THE INSTITUTION OF MECHANICAL ENGI ENGINEERS.-MEETING AT LIEGE. The annual excursion of the Institution of Mechanical Engineers is made this year, as we have already announced, to Liége, a fine town, and the centre of Belgian industry. Institution assembled at the Town Hall, Liége, in the Salle des Pas-perdus, where they were received by M I Trasenster and the members of the Reception Committee M . Trasenster having addressed a few words of welcome to the party, they were conducted to the salle des to the party, they were conducted to the Salle des
Mariages and presented to the Burgomaster. M. Mottard thanked the Institute for having selected Liége as the locality for their annual excursion. The president, Mr. Westmacott, made an appropriate reply, and asked perhe read an able address in which he complimented Belgian engineers on their skill and their taste, and went on to indicate at some length the work done and the part played in the world by the mechanical engineer. The principal text "Engineering brings all other sciences into play. Chemical or physical discoveries, such as those of Faraday, would be of little practical use if engineers were not ready with mechanical appliances to carry them out, and make them commercially successful in the way best suited to each. One of the latest instances of this, perhaps, is the application of electricity to the light ing and working of mines The result of all this is continual race, as it were, between the engineers of the same country, and also between the engineers of different countries, in the invention of new and the improvement of existin appliances. The keen and continued attention thus bestowed upon the work to be done, and the means of doing it, has led engineers in general to regard speed of production as one of the first elements of suc cess. There is indeed a proverb, 'more haste less speed,' but this, though true of human labour, which ceases to be accu rate when forced beyond a certain rate, does not hold good of mechanical processes. Generally it may be said that rapidity of working not only rethe result, and also confers great benefits from the way in which it bring out and perfects the highest qualities of the engineer. To be able to do a thing leisurely and quietly, materials and the rudest wormanship; but if work is to be done quickly, or move quickly, the case alters. Mechanical energy increases as the square of the speed; and so it may be said that the mental energy and skill required to carry on work increase also at something like the
square of the speed with which that work is done" that he might be pardoned president went on to remark degree of pride the position now attained by the engineer "For if the inventive skill of the engineer had not provided those appliances on which all trades are dependent for cheap the result of the great increase in population which has taken place in recent times ? The nations of Europe would be like the hordes of barbarians in the early ages bouring countrianity, who were compelled to overrun neighprovide an outlet for their own pord, in order to the advances of commerce and industry, consequent upon the invention of mehanical processes and appliances, have home, and to send their children cheaply and readily to unoccupied countries, where they are at once able to utilise and to subsist upon the boundless resources which those countries contain. A great debt is therefore due to the does not owe more to George Stephenson as the founder of the modern system of speedy transport than to any of the great public men she has produced. Nor is the advantage and which relates to money only; it is a question of peace industries, the less risk there is that they will be inclined 0 engage in devastating wars.
hat immense other advantages following in the train of taken place all over the world Ameering progress which has taken place all over the world. Among these may be Whilst the mere tilling of the land thereby to education. by a man totally devoid of education, this becomes impossible if he has to exercise arts requiring skilful training.

Belgium has been especially ready to recognise this fact of the working classes are justly considered a model for the of the working
rest of Europe."
M. Trasenster proposed a vote of thanks to the speaker which was cordially passed. It was seconded by Mr . Crampton in a humorous speech, highly applauded, and
winding up with a wish to see Belgian engineers in winding
England
On Tu
On Tuesday morning the members met in the fine hall of the Société d'Emulation. The proceedings began by the president, Mr. Westmacott, announcing that the Council of the Institution had elected M. Trasenster honorary member. M. Trasenster is Rector of the University, and president of the Association of Engineers, by whom the members of the Institution have been invited to Liege. The announcement was received with cheers. M.
Trasenster responded in suitable terms, and after some routine business had been transacted, M. E. de Laveleye read his paper "On the History of the Iron and Coal Industries in Belgium." The author made a quite needless apology for his English. The paper is so admirably put together, and contains so much interesting information concerning the doings of our able competitors, that we
commence its publication in full this week. No discussion

THE VIENNA ELECTRICAL EXHIBITION-PLAN OF BUILDING.
followed, but a cordial vote of thanks was passed to M. Lavaleye. A paper was then read by M. St. Paul De Sinçay, of Chênée, "On the Manufacture of Zinc in
Belgium." We can only give an abstract Belgium." We can only give an abstract here. The
author began by saying that at the author began by saying that at the epoch of the
Roman invasion the Belgians were already disting foman invasion the Belgians were already distinguished for their skill in the working of metals. Under the reign of Charlemagne they understood their artistic treatment; and by the tenth century they had acquired great skill in the casting and chasing of goldsmith's work, as is shown by the numerous and remark able specimens preserved to this day. There is therefore nothing astonishing in their having been the first nation of Western Europe to understand and practise the manufac ture of zinc.
The continual communication which, from a very remote epoch, they kept up with the East by way of Germany, introduced into their country a new metal of a fine yellow colour, and having the qualities of copper. This metal the Greeks distinguished by the name of Orichalcum; it had been produced from a remote period in Asia Minor, and in the Isles of the Archipelago. The Belgians soon learned that it was made by alloying copper with a mysterious substance contained in calamine rock. This rock was probably known throughout a large part
of Belgium,' because both in the strata of the Devonian formation and in those of the carboniferous era it formed numerous superficial deposits near the banks of the Meuse between Givet and Liége. Again, in a corner of the Duchy of Jimbourg, not far from the Liége district
and from the frontiers of Germany, there existed a bed of and from the frontiers of Germany, there existed a bed of This great bed was subsequently named, from the territory containing it, the Moresnet Bed. It is generally
admitted that here was the seat of the first working of cala mine-carbonate of zinc ; it is at least certain that at a very distant epoch this mineral was mined there, but the actual date when the working was begun has not hitherto been exactly determined. Ancient documents relate that calamine was raised in the neighbourhood of Moresnet at the beginning of the seventh century. Under the date of July 5th, 1435 , mention is made of the concession of a zinc mine accorded by the Duke of Limbourg. In a record of 1439, a notice occurs of the calamine mountain "which the men of Aix were accustomed to work." This working at that time abandoned, must have dated from a very distant period. From this circumstance the calamine bed where it existed received afterwards the name of Vieille Montagne, or Altenberg. In 1454 the working of thi Philippes recommenced, according to a concession made by Philippe le Bon to the Sieur Arnold Van Zevel.
After further recounting the history of the metal, the author referred to the discovery of Daniel Dony, of Liége The Government imposed on their lessee, Dony, an obli gation to make "such experiments as might be judged useful, in order, by the aid of suitable furnaces, to reduce calamine to a metallic state." Dony accepted these condi tions, and set resolutely to work. The task was a difficult one. It required long effort, great expense, and numerous attempts ; but the original and persevering genius of Dony overcame all difficul ties. On the 7th December, 1809, he demanded a patent for fifteen years, "for the construction of a furnace suitable to extract zinc from calamine, and for the processes employed in this operation." This patent was accorded to him by Imperial decree on the 19th January, 1810. The Liége method of reducing zinc ores was now
discovered, and Dony had given his country a new industry which was destined to have a vast development. The small establishment which he had founded at Liége in the Faubourg St. Léonard, in order to carry out his researches, became the first zinc works of Belgium.
The second furnace was The second furnace was
started on the 28th Janustarted on
ary, 1810.
The discovery of Dony had cost the inventor considerable sums required for his experiments. He was recompensed by the protection of the authorities and by the praises of scientific men; but this was not sumficient to restore his broken fortunes. Metallic zinc was at that time applied to very few purposes. Dony hoped to find a market for his metal with the brassfounders, but these, influenced by routine, preferred to treat their copper by means of calamine, as their fathers had done before them. This failure imposed upon Dony further efforts, and a second task still more arduous than the first. After having discovered the method of producing zinc on an industrial scale, it was now become necessary to find applications for it, and to promote its use. In one word, the newly-obtained metal had to find its place in the ranks of ordinary and necessary materials.
Indefatigable as ever, Dony set resolutely to work, but the effort was beyond his power. He associated with himself for some time the Sieur Chaulet; but in 1818, completely ruined and worn out by his labours, he definitely resigned in favour of Dominique Mosselman. The latte gave a strong impulse to the zinc trade, but despite his great powers and rare energy he did not succeed any mor than Dony in bringing to completion the work whish he had undertaken. In 1837 his sons took up the task, and formed with their father the Société de la Vieill Montagne. The resources of the new company wer considerable; in the first place it possessed the grea calamine concession whose name it bore, and com prehending the whole Moresnet district. Next, it possessed two foundries in actual work-that of St Léonard, which was now considerably enlarged, and another recently erected near to the mines on neutral territory. A third zinc works then in course of construc ion at Angleur, on the left bank of the Ourthe, also belonged to them.
In 1837 the two first of these foundries produced together 1833 tons of zinc; the next year the Angleur works contributed to the production, which rose to 2540 tons, Thanks to the creation of new markets, the make of zinc then received a large development; new furnaces were built, and the production of the three works of Vieille Montagne advanced rapidly from year to year.
By the annexation of several competing works the Vieille-Montagne Company has seen its production increas from year to year until in 1882 it reached a total

 \qquad

 or washers, holding between them an annular pad,
of chopped-upasbestos fibre, which by the force of discharge
is pressed close to the bore, and forms the most simple and perfect kind of gas check yet known. Figs, 4 and 5 show the
ield gun. calibre, 3 38in.; diameter of chamber, 402 in.; total tield gun; calibre, 3 38in, diameter of chamber,
length, 6 tit. $10.68 i n . ;$ length of bore, about 23 acaibres. These
dimensions may be compared with those of our 13 pr. gun now

.

\qquad B

 generally purified by re-melting. Lastly, "Blanc No. 2 in

THE SERAING STEEL WORKS OF MESSRS. COCKERILL AND CO.

in Krupp or Elswick guns, or those of our own service guns
generally.
taken from a hill on the left side of the Meuse, imme-
diately behind the house of the engineer-in-chief, Herr Kraft. To the right is seen the suspension bridge thrown across the river by the company a few years ago. A little to the left of the further extremity of the bridge is the old Abbey of Seraing, that now serves as the parish church. Then, in the same direction, comes the château of the Bishop Princes of Liége, bought in 1817 by John Cockerill, and which now does duty for the offices, as well as for the residence of the general manager, M. E. Sadoine whose garden is seen still more to the left. Behind the château and gardens come, in turn, the ironworks, the large and small foundry, the four new circular and the three old square blast furnaces, and the steel works, while behind all is the Seraing Station of the Chemin de fer du Nord. Belge, affording direct communication between the works and the principal centres of Europe Quite in the background are seen the surface works of the Collard Colliery, the new pit gear and engines of which have been carefully designed.
Returning now to the Meuse, it will be seen that a canal leads from it almost to the middle of the works; this was formerly used much more than it is at present, but it still The new landing stage of thestone, flux, and native ore. The new landing stage on the river's bank receives the Spanish ore direct from the companies' mines brought in their own steamers, built at the Hoboken Shipyard, near
Antwerp. The ore is raised Antwerp. The ore is raised by a lift, and run along by behind, whence it is led by an easy round the slag heap, seen the furnace mouth led by an easy downward gradient to stage are the Apold. Immediately behind the landing and the Marie Colliery on ths, and between these latter: stocking rails, \&c. Tor river, are the large workmen's of che view, and facing the are let for about a ouvrieres, as they are called, is the Caroline Colliery, and to the right of it in the far background is coliery, and to hospital.
The works, which were begun in 1817, now cover an supplied by the two equals that of 12,000 horses the deighty odd engines nearly exceeding a thousand tons, Thera 5 sulipion of coal working, 306 coke ovens, 7 blast furnces, 40 active puddling and welding furnaces, 11 rolling 40 double verters, 18 heating furnaces, and 80 smith fir, 4 connumber of hands at present employed is 11,000 . The amount paid yearly in wa es is ayeut 1,000, and the value of work turned in wages is about $£ 400,000$. The the capital of the company being fifteen millions or $£ 600,000$. The works are 100 locomotives, 70 stationary 10,000 tons of bridge, girder, and boiler work, and 15 steel or iron steam-vessels.
The annexed plan of the steel works, shows the arrangement of the row of boilers fired by the waste gases of the four full-sized blast furnaces, with the mixing Hoor, Whitwell stoves, and three blowing engines between them. The mouths of the blast furnaces are closed by a happy combination of the cup and cone with the central gas tube, the joint being made good with a water seal. Of the two Bessemer pits, one is on the ordinary system, and serves for making special steel, while the other, on the American model, is used exclusively for rails. The blooming and finishing trains, the finishing machines, and the rail beds take up the rest of the space.
There are four large furnaces on the Bicheroux system, shown in the annexed views. The length inside is a metres, and the breadth $4 \frac{1}{2}$ metres, sufticient to take space of and an ingot togetner, while there is a clear of the about half a metre between them and the crown Siemens furch. The principle is the same as that of the therefore the he, but the combustion is not so perfect, and form part of the furn so intense. The gas generators air entering by parallel passages. Some Gjers soaking pits have been in operation during the last fortnight, during which time only three of these furnaces have been needed; and it is intended, if the process continues to give the same good results, to work with only three furnaces, and also to reduce their length.
The first idea of the direct-acting reversing engine for works was suggested to M. Greiner, the iron and steel M. Greiner ther, by the late Mr. Menelaus, of Dowlais, engine, to work on to putting up a Ramsbottom reversing calculated that the production would not equal that of a three-high mill. Mr. Menelaus said that, in such a case, he would try "something else," though he did not say what. Accordingly M. Greiner cudgelled his brains to discover Mr. Menelaus's meaning, and the result is the engine shown in plan and elevation at pages 62 and 70 which is the first of its kind made. The diameter of the cylinders is 1 m . (3ft. 3 sin. I .), and the stroke 1.20 m . (4ft.), the separate condenser being always in operation. The engine is fitted with double-beat steam valves, and Gooch's straight links, carefully balanced. The rail is made from the bloom in thirteen passes, some of the grooves being passed through twice.
and general idea of what the visitors more than a vague and general idea of what the visitors, who were most hospitably received by M. Sadoine, saw. We reproduce veroatrm the programme placed in the hands of the visitors, to give an idea of what they saw, and the progras faithfully carried out.
Arrival by tramway, Seraing Bridge
Reception by the Director-General
Arrival by tramway, Seraing Bridge
Reception by the Director-General...
Lunch, Great Hall of the Castle
Lunce.............
Principal court (ordnance and library) Principal court (ordnance and library)...
Mechanical Engineer's office (... Pattern-makers' shop ... (photography) Pattern-makers'
Director's office...
Secretary's, cash,.., and other officess
Engine works, Nos, 1 to 7 (bolt-making shop ${ }^{\text {included }}$...

 Smithy and forges (refectory) \ldots...
 Steel Worriks Four biast furnaces (vertical blowing engines
and Whitwell stoves) American Bessetseres soundry (vertical biöwing Rail roes
 Martin- Siemens steel foundry
Foundry
cost tron and bara brass

1. Tocomotive shed
2. TTomer sto and
W. Worem

Colard Colliery ...
Platean
firon

 Coistsi, rail and Departure in steai
Arrival a t Litige
In the evening the annual dinner of the Institution took place, and was a great success.
2.45 to 3.00
3.00 to 3.15
3.15 to 3.30
3.30 to 3.45
3.45 to 4.00 4.00 to 4.10
4.10 to
4.20 to
4.20
4.30 4.20 to 4.20
4.30
4.45 to 4.45
4.00 4.45 to 3.00 5.00 to 5.15 5.15 to 5.45 5.45 to 6.00 6.00 to 6.05
6.10
6.15

INTERNATIONAL ELECTRICAL EXHIBITION IN VIENNA, 1883.

INTERNATIONAL ELECTRICAL EXHIBITION
IN VIENNA, 1883. No. I.
Stree the great Exhibition of 1873, no display of an international character has been held in the building in the Prater. Shorn of its vast proportions, its picturesque
gardens, and numerous kiosks and pavilions, nothing gardens, and numerous kiosks and pavilions, nothing
remains to remind one of the stately edifice but the remains to remind one of the stately edifice but the
Rotunda and the quadrilateral group of galleries surroundRotunda and the quadrilateral group of galleries surround-
ing it, and these have been retained rather on account of ing it, and these have been recan or any other purpose, as
the expenses of demolition than for
hitherto the annual shows of horses, cattle, milling hitherto the annual shows of horses, cattle, milling
machinery, \&c., have barely been sufficient to cover the machinery, \&c., have barely been
expenses of maintenance and rates.
The Exhibition, however, of electrical appliances to be opened on the 1 st August will, we hope, bear more profit-
able fruit. A finer building for the purpose could hardly be found. The vast proportions of the Rotunda and its circular form afford a most favourable opportunity for a
luminous display; and judging from the programme of the committee, every poin of vantage has been seized to enhance the effect. To form some idea we append a plan
of the building, with a general description of the installation, and a few dimensions of the main space to be ighted.
The diameter of the Rotunda between the walls is 425 ft : its height to the lantern 215 ft . The area of the floor is 42,500 square feet, and the cubic space $1,310,000$ cubic
feet. The proposed method of illumination is as follows :feet. The proposed method of illumination is as follows :-
The lantern at a height of 215 ft . will be illuminated by an arc lamp of 25,000 -candle power with deflected rays. The upper gallery, about 160 it. above the floor, wil bear a
wreath of 28 arc lamps requiring a current of from 25 to 30 ampères. The lower gallery at a height of about 80 ft . will carry 112 arc lamps of less brilliancy requiring a current of 10 ampères. The arches on which the Rotunda is
supported will be lighted by 56 are lamps, and 36 arc lamps will be grouped in the centre of the building. Thus, the Rotunda will be illuminated by about 233 arc lamps with, in round figures, 250,000 -candle power.
About 450 are and 3000 incandescent lamps will be required for the remainder of the Exhibition, offices, \&c. \&c. The south approach will be illuminated with incan-
descent lamps only, and the space in front of the north descent lamps only, and the space in front of the north the Rotunda itself, as will be seen from the plan, is devoted
entirely to scientific instruments, telegraphic apparatus, entirely to scientific instruments, telegraphic apparatus,
telephone stations, electro-therapeutical appliances, and telephone stations, electro-therapeutical appliances, and and nationality. The east wing of the northern gallery
will be filled with pictures, stationery, \&ce, and partly fitted will be filled with pictures, stationery, \&c., and partly fitted
up as studios, to illustrate the effect of the electric light on up as studios, to illustrate the effect of the electric light on objects of art, and for the purpose of drawing, painting,
\&c. The north wing of the eastern gallery will be be converted into a series of interiors of dwelling-houses of every description, from saloons down to the modest apart-
ment of a modern citizen's residence, and will be entirely ment of a modern citizen's residence, and will be entirely
lighted with incandescent lamps supplied from accumulighted with incandescent lamps supplied from accumu-
lators, to familiarise the public with this method of procuring light. The southern wing of the eastern gallery
will be arranged as a theatre, lecture-room, and hall for will be arranged as a theatre, lecture-room, and hall for on alternate days by arc and incandescent lamps, to enable a perfect comparison to be made between the two systems
for this purpose, in regard to effect, cost, and general for this purpose, in regard to effect, cost, and general
results. The southern wing of the west gallery will be results. The southern wing of the west gallery will be places of amusement, and for the reproduction of concerts, \&c., for the benefit of those frequenting the Exhibition. The corner pavilion of the western gallery will be
arranged as a reading room, where all the literature arranged as a reading room, where all the literature
referring directly or indirectly to electricity and its appliances will be placed gratis at the disposal of visitors.
The offices for scientific committees and experiments are placed under the southern arcade, as far away as possible
from any machinery in motion, or otherwise, that might affect the sensitive instruments required in conducting such experiments as are intended
The two adjoining wings of the northern and western galleries will be devoted entirely to dynamo-machines in
motion, of which there will be about 140 , varying in power motion, of which there will be about 140 , varying in power
from t-horse power to 60 -horse power from ithorse power to 60 -horse power. The power
required to drive these is estimated at 1200 -horse power, required to drive these is estimated at 1200 -horse power,
which will be supplied by twenty stationary engines erected in the north-west courtyard. These engines are of a most varied and interesting description, comprising rotary engines, compounds with three and four cylinders, eight gas engines of a total of 80 -horse power - amongst
them one of 40 -horse power-two hot air engines, and divers small hydraulic motors, worked direct from the
water mains. The steam required will be provided by
thirteen fixed and twenty-one portable engine boiler standing in the same courtyard as the engines.
Under the auspices of the Minister of Commerce, everything is being done in the building to make the Exhibition success. Unfortunately, it is situated so far from town carriage, entails a perfect pilgrimage through the Prater A small railway, to be worked by electricity, is being contructed, but it will have more the character of a toy than f a really sufficient means of communication. The tramway company offered to lay a track as far as the north portal, and obtained the permission of the Imperial Ranger for this purpose, but as the municipality have refused to allow them to make any extra charge for would have been th only cheap and practicable means of reaching their destinaonly
tion.

LETTERS TO THE EDITOR.
 [We do not hold ourselves responsible for the opinions of our

MARINE BOILERS.
Sir,-It seems astonishing how little real progress is made in the
performance of marine boilers. I have had some considerable experience with the old flue boilers first used in the Navy before tubes were introduced, and attended a number of experiments and testings, especially with one taken from a ship and set up in
Woolwich Dockyard in 1841 for experimental purposes. The arrangements were the same as on board a ship, with the exception
of appliances for registering results. Every kind of coal thought to of appliances for registering results. Every for the Navy was tested with it; and as I had an opportunity of making experiments with a multitubular boiler of the
modern class many years afterwards, and comparing notes, my recollections and observations on boiler performater evaporated per pound of coal. The only advance is in space occupied and strength, to meet the demands for high-pressure steam, now becoming universal. The defects of the multitubular system are so consider when materials of every description can be obtained, there seems some of the best boilers in the Navy is in the furnace 1900 deg.; in sombes, 736 deg.; smoke box, 720 deg;; in funnel 810 deg. This when
tall is clean and new, with best steam coal; on a six hours' run the results would be different when the furnace became foul. The temperature gets less in the tubes and higher in the
a-third of the coal is wasted. This is not creditable in this age of
W. A. MARTIN engineering skill.
Pocock-street, Blackfriars-road, London, S.E.

ELEPHANT BOILERS.

Sir,-As we have for many years been users of the elephant correspondence in your columns on the subject, to have our experience of them. We have three, which have been at work con-
tinually for fifty, forty, and forty years respectively, and the amount of repairs they have required has been very trifling. They are very steady steamers, and we have never had any sort of
accident with them. We have lately had them insured, and the company's inspector has passed them-even the one that has been
at work for over fifty years. They were all made by Messrs. J. at work for over fifty y
and E. Hall, of Dartford
With regard to economy of fuel, we can only compare them with Cornish boilers of good construction. In one case we have two
boilers working side by side. One is a Cornish boiler, with flue 2 ft . 10 in . diameter, fitted with seven pockets which lie across half the flue, and the other boiler is of the elephant type. Both boilers
are amply powerful for their work. They are used alternately, and the fuel consumption is, as nearly as possible, the same in both
We certainly prefer the elephant type, as we believe it to be
cases
safer and less costly in repairs, and more durable than other types. safer and less costly in repairs, and more durable than other types.
Gunpowder Works,
Dartford, Kent, July 21st.

