THE CHICAGO RAILWAY EXPOSITION. No. IV.
Refrigerator cars are now coming into extensive use in the States for the conveyance by freight train of various perishable articles of food. The great distances, the extreme heat of the summer, and the slow speed of the trains combine to render necessary cars in which a dry, cold, and pure atmosphere can be maintained for several cold, and pure atmosphere can ine maintained for several
days together. The cars now in use leave something to be desired in these respects, and the Exposition contained many cars designed to deliver perishable articles in perfect condition after a long journey. In this country fresh fish, milk yeast, \&c., are generally carried by passenger train in trucks provided only with very rudi mentary appliances for maintaining either an equable temperature or good ventilation, and it seems possible that the American system of transport, in properly constructed vehicles, by goods trains might prove both cheaper and more convenient, avoiding delays to passenger trains caused by the addition to their load of trucks of fish, and milk vans.

All the cars in the Exposition were cooled by ice, which is cheap, and is an article o universal and every-day use in the States. The system of refrigerating by cooling compressed air, which is afterwards allowed to expand, generally adopted on board ship, is hardly suitable for use on a railroad vehicle, though it would appear to give better results, the air being drier, the proper temperature more equably maintained, and the ventilation positive and certain. It is believed in America that warm air is sufficiently dried by passing over cold surfaces, the moisture ice-bux and led away but on ond ship ice-bux and led away, but on board ship and in our moister atmosphere it is possible that less favourable results may be box cars about 30 ft . in length, constructed with thick

be arranged for large blocks of ice, which melt slowly and more evenly than small pieces. To secure economy in the use of the ice, the water should not be allowed to drain cooling the air. The ice-boxes should assist the ice in useful room as possible ice-boxes should occupy as little be properly cooled before it comes into contact with the freight. The walls of the car must, of course, be efficient non-conductors; the doors must close tightly, and the ice boxes must be easily accessible from the outside for re-
space of walls; J, perforations in car lining to allow pipes to be effected by the cold air in car ; K, a central trough or eservoir into which the floor drains; L, iron cover strip over trough slot in floor; M, traps in floor at ends of trough
K , and centre; N , trap-doors; O, notches in floor edges to K , and centre; N , trap-doors; O, notches in floor edges to form drains under strip L ; P, a pipe from below, up into trough and curved down into water; Q, centre timbers car frame each side of trough; R , doors opening flashing around foot of side walls and t, pipes built into non-conducting space; V pipes built into non-conducting space; V outer strainers of inlet pipes from outer air, w, iner strainers of pipes to in composed of three thicknesses of planking, an air space, anon-conducting composition sheeting,
tion and a thickness of cork. spaces, except spaces, except
those in the bottom, communicate with one another, nalatmosphere circulates freely through the various air spaces. Inlet pipes, which are cooled by contact with the interior of the car, admit air at the bottom; the foul air rises, aids in cooling the incoming air, and passes off by outlet pipes to the air spaces in the sides of the car, whence it is carried off by the current filling or examination. The method by which the various of fresh air circulating there. The floor slopes to a central exhibitors sought to attain these objects is briefly described below.

The sides of the Ayer rubber car are formed of layers $\left\lvert\, \begin{aligned} & \text { trough beneath the floor of the car, where the ice water } \\ & \text { can be retained as long as its low temperature renders it }\end{aligned}\right.$

POST OFFICE CAR.
sides, roof, and floor, to serve as efficient non-conductors. The ice is placed in boxes or trays in the upper part of the car, and circulation of air is ensured by the ascent of the warm air to the ice, where it is cooled, and descends on the freight. None of the cars exhibited had fans, or any similar devices for promoting circulation of air.

Experie nce has shown that perishable articles can best be carried in a refrigerator car possessing the following qualities:--The air must be not only cool but dry, and the reight ayd woodwork of the car must be carefully protected from contact with the ice or the ice-water. The foul air must be carried off, and fresh air, properly cooled, must bue allowed to take its place. The ice-boxes should
of planking and air spaces lined with india-rubber sheeting. The external air passes through the ice racks at each end of the car, and the condensed water falls into a trough and runs off by a pipe. The Lorenz car, illustrated by Fig. 16, also carries the ice at the ends of the car, but the ice-boxes,
when not required, when not required, can be folded up, leaving the whole body of the car free for ordinary freight. The ice is put

in either from the sides or top, but the ice-boxes and doors are not shown on our illustration, in which A shows the floor inclining to centre ; B, same at ends of car ; C, filling of non-conductor; D, air space; E, openings from outside to air space; F, openings in car bottom from outer air car to spaces in floor; G, outlet strainers from inside of car to outlet pipes; H, outlet pipes built into non-con-
ducting space; I, outlet pipe discharge orifices into air

POST OFFICE CAR CLEARED.
useful. A galvanised iron flashing round the base of the sides of the car prevents the access of moisture. It is stated that this car is very well ventilated, and is economical in the use of ice. It is chiefly used for the conveyance of beer. The outside doors on either side are of the usual sliding pattern common in America. The inner door is hinged and opens inwards, but contains a small door opening outwards, allowing the interior to be examined, and the removal of any obstruction preventing the larger door from opening.

