THE NATIONAL EXPOSITION OF RAILWAY

 APPLIANCES.. This Exhibition, which has just been held at Chicago, was probably the most complete collection of the varied apparatus used in the construction, working, and main tenance of American railways that had ever been brough together, and the promoters are to be congratulated that less was included that was foreign to the subject in hand. managed by gentlemen engaged in the sale and manufacture managed by gentlemen engaged in the sale and manufacture of various articles used on railways, the only person unconnected with the railway world being the president of the United States Minister United States Minister at Madrid, and formerly consul at from the United States Greatk of the exhibits came naturally from the United States, Great Britain and Canada being the only foreign contributors. The British exhibition consisted mainly of two of Ceorge Stephenson's earlies interesting views of the original Liverpool and Manchester railway, and photographs of the more recent developments of English railway enterprise, the interests of the absent British exhibitors being very efficiently represented on the committee by Mr. G. D. Peters, of London. The protective policy of the United States probably deterred many rendering it difficult, and in most cases, impossible, to sel imported productions at a profit, while the high price of American manufactures forms an effective barrier to their importation into this country. It is to be regretted that might be mutually learnt from even a partial interchuch of commodities between the two countries. For instance a locomotive built by an English railway company might have been exhibited, and retained by an American railroad, who, in return, would send a Mogul or a Consolidation to
England ; and thus much might be learnt by direct comparison of the results of working under similar conditions The population of America is advancing westward so city. Its geographical position and enormous importance as a railway centre combine to make it a most appropriate site for a Railway Exhibition. Some seventeen distinct Chicago. Four of run trains into terminal stations at Chicago, Mil the Chicago and North-Western, and the Wabash, St. Louis, and Pacific, each own, lease, or operate a system of over 3000 miles of road; the first-named owning no less than 4528 miles of line, which is being rapidly extended westward. In all, the seventeen companies represent nearly 31,000 miles
of line, earning annually about $£ 40,000,000$; while the food products sent eastward for shipment by six of the Chicago railways weighed, during the first six months of this year, no less than $1,180,000$ tons. This figure is better appre-
ciated when it is found that, assuming the load of an average English goods train to be 80 tons, which is fairly correct, it would take 100 of our goods trains per twentyfour hours to transport this weight of food alone, the left out of the question. It is probable that, as regards mileage and tonnage, the railways centreing in Chicago globe. The low taffic receipts, averaging 25 per mile per week, are partly accounted for by the low rates
for the conveyance of goods, and partly by the fact that for the conveyance of goods, and partly by the fact that
many of the lines have been but recently opened for raffic. The growth of Chicago as a city is proverbial, but two simple facts will bear repetition. Fifty years ago
Chicago was a village of twelve houses, to-day it contains Chicago was a village of twelve houses, to-day it contains
560,000 inhabitants. The great fire of October 8th, 1871 destroyed, with one exception, every house in an area of
three and a-third square miles in the centre of the city, three and a-third square miles in the centre of the city,
and rendered 98,500 persons homeless ; yet to-day nearly very trace of its ravages is hidden by magnificent and and the Grand Pacific, each representing an outlay of about E750,000.
The Exposition was held in the Inter-State Exhibition building, which is interesting as the scene of the Repub-
ican Convention of 1880 , at which General Garield was rican Convention of 1880 , at which General Garfield was
virtually elected President, and is singularly well situated, virtually elected President, and is singularly well situated, presents to the lake, close to the business portion of the the Illinois Central and other railways. The main building is 800 ft . long by 240 ft . wide, with side galleries, round the edge of which ran an electric railway-the first of its kind in the States. All the locomotives and many of the cars ploughs, refrigerator cars, steam shovels, and many of the systems of railway signalling were placed in an open yard between the lines of shedding. The exhibits bitors numbered about 1000 , many individual firms contributing some $£ 15,000$ or $£ 20,000$ worth of locomotives, cars, machine tools, \&c.
Great praise is due to the exhibitors generally, as the whole success of the Exhibition was due to their endeaadmirably arranged. Unfortunately, their enterprise wa somewhat marred by the insufficient preparations of those being a bigger "boom" than, to use an American phrase, managers were certainly somewhat taken by surprise at the unexpected magnitude of the task set before them, and their arrangements as regards making a classified catathe strain imposed jupon them. The Exhibition wa nominally open one month; but, as usual in affairs of this pening day, and the Exhibition was really only in the working order for about a fortnight.
development, and many evidences of this fact were to be found in the Exposition. The bright and clear atmosphere
of even the largest towns demands brilliant colours to satisfy the eye, but the gaudy bad taste so general in America a few years ago, has given way to an universal
prevalence of ornament almost invariably of artistic design, and in excellent taste, which cannot fail to strike a visitor to the America of to-day. The locomotives which dazzled the eye with a confused mass of bright vermilion, and still brighter brass, the cars literally bespattered with meaningless gilding, and the machine tools, more remarkable for the number of eagles painted upon them than for
the strength of their framing, have all disappeared. Sam Slick's famous clock, the dial of which was ornamented by angels carrying rifles, is a thing of the past, and the
adoption of artistic and appropriate decoration, which has adoption of artistic and appropriate decoration, which has
made great strides in England during the last few years, made great strides in England during the last few years, proportions so common in American productions are also tast disappearing, and the locomotives, machine tools, rails, tires, sleepers, and many other appliances, already equal
in strength corresponding appliances made in England while the frail wooden bridges of former days have given While the frail wooden bridges of former days have given
place to magnificent iron or steel structures, most carefully and exactly made, and which seem, from their depth of truss, to err only in the direction of superfluous strength. The Exposition was especially strong in the display of ocomotives and rolling stock generally, though few striking departures from established practice were shown in these classes. Very little was exhibited as regards bridges or permanent way, and the numerous forms of chairs, keys, exhibition in this country, were conspicuous by their exhibition in this country, were conspicuous by their
absence, which would seem to show that the Americans are well satisfied with their present system of steel Vignoles ection rails, weighing about 67 lb . to the yard, and 2000鲜 3000 hard wood sleepers, 8 ft . long, per mile. The Mexico, now being opened up by the Southern Pacific, Mexico, now being opened up by the Southern Pacific,
Aitchison, Topeka and Santa F'́, Denver and Rio Aitchison, Topeka and Santa Fe, Denver and Rio
Grande, and other lines is very unfavourable to the life of wooden sleepers, while, owing to the absence of suitable forests, the cost of timber is considerable, and it is therefore probable that a system of permanent way formed entirely of iron would present many advantages. The signals employed on the vast majority of American railways are extremely crude and defective, though the tmosp somewhat mitigated by the clearness of the rery general use made of continuous drivers, and the therefore satisfactory to observe a very large display of signals and signalling apparatus, though many of the xhibits were little better than the defective forms in use One inventor showed a model of a simple junction, which train to the branch, while but one signal was exhibited, which served alike for both up and down main line, and up and down branch trains. This "system"(?) was highly spoken of by some prominent railway managers, though apparently it could only be safely worked by the driver of every train coming to a stand, and inquiring verbally whether the signal applied to him or not. Some most elaborate auto works protecting signals both in its rear, and in advanc in the case of a single line. The Union Switch and Signa Company, of which Mr. George Westinghouse, the well nown inventor, is president, exhibited a oreat variety of different methods of working signals, including the Saxby and Farmer method of interlocking, the Sykes electric interlocking, and hydraulic and pneumatic methods of moving points and signals, valves moved by electricity cylinders connected water or air under pressure to suitable Pennsylvania Steel Company exhibited an American adaptation of Saxby and Farmer's interlocking apparatus, and several useful and simple devices for allowing points in yards to be protected by interlocking, and to be at the same time capable under certain conditions of being moved
by hand. There can be little doubt that within the nex few year ther cailway signalling will take place in the United States, and that characteristically going from one extreme to the other with great rapidity, very elaborate systems will be extensively used. In New Eng-
land and the more thickly populated Atlantic States, interlocking apparatus, double lines improved stations, and fas express trains are rapidly coming into use, though in the matter of luxurious dining and sleeping cars, \&c., the West
leads the way-another illustration of the strange fact that the older part of America is more English in speech and customs than the newly settled West, where the proportion of British born inhabitants is higher.
The display of locomotives
The display of locomotives and rolling stock generally was very complete, and both in number and quality
exceeded the exhibits at the Centennial or any previous exhibition nearer home. No less than twenty-seven locomotives were shown, seven being by one maker, the
Brooks Locomotive Works, situated at Dunkirk, N. Y., formerly the repair shops of the too well-known Erie Railway. While no very important departures from established practice were shown, there was a noticeable general tendency to employ larger bearing surfaces, better material, more strongly proportioned parts, and a plain
and simple exterior finish. But one example of the old and simple exterior finish. But one example of the old
style of American engine was exhibited, its vermilion wheels and chimney, polished frame, and bright brass dome and cylinder cleading standing out in marked contrast to its competitors, all clad in sober black, relieved by a little gilding, presenting a remarkably neat and dignified the water. Russia or planished iron, which is here only seen on the Westinghouse pumps, is universally used in America for cleading boilers, and as it can neither blister nor change colour by heat, and being very smooth, is easily cleaned, it too might be found worth a trial by some of our enterprising English locomotive superintendents.
Though screw reversing gear was not shown, several
tallic piston and valve rod packing is generally used, and many engines were fitted with balanced slide valves, a variety of which we hope to illustrate in a later number. Nearly every engine was fitted with glass oil cups on the rods and bars, worsted syphons being dispensed with, and a species of needle, permitting of an adjustable feed, being whether his oil cups require refilling or an at a glance bearing requires a more liberal supply of oil, the feed can e altered in an instant. Glass oil cups are of course mor lable to breakage, but Americans generally-with a marked exception as regards the gentlemen who handle the bag-gage-are lighter handed than the proverbially horny
fisted English driver, who would be much astonished o see an American confrère driving an express train seated in a comfortably sprung arm chair, and equipped with a neat pair of stout gloves. As every true American rigorously avoids any unnecessary physical exertion, it iberty to sit down whenever they like, rovided the wor sone; though on many lines, especially in the West, a visit to a drinking bar or saloon when off duty ensures ployers to take note of their cisure hours, notheir mens behaviour in their rue, further illustrates the curious is believed oo be ideas concerning discipline. A passenger train on a well nown line in the far west was crossing a chain of mounthe driver perceived some antelope. He pened the train, and taking down a rife which he hapantelope the conductor and hame, proceeded to stakk the n. While thus corad some of the passengers loowing suddenly, and a following freight ran into the rear of the standing train, damaging two cars, and injuring three The ens. The driver escaped with a reprimand.
he general tendency to use heavier and stronger parts is well shown in the matter of wheels and tires. Many railways are now using driving tires 4in, thick, while the wheels in the engine bogie are often steel-tired pape wheels in place of the far famed chilled wheel. The Allan paper whee, which resembles in principle the Manse class of passenger cars, iron wheels ger cans, whed various forms of wro appears probable that in a few years the chilled wheel will become a thing of the past. Owing to the partial exhaus wheels, fulity abite the re-melted wheels, quality has deteriorated, while the heavier load use of body under passenger cars is attended with such a saving in renewals and diminution of noise that thei increased first cost is more than compensated.
The cars shown embraced nearly every variety of rolling
 cars, pars cars, phat or baggage cars, postal cars, express cars, parcel vans, cabooses anglice goods brake vans, covered box cars, cattle cars, high-sided cars, flat cars, tipping or dumping cars, refrigerator cars, ballast cars, track解 cranes or wrecking cars, and last, not least, a nosurgenious appara elative qualities of rails from different makers.
The Chicago, Milwaukee, and St. Paul Railroad showed wo cars, built by Harlan, Hollingsworth, and Co., fitted which well deserved the name "pary and go taste, parlour car, fitted with revolving chairs and furnished with anterooms, lavatories, \&c., and the other an hotel car, ice house, wine cooler, and every possible appliance to serve luxurious and well-cooked meal. It may interest those of our readers who have not been in America to peruse the annexed bill of fare from an hotel car running between ort attending a long railway journey in America :-
New York and Chicago, Limited," Pennsylvania Railroad. Breakfast.
Fruit.
Oolong tea. Green tea. Coffee. Chocolate.
Vienna bread, Bread.
Vienna bread. Corn bread. Hot rolls.
Dry toast.
tmeal mush.
Frish. Broiled salt mackerel. Broiled white fish.
Veal cutlet breaded. Calf's liver, with bacon.
Broiled.
Tenderloin steak, plain, with mushrooms, or tomato sauce fast bacon. Ham.
Mutton chops, plain or tomato sauce.

Boiled. Shirred.
Fried. Scrambled Omelets.
Vegetables.
Baked potatoes. Stewed potatoes. Fried potatoes.
Saratoga. Lyonnaise

Meals, one dollar

Hotel cars are commonly attached to a train early in the morning in time for the usual American breakfast hour three usual meals during the day, The contrast between dining at leisure in one of these cars and scrambling through a meal at a rail
to be fully appreciated.
The Pullman Palace
The Pullman Palace Car Company, which has now under-
aken the manufacture of all varieties of rolling stock at
their new works at Pullman, near Chicago, exhibited a great variety of sleeping and other cars. The former were the interior being composed of most elaborate inlaid work in the great variety of woods used in America; the chief novel feature was the addition of a small buffet to the sleeping car, enabling passengers to be served with norally the er enerally the those settling in borders of Mexico, and are the Northern and Canadian Pacific. The car is arranged as an ordinary Pullman sleepor, the top berth, however being a species uay formed of slat of bard, whil the lower berth is formed so usual by drawing out the seat, but is of woot nd unpadded by drawno like seat, but is of woo and unpadded. The emigrants, like steerage passengers, Sleeping Car Company exhibited a new style of sleeping car which appears to possess many advantages, the sleeping berths being constructed and stowed away in a totally different manner to that adopted by the Pullman Car Company.
Messrs. Jackson and Sharp, of Wilmington, Del., without the elaborate inlaid ordinary passenger car, which, of good taste and workmanship, and deservedly obtained a gold medal. The interior was panelled with bay wood or light coloured mahogany, hand carved with flowers, was lit by compressed every panel being different. Was it by compressed gas, and was fitted with many little conssengers, and we hope to illustrate it and describe it at passengers, and we hope to illustr
The travelling post-offices exhibited were very conveniently arranged, and contained many ingenious contrivances for facilitating work, and enabling the same van to be adapted to varying requirements, while it was interesting to observe that the details differed in nea every particular from those in use on English lines.
The vehicles for goods or freight traffic were chiefly remarkable for the enormous loads they were marked to carry - 40,000 lb., or 18 tons, being now the usual car load, ruck under the not unusual, and oide carry, $70,000 \mathrm{lb}$. or $31 \frac{1}{4}$ tons. This increase of load has taken place within the last few years, and has necessitated stronger axles, draw gear, and framing, though the length or cubic capacity of the vehicle has not been materially added to
The long distances to which fruit and other perishable articles are transported, and the extreme heat of the part of the equipment of a first-class rail cars a necessary now extensively used for the transport of yeast, beer, meat, butter, and many other ordinary articles of food. A large number, differing in details, were exhibited at Chicago The ordinary plan of making a car with sides, top, floor, and doors 7 in . thick, of layers of felt and planking, and placing an ice chest just under the roof, is not aim at securing a dry cold, which will permit of no mildew, and preserve the most perishable article without injuring its quality or favour
The term "rail way" is understood in America to include tramways, or street railways, and therefore several tram cars were shown, three being suited for the system of cable traction used in San Francisco, Chicago, and West Philadelphia; two cars were arranged on different principles as provided with side entrances near the centre of its length, ne end being a smoking compartment, the other being for on-smokers, as usual.
The question of continuous brakes upon freight trains is exciting much attention in the United States, the present system of employing five or even more brakesmen riding on the cars and walking over the car roofs to apply the brakes being dangerous to life, costly in wages, and unsatisfactory and crude to the last degree. The Westing. house Brake Company show a cheap application of their well-known automatic brake, while several inventors exhibit different forms of brakes operated by the action of the buffers; a principle that, properly worked out, has many
good points. The Waldumer ElectricBrakeCompany exhibit an automatic electric brake, which appears simple in construction, acts with full force when applied by the guar or the train parts in two, and can be readily graduated by the driver, and we propose to describe it fully in a later ssue
A very complete collection was shown of the various appliances used in America to save hand-labour in makin a railway-the deep, even soil of the western prairies bein very favourable to the use of machines which, of course re not easily adapted to work in rock, or in a great variety of geological formations presenting materials for excava tions having widely different properties. One machine the New Era grader, was stated to be capable of " grading," or making light cuttings and embankments, with little o o hand labour. Two teams of horses were attached to the front and rear of a species of plough, which delivered formed a travelling on an endless rubber band, which cormed a travelling path running over rollers in the manner used in grain elevators. The rollers being connected by a frame projecting at right-angles to the path delivered sidemays some diftosited on the rubber band was side spoil bank side spoil bank or an embankment, as the case might be. The display of both wood and iron-working machinery was very complete, but was distinguished more by good
workmanship, excellent design, and strong proportions workmanship, excellent design, and strong proportions
than by any novelties. Some fine specimens of steel rails, tires, axles, plates, and sheets of American manufacture one plate $\frac{3}{8}$ in. thick being 4 ft . 8 in . wide, and no less than 27 ft . 2 in . long; some excellent forgings, including many Wilson, Walker, and Co., of Pittsburgh, and a careful
examination of the various products in steel and iron con this country and that America has little to learn from great distance apart of iron natural disadvantages in the great distance apart of iron ore, coal, and flux alone pre-
vents competition with us in the matter of price. The wages, though higher per man, are no more per ton wages, though higher per man, are no more per ton,
while, as usual in America, an enormous product is turned white, as usual in America, an enormourati
field miscellaneous exhibits ranged over a very wid field, embracing oils, varnishes, upholstery, copying and writing inks, ticket cases, maps, tickets and passes, uni forms, desks, car fittings, locks, heating apparatus, car
couplings, lamps, injectors, lubricators, tubes, surveying instruments, fencing, lock nuts, pumps, scales, testing machines, platelayers' lorries, springs, cranes, timber machines, platelayers lorries, springs, cranes, timber
dryers for artificially seasoning timber, tube expanders, belting, culvert pipes, grain elevators, railway watches, belting, culvert pipes, grain elevators, railway watches,
wire rope, veneers, baggage checks, and a type writer wire rope, veneers, baggage checks, and a type writer
Any detailed notice of these and various other exhibits must be deferred to a later date.

THE INSTITUTION OF MECHANICAL ENGINEERS AT LIEGE.
During the recent meeting in Belgium of the Institu tion of Mechanical Engineers several interesting excur sions were made, and by no means the least int
was the visit to the glassworks of Val St. Lambert.
the glassworks of val st. lambert.
This is one of the largest glassworks in existenceentirely devoted to the production of domestic articles such as tumblers, wine glasses, lamp chimneys, and such a staff of highly competent artists being employed in paint ing glas.
The Val St. Lambert works stand on the right bank the Meuse, in the commune of Seraing, and about seven and a-half miles from Liége. As the head offices of of the Bishops of Liége, so the Cristalleries of Val St. Lambert occupy the site of the Abbey de Rosières. Up to the year 1192 the site was almost a desert, but about that period the abbey was founded. In 1202 Hughes de Pierre pont, Bishop of Liége, gave to the monks a tract of land and woods situated in what was then called the Champ des Maures, whereon was built the abbey. It prospered and reconstructed, and at that time were raised the fine buildings now used as a manufactory. The re-building had ings now used as a manufactory. The re-building had
hardly been finished when the Revolution came, and with it the expulsion of the monks. It was sold by the nation and was used for various manufacturing purposes, until Lelièvre. There had previously existed, at Vonêche, near Givet, a glassworks carried on by M. d'Artigues, its owner, aided by M. Kemlin his nephew, and M. Aug
Lelievre. This latter gentleman had left the Ecole Poly technique of Paris with distinction, and was the son of Mr. Anselme de Lelièvre, Inspector-General of Mines, and a distinguished savant of the last century. MM. Kemlin and Lelièvre both became naturalised Frenchmen. However, the frontier traced by the Congress of Vienna for the new territory of Belgium cut Vonêche off from France. The glassworks accordingly lost their only market, cut off from it by a heavy tariff. M. d'Artigues left the place and went to France, while MM. Kemlin and Lelièvre found in the old Val St. Lambert Abbey what they wanted in Belgium, and this was the origin of the glassworks. Nor rich of a country, on the borders of a fine river, in the centr provided with railway accommodation, the Val St. Lambert glassworks possess every advantage, and they have been proportionately successful.
The establishment is worked by a company known as the Société Anonyme des Cristalleries du Val St. Lambert, under the presidency of M. Jules Deprez; and the comVal St possess four distinct establishments, namely, that a in 1851; a third in the Rue Barre-Neuvill, at Namur founded in 1753 . and, lastly, one at Jambes, near the same town, founded in 1850
We need not trace at length the history of the works carried be enough to say that for a long time they wer was mad with small or no profits; but a great advance wood for heating purposes. Further capital was introduced in 1836, and operations have been carried on practically without intermission ever since. In 1850 the annual turncompany was $£ 200,000$. To give an the turn-over of the of the operations carried on, we may say that no fewe than 120,000 pieces are turned out every day. To pack of strawe are used 50,000 kilos. of heather, 55,000 kilos, of all kinds used the weight of the fire-clay $1,500,000$ kilogs. The weight of the finished goods sent out per year exceeds $9,000,000$ kilogs. The company employs in all about 3000 hands, 1800
of whom are at Val St. Lambert. Much attention is paid to the welfare of the st. Lambert. Much attention is paid to of co-operative store is worked with great success. Many of the hands have been on the works of the company for fifty years, and the managers speak in the highest terms They are laborious, assiduous, intelligent, and attached to the works and the locality, which they rarely quit. These conditions are the most avourable possible for the em ployers, and they are far too rare in Great Britain. The Val St. Lambert hands, men, women, and children, work
uninterruptedly for eleven hours a day all the week uninterruptedly for eleven hours a day all the week
through, and some of the men even longer. This affords a remarkable contrast with the hours of labour and custom Our English glassworkers
We glass is for granted that our readers know generally
is fused into a kind of pasty mass. The fusion is effected in pots of refractory clay, of which the general form is something like that shown in the sketch.
The mouth of the pot is shown at A. The
\square The mouth of the pot is shown at A. The pots at Val St. Lambert are of various
sizes, the largest hold about 16 cwt . of sizes, the largest hold about 16 cwt . of
glass. The duration of the pots is very variable; they last sometimes only a few days, at others several weeks, or even months, much
depending on the quality of the pot. The temperature to which they are exposed is not excessively high. The great thing to be effected in a glass melting furnace is the perfectly equal distribution of the heat. At Val St. Lambert gas is used, generated in Siemens or
Boétius producers. There are in all twenty furnaces Boetius producers. There are in all twenty furnaces. They are grouped in threes or fours, in the large buildings, with high roofs. Formerly the furnaces were square, and held each eight melting pots, which did not hold more than 250 kilos. of glass. The modern furnaces each receive
from twelve to fourteen melting pots. The modern melting from twelve to fourteen melting pots. The modern melting
pots as made by the Battersea Plumbago Crucible Compots as made by pe to notersea to be known here.

pany do not seem the

The pecularities of the construction of the glass melting furnaces at Val St. Lambert will be gathered from the
annexed sketch. The furnace is circular, 14 ft . or 15 ft . in

diameter, and from the roof E to the floor is about 5 ft . 6in. igh. In the centre of the floor is a cylindrical opening A, through which rise the mixture of gas and air, the atter being introduced through four openings, three of
which are shown. Two of the pots are indicated by dotted which are shown. Two of the pots are indicated by dotted
lines at D D. The equitable diffusion of the heat is ines at D D. The equitable diffusion of the heat is effected in the following ray :-Inside the furnace are con-
structed as many vertical flues as there are pots. Two of these are shown at $G \mathrm{G}$. They have small pots. Two of 5 in . by 8 in . at the bottom. The course pursued by fame is indicated by the bent arrows the crown E , and is deflected downards and the side flues, which deliver into the second vaulted F. In this, in some cases, are annealed the finished articles of glass. In others is fixed a boiler, steam being generated by the waste heat. In others there is no opening at the top of F at H, but there is one at the side nstead, through which the flame is led to raise steam in he engines in the briners. The steam is used to drive he engines in the grinderies. Not much power is re-
quired, and it is very easily obtained faom the waste The operations of the glass blower have been too often described to need re-description here. One or two points however, deserve notice. One is the large use made of wooden moulds. In these are formed all kinds of circular articles, such as tumblers and lamp glasses. The moulds re in halves, and are kept soaked with water to prevent them from burning. Inside they become lined with char coal. The glass-blower, getting a knob of glass on the this he then places on the mould, which is closed by a very mall boy; in but too many cases mere children, seven or eight years old, are employed. The child holds the two ides of the mould together while the blower rotates he bulb within, blowing all the time. The work is turned out very true. Up to a comparatively recent period the tumbler was cut to the proper depth while hot with a pair of scissors, but this has been abandoned, and an extremely ingenious little machine is now used for cutting rup glasses, tumblers, \&c. The article to be cut is placed tand is fixed stand. At the proper height above the glass against this a very small scratch is made. At the same level is fixed a little mouthpiece through which issues, under pressure, a tiny gas flame, not thicker than a sheet of note paper. This falls on the glass, which is turned round by the woman attendant. The glass is heated in an extremely narrow band all round. The touch of a moistened finger suffices for the complete separation of the the parts of the glass round the heatod giacturing purposes of the well-known hot wire method of cutting glass so often tried with indifferent success by the enterprising amateur.
Glass grinding is carried out on a very large scale at Val c. Lambert in huge well-lighted shops. There are four otal number of which is 800 , and the floor space occupied no less than 24,000 square feet. The first space occupied was put than 24,0 riquare feet. The first steam engine ngraving is done with fluoric acid, A great deal of ngraved being protected with wax in which the design is etched. Tilghman's sand blast is also employed as well as the old copper disc system; flats are ground on tumblers by It would machinery
idea of the operations carried $\subset \mathrm{n}$ in this vast establishment, every portion of which was thrown open to the members of the Institution, while numbers of heads of departments went round and answered every question and explained every detail with a frankness and a courtesy beyond praise. It is impossible to inspect such an establishment as that at Val St. Lambert without feeling how hard is the battle which manufacturers in this country have to fight. There as we have said, are to be found every advantage of posi tion, and to this is added a body of workmen, active, sober industrious, among whom is heard no talk of strikes, and who are content to work every day and all day long; such men, directed by heads possessed of no small scientific bility, and reinforced by the command of ample cannot fail to make a mark in any market, and capita speak the truth when we regret that we have not such works and such men on English soil as there are to be found at Val St. Lambert
This was one of three alternative excursions. The others were to the works of the Suciété des Ateliers de la Meuse, and to the Angleur Steelworks.
On Thursday, the 26th ult., the day was wholly occupied with two excursions, the one being to the Zinc Works of the Vielle Montagne Company, of which we gave some account in our impression of the 27 th ult., and to the Hazard Collieries; and the other to Verviers, where several woollen fabric factories were open to inspection. A visit was also made to the great Gileppe Waterworks Reservoir.

VISIT TO ANTWERP.

On Friday the members paid a visit to Antwerp, the hon. local secretary to the reception committee being Mr . A. W. W. Wilmott, who represents at Antwerp the interests of Sir William Armstrong, Mitchell and Co., of the Elswick Works, Newcastle-on-Tyne. After a warm address of welcome from the Burgomaster, M. Léopold de Wael, and a suitable reply from the president, the secretary, Mr. Walter A. Brown, read a paper by Mr. G. A Royers, engineer to the Antwerp Municipality, on the new harbour works at Antwerp. This paper will be found at page 116.
As time was short M. Royers undertook to answer questions on the spot, during the visit to the works; and after a vote of thanks, proposed by the president, coupled with the party proceeded on their excursion. They visited the docks, with their new hydraulic machinery, and then crossed the Kattendyk basin to the new dry docks. The 450 -horse power engines and pumps in connection with these docks were made by M. Ch. Mercelis, of Liége, in 1864, and pump about 12,000 cubic metres of water per hour, the greatest height being 2lft. The horizontal cylinders are 1 metre in diameter, and have a stroke of $1 \frac{1}{4}$ metre. The pistons work directly on to spear rods with rockinglevers resembling those of a mine pumping engine, and the rocking levers actuate the plungers of eight vertical pumps, sunk below the floor, four being 1.3 metre in diameter, and the other four 90 centimetres. The steam is supplied by four Lancashire boilers. Two bars descend in front of each fire-hole door, being connected by chains with dampers in the flues; and the arrangement renders it impossible to open the door without first closing the damper.
After witnessing the working of the draw-bridge, which is supplied with hydraulic machinery by Sir Wm. Armtrong, Mitchell and Co., the party went on board a river teamer and proceeded up and down the Scheldt, along the new river wall, the various points of interest being pointed out, notwithstanding the pelting rain, by M. de Matthys, ingenieur-en-chef des Ponts et Chaussees, who is directing the works for the State ; M. Royers, the ingénieur de la Ville, who represents the Municipality of Antwerp ; and M. Coisseau, who is carrying out the work for the contracors. The visitors went on shore to inspect one of the caissons, where the method of excavation, the discharge of he sand by means of water and compressed air, and the visited the concrete, were duly explained. They also visited the hydraulic pumping station for the movable cranes and capstans on the quay, \&c. The 400 -horse power horizontal pumping engines have been erected by M. Charles Beer, of Jemeppe. They are supplied with that of Root, Belville, and the boilers of a type similar to hat of Root, Belville, and the Barrow Shipbuilding Company, to be worked at a pressure of 75 lb . per square inch. pair calculated pressure of 700 lb per square work the pump plungers direct, and fore piston-rods lators. The hydraulic cranes and force into two accumurunning along a wide-about 4 ft - way, leaving a frame the ordinary narrow pauge wagons to run und room for
The members also landed at the Hoboken shipyard
the Société John Cockerill, shown in the left shipyard of corner of the plan of the Seraing Works published uper supplement on the 27th ult, Here they found on the as a a steamer and a barge, both apparently named on the stock for the service of the company. The machine shour, both and airy, but the tools are not of the most modern descrip tion, while the speed they run at seemed roder descrip the pity of many present. Landing at the Canal to excite on Saturday afternoon, a party of the members visited the Antwerp Waterworks Pumping Station at Waelhem, about twelve miles from the city, under the escort of Mr Rich, one of the partners in the firm of Easton and Anderson, the engineers of the company, and Mr. Devon shire, the resident engineer in Antwerp. One of the most interesting novelties in these works is the employment of spongy iron for filtering the very turbid waters of the Nethe-a sluggish river passing the works, from which the supply is taken. The water in the river is not only highly coloured and tainted with the sewage of Lierre, a town few miles above, but the suspended matter contained in it is of such an impalpable character that it is impossible, by settlement in open ponds and filtration through sand filters, to remove these objectionable characteristics, It was found, indeed, in laboratory experiments before the works through a dozen folds of fine filter paper failed entirely to
remove its colour, and it will remain for months in a state stances it is extra clear glass bottle. Under these circum tics are changed by simplo 100 gallons per square pot in the through a 3 ft , layer of spong iron the proportion of of the iron to passing through this filtering medium it gunce appear colourless, bright, and sparkling. but it then appear chalybeate chararistics, which are removed by possesses through an ordinary sand filter at the lower level.
The water is raised from the settling ponds in which it is received from the river into the upper range of filters, by two of Airy and Anderson's patent screw pumps, working on a maximum lift of about 19 ft . The eq with which these pumps worked was remarked by all who them. The filtered water is pumped through a 20 in main into the city by compound beam engines, four in number coupled in pairs with a double-acting pump under beam. With these coupled engines and paustable each pansion gear, the supply to the town is kept up satis factorily day and night without any reservoir or stand-pipe anywhere ; the pressure in the water mains throughout the town being uniformly about 175 ft , day and night and that at the pumping station 200 ft . to 280 ft .
An abstract of the paper read before the Institution of Civil Engineers by Mr. Anderson, on these works, was published in The Engineer on January 26th, 1883. We hope we may be able to publish some details of the drawings of them ere long.
Some visitors witnessed the process of diamond-cutting the works of Messrs. Kryn, Huybrechts et Fils, and ld pe Mr. Jean Coetermans. Others again inspected the printing presses, types, and engraved blocks left at his ancient residence by Plantin, the famous printer. In the evening the members were received by the committee of ne Cercle Artistique et Scientifique, who threw open thei the highly successful Antwerp excursion.

THE EDISON-HOPKINSON DYNAMO-ELECTRIC

 MACHINE.The following report by Mr. Frank S. Sprague, on the Edison Hopkinson dynamo-electric machine, will be found of interest to lectrical engineers, though rather "thick" in places. Amongst experiments which it is known are being made by more than one firm of electrical engineers on the relative weights of field magnet cores and poles, and the relation between the weight of wire Mr. Sprague in magnets necessary to give the best results. Mr. Sprague says: I have to make the following partial report of the tests of the new dynamo-electric machine, built by Messrs.

Mather and Platt, of Manchester. Fig. 1 shows the general hapditional dimensions
Adamo are:-Genesions and characteristic features of the differently proportioned Edison dynamo. The a shortened and is outside of bearing, and with a face of 6 sin pulley, howeve $10{ }^{1}{ }^{1} \mathrm{in}$. projects 81 in . outside the base plate. Field coils wound over a 9 in. core with ten layers of No. 16 copper wire (B.W.G.). Two legs in series. Armature : Diameter of core 9in., 74 coils, ingle turn, 8 strands of No. 16 wire, average length 43 in . Wire bound. Diameter, $10 \frac{1}{2}$ in., with $\frac{1}{6}$ in. clearance from pole faces. Resistances : Field cold, 36.5 ohms; armature ditto, 026 ohms Field measured; armature calculated. Field warm 27 ohms. armature warm, '0325 ohms. Power supplied from a LawrenceArmington aud Sims-engine, high-speed and non-condensing driven by a link belt through an Alteneck tension belt dynamo meter.

> Engine diameter
> Stroke
> Piston-rod ..
> $8 \frac{1}{2}$. accepted.
> $9 \frac{1}{1} \frac{5}{6}$ in. measured.
> $\begin{aligned} & \text { Fly-wheel ... } \\ & \text { Indicator }\end{aligned}$

1-H.P. $=\frac{\text { 2.P. L. A. revs. }}{33,000}$
2. $\frac{\text { P. } 9 \frac{15}{8}}{12} \cdot \frac{\pi}{2}\left(2 \cdot 425^{3}-1_{16}^{2}\right)$. revs,
$12 \frac{2}{33.000}$
$=$ Mean pressure \times rev $\times \cdot 0028107$
The mean pressure is best found by taking area of cord with
a planimeter, dividing by the length of cord and multiplying by to drive well. Revolutions timed by recured, but firm enough counter, running motion from 97 lb . to $104 \mathrm{lb} . ;$ dynamometer-Alteneck pattern-designed to

measure ditrerence of tension of two parts of belt. A, driving pulley; B, driven pulley; C C, pulleys with faces close together part, and the resultant by an upward external and downwards, which pull is opposed dynamometer in a central position. Thable pull which keeps the dimensions:-Diameter A, 40 in.; diameter B, 10 . 10 ing were the C, $9{ }_{1}{ }^{5} \mathrm{in}$ in.; distance apart of centres of C C, $111_{2}^{1} \mathrm{in}$.; thickness of belt, ${ }_{1}{ }^{6} \mathrm{in}$.; resistance A E, 117 in .; resistance BE, $26 \frac{1}{1} \mathrm{in}$. find constant, we have the following :-

T tension on lower belt.