WHITBY, REDCAR, AND MIDDLESBROUGH UNION RAILWAY.
THE work in connection with the construction of the Whitby,
Redcar, and Middlesbrough Union Railway is now completed, and General Hutchinson, one of the inspectors of railways appointed by cate oord the Board of Trade, formally examination. The certifiopening of the line for passenger and mineral traffic, is daily ex-
peeted. The new line will open up a district which hitherto has been pected. The new ine wil open up a district woses to view one of the
unknown to the general traveller, and it exposest
most lovely and romantic localities in any part of England. The most lovely and romantic localities in any part of England. The
line literally runs parallel to the sea shore, and cuts through a series of high hills, rugged rocks, and passes over extensive and
charming glens. All the way an uninterrupted view of the charming glens. All the way an uninterrupted view of the
magnificent coast scenery is obtained, and this part of the north-
east coast is probably the most truly beautiful of any to be met east coast is probably the most truly beautiful of any to be met
with. Each spot has some legend attached to it, and no locality is free from having associated with it some romantic story or poetic
allusion. The operations immediately connected with the con allusion. The operations immediately connected with the con-
struction of this new railway have been attended with many failures. The first sod was, with due and proper ceremony, cut in was then seventy years of age. She said she would see the line completed, and ought to have done, for she lived twelve years afte
that; but the work which she inaugurated, and in which she took so that; but the work which she inaugurated, and in which she took so undertook the consummation of the enterprise had apparently
under-estimated the difficulties. They met with many peculia obstructions, the exceedingly treacherous nature of the ground altogether upsetting previous calculations. The original work
came to a sudden stop. All the navvies were discharged, and there was for a period of three or four years or more a complete cessatio by the North-Eastern Railway Company, the work having been placed in the hands of Mr. Waddell. The line itself commences in Loftus; from thence it passes through various deep cutting ngineering work occurs, for here it has been found expedien
to form a tunnel through a deep mass of rock and hard-bound clay, the tunnel itself being 900 yards long. The extraordinary work which was here met with was not ended, for at the very termina-
tion of the tunnel a deep cutting had to be encountered, the difficulty of the undertaking being enormously augmented by the ocality with its neecessarily damp and "clammy" associations, one is relieved and adequately rewarded with the exceeding con
trast which bursts suddenly on the view. The woodlands hereabout are wild and beautiful. Passing this, a place locally known experienced in getting the proper foundations and effecting solidity
of work. This difficulty, or rather the singular character of the
round, may be more readily understood when it is fact that at one time, notwithstanding all ordinary precautions
to be probably the most popularly interesting, and certainly, from an engineering point of view, one of the most peculiar pieces of
work in the whole line, namely, Staithes Viaduct, is reached. This viaduct is 150 ft . in height, measuring from the bed of the "beck" below, and is 264 yards long. It is constructed entirely of iron. This was one of the weak points of the line; but since the Goverd catastrophe, singular precautions have been taken in order to test thoroughly and well its capabilities. Most extraordinary, and, we re informed, hitherto unapplied briage tests have been set in himself well satisfied with the result of the ordeal through which theseemingly slender structure has passed. At the Whitby end of this viaduct there is a neat, substantial-looking station. In passing over looking village of Staithes is seen to the best advantage. Apart rom its own individuality, this fishing town should be noted as Captain Cook, the illustrious circumnavigator. Leaving Staithes, scenery, meet the eye, and at Hinderwell and there is another station, this being situate four and three-quarter miles from Loftus.
From Loftus a long series of cuttings and high embankments are traversed until the little village of Kettleness is reached. Just before arriving at this curious village there is an uninterrupted
view of the charming bay of Runswick. This bay is certainly the most compact on the north-east coast, and at one time the Government had some serious notions of constructing a harbour of refuge
there. The general beauty of the view is enhanced by the curious there. The general beauty of the view is enhanced by the curious
formation of the village itself, the houses-red tiled or thatched roofed for the most part-being literally embedded in the side of
the precipitous cliffs. After Runswick, in the course of a few minutes the train rushes into a sharply curved tunnel, 308 yards in length, and on emerging from this a glorious view of the open sea lived; there is scarcely time to realise the magnificence, the beauty, the varied richness of the view, for a plunge-no word is more ex-pressive-is made into the darkness of a tunnel 1651 yards in route, the gradient being a peculiar one, namely, 1 in $55 \frac{1}{2}$, falling towards Whitby. When daylight again presents itself, there is a shipping, and forming at all times an increasing range of interest on account of its constant changeableness. From this point, too, a good
view of the historic ruins of Whitby Abbey, standing up clear and view of the historic ruins of Whitby Abbey, standing up clear and sharp against the sky, is obtained. At the pretty seaside village of
Sandsend another station is built, this point being $12 \frac{3}{3}$ miles from Lortus. In close proxi, principle as the one at Staithes. After this, in quick succession, three more viaducts, namely, at Eastrow, Station is then reached, being the last new structure of that kind on the line, and being nearly 15 miles from Loftus. From this line at Bog Hall Junction. In passing through the last cutting a high brick retaining wall is noticed on the left-hand side. This is in-
tended in future to carry the Scarborough and Whitby Railway, now in course of construction.

Proposed Lighthouse on the Saltcar Rook. - A com. medcar on the 24th inst., to inspect the Saltscar Rock with a view to erecting a lighthouse there. A number of shipowners and others met the committee and gave evidence in avour of this site being chosen. The committee will lay their report before the Elder
Brethren on their return to London. The Tees Bay ports contribute £20,000 per annum towards the maintenance of lighthouses, and as there are no Trinity lights between the Whitby High Lights and Souter Point, near Sunderland, it is thought only reasonable
to ask that another lighthouse should be erected, and there is great to ask that another light
need for one on Saltscar
Nave enal Engineer Appointments.-The following appointments have been made at the Admiralty :-Alfred J. Allen, chief engi-
neer, to the Espiegle, vice Lucas ; Adam Shoolbread, chief engineer, to the Enchantress, temporarily ; Caleb J. North, engineer,
to the Victor Emanuel, for Hongkong Yard, vice Scott; Hugh to the Victor Emanuel, for Hongkong Yard, vice Scott ; Hugh
Hawkins, engineer, to the Asia, additional, vice North; William
F. Innes, chief engineer, to the Indus, additional, vice Taylor ; and F. Innes, chief engineer, to the Indus, additional, vice Taylor ; and
Charles H. Pellow, engineer, to the Vernon, for the Bloodhound, vice Riley; and Thomas S. Stanlake, engineer, to the Pembroke, additional, for the Forward.
Working Men's Exhibits at the Engineering and Metal
Trades Exhibition.-Jurors' Report, - A copy of the report Trades Exhibition.-Jurors' Report.-A copy of the report of
the jurors, Mr. Samson Fox and Mr. J. A. Hopkinson, has reached us, and from it we find that they have decided that only thos models which showed originality of conception and practical utility should be made the subject of the chief awards. Th jurors are of opinion that great praise is due to several morelists, but they are of opinion that invention and improvement are more
fruitful than mere excellence of finish of models of well known things. They therefore recommend the award of the certificates of merit mentioned below. First prize: Wm. Purdy, miner, Eastwood, near Nottingham, for his improved safety lamp, pneumati lock, and unlockridapparace. Second prize: Kobert Dawkins, shoemaker, 11, Bridport-place, Hoxton, for his improvements
shoemakers tools. Third prize : Edward Barnes, carpenter, 61, and they also recommend for a fourth prize the improved tuyere apparatus of C. F. Hengst, practical mechanician, 80, Elm-street "certificates of merit" for workmanship:-Special merit, Richard Arkwright, fitter, for his locomotive and tender ; honourable nen in to T. W. Bishop, boilermaker, model of torpedo boat; James daams, smith, model of a safe; B. Riches, engineer, model of a
foot lathe; Samuel Yarrow, engineer, model of a trunk engine Edwin Hackett, pattern maker, model paddle engines; Thos. Wm maylor, watchmaker, small model engines; Joseph Wayman, gat The Iron and Strel Institute. - The following is the outline programme for the meeting at Middlesbrough in September.
Tuesday 18th $-10.0 \mathrm{a} . \mathrm{m}$: General meeting in Oddfellows' Hall, for the reading and discussion of papers. $1.45 \mathrm{p} . \mathrm{m} .:$ Luncheon, on the
invitation of the local iron trade. 3.0 p.m.: Excursion by special train to visit the steel works and blast furnaces of Bolckow meeting of members at Oddfellows' Hall, for reading and discussion of papers. 1.45 p.m.: Luncheon, on invitation of local iron
trade. 3.0 p.m. : Visitit the works of the Anderston Foundry Com pany, and the blast furnaces and salt works of Messrs. Bell Bros 7.0 p.m. : Annual dinner of the Institute. The new steel works of
the North-Eastern Steel Company, and other works in Middlesfollowing day from three to five o'clock, on the production of cards of membership, or of invitation as visitors. Thursday 20th.-
10.0 a.m.: General meeting of members, for the reading and dis 10.0 a.m.: General meeting of members, for the reading and dis
cussion of papers. $1.30 \mathrm{p} . \mathrm{m}$. : Depart for Stockton by special train
 Launch
5.30 p.m. : Depart from Stockton for Middlesbrough and Saltburn-
by-the-Sea. 8.0 p.m. : Fette and display of fireworks in gardens of Saltburn Improvement Commissioners. Friday 21st. - Thr rom Middlesbrough in steamer provided by Thees Conservancy
Commissioners, to visit the river works. (2) Leave Middlesbrough
by special
the Sim
Messrs.
the Sim
Messrs.
route.
(3) Visit to the ironstone mines in the Cleveland district.

RAILWAY MATTERS.

The directors of the Leicester Tramways Company will, at the
general meeting on the 2nd inst., recommend a dividend of \&10 per $\underset{\substack{\text { gent. } \\ \text { cent. }}}{\text { gen }}$
THE first Sunday's traffic on the railway from Königswinter up
the Drachenfels, of which we have previously given some parti-
 down. A Times corre
THE London and North-Western Railway Company is now carrying out an improvement which has long been needed at its
station in Wolverhampton. It consists in the erection of an
tita station in .olveriampton. It consists in the erection of an
iron lattice foot bridge spanning two ppatforms, connection
between which was previously by an underground tunnel alone.
Sir Edward Watriv is still on tunnelling bent. Speaking at the meeting of the shareholders of the Manchester, Sheffield, and
Lincolnshire Railway, on Wednesday, he intimated that his directors intended to make certain experiments with a view of ascertaining the practicability of driving a tunnel under the
Humber at Hull. Thhis sheme, if sucessful, would get rid of the objectionable ferry arrangement by which the company connect
their terminus at New Holland with the busy town over the estuary.
WE are informed that the accounts of the London, Chatham,
and Dover Railway for the past half-year have been submitted to and approved by the Board, and that, subject to final audit, they show an available balanee sufficient to pay a dividend of $£ 1$ 178. 6 d .
per cent. on arbitration preference stock for the past half.-year. respect of the hald-year ending the of 51 s of D. peember ent. paid in
 THe Great Eastern Railway Company has just made another addition to its cheap continental handbooks. The new one is
"The Moselle, from the battle-fields to the Rhine: A Handbook to a a New Tour arranged by the Great Eastern Railway via
Harwich." It forms the third of a series of illustrated guides, published at a penny, to some less frequented districts on the
Continent. It is edited by Mr. Percy Lindley, and is prettily and Continent. It is edited by Mr. Percy Lindley, and is prettily and
more fully illustrated than those which have preceded it. It conmore fully illustrated than those which have preceded it. It con-
tains sufficient historic information to excite interest in the places
described, and each page has a margin for notes and memoranda. German newspapers state that the Administrative Council of the Aorthern Pacitic Company have sent invitations to Germany,
to the public authorities, corporations, and leading newspapers, to to the pubiic authorities, corporations, and leading newspapers, to
send representatives to the opening of the line for pubhic traffic,
which it is expected will take place about the end of August. The which it it expected will take place about the end of August. The
Imperial Governent of Germany purposes sending over some of
the higher officials connected with railway administration. The the higher ofticials connected with railway administration. The to make the jourrecy, but one of the vice-presidents will cross the
ocean for the occasion. The principal German newspapers will also send special correspondents. It has been arranged that all those German yentlemen will sail from Bremen by the steamer
Elbe on A Ausust 15th. From the moment of embarkation till their return to Bremen, they will be the guests of the Northern Pacific
Railway Company.
ON Monday the French Chamber took up the convention with anything was preferable to the conventions, and that with 1500
millions the the milions the railways might still be bought up. M. Richard
Wadington arged a greater reduction of fares as being in the the Belgian and German fares and of ground alone the conventions should cons rejeected. M. Lebaund, on lon
behalf of the committee, admitted that Belgian and German fares were lower, but urged that the French companies had promised
material reductions. M. Vacher maintained that the less populous and agriculturual departments would be sacrificed by the the conven.
tions, and that strategie lines had been given up. M. Raynal, tions, and that strategic lines had been given up. M. Raynal,
Minister of Public Workss replied that not a single strategic line
俍 had been abandoned. Of the 12,000 kilometres of the Freyoinet
scheme 2000 had been struck out, but they were simply postponed scheme 2000 had been struck out, but they were
and some of them would be narrow gauge lines.
Locomorive makers continue busy, and orders for early delivery cannot be placed in any of the factories, but makers still complain
that prices are insufficient. The standard of cost which determines price in competition is, however, that of the best situated or managed factories, and some of the leading firms have been making
fairly good profts. The experiments on the LJondon and North-
Wessern Railway with engine fitt cylinders have been sufficiently favourable to encourave further cyrinders have been suffientily favourable to encourage further
trials.
Western Railwaye of thes compound engines are being tried on the
France and the Austrian State Railways, and Western Railway of France and the Austrian State Railways, and
it is stated that the system is to be tried on some of the Indian and
South American South American lines. In Australia, Messrs. Matheson and
Grant's " Report" says, the preference given to colonial-built Grants Report, says, the preference given to colonial-built
locomotives has not proved very satisfactory, for while little else is docomotives has not proved very satisfactory, for while little else is
done in the Colony than the puttin together of parts made in
England, some 150 engines so produced by colonial contractors England, some 150 engines so produced by colonial contractors
have cost about 20 per cent. more than they could have been
imported from England. nported from England.
A Correspondent writes to the Times complaining that there is
no reliance to be placed on the provision of sleeping no relia-ce to be placed on the provision of sleeping cars by the the
Calaiss Bale trains. He says: " I think it right to warn travellers
 My wife took ticketfrom a company calling itself the 'International
Sleeping Car Company, for the 14 .th of this month. On arriving at Calais she found that no ' wagon lits, were to be had, the
carriae containing them being said to out out repair. Having
myself taken a ticket for the 19th, 1 called at the offlice on Wednesday to ascertain whether the requisite repairs had been made, and was assured that they had, and that the ' Wagon lits' were in
perfect order. On tarting from Calais the violent oscillation of
the the carriage indieated something wrong. At 10.30 the occupants,
most of them in bed, were suddenly turned out into an ordinary carriage amid much bustle and conntusion. One of the wheels had
heated, and was on the point of taking fire. The carriage was obviously unfit for service, and we narrowly escaped a serious
accident. I am informed here that accidents to the sep accident. I am informed here that accidents to the sleeping cars
are of common occurrence." A Wrirer in the Birmingham Daily Mail, speaking of the recent consteen days, including two Sundays, the hurry being caused by
fourta
the elelay in the deelay in getting terms from thye road hurry being caused by
theritios of Kings
Norton and Balsall Heath, says, "That one Birmingham Tramway Co. has about twenty miles in hand to oomplete by the 12th of next
July. In the northern division will be lines July. In the northern division will be lines-(1) from the Old-
square to Perry Bar station, and Villa-cross, Handsworth; (2) from
the Old-square vid Gost, square to Perry Bar station, and Villa-cross, Handsworth; ((2) from
the Old-spuare via Gosta Green to the borough boundary at
Saitley; and
(3) to near the borough boundary in Nechells; ; and
 will be lines from the Queen-street side of the Now-streete station
to (1) Spark Hill along the Stratford-road, and (2) Small Heathpark, via the Coventry-road. The engineers for all these lines are
Mr. Kincaid, o.E., and Mr. E. Pritchard, ..E. Thus we shall
have in Birmingham some time next year about eighty miles of tramway ormen, besides some timet twenty next year whion about eighty miles of oriament is asked
to grant powers this sesion. Up to the present we have been very
far behind some other town.
 steam is abo
in Mangh, 17,"
bit

NOTES AND MEMORANDA.

To ascertain the side of the largest square that can be cut from
circular sheet of given size, multiply the diameter by 0.7071 . Proressor Pacmiert announoes the existence in the lava of
Vesuvius of a substance giving the spectrum line of "helium," an AN
AN ascent has recently been made of the volcano Tongariro, New Zealand, the main crater of which turns out to be a a mile in cir-
cumference and 400 t. deep. Boiling springs, which emitted vast cumference and 400it. deep. Boiling springs, which emitted vast
volumes of steam and sulphurous fumes, were observed at the bottom of the crater. The Ruapehu was also ascended, the snow
line being found at aualtitude of 6000 ft V Vegetation ceased at 7400 ft , and the total height proved to be $10,000 \mathrm{ft}$. An enormous
THE rate of mortality for the week ending July 21 st, in twenty-
eight great towns of England and Wales, averaged $21 \cdot 3$ per 1000 of eight great towns of England and Wales, averaged $21 \cdot 3$ per 1000 o
their aggregate population, which is estimated at $8,620,975$
 Halifan, Bradford, Worverhampton, Ollham, and Cardifit. In
London 2559 births and 1781 deaths were registered. Allowing for increase of population, the births were forty-three below, whereas
the deaths exceeded by 87 the average numbers in the correthe deaths exceeded by 87 the average numbers in the corre-
sponding weks of the last ten years. The annual rate of
mor sponding weeks of the last ten years, The annual rate of
mortality from all causes, which had stedily inceased from 16.9
to 22.9 per 1000 in the five preceding weeks, rose to 23.5 last week. to $22^{\cdot 9}$ per 1000 in the five preceding weeks, rose to 23.5 last week.
During the past throe weeks of the current quarter the death-rate averaged $22 \cdot 2$ per 1000, aga
periods of 1881 and 1882 .

A rasNiss has been patented in Germany for foundry patterns dries as soon as put on, gives the patterns a moow howface the脜suring an easy slip out of the mould, and which prevents the pattern from warping, shrinking, or se selling, as is it is quatioe in-
pervious to moisture. This varnish is prepared in the following pervious to moisture. This varnish is prepared in the following
manner:- -30 lb . of shellac, 10 lb . Manila copal, and 10 lb . of manner: -30 lb of shellac, 10 lb . Manila copal, and 10 lb . o
Zanzibar copal are placed in a vessel, which is heated externally b
stean, and stirred during four to six hours, after which 150 part steam, and stirred during four to six hours, after which 150 parts
of the finest potato spirit are added, and the whole heated during four hours to 87 deg. O. This liguid is dyed by the addition o
orange colour, and can then be used for painting the orange colour, and can then be used for painting the patterns.
When used for painting and glazing machinery, it consists of 351 b . of shellace, 5 lb painting an and glazing machina copal, 10 lb . of Z Zanzibar copal, and
ond 150 lb . of spirit.
The alizarine required by the dyers and calico-printers of England and Scotland is now very large in quantity, and its
manufacture on a large saeale is proposed. Mr. Joan Levinstein, in a paper read bef ore the Society of Chemical Industry, estimates the consumption of all countries at about 9000 tons per annum.
the production of 9000 tons of artificial 20 per cent. alizarine are required somewhere about 3000 tons of from $5 \overline{5} 5$ to 60 per cent anthracene, from 3000 to 4000 tons of bichromate of potash-in
this estimate there is no allowance made for the regeneration of this estimate there is no allowance made for the regeneration of
the chromates; 18,800 tons of rectified sulphuric acid, or correspondingly less when muriatic acid is used for precipitating the drous fuming sulphuric acid ; 10,000 tons of 70 per cent. white caustic soda- this includes the necessary yuant
and from 450 to 500 tons of chlorate of potash.
THE most recent report of the Swiss Department of the Interior states that there are in Switzerland 8642 factories and wrrkshops
under legal supervision, 1472 of which are worked by machins under legal supervision, 1472 of which are worked by machine
power. Of these, water furnishes the movement to the amount of amount of 111 . The number of oneratives employed are 134, t62,
of which 70,364 are males and 64,498 females. There are 10,462 children between fourteen and sixteen years of age, 14,590 between sixteen and eighteen, and 109,810 over the latter age. The textiles,
such as cotton, silk, woollen, and linen, occupy 1619 $8 \overline{2}, 705$,workpeople; 68 establishments carry on tanning leather dressing, hair weaving, \&c., with 3753 hands; there are 6636 hands employed in 143 food-preparing shops; 2749 in 102 chemical workss;
4950 in 150 printing shops. There are also 111 wood-working establishments, oocuping 2913 h hands; 353 for clock and jewellery making,
with 3170 .
Hrrr Kopprs has devised a new explosive substance, which he fumes, and not to be liable to explosion by shock or friction The following figures give the composition of two kinds, the first of each pair of figures relating to explosives suitable for hard rocks,
such as basalt, and the second of each pair for softer, such as sand-

According to reports of the inspectors of mines for 100 1882, recently putbished, the aggectors of mines for the year of persor
employed in and about the whole of the mines in the persin employed in and about the whole of the mines in the United
Kingdom amounted to 559,493 persons. of these 503,987 were
employed under the Coal Mines Regulation employed under the Coal Mines Regulation Act, and 55,506 under
the Metalliferous Mines Regulation Acts. The total number of fatal accidents was 959, and the total number of deaths occasioned thereby, 1218 ; showing an increase compared with the
totals for 1881, of 30 in the number of fatal accidents, and also also shows that, on an average, during the year 1882 there was
one fatal accident among every 583 persons employed, and on death by accident among every 459 persons employed. The
average ofr the nine years, 1874 to 1882 , is one fatal accident for every 596 persons employed, and one death by acident among every 454 persons employed. The proportion of fatal accident
in 188 to the number of persons employed is, therefore, a little
higher than the average of the last eight years; but the death higher than the average of the last eight years; but the death-
rate is very nearly the same. Other summaries shows the rate is very nearly the same.
quantities of mineral wrought.
Dr. Lagneav, in a paper read to the Paris Academy of Moral nearly tripled in the last thirty years, the numbers in 1851 being increased from 128,103 in 1851 to . 374,498 Belgians have in this period r6,
only from 20,357 , to 30,077 . Germany . England, and America send more women than men, whereas with Belgium, Italy, Spain, and males and 17,313 females, the Spaniards of 25,366 males and
27,171 females, the Italians of 100,278 males and 65,035 females The immigrants are chiefly to be found in the large cities on the frontiers and on the southern coast. The English are chiefly in
Paris and the Western Pyrenees, with a few on the north the Germans, in Paris, the east, and the north; the Spaniards, the Pyrenees; and the Italians, at Marseilles, in Savoy, and the
easter frontier up to Belfort The thre departments of the
Seine, Nord, and Bouches-du-Rhône - in other words, Paris,
the

THE Autumn meeting of the Iron and Steel Institute, which will ake place in Middlesbrough, will be held in the Oddfellows' Hall
on September 18th, 19th, 20th, and 21 st. Lorid Sudelex, Sir W. Thomson, Sir W. Siemens, and Sir F. Abel have been appointed British Commissioners
Electrical Exhibition, which opens next Wednesday.
The number of visitors on Saturday to the Fisheries Exhibition was 23,058 , making a total for the last week of 92,311 . The
number from the opening of the Exhibition has been 874,764 . The town commissioners of Weston-super-Mare have sanctioned plans for the erection of a new promenade over a mile ein length
Che cost will he $£ 70,000$ This improvement, with the The cost will be $£ 70,000$. This improvement, with the sheme for
a new sea front, will involve an expenditure in all of $£ 100,000$. Ov the evening of the 18th inst, a slight break in the lighting of the great conservatory at the Fisheries Exhibition was reported of the dynamo supplying the conservatory had to be renewed, an operation which took but a few seconds.
LasT week's arrivals of live stock and fresh meat at Liverpool
alone from the United States and Canada amounted to 1548 cattle, 1530 sheep, 4033 qrs. of beef, and 224 carcases of mutton; but this showed a rather large decrease in both live stock and fresh meat in According to
American Forests," which will "The Alarming Destruction of Forestry, from the pen of Mr. William Little, of Montreal, the United States will, at the present reckless rate of cutting,
be entirely denuded of its merchantable yellow pine in seven A
A TriAL trip of the s.s. Arratoon Apcav took plase in the recently been fitted with new machinery by Messrs. Maudslay, Davis and Cold. The steam steering machinery was by Messrs.
Dabing and the deoorations of the saloon and
cabins Messrs. Vigor. cabins by Messrs. Nigor. A speed of 12 knots was obtained.
On Saturday Messrs. Robert. Thompson and Sons launched an ron screw steamer for Messrs. Thompson and Wrightson, Sunder
and. The dimensions are as follows:-Length over all, 250 ft length between perpendiculars, $240 \mathrm{ft}$. ; beam, extreme, 36 ft .;
depth, $15 \frac{1}{2} \mathrm{ft}$. She is classed 100 A at Alloyd 's and pecial survey. Her engines, which are of 120-horse power, are by
Messrs. Black, Hawthorn, and Co , Gateshenden.Tyne Iessrs. Black, Hawtin, and Co., Gateshead-on-Tyne
ON the 19th inst. Messrs. Raylton Dixon and Co. launched a
steamer named the Samarang, which has been built by them for seamer named the Samarang, which has been built by them for
the Rotterdam Lloyds, Rotterdam, and is the sixth vessel they lave built for the same owners during the last few years, and the tenth for the same trade. Her dimensions are :-Length over all,
311 ft .; breadth, 37 ft .; depth of hold, 25 ft . 9 in.
Her engines 200 indicated horse-power, will be fitted by Messrs, R. and W. W.
THE Glamorganshire Agrioultural Show was opened at Ponty
pridd on Wednesday, when there was a very large assemblage and pride on Wednesday, when there was a very large assemblage and
ken competition. The implement show was good, and, says our
South South Wales correspondent, one could but note, in going over a good
breadth of country, how hand labour is being discarded breadth of country, how hand labour is being discarded. Mechani-
cal and engineering appliances are getting commoner year by year and even on the small mountain farms it is now ordinary to
see blue and red painted implements from the first English