LSCREW SNOW PLOUGH.
The Merchants' Dispatch Transportation Company car, Wicke's patent, is much used for the conveyance of milk, \&c., and is fitted with ice pans at each end of the car filled from the roof. The condensed water falls into troughs which run across the ends of the car, and are drained by means of pipes. The air is cooled by contact with the galvanised ice pans and troughs. The Post Refrigerator keeping the car cool after all the ice is melted, and saving
the ice and time used in cooling before commencing a journey. The air in the car circulates freely all round the
The Ridge giving a large cooling surface.
The Ridgeway car has ice boxes at the ends of the car, round which the warm air passes without coming in actual contact with the ice before being admitted to the body of
the car. The condensed water runs along a series of the car. The condensed water runs along a series of
troughs ranged one underneath another, and the cooling troughs ranged one underneath another, and the cooling
power of the water is used to promote a free circulation of air. Large sized blocks of ice are used, which, melting
slowly and regularly, are well slowly and regularly, are well adapted for long journeys.
It is stated that the air is well dried and purified It is stated that the air is well dried and purified, and that an unusually large space is left for freight, which is pro-
tected from contact with the ice boxes or water troughs tected from contact with the ice boxes or water troughs.
The sides of the Tiffany car are well calculated to The sides of the Tiffany car are well calculated to keep
out the influence of the external atmosphere, being comout the influence of the external atmosphere, being com-
posed of four thicknesses of boards-two posed of four thicknesses of boards-two $\frac{1}{2}$ in. and two lin.
-three air spaces-two being closed and one open to the -three air spaces-two being closed and one open to the thickness of the side of the car being $7 \frac{1}{2} \mathrm{in}$. The ice is carried in a trough underneath the roof of the car, a lower
and smaller trough collects the drippings of the condensed water, which ultimately fall the drippings of the condensed water, which ultimately fall through pipes at the ends into
a trough beneath the The Zimmerm the floor of the car.
The Zimmerman car is fitted with air tubes running through the ice boxes, thus increasing the cooling surface
and promoting a circulation of air. Most of the cars described above are in extensive use, and embody improvements suggested by the use of less perfect appliances during the last few years.
Continuous brakes are now almost universally used on passenger trains in the United States, and their equally
widespread adoption on freight trains widespread adoption on freight trains is only a question of
time. The Westinghouse Brake Company exhibited time. The Westinghouse Brake Company exhibited a cheaper form of the well-known automatic brake adapted
for freight trains. The brake was arranged for a train of for freight trains. The brake was arranged for a train of fifty cars, and was equipped with the proper amount of
piping, \&c., and shown in operation. The reservoir, piping, \&c., and shown in operation. The reservoir,
cylinder, and triple valve are attached to one another saving some trouble and expense in placing the brake ander a vehicle, and the fact that the Brake Company's large new works at Pittsburg are already working day
and night would show that the brake gives satisfaction and is being largely adopted. Cheaper forms of brake operated by the action of the Cuffers also meet with avour, especially as the brake on each vehicle works independently, and no brake pipe or continuous connection through the train is required, thus permitting the brake to
be worked on a train partly composed of unbraked be work
vehicles.
The American Brake Company, of St. Louis, Mo., exwhich full-sized working models of a brake of this class, which is illustrated by Figg. 17 and 18. Between the centre longitudinals, and at the inner end of the central in one of of its jawed ends the push lever B, which carries houlder on the buffing the push bar A, butting against a shoulder on the buffing rod, and in the other double pull rods carrying a spiral spring, transmitting the strain to C C. The bell cranks, D D, are connected to the brake beams, and consequently compression on the draw head or pressed on the wheels the A, causes the brake blocks to be pressed on the wheels, the amount of pressure being reguas a brake simply made as above described would not admit of a train being backed, a device is attached which removes this objection and, further, only allows the brake to be applied when the car is moving at a speed above six miles per hour. The push bar A can only come in possible contact with the buffer rod by the centrifugal force of are coupled by attached to the axle. These balls, E E, are coupled by means of links to a collar F, sliding on the axle. One end of a lever G bears against the collar, and piece A. When the car is running of rods, \&c., to the push piece A. When the car is running at speed, the governor
balls draw the sliding collar towards them, leavin G free to follow it, and permitting the push leaving the lever behind the shoulder on the butting and draw A to drop behind the shoulder on the bufting and draw bar, when the brake is ready for action, going on directly the buffer is compressed. When the speed falls below six miles an hour, the centrifugal force of the governor weights becomes so feeble that a spring-not shown in the illustration-
restores the collar to its former position, lifting the push piece A clear of the buffer rod. The brakes come off piece A clear of the buffer rod. The brakes come off backed from a state of rest without the brakes going on, the push piece A lying on the buffer rod, but being unable when the enind the shoulder. The brake can be applied applying the engine is on the enging the or train by momentarily applying the brake on the engine or tender, thereby putting
the draw gear in tension, and letting the lever A fall the draw gear in tension, and letting the lever A fall
behind the buffer rod shoulder. When steam is again put on, the consequent compression again applies the brake, which, of course, remain on until compression ceases. This orake has been in use for some time on about 1000 cars, $\neq 3$ per set-exclusive of foundation brake, The fers, blocks, and hangers-is low enough to allow of its extensive application to freight ears.
The freight car brake exhibited by the Tallman Automatic Brake Company of New York also acts by the compression of the buffers, which force together two friction wheels, one of which is keyed on the axle, and the other is which can be shifted wing up the brake chain. A ratchet, the train is going, prevents the brake from acting when the train is backed.
The Waldumer Electric Brake Company of Cincinnati exhibited a working model of a very promising form of continuous brake, which is just emerging from the experimental stage. The instantaneous action of electricity and an electric brake specially suitable for tong freight traing The following description is abridged from that furnished by the inventors. The system consists of a dynamoelectric generator driven by a small rotary of a dynamoon the locomotive. The mains conducting the mounted
current extend in parallel lines from the dynamo through that known as the "multiple arc", by which the intern tion of the current on one car affects no other car in the train. They consist of non-insulated copper wire, and are divided into car lengths, and fastened under the bodies These separate lengths have, as terminals, flexible con ductors of copper wire cable surrounded by rubber tubing For electric connectors or couplings, a dovetail tongue and groove device is used, each member of the coupling having both tongue and groove, thereby insuring perfect connec tion under all circumstances. A flat spring, through which the tongue projects, maintains perfect contact, takes up all wear, and binds all parts sufficiently to prevent separation the any cause, except a strong direct pull resulting from which event of the car from the balance of the train, in coupling being cheap, durable, and reliable. On erhole branch wires extend to brass springs in contact with car brass discs fixed upon, but insulated from, the axle and from each other. They serve to conduct the current from