$2 r$ and" p diams. of sm
2 R
K thickness" of belt.
K thickness of belt. large pulley A.
\boldsymbol{a} and $\boldsymbol{\beta}$ half enclosed angles on each side.
D ",
$\begin{aligned} l \quad " & \begin{array}{c}\text { apart of centres of } \\ \text { apen net spring }\end{array} \\ = & =(\mathrm{difference} \text { of pulls } \\ & =\left(\mathrm{T}^{1}\right)(\sin , \alpha+\end{aligned}$ \qquad
\qquad
$\sin . a=2-\frac{1}{2}(l-p-2 \mathrm{~K})=2-\frac{l}{2} \times \frac{p}{2} \times \mathrm{K}$

$$
=\frac{\mathrm{R}-\frac{l}{2}+\frac{p}{2}+\mathrm{K}}{\mathrm{D}}
$$

$\begin{aligned} r & =5_{32}^{1} \mathrm{in}, \\ l & =11 \frac{1}{2} \mathrm{in} .\end{aligned}$
$d=264 \mathrm{in}$.
$\begin{array}{rl}p & =9_{1}^{5} \mathrm{in} . \\ \mathrm{O} \\ \mathrm{o} & \mathrm{in} .\end{array}$
$\mathrm{R}=20 \mathrm{in}$.
Then $\sin . a=\cdot 17143$
$\sin . \beta=\cdot 16640$ $\sin . \alpha+\sin . \beta=33783$ $7-7^{1}=\frac{\text { spring }}{.33783}=2.96$ spring. $\mathrm{H}, \mathrm{P} .=\frac{\text { speed } \times\left(\mathrm{T}-\mathrm{T}^{1}\right)}{33000}$ $\frac{33,000}{\text { rev. of } B \times \pi \times \frac{10^{16}}{12} \times \frac{\text { spring }}{33783}}$ $=\cdot 0002363 \times$ rev. \times spring.
That is, the horse-power transmitted is the product of the increased tension on supporting spring, the revolution of the dynamo, and the constant factor 0002363 . To prevent violent
vibrations, and to facilitate readings, there were used three

springs and a dash pot. The ranges of springs were 60 lb .,
100 lb ., and 180 lb ., two being direct were supported by bridle arms, and were raised or lowered by tackle.
The connection between corner bridle and dynamometer frame was by rubber band. The dash pot was a cylinder full of oil, in which moved an iron pulley, wrapped with Manilla rope. first balanced at rest, then free, and finally with load. It was ments for measuring potential and current were of the Thompson design, the current in the lamp circuit, and the potential at the brushes being taken.
The magnets were tested by the Poggendorff method, as in
Fig. 5 .
Total H magnetic field $=$ Gr. $\times \mathrm{E} \times \frac{\text { position }}{\text { resis. } \times \text { dif. }}$ $\begin{aligned} \mathrm{E} & =1 \cdot 457 \text { Clarke's standard } \\ \mathrm{Gr} & =6428\end{aligned}$

Mean force in laboratory－Westminster ：

			Earth．		No． 45		No． 17	
May 7	\ldots	\ldots	\ldots	$\cdot 121$	\ldots	$9 \cdot 11$	\ldots	1140
May 8	\ldots	\ldots	\ldots	122	\ldots	$9 \cdot 46$	\ldots	$11 \cdot 45$
May 12	\ldots	\ldots	\ldots	-122	\ldots	$9 \cdot 40$	\ldots	$11 \cdot 52$

Total H field for Man

$$
\begin{array}{llr}
\text { E \& No. } 45 & \ldots & 9.55 \\
\text { E \& No. } 17 & \ldots & 11.61
\end{array}
$$

Characteristic curve，Fig．6．This was found by taking the potential at the brushes，the field magnets being excited by a separate machine．The only current passing through the arma－ ture was that in the high resistance galvanometer and leakage，

Another curve B is added．This gives the electrical energy ex－ pressed in horse－power expended in the field of 37 ohms．In A，verti－ In B，ordinates represent horse－power，while abscissal are the same as in A．
The results of three fairly full loads are given．No． 6 Time，
about one hour ；load， 192 lamps and ground of about 5 ampéres． about one hour ；load， 192 lamps and ground of about 5 ampéres． Lamps not up to candle power．
Potential galvanometer，ma

Dynamo speed，Friction ．．． 1081 ；engine speed， $289 \cdot 3$ ；efficiency of con－ ersion， 97.7 per cent．；commercial efficiency， $86^{\circ} 3$ per cent． warm．Wrist not uncomfortable on coils．Can also be held on commutator．Little sparking．＊Bearings cool．No increased heating after standing．
No． 8 Time， 31 minutes．Load， 192 lamps，and ground of about 5 ampéres，$=$ say 199 lamps．
Potential galvanometer，magnet．

Dynamo speed，Friction．

$$
\frac{20 \cdot 12}{76} "
$$

sion， 94 per cent．；efficiency， $85 \cdot 3$ peed， 309 ；efficiency of conver－ H．P．； 9.9 lamps per total absorbed H．P．； 10.6 lamps per total
Het H．P．electrical energy； 112 lamps per total H．P．of electrical energy in external circuit．
bably not quite up to cand close to machine，they were pro－ bably not quite up to candle－power，although all in the room
seemed well up． Similar remarks about behaviour of dynamo as were made in
experiment No．6．There was no apparent increase in heating． experiment No．6．There was no apparent increase in heating．
No．9．Time，one hour and one minute；load， 230 lamps and ground of 5 ampères $=$ say， 237 lamps．

Potential galvanometer，maguet．．．

$$
\begin{aligned}
& \text { " } \begin{array}{l}
\text { position } \\
\text { " } \\
\text { Average deflection }
\end{array}
\end{aligned}
$$

 weight． The barometer assures us that the air pressure and weight is nearly 15 lb ．per square inch at sea level；；and vessels exhausted of air have shown its velocity under that pressure and weight to be
near 1300ft．per second．Such velocity would，however，be reduced in mid air under equally superior pressure to probably 1200 ft ．or less per second．We thus compare or measure air motion by earth motion，and obtain a basis for the second principle from their relative definite proportion；the weight being due to the earth＇s
attractive force，but the ascensive pressure is due to the repellent force existing so excessively in air．By the mutual operation of these forces the earth＇s diurnal rotation is maintained，and the science of aerotransition rendered so complex and mysterious． poses that of power equal to 15 lb ．to impel it in mid air at a velocity of 1200 ft ． during a space of time－or earth motion－equal to one second． And the query of most vital importance to this science which we
have to decide by these quantities is ：What is the equivalent of the Dynamo speed， 1179 ；engine speed， $315 \frac{1}{2}$ ；efficiency of con－
version， 94.8 per cent．；commercial efficiency， 86.2 per cent．；
have to decide by these quantities is ：What is the equivalent of the
power expended by flying animal power expended by flying animals upon their wing surfaces when
sustaining themselves in air？ Applying the above principles birds，we find ：－By first principle，
its relative density to that of its relative density to that of air on its extent of wing surface，to
be one of body to 2100 of air；i．e．， be one of body to 2100 of air ；i．e．， weight than the animal upon its wing surface when fully extended． By second principle we find the
velocity of air motion under the velocity of air motion under the
increased weight of body sus－ tained，and also the ascensive
pressure imparted by the repel－ lent face to the sustaining surface
when worked at such increased velocity．In this example we have three quantities－weight，sur－ face，and relative density－given to find a fourth－velocity per easily attainable as any proposi－ tion．Now an additional 1lb．per square foot－as carried by frigate
bird－is equivalent to an increased bird－is equivalent to an increased ordinary air pressure by its 2100 th
part．Therefore， 15 lb ．plus its $\frac{1}{1} 0$ th，is to one square inch as
1200 plus $210^{1}{ }^{\text {th }}$ th feet is to one second in mid air ；because 15 lb ．
is to one square inch as 1300 t．is is to one square inch as 1300 ft ．is
to one second when air rushes to one second when air rushes
into vacuous space．This addi－ tional weight produces an in－ creased air pressure－of 50 grain per square inch，and impels the of 7 in ．per second，in mid air，to any extent of surface whose boun dary is，at all points，equidistan from its centre．By third princi－ ple，this result is wonderfully
modified；for an elongated surface economises power at the expens of velocity．The extent of frigate 9.6 lamps per total H．P．， 9.9 lamps per absorbed H．P．， 10.5 of a circle having a radius of bird＇s wings are equal to the area lamps per H．P．total electrical energy， $11 \cdot 2$ lamps per H．P．elec－ trical energy in external circuit．
Same remarks about lamps and about behaviour of dynamo as
were made in experiments No． 6 and 8 ，are pertinent to this were made in experiments No． 6 and 8 ，are pertinent to this expe－ the load could have easily been carried a long while．An increased load of 30 lamps could be carried some time．

Summary or Three Experiments．

No．	Time．	Speed．		Current in amperes．			E M．F．in volts．		Elec．H．P．appearing．				H．P．delivered to pulley．		Efficiency．	
		$\begin{aligned} & \text { 湈 } \\ & \text { 㽞 } \end{aligned}$			佥算	$\begin{aligned} & \text { تूँ } \\ & \stackrel{\text { H. }}{2} \end{aligned}$				音品			隹宮	$\begin{aligned} & \text { تूㄹ } \\ & \text { से } \end{aligned}$	혀옇ㅁ	完皆感
6	1 hour	289	1081	$2 \cdot 68$	$112 \cdot 56$	115．24	99.3	1030	$\cdot 36$	$\cdot 58$	14.97	1591	16.63	17．34	$95 \cdot 7$	86
8	31 min ．	309	1157	2．92	123.07	$125 \cdot 99$	108.	1121	$\cdot 42$	$\cdot 69$	17.81	1892	$20 \cdot 12$	20.88	94.0	85
9	1h．1m．	$315 \frac{1}{2}$	1179	$2 \cdot 95$	$144 \cdot 6$	$147 \cdot 55$	$109 \cdot 3$	$114 \cdot 1$	${ }^{43}$	$\cdot 95$	$21 \cdot 18$	22．56	$23 \cdot 79$	24：56	$94 \cdot 8$	86

LETTERS TO THE EDITOR．

［We do not hold oursclves responsible tor the opinions of our correspondents．］

the problem of flight．
Sir，－Now that the science of flight is so thoroughly mastered，and as our French friends say，＂We know all about it，＂no more remains
to be done than reduce such knowledge to practice． to be done than reduce such knowledge to practice．To do this
successfully，we must have a clear understanding of the principles which govern successful flight，the chief of which are ：－（1）The weight of a body sustained in air bears a definite proportion to the
weight of air on the area of its sustaining surface．（2）Air motion weight of air on the area of its sustaining surface．（2）Air motion
varies definitely with its weight and pressure，so that its velocity under increased weight bears a definite proportion to its velocity breadth of sustaining surface is to weight of body，so is the con sumption of power to the velocity required of such sustaining surface for its sustentation．A few examples will suffice to establish the trustworthiness of these principles．
Mr．I．Lancaster gives the weight of
area of wing surfaces equal to 4 square man－of－war bird at 4 lb ． about 8 ft ．This bird，therefore，carries one pound weight per square foot of sustaining surface；so that its relative density to that of air，on its wing surface when fully extended，is one of body
to 2100 of air ；whereby its efforts are rendered so effective as to elude the keenest observation，as described by Mr．Lancaster in his interesting papers．M．P．Harting gives the weight of a bat
$\left(\right.$ Pteropus edulis）at 3.041 b ．；area of wing surface equal to $126 \frac{1}{4}$
second，or occupy two seconds in passing through an angle of 17 deg．So that a velocity of wing motion or air motion not exceeding a quarter mile per hour，suffices to sustain a frigate bird
with fully extended wings，worked by a power equal to the weight of bird．
Flying animals can no more exert on the air greater pressure than
equals their own weight than shins equals their own weight，than ships can displace more water than
equals the weight of their individual burthens．A power，there fore，equal to the animal＇s weight is always available to them for forward motion，whether projected horizontally，spirally，or
obliquely，in ascending or descending；and which may of course be accelerated by continuous strokes made with increasing rapidity In the absence of definite dimensions of cross section of frigate bird， I will assume the bird to offer 30 square inches of resisting surface to forward motion．This surface will be driven forward by the weight of the bird－equal to 4 lb ．pressure－at every stroke of it，
wings，even when soaring or standing in moving air，with apparently but not really，motionless wings，its rate of motion being depen dent on intensity of wing motion and the weight of body．To neutralise such pressure，a velocity of about 120 miles per hour Would be attained．Mr．Lancaster states that he has witnessed in as many minutes without apparent fatigue，so that in emergencie their speed may possibly exceed 150 miles an hour．What en－ couragement this position of affairs offers to enterprise ！
The following examples will afford a clear insight of the remark The following examples will afford a clear insight of the remark－
able divergence existing in the relative densities of flying animals abde aivergence existing in the relative densities of flying animals
and and and and ind range from about 400 to even more than 10,000 －they show the bat
to carry four times the load to surface as that carried by the lark
or even the large man-of-war bird ! and this becomes still further or even the large man-ot-war bird! and this becomes still further
instructive in showing the requisite velocity at which they work their wings, and also the effect of moving air at various velocities stand strong winds. For, as we may perceive, the velocity of moving air, or of wing motion, that would enable each bird re-
spectively, with fully expanded wings, to obtain support therefrom equal to its weight, will be for the lark $\frac{1}{6}$ mile, the frigate bird \ddagger, the pigeon 13, bat 21 , and the aetrotransive carriage 6 miles per
hour. So that the bat could withstand a wind of thirteen times the strength that the lark could, without flexing its wings, and nine

Name.	$\begin{gathered} \text { Weight } \\ \text { pergt } \\ \text { sq. ft. } \end{gathered}$	Relative density to air.	Increased prossure.	$\begin{gathered} \text { Increased } \\ \text { ant } \\ \text { motion. } \end{gathered}$	${ }_{\text {Area of }}^{\text {wing. }}$		(Length	wing to radius.	$\begin{gathered} \text { Length of } \\ \text { stroke through } \\ \text { arc of } 77 \text {. } \end{gathered}$		$\begin{gathered} \text { Ratio of } \\ \text { ving } \\ \text { velomty } \\ \text { form miles } \\ \text { per hour. } \end{gathered}$
Bat	$\begin{gathered} \text { lb. ozz. } \\ 3 \\ 8 \end{gathered}$	600	$\begin{aligned} & \text { grains. } \\ & 170 \end{aligned}$	${ }_{2}^{\text {ft. in. }} 0$			$\begin{aligned} & \text { fft. } \\ & 1 \\ & 1 \end{aligned}$	1 to $3!$	${ }_{0}^{\text {f. }}$. ${ }_{6 \cdot 12}^{\text {in. }}$	26	27
Pigeon ..	113	1160	87	10	0 831/	05.15	10	1 to $2 \frac{2}{8}$	0 3.57	21	17
Frigate Bird ..	10	2100	50	07	40	11.6	40	1 to 31	12.23	3	\ddagger
Lark	014	2400	42	06	0 111	01.9	063	1 to $8 \frac{3}{5}$	${ }^{0} 1.8$		\%
Aërotransive carriage ..	412	450	240	3	60	46	120	1 to 24	${ }_{2}$		6

If we now consider the results of a perpendicular down stroke made with a perfectly plane surface, as a kite or a parachute, we
find the adjacent air tends to disperse itself equally around it find the adjacent air tends to disperse itself equaly around
edges. Biy a segmental surface, however, of a bird'sor an artificial
wing with stroke delivered in precisely the same direction the wing, with stroke deivered in precisely the same direction, the air
will be twiee as much retarded by the aft part of the wig as sy its
fore part, and would in consequence receive an oblique forward fore perr, and would in consequene ne reecive an oblique forward
motion from such perpendicular down stroke. If now, however motion from such perpendicular down stroke. If now, however
slightly, we incline the fore margin upwards, we must decidedly
incenease the obliguity of air motion. By this act of downward pressure with the segmental wing surface the air in contact there
with is wholly pressed forward obliquely, and the external under lying air resisting its forward progress causes the antagonistic par tidess to orcee each other upwards and forwards, until they form so
dense a crest that the air wave rolls over, carrying forward with it the down-driving wing surface and body also. This I find by expe rience to prove a supporting and propulsive, or rather, drawing
forward, element in air motion. Now, let us trace the returning-up or back stroke. At the commencement of this action the wing
surface involuntarily changes its angle surface involuntarily changes its angle, i.e., the weight of air on
its back surface becoming heavier than the air pressure below can support, the aft wing surface falls, and the fore rises, till checked support, athe ait The wing is now efficiently feathered, and the
by the
whole resisting influence of the air presses forward the wing surwhole resisting influence of the air presses forward the wing sur-
face, and is thus thoroughy utilised for impelling the body forward. No necessity exists for evading this available and most valuable useless.
If we now consider the application of these principles to a structure competent to sustain a man and its requisite machinery
in air, we shall obtain a very gratifying idea how near we approach in air, we shall obtain a very gratifying ide
by art the achievements of flying animals.
Many gentlemen are disposed to allow from 200 to 500 square feet or more sustaining surface for the weight of a man and appa-
ratus, weighins together about 300 lb. This ratus, weighing together about 300 lb . This quantity is, however,
by far too much surface to manceurre even in a clear state of the atmosphere. My own aërotransive earriage is furnished with 280 lb . This quantity of surface greatly taxes my power to wield at so low a velocity as even seven strokes per minute- -not secondor under four miles an hour when experimented with in the open
field.
By frst
 titith feet is to one second. This gives an increased air pressure
equal to 20 grains, or
increased per minute, to any extent of surface, equidistant at all points of
ist 60 square feet of surface, its centre. Such velocity imparted to 60 square feet of surface, all points of whose circumference is equi-
distant from its centre, will demad in mid air an impeling force
equal to 280 lb.--the weight of body-to neutralise its weight, the equal to 280 lb . -the weight of body-t
forco of gravity thereon, and sustain it
actions of flying animals is conspicuous in the eftective successful frigate birds and swallows possesssing it, and the laborious actions of domestic fowls wanting it. This shows the importance of disposing
the above surface of 60 s square feet in such manner as best to attain the above surface of 60 square feet in such manner as best to attain
it. By constructing four wings, measuring 12ft, each from wing
to shoulder tip, and about 20 in. extreme breadth near the middle we obtain two pairs of wings equalling the above extent, and equal is nearly three times such radial length, and by making the arc of vibration through an angle of 105 deg., the length of stroke,
which is 2 2ft., will be equal to the whole surface, having an average velocity of 11ft.; so that it will require $16 \frac{1}{2}$ strokes per minute to is nearly three times the above radial length, the power is propor-
tionally increased on the body, or the velocity is decreased on the tionally increased on the body, or the velocity is decreased on the
wings nearly one-third ; so that twelle strokes per minute-not second-is is near the maximum velocity required, ; and twelve not-
fect strokes are twelve revolutions of motive crank shat equal to a six-mile velocity, thus affording time for the generation
of power. And the operation of these antagonistic forces, of power. And the ooperation of these antagonistic forces,
impelling and repellent, through such length and breadth of wing surface at the above velocity will produce those results by the law
of density which has ever enveloped this science in obscurity, and rendered its observable effects somy mysterious, for we bere esee that
a six-mile velocity of 60 square feet of wing surface will support a six-mile elocoity of 60 square feet of wing surface will support
2801 in . in the air, whether the power be applied by wing motion or can only utilise wing motion for independent transition. can only utilise wing motion for independent transition.
During an experiment made in the open field amoderate gust
of wind-scarcely a five-mile wind wing surfaces as to twist the two centre armatures folly 25 deg.
out of their original position, though of good iron Sin. diameter
oet out of their original position, though of good iron Fin. diameter
each; and this allowed the wing ot be driven fuly
not the armatures yielded, the whole weight of 280 lib. must have not the armatures yielded,
been lifted off the ground.
Trials should be made
Trials should be made on a suitable piece of water, so that powerful, and if not, we should have the advantage of assertaining
by a float how much it could be actually lifted without risk of serious accident.
Fransham, Norfolk.

Elephant bollers

SIR, $-I$ have carefully read Mr. Swift's reply to my letter, in
which \mathbf{c} contradicted his statement in THE ExgINERR of July 6tb, that "the insurance companies were glad to get hold of any sort prove the charge e e there made. Common sense e tells any man
that there are no persons and no companies in existence but what that there are no persons and no companies in existence but what
would ref use to insure any boiler which they knew to be unsafe; and, in my opinion, no one is better able to decide this than the among their varied duties, , have "the responsibibility of of seing, who, that
ame boilers insured are neither "any sort" or "improper" onesthong their varied duties, have the responsibility of seeing that
the obiless insured are neither "any sort" or "improper" ones-
that is, calling a spade a spade, boilers liable to explode or collapse
times as strong as the frigate bird could, without flexing the wings;
whilst the aërotransive carriage could, with 4 4is 1 . load to the square foot, withstand a wind nearly three times as strong as the bat coold before it would be carried with the current-as a balloon-
were its between the frigate bird and lark is worthy of note; both are soaring birds, and carry nearly the same weight to surface, have
nearly equal length to area of wing, and make nearly equal nearly equal length to
velocity of wing motion.
By tracing the quantities described in reference to frigate bird, the explanation of other examples will be seen:-
at any moment. Mr. Swift certainly throws new light on the apparently dark doings of a boiler insurance company, and slows
his knowledge of the business when he states that "it does not rest
with with the inspector or the engineersof the company to accept boilers for insurance." Really, Mr. Editor, I do not wish to be funnny or appear at all sarcastic, but can anyone suppose that either their inspection or acceptance rests with, say, the post boy? What are the inspectors
and engineers engaged for, and especially at the high salaries Mr. and engineers enganed for, and especially at the high salaries Mr.
Swift mentions, unless it it for doing the very thing he says that they do not? There are boilers insured that have not been
thoroughly examined by the companies' inspectors, but may, with perfect equanimity, accept my assurance that they are neither "any sort" or "improper" ones.
"The companies have, I admit, at long intervals been called "over the coals" hy juries, adt it it is at illl leng int in Mrvals been called one else, to prove where a company was-safe-at the time of boiliers which they knew were not sound-safe-at the time of
insuring.' It has, I believe, been invariably shown on the same ocasions that the insuring, company has repeatedly "requested"
and "urged" the importance of a thorongh ex and "urged" the importance of a thorough examination being
made, and although the boiler may have exploded whilst it was insured, it was no fault of the company's sthat one had not been made. All admit that a th orough examination of every boiler by an efficient inspector is of the greatest importance; to none is it
more so than the owner and the company insuring it, for, whilst more so than the owner and the company insuring it, for, whilst
the former by an explosion mighth lose his all, the company must the eormer by an explosion might lose his all, the company must
also
to to receive from the firm in premiums. It therefore locically
follows that it is to the interest of the company, irrespective of any expense-which is in some above the premium-to prevent,
as far as possible, by efficient inspection-if only to as far as possible, by efficient inspection-if only to endeavour to
save their own pocket-the occurrence of such disastrous accidenta Although the companies do not, except in in special cases , make Alhough the companies do not, except in special cases, mak of the principal clauses in the policy is one which provides that the company's inspector or engineer may at any reasonable hour
inspect any boiler they insure, failing which the directors may sspect any boiler they
declare the policy void
Every one knows that the fact of a boiler being insured does not make it any the safer, nor does the fact of its being under inspec tion. The policy issued by the company certainly tends to convey the idea that if, in the judgment of experienced engineers, the
boiler is right for insurance, it is safe to work it up to the pressure oiler is right for insurance, it is safe to work it up to the pressure it to state, or even infer, that in the event of an explosion before the boiler was thoroughly examined-at which time its condition would be pointed out to the owner-that the company were more
than pecuniarily liable. Till such an examination was made han pecuniarily liable. Till such an examination was made, how.
ever, judging frona what their inspector or engineer could ascertain at a working inspection, the company were prepared to risk losing for a given premium, so much money in case of the ocourrence of
specified accidents. This, every one will admit, is in favour of the assured.
To remove the idea, assuming for a moment that one exists, that than pecuniarily liable by their issuing a policy, they have I muder stand, recently commenced to issue after thorough examinationprovided all is satisfactory, but not otherwise-a certificate which states for how long it is available, the date the boiler wa With a view to encourage firms to prepare their boilers for thorough examination, the companies also offer an extra insurance, propor tionate to the amount originally insured, free of charge. The pro duction of such certificate would naturally, in case of explosion,
free the owner from responsibility in working the boiler with ordinary care, if necessary, at the stipulated pressure up to the date on the part of the company to pay the owner in case of accident specified sum.
With regard to Mr. Swift's financial problem. I can readily understand that he finds inspecting most expensive, and that it mossibly Mr. Swift, when he states that the " number of yound
Posing men who accept the appointment of inspectors for a short time explains his own mode of gaining experience; and in firms seeing
the advantage of being protected by an insurance policy, feels, among other things, the unmerciful hand of competition, And, liked," I suggest inspection without insurance is positively dis imaginable, that it might be to his advantage-I do not say credit -to remeyber his own remarks as to inspectors and the sale of ledge of boiler insurance companies I am able to say decidedly, and compan with a little authority, that the inspectors of the principal to twenty years"-and some more-practical experience in boiler inspecting. Mr. Editor, I dislike postscripts, and therefore avoid
Nsing, hem, becuse with anyone discussing a subject in a newspaper, that the writer usually states in them in a half dozen words or so what he believes fovour of it not occur to he has just written; but, candidly speaking, did the insurance company-whichever of them it was - might rossibly have had a thorough examination of the boiler that was fifty years old before they insured it? It did to me on reading it, pretty ${ }_{\text {quickr. }}^{\text {Mr. }}$ S
Antipathy, Swift's letters appear to me to be written in a spirit of he says that "he has not the pleasure of my accuaintance." assure Mr. S. that whatever there may be learned from this corre-
spondence, or whatever is the verdict of your readers, I bear spondence, or what ever is
antipathy towards him. My only desirio is, with your permission,
to antipathy towards him. Ny only desire is, with your permission,
to free the subject under discussion, so far as the insurance com-
panies are concerned from the unwarrantable atteck, panies are concernex,
Swift has made upon them,
Manchester
[It is quite unnecessary that the subject taken up in the letters
by Mr. Swift and by Mr. Smith should be further discussed. The
subject properly under discussion is elephant boilers, and not the
work of boiler insurance companies.- ED. E. $]$

wanted-Two autobiographies.

SIR,-The widespread interest created by the publication of Mr men whose inventions have made their mark deep upon the presert age, and of whom the world would fain know a little more than
they do. I allude to Sir Henry Bessemer and Sir William Sie Both these gentlemen would probabsy be inclined to say that they are busy with other matters, and that, in a word, "they would rather not" write their autobiography.' But posterity will certainly be
curious to know what manner of men they were, and I would bei curious to know what manner of men they were, and I would beg
permission to ask them, through your columns, whether they will permission to ask them, through your columns, whether they wil
not sit down now and draw their own portraits.
HIsToricus. London, August 4th.
explosion of a compressed air receiver.-mpfect of compressed air on animal olls.
STR,- I am rather surprised to find that spontaneous inflamma. known, for in experiments I made about the year 1865 , I found
that to be the fact; my attention being called to it by a narrow
ascol that to be the fact ; my attention being called to it by a narrow
escape I had during the oharging of an air gun.
In 1868 , when I I explained my mode of working torpedoes to the Floating Obstruction Committee, I told them there were dangers in connection with compressed air which I was aware of.
Several explosions have occurred in wesper
Several explosions have occurred in experimenting with the
Whitehead torpedo, and one would have expected the skill at the Whitehead torpedo, and one would have expected the skill at the
service of the War Department of the State would have discovered this
I have unfortunately mislaid my notes, but I have some of the
apparatus, which is of a simple character, now in use. The oil I experimented with is called neatsfoot. Philip Braham, F.C.S.
7 , Miles's-buildings, Bath,

August 6 th. ${ }^{\text {a }}$

taking the speed of trains.

SIR,-In your last, week's issue, under the heading of "Taking the Speed of Trains," a correspondent states that he counts the
number of fishplates passed in 142 seconds, which cunals the number of ishates and
number of miles gene through per hour if the rails are 21 ft . long. May I be permitted to point out that on the $15 t h$ of Januarr, 1875, you were good enough to insert a letter of mine in
which I advocated that method of taking the speed of trains, and
show showed how the figure of $14 \frac{1}{2}$ seconds-or rather $14 \cdot 3$ seconds-
was arrived at. Since that time a great many steel rails have was arrived at. since that time a great. many steel rails have
been laid down, their average length being, I believe, 30 ft., which
makes makes it necessary to count up to about 202 seconds for asoertaining
the correct speed. It is only necessary to ascertain the average
length length of rails used on any railway in order to be able afterwards
at any time to find out that
 rail joints passed over. This can be done with greater ease epon some permanent ways than upon others. I thank you before-
hand for the insertion of the above.
96 , Newase BERNAYS. te-street, London, E.C.,
August 7tb.
compound condensing engine at the r.a.s. show, york. SIR,-Your correspondent John Pinchbeck is, we think, someWhen the editor "We believe this is the first condensing engine shown at work at any of these shows, he is strictly correct; he is writing of the
Royal Agricultural Show. The word "these", applies to those shows, and shuts out Mr. Pinchbeck's objection altogether. We is stated in our published circular, that this was the ver the first
compond compoupd engine ever exhibited at any of the R.A..... shows, and
further, we think we are correct in stating that it is the very frst combined compound engine and boiler narranged in one sole plate ver exhib
Dukespalace Ironworks, \qquad Riohes and Watts.

> BECK'S WATER WASTE PREVENTER.

SIR,-In your notes of the Engineering Exhibition at Islington
ou describe and illustrate Beck's waste water preventer. Will you allow me to state that this waste water preventer, as described nd illustrated, appears to be not only identical in principle with
hat invented by Mr. T. H. P. Dennis, my partner and which has been in constant use and has been largely sold for many years past; but, as far as the illustration goes, the resemblance is so
complete that Messrs. Beek and used it for a apattern to miould from have taken one of Dennis
R. E. CRoMPTON.
Mansion House-buildings, London. July 28th.

Sir, -We beg to thank you for your courtesy in allowing us to
. reply to above letter in your present issue. We have examined
Mr. Dennis's specifications, and as far as any patentable features are concerred, we find there is no resemblance between Mr.
Dennis's arrangement and our own. We have never seen one of Messrs.
Southwark. \qquad
The Tees-side Water Supply.-The Stockton and Middlesbrough Water Board is about to carry out one of the works it has authority to construct for the provision of an additional supply
of water to its district. The Board was formed seven years ag of water to its district. The Board was formed seven years ago,
when the consumption of water was decreasing owing to the dulness of trade, but within the last four years the consumption has Board has power to that it now exceeds the legal maximum the present supply is drawn exclusively from the river Tees, and there that source and nts or a long period as to the polluted nature of hat source, and power was given seven years ago to construct large
works in Upper Teeesdale. One part of this scheme is now about to e carried out-the construction of the Hury and Blackton
eservoirs at an estimated cost of about $£ 365,000$. By it an ultimate addition of forty-six million gallons per week. is expected to be
bbtained; but it would be by the construction of the rese btained ; but it would be by the construation of the reservoirs as from the river. The cost of the Hury reservoir alone which is expected to give thirty-two million gallons of water weekly, is stimated at $£ 286,000$.
Coal Mring in Yorkshire.-Mr. F. W. Wardell, her Majesty's Inspector of Mines for the district of Yorkshire, , in his report for
1882 states that in that year 61,548 persons were Be mines, as against 60,531 in, 1881 persons were employed about $18,525,400$ tons of coal
the mere raisen, as against $18,287,141$ tons in 1881 . There were last year eighty-seven fatal accidents, causing ninety-five deaths, so
that one ilie was lost to every 648 persons employed. In 1881
there were seventy-fles
 1881 a life was lost to every 249,376 tons wrought. Viewed in this ght, mining in the district appears to have been more dangerous last year. It is rather remarkable that throughout the kingdom
 work, whilst in 1881 there were 471, a decrease in the year of nine teen. Mr. Wardell observes that the mines of the district are not fully employed, and that the large output does not soow nearly
their full limit of production, as last year's total could be largely
increased
COMPOUND LOCOMOTIVE-LONDON AND NORTH-WESTERN RAILWAY.

MACHINERYAT THE SALFORD SEWAGE WORKS.

transverse section on ci.

A CONSTANT CURRENT BATTERY CELL.
The battery illustrated by the accompanying engraving was made by Dr. E. Obach, while experimenting with his movable bobbin galvanometer, to furnish a constant current of long employing zinc, water acidulated with sulphuric acid, carbon, and nitric acid, and so arranged as to secure a continuous renewal of the liquids. The internal resistance of each element is, on an average, 0.07 ohm , and the electro-motive force is 2.09 volts . It is able, then, to furnish nearly 30 amperes in a short circuit. $\mathrm{G} G$ is a jar, 20 centimetres in height and 12.5 in diameter, placed in an inverted position over a support, and the bottom of

which has been replaced by a wood cap covered with paraffine. The porous red earthenware vessel P , which is held in place by a cork ring, is 23.5 centimetres in height and 6 in internal diameter. The choice of the porous vessel is very important,
and the proper working of the element depends much upon the and the proper working of the element depends much upon the quality of it. Those employed by Dr. Obach became entirely saturated one minute after having been filled with water, this giving
the measure of their porosity. The porous vessel is closed with a cork saturated with paraffine and traversed by a carbon K . a cork saturated with paraftine and traversed by a carbon K .
This latter, which is retort carbon, is 22.5 centimetres long by 3.5 in diameter, and contains in its centre an aperture 15 millimetres in diameter and 18 in length. In its upper part there is a series of small radiating holes; and a glass tube M, whose upper extremity is funnel-shaped, reaches its summit and traverses the porous vessel as well as the cap of the jar.
The bottom of the porous vessel is paraffined, as is also its upper
edge and the head of the carbon. Upon the bottom of the jar there rests a gutta-percha ring which orms a channel $x y$ that is cylinder 16 centimetres in length 6 in diameter, and weighing 2 kilogrammes. Through the cork the lower partof the jar there passtwo tubesRand r, and through the wooden cover the two funnel tubes t and t^{1}. The former of these t terminates in the upper part of the zinc, while the latter runs to the bottom of the porous vessel. The liquids circulate as follows:- The fresh nitric acid reaches the bottom of the porous vessel through the funnel tube t^{1}, while the spent acid flows off through the radiating holes in the carbon into the central tube M, and into a receptacle placed at the lower trary, at the upper part at t, and, being rendered denser through the formation of sulphate of zinc, flows through the syphon tube R into the tube T. The level of the liquids is not very different, as may be seen in the figure, but that of the sulphuric acid water is a little the higher of the two in the external vessel. $\mathrm{S} \mathrm{S}^{1}$ is a section of a glass tube bent into a circle and arranged at the upper part of the liquid, where it is warmest. This tube is traversed by a current of cold water in order to keep the liquid at a constant temperature. The tube r serves to empty the pile, and is always communications are established by mercurial contacts. The zinc cylinder is connected with a strip of copper contained in a glass tube that traverses the cover, and which dips into the mercury in the gutta-percha trough. The square end of the carbon is hollowed out at Q, and the cavity is filled with mercury which serves to establish communication with the external circuit.