The Executive Board of the Fife and Clackmannan Miners Assoiation have held a meeting at Dunfermine, under the pre-
sidency of Mr. J. Innes, Cowdenheath, at which the followin
resel resolution was adopted :-" The board, having in view the continue mprovenent of trade, the steady increase in the selling price of
coal, and the inadequate character of the recent advance of wages given to the men when compared with the higher prices now they are preared ton in the various districts to consider whether of wages to the extent of 6 d . per day-the reports from the me to be sent in to the general secretary not later than Monday, the

The activity which has prevailed in shipbuilding for the last foucontracted for, is a sign that the demand is slackening, and the large number of steamers now seeking employment seems to show
that the trade has been overdone. But, Messrs. Matheson and Grant say in their half-yearly "Meetal Trades' Report," it must b remembered that when competition becomes keen, the newe and this continued advance in design is the real explanation of ne orders. Any considerable slackening of the shipbuilding trade wil tell severely on the steel and iron rolling mills, and will promote a
further fall in prices. further fall in prices.
A sTatenent has been published showing the destination of the
emigrants who arrived at Castle Garden during the last six months emigrants who arrived at Castle Garden during the last six months
of 1882 . From this it appears sthat the total number of emigrants , distributed throughout the principa States and territories in the following proportion :-New York,
99,627 : 1 llinois 33,834,
 cut, 4833; Nebraska, 4458; the scale declining to only eight be seen from the above that a full third of the total number of emigrants settled in New York State.
On Tuesday morning a serious traction engine acoident occurred
 wagonettes. On reaching Owler Bar, a traetion engine was seen
to be in front. It was sixteen persons, passed in spafety. and The hirst wagonette, containing to the ground, and five were picked up injured. Fifteen month ago a similar accident occurred in the same neighbourhood, a young
lady and gentleman being killed. The alarm then created led to ady and gentleman being killed. The alarm then created led to
the formation of an association which has memorialised the Local Government Board for greater restrictions to be placed upon the use of traction engines on highways.
A lecrure was given on the 19th inst, at the Parkes Museum of
Hygiene by Captain Douglas Galton, on "t Rest Artificial Lighting, and their bearing upon the Purity of Air in Rooms." In beginning his lecture, Captain Galton remarked that gas lighting, and there had been recently introduced new method of gas lighting which bade fair to retard the universal introduction uffice electric light for domestic use. Every form of matter, whe sufficiently heated, had the power of emitting rays of light, and
thus became self-luminous. This was called incandescence, and al artificial sources of light depended upon the development of ligh during incandescence. For the illumination of our streets and
houses at night use had hitherto been made of a combustibl constituentination of carbon and hydrogen, which was the chie it underwent partial decomposition, and evolved heat. Carbon was separated in the solid state, and floated in a finely divided and incandescent state in the interior of the burning vapour, and this
constituted the flame. The more imperfect the combustion of any sort of artificial light, the more deleterious was its effect upon the
air of the room. Heremarked in conclusion that the electric light would probably supersede all others, but it was probable that the
great advance which had been made in illumination by means of gas might enable that material still to hold its own for some time

EXHIBITS AT THE R.A.S. SHOW AT YORK.
(For description see page 69.)

EXHIBITS AT THE R.A.S. SHOW AT YORK.

SH
SHANK'S OOMPOUND YAOHT ENGINE AND REVERSING GEAR

THE ROYAL AGRICULTURAL SOCIETY'S SHOW AT YORK.
In our last impression we mentioned several of the exhibited articles which we could not describe without drawings. One of these was the semi-portable compound ngine of Messe Fowler and Co, Leeds, fitted with English's expansion gear, as also applied to a road loco motive. Of this gear we now give engravings on page 68 This arrangement of expansion gear is designed to work with an ordinary link motion reversing gear without the addition of extra excentrics or many extra working parts It is designed for the purpose of obtaining an early cut-off for ordinary link motion reversing gear without the necessity of a corresponding increase in the travel and lap of the main slide valve, the result obtained being that in a link motion of ordinary proportions the cut-off can be varied by linking up with the reversing lever between a quarter and five-sixths of the length of the stroke, without sensibly altering the release or compression of the steam The gearillustrated is as arranged forone of Messrs. Fowler's B class agricultural road locomotive engines. The boiler A, cylinder B, crank shaft bearings C, crank shaft D, are the same as usual ; EE are the valve excentrics and FF the excentric rods; G the expansion link, and H the centres on which the expansion link vibrates. The link is held in its central position, and is allowed to work inwards or outwards by the slide rods which slide in the guides K, and which are fixed to the front of the crank shaft box L is the radius rod for the valve spindle M of main valve N . This radius rod is acted upon by the reversing lever and lifting lever O and lifting link P in the usual manner. QQ are the radius rods for working the expansion valve spindle R and expansion valve S; T is a lever centred at U.

At the opposite ends of the lever T the radius rods $Q Q$ are attached, and the other end of the radius rod Q coupled to the centre pin on link, and the end of the other radius rod Q is coupled to the valve spindle R. This gives the desired motion to the expansion valve. The arrangement is strong and simple, and secures the advantages mentioned where another excentric could not be employed and would not be as efficient.
Another novelty was Messrs. Burrell and Sons' radial governor, illustrated above. The object aimed at in this governor is simplicity of construction and the utilisation of the centrifugal tendency of a pair of balls sliding and thus to employ the whole of the energy due to their rotation in the working of the sliding collar and connected parts controlled by a spring, and none in lifting their own or other weight. The construction is such that in all positions of the balls, the work which must be done on the governor itself does not increase as it does with the increase of the angle between the spindle and pendulum arms of a pendulum governor, as the balls rise from one position to another, the work for a given amount of rise of the sliding collar remaining uniform, which is not the ase in any governors in which the weights or balls rise as the sliding collar rises. Messrs. Burrell say the spring calculated to balance the pressure of the balls at the two extreme positions, and that a very steady action is the result, the friction and sensitiveness remaining constant. ne balls are connected to the sliding collar or sleeve by ne steel band on each side which passes over flanged rollers of large diameter. These bands are secured in such riyets or pins, but are fastened by a clip, which makes
them perfectly safe. It has been suggested that the bands might break and allow the balls to fly away, but the margin of safety is high, as they are tested to half a ton and as the strain on each band is only 33 lb ., there is little fear of breakage. Should one band break, the other would still hold the balls quite securely. No stop is shown on the radial rods, but no doubt such a measure of safety will be used. It will be noticed that the governor can be inished almost entirely from the lathe, a feature of great mportance from a manufacturing point of view. There is an absence of levers or parts, the wear of which would affect the action of the governors.
A novelty in vertical engines was exhibited by Messrs, Riches and Watts, of Norwich. We believe this is the first condensing engine shown at work at any of these shows, and certainly the first compound condensing engine with boiler combined ever so exhibited, and may therefore be claimed as a novelty. This engine we illustrate above, It has cylinders $4 \frac{1}{2} \mathrm{in}$. diameter, 7 in . diameter by 10 in . troke, with 80 lb . of steam in the boiler, and running at 180 revolutions per minute. It has indicated $12 \frac{1}{2}-H . P$. as shown by the diagrams, page 68. At this power, the makers inform us, that they had no difficulty whatever in keeping up steam with the boiler shown, which is vertical ype, 6 ft . 8 in . high, 2 ft . 10in. diameter, with $\frac{1}{8} \mathrm{in}$. cross tube in fire-box and eight $2 \frac{1}{4}$ in Field tubes. The cylinders are as hown-"Tandem"-with the small cylinder at top fitted with an intermediate stuffing-box, of a form which the makers have used for ordinary inverted cylinders for thirty ears. The valves are simple three-ported ones, worked rom an excentric on either side of the crank throw, the rrangement being very simple and easy to get at. The air pump is single-acting, and placed inside the condenser

Abstract

worked by gearing about one to one and a-half of engine. condensing compound by simply disengaging the axhous pipe and fixing another pipe that leads the exhaust into the chimney in cose the supply of water failed at any time Messrs, Riches and wats of water information as to the consumption of coal, but they think it is about $3 \frac{1}{2} \mathrm{lb}$, per IH.P per hour, which, with this class of boiler, they consider would be fair work Amongst other purposes, they have made this class of engine as being five breasts on each side, while that exhibited had six, and the connection between the two ends of the semi-rotating shafts α carrying the bodies G is somewhat modified. The This plough has been designed by the inventor with the view of avoiding the disadvantages attaching to the balance plough, the most serious of which is slowness of motion, particularly when going down hill or over uneven ground. The frame of the implement is carried in pre cisely the same manner as that of the ordinary turning to the other can be made in a short time. Satisfactory rials have, we are informed, been made with the plough travelling at fully six miles an hour. As shown in the engraving the plough is being pulled by the rope attached the wheel E is turned the plough reaches the headland the same time the plough the chain f^{1} and wheel f, and at on the rope atta and the opposite set to H^{1} by which the plough is turned and the opposite set of bodies put into work.

to the tire by bolts and clamped between discs forming the nave. The spokes may thus be taken out for repair or renewal. The body is so mounted on the axles that a rise of one of each pair of wheels six inches or more above the others, leaves the body level and free from twisting strains.
The whole wagon is of iron, or mild steel, and the perfect freedom obtained by mounting the body on longitudinal axes is of great importance for wagons to be used in new countries where the roads are but tracks.

The engravings on page 66 show Messrs. E. R. and F. Turner's new compound portable, which, as far as possible, is exactly like their ordinary engines. The boiler shell is of steel, the longitudinal seams of the same being doublerivetted, the fire-box is of Low Moor iron, strongly stayed. The average working pressure is 100 lb . The cylinders are $7 \frac{1}{2} \mathrm{in}$. diameter, and 12 in . diameter, with 14 in , stroke, minute. The cylinders, with valve chests and the receiver are all in one casting, both cylinders are steam-jacketted
by liners of hard metal being forced into them. Each

steam jacket has direct communication from the boiler for steam supply and drainage. The receiver is placed between the two cylinders, and is thus steam-jackented governor, which regulates the steam supply to the high pressure cylinder in proportion to the work to be done whether the load on the engine is heavy or light. The governor is very sensitive, and secures a very marked regu-
larity of speed. The slide valve and governor are connected together without intervention of a strap or any complication of parts. The engine is built so that it may be detached from the boiler, if required, for shipment, \&c A casting rivetted to the boiler carries the cylinders. The the joint is made between the planed ace of the casting before mentioned. The wrought iron elastic crank shaft supports are bolted to angles rivetted to the boiler, and the The engine parts can therefore be detached from the boiler with only two steam joints to break, which can also be pump. The engine is of good design and workmanship, and the arrangement gives the boiler remarkable freedom engine engraving explains itself.
From the detail engravings of the reversing gear of this engine-page 67-the reversing gear will be easily underlever over the excentric is caused to take a new position with reference to the crank.
In our last impression we stated that Messrs. John Cowley and Son were amongst the exhibitors of gas biting these, but were only using two of the Bisschop engines to work some of the machinery they exhibited.
We should mention that Messrs. Priestman Brothers, whose new dredger and ditcher we noticed last week, were awarded a silver medal for that machine.

HISTORY OF THE IRON AND COAL INDUSTRIES IN THE LIEGE DISTRICT.
By M. Edouard de Laveleye, of Liége.*
The uron trade.-It is difficult to say exactly how the art of which have since become known as the district of Liége. It is which have since become known as ine district and it is possible
certain that Asia was the cradle of iron working, and
that the Eburones and the Nervii, the ancestors of the that the Eburones and the Nervii, the ancestors of the present
Belgians, brought with them from the Euxine, where they had their origin, secrets which had been already known for ages in that
district. However this may be, it is almost certain that when Cæesar arrived in Gaul he found among the tribes he subjugated a
knowledge of the art of transforming the ores of iron into a metal which they used for different purposes, especially that of arms. The discovery, in 1870 , of ancient furnaces, still filled with materials,
at Lustin, near Namur, enables us to understand the primitive at Lustin, near Namur, enables us to understand the primitive
method employed for the manufacture of iron. The furnace consisted of a single excavation in the ground, oval in form and rounded
at the bottom ; it wasabout 12 ft . long by 9 ft . wide and 3 ft . deep, and at the bottom; it wasabout 12 ft . long by 9 ft . wide and 3 ft . deep, and
allowed air to enter the bottom of the furnace. In this hollow was
found the metal, which contained 93.48 per cent. of iron, 0.37 of found the metal, which oontained 93.48 per cent. of iron, 0.37 of
carbon, $4 \cdot 94$ of fusible materials, and 1212 of sulphur and phosphorus. It is probable that the Romans communicated to the anoient Bel.
 them; and that other improvements were made during their rule
in the art of treating iron ores. The invasion of the German tribes probably stoppped the impoulse given by the e omans to the manufacture of iron. In the sth century, under Charlemagne,
appeared the furnace called the Forneau a Masse, or Stickoforn, appeared the furnace called the forneau a furnaces, and thus allowed a greater concentration of heat. Between, the 8th and the 12th
century the iron trade developed considerably, and the metallurgist Karsten cites the low countries as the district where the manufac ture of iron at that period had reached its highest perfection. In 1468, moreover, the ironworks of the Liége district were almost entirely destroyed by the troops of the Duke of Burgundy. It should be remarked that up to this time malleable iron was almost the only product ; but Karsten, who has been cited above, blished in the low countries, from whence the art extended into Sweden and England. The oldest blast furnace appears to have been constructed near Namur, in 1340 . It is, at any rate, certain
that before 1400 the foundry pig blast furnaces of Les Vennes and Grivegnée, near Liége were well known. During the succeeding three centuries the number of blast furnaces grew so rapidly that
in 1700 an edict of the Prince Bishop of Liége forbade the erection of any new furnaces for the next twenty-five years. The use o coke as fuel for blast furnaces was introduced from England at relatively recent period. In 1769 an attempt to smelt iron ores by means of coke was made at Juslenville, near Spa, but without
success. On the other hand, wood becoming scarce, raw coal had een used for the finishing of malleable iron as early as 1627 but its employment in the process of transforming cast iron
into malleable iron was also of foreign importation. This process became common in England whilst it was stil
unknown in Belgium. It was in 1784 that Cort and Partnell invented in England the puddling furnace and groove but the French Revolution shortly afterwards put an end to al progress in industrial arts, and the works of the Liége district were in great measure reduced to a condition so deplorable that it
was necessary to close them. There was, however, no long intermission of activity. In 1800 circular blast furnaces were found to be replacing the octagonal furnace hitherto in use. Their height of cannon was commenced at Liége, and soon became the largest industry of the province. The idea, however, was still general
that the coal of Liége was not fit for making coke, and it was not until 1823 that an Englishman, whose name has become celebrated - John Cockerill-erected at seraing the first blast furnace, using now one of the most important on the Continent. About the same time-in 1821 -Michael Orban erected at Grivegnée the first puddling furnace and the first rolling mill on the English pattern. After 1830 the iron trade of Liege made a sudden start under tha-
double influence of the introduction of railways and the inauguradouble influence of the introduction of railways and the inaugura-
tion of large financial companies. In 1839, and afterwards in 1848, serious orises occurred in the trade; but these reverses were succeeded on both occasions by new advances in prosperity.
Hitherto, the only ores treated in Belgium had been those from the district of the Ourthe and that between the Sambre and the Meuse.
These ores are now almost exhausted down to the level from which water could be pumped to give a profit, and the iron trade of Belgium could not have continued had not new raw material been brought into use. There exists in the Devonian formation an important bed of oligiste or specular ore, of an ooitic character; but for a long time this mineral was considered impossible to reduce. in the Belgian iron trade by succeeding in the utilisation of these years. We may now proceed to the improvements introduced into
blast furnace working. In 1803 the bellows, which had been in use from the earliest times, began to be replaced by blowing engines initiative in introducing the hot blast. It was the same works which introduced into Belgium the making of Bessemer steel.
The first converters were erected in 1863 . It is probable that the discovery of the cementation process for the making of steel had its origin in Liege. At the commencement of the seventeenu o have been officially accorded to two armourers of Maestricht, a
town which then belonged to the province of Liége. Karsten is, therefore, right in saying, "England, which has now become the
school of iron metallurgy, owes to the Continent"-in fact, as we have said, to the district of Liége-"two great discoveries, viz., of the iron trade may be concluded by some details as to its situation at the present time. The discovery of the means of reducing
the specular iron ores, at the time when the old ores were the specular iron ores, at the time when the old ores were
exhausted, saved the district from ruin. At this moment, however, the former ores in their turn are nearly exhausted, and the
blast furnaces are almost exolusively supplied, as far as pig irou for puddling is concerned, from ores raised in the Grand Duchy
for of Luxembourg, and so far as steel pig is concerned, from ores
raised in Spain. Thus during the year 1882 the blast furnaces rased in Spain. Thus during the year 1882 the blast furnaces oame from Luxembourg, and 152,023 tons from spain and
Algeria. On the other hand only 82,612 tons were indigenous
ores. As a set off to this disadvantage the Belgian works are placed in the centre of a district producing coke, which is cheap
and of good quality. They are in a country where prices are in general favourable, where labour is abundant, and where work-
men are skiful. men are skilful, The ores of Luxembourg are relatively
poor in iron, and contain a good deal of phosphorus; but they fuse with great rapidity, inasmuch as they frequently
contain a flux within themselves. They have gradually
modiffed the nature of the Belgian trade. A restricted contain a flux within themselves. They have graduall
modified the nature of the Belgian trade. A restricted
make, of superior quality, has given place to a largely increased make, but no longer of so high a character. The tendency at this
moment is, however, to place the blast furnaces in the localities moment is, however, to place the blast furnaces in
where ore is raised, and the works for finishing the iron at the centres of the production of the fuel. It is found more econo-
mical to carry over the same distance a ton of coke and a ton of mical to carry over the same distance alux. This has produced a
pig than to carry three tons of ore and flux.
displacement of the pig iron industry, which has been transferred displacement of the pig iron industry, whe tuxembourg province, in the neighbourhood of the mines. On the whole, the Belgian
has thus received a fresh advance, in place of declining, as a con-
In spite of all sequence of the exhaustion of its native ores. In spite of all
the disadvantages which weigh on the country, the care given to every detail, and the application of strict economy even in metallurgic world, and enabled her to contend successfully against the most powerful competitors. A few figures will be enough to show the progress which has taken place. It is known that the
low hearths formerly in use produced in 1546 about 300 lilogrammes of iron- 6 cwt .- in 24 hours. At the end of the 16 th day. At the end of the 18 th century it remained almost the same. A furnace at Chimay produced about 720 tons per annum. For furnace erected at Seraing by John Cockerill in 1823. This furnace produced about 10 tons in the 24 hours. works and in those of Esperance and of Grivegnée, regularly pro-
duced 14 tons of foundry pig or 20 tons of refinery pig per
day
and in 1860 the Grivegné furnaces, which gave the best results
in production, did not run more than than 9000 tons of pig

 makiing pidi iron for ordinary puddiling a make of more than 90 tons
mer day has been attained The blast furnaces at Esch, on the Alzette, in the Grand Duchy of Luxembourg, produce as much as
 figures. Pher ary of of the workman is a main element in the quan-
fity
Hroduced ; and the i mprovements effected by the substitution lity produced; and the improvements effected by the substiution
of coal for wood have had a large influence on the price, without of coal for wood have had a large infuence on the price, without
greatly changing the capaeity of production. The attempts to
To greatly changing the capacity of production.
pudile by machinery have had little sucoess, and progress has been
 especilly the Bicheroux furace. Whereas formerly about one
en of coal was required for every ton of puddled bar produeed ton of conl war required for every ton of pudded bar produced,
t5 kilogrammes (11 owt.) are now sufficient. As regards steel, we will onily onsider the steel produced by the converter provess.
The frrst Bessemer converters, erected at Seraing in 1866, zave 10 to 12 tons of steel per day. At present each pair of converters may be reckkened on to give from 150 to 160 tons in the twenty-four
hours; and on the new American system, $3+0$ and even 360 tons ave been obtained. As a materer of statitstises, the annual produc
ion of the works in the movinco of Tiete was estimated in 1829 tan of the worss in the prowne of castings, soli tons of wrought Ion, ana thring works emp manued 711 workmen. In 1 Is5o the make
nanufact

 duction of wroughtirinand ond of manufactured iron was 126 , 461 tons,
and ocoupied 5180 workmen. Lastly, the stel works contained and oceupied D180 workmen. Lastly, the stell 10 orks contained
9 converters, produced 171,937 tons, and ocoupied 2747 Torkmen. The average wages or the workmen employed alt the bast furnaco
is three franes per day- -2.8 .6. . those emploged at works for

 These works on the whole have been actuated by 473 engines of various kinds, iving a total power of 14, ,68-horore power.
The coal trude--In sketching the history of the iron trade we meat at every step with one element indispensable to its progress,
 disocory of coal in in elyium dates from the midale of the tweltth century. A legend dstates sthat an angel appearrat to a blact of Liege,
of Plainevaux, a village situated in the neigbourhood

 black earth, easy to kindie and fit to use instear or wod aln whidid hio began to make use. His name was Hullos of Houllos, and it is from him that coall took its French name of " Hooille,
It should be added that the author who transmits this legend, Fathir Boiulle, ,himed hif suggsestst that the angen in in question - Angelus -might have bean an Eng ishman-Anglus-and that in the oth Latin manuseripts the one worr might thaive been mistaken or the
other. Howerer this may be, it is cortain that the working of coal
 shown by the geological section of the coal basin of the Meuse,
the beds scrop out at several points, and it is natural that the the beds crop out at several points, and it is natural that the
use of this rook, so different in appearance from others, and endowed with properties so remarkable, should have been known at a very early stage in the history of the country.
Advancing to the present ayy, we find that the chief dififulties

 were driven along the beds from the hillsides. As these beds
lescended below the surface it was soon neeeses, to the
 prevent the rain from filling these excavations, and at the same
time the ifthin troublesome. It was neeessary to find means for orevereming these
It
 and near the bottom of the hills; the two workings accidentally
met each
the
 Liege dates from the thirteenth century; there is one which at
 in the market place is still fed by water coming from otd Areters
 ings rather than actual aliafte, The invention of gunpowder furnished the means of attacking hard stone, and thus sinking

 through soft and water-bearing strata, was employed for the efrrt
time at Liege by the silessin Company, when sikning the Perron
V

 hacks of men then for was originally lifted from the ep tit on the
the barrels hung from a rope or chain, which was wiound round capstans worked firat by men and afterwards by horses. Stean winding
engines wero imported from beyond the Chanel ; the first was engines were imported from beyond the Channel the the
instaled in 1811 by M. Orban at the Plomterie Colliery.

(To be continued.)

Iv the International Electrical Exhibition, Vienna, to show the
progress which has been made in the electric transmission of
 locality will allow,
front of St. Peter's at Rome. By a pump, driven by electricity front requiring i0-horse power, a considerable quantity of water will be conveyed into a height of from seven to eight metres, falls thence on an intercepting vessel below, and thence into the
basin of the well-known high water-spout well, which will likewise have its water columns way during the exhibition to the height of twenty-five metres. The Societe Gramme, of Paris,
which showed for the first time at the Universal Exhibition in the year 1873, the electric transmission of power by driving a small pump, and employed about 2 -horse power, will establish the
installation above mentioned, and exhibit their engines, then installation above mentioned,
employed, as historical models.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

PUBLISHER'S NOTIOE.