FIC.al

№., GROUND PLAN GOFI R.P.O.CAR-E3G PAPER.SEPARATIONS

weak battery current, which keeps an ordinary telegraphic relay on each car out of contact. When this current is interrupted the relay throws the strong low tension dynamo current into action, operating the brakes, storage batteries being placed on each car. On freight trains, this system is modified, and the fracture of a wire or coupling doesnotapply the brakes, butsimply ringsbells on the engine and in rear van or "caboose." The guard can then, if he sees fit, apply the brake on this portion of the train hrough the medium of a storage battery on his van.
The street car starter and brake, exhibited by Charles Brown and Co., Chicago, is an ingenious device though not new for storing the momentum, which is destroyed by the usual form of brake, and utilising it for restarting the car. The motion of the car is not checked by friction but by the the power of which is available to again a spiral spring, the power of which is available to again put the car in
motion. The mechanical details appear to be well worked ut, and the car can be run in either direction, and stopped and started on either up or down grades. The heavy pull
necessary to start a car is very severe on horses, and this invention would appear to be useful in saving much wear and tear in horseflesh.
The Chicago, Milwaukee, and St. Paul Railroad, a corporation owning
no less than 4528 miles of line, exhino less than 4528 miles of line, exhi-
bited two travelling post-offices, built bited two travelling post-offices, built
by the Harrison Postal Bag Rack Company, of Fond du Lac, Wis. The larger of these cars is illus-
f with the axle. Its dimensions are 4in by 15et revolving wrapped by four layers of No. 8 wire wound in one of the spaces in a direction opposite to that in the other.
The electro-magnet has for an armature nine square wrought iron bars, lin. by 16 in . in size, which are used as delivered from the mill without finish of any kind. These extend over three poles of the electro-magnet, to whose cylindrical form they adjust themselves, and have their

ends engaged in slots in the heads of the drum surrounding the whole. A false head, dust proof, covers these ends, keeps the bars in place, and also serves to hold a circular spring keeping them normally out of contact with the magnet and preventing unnecessary wear. A chain is fastened to, and extends from the drum just described to a grooved wheel, from which another chain extends to the ordinary brake lever, not, however, interfering with the hand brake. The driver applies the brake by opening the steam valve of the rotary engine to the degree required, the strength and amount of current depending directly on the speed of the engine and dynamo. The amount of current with which the magnet of each brake is charged is indicated upon an electric gauge, similar in appearance and action to the ordinary pressure gauge. The current instantly traverses the length of the mains, whose electric resistance is practically nothing, and distributes itself to all the magnets, the resistances of which are equal- 0.6 ohm .thereby exerting an equal and uniform force throughout the length of the train. The circulation of the current through the wire surrounding the core of the magnet renders the periphery of the iron flanges magnetic, attracting the bars, which adhere with a force proportional to the square of the current. As the magnet revolves with the axle, the bars, and consequently the drum, in the heads of which their ends are engaged, revolve until the brake blocks are against the wheels, where they are held as powerfully as may be desired, though the whole system may be instantly released or the pressure decreased by closing the throttle valve. When the brake is hard against the wheels the motion of the drum ceases, though
the magnet continues to revolve appliance, in which the friction is applied and frictiona by the electric current, which simply transmits power fred the revolving axle to the ordinary brake mechanism. An economy in current is effected by the contact between armature and magnet, the power of the latter varying inversely as the square of the distance between it and the armature.
As above described the brake is virtually non-automatic, by an additional system of wires conveying a constant
shows the car in full working order for sorting. Fig. 20 shows tables and supports detached, and racks folded up out of the way, to provide for the storage of bags; and a ground plan of the car is given on Fig. 21. It will be seen that the car differs materially from those used by our post-
office, being 60 ft . long, 9 ft. 6 in . wide inside, self-contained office, being 60 ft . long, 9 ft . 6 in. wide inside, self-contained,
and not communicating with other cars in the train. fitted with a simple form of bas cars in the traing. It is fitted with a simple form of bag catching and dropping
apparatus, and is entered by sliding doors at the sides apparatus, and is entered by sliding doors at the sides.
The mail bags are hung at their four corners from hinged The mail bags are hung at their four corners from hinged
cast iron frames, which can be taken off their hinges hooks, and allowed to fold against the sides of the car The sorting tables to fold against the sides of the car The sorting tables are similarly hung from removable
stanchions, and thus the car can be wholly or partly cleared for the storage of mail bags, the contents of which cleared
do mon for the storage of mail bags, the contents of which do not
require sorting, or the car can be in a few seconds trans require sorting, or the car can be in a few seconds trans-
formed into a busy post-office, giving space to sort a large amount of correspondence, Briefly, space to sort a large amount of correspondence. Briefly, the car is adapted, by
means of its detachable racks and sorting tables, to very means of its detachable racks and sorting tables, to very
varied requirements, and therefore the same car can be used on any route, and can, in case of need, be luggage van A given number of sorters can accomplish more work portablear, as the tables and racks are in sections and pand the mail matter for important places is thrown directly into the bags to be filled, instead of being sorted into boxes which are then emptied into bags. The car exhibited con which are then emptied into bags. The car exhibited con-
tained 236 letter boxes, all of which are removable, and are labelled by printed pieces of cardboard, the size of an Endinary rail way ticket, slipped into spring catches. The seems preferable, horizontal revolving polygonal label carriers noticed thate, but is not used in America. It will be suitable for day use. The majority of the fittings are suitable for day use. The majority of the fittings are castings made from standard patterns, securing uniformity and enabling any breakages to be easily repaired, and new with the can be built in a shorter time than is possible prticular rual method of building vans suitable for one that these mail vans differ from those used in England in every detail but one, the entire absence of in England in the most striking of these differences. The lamps are shown on Figs. 22 and 23 ; each can be swung from a centre so as to concentrate the light on any desired foint.
The Hawley Snow Plough Company, of Rochester, N.Y., exhibited one of the few Canadian inventions in the
Exposition. As will be seen from the Fig. 24-a large vertical screw is placed at the front end Fig. a large iron box wagon, which is driven as usual againd
of the snow bank by wagon, which is driven as usual against four locomotives. This plough, however, instead of simply four locomotives. This plough, however, instead of simply which is lifted clear of the track by the action of the screw, driven at some 300 revolutions per minute the pair of horizontal engines. The first plongh of the kind was only finished by the middle of April this the kand therefore the invention has not yet been fully tested though on April 23rd it is said to have successfully cut through a mass of packed snow and ice, 150 ft . in length and 6 ft. in depth, near Orangeville, on the Toronto, Grey, placed underneath the The engines driving the screw are placed underneath the floor of the car, and a boiler, supply of fuel, \&c., are provided.
bited a very fine caboose .rks, of La Fayette, Ind, exil bited a very fine caboose car, or goods brake
Chicago and Atlantic Railroad-which is Chicago and Atlantic Railroad-which is a nev The car is mounted on two four-wheeled 1 to Chica The car is mounted on two four-wheeled bogies, is 3
long inside, and is entered from the ends in usual on American entered from the end some five brakesmen take the plas. As a conductor guards on an English goods traice the tho than our brake yans goods train, the caboose is lar accommodation for six men. The conductor has a $\dot{\text { d }}$
and and pigeon-holes for papers, and each man has a a 100 \&c. A regular coolking stove, keeps his clothes, bedd boiler and heating plate, surrounded by a rail, in provic and a larder which cand, with racks for plates and disl and a larder which can be kept cool by ice. Meals
eaten on folding tables which let down from the walls water-closet, washing basin, and sink for wishi ng disl large imperial is placed in the of this comforta
with four very comfortable seats so arranged that a man can keep a good look out without standing up. Three
brake-wheels in all are provided, one in the imperial and one on each platform. Coal and spare couplings, \&c., are carried in boxes under the car, and suitable zinc-lined
cupboards are provided for the oil and lamps, cupboards are provided for the oil and lamps.