HEDGES' DUPLEX SAFETY CUT-OUTS AND FUSES.
THE extension of the use of electricity as an illuminant is not entirely unattended with danger, but it has this advantage over its rival, gas, in that a few simple precautions are all that are that from fire, caused by the overheating of the wires either from their being badly proportioned or by turning on accidentally a stronger current than they are designed to carry. The committee appointed to consider the fire risks from electric lighting, in their rules, which have been very carefully drawn up, state at paragraph eight that "there should be in connection with the circuit a safety fuse constructed of easily fusible metal, which
would be melted if the current attains any undue magnitude would be melted if the current attains any undue magnitude,
and would thus cause the circuit to be broken;" also that " changes of circuit from a larger to a smaller conductor should be sufficiently protected with suitable safety fuses, so that no portion of the conductor should ever be allowed to attain a temperature exceeding 150 deg . Fah." The ordinary form of fuse as used by Edison and others for powerful currents consists of a bar of lead or alloy inserted in the circuit. This plan is attended with many disadvantages common to all fuses containing a mass of metal, which are very uncertain in action, and
must be worked at not more than a quarter of their melting
point. The rupture of a solid rod also constitutes an element of point. The rupture of a solid rod also constitutes an
danger by scattering the molten metal in all directions. The new form of cut-out and safety fuse which we illustrate above, as invented by Mr. Killingworth Hedges, of Westminster, consists of one or more strips of foil composed of alloy which is found best to resist the disintegrating action of the current. For small currents only one strip is used, but for larger several strips are placed together between layers ind conneted to the terminals as shown. When the current exceeds the amount which can be carried safely the foil is ruptured through the centre, but the mica itself is not injured and can be used over again. The mica prevents the metal being thrown about and equalises the heat, so that it is quite possible to test a number of fuses and find them all to melt within, we are informed, 2 per

cent. of each other. The current entering at terminal T, passes through the fusible foil F , and through the lever L , out of terexcess of current or short circuit, the lever L is switched over to C , thus bringing F^{1} into circuit, and the cut out foil can be replaced at leisure. These cut-outs have been passed by the fire insurance companies, and fifty arranged to give way, some with a current of 60, and some with 120 amperes, have been employed in the new Law Courts, London, since the opening. In installations with secondary batteries a sensitive cut-out, preventing the current being discharged in a
dynamo, is a very essential detail.

GERMAN RAILWAY TESTS FOR IRON AND STEEL.
A controversy between the Association of Ironfounders and the Union of German Railway Administrations has brought the technical press of Germany. One of the most comprehen sive articles published on the subject is that which appeared in
a recent number of the Zeitung des Vercins Deutscher Eisenbahn a recent number of the Zeitung des Vercins Deutscher Eisenbahn
Vervaltungen, in which Herr Wöhler bas reviewed the past history of the controversy and has endeavoured to refute the attacks on his system of classinication which were made ate the recent Düsseldorf meeting of the iron and steel industry. The observance by manufacturers of the needful measures for arrivin at excellence in quality, and in their memorial to the Govern ment in 1877, the companies alluded to the opposition which would probably be made by the iron and steel industry to the
introduction of the new regulations then under discussion, by reason of the trouble and expense involved in making the trials and researches which would under the circumstances be ren-
dered neeessary. Since then the principles of these tests have been criticised in a hostile spirit at various assemblies of th at one time to get the objectionable conditions modified by the at one time to get the objectionable conditions modified by the
Minister of Public Works. At the meeting held at Düsseldorf on December 10th, 1882, the principles of Herr Wöhler's system were again attacked by several manufacturers, and in his brie
reply, published in the Cologne Gazette shortly afterwards, that gentleman defended his method. It consists in measuring the
resistance to fracture, and the tenacity of the metal by the contraction in the cross section after fracture. He alludes in his explanatory remarks to the difficulty of accurately
measuring the extension of length at the point of fracture, while measured contraction or diminution of the cross section easily more detailed remarks in the technical journal already referred is bent by extern to the fact that if an iron or steel ba sion, and if the force is removed it again takes its original shape
If by the passed, there is then a permanee the limits of elasticity are which gives the measure of its tenacity, while its strength is indicated by the amount of force necessary for its fracture.
These qualities are independent of each other, but if two similar subjected to the poss equal tenacity, but different strengths, ar considered, extend more the way as with two bars of the same material but of different under an equal burden. The volume of a body is not changed by extension, and therefore a contraction is normally allied with
it. Thus the extension in a longitudinal direction of a round bar causes a diminution of ts cross section in the same propor tion as its length increases. If the extension takes place equally
through its whole length, the contraction-or diminution of cross section-is throughout alike, and the measure of extension simply given by the diference between the original and the sub given correctly by the difference between the original and the subsequent cross section, in reference to the former, and bot
systems of measurement must pive uniform however, not the case if the material of the bar is not equal throughout, in which case there will be an inequality in the extension corresponding to the difference which may exist in the strength of the various parts. The weaker portions extend more
than the stronger, and therefore Herr Wöhler argues that the extension for any particular part of the bar can only be found by measuring the contion
ence in length. ence in length.
From these

From these facts he infers that every iron or steel bar which is extended acquires in the direction of the extension a greater must be increased, and then the extension is increased until th strength has again been sufficiently augmented to allow the bar to support the increased weight. With an equal increase of the but gradually increases, while the cross section diminishes. It the extension has reached a point where the diminution of the
cross section surpasses the increase of strength arising from the greater extension, then, provided the tenacity is not exhausted
the extene cannot be increased, but further extends the bar in a more rapid manner until it is broken. Even an unavoidable difference in the strength of a material suffices to produce this effect at one same trial is then made on one of the broken poices, the effec
referred to manifests itself in another portion of the bar. These facts are considered as indicating the advantages of estimating
the regularity and equality of the material by the relation good tough steel it is said that this and the contrantraction. Is mately $1: 2$-only an approximate estimate of the tenacity can be decuced from the extension, and this is less likely
according to the greater irregularity of the material.
While the
in the cross section of fracture as indicating the tenacity of the material, Herr Wöhler admits that there may be some excepobjections have been founded by the opponents of this system He considers that the method in question displays every fault of the bar which is being tested, and thus facilitates the task, of the
officials in charge, of the examination of the material submitted. Though the test may present some inconvenience to one or other injurious to the interests of the manufacturers in general. In drawing up the conditions in question the railway companies were influenced by the desire of assuring themselves that the material for which it might be intended, and they based their action in the matter on the princple of keeping strictly in view in their tests the conditions and mechanical laws which become operativ In his comprehensive article, various kinds of injury and wear to railway materin is remarks that under axies, tires, and rail when such violent force is broly torn, bent, or broken, and that of human precaution has already been passed. On the other hand, he considers that kcientific tests have to be arranged in view of those small and sometimes almost imperceptible movee
ments which, by thelr frequent repetition, affect the durability of the material subjected to their influence
The test applied by the Imperial Railways of Alsace-Lorfaine
which Herr Wöhler is maner involves the sample bar being subjected to acceptance of ax 34892 ton
per square inch of the cross section during ten minutes, with-
out any further extension taking place during that time out any further extension taking place during that time.
this test is withstood, the bar is subjected to a further weight until it is broken. After being broken, the cross section of racture must not exceed 65 per cent. of the originalcoss sectio Railway Direction with a view of proving that the working of the new regulations has been in no lasting way onerous to the manufacturers interested, inasmuch as there has been since they
came into force a gradual diminution in the quantity of rejected came into force a gradual diminution in the quantity of rejected
material. The following table explains this assertion more mater
fally

In the instances of the rejections made in 1881, there were circumstances indicating the accidental nature of the defects by
which they were occasioned. The deliveries of rails seem also to prove that the new regulations have not presented any serious about 100 miles of rails, which was divided between two establishments. The quality figure arrived at by the sum of the figures of strength and contraction reckoned by the German standards, and subject to certain limits in their respective proportions, was fixed at eighty-five, in accordance with the recommendations of the Salzburg Congress; but it was also stipulated that if the works delivered at least three-fourths of their respec tive quantities in a superior make with the quality number 90

- while still maintaining a strength of at least $38 \cdot 1$ tons per square inch- the price for the proportion of superior rails would be increased by 3 per cent. It resulted that each establishment
delivered about four-fifths of its quantity in the better quality and in accordance with the required strength. The remainder of the deliveries were even higher than 90 in quality, being above 100 in one cese; but being about 2 tons under remarked that the Salzburg Congress had fixed the standard of strength at about 32 tons. It is supposed that this increase of the quality
number beyond 85 did not augment the cost of production by 3 per cent., because the works would not have delivered the better quality if there had not been some advantage for them in
doing so. In his address on the subject delivered by Herr Wöhler before the Verein für Eisenbahnkunde some twelve months ago, he expressed his opinion that the deliveries made during 1881 manifested a surprising uniformity, proving that in quality. The manufacturers deny, however, that this improvement has been brought about by the new regulations, standard of their productions by their own independent exertions in that direction.
Herr Wöhler, in his most recent communication to the technical press of Germany, disputes at considerable length the asseropponents, and the results which were there described as having been obtained from experiments made by certain manufacturers Further experiments would seem to be contemplated by them with a view of elucidating the different effects produced by sudden and gradual imposition of burdens for the purpose of deduced from experiments made as to the influence of the reduta tion of thickness by hammering on the effective properties steel. He maintains that railway engineers have many difficult
problems to solve, for which perfection of material is indisproblems to solve, for which perfection of material is indis-
pensable, and expresses his surprise that manufacturers should pensabie, and expresses his surprise that manuacturers should oppose suct
pay for it.
The man
Cologne Gazette stating that the cause of the quality of the the alluded to being above the standard was that the the rails of the tests is sometimes made in a stringent manner, and under circumstances which treat insignificant defects in such a way that, as a measure of precaution, the quality is made above the
standard. The part of Herr Wöhler's remarks dealing with the standard. The part of Herr Wöhler's remarks dealing with the
uuestion of the business profit which must have resulted to the manufacturers does not seem, however, to have been dealt with.

$\overline{\underline{O F}}$

THE CAUSE OF A PECULIAR CONDITION OF SOME AMERICAN WATER SUPPLIES
The following paper, by Chas. R. Fletcher, Lecturer on
Chemistry, Boston University, and State Assayer of Massachusetts, Chemistry, Boston University, and State Assayer of Massachusetts,
is of some interest to those engaged in water supply questions. It
was read before the Society of Publice Analysts ast :--The peculiar, disagreeable, and truly alarming condition the public water supply of the ecity of Boston, about a y ear ago,
caused anxiety and alarm; for the eause of the contamination was caused anxiety and alarm; for the cause of the contamination was
unknown, although sought for at different times by the chemist of the Water Commissioners; and the bad flavour and odour caused ness and disgust; and the wathe supply had been seoseral sever affected by boumima, and now the suvour during sevply head years, for a severort teriod and in less degree. The valuable water supplies of eleven other cities had been also affected, since 1864, with probably the same
trouble. In the winter of $1881-2$ the Boston supply was very bad, not fit for domestic purposes on account of the odour and flavour: taste,", as it resembles socomewhat the taste of water in whicume
coumbers had been soaked. But now the taste was worse, almost cucumbers had been soaked. But now the taste was worse, almost
fishy, and often eaused nausea, and always diggust. It gave me
peasure to examine the analyses, and report to a leacining society of physicians, called and the people ans anious. The only thing physicians were aroused,
noted was the higher percentage of "albuminoid ammonia" than that reported in
previous analyses of this water. Expressing the belief that with an previous analyses of this water. Expressing the belief that with an
apropriation of a small sum the cause could be now detected in spropriation of a small sum -he ciuse could be now detected in
some low form of vegetale- possibly animal-growth, the sum
waised when the Water Commissioners were aroused by the public cry, and compelled tor order an aninvestititation. A chememist
had been employed to make analyses for years, but iad never found had been employed to make analyses for years, but had never found
the oause, poossibly in consequence of unfavourable conditions. The
common suceessful, and is of great value. It was found that the bad flavour was intensifed by heat, and also the odour-which was slight when the water was oold-became very strong and disagreeable. Samples of the water were collected under many difterent conditions, from
the surfaoe and at depth, and from all poins of the supplies. It
was found by ohemical analysis of filtered and of unfiltered water, was found by ohemicel analysis of iltered and of unflitered water,
taken from the different posisions in the lakes and reservorss :-
First, that there was considerably more nitrogenous matter in suss.
pension at the effluent gate-house-of the storage basin, which was
particularly affected -than at the influent gate-house ; and Secondly, that there was not much differen

The increase in the amount of free ammonia, noticed by comparing
the latter table with the former, is due to the fact that the specimens stood one day longer in one case than in the other case,
before the analyses were made. It was found that the waters undergo a gradual change by standing, and that the results of this change can be detected by analysis. This change consists in further oxidation of the nitrogenous matter, leading to an increase in the
amount of free amount of free ammonia, and finally to the destruction of the
material which imparts the taste and odour to the water. Chemical analyses were made of specimens from all portions of the supplies
-both those affected and those not affected by the bad flavour. It was found that the chemical evidence was in accordance with that obtained by the senses, that is, the waters which tasted "fishy,"
"metallic," "cucumbery," contained more "albuminoid ammonia" than those which did not carry the bad flavour. An attempt was then made to determine whether the substance which caused the
taste was at the bottom of the lake or not. The mud, when first filtered from the water, had no odour, nor the water any bad tas at such depth. The question at once suggested itself: Did the taste come from something situated on some other part of the
bottom, or might it be developed by contact of the mud and bottom walf-with air? A thin layer of the mud on a filter paper gave in appeared The same odour, which increased for a time, then dis capable of giving the odour by contact with air. A careful micr in quantity. Some were separated, but gave no odour. Spicules of a sponge were also noticed, and later an examination of th screens at the gate-house showed an amount of this sponge, with
the grass and leaves which had collected there. The same bad odour was there more manifest, and a series of experiments showe the the odour came from this fresh water sponge. All agreed tha
the odour from it was identical with the peculiar flavour of the Water. The specimen is known as Spongita
abounds in some localities, easily decom very strong odour. By drawing off the water from one water
basin, large quantities were found in basin, large quantities were found in some places growing on rocks,
from which it was easily detached. The experiments connected wul this investigation rules of chemical analysis. The best way to detect the odour in
water but slightly affected. was to pass a pint or so throug ordinary filter paper. This paper will then reveal the odour,
though it may be quite impossible to detect it directly, even when though it may be quite impossible to detect it directly, even when
the water is heated. This test is delicate, and may serve others.
Indeed, it is in the hope that a knowledge of this trouble in America may be of service to the public analysts of England that I have requested of the Water Commissioners access to the report,
the substance of which is here presented. As this flavour has the substance of which is here presented. As this flavour has
been occasionally noticed since 1854 in this country, it is of peculiar interest in connection with the valuable st connection with this condition of the Boston water, there were various representatives, unjustly dignified by the name of
"theories," sometimes by intelligent, usually by ignorant men, who possessed practically no knowledge of the subject. The value of this successful investigation in stopping anxiety and alarm-fo ing out to other large cities the probable cause of a similar poin dition, and in regaining the respect of the press and the public fo chemical analysis of waters, was large

Railwar Construcotion is not very active in this country a present, but the work in progress and projected at home and
abroad is likely to afford full employment to contractors and manufacturing engineers for some time to come. In this countr wide main trunk lines are spending much money in enlargements an widenings, the Hul and Barnsley line approaches completion, an systen of thet gh il system of street tunnelling, will be finished next year. The pro
posed Hull and Lincoln Railway has been rejected by tary Committee because of the supposed obstruction to navigatio of the high-level bridge over the Humber, which was its essentia
feature; the new line to Eastbourne, and the Bristol line of the suth-W to Leal ara In France, the authorised new lines which were to have been mad by the State are to be constructed by the existing companies o munity; in Gernnny, the acquisition of the railways by the Government, mainly for strategical purposes, will involve the
making of many new lines. In Australia, new railways, or exten sions of existing lines, are being energetically pushed forward,
almost entirely by colonial contrat railways are being extended inland from the East Coast; and in will soon meet the line from British Columbia. And as each new ralway renders nevessary subsidiary and branch lines, ample
work may be expected.-Matheson and Grant's Engineering Trades
Repor
Accinent on the Great-Eastern Ralliway at Parkstone.on the accident which occurred on the 15th May between Wrabness and Parkstone stations, on the Harwich branch of the Great
Kastern Railway, has been published. In this case as the 9 a.m. passenger train-consisting of tank engine No. 97 , running commney
first, four carriages, brake-van, and wagon, all except the wagon
fitted with the Westinghouse brale speed round an easy curve of 200 chains radius, the whole train left the rails close to the $67+$ mile post from Lomdon, and $2 t$ miles from Wrabness, from which station the train had started a
9.16 a.m., right time. According to the usually adopted rule the super-elevation of the outer rail of the 200 -chain curve
should, for a speed of fifty miles an hour, be about ?in., Nos. off to $2+$ in 8 yards from it, ard 1 fin. at the spont of tin was, therefore, in
varying excess of the sine varying execess of the super-elevation as caloulated for a speed o
fifty miles an hour. The driver, the reporter thinks, bad been
prot curves, which terminated only a quarter of a mile from where the run-off occurred, and thus set up oscillation on the engine, which resulted in the right leading wheel-the weight on which was pro-
bably about half a ton less than that on the left leading wheelmounting the right or outer rail of the curve, running obliquely along the top of it for about 24ft., and then dropping off on the
outside, after which it was quickly followed by the rest of the
wheels of the train. There is no doubt, Major-General wheels of the trian. There is no doubt, Major. General Hutchinson
says, the application of the Westinghouse brake by the guard as
son vehicles of the train in a straight line, and from overrumning the other. The driver and fireman, having been both knocked down were incapacitated from applying it for the first few moments.
This engine was the one which ran off the rails near Leiston last August, on whiche occasion there is but hittle reason to toubt but
that the permanent way was more in fault than the engine. There that the permanent way was more in fault than the engine. There
is more in the frequent derailment at curves than is dreamed of in
the usual philosonhy of the subject. That engines do not more is more in the frequent derailment at curves than is dreamed
the usual philoosphy of the subject. That engines do no
often mount the rails is rather remarkable than surprising.

RAILWAY MATTERS

THE average cost of repairs to coal and freight cars, per ton
carried per 100 miles on the Philadelphia and Reading Rairroad Campan
freight.
Wales opening of the Wodonga and Albury Railway, New South Wales, took place on June 14th, and the meeting on the occasion
was a great success, the banquet and the ball being very numerously attended, as much as 30 s . a ticket being paid for admission to the ,
THE proposed trans-continental railway is an absorbing subject of discussion throughout Western Queensland. The scheme,
however, is regarded as being in advance of requirements, and the
more gradual extension of more gradual extension of the present Government, lines is
recommended by the more cautious among the colonists.
THE Brighton Town Council have just decided, by 25 to 1 , to
give general approval to a scheme for a second railway from give egeneral approval to a scheme for a second railway from
Brighton to London, but deferred passing deninite judgment until
Disatis.
details were submitted accommodation provided by the present company and the rates
charged. A letter was read stating that the maximum charge for chargmod. A letter was read stating that the maximum charge for
chirst-class passengers would be $2 \frac{1}{4}$ d., second $1 \frac{1}{2}$ d., and third $1 d$. per mile.
The Public Works Committee of the Birmingham Corporation reporting upon the use of steam on the tramways, announce that
they have not come to the conclusion that steam is not a very
fitting power for tramways, but that in face of accidents in othe places, and of the fact that an experimental trial only is at present plaing, mado on part of the Birmingham tram way system, they have
beferred the consideration of the extended use of steam until they have had some further opportunity of judging of its safety and
$T \mathrm{TE}$ French Mini
THE French Minister of Public Works has just completed a census
of the rolling stock on the French railw ays, which is thus summed
 goods wagons; Ouest, 1045 locomotives, 2881 passenger carriages,
17,465 goods wagons; Orleans, 970 locomotives, 2100 passenger carriages, 20,433 goods wagons; Paris and Lyons, 1960 locomotives
3489 passenger carriages 62,200 goods wagos.
Taking all the which 2826 are for passenger traffic and 4067 for goods traftic;
15,432 passenger carriages, of which 3208 are frrst-class, 515
second-clss nad
sagons is 182,089 . 6909 third-class. The total number of goods
wage wagons is 182,089 .
AT the seventh annual convention of the Master Mechanies'
-Locomotive Superintendents'-Association, recently held in Chicago, a report was presented on the use of metallic packing
for piston and valve rods, instead of hemp cotton or any of the mor pistommondy used rodan, ststead of hemp cotton or any of the
more corials. The report contains
the results of several years of experience on many lines. It is allost unanimousery in inavour of of metancllice on manching on lines. Itry poist
for piston rods, but not quite so favourable with respect for piston rods, but not quite so favourable with respect to value
rods. One contributor to the report says :- ' Once the thgine equipped, the cost for repairs does not exceed 1 dol. per annum.
The difficulty in keeping valve stems packed is due chiefly to the
unequal wear on account of the variation of the travel, and to unequal wear on account of the variation of the travel, and to
reduce this to the lowest minimum I have adopted the plan of a
case-hardened sleeve on valve stems, which works well." Bx a law passed on the 2nd of August, 1875, the French Channe Tunnel Company accuired a concession of the French portion oo
the proposed tunnel, with power to renounce it within a certain
period
Engineers and navies perince that date. Up to last May the length of the or less ever since that date. Up to last May the length of the excavated
passage was 1840 metres,
A Geing a distance from the coast of foo metres. 5 th of May last, and certified that the conditions of the conceession
had been duly complied with. The 2 dd of August inst was had been duly complied with. The 2 ad of August inst. was the
date at which the French company, conformably to Artiele 3 of their Convention, had to decide whether they would retain the con-
cession or abandon Nit. Notwithstanding the abandonment of the scheme by England, the Paris correspondent of the stand ard says,
the French company have within the last week officially communi. cated to the Government their decision definitively to retain the revulsion of opinion in England.
A PARAGRAPH has been going the round of the daily papers about
the Scotch collie dog "Help," who collects funds in almost every part of the lingdom for the Orphan Fund of the Amalatamated
Society of Railway Servants. He has just returned to its headquarters at the chief office of the Society, City-road, from a trip to men. Introcuced by Mr. Reaggett, cheet officer of the steamshi land" received in a short time 138f; ; on his journey back to England
"Help "got 17s. 9 . and 26 .f., while at at Newhenen and on board
the ste, the steamer he collected $£ 31 \mathrm{~s}$. 9 d . The general secretary of th
Society, Mr. E. Harford, has now on hand numerous invitations the animal distributed over the leading rail way systems. "Help,
trained by Mr. John Climpson, gaard of the night-boat train o the London, Brighton, and South Coast Railway, is expected, the
Times says, to be the medium of collecting some hundreds o Times says, to be the medium of collecting some
pounds for the orphan fund during the present year.

Early next year there will be a new line opened which wil tend to shorten the distance between Cologne and Frankfurt-on-
Main. The concession was obtained in $183 /$ by the Rhenish
Railway Company, but the extecution of the work has only been Railway Company, but the execution of the work has only been
effected sinee the acquisaition of the railway by the State. The
line in question is through the Westerwald district, which is bounded by the valleys of the Rhine, the Sieg, and the Lahn. On
account of the mountainous character of that part of Germany the dificulties met with have been in some portions of the line
exceptionally great. Between Sayn and Grenzau-a distance of
five and three-quarter miles-there five and three-quarter miles- there wero tweny-three viaducts
and six tunnels, the gradient being 1 in 60 . Acocring to a paper
lately read by Herr Paul, at the Lower Rhenish
Sonoineers lately read by Herr Paul, at the Lower
Society, the tunish Engineers
tunels have all been constructed upon the Belgian $\angle 22$ 10s. For the permanent way longitudinal sleepers on
Menne's system have been employed, this description being in use upon the Rhenish line. The entire, length of the railway is sixty
miles, and its cost is stated to be about 900,000 . THERE is an instructive table attached to the report of the
Metropolitan Railway for the past half-year-one that shows the Metropolitan Railway for the past half-year-one that shows the
fluotuations in the passenger traffic of the company. When the
railway was opened twenty years ago the passengers numbered railway was opened twenty years ago the passengers numbered
less than 1,000,000 monthy but they rose to 3, ono, ooo monthly in
1869. When the line was extended to Bishopsate in 1875, they had swollen to $4,000,000$ monthly. It was 1879 , when the exten sions to West Hampstead and Willesden were opened, that the
passengers rose in numbers to $5,000,00$ monthly; and now in the
past half-year the numbers of the travellers on this little railw way past and-year the heart of the eity of London, have passed $6,000,000$
from and
monthly the the to monthly, the total for the half-year being 36,753, 322 . This is the
largest number of passengers carried by any railway, and when it by the company is only 15 , the conveyance of so large a number is conveyed with great safety, the entire sum paid by the Metro poitita Railway for injuries to passengers for the past half-yeaa
being only \&98 6 . 2 d . It it expeoted that by the beginning of the nex year the main works of the last ink ith the nner the Thames
the Whitehapel connection with the outh side of the
may be so far completed that an opening for a preliminary train mayice is expected,
service

NOTES AND MEMORANDA

THE average illuminating power of the Leeds gas for the past
nonth was $17 \cdot 27$-a candle and a-quarter more than the Act reguires. When tested at the office in Wharf-street, twenty-six THE
THE annual rate of mortality for the week ending July 28th, in
twenty-eight great fowns of England and Wales, averaged 20.1 per 1000 of their aggregate population, which is estimated at $8,620,975$ persons in the middle of this year. The six healthiest places were
Birkenhead, Huddersfield, Blackburn, Plymouth, Hull, and Portsnouth.
Leather may be restored in colour, the Furniture Gazette says, if not too far gone, by a slight application of oil, If this is not
effectual, put on blacking, let it dry, brush it off, and go over it again very lightly with oil. .If very brown, black thoroughly and
oil it afterwards, giving it a final dressing of dissolved gum tragacanth

As a supplementary note to the statistics of the paper mills of

 the world, recently given in this column, it has been calculated,the Journal of the Society of Arts says, that to make the 959,000 ons of paper per annum for the world, would require 430 days'
nedium flow of water down the River Thames; or, 1432 days metropolitan water supply.
Iv London, during the week ending 28th July, 2631 births and the births were 14 and the deaths 165 below the average numbers in the corresponding weeks of the last ten years. The annual rate ix preceding weeks from 16.9 to 23.5 , declined to $21 \cdot$. During the past four weeks of the current quarter the death rate averaged
21.9 per 1000, against $25^{\circ} 0$ and $18^{\circ} 0$ in the corresponding periods of 1881 and 1882 .
THE mortality returns for England in the year 1881 record the
death of ninety-one persons who were registered as 100 years old death of ninety-one persons who were registered as 100 years old
and upwards when they died. Of these aged persons, twenty-five is follows:-Nine were 100, five 101 three 102 men are reco three 10, one one 108 ,and one, who died at Hoekham, in Norfolk, if
he whe the register is to be relied upon, had attained 112 years. Of the
women, twenty-four had reached 100 , fifteen 101, eight 102, five 103 , six 104 , two 105, three 106, and three 107
For some time past the Belgian War Department has conducted a series of experiments at Valvorde, on the waterproofing of
ooldiers' uniforms by means of liquid alumina. The medical authorities have satisfied themselves that the articles of dress thus
treated permit the perspiration to pass off freely, and chemical nalysis has proved that the preparation used in no way injures the materials, or destroys their colour. More than 10,000 metres
10,936 yards) of materials, re-dressed two or three times over, ootwithstanding the rinsing and washing to which they have been subjected after having been soiled, and after constant wear, remained perfectly waterproof. The process is not very econo-
mical, and must be conducted on a large scale. The following, mical, and must be conducted on a large scale, Tournal d'Hygiene, is the process employed :cetalum and acetate of lead in seip them together. Sulphate of lead will be thrown down, leaving
cetate of alumina in solution, which must be decanted. The naterials to be waterproofed are soaked in this solution, and then Sta
STATISTICS relating to twenty-one industries in Massachusetts,
and covering about 80 per cent. of the entire manufactures of the State, have recently been issued by Mr. Carroll D. Wright, chief of tncluding men, women, and children, average about 1.23 dols. per
ind and
dyy in wates. The average for the year was 558.19 dols., and the day in wages. The average for the year was 358.19 dols., and the
time $290 \cdot 60$ days. The highest sums were paid by musical instrunent factories ; the lowest by cotton factories. The capital em pent. on the value of the goods. produced. 67 per cent. of the
factories made a net profit. The building trade showed the largest factories made a net profit. The building trade showed the largest
 east profitable, arms and ammunition; in fact, this indusriy
howed a net loss of nearly 17 per cent. Cottons yielded in profit 7.04 per cent.; machinery, 5.94 ; metals and metallic goods, $6^{\circ} 64$;
printing and publishing, 15.71 ; calico printing, bleaching, and
pint dyeing, $31 \cdot 81 ;$ woollens, $6 ;$ worsteds, $4 \cdot 11$ per cent.; and boots
and shoes only 78 . These statistice are for the year 1880 , and a capital had advanced $11: 52$ per cent., the profits had fallen off 3 per cent., the loss in the whole State beng $7 \cdot 19$ per cent., and for
Boston alone no less than 14:89 per cent. Wages had been reduced Boston alone no less shan 14899 per cent. Wages had been reduced
4.35 per cent., expenses had slightly increased, and the net profit had fallen off 7×19 per cent., the capit
the loss, and the operative one-third.
Frox the reports of the Chamber of Commerce of Besancon it bisontine," is on the whole in a a fairly flownishing condition. In
1875 the number of watches turned out-mainly from the Departent of Doubs-was 424,916, of which 139,624 were of gold, and 285,292 of siver, while during the past year the total production
was 493,933 , of which 172,716 were gold, and 321,227 silver. The average value of a gold wath is estimated at 85f., and of a silver
one $25 f$, whin which brings the value of the trad
$22,710,685$. Of . this about half may be apportioned for the labour. $22,710,685 f$. Of this about half may be apportioned for the labour.
The first quarter of the present year does not compare so favour-
bly, showing a reduction of 5164 gold watches, though the silve ones increased by 5094. The importation of foreign watches was
Tim 2nes
9,710 in 1888 , and 76,922 in 1888 , of which about one-half were
supervised at the Assay Office at Pontarlier, the remainder being distributed through the offices at Bellegarde, Lyons, Paris,
Besancon, Havre, Nice, Anneey, Bordeaux, Marseilles, Nancy, and Chambery. Treluding sin watches made total trade of the year amounted to 568,722 . The frrst commencement of the Besancon
industry dates from 1793, when 411 skilled artisans from Neuahatel
were expelled from Switzerland, and settled in the Department of were expelled from Switzerland, and settled in the Department of
Doubs.
At the present time the number of employers is between
90 and 200 , while some 40,000 persons find ocoupation in watch. aking either in the shops or at their own homes.
Fros the returns of the Prussian industrial census on the 5th
June, 1882 , it appears that there were at that date $27,287,86$ inhabitants, of whom $9,261,882$ were children under fourteen year of age, and therefore unfit for labour, 6,313 ,573 persons occupied
with their households, and 111,742, , 850 representing the economic power of the nation. Broaldy speaking, these last were groped
s. follows:- Agriculture, gardening, ned forestry, $4,692,348$, of
fhom $1,230,030$ were women; mines, factories

 prising those who are employed in industrial undertakings, are 612,720 women; olerks, 181,583 mend foremen, 839 women; operatives,
$1,466,942$,men - or 46.85 per cent. $-1,488,231$ women or $15: 30$ per cent. A census was also taken last January of domestic animals,
with the following results :-Cattle used in cultivation, $3,124,046$,

MISCELLANEA

Professor G. M. Huspriky, M.D., F.R.S., has accepted the Presidentship of the Congress of the Sanitary It.
Britain, to be held at Glasgow in September next.
AT the meeting of the Ohester Farmers' Olub on Saturday, a discussion took place on the necessity of taking immediate ateps to
secure the Exabibition of the Royal Agricultural Society at Chester in 1885, and a deputation was appointed to wait upon the council for
THe works for a supply of water to Towcester were opened las week. The town is now furnished with an excellent supply of
water by gravitation. The source of supply is the oolite hills on the south-west of the town. The cost has been under 15s. per
head of the population. The scheme has been carried out by the Rural Sanitary Authority, from the plans and under the directio Mr . GusTAV ALsING, C.E., formerly engineer and manager of the
Bradford Sewage Works, is now in Sheffield making arrangements Bradiord Sewage works, is now in she
for the construction of the new sewage works whing arrangement the Shefield
Corporation intend to establish at Blackburn Meadows, on ground which they have leased from the Shrewsbury Hospital trustees
The scheme is expected to cost $£ 150,000$, and the contracta will The scheme is expected to cost $£ 150,000$, and the
probably be given out at the beginning of next year.
The official report of the German postal and telegraphic of telephonic communication between neighbouring towns
Elberfeld-Barmen, Cologne-Deutz, Hamburg-Altona, Mulhouse Gebweiler, and Mannheim-Luawigshafen, the distance between which is only a few miles at most. As to long-distance transmissio twenty miles-while a still longer communication is now being arranged between Bremen and Bremerhaven-forty miles.
The new Army and Navy Hotel, Westminster, London, S.W., is
lighted throughout by electricity, and it is one of the few installations which have been carried out as a permanent part of a new
building. The reeeption rooms and hall are lighted by bout 180 Swan high resistance lamps, the large coffee-room having four
crystal class chandeliers, in each of which are suspended sixteen lights. The current is generated by a steam engine working a Schukhert Brush dynamo, and is stored in fifty-five 3-E.H.P.
Faure-Sellon-Volckmar cells. The whole of the work has been

ON Saturday the Juana Nancy, belonging to Mr. C. O. Faweus
London, was taken on her trial trip. She is 220 ft . long
 Lloyd,'s, and is built considerably in excess of the requirements for Shis their highest class, and is fitted with all modern improvements, $10 \frac{1}{2}$ knots. Both hull and machinery have been built by Messrs Pearce Bros., of Dundee, the engines having cylinders of 26 inin. and power, with 80 lib. boiler pressure. The engines and ship have been
built under the superintendence of Messrs. Flannery and Fawcus.
AT recent meetings of the Corporations of Newcastle and
Gateshead considerable attention was given to the question of Gateshead considerable attention was given to the question of
erecting a new bridge across the river Tyne to meet the great inerease of traffic that has taken place during the last few years The ony high level connection at present is the britoll of one half peny is chasged for each foot passenger, and the feeling seemed to
be that unless the railway oompany would agree to free the bridge immediate steps should be taken to obtain parliamentary power for the constructio of a second the joint corponions. It ing bridge is between $£ 35,000$ and $£ 40,000$ a year, the original cost
in having been abo
about $£ 200,000$.
THe annual report of the Crinan Canal says: "The navigation of the Crinan Canal has been maintained throughout the year
without interruption or casualty, but the new stone pier, which is approaching completion, was seriously injured by a gale on the dislodged from the unfinished structure. In the present session the
sanction of Parliament has been obtained to aschen for constructing sanction of Parliament has been obtained to a scheme for constructing
a ship canal between East Loch Tarbert and West Loch Tarbect for a ship canal between East Loch Tarbert and West Loch Tarbert, for
the purpose of shortening the sea the purpose of shortening the sea passage betwen the chyde and
the west and north of Scotland, and avoiding the circuitous route round the Mull of Cantyre. An Act was passed for promoting a
similar enterprise in 1846, but the work having been abandoned in similar enterprise in 1846, but the work having been abandoned in
1849 , the scheme has now been revived. Should this canal be altimately completed, it may divert some portion of the traffic o
he Crinan Canal ; but it will probably be chiefly used by vessels too large to pass through the contracted locks of that navigation." IMPorTANT mineralogical investigations have recently been made
in South-West Virginia. A well-known geologist, writing on the subject in the Scientific American, states that within 500 miles of New York City there is a large section of country, comprising from
12,000 to 14,000 square miles, which, for the quality and variety of
its minerals, is in all probability the richest and most interesting mineral country in the world, and one not surpassed by Saxony, in Europe. This remarkable section lies on the borders of Kentucky,
Tennessee, North Carolina, and West Virginia. Seventeen countieso, of Virginia are included in it, and to these may be added
Ashe, Alleghany, and Wantanga counties in North Carolina, which form an integral part of the same geological formation, and contain silver, copper, lead, zinc, In nickel, , siroction mare tanese, plumbaro,
arsenic, antimony, limestone, gypsum, salt, barytes, kaolin, feldarsenic, antimony, limestone, gypsum, salt, barytes, ,
spaior, soapstone, fireclay, asbestos, talc, mica, umber, millstone
srit, minerals useful in arts and manufastures. Besides this, the country is finely timbered from the valleys to the mountain tops
with white oak, walnut, maple, tulip tree, basswood, hiokory, cherry, chestnut, buckeye, cucumber tree, chestnut and other oaks,
dog wood, white pine, black pine, psruce, cedar, and many other Mr. F. W. Wardell, her Majesty's Inspector of Mines for the
district of Yorkshire, has issued his report for the year. Mr. district of Yorkshire, has issued his report for the year. Mir.
Wardell points out that an explosion is not neeessarilt the result
of a defective ventilation. Many accidental circumstances arise on a derective ventiation. Many acidental circumstances arise
in the shape on unexected outursts or " blowers" of gas, which
in a moment fill the workings. The suddenness of these dis. charges with the enormous pressure at which gas is evolved, renders he best venilation for the time being powerless, and the then
when an open light, or a defective lamp, may furnish the cause, perhaps hastily described to lack of adequate ventilation. In the
Yorkss histres Yost yeare where, but for the most perfeete stateof of safety lamps in
lase, and the vigorous discipline maintained, the death-roll of the use, and the vigorous discipine maintainect, have been largel increased. Whise Whist
district for the year would
adyocating the best possible ventilation, and that by means of a advocating the best possible ventilation, and that by means of a
fan-which means he observes, are being more extensively usedrather than by furnace, he insists on the necessity for every precau-
tion being taken to ensure the use of the best and most perfect tion of safety lamp. All working places must be carefully
ferm on
examined as shortly as possible before the men go to work. Sixty per cent. of the deaths in in mines ocour from falls of roof and sides,
and Mr. Wardell insists on the necessity of an ample supply of timber for propping. Whilst the eece acoidents are the most frequent
they are the least preventable, and the experienced, careful man is s liable to be suddenly caught as the most careless. It is very
desirable that the inspectors report should be made as widely
enown as possible. only last week Derbyshire oonference of
niners condemned the safety lamp as retarding their work and

MACHINERY AT THE SALFORD SEWAGE WORKS. MR. A. JACOB, M.I.C.E., SALFORD, ENGINEER,
(For description see page 35)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS

eredit occur, an extra charge of two shillings and sixpence per amum vin

 Cloth cases for binding The Enainerr Volume, price 2s. 6d. each.
A complete set of The Enainerr can be had on application.
 Foreign Subscriptions for Thin Paper Copies will, until further notice, be reeieded the rates given below: : Forreign subseribers paying in advance at the at

ADVERTISEMENTS.

