per square foot of developed drum surface of $\frac{5265}{27,087}=0.194 \mathrm{ft}$. There can be little doubt, however, that with a shaker the number of reciprocations per unit of time is as useful a guide as the velocity in feet per minute or the developed area, but it obviously cannot be used alone. With a given velocity in feet per minute the larger number of short strokes will be more effective than the smaller number of long strokes. It is therefore necessary to fix first upon the
actual area of the shaking surface, and this expressed in terms of the developed drum surface $=\frac{45}{27,087}=0.00166$. For the purpose of comparison we may apply this to the average English machine with the developed drum surface as above given, namely, 26,917ft., and we get as the necessary shaker area for the same sort of shaker $26,917 \times$ $0.00166=44.68$ ft. Taking the English drum velocity we get $5998 \times 0213=127.75 \mathrm{ftt}$ as the speed per minute for
his shaker, and if a stroke of but 3 in. is used we have $127.75 \times 25=219$ strokes per minute, or 438 revolutions per minute for the crank.
The riddle capacity of the machine we are dealing with is larger than is usual in our machines. The actual surface is 27.5 square feet, as against the English mean of 21.85 ft . The riddle speed in feet per minute, namely, stroke \times strokes, is greater in the proportion of 117 to 114.5 ft . per minute, the developed surface or actual surface \times speed is also greater in the proportion of
This developed surface, compared with the developed drum surface is $\frac{3217 \cdot 5}{27,087}=0 \cdot 1187$ as the ratio of riddling to thrashing surface, while the actual surface of the riddle
per foot of developed drum surface or coefficient of riddle area is $\frac{27.5}{27,087}=0.001014$, both these coefficients being higher than English practice demands. Taking Mr. Mantle's developed drum surface and the coerricien the riddle area would for his machine be $27,087 \times 0.000802=$ $21 \cdot 7$ square feet instead of 27.5 which he has given it.
Following this comparison we find that the sieves in the first or lower dressing shoe have an area which is considerproportion of 4.32 in English 4ft. 6 in . machines Thei developed area is also smaller in the proportion of 505% to 722.5 ft , and consequently the efficiency would appear likely to be much less; but the velocity of the sieves in feet per minute is higher in the proportion of 117 to $115 \cdot 7$, maker. In the second dressing shoe Mr. Mantle's areas and velocities are more nearly those usually adopted by English makers ; but the speed in feet per minute is higher in the terms of the developed drum surface is less in the proportion of 0.000129 to 0.0001065 , the developed area in terms of the developed drum surface being also greater in
the proportion 0.0151 to 0.01063 . The velocity of the sieves in terms of the drum velocity is 0.0213 , that of the English machines being 0.0166.
The chaff sieve in the upper part of the lower dressing shoe has a slightly higher speed than in English machines,
the number of strokes per minute, and not the length of the number of strokes per minute, and not the length of
stroke, being greater. The area is about the same as in stroke, being greater. The area is about the same as in
English 5 ft . machines. It is, perhaps, unnecessary to English 5ft. machines. It is, perhaps, unnecessary to
follow the comparison further, and we may now turn to follow the comparison further, and we may now to
the few figures obtained at the trial run referred to.
The portable engine was made by Messrs. Marshall, Sons and Co. in 1879. It has a cylinder 8.5 in . diameter and 12in, stroke. The fly-wheel is 5 ft in diameter, driving by a cotton belt 5 in. wide on a drum pulley 7 in. diameter The power consumed was taken by means of indicator
diagrams, and as it took the German workmen as long to diagrams, and as it took the German workmen as long to
rig up tackle for this purpose as it would ordinary mechanics at home to prepare the same tackle for at least three engines, the indicator was attached by means of pipe and socket screwed alternately into one and the othe end of the cylinder. The difference between the diagram from the two ends of the cylinder remained, howeve tolerably constant, so that the diagrams will give fairl accurate indicated power.
Diagrams were first taken from the back end of the cylinder, with the drum only running, and of these diagrams A is a sample. This gives a mean pressure
15.9 lb ., and, assuming the same mean for the front end 159 lo., and, assuming the same mean for the ront end the cylinder, 628 indicated horse-power. The diagram B
was taken immediatelv afterwards, with the drum, shaker was riddle, but not t^{1}. .in or cevator running, and indiand ridae, but nott Ar or c. fator running, and indi-
cates 7.23 indicate ho.s-peres. Diagram C is taken from cate same end of the cyiinder, with the whole of the parts of the machine ruuning empty, and indicates 8.46 horsepower. The diagrams from the front end of the cylinders, however, all show a lesser mean pressure in the average ratio of 110 to 100 . We have thus as the indicated horsepowfer required to run drum only, 6.90 ; indicated power
to run drum, shaker, and riddle, 7.95 ; indicated power to run whole machine, $9 \cdot 30$.
After taking these, a preliminary run with the barley referred to was made, and after a little more than two hours the machine was stopped to make some adjustments which were found to ve necessary, as this was the first run with this machine, though one of the same kind had done a large quantity of work on the same and other farms, In the new machine a few alterations had been made which were not found advantageous. For instance, five strips of the form here shown had been fixed from end to

end of the shaker, but it was found that these rather retarded than helped the straw off. The delivery boare into the lower sieve had also to be carried well over the first sieve, as shown, instead of only about 4in., as it was and a strip had to be placed in front of the second sieve o
the lower shoe to prevent the grain from flying off. The the lower shoe to prevent the grain from flying off. Th
hanging screen over the shaker had also to be weighted to beep it down, so as to stop grain from being thrown ove keep it down, so as to stop grain fom eeing thrown over
by the drum, and the shaker had to be nearly level instead by the drum, and the shaker had to be nearyy level instea of with an upward inclination from
this broken run, however, 1000 kilogrammes of barley were thrashed, yielding 350 kilogrammes of corn, giving th thrashed, yielding 350 kilogrammes of corn, giving the
weight of straw and cavings to barley 1 to 1.857 . On the next day the shaker delivered more freely, and very little next day the shaker der by it, and none by the drum. The grain was thrown over by it, and none by the shoe was ver little, but at the high speed at which the crank is driven, it appeared that a wider sieve would be desirable. The thrash ing was clean as on the previous day, and the blast elevato idi not break any noticeable quantity of grain; but the corn was not thoroughly dry, that is to say, the straw was not crisp, but, more especially as the pile was worked into, it was rather tough, indicating a certain amount of damp ness. The separations by the sieve L below the second dressing shoe, Fig. 2, were not quite so good as could be desired, but the sieves were only made of perforated zinc instead of wire as is intended, which will no doubt improve the sample. During 1 hour 20 minutes, 20 centner or 2200 lb . of grain were delivered into the sacks, and taking the same relative weights of grain and of corn, or grain with straw, as given above, the quantity thrashed
would be $2200+(2200 \times 1.875)=6325 \mathrm{lb}$., or $2 \cdot 82$ tons

thrashed in 1 hour 20 minutes, or nearly 28 minutes per ton. The feeding, however, was very inefficient and difficult, for the corn was mostly rough stacked and tangled, Part of the time about and the weather was very hot. fed, and during this time the diagram E , amongst others, was taken from the back end of the cylinder, and this one, worked with one taken when the men were feeding, and ne tare afterwards, gave a mean of 10.38 indicated horse-power.
During a run of ten minutes, when one of Mr. Mantle's workmen fed as fast as he could, or as the tangled state of
nuch of the straw would admit, 356 lb . of barley were

A.DRUM ONL
REVS
M.PRES 15
IS.

REVS IF.9
M.PRES I5.9
BACK END
:
B
DRUM SHAKERS
AND RHODLE
R
$\underset{\substack{\text { REVS } \\ \text { R.RES } \\ \text { BACKEND }}}{ }$
delivered into the sacks, or 3 cwt .0 qr .20 lb . This is equivalent to about 1017 lb . of corn in sheaf. During this time the indicated horse-power, as shown by diagrams E mean of 10.52 indicated horse-power. Deducting oneseventh as the difference between dynamometer and indicated power, we get an average of 9 -horse power. This result may be taken as comparing well with those obtained was thard, when three-quarters of a ton of bariey in sheaf 7.42 to 9.47 brake, not indicated, horse-power.

From the figures we have given it will be seen that the power required to drive the machine empty bears about
the same relation to that required to work it full as did
SALFORD SEWAGE WORKS—LIME-MIXING MACHINERY

the mean of those at Cardiff, which ranged from 52 to 77 per cent. The main reciprocating parts are, however without doubt, heavier than is necessary, and with little trouble the weight of the combined shaker, jogboard, riddle and first dressing shoe may be lightened, so that wood instead of cast iron dressing shoe sides may be employed.
Taking 10.4 as the indicated horse-power expended during the ten minutes' hard run above referred to we get as the foot-pounds of work done, 3,432,000, or 3430 foot-pounds of work done per lb. of sheaf corn hrashed, and this would probably calto power instead of 3000 foot-pounds if the dynamometer power instead of indicated horse-power were taken. That is to say,
that each pound of sheaf corn would have to be hat each pound of sheaf corn work done on it in hrashing and dressing it. The foot-pounds of work done hrashing and dressing it. The foot-pounds of work done per pound of sheaf corn thrashed at clardir wasers will feel onsiderable doubt in Mr. Mantle's thrasher is the shaker but whatever may be the result of its use on other crops, it certainly showed itself capable of dealing with that certainly showed itself capable of dealing winl that cheaply made than those in general use, and should be much lighter; and without reducing its effective strength Mr. Mantle's machine could be made from 6 to 8 cwt . lighter than the one we have described, and the weight is some indication of the price at which the machine may be made.

SALFORD SEWAGE WORKS.

No. I.

The important borough of Salford, covering an area of 5208 acres, and having a population at the date of the last census of 176,233 , continued up to the year 1862 without the authorities displaying any interest in the ever-important question of drain-
age. In fact the borough being bounded for a considerable part age. In fact the borough being bounded for a considerable part
of its circumference by the river Irwell, there did not appear to be any pressing necessity for expenditure on main drainage
works, whilst there was so convenient a receptacle as the river for works, whilst there was so convenient a receptacle as the river for
the filth of the borough. Twenty years ago, however, Salford, the filth of the borough. T wenty years ago, however, , Saloord,
unlike the other districts adjoining, which up to the present time have done absolutely nothing to divert their liquid refuse from the river, recognised the imperative neecesity of undertaking a work which was ultimately destined to be one of importance, and began the construction of arterial drainage works
of considerable extent. It is true that many of these newly of considerable extent. It is true that many of these newly
constructed mains gravitated towards and discharged into the constructed mains gravitated towards and discharged into the
river, presumably with a view to their being ultimately connected to an outfall sewer to be hereafter constructed along the valley line, and which, would intercept from the river all sewage and
manulacturers' liquid refuse carried by the subordinate drains. Several suggestions regarding the interception of the sewage from the river were made by competent professional men, all the schemes necessarily possessing certain similarity to each other,
and finally Mr. Fowler, the engineer to the Corporation, prepared a scheme which received the approval of the council, and in the year 1873 the first section of the intercepting sewer for this
scheme was commenced. This sewer is a work of considerable magnitude. It has an average diameter at its outlet of 8 ft . 3 in ., and it diminishes in size to the upper end, where the sewer is of egg-shape, having an interior section of 4ft. by 3 ft.
The total length of the sewer constructed, up to the present time is 4 miles 5 furlongs, but as large areas, at present unbuilt upon, come to be occupied by houses, the arterial sewer will no doubt be elongated at its upper extremity. As the outfall drain
advanced towards completion it became necessary to consider in advanced towards completion it became necessary to consider in
what manner the sewage of the borough could be most effectually and economically treated at the outfall, and the Corporation, after very careful consideration, determined, in 1876, to establish works at Mode Wheel, a suburb of Salford, for treating the sewwage, the volume of which wasestimated att twelve million gallons
daily, by precipitation. Plans were accordingly prepared by Mr. daily, by precipitation. Plans were accordingly prepared by Mr .
Fowler, who towards the end of the year 1877, and before the outfall works were commenced, left the service of the Corporation for Newcastle-on-Tyne, and was succeeded by Mr. Arthur Jacob,
at present professional adviser to the Corporation. The works as originally designed were in their main characteristics similar as originally designed were in their main characteristics similar the A B C pracion, for treating the sewage orks as originally designed for the Salford Corporation consisted of a series of twelve tanks, arranged in duplicate in two rows. Into these
tanks it was intended to lift the sewage direct from the intercepting sewer by a pair of centrifugal pumps, the total lift being 14tt. Adjoining the engine house was io have beem erected a building for the reception of the machinery to be employed in
treating the sewage. This machinery was designed to be driven by an engine of 40 -horse power. After passing the precipitating material into the sewage it was arranged that it should flow into the tanks, one series only being used at a time, whilst the reserve
series was being cleansed. Once delivered into the tanke, the sewage was to pass from one tank to another over a series of sills until it should flow out at the further end of the tanks, where a wide cascade or flight of steps was to be provided for the sewage
to flow over, with the object of its being aërated, and from the to flow over, with the object of the being aerated, and from the
foot of the cascade the sewage was to flow into the river Irwell. Before carrying this scheme into effect it was deemed advisable
that the plans should be submitted to the chief engineer to the Local Government Board for his opinion. This gentleman though not speaking in his official capacity, gave a general assent
to the arrangement of the works; but, at the same time, pointed out that it might hereafter be necessary to pass the sewage after undergoing precipitation through filter beds, before allowing it
to enter the river. This suggestion, coming as it did from the to enter the river. This suggestion, coming as it did from the engineer to the central authority, necessarily led to an
alteration in the arrangement of the works, and it was decided in prospect of filtration becoming necessary, to place ground, in order secure full command of the land bordering on the river. The raising of the tanks to a height of 29 ft above the outfall necessarily led to the selection of a different type of engine and pumps, and it was finally decided to
employ a pair of compound vertical engines, driving a pair o double-acting plunger pumps placed vertically under the steam cylinders: These engines, which have been erected by the firm of of August 12 th, 1881 . They are capable of lifting the whole of and rather of twenty-foutr hours.
Certain other changes were made from the original designs.
Instead of making the tanks of earthwork and puddle, with
sloping sides lined with stone pitching on the inside, they have
been constructed of concrete, by which the sides of the tanks are bean constructed of concrece, is, ns a matter of course, erected in the vicinity of the outfall sewer, but the mixing-house is placed close to the end of the
tanks, which have been constructed at a distance of 90 yards from the engine-house. The engineer, finding himself in a position to utilise the fall of the sewage, determined to employ the power at his disposal for driving the mixing machinery, and
so avoided the necessity for a 40 -horse engine originally intended to be provided for that purpose. No material change was made to be provided for that tarkspose. No matrangement of the supply hannels was slightly altered. As a measure of economy a short intercepting sewer, which was not included in the original scheme, was laid, to collect the sewage and storm water from the
high-lying district of Pendleton, which comprises about 1300 high-lying district of Pendleton, which comprises about 1300 acres of land fairly eovered with houses,
ave draned mio cue nuercepung oower.
ave drained into the intercepting sewer.
Reference to the ground plan of the works, shown at page cepting sewer runs along the south part of the land from east to cepting sewer runs along the south part ovel of the river Irwell
west, discharging at about the summer lever upon the sewer, and at a point near the engine-house is constructed a penstock chamber, containing a set of penstocks of somewhat peculiar design, which will be described in a future notice of these works. At all times, except during heavy
rainfall, the penstocks, or at any rate the lower part of them, will be kept closed down, so as to raise the level of the sewage structed close to the side of the engine house. From the sewer leading to the sump," the sewage falls into a square chamber situated between two similar chambers, from which it is cut off
which are lowered by a small winch, and draw off the clarified sewage, leaving the depositio behind, The liquid escapes through
subsoil drains into the river. After the clear water is drawn off subsoil drains into the river. Atter the clear water into the open
men enter the tank and push the semi-fluid mud channels above referred to, and in these channels are provided a number of outlets with water-tight covers. As soon as the covers are lifted up the mud runs out into mud pits, which are
excavated in the vacant land adjoining the tanks. The sewage excavated in the vacant land adjoinitg the fall of 15 ft ., and a pair
in flowing out of the tanks has a vertical of turbines are driven by it which actuate the mixing machinery in the lime-house.
The intercepting sewer for the Pendleton district passes down the road leading to the works, and runs along the north side of the tanks, as shown on the plan, in an open channel constructed of concrete lined with blue Staftordshire bricks. The cost of the works at Mode Wheel has been $£ 101,000$, and that of the inter-
cepting sewer and the subsidiary sewer for the Pendleton district cepting sewer and the subsidiary sewer for he Pendectingencies
£97,000, making a total expenditure, with certain continger $£ 97,000$, making a total expend dure, with the outfall works and
of $£ 200,000$. The subsidiary sewer, with of $\begin{aligned} & \text { of } \\ & \text { buiddings and a considerable length of the main interceptin }\end{aligned}$ sewer, have been carried out for the Corporation by Messrs. S. W. Pilling and Co., contractors, of Manchester, and the mixing machinery has been supplied from the engineer's designs by Messrs. Hamilton, Woods, and Co., of Salford. We purpose
giving a detailed description of the machinery, turbines, \&cc., in giving a detailed
a future notice.