THE VIENNA ELECTRICAL EXHIBITION.

The most important exhibit of accumulators is that of

 Messrs. Sellon and Volckmar, or as the company is entitled, the Electrical Power Storage Company, Limited. In the North-west Court, between the Rotunda and the Art Gallery, they have a wooden house fitted up withshelves, on which accumulators are ranged sufficient'to feed shelves, on which accumulators are ranged sufficient to feed
200 ordinary incandescent lamps. Fifty of these lamps are in the Emperor's pavilion, and 150 in one of the
"interiors." An arc lamp in the theatre is also fed from this battery. It consists of 115 boxes of 2 -horse power hour capacity ; 190 of 1-horse power hour, and forty of $\frac{1}{2}$-horse power hour. For the charging of these there are
provided three dynamo machines by Ganz and Co., two provided three dynamo machines by Ganz and Co., two field magnets of the other two. Each of these machines generates an electro-motive force of 60 volts. There are two ordinary sizes of these accumulators, one rated at 1-horse power hour, or 350 ampère hours, the other 2 -horse power hour, or to give a current of 350 ampères, in which case it will be exhausted in one hour, or if drawn upon for a current of 35 ampères, it will last ten hours. They may appreciable loss of efficiency, that is, down to this current the number of hours throughout which the accumulator will furnish a steady undiminishing current of this amount will be $\frac{350}{\text { current }}$. seven pairs of plates measuring loin. by 9 in , and
$\frac{1}{8}$ in. thick; and the 700 ampère hour boxes $\frac{1}{8}$ in. thick; and the 700 ampère hour boxes contain
twelve pairs of the same plates, and for larger sizes six pairs of plates are used per horse-power hour. These plates are cast of pure lead. They are in the form of a grating, the square perforations having $\frac{3}{\delta} i n$. side, and the thickness of the lead between them being about $\frac{1}{8}$ in. minium-the plates are then placed in the boxes, and dilute sulphuric acid filled in, and the battery is then ready to be "formed." In the Sellon-Volckmar batteries, the "forming" consists simply in the first charging; this taking a and charging it is found most economical to couple all the boxes in series, if sufficient dynamo power for the whole number of boxes desired to be charged is procurable; but if this is not to be had, they may be arranged in parallel require the potential obtainable from the charging dynamos. In each box or cell all the plates are coupled in multiple arc. At the upper edges of each plate are two
horns of unequal length, by means of which the plate hangs on the opposite edges of the glass box. The long
horn of every alternate plate is placed say to the left hand, and all these alternate plates are coupled by a copper bar, through which the current flows in in charging, and out when the batteries are working. The long horns of the those first mentioned, between which they hang, are connected by a similar copper bar on the right hand of the the series. Each cell requires at least rather more than $2 \cdot 2$ volts to charge it in order to overcome the contrary electro-motive force, which is $2 \cdot 2$, and also the resistance,
which is small. Thus if 100 such cells were to be charged in series, the dynamos would need to supply a current of more than 220 volts electro-motive force. In this case the "forming" would occupy about fifty hours, and subsequent chargings from twelve to thirteen hours. If the dynamos
were able to give only say 110 volts, then the 100 cells were able to give only say 110 volts, then the 100 cells
could be arranged in fifty groups, in each of which two cells would be coupled in parallel, the fifty pairs being arranged in series. The forming and charging would now take a correspondingly longer time, because the current is divided between two cells. By the pairing in parallel, the resistance of the whole compound battery is halved, and
the electro-motive force being also halved, the whole current remains theoretically the same; and each cell receiving only half of it, the charging will theoretically
occupy double the time. Practically, it is found that it is always desirable to couple all the cells in series, otherwise they are found not to be well and equably formed. In
charging, a current of from 20 to 25 ampères per horsecharging, a current of from 20 to 25 ampères per horse-
power hour of the single cell is used. When the batteries power hour of the single cell is used. When the batteries
are working, each cell gives at first an electro-motive force of working, each cell gives at first an electro-motive force which it keeps very steadily until the battery is almost
completely exhausted. In working, the battery cannot be coupled in any manner for high or low tension with a number of cells in parallel are, because if this is done, one becomes exhausted more rapidly than the other, and creates a contrary electro-motive force.
During the charging the minium on the positive plates in completely converted into peroxide of lead, and on the negrative plates it is reduced to spongy lead, but only a The thin surface layer of the pure lead plate is oxidised. four or five years without need of re-making. Smaller cells rated at $\frac{1}{2}$-horse power hour have nine pairs of plates about $\frac{1}{4}$ in. hyy small blocks of india-rubber stuck through several of the grating holes. In the smaller boxes two and serve the same purpose as the blocks. The resistance of the $\frac{1}{2}$-horse power hour box is found to be $\frac{1}{60}$ ohm only,
and that of the box used in the launch to be presently and that of the box used in the launch to be presently
mentioned is $\frac{1}{1200}$ ohm. The resistances of the larger
boxes have not yet been accurately
figures apply to all different sizes of cells. The company also exhibits a tricycle in the Rotunda to be driven by two
or four similar cells : two are sufficient for an ordinary ride or four similar cells; two are sufficient for an ordinary ride