 Advertisements cannot be Inserted unloss Delivered
Letters relatiock on or onursdor Evaning in each week.

THE ENGINEER.

AVGUST 10, 1883.

etrolevm storage

The storage of petroleum is a matter with which the law has hitherto dealt in a very clumsy fashion. The
Home-office never seems to have arrived at a clear concep-Home-office never seems to have arrived at a clear concep-
tion of what was the proper thing to be done in this respect, and the only fear is lest the Petroleum Bill which has been brought forward by the Government at the fag
end of the present session should itself prove to be seriously end of the present session should itself prove to be seriously
imperfect. Yet it would not be difficult to improve on the present state of things. So far as the safety of the public is concerned, the law which now exists, though
better than nothing, is in one aspect simply absurd. We have more than once pointed out the radical error which admits of the unlimited storage of petroleum in any locality
so long as the oil does not give off an inflammable vapour so less than a certain specified temperature. The "flashing point," as it is termed, governs the whole question, and practically serves as an inlet by which a flood of petroleum as so much water. The statute very properly specifies that nothing contained in its provisions shall be deemed to exempt any person from any penalty to which he would and necessity of this saving clause has lately been illusand necessity of this saving clause has lately been illus-
trated at Deptford, where an enormous store of petroleum has been formed, concerning which it is authoritatively ing of the Act." Supposing the oil to become ignited, it is obvious that a tremendous conflagration would be the result, such as would require very careful arrangements
in order to prevent the spread of the flames to
the contiguous due provision has been made to prevent the escape bourhood. But the law makes no provision for the neigh pose, and this enormous store, comprising 20,000 casks, or more than 700,000 gallons of petroleum, would probably whose premises are close at hand, have seen fit to take the matter up in their own defence. The peril, whatever it of jute stored within fifty yards of the petroleum. Jute has the reputation of being liable to spontaneous combus-
tion, and is at best a suspicious article. The state tion, and is at best a suspicious article. The state of
affairs may be held to justify considerable anxiety, but the Petroleum Act offers no relief. The only remedy consists in proceeding by indictment, and accordingly the parties who are storing the petroleum have been summoned before
the magistrate for having unlawfully deposited, or caused to be deposited, divers large, excessive, and dangerous
quantities of petroleum and jute, to the common danger of quantities of petroleum and jute, to the common danger of
the inhabitants of the district. Within a quarter of a mile
of the premises there are stated to be about a thousand inhabited houses, together with the premises of the
General Steam Navigation Company, some shipbuilding General Steam Navigation Company, some shipbuild yards, and the gasworks which formerly belonged to the
Phoenix Gas Company, now merged in the South Metropolitan.
How this particular case may end we do not pretend to say. The defendants may prove that they have taken such precautions that even if a fire broke out and burned up all pe petroleum, the adjacent property would suffer no damage. But if the public are thus secured against peril,
no credit for such a circumstance is due to the Petroleum Act. This huge store of mineral oil exists exactly as if no such Act had ever been passed. This is precisely the defect which has been the subject of comment for years, and the provinces are just in the same predicament as
London with regard to petroleum storage. But London, London with regard to petroleum storage. But London,
as a great centre for the distribution of the commodity, possesses depôts of this description which are pre-eminently large. Sir E. Watkin drew attention to the subject a short
time back by asking a question of the Home Secretary in time back by asking a question of the Home Secretary in
the House of Commons, in the course of which he intimated that there were stored at seven wharves in the metropolitan area as many as 335,000 barrels of petroleum, ne wharf alone having more than 80,000 barrels. These quantities are enormous, but we can go a slight step further
by estimating the total storage of petroleum in the metroby estimating the total storage of perroteum in
polis at 400,000 barrels, equal to about $15,000,000$ gallons. Possibly a great portion of this oil is under regulation of turned to account la ny moment, and the Deptfory be turned to account at any moment, and the Deptford case
shows that petroleum may be stored in immense quantities without any statutory guarantee for the having been drawn to the subject, the Bill to which we having been drawn to the subject, the Bil to which we Lords, and was read a second time on Friday last. The Petroleum Association of London have petitioned agains pel We ann exaggeration, or at least that the Bill may be capable of effective amendment at the hands of the Select Committee to whom it is referred. The Bill is drawn very much on the lines of the Explosives Act, and substitutes registration for licensing, rigid rules being laid down for the registered stores. By this plan uniformity would be secured, and all parties complying with the regulations would have a right have bee. cuilty would thus which petty local authoritie have been guilty would thus be prevented; but the genewould be superseded. Unfortunately, the Exeter authorities appear to have been remiss, and a serious fire is attributed to the laxity of the supervision exercised. It might, perhaps, be provided that the local authorities in of granting licences and prescribing their own regulations for the storage of petroleum, as heretofore, the laid down in the statute. Another distinguishing feature in the Bill, and that which is the most important, consists in recognising petroleum of all kinds, so that none properly applied, will be of immense benefit. The Bill provides that the petroleum which now comes under the law shall be called "low test petroleum," inasmuch as it gives off an inflammable vapour at a temperatu: e less "han 73 deg . of Fahrenheit's thermometer. The expression, "high test petroleum," is introduced as meaning all petroleum" is to include mineral oils in general, what ever may be the temperature at which they give off in The quantity of petroleum to be stored on the registered premises is specified in the Bill upon a scale regulated by the distance between the depot and the contiguous buildings. Thus if the intervening distance have a range of
between seventy-five and a hundred yards, the quantity of petroleum may amount to 750 gallons, but shall not exceed it. It is at the same time specified that the quantity of
low test petroleum on the same registered premises shall low test petroleum on the same registered premises shall nlowed one-fourth of the total amount of petroleum torage will be fatal to business. Fifteen barrels of high test petroleum, and five of low test will make a very poor stock. It then the quantity stored is to be "unlimited." The retrictions are also to be inapplicable with respect to petroleum kept at a distance exceeding twenty-five yards
from the specified buildings, in those cases where the rogistered premises are not situated in a town, as defined registered p.
by the Act.
It may be conceded that the public safety would be abundantly secured by this measure, the only remaining would being re an whereasing trad tion is one which hampered. We fear whether the questime which intervenes before the rising of Parliament addition to the strict requirement with regard to distance the Bill stipulates that the petroleum shall be kept in such a place, or in such a manner that it cannot escape in the form of liquid, whether ignited or otherwise, so as to reach other premises. Where the registered premises are
situated in a town, the depôt is to be covered with This is very different from the present order of things, by which petroleum is stacked in the open air eight barrels
high, being an altitude of 20 ft . Doubtless the would be raised still higher were it not for the risk of crushing the lower barrels. In hot weather it is customary to have jets of water playing on the barrels demand for the commodity they contain, while at the same time there is an inherent danger about them. If such stores are henceforth only to be kept where the actual depôt is at a distance of a hundred yards or upwards from any other petroleum store or "protected work," the quesdrive the petroleum stores out of London. A " protected
dwoll is defined to mean any building in which person or in which persons not dwelling thece educati, whether for purposes of religious worsh1p, woise and any amusement, discussion, travelling, or othere inland or tidal are evidently suggested by the apprehension of a serious peril. That there is reason to take every possible precauis wich can be enforced without positive injury to trad proved by experience already gained. It is possible, by pets, to limit the outburst of oil in the event of its ignition Subterranean tanks may also be so contrived as almost t exclude the possibility of the oil being set on fire The large stores of petroleum in London are gene rally constructed in such a way as to keep the
il within bounds in the event of a conflagration oil within bounds in the event of a conflagration
But the Deptford case bids us not be too confident, so long as the Petroleum Act exists in its present form Even the combustion of petroleum within the limits of the depôt may threaten surrounding property, if it should happen that a high wind prevails at the time. A few months ago there was a fire at a petroleum store on the river side at Battersea, when the flames from the ignited oil rose to an altitude of 150 ft . A strong gale might play strange havoc with such a column of fire. Precautions also fail sometimes in an unexpected way. At Swinton, near Manchester, some lanks containing petroleum to mon the Act does not apply we constructed of sheet iron rivetted and soldered. A fire broke out in the depôt, oil to escape The burning liguid ran into a, allowing the or to escape. . he buh wid panied by herinited oir whin had been ated m casks we latiery flood was happ men in elther draining or damming the brook. But for this happy intervention the blazing liquia, travelling along the Worsley railway station, which would most likely have the Worsley ra
been destroyed
The peril producible by petroleum not under the Act is more than 1600
t of 84 deg . Fah., barrels of petroleum, having a flashing point of 84 deg. Fah., oil escaped into thonsiderable quales ehed property on which the fire currd ad high wolume prope burst forth from various and houmes of the daner of property and lif thous, formate, to casualty occurred. The oil which consumed the railway carriages in the Abercele collision, when a fearful sarifice of life took place had a flasing point hich 140 de Fah. When once ignited it generally matters little what the Hlashing point may be the the the for sometimes be affected by the amount of volatility in the oil. The initial danger of ignition, of course, depends largely on tion at Exter placed on the ground an o distzone of 27 ft from the door, which led into the rock-hewn cell or cavern in which the spirit was stored. This cell being fired, others followed, the vapour exploding with great force, and igniting the casks. The burning benzoline, as it poured forth from the stores, Howed over the side of the quay into the river, and gave the stream the appearance of being on fire from bank
 moorings, and it was with difficulty that some of them destroyed, and two persons who we quay was practically perished. The fire raced for sixteen hours, despite all that the fire brigade could do, and the flames only ceased when the liquid fuel was all burned up. But while the risk is so much the greater when the oil is of a volatile nature, point regulations are required in all cases, let the flashing pought be what it may. In some shape or other the law whet to take cognisance of petroleum in all its nt Bill fail to remedy the existing defect, the attempt must be renewed. But while caring for the public safety, the mount of interference with an important branch of trade.

the patent bill.

Is a thin House, which might have been counted-out at any moment, consisting as it did of a mere handful of he Commons on Saturday, and sent to the Lords. In its present form it bears evidences of hurry and want of reviion, and on the whole is not a creditable piece of work, We do not, of course, intend to go through the Bill, but as matter of duty we feel bound to point out certain defects in the hope that those in charge of the measure may at
the eleventh hour see fit to remedy them. Unless they do o, patentees will find themselves in some respects in a wors position than they are under the present law.
Opinions may differ upon the policy of submitting pecifications to an examiner, but the principle once admitted it ought to be thoroughly carried out. If an will be referred to an examiner, who will reation at once, it the nature of the the napplication inention has been fairly described, and been prepared in the prescribed manner, and the title suffi-
 But when the applicant files a complete specification after a provisional document, the examiner is only directed to ascertain "whether the complete specification has been prepared in the prescribed manner, and whether the invention particularly described in the complete specification is substantially the same as that which is described in the provisional specification." The intention of the framers of the measure probably is that a complete specification at whatever stage of the proceedings it may be filed shall be whatever stage of the proceedings it may be filed shall be
examined as to sufficiency, but they have certainly not expressed their intention with clearness.
Much has been said with regard to opposition upon ope
officials have done with the applicant, his specification is to be made public, and all the world is at liberty to pick holes in it. Oddly enough, the general plea that the invention is not new is not allowed; the objector must show "that
the invention has been previously patented in this country." The Comptroller-General, as the principal officer siderable discretionary powers, but the exercise of those siderable iscregionary powers, but the exercise of those
powers is clogged with a curious proviso. Before doing powers is clogged with a curious proviso. Betore doing patentee, he is required to give notice that he is about to do so, notwithstanding the fact that his decision is in every
case subject to review either by the law officers or the case subject to review either by the law officers or the of Trade" is nowhere defined. More than one attempt has been made to draw from Mr. Chamberlain a definition, but without success. The tribunal may be the President himself ; it may consist of a committee of officials appointed ad hoc, or it may be a junior clerk. A few weeks ago we
pointed out that the measure could not possibly come into pointed out that the measure could not possibly come into
operation at the date fixed by the Bill - the 1st
of January, 1884-for the very good reason that the rules necessary for working the Act could not be made operative until they had been laid before Parliament for operative until they had been laid before Parliament for
forty days. As the House will not be sitting for a period forty days. As the House will not be sitcing for a period
of forty days before the first day of next year, it is
obviously impossible to comply with the condition. This obviously impossible to comply with the condition. This gentlemen interested in trade marks; but the effect of it upon the clauses relating to patents seems to have been overlooked.
Amongst the new clauses inserted on the occasion of the third reading is one which is directly at variance with some of the earlier provisions of the measure. We refer to Clause 100 , which orders that " copies of all specifications,
drawings, and amendments left at the Patent-office after the commencement of this Act, printed for, and sealed with the seal of the Patent-office, shall be transmitted to the Edinburgh Museum of Science and Arts, and to the within twenty-one days after the same shall respectively have been left at the Patent-office." It is a matter of surprise how such a clause could have been accepted by
Mr. Chamberlain, as it would involve the immediate publication of all provisional speciications. The clause goes on to say that certified copies of these documents shall be given to any person on payment of the prescribed fee, and that such copies shall be admitted as evidence in any legal proceedings. Seeing that the authorities refuse to certify the reduced photo-lithographs of the
specification drawings now published, it will apparently be specification drawings now published, it will apparently be all the drawings by hand. Have the authorities calculated the expense of such an establishment? The sceptre has ong ago departed from Judah, and separate patents for reland and Scotland have been a thing of the past for thirty years; but our fellow-subjects in those portions of
the empire seem never to have forgotten the privileges the empire seem never to have forgotten the privileges
they once enjoyed. They still wish to preserve the tradition of the time when they each had a little Patent-office of their own. Let Ireland and Scolland be liberally sup-
plied with sets of the patent publications, but surely no document. He would prefer an office copy certified document. He would
directly from the original.
directly from the original.
There is something in
There is something in the second scbedule of the Bill which is so puzzling that we can only imagine that there is a misprint. We are strengthened in this supposition by
the fact that an obvious misprint does occur in the immethe fact that an obvious misprint does occur in the immediate neighbourhood, the words "date of payment" being aware, this Bill provides that a four years' patent may be
had for four pounds. A further fee of $£ 50$ paid before the expiration of the four years, continues the patent for three years more, or seven in all. Before these seven years have expired, the payment of £100 prolongs
the protection for another seven years, making a the protection for another seven years, making a
total of fourteen years. So far all is plain, but the total of fourteen years. So far all is plain, but the
schedule also provides for the optional payment of these progressive fees by annual instalments, instead of in
two lump sums of $£ 50$ or $£ 100$. Should a patentee be two lump sums of $£ 50$ or $£ 100$. Should a patentee be would naturally prefer the former plan, and he would find to his delight and astonishment that four annual payments of $£ 10$ each, or $£ 40$ in all, would place him in precisely had paid $£ 50$ down to begin with. This may be intentional, but looking at the thing from a business point surely something in the way of "discount" should be given as an encouragement to those who are prepared to "take a quantity,"
The Bill has already made some progress in the House of Lords, and before these lines are in the hands of our readers, it will probably have passed its second reading.
We earnestly hope that some of the points we have dwelt upon will not escape attention before it becomes law.
mr. lynall thomas and the government.
Mr. Linall Thomas's claims on the Goverument have recently been again brought to notice. He has sent a printed letter to members of the House of Commons, in which he speaks of the hardship of putting off the claim awarded to him on the trial of his case before the Lord Chief
Baron, and also he states his power to prove that fraud Baron, and also he states his power to prove that fraud
was used by certain individuals in the framing of the matter for the Government defence. The latter question is a very serious one, and must be left to Mr. Lynall
Thomas to substantiate. We regret that such a question Thomas to substantiate. We regret that such a question should be at issue, whatever may be the result.
Mr. Lynall Thomas, leaving out this point, briefly puts his case, as we understand it, as follows :-Previous to his efforts the action of fired powder was soimperfectly under-
stood, that neither the full violence of the strain about the stood, that neither the full violence of the strain about the
seat of the charge was recognised, nor, on the other hand, seat of the charge was recognised, nor, on the other hand,
was the fact recognised that the violence of a charge was the fact recognised that the violence of a charge
increased in a larger gun out of all proportion to that in a
smaller one. In proof of the first of these two assertions, he urges that guns were formerly not made of due thick-
ness about the breech, a fact that may be seen if the drawness about the breech, a fact that may be seen if the draw-
ings of any guns, which existed before his, including, he maintains, all the first Armstrong guns, be meas ured.
In proof of the second claim he urges that the old 68-pounder gun had the same proportionate thickness as the 6 or 9 -pounder gun, and that in the larger and smaller Armstrong guns the same rule of proportion generally existed, that is, that thickness in the large gun bore nearly the same proportion the callbre as in the smaller. He pleads that he publicly showed that this was the case, and that it guns to burst, also by the bursting of the first larger Krupp and Armstrong guns, that he made experiments and calculations on which he based the proportion of a $7 \mathrm{in} ., 8 \mathrm{in}$., and
9in. gun, of which he made two and had drawings of the third. That this gun, having obtained a great victory at Shoeburyness, owing to its greatly increased strength and the heavier charges he was consequently able to use, the so-called 7in., 8 in., and 9 in. Woolwich guns were made.
He has models of his own one is scarcely to be detected from the other. He that tains that this had been achieved in spite of great discouragement; that he was told again and again that his guns were far too heavy for the Navy to carry; but that portions wad showed their power they were, as far as prohis claims were denied, and that at length he was driven to law, and in spite of his case being taken up at a great disadvantage, he obtained an award of $£ 8790$ 11s. 6 d . and costs; that on this the Government appealed and threatened him in the case on in a manner which would involve he was compelled to abandon the struggle with a powerful department having the purse of the country at its back. With regard to the foregoing, we are not prepared to endorse all that Mr. Lynall Thomas urges, and we could we think he has a good cloimere is a great deal on which treated. To those who have not the opportunity of going thoroughly and carefully into the case, surely the following is plain. A private individual who, contending against magnitude, has established a dist award of considerable advantageous circumstances Surely the man who shows that he has done as much as this must imply in the public service ought not to be treated as an enemy or fenced with allow to have been performed, had been rendered in 1860 and have been performed, had been rendered in by the decisions of our own legal tribunals, and it had so been decided. It was hard enough then to have waited when he had fairly obtained a decision by law, after when he had fairly obtained a decision by law, after further difficulties as it is unfair. Of course it is conceivable that a decision might be given wrongly by a court, and that an appeal might succeed; but ought this to be done on a technical point? Looking at the case without any further should have hoped that while a Secretary of State might doubtless feel that all the technicalities of the case were out of his province, and so might fairly depend on his technical advisers up to a point, yet after he saw the decision in the Chief Baron's Court, surely he would feel that the time had come to take a broader view. Is there not, at all
events, as great a likelihood of the case having been decided, even as it stood, with a leaning towards Government as towards Mr. Lynall Thomas ? Supposing it, however, to be a right decision, Mr. Lynall Thomas is shown to him to have been a man who has rendered considerable public service, and yet who has been driven to struggle on in the difficulties and the disappointment accompanying the refusal of his claims for seventeen years. Is this a case in which we ought to wish our rulers to urge a technical objection for further delay and trial, or practiwho to put it out of the means of an impoverished ma vice to obtain even his own money?

Reactions between sulphur, sulphur oxides, carbon,

d carbon oxides.

IT is shown by Berthelot that carbonic oxide is decomposed
into carbon and carbon anhydride at a bright red heat, and even into carbon and carbon anhydride at a bright red heat, and even
at the softening point of glass, but the amount of decomposition it the softening point of glass, but the amount of decomposition
is very small. Sulphurous anhydride, as Buff and Hofmann have stated, is decomposed by the electric spark into sulphuric anhydride and sulphur. No oxygen is set free; part of the sulphur anites with the platinum electrodes; the remainder combines with the sulphuric anhydride to form a viscous liquid which
absorbs a certain quantity of sulphurous anhydride. Thi is the intermediate product of the reaction. It is decomposible
in the reverse direction, and the tensions of sulphuric and in the reverse direction, and the tensions of sulphuric and sulphurous anhydrides which it gives off limit the decomposition
of the of the sulphurous anhydride. When sulphurous anhydride is
passed over purified charcoal heated to redness in a porcelain passed over purified charcoal heated to redness in a porcelain
tube, carbonic oxide, carbon oxysulphide, and carbon bisulphide are formed in the proportion indicated by the equation
 oxygen of the sulphurous anhydride, liberates sulphur, which then unites partly with carbon and partly with the carbonic oxide a mixture of en electric sparks are passed for a long time through anhydride the residual gas has the composition $\mathrm{SO}_{2}, 31 ; \mathrm{CO}_{2}, 30$; 0,20 ; decrease, $19=100$. Each gas decomposes independently, and the oxygen liberated from the carbonic anhydride combines
with the sulphurous anhydride to form sulphuric anhydride which with the sulphurous anhydride to 10 rm sulphuric anhydride which condenses. The sulphurous anhydride is apparently somewhat
more stable than the carbonic anhydride. When a mixture of equal volume of sulphurous anhydride and carbonic oxide is passed through a narrow porcelain tube heated to redness, the
issuing gas has the composition $\mathrm{SO}_{2}, 37 ; \mathrm{CO}_{2}, 20 ; \mathrm{CO} 43=100$ Sulphur is liberated, but neither carbon oxysulphide nor carbon bisulphide is found in notable quantity. The carbonio oxide evidently reduces the sulphurous anhydride, thus $2 \mathrm{CO}+\mathrm{SO}_{2}$
$=2 \mathrm{CO}_{2}+\mathrm{S}$, but the reduction is not complete. If a mixture
of two volumes carbonic oxide with one volume sulphurous anhy-
dride is subjected anhydride jected to the action of electric sparks, the sulphurous anhydride is partially reduced, but a portion of it decomposes
independently without giving up oxygen to the carbonic oxide indepencently without giving up oxygen to the carbonic oxide,
and forms a compound of sulphur, sulphurous, and sulphuric anhydride, which condenses on the sides of the tube. In pre sence of mercury, the sulphurous anhydride is CO , $\mathrm{CO}, 75$; produced, forming a basic sulp abhate. Sulphurous anhydride has no action on potassium sulphate at a bright red heat, but at red heat it converts the carbonate into sulphate, with a trace o sulphide. If the current of the gas is slow, the proportion of the sulphide increases. A slow current of dry carbonic anhydride
has no action on boiling sulphur, but if sulphur vapour and has no action on boiling sulphur, but if sulphur vapour and
carbenic anhydride are passed through a porcelain tube heated carbomic anhydride are passed through a porcelain tube heated
to redness a slight but distinct reaction takes place. The issuing gas contains 2.5 per cent. of a mixture of 1 volume carbon oxy sulphide, 1 volume carbonic oxide, and 0.5 volume of sulphurou anhydride. The carbonic anhydride probably does not directly
attract the sulphur, but first dissociates into attract the sulphur, but first dissociates into carbonic oxide and oxygen. Carbonic anhydride has no action on potassium sulphate
at a bright red heat. When it is passed over the sulphite the latter is converted into sulphite and polysulphide, with a small quantity of carbonate. of an inert gas, such as nitrogen. Carbonic anhydrid arrent of au inert gas, such as nitrogen. Carbonic anhydride acts on
potassium polysulphide at a red heat, sulphur being liberated and a mixture of carbonic oxide, sulphurous anhydride, an carbon oxysulphide being formed, together with a small quantity of the carbonic anhydride. Sulphur ch be to the dissocilled off potas sium sulphate below a red heat without any reaction taking place, but in a porcelain tube heated to redness sulphur vapour reduees the sulphate, forming sulphurous anhydride and poly-
sulphide, thus: $\mathrm{K}_{2} \mathrm{SO}_{4}+5 \mathrm{~S}=\mathrm{K}_{2} \mathrm{~S}_{3}+2 \mathrm{SO}_{2}$. The action sulphide, thus: $\mathrm{K}_{2} \mathrm{SO}_{4}+5 \mathrm{~S}=\mathrm{K}_{2} \mathrm{~S}_{3}+2 \mathrm{SO}_{2}$. The action
of sulphur on potassium carbonate is well known. The importance of these reactions in the study of the decomposition of gunpowder is evident.

distillation in a vacuum.

Ar the outset of his paper the author, A. Schuller-see Ann. the automatic mercury pump. By its aid he has devised a form of apparatus to study fractional distillation and sublimation in vacuum, and the separation of metals from impurities with
which they are contaminated. In the course of his experiments which they are contaminated. In the course of his experiment the author arrives at the conclusion that sufficient attention is not paid to the substance used for lubrication and to the so-called anhydrous phosphoric acid used as a desicating agent ; the 50 deg . in large translucent crystals, The author considers that the best substance for lubrication is a mixture of wax and vase line, and for desiccation metaphosphoric acid. Of the elements examined, selenium, tellurium, cadmium, zinc, magnesium,
arsenic, and antimony are easily sublimed but the fusible metals, bismuth, lead, and tin, distil only with difficulty The author's observations on this point differ from thos of Demarçay, but he explains this discrepancy by sup-
posing that the metals used by Demargay were contami nated with impurities, which, according to his observations, caused
the distillation be frequently repeated, those separated. Secondly, it is found that sodium, selenium, tellurium, cadmium, zinc, arsenic, and antimony, distil so readily in a vacuun that this process may be used for their purification. Thirdly during the first distillation of these metals, there is an evolution of gas, but this ceases after the process has been repeated
Fourthly, it is found that many metals require to be heated slightly above their point of sublimation to effect their distillation; this phenomenon the author attributes to the
slight difference in pressure caused by the rise of ture, which causes a more or less mechanical impulse to the metallic vapour. Fifthly, organic substances, such as tallow, wax, resin, distil in a vacuum without decomposition,
and can thus be separated from impurities ; but crude sugar dry grape sugar, and quinine sulphate decompose during o even before distillation. Caoutchouc distils in two separat layers, of which the more volatile has the smell of caoutchouc
whist the less volatile has butlittle smell whilst the less volatile has butlittle smell, and is of the consistency of fresh caoutchouc. In conclusion, the author recommend
this process of fractional distillation in a vacuum for the purifcation of organic substances.
an iron trade subsidy.
THE Staffordshire ironmasters have faithfully carried out the pledge which the other day they made to the firms whose ironBromwich districts. At a meeting in Birmingham on Monday
of the Sustentation Committee some seventeen firms were voted contributions at the rate of $£ 5$ per puddling furnace standing.
Cheques of the aggregate value of $£ 1420$ were sent out. The individual amounts varied from $£ 10$ to $£ 165$ and $£ 310$. The greatest sum was taken by Messrs. John Dawes and Sons, Wes Bromwich, on account of their sixty-two furnaces, and to
the District Iron and Steel Company, Smethwick, there went for their thirty-three furnaces, the next highes by absent ironmasters to the resolution of those present a the earlier meeting, calling upon the firms at work to contri bute $£ 1$ per furnace per week to the firms against whom the sirike was being continued. It is gratifying that as to the future
of the strike this first contribution is all that will be called for, since the malcontents amongst the ironworkers have been now fairly beaten all along the line. This week no strike hands remain out for whom work can be found. Operations have been returns showed was called for by the operation of the sliding scale. This form of self-acting arbitration agreement for settling wages rates has therefore in Staffordshire received further sanc tion under circumstances which should lead to its becoming tically shown their loyalty to it, the great majority of the men have, less emphasis, made a like satisfactory declaration.

ateshead tramways

AN official inspection of the newly-completed tramways at Gateshead has recently been made by Major-General Hutchinson on behalf of the Board of irade, and has resulted in a series of
recommendations which it is estimated will prevent the lines recommendations which
being opened for public traffic for some three to four months. The report, a copy of which has just been received by the
Corporation, draws attention to some curious mistakes in construction, which we should have thought would have been
first seen to by the company's engineer before requesting a Board
of Trade inspection. The level of the setts adjoining the rails
is generally too high and would cause injury to the wheels is generally too high and would cause injury to tho whels
while some of the curves have been so laid that the cars cannot while some of the curves have benn sol laid that the cars cannot
run round them without leaving the rails. The use of mechanical
 Co., were employed at the inspection. In one the governor would not work, and in neither have the necessary means been
provided for preventing the driver from tampering with the provided for preventing the driver from tampering with the
governor, while the connections for working the car brakes from the engine were not completed. Triangles, sanctioned by the
Corporation, have been put in at the terminus for enabling the Corporation, have been put in at the terminus for enabling the
engines and cars always to run with the same end foremost. This, as General Hutchinson points out, is a most desirable arrangement when the triangles are suitable to the purpose, buu
in the present case it appears that some of them could not be safely worked, being situated on steep inclines, nand in the mids of heary tratic where it would be most inexpedient that a
driver should be be driver should be away from the front of the car during the operation of using the triangle. It is recommended that a single
Iine should be substituted for a double line of rails round a sharp line ehould be substituted tor a double line of rails round a sharp
corner so as to obtain a better eurve, ,unless bogie ears whee bases are adopted in place of the present ordinary four wheel cars carrying roof passengers; and it is submitted as grave question tor the ilcensing authorities whether, in view o
 ceanot boncuuces with the regret that the Board of Trade
cannot public traftic.

LITERATURE.