** This week we pulish a Double Number of The Engiverr containing the Index to the Fifty-fifth Volume. The Index
includes a Complete Classified List of Applicatioms for Letters Patent during the past six months, together with a list of Abstracts
of Speitications pubbished during the same period. Price of the
Double Number, 1s * With this veel's number is issued, as a supplement, an
Enqraving of Messrs. Oockerill and Co.s Worrs at Seraing and
Hololen' Selgive Hoboken, Belgium Every copy as issued by the Publisher com.
tains this Supplement, and subscribers are requested to notify the tains this Supplement, and sul
fact should they not receive it.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column. must, in al all
cases, be accompanied by a large envelope legibly directed by the cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 1d. postage stamp, in order that answers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply ${ }^{\text {*ith }}$ We cannose instructions. undertake to return drawings or manuscripts. we must therefore request correspondents to keep copies.

strengre of volute sprinas
 reader who can afford it me.
Sheffield, July 19th.
all of navigable rivers.
 son any navigable river,
como
Dovercourt, July 25 th.
parallel v. stepped teeth in wheels and racks. SIR, -I should estcem it a favour if any of your readers can inform me
why some planing and shaping mehhnes are worked by paralel or
ordinary teeth, whilst others have wheels of the same width acrose the ordinary teethining wist othersping have mheneles of the worked sume warallel or
 will kindly give an exam.
Manchester. unly 2 arc
[There is a difference of
mandal power accumulators.
(To the Editor of The Engineer.)
SIR, - May I ask if any of your readers can give me any information
respecting manual power accunulators

 tion of machines of th
London, July 20 th.

The Enorinerr can be had, subsoriptions.

 oredit oceur, an extra charge of two shillings and sixpence pera
be made THE E EONINERR is refistered for transmasion ourad. Cloth cases for binding The Enaingrr Volume, price 28 s. 6 .
4 complete set of The Exornkre can be had on application.

 India, 22 os, 6 d .
 ADVERTISEMENTS.

nts cannot be Inserted unless Delivered
'clock on Thursday Evening in each Week.
ing to Advertisements and the Pblishing Depart

THE ENGINEER.

JULY $27,1883$.

our food supply in war.
There are very few who do not rejoice to see any misunderstanding between England and France come to an end. A war with France at the present time would be a
calamity. The question, however, may well have sugcalamity. The question, however, may well have sug-
gested itself lately to many minds, whether a few years hence such a war would not be a still more serious matter if the navy of France continues to increase at its present
rate. The discussion of the Naval Estimates last May has rate. The discussion of the Naval Estimates last May has
called attention to this question, and undoubtedly it has been presented to us in a clear shape by the paper read by

Mr. Barnaby at the United Service Institution, on the 9th February last. Previous to the reading of that paper
we doubt not that many officers and others may have we doubt not that many ofticers and others may have
perceived what we consider to be the ugly features of the uestion, but it was probable that they would in most cases eel that their knowledge was imperfect; that answers might be supplied to uncomfortable doubts by those who knew more, and that so important a matter must be before
the minds of our rulers and their naval advisers, and thus the minds of our rulers and their naval advisers, and thus
the spectre called up would be dismissed by being, as it the spectre called up would be dismissed by being, as it
were, mentally referred to the Admiralty, where no doubt were, mentally referred to the Admiralty, where no doubs it might be supposed its case would have been dealt with.
The reading of Mr. Barnaby's paper has disposed of this The reading of Mr. Barnaby's paper has disposed of this
plea. Our information is brought up to date, and officially plea. Our information is brought up to date, and officially
endorsed, and however careful a responsible authority may be in his utterances, we at least are confident that no fact lies kept in reserve which will radically negative the view hes presents to us. Mr. Barnaly did not draw the conclusions we arrive at, undoubtedly, but they were expressed hy naval officers in the discussion on his paper, while Lord H. Lennox, in his speech on the Naval Estimates, Both Mr. Barnaby and Lord H Lenoo de lt with the Botual power of our navy to fight and attack an enemy the latter especially contemplating the case of FranceVide Engineer, May 11th last. Now, for our present purpose, the relative strengths of our navies may be dealt uestion shortly, for we propose rather as an island depends wholly on the food we grow ourselves and on what comes to our shores in ships. The former of these sources of supply has long become so inadequate to our wants that the latter can be stopped, England would be as surely tarved out as was Paris in the winter of 1870-1871. It would be a magnificent operation of war, and doubtless an experiment which the naval and military foreign critics would watch with much interest.
The supply of food by our merchant ships depends nuch, of course, on the relative powers of our own navy and that of our enemy ; but not so much on the bare question of whether our fleet, as a whole, can dispose of the one opposed to it, as on the powers of our ships when dispersed and acting singly. We cannot contémplate an enemy gathering an inferior fleet, to be disposed of by ours in a single blow. We know that eficers-notably hose has commended ilself to for-war and strike a our merchant ships. If Lord H. Lennox were correct in stating that, at the end of the year, France would have seventeen first-class ironclads and England only eleven, then, indeed, France might well seek a general engagement, not with an inferior, but with a superior force at her command. Happily we cannot see grounds for such a
statement, if the vessels are classed on any reasonable statement, if the vessels are classed on any reasonable
principle. Supposing, however, we take Mr. Barnaby's gures-which appear to be by no means unfavourably presented for England-we find that he reckons, even at the present moment, that the French completed ironclads bear a proportion to our own of $12 \cdot 5$ to 18 , or something
over two-thirds. This would be quite sufficient, in all over two-thirds. This would be quite sufficient, in all
probability, to prevent our ships watching and reckoning probability, to prevent our ships watching and reckoning
with all of them. Any that elude us have a magnificent with all of them. Any that elude us have a magnere Mr. Barnaby, bears a proportion to that of France of $1 \cdot 4$ to $1 \cdot 2$, that is, nine and a-half to one. This proportion is really of little account except to remind us that the
shipping trade of France is not essential to her existence shipping trade of France is not essential to her existence in the sense that ours is. The absolute bulk of our own is
more to the point. In 1875 the number of our trading more to point. In ships appears to have been 19,991, of which 17,221 were ships appears to have been 19,991, of which 17,221 were
sailing ships and 2970 were steamers. Each of these-especially each of the steamers-takes repeated trips during the year, so that we may reckon on a very large proportion of the above having to run the gauntlet through water infested by an enemy's cruisers duriog the first three gant supposition. We will admit, for the sake of argument, that we have some merchant men who could generally escape fairly from any man-of-war that hove in raly escape fairly from any man-of-war that hove in
sight, and might be rendered too formidable to be dealt with by any light cruiser likely to be sufficiently swift to overhaul them. For the rest we suppose that we should have a certain number of powerful swift armourclads seeking the enemy's war ships, to whom some of the slower
vessels might fall a prey. On the other hand, we presumeand Mr. Barnaby's paper favours the presumption-that some of our slower ironclads would accompany fleets of merchant ships as convoys, This last leaves greater freedom to the French men-of-war to cruise in search of unprotected ships, and there remains a great mass of trade that appears as if it must be stopped, and an enormous amount of suffering would follow. How wide a difference exists between the present state of things and that in the time of the war with the first Napoleon, may be seen by quoting a few statistics. The population of England in 1811 was $9,551,888$; Scotland, $1,805,688$; Ireland, $5,937,856$; Wales, 611,788 . The total may have been about $18 \frac{1}{2}$ millions including army, navy, \&c., which then amounted to about 640,500 . In 1871 the total population, including small islands, was $31,817,108$, and in 1881 it was $35,246,633$.
The quantity of food produced in the country varies comparatively little; what, therefore, was only a supplementary supply in the beginning of the century is now our
main source of food. It may be asked, however, whether we are not merely pointing out an unavoidable evil Perhaps in a greater or less degree our supplies must fail us in war, still much may be done to limit the probable evil. Mr. Barnaby suggested the following questions :-
(1) Whether England should build monsters of power and speed, offering the advantages of concentration of force enabling powerful and quick blows to be struck regardless of cost; (2) Whether we could keep an enemy's ships in by blockading her ports; (3) Whether unarmoured men-of-war should be built such as could compete with the newest and swiftest merchant ships, or whether these latter ships themselves could not be rendered formidable
in time of war ; (4) What would be the part played by the
fast gun and torpedo ship; (5) Ought we to have the heaviest guns possible or not? To us two or three classes
of vessels appear specially necessary. We need a certain of vessels appear specially necessary. We need a certain small number of monsters of crushing power to watch the entrance of harbours containing hostile men-of-war, and we need some vessels, possibly merchant steamers, with the highest speed attainable, to play the part of frigates in supplying information. Doubtless all heavily clad ships might be valuable as convoys, but without dogmatising as osuch points, we would venture to hope that the subject ayy receive more earnest attention than it appears to have
itherto attracted. itherto attracted.

Sanitary value of the london water supply
$\mathrm{W}_{\text {ITH }}$ cholera raging in Egypt, a natural anxiety arises for the safety of the public health in this country. A large amount of good advice is being given, and much of
it is worthy of being observed. Especially are people it is worthy of being observed. Especially are people warned to have regard to the purity of the water they they are not only made clean, but systematically kept so. they are not only made clean, but systematically kept so.
Private wells should be carefully examined, to see that the Private wells should be carefully examined, to see that the contents are uncontaminated by any contiguous cesspont.
Such is human nature that we may pretty confidently Such is human nature that we may pretty confidently
predict these homely precautions will be very widely predict these homely precautions will be very widely
neglected, while everybody is expressing deep concern as oglected, while everybody is expressing deep concern as
to the purity of the public supply. The metropolis is pecially subject to a sort of feverish apprebension as to the character of the water which it has to drink. Past visitations of cholera have made the people of London peculiarly sensitive as to the perils connected with polluted water, and heir fears have been aggravated by the alarmist theories of Dr. Frankland and others. We need not dispute that, times gone by, the water supply of London was of a nature to occasion a serious amount of sickness. But the fact has been overrated, and a school of ultra-purists has arisen, promulgating doctrines which are almost enough to frighten nervous people into cholera at once. "Dilute sewage" is the favourite phrase with some teachers concerning the metropolitan water supply. With far more reason might the atmosphere of London be stigmatised as aerated poison." The fact seems to be overlooked that the water supply of London has undergone enormous mprovement since the years in which cholera swept through the metropolis, and that the conditions are materially altered. The intakes of the Thames companies have been shifted to points up the river, where they are removed to the farthest possible distance from the presence of sewage. On the Thames and the Lea respectively there is a Conservancy Act in force, which pro-
hibits the discharge of sewage into the stream, and the hibits the discharge of sewage into the stream, and the Conservators are not slow to assert their authority in the matter. The utmost skill of the analyst fails to detect the presence of sewage in the water supply of the metropolis, and Dr. Frankland has announced in his last monthly report on the subject, that the water sent out by the Thames Companies was "again unusually free from organic matter ; " while of the Lea water he says it was also " exceptionally free from organic impurity". The New River Company's supply is said to have been "chemically but slightly inferior to the best of the deep well waters. That such water could disseminate cholera, or any other form of zymotic disease, would seem utterly impossible. Supposing cholera to enter the metropolis, there is nothing in the water supply which could assist in
the propagation of the disease. The water supply of Lonthe propagation of the disease. hige water supply of Lonthe situation of London itself, and the discharge of metropolitan sewage takes place at points altogether too low politan sewage takes place at points altogether too low
down to affect the supply. As for the danger of indown to affect the supply. As for the danger of in-
fection from localities above London, the idea is refuted by the present excellence of the water, which shows that by the present excellence of the water, which shows that
the sewage of the up-river towns is practically excluded. An increased amount of attention has been given to the quality of the metropolitan water supply within a recent period. The circumstance is a fortunate one, as it affords a broader basis on which to form our conclusious. Three eminent authorities-Mr. Crookes, Dr. Odling, and Dr. Meymott Tidy-have been engaged by the seven metropolitan water companies which take their supply from the tribues and the Lea to analyse the water which they dis-
tribute the consumers. The analyses have not been limited to a single sample per month in the case of each company, making in all little more than eighty samples in the course of a year; on the contrary, more than two thousand samples were operated upon in 1882, and the London water supply has thus been brought under daily instead of merely monthly supervision. The circumstance engaged for the purpose by the water conducted by analysts discredit their results. No one can question the integrity of the analyses, and all who understand the subject can draw their own conclusions from the data thus supplied The examination has been thorough; no point has bee neglected, and so satisfactory are the results that the only refuge for the alarmists is found in the plea that while the water is chemically pure, it may yet be dangerous to drink. The danger in such a case must be so remote that we might be extremely thankful if every peril were as far off. Admitting the theory of cholera germs, it cannot be supposed that a solitary germ will prove fatal to human ife. A certain number must assuredly enter the system in their multiply themselves with sufficient rapidity to make disea presence manifest in the form of acute zymoth water be chemically pure, it is not reasonal ever, the and it may be safely averred that in such a case and danger is not merely masked, but is so weakened and reduced that it practically amounts to nothing. If are assuredly other vehicles only standard of safety, there far more to as it now exists. How far the water supply is independent of choleraic attacks is, perhaps, indicated by the incidence of diarrhœa. How are we to account for the fact that during the second week in the present month, out of 325
deaths from diarrhcea and dysentery in the metropolis

247 were of infants under one year of age, and 56 of
children aged one and under five years ? The babes are not likely to have been water drinkers. If water were not poison that killed, the mortality ought to be at a minimum instead of a maximum in the first year of life, it be so with diarrhoea, it is a fair inference that the same thing will occur with cholera. The facts with regard to the spread of cholera are not all so clear as some would have us believe. If the water supply of London were as
pure as the snow on the summit of the Himalayas, we pure as the snow on the summit of the Himalayas, we
might still have diarrhoea and its congener, cholera. It is a matter of experience in foreign countries that the kindling of fires impregnated with sulphur has averted the progress of this fearful epidemic. At the same time,
no one can deny that water contaminated with choleraic matter is in the highest degree objectionable. That there is risk of the London water supply being thus contaminated is the point at which we join issue with those who speak as if the supply were a source of special danger. We
believe that if the water supply of the kingdom at large were as pure as that of the metropolis, there would be practically no peril to the public health from that source.
Unfortunately, all England is not favoured to the same extent as London, and hence there is need for enforcing the doctrine that a water supply which is actually and positively polluted is an evil calling for the earliest possible
That the metropolitan water supply is not in that dubious condition which some people are ready to believe, is shown by every practicable test. We may even take his report on the water supply of London for the year 1881, we read that "the sediment deposited from turbid water on standing is often found by the microscope to
contain living and moving organisms." People have heard about these "organisms" organisms." People have heard every glass of water from the metropolitan mains contains more or less of these dreadful creations. But when we
look into Dr. Frankland's report, we observe that in 1881 there were only two companies out of seven which supplied water, so turbid as to afford a nidus for these "organisms," The Grand Junction supply is said to have one. The Chelsea, the West Middlesex the Southwark the New River, and the East London, had none. It is commonly understood that the water supply from the Thames and the Lea is getting worse rather than better from year to year, But we find Dr. Frankland repeating which he found "living and moving organisms" in the sediment of the London water supply. This is better
than four in the preceding year, and better still than seven in 1880. The average annual number of cases in which these "organisms" appeared in the last five was 16.6 . During the last seven years the annual average of the samples containing organisms has been a fraction more than eight, while in the previous seven years the average was sixteen. Last year there was one instance of these organisms in the Lambeth supply, and one in the East London, the other five river companies being exempt. During the last four years no organisms he last three years non sex. Taking the range of the last fourteen years, the improvement in the character of the supply is very marked, that on no occasion during the past year was the water supply, as reported upon by Dr. Frankland, either turbid" or "very turbid" On twenty-eight occasions it is reported as "slightly turbid." On the remaining fifty
six occasions it was "clear and transparent"" We have already clear and transparent.
We have already remarked on the limited number of
samples taken by Dr. Frankland. Mr. Crookes and hi two colleagues found, during the past year, forty samples "very slightly turbid," ten "slightly turbid," and one
"turbid," leaving 2059 samples entirely free, -so far as unaided vision could determines entirely free, -so far as Of the total fifty-one samples not entirely free from suspended matter, thirty-five were connected with periods of heavy rainfall. But there are other considerations of more
precise value with regard to the wholsomeness of the precise value with regard to the wholsomeness of the
supply. One of a very important character is that which has reference to the presence of free oxygen in the
water. This is a test which Mr. Crookes and his colwater. This is a test which Mr. Crookes and his col-
leagues have alone applied, and the result is decidedly favourable. The free oxygen averages from 1.74 cubic inches per gallon in August, to $2 \cdot 25$ in February.
The water being then fully oxygenated, proves the The water being then fully oxygenated, proves the statement from Dr. Frankland that during 1882 the river water supplied to London was in times of flood "often largely polluted with organic matter and unfit to drink. On the character of the water, as affected by this
"organic matter," there is a dispute between Dr. Frankand on the one hand, and Mr. Crookes and his friends on the other. It is pointed out that if judged by this
standard, the water of Loch Katrine would be condemned, standard, the water of Loch Katrine would be condemned,
and would appear as far inferior to that of the East and would appear as far inferior to that of the East
London and New River supply. Dr. Frankland is, in fact, ccused of adopting an ingeniously contrived scale of unwholesomeness, by an appeal to which the water of the
London companies is month after month held up to public London companies is month after month held up to public
execration. Experience seems to show that this organic matter is of such a nature as not to menace the public ealth. It is somewhat singular that the mortality of London seems to be highest in those years when there is least of this organic matter in the water supply, and the
mortality is lowest when the organic matter is in excess. Of mortality is lowest when the organic matter is in excess. Of course the significance of this organic matter depends on
its real nature. It might be very harmful, but there is reason to believe it perfectiy harmess. The quantity is small son to believe it perfectly harmless. The quantity is small,
and its nature seems to identify it as "a normal constituent of most river waters," The Doy supply, of which the Duke of Richmond was president,
reported in 1869 that there was not any reason to regard
the organic matter of the Thames water as objectionable for more efficient measures to exclude sewage from the Thames, the Lea, and their tributaries. When the Commissioners reported, they considered the water to be "generally good and wholesome." Beyond this, they believed that when the measures they recommended wer adopted, " water taken from the present sources would be of the metropolis," At the time when quality for the supply investigated the subject, filtration was "in many cases very imperfectly performed.". In this and other respects great progress has been madesince 1869. Dr. Frankland himself is constrained to acknowledge "the very extensive and effective arrangements and apparatus which the water companies drawing from the Thames and Lea have for storage panies drawing from the Thames and Lea have for storage
and filtration." The same authority speaks of "the comparative freedom from excessive organic pollution which has been observed in Thames water since the year 1875," and attributes it to the increased storage space acquired by the companies drawing from this source
The indications of " past and present contamination," as set forth by the total amount of combined nitrogen, are years. This he considers " partly due to the during recent years. This he considers "partly due to the longer storage
to which the water is subjected by the companies, and probably to some extent to the processes of partial purification to which most of the sewage discharged into the Thames in now submitted." The statement is fairly encouraging, ing the public health is the abundance of the metropolitan water supply. This is sometimes questioned, but liberal indisputable evidence that the companies furnish a manner of th in the aggregate, whatever may be the daily supply in 1867, including the chalk water of the Kent company, was under $99,000,000$ gallons. Last month the average daily quantity was more than $159,000,000$ connection witherable economy has lately been effected in sumption last month the more remarkable. The weather was generally hot, and it was specially important wat the supply should be unstinted. An insufficient water supply during a period of unusual heat would itself we perilous to the health of a crowded population, and the unfailing abundance which arises from a river supply is an advantage of no slight value. Reviewing all the conditions of that cholera is far more likely, we feel justified in saying than an auxiliary in that quarter.

the patent bill.

The Patents for Inventions Bill, as amended by the Standing Committee on trade, to which it was referred, is waiting for the consideration of teail. Thore is, however, a matter to which w.
consider it in detail deem it necessary the attention of the Legislature should be par-
ticularly directed. The pendency of the Bill been expected, checked applications for letters hatent. Invente hesitate to proceed. They are conscious that the Bill, if passed will effect considerable changes, and they not unnaturally hold their hands until the period of transition shall be determined.
It is, therefore, to the highest degree desirable that the suspens It is, therefore, to the highest degree desirable that the suspense
should be ended with the least possible delay; that if we are to give up theold love we may be on with the new with every despatch The Act is intended to come into force on the 1st January, 1884 but, oddly enough, the Bill as it stands at present makes it impossible that it should be fairly and properly workable which are to furnish the Clause it is provided that the rule are to be laid on the table of the House, and are not to be effective until they have occupied their position for forty days. It is obvious, therefore, that we cannot hope to proceed under the
new measure-except, perhaps, in a very tentative and unsatisnew measure-except, perhaps, in a very tentative and unsatiss
factory manner-until next year has considerajly advanced, and in the meantime, by Clause 110, the old Act will be repealed. N doubt the 99th Clause is permissive-"The Board of Trade may" seems to be beyond dispute that the Act cannot be properly worked without them, and that it is the intention of the Government that details of practice shall be furnished. We have no vere from time that this stipulation is unnecessary. Rule were never submitted to Parliament, and no one was ever
the worse for the omission of such control. When the he worse for the omission of such control. When the
rules were framed under the existing Trade Marks Act, much rules were framed under the existing Trade Marks Act, much
doubt was expressed whether they did not unduly extend the Act, and were so far ultra vires; but it was said in reply that egislative force. It is very far from desirable that this rid happen with the new Act. The Bill is fairly precise in it details, and the public will be quite satisfied to dispense with the check which the submission of the rules to Parliament is supposed to create. Every one knows that rules laid on the table ie there and nothing more happens. The new rules of protute a sweeping measure of reform, and which have lain on the table for nearly half the time already, have only, as we write, only within the last two or three days been submitted to the Judges, other than those who framed them. The Bar and solicitors have never had a chance of expressing an opinion upo consider this clause.
the huddersfield tramiway accident
THE verdict of the coroner's jury on the fatal tram-car accimputed by it to any one in particular. The jury, at 6.30 etired to consider their verdict, and they returned at 9.18 , or after nearly three hours' consideration, with the following

- (1) We find that the deceased persons, Isabella Wood house and others, came by their death from the falling over of upon the driver having lost control of his engine through the
und breaking of one of the pistons, preventing him from ffectively applying the reversing motion. (2) That we severely censure the nd the other partly of the valves admitting steam to the automatic brake, thereby preventing any chance it might otherwise
have had in coming into action." The primary cause of the
accident was, it seems clear from the evidence, some mishap
with the engine, and if it is assumed, as the evidence showed, With the engine, and if it is assumed, as the evidence showed,
that the fracture of one of the pistons rendered one of the cylinders powerless for stopping the engine, it would appear
difficult to for putting the governor brake gear out of action. One of the Mr. A. G. Evans, of the Lancashire tion of a loose sed the breakage to occur through the intervenengineer, of Hucdersfield, was also called, and gave evidence to
the same effect the same effect as that of Mr. Evans, and agreed that if the piston had not broken, the car accident would not have happened,
as at the speed of about ten miles an hour sufficient check could as at the speed of about ten miles an hour sufficient check could have been put on the engine, without the governor brake, to pre-
vent it. No adverse criticism seems to have been made on the engine, which is of the Wilson type; but a good deal
ent met the evidence of the borough engineer, Mr. R. S. Dugdale, between whom and the tramway inspector, Mr. Laxton, there seemed to be difference of opinion, as with unfriendly rivals. The the curve on which the accident occurred, there being insufficiont superelevation of the outer rail, but had been told on this or another occasion to mind his own business-a suggestion for limitation of duties which Mr. Dugdale did not atterwards sider it desirable to explain. The car, however, was very heavily
loaded at the top, or it would probably not have overturned. Taken altogether, it appears clear from the evidence that the engine was not provided with sufficient brake power to enable it gradients of Huddersfield. It is very desinable car on the steep power should be readily available, as it is quite clear thet brake ways cannot often be made to suit the requirements of superelevation of outer rail for high speeds.
precaution against the infection of cholera
The Memorandum issued by the Local Government Board concludes with the following paragraph, "It is important for the
public very distinctly to remember that pains taken and costs not in which would enable cholera, if imported, The local condition in this country, are conditions which day by day in the absence of cholera, create and spread other disenses-diseases which being never absent from the country, are in the long run far which would justify a sense of security against any improvemented importation of cholera, would to their extent, though cholera should never reappear in England, give ample remunerative results in the prevention of those oher diseases. Commenting contemporary that in of Mayfair, writes to a morning contemporary, that in the course of many years' medical pracely found a housse among the dwellings of the rich which in
ront any way fulfilled the requirements of modern sanitation. As a rule, he writes, they are as carefully prepared for the inroad of disease as are any of the filthy courts in crowded parts of the house. Year after year, and through various tenancies, it remains a neglected source of passive, and frequently of vital
danger to health. . Many householders will say that the danger to health. remedy for this evil lies with the householders will say that the contractor, and if he did remedy for this evil hes wint eie dust contractor, and if he dia
his duty this evil would not exist. This is a great mistake, for his duty this evil would not exist. This is a great mistake, for
the mischief lies in the construction of the dust-bin proper the mischief lies in the construction of the dust-bin proper,
which is usually built of solid stone inside a dark, unventi lated cellar, and the bottom of which is foul with the refuse of ages. Such a hole never is, and never can be,
cleansed; besides, it is nobody's duty to do it cleansed; esides,
no domestic servant would nobedy's like the duty if aeked to do it. years ago, he writes, I caused mine to be levelled with the ground and the saturated earth to be carted away, and having laid down fresh concrete, I hung up a row of sacks for the recep-
tion of dry dust. In order to provide for kitchen refuse I established two zinc-covered pails, which stood in the open air to be washed by the rain. One is taken away full and returned ready to be shouldered and carried to the cart without leaving track or litter en route. The ideal plan at this stage of the prothe cons would be to have a closed cart with a shoot down which解 the dustman, instead of being an active source of danger to health, is now nothing more than a convenience in the way of
ordinary house cleaning. ordinary house cleaning.
rich people have their drains attended to and their cisterns cut of from the sewers after they have suffered the penalties of negligence. But however perfect a house may be made in thes fertile source of disease. A great portion of the vegetable and animal refuse matter of a house can be burnt at once in the remove may, to a great extent, be confined to mineral matter.