of two hours, and the four will carry one a correspondingly longer time or up correspondingly steeper gradients. A small electro-motor designed by this company and diately beneath the wheel axle. An intermediate shaft lies in front near the footboard. The three shafts are coupled by chain gearing, the gearing ratio being ${ }^{17 \frac{1}{2} \mathrm{in} .} 6 \frac{1}{4} \mathrm{in}$. these sizes being the diameters of the chain wheels. The two driving wheels are 44 in . diameter and 42 in . apart. One
box to hold two accumulator cells lies behind the dynamo, box to hold two accumulator cells lies behind the dynamo, and another to hold two others immediately in front of the
same. There are four brushes on the commutator, but only one pair-of opposite-brushes is in contact at one time. By means of a reversing lever one or other pair may be brought in contact, and the machine is thus driven forwards the rod governing, by a worm gear, the steering wheel in front, and at his left hand stands a switch, by which he may either cut off the current altogether, or else road and the speed desired. The cells for this tricycle are each divided into seven compartments, each compartment containing three pairs of plates $7 \frac{1}{2}$ in. by 6 in . Each box has a capacity of $\frac{1}{2}$-horse power hour. In use they furnish a current of from 30 to 40 ampères, with an electro-motive orce of 15 volts
Messrs. Volckmar, Messrs. Siemens Bros., and Messrs. Yarrow and Co. have combined to produce an interesting launch built by Messrs Yor and 6 ft . beam, with from 2 ft . to 3 ft . draught, and already described in The Engineer. This is to be run on the Danube Canal through the city. It is driven by a twobladed propeller 18 in . diameter, with blades 6 in . wide. The shaft is rotated by a D2 Siemens Brothers conplied by 80 Sellon-Volckmar accumulator cells of is supplied by hour each. Thus the whole battery has a capacity of $80 \times 350=28,000$ ampère hours. This battery is charged by a Brush shunt dynamo fixed on shore. At first sixty cells are used, then seventy, and then eighty, as the
battery approaches exhaustion. The switch for cutting out portions of the battery is close to the steering wheel. The cells of the battery each contain eighteen pairs of plates $7 \frac{1}{2} \mathrm{in}$. by 6 in . The battery gives supplied volts electro-motive force, and the dynamo is Probably it transmits 6 or 7 mechanical horse-power to the propeller shaft. The boat has been run at 11 knots per hour, but 8 knots is the ordinarily attained speed. dynamo is provided with two pairs of brushes, and can be reversed in the same manner as the tricycle machine. The electrical energy efficiency of these batteries is stated by Mr. Volckmar to be about 90 per cent.; that is, they can the out 90 per cent, of the energy delivered to them by falling off more than 10 per cent. It should be understood, however, that in order to keep the battery in good working order, they should never be exhausted below different batteries may be calculated at the rate of 50 lb . of lead per horse-power hour
There is another exhibit of accumulators, designed for industrial purposes by L. Kornbliich, of Vienna. These are thosedescribedabove differingonly from them in dimensions. There is only one size exhibited by this firm. In it the cast lead plate is also in the form of a grating. It measures $9 \frac{1}{2}$ in. by $7 \frac{1}{2} \mathrm{in}$. in surface, and rather more than $\frac{1}{4} \mathrm{in}$. thick, the spacing of the square holes being $\frac{1}{4} \mathrm{in}$. Minium is plastered on to the fuil thickness of $\frac{1}{4} \mathrm{in}$, and the plates such as beads are made from, which are kept in place by light india-rubber bands. Five pairs of such plates are inserted in a rectangular box, and the box thus made up The capacity of this cell is said to be 400 ampère hours. The efficiency appears to be very low, as it is said to require 1500 ampère hours to charge it. It is formed in the way mentioned above, that is, by a continuous current in one direction in sixty hours, and after forming it requires ten furnished is stated to be 2.25 volts, but this is probably slightly in excess of the accurate figure. The resistance of
the cell has not yet been accurately measured. It can be economically exhausted by a current as low as 7 ampères. The chief difference between this storage cell and the Faure-Sellon-Volckmar, as described above, is simply in This is believed by Herr Kornbliih to increase the efficiency of the cell; but so far as experiment has yet shown, his oxpectation, bliuh feared at first that the thick layer of minium, when it became dry, might crumble to some extent off portions of the surface, and therefore he lays the minium on under a heavy pressure. This has, at any rate, accomplished the object of preventing cracking and crumbling of the sur-
faces. The exhibit consists of sixty or seventy of these boxes, used for the most part for incandescent lamps. Since the confessed electrical efficiency of this battery is very low as compared with that claimed by other makers
of similar secondary cells, it is but fair to say that Herr Kornbliib maintains very positively that the measurements made of these other cells are entirely fallacious
M. Gaston Planté makes a third exhibition of secondary batteries, but as these have long been well known, and as they are made only for laboratory purposes, we need say
little about them. Two plates of sheet lead are wrapped up together into a double cylindrical spiral, the two sheets being kept separate by two or more narrow strips of indiarubber, which cover only a very small portion of the
surfaces. This roll of sheet lead is placed in a cylindrical
vessel of glass or other material, which is then filled to the proper depth with dilute sulphuric acid. The difference between this and the Faure battery is, therefore, that Consequently Plantés battery oxide or lead-is used "form," the formation consisting essentially in longer to form," the formation consisting essentially in the oxida tion of the positive plates, and moreover there are difficul ties in getting rid of the effects of the hydrogen generated at the negative plates. The formation is carried out by a