IMPROVED GIFFARD COLD AIR MACHINES. ONE of the earliest makers on a large scale of refrigerating
achines producing cold air for industrial purposes was M . Paul Giffard, of Paris, whose machines were probably in larger use than any others. In Paris and on the
Continent machines under GifContinent machines under Gis. fard's patents are in use at a
great variety of industrial esta-blishments-at chocolate works, breweries, soap works, butter works, and paraftine works. Some use at Menier's celebrated chocolate factory, and a Giffard cold air machine, we understand, is employed for the peculiar pur-
pose of preserving dead bodies at the Paris Morgue.
The English patents have been acquired by the Giffard Patent acquired by the Gin, Lothbury,
Freezing Company,
London, which has conceded the London, which has conceded the sole manufacture of the ma-
chines to the General Engine and chines to the General Engine and
Boiler Company, Hatcham IronBoiler Company, Hatcham Iron-
works, London, where we saw a works, London, where we sum num a recent visit. Amongst the machines then making were two 40,000ft. machines, and two
others of the same size just begun. Two $20,000 \mathrm{ft}$. machines
near nearly ready for delivery, one of which was being tested under steam at the time of our visit.
A 10,00oft. vertical machine for A 10,000ft. vertical machine for Steam Navigation Company, two 5000ft. machines, besides several 1000 ft . and 2000 ft . machines, of which the Giffard
Patent Freezing Company has made nearly a dozen. The General Engine and Boiler Company has considerably im.
proved upon the Giffard patent proved upon the Giffard patent
refrigerator, and we illustrate refrigerator, and we archstra as designed and made by it. Fig. 1 is a vertical machine, which reminds one somewhat of an by penstocks, which can be opened from the ground level by a iron piano, as the air reservoir of the machine stands against a capstan and suitable gearing. Into each of these side chambese entirely in front. The air cylinders are 13in. in diameter, and ment of the engine house, set of pumps passes from the of base cleansed if necessity should arise without the pumping being discontinued. In the suction chambers are fixed floats, which have been devised to control and stop thib en the pumps to sewage descends so
draw air. The floats, which come into action shortly before the mouth of the suction is exposed, act upon a system of horizontal and vertical shafts, which gear one with another until the throttle valve in the engine house is reached, and the supply to the engines is thus kept under control by the floats, By this
simple arrangement the engines may be left unattended simple arrangement the engines may be left unattended without any risk, as the supply of steam is regulated by the supply of
sewase in the suction chambers, but as a matter of practice it sewage in the suction chambers, but as a matter of practice it
would not be convenient or desirable that a pair of engines of would not be convenient or desirable that a pair of engines of
450 -indicated horse-power should be worked in a manner so 450 -indic
irregular.
After passing through the pumps, which are of the simplest construction, with ordinary flap valves, the sewage is delivered at the mixing house, page 15, , where it receives the proportion of lime
necessary for its purification. The two delivery mains, which are each 30in. in diameter, pass underneath the tower and discharge themselves into a pair of cast iron receivers situated in the basement of the tower, and into these receivers cream of lime is discharged as the material at present employed for precipitating the solid matter from the sewage. From the bottom of the receivers, wich are arranged in dupicate, a pair of sen. of the sewase through these mains there is ample time for mixture with the lime solution to take place. The mains terminate at the lime solution to take place. he mains of the tanks in ordinary bell-mouth pipes placed
the head of vertically, out of which the sewtage issues under a head of 6 ft . 9in. in the tower, and falls over a sill into the first tank, and so through the whole series of six tanks until it reaches the mixing house in a clarified condition. The tanks measure in
the aggregate 246 yards in length, and the average width is the aggregate 246 yards in length, and the average width is
65 yards, the total area of water surface being 12,360 square
yards.
The sills of the cross walls are so arranged that each succeedang sill is 6in. lower than the one immediately above it. The volume of the whole series when full is 778,600 cubic feeti The bottom of each taik slopes slightly in a direction contrary to that of the flow of the sewage, and the slope termi
which runs parallel to the cross partition wall.
which runs paralile to the cross partition wall. For the emptying of the tanks differential pipes are provided,
entirely in front. The air cylinders are 13 in. in diameter, and freezing point Fah. A machine of this size is the most suitable for passenger steamers of moderate tonnage ; one is fitted in the pany, where it has given excellent results, it having kept the meat pany, where thas Indianas low as 20 deg. below freezing in the Red
chamber of the Sea, at the same time making five or six 28 lb . blocks of ice per day, the machine being run at only about two-thirds of its capacity Fig. 2 shows a machine made for the Peninsular and Orienta Steam Navigation Company. The air cylinders are 16 in. diameter, and the steam cylinder is 10 in . diameter by 16 in . stroke.
The machine delivers $10,000 \mathrm{ft}$ of air per hour at 120 revolutions The machine delivers $10,000 \mathrm{ft}$ of air per hour at 120 revolutions
the temperature of the air delivered being - 40 deg. Fah. and the temperature of the air delivered being - 40 deg. Fah, and
under. One of these machines is fitted into the s.s. Thames under. One of these machines is fitted into the s.s. Thames
of the Peninsular and Oriental Company. This machine when running at about two-thirds its full speed, and working eight to ten hours a day, keeps the chamber at from 10 deg. to 15 deg . Fah. The Peninsular and Oriental Company prefer having a machine of ample size for the work, and finds it cheaper to employ a large machine that will do its work easily when running twelve hours a day than a smanler maco wo we requires to run twenty or twenty-four hours a,
shall illustrate other machines in another impression.

THe Distrior Vantilators.-In the course of evidence given on Monday in favour of the ventilators on the District Railway, Mr. E A. Cowper said that the system proposed by Sir Joseph Bazalgette- the insertion of pipes in the tunnel, through which the foul air in the
tunnel might be extracted by means of fans-would be extremely tunnel might be extracted by means of fans-would be extremely
dangerous to passing trains, and would not be as efficient as the dangerous to passing trains, and would net an angine of 80 -horse
mode adopted. The fans would require an engion power at each station. They would make a continuous humming power which would be very objectionable to the inhabitants of the
no
housed houses near them, and there would have to be a consumption of
about 1000 tons of coal per annum at each engine. Mr. W. Scott
 surveyor of the parish of st. Pancras, deposed to the non-
objectionable and non-obstructive character of the ventilators in objectionable and Twon- witnesses who had been engaged to watch
the wistonoro of the Westminster Palace Hotel, and of the Oivil
the windows of the windows of the Westminster Palace Hotel, and of the Oivil
Service Stores and Foster's Parcels-office, Queen Viotoria-street which were said to be affected by the fumes of the gave evi
dence denoe establishments during the last few days which were kept
thone open. On Monday morning 14 of the 19 windows of the hotel over
looking the ventilator were open, and 21 out of the 23 at the Civil looking the ventilator were open,
Service Stores were also open.