Elementary Applied Mechanices, Part II. By T. Auxxaxpbr and
A. W. Thoossox. Maemilan and Co. 1883 . Thrs book is wholly mathematical. Over the ground it
covers, it is an excellent text-book that must be found most useful both to the student of mechanics and to the practical engineer who has to design bridge and roof work. But the title is somewhat of a misnomer, as it indicates an immensely wider range than is deait with either by the present volume, or by it and its predecessor, Part I.,
together. Ostensibly the volume expounds shree subjects together. Ostensibly the volume expounds three subjects
only. These are bending of beams, bending of struts, and twisting. But as only eighteen pages out of 354 are devoted to the latter two subjects, namely, struts and
torsion, and as these are, therefore, treated with a meagretorsion, and as these are, therefore, treated with a meagre-
ness out of all proportion to the full development given to ness out of all proportion to the full development given to
the first, it might have been as well to omit this latter part altogether. The book might then have been properly entitled, "The Mathematics of Transverse Stress and Strain within Elastic Limits." As the authors have done their work on this subject in a thoroughly praiseworthy manner, perhaps they may not take it amiss, or may rather take it as a compliment, if we suggest that they should in a future
edition omit the latter part, and write another volume on edition omit the latter part, and write another volume on its subject with the same degree of completeness with
which they have expounded beam bending. This is the which they have expounded beam bending. This is the
more to be recommended since, on the subject of struts, more to be recommended since, on the subject of struts,
the authors have contented themselves with reproducing the Tredgold-Gordon formula. It is strange that this should still be believed in as a rational formula. Although should still be believed in as a rational formula. Although
Rankine gave it his undoubtedly weighty sanction as a rational rule, the theory has long ago been shown to be rational rule, the theory has long ago been shown to be rule, the experimental evidence for it is insufficient.
By dedicating their work to their teacher, Professor Rankine, Messrs. Alexander and Thomson present themselves to their readers with as good an introduction as Rankine's English style is having been Rankine's pupils. which any engineering books have been written, and his pupils have adopted that style with nearly equal success They say what they have to say succinctly and always without ambiguity. It is never possible to misunderstand what is meant; no words are wasted in circumlocution or in repetition. In some respects the style is pleasanter than Rankine's; it is easier and more familiar, with less invariable adherence to scientific formality. A good deal of
wordiness in the text is avoided by the excellent plan of writing a few condensed explanations along the chief lines of the diagrams.
Throughout most of the book the mathematical knowledge demanded of the reader is simple, nothing beyond ordinary algebra, trigonometry, and the geometry of plane mathematics is needed to obtain useful resulta, these result are for the most part simply stated without demonstration. This plan has been, however, departed from in treating of curvature and deflection, where the integral calculus is freely used. By explaining graphic methods more than
they do, our authors might have avoided a good deal of they do, our authors might have avoided a good deal of
this. For the many problems in calculation of bending moments given, graphic methods are usually explained; but the examples of their application to frameworks, and indeed to anything beyond bending moments and shearing forces, are far too few. Diagrams containing curves show-
ing the variations of certain calculated quantities are very ing the variations of certain calculated quantities are very liberally used, and this is a most excellent feature of the tions of graphical methods of making these calculations. Another capital characteristic of this work is the abundance of numerical examples fully worked out, all of them being of a practical nature. We are glad to observe that these examples are not relegated either to the end of the book or to small print, because if that is done the student is apt to consider them of relatively small importance.
taken as an exposition of one portion of applied taken as an exposition of one portion of applied mechanics, is a great deal too simply mathematical ; that purely physical phenomena which serve as the data tendency of the Scotch school of scientific writers; tendency of the Scotch school of scientific writers; Thus, in the present book many investigation of the data. be established by experiment are assumed which ought to planation and sometimes even without mention, Thus, at
the outset the "neutral axis" and "neutral plane" of a beam have to be explained. It is here tacitly assumed that the neutral axis runs through particles which all lie in one straight line when the straight line when the beam is unstressed. ot even true unless the section is uniform from end t ot generally true It is also not even mentional ot generally true. It is also not even mentioned that the that fransverse sections that bending is the supposition condition remain accurately are plane in the unstreszed Indeed, in reading from p. 13 to p. 15 one is led to suspect that the writers imagine that if one draws a plane normal section through a point in the unstrained neutral axis, and if one again draws a plane normal section through the same point in the axis after it is bent, that these two plane sections pass through the same particles of material. If the writers lave not fallen into this error their elementary readers would certainly do so if they truste peculiar relations subsisting between strain and stres beyond the elastic limits. As to the mode of gradual development of stress and strain when the loads are applied in different manners, and with different or less rapid and frequent repetition of loading. The term "live load" is used to indicate a suddenly-applied gradually applied and removed again. The latter phrase seems a much better one to use; butwe must demur to the statement that a live load as defined above produces double the strain and stress produced by an equal dead load, this also take exception to he phrases "intensity of strain" and "intensity of stress," The first is used in this book to mean the elongation or transverse displacement per unit of length, but this is contraction," \&c., being quite sufficient to indicate integral relative displacement. Similarly "stress " simply, properly means what the authors call "intensity of stress," namely two-sided force per unit of sectional area. On page 19 we
find the book badly blemished by the very remarkabl statement that the resistent shearing force exerted by the material over a given section, and the moment couple of the integral stress on the same section, "depend only on the size and form of the cross section, and upon the matecourse, that the safely allowable amounts of the above force and couple depend only on the above data, and not only he external forces; but this not being explained, we are are that the above passage will cause much confusion of and to the elementary reader
In drawing parabolic moment curves, the authors recomnend always using one and the same wooden template, and calculating new scales for this invariable curve for each particular case. This is an ingenious idea, which whether it would be found practilly out; but we dociall since different moment curves have very frequently to be added together. A parabolic curve to a convenient vertical cale is always easily and rapidly drawn, and the advantage of being able to apply one's wooden scale directly to the curve都 wery great. In explaining the drawing of the parabola, tructing it ween convenient to give a method of conand the direction of the axis are given as data. This problem is of frequent applicability in moment diagrams lete than is of com pact that is pointed out is that books. One interesting act that is pointed out is that, although in solid sections by supposing the whole shear force equally distributed by supposing the whole shear force equally distributed
over the section, such an approximation is obtained when the section is composed of two relatively large upper and the "Allowe for We othe Beam"" is Allowance for Weight o There is such a large variety of useful cases worked out in the book that it would be an improvement to introduce condensed tabular statements of results. We can heartily recommend the volume as a decidedly superior treatise on the mathematics of beam bending.

THE BIRMINGHAM WATERWORKS.
Birmingham Corporationon, which was ceremononiously popened on the Birmingham Corporation, which was ceremoniously opened on the
28th ult, is a fine addition to the resourees of the Corporation for the supply of water to Birmingham. The extreme length of
the reservoir is 1300 yards, and the average width 400 yards, while the area is 90 acres; the average depth is $20 \mathrm{ft}$. ., and
the reservoir has a capacity of not less than 400 , gallons. Its site is an admirable one-a better, indeed, could and Shustoke, and neaway between Whitacre Railway Station taining $20,000,000$ gallons, and designed to intermediately receive water from the river Bourne. The water flows from the
larger reservoir by pumps to the filter beds at Whitacre, which are capable of passing $12 \frac{1}{2}$ million gallons in twenty-four hours recently been provided at the Whitacre station have deen designed by Mr. J. W. Gray, the engineer to the water department. The $£ 78,900$, by Messrs. John Aird and Sons, Lambeth, and the cost of the site $£ 35,000$ being reckoned, the total expenditure upon them is $£ 113,900$. The work of construction was commenced employed upon it. The work has been carried out constantly superintendence of Mr. J. W. Gray, assisted by Mr. N. T. Gray. 162 land 162 acres in extent, and it was acquired by the late waterwork about $£ 35,000$. The works immediately adjoining the station at
a Whitacre were carried out by the late company. The Corporation largely added to these works, and have now satisfactorily comare covered with water; the storage capacity is about
420 millions of gallons, equal to many weeks' consumption in a
time of absolute drought, together with a certain addition from the deep wells which have never yet failed. The greatest width quarters, and the circumference a mile and three-quarters. Of the whole distance about one-third consists of the natural forma tion of the valley and about two-thirds is an artificial embankment. The bottom of the reservoir consists first of about 14 ft . or 15 ftt . of drift or glacial deposit. Below that is a solid bed which has been tested in all parts to the depth of 40 ft ., and
found to be a mass of impervious marl and clay, and it is believed from geological surveys that the depth extended to 400 ft or 500 ft . Therefore, the natural formation of the valley and strata The The embankment is 237 ft . wide at the base, and it has a uniform
breadth of 20 ft . at the top, the inside of the slope being four to one, and the outside three to one. The embankment is 31 ft high, and there is a puddle wall $6 \frac{1}{2} \mathrm{ft}$. in thickness, pugged and rammed into solid consistency, and carried through the drift into the solid mass of clay and marl beneath. The construction of the reservoir occupied two years, and engaged from 800 to 900 men the greater part of that time. Four locomotive engines were employed, nine portable engines, fifty horses, some hundreds of wagons, and ten miles of rails. During the construc-post-office, a savings bank, and a mission room supplied by the contractors with the daily, and weekly and illustrated papers. Sunday and day schools were also established in connection with the works. The quantity of water required to be delivered daily poration was $8 \frac{1}{2}$ millions of gallons, and at the present time it is
12 millions of gallons. In addition to these reservoirs the water department has other reservoirs, the total storage capacity being 650 millions of gallons; and they are now in a position to
deliver at least 12 millions of gallons a day for seventy or eighty days during a period of drought or continued frost. The capacity of the department for delivering water is:-In the reservoirs 8 million gallons daily, deep wells $9 \frac{1}{4}$ millions, and streams rather more than double the existing demand upon the resources of the department. In carrying out those enterprises expended no less than $£ 340,000$, and by the time the council, in progress are completed and paid for, the total outlay will not be less than $£ 400,000$. If such works had been executed by a the water rents in all probability would have been increased. The Corporation, however, being able to borrow the capital at principal cent., have, besides paying the annual instalments, of $£ 20,000$ a year, in addition to adding $£ 2000$ a year to the reserve th. That as nearly as possible effects a reduction of 3d. to 4 d , in enginu in the rates. The department has under its control engines have been built by Messrs. James Watt and Co., of Soho, Messrs. Hathorn, Davey and Co., of Leeds, supplying the mingham gearig; the Root Patent Boiler Company, of Birpool, the self-acting stokers, with which the furnaces are fitted, The engines are from the designs of Mr. J. W. Gray, M.I.C.E., and consist of a pair of compound condensing differential engines, each low-pressure 60 in ., the stroke being 10 ft . Under each engine, sa a load box, similar to that of a waterworks Cornish being 100 lb . per inch on ram, which is 26 in . in diameter. It ught not to be added to experiment whether the friction to lift the one load box will be the whole power exted by the sterm and vacuum in the cylinders, the second load box falling by its own weight and free from the power exerted. The oilers are the same as those in use at the other pumping establishment, being Root's patent, of which there are now eleven in use under one roof. The Vickers' patent stokers are driven by a high-pressure table engine, made by Joy, of Birmingham. The
condensers are copper tube, encased in suction.

ELECTRICAL RAILWAY SIGNALLING. We know the difficulty of making a good electrical contact when it is to be worked by a train running at a high speed, and that this any attention. It is to meet the requirements of a contact of this
kind that M. L. Mors has invented the contact represented below, kind that M. L. Mors has invented the contact represented below,
of which the principle and disposition are easily understood by eference to the description which accompanies the figure. It conrain up utilising the vibrations produced by the passage of the
the which it is fixed, to produce, by the movement of the mercury, a contact in a hermetically closed space, which con-
tinues during the passage of the train. The contact works inues during the passage of the train. The contact works
any apparatus whatever-bell, signal, disc. upon the Paris-Lyons-Mediterranean line have given satisfactory
results. The apparatus may be applied in any case where it is

required that any mechanical vibration shall cause automatically a the fish-plate. B is a contact cone, insulated from the iron bo y a piece of ebonite or wood, upon which is a small plug, whicl arge surface of the cone is about 2 mm . from the surface . Th mercury in a state of repose. C is a cup containing mercury. This
cup communicates with the rail by a lever, and forms the eartl cup communicates with the rail by a lever, and forms the earth pole-copper or zine, according to position. D is a small screw for
regulating height of mercury; also for emptying the cup. E is a nipple, through which is forced the junction cable, covered with which covers the nipple in such a manner as to form a hermetically
closed joint. F is an iron cup containing mercury,-Electrical Review.

> A TrIAL of the electric light has been made for the first time in facturinburg Theatre Royal, introduced by the Electric Manu facturing Company of Scotland. The theatre is to be supplied
with 200 incandescent lamps, of 20 -candle power each, and of this number 150 were lighted. Four of Dr. Higgs' dynamo machines up; but when in full working order, storage batteries, which have been placed near the engine-house, can at any time supply light t 1340 revolutions a minute, and the E.M.F, is only 50 volts, They

THE TOWER SPHERICAL ENGINE.

OnE of the most remarkable exhibits at the Engineering and Metal Trades Exhibition, and one which attracted a great deal of introduced by the patentees and manufacturers, Messrs. Heenan and Froude, Newton Heath Ironworks, Manchester, and which was shown in operation driving an Edison dynamo. It is a rotary engine of eatirely novel character, and, as the name almost implies, it consists of a sphere of cast iron truly bored out, forming a chamber, within which the steam acts on suitably arranged pistons, the power being taken off by a shaft revolving through a ngine bre in orve. The following is a description the working parts:-The piston shown in Figs, 4 and 5 is a disc of steel having four phosphor bronze bearings inserted in four recesses, one pair of these, B B, being on one side of the piston, at right angles to the other pair C C, which are at the pposite side. Referring to Fig. 1,it will be seen that there are two shafts placed in the same horizontal plane but not in the same ver ical plane, one the driving shaft and the other the dummy shaft the latter revolving in bearings within the casing, and being inserted merely for giving the necessary movement to the piston. of wedge shape, convex towards the shaft, and having on their faces turned gudgeons or trunnions, which fit into the bearings B B and CC on the piston. When the blades and piston are thus coupled together the interior movement is complete, and it may be described as a universal joint with solid matter built up round it so as to form, when revolving, four expanding and contracting chambers. The angle of the shatts is best chosen at 135 deg . In revolving from the position shown in Fig. 1, the area $D \mathrm{E}$, which constitutes one chamber and is shown fully open, closes, F G opens, that on the further side of F G closes, and H, which is now closed by contact between the blade and piston, opens. Steam is admitted to the chamuire to contract, and this is accomplished in the following manner:-Two cylindrical excrescences K and L are formed on the sphere, and each contain cylinder - not shown on engravings - having on the face towards the sphere openings or ports for the ingress and egress of steam, see Figs. 6 and 7, and also having around the circumference other openings or ports corresponding with openings formed in the cylindrical shells, communicating by steamways with the supply and exhaust. M, Figs. 1, 2, and 3 , are notches in the sides of the blades, arranged so that whenits the steam, which is then cut off by a further movement
and allowed to expand, while the notch travels between the inlet and outlet ports. A still further movement brings the notch in communication with the exhaust port, and permits the steam to escape when the chamber is contracting.
The engine at the Exhibition worked well and silently, there being no vibration whatever. The power given out is very great in proportion to the weight of material employed, a 7 in . engine indicating no less than 18 -horse power at 600 revolutions per minute, with steam at 80 lb . pressure. act that the makers guarantee a very considerable saving in mend the "Tower" engine for use in a great number of cases where an ordinary engine could not be conveniently applied, such, for instance, as for the direct driving of dynamo machines.

THE NEW HARBOUR WORKS AT ANTWERP. By M. G. A. Royers, Engineer to the Municipality of Antwerp.* BEFORE describing the important harbour works now under construction at Antwerp, the author will devote a few words to the situation and history of the port. It is not necessary to carry our researches far into the past; we need go no further than the beginning of the present century to find a condition of things which
was merely the embryo of that which now exists. There were no basins, no docks properly so called, and scarcely any quays. In front of the town was a foreshore, which was partly dry at low water, and on which vessels lay ; and besides this there were half-a-dozen creeks opening into the river, but also dry at low tide. The
position of Antwerp is, however, so favourable, and the river on whition of Antwerp is stands offers so many advantages for navigation, that freedom was the only thing required to create, or rather to restore, a maritime trade of great importance. These natural advantages have grown with time. The great depth of the river, which was formerly a mere superfluity, is now a notable element of the town prosperity, in consequence of the continualy-
vessels and the growing importance of saving time in discharging. Canals, roads, and above all, railways, have still further increased the importance of the position of Antwerp, which may now be considered as one of the most advantageous in the world from a commercial point of view. Nevertheless, all is not yet complete ; taken to preserve its depth, and if possible to improve it. Navigation may beinterrupted in the middle of winter-not that theScheldt is actually closed, but that steering becomes difficult; and although this inconve nience is reduced to an interval of some five days per annum on an
average, yet it should be still further diminished, or if possible, done away with altogether. The railways needed have not all as yet
been made, and the possible improvements have not all been introduced; nevertheless, despite the efforts of competition, progress has been so extremely rapid, beyond that of other places, that at present the trade is doubling every eight or ten years. Glancing ack at the trade existing at the commencement of this century, we onnage entering the port was only 250,000 tons, while in $1865{ }^{5}$ it was 750,000 tons, and in 1882 it had reached $3,450,000$ tons. The period of the consulate and empire is that which marked the execution of the first important works in the harbour, including two
lengths of quay upon the Scheldt, and the two first docks, now lengths of quay upon the Scheldt, and the two first docks, now
called the Old Dooks, constructed by Napoleon. Of these the smaller, or entrance basin, is about 150 metres wide (490ft.) and 173 metres long (567 ft.); the large basin was 402 metres long anci 173 metres wide (1320 ft. and 567 ft. .), but has lately been reduced
to 380 by 150 metres (1240 ft . by 490 ft .) in order to enlarge the quays. to 380 by 150 metres (1240 ft . by 490 ft .) in order to enlarge the quays. width (59 ft. .); and these with some leng menioned above, were sufficient for the trade until 1843. At that date a new length of quay wall, about 350 metres long (1150 ft .), was added, which, with the prolongation constructed in 1862, forms
what is now called the Quai du Rhin. In 1853 it was decided what is now called the Quai du Rhin. In 1853 it was decided
to construct outside the fortifications a dock which now forms part of what is called the Kattendyk dock, together with a large dry dock, and a lock of 25 metres width- 82 ft --opening into the Scheldt. These works were finished in 1860 ; and the fortificanected with the old ones, and three other basins, all of large size, were constructed. These were completed in 1873 ,
The following, then, was the position of the port of Antwerp at the period when the works which form the subject of the present paper were commenced. There were, first, quay-walls along the
river having a total length of about 2100 metres (7000 ft) ; secondly, four old creeks, still opening into the river ; thirdly, the old docks of Napoleon, having an area of about 8 hectares (20 acres), con-
nected to the Scheldt on one side and to the new docks on the other ; fourthly, the four new docks, with an area of about 30 hectares (75 acres); ; fifthly, three dry docks for repairs. The total
length of the quays within the docks was about 6500 metres $(21,300 \mathrm{ft}$., or 4 miles $)$. Most of these quays and a part of those on the river wall were in connection with railways, and several of them were occupied by sheds. In the last few years the erection of sheds and mechanical appliances has been largely extended.
Steam and hydraulic travelling cranes, fixed cranes of great power, Steam and hydrauic travelling cranes, fixed cranes of great power, been constructed, whilst the quays are connected with immense railway stations, having a total area of 31 hectares (77 acres), and a total length of sidings of 65 kilometres (40 miles); at the same time the docks are in direct communication with the Campine canal, large works, and the efforts made to utilise them to the utmost, their insufficiency for the present trade of the port became every day more evident. In addition, the quay walls on the river, constructed bit by bit on very irregular lines, were ill adapted for any
important trade. Except on the Quai du Rhin, there were no means important trade. Except on the Quai du Rhin, there were no means
of working these river walls by railways, and they could not even be approached at low water, their footings being laid at the lowwater level; ships were obliged either to lie on the mud or keep at a distance from the walls. Finally, the irregular form of the quays, a marked projection which occurred about the middle
of their length, and the necessity of providing projecting jetties, of their length, and the necessity of providing projecting jetties,
produced a retardation in the river currents, and in consequence leposits of sand and other inconveniences; whilst the ground available was insufficient for a complete and regular working of the traffio It was therefore decided to re-construct the whole of the quays upon a regular curve, concave towards the river. This
curve is formed of several circular arcs tangential to each other and has a total length of 3500 metres ($11,500 \mathrm{ft}$. or 2.2 miles). At the same time the creeks which divided the then existing quays were to be replaced by large floating basins for smaller vessels. The docks being also insufficient, it was resolved to lengthen one
of them, and to add three new dry docks to the three already of them, and to add three new dry docks to the three already
existing. The new quays are being executed by the State, but existing. The new quays are beeng executed by the State, but
will be furnished with the necessary appliances at the cost of the will be furnished with the necessary appliances at the cost of the
town; the other works on the docks are being executed by the town alone. The portion to be provided by the State was contracted for in 1877 by Messrs. Couvreux and Hersent, of Paris, and com-
prised the following works:-(1) The construction of a quay wall prised the following works:--(1) The construction of a quay wall
3500 metres long ($2 \cdot 2$ miles), resting on a sound foundation, laid without any timber footings, and giving a depth of not less than 8 metres of water ($26 \frac{1}{4} \mathrm{ft}$.) against the face at low tide. In this wall are three recesses, rectangular in plan, which are intended tc accommodate floating landing stages, and give access for boats,
The landing stages will not project beyond the line of the quay, The landing stages will not project beyond the line of the quay,
und will be made of iron, having a movable platform joined to the wharf by a movable bridge. Two of these landing stages
re 20 metres long by 10 metres wide (66 ft . by 33 ft); the other is 100 metres by 20 metres (330 ft . by 66 ft .). (2) The building at the south end of this quay wall of an embank-
ment connecting it with the land, this embankment to be 650 metres long (2130 ft.), and to be properly protected against the action of the river. (3) The construction of a basin for small craft, having an area of about 4 hectares (10 acres), and
divided into three parts, a lock 13 metres wide (42ft.) connecting divided into three parts, a lock 13 metres wide (42ft.) connecting
this basin with the Scheldt, and an entrance channel 50 metres wide (160 ft .) (4) The filling-in necessary behind the new quay wall, and in the creeks which were to be done away with, as well as the dredging required to maintain the full sectional area for the river throughout the period of executing the works. The walls of the new quay and of the floating basin are calculated to stand a
distributed load of 6 tons per square metre (11 cwt . per square distributed load of 6 tons per square metre (11 cwt per square
foot), the load extending over the top of the wall itself and the quay space behind it. The works were divided into four sections, the whole to be completed within six years and seven months from the commencement. They included the provision and fixing of twelve million kilogrammes caissons in the foundations, the landing stages, swing bridges, \&c. 375,000 cubic metres (490,000 cubic yards) of brickwork and concrete; 25,000 cubic metres (33,000 cubic yards) of masonry in Soignies stone, and more than $2 \frac{1}{2}$ million cubic metres ($3,300,000$ cubic yards) of earthwork in filling, dredging, \&c. The cost is
estimated at more than 38 million francs $(£ 1,520,000)$; being augmented or diminished, according to an agreed schedule, with any augmentation or diminution in the depth of foundations which may have become advisable. To this will be added about $1,500,000$ francs ($£ 60,000$) for additions to the foundations. The whole should be completed about the commencement of
The above sketch is sufficient to show the important character of the works now under construction. The author will now describe briefly the first section of these works-which are constructed in front of the position occupied by the old southern citadel, now demolished This the methods employed by the contractors in their execution. for small craft, which are already completed. They run parallel to the river, and are three in number. The central basin, from which branches the lock connecting them with the Scheldt, is 266.5 metres long and 65 metres wide (874 ft . by $213 \mathrm{ft}$. .) ; the two others are respectively
with a width of 50 metres (164 ft .). They are joined to the central with a widthen orgs metres wide (33 ft .), each crossed by a swing bridge carrying a roadway $5 \frac{1}{4}$ metres wide ($17 \frac{1}{4} \mathrm{ft}$.), and two footways, each of 1 metre (3 f ft ft .). The bottom of the basins is 2 metres
$\left(6 \frac{\mathrm{ft}}{}\right.$.) below the level of low water at Antwerp; and the coping ($\left.6 \frac{1}{2} \mathrm{ft}.\right)$ below the level of low water at Antwerp; and the coping
of the walls 6.35 metres (21 ft .) above the same level. The total length of these walls is about 1800 metres (5900 ft . or $1 \frac{1}{8}$ mile) They rest at the bottom level on a layer of concrete 1 metre thick They rest at the
and 5 metres wide ($3 \frac{1}{4} \mathrm{ft}$. and $16 \frac{1}{2} \mathrm{ft}$.), enclosed by two rows of sheet

ANTWERP NEW HARBOUR WORKS - GENERAL PLAN, AND SECTION OF QUAY WALLS.

piling. The wall, built of Boom bricks, is 8.35 metres high $\left(27^{\circ} \cdot 4 \mathrm{ft}.\right)$, including the coping ; 4 metres wide at the base, and to a height of $2 \frac{1}{2}$ metres ($8 \cdot 2 \mathrm{ft}$.) above low water. The quay space of these basins has a width of 30 metres (98 ft .) ; it has been paved and has still to receive the necessary appliances for working.
The walls are furnished with cast iron mooring posts, with cast The walls are furnished with cast iron mooring posts, with cast
iron fenders, and with wrought iron ladders. The basins are kept filled to a level of about $3 \cdot 60$ metres above low water built partly in the river and partly on dry ground. It is composed of three distinct portions. First, there is the upper lock, with a sill of masonry 0.30 metre (1 ft .) above the bottom of the basin, and
resting on a foundation of concrete $2 \frac{1}{3}$ metres $(8.2 \mathrm{ft}$.) thick. It has a width of 13 metres ($42 \frac{1}{2} \mathrm{ft}$.) between the side walls, and i crossed by a swing bridge $8 \frac{1}{2}$ metres wide (28ft.), intended not only for horse traffic, but for the railway which will serve the quays on
the Scheldt. This lock was constructed between two rows of sheet piling, and behind an earthen cofferdam connected at each end with the original banks of the river. It has a pair of gates opening inwards, and is arranged for receiving, if necessary, another pair opening outwards. Secondly, there is the lock chamber, 75 metres long by 25 metres wide (246 ft . by 82ft.). Its walls are similar to those of the basins, but they are entirely faced with ashlar. The surface is two metres below low water (6.56 ft .). The whole is surcontains two pairs of gates, and has its invert level the same as that of the chamber. The side walls are 13 metres apart ($\left.42 \frac{1}{2} \mathrm{ft}.\right)$, and are crossed by a swing bridge of the same dimensions as that across
the upper lock, and carrying a roadway and two lines of railway.
The chamber and lower lock had to be constructed almost
station, having an area of 20 hectares (50 acres), and specially
intended for the service of the new quays. At some future date it is probable that this station may be made to communicate with the left one or two lines of railway, which would be constructed by the State. Immediately above, or south of this bridge, in the corner between small basin, dry at low water, and especially intended for barges carrying materials for construction. It will be 115 metres by 50 metres (377 ft . by 164 ft.), having a length of 340 metres of quay 30 metres wide (100 ft .). Its entrance will be crossed ay a swing bridge. From the northern side of this entrance begins the quay in one curve to the old docks. This wall has n one curve to the old docks. This wall has been built by a
special system of movable cofferdams which will be described immediately. It is constructed of Boom bricks, and faced with Soignies stone; the coping level is 6.35 metres (21 ftt .) above lowwater; the total height is 14.35 metres (47 ft .), and the width is 2 metres at the top (6.56 ft .), 6.25 metres at low-water level ($20 \frac{1}{2} \mathrm{ft}$.),
and 7 metres at the base (23 ft .) It has a batter of 1 in 20 from the coping to low-water level, and 1 in 10 from thence to the foundations. The upper part of these foundations is throughout at a level of 8 metres ($26 \frac{1}{4} \mathrm{ft}$.) below low-water, and has a breadth f 9 metres (291 f ft .); the depth varies between 2.50 and 5 metres
$\left(8 \mathrm{ft}\right.$. and $16 \frac{\mathrm{ft}}{}$), according to the depth of the river-bed the nature of the soil, so that the bottom of the foundation is from 10.50 to 13 metres ($34 \frac{1}{\mathrm{f}} \mathrm{ft}$. to 423 ftt .) below low-water. The difficulty of carrying out such works in the Scheldt is very great;
the sandy and shifting nature of the bottom, the speed of the curthe sandy and shifting nature of the bottom, the speed of the cur-
rent, and the great rise of tide, are all adverse circumstances. It rent, and the great rise of tide, are all adverse circumstances. It
was required to build a continuous quay wall with its foundations
34ft. to 43 ft . below the low-water level of a rapid river, rising twice
rolled girders and diagonals. Round the lower edge of the bo russ a wrought iron rectangular tube $H, 1.50$ metre high, and
0.50 metre wide (4.92 and 1.64 ft .), through which a man can pass to bolt or unbolt the joint between the caisson and the cofferdam $1 \cdot 64 \mathrm{ft}$.), through any of which the workman can enter ; when within he is then protected by means of compressed air. Thes tubes are rivetted to the outside of the cofferdam, stiffened by gussets, and furnished with air locks. The upper part of the
cofferdam is stiffened by strong lattice coferdam is stiffened by strong lattice girders inside, and th the ends for letting water in when required, in order to increas the load on the caisson, and thus facilitate its sinking. To preven any deformation of the walls of the cofferdam under the pressure of the water, whist the building of the masonry is going on inside as the work proceeds are removed, and rong movable stays, which bearing against the face of the wall already constructed. The cofferdam, complete with all its apparatus, weighs about 200 tons The floating framework CC is composed of two iron barges,
26 metres by 5 metres (85 ft . by 16 ft .); on these are built frames of iron JJ braced diagonally, and ; on these are buil of 13 metres (43ft.) above water-level by cross girders heigh are also connected by a similar framework at the two ends. The cofferdam is suspended by twelve chains in the space betwee the two barges, and can thus be raised or lowered at will by
means of hoisting gear, consisting of six winches in means of hoisting gear, consisting of six winches in each barge,
all twelve worked by one steam engine. The power is transaltwelve worked one steam engine. The power is trans
mitted from one barge to the other by means of two pitch-chains Uniformity of lifting with the twelve lifting chains is secured by india-rubber springs; each tackle has a lifting power of about 20 tons. In the hold of the barges are the steam