series of reversals of the charging current. It is sent first series of reversals of the charging current. It is sent first
in one direction for a quarter of an hour, then in the oppo in one direction for a quarter of an hour; then in the oppo site direction for half an hour ; and then in alternating
directions for $1,2,4,10,24,48$ hours, 8 and 15 days, and 1 month. The current of two Bunsen cells suffices to pro duce the forming or charging current. Lately M. Planté has found that the necessary time for forming can be diminished by one-half by first filling the jar with dilute nitric acid and sending a current through for twenty-four nitric acid, and sending a current through for twenty-four
hours. The nitric acid is then poured out, the plates washed with water, and the dilute sulphuric acid added. The electro-motive force given per cell is 2.4 volts at first which rapidly decreases to 2.2 volts, at which it remain which rapidly decreases to $2 \cdot 2$ volts, at which it remain
steadily until it begins to sink rapidly, indicating th approach of complete exhaustion. It is a general rule for approach of complete exhaustion. It is a general rule for exhausted so far as to bring them to this stage of rapid sinking of the electro-motive force. The capacity of the sinking of cell per kilog. of lead used is 57,000 coulombs, which is equivalent to about 16 ampère hours. The thick which is equivalent to about 16 ampere hours. The thick ing 3 kilogs. of lead is 4 in . diameter by 10 in . high. The electrical efficiency is 92 per cent., and the ratio of the mechanical work obtainable by the discharge of the cell to the electrical energy put into it is about 45 per cent. We find also in the French section a secondary battery which has at least a solid, substantial form to recommend neithr is by J. J. Barrier, of Paris ; but, unfortanately, M. Barrier nor any representative is posed of four cylinders of lead, one inside the other, which form two pairs of opposed plates. The thickness of the cylinders is from $\frac{1}{4} \mathrm{in}$. to $\frac{3}{8} \mathrm{in}$. Their outside diameters are 5 in ., $3 \frac{1}{4} \mathrm{in}$., $2 \frac{1}{8} \mathrm{in}$., and lin., and they are each about 12 in long. These are deeply grooved on their surfaces, either in rolling or in the turning lathe, the grooves leaving high square teeth, pitched $\frac{1}{8} \mathrm{in}$. apart. These cylinders of lead are separated by glass tubes, and the whole is set in a glas jar where the dilute acid is added. As no minium is used these are simple Planté cells of a peculiar mechanical construction. There is a wooden lid to the jar on which cylinders are put in electrical conneztion.
In some respects the most interesting secondary battery exhibited at Vienna is that of N. de Kabath, which is shown in connection with the United States Electric Lighting Company. Its action is the same as that of Plantés cells, it being composed of a number of thin lead plates plunged in dilute sulphuric acid. No minium is used, and the principle on which the cell is designed is that, since the oxidation penetrates slowly into the interior of the lead plate, the thinner these plates are the better If this principle is a correct one, the manuer in which it is carried out in this design shows a high degree of
ingenuity and mechanical skill. The plates are contained in shallow earthenware trays or boxes. These contain each eleven pairs of compound plates, each measuring 15 in . by $3 \frac{1}{4} \mathrm{in}$. depth by $\frac{1}{2} \mathrm{in}$. thickness. The plate is com-
posed of a hollow rectangular box or envelope made of $\frac{1}{10}$ in. thick sheet lead. The vertical sides of each envelope are perforated with round holes ${ }^{7}$ in. in diameter and placed close beside each other. These permit the acid to enter the interior of the envelope. This interior is fille their narrow strips of very thin sheet lad ying horizontally envelope, namely, $\frac{3}{3}$ in. These thin plates are alternately envelope, namely,
flat and "rippled" or corrugated, the corrugations being produced in relling to all the surfaces There are about 150 of these thin plates in the depth of $3 \frac{1}{\mathrm{i}}$. From one of the upper plates corners of the denvelope bars of lead of one of the uppe sections lead upward, and thus all the thin plates sections in one envelope form one compound plate, which may be either positive or negative. The plates are separated may be either positive or negative. The plates are separated from each other by glass tubes kept in place by rubber
bands. Each box containing eleven pairs of such plates is bands. Each box containing eleven pairs of such plates is
said to give 180 ampere hours without appreciable fall of electro-motive force. Such a box when charged weigh electro-motive force. 115 lb ., of which about 80 lb . are lead. The electromotive force is at first 2.5 volts, but rapidly falls to 2.2 volts, at which it remains constant, Such a battery is usually formed in sixty hours by a 60 ampère current, and for re-charging requires only four hours of a 60 ampère current. If it is discharged immediately after charging, 88 to 90 per cent. of the electric energy put in is or weeks, as much as 18 to 20 per cent. is lost. The los depends much on the insulation of the box, but there is also internal loss, which goes on at a slow rate, that has not yet been measured. This internal loss is believed to be due to the formation of sulphate of lead. In the Kabath battery special attention has been paid to the good insulation of the plates from each other and of the box containing them. Alsoit is peculiarin the nse of a muchstronger acid solution being used than is ordinary in such batteries, 25 per cent. of acid being used in charging and 30 per cent,
in fo, ming. The resistance of each box is approximately 005 ohms. It is found that each box is approximately continuonsly increased by continuing the curg effect can be longer than the above-stated period. In fact, the increas continues for months; but the rate of increase becomes so mical period to keep up the current. The battery exhibited consists of 100 of the above size of cell.