LUMINOSITY of FLAMES

A Paprr has recently been published by Sir W. Siemens on this subject in the Ann. Phys. Chim. He says that the dent on the separation and incandescence of solid particles suspended in the flame. Gases from which no such particles are eparated, burn with a feebly luminous flame, and thi laminosity is assigned to the incandescence of the gases themwhether pure gases heated to a high temperature really emit
ight. In order to examine this point, the author's brothe nade a series of observations with a Siemens' / regenerative ven of the form used in the hard glass manufacture,
whereby a temperature of the melting point of steel, 1500 to 2000 deg . C., could easily be attained. By a suitable con found that provided the experimental room was kept perfectly ound that provided the experimental room was kept perfectly
still, the heated air in the oven emitted no light. The introduction of a luminous flame into the oven caused it xperiments, only feebly illuminated. As a result of the nosity of the flame is due to the incandescence of the gas is incorrect. In order to determine the temperature at which repetition of the above experiments with a more refined appa ratus. The author further demonstrates that the heat rays emitted from hot gases are very smalted from equally hot bodies as compared with those behaviour of flames themselves prove equally that the luminosity of flames is not due to the incandescence of the prop luminosity bustion. If the gases to be burnt are more quickly mixed the
rated and hotter, since less cold air is mixed with the burning gas. The same phenomenon occurs if the gases are strongly
heated before they are burnt; but since the ascending product of combustion are maintained for a short time only at the tem perature of the flame, the above phenomenon would be reversed
were the gas self-luminous. The luminous part were the gas self-luminous. The luminous part of the flame
is separated by a line of demarcation for the products of com ustion, and is coincident with the termination of chemical cetion, which is probably the cause of the emitted light. If it nvelope of ether, then a chemical combination between two o
nore of the molecules will cause a vibration of the ethe particles, which becomes the starting point of the light and heat waves. The luminosity of gases when an electric current is he author has already observed that all gases are conductors o lectricity when their point of so-called polarisation maximu has been reached.

foreign vessels and english trade

We referred some time ago in The EnanNerr to the foreigh vessels that are engaged in English trades. Our fullest informa-
tion on the matter is obtained in the returns that relate to that tion on the matter is obtained in the returns that relate to that
part of the trade that is included in the export of coals, on which we have returns for the past month. It appeara that a
Veweastle-on-Tyne there were 367 British and 227 foreign vessel hat took coal cargoes away from that port last month; from away cargoes; from North Shields the proportions were 23
British and four foreign; and from Sunderland 104 British and 83 foreign; other ports sent numbers that correspond-West
Hartlepool, Hull, Liverpool, Cardiff, and others; and it becomes more and more apparent that it is in a large degree due to the imber importation that we have to trace this
vessels at some of the of fore ports. Vessels come from the Baltic with cargoes of timber to the coal exporting places, and they take
back cargoee of coal. This is probably the explanation for the great bulk of the vessels. But it may be added that the proportionate tonnage, if procurable, would be less unfavourable to burden that come thus from abroad; and it may also be adde that there is now increasing an importation of timber by British steamers which is likely to lessen to a very great extent the
employment of the small sailing vessels. The steamer has brought down, and is likely to bring down still further, the rate of freight, and as it doess so, and as the sailing vessels are los the trade from the foreign vessel to that of our own country,
It will increasingly employ our own vessels, and will indirectl It will increasingly employ our own vessels, and will indirectly
timulate the trade of this country, and that to an extent that will be appreciable.

LITERATURE.

James Nasmyth, Engineer. An Autobiopraphy, Edited by
Sasurus Smuss, LL..., Author of "Lives of the Engineers.
London : John Murray. 1883. London : John Murray. 1883.

[First Notiog.]

This is pre-eminently an age of biographies, and Dr. Smiles may almost be said to have earned the title o biographer-in-chief of a class of men whose claims on the public gratitude have not always been fully recognised. The successful politician, the popular divine, the great
soldier has always been sure of a record of his life, but the ives of inventors, engineers, and such like, have not, unti ately, been considered worthy of notice. Their contests are with the silent forces of nature, and their victories are
mostly achieved in secret. No nation looks on in wondering mostly achieved in secret. No nation looks on in wondering expectation; nor was it ever the fashion to keep special messengers in readiness to announce to the world that
success had crowned their efforts. In not a few cases it success had crowned their efforts. In not a few cases it
was denied that anything at all had been accomplished; was denied that anything at all had been accomplished; and when at length it became evident that the new invenmake money, then the unfortunate inventor has been held p to execration as a monopolist bent upon depriving th community of knowledge which they had in reality always possessed, thoug
Dr. Smiles was amongst the first to recognise that the lives of these men might be made interesting to the
general reader as well as to the professional man. Without ny taste for that "horrible wrangling about priority," to use Humboldt's words, it has been found that a large
circle of readers exists for the history of men who have circle of readers exists for the history of men who have
neither deposed kings nor re-arranged the map of Europe, but whose inventions have had a permanent effect upon the happiness, well-being, and comfort of the entire human
race. In the present instance he has been singularly fortunate in his subject, and although the book is professedly an autobiography, and therefore not written by
Dr. Smiles, it should be remembered that the first "Industrial the work appeared twenty years ago in his "Industrial Biography." The first three chapters of the
book consist of an account of Mr. Nasmyth's remote ancestors and his immediate progenitors. If it should be thought that this might well have been omitted, it is sufficient to state that one object Mr. Nasmyth had in view
in compiling his autobiography was to put on record at the in compiling his autobiography was to put on record at the
same time notices of the life of his father, who is consame time notices of the life of his fa
stantly referred to throughout the work.
James Nasmyth was born at 47, York-place, Edinburgh, which artistic and constructive talent seems to have been hereditary. For four or five generations the Nasmyths
were builders and architects, many important buildings in were builders and architects, many important buildings in
Edinburgh having been erected by them. Mr. Nasmyth's ather-Alexander-was, as painter, and Patrick, his elder brother, also became famous The father was not only an artist, but he was possessed of great mechanical ability. He was the contriver of the
now well-known " bow-and-string bridge," as he named it, now well-known "bow-and-string bridge, as he named was reproduced in The Engineer of November 13th, 1868. H was also, as we now learn for the first time, the inventor
of the method of rivetting by pressure instead of a blow, although he never seems to have proceeded further than the mere squeezing of the rivets between the jaws of a
vice. Young Nasmyth was sent to the Edinburgh High

School at the usual age, but he does not seem to have
learned very much there. His father was intimately acquainted with some of the best Edinburgh men of the day, and the lad's real education was being silently carried on by association with his elders. His father had a workshop, and ful instruction being that he attained a considerable amount of manipulative skill when he was but a child. He also devoted some time to chemistry, making it a rule not to buy his reagents, but whenever possible to make them. . this way he "eventually produced perfect specimens that there is some mistake as regards nitrous acid, th preparation of which is certainly beyond the powers of a couple of schoolboys, and which is, moreover, a very un attractive product. He left the High School in 1820, and subsequently attended the classes at the Edinburgh Schoo of Arts, as well as some courses of lectures at the University. A sectional model of a condensing steam engine which he made was the foundation of a small business in mod line, and he obtained several orders for working mound of steam engines for institations which wer he Edinburgh School of Arts. About the year 1827, when the subject of steam carriaces on common roads too such a firm hold on the public mind, he set to work on "big job" of the kind, and in about four months the machine was ready. It was exnibited before the member of the Scottish Society of Arts, and for three or four month experimental trips were made with it on the Queensferry nd it carried eight passengers. It is greatly to be egretted that this interesting machine was not preserve intact. It was unfortunately broken up, the engines and boiler being sold for $£ 67$, a sum which more than defraye all the expenses of the construction and working of th machine," says Mr. Nasmyth. He continued to direct his attention to the steam engine, taking every opportunity of seeing and making drawings of such machines. In the iority 4 arer Dundee, who, he afterwards found, were the first Scottis engine builders who gave due attention to the use fame of Henry Maudslay, and the chief object of hi mbition the How was this to be done? Maudslay had ceased to tak apprentices, and, even if he had not, the elder Nasmyt had not the, means of paying the heavy premium required in
such cases. He executed two "diploma works," one being such cases. He executed two "diploma works," one being a most complete working model of a high-pressire engine, other a set of hand sketches of machines and parts machinesin perspective. Packing uphisengine and drawing he set sail for London on the 19th of May, 1829, accompanied
by his father, who had been introduced to Maudslay a by his father, who had been introduced to Maudslay ew years before. The result of the interview was that
Nasmyth was engaged as Maudslay's assistant in hi Nasmyth was engaged as Maudslay's assistant in his
private workshop, and he filled that position until Maud private workshop, and he filled that position until Maud slay's death in 1831. This part of the book is furl method of working with which we are acquainted. In August of the same year Nasmyth returned to Edinburgh, and rented a piece of ground at Old Broughton as a work shop, in which to construct the machine tools necessary for a start in business on his own account. His choice lay between Liverpool and Manchester, and he eventuall decided in favour of the latter, his place of business bein in Dale-street. He remained there two years, and in 183 the most active portion of his life; and it is with the Bridgewater Foundry that his name seems to be mos cosely counected. He retired from business in 1806 the early age of forty-eight, and went to live at Pens Long may he flourish! From that period he devoted himself mainly to astronomical pursuits, the results which are set forth in detair in his "Autobiography. Perhaps we may be excused from entering into that part
of the subject, as being rather beyond the scope of this journal. Moreover, the results of his laborious observa ions on the moon are well known. Whatever astronomy may have gained, it will hardly be denied that the scienc of engineering has lost in a corresponding degree by his obtained name and fame.

THE ENGINEERING AND METAL TRADES

EXHIBITION.

Messrs. Beck and Co., Southwark, exhibited a variet of their specialities for water supply, consisting of sluic valves, hydrants, double and single outlet stand pipes, gun metal ire-cocks, cc., as well as specinens of safely valves, stop valves, he beck whistle or fog horn for steamers, and a number of other fittings. An ingenious water wast preventing cistern-Bell and being shown, the chief points of merit being its simplicity being shown, the chief points of merit being its simplicity
and freedom from liability to get out of order. On page 74 is shown a sectional elevation of this waste preventer. The discharge is effected by means of a syphon, which is charged and brought into action by a small cylinder con which, when the lever is pulled down, forces sufficient water to start the syphon. The cistern exhibited will discharge two callons at each flush
Messrs. Thwaites Brothers, Bradford, have a very large with double wrought in m motion. A steel tith hammer, tantial piece of work, the hammer head and and sub being both made of mid stel. The valve aid iston-rod being both made of mild steel. The valve gear is of caseSeveral stamping irons are also shown. wearing surfaces frames with guides and are deso show, these have double steam drop stamps or ordinary forging hammers. They are both self-acting and hand-worked, and the stamping
motion is controlled by a foot treadle, so that the piston: cain be held up until the article to be stamped is placed on the die, and then suddenly dropped with full force as soon as the attendant places his foot on the treadie. O page 74 we illustrate an improved circular saw for hot iron, which Messrs. Thwaites specially recommend for use in miths' shops. It is a simple and handy tool, and where nuch work is done will no doubt soon repay its first cost by economy in wages, fuel, and iron. The saws are made in sizes varying from 24 in . to 36 in . in diameter, and are run at a speed of from 1500 to 2000 revolutions per minute, a trough being formed in the frame for containing water, so as to keep the lower part of the blade continually im mersed. All bearings are of phosphor bronze.' blower with direct-acting engines, and Thwaites' improved quick speed trunk air compressor, with cylinders $7 \frac{1}{2}$ in. diameter and 10in. stroke, fitted with Holt's patent valves
A stone and ore crusher of somewhat new design was shown by Messrs. W. H. Baxter and Co., Leeds, who claim for it several important advantages over the older form lnown as Blake's crusher. The chief difference lies in what is termed the "knapping" motion, the jaw being brought up with a quick movement, which cracks th stone much more readily than the slow moving jaw
worked by the ordinary toggle joint. Instead of taking half a rey the ordinary toggle joint. Instead of taking it is acmplished give the blow, as in the Blake the back ward motion stationary during the other half. It is stated that with the knapping motion only one-half the driving power is required, while the material is more evenly cubed, and
there is much less waste from dust and chippings. The sudden opening of the jaws also leads to improved res in working, it being found that the crushed material falla away with greater readins, and is therefore not broken more than necessary. It is also stated that the strain on the crank shaft is very considerably reduced, and that there is much less liability to breakage than in the older form. The hydraulic and steam joint illustrated by the engraving, next page, was shown by Mr. E. Penning, of Westminster. This joint consists of a slightly bel-mouthed flanged end to the pipes, and within the internal wedge-
shaped space formed by the meeting of two such pipes is shaped space formed by the meeting of t in two separate washers, as shown in the diagram. The joint has been tested at Sir W. Armstrongs works to jossure of 4000 lb ., and has been found to remain tight. It will be seen hat the joint.
ness of
The engraving, page 74 , represents a shearing machine exhibited by Messrs. J. Rhodes and Nons, Wakefield, Yorkshire, or cutting iron plates 4 in. wide by $\frac{1}{4}$ in. thick. The body of this machine is cast in one piece, and the moving beam on which the shear blades are fixed works in
strong bracket slides, which are bolted at each side of the strong bracket sides, which are bolde at each side of the machine. These brackets are adjustable and arranged so
 The . his pre fents all packing betht motiones, The machine is fled up win put of motion, and can be instantly throw 1 or gear. The moving knife always remains at the top ready for use. It is worked by a nected with rods to a moving bou. No special found tion is required for it. The same akers exibit mole flo and is made on the same plan as the 4 ft . shearing machine labour hitherto expended in cutting corrugated iron, work most often done with a hammer and chisel.
The Church Engineering Company showed models and drawings of Mr. Church's slide valves. But the interest of of company's exhibit centred in the experimental proof of the excellence of Mr. Church's valves furnished by
samples of slides that have been long at work. One of the i slide which has been used on locomotive on the London and South-Western Railway, not as a mere experiment, but as an actual working slide, doing its duty during a raning over 120,619 miles. This slide is of the circular form held in a loop or buckle, in which it is free to turn round, and in which in fact it is made to turn partly round at every stroke, and always in the same direction. This rotation, combined with the reciprocating motion, gives the slide a gliding movement along the
port face, and by continually changing the parts of the surfaces that come in contact with each other, prevents most effectually the surfaces. The bearing parts of the port face are also so shaped that there is no part which is not overlapped by the slide at every struke,
and consequently there is no wearing to a shoulder. By and consequently there is no wearing to a shoulder. By of the slide takes a bearing, a large part of the pressure forcing the slide against the port face is relieved, and thu friction is greatly reduced, and the power necessary for working the slide is largely economised. A Alide wis to wear little, and to wear evenly; but the actual condition of the slide and facing after their work over more than ne hundred and twenty thousand miles is such that one is surprised to see anything so true and perfect, while the wear is scarcely perceptible. Another Mr Che side ith expansion pedo its back, win H . Curl This compound slide is illustrated at page 74. It has been解 time in 1879, when new cylinders were fitted to the engines, the same slides being continued in use with entar new,
cylinders. The slide in this case is of rectangular form, cylinders. The slide in this case is of rectangular orm,
so that it has no rotary motion; but the pressure on it is so relieved and balanced by three rings, arranged to work against the slide cover, that the wear-which, so far as it can be measured, does not amount to one-h so perfect that, on placing one upon the other, the atmospheric pressure holds them together in opposition to very considerable force exerted to separate them.

EXHIBITS AT THE ENGINEERINGAND METAL TRADES EXHIBITION.

church's balanced slide valve.

RHODE'S CORRUGATED IRON SHEARS.

THWAITES BROTHERS HOT IRON SAW

BECK'S WASTE PREYENTER CISTERN,

BELGIAN FIELD AND MOUNTAIN GUNS. MESSRS. COCKERILL AND CO., SERAING, ENGINEERS.

shown on Fig. 1, with orifice 8in. diameter, is to be rivetted. The contractor to verify from actual measurements the position of the safety valves, manholes, and steam chests, and all fittings existing on the present steel boilers previous to commencing the
contract, so that every fitting may be interchangeable with any of contract, so that every fitting may be interchangeable with any of
those on the existing six steel boilers, or with the six specified in this contract. (5) The ends are each to be of one plate flanged inwards, so as to make a joint to the shell of the boiler. All flanging to be

at least 3 in . in depth from edge of plate to inside. At the fire end the plate is to be flanged outwards, to receive and make a joint with the fire tube, and the opposite end is, for the same objects, to ge flanged inwards. (6) The fire flues to be Fox's patent corruwelded longitudinal seams, and of 3ft. inside diameter. The trans verse seams in the flues to be made by rivetting with 21 in . lap, and to be arranged so that the edges of the plates shall not have the fire directed on them. (7) The whole of the plates of the boiler-shells, furnace, flues, steam chests, \&c.- -are to be of the
best Landore-Siemens, Siemens-Martin, Leeds Forge Company's, or equally good, selected, mild quality of steel, zin. thick, with the exception of the end plates, which are to be $\frac{1}{2} \mathrm{in}$. thick. Strips 24 in . long, planed, 2 in . wide, to be cut off any of the steel plates when requested, in the presence of an office test piece giving less than 30 tons per square inch ultimate stress,

STEEL BOILERS FOR THE CROSSNESS PUMPING STATION.
completed it shall on each plate be visible from the exterior of the late wh the interior of the flues, as the case may be. (9) Any as any other defect or which wetghs at a less rate than 5.41 b , or very $\frac{1}{8} \mathrm{in}$. in thickness per foot superficial, is to be rejected. (10) he rivets to be $\frac{3}{8} \mathrm{in}$. diameter, of the same brand as the plates, to ccurately fit the rivet holes, to be made with heads of the form ongitudinal generally to be placed at 2 in . pitch; but the with 24 in. pitch on the straight, and 2 in . on the rivetted, (11) The rivet holes throughout the boilers are to be and fin position, after the plates have been bent into form and fited together, with the view of securing truth in the holes rivets to baccuracy in the fit of the rivets. The heads of the ivetting machine or by a holder-up if hand rivetted-formed with a cup to fit them, so as to prevent their being swelled over or
but they are to be made tight entirely by good and careful work. (13) Each new boiler to have its two ends stayed to each other by wo longitudinal wrought iron stay rods and gussets, as per draw inside and outside the boiler, which nuts are to bear on turned wrought iron washer plates 6 in . diameter by $\frac{1}{2} \mathrm{in}$. thick, and outside nuts to the front to be finished bright. The gussets of steel, 3 in . thick, to be fastened to the shell by 3 in. $\times 3 \mathrm{in}, \times$ inin. angle stee be made in each new boiler, with steel cover dished inwards, and faced with bright bolts, nuts, and washers, the cover to be provided with a lifting boss, a strengthening band of the steel specified in Clause 7, 3idin. by 3 in., to be rivetted on round the opening. (15) In the centre of the bottom of the first
ring of shell of each boiler there is to be cut a 10 in , diameter hole round which is rivetted a cone steel forging for blow-off, and in the second ring on the top of shell of each boiler there is to be cut a
cracked. Steam or hydraulic rivetting will be preferred to hand rivetting. (12) The plates to have the corners properly trimmed down when required, and no loose pieces or filling in pieces are to be used on any account. The edges of all plates to be turned or
planed. The whole of the seams to be chipped and caulked inside and out. No salammoniac or other materialis to be used to rust the seams;
or a less elongation than 30 per cent. will be rejected, and other
plates must be provided at the contractor's own cost. Should the plates must be provided at the contractor's own cost. Should the
testing be satisfactory, the plates that the test pieces are cut from will be taken and paid for by the board at 18s., price of the per cwt. (8) All the plates are to have the names of the makers stamped on them in such a manner as when the boiler is
 surmounted by a steel cone ofrsing, as shown at Fig. 1 . The
openiugs in the front of boilers for the soum and foed connections to be strensthenen by by turned steel rings, , in. diameter, in
 gun-metal, to thave gun-metal seats, carried on on oungle-branch
cast iron box standart, and to be loaded up cast iron box standard, and to bo loaded up to to 3 lib on the suguare
inch above atmosphere. One of each pair to be an exposea vale, inch above atmosphere. One of each pair to be an exposed vave,
with a s siding
weight carried on a a wrought iron lever, , uided in

 The other of each pair to be a look-up valve, loaded with lead top with sixteen holes 3 in, diameter, ilike the present, and ditted with
 with an Sin, steam stop valve and a reegilating stop-back feed ralve, of such size and dimensions-respectively as shown on Fig. 2 . ing parte, packing glands, seatings, , oct, to be of of gun-meta, the the
edges of all the tanges and cover Dlates, hand-wheels, stud bolts,
 supplied and ditted with a stout gun-metal stop feed oock and span-
ner, 2 in. diameter bore between the resulationg siop-back foed
feed ner, 2ind diameter bore between the regulating stop-hack foed
valves and the main feed pipes. As shown tions between the check feed values and the boilioresto be made by
 each of the boilers there is to be provided and fitted two sets of 3 in .
gun-metal tubular steam and water-gauge cocks of same pattern as

in use, each pair of gauge cocks to be provided and fitted with stout copper drip pipe, sin. diameter bore, to carry water into ash
pits below floor plates. (20) A 2in. diameter bore gun-metal screw pits below floor plates. (20) A 2 in . diameter bore gun-metal screv
cock, as shown at Fig. 2 , and in. thick copper connecting tube
from cock to blow-off pipe, to be provided and fitted to the fron
 metal blow-off cocks, as shown at Fig. , , with a connecting length bend junction pipes from cocks to blow-off pipe range, to be pro
vided and fitted to each of the boilers. (22) To each new boiler Bourdon's steam-pressure gauge, to show up to 100 lb . per square inch above atmosphere, is to be provided and connected by a suit
able pipe; and a No. 1 fusible alloy plug cap, manufactured by
Allen, Harrison, and Co., of Manchester, is to be provided and Aixed, Hith proper steel sadddle on the topter, is to to be frovided and cap is to be provided for each new boiler and delivered into the
board's stores. (23) A cast iron door front like those in use is to be provided and bolted to each new boiler, and to bear on the
ends of the fire flues, and not to hang on the bolts, which are to be collar bolts, and firmly fixed in the boiler. The fronts are to be and air slots with a gridirons, sliding plate to cover the same in each door. The fronts are also to be fitted with wrought iron haniging
ashpit dampers, hung so as to be removable at pleasure. (24) Cast
iron dead plates are to be put into also cast iron bridges and bearing bars are to be provided and fixed with all necessary brackets and lugs to take the fire-bars, which furnace bars, which are to be of cast iron, to fit the corrugation furnace bars, which are to be of cast iron, to fit the corrugation
of flue. The fire-bars to be 3 ft . long, 3in. deep-at the belly -and arranged to leave $\frac{1}{2} \mathrm{in}$. spaces between them, rivette pieces. The under surfaces of the front ends of the front bar which is to be shaped to correspond. Two sets of fire-bars to b supplied to each boiler. (20) A special fire-brick bridge to be pro-
vided and fitted in each of the furnaces of the new boilers (Fig. 1)
(26) Each of the boilers to be provided with three cast iron soo (26) Each of the boilers to be provided with three cast iron soo
doors and frames, as shown in Fig. 3 ; also a strong cast iron
damper door and frame, to have damper door and frame, to have faced bearing parts, with all
requisite copper wire rope, steel screws and nuts, wall plates and
handles along to be provided with front of each of the new boilers is to be provided and fitted with casing of sheet iron, the space between boiler front and casing to be all the fittings in front plates to be so arranged and fitted by gun-
metal distance pieces, so as to come through casings. (28) Each boiler is to be fitted with a cast iron anti-priming pipe, with wrought
iron baffle casing, and hangers for same-see Fig. 1. (29) The new boiler on completion to be tested in the contractor's yard, with
steam pressure to 75 lb . per inch above atmosphere, and when
delivered upon the working, and the fittings fixed thereon to tested with cold-water pressure at 100 lb . per square inch. Each
of these pressures is to be kept up for at least one hour, and the boilers to be perfectly tight under both of these proofs. The testing to be performed in the presence, under the direction, and to purpose, and be instructed by the engineer. (30) Provide and
supply cast ind

plates and with planed edges, thickness to be be lin. The approxi-
mate sizes

 these plates to be cast with rebated holles 12in, diameter, fitted
with rebated plataes over blow-off cooks ; sunk lifting holes to be cast in these e iriecular covers. All thens. phates to have hunks lifting
hales cast on same, and drilled and out for all pipes, wherever
 for plates that may be takee
other extras that max arise.
Tenders to be sent in by the 10th August.