ASSOCIATION OF MUNICIPAL AND SANITARY ENGINEERS AND SURVEYORS.
THE annual meeting of the members of this Association was held at Oxford on Thursday and Friday last in the Council Chamber of the Corporation. The retiring president, Mr. Charles Jones,
Assoc. Inst. C.E., of Ealing, ococupied the chair at the opening of influential visitors were present, including the Provost of Queen's College, the Rev, Dr. Magrath, who is chairman of t
Local Board, and Lieut.-Cl. onoes, .C.C., of Wrexham.
Mr. Thos. Cole, the secretary of the Association,
Mr. Thos. Cole, the secretary, of the Association, read the that period the Associanion has made increased and successfu progress. "Sixteen members had joined, and nine had died, retired,
or been
writen off There were now five honorary and 210 ordinary members-total, 215 . There was a balance in, hand at
the end of April of $£ 12618 \mathrm{~s}$. 4d. against $£ 106$ 10s. 3 d . last year, nd the statement of assets and liabilities also showed the sound fhe claims of several suitable places, and recommended that New-
 the Association. The President moved, and Mr. Pritchard,
Westminster and $\begin{aligned} & \text { Birmingham, seoonded the adoption of the }\end{aligned}$
report.
Mr . Jerram (Walthamstow) expressed regret that no district
net meting had been held last year in the home counties. Had meet. oouncil should offer some explanation. He also criticised the mod of electing the counci, and argued that the council should no
merely seleot twenty-two names, but that every member of the Association should be eligible.
A discussion ensued, in the course of which it was explained tha the convening of district meetings rested with the district secretary, As to the mode of electing the council, the model of the paren society, the Institute of Civil Engineers, and the Association of submitted to that meeting for altering the present mode of electing the council.
Eventuall
Eventually the report was unanimously adopted. Mr. Walker
The council proposed Mr. Parry (Reading) and (Croydon) as auditors for the ensuing year, but on the suggestion
of Mr. Jerram, Mr. Dawson (Leyton) was substituted for Mr. Walker. Messrs. Walker (Croydon), Holton (Lewes), Goodohild
(Teddington), and Mead (Hornsey), were unanimoussly appointed of president, vice-president, and council.
Mr. Vawser (Manchester) then submitted a proposition for alter-
ing the mode of electing the council. At present the council select twenty-two names for president, vice-president, and council, and for these a ballot is taken, but a member may strike out any names
and substitute others. Mr. Vawser proposed that instead of thi and substitute others. Mr. Yawser proposed that instead of this
a list of all the members should be circulated, with liberty to a list of all the members should be circulated, with liberty to
members to vote for anone they pleased. He contended this
would be more satisfactory, and tend to popularise and extend the Association.
Mr. Jerram seconded the proposition on similar grounds, and
affirmed that it was not right that tie council should practically affrimed that it was not right
blackball anyone they pleased, and select their favourites,
Mr. Adams, Mr. Spencer (Tynemouth), and others supported the proposition. (Hanley), one of the council, admitted that a case
M. Lobley
had been made out for enlarging the area from which the councili is had been mat propect, but pros ang the area from whit names incil selected, tut proposed as an amendment that forty names instead
of only twenty-two shall be circulated amongst the members for
ballot. Garlton (Beckenham) seconded the amendment.
Mr. Lemon (Southampton) characterised the original
Mr. Lemon (Southampton) characterised the original proposition
as impracticable and unworkable, and affirmed it would not result as impracticable and unworkable, and afirmed it would not result
in so god or repesentative a conncil being selected as at present.
Several speakers followed on both sides, and the President, on Several speakers followed on both sides, and the President, on
the part of the council, said they had no special objection to the proposal, but they thought such a radical change should not have
been sprung upon the Association without notice On being put from the chair, Mr. creasing the number of names sent out at the ballot from twentytwo to forty was carried by a senajoutity of five-cighteen for and Mr. Angell (West Ham) then
tion of any rule, should be entertain thew rule, or alteraunless notice had been given before the 31 st March in the current year, and the proposed addition or alteration had been circulated
amongst the members of the Association. He objected strongly to amongst the members of the Association. He objected strongly to
any such important change being made in the constitution of the any such important change being made in the constitution of the
Association when only about a quarter of the members were predent, and the rest had not hat and any notice of it whatever.
Mr. Jerram seconded the amendment, and heartily endorsed the principle it emboondied.
This was unanimously adopted
to occupy the post of President of the Association, and ack acknow led occupy the ourtesy and cordiality with whichith hen had always aceen
leceived, introduced the President-Elect for the current year, Mr. W. H. White, M. Inst. U.E., of Oxford, who was received with much applause. No member of the Association, he said, was more valuable services to the Association during his year of office. ferred upon him by placing him at the head of the Assouciation, one. hearty vote of thanks to the retiring President-Mr. Jones, of
Ealing-for his services during the past year. He had discharged his duties admirably, and had evinced the greatest kindness and courtesy to every member.
Mr. Vawser seconded th
acclamation; and the ex-president, in in acknowled wing carriod by the coli.
ment, said he had done his best, and was gratifed that his efforts had been appreciated.
The President then read a paper on the Sewage Works, Mag-
dalen Bridge, and the tramways of Oxford, each of which were dalen Bridse, and the tramways of Oxford, each of which were
subsequently visited and inspected. There were two engines at
the pumping station, one of which pumped the sewae in ten or subsequently visited and inspected. There were two engines at
the pumping station, one of which pumped the sewage in ten or
eleven hours in dry weather ; but in wet weather both had to be worked continuously. The indicated horse-power at fourteen
strokes was fifty-five and stronkes was fifty-five and a-half separately and sixty-three and
arhalf when worked together. The rising main, 4 in. in inameter,
is which sixty-four are permanent pasture, 226 arable, twenty-three Which sixty-four are permanent pasture, 226 arable, twenty-three
are fller beds, and the rest are ocoupid by buildings and works.
The land was so waterlogged that the whole had to be underdrained, at a cost of $£ 9$ per acre. The sewage pumped in a y year
was $522,2655,575$ gallons, or a dily average of $1,40,86$ gallons,
or about 1,657 , 986 gallons per to a rainfall of 93.2 izin per annum. The natural rainfall during the same period had averaged 30in. per annum. The total cost,
including \&2000 to provide drinking-water for Littliemore Asylum, previously obtained from the river, was $£ 83,645$. The annual cost
of pumping was $£ 1000$. The financial results had been that up to of pumping was $£ 1000$. The financial results had been that up to
Michelmas last the reecipts had exceeded the expenditure by teto.
Neither the cost of pumping nor the interest on or repayment of loans was charged agapinst ther farm, interest on or repayment one onetiveth of the
$£ 4000$ borrowed for stocking the farm had been paid off every
 dirty that a considerable area could not be cropped for artanali,
But for these untoward circumstancees, and the depressed state of
agriculture, Mr. White thought better results would have been
attained. He then described the widening of Magdalen Bridge antianed. He then eoscribect Che widening of the main road to west side, which will provide a carriage-way of 32 ft . 6 in, and two 7ft. footways. The foundation proving to be running sand, elm
pile had to be driven to the Oxford clay, 18ft. from the surface. There were 380 altogether, which had to carry about 12 tons per pile, or 400 lb . per square inch of section. The cost of 11 in. piles,
14ft. long, driven by Lacour's steam pile-driver, was 43s. ach, and
of 9 in. 38 s . 6 d . each. The foundations of the old part of the 14tt. Iong, driven by Lacour's steam pale-ariver, was old. part of the
of 9 in. 38 . 6 c each. The founations of the old
bridge were found to be two thicknesses of em planking without any heart piles, laid below the bed of the river. Skewbacks
were accordingly cut under the old work, and inverted arches of tiin. brickwork in cement, with a versed sine of 3 itt 6 in.,
were put in from pier to pier. The cost of the bridge, including
 of the underpinning, wbich was paid for by the Thames Valley
Drainage Commissioners. Mr. White added that, notwithstandin Drainage ommissioners. Mr. White added that, notwithstanding
all the storm of opposition evoked, the a atagonistic meetings, and
articles in the London papers a aqainst "The destruction of an articles in the London papers against "The destruction of an
ancient monument," so far from any at of Vandelism having been
perpetrated, he trusted the objectors would untimately admit that perpetrated, he trusted the objectors would ultimately admit that
a work of much public utility had been carried out without detractinork of much public utility had been carried out without detract
ing from the picturesque character of the bridge and its surroundings. The tram ways consisted of two separate lines, of 4ft. gauge,
mostly single track, in the centre of the roadway. Mr. White said that the permanent way was of a simple and somewhat novel
haracter, and was specially designed by the engineers. The rails character, and was specially designed by the engineers. The rails
are steel, of bridge section, weighing 67 lb . per yard, and have a continuous bearing upon a cement concrete foundation 43in. thick.
The rail ends are held by cast iron shoes 9 in. in length, weighing The rail ends are held by cast iron shoes 9in. in length, weighing
about 231b. each, and are kept to gage ba a flat, wrought iron tie,
2in. by sin., the ends of which are turned up so as to go into holes 2in. by 3in., the ends of which are turned up so as to go into holes
in the bottom of the shoes. On the upper side of the shoe there is in the bottom of the shoes. On the upper side of the shoe there is
a projecting rib 6in. long and sin. deep, which fits acourately into
the hollow of the rail, and along the outer edge of the shoe there is a lip, under which, the outer flange of the rail fits. A wrought
iron cover plate, 2 hin. wide, is placed over the inner flange, and ramporer poate, ,tinin. wide, is placed over the inner thange, and
clamped dow three gin. bolts, the middle one also passing through the gauge tie. Thus the whole is fitted
and fastened effectually without timber or iron sleepers or fishplates. It is claimed that this mode of construction admen
alterations or repairs with a minimum of disturbance of the per-
manent way. The space between and 18in. outside the rails is manent way. The space between and 18 in, outside the rails is
paved with 5in. sets upon thin. of concete, exeept that on each side the rail a course of wood paving, 2 tin. wide, is bedded direct
on the flanges. The points and crossings are of chilled cast iron, and the curved rails were bent cold at the works to proper tem, plates. The lines had hitherto preserveo be a very good one. The verage cost per mile of single line had been $£ 3627$.
The criticism which took place upon the President's paper was
chiefly complimentary. M. Angel (West Ham) characterised the works as admirably designed, well executed, and working most
efficiently. Mr. Gordon (Leicester) mentioned that he wasindebted
on to Mr. White for the hint how to make a pipe sewer water-tight,
in an inexpensive manner, in running land. He also spoke of the wholl-designe works they had seen as substantially constructed and the kingom. Mr. Lemon (Southampton) said the only unsatis-
factory thing was the sewage farm, managed by the sewage farm committee. It was under manded and very. Mr. Pritchard (Birmingham and London) said the idea that sewage
was an unworked mine of wealth had been completely exploded by practical experience. He must say-and he had had some experience-that he had never seen a sorporation. If such
torily worked by a local board or a corn
farms were farms were to be made to answer, they must, be manage
like Colone Jones's at Wrexham or Lord Warwick's at Leaming
ton ton. The Oxford engineers works were as good as the sewage
farm was bad. Several other speakers, having referred to the satisfactory state of the sanitary works executed under Mr. White
at Oxford, Dr. Ackland, the leading local physician, asked to b at Oxford, Dr. Ackland, the leading local physician, asked to be
permitted to say a few words. Dr. Ackland then referred t the eminently unsanitary state of Oxford in the early days of hi
prefessional career, when he could only refer to the state of thing that existed there as a model of what ought not to be, and it was
imposible to get either the municipal or University authorities to devote attention to the subject. He was, therefore, gratified to hear from a body so eminently qualified to express an opinion of the highyy satisfactory and greatly improved state of things now.
Mr. Gladstone and the Marquis of Solisbury had just taken their degrees before he (Dr. Ackland) joined the University as an undergraduate, and it was obvious that it would have been a great advantage to the country had they been surfounded by mode
sanitary arrangements instead of by what could sanitary arrangements instead of by what could only be pointed to
as illustrating what should be avoided. Mr. White, in replying,
stated the Local sewage farm, on sewage works, drainage works, and farm added 1s. Id. to the rates his paper.

The Supply or Electriotity by Local Authorities.
This was the subject of a paper read by Mr. W. Killingworth
Hedges, Assoc. M. Inst. C.E. and Mem. Soc. Telegraphic Engineers. Hedges, Assoc. M. Inst. C.E. and Mem. Soc. Telegraphic Engineers, establishment of a monopoly, local authorities were given the same rights as to layng down the necessary works and to supply thei
own electricity, as to applications were made at the end of last year by various corpora-
tions and local beards tions and local beards and other local sanitary authorities for pro-
visional orders. From the many notices of opposition lodged against the applications of companies, either the local authoritie object to ans portion of cethei lighting as yet sufficiontly developed, or an electric company. Against the plan of local authorities acting as contractors might be advanced the supposition of future im
provements in the might render costly machinery comparatively useless. On the
other hand, the Act required the minimum charge to be now fixed, so that if the cost of production was cheapened the company' prices need not be reduced until the expiration of their licence
According to the do which the company will be guided by existing arrangements, so that if the cost of production be cheapened, the prioc oharged by
the company need not be so until the expiration of the licence Considering the short period of a licence and terms on which it will be granted, it is only fair that the companys should derive But there are many objections to granting any company free con-
trol of the streets, some of which are very noticeable by the action of the existing gas and water companies. This would probably prevent the repetition of annoyances caused by contracting com
panies having aceess to the streets, as st mains would be led from the site deemed most suitable for the generating station an might be handed over to the contractors for the experimental or
permanent lighting. Its gauge would be calculated to take sufficient current to supply the district at a determined electrical pres
sure sure, so as to give the required electro-motive force without risk
from fire or danger to life. Mr. Hedges having entered at lensth into the details of generating power, electric mains, overhead and underground wires, dynamo machines, speed regulatoors, and storage
batteries, went on to discuss the price of the supply and other
details, T. H. Blakesley, M.A., Assoc. M. Inst. O.E., opened the not ask a quastion about alternating aurrents, their applicability,
efficienoy, and danger. Compared to direct currents they were
dangerous to life, inefficient in action or limited in applicability,
being useless for storage batteries, and comparatively so for the being useless for storage batteries, and compan for public purpose
production of mechanical energy. The Act practically restricted eleatricergy. to lighe Aning, although directly there
was a proper supply of electricity mechanical applications of it wil wwarm. Having pointed out how much cheaper electricity for al purposes could be supplied by one company, he spoke of the lead coating and other menns, and said gutta-percha was alone
effectual. He also considered the lower limit of 30 volts quite inadequate for the best and most economical lamps, corresponding in brightness to an ordinary gas jet; and he also referred to th
unsatisfactory mode of calculating the energy to be charged for. Mr. Jerram (Walthamstow) spoke against electric companies being allowed to acquire a monopoly like gas and water companies.
Mr. Jones (Ealing) spoke of the satisfactory lighting of Parlia-ment-street with gas, and the Place de 1'Opera in Paris; and though
not prepared to advocate electricity, he said that it had certainly stirred up the gas companies.
estimates, Other speakerst followed, and the objeetions raised were principally, that as yet no system of electric lighting is so satis-
factorily developed for local authorities to adopt tit, and there was also great uncertainty as to the cost.

Separate System of Sewerage

Mr. Albert W. Parry, Assoc. M. Inst. C.E., borough surveyor, Reading. The system could not be regarded as complete, so far as surface water is concerned, as all the sewers are not new. A
system of sewers for the disposal and utilisation of sewage was completed about seven years ago, and the old sewers, which for-
merly conveyed both sewage and surface water, are now used only mery conveyed both sewage and surface water, are now used only
for surface water, and in streets where there were no new sewers new ones are being laid. The urgent need of keeping rain water
out of the main sewers had been shown by the sewage being diluted and its volume bad been shown by the sewage being difficiluty of dealing with it on the sewase farm. After describing
the system of sewerage, he mentioned that the hard rule excluding all surface water from the sewage sewers was relaxed in cases where there are small enclosed areas on the rear of houses,
where a seond would offer equal facilities for the emptying of slops. The number of houses was 8700 , the average quantity of sewage pumped was
998,277 gallons about 1,813,000 gallons daily
A discussion ensued, which lasted nearly three hours. Mr. Gorand was in favour of getting storm water to the natural oulfall for he water of the adsuact than. Jones (Wrexham) advocated the of disposing of sewage by irrigation be successfully accomplished.
Surface water should go into the drains, and water supplied for domestic purposes only into the sewers. Mr. Jerram (Walthamstow) stated that for two or three years the system had been tried
thene, and had proved a failure. Sewage and dirty slops were being
 Mr. Lemon (West Ham) dealared there was no perfectly separate
system carried out in England, and if it were, it would not last a
ne system carried out in England, and if it were, it would not last a
month. It was only applicable to some towns, and only twhere sewage was appleedition land, or had to be pumped, and then
purified by precipitation and some chemical process. It was an extraordinary stretch of auth ority to compel houses to have drains
for sewerage and for surface water. The only extent to which the for sewerage and for surface water. The only extent to which the
system could safely and wisely be carried was, in suitable situations, to carry off into the natural outfall the water falling in open
streets, that side of the roofs of houses and places under the sole con trol of the local authority. Mr. Pritchard (Birmingham and London)
expressed similar views, and Mr. Angell (West Ham) agreed that the expressed similar views, and Mr. Angell (West Ham) agreed that the
separate system should be limited to streets, open spaces, and the street sides of houses. It would be folly to attempt to carry it
further. Mr. Parry replied at some length, but the general feeling was evidently strongly adverse to anything like an attempt to
compel all houses to have two sets of drains, one connected with the sewers for sowage and house slops, and the other for surface
drainage and inoftensive water. drainage and inoffensive water.

Abingdon Water suppli
Mr. George Winship, Assoc. M. Inst. C.E., borough surveyor of About two and a ahalf miles from the town a trial shaft, sft. in 35 ft . or 40 ft ., with a in , bore some 35 ft . further in soapy clay. Nearl the whole of the water supply was obtained from a cavern in the by boring below or from the strata above. The quantity having been proved, a reservoir was excavated and constructed around the
trial borehole for storing 125,000 gallons of water. The level the thetem of the reservorin and the quick service main entered the reservoir 10 ft. from the
bottom. This arrangement was adopted to save making a costly cutting 600 yards in length to place the pipes at the bottom of the reservoir. TThes shorter leg of this syphon was therefore about 9ft,
in length, dipping to the bottom of the reservoir, while the lon leg extended to a distance ol 600 yards or thereabouts, and forme part of the main supply of Abingdon. When the water in the
reservoir rises, as it generally does at night, up to or above the crown of the syphon, it discharges by gravitation simply, but when it sinks below that level syphon action is called into play to a
greater or less degree. Mr. Winship then described the supply pipes, valves, meters, and fittings used.
The discussion was very brief s the
beyond the usual hour. Mr. Pritchard (Birmingham and West minster) mentioned that nine years ago he put in a much larger had worked satisfactorily. It enabled a difficulty to be surm with comparative ease, as they unexpectedly came upon running
sand in laying the main, and the syphon certainly saved between $£ 2000$ and $£ 3000$. The meeting then separated, but on Saturday several members of the Association visited the waterworks, and
afterwards inspected the colleges and other places of interest i afterwa.
Oxford.
The Association's annual dinner took place at the Clarendon Hotel, on Tuesday night, under the presidency of Mr. White, when
the mayor and other intluential guests attended. The meeting
was considered one of the best yet held \square
Crvii And Mrobanioat Engineres' Sociert.-A large number politan and District Railway on the 25 th of June, and were con-
 Launor.- On the 25th ult. Messrs. Earle's Shipbuilding Com pany, Limited, launched from its yard at Hull a fine screw
steamer, built for the Empreza Nacional-of Lisbon-line of steamers, for mail and passenger service between Lisbon and the
 vessel is built to class 100 A1 at Lloyd's The vessel is being fitted
by the company with inverted compound surface-condensing by the company with inverted compound surface-condensin
engines, of about 1450-1.H.P., the cylinders being 4oin. by 7 tin.
Steam will be supplied by two double-ended boilers, having a