TRANSVERSE SECTION
ONGITUDINAL SECTION
FIGS. I AND 2.-ANTWERP HARBOUR WORKS - CAISSONS FOR CONSTRUCTING OUAY WALLS.
entirely within the area of the Scheldt. Instead of building a cofferdam in the river so as to proceed with both at the same time, the contractors propose to make the lower lock itself form part of
the cofferdam which should shut in the lock chamber to be built behind it. With this object they constructed the an immense caisson sunk by means of compressed air to a depth of $6 \frac{1}{2}$ metres (21 ft .) below low-water level. This caisson was 40 by 23 metres (131 ft . by 75 flt ft), having an area of 920 square
metres 9890 square feet). Its total height was 13 metres ($42 \frac{\mathrm{ft}}{\mathrm{ft}}$), giving a content of 11,960 cubic metres (420,000 cubic feet.) Inside completely independent of one another, each having its own airlock and tubes for concrete. The walls of the caisson were joined near the top and above the girders by cross girders of iron. The
caisson was erected on the banks of the Scholdt in a spot sheltered from the tide by an earthen embankment. When complete, the mbankment was cut through on the side near the river, and the ny damage to its proper position. The sinking was commenced in August, 1878, and was finished by November of the same year. The masonry having been carried up a certain distance, it was then A vast basin was thus formed, which needed only to be pumped dry in order to commence the foundations of the lock chamber. When the chamber and locks were completed, all that remained was to remove the iron barrier across the end of the lower lock next the river by cutting the rivets and unbolting the wrought iron
knees which supported it. The six gates belonging to the entire ock are all of wrought iron and made without rollers; the lowering of the water is effected by means of sluices in the side walls and
valves in the gates themselves. Between the lower lock and the line of the new quay is an entrance channel 50 metres long 164 ft .) and the same in width, intended to shelter boats from the channel is $2 \frac{1}{2}$ metres (8 ft .) below low water; its walls were built upon caissons sunk by compressed air to depths varying from 10.5 to 12.6
metres below low water ($34 \frac{1}{2} \mathrm{ft}$. to $41 \frac{1}{2} \mathrm{ft}$.), and in the manner to be escribed hereafter. The embankment connecting the southern end of the new quay-wall with the banks of the Scheldt was
finished in 1878. It is 650 metres in length (2130 ft . or 0.4 mile) and is founded partly on rubble, partly on platforms of fascines loaded with stone, and stone thrown in at the greater depths to form a sound footing for the embankment. This is constructed of an argillaceous alluvial earth called "schorre," and of sand dredged
from the Scheldt; the river slope is paved with rough hewn stone. from the Scheldt; the river slope is paved with rough hewn stone. distance both above and below the entrance to the basins already described. The filling in behind the walls has been performed partly by hopper barges discharging spoil dredged from the river, partly by locomotives bringing earth removed from the basins, and may be judged from the fact that the quay head of the entrance channel to the basins is more than 150 metres (500 ft .) in front of the old dyke which formed the border of the river, and that two thirds of the ground between the basins and the new quay wall has been won from the river bed. Behind the basins extends the new and bought in 1874 by the Société Anonyme du Sud d'Anvers. It is intersected by wide streets, and is being covered with new buildings. Altogether it has an area of 115 hectares (284 acres); and to the
south of it, close to the new fortifications, is the southern railway
in the day to more than 13 ft . on the average above this level, and sometimes at high tides to 21 ft . The method adopted by the
contractors was as follows : they divided the total length of the quays into lengths of 25 metres each- 82 ft .-which have been built end to end, and directly upon firm ground, without any
intervening foundations. This has been accomplished by means of a special cofferdam used for the first time on this occasion, and with most complete success. It is composed of the following
parts :-Firstly, an iron caisson for compressed air, A A, Figs. 1 and 2, varying in height according to compressed air, A A, Figs. 1 and tions are to be laid, and intended for removing the soil and laying 12 metres of the wall. Secondly, a movable iron cofferdam B B which it stands, and with which it is connected by bolts. Within this cofferdam can be built, in the dry and in the open air, the
part of the quay wall, 8 metres in height- $26 \frac{1}{4} \mathrm{ft}$.- which is compart of the quay wall, 8 metres in height- $26 \frac{1}{4} \mathrm{ft}$.-which is com-
prised between the top of the foundations properly so called and the level of low water. Thirdly, a floating framework C C, de signed for the manipulation of the cofferdam and for the placing and sinking of the caisson. The caisson serves for the removal of
the earth, and is then filled with concrete and becomes an integral the earth, and is then filled with concrete and becomes an integral
part of the foundations. The masonry having been built on the part of the foundations. The masonry having been built on the
top of this up to low-water level under the shelter of the movable
 ing it from the caisson and raising it by chains fixed to the floating another length of wall, while the length so far constructed by its means is finished in the dry. Such is the general plan of
operations ; a few details are subjoined. The caissons operations; a few detaiss are subjoined.
uniform width of 9 metres (29 ft .) and a length of 25 metres (82 ft .) Their height varies from $2 \cdot 60$ to 5 metres ($8 \frac{1}{2} \mathrm{ft}$. to $16 \frac{1}{2} \mathrm{ft}$.), according to the depth required, the footings of the wall, properly so called,
being, as already stated, always at a depth of 8 metres (261 ft .) being, as already stated, always at a depth of 8 metres ($26 \frac{1}{4} \mathrm{ft}$.) rivetted to longitudinal and transverse angle irons. It is divided into an upper and a lower portion by a horizontal partition D ; the lower portion forms the working chamber, and has a uniform height of 1.90 metres ($6 \frac{1}{} \mathrm{ft}$.) from the lower edge to the roof. This roof is rivetted to a series of transverse lattice girders E E, strong enough to support the load of masonry to be built upon the caisson, and at
the same time to prevent any buckling of the sides. An angle-iro is rivetted all round the external edge of the top of the caisson, and through this pass the bolts which connect it to the cofferdam, The roof of the caisson has five circular openings, in which are meder ($1 \cdot 1$ fft)) G , which is in the centre has a double-air lock for the werkmen and for compressed air. The masonry is so built as to leave round each of these tubes an annular space, so that they may be unbolted
and withdrawn when the sinking is completed and withdrawn when the sinking is completed. The spaces are
afterwards filled with concrete. The caissons are built in yards on afterwards filled with concrete. The caissons are built in yards on the bank of the river, and are launched at high water; they are
then towed to their destination underneath the movable cofferdam, and are bolted to the latter, a layer of india-rubber being placed between the two. The weight of a caisson 82 ft . by 291 ft . varies
from 65 to 100 tons, according as the height is 81 ft . or $16 \frac{\mathrm{ft}}{}$. The movable cofferdam B B is composed of a large wrought iron rectangular box, 25 metres by 9 metres (82 ft . by $29 \frac{\mathrm{fl}}{\mathrm{ft}}$.), and 12 metres (40ft.) high. This height is sufficient to protect the interior against The sides have a thickness varying from 7 mm . at the top to 12 mm . at the bottom ($0^{\circ} \cdot 28 \mathrm{in}$, to $0^{\prime} 17 \mathrm{in}$.), and are stiffened externally by
sure pumps, and the exhausting pumps. On deck are mortar mixing machines, and other machines for handling the material for working by night. The two barges, with their framework,
engines, boilers, \&c., weigh altogether about 300 tons. The method ongines, boilers, \&c., weigh altogether about 300 tons. The method caisson is first dredged to the proper level; the caisson is then caisson is first dredged to the proper level; the caisson is then
brought up to the floating framework, and its roof is loaded to the op of the girders with concrete, which ultimately forms part of the foundation. The cofferdam is lifted until its bottom edge is about 1 metre $(3 \cdot 28 \mathrm{ft}$.) above water level, and the caisson is then
brought in under it. The cofferdam is lowered upon it, and the wo are bolted together. The masonry is then commenced on the top of the caisson, so as to load it with the necessary weight, whilst at the same time the central air tube and four concrete tubes are attached to it-see above. When the weight of masonry is sufficient bottom at low water, the whole structure, which weighs river 2000 tons, is brought into the exact line of the quays and firmly noored. The masonry is then continued within the cofferdam, whilst at the same time the working chamber at the bottom of the caisson is flled with compressed air; and as soon as the caisson pressure water is admitted inside the cofferdam so the upward he weight bearing upon the caisson. The the working chamber and excavate the soil. As they do so, the caisson sinks gradually until it reaches a firm foundation at the desired depth. The bottom of the Scheldt is generally com posed of sand, more or less argillaceous, and of loamy earth
Under these circumstances the work of removing the eart excavated has been considerably facilitated by the use of ejectors, as employed for the first time by the same contractors at Selzaete Bridge on the Terneuzen Canal. For this purpose the earth is shovelled into an iron box fixed to the roof of the caisson; a tube furnished with a stop-cock leads from this bo the box brings in water under a sufficient head to overcome the pressure of the compressed air. This water reduces the earth in the box to slush, the action being quickened if necessary by stirrer actuated by hand-power. When the mixture is complete, the ejector, which expels the slush through the side of the caisson. Each ejector can easily discharge two cubic metres ($2 \cdot 6$ cubic yards) of earth per hour. When the excavation is finished, the working chamber is filled with concrete in regular layers through the four tubes previously mentioned. During the whole of this time the
further loading of the cofferdam is continued, with a sufficient quantity of materials to balance the increasing displacement caused by the sinking of the mass, and by the injection of the compressed air. When the working chamber is completely filled with con crete, the concrete tubes and air tube are removed, the water is pumped from the inside of the cofferdam, and the masonry is the
continued up to a height of about 0.50 metre (1.64 ft) above lowwater. The cofferdam is then unbolted by means of workme entering through the tube H previously described, which is filled with compressed air. The cofferdam is then lifted by means of the winches, and taken away to another caisson for a similar operation. It follows from this method that almost the
whole of the masonry below water is built in the open air, the filling of the working chamber being all that is done
under compressed air. The superintendence of ther under compressed air. The superintendence of the working
is therefore easy, and the construction cheap. In addition
to the economy thus obtained in the masonry, this method to the economy thus obtained in odve almost entirely avoiding
presents also the great advantage of alder in
the loss of the iron plates, which in the older systems were rivetted to the caisson as it descended, and were withdrawn as best they could be after completion of the masonry. A single cofferin of the foundation for one 25 -metre length of wall (82 ft .), and the raising of the masonry to low-water level, occupied thirty-five to forty days; the time has now been reduced to about twenty-five
days. The interposition of the sides of the cofferdam leaves, of days. The interposition of the sides of the cofferdam leaves, of
course, an interval, of about 1 metre (31 ft .), between the successive course, an interval, of about 1 metre (3 ${ }^{\frac{1}{4}} \mathrm{ft}$.), between the successive
lengths of wall. The sides of this gap are temporarily closed by wooden sheeting, and the gap is then filled in with concrete thrown down under water up to the height of low-water. Vertical grooves are left in the ends of the adjacent lengths of walling, and are
filled in with concrete, which thus forms a sort of joggle betw filled in with concrete, which thus forms a sort of joggle between
the two lengths of wall. Above low-water the masonry is carried up by tidal work in a continuous length. Throughout the
whole length of the new quays there will be two main lines of railway, separated by an iron railing from the street of 20 metres width which extends along the front of the houses, Running parallel to and connected by switches with these main lines there second for wagons arriving empty, and the third, covered by the sheds, for the operations of loading and unloading. Along the quay itself will run a sixth road united to the main line by transverse roads passing between the various sheds. For transferring
merchandise direct from vessels on to wagons on this line, overhead movable hydraulic cranes will roll on a special way laid outside this road, with a passage through their pedestals to allow free circulation of wagons. Between the fourth line of rails and the quay will be built iron sheds occupying a total width of about 50 metres length of about 1400 metres (4600 ft .) of the quay. The sheds when complete will cover an area of about 100,000 square metres quays is 100 metrest, or 25 acres). The total width of the new necessary to pull down more than 600 houses, the purchase of
which has cost more than $25,000,000$. ($£ 1,000,000$). The total cost of the quays, including machinery, earthworks, dredging, paving, works above ground, and property purchased, will be about
$80,000,000 \mathrm{f}$. ($£ 3,200,000$). The new quays will be worked by hydraulie machinery. For this purpose steam pumping engines of basin for small craft. From this building a line of pipes is already laid, passing round the small-craft basin and along the first section of the quays. This first section is worked by twenty-two portable
hydraulic cranes. Hydraulic capstans will be used to haul the wagons and cranes along the quays. The steam pumping engines be open to the inspection of the members. the works at the other or northern end of the quay, towards the
old dock. Following the line of the new river wall, the visitor passes one of the recesses previously mentioned, in which is placed a landing stage, 20 metres by 10 metres (66 ft . by 33 ft .), provided
with a flying bridge, and intended for passengers and goods arriving from the Waes Railway Station on the other side of the Scheldt. He also passes the entrance of the old docks and the Quai du Rhin, and then has on his right the Kattendyk basin. Here are three dry docks previously constructed, and three which have been con-
structed during the progress of the present works. These new docks are 133 metres long (436 ft .), with entrances 15 metres wide (50 ft.), and are faced throughout with hewn stone. The gate chambers are each founded on 280 piles, about 6 metres (20ft.) long, covered with a gridiron of timber. Sunken cofferdams of sheet the gates. The walls of the dock are founded on the ground, within a casing of sheet piling; they rest on a layer of concrete, 0.80 metre
thick (212 ft.), and all are of brick faced with stone. Throughout the length intended to receive vessels the bottom has an invert of masonry strong enough to resist the pressure of water when the
dock is empty. At the same time this invert has been filled up with masonry, so as to give the bottom of the dock a slope from the middle towards the sides, thus preventing the rain water from settling in the middle under the vessel's keel. The steps are wider
than in the old dry docks, which assists the workmen in placing the than in the old dry docks, which assists the workmen in placing the coping is brought down almost to the level of the water in the dock outside, so that the depth of the dry dock is as small as pos-
sible, and thus gives more air and light round the vessel docked. sible, and thus gives more air and light round the vessel docked.
The keel blocks, instead of being of wood, as usual, are all of cast Thron, each in three pieces. Of these the lowest is fixed into the
ir
floor of the dock; the uppermost carries the vessel's ntermediate piece, which is wedge-shaped, is driven in between the two others so as to support the keel frmply at all points. The
construction of these three new dry docks has required 28,700 cubic construction of these three new dry docks has required 28,700 cubic
metres (37,540 cubic yards) of brickwork and nearly 5000 cubic cubic metres (130800 yards) large dry dock previously existing is emptied by means of pumps
capable of drawing 200,000 litres (7000 cubic feet or 44,000 gallons) capable of drawing 200,000 litres (7000 cubic feet or 44,000 gallons)
per minute. It was desired to make the same pumping engine so, from the fact that the conduit leading the water from the new docks to the engine was obliged to pass below the existing docks. For this purpose a tunnel, about 90 metres long (300 ft .) was driven and lined with cast iron tubbing. A well was first sunk by means
of compressed air, and the driving of the tunnel was carried on by of compressed air, and the driving of the tunnel was carried on by
the same means, the successive lengths of cast iron tubbing being bolted on to one another, and the water kept back by the pressure of the air. This operation succeeded perfectly, and the extremity
of this tunnel has been united with the head of eash of the dry docks. Beyond the dry docks the Kattendyk basin has been extended so as to give it a total length of about 1 kilometre $(32,800 \mathrm{ft}$.),
communicating by one entrance with the old docks, and by another entrance direct with the Scheldt. The northern docks just described are also worked by hydraulic machinery. A special building
contains a 150 -horse power steam pumping engine and boilers, and two accumulators weighing 120 tons each. This engine supplies a cranes round the docks, the bridge and gate machinery and capstans for hauling ships, \&c., and also the hydraulic engines which drive the dynamovelectric machines for lighting the entrance of the old
dooks, Among the machines worked by this pressure-water may be mentioned a forty-ton crane altered to the hydraulic system and a sheer leg capable of lifting Kattendyk basin. The lock of this basin is crossed by a drawbridge having a length of $48 \cdot 36$ metres (158ft.) carrying a
roadway 90 ft . wide, and weighing 375,000 kilogrammes (370 tons). In order to open this bridge it is raised 1 metre (3.28 ft .) by means of
two hydraulic rams 0.80 metre in diameter ($31^{\circ} 5 \mathrm{in}$.), and is then drawn forward by chains which are worked by rams 0.61 metre in diameter (24 inn .); the bridge can be completely opened in three minutes twenty seconds, and closed in two minutes ten seconds. Besides these great works for the enlarging of the quays on the
Scheldt, the extension and improvements of the dot Scheldt, the extension and improvements of the docks is also in
progress, as mentioned above. The city has issued forms of tender for an extension of the docks towards the north, reaching as far as the northern citadel, which they have purchased. quese works
comprise the making of two new docks, having a quay length of 3700 metres ($12,136 \mathrm{ftt}$, or 2.3 miles), and an area of 21 hectares
(50 acres), and a depth of 9 metres (30 ft .) . These works will cost, including acquisition of property, nearly $20,000,000$ francs
coser (8800,000), and are to be of propleted in three years. Thus from 1877, when the present works were begun, to the date when they
will be completed -say 1887 -the kingdom of Belgium and the will be completed-say 1887-the kingdom of Belgium and the
city of Antwerp will have executed maritime works, and acquired property for this purpose, costing a total sum of $100,000,000$ francs
$(£ 4,000,000)$, irrespective of improvements made in the works previously existing.

EDWARDS'GAS ENGINE.

The accompanying engravings illustrate Edwards' patent gas to which we referred in our recent notice of the engines exhioited at York. In our engravings a is the foundation plate of the engine, having the bearing b in which the crank shaft c revolves; d is an inclined plate upon the foundation a, to which the cylinder e and casing f are bolted; g is a piston working in the cylinder e and having a hollow rod or trunk h, to which is jointed the connecting rod i, which drives the crank pin k. The guide fits upon the hollow trunk h, and is itself surrounded by the air casing m, which communicates with the casing f through openings
$n n$ in the inclined plate d. The guide l has openings o, through which air enters the casing m, when the hollow trunk h is at the inner end of its stroke ; p is the exhaust p ipe, and r is a casing round the cylinder e, through which water may be made to cir culate by pipes at s, t. The valve seat v fits into the cylinder c and has holes w for the admission of air, and x for the admission of gas through the central pipe y. The valve z consists of a disc of metal covering these holes and guided by a spindle A, the outer
end of which is fitted with a metal or india-rubber spring at B, end of which is gitted with a metal or india-rubber spring at B ,
and a regulating nut C . The gas pipe y is shown supplied from a flexible bag D, the supply to which from any convenient source is regulated by a cock or valve at F. The piston g contains a disc exhaust valve G, the spindle H of which is fitted with closing spring I, and the end of the spindle is pressed down during the inner stroke of the piston by a tail-piece K on the inner end of the connecting rod i. Holes L open from the
hollow piston above the exhaust valve G into the cylinder round hollow piston above the exhaust valve G into the cylinder round
the hollow trunk h, and thence to the exhaust pipe p. At or the hollow trunk h, and thence to the exhaust pipe p. At or
near one-third of the stroke of the piston a firing valve P is near one-third of the stroke of the piston a firing valve P is
arranged, having an inlet hanging valve of the usual kind, hrough which a flame burning outside is drawn when the valv closed by a cover R , to which the valve seat v and gas inlet pipe g are connected.
The operation of the engine is as follows:-The piston g being direction of the arrow, and the piston draws air in through the holes w and gas through the holes x, the two mixing as they pass under the inlet valve z. When the piston has advanced far nough to uncover the firing valve P the flame is drawn in and gas closing the inlet valve z and carrying the piston to the end of its stroke. The momentum of the fly-wheel then carries the piston back through its return stroke, during which the tail-piece K presses the spindle H and opens the exhaust valve G, through which expanded air and gas escape to the exhaust pipe p. a complete clearance from the cylinder of the products of combustion, whe whe whol charge and reduce efficiency.
When the piston arrives
When the piston arrives at the inner end of its stroke, the exhaust valve G is closed by the spring I and a fresh supply o
air and gas are drawn in through the inlet valve seat v piston again commences its outer stroke. In order to keep the cylinder e sufficiently cool, whether the water casing at r be used or not, the whole supply of air is drawn from the front end of the
cylinder through the openings $n n$, and thence between the cylinder through the openings $n n$, and thence between the
cylinder e and the casing f, and round the end of the latter to cylinder e and the casing f, and round the end of the latter to
the inlet valve v. And in order to prevent or lessen the noise of the inlet valve v. And in order to prevent or lessen the noise of
the explosions, the hollow trunk h is made of such length that the explosions, the hollow trunk h is made of such length that
its front edge closes the openings in the guide l, through which air is drawn into the air casing m and through the openings $n n$ just before the explosion takes place, the noise of which there material, such as miner the same purpose fibrous or porous the space between the cylinder e and the casing f.
The engine may be made to revolve in the opposite direction that the arow by turning the piston and connectiog rod round so instead of the wiece upon the later is above instead of below, and cylinder e from which the air passing betw be formed upon the casing f absorbs the heat, The cylind er is arranged inside the the inclined position shown, but it may, of course, be fixed in any other convenient position.

COAL WINDING IN DEEP SHAFTS. By Mr. Arthur H. Stokes, F.G.S., H. M. Inspector of Mines Conchuced foom page 4s.)
Plough stcel vire rope.-Wire ropes made of Plough steel have
lately been introduced for winding coal, where thin and light weighted ropes are required. The wire takes its name from the
purpose it is used for purpose it is used for in agricultural work. The author believes it
is made specially for steam plough work, and of a very tenacious and hard quality of steel. The wire being drawn through various sized rollerss is crushed or thinned down by pressure to its required
gauge, and it is guaranteed of the highest breaking strain. The gauge, and it is guaranteed of the highest breaking strain. The
autbor does not express any opinion on this, or upon either the Time will prove its of this class of wixe rope for winding purposes, however, quite clear that a steel wire rope of lighter weight, and
less dimensions than the ordinary steel rope, combined with a
greater breaking strain, and of course manufactured. The author thinks, whatever may be the workin result of the Plough steel wire ropes, that a steel winding rope
equal to a breaking strain of, say, 54 tons, or a working load of equal to a breaking strain of, say, 54 tons, or a working load of
$12,000 \mathrm{lb}$. per square inch of cross sectional area can be $12,000 \mathrm{lb}$ per square inch of cross sectional area can be
produced; and that, for deep winding, the lightest rope
with the produced; and that, for deep winding, be used, so as to
with the greatest breaking strain will be trine combine the strongest rope with the least material. From the rope is a serious item. It may therefore be both instructive and interesting to calculate thay, therefore be both instructive lough steel wire ropes to be used, or rather steel ropes having a解kng load of $12,000 \mathrm{lb}$. per square inch of cross sectional area rmer a dariation may be made in the formule, and the ave both timions being given in a very detailed manner, it ave both time and space to employ a more concise form, and to Croes $\left.\begin{array}{l}\text { Cross sectional area of Plough } \\ \text { steel wire orepe to carry a work- } \\ \text { ing load of } 8 \text { tons }\end{array}\right\}=\frac{17920}{12000}$
$=1 \cdot 493$, say, $1 \cdot 50$ sq. inches.
Then, $\quad \sqrt{\frac{1.50}{07958}}=4.34 \mathrm{in}$. circumference of the rope.
It has already been shown that a steel wire rope, of 4000 ft . long,
suspended in a shaft without any load attached is nearly suspended in a s s
the working load orm or size of taper rope required in Plough steel wire, and fo this purpose the author will adopt another, although more difficul (12) Rul

Rule for finding the section at any point of a taper rope of miform strength :-

$\mathrm{S}=\frac{\mathrm{W}}{f} e^{\frac{w x}{f}}$

In the case under examination, $\mathbf{S}=$ section of rope in inches $\mathrm{W}=$ weight of cage, load, \&c., applied at end of the rope
$17920 \mathrm{lb} . ; v=$ weight of one foot in length of the small end of the ope, one square inch of sectional area $=1 \cdot 67 \mathrm{lb}, ; x=$ distance ${ }^{2}$
feet from the end at which W is applied to the section $\mathrm{S}=4000$ $==2782$ a constant; $f=$ working or safe strain in pounds per
square inch section of rope $=12,000$. It will be seen from the bove formula that it would be a most laborious operation to work the above out by the ordinary rules of arithmetic. It is her
lone by logarithms, and the operation is simplified as much possible-
Thus $\quad \mathrm{S}=\frac{17920}{12000} e^{\frac{w x}{f}}$
$=1 \cdot 493 \times 2.7183 \frac{v x}{f}$
$\left(\frac{1 \cdot 67 \times 4000}{12000}\right)$
(5566)
$=1 \cdot 493 \times 2.7183$
Now $\log \cdot \frac{\mathrm{W}}{f} \times e^{\frac{w x}{f}}=\log .1493 \times \frac{2 \cdot 7183}{}$
But
$=\log \cdot \frac{\mathrm{W}}{f}+\log \cdot e^{\frac{w x}{f}}$
$=\log . \frac{\mathrm{W}}{f}+\frac{w x}{f} \times \log . e$ $=\log 1 \cdot 493+5566 \times \log .2 .7183$
. log. $1 \cdot 493 \times \overline{27183}$

And $41578806304=\log .2 \cdot 6048$ square inches.
Hence
Again, it perhaps may be more clearly defined as follows:-
$\mathrm{S}=1.493 \times \overline{2} 7183$

Now $\mathrm{S}=1 \cdot 493 \times \overline{\mathrm{S} 2 \cdot 7183}$
$=1 \cdot 493 \times 17447$
From the above two ways of carrying out the formula, the nswer is the same, viz.:- $\mathrm{S}=2 \cdot 6048$ square inches.

Hence then-
 $\begin{aligned} \text { ross sectional area of rope at cage end } & =1 \cdot 498 \text { squa } \\ \text { pulley wheel } & =2 \cdot 6048\end{aligned}$
 pulley wheel $=2 \cdot 6048$,

Or-

$$
\begin{aligned}
\sqrt{\frac{1 \cdot 493}{07958}} & =4 \cdot 33 \mathrm{in} . \\
\sqrt{\frac{2 \cdot 6048}{0.6958}} & =5 \cdot 72 \mathrm{in} .
\end{aligned}
$$ $=4 \cdot 33 \mathrm{in}$. circumference

Rankine's "Applied Mechanics," page 297-6th Edition.

The whole of the figures in the above calculation will not be
 $c=2 \cdot 7182$ is obtained．This constant is termed the radiu，or base
of he Napierian system of logarithms，now known as hyperboli
ion of the Napierian system of logarithms，now known as hyperbolic
logaritlims；it is obtained from the summation of the series－
$c=1+1+\frac{1}{1.2}+\frac{1}{1.2 .3}+\frac{1}{1.2 .3 .4}$ dec．$=2 \cdot 71828182$
The above will be found fulily deacribed in trigonometrical or algebraical works，under the head of＂exponential theorem． Hyving now determined the size of the taper rope，the weight of
the rope must be calculated，using the formula（ 6 （ previously given， the rope must be calculated，using the fo
Weight of rope $=(A-a) \times 12000$

Weight of rope $=(\mathrm{A}-a) \times 1$ acoo． $=$ oross sectional area

 Then ${ }^{120}$

From the above calculatiotions it it is 5 shown that there 19 are 4 tons． less weight of rope－between Ploughil steel and ordinary steel to lift for every t tops of coal drawn．This is is a material quantity，
 winding．The horse－power required for raising both the ooal and gravity of the rope，and for the latter purpose by the formula already given．＂

$\mathrm{W}=$ weight of the rope $=13341 \mathrm{lb}$. $\mathrm{L}=$ working load $=17920 \mathrm{lb}$ ．
 $\mathrm{L}=$ working load $=17920 \mathrm{lb}$.

$\mathrm{F}=$ length of rope in feet．
$y=$ length of rope in inches．
where the centre of gravity would be found
$\left.\begin{array}{c}\text { Cross－sectional area of a rope，} \\ \text { as above，equal to the sus－} \\ \text { pension of such load．}\end{array}\right\}=\frac{\mathrm{W} \div 2)+\mathrm{L}}{12000}$（2）
pension of such load．$\}_{(13341 \div-2)+17000}^{12000}$
$=\frac{(13341 \div 2)+17920}{12000}$
$a^{1}=2.05$ square snches．$\quad 12000$
the formula previously given－（5）－
Upon reference to the formula previously gi

$$
\begin{aligned}
& y=\frac{f}{m} \times h y p \cdot \log \cdot \frac{a^{1}}{a} \\
& 12=\mathrm{F}=\frac{12000}{12 \times \cdot 14 \times 4342944819}+\log \cdot \frac{a^{1}}{a} \\
& \text { an unknown quantity, and } a^{1} \text { and } a \text { known }
\end{aligned}
$$

But F being an unknown quantity，and a^{1} and a known quantities，
it follows－

$\mathrm{F}=16447.02 \times \log \cdot \frac{a^{1}}{a}$

$=16447 \cdot 02(\log .2 \cdot 05-\log .1 \cdot 493)$
$=16447 \cdot 02(\cdot 3117539-1740598)$
$=16447.02 \times 1376941$
$=1$
Then $4000=2264 \cdot 67=1735 \cdot 33 \mathrm{ft}$ ．from the surface．
Horse－power $=$ weight of rope $\times 1735.33$
time in minutes $\times 33000$
$133 \div 1 \times 1735.24$
$=1.50 \times 33000$
$=467$ horse power required to wind the rope．
Then－467－horse power required to wind the rope．
Add $20^{\circ} \% \quad \frac{383}{1915}$ total friction．＂executed in winding every 4 tons of coal．
The traverse of the rope on the drum will be as follows ：－
$\begin{aligned} \text { Circumference } & =12 \times 3 \times 3.1416 \\ & =113.1 \mathrm{ft}, \text { circumfer }\end{aligned}$
Revolutions $=\frac{4000}{113 \cdot 1}$
$=113 \cdot 1$
$=35 \cdot 36$ revolutions，
Diameter of rope at pulley wheel $=\frac{5 \cdot 72}{3 \cdot 1416}=1 \cdot 82 \mathrm{in}$ ． cage $\quad=\frac{432}{3.1416}=1.37 \mathrm{in}$ and $1 \cdot 82+1 \cdot 37 \div 2=1 \cdot 60 \mathrm{in}$ ．average diameter of rope． From the above it is seen that the rope winding round the drum say $1.75 \times 35.36=61.88 \stackrel{\text { say }}{=} 13 \mathrm{ft}$ ． 2 inches diameter，and the traverse The size of cylinder required $h 2 \mathrm{in}$ ．
remarks previously made，and the formula used in the calcula the given with an ordinary steel rope may be applied in this case．
Thus（by 9）－

Horse－power $=\frac{\mathrm{A} \times \mathrm{V} \times \mathrm{P}}{33000}=2298$－horse power
H．P．$=\frac{2 \times d^{2} \times \cdot 7854 \times 282.84 \times 50}{33000}=2298 \cdot \mathrm{H} . \mathrm{P}$.
Hence（by 10）－ 33000×2298
$d^{2}=\frac{35000 \times 22.84 \times 50}{2 \times 7854 \times 282}$
$d=\sqrt{\frac{75834000}{22214 \cdot 25}}=\sqrt{3413775}$
$=58 \cdot 42 \mathrm{in}$ ．diameter of cylinder．
1000 tons of minerals per day．
4000 ft ．，depth from which the mineral is raised．
4 tons，weight of mineral drawn at each lift of the cage，
4.33 in ，circumference of rope at cage connection．
4.33 in ．，circumference of rope at cage connection
$6.72 \mathrm{in} .$, pulley wheel．
$072 i n$. ，weight＂of the rope．＂
6 tons，
1.50 minute in raising the load
－16 ，＂，banking the mineral
2298 －horse power to raise the load，rope，cage，\＆c．，or horse
power expended to raise every 4 tons of power expended to raise every 4 tons of mineral．
$58{ }^{\circ} 42 \mathrm{in}$ ．diameter of cylinder－coupled engines．
Guides．－It has been previously stated and shown with regard to ropes of uniform sectional area，that for a depth of 4000 ft ．，iron wire ropes would not carry their own weight as a working load that steel ropes，although their own weight guide ropes．Also working load for that depth，would not be able to be weighted beyond a few hundredweights when placed in so deep a shaft，and would therefore be very unsteady．Hence attention must be turned to rigid guides，either of wood or iron．From the calcula－ great velocity in the shaft－iver hat 45 ft ，cage would travel at a rate of $30^{\circ} 7$ miles per hour；and，considering the starting and stop ping，the cage would probably travel at the rate of fifty miles per hour when in the centre of the shaft；at this rate it is not im probable that the wood guides might take fire，and should the shoe of the cage ever strike a shake in the timber，or any other uneven
place，either from wear and tear alace，either from wear and tear，or joints or knots，it would make falls back on iron or steel rails for conductors．These should be dovetailed into each other at the joints，to prevent the slightest possible chance of presenting an uneven joint；or in other words， the iron or steel rail conductors should be quite as even and as
strongly secured as the rails upon which express trains travel The use of iron rails for conductors is nothing new；they trave used in some of our deepest shafts and in cases of the fastest winding． They have been in use for some years，and have therefore stood the test of applicability．Each rail should be secured to the shaft
side in the strongest possible manner，and every care must be taken not only to make them rigid，but and every care must be adhered to．Steel rails once fixed should last a great number of
＊Given by Mr．Joseph Timms，of Linby Colliery，Nottingham．
years，and require little if any repairs．They might be affected a ar less than with railway rails，which are exposed to the will be rays of a summer sun，and the piercing cold of a severe winter． during the year，and the variation does not vary a great deal would be scarcely worth notice in fixing rail guides，the aupast believes there are already shafts 600 yards deep fitted with iron rail guides，and winding at quick speed．He himself has frequently been down one 300 yards deep so fitted，and where these guides doubt of their successful application Balance．－All the foregoing calculations depths，
to suit the ordinary mode of winding，but this entails expenditure of power，of which a small percentage only is utilised in raising the mineral itself，It therefore requires serious con－ sideration，if some kind of balance cannot be employed to reduce
the horse－power in the engine．It will also be seen that although a large expenditure of power is required to raise the load when starting from the bottom of the shaft，and to create the velocity， yet the load has not gone far before the power required becomes less and less，and when about 2700 ft ．from the surface the descend－ ing cage and rope are pulling against the engine with such force rapidly increasing power of the descending cage over the ascending full one．Hence there are two great strains upon the ascending for every load drawn，viz．，the strain in starting and creating the velocity，and the strain in pulling up；and the brake power used to counterbalance the descending cage．Considering these points，it exert its maximum power at the start，and also assist in pulling wil when nearing the surface．Such a balance has been at work for some years in Belgium，and in a small way has been used for many years in ordinary blast furnace hydraulic hoists，viz．：－A rope or chain hanging or fastened to the bottom of the cage，and connected to the bottom of the other cage；in this way balancing the weight
of the rope，and where a rope of six to ten tons weight is to beused this is a serious consideration．The author does not intend giving merely a description，for he is well aware that engineers prefe facts before opinions，and figures before theories ；hence it is best to proceed to calculate the effects of such a balance，and to show that the winding rope might almost be termed an endless rope broken in two places by the insertion of the cages；so that，when the cage i at the surface，there is，supplementary to the winding rope，a rop hanging from the underside of the cage the full depth of the shaft，and after passing under the＂sump planks，＂attached at its other end
to the underside of the cage resting at the This system of winding will perhaps be best illustrated by showing its application to shafts of，say， 400 yards－ 1200 ft ．－deep，because， in considering its application to shafts of 4000 ft ．deep，other con－ siderations will render its application not so effective．The size of the under or balance rope should，if possible，be the same as the
winding rope．This having to carry only its plenty of margin in strength，and the winding ropes，perhaps，might be utilised for this purpose，but iron wire being more pliable is pre ferred．Calculations for a shaft 400 yards，or 1200ft．deep ：－

F．e．		
T．	C．	Q
2	10	0
1	0	0
2	0	
2	0	

Size of ordinary steel winding rope of uniform thickness． 2.2 square inches area
$\frac{2 \cdot 2}{07958}=5 \cdot 25$ circumference
Weight of rope $=1$ ton 19 cwt． 36 lb ．，say， 2 tons．
From the above it will be seen that at the moment of starting to wind there is a length of rope on the descending side，equal
in weight to the rope attached to the ascending cage－using its maximum force to create velocity，and assisting the engine at the a brake，at the time the ascending cage is nearing the surface－ and arriving at its maximum power as a brake，when the descending cage touches the bottom of the shaft．It follows that a uniform load for the whole depth whereas mitheral，and this is it is an ever varying load throughout the whole distance great advantage of this system of winding whill be best shown by calculating the size of engines required with and without such a
balance rope．The author will give the calculations in balance rope．The author will give the calculations in a short
way． way．

Without the balance．
$\mathrm{D}=$ Depth of shaft， 400 yards $=1200 \mathrm{ft}$ ，
$\mathrm{D}=$ Depth of shaft， 400 yards $=1200 \mathrm{ft}$.
$\mathrm{L}=$ Load ascending， 5 tons $10 \mathrm{cwt} .=12,320 \mathrm{lb}$,
$\mathrm{L}^{1}=$ Load descending， 3 tons $=6720 \mathrm{lb}$.
$\mathrm{L}=$ Load descending， 3 tons $=6720 \mathrm{lb}$
$\mathrm{S}=$ Speed of winding，say 30 ft. per second，
$\mathrm{S}=$ Steam pressure，say 301 b ．per square inch．
$\mathrm{V}=$ Velocity
The calculation is taken for the first ten seconds，this being the period of maximum exertion of engine power．
Horse－power $=\frac{(L+R) \times S}{\text { Time } \times 33000}$
$=\frac{(12320+3920) \times 300}{16 \times 33,000}=923$－horse power．
Deduct horse－power exerted by the descending empty cage ：－ Horse－power $=\frac{(6720+560) \times 300}{\cdot 16 \times 33000}=413$－horse power nearly．
Then $923-413=510$
Add 20% for friction 102
612 total horse－power．

$$
\text { H.P. }=\frac{2 \times d^{2} \times 7854 \times 300 \times 30}{33000}=612
$$

Then $d^{2}=\frac{33000 \times 612}{2 \times 7854 \times 300 \times 30}=1428 \cdot 57$
$d=\sqrt{1428 \cdot 57}=37 \mathrm{in}$ ．diameter of cylinder．
With the balance．－In this case the weight of the coal only is i consideration，because the winding rope and ascending cage and
tubs are equally balanced by the balance rope，cage，and tubs，on the descending side．
Therefore－\quad Load 2 ton $10 \mathrm{cwt} .=5600 \mathrm{lb}$ ．
Then－$\quad \frac{5600 \times 300}{16 \times 33000}=318$－horse power．
Add 20 per cent．for friction，\＆c． 63
381 total horse－power．
Hence（by 10）一 $2 \times d^{2} \times 7054 \times 300 \times 30$
H．P．$=2 \times d \times 385 \times 300 \times 30=381$
Then $\quad d^{2}=\frac{33000 \times 381}{2 \times 7854 \times 300 \times 30}=889.35$ $d=\sqrt{889 \cdot 35}=29 \cdot 82$ say， 30 in ．diameter of cylinder． The above shows－

Without the balance rope
WIth the balance rope．．
In favour of the balance

$\overline{7 \mathrm{in}}$ ．
and tear to machinery by using point out the great saving in wear there are great strains and large horse－power exerted to raise the power required for the at starting－an ever varying power to stop the engine．In fast winding it is not only legitimate brake power is used，but often steam is thrown against the engine，creating strains which require considerable
strength of machinery to resist the great torsion caused by such strength of machinery to resist the great torsion caused by such
strains．It will be seen that in winding from a depth of 4000 ft ．，a balance rope，equal in weight to the winding rope，cannot be used， because a steel rope of 4790 ft ．long and of uniform size throughout attached；hence，then，a taper winding rout cage or material The balance rope may be of uniform size，throughout，because there is no weight attached，and whatever its weight may be，so in pro－ portion must the taper rope be increased in size．Suppose the halance rope to be of 31in．circumference，or 1 square inch cross sectional area，and weighing 10 lb ．per fathom，or 1.67 lb ．per foot，
the balance weight will then be $1.67 \times 4000=$ say 3 tons．This the balance weight will then be $1 \cdot 67 \times 4000=$ say 3 tons．This
will increase the size of the taper rope at the cage end to 3.08 square inches，and at the pulley wheel to
$\operatorname{By}(\tilde{5})$－
$\log . A=\frac{4000}{10964 \cdot 68}+\log .3 \cdot 08$
$=364807+\cdot 4885507=-8533577$
$=$ log． 7.134 square inches cross sectional area，
In the＂Plough Steel＂wire winding rope，the weight of the balance rope may be further increased，for the tenacity is so much
greater．It is not，however，necessary to use＂Plough Steel＂for a greater．It is not，however，necessary to use＂Plough Steel＂for a no load to carry．But iron wire cannot quite as well，there bein\％ weight exceeds its working load at a depth of because its own therefore an ordinary steel rope for the balance，say 1.50 squarc Theh sectional area，or $2 \% \mathrm{lb}$ ．per foot，
Then $2.5 \times 4000=$ say 4 tons 10 cwt ．
This will increase the size of the rope at the cage end by
$10,000 \div 12,000=83$ square inch of cross sectional area Then（by 12）－
$1 \cdot 493+833=2326$ sectional area at cage end
$\log .2 \cdot 326+5566 \times \log .2 \cdot 7183$
log． $3666097+5566 \times \log .2 \cdot 7183$
$=.3666097+-2172944$
$=3666097+2417282$
$=-6083379$.
Hence－
$\cdot 6083379=\log .4 \cdot 0582$ square inches cross sectional area
Whence－$\quad{ }_{5} \cdot 40 \mathrm{in}$ ．circumference．
$\quad 7 \cdot 1$ tin．circumference at pulley wheel
he and be a repetition of figures and calculation，to show here from great depths．The formule and figures have already been given in full and can be easily applied by the members of this Institute to any actual or hypothetical winding．There is little
doubt，the author thinks，that in winding from such depths as 300 to 600 yards，where the balance rope can be of uniform size with the winding rope，there will be a great saving，both in size and wear and tear of engine and in boiler power．The advantages have been fully set forth，and do not require recapitulation．
The bala is shown on Plate XIII．，Fig．1．Plate XIV． represents it passing through the sump planks，and turning under without any mechanical assistance． This arrangement is already at work in a shaft 300 yards deep
in this district，and acts well，but it is necessary to box the rope，to prevent it from twisting，and to use rope of a pliable nature． Fig．2，Plate XIV．，represents the rope running round a movable
wheel，which probably may be required when using steel rope，and which keeps the rope taut；but in this case it requires boxing of It may be asked，Is there any danger in using such a rope？The author anticipates one，viz．，the rope getting fast in passing throug the sump planks，either from a tub being accidentally run into the
sump whilst winding，or coal or other material falling and sump whilst winding，or coal or other material falling and wedging
the rope fast．In such a case there would be an excessive and very sharp strain put upon the winding rope attached to the ascendin cage；and possibly such a sharp strain in fast winding would break the winding rope，and a serious accident would occur．To prevent this the author suggests that all such balance ropes should be or detaching apparatus，set so as to sever the connection whenever the strain exceeds a certain weight．This might be done either by a shearing pin of copper，similar to a detaching hook，or a spring coupling；in fact，anything which would sever，and only sever，the
connection in case of unusual strain．

Tabulated Statement of Calculations．
Without Balance．

		Weight of load drawn．				Taper rope．									Hemarks．
Description of wire rope．		荡	品	产											
Charcoal iron	$\begin{gathered} \hline \mathrm{ft.} \\ 4000 \end{gathered}$	$\overline{\mathrm{tn} . \mathrm{ct} .}$	$\mathrm{tn}, \mathrm{ct} .$	tn．ct．	n. ct	in．	in．	tn. ct.	－	$\underline{\text { lb．}}$	in．	min．	sec．	ft．	Its own weight exceeds
Best steel ．．	4000	40	210	110	1010	$5 \cdot 3$	8.07	－	2648	50	62．71	$1 \cdot 50$	10	36	the working load． 1000 tons per day．
Plough steel	4000	40	210	110	60	4．33	$5 \cdot 72$	－	2298	50	$58 \cdot 42$	$1 \cdot 50$	10	36	
Best steel ．．．．．．．．	1200	210		10	20	5．25	$5 \cdot 25$	－	612	30	37	＇16	－	20	First 300ft．

With Balance Rope．

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

(From our oven Correspondent.)