EXAMPLES OF THE GRAPHIC TREATMENT OF STRESSES IN FRAMEWORKS

By Robert Hunson Gpaham, C.E.

(1) Introduction.-There can be little doubt that civil engineers prefer graphic to analytic methods of calculation, not only because they are more rapid and elegant, but also
because they obviate the danger of those serious arithmetical blunders which so frequently occur in long and tedious analytical processes. On this account we may anticipate that ere long the graphic methods of treating stresses in frameworks-first applied by Taylor, and after wards largely developed by Clerk Maxwell, Culmann Cremona, Fleeming Jenkin, and Lévy-will gradually supersede the older analytic methods, except in a eew case where analysis becomes inevitable. The examples worked
out in this series depend on principles already expounded by other authors, as well as on some developments of the subject, which have occurred to the writer during a long period of research in this field of science, and which are embodied in a work now going through the press. Here he neessary to explain the construction of the reciprocal diagrams of stress. In geometrical phraseology, two triangles are said to be similar when their lines are respec tively parallel or perpendicular to each other; the lines compusing them fulfil the following two condi-tions:-(1) That their lines are respectively parallel or perpendicular to each other; ; (2) that lines radiating from a point in one figure are parallel or perpendicular to corresponding lines, forming in the other a closed polygon. Al ions will be termed randocal. For example, Figs. 1 and 2 are in the fullest sense of the term reciprocal, insomuch that any line 18, Fig. 2, is drawn parallel to the corre18,19 converging to $4,19,18,16,15$, in Fig. 2. Under these conditions, the length and direction of lines in Fig. 2 furnish the stresses produced by the given system of loads in the bars correspondingly numbered in Fig. 1. Thus line 18, Fig. 2 the amount of tension induced in bar 18, Fig. 1. Simi arly line 10 , measured off the same scale, furnishes th amount of compression in member 10, Fig. 1.
(2) Svaansea Station Roof.- The roof structure, Fig. 1 , has been treated according to two distinct methods. First
the roof is divided into its component trusses, $\mathrm{A} E \mathrm{~A}^{1}$ the roof is divided into its component trusses, AEA^{1}
ADCEA , and ABC , and the graphic sum of the component stresses is then taken, in order to find the resultan stresses in each bar. This may be called the method o ummation. Next, the roof is treated as a whole, and the resultant stresses found in one operation, by aid of the
general reciprocal diagram, Fig. 2. The two methods generally reciprocal diagra
The primary truss,-The truss $\mathrm{A} E \mathrm{~A}^{1}$ is called the palf the rus, a, when the ; that is to soy, half th weight on each side rafter is supposed to be concentrated at the ridge, and half at the lower point of support A or A^{\prime}. Hence, one-half the whole weight on the two side rafters is taken to be concentrated at the ridge, producing hrusts along the rafters proportionate to this special dis ribution of the loads. The reciprocal figure of the primary half weight upon the truss, or, $A B=\frac{1}{2}$ of 13 tons $=6 \frac{1}{2}$ tons The heavy line 15 represents the thrust induced along EA and the line 19 that along. E A ${ }^{1}$. The light line 17 fur nishes the component tension in the tie-1
The larger secondary truss.- One of the larger secondary trusses A D CE A, Fig. 1, is shown separately in Fig. 4 and Fig. 5 is the corresponding reciprocal figure. Th independent loading of this truss can be found by sup posing a load to be concentrated at D, M. 1 , equal to the between E and D ; or in all, to half the load distributed over the side rafter, which is $6 \frac{1}{2}$ tons. The reciproca separate loading of the larg secondary truss is compres sive and equal in amount to the load of $3^{\frac{1}{2}}$ tons concen trated at D. The component compressive stress in bar 15 Fig. 1, or bar 5, Fig. 4, due to the loading of the sam ars, is represented by the dark line 5, Fig. 5; that in 6 by line 6 , and the component tension in member 11 or 8 of the tie-rod by the unshaded line 8, Fig. 5. All these The upward reaction at the the given decimal scale of tons pendent loading of the larger secondary truss, is shown on Fig. 5 by the double line BC, and is equal to $2 \frac{1}{4}$ tons; the other reaction at the point of support A is represented by scale. The amounts of the points C, Figs. 3, 5, and 7, are determined by the usua graphic method of polar or funicular polygons, constructed For instance, the triangle in dotted lines $1^{1} 2^{1} 3^{\prime}$, Fig. 4 , is the polar or funicular polygon reciprocal of lines
verging from the points B C D to the pole O, Fig. 5.

The smaller secondary truss.-One of the smaller secondary trusses is shown separately in Fig 6, of which Fig. 7 is the corresponding reciprocal figure. The independent loading trated at B-Fig. 1-equal to the sum of half the weight between B and A and B and D , or, in all, to half of 4_{2} embers of the smaller truss separately loaded. The dark
 the line 4 the thrust in bar 10 or 4 , and the light line 6 the compont thenion in member 11 or 6 of the great tierod A A1. The tensional reaction arg bar 14 is reprerod A A the tensional reaction along bar 14 is represer 1 or the at A , by the double line CD , equal to 1 ton.
General reciprocal figure.-Fig. 2 is the general reciprocal diagram of the roof structure, taken as a whole, and sepausly developed. The component stresses, found by the
vious truss-process are cumulative, that is to say, the resultant stress in any bar is equal to the sum of the component stresses belonging to the several trusses, of which the bar forms a part Thus, the resultant stress in bar 15, which forms part both of the primary and larger secondary trusses, will be represented by the sum-
Resultant thrust, $15=$ line 15 (Fig. 3) + line 5 (Fig. 5) Resultant thrust, $\begin{aligned} 15 & =\text { line } 15 \text { (Fig. } 3)+1 \\ & =7 \frac{3}{8} \text { tons }+22_{15}^{5} \text { tons }\end{aligned}$ $=9 \frac{11}{10}$ tons $=$ line 15 (Fig. 2)
 $=2$ tons = line 14 (Fig. 2)
Thirdly
Resultant tension, $11=$ line 17 (Fig. 3) + line 8 (Fig. 5) + $=6 \frac{1}{4}$ tons $+2 \frac{3}{16}$ tons $=10 \frac{5}{8}$ tons $=$ line 11 (Fig. 2)
These values, taken from a larger drawing, can be verified within small fractional differences, on the reduced drawings which accompany this paper.
It will be seen that bar 16 forms part of only one independent truss A D C E A, and therefore lines 6, Fig. 5 , and 16 , Fig. 2, ought to be strictly equal. The same is uss of ay, the bar A B is longer than BC. Had they been made equal, the reciprocal diagram, Fig. 2, would have undergone slight modifications, indicated by the dotted lines $a b c$, where the stress $a b$, that is, 14 or 20 , remains unchanged, the tension 18 is shortened to $b c$; whist, on the other hand, the thrust in bar 22 would be slightly increased. On the whole, this roof furnishes a very com pact reciprocal figure, and evinces care and beauty o design; the only fault we have to find lies in the over hang in the ledges of the covering, which seems to afford
leverage to wind pressures. On the other hand, it ma e urged that they contribute to good ventilation, and quick discharge of rain and snow.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
(From our oven Correspondent.)
THE ironworkers' strike continues in the West Bromwich and sively confined. The operative secretary to the Wmost exclu estimates that the number still " out" is something less than 2500 but the strike leaders put the numbers at much higher figures.
They state that support is coming from other districts as well as They state that support is coming from other districts as well as
Staffordshire to enable the men to fight. But while this may be in Staftordshire to enable the men to fight. But while this may be in
a measure true, their statement that "in all districts where work measure true, their statement hat agreed to contribute 5s. per urnace to the strike funds," must be accepted with a good deal o reservation.
The president of the National Amalgamated Association of Ironworkers has written, dating from Wigan, condemning the strike as
a breach of confidence, and repudiating the promise of support from hat Association which some unrecognised Lancashire men hav been giving to the strikers. Some of the leaders of the men ar re not acting dishonourably, inasmuch as they severed themselve from the Board of Conciliation on the 2nd day of April, when they别 their employers that they would no longer pay to its support. to South Staffordshire is a publics statement made this week by a Birmingham firm, who state that they are considerable users o iron of a particular quality. For this they have for some months
been paying $£ 7$ per ton. They have now contracted for a supply On 'Change in Birmingham this afternoon boiler-plate makers
tated that the strike had led to the cancelling of orders which had tated that the strike had led to the cancelling of orders which ha As 'Change closed in Birmingham to-day it became known the eading masters had met earlier in the afternoon, under the pre
sidency of Mr. Benjamin Hingley, chairman of the trade, to discus the position of the strike. Fears were expressed lest the master who still resist the men's demands should be forced to give way,
and to prevent such a result it was resolved that unless the ironworkers of Smethwick, West Bromwich, and Oldbury commenc work forthwith, a general meeting of the trade be held to Common plates to 4 cwt . and 5 cwt . each were $£ 810 \mathrm{~s}$.; boile pates, $£ 9$; best ditto, $£ 910$ s. to $£ 10$; double best ditto, $£ 1010$ s ,
$£ 11$; treble best, $£ 12$; ditto suitable for flanging
 19 5s. according to quality.
Market generally was much improved on the week to-day Inquiries were more numerous and makers were prepared to accep Sheets were especially sought after for early delivery
Makers of such iron asked 5s. advance. Thus doubles nising were $£ 810$ s. to $£ 8$ 15s., and latens $£ 910 \mathrm{~s}$. Galvanise sheets were quoted by the Birkenhead Galvanising Iron Company Galvanised corrugated sheets are quoted by Messrs. Morewood
and Co., of the Lion Works, at :- For the "Red Star" brand of
 each grade. Their "Lion" brand was $£ 135 \mathrm{~s}$. for 18 and 20 g .,
$£ 144 \mathrm{~s}$. for $24 \mathrm{~g} .$, £16 5 s . for 26 g ., and $£ 185 \mathrm{~s}$ for 28 g . Double best close-annealed and cold-rolled galvanised tinned flat sheets of
the "Lion" brand were £20, £22, £244, and £26 respectively; and
their smaller sheets of the "Anchor" brand, £18 10 s.e $£ 2010 \mathrm{~s}$.
£22, and $£ 24$ also, according to gauge. Morewood's "Woodford

Hard ware merchants report this week that business with Eyspt
is suspended, and that it is impossible to oonjeeture when it will be
Resmed. This is the more

 or in ineased
are healthy.
TTe
The Syez Canal. question continues to exercise the minds of passed a resolution approvinin of the a abandonment of the provisisional
agreement, and expressing the

 Government determination to postponethes ang sement. Company, Limited, advises the declaration of a half- yoaris divividend

 Starbuck Car and Was
delivered this month.

NOTES FROM LANCASHIRE.

Manchester.-Generally the iron trade of this district is quiet, pig iron especially meeting with only a very limited inquiry, and more by the temporary diversion of business into this district as improvement in the demand. For pig iron prices are nominally
maintained, as makers, being mostly well sold, abstain from forcing sales; but there are no large buyers in the market, and it is only on the very smallest scale that business is done on the basis
of the prices now being asked. The forges are kept well employed as a rule ; there is no great weight of business offering, nor is there
much disposition on the part of buyers to contract forward present rates, but for current requirements there are orders giving
out in sufficient quantity to keep up a steady tone in the market meeting on Tuesday age attendance at the Manchester 'Change meeting on Tuesday, but the market was flat. Beyond one or two
offers for Lancashire pig iron at about 3 d . to 6 d . per ton under
makers' prices, there appeared to be little or no makers' prices, there appeared to be little or no business stirring, ever, having their books tolerably well filled for the remainder of
the year, hold firmly for the full rates. Buyers, on the the year, hold firmly for the full rates. Buyers, on the other hand, more than 3 d . per ton business is allowed to fall through. Fo
district brands Middlesbrough iron there were indications of attempts, to "bear" per ton under the prices asked by makers. For delivery equal t Lancashire, 44s. 10 d , to 46 s . 10 d . for Lincolnshire forge and
foundry qualities less $2 \frac{1}{2}$ per cent., and 48 s , 4 d . net cash for ber foundry brands of Middlesbrough., and 48 s . 4 d . net cash for best
In the finished iron trade a brisk demand was reported for sheets, buyers being still compelled to give out orders in this district owing
to the continued stoppage of many of the Staffordshire sheet mills, and local makers have no difticulty in realising $£ 8$ per ton for
delivery equal to Manchester or Liverpool, with good Staffordshire sheets quoted at $£ 85 \mathrm{~s}$. to $£ 87 \mathrm{~s}$. 6 d . per ton. For hoops there is a
moderate inquiry, but the quoted price of $£ 6$ 12s. 6 d . for ordinary Lancashire qualities delivered is not very readily obtained, and for
good specifications $£ 610 \mathrm{~s}$. per ton is being taken. In bars a fair good specifications $£ 610 \mathrm{~s}$. per ton is being taken. In bars a fair
business is being done on the basis of $£ 65 \mathrm{~s}$. per ton delivered. The shipping trade continues only moderate, with buyers offering low prices.
The forges in this district continue at work on the old rate of
wages, any definite action with regard to the reduction being still held in abeyance pending the final settlement of the dispute in Staffordshire.
down special plant for the manus Mesture of retherington have put machines, By means of this machinery the flats are first drilled
at both ends, next tapped at each end, then eight lengths are
passed simultan passed simultaneously through a special milling machine, where
the edges are planed at the rate of 8 ft. per hour. From this they
are taken to a second milling ter are taken to a second milling machine, making simultaneously four
different cuts. They are then finished on the working face at
another machine, and finally tested in a machine indicating up to another machine, and finally tested in a machine indicating up to
the 500th of an inch. In the revolving flat carding machine there
are 105 of these flats in the set, and these are carried round the
bend by an endless chain are 105 of these flats in the set, and these are carried round the
bend by an endless chain, so that abjut one-half of the flats are
constantly in operation whilst the remainder are making the return journey.
In the coal trade a very steady business is being done for the
time of the year, and, if anything, the market shows rather more time of the year, and, if anything, the market shows rather more
animation. The summer season is being got through much more satisfactorily than has been the case for the last two or three
years. Not only are the pits being kept better employed but stocks are not accumulating to any generally very large extent,
and prices are being well maintained at a slight advance upon last
summer's rates. Business, of course it summer's rates. Business, of course, is still only quiet, and where
stocks in wagons accumulate sales in quantity for quiek delivery are made at a little under list rates. There is, however, no giving
way in the quoted rates, and the probabilities of an early in prices are so strong that colliery proprietors will only sell for
prompt delivery at present rates, whilst there is a general pressure prompt delivery at present rates, whilst there is a general pressure
on the part of buyers to secure forward contracts. But even at
advanced prices colliery proprietors are very indiffent advanced prices colliery proprietors are very indifferent about
committing themselves to forward engagements. At the pit
mouth prices remain about as under:-Best coal, 9 s ; seconds, 7 s .
 Shipping is fairly active on the basis. of late ratees, steam coal
delivered at Liverpool and Garston averaging 7 s .3 d . to $7 \mathrm{~s}, 6 \mathrm{~d}$.; and seconds house coal about 8s. 6d. per ton.
The colliery proprietors in the Ashton and Oldham districts
have succeeded in striking a tolerably good bargain with their men The sliding scale, which previously regulated wages wase has recently
been practically abandoned owing to the dissatisfaction expressed by the men at the awards, and an agreement has now been made
between the coalowners and the men to work on at the present ratween wages until the end of the yen
Barrow.- For a considerable time pa
Barrow.- For a considerable time past I have had week by week
to chronicle the same unsatisfactory state of trade, which has continued without much change for some time. The hematite pig
iron market still continues very quiet, and the business done,
comparatively speaking, is very light. Prices are as last quoted,
and makers have in most cases declined to accept orders which
have been offered to them have been offered to them at less than current rate. They have makers of pig iron are not without hope that prices have reached the minimum. Stocks are not increasing owing to thave reached being heavier. Steel makers are fairly employed, but prices for
rails are very low. The demand from all quarters, both on account of pig iron and steel, is quiet, especially the former. Othe

THE SHEFFIELD DISTRICT.

In the iron trade the men continue to carry out their agreemen ispute in South Staffordshire was ascertained, and that they should abide by it whatever it may be. Prices continue somewhat
firmer, and more business is being done; but there is a general indisposition to speculate. Messrs. Newton, Chambers, and Co. of their Thorncliffe pig iron to the United States. In Barnsley nd district there is no change to report in the condition of the Speaking at a recent meeting of a tlat.
Speaking at a recent meeting of a large local limited liability
company, extensively concerned in steel, coal Benjamin Whitworth remarked the other day that and iron, Mr. demand for coal had now overtaken the supply, and he anticipated
there would now be a progressive preponderand there would now be a progressive preponderance. This may be
taking a somewhat sanguine view of the situation, and it is news which the miners' delegates would soon turn to account in a fresh
agitation. Still, it is believed that the outlook in the agitation. Still, it is believed that the outlook in the coal trade is several colliery districts better prices are being obtained in the
classes classes of fuel which were selling too low. The improve-
ment is steady and very slow, and lest an impression abroad which might encourage a renewal of disastrous agitation, it mecured an advance in the valut the colliery owners have not yet rise in wages which was conceded last year. Steam coal is better
by about 6 d . per ton, but 1s. a ton would be needed to mer by about d. per ton, but 1 s . a ton would be needed to make upp for
the 10 per cent. granted in 1882 . A good tonnage of coal is at
present being sent to Goole and Grimsby present being sent to Goole and Grimsby. Though the house coal five days are being worked per week. On the whole, if the coalowners and colliers can get along harmoniously without any rash
attempts to disturb the situation, recuperative tendency of business will in due time help both. In armour plates, marine forgings, and steel castings generall but indifferently employed. The American degater industries ar fallen off very considerably, and the pressure for razors has ended
Edge tools are briskly called for white meots are and priskly called for, but languor is reported in the mainly done in Rotherham. The file manufacturers are disturbed or 10 per cent the file grinders, who still persist in their deman the struggle. The dispute is stated to be sending business into other The chist for files are no longer a speciality of Sheffield production Levant, and very little is doing for these markets, which ar serious very sensitive to any "scare," and more particularly to s also been caused by France's action in Madagascar, where anxiety ha cations which may arise any moment would interrupt confidence a prevent any ordering forward.
ments and agricultural gas recently been done in farming imple prospects of harvest having caused farmers to order more freely
Warm weather is now much needed to ripen the crops, which A late harvest healthy, require sunshine to bring them to The Sheffield Ohamber of Commerce convened a meeting " t ment and the Suez Canal Company with regard to a second cave the 24 th inst., and on the night of the 23rd was summoned for the 24th inst., and on the night of the 23rd the Government
abandoned the scheme. Thereupon the Chamber passed the terms of the proposed Suez Canal Convention with very great apprehension and regret, hereby records its satisfaction that the scheme has been abandoned by the Government." A rider, urging
that the Government had been moved to take up the matter in consequence of the urgent reepresentations of Chambers of Com Sheffield cutlery and other manufacturers antry, was rejected. about the rapid advances in ivory, whioh they use so much as a hafting material. At Liverpool 28 tons of African ivory were
offered, and all sold. There was a large attendance of Continental and American buyers. Prices began at last sale's rates, and got
higher as the sale proceeded. Several Cameroon tusks- $12 \frac{1}{2} 1 \mathrm{l}$. average-fetched $£ 6310 \mathrm{~s}$. per cwt., and Niger tusks-large-touched
£63 per cwt., the highest prices ever realised. Angola large tusks were $£ 2$ to $£ 3 \mathrm{~d}$
in London this week.

THE NORTH OF ENGLAND.

THE Cleveland iron market, held at Middlesbrough on Tuesday sumers was only a moderate amount of busi are now doing what they can to bring prices for early delivery, merchants have already reduced their quotations, and some of therchants have already reduced their quotations, and some of
early delivery at from disposing of small lots of No. to 3 g .m.b. for early delivery at from 3 d . to $4 \frac{1}{2} \mathrm{~d}$. per ton below the rates
obtainable last week. Merchants to 39s. 3d. for No. 3 g.m.b. Producers are fairly well supplied
with orders, and are not so anxious to sell at present, fore, continue to quote 39 s .6 d . to 40 s . for No. 3 . Warrants are in poor demand, though some holders have again reduced their price to 39 s ,
tore declined 1035 tons digring in Messrs. Connal's Middlesbrough The exports of pig iron from the Tees have been very good this month, but not quite so heavy as for June. Up to Monday night Business.
Business is very quiet in the finished iron trade. Prices, however,
continue steady, and it is thought that consumers will have t come into the market before long, as a good many existing contracts
are being rapidly worked off. There is no change in ast week. Ship plates are $£ 6$ to $£ 65$ is no change in prices sinc $£ 512 \mathrm{~s} .6 \mathrm{~d}$, to $£ 515 \mathrm{~s}$, a and common bars, $\& 515 \mathrm{~s}$, to $£ 66$ per ton,
free on trucks at makers' works, less $2 \frac{1}{2}$ per cent. Puddled bars are about $£ 315 \mathrm{~s}$, net on trucks.
Steel rails are in poor requen
employed with orders still in hand. Heary sections are offered at $£ 415$ s. per ton net, and iron fish plates at $£ 515 \mathrm{~s}$.
The Tyne and Wear employers met
Newcastle-on-Tyne on the 19th inst. to discuss the dispurkmen at the employers and workmen at Sunderland. After a conference thing definite being settled. The engineers on strike held a meet-
ing at Monkwearmouth the following day, and resolved not return to work until the limit of apprentices is adhered to.
The blacksmiths and strikers employed by the Wallsend Ship-
way Company, who have been out on strike for an advance of 2 s ,
per week since June 9th, have come to terms with their em ployers. They
the old rates.