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS,
(From our oven Correspondent.)
THE iron market is this week disorganised since the forge hands are on strike, and they are doing their best to induce the millmen
to join them. The strike originates in discontent at the declaration of the accountants to the Wages Board, which was made in
 during the three months ending May last. This average is declared
to have been $£ 615 \mathrm{~s}$. $3 \cdot 3 \mathrm{sd}$. per ton, which is a rednution on the
 and millmens wases in proportion. It came into force on Monday,
and should prevail for three months. The puddlers, however, refused to accept tit and threw down their tools.
The strike began in the West Brom wich and Smethwick districts, and gradually extended until now-Thursday- it has become protty
general at all but the chief Dudley and Wolverhampton works. general at all but the chief Duddey and wolverhampton works.
The millmen mostly continue operations, being less unreasonable
than the pudders than the puddlers. But there is some fear that they, too, may be
induced to leave off, since at a large meeting of the strike hands at Smeth wick on Wednesday it was resolved to ask the millmen to
The reduction in the average selling price is accounted for in that, during two months of the quarter to which the accountants
return of three months ago releated marked bars were selling at
et per ton, whereas during the three months embraced in the $£ 8$ per ton, whereas during the three months embraced in the
present return bars have been $£ 710$ s. But the men are open to present return bars have been $£ 71$ ss. But the men are open to
no arguments, and because the scale has this time gone against
them no arguments, and because the ecale has this time gone against
them they have thrown it over, urging that because trade is just
now somewhat better they ought not to be called upon to accept a
 wish that the net average selling price should be ascertained, not
upon bars alone, but that sheets, which are becoming an increasingly
important also be included.
The puddders declare that they will not resume except at an
advance of 6 d . per ton. That they will get any advance is advance of 6d. per ton, That they will get any advance is
unlikely. Indeed, on 'Change to-day in Birmingham masters said that the only terms upon which they will allow a resumption are
an acceptance of those against which the men have struck. The action of the men is the more important since the accountants' declaration regulates wages in all parts of England except Cleve-
land and Wales, though in some districts a month elapses before it takes effect.
The East
running, ast Wo orecestershire and Shropshire ironworks continue
hampton districts stricts.
As 'Change closed in Birmingham to-day-Thursday-it became Khown that a monster procession, roughly estimated at twenty
thousand, had marched this morning from West Bromwich to to
Dudley Port, then on to Tiptoni, then to Bilston, and then to Dudley Port, then on to Thipton, then to Bilston, and then to
Wolverhampton, and forcibly entering every ironworks on the
line of route that was on, either in the mill line of route that was on, either in the mills or forges, had com-
pelled the men to instantly cease work. The fire-bars were pulled
 managers, and the police-who mustered in strong force at some points-were powerless to stay the rioters, Numerous assanlts
were committed. Throughout South Staftordshire all the mills
ind and forges, with few exceptions, are now idle. The North Staf-
fordshire ironworkers have also come out on strike, and the works
are standing. This afternoon the committee of the Wages Board are standing. This afternoon the committee of the Wages Board
met in Birmingham. The masters said it would be weakness to
joidd yield anything to the demands of the men. They loudly com-
plainind of the rioting. TTe mens secereary pronounced the strike Saturday.
Buying this week is very limited. Finished iron makers will not
consent to book orders except subject to eventualities. Indeed, it
is is not without dificulty that they are able to male deliiveries under
contracts previously booked. Consumers of sheets are most pressing in their requests for supplies. Prices are nominally
stronger, but there is not sufficient business to test them. Sheets are quoted $£ 715 \mathrm{~s}$. to $£ 8$ for singles; $£ 87 \mathrm{~s} .6 \mathrm{~d}$. upwards for
doubbes; and about $£ 910 \mathrm{~s}$, for lattens. Common plates are Marked bars are $£ 82 \mathrm{~s} .6 \mathrm{~d}$. to $£ 710 \mathrm{~s}$ s, and common bars $£ 610 \mathrm{~s}$.
 tone, and vendors of pigs made outside this district are strong,
pending these gatherings. Derbyshire pigs are 47 s . 6 d . to 48s. 6 d ;
 to 38 s . 9 d . Forge and furnace fuel goes off best, 9 s . to 10 s. per ton being
asked for furnace coal; cobbles, 7 s s. 6d. to 8. 8s.; and slack, 4s. to 5 s . 6 d . Forge coal in the Cannock district is 6 s . to 6 s . 6 d . per ton,
but in the Dudley district. 7 s , to 9 s , is paid. but in the Dudley district, 7s. to 9 s . is paid.
The miners' strike in North Staftordshire signs of a speedy termination. Some of the unionists are each
reeeiving 10, and 1s. .ere child, and non-unionists ss , d. and 1 s .
per child, but notwithstanding this meagre allowance they yet appear oontented, and at public meetings express their determina-
tion to kep out. The secretaries have been instructed to all the
del delegates together to consider the question of convening a national
conference of trades' unions and other labour representatives, with conference of traces unions and other labour representatives, with
a vien to making the strike an national one. It it inoped that South
Wales and Lancoashire will absorb a further amount of labour. Wales and Lancashire will absorb a further amount of labour.
The experiments made during the last quarter by the gas depart-
ment of the Birmingham Corporation with regenerative furnaces have shown a considerable economy in fuel and labour, and the committee have eunthorirised a further expenditure of of exar, and 10. ine in
an extension of the system, both at the Windsor-street and Saltley an extension of the system, both at the Windsor-street and Saltey
Works. The Ammonia Gas Purifying Company, Limited, has been allowed to experiment upon a small scale at the Windsor-
street works with the process of purification in closed vessels.
s. street works with the process of purification in closed vessels.
The result has warrantet the department in inving acilities for its
trial on a scale sunficient to test its applicability for the supply of trial on a scale sufficien
the whole of their gas.
Engineering work of some importance will soon be in execution
for the Birmingham Town Council. On Tuesday that body authofor the Birmingham Town Council. On Tuesday that body autho-
rised its Water Committee to construct additional lilter beds at
Plant's Brook at a cost of about $£ 5000$. Thi area of the existing beds is 4865 yards, and that of the proposed additional ones some
4940 yards. The present station includes reservoiss witb 4940 yards. The present station includess reservoirs with as storage
capacity of thirty million gallons, and on an average one and a-half
million capacity of thirty million galions, and on an average one and a-half
million gallons could be daily delivered. It sometimes happens,
howe however, that owing to a less supply from other sources, fillration
has to be unusually rapid;
Thence the necessity for further beds. The wooden viaduot at Hoo Hrook, near Kidderminster, on the
line of the Great Western Railway Company, has been ordered
extensive propping by Col. Rich, R.E., Board of Trade inspector, extensive propping by Col. Rich, R.E., Board of Trade inspector,
and the speed of the traffic a corosis is reduced to ten miles an hour
These These are precautions pending the erection of an entirely new
bridge, preparations for which are in progress. The new bridge
will be erected inside the curve of the present structure. It will will be erected inside the curve of the present structure. It will
be built of brindled bricks relieved with Derryshire stone, the
arches being of bue bricks. The lenth is to be 1093ft. The
arches arig arches are twenty in number, with a 50 ft . in , span eaeh, and the
piers on which they rest are 6 tht. through where the arch springs.
It is expected that the work will take some eighteen piers on which they rest are 6ft. through where the arch springs.
It is expected that the work will take some eighteen months to to
complete. The contractor are Messr. Gabbutt and Co., Birken-
head, and the plans have been prepared by Mr. W. D. Rowbotham, complete. Thd the plans have been prepared by Mre. W. .. Rowbotham,
head, and
engineer for the central division of the Great Western Railway
Company.

NOTES FROM LANCASHIRE.
Manchester.-Although generally there is an absenee of any great activity in the iron trade of this district, the market con-
tinues firm, and there is no anxiety on the part of makers either of tinues firm, and there is no anxiety on the part of makers ether of
pig or manuactured iron to press sales. In the pig iron trade the
Tecent recent heavy buying at low prices has had a thighly, but as this has sad the effect of cocking the giving
value sting
out of further orders, it can scarcely be said that an advance has out of further orders, it can scarcely be said that an advance has
been actually established. In the finished iron trade makers are been actually established. In the innished iron trade makers are
looking forward to shipments giving a stimulus to trade. Whether
the new American tariff which is now in operation will tend to increase the exports to the United States remains to be seen, but at present it does not appear to bave had any material effect.
There is, however, an improvement in the shipping trade, and now There is, however, an improvement in the shipping trade, and now
that buyers find that the low offers made of late have not brought down prices, orders are being given out on pretty much the basis down prices, orders are being given out on pretty mut.
of the figures for which makers have been holding out. Business was quiet at the Manchester market on Tuesday, but in
some cases makers were asking a slight advanco some cases makers were asking a slight advance upon last week's
prices. Pig iron makers being now pretty fully sold were very For local brands delivered equal to Manchester makers
wermenty onen to book orders at their full rates of 45 s . to 45 s , 6 d . were only open to book orders at their full rates of 45s. to 45 s . 6 d .
less $2 \frac{1}{2}$ for forge and foundry qualities; in district brands thelolowest
prices now quoted for delivery here are 44 s . 10d to 45 s . pricer for forg and foundry Lincolnshire. Conswumers who are mostly
well covered for the present are disposed to wait rather than buy well covered for the present are disposed to wait rather than buy
further at the higher prices now asked, but a tolerably large busi-
ness might be done if makers would book orders at a little their full rates. So far as home requirements are alitcerned the demand for finished iron continues only dull, but shipping orders 2re coming for ward prettyy freely and prices are steady ant late ratess.
For delivery equal to Manchester or Liverpool quotations are about
 siderable order in this district for various deses given out a considerable order in this district for various descriptions of machine
tools, which has been divided amongst several of the leading
makers. Messrs. Hetherington and Co. have one portion of the makers. Miessrs. Hetherington and Co. have one portion of the
order, which includes the construction of twelve wheel lathes, and other portions including axle turning and other special lathes
have, I understand, been placed in the hands of Messrs. Whitworth and Co., Messrs. Craven Bros., and one or two other Manchester
firms. There is also a fair quantity of foreign work in the hands of local tool makers, and Messrs. Hetherington and Co. are executing considerable orders for the Bombay and Baroda Rail-
way Company, the Great Indian Peninsula Railway, and the New Zealand Government tailway.
The evidenee given by Mr. A. N. Rendell, C.E., before the Manchester Ship Canal Committte, to the effect that the locomo-
tive building trade had gone very largely from Manchester to Glasgow, owing to the fane thery largely from Manchester to
25 per censow people tendered
cower than the Manchester firms as a matter of fact, Manchester was being cut out by the greater economy and enterprise upon the Clyde, has caused no
little indignation amongst the Manchester engineering firms. So far from the locomotive building trade leaving Manchester, the
fact is quite the reverse. The Manchester locomotive builders for locomotives made in this district is such that orders cannot be booked for delivery within any reasonably early period. More
locomotives of Manchester manufacture are now being turned out than during any previous period in the history of the trade, and
the evidence given before the Ship Canal Committee in favour of
the Manchester engineers; indeed, a very strong feeling is expressed that evidence should be siven in so reckless a manner as to practically tell
the world that the system upon which work isdone in the Manchester locomotive shops is so wanting in enterprise and economy that the local houses are beaten by the Glasgow builders by 25 per cent., and
that, as a consequence, this branch of trade is leaving the district. I may add that it is asserted by engineers in this district, that higher price obtained for Manchester-made locomotives is due solely to the superior oharacter of the workmanship, just as some
of the evell-known tool makers in the district are able to command much higher prices than other firms engaged in the same branch of trade, and that it is because of the excellence of the workman-
ship that the Manchester locomotive builders are at present so full of orders, and that, in many cases, five, ten, and fifteen per cent.
higher prices are being oblained for Manchester-made locomotives higher prices are being obtained for Manchester-made e ocomotives
than are being obtained for those of Glasgow manufacture. way from Messrs. Evans and Co.'s Haydock Collieries to Earlstown Junction, with a new automatic locomotive signalling apparatus patented by Messss. Croft and Lomax. The apparatus
consists of a tappet fixed to a sliding bar, which communicates by means of a bell-crank with a disc signal upon the engine, in front which an inclined plane is raised or lowered from the signal cabin. If at "danger," the tappet on the engine strikes upon the inclined
plane and releases a weight communicating with the bell-crank, ppane and releases a weight communicating with the beli-crank, and at the same time blow.
were considered satisfactory.
There is no material change to report in the condition of the coal trade. Business drags on slowly, with the quiet demand usual at
this time of the year, and with a generally slack market there is a little easing down in prices to secure present business. There is,
however, still a very firm tone as regards orders for forward delivery. Sellers will not go beyond a couple of months at present prices, and generally colliery proprietors are very
indifferent about entertaining forward contracts at all, even at advanced prices. In some cases the delivered rates frr house coal
have been reduced 10d. per ton. this month, but this does not affect the pit prices, and at a few colimeries slack has been put up 5d. per ton. The average prices at the pit mouth are, however,
without change, and may be quoted as under :- Best coal, 9 s ;
seconds, 7 s ; common round coal, 5 s . 6 d . to 6 ss ; burgy, 4 s . 6 d . to 5s.; common sla
4s. 3 d. per ton.
The railway
The railway companies have recently been renewing their contracts for steam coal in this district, but to do this they have
had to give on an average an advance of 6d. per ton upon the
prices at which the contracts prices at which the contracts were taken last year, and the general
basis of this year's contracts has been 5s. 6 d . per ton at the pit for Shipping is f Shipping is fairly active, and is keeping some of the local colieries
tolerably well employed, Delivered at the high level, Liverpool, or
the Garston Docks steam cool averages 7s. 3d. to 7s. Ya., and the Garston Docks steam coal averages 7s. 3d. to 7s. 9d., and
seconds house coal 8 s .6 d , per ton. Barrow.-The business being done in hematite pig iron remains
quiet, although there is a slight improvement on American account prompt deliveries being required, for which fuller prices are offered.
This is liker to This is likely to have some effect in reducing stocks of metal. in
hand, both in the iron and steel trades. The new orders which hand, both in the iron and steel trades. The new orders which of steel makers, who have large orders in hand which require
prompt attention. There is a very heavy output of all descriptions of steel, and makers have their mills running full time, not only
in the rail, but in the merchant department. The work in the hands of makers is sufficient to maintain activity throughout the year, and it is more and more certain there will be a large ship.
ment to America, the colonies, and the Continent before the end
 aat
forge, at at works. Steel rails are in demand, not only as regards
the double-headed and flange heary sections, but in referenee to
small tram descriptions, and heavy rails for street tramcars, There
is also an increase in the business doing with tin-plates, bars, \&c.,
special mild and other steel for cutlery and fine purposes, and for general merchant qualities. The value of steel is quoted at from E4 10s. to $£ 5$ per ton net, and there is no chanee of an improvement
in prices either in an upward or downward direction, Iron ore is steady in tone, but quiet. Prices vary from 9s. to 11s. 6d. per ton net at mines, and stocks are very considerably
Coal and coke steady; shipping fairly employed.