Mcch satisfaction is expressed in the iron trade this week, for the puddlers and millmen in the West Bromwich and Smethwick for puddlers and millmen in proportion longer than any other of
 Pudders' wages are now, therefore, 7 F . 6a. per ton
The determination last week of the employers whose works were
on to aid those whose works were still off by granting \&5 for every
idle on to aid those whose works were still off by granting $£ 5$ for every
idle furnace was on Monday night carried out, for cheques to the
total of $£ 1420$ were then posted, the money being distributed total of $£ 1420$ were then posted, the money being dists
The Strike Committee published a letter in the local press on
Wednesday, in which, after official ly announcing the end of the strike and returning thanks for the support received, they say :-
" We also wish to inform the public that we have some black shep "We also wish to inform the public that whe have some back sheep
were returned last week."
As usual at the termination of an affair of this kind, there are
now expressions of surprise at the lack of organisation, and endeanow expressions of surprise at the lack of organisation, and endea-
vours to remedy this defect are beginning. The Central Strike
Committee would vours to remedy this defect are beginning. The Cebusy making arrangements for the formation of lodges at the various works. It
is proposed by these self-styled leaders that the Sooth Staffordhire
district shall in future be joined to the LLancashire division of the district shall in future be joined to the Lancashire division of the
National Amalgamated Association of Iron, Steel, and Blast
Furnace Workers. Should this combination be effected and present this seems scarcely likely-the headquarters of the Associapresent this seems scarcely likely-the headquarters of the Associa-,
tion, which are now at Darlington, " will
thobably," we are told, "ion, removed to a more central locality."
It is significant of the light in It is significant of the light in which the men's repudiation of
the sliding scale is regarded by the employers, that one Pennington, "boyo was amongst the foremost of the strike leaders, is being Attemptst to obtain employment forn him alike in Staffordshire and in Scotland have been repelled with firmness so far
On 'Change in Wolverhep
On 'Change in Wolvernampton yesterday and in Birmingham to-
day-Thursday-lack of funds was universally assigned as the dea-Mnursay - lack of funds was universaly assigned and
reason why the strikers had given way. Most of the Smethwick
and wes and West Brom wich works having now r esumed and other masters
having determined to relight the fires next week, buyers found no difficulty in placing all the contracts they desired, when the terms offered were such as makers could accept. But such terms were by
no means universal. Consequent upon this orders had in numbers of cases to be refused. Some buyers will after a little negotiation consent to advance upon their firss offers, and the contracts will
then be booked. But other export buyers will place their orders in cheaper competing distritcts.
Makers of tank plates report
plates, that will flange cold and need do no angles in the construction of
the tank piates, that wire sange cold and need no angles in toe construction of
the tanks, were seling at $£ 7$ ITs. to \&s per ton. Makers of girder
plates and other common qualities spoke of the North of England, plates and other common qualities spoke of the North of England,
and one or two other competing districts, as having practianly
stolen the trade from us now. But the supremacy of the Cleve land district in ship plates does not prevent orders being received
here
lat here occasionally for best plates of high quality. Boiler plates are
steady at $£ 810$ s. to $£ 9$ for common, and $£ 910$ s. to $£ 10$ for superior sorts.
Sheet makers are well booked forward. They were, therefore,
firm in price, though on the week the demand is hardly so pressing as it was. Merchants tried to get singles for export at a dittle
below $£ 7$ 15s. per ton, but were not generally successful. For galvanising singles $£ 8$ was the minimum that would be accepted by good firms. Doubles were $£ 810 \mathrm{~s}$, and lattens $£ 9$ 10s. Best thin
sheets for working up purposes ranged from $£ 11$ upwards at the Pigs show a little more vigour this week. Consumers have
again begun to accept deliveries, but there are still loaded trucks waiting on the railway sidings that consignors cannot yet get per62 s . 6 d . in actual sales, part-mines 47 s . 6d. to to 45 s ., and cinder pigs 40s. Hematites are quiet at 60 s . to 62 s . in actual sales.
Barrow brand No. 4oundry has changed hands at 4 as., and forge
is quoted 62 s . Derbyshire pigs 47 s s. 6d. still, and Northamptons is quoted 62s. Derbyshire pigs 47 s . 6d. still, and Northamptons
46 s . 3d. nominal. By the mail to hand this week from Melbourne, merchants
learn that at the date of advices galvanised iron out there was getting very scarce, ,ut that larese shipments were on the water.
Iyssaght's brand had seen sales at $£ 22$. Gospel Oak brand was in fair request, and trade sales were reported at late rates, Sne
hundred and fifty cases had sold on privete terms. Black sheets
were in ready sale at, for Nos. 8 to 18 , \&10 10 s. For bars and rods
 For hoops 10 was obtained.
\&4 10s. Holders of fencing wire would not accept the the prices rulling
at date of despatch, and quotations stood at \&12 to \&13 10s. for at da brands.
The mandurers of constructive ironwork are fairly well
The mand employeded on girder worr, and and tank orders are numeroros, wor
certain railway materials there is a moderate call on home and certain railway mater.
foreign account alike.
Hard ware merchan
orders now arriving are renly of little worth that the continental orders now arriving are only of ittie worth, and that the Mediter-
ranean ports are quieter than is customary at this date; but India is placing some acceptable orders, mostly by buyers who are now
in this, country, for machinery, cultivating tools, and certain buiders' ${ }^{\text {' requisites. Canada still looks. well, and there are yet }}$ evidences of a little further movement towards the United States At meeting in Birmingham to-day of the committee of the iron
trade, at which strike was reported as over, it was announced that the employers' section of the Wages' Board intend to adhere strictly to the terms of the sliding scale award concerning present
and future wages until some alteration has been amicably arranged and future wages unti1 some alteration has been amicabyy arranged;
failing an agrement and disputed question must be referred the the
president, Mr. Averley, as arbitrator. Mr. J. B. Cochrane, of Dudley, was to.day elected chairman of the masters' section of the
new Coal Trade Wages' Board. The men's delegates meet the masters on Monday
to obtain under the new sliding scale of the colliers are expecting vations made in public a few days ago my a miners' agent in the Old
Hill district. He asserted that the men were not in any way pre Hill district. He asserted that the men were not in any way pre-
pared to accept the Board unless the basis of the wages gave to the 2s. 10.c.; but he was afraid they would not get this amount unless they were united to a man.
At the conclusion of this
on to warn the men this same address, in which the agent went Wassed to continue working at the present rate of wages until whe expressed the opinion of the meeting "that the time had come
when all miners should be more closely united." has held an inquiry at Birmingham into the application by the has hela an inquiry at birmingham into the application oy the
Corporation for sanction to borrow for various public improvent
works sums aggregating \&25,966. The chief individual expenditure there-out-of is $£ 16,085$ for a new fish market. The present market covers an area of 715 square yards; but it is proposed to add
adjoining property so as to increase the area to 1624 square yards,
excluse certain streets. It was. pointed out that in the present markee
100,000 tons of fish were sold annually, representing $£ 3,000,000$, and the trade was growing.
An interim dividend of
original capital, and 6 per cent. per annum on the preference
capital, has been declared by the Birmingham Railway Carriage cappal, has been deciared bed her birmingham Railway Carriage
and Wagon Company. ,imited, or the half year ending June 3oth.
Satisfaction is expressed at the Parliamentary progress of the Bills for confirmation of electric lighting provisional orders relating
to West Brom wich, Balsall Heath, Aston, Walsall, Dudlee, and other midland towns, which Bill
the House of Lords on the 3rd.

NOTES FROM LANCASHIRE.

(From our oun Correspondents.)

Manchester:- The iron market here continues very quiet, and the
olidays during the past week have tended to reduc still furthe the small flow of business. The market, however, is strongly sup-
ported by the fact that makers have in most ca es plenty of work ported by the fact that makers have in most ca es plenty of work
to go on with, and although present transactions are comparatively small there is a large quantity of iron going into consumption,
deliveries of which under contracts already in hand keep works pretty well employed. Pig iron makers are, as a rule, so fully
sold over the remainder of the year that they are only open to book small quantities, and they are therefore under no necessity to press
sales, occasional orders, which buyers have to place out at the full sales, ocaasional orders, which buyers have to place out at to
rates, sumfing to take awa any surplus output they may have to
dispose of. Forge proprietors are also generally well supplied with work for the present, and although there is no very great weight of
new business offering they are able to secure orders in sufficient quannew business offering they are able to secure orders in sufficient quan-
tity to keep them going, and except that bar iron is if anything a tity to keep them going, and except that bar iron is if anything a
trifte easier in some coses, manufacturers are able to maintain their prices without difficulty. In the condition of the engineering trades there is no very material change to notice. Activity is stil
maintained amongst locomotive builders and tool makers, and in special classes of engineering work there is also a fair amount
doing, but machinists continue only moderately employed, and in the ordinary run of engineering work business is very quiet.
There was only a quiet market at Manchester on Tuesday pig iron there were very few inquiries stirring, and but for the fact
that makers are indifferent about orders, it might be said that there was nothing doing to tost values. But whether there are inquiries
or not, makers are very firm at their full rates. For Lancashire
 adhered to, whilst in district brands, although buyers show no disposition to pay higher prices, there is even a tendency to stiffen upon the minimum quotations for Lincolnshire brands, and it
would now be difficult to place orders on the basis of 4s. 10d. to
45s. 10. In finished iron there is only a moderate business doing, and
shipping orders do not come forward at all freely. In bar iron shipping orders do not come forward at all freely. In bar iron
orders could be placed more freely on the basis of E_{6} 2s. 6d. than of late, but in most cases makers hold for $£ 6$ 5s.; hoops are quoted
at $£ 6$ 12s. 6 d . to $£ 615 \mathrm{~s}$., and sheets at $£ 8$ to $£ 87 \mathrm{~s}$. 6 d . per ton, delivered into the Manchester district.
Lancashire district following upon the award of the Staffordshire Soard of Arbitration, but which was held in abeyance owing to the several of the finished ironworks the reduction was put into operation last week, and this week it has become general, the leading
firms having decided to commence paying on the reduced scale from Monday last. There is no indication that the action of the masters in this district in following the Staffordshire award is
likely to result in any trouble with the men who are now throughout Lancashire working at the reduction of 3d. per ton on puddlers' wages and 2d per cent. on the wages of the finished ironworkers,
which I understand represents about 6 d . per ton on the cost in labour for the production of the manufactured iron
During the past week 1 spent an afternoon in the industrial with the onening of the Free Refereneec Library and Museum, At
present the exhibition can scarcely be said to be in a very perfect state of arrangement. None of the stands have yet been numbered, and anything like an attempt at a methodical inspection of the
exhibits by means of the first catalogue which has been issued guide is an utterly hopeless and bewildering undertaking. Though
somewhat spoiled by defective arrangements, the exhibition, however, contains a very good collection of machinery. Prominent, of
course, is the branch of engineering connected with the leading
in industry of the town, and Messrs. Pratt, Bros., and Co., and tile machinery for the manufacture both of of cotton and wool wold
embracing the most modern improvements introduced by these well-known makers. Apart, howevere, , from cotton machinery,
there are a large number of general encineering exhibits, whin have been sent in by some of the leading firms in Manchester and the surrounding district. A very fine pair of horizontal
compound steam engines, with a new cut-off motion, and compound steam engines, with a new eut-off motion, and
which are employed, by means of rope gearin, for driving some of the machinery, are shown by Messrs, Buckley and Taylor, of
Oldamam. Sir Joseph Whitworth and Co. show a number of their specialities, including standard gauges, measuring machines,
specimens of steel castings, and one of their nine-pounder breech specimens of steel castings, and one of their nine--pounder breech
speading Whitworth guns. Messrs. Hulse and Co., Manchester,
lo have a good collection of modern engineers' and machinists' tools,
amongst which is the improved vertical milling and drilling machine, with reversible traversing motions, of which I recently
 several of their steam hammers, double-acting, self-acting, and
hand worked. F. Pearn and Co. have a collection of their pump-
ing engines. Messrs. Wold show a horizontal compound steam engine on the tandem principle,
specially designed for driving electric light dynamos, and fitted specially designed for driving electric light dynamos, and fitted
with a new cut-off gear. Amongst other exhibits there is a most varied collection of appliances. Steel standards for both
English and foreign. measures are shown by Wm. Whitham, Eng lish and foreign. measures aro shown by Wm. Whitham,
of Manchester; cast steel for tools, spindles, \&o., by Howeli
and Co., of Leeds; crucible steel castings and special tool steels by Jessop and Sons, Sheffield; patent rolled shafting, \&co.
by the Kirkstal Forge Company, Leeds; an improved horizontal
dit ford; and a stationary steam fire engine by Chas. Walmsley, of
 Wouble-acting steam pumping ire engines are also shown by is,
Walker, of Radolife. of small machine tools, steam engine
fittings and requisites, there are a large number. Mechanical futings and requisites, there are a large number. Mechanical
stokers by several of the well-known makers are als gas engines, including the well-known "Otto" and "Bisschop"
types, with the new Robinson hot-air ensine, of which a descriptypes, with the new Robinson hot-air engine, of which a descrip-
tion has recently been given, are exhibited. Of various other appliances coes of med with the use of gas, there are the well-known
manufactures heating and cooking gstoves. I have only very brieffy sketcted the
contents of the industrial section of the Exhibition, which, although it does not present very many features which are actually
new in the general engineering class of work, is nevert new in the general engineering colass of work, is nevertheless one of
considerable interest throughout, tand fas regards machinery specially connected with the manufacture of cotton and wool, is
probably the best of its kind that has ever been brought together. In the coal trade business? shows but little-material change. The being well maninues very steady for the time of the year, prices are and pits are being kept running about four
beit to five days a week, with comparatively very little coal going into
stock. The general feeling is that the next movement in prices
 many oases decline to sell beyond present requirepments, and
where they are prepared to contract it is only at advanced rates.

Prices at the pit mouth remain at about 9s. for best coal, 7s. for
seconds. 5 s .6 d . to 6 s . for common coal, 4s. 6 d . to 5 s . for burgy, 4 s . to 4s. 3d. for best slack, and 3s. to 3s. 6d. for common qualities. Shipping has been fairly active both in steam coals and in house fire coals for coasting cargoes, and although prices do not show
any material improvement, they are steady at 7 s. 3 d . to 7 s . 9 d .
 Barrow.- The tone of the hematite pig iron market is much
firmer than for some time past, and better inquiries are made Buyers show a keener disposition to do business and are accepting makers' prices, who have steadily declined to reduce below 50 s
for mixed samples of Bessemer iron. Stocks are not quite so large as they were, owing to the very heavy exportation of pig iron
to the Continent and Americ. No. 3 forge is still quoted at 49 s . and the demand has inereased during the last few days, Steel
makers are steadily employed, especially in the rail department.
Merchant qualities are in fair demand. Prices unchanged. Prices for iron ore have not altered, but the demand is firmer and the stocks of ore which have been banked at the pits have been Iron shipbuilders are not so well employed as could be wished the number of hands employed is considerably below what it wa
six months ago. Other industries, such as ironfounders, boilermakers, engineers, are fairly supplied with work. The new works
which are to be started at Barrow have a few contracts secured for steel plates, \&c. When these works are in full operation, the trad
 Company for the Union Steamship Company, of New Zealand, wai run over the measured mile on the ceyde on saturaay with very
satisfactory results. The highest speed attained was $15^{\prime} 1$ knots mean speed $14 \cdot 6$, being considerably more than the guaranteed

THE SHEFFIELD DISTRICT.

 (From our own Correspondent.)Bank holiday has been more generally observed than usual this season by various firms who have not previously paid great atten
tion to it. The prevailing dulness has caused both manufacturers and employes to have a change from town to country. In spite o
the incessant rain all the forenoon, I think I never saw so many people of the working classes leave the town by road, taking
their pleasure sadly under dripping umbrellas. In several cases The steel rail trade is anything but continental railway company recently desired quotations for 25,000 tons of steel rails. None of our local firms succeeded in obtaining the order, the lowest quotation being stated to be 8s. per
ton less than the Barrow Company. It ought to be stated that the will be fully made up by the consideration of carriage, which would have been quite equal to the 8s. per ton. It theomemes increasingly evident that local houses cannot compete in such heary goods with establishments situated on the coast. Messrs. Charres cammel
and Co., of the Cyclops Works, Sheffield, are very busy with large ments, as well as with steel marie cre and straight shafts connecting and piston rods, \&cc. They have lately started a lathe
for turning heavy marine pieces, and the thre-throw crank shaft for one of the largest Atlantic steamers is being made and finished one thirty tons, throw shaft, and from this some idea may be formed of the capacity of the lathe for finishing. There are 6000 cubic feet of masonry in
the foundations, and the lathe will take in 13 ft . diameter by 23 ft . n length. There are four compo The weight of material in thi any angle, and in all directions. 30 ton steam hammer is well

lathe is about 150 tons. The 3 . 3 . district-forty tons weight-was recently successfully made by this | district |
| :--- |
| firm $\begin{array}{l}\text { Mess } \\ \text { rail mi }\end{array}$ | rail mills at Workington in full operation by the middle of September. The capacity of the new mills is put at somewhere near

3000 tons of rails per week. At Workington the output of steel rails is said to be very brisk, forming a marked contrast to the charged by the North are agitating for a revision of the rates charged by the North
Eastern and London and North-Western Railway Companies respecting the rates now charged for the importation of raw
material into their district. It is urged by the manufacturers that rates remain the same as during the times of good trade, although
on the East Coast important reductions have been made. Our Sheffield ironmasters and rail makers made very little out of their agitation with the rail way companies, and they had certainly,
from their inward position, a much stronger case than their rivals rom their inwa
The varying character of the weather-warm and fine one day factors, who buy for immediate requirements only, and there is not likely to be any improvement till after the harvest. The imple
ment makers say that so far they have had a fairly ment makers say that so far they have had a fairly good season
They are now turning their attention to root and chaff-cutters, in which Messrs. Johnn Crowley and Co., of this town, have produce several interesting novelties. Cutlery generally is only in light
demand both on home and foreign account, table and spring-knife workers being occasionally given only half a week's work. Edge tools and joiners' tools are in fair demand, though edge tool orders
are not equally divided, one house having six months' orders on its books, and others kept no more than employed from week to week. If is not generaliy known that on the occasion of the coronation liluminations of the Kremlin was supplied by twenty-nine of
Hornsby's-Grantham-steam engines, representing 292 nominal horse-power. Messrs Hornsby's engines, which are specially con structed for electric lighting, have been suceessfully emploged at the Imperial Palace at Gatschina, at St. Petersburg, the General
Post-office, Edinburgh; Royal Aquarium, London, 1882 , and other places.
Mr. George Barnsley, senior partner in the firm of Messrs.
George Barnsley and Sons, merchants and manufacturers of steel, files, \&c., Cornish-street, is now Master-Cutler elect in sucees
sion to Mr. A. A. Jowitt, of the Scotia Steelworks, Attercliffe. Mr. Barnsley's formal installation to the ancient office will take place on the 6th September with
cutler's feast is fixed for that date.

THE NORTH OF ENGLAND.
(From our own Correspondent.)
Thrre was buta a scanty attendance at the Cleveland iron market selling was done. There was, however, no falling off in prices, as less than 39s. per ton for No. 3 g.m.b. for August and September
delivery, and some of them were firm at 39s. 3d. Makers generally asked 39s. 6d. per ton for No. 3, but offered various lots at 393. 3d. per ton. Messrs. Connal's store at
The stok of Cleveland pig inon in Men Monday, namely, 73,667 tons.
Shipments have been sut small this month; but it is expected that they will improve, as there are large orders for
foreign account. Up to Saturday night 11, 108 tons of pig iron and Consumers are pressing hard for delivery of finished iron, but

NOTES FROM SCOTLAND

 The Glasgow warrant market has been com-paratively quiet in the course of the week, with not much speculative business. On Friday last a good number of transactions took place up to
47 s .8 d. per ton, but the market closed slightly maness done pigs is, on the whole, well maintained, and the shipments are fully up to expectation. In the
past week they amounted to 13,722 tons, as com-
pared with 13,579 in the corresponding week of pared with 13,579 in the corresponding week of
last year, and of the whole quantity 10,547 tons were sent abroad and 3175 tons coastwise. The
stocks of pig iron in Messrs. Connal and Co,'s stocks of pig iron in Messrs.
warrant stores are decreasing.
Business was done in the warrant market on
Friday forenoon at 47 s . 7 d , and in the at 47 s . 8 d . cash. There was no market on Monday, and on Tuesday a fair business took placke,
with little change in quotations. Iron market yesterday flat, sales 47 s . 3 d . to to 47 s . 1 d . carket,
47 g .5 d . to 47 s . 3 d . month. Market this foren quiet, business 47 s . 1 d . to 47 s . 2 d . cash, 47 s . $0 \frac{1}{4} \mathrm{~d}$
to $47 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. month ; afternoon, 47 s .1 d . to 47 s . to $47 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$ month, afternoon,
cash, 47 s, . 4 d . to 47 s . 3 d month.
There is a large business in
current quotations of which are as follows :Gartsherrie, f.o.b. at Glasgow, per ton, No. 1 ,
57s.; No. 3, 53s.; Coltness, 61s, and 53s 6.

 47s.; Kinneil, at Bo'ness, 493. 6d. and 48s.; Glen-
garnook, at Ardrossan, 55s. 3 d . and 48s.; Eglinton,
48s. 9d. and 46s.; Dalmellington, 49. arnock, at Ardrossan, 55s. 3d. and 48s.; Eglinton,
48 s .9 d . and $46 \mathrm{~s} . ;$ Dalmellington, 49 s . 6d. and
48 s .6 d . The different branches of the manufactured iron trades continue to be well employed.
In coals there is much activity
In coals there is much activity, and coalmasters hopeful that they will be able soon to obtain the hopeful that they will be able soon to obtain the
full advance of 1s. per ton on all qualities. A
large proportion of this advance has already been large proportion of this advance has already been
got for f.o.b. coals, and the chief obstacle to the ise in domestic coals is that one or two firms are
keeping aloof, and seem fully determined to sel at the old rates. There is a very extensive inquiry
for coals for shipment at the western ports. The
f.o.b. prices at Glasgow are, for main, 7s. 3d. to $7 \mathrm{~s} .9 \mathrm{~d} . ;$ ell, 8 s. to $8 \mathrm{~s} .6 \mathrm{~d} . ;$ splint, 8 s . to 8 s . 6 d .;
steam, 8 s .6 d to 9 s .6 d . At Glasgow the shipments for the past week were very heavy, and
large orders are now in course of execution. In
Fife the feling he large orders are now in course of execution. Th
Fife the feeling has, if anything, been a shade
quieter, but prices continue firm, at from 7 s , 9 . quieter, but prices continue firm, at from 7 s . 9d.
to 8 s and 8 s . 6d. for shipping qualities. There is a good demand in this district for gas coal, but for household sorts there is less inquiry. At Leith the
shipments of coal have been larger than of late while a good business has been done at Grangemouth and Bo'ness.
The coalmasters
The coalmasters of the Slamannan district, at a
meeting held in Glasgow, have resolved to raise meeting held in Glasgow,
prices 6d. per ton at once.
As it was natural to expect, the upward move-
ment in the value of coals has directed attention to the wages question, and in several localities the they may be able to improve thes in the hope that they may be able to improve their position. The
colliers of the Motherwell district held a largely attended meeting a few days ago, at which Mr.
John Donnelly presided. Mr. Robert Steel adfressed the meening, poineng of trade had at no time been so great as at preconsidering the present price of coal and the advancing state of the market, we are fully entitled to an advance of wages, and that we use all lawful means to obtain it; (2) that we solicit all operate in the movement ; and (3) that we invite delegates from the Hamilton district to meet us at a conference to consider what further steps The Secretary of the Fife and Clackmannan Miners' Association has addressed a letter to Mr of the men of these counties, an advance of 6 d . per day.
Messrs. Russell and Co., of Greenock and PortGlasgow, have obtained an order to build ten stee coasting traffic. They are each to be 270 ft . in The shipping trade of the 1 . The shipping trade of the Clyde, as disclosed in the Custom-house returns for the past month, are
quite satisfactory. The export of gunpowder was $40,000 \mathrm{lb}$., valued at $£ 770$; but there was besides $£ 5530$ worth of dynamite and other explosive

WALES \& ADJOINING COUNTIES. (From our own correspondent.) JUDGING from dividends at some of the prin-
cipal railways and industries lately, the condition of things in Wales may be regarded as satisfac-
tory. The Rhymney Railway Company will announce shortly a dividend of 10 per cent., the Taff Vale 10 per cent., and 8 per cent. bonus, and
the Merthyr Wire Works 10 per cent. Mr. George Fisher is expected to take the post resident director on the Taff Vale Railway,
vacant by the death of Mr. Bushell, and Mr. Hurman will take his position, retaining the designation of traffic superintendent.
The Taff Vale Railway
The Taff Vale Railway, once regarded as quite a different reputation. The public interests have been well considered, large concessions made to freighters, and this week its extensive and
newly erected engine shed - 000 ft . in length, and newly erected engine shed-400ft. in length, and
capable of holding 20,000 people-has been placed capable of holding 20,000 people-has been placed
freely at the services of the National Eisteddfod. The holding of this popular institution has somewhat affected trade this week, the colliers
from the Rhondda Valley flocking thither in con siderable numbers. Trade, however, is good, and both colliers and coalowners can afford a little
indulgence. Over 200,000 tons of coal left the Welsh ports last week, of which Cardiff sent
149,000 tons. The activity in Cardiff has bee very great, and some fine vessels have come int port, one of which-over 4000 tons burden-
being exhibited to the Cardiff public. Newport, Swansea, and some of the smaller
ports have also exhibited incren ports have also exhibited increased activity of
late, and this gives a good momentum to the various new movements that are being floated. Dock extensions or improvements at Swansea,
Neath, and Newport are on the cards, and Neath, and Newport are on the eards, and
"Barry" is only said to be adjourned. Vigorous
prosecution at the earliest possible date is proprosecution at the earliest possible date is proMr. Edmonds, of the Bute Docks, was the success-
ful competitor for a prize this week at the National Eisteddfod, on "The History of the Rise and Progress of the Steam Coal Trade," and Mr.
Williams, the "father Williams, the "father of the Welsh press," for an
essay on "The Coal Resources of South Wales." active ; prices rule somewhat more firmly than they did, but there is not the buoyancy in trade which I should like to see. Compared with the
coal trade the sister industry is flat. I am glad to coal trade the sister industry is flat. I am glad to
hear within the last day or two of a few more hear within the last day or two of a few more The price of best steam coal is looking up decidedly, seconds and small about the same. House coal has not moved much of late,
must wait another month for the autumnal spurt to be made.
The foreign iron ore trade is dull. Supplies of
Welsh ore well weathered are enquired after, and Pitwood in demand.
and prices has become somewhat scarce of late, The colliers of Mountain Ash, always a hotbed of disaffection, have agreed to the arrangement
ably sketched out by Mr. W. T. Lewis with regard to the "Doctor question," and the troubled spirit is now finally laid. The eolliers settled this retiring passed a vote of thanks to those who had brought about so satisfactory a state of things.
The notice of the ship canal in THE ENGINEER of last week for connecting Cardiff with Devonshire and London has attracted a good deal of
attention, and it is felt in circles of influence that the scheme is worthy of close attention. If the extra capital of Cardiff, which some appear
desirous of flinging away on visionary schemes, could be enlisted upon this, great results might be
expected. Some of the details have been copied from The Engineer into the Mail.

THE PATENT JOURNAL.

Con

P** thas comm to our notite that some appicants of th
 rohich the Speciflcation they require is referred to, instea
of giving the proper number of the Specifcation. The
mister mistake has been made by booking at THE ENansex
Index, and giving the numbers there found, whieh only
refer to the pages, in place of turning to those pages and
finding the numbers of the Specification. Applications for Lettuers Patent.

* When patants have been "commumicatod." the printed in intalice

3727. PAckise, \&o., ${ }^{31 s t}$ July, 1888.

 3735. ELECTRO-DYNAMIC MACHINES, H. J. Allison.-(R. N. King, Dayton, U.\&.)
3728. HATs, \&c., W. R. Lake. - (A. C. Couch, Boston.)
3729. UMBRELAS, \&c., E. G. Charageat, Paris.

 3740. WATER-CLOSETS, T. W. Helliwell, Brighouse.
3730. STAY, W. H. Symingon, Market Harborough.
3731. REGENERATIVE GAB-LIGHTING APPARATUs, A.
Bower, St, Neots, and T. Thoree Whitefeld. Bower, St. Neots, and T. Thorpe, Whitefield.
3732. Looms, W. Houghton and E. Knowles, Go and H. Bradbury, Leeds.
3733. FURNAEES, W. Brierloy. - (B. Rosskam, Germany.
3734. Combined Pot, URN, \&c., H. de M. Wellborne London.
3735. Tobicco-prpes, \&c., H. de M. Wellborne, London.
3736. NuT-Lock, W. R. . Hake . - W. J. M'Tighe, U.S.) 3747. Nut-Lock, W. R. Lake.- ($\dot{W} . J . M^{\prime}$ Tighe, U.S.
3737. Bindiva Books, A. Brehmer, Leipzig, and Brown, Glasgow.
3738. Releasing Harnessed Cattle from Vehicles,
W. Corbould, Peckham. W. Corbould, Peckham. \&c., J. Sample, Neweastle
3739. DoLIING CLothes, upon-Yyne.
3740. Pencols, \&c. J. Hickisson and w. Lee, London
3741. Engravina or Curtisa Glass, de., J. H, John son. - (R. Josia, Florence.)
3742. Toous, J. Jofferies, Luddesdown, and C. Thom-
son, Peekham. son, Peckham.
3743. VENTLITING Apparatus, C. M. Tate, London.
3744. Triovoles, J. and T. Webb, Coventry.
解 of Spinning Machine tory

Edwards.-(J. Appelt, Reichenberg.)

3759. Trawling Shafts, J. Faulkner, Gorleston.
3760. Automatic Flushing, de , TANK, F. J. Austin

London.
3762. STar Pads, T. Grifitht, Ivy Lea.
37ARRIAGEs, de., D. Walker and W. S. simp
son, London.
3763. Electric Clocks, G. M. Herotizky, Hamburg.
3763. ELLECTRIC Clocks, G. M. Herotizky, Hamburg.
nolds, Cherc ClesNERs, B. J. B. Mills.-(A. J. Rey
3765. SUPPRRTING Troursrs, J. H. Topham, Deansgate,
376. DAMPING, ©. STAMP, J. H. Topham, Deansgate
3767. SHEAR-LEGS, J. and E.' Gledhill, Lindley.
3767. SABEAR-LEGB, J. and E. Gledhill, Lindley.
3768. INvALID Covobes, \&e., W. Dickinson, Manchester.
3769. Preparing Infants' Food, N. Davies, Sherborne.
370. Gates, R. Allen, Tettenhall.
C. Mewburn.-(
3772. Covaris Brooklyn, METLS, J.S.). W. Hulse, Manchester
3773. GLAss TABLETS, J. Forrest, sen., Glasgow.
sit4. Automatic Stopper for Bottles, \&c., W. Sam
son, Dunde.
3775. Construocting Roofs, T. W. Webber, Ireland.
2nd August, 1888.

3779. Requolating Carbons, dc., of Elecrrric Lamps,
E. G. Brewer. (La Sociele Anonyme des Ateliers de
Construction Mecaniques et d A Appareils Electriques,

Paris.)
3780. Horseshors, R. Wood, Manchester.
3781. RAZors and SHEATHS, T. Clarke, Sheffield.

3784. Ratlway Locomotive ExhaUst Apparatus,
Armstrong, New Swindon.
(P. P. y Albizu, Madrid.)
3786. Foa-sIoNALS, E. Ludlow, Birmingham.
3787. PLAITING MACHINEs, L. J. Pirie, Birkenhead, and H. Findlay, Battersea.
3788. CHIMNEY Tops or CowLs, A. J. Boult.-(J. Wist ner, Annecy, France.)
378., Washiva Appatatus, E. Edwards.-(B. and J.