NOTES FROM SCOTLAND,

The Glasgow warrant market has been idle during the greater part of the week, and prices have been declining a penny or twomonth ago. We have not yet got into full working order since matter of stocks the usual weekly quantities have not been carted to stores. This partly accounts for the fact that the week's in-
crease in Messrs. Connal and Co.'s holding does not exced 30 俍 The shipments are very good, having turned out fully 2000 tons United States and Canada are slightly greater than usual, and there is a prospect of considerable additions being made to the hand, as is generally the case towards the end of July, inquirie At home the
increase during the month of August. Business was done in the warrant market on Friday forenoon at afternoon quotations being 47 s . 31 s . d . to 47 s . 4 d . cash, and 47 s , 6 d
one month. On Monday one month. On Monday morning transactions took place at
47 s . 4 d . to $47 \mathrm{~s}, 2 \mathrm{~d}$. cash, and 47 s . 6d. to 47s, 31 afternoon prices were 47 s . 1 d . to 47 s .2 d .and 47 s . 1 d . cash, and
47 s .4 d . to 47 s .3 d . one month. The market on Tuesday was very quiet, with a few transactions at 47 s . $\frac{1}{2}$ d. cash. On Wednesday business was done at 47 s .2 d . to 47 s .3 d . cash in the forenoon, and
47 s . $2 \frac{1}{2} \mathrm{~d}$. to 47 s . 14 d d. in the afternoon. The vook place at 47 s . 2 d . to 47 s . $3 \frac{1}{2} \mathrm{~d}$., closing at 47 s . 3 d . cash. tained, although g.m.b. is about 6d. less on the week, in sympathy per ton, is quoted at 57 s .; No. 3, 53 s .; Coltness, 60 s Gdasgow, 6 d ,
 48s. 6d. and $46 \mathrm{~s} .6 \mathrm{~d} . ; \mathrm{Q}$ Quarter, $47 \mathrm{~s}, 6 \mathrm{~d}$. and 48 s . 9 d. ; Monkland,
Broomielaw, 49 s . and 47 s ; Shotts.
Carron, at Carron, at Grangemouth, 48s. 6d. (specially selected, 54s. 6d.)
and 47 s .
Ardroeil, at Bo'ness, 49 s .6 d . and 48 s. Glengarnock, at Dalmellington, 49s. 6d. and 48s. 6d.
The week's tons, as compared with 3050 ind iron at Grangemouth were 3940 The increase in these shipments for the year to date is 26,281 tons.
The coal trade not only maintains The coal trade not only maintains the favourable position it has improvement in prices on account of the shere signs of decided from the stoppage of labour for the holidays and the brisk demand or shipment. At Glasgow the inquiry continues remarkably good being a cargo of 2600 tons for the steamer Lauderdale for Montreal ranging from 7 s .6 d . to 8 s s. 6 d . per ton f.o.b., according to quality Mespatched at Bo ness, and no less than 11,575 tons at Grangemouth oking coal in their Biard and 0 . have discovered a new seam of 4 ft . in thickness the pits with the Kelvin Valley Railway will soon be available their Haugh worko opened a seam of good blackband ironstone a tions will necessitate the employment of about three hundred extra

WALES AND ADJOINING COUNTIES.

The Taff Vale Company has scored a success in the Barr House of Lords, that without expressing an opinion upon the Bil as a whole, the preamble as regarded the Barry line from the proven. This gives the Taff power to levy tolls for fifteen miles Important and interesting evidence was given this W. T. Lewis, an agent for the Marquis of Bute, who owns 27,000 acres of mineral property in Glamorgan. Mr. Lewis showed that
27,000 acres constituted the Cardiff mineral district, and not 176,352 as stated, and that large quantities of oond not
to Newport, Porthoawl, Briton Ferry, Neath, and Swansea.
Dowlais, too, sent largely over Dowlais, too, sent largely over the London and North-Western
system from Birkenhead, and the new line of rail to Newport, via Caerphilly, to be opened this year, will take large consignments to
Newport. Mr. Lewis's evidence was most exhentive area of minerals, capacity of collieries, estimated increase, capacity movable tips, \&c., to met and the increase of facilities, by occur. This evidence, supported by Mr. Taylor, a large colliery
proprietor, and by Mr. Wales, H. M. proprietor, and by Mr. Wales, H.M. inspetor for South Wales,
was regarded in unbiassed circles as very strong. Mr. Lewis noted the earliest working of steam coal in Merthyr Valley, followed by
the Aberdare Valley, and that when signs of exhaustion set in, by the starting of the Rhondda collieries.
There is not much fresh coal land now untaken in the Rhondda
district. In the Cardiff district the prices are firm. Cardiff docks continue to exhibit a decreased tinations, the coal export was lion tons being sent to foreign desSwansea maintain their average. Swansea a little more so, and during the past
and patent fuel
The colliers at Mountain Ash have decided to support the Staffordshire colliers now on strike. The assistance is not to be by The iron trade has not
note; 6000 tons left the Wer matter to recommend it to are fairly well occupied, and this would have been the cass
at Dowlais but for a breakage in one of the mills which will interPatent the ste. rail contracts in hand for a time.
Dowlais, and Ebbw Vale have been getting ore, toore, is looking up at
am sorry to report unfavourably again of ting. It to be receding. A small start has been made at Owmavon of the
Jersey Iron and Steelworks, under the direction appear Jersey Iron and Steelworks, under the direction of Byass, Daniel,
and Co. This was the Old Western Works. A small tin-plate
works also has been started anew at Pontardulais,

Cambria.

> Society or Enginkers. - The members and associates of thi society paid a visit on the 18th inst. to the Thames Ironworks and
Shipbuilding Yard at Blackwall, and the works of the Gaslight and Coke Company at Beckton. The visitors were conveyed to their destination by the Lotus steamer, and were courteously received at
the works by the managing director, Mr. Hill, who conducted them the works by the managing director, Mr. Hill, who conducted them
round the extensive premises and pointed out the principal work in progress. Mr. G. C. Trewby, chief engineer to the Gas Ligh Company, having hospitably entertained the party, placed himself at their ser nembers and friends dined together at the Guildhall to town the
Jabez Church, president of the sing

THE PATENT JOURNAL

 Condensed from the Journal of the Commissioners ** It has come to our notice that some applicants of thePatent-otice Sales Department, for Patent Specifications both to themselves and to the Patent-oftice officials, by
giving the number of the page of THE ENaNERR at which the Specification they require is referred to, instead
of giving the proper number of the Specifcation. The
mistake has been made by looking at THE ENGINEER
Index, and giving the numbers there found, which only Index, and giving the numbers there found, which only
refer to the paes,
fin place of turning to those pages and

Applications for Letters Patent.

 ** When patents have been "communicated." thename and address of the communicating party are
printed in italics. 17th July, 1883. J. K. Hallock, and E. S. Smith, Erie, U.S.
3500. Horse RAKEs, J. Howard and E. T. Bousfield, Bedford.
3501. MAKIn grain, Quebec.)
3502. Rotare Prtes, A. M. Clark.-(H. B. CasLiverpool.
3503. Rotary Web Printing Machines, G. A. Wilson, Liverpool.
30t. Fog Siovals, H. A. Bonneville.-(F. Brown, Nero
Yor.) 3505. Telephonic Apparatus, J. Graham, London.
3506. Sewing Machines, J. W. Post, New York. 3500. SEWING MACBINES, J. W. Post, New York
3507. PACKING for STorfing-Boxes, J. H. Smith and
R. Marshall, London. R. Marshall, London.
350:. Deconating GLa
Plaue

350s. Decorating Glass, C. D. Abel.-(A. Schierholz,
Plaue, Germany.)
3509. Embroidering Machines, R. H. Brandon.-(J. Becker, Boston, U.S.)
351. WRiGHING Machines, E. Thomas, Aberdare.
3511. STopprive Bottiks, J. A. Bowles, London.
351. Water-closets, E. Gilbert and

Dund. Water-closets, E. Gilbert and E. A. Gilbert,
3513. Washing, de., Machines, T. Woolfall and T. T. Mercer, Blackburn.
3514. BrEAKING UP BALLS of SLAG, \&c., R. Dalgliesh,
Asfordby, and F. G. Lynde, Melton Mowbray. Asfordby, and F. G. Lynde, Melton Mowbray.
3515. BIIYCLEss, te., G. Warwick, Aston.
3516. ELECTRIC SINNALING APPARATVS, W. R. Lake. (J. H. Cary, Boston, U.S.)
3517. MANVFA ACTVING Foder, H. J. Haddan.-(H.
Hencke and Co., Griinech, Germany.) Hencke and Co., Griinech, Germany.).
3518. BENDING BLANKS for CHAIN-LINKs. F. C. Glaser. - W. Heevenscheidt, Gleievitzz, Germany.). L. Reddie.-
 Congdon, W. Sprague, and A. Sprague, Rhode Island.),
V52. WATER-WHELS, A. J. Barlow.-(F. Pallansch,
Vienna.)
 Híchst-on-the-Main.).
354ER, F. Wirth. - (H. Baum,
(W. H. H. Sisum, Machesticks or Splints, W. R. Lakeke. (W. H. H. Sisum, Brooklyn.) in Sten Boilers, P.
3525. Regulars of Level in teac
Gauchot, Paris.

Gauchot, Paris.
356. Marive Dras, W. Clark.-(A. J. Clarke, D.S.)
3527. Colouring MATTER, F. Wirth. - (H. Baum, 18 th July, 1883.
Material. W. R.
3528. Refractory Materili, W. R. Hutton, Partick, and A. Granger, Cardross, N. B.
352. Railing Sunk
Wen Vesels and Structures, R. P. Wylie, LLondon
3530. RRELS for Winding YARN, \&c., G. Bernhardt,
Radeliffe. 3531. STEEL, W. Naylor, Penistone.
3532. APPARATUS for Soundina BE
C. J. Harrison, London.
3533. ELEcTRIC METER, We Whirter, Glasgow.
3534. VELOCIPEDES, G. de M. Soares, London.
3535. INDIA-RUBBER ASSISTANT BEARING SPRINGS,
Spencer, London.

3533. Hose Couplinge, R. Gosling, Ipswich.
3538. Obransivg FIBREs and JUICEs, A. W. L. Reddie.
-(J. Kennedy, Kingston, Jamaica.) -(J. Kennedy, Kingston, Jamaica.)
3539. Asckraninin Distances, C. . Kelway, London.
3540. SAsH Werchts, W. Ayres, London. 354. SAsH WEIAHTs, W. Ayres, London.
3541. AANs or Vrssers, W. R. Lake.-(E. Burnett,
Southborough, and A. P. Brovone, Boston, V.S.) South borough, and A. P. Brovine, Boston, V.S.).
354. FEEDNG, GUMMING, JC., SEEETS of PAPER, J. J.
Allen, Halifax. 353. Rocking Furnace Bars, J. Hampton, Lough-
borough. borough.
3544. Reprativa Fire-Arms, w. R. Lake.-(Larsen Rifle
Company, Liége.)
 3546. Moulds. Emploxpd in Repining Sugar, J. Duncan
and B. E. R. Newlands, London. and B. E. R. Newlands, London.
Trenery and J. Nayker, from Bheffield.
 goffe and L. A. di Giorgio.)
3549. WABHING MACHINES, . Heselwood, Leeds.
3550. BEETLING MAchivss, C. J. Webb, Randalst 3551. ADDITIONs to Pocker KNNVEs, J. H. Johnson.
(J. Thurnauer and Co., Paris.)
355. Folding Hooos for Perambulators, dc., J. T. Shaw, Manchester.
3553. ELECTRIC METERS, G. Hammersley and C. H.
Worsey, London. 3554. BotTle SToppers, M. F. Roberts, London.
3555. SLABs and Coveringe, C. J. Marson, London.

London.
357. CLosing Canisters, A. W. Jaeger and C. A. 3558. Producing Coloured Patterns on Wood, dec.,
I. C. Webb, Worcester. 3559. Lasting Boorts and Shoes, W. R. Lake.-(J. R.
Ecott, Nero York.) 3560. UTLIIsIseg the Rise and Fall of the Tide, C. M.
Walker, London. 3561. Motive Power Engines, H. E. Newton.-(G.
Sleanor, Montreal.) 356e. HoT--1IR and CALoric Enginse, E. Field, West-
minster, and H . Aydon, Whitton. minster, and H. Aydon, Whitton. 20 th July, 1888.
3564. Tricycles, \&c., J. A. Grifiths, Liverpool.
3565. PLATEs or ELECTRODEs, R. Cunningham, King-
ston Hill. 3566. Facilitating Ball Practice, J. H. Johnson.-
(. Gaupilat, Paris.).
3567. SpinNng and Twisting Rings, B. Mayon, Eagley,
near Bolton 3568. GAs Moror Enarises, C. T. Wordsworth, Leeds,
and H. Lindley, Manchester. 3569. WATER-SPINN MACHINES, F. C. Glaser. - (N.
Schlumberger and Co., Gebveiller, Germany.) Schlumberger and Co., Gebveiller, Germany.)
3570 BorTE STOPPER FASTENINGs, B. D. Marks, Louis-
ville, U.S. ville, U.S. EARTHENware and Glass Vessels, E. Harwood,
Habergham Eaves. 3572. Shirra and Collar Studs, dc., W. C. Alldridge,
Birmingham.

3581. Stean Packive July, 188

 238 d July, 1883 .

 3S188, strean Boiluze, W. Olark.-(E. Delpech, Franee.) Inventions Protected for six Months
Deposit of or complete specifications.

Patents on which the Stamp. Duty of $\mathbf{2 5 0}$

 Jool.

2ne dumy, 1880 .

 316uderrfield. -19h July, 1880 .

 16. Hanantio, de., Wriz, J . Law and H. Law, Cloek

Patents on whioh the Stamp Duty of $\mathbb{E} 100$

Notices of Intention to Proceed with (Last day for fling opposition, 10th August, 1883.)

 communication from S. Conron. 17 th March, 1888 .
1432. TREATING WHITE PEAT, S. J. Blane, London. 192h March, 1888.
149. IRosino Machise, B. J. B. Mills, London.-A communication from H. Schmid

 L476. SToppring Grar for Machinery, w. H. Beck, Lon.

 ${ }^{\text {531. }}$ 24th Marcerd, Apparatus, J. Chapman, Nottingham.

 March, 1883.
1842. Propoing Amsonia, R. Tervet, Clippens. $-12 t h$

 ${ }^{1888}{ }^{188}$. STockingos, A. P. Sheffield and A. W. Wills,

 3506. SEWWNQ
July. 1883.
350.
509. EMrboiderivg MAchinss, R. H. Brandon, Paris.

- A communication from J. Becker.- $-17 t h$ July 1883 .
(Last day for fling opposition, 14th August, 1883.) ${ }^{987}{ }_{1883}$ TIP VAss, E. Burton, Nine Elms.-23rd February,

 149th March, 1883.

1452. Elecric Trieprony, J. H. Johnson, London.-
 London.-20th March, 1883. . 18 .
1453. METLLIT Foor-warmers, T. H. Ash, Birmingham. -20th March, 1883, W. P. Thompson, Liverpool.
1454. HYDR0uIC Morozs,

- A communication from E. B. Benham, H. B. A A communication from E. B. Benham, H. B.
Richardson, and J. W. Currier.- 20 Math March, 1883.

467. TABLEs, \&c., A. E. Maudslay, Littlebourne.-20th

London. -20 tha March Ma 1883 .

4

1519. Pulverising, \&c., Diamondiferovs ORe, A. J. Struthers, Glasgow,-22nd March, 1883.
1541. ELETRTRE BuTTEREs, H. H. Lake, London.-A
com. from Radiquet et fils. -26 th March, March. com. from Radiquet et fils. -26 th March, 1883 .
1550. BREWING APPARATUs, W and T.
Kidderminster.- 27 th March, 1883 . 1558. Lock NUTs, E. and A. E. Gilbert, Dundee.-27th
March, 1983.

 Ma1. BREAK-DOWN SNAP GuNs, S. A. Grant and W.
Adams, London.- 25 th April, 1883 . Adams, London.- 25 th April, 1883 . Smedley, Liver-
2106. GvININe Morion to FLuDs, W. Smed
pool.-A com. from C. Smedley.- 26 th April, 1883 .
2121. LANTERNs, A. M. Clark. Llandor pool.-A com. from C. Smedley.- 26 th April, 1883 .
2121. LANTERNS, A. M. Clark, London. A A communica-
tion from G. F. Fisher.
 2667. TRLEPHONIC TRANSMITTING APPARATUS,
Graham, Haverstock Hill -29th Man, 1833.
2693. GRAINING PAINTED SURFACES, dC., J. A. Liverpool.-30th May, 1883.
2702. GAs Moros, C. Pieper, Berlin.-A communica-
tion from E. Korrting \& G. Lieckfeld.

 3412. Renes, W. R. R. Lake, London. -A communication
fro

 munication from G. W. stewart. - 1 beth July, 18 Be3.
 Berlin -A
$17 t h J u t y, 1883$.

Patents Sealed.

(List of Letters Patent wohich passed the Great seal on the 2274. Proprlingo SEA-Gorsg Vesskis, H. Gerner, New
York, U. $-4 t h$ May, 1883 .
 2606. Obtainisg Artiplial Lleht and Heat, J. S.
Muir, London. $-25 t h$ May, 1883 . (List of Letters Patent which passed the Great Seal on the
20 h $J u l y, 1883$.) 209. Stean Generators, H. Lane, London.-13th Jan-
 17th Januery, 18883. , H. Hebblethwaite, Hudders-
298. DRIVING BELTs, G.
 357. Disnamo-klectric Machines, H. H. Lake, Lon-

 37. H. Dawson, Manchester - 23 Brd January, 1883 .
 383. OBrancinrye Morive Power, S. Hart, Hull.-24th
 Janury. 1883. 39. PHorom ITRR, A. J. Beer, Canterbury.- 24 th Janu-

 438. ProspHiTses S. G. Thomas and T. Twynam, Lon-
don. 26 th January, 1883 .
 473. PorcekLar IT TILLe-cLAY Baths, J. Hall, stourbridge.
 January, 1883.
506. PRopkLIINO 30th January, 1883.

 757. BREAKING GRAIN, C. Pieper, Berlin.-12th February, 1883. Michives, F. J. Drewry, Burton-on-

 don. $-22 n d$ May, 1883 .
(List of Letters Patent which passed the Great Seal on the
24th July, 1883 .) 142. Sewisg MAchings, w. Walker, Dunstable.-10th
 428. FURNACE BARs, C. J. Chubb, Clifton. -26 th Janu. ary. 1888. .

 479. Gary, 1888.

 721. FELTrina WOoot, A. Monchablon, Paris., -9th Fibru-

 so5. Opary, 1883.

 son, London.-7th March, 1888 , London.-6th April,
1839. PYROMETERS, A. Longsdon, Lond $7=2$
 2156. Elkctrical Measuring Isstruments, W. E.
Ayrton and J. Perry, London. $28 t h$ April, 1883 .
2253. Galvanic Batteries, J. Lea, London- $3 r d$ May,
1883.

 $* *$ Specfications will be forwarded by post from the
Patent-office on receipt of the amount of price and
postage. Sums exceeding 1s. must be remitted by postage. Sums exceeding 18. must be remitted by
Post-ofice order, made payable at the Post-oficoe, 5,
High Holborn, to Mr. H. Reader Lack, her Majesty's
Patent-office, Southampton-buildings, Chancery-lane,
andon

ABSTRAOTS OF SPEOIFIOATIONS.

 ber, 1882 (Not procectad aith.) $2 d$. , the arbons,
 is tinerted in in the oentro of than carbon rod ithe

 effected boapplyinn a bellow or or pheumatidi pparatus 50

 The invertor dirides the ood ductors into enparato
 rom moisture.

 sodium sulphata on tat on in mitxed solution of sodium
eulphate and chloride of ofper
 This relatea, Frist, to the method of and apparatus

 swinging in the otand, and dan be locked in position
When theirs topperas are under the crose-bara a tot, $B 8$ as to prevent the bottles being taken out.

 tho tipping action of the body.

 Itent - if alteratatipe oused to travel trom the ofinet ocenpiesin thave lling g tom the outley to tho inlet p port

 the axis of the case.

 Seir adituon to tormentable liguld in ordar to pro
 620 the yeast or ferment
 Tho objo (Not to pooceded with.)

is a slit, and holes are formed at each bearing. The . The
tubo is enolosed in on outer tubo containing the lubr-
cant, and by which the spindles are securred to the

 pipes, heated by the flames and hot gases of the furnace,
nnd consists in causing the sid water tube to
 tubes, and which in turn commenicato at one end
with the vertical oclloeting tube, connected at its
ipper end with a collindrical vessel, in which steam apper end with a cylindrical vessel, in which steam
 other deposit. The uppor part of the generator con-
sists of three cyind diracal vessels, one placed above the
ther two, and conneeted topether by pipes. The
 5626. Meral Cistrrns, H. Sutclifer, Halifax.-27th
 soldaering a and fortitua, better oisectern by by use of improved

 held by wedging or closing the wooks, the other por
hion of the sheet being gpread over the two blocks and

 one eloeper and a cross-tie with a joint which allows
aniveran adustment of the sectone the ond of each
entering the incline or curved shape mouth of the entering the incline or curved Rhaped mouth of the
preceding one. A special clamp forms the joint.
 This. relates, First, to the driving mechanism of
bicycles by a system of levers fitted with treadles and
 nd backbones of velocipedes, as apecial sect.
or wheel spokes, and an improved spring.
6830. Piled Fabrics, do., J. Holt, Bolton.-27th No This relates to pilie fabrics with a long pile to form a
 the pile and onevarn each drawn into separate healdas
The beam containing the pile warp has motion, so that when turned a quantity of warp is let
of and t taken up by a falling red working in a diagonal sidid in a bracket on the frame. A certain number of
picks of plain colth are woven, both rround and pile
being interwen with the weft, when the loom is
is stopped and the pile warp only raised. The "slack"
iftaken up by the rod and as ahred of the pile warp is
ifted and drawn int 5632 and
 A thin plate is hollowed and provided with a wood
block pad ded with wwool and
such plated waving
 second strap is attached to the back of the belt, and
pasing beetween the legs, is buckled in front to the
lower edge of the pe 5634 Tovs, H. H. Lake, London. - 27th November, 1882.

- A communication from J. N. Gi.ford, junn, MassaThisuectis.). to toys in which there is a target and a
tethered ball for shooting the same, and it consists in the employment of af ficurre as the target, the tha arms
being jointed and moving when the ball hits the
figure. 5835 Srears For Covriva Papre, de., H. H. Lake
London. 27 Ith November, 1882 .- (A communication

ngle simultaneousty, and it consists in the corming a
 end of
adges.
5

1882. (Not proceeded with.) 2 d. .
vesmed hat st in it one one

 The vibrating arms for holding the saww are fixed to
ablock working on a fulcrum at one end of the table, one arm extending above and the other below such
tablo at an angle to each other, such that their ende
 arms, which can be turned so sa to direct the saw ae
desired. A spring between the table and top arm aessist the upstroke The The top painde to to which the the
asaw is soured can receive a drill so so to drill holes in
shi 5838. C
 This relates, Firent, to a tillige 'implement; and thorewith The tillage implement frame consists of of
two vertical phates onected by cross bars, and at it be capable of rooking, and carries a set of shares or cutting points. To this bar two or more leveres ore
attached, and rise above the trame where they are con-
neeted together and whe

 depth of soil operated on.
phat
plarm, and is acted upon by a rotatitng soil breaker
 the dirivig pinions. and deep onough to admit whe the in the lower and upper bar near one end. and through them a stud pasees and stands upright from a plate or
coulter, which euts the soll and bears all the pult The frame and its gearivg turns on this stud, and allows
the other end to swing round into the line of draught.

 Pario.)-(Not proceceded wiith.) 2 dir dired designs upon unsized bank post paper, to which a colourless varnish
is then applied and the paper stove dried, whereby the paper is rendered colourless, when it is secured to the
glass to be deocrated, and the designs appear as if 5641.
 thal, Germany.) $6 d$.