THE SHEFFIELD DISTRICT

Ir was my hope to have been able this week to have given
the statistics of Sheffield exports to the United States for the the statistics of Sheffiel exports to the United States for the
six months ending June 30th, but on application to the United
State States consul here it was found that he had received peremptory mation in future. This order is not peculiar to Sheffield, but is a general instruction to all Consuls, and has been issued in conclose too much before the American official Blue-book is issued. every quarter, will be regretted by commercial people generally. The new order is another evidence of the care taken by the
United States Government, even in the smallest item of detail, in regard to trade affairs.
In the Rotherham district the works engaged on heavy iron work
are stated to be very busy, and the Parkgate Iron Com are stated to be very busy, and the Parkgate Iron Company is
about to make considerable improvements and extensions in its blast furnaces at the Holmes, where extra employment is much needed in consequence of the closing of the Holmes Colliery.
There is an intention of re-opening the Brinsworth Ironworks, which would be another advantage for the redundant labour in the neighbourhood
Rail way
-are well material makers-in all departments except steel rails brisk, though competition keeps prices very low. At the Phoenix Bessemer Works, the Ickles, the men who were re-engaged have
abundant work., The merchant mill is kept continuously going the hammer department is also busy, and there is a brisk demand
for the are giving great attention.
The coal trade is in
year into account. For the metropolitan and provincial markets the demand for house fuel is, of course, greatly lessened; but
prices are generally about 10d. per ton higher than at the cout sponding period of last year. Steam coal, for locomotive purposes,
 Slackness in the building trade has told upon the stove grate
makers, a fact which is clearly brought out by the year's operations makers, a act which is clearly brought out by the year's operations
at the Masbrough Stove Grate Works, Messrs. W. Corbitt and Co.,
 private establishments, however, are doing much better than that.
Messrs. Jehoiada A. Rhodes, and "Barber, Britain Works, have justrocy from her Mojesty the Ouce. This makes the inth order received within a year by this firm for the "Royal Devon" and other manufactures.
The recent strike of file
behind it strace oute-cutters has left one disagreeable incident behind it-a trade outrage of an atrocious character. Messrs. John
Bedford and Sons, of the Lion Works, Mowbray-street, showed a
good deal of "backbone" when the gave notice to leave were allowed to go at the expiration of their month's notice, but their places were quickly filled up, and the
work was carried on with but little inconvenience. This becomin known to the trade, the workmen who had filled the vacant situations were seen by several of the unionists, who tried to inauce
them to leave their employment. Two men were persuaded to leave, but the others remained. One evening the premises were entered, and five wheel bands, used for file-grinding, were "re-
moved." A sixth was rolled up ready for taking away. On clearing the cinders from the fires under the boiler, the engine tenter
found a buckle which had belonged to a band. There is no doubt rimilar fate. The committee of the File Manumpacturers A Association have resolved to
cen
recoun Messrs. recoup Messrs. Bedford for the loss they have sustained, believing
that the frm had been punished for their rompt action in the desirability of re-erecting the file-grinding machines at present in desire town with as sittle delay as possible, so as to bo bued for the
then
convenience of the general trade. Thus outrage always defeats its own end, and precipitates upon itself fresh disasters.
The Sheffield Electric Lighting Committe
from the Eleetric Construction Company, Limited, and the Lanca shire and Yorkshire Electric Lighting Company, Limited, both of shire and Yorksire apply to the Board of Trade for a provisional
whom intend to provide electricity within the borough of Sheffeld. The
order to applications will be laid before the Town Council next Wednesday. On Monday the Manchester, Sheffield, and Lincolnshire Rail way Company commenced running its new express trains to and from
London. The first train, leaving Manchester at 11 a.m., reached Sheffield at 1.53, or eight minutes before time, being uae in at five minutes before time ariving than the appointed time. The result of the first day's runs was to
prove that the distance, which has formerly taken the fastest express 3 hours 40 min ., can just as easily be done in 3 hours 25 min . - the time aimed at- but that the running could be made in
3 hours 15 min . The distance is 175 miles. This is an average of The Sheeebridge. Coal and Iron Company, Limited, has won
coal at the Glapwell sinking. The seam is the top hard, and the thickness was found to be bift. The depth of the shaft is 285 yards to the top of the coal. The company has just dectared its half-
yearly dividend at the rate of 5 per cent. per annum on the O guaranteed preference shares, payable on July 14th.

THE NORTH OF ENGLAND.

THERR was a good attendance at the Cleveland iron market held at Middlesbrough on Tuesday last, and buyers of pig iron were more numerous than for several weeks past. The heavy exports of
last month, and the better reports from Glasgow, have tended to stringthen the market, and it is thought not unike that the
price of Cleveland iron will rise shortly. The sales made on
 were willing to accept that figure. Some asked more, the quotameeting of the cleveland Iron Market will be held on Tuesday next. Warrants are seldom inquired for, thangh sellers are
a rule, to take da. to 6 d . per ton lesss than makers prices.
The stock of Clevend The stock of Cleveland iron in Messrs. Connal's stores at
Middlesbroug continuess 0 fall. The quantity held on Monday
last was 74,957 tons, being 550 tons less than The shipments of pig iron from the Tees last month were very
 37,402 tons went to home ports, and 56,641 tons to foreign ports.
Scotland took 28,472 tons; Germany, 16,188 tons ; France, 9750 tons; Russia, 8412 tons; Holland, 8309 tons; Norway and Sweden,
3565 tons ; and Belgium, 3886 tons. The exports of manufactured
iron and
iron and steel amounted to 19,815 tons. In June last year the
quantities were Pig iron, 68,373 tons; and manuactured iron
and steen, 25,653 tons. In May this year s7,091 tons of pig irom

Consumers of finished iron are still withholding their orders in the expectation of being able
to buy at lower rates. Manufacturers are, howaver, fully employed on existing contracts, and there is great pressure upon them for quick

delivery. They, therefore, hold firmly to the prices they have been quoting during the past | per ton ; angles, |
| :--- |
| common bars, $£ 517 \mathrm{~s}, 6 \mathrm{~d}$. 6 d . to $£ 6515 \mathrm{~s}$; ; and | trucks at works less 21 2 per cent. discount.

Puddled bars are $£ 3$ 12s. 6d. per ton net at works. Puddled bars are $£ 3$ 12s. $6 d$ per ton net at works.
The directors of the Walker Iron and Stel The directors of the Walker Iron and Steel
Company, Limited, have decided to close their works for an indefinite time in to close their the unremunerative prices now obtainable for plates. Over 300 men have thus been thrown The accountant's certificate in connection with the sliding scale in the Northumberland coal trade
was issued on Friday last. The net average selling price of coal for the quarter ending May 31 st was 5 s .0 .80 d . per ton. This being an increase of
4.80 d . upon the standard average selling price, $4 \cdot 80 \mathrm{~d}$. upon the standard average selling price,
the underground workmen and banksmen will receive an advance of $2 \frac{1}{2}$ per cent.
The Cleveland blast furnace-
notice to the Ironmasters' Association that they wish to terminate their sliding scale arrangement at the end of the present year. They have intiment of the present scale, or the construction of a
new one. The Cleveland miners have also given notice to terminate their sliding scale on the 31st
of December next. of December next.
Mr. C. J. Colem
Mr. C. J. Coleman, the stipendiary magistrate chosen to act as arbitrator in the wages dispute between Messrs. Bolckow, Vaughan, and Co.,
Limited, and their workmen at Eston. The Limited, and their workmen at Eston. The
employers claimed a reduction of ten per cent., entitled to. Mr. Coleman has wive no decision, awarding that the wages should be reduced by $2 \frac{1}{2}$ per cent. This arrangement' will
be binding on both sides till the end of the present year.
The loc
members of the Iron and Steel Institute at Mid dlesbrough in September next had a meeting on Tuesday last, and a preliminary programme was drawn up. It is proposed that the meeting shall
last from Tuesday, the 18th, to Friday, the 21 st , inclusive. One afternoon will be devoted to the Fiston Steelworks, another to the saltworks at
Port Clarence, and a third to the ironworks at Stockton. Most of the other works in the dis-
trict will be thrown open to members. On the trict will be thrown open to members. On the
last day there will be an excursion to Whitby and
Scarborough-by-Sea. Unfortunately the meeting Scarborough-by-Sea. Unfortunately the meeting
will clash with that of the British Association,
which which commences at Southport on the 19th.

NOTES FROM SCOTLAND.

(From our own Correspondent.)
THE Glasgow warrant market hans shown con-
siderably more vitality this week, and prices have siderably more vitaity this week, and prices have
slightly advanced. There is undoubtedly a more
cheerful feeling in the market, pratly due to the cheerful feeling in the market, partly duu to the
fact that there is some chance of the production fact that there is some chance of the production
being curtailed by the putting out of furnaces and sprung up for pig iron on better demand having sprung up for pig iron on the part of the United
States. There is, however, a disposition to overestimate the importance of this fact in some
quarters; and in proof of this statement it need pig iron from the Clyde to America have been advanced 2 s . 6d. per ton, only very few shippers also been taking a larger quantity of pig iron, and the inquiry from Germany is good, while large
amounts are still being sent to Italy. The stock
in Messrs. Connal and Co.s in Messrs. Connal and Co.'s warrant stores is increasing, but in a much smaller ratio than of
late, less than 200 tons having been added in the course of the past week.
Business was done in
Business was done in the warrant market on
Friday forenoon at 47 s . $0 \frac{1}{2} \mathrm{~d}$. to 47 s . 11 d d. each, and in the afternoon at $47 \mathrm{~s} .0 \frac{1}{2} \mathrm{~d}$. to 47 s . $1 \frac{1}{2} \mathrm{~d}$. each, and
47 s . $3 \frac{1}{2} \mathrm{~d}$. to 47 s , 4 d . one mo 47 s . 2 d . cash and 47 s . $3 \frac{1}{2} \mathrm{~d}$. to 47 s . 4 d . one mone th. The market was
firm on Monday at 47 s . $2 \frac{1}{2} \mathrm{~d}$. up to 47 s . 6 d . cash
and 47 s , 5 d to business took place from 47 s . 5 d . to On On Turesday and 47 s . 7 d . one month 47 s . 5 d . to 47 s . $3 \frac{1}{2} \mathrm{~d}$. cash
Transactions took place on Wednesday at 47 s . s . 4 d . to 47 s . $7 \frac{1}{2} \mathrm{~d}$. cash, and to-day-Thursday- 4 d .
market was strong, with business up to 47 s . $8 \frac{1}{2} \mathrm{~d}$.
cash. The values of makers' special brands of pigs are
firm as follows :-Gartsherrie, f.o.b. at Glasgow firm as follows:-Gartsherrie, f.o.b. at Glasgow,
per ton, No. $1,57 \mathrm{~s} . ;$ No. 3, 53 s .; Coltness, 60 s .3 d .
and 53 s .6 d ; Langloan, 59 s .6 d . and 53 s .6 d. ; Summerlee, 57 s .6 d . and 51s.; Chapelhall, 57 s .
and $54 \mathrm{~s} . ;$
 45. 6d.; Govan, at Broomielaw, 48s. 9d. and
$46 \mathrm{~s} .9 \mathrm{~d} . ;$ Shotts, at Leith, $59 \mathrm{~s}, 6 \mathrm{~d}$. and 5 s.
Carron, at Grangemouth, 48 s .6 d . (specially selected, 54s. 6d.) and 47s.; ; Kinneil, at Bpocially
49 s .6 d . and $47 \mathrm{~s} .6 \mathrm{~d} . ;$ Glengarnock, at Ardrossan, 55 s . and $48 \mathrm{~s} . ;$ Eglinton, 48s. 6d. and $45 \mathrm{~s} .6 \mathrm{~d} . ;$ and Dalmellington, 49s. and 48s.
The different branches of the
iron trade are for the most part very busy and in some cases no little pressure is being used for the great activity in the engineering works of Glasgow and the West of Scotland; and the shops and to prepare for the annual summer holidays, which are now close at hand. The past week's ship-
ments of iron manufactures from Glasgow ments of iron manufactures from Glasgow
embraced $£ 37,650$ worth of machinery, $£ 6838$ gewing machines, £4100 steel goods, and $£ 41,000$ general iron manufactures, exclusive of pig
the export of which was valued at $£ 10,000$. The coal shipments at some of the ports wer been partly vessels, but this inconvenience has now been partly overcome by the arrival of vessels,
and it is expected that the Quebec fleet will be
requiring requiring. cargoes presently. The shipments of
coal from Glasgow during the past week included
4690 tons for Cana Algiers, 1610 for Rio de Janeiro, 850 for Monte
Video, 700 for Bordeaux,
wick. In Fifeshire the coal trade is very brisk,
and prices there have somewhat advanced, the rates fror good coal, f.o.b. at Burntisland, now
being 7 s .3 d . to 7 s . 9 d . per ton. The colliery owners appear to be very shy of entering into
contract arrangements at current rates being an impression that business will be even better and prices higher in autumn.
During the half - year just closed the col shipments at Burntisland have aggregated
341,790 tons, showing an increase of 50 , those for the corresponding period of 1882 . There
is only a moderate trade in coals at Leith. is only a moderate trade in coals at Leith. At Grangemouth.
On Saturday notices were posted at the Fife
and Clackmannan collieries intimating that fortnight from that date the wages of the miners would be advanced "to the extent of 10 per cent. The half year's launches on the Clyde give tonnage of 196,402, or 29,109 more Clyan in the
corresponding period of last year. -
WALES \& ADJOINING COUNTIES (From our own Correspondent.) A sLIGHT improvement in tone has begun to
mark the iron trade. There is more steadiness in price, and inquiries are coming to hand in greater In the
In the Newport district the complaint is that steel rails are very quiet. In the Glamorgan
division things are better, and in the Swansea district the improvement in tin-plate has given
much more animation. Rumours are current that much more animation. Rumours are current that will be restarted, but I defer naming them until actual operations are begun. In Carmarthenshire things look better. Tin-plate prices are steady wasters command 14 s .
coke, 16 s . 3 d . to 16 s .9 d
The coal trade continues active, and most o and exports are large in all quarters, and as regards Newport and Cardiff, a verages are well
kept up. There is, however, a little more readikept up. There is, however, a little more readi-
ness shown by coalowners in booking orders, and a slight weakness in price was observable last week, secondary qualities touching only 10s. 9d., that is 3 d . less than in the previous week. Best steam coal commands 12 s. in many parts
Rhondda large, $9 \mathrm{~s}, 6 \mathrm{~d}$., and 8 s . 3d. small; smali theam, 48. 6d.; and good graig at pit's mouth
through "will fetch 6 s .6 d . The North Dock stoppage has told upon the shipments of coal from Swansea. The export of The Rhondda colliers at their last monthly pecial rules. Arrangements are completion for the demonstration of the 16th July, when it is decided to stop work, and have a
procession and open-air meeting. Mr. Burt, M.P., nd others are expected. I hear that the voice of earnest wish for alterations in the to expresess an the extension of the borough franchise to coun-
ties-and support Trades' Unions throughout the ties-and
country.
Rhymney will effect a material Taff Vale and construction at Quakers' Yard. The Taff improved viaduct will do away with the need of the projected construction by Rhymney.
Mr. Nixon's colliers are about to
onth's notice in re the doctor question another
The Bedlinog dispute-an important colliery at Dowlais-has been arbitrated upon by Mr. W.T.
Lewis and Mr. D. Morgan, and amicably adjusted. Work is resumed