Naval Engineer Appointments.-The following have been
made at the Admiralty :-George Whitting, chief engineer, to the made at the Admiralty:-George Whitting, chief engineer, to the

ARMOUR PLATE FORTAT SHOEBURYNESS.

EXPERIMENTS ON PLATED FORTS AT SHOEBURYNESS.
On Tuesday, August 22nd last, an experiment of great interest, especially to England, took place at Shoeburyness It was earried out by the Royal Engineers with a view to testing the amount of protection afforded to granite forts by iron plates. The nature of the work tested is shown in the accompanying sketches. Fig. 1 shows the front, which is divided in four portions, the thickness of each being shown roughly in Figs. 2 and 3; that is, the plan and end elevation of the work. Reading from left to right, No. I. consists of 40 ft . thickness of granite and concrete ; Nos. II. and III. of 20ft. of granite and concrete, backed by about 20ft. of earth, but strengthened in front by iron shields, seen in Figs. 1, 2, and 3, hereafter to be described; and No. IV. consists of 40 ft . of granite and oncrete. A small passage, of sufficient size to enable a man to creep through it, is pierced through the work parallel to the face and 20 ft . from it, opposite portions II. and III,, which would enable the effect of the fire to be dixed on the soit was supposed, and so it proved. The shields x n No. III., against which the first shot was to be fired, onsists of 8 in . thickness each, of wrought of two thichedes, the in of two thicknesses, that is, $2 \frac{1}{2}$ in. planks laid horizontally, next behind each plate, and $2 \frac{1}{2} \mathrm{in}$. planks behind them placed vertically. The dimensions of each plate were as ollows: length 12 ft. , height 7 ft , and thickness 8 in . They their place by six bo'ts, on the Palliser English system.

The shield on portion II. consists of 12in. of Wilson fixed he topide an iron frame, as shown in Figs. I and I plating, to the work was laid a quantity of broke under the force of the blow-vide Fig. 1, at portions II and III. We can hardly think that structures of granite and concrete would attain their full strength for many months, perhaps years to come, and must allow for this i this trial, which it will be seen is a very severe one.
The gun employed is the 80-ton gun, M.L., which is it on Tuesday at portion III.- One round was fired from A brief report of this appeared in the Standard, granite. it was stated that a projectile weighing 1700 lb by which with a charge of 450 lb . of pebble powder, with was fired of 1588 ft . This implies a total of about 29,730 foot-tons, or 594.4 fork cumference, representing a power of perforatin cir 25in. of iron. The shot was a service Palliser, chill projectile, of about 3 ft . $8 \frac{1}{2} \mathrm{in}$. long fired without burstin charge, the radius of the head being about $1 \frac{1}{2}$ in The shot struck a point 3 ft . from the bottom of the plate and 3 ft . 8 in . from the left end looking at it were as follows: The shot cut a clean hole, passing through both plates, and breaking up during penetration turned rafter to the left, the pointreaching a depth of nearl 10ft, measuring from the front face of the iron The plates behaved admirably, the hole being cut almost with plate. plate. The wood was driven outwards, ip the
of the horizontal plates being thrust out byyond the plate at the left end, and 3 in . on the right. The granite wa pulverised all round the projectile for some distanc Fig Fig. 4. They will be observed to radiate from the point e impact, speaking generally. The stones of the course forced which the shot passed are, like the layers of wood forced longitudinally, left and right, projecting 3 in . beyoni the other at each end of the squares of masonry. One of two cracks also were visible in the brickwork lining of the small cross passage behind the part struck. The bolts d not appear to have suffered, and the general structure how effect beyond what is here mentioned.
The experiment must be looked upon as highly satiafactory. A velocity of 1100 ft . ought to be sufficient to enable this projectile to perforate 16 in . of iron alone. Backed with granite, the resistance would be considerably greator Suppose we guess that of the iron itself thus backed a equal even to 18 in . of iron, the velocity for that would only be about 1200 ft ., involving about 16,970 foot-to: 18 of energy, leaving the shot to attack the granite behind with 12,760 foot-tons left in it. It is difficult to conceive of ron plates acting better than these on this occasinc. The shot having passed rather to the left, has left the right hand portion of the plate as fit to receive another blow as could be expected. It will be interesting to see how tho steel-faced plates behave. In armour trials it is dangerouo give opinions beforehand, but we may expect more effect it, than in the case of less penetrationin the manonry behind. it, than in the case of the wrought iron. Plate and ahot
are both likely to suffer more under the increased sadden