P792. Ega Decapitator, A. C. Henderson.-(L. Olivier Paris.)
379. CREAM, W. Horner, Cuddington.
3794. Appuring Printed Designs to Stoneware, \&c
J. Miller, Glasgow
3795. Lifeboats, G. Skelton, Millwall.
3795. Litereotasg, G. Skelton, Millwall.
379.6. Embroidering Frames, W. Brabne
 nem, Cologne.)
3800. PAINITNG Pbotographe, A. M. F. Caspar, London.
3801. TWISTED
 3803. PACEING CABES, W. R. Lake.-(J. H. Livermor and C. L. H. de Hundermark, Paris.)
3804. FURNACES, Wo., W. J. Williamson, Deptford.
3805.

4th August, 1883.

 3816. Poles for Lawn Tennis Nets, S. C. Davidson,
Belfast.
3817. GRinding Metaluic Tubes, \&c., C. Harvey, jun.,
Yardely, and W. Paddock, Birmingham. Yardely, and W. Paddock, Birmingham.
318. PEN REsERVOR, M. Myers \& J. Lowe, Birmingham.
381. P 3818. Pen Reservoir, M. Myers\&J. Lowe, Birmingham.
3819. UMBRLLA, ©c., M. Ham, London.
3820. Treating Ligors for ObTAINING Hydrochloric

 ${ }^{\circ}$ 8c., H. Kenyon, Altrincham.
382. VELocIPEESS, H. L. Lawson, Coventry.
826. TREATING BREWERS' YEAST, J. S. Lord, Newark-

Patents on which the stamp Duty of $\mathbf{R 5 0}$

 -19th August, 1880. Augut, 1880 .
3257. CHLLED Articles of STEEL and Iron, H. Spring.
manm. mann, Prussia.- 9 th August, 18800
3182. GAs Motor Engines, F. W. Turner, St. Albans. ${ }^{\text {3th5 }}$ - EDingo Grass Machinery, P. Adie, London.4th August, 1880.
2240. Upuosstery Nails, W. Pitt, Tarrington.- -7 th
August, 1880 . August, 1880 .
3215. BEEACHNG, dc., W. Goode, Nottingham,-6th 3327. Watre Heaters and Purifiers, W. L. Wise,
London. -17 th August, 1880 . London.- 17 th August, 1880 . Wetter, London.-17th
333s. RAILWAY CARRIAGEs, J. Wether August, $18800^{\text {. }}$.
1880 . StEAM Engine, D. Joy, Anerley.-20th August, 3172. Purifying, \&c., Apparatus, W. Lyon, London.
$-3 r d$ August, 8800 . 3181. Treaining Copper, J. H. Johnson, London.-3rd August, 1880.
Roboberew Proplerrs for Navigable Vessels, J. Robertson, Govan.-4th August, 1880 .
3212. STEAM GENERATORS and FURNACES, A. M. Clark, London.- 5 th August, 1880.
3186. TIE and Core Mexai, T. Hyatt, London.-4th
August, 1880. August, 1880 . Composition for Washing, \&c., W.
3221. LIevid
Haworth, Burnley. -6 th Auqust, 1880 . ${ }_{188 \mathrm{C}}$ 224. Stop-WATCHES, L. A. Grotb, London.-6th August, 185. Recovering Bioarbonate of Ammonia from
Liquors Produced in the Manufacture of Soda, J. Imayers Loodoncen. 9 th Aug Aust 1880.
Imarempon, London. 3290. Treating Wheat and othor Cereals, W. B. Dell,

Patents on which the Stamp has been paid.

 F. Priese Gliging Animal and other Substanges, W. F. Grier, Glasgow.-4th August, 1876 .3125. TRATING Town Refuse, A. Fryer, Wilmslow.3093. RALIWAY FIISH-Jorints, \&e., A. M. Clark, London.
-2nd August, 1876 . -2 2nd August, 1876 .
3126. W EnININQ APPARATUS, H. Ainley, Kirkheaton.-
14th August, 1876 .

Notices of Intention to Proceed with (Last ay for fluing opposition, 24th August, 1883.)
401. Top Noroues for Umbrellas, W. Milner, Car-
brook.-16th March, 1883. brook. -16 th March, 1883 .
1568. SADDLEs for Bioxcles, , \&c., J. B. Brooks, Bir-
mingham. $-28 t h$ March, 1883. 1575. ELELECTRO-MAGNETIC PRINTING TElearaph Appa-
RATUS, W. P. Thompson, Liverpool, -A communicaRatus, W. P. Thompson, Liverpooi,-A communica-
tion from H. V. Hoevenbergh.-28th March, 1888 . Thomporno Mivanerpool.-A communication from H.
V. Hoevenbergh. $-28 t h$ March, 1883. V. Hoevenbergh.-28th March, 1883. P. Thompsen,
Ti. MANVACVRE of ALUMNA, W. P. Tiverpool. - A communication from J. D. Darling.28th March, 1883.
1584. DisTILLATION of Glycerine, F. J. O'Farrell,
Dublin.- 29 hth March, 1888. Dublin. $-29 t h$ March, 1888.
1585. HEATNG APPARATUS, W. Thompson, Liver1585. Heating Apparatus, W. P. Thompson, Liver-
pool. - Com. from C. Launay.-29th Marei, 1883.
1587. Cocrunge, dtc., Carriags, J. T. Leighton, Edinburgh. - 29 Ith March, 1838 .

\qquad 299h SMarch, 1883.
Hampstead. - 29 ENTh March GRATES, A. F. A88. Andresen,

 Main.- A communication from O. Fischer.- 31 st
March, 183.
1631. TRAOTION Engines, W. Wilkinson, Wigan.- 31 st
March, 1883. 1636. Osorluating Apparatus, A. J. Boult, London.-
A communication from P. Schwarz and P. Treutler. -31 st March, 1888 .
1638. Copkiva BorTLes, J. J. H. Schultz, Hamburg.-
31st March, 1883.

1650. Photoaraphic Shutters, R. Reynolds and F. W. Branson, Leeds. - 2 . . April, 188.
1655. Tuvanvs, F. F. Engel, Hamburg.-Com. from G. de Laval.-2nd April, 1883. 1662 . Foldiva Chair, E. Smith, West Dulwich.-3rd April, 1883 .
170.. Luriciction of Bearinges, R. Balderston, Paisley.
Oth April, 1883 . 1716. Propzunva Tricycless, \&c., W. Brierley, Halifax. 5th Apmilu 1883 .
717. Spinsing Fibres, W. Walker and A. Binns, Halifax. -5th April, 1883. ${ }^{\text {M }}$. Parsons, Blackheath. -6 th 748. Distributing Apparates, w. R. Lake, London. 1448. Distributing Apparatos, W. R. Lake, London.
-Com. from E. Shepard. - 6 th April, 1883.
1760. Febing Electro CAbons, J. Henry and H. B.
 189. BoxEs, \&c., for Protecring Articles, A. G.
Speight, Hoxton. -17 th A pril, 1883 . Api. SLDE VALVEs, J. F. Johnstone, Belvedere.-18th Appril, 1883 .
1967. Gavivanina Sheet Iron, J. Tinn, Bristol-18th April, 1883.
1978. PRINTING FABRICs, W. Mather, Manchester.-
 -Com. from E. Foote.- 19 th April, 1883 .
254. Motive PowER, O. Trossin, London,-9th May 1883.
2535. Artificial Stone, F. H. F. Engel, Hamburg.-A
communication from E. Murjahn.-21st May, 1883. communication from E. Murjahn.-21st May, 1888,
2750. REFINED SUQAR, J. Allen, Stepney.-2nd June 2805. Pencil-point Protectors, F. Byron, Chester
field. - 6 th June, 1883 . fiel. - bith M, 1883.
3028. SEFING MACHINERY, A. G. Brookes, London.-
Com. from R. Whitehill.- 19 th Uune, 1883. 3029. Couphiva, \&c., SHAFTING, A. G. Brookes, London -Com. from R. Whitehill.- 19ich June, 1883 . 3084. Prodects of Combustion, J. H. Darby, Brymbo 3115. DYNAMO-ELEGTRIC MAchines, G. Forbes, London ${ }^{-2133 .}$ Covplince Hosks, J. C. Hudson, London. -23 rd 3189. Metallic Tubes, R. Heeley, Shirley.-27th June 3253. Wringing, \&co., Fabrics, J. Kenyon, J. Barnes,
and R. W. Keyyon, Accrington - -00 th June
1883 and R. W. Kenyon, Accrington- - 30 th June, 1883 .
324. CLaspa for corskis, H. M. Dyson, Honor Oak.-
2nd July, 1883. 3304. SpinNinag Machinery, J. Farran, Manchester.-
4th. July, 1883 . 3310. Cricolar Saws, A. W. McMurdo, Scotby.-4th July, 1888 .
3326. GARMENT CALLED "Drawers," G. Macaulay-
Cruikshank, Glasgow.-A communication from W. Benger Sons, $-5 t h$ July, 1883 .
3336. GAS Motors, H. Holden,
3336. G.
1883.
3690.
A. Ralu, jun.- $-28 t h$ July, 1883. London.-Com. from A7. Re. BuRNERS, J. S. Muir, London.- 31 sit July, 1883.
3733. TYPE-MATRICE MACHINE, M. H. Dement, London -31st July, 1883.
don.-31st July, 1883 .
(Last day for fling opposition, 28th August, 1883.) 1647. Safery Pluas, C. V. Boys, Wing, and H. H.
Cunyname, London.- 2 nd April, 1883. 1651. Concentrating Sulprurio Acid, W. P. Thomp-
son, Liverpool. - A communication from W. West.son, Liverpool.-A communication from
2nd April), 8883.
1652. ELETRIC SAFETY LAMPS, T. Coad, London.-2nd
 April, 1883.
1664. Tasses for Umbrellas, \&c., M. H. Harris, Lon1665. Impresping Typooraphic Characters, C. H.
Davids, New York.-3rd April, 1883 . Davids, New York. -3 rd April, 1883 .
1668. TRAMWAYs, \&c., R. ©. Fairlie, London. $-3 r d$ April, 1883 .
1669., HALE, HATs, M. Haslam, stockport.- 3 rd April, 1883.
1670. PROTEOTIVE Coverisigs for Botrles, F. Hall,
sheffield. -3 rd A pril, 1883 . Sheffield.- 3 Rrd April, 1883 . Jensen, London.-A com-
1674. Food for C CTTLE, P. . munication from S. O. Kjor.--3rd April, 1883.
 179. PAPER FASTENINGS, M. Bauer, Paris. - A communication from A. Lotz,- -5 ih April, 1883,
1725. CAB Communioator, F. Armstrong, Beckenham. 1731. Hed Apriling Apparatus, W. H. Williams, Birming1741. FLT- WHEELS, \&c., W. Hargreaves and R. Har-
wood, Bolton. 6 th $A p r i$, 1888 . Wood, Bolton, - 6 th Aprll, 1883. A communication from G. Rocour.-6th April, 1883.
1746. VELocIPEDEs, A. L. Bricknell, Brixton, -6 th
April, 1883. April, 1883 .
1747. VELIPEDEs, A. L. Bricknell, Brixton.-6th Appril, 1883.
1754. ELECTRODEs, F. E. Elmore, London. -7 th April,
1883. 1758. FUraiture Vehicless, J. W. and H. J. Davey,
Bristol. 7 th A pril, 1883 . 1779. Registraing Apparatus, J. Imray, London.-A
communication from F. Bisson.-9th April, 1883. communication from F. Bisson, -9th Aprit,
1789. GasVANII BATTRRIE, G. B. . Overbeck. London.
-Partly a communication from Doctor F, Hornung. 1805. ELECTRIC PLLE, J. C. Mewburn, London.-Com.
from M. and P. Azapis. - 10 th A April, 1883. 1814. Merze, A. M. Clark, London.-Com. from G.
Hochreutiner and A. Boucher- $-10 \mathrm{t}_{\mathrm{h}}$ A pril, 1883 . Hochreutiner and A. Boucher.-10th April, 1883.
1852. SHAG, \&C., FABRICO, H. J. Haddan, London.-
Com, from F. A. Parellada.,-12th April 1883 , Com, from F.A. Parellada.-12th April, 1883 .
193. GOM TRAGACANTH, A. C. Duncan, Manchester.17th April, 1888,
2010. CuTrINO Fodmer, J. H. Johnson, London.-Com.
from A. Albaret.- 20 th A April, 1883. 2035. Concentrating Sulphuric acid, S. B. Bowen, Llanelly.- 21 st April, 1883 . ${ }^{\text {co. }}$. J. Armstrong, New
 2383. KNitting Machintry, s. Lowe and J. W. Lamb, Nottingham. - - 10th May, 1883 .
2305. CoNTTCr Boxss, W. E. Ayrton and J. Perry,
 2862. Refinkd Cast Stekl, T. Shee
 London.-21st June, 1883 . 1883. Stipfenina Fustians, dce., J. Sellars, Manchester.
3263.
-2nd July, 1883.
 1883,
3306. Theodolites, A. L. H. Holmes, India.- $4 t h$ July,
1883. 3342. Ferrooxanides, Dr. H. Kunhoim, Berlin, and H.
Zimmermann, Wesseling.- $5 t h$ July, 1883 . Zimmermann, Wesseling.-5th July, 1883 .
S350. Trastive TiN Dross, T . Lloyd, Aberdylais. -6 th
July, 1883.
3359. Carburetting Gas, \&c., J. Thomas, London.-
6th July, 1888 .
3400. Oulige, 3400. OLINING, dc., Hemp, A. V. Newton, London.-A
communication from J. Good.- 10 Jth July 1883 .
3419. CARpers, T. Tempest-Radford, Kidderminster.
 Lake, London. - A commun. Lake, London.-A July, 1883 .
C. Sargent-- 13 th J.
486. VALEES, J. Kroog, Halle-on-the-Saale.-16th July, 1893.
3519. Roluisa MiLLs, A. W. L. Reddie, London. - A
communication from Messrs. Wilmot Hobbs and Co.
 from J. .R Scoott. 19 the 'July, 18s8. from J. R. Scott.-19th July, 1883 , Liverpool.-Com.
705. RAcks for Sirirrs, E Smith, Liver
from C. M. Johnson.-28th July, 1883. from C. M. Johnson,-28th July, 1883

Patents Sealed. atent which passed the
 (List of Letters Patent which passed the $3 r d$ August, 1883.) 612. Covered WIRE, W. Halkyard, Providence, U.S.5th February, 1883 . Tebruabsy for CANDLEs, J. B. Goodwin, London. -5 th February, 1883. 19. Hivges for Doors, G. W. von Nawrocki, Berlin.- 5th February, 1883. 58. Gas Motor Evaines, C. W. King, Manchester, and

 654. PREVENTING Explosions, T. C. Fawcett and J. C.Hargreaves, Leeds. -6 th February, 1883 . Hargreaves, Leeds.-6ith February, 1883.
55. FAsTENINGS for WEARING ApPARE, \&.C., W. M. and
J. C. Newey, Birmingham.-6th February, 1883 . J. C. Newey, Birmingham.-6th February, 1883 .
661. Dywamo-kiectrio Maciniss, J. Murro, West
 Main. - 6th Febebruary, 1188s.
74. Preparing Castings, D. P. G. Matthews, New-port.- 7 th February, 1883.
684. SewERGE APARATUS, J. G. Stidder, London.684. Sewerage Apparatus, J. G. Stidder, London,-
7th February, 1888.
885. Drying Grain, \&c., J. J. Turner, Kington.-7th February, 1883.
91. Combing WooL, F. Fairbank and J. Robertshaw, Allerton.- $8 t h$ February, 1883.
Fiss KITCHEN RANGEs, W. Russell, Pendleton.-9th February, 1883 .
28. HaND RAKEs, W. R. Lake, London.-9th February, 1883.
Nemls for Railway Carriages, R. R. Gubbins,
New Cross.-9th February, 1883 .
 February, 1883. , T. H. Beck, London.-9th Febru
735 R Rvsing WoL,
ary, 1883. ary, 1883 . for Tramways, H. Scott, Liverpool.-10th
745. Ponvars for
February, 1883.
 1883. A. Practing Excavators, T. Whitaker, Horsforth
776. She - 12 th February, 1883 . C. F. Bower, London. -13 th 787 Brebiking Pig Iron, J. Evans, Gaythorne, and S. Mason, Leicester.-13th February, 1883. February, 1883 .
790. Box Irons, J. Gautherin, Paris.-13th February,
 - 14 th February, 1883.
337. CoFFEE CuPs, C. D. Abel, London.- 15 th February,
1883. 200. Water Heater, W. Carrington, Openshaw, and
W. H. Bowers, Gorton.-19th February, 1883. 942. Metawicio OREs, J. H. Johnson, Liondon.-20th February, 1883 . 950 Maters, E. G. Brewer, London. -21 si February, 1883.
1036. CARTRIDGEs, T. Nordenfelt, London,--26th Febru ary, 1883 .
1172 'seguring Excentrics on Crank Shafts, F. Holt, Derby.-5th March, 1883 .
1207. Filtratios, W. R. Lake, London.-6th March, 1883.
1431. Breech-LoAding Repenting Fire-Arms, B.
Burton, London.- $-19 t$ March, 1883. 1482. MEEABURING, \&C., APPARATVS, A. C. Campbell,
Blythswood, and W. T. Goolden, London. - 21 st March, 1883 . Whests, B. J. B. Mills, London.-10, April, 1883 .
2184. Colourina Matter, H. O. Miller, Moscow.-30t April, 1883.
2190. DriLiva, \&c., Apparatus, R. K. Jones, Birken head.-1st May, 1883. 2524. LAMNRY BLUB, M. H. and T. L. Hargreaves,
Hull, and J. E. Hargreaves, Isle of Wight. $21 s t$ May, 1883 .
255. IIZNG MAchines, J. Dugdale, Blackburn. $-22 n d$ May, 1883.
2598. WRENCHEs, H. H. Atwater, Orange, U.S. $-24 t h$ May, 1883. . W. R. Lake, London.-25th May, 1883 ,
2616. Coaser
2706. GRs CALORIO Motive Enaings, E. and E. Crowe, Manchester,
May, 1883 .
(List of Letters Patent which passed the Great Seal on the
7 th August, 1883.) 225. Belting, H. J. Haddan, London.-15th January 712. Firkplaces, dic., G. Ermen, Holcombe.- -9 th February, 1883.
 February, 1883. sed Sugar, G. W. von Nawrocki, Berlin 726. FURNACE BARs, \&c., F. Livet, London.- 9 th February, 1883. GUNAOES, J. H. Selwyn and R. Walker, Lon don. -9 th February, 1883 .
744. WATER, \&č., HYPRANTS, T. Suffield, London. -10 th Feebruary, 1883 . Wignt, T. Griffiths, Oxton,-10th Febru 766. Smoke Consumer, A. Perkins, London. -12 th February, 1883.
768. FAsTENING ARMOUR-PLATEs, L. W. Broadwell, 778. Brosers, C. Jack, London.-12th February, 1883.
798. Latohes, \&c., W. B. Shorland, Barton-on-Irwell. 840. Lead de., Bending apparatus, t. Drake
 Chanoing then in the Photographic Camera,
Samuels, Monken Hadey. - $15 t h$ February, 1883. 845. SANNTIARY PIPES, H. Tugby, Woodville. - 15 th
February, 1883. London. -1 1bit Febrruary, 1888 , Skins, A. M. Clark,
L82. Boot and S. S99. Joint or Union Contact Electrio Fittinas
 February, 1883.
917. Bread Loar-cutter, D. M. Ford, Bristol.- 20 th
February, 1883. February, 1888 .
931. PRINTIN TELEGRAPHs, H. J. Allison, London.-
20th February, 1883.

 Mareh, 1883
 1214. Cupprisc Machines, J. Range, Nottingham. -74

*** Specifications will be forwarded by post from the Pateon--oficice on receipt of the amount of price and

ABSTRAOTS OF GPEOIFIOATIONS,

 o be used not onny for medical ba
inhalation or for disinfecting purposes.

vember, 1882. - (A communication from G. Brandt
H. Sarre, and H. Beyerhaus, Berlin.)
Gid. This relates to the construction of metal shoes proVided around their underside with a dovetail groove
permitted tof fasten as well as
to change conveniently
 5429. Sturnob and Trantarnt or Gratr, de. $K . J$.
Dance, Chadvich-road, Kent. $-14 t h$ November, 1882 .
 so that it can be stored without biing liable to for-
mentation, decomposition, or corruption. 5671. Obtarinivg Colouring Mattrrs, C. D. Bkman,

 jo the action of solu
tand a base or alkalit.
 don. - 1 st December, 1882 .- (4 commanication from Dr. L. Cerebotani, ferrany. \&od
This reintes to a process whereby, by
instruments, distanocoses can we berabet, by meanmined ond simpl curve latd off ins an olementantary trigonometetriced mannder, curves
lith
out the calculation of angles and without the use of a sut the calculation of angles and without the use of a
nontus.

 This refers to the construction and employment of electro-magnets of a sphericai or spheroidai form,
magnetio sphere," and hatho application of thes
mametic magnetic spheres or spheroids to the construction of
ordinary induction machines, combining them witl

 diectro-1inass of bobbins placed inidid the ephere, or as
othollow magnetic sphere exciting another magnetic
5785. Proobes for Preparisg Flutd Taingasas fro
 Sahhatrom, Jonkoping, Sveden.)-(Not proceeded
vith.) Thith. relates to the chemical treatment of the
bladders.
5794. Aprasatus for Filima Sacks, H. J. Haddan,
Eensington.-5th December, 1882.-(A communicatio)
 The object is to
filled into sacks.
 This relates to the employment of germinated or pattials relates to thated emper employment of germinated or
other products. 5857. Stamps for Forarsa And Shapina Merats, (Not proceeded with.) 2d.
This rolatos to the general arangement of the parts.

This consists in fitting a motallic hoop or tire over
the face of the rubber tire 5867. ORDNAsce, A. M. Clark, London. - 8 th December,
$1882 .-(4$ communication from A. H. J. Sul, Paris.) Thas relates partly to a breech-loading cannon in
hich the breech is closed by a cap scrowing upon an whicentric enlargement of the broech, and provided with an orifice which may be brought opposite the
bore, and with a tray for supporting and guiding the bore, and
charge.

 The apparatus consists essentially of a guard in the formorts, and capablo of moving in various directions
su a vertical plane, and also provided with a devico for
for ffrecting the advance of the wood when finishing the cut, whereby the neeessity for the workman to
tho wood with his hands at this dangerous part of the

Cation from A. B. Dolbear, Sommervile, Mass.

or plates composed of metal coated with a dielectric an inductorium whose primary contains a circuid breaker, adapted, when in operation, to inducca a high
electromotive force in the the socondary circuit, and
thereby charge the dielectric.
 The object is to to produce visible signals in connectio or comb nation with a
5874 .
 cember, 1882. 6 d . . t bar FF , which is supported upon brackets or stan-
dards $G \mathrm{C}$. The feet of these standards are mado with

 parale wl the about lin., more or less, above it on
the spool or cop abo

 Olive oil or other suitable vegetable or saponifable on in employed as a vebicle or medium for applying a
wax or nonsesponifable oil to textile materials or fabrics.
5878. Vestilativa Bulidixas, T. H. Thompson,

 the passage of raii
inductive action.
5877. Prex MevLatoos, W. Hatchman, London.-9th

 Thd drawing shows how the rail A is joined on one
hand with the conducting anglo P, through the bolt
Bit which means a collar provents the direct pres.

suro when the nut of the bolt is serowed on, while, on
the other hand, the rail A appears sufficiently firmly

 1882. (A communication from M. G. Mitter and Dr Dr
L. A. Aofomman encrin.)
Ed.
 5881. Means and Apparatus for Maxtracturiva
 cots, yams , ococs
manuacture of sizes.
5883. Spring Motors for Sewing Maohines, A. M.
Clark, London. -9 . ${ }^{\text {th }}$ December, 1882.- (A communi-

Cation from J. B. T. B. Bandouin, H. L. Mathieu and

This consists in an anatematioc spring motor driving thelt, main said motor being provided with means for Winding it up, with a brake for enabling the speed o
the machine to be varied when running, and with an adjustano efly regulatod or governor for rendering the
motion of the machine unflorm.
5888.

 the head.

 freplaca, so as to olose or open thion.

 hoectrod he heses sinco, whill for tho nogative joitrod gold.

5891. Pocren Kisating

 Theo bjeect is to to fiford an

 (Ad. communication from G. L. R. Duthayon, Parib.)
This onsists in a tool which may be used either as
 5901 . Bkir Fastrwzes, W. H. Slu
This oonsisits sin ococember, 18se

 5909. Bessizai, Guirry for Uesz or Boan Saip,

 This onsistst in iombination and anrangyements of mar bead adisted as reauired, and propor mooemontso

 poses to the walle.

 59
 cal musical nistrymont, wherein a traveliling music

 Trini relates partily to the combinition of of pessel

 required.

 ataching these boseses roses, or oollas
 The apparatus consistst of a cage constructed of bars
 5950. Ranwn Sioval Apparatus

1882. $4 d$. .

 ing alternating or contrary into continuous currents as
in previous machines for the production of continuous
currents
 on-the-Main.-13th December, 1882. - (A communica-
tion from L. Limbert and M. Salni, Hanan, Ger-
many.) $6 d .1$.
This relates to a machine in which a pantograph is 5964. Shedding
Barnsley.-13th
Apparatus of
December, 1882. Looms, J. Irving,

Barnsley.-1sth December, 1882. . $6 d$.
This relates to the employment of excentrics or
cranks to impart positive up-and-down movements to
the healds in looms for weaving. 5968. Constroction of Vertical Steam Boilers,
A. H. B. Sharpe and F. Palmer, Lincoln. $-14 t h$ December, 1882. . 6 d. boilers with a vertical fire - box of having an inner
projecting horizontal water vessel, which is in com. muncication with the water space surrrounding the fire-
box, and is traversed by a series of fire tubes, or by box, and is traversed by a series of fire tubes, or by
one or more fire flues, leading from within the fire-box
to 596 external smoke-box and chimney.
5969. Valves of Motive Power Engines, W. Har-
graves and W. Inglis, Bolton. $-14 t h$ December, 1882 . This relates, First, to the fitting of motive power admission valves, in place of each single valve as ordineparately and alternately or in rotas being opened the arrangement of mechanism for imparting two to-
and-fro movements to a valve for each rotation of the 5970. Pentagaph Engraving Machines, J. Mozoat,
Barrhead, N.B. 14 th December, 1882.6 d. This refers specilly to means or appliances for
varying the extent of motion of the roller or cylinder being engraved, to compensate for irregularities in the
diameters of different rollers or cylinders employed. 5972. Apparatus FoR Ianiting Gas, \&.., T. Rovaan,
Westminster, and S. IViliams, Newort.-14th DeThis relates, First, to a portable instrument for
igniting gas and the like ; Secondly, to the use of a
dynamo-electric machine for signalling by telephona dyyamo-electric machine for signalling by telephone 5973. Machinery for spinning Fibres, F. Ripley, This relates to the use and employment of a traversed
tube within, and in combination with, a stationary 5974. Looms For Weaving, D. Eastioood, Yorkshire.-
14th December, 1882 6d, This relates to an apparatus for working the healds. 5977. Galvanic Batteries, J. Rapieff, London.-14th
December, 1882. $4 d$. This relates to improved galvanic cells and to the
construction of new cells for the same purpose,
namely, for generating electric currents. 5991 Trioycles, Bicycless, \&c., O. Pihlfeldt, Redcar This relates principally to the driving gear.
6019. Dynamo-electric Machings, W. S. Horry, Lon This relates principaliy to the armature composed of
several segmental conductors so connected up by several segmental conductors so connected up by
means of a pin and cross link at one end of each sec-
tion, and by rivetting, fastening or soldering at the tion, and by rivetting, fastening or soldering at the
other end, as to form one continuous conductor, in
the shape of a wheel, or part of a wheel, or disc, this the shape of a wheel, or part of a wheel, or disc, this
conductor only being exposed to the inductive effect of
the manetic field the magnetic field
6025. SEwing M
6025. Sewing Machines, T. Chadwick and T. Sugden,
oldiam. -18 th December, 1882. 6d. This consists in arranging the spool for the thread
in the shuttle, so that it will be free to unwind from a in the shuttle, so that it will be free to unwind from a
stud or pivot in the shuttle, and so that the rotation
of the shuttle will tend to wind the thread upon the spool, but the thread between the cloth and the
shuttle spool will prevent the spool from revolving shuttle spool will prevent the spool from revolving
with the shutte, and consequently the pivot will
have to rotate in the axis of the spool as the shuttle rotates, the spool only rotating contrary to the direc-
tion in which the shutle rotates to give off thread as
it is required by the fabric being sewn. 6027. Latchiva Bouts or Locis AND Latches, J. The inventor claims in a latching bolt of a a lock or short length of parallel-sided part, either cylindrical,
rectangular or of other convenient section (but pre rectangular, or of other convenient section (but pre-
ferably cylindrical), such parallel-sided part projecting
forw ferably cyllindrical), such parallel-sided part projecting
forwards from the fore-plate of the case when such
bolt is in its latched position, and also passing through 6047. Manveacture of Bichromates, J. H. John-
son, London.-18th December, 1882.-(A communication from $0 .$, A., and A. Neuhaus, Blberfeld, Ger-
manyy.) $4 d$.
This consists in the manufacture of bichromates of potash, soda, calcium, barium, and and magnesia from
their chromates by adding under pressure (and heat if
necessary) 6063. Trioycles, \&c., B.
19th December, 1882.
8 This relates, First, Secondly, in the construction of parts for driving at two different speeds.
6129. Ingerting and Securing Movable Type in
Stereotype Plates, J. B. Taylor, P. Evans, and C. P. Scott, Manchester.-22nd December,
1882.6 . The object is to insert and secure movable type in
stereotype plates, so that upon receipt of latest telegerams, dye., special editions of journals may be printed. 564. Brake Apparatus for Tramway Vehicles, W.
R. Lake, London. -1st February, 1883.- (A communication from H. Marneffe, Litge.) - (Complete.) 6 .
The chief object is to store the energy or momentum of vehicles when being brought to a atandstill, , so that
it can be utilised at any time when an extra supply of
power is required.
785. FEED WATER Purifiers For Boilers, IV. P.
Thompson, Liverpool. $-13 t h$ February, 1883.
communication from C. Elliot, San Francisco.)-
(Complete.) 4d.l of a feed pipe, a branch pipe attached to the feed pipe,
and means for forcing chemicals through the branch
1462. Non-Conducting Composition for Covering
Steam Boilers, de., G. IV. Redfern, London.- 20th STEAM BoILERS, \&c., G. W. Redfern, London.- 20 th
March, $1888 .-$ (A communication from \boldsymbol{H}. C. Goodell,
Atchison, U.S.)-(Complete.) 6 . The composition consists of a base or adhesive
coating applied to the surface to be protected, composed of slaked lime, cement, or equivalent substances
and asbestos, in combination with one or more outer coatings composed of lamp-black and fibrous material,
applied to the base coating.
1468. Lastina Machines, P. M. Justice, London.-
20th March, 1883.- (A communication trom J.
 Th an object is to last boots and shoes by machinery tion including mechanism to hold the last in place
and allow it to be turned and fed forward step by step, so that the mechanism for drawing over the leather may operate successively and at proper intervals.
Pincers draw the upper over the last, and suitable
mechanism turn the pincers, so as to plait the mechanism turn the pincers, so as to plait the
leather at the heel or to. Mechanism is provided to
feed the nails and hold them in position to be driven 1562. SEwIN MA Mant
 Diehl, New Jersey, U. S.). - (Complete) 4d.
This relates eppecialiy to single thread or chain-
titch machines the objects being to provide a simple stitch machines, the objects being to provide a simple
and durable and efficient mechanism for producing the
"twisted "twisted" chain stitch, and also to provide means for
simultaneously sewing two or more seams, and vary-
ing and adjusting their distances apart. A looper is simultaneously sewing two or more seams, and vary-
ing and adjusting their distances apart. A Aoper is
adapted to oscillate and co-operate with a reciprocating
more of such loopers are used in combination with
an equal number of reciprocating needles so as to form
the the desired number of seams simultaneously
1564. Disintrarating Machines, W. R. Lake, London.
-27th March, 1883.- (A communication from S. and B. B. Dodson, Neve York.) - (Complete.) 6d. a fixed abutment composed of sections, and serving to dhintegrate between them the material to be treated having V -shaped circumferential rib or projections, and the abutment V-shaped grooves,
which at the bottom are closer to the risb than at top and extend outside the sides of the rotary part, 1608. Gelatino-bromide Film Paper for Photo-
GMAPMII NEGATIVEs, R. H. Brandon, Paris.- -30 th GRAPHIC NEGATIVES, R. H. Brandon, Paris.- 30 th
March, 1883.-(A communication from A. C. A. Thie-
baut, Paris.)-(Complete.) $2 d$. This consists in the preparation of a gelatinised film after the photographic negative has been produce by exposure and development in the usual manner, is
detached or peeled off in a dry state by hand without
the detached or peeled off in a dry state by hand
the assistance of any dissolving or other agent.
1616. Pnevmatio Signals yor Railways, B. M. Chase,
Boston, $V . S .-30 t h$ March, 1883.-(Complete.) 10d. This rolates to a class of automatic railway signal This relates to a class of automatic railway signals
n which the weight of a locomotive, acting upon a
lever pivotted along the track, operates a pair of lever pivotted along the track, operates a pair of
bellows to drive a column of air through a tube, such bellows to drive a column of air through a tube, such
column of air, by suitable mechanism, being adapted
to to operate a visual signal, and put in motion an audible alarm, to announce the approach of a train consider-
ably in advance of its arrival at a station or highway
crossing

SELEOTED AMERIOAN PATENTS,

280,903. Cinder Car, Jerome L. Boyer, Columbia, Pa
Claim. - (1) In a cinder car for the dumpage of fluid cinder, the floor constructed of two or more parts,
having a central thickened end projection as bumpers having a central thickened end projection as bumpers face, oscillating upon a pin R^{3}, and hinge ears $\mathrm{S1}$ at
the rear end of the car on the face of the floor, in combination with the box $O O$, of the form shown, and
provided with hinge ears P P, mating the hinge S1, a
pintle S^{2}, common thereto, and trunnions pintle S^{2}, common thereto, and trunnions Q, whereby
the same is adapted to be raised at an angle with the

track, the box clear of the car contents and the same
at liberty to slide therefrom, substantially as shown and forty the purpe therefrom, substantially as shown
anecified. (2) In a cinder car and for the purpose specified. (2) In a cinder car
for carrying fuid cinder, a movable connected top box
of truncated form, its four sides of taper section rividly of truncated form, its four sides of taper section rigidly
combined or cast as a whole, in combination with a
suitably combined or cast as a whole, in combination with a
suitably arranged hoist acting on trunnions Q, and
connected with the floor $\mathrm{S} R$ by the ears P, mating
with floor wars $\mathbb{S i}^{1}$, a pintle \mathbb{S}^{2}, common to both, the with floor ears Si , a pintle S^{2}, common to both, the
floor, as described, fulcumed on the truck T by ears
R^{2}, and pin R^{3}, the whole arranged to operate as and floor, as described, fulch
R^{2} and pin R^{3}, the whole
for the purpose set forth.

CONTENTS.