Praotical Education.-Those students in the
Crystal Palace Company's School of Praction Engineering who are working for the marin branch of the profession, have just returned from sion of an inspection has also been made the occasion of an inspection of some important engineer-
ing works. These pariodical excursions
ine tended to afford them real practice in the driving of marine engines at sea, and are a marked
feature in the system of the school. Usually feature in the system of the school. Usually of going over the works year, with the intention the voyage has been made to and from Dundee-
a distance of 1000 miles. On Wednesday, a distance of 1000 miles. On Wednesday, June
27 th, at 9 a.m., the students, under the direction superintendent, embarked at principal, and one Wharf, Wapping, in the steamship Cambria- 950 tons-and the Dundee, Perth, and London Steam work of the voyage. Before starting the speed
of and proved to be 14.25 knots the measured mile, both out both out and home. For purposes of work, the
students were divided into four watches of four hours each, during which time those on duty had to be in the engine-room taking their part in the their usual working clothes. The water was smooth, and Dundee was reached at 5.40 p.m. on
Thursday evening. On Friday morning the s. dents rose at six, and an hour later proceeded up the river Tay, in the Perth steamboat. By the
kind invitation of Messrs. Shield, they then in spected the Wallace Linen Weaving Works, where 1000 hands are employed, and saw much that in-
terested them. Saturday was employed in ing over the old Tay Bridge and the works of the
new structure which is being raised by Mr. W, new structure which is being raised by Mr. W. H. Barlow, C.E., who was anxious that the party
should see all they could. Mr. Byng, an old pupil should see all they could. Mr. Byng, an old pupil
of the Crystal Palace School, is one of the superintendents of the new bridge. After inspecting the Dundee, a very fast boat now being finished
for the Dundee, Perth, and London Company, th students embarked again on the Cambria, at 9 on Saturday evening, for the return cruise, and
arrived at the wharf in the Thames at 730 and on Monday. The cruise was most enjoyable, and
certainly the most successful ever made students of the school, who have egained from it
much knowledge of practical work,

THE PATENT JOURNAL
am
** It has come to our notice that some applicants of the
Patent-ofice Sales Department, for Patent Specifications,
have caused much unnecesary trouble and annoyance
both to themselves and to the Patent-ofice officiol by ooth to themselves and to the Patent-afice officials, by
oiving the number of the page of THE ENGINEER which the Specification they require is referred to, instead
of giving the proper number of the Specifcation. The
mistake has been made by looking at THE ENGINER mistake has been made by looking at THE ENGINEER
Index, and giving the numbers there found, wowich only
refer to the pages, in place of turning to those pages and refer, to the pages, in place of turning to those pages a
finding the numbers of the Specifcation.

Applications for Letters Patent

** When patents have been "communicated." the
name and address of the communicating party are
printed in italice. printed in italice.
3149. Lobricating Compounds. T.
150. Preparing TanNic ExTR. Colgan, U.S.
(E. L P. and G. C.Cez, France) Johnson.-
151. Fire-proor Buidinga wh
3151. FIRE-PROOF BULIDINRS, W. Corliss, U.S.
3152. VACOUM BRAKES for RAILWA TRAINE, \&e., A
G. Evans, Manchester

3154. Cooking RaNGEs, J. McI. Shaw, Glasgow.
3155. Vklocrpdes, H. J. Lawson, Coventry.
3156. Lawn TENNIS N ETs, R. S. Moss, Manchester.
3157. Tiles, \&c., T. H. Rees, Battersea.
3158. Regulating Fluid Pressure, C. D. Abel.-(

Westinghouse, Pittsourd PRESBQRE, C.S.). D. Abel.-(G.
3159. PLANING METAL PLATEs, J. Imray.-(B. Bouthey,
Paris.)
160. Compounds for Lining Furnaces, J. Imray.-(G.
Duryee, Newo York, $\mathrm{U} . \mathrm{S}$.

Duryee, New York, U.S.)
3164. ANT1-sper in
Lacombe France
Lacombe, France.
3162. ATTACHING HANDLES to TEAPOTS, \&e., W. H.
Winter, Sheffield.
3163. Compasses, A. M. Clark. - (W. H. Mitchell, U.S.)
3164. MakIN PAPER, A. O. A. Feret, C. L. V. Ladame,
and A. H. Feret Paris
and A. H. Feret, Paris.
3165. Attaching Rails to Metallic Slegepers, R. H
Brandon. - . Thle
B16. ATTACHING Rails to Metallic Slezpers, R. H
Brandon.- (., Totcke and C. Eichhorn, Germany.)
3166. THREAD-WINING ATTACHMENT, H. J. Haddan.
(A. Tabour-Moissom, Paris)
(R. H. S. Thompson, U.S.)
3168. INDICATING Position of Ship's Helm, J. Liardet,
Brockley.
3169. Matting of Floors, W. R. Lake. - (J. Bray, U.S.)
3170. Stating Tramway Cars, J. Gemmel and T.
Archibald Pisle 3171. Couplings, J. T. Roe, Wandsworth.
317. MAKING YARNs, \&c., W. R. Lake.-(J.

New York, U.S.)
3173. Drus.
Burton, Paris.). Wohnson-(F. Troemé-Becker, Paris.)
317. SAWs, H .
3175. SAW
 3177. PRiniting Cloth, Li. H. Philippi, Hamburg.
3178. Failitating Action of MAgazine Rifles, Maxim, London.
3179. Tricycles,
\&c., C. Harvey, Yardley, and W. Pad dock, Birmingham.
3110. LAce, W. Birks, Nottingham.
3131. HoLING RoLLER BLIND Cords,
Bishop Waltham
Bive Blind Cords, C. W. H. Brock,
27 th June, 1883.
3182. Galvanic Batteries, J. William and J. Rogers
London.

London.

 Anonyme de Ma
Roya, Paris.)
3188. PJED FAB
3188. PLLed Fabrics, D. Marcon, Paris.
3189. Metallic Tobes, R. Heeley Shirl
3189. Metalle Tobes, R. Heeley, Shirley.
3190. Hampers for Transporting Botries of Acids,
H. Brunner.-(C. Garneri, Paris)
H. Brunner. - (C. Garneri, Paris.)
3191. BRICK-MAKING MACHINE, P. Effertz, London.
3192. VALVEs, A. F. and R. F. Craig, and R. Motion,
3193. Treating Lingeed, A. Ford, London.
3199. Looms for Weaving, W. Smith, Hey
J. Wrigley, Bury.
3195. RoLesers for Wringing Machings, W. Lockwood,

Sheffield.
3196. Lociress, F. Engel.-(W. Holmström, Sweden.)
3197. FIRE-ARMs, W. R Lake.-(J. H. Broon, U.S.)

3199. Preparing Compounds for Sanitary Purposes,
H. Everbeck, Liverpool.
3200. Inducing Air from Chimeys, dc., H. Burgin,
3200. Inducing Air from Chimneys, \&c., H. Burgin,
Walthamstow. 3201. Heating Water, J. H. Johnson.-(Messieurs
Guillot, Pelletier, and Co., Orleans.) Guillot, Pelletier, and Co., orleans.)
3220. CARRIAGE BRAEES, W. Corteen, Sheffield.
3203. LOADING OCEAN-GOING STEAMERS, G. Penarth.
3204. VENTLLATING WATER-Closets, J. Farrimond and
J. Whittaker, Southport. 28th June, 1883
3:05. Billiard Marking, R. Bateman, Birmingham.
3206. Ships' Berths, E. Hosking, Birmingham
2206. SHIP' Berths, E. Hoskins, Birmingham.
3207. TABLE FowNANs, W. Aubert, jun., Balham
3208. BobBIN NET MASHINE, A. C. Henderson.-
2209. Sklp-freding Pens, F. Byron, Chesterfield
3210. Propelling Steams irps, J. Stewart, Blackwall
3211. Trexing Porous Pots, T. Coad, London.
3212. Door Retrntion Stor W.

d J. Holt, 3216. RAa GRINDING MACHINERY, C. Wilson and
Scarcill, Batley Cars

Lanquereau, Paris.)
3219. ELECTRIO CVRENTS, H. E. Newton.-(A.
Gravier, Poland.)
29th June, 1888.
3220. Permanent Way, B. Swaine, Armlee, and M. H.
E. Albrecht, Leedd.
3221. Corkscanw R. w.

322i. Cooksockew, R. W. Bradnock, Moseley.
3222. Hoors for HANGING GARMENTS, \&C., W. Allison,
Glaspow,
G223. DYNAMo-ELECTBIC, \&c., MAchines, L. F. Lamkin,
London.
3224. PIANOFORTR Actions, J. J. Robinson, London.
3225. WATE WATE PREVENTERS, E. Raitt, Brixton.
3226. Briving Gear, A. Selim.-(P. C. J. Lemaire and
A. B. Poly, Paris.)
3227. Dress,
sail Heath
He., FAsteninas, G. P. Lemprière, Bal
3228. ClUTCH Couplings, A. Boult.-(M. Haas. Baden.
3229. Chromatrs of Sods, E. P. Potter and W. H.
Higin Bolton.

Higgin, Bolton.
3230 PORIFYING Commercial Sulphuric Acid, W. J.
Menzies, St. Helens.
3231. INDICATORS, S. Goodacre, Liverpool.
3232. PAPER, \&c., Boxes, H. J. Haddan.-
Saxony.)

Dynamite Nobel, swoizerland.)
3239. Rotary Evaines, W. Frost, Manchester, and T
T. Bond, Luton.
3240. Maring Fibrous Cellulose, A. M. Clark.- R (R.

Blitx, Paris.)
3241. GAS BURNERS, H H. Lake.-(A. B. Lipsey, U.S.) 30th June, 1883.

-(H. C. Reher, Hamburg.
3245. MriLsTonEs,
Cayla, Al Wiers)
Cayla, Algiers.)
3246. Obratinis.
Addie, Spain.)
3247. Cooking Ranars, J. Carrick, Glasgow.
3249. Combing Wool, dc.. J. H. Whitehead,
3249. Combing Wool, \&c. J. H. Whitehead, Leeds.
3249. PAD for SADLES, J. A. Morgan, Londond.
3250. SAFETY SADDLE BARs, H. Phillips, Birminghan

3253. WRINGING MACAINES, JTERS, Jenyon, J. Barnes, and
R. W. Kenyon, Accrington.
R. W. Kenyon, Accrington.
3254. Horge NAILS, J. A. Huggett and J. Swalwell,
Battersea.
3255. Expaustina Gas, de., W. B. Wright, Bromley
by-Bow.
by- Bow.
3256. Tricycles, \&c., C. Mather, Manchester.
325. Bolkre for MAKING PAPER, I. S. McDougall,
Manchester
3258. Designs on Rollers for Printing, J. J. Sachs,
London.
3259. Escape Water ${ }^{2 n d}$ July, 1883.

$\underset{\text { Manchestesition for Stiffening Fustians, J. Sellars, }}{\text { 3263, }}$
326. Combs. Wool, \&c., W. Terry and J. Scott,
Dudley Hill.
3268. Wy mel
3268. Winding Slivers for Combing Machines, W.
Terry and J. Scott, Dudley Hill. Cimiotti, New York, U.S.). A. Groth.-(G. and F. F. 3267. Sklf-Inking Endorsing Stamps, G. K. Cooke,
London.
3268. Reservoir Penholder, L. B. Bertram, London.
329.. FoluINe Broanclort, \&c., H. J. Haddan, -(E.

32te. GAs Motor ENoINss, G. J. Kirchenpauer and L.
H. Philippi, Hamburg.
 3277. Elocks, A. M. Clark, -(V. E. Versepuy, Paris.)
Elical Ralways, W. A. Traill, Portrush.

Inventions Protected for Six Months on
Deposit of Complete Specifications. 3131. Contrivance for Telephonive from Delivery
OFFIIE without calling on the Intervening Stations, .. Schüfler, Austria, - 23rd June, 1883 .
3141. ELEvATOR Srops, F. P. Canfield, Boston, U.S.-
25th June, 1883. 3160. Compound for Lining Furna cess, making Filters,
dc., J. Imray, Southampton-buildings, Iondondc., J. Imray, Southampton-buildings, I..ondon.-A
communication from G. Duryee, New York, U.S.-
26th Junc, 26th June, 1883.
170. PRiNIN CLOTH, L. H. Philippi, Hamburg.-
26th June, 1883 .
 3232. PAPER BoxEs, \&c., R. J. Haddan, London.-A
communication from A. Brehmer, Leipzig, Saxony.
$-29 t h$ June, 1883 .

Patents on which the Stamp Duty of \&50
has been paid. 2634. Tosacco PIpes, A. A. Percy, Glasgow. -28 th
June, 1880 .
2693 June, 1880 .
2693 SAFETY
July. 1880 . VALVES, J. D. Churchill, London. $-18 t$ 2623. MA MKING PILE FABRICS, D. Marcon, Manchester
-2688 . June, 1880. 2626. SThNDs for BortLes, W. Staniforth, Upperthorpe,
$-28 t h$ June, 1880 . 2643. Register for Telepgone Systems, J. H. Johnson,
London. $-29 t h$ June, 1880. 2674. Looms for WEAVING $\$$ S
Prestwich, - 0 oth June,

Prestwich.- 30 hh June, 1880 .
2736. MA KING ALCOHOL, J. H.
3196. F FRNACEs for Burning near Whitneys-4th Burning Pyrites, J. Mason
2635. Copying Presses, G. Lowry, Salford.- ${ }^{188 \text { th }}$, 1880. Increasing Draught in Chimeneys, A. M. Clark,
London. $-29 t h$ June, 1880 , London.-29th June, 1880.
2780. BENDING RALLS, E. W. Richards and S. Godfrey,
Middlesbrough-on-Tees.- 7 th July, 1880. 2631. DECOMPOBING OrANNIC SUBsTANCEs, W. H. and
A. Hodge, and J. Eastick, London. 28th June, 1880 .
2645. STEAM Boilers, G. H. Babcock, S. Wilcox, and
 30th June, 1880 MEAT, E. A. Kirby, Kelsey Park.-
2691. OII CAs, J. Heselwood and H. Webster, Leeds.
-1st July, 1880. 2744. 1880 . SHEEP SHEARS, W. E. Gedge, London.- 5 th July, 2749. Centre Cranks, T. Wrightson, near Stockton-on
Tees. - -5th July, 1880. 2839. TanNing Hides, S. F. Cox, Yatton.-9th July,
2700. Makina Snow, F. N. Mackay, Liverpool.-2nd 2709. Tools for Curting Tubes, s. Buckley, Guide
Bridge, -2nd July, 1880.
2726. Hay-Making Machings, J. Howard and E. T.