 U.S.) 6 dorked jaws are pivotted to a tube, within
 open, a spring being arranged to act upon the rod so as
to olose the jaws and grasp any desired article when
tere e rod is relessed.

 caused to revolve, and which is supported within an
uter vessel, to which team or hot or cold water can 5646. Fire

 This relates to improvements in the general con-
 This relates. First, to the means for engaging the
rum with the driving wheel in the drawing opera-
 one long recess surved to conform to the motion of the whel and extending round a considerable arc, shallow
t the forward end and deep at the rear eut The ngly wedge-shaped, and which causes the drum to
fit and bind on the shaft. When the revolution of
 op flange, and two interior lugs with which a lifting vice engages. The wire is placed in the pots and
overed with eand, and the pots piled one upon the ther in heated pitt; Thirdly, in providing a number
f wood reels adapted to stand on end and receive the bundles of wire for pickling The lower part of each
reel is fitted with temovable pins, which, when the eel 1s placed in a stand, are removed. The invention
urther relates to feeding a number of wires through coating bath, at the same time such wires being
kept slack to allow time to the attendant to correct agitating ashestos used to wipe off surplus metal, and
to the use of slag wool for wiping off surplus metal.
 This relates, First, to means for holding and trans-
portation of wire which is formed in coils and placed

 ing surfaces before immersion in melted zinc by pass-
 ture of the melted rinc. The invention further relates
to the use of rollers for agitating losese subbanace em. to the use of roilers for agitating loose substance em-
ployed for remoring surplumetal rom oated wires,
and to the use of steel or other serapers for removing

 with a diss placeed between the legs and provided with n external scrow thread, while the legs carry inclined the disc its.
 This relates to a composition to be rubbed on the

Plates of untanned hide are attached to the ends to lates to receive the screws, and preferably, rocesses
ormed in the underside of the plate, otat the ends 5653. Loorx Prokzrs, H. Tetlow and J. Holding, LanThe object is to tossen the shock when the shuttle is
truck by the picker, and it consists in providing the hatter with a yield spring buffer againat which the

The object is the construction or arrangemont of
teeam biolers in which water oan be heated in small
guantities at the parts most in contact with the fire,

 Whereby a rapid circulation is
free escape of steam therefrom.
 This relates to improvements on patent No 5318 , the knife stock spindle a olipi or hooked bar to clasp

1882 - (A communication from J. Mathition, Masasa-
hhuecta) 10 D
hhis relates to a machine for securing a series of
 secured by drawing a primary loop of thread through
thu material orwhich the buttons are to be fixed, and
also through the eveo of the button the din

 knot, one loop or bight of of which apsermes throughauand
the other around the eye of the button. The invention consists in the general construction of
effecting such sewing on of the buttons.

 5680. apparatus for Utimising Carborio Aotd Gas

 doubie return passage
cylinder has a central formed for the the hot hot ain.

 winding mechanism.
5682 . Raising and Lowering Ratlway and other

 the sash is pushed down the spring is coiled and the the
Find ow rotanied in position ty a catch. On releasing
the catch the spring raises the sash

 A lamp with glases on two or more sides is attached
to the rof or other part of the arrage. and enclosed
in a box with fold foling foors or flap side in a box with folding doors or flap sides. Cordis are
connecteow with the box to the guardis van and enfine
such cords also communicating with the diferent compartments of the carcriages whhen the corrd ie
pulled the lamp-box is raised or the doors opened, so as
to expose the lamp
 Parker, Neno York.
The main foatre or invention consists of two
drums each having or the of teeth, one dirum. which rovolves showly, serving to feed the stataks in limited
auantitios to the other tothed drum which shatters
the stalks and reduces them to shreds

 The obeject is to indidate the weight of parcels and
the or respon iding postage they will reaure by separate
index hands moving over different dials.
 The cher, 1882 obiect is to construct tools for this pur-
Tose so that they may be carried in and operated by
 refers to the construction of adiustable cutting tools
for roducing the diametors of tubes and adjustale
tools capable of fitting the heads of two or move sizes

 a wiper or cam anta
side of the fingers.
5670 . Divinive Ax

 wass or dough oo form two loaves, and for roiling,
working, or moulding the same, rut the apparatus
may bomodifed od divie and forma mass of oung
into more than two loaves. A rotating drum with

a plane perpendicular to that in which the spindle or
other controlling organ of the orvernor moves,
tho that the latter has only to overcome
of the resistance of the pallets.

 between the bearing tal
or burnishing materials.
5675. Mowrisg AND REAprisa MAchives, R. Davison
and F. H. Hallard, Lancoster. $-28 t h$ Novenber, 1882 .

The object is, FFrrst, to obtain an instantaneous grip as soon as the machine starts, so as to ensure that the the
knife starts simultaneously with the machine, and it consistst in thm use of an whelel witha a meries of ourved
inclines on its periphery, and which is keved the the
ind land wheel; ; in each incline is a loose roller, which, when the machine goes forward, runs up the incline
 the crank shaft in arranged between the land wheels, and a platiorm arranged with socketa
pole on either side of the crank shaft.

This relates to the ced construction of the capstan, in
which there are no proeectionsto come in the way anything, and there is no gearing outside
 A waterproof air-tigh or seminiliquid food, and is is suspended from a frame
with a movabo whit a movable ilid and having by preferencee an outer
hag providd with a tetat the object bivg to keot the
food warm and to provide a feeding apparatus re-

The $($ voidec.) is is.
the obtain increased protection against
the attack

 5881. Machings for Bevglung Cards, Boor Covers,
doa., J. D. Weist, London. $-29 t h$
November, 1882. Troceeded with.) 2 d .

This consisist, First, in the application to corn creens of a detachable grid and clearers; Secondly nemoe appication to corn screens provided
remable grrid and travelling clearers of a riddle.
5683. A Ppresutus ron

This consists in the construction and arrangemen parts in one machine opening to receive the fare
to ataute the count or indidotor meohanism, do dis
play a value figure, to pass the money received and convey the same to a closed money bag or receptacle
o grip and project a serially numbered
ticket to and from the outside shears of the machine, to ring the
bell alarm and to grip the ticket riband readily for the shearing off of the ticket already projected, and upon the apparatus resuming its normal position.
5684 . FIxING Swords AND ortire Sid ARMs
 Thris coeneded sistith in titting the blade of the sword with
spring eatch which takes under a projection on the spring catch which takes under a projection on the
sheath and has to be depressed before the sword caa
dirawn be drawn.
5687 . H.
687. HARRows, J. Hovarard and E. . T. Bousfleld, Bed.
ford. $-29 t h$ November, 1882. $6 d$. This relates to improvements on patent No. 2699,
A.D. 1888 , in which the tines are mate separately and
conneeted to the frame by transerse obrs. and the on consists in forming the tines and aross bars in one pitece and using th
conneections of the longitudinal bars.
5888. Sorbexs for Seprantixg ando Cleaniting Grand,
do. H \& Coleman and
 This' reilates to improvements in screens having
 such sereens with a series of screening beds or surfaces
made of parallel wires of triangular or other suitable

5688

horizontal or at a different anglo to the frame in which
they are fixed, the screen being mounted to reciprocate move each
 same diameter as the grain to poss through, while the
grain titeself being of a greator length than the diameter
of the of the sadd openings, will slide along the grooves or
ochannels to the delivery point.

 consis
bufter stem anming a hook on the tink top sidide of the
the other end of the wagon to take
on the buffer of the next wagon.

 removed for renewal or reversal, and it consists in
forming them in two longitudianal parts resting upon
隹 chairs. Wedges are dropped between the two parta, so
as to press
ather outwards a groove between them The wedges can bo forced up
from below to release the rail.

matters by the action of nitrio acid on the mono or
disurulphoacid of alpha, , itrose, naphthol, or other mix-
tures

 This consintats in the manutacture of improved colour-
ng matters by direct addition of bromine to
5697. MouLDs UsED is Castrisa Piprs axd Cyusders, 1882. 6 d. This relates to the production of moulds for civing
the exteral form to pipes and cylinders, and it eon-
sits sists of an ordinary box through which a pattern form-
ing a portion of the length ob be monlded dis drawn by
means of means of a small stem acted upon by a crane or other
drawing means, and in passing through the box com. presses the moans, and ing pasas
pand.
 This consists in the application in addition to the
dyeing ingredient, of alum, red argol, or fustic, used either separately or combtned, for the purponoe of
fastening or fixing the said colours upon animal fibre.

Beneath an ooliquely placed frame open in the
middle a set of rods forming the sieve are fointed to bars hinged in the middie by pins which slide in ol olots
parallel to the rods, while the other ends of the bars

 This consitstsin introducing a controliling or regu-
ating apparatus between the reservoir or gasholder

 in the nut.
5703 . Skwisg MAchinss, M. Ganay, Liverpool. - 30 th
Thivemberere 1882. sew. 8 .

 hook, or looper then resuming its motion, distending,
passing through the loop, and drawing down the
thread
 The objeot is ot provide for the use of mineral oils
in moderator lamps.
 arme.
withe.
This relates.
This relatest to brake apparatus to be applied to the the
bobbin spind oses of barr or thread-winding frames or
machines, in combination

 they are atta
matal chais
rubber tire.

 moss for the purpose of making millboard, do.
5709 . FAstrusive Deviors for Burroxs, \&c, A.

Toork: $6 d$. to le lerers operated from the upper side of the button,
the teet passin throuh hole sin the bhatot and
being adapted top pass through the fabric and securre being adapted to pass
the buttons in position.

Hammersinith. -30th Novenber, 1882. -(Not pro.
ceecd inith.
cocring to
one arrangement this consists in

chalke) or of spent lime, or of mixtures of any two or
more of them with coal.

 The inventor claims, First, the method of collecting.
bennol from the gaseous portion of the products of dig. tillation of coal by cooling them in a freezing machin
or air cooler, and afterwards bring ing them in contac
 oxidation by the employment of a series of ofto o
more towers; ; Thirdly, the process for the treatmen
 containing sulpho and other cyanides or nitrogen
bosass in whiththey are hanted with lime or soda lime
to a temperature of about redness

 engraved, so as to make them more durable.
5724. Curs AND WASHERS UskD For RAiwWy Jones, London. - 1st December, 1882. 6d, 6d.
The drawing shows a rail to bo held down to the
 5724 -A

on the bottom thereof as shown. Thesso knifo-e $\overline{\text { gres }}$
are tightened into the wood of tie sieeper as the clips are tightened into the wood of the sieeper as the clips
are fastend down by means of the bolts.and thus
offer great resistance against any lateral movement of offier great resistance against any lateral movement of
the rinl, and
tenance of a true erialyy auge. assist, therefore, in the main5725. TTorE STopprrs, D. J. Morgan, Cardiff.-1st De. This relates to the combination with the known derice of a washer expanding tube stopper, of on
internal roo or tube, keying on a brigd ind nut the
end of the tube remote from the operator.

 into a tamp holo or into a fissure of coal or rock, in
order to win or get the ocal or rock by the expansion
of an envelop or enpasibe casing of the apparatus
under the inflence or action of liquid or air fored 5727 int a pump.

 able staiths, portable turrtable, and carriers forming a
complete system of apparatus for use in connection with suitabie rail ways for enabling railway wagons to ${ }_{5}^{\text {wharf for loading }}$

 has for its object to render the plough capable of turn-
ing the earth at will, either to the right or the left
side.
 The inventor claims the introduction of liquid car-
bonita aceld into the boiler of steant fire engines, simul-
tane

 5733. Strlooraphio Foontini pras, M. h. Kerner
 and in supporting the latter within the hollow handle
 the ink reservoir and to permit store neoestastry longi.
tudinal movement to and fro of the air tube and
needle.

 of manganese copper and phosphuret of copper.
5735 . M

 the pressure to and from the teeth.
 This relates to improvements in the general con-

 5743. WIND Moross, A. M. Clark, London. 1 1st Do.
cember, $1882 .-(4$ communication from A. Dumont,

 ind without the ald
special vane or rudor
adjusted and regulated
5745. Frre.scarrs, H. J. Allison. London.-2nd

5755. Frxarsa, G. Greij, Rdinhurgh, and J. Leck, The inventors claim the means of securing the wires the employment of siliders with indined tongues
retaining the wires in recosses in the edges of the
unirght uprights.
5765 .

don - 4th Decemher, 1888 2.-
animal from vegetable fibress contained in materials of
any shapo rorm without the use of chemicals or any
agent ofther than stem agent other than steam superheated or not, and obtain.
ing thereby an insoluble powder which can easily be
red

 5771 . Screw Proprusion or Vsssels, A. M. Clark
London. -4 th December, $1888 .-1$ communication

 rect syes are the tandem ereows Bo an a singlie shaft
at each side. The shafts have bearings upon each
atide side of the screws and extend sternward through the

hull sufficiently for the connecting-rods C to be be
aittached for driving the screws. The serews at the respective sides may be made to revolverin opposite
directions to balance the side draught. D represents the stern screw, which is arranged. in the thesentsal
manner or twin somews may be used. E represents
the ordiny wry mannere, or twin serews m
the ordinary propeller shaft
5793

 frame.
5795. SAsf FAstrestros, J. Whitehousa and S. Peacoock,
 into a a staple on the other sash, the bolt having no
spring, and boing operated by al lever or arm fitted
with an excentric pin enmen
 engage with a h headerer steing formed with a hook to
receives the bolt. 5798. Repaiakr
 This relates to that class of ice machines or refrige.

 5805. Wume ron

 portion are in separata parts sirmly conneected together.
The trir has an in wardly projecting f fange. which its ininto a recess in one side of the central plate at its periphery,
while the opposite side of the plate is united to the edge of the tirie by a tongue and groove lookk, the thire
and plate being also securred by bolts passing through and plate being aloo secured by bol
the plate and the flange of the tire.

 or nozzzies open into the fuel chamber above the foel,
and throug which ombine jets of steam and ar
introduced, and, ming
ing ntroduced, and, mingling with the gasee from the
fuul, suppply the oxyen and hydrogen neeossary for

 side walls.

 This relates to oomprovements on patent No. 1840,
A.D. 1881, and it consists in providing a double A.p. iss. and it consists in providing a double
prosig lever having two oomecting lovers oreated
upon by the same cams, which imparts motion to the ension rod connected to the rooking lever or a p pawl
and ratchet device. The cam-actuated levers have rollers to orun on the com, and siniaral spring go for impart-
ing upward motion to the double lever are arranged in ing upward motion to the
guide-boxes for the latter.

 5911. PuMps Used IN Consection with the Condis-
sitiox or STEAM, T. The semberer 1882 pump. in which the suction or in.
oming stream of water is, during a portion of the piston's lifting motion, thrittlied or wholly cut-off for
 produced by friction
n the suction pipe.
5927. Mancofaciver or Bichromatr of Potash, F. muxnication from P. Romer, Beebererfod Germany. A. $4 d$.
This consists in the production of bichromate of potash by the decomposition of alye containing equi-
valent quantities of chromates of potash and of soda, y menas of a quantity of sulphuric acid equivalent to 5928. T

 octlons ot subaqueous tautar structures by the use
of metal ring in one section, which is forced by serews againe an elastic seating on the other section,
the scrows being rendered water-tight by cup leanther packings. The sections are formed with enclosed with guiding flating beneath the gootion, caissons
nt theird descent

 This relates more especially to the plates betwoen
which the horms and hoofs are situated in the hydraulic 6145. FLovr-siprisg Machives, H. B. . . . Bauermeister,
Hamburg. $-23 r d$ Decmber, 1882.
 separatu the flour entirity from the offal while sparing opposite to that of the reel. The arms of the fyers are of different
lengths one having concave blades or scrapers beling nearly twice as long as those of the fyer fitted with
rejectors, which throw the meal outwards on to the

 This consisists principally in an improved article of

 44. Kaittina Machines, H. J. Allison, London.-3ra | London $-\overline{3 r d}$ |
| :--- |
| C. H. |
| Carter, | The object is to knit either circular or ribbed flat

web, to longitudinally stripe either ribbed or plain Whric, to effect an interchangement of the ribbing an obtair neorresponding length of stitho of the oylinde

 and C. N. Shepard, Michigan, $U . S$.$) . 6 d$.
This consists in the use of an elabio washer in com-
 formed with projections which engage with recesses
in the under face of the

 fat sides, such teeth being forced through the ends
the bolt on bo joined, and the teeth then turned ove
or clinched.
811. Manupacture of Nigkel and Cobalt, de,
 hammered, drawn, or rolled, by mixing nickel oxide
with an oxide of manganesin in the orm of powder so that on smelting the mixture after reduction there
of, the manganese is made to or, the manganesi is made to take up the oxyen
forming a slag which separates out, leaving the nickel
in in a perfectly ductile condition. The procass above free from oxide.
1120. Tgleprionto Apparatus, W. R. Lakee, London.--
1st Marehh, 1883.-
A communication from
 This rellates to the combination of a number of sub-
scriber sines with a multiplo telephonic receiver at central ofice normally in circuit with the service lines,
\mathbf{a} single telephonic
tran normally out of circuit, a switchboard whereby dif.
ferent lines may bo connected to enh other or the

transmiter | transmittu |
| :--- |
| apparatus |
| ta |

1149. Obtansing Multrul Cories of Writives axp
Desioss, A. Paget, Loughborough. -3 rdd March, 1883,
(Chomplete.) 4 de
The inventor elaims the process and means for the
 drawing thereon with a spring pen or instrument
whilist the said sheot is supported upon zurfac
coated with a sharp and hard granulateo material.
 communication from
Wisconsin, U.S.)
$4 d$. This relates to underground conduits of olay piping
fitted with tubes carrying wires, and having bridges on peculiar construction so os to aliow testing and ingepoce.
tion of any wire or wires through opening in the outer peon of any yirreo o
tipe or conduit.
pip
1150. Wood Pourshiss MAchives, A. J. Boult, Lon.
 plete.) 8 .
This relates
raposss, W. R. Lake

 aro enclosed a arod controlled by a spring and two sets
of movable ajaw, or the like, pivotted to the handle
and connected to 130 connected to the said enclosed rod.
 This reltasest to a machinin for producuing iether fat or
corrugated or ordinary calked horseshoes of any desire shape, and it consists of a pair of rolls geared to terovolve
in op posite "former" and " "die" to shape the blank, also formed with oircumferential grooves that guide a pair of
shaping rollers or dises, which bend the blank round
而

 the upper portion is soft and pliable.
 U.S.) $8 d$. The inventor increases the steadiness of the machine
by rotating the fold
core
indegenenten keeps all Darts of it in unchanged polar relation to the
field magnets. Further improvements held magnets. itrther improvements on this machine
are described in the inventor's patent No. 1347 for this
1151. Sherting Furnacrs, A. M. Clark, London.-

 slag escape, and likewise without unduly chiling the process by providing for the removal when full or worn
of the well or receiver thd substitut of the well or receiver, and substituron of another.
water j jacket near the lower end of the turnace, and a hole ophrough it ts made to correspond with an open.
well or receiver mounted on wheels.
1152. Printing MAchinves or Presses, W. R. Lake,
London. 13 Ish March, $1883 .-(4$ communication
 two rotating and recinrocousing head haper on of passed
thhich
carries the type and the other the "make ready $;$ and an inking wheel in combination with the reciprocating colour at each reciprocation. Various detalls of con 1345. Sewiso Miche
1153. SEwINo Maounss, W. R. Lake, London.-13th
March, 1883 .- (A communication from C. B. Tibbles

commuxication from F. V. Pillard, Paris.)
plete.)
2d
This consists in evaporating an infusion of coffoe to
which sugur has been added, and supplying it in the formo of tablets or in a powder in a bor containing tho
divisions necesary for a
 This. Yelatases to machines having cylindrical arma.
tures, an armature core independent of the induction

ported, and by which they are rotated, the field mag
nets being stationary.
 The G. Acheson, Paris.) 6 d.
to connect a point or inner circle with each and every point on an outer or larger circle, the former cerirle
being at one extreme of temperature, the latter it the bing at one ex
other axtreme.
1154. SoLDrring AppARatus, H. H. Lolee, London.-
19th Mareh, 1883.-(A communication from J. J. Johnston, Boston $)-($ Completete)
This consists partly
in arranging a furnace, and providing it with a post or or sindolle rising
from its bottom and a float adapted to be nided wion from mits bottom, and a float adapted to be guided upon
the esaid postor sor sidele as it rises and falls with the
molten molten solder in in the solder pot.
1155. Measuring, Reairtrbing, and indicating thio
 Thitere. 6 de. to improvements on patent No. 3603 , dividided casing to protect all the working parts, with a
tap inlet and outlet, and intermediate meter and notor mechanism actuated by the flow of liquid arranged in one compartment, and a train of regis
Ing and dial indicating mechanism in the other.

SELLEOTED AMERIOAN PATENTS.

 ink or links, and having pins to engage the rim ot
 lalorum notedes to receive the fule sy bolts, the lever
having aving notches to reeive the fulcrum, connecting
ink or links, and the bar having pinis projecting

therefrom to engage the rim of the wheel, substan.
tially as shown and described, for the purposes set
 ant the bar being connected to the lever
 tially
forth
for

18881.
clain a coal breaker, the combination, with a
platin cylinder or roller, of segments forming the
 [279;0]

ments from the interior, and having their base securing means, whereby the roller, bases of the
teeth, and inner faces of the segments are in contact,
substantially as seat forth 279,811. Incandescent Lamp, Charles Richter Camden, N.J.-Filed october oth, 1882 ,
Claim.- (1) The hollow wire support C^{1}, in combination with the globe A of an incandescent lamp and the
 wires being passed inward through openings a and
upward through openings b, substantially as shown.

279811

(2) In an incandescent lamp, the carbon, in combina-
tion with the sustaining wires having loops which
fitted in openings in che carbon, and pins or keves
which are passed through said loops to interlock the carbon and wires, subutatantially ao and for the purpose
set forth. (3) The sealing and wiresustan 279,915. ALCOHoL Lamp, Norman Clark, Sterling,
 ita sides inclined from the perpendicular at about the
angles shown, and of such size and at such location as 279.915

to furnish respoctively temporary bases for sush
lamp, substantially as shown, and for the purpsose
described,
 colaim.-(1) A rlddle which consists of a fram
 sheet metal, the said obolique prates O bingnararanged
under the combs next in front, and leaving amall

280.007

完

apertures. F, substantially as and for the purpose
specided. (2) A riddle plate A, consisting of an
 re-enforced by a beading c, substantially as shown.
280,072. Sprivo Toort for Agriovirurat ImpL MevTs, Nils Nilson, Maple.plain, Minn.-Filed Briey -The coil of the toth is formed with an oye
to frit the arbour and a lateral extension or ear to

280.07a

oc

socures it on the arbour, said collar being gecured by
set.serew. The serew prents
rotation unde
 280.099. PIPE Wrexch, John J. Tower, Brooklyn,
N. Y. Filed May 21 th 1883 . Clain,-(1) The combination, with the body and
double end thereof, of the sididing jaw d, having the

E88.0.099

toothed jaw, and the pin l in the toothed jaw, for
 jaw c, of the sliding jaw d, having the projection
nad semicircular recoss, the toothed jaw h, and with
 for retaiuing such toothed jaw iu place, substautiall
as set forth.

CONTENTS
The Engineer, July 27th, 1883. page

Lestrirs to the Editor-

 Notrs and Mbmoranda

 Leading articles
OUR Food Sưp-v IN WAR
METROPOLTAN WATER SOPLIY

Nor. IV. (Illustrated.)..

minvoham, Wolverbampron, and District..

Notres from Sherfiald.
Notrss rrom Scootand
Notes from Wales and adjoining Counties
 (IIlustrated.)
Paraoraphs-
Saltscar Rook Lighthouse

Iron and steel Institute
Society of Engineers ..

By the advice of Sir William Jervois, South
Australia is having built at Elswick a vessel of a large type. The St. James's Gazette says it will
be a fourteen-knot cruiser, 185 ft . in length, 30 ft . in breadth, with a displacement of 900
South Kknsingron MuskoM. - Visitors during
 Indian section, and other collections, 5015 . On
Weane
Wesder
Wednesiay, Thursday, and Friday, admission
6d., from 10 a.m. to , p.m., Museum. 2151;
mercantile marine, Indian section, and other
colleotions, 1437. Total, 19,668. Average of correcolleotions, 1437. Total, 19,668. Average of orr
sponding week in former years, 17.671.
from the opening of the Museum, $22,204,940$.

Mess r. . F Cockerill \& Co..s Works at Seraing \& Hoboken, Belgium.