Patents on which the Stamp Duty of $£ 100$ has been paid.

 $\left.\begin{array}{c}\text { 2651. Treating } \\ \text { June, } 1876\end{array}\right)$ Wood, E. T. Hughes, London. -27 th June, 1876 .2663. HYDRALIC Presses, R. Wilson, Patricroft. $-28 t h$
June, 1876. 2690. Solphate of Aluminion. J. Duncan and J. A. R.
Newlands. London, and B. E. R. Newlands, Vietoria
Docks, - 30th June, Docks.- 30 th June, 1876 .
2664. Throats of Skwivg Machines, w. R. Lake, Lon-
don. -28 th don.-28th June, 1876.
2665. MAKING EXPLosivs, S. J. Mackie, C. A. Faure,
and G. Trench, Faversham.

Notices of Intention to Proceed with 985. (Last day for fluing opposition, 20th July, 1883.)

London.-23rd February, 1883,
992. Fornacrs, P. W. Willans, Thames Ditton.-23rd
February, 1883. 1016. ELECTBIC BATTRRIEs, R. H. Courtenay, London.

 ary, ,183.
1073. TRssrgrnsso Liound, F. J. Brougham, London.
-A communication from Messieurs. Hazart et Cie. 1076. Couprusuav Vircicts, J. Richardson and C. Green 1082. Bocurss, T. Robottom, Nuneaton. -28 th Febru 1106. ary, Conisinged Bed, Tabie, Chatr, and Clotth Rail,

 2663. Rorasy Soresms, H. Shield and W. N. Crockett
 2679. Crkel Pres, P. Coonan, Blackburn.- ${ }^{\text {180th }}$ May
 272.2. Eelicotric Deviors for INpocturisa Spred, \&e., R.
 2883. STopprgiva Borturs, R. R. J. Sankey, Ashford.-
 (Last day for fluing opposition, 24th July, 1888.) February, 1888 .

 ary, 1888.
1096. HYPRTrss of ALKLIIEs, C. F. Claus, London.-
 11286
March, 1888 .
188.

 And A. Linnenbrugge. -5th March, 1883.
1211. TAReEsT, F. Clarke, Canterbury.- 6 th March, ${ }_{12355}^{1883 .}$ Lathes, W. Allan, Sunderland.-7th March ${ }_{12535}^{1883 .}$ Drying Rollers, J. Horrooks, Worsley. -8 th

 1344. PRIckisk Cornd for Looms, P. Ambjorn, Paris.

 communication from C. Dion.-30th March, 1883. 1728. Thool for Powntive MAsosRy, F. Service, London. 1756. ELEcring Merrex, S. Pitt, Sutton.-A communi-

 2223. OLL Lasprs, J. Fyyte, Glasgow, and T. B. Smith,
Birmingham. -2 nd
May,
8883.

 ${ }_{2}^{2630} 1883$. SLos,", J. J. Butler, Blackheath.- 26 th May

 2777. Thestive Strentert of Materrats, A. H. Emery,

 3160. Compo
Iondon.
June 183.
3191.
Bes

Patents Sealed
(List of Letters Patent whicic panseded the Great Seal on the 6214. Gas Exvorsks, W. Watson, Leeds. $-29 t h$ December,
 7. Fith Deecmber, 1882.

 17. Carkovoorapr, A. G. Golay, Brassus, Switzerland.

 ary, 1883 . Devior for Skorriva Carper Loons,
 19. DY̌MAMO-zLectrric MAchinss, T. Rowan, London,

 68. Mow Jonuary, 1883. ${ }^{-4}{ }^{-4 t h}$ January., 1883 .

 January, 1883. DRitiva Michinss, W. Cooke, Dundee,-8th January, 1883.
131.
OBratinis
Abel, London strp-by-strep rotary Motion, C. D
 159. silicic Brccks, A. H. Dunnach

 382. Vkucures Propelikp by the RIDERS, J. Watson
and G. Whalley, Keighley, and T. Weatherill, Loeds.
 635. Sanarcikt, C. A. Morris, Herne Hill.-6th February
 ${ }_{1821 .} 1883$ Ventlintors, T. J. Baker, Newark. -10 th A pril
 (List of Letters Patent which pased the Great Seal on the
3rd July, 1883.$)$ 6182. Hobserioe Machinss, F. Wolif, Copenhagen.-

 1885. Cvinse Tosos, C. Carter, London.- - th January, 22. Souvexr for use with Pasanvs, w. Johnstone, King's Ly. Indicating the PREskTce of Gasss, J. Catz, Lon-
 Sturgeon, London-6th January, 1883.
14. SADDER of Buoccuss , \&ce., B. B. Brooks, Birming-
 151. Hasviverisg Machings, w. P. Thompson, Liver152. Cankrith January, 1883, W. Thompon, Liverpool.-10th Janu ${ }^{a r y} 1.1883$.
 1883.
774.
17 January, 1883. 184. Managro-bliegtric MAchiness, H. H. Lake, Lon
 197. Kivir Stockisos, W. P. Thompson, Liverpool.

 Birmingham, -13th January, 1883.
2266. PRodvorig Hopockeos Mrai Castixas, G. W.

 $a r y, 1883$.
$251 . \operatorname{crasks}$
$a r y, 1888$, \&x., H. J. Haddan, London. -16 h Janu-

 788. CANs for Mrat. \&o., T. G. F. Dolby, Dulwich.-
13.h February, 1883. 893. FOersacks, J. C. Mewburn, London. 17 1th Febru

 1908. SEATTS outside Cars, W. Walker, London, -14 th 1910. Scerwo-vurtisg Machises, A. M. Clark, London.

 20-20. Silh
 1888.
2074. BinkR Clensers, J. F. Hotehkiss, New Jersey,
U.S. $-24 t \mathrm{~h}$ April, 1883.
 1853. Enders. baxd Kivise Machings, R. B. Sanson,
2110.
London. -26 Ill April, 1883.
 2242. Catorivg Soor from Smoke, F. C. Glaser, Berlin.

 \rightarrow oth May, 1883 .
List of Speciflcations published during the
weer ending June 30 th, 1883 .

mulators, and self-acting meters. Thi first kind of
dynamo is an ordinary continuousily.driven on
whilst
 circular pole of the opposite cind, the annular space
between the two afforidn the magnetioctol from
hich a current is obtained by the teciprocoating which a current is obtaine
motion of a helix or helices.

 ably disposed electria, or magnotio courrents, or er else
deposits or influences the arrankement of magnetio deposits or infiuences the arrangeement oall, $\begin{aligned} & \text { mol that } \\ & \text { molecules while in a free condition physicaly } \\ & \text { heir manetic axes are }\end{aligned}$ absolutely or approximately Chior magnetio axes are absolutely or approximately
disposed symmetricaly alony the lines of ofroe. TIo
this end he fills with ir iron or stoel duust, cases of such shape as will conform to the magnetic lines of ofroe, as
thes are found to foo wuder the working conditions of the apparatus for whith they are designed. The
inventor deseribes dyynamo maxhines made on his
principle, and makes 32 claims. principle, and makes 32 claims.
 The inventor uses powdered oxid
junction with perforated lead plates.
5109. Brosirs for Curantve Purposs, B. Part
London, and J. R. Gibsom, Camden Tovn. -2 Tith

Relates to a brush in which are wires that are magnetised, and produce a magnotio filld in proximity
to the skin the brush being used for curative purposes.

 arc lamp of the differential class, in which all springs de., are done away with, the wein wht of the parts. in
each case performing the work or having to be over 5148. Dynamo, Magneto, or Electro-motiva

 and fieve magnets to overlap or interpenetrato,
whereby a large incrense of polar surface is obtained. 5149. PRocrss for Iforkasisg the Cospuctiblity

The inventor dispenses with a vibrating plate of
magnetio material as usually emploged. He causes

 ushonic receiver in a local circuit, which usually
pheludes tho transmitter and a suitable battery, und
ind Incluces tho transmitter and a suitable bateery, und
which forms the primery wire of the induction coil.
Tho secondary wire thus forms
phto of the line wire,

 June, 1882, , granted to the present inventorss and
 fiom G. Leuchs, Nurnberg, Germany.)-(Not pro

 among which the wool is laid. The fingers are then
bent onven orer the wool and the whole subjected to
bessure 5200.
 Thiverpoales to means for controlling the supply of
This reate
 magnet being in circuit with a doatury and an electrio
contact-making thermometer.

 sto bottom of its standard.
5251. Apraratu for Aerial Navioanton, P. Jensen,
London. $-3 r d$ November, $18882-(A$ communication
from G. Koch, Bavaria) $)^{-}$-(Not procededed with.) $2 d$.
The air ship or balloon is propelled and steered by means of two horizontan paddole wheels phaced on each
aide in the lower part of the balloon, and revolved either side in the lower part of the balloon, and accordance with
together or separately by motors in act
the desired motion and the influence of outer air London.-25th January, 1883.

$\left|\begin{array}{l}\text { whilo or part of the water fowing through the river } \\ \text { or canal } \\ \text { ond } \\ \text { and to an arrangemen tor for foting water }\end{array}\right|$
 between or at
motive power.

 5295. Bonzr And ortar Fornacrs, w. Mowath

 norel a arrangement of appliances or devicios, throush

 arops, moro
phurico acid.

 in tha ormm of agrating. The seond parat of the forat

Thits relates to envelopes which may buased das leter

 nent of working parts is simplified.

The body is preferably cylindrical, and has a double

 avered by an ende
movaibe borizontally.

 The inventor envelopes wires in a shield of cotton
hreads and then subjects the whole to a heat exceed-
neg.

 bined with with copper when it is required to make
bilicious copper, or even directly with bronze in special

 botwom In order to cause the ppeed with winito the the

 urfaci The invention further reatases to means for
nducing a uurrent of air from tront to rear between

 by siutable means.
5823. Maxeviactriz of Exposive Pryorroumion

 5326 . 1 orysua Luo of the next carringe.

Tho objoctatist toenabi) dirivers of arriges to open

 matanes, and simultaneously with the dopression on
tho mathob box corer tho miner box containing the

 the case, and communiating with the mand spring
arbor, and with the arbor of the hands by suttablo 5333

 5835 . Toor Hos, Dras J J. . . Alen, Brool
This oonsists in oombining with the shank or holder,

 the older.

 moring the handolo puand dow
treated is beaten by the spring.

 evglating the combination of air and vapour. Other

 Thatr land. U.S.) (Not proceadd with) 2 th operat

from 1

This consistst in in constructing the combustion or
orkiing chamber of a resgonatitve
gas
furnace

 535. Diawnis Courpsess, J. Brookea, Shenidid.-9th

Nevocastle-on-Tyne.- 9 th November, 1882. 4 d.
This relates to means for increasing the efficiency,
\&c., of the filaments of incandescent lamps by keeping them supplied with more or less attenuated hydro-
carbon gas, the deposition of carbon from which compensates for the dissipation due to the incandescence.
The inventor provides a supply of filaments in each lamp, together with an apparatus for cleaning off
carbon deposited on the interior of the glass, according
o his patent No. 4439, 12th October, 5347 . Smokeless Sroves AND GRates, R. Crane,
Surrey. - Oth November, 1882.-(Not proceded with.) The object is to provide grates for burning bitu-
minous coals without producing smoke, and consists
in making them in the form of a vase and standing it in making them in the form of a vase and standing it
in the fireplace recess. To it are attached side arms or
hoppers to ensure the hoppers to ensure the fire being replenished with coal
from the bottom. 5348. Cor Winding Machinkry, J. Place, Leeds.-9th This relates to the guide wires over which the thread
is conducted to be formed into a cop, and consists in
the use of glazed porcelain or other tubes fitted on to is conducted the formed into a cop, and consists in
the use of glazed porcelain or other tubes fitted on to
square forms made to receive them on the guide wires,
and the threads pass over these instead of over the bare wires.
5350. Drving Gear For Velocipedes, \&c., H.
Thresher, Finsbury Park.-9th November, 1882.Thresher, Finsoury Park, -9th November, 1882.-
(Not proceded doith.) $2 d$.
henen applied to to a tricyele the driving wheels are
loose on the main shaft, which carries a disc with notches for each wheel, and with them tlovers engage;
such levers also engage with a flange on the hub of the
driving whee. For varying the speed, the pedal shaft
connected to the main shaft by chain gear, two sets is connected to the main shaft by chain thear, two sets
being employed, either of which can be thrown out of
gear by a suitable clutch.
5849. Miners' Safery Lamps, T. Thomas, Glamorgan. The object is, First, to reduce the risk of explosion by surrounding ts of air which ventilate mines, and which are liable to contain explosive gas; Secondly, to extinguish them simultaneously with the act of open-
ing them. extinguish
ing them.
5351. Apparatus por Sionallisg on Railways, R.
Clav, London.-9th November, 1882.-(Not proceeded

This relates to apparatus whereby signals are exhi5352. PApER-HOLDER For Usk in Water-closers, B.
Schoof, Germany.-9:h November, 1882.-(Not proceeded with.). $2 d$
This consists in placing a pile of loose sheets of paper in a box and causing them to be pressed up by
apping, and the top sheet removed through an open-
ing in the front of the box. ng in the front of the box
5353. Carbons for Elegrric Liahing, H. C. B.
Shalders, Newo London-street.-9th November, 1882 .

The inventor takes moss peat of the genus sphagnum, such as is imported calcines it. The material is then ground to powder and sufficient syrup of sugar added
to make a paste. The mixture is then compressed in to make a paste. The mixture is then compr.
moulds and submitted to a high temperature.
5355. STAYs And Corsers, M. G. Totterdell, Landport. This relates to arranging fastonings for stays and corsets, First, so that they do not project from to
face of the bunk and and wear to outer karments and, Secondly, to prevent the upper or
ower fastening becoming detached while fastening lower fastening becoming detached while fastening
the others by arranging them vertically instead of horizontally.
5358. Hypraulic Accomulators, W. Smith, Aber-
deen. -9 th November, 1882.- (Not proceeded vith.)

The object is to dispense with the weight or load on the rams of hydraulic accumulators, and it consists in springs equilibriated or made uniform by means of 5357. Folding or Collapstrie Boxes, and Machi-
NERY for Scoring or Creasing Paper boards NERY For Scoring or Creasing Paper Boards
Foo Formivg such Boxrs, A. M. Clark, Loodon.
9th November, 1882 .- - A communication fcom W. 9th November, 1882.-(A commun
H. Rogers, Brooklyn, U.. . $6 d$.
H. Rogers, Brooklyn, U. 8 .) $6 d$.
The box blank is formed with flaps one cut to form
two locking heads or tabs, and the other with a slit to two locking heads or tabs, and the other with a slit to
receive the tabs. In the machine for scoring the receive the tabs. In the machine for scoring the
blank, the score is made by compression between a
and blank, the score is made by compression between a
head having a guillotine action and a ribbed bed, the
material being scored by two successive blows promaterial being scored b
duced by suitable cams.
5358. Traneportable baking Ovens, E. A. Brydges,
Berlin.-9th November, 1882.-(A' communication from D. Grove, Berlin.). $6 d$. . (A communication This relates to baking ovens, so arranged as to be
capable of being readily placed on a carriage. The
baking operation is continuous, the materiol baking operation is continuous, the material being
charged by sheet metal plates running on rollers. The charged by sheet metal plates running on rollers. The
baking compartment is heated by hot air guided
around the fire-box by canals, and then circulating around the fire-box by canals, and then circrulating
round the walls and crown of the baking compart round the walls and crown of the baking compart-
ment. The walls are double, and a non-conductor
interposed between them. interposed between them.
5369. VEloctrpedes, J. Noad, H. Blackivell, jun., and
H. B. Bunkell, London. -10 th November, 1882. 2 d. The object is to obtain increased power in the use of the tead of being applied directly to the cranks applied to a separate bar, one end of each of which
bars can slide in or on the fork, while each bars can silde in or on the fork, while each bar receives
the end of a crank, and towards its outer end each 5370 Packing
 Nocvember, 1882. .- (A communication from Dr. M.
Closset, Belgium.)
$4 d$. The meat is placed in cases, and air exhausted by a
pump, after which an antiseptic liquid is introduced, such as alcohol, vinegar, or a solution of borax in
water. The liquid is then forced out by a gas containing no oxygen, and which will not act upon the meat,
and the case closed. 5379. Lobricarors, W. L. Wise, London. -11 th
November, 1882.-(A communication from B. Baudel,

Paris).- (Not proceeded with). 2 d,
feeding vessel containing the lubricant communicatos with a cylindrical passage below, between the
extremities of same. One extremity s s closed by a small valve acted upon by a spring, and behind which
is the outlet tube leading to the surfaces to be lubricated. In the passage near the oppositite end is a a small
cated
piston, the rod of which is acted upon by the engine 5380. Valves and Cocks, F. P. Preston, J. T. Prestidge, Deptford.- 11 th November, 1882. $8 d$.
The objects are to prevent leakage, to enable the stuffing-boxes to be riction and unfliciency of valves. The drewing shows a double-seated valve, the upper
valve formed on the spindle, the lower part of which

is screw.threaded and works in the lower valve B,
guided in the bottom cover C to prevent turning. guided in the of valtye A and the top of prevent turning.
The bottom sat
themselves respectively on the top and bottom of a themselves
partition D .
5384. Composition of Journal and other Bearinob,
A. M. Clark, London.- 11 th November, $1882 .-(A)$ This consists in the use of an amalgam of mercury
with bronze, copper, tin, lead, or antimony for the with bronze, copper, tin, lead, or a
5398. Apparatus for Grinding Lawn Mower
Cuttrrs, T. H. Gillott, Royston. -13 th November,
1882. 6d.
This consists in an apparatus for grinding lawn mower cutters of the combination of a slotted hollow shat or seeve, connected to the grindstone through the slot
nut
in the sle th
5401. Apparatus for Removing Borrs, \&c., prom
Wool, A. J. Boult, Londom.-13th November, 1882 .
 This relates to the arrange
5402. Stana Wisches and Crangs, W. Allan, Sunder-
land. -13 th November, 1882 . $6 d$. This relates to the construction of steam winches casing, whilst the crank shaft is above the top plate of to the barrel which is carried by brackets on the out 5404.
5404. Machinery por Winding Paper into Rolls,
G. W. Osorn and Dr. W. Yates, Chelsea. $-13 t h$ No. Venber , , ises. partly to an arrangement whereby whilst one roll of paper is edgein of another roll previously
the spindle, the ends or edges formed or wound upon that spindle can be "knocked
up or straightened.
5405 . Extexsion Rule or Gavag, J. F. Stephens, Bristol. 13 to November, 1882. 6d.
This relates to the construction and arrangement of the rule graduated so
gauge. 540G. Punching and Riveting Machines, J. D.
Morrison, Gateshead.-13th November, 1882.- (Void.) This relates to the construction of the cylinder containing the ram, so as to form a strong guide on which
slides a strong arm or leg carrying the punching or slides a strong
rivetting tool.
5408. Treating Textile Materials with Liquids
J. Wetter, New Wandsoorth.-13ih November, 1882 ,

- (A commumucation from 0. obermaier, Bavaraa.
-(Not proceded vith.) $2 d$. This consists essentially in forcing by means of
pump a continuous current of fiquid into a perforated tube, rising inside a cylindrical or prismatic re
in which the material to be treated is placed.

5410. Steam Sterring Apparatus, J. Duncan, Lon-
don -13 th November, 1882.4 d. A direct steam-steering gear is arranged to stand over the rudder head or on the bridge, being con
nected to the tiller by a lever on the machine or appa

ratus worked in a circular direction. A quadrantshaped steam cylinder A is used and fitted with circular
automatic valve . All chains and ropes are dispensed with, the tiller lever X being secured to the axis of
when the piston.
5411. Mandiacture or Bisulphite or Soda, B.
Carey and F. Hurter, Widnes. $-18 t h$ November, 1882. This consists in the manufacture of bisulphite of soda by the employment and treatment of mono-
hydrated carbonate of soda by subjecting the same to the action of sulphurous acid gas.
5412. Verocipedge, F. Weldon, London. -13 th Novem-
ber, $1882 .-$ (Not proceeded with.) $2 d$. The object is improvements in velocip by coupling together in suitable manner two or more
drivigg wheels propelled as in the ord driving wheels propelled as in the ordinary bicycle
with or without their trailing wheels, two or more with or without their trailing wheels, two or more
nersons may propel the machine, one rider only pre-
erably being required for steering 5419 being required for steering.
5413. Apparatus for Mariing or Scoring in Card
Playing. G. F. Redfern, London,-14th NovemVienna.) $6 d$. This relates to a frame provided with rods, upon
which a number of balls are caused to slide. 5423. Sterring Vessels, W. Pepper, Kingston-upon-
Hull. $-14 t h$ November, 1882. 6 d . This relates particularyy to steam-steering apparatus, the object being to simplify construction and mprove
the working. The slide valves are abolished, and a
valve of special construction admits the steam to valve of special construction admits the steam to two
cylinders, and is mounted on the steering wheel axle cylinders, and is mounted on the steering wheel axie
under the control of the steereman. By the use of
this valve the compensating this valve the compensating gear ordinarily employed
is also abolished. In the drawing A is the frame and is also abolished. In the drawing A is the frame an
B the chain drum mounted on shatt C , which also
carries a worm wheel D, actuated by a worm F on carries a worm
transverse shatt carrying dises at either end actuated
by the cylinders . The steering wheel I is mounted by the cylinders H . The steering wheel I is mounted
on an axle J fitted with pinion K gearing with a whee

5423

formed on the worm wheel D . A disc valve M is mounted on axle J and works in the valve-box L of
the cylinders H, such valve having ports for the xhanst and inlet of both cylinders. By turning the wheel I a lead is given to the valve, and steam
admitted to cause the apparatus to work in the required direction. To prevent the steersman over-
running the engine with the valve a stop arrangement is provided. The pinion K has an enlarged keyway to receive a feat
of such axle.
5424. Lithooraphic Presses, R B. Hayward, Lon-
don. $-14 t h$ November, 1882.-(Not proceded vith.) ${ }_{2 d}{ }^{2}$. -14 November, of a cylindrical form for the flat stone at present em ployed.
5425. Envelopgs, R. B. Hayward, London. $-14 t h$ No-
vember, 1882,-(Not proceded vith.) This relates to a means for proventing the surreptiHious opening of the envelopeg.
 The method of manufacture consists essentially in
rinding Bath or other stone with linsee oil and
sith grinaing Bath or other stone with linseed
than thickening by the aditition of whiting to form putty.
5437. Pressrvatron of Muk, M. B. and O. B. Pohl,
Liverpool. $15 t h$ November, 1882.
6d. This reateos st the conntruction
serving milk in large quantities.
 This consists in the supplemental use of two special from ordinary, which receive the and fixing all the ammonia in applying steam jets to the serubbers at oertaine
points, so as to render the working continuous; the points, so as to render the working continuous; the
dilution of the sulphuric acid used to a certain
ppecific gravity, thus ensuring the highest results as to time and production of salt; the substitution or stean evaporators for pans, the use of cast iron or ireclay
retorts, with a drying chamber above, and with or
without an exhaust, and the use of silicate of soda for filling the pores of fire-clay retorts and producing a plaze; the substitution of ivory black as a lute, and nd certain periods intermittently during the process
to $\begin{aligned} & \text { carbonisation. An improved model of working is }\end{aligned}$ af carbo described.
1347. DyNamo-rlegrric Machines, H. \boldsymbol{H}. Lake, Lon
don. -13 th March, 1883 . - (A communication from G. W. Fuller, Norroich, Conn., U.S.) 6 d. This relates to improvements in the dynamo
described in the inventor's former patent, No. 1313 ated 12 th March, 1883 . In the present case the
nnular armature core, instead of having the polar proannular armature core, instead of having the polar rpo-
minences upon its periphery and sides, is composed of

two long segments of iron, secured to two short seg-
ments of non-magnetic material, and in the two ments of non-magnetic material, and in the two
circles of rotating fild magnets. The magnets of like
polarity adjoin each other, and are united by common polarity adjoin each other, and are united by common
pole pieces, those on either side of the axis being of opposite polarity. The armature core, which is in the
form of 2 flattened ring, is suspended in the bight or bights of one or more cables, hung over a suitably
elevated loose pulley-see Fig. 2-and is provented elevated loose pulley - see Fig. 2 and is prevented
from swaying laterally by means of good gutde rollers
acting through the spaces between the stationary coils from swaying aterang throgh the spaces between the stationary coils
acting thro
upon the convex portions of the cables embracing the

corr. The core is thus carried round by the attraction of tbe rotating field magnets, and its division into segments of magnetic materials causes the estabilsh
ment in it of permanent poles at the ends of the segments. The coils of magnets and armature are in the
same circuit. A peculiar commutator and brushes are
and same circuit. The pecchinhe communtatister herewith, Fig.
employed.
1 being a side elevation, and Fig. 2 an end elevation.

SELEOTED AMERIOAN PATENTS.
 Prom the United States' Patent Office Official Gastle.

278,766. Jink Box For Steam Enaness, Hiram 1883.
Claim. -A link box for steam fire engines having its 278.766

exterior and interior bearing surfaces composed
saw hide, substantially 2 set forth.

278,830. ExTEssion Table, Robert W. Taevner,
West Bay City, Mich. - Filed April 8th, 1881 . Claim.- - (1) The coumbination, in an extension table, the central portion of the flexible top formed of slats
 and forming part of the end supports, substantially
(2) In an extension

table made in sections and having a flexible top, as
described, and in combination with said seetions and top, the side plates K , fastened one at each side of the outer sections of the table, sain plates being provided
with internal spiral webs J, forming guides fo reciving the edges of the flexible top, substantially a
recified.
sper speciue.
279,O11. Fireproofing and Furring Deviog, George
B. Phelps, Washington, D.C.-Filed January 10th, Brief.-A hollow metallic base or form for the
moulding, and of substantially the same contour in [279.011

ross-section, is secured to the ceiling beneath the eams by hooked hangers arrarged at in
engaging with slots in the sides of the form.

CONTENTS.

The Enaineer, July 6th, 1883.
page
The Production of Iron by the Siemens Direct Procks from Enankinekring and Metal Trades Exhibition.
 KIRKNLDY's Frese-water Condenser. (Illus.)...
Rotary PUMp. (lluustrated.) etters to the Editos-
Old and New Atlantic Stenerers
Machinkry Exhibits at the Fisherigs Exhi-

Telegraph a

Kingonan arsenal. (Illustrated.)...
Roval Society of New Souti WAles
ROYAL SOCIETY OF NEW
RAILWAY MATERS
NOTES AND MEMORANDA
Notes and Memoranda
Miscellanea
Lisading Articles-
The Enginekring Exhibitio
The Catastrophe on the ${ }^{\text {entyde }}$
BASIC SAEEL AT AMsTERDAM
PRICE AND PRofit on Cars
Price and Profit on Ca
Books Regekved $\quad . \quad$.

 ASSERR
NERE SUPRLY of Electriotity by Local Authoritigs...
SEPARATE SYstem of Sewerage Separain wher Stpply
 Notes from Lancashire

The Patent Journal
Abstracts of Patent ipgifications. (illus.) $\because \because$ Abstracts of Patent Spgcifications. (Illus.)...
Abstracts of Patent Ameican Spgoifications. PARAORAPHS-)
Paraopaphs-
Railway Bibliography in Russia
Wasts
Washing the Surfaces of
A New Light Railway
The District Ventilators $\quad \because \ddot{\text { Civil and Mechanical Engineers' }} \ddot{\text { Societ }} \boldsymbol{y}$ Civil an
Launch

Proposals have been put forward in Ceylon for a narrow-gauge line of railway for the loca accommodation along the Ratnapura-road as wel as for the abandonment of the existing broadmain line.
South Kensington Musedm.- Visitors during the week ending June 30 th, $1883:-$ On Monday, 10 p.m., Museum, 10,113 ; mercantile marine,
Indian section, and other collections, 4837. Dn Wednesday, Thursday, and Friday, admission
6d., from 10 a.m. to 6 p.m., Museum, 2335. 6 d., from 10 a.m. to 6 p.m., Museum, 2335 ; mercantile marine,
collections, 1433 . Total, 18, 18,718 . Average of corresponding week in former years, 18.884. TT,
from the opening of the Museum, 22,148,572.