LARGE PLATE-SHEARING MACHINE.
MESSRS, DE BERGUE AND CO., MANOHESTER.

ness of the shock against the hard steel, though the impact of shot that do not outmatch it, but it is thought
ness of the shock against the hard steel, though the degree in which so comparatively thin a steel face tells on
so big a shot may not be very great. We should expect the wrought iron covered portion under these precise conditions to do better than that with the steel-faced plate even supported as it is, because the latter plate itself is blows. If fill shell leave the A shell has a better are of cetting its charee to behind tha a steel faced phe but so steel faced one, but we do not snow enough results of whether either will suffer in this way With first-rate stel shll we should be inclined to back the steel-faced plate.

The trial is satisfactory in more than one way. England is the only power that has employed wrought iron to any considerable extent in coast forts, chilled cast iron having shows that wrought iron behaves well is specially satisfacshows that wrought iron behaves well is specilly satisfaccory to us as a nation, and in our judgment this is the case suffered only suffered only locally. The latter is of course important as affecting the further powers of resistance of the fort. A of desirabe be exceptionally strong. When it yit desirable to yield locally, and to leave still a good front protection.
We question if this plate has lost much in resisting power except in close proximity to the hole made in it. As we have before now pointed out, the plate-upon-plate system admits of being added to indefinitely, and thus it can be made to grow as it were in proportion to the increasing poivers of guns. How chilled iron would behave only form ar conditions is a question to which we can only form a reply on conjecture. It is supposed generally that it would suffer but little for a long time from the
that when completely outmatched it would be shattered en nasse, instead of allowing a projectile to pass through it as wrought iron does, leaving a perforated, but in other ment before us. Then comes the question again of steel hells carrying bursting charges, question again of steel jectiles, if developed successfully, will wother such pro of bringing in the harder classes of armour. Once more we would urge the desirability of firing against chilled iron in this country in order that we may know something about it for ourselves. If our ships ever engage a foreign iron fort, it can hardly fail to be one of chilled iron. We need experiments to learn even the relative effects of shot from small bore new type guns, and of those from oldfrom small up work in their shot. At present all this is matter of conjecture A bout the value of the experiments now being conducted at Shoeburyness, there cannot, at all events, be two opinions.

LARGE PLATE-SHEARING MACHINE.
The accompanying illustration is from a photograph of a plateshearing machine of exceptional size and power recently constructed by Messrs. De Bergue and Co., Strangeways Ironworks, Manchester, for a foreign Government dockyard. The machine, though simple in its construction, presents several features of
interest. In machines of this class the ordinary arrangement is to cast the main standards separately and to bolt between them the bottom cutter block, the whole being then either mounted upon a separate cast iron base plate, or the bolted frame bedded upon massive masonry foundations, but in the machine of which we give an illustration all foundations may be dispensed with, as each half of the bottom cutter block and base behind is cast with its corresponding side standard in one piece. The two halves of the machine are united by turned bolts at the front, as shown, as well as behind the block where the flanges are
the vertical block with the base plate. The back flanges thus serve as struts, imparting to the bottom cutter block additional rigidity, which is of so much importance in machines of extra width. In this case the cutters are 10 ft . 7 in . long and the cear shown, of making the standards is 7 ft . 6 in . standards, large wearing surfaces, and a firm bearing of the slide against the standards are secured, and at the same time the machine is enabled to effect the cross-cutting of a platimum of mum width between the ards themselves. In other words, the full length and stroke of the cutters are available whilst the main standards are placed the minimum distance apart. The gap or distance from the face of the cutters to the main frame is in this machine 36 in . The main excentric shaft is of steel, and has a throw of 8 in ., the wheel on this shaft having a 4 in . pitch.

By a simple wedge adjustment the bearings of this shaft can be readily tightened at any time, so that wear is provided against, and the certainty of the top cutter always descending true and square upon its work instantly arrested when required without stopping the machine ; the handle for working this motion is shown on the illustration The steam cylinder is 18 in . diameter, with 20 in , stroke, and is constructed of extra capacity to enable the machine to shear $1 \frac{1}{4} \mathrm{in}$. plates, the longest and heaviest cut within the compass of the machine at one stroke. The total weight of the machine is thirty-three tons, and no little difficulty was experienced by the makers in delivering it at the destination, as none of the French railways could undertake the transpon se by and this The machine had, in conseque port.

The Calcutta exhibition.-Great progress is being made with the preparations for the opening of the Calcutta Exhibition. Up to the 24th June last considerably over 100,000 square feet of space had been taken, and arrangements are being made for electri highting,

LETTERS TO THE EDITOR

[We do not hold ourselves responsible er the opinions of our corvespondents.].

Sir,-I have read the interesting article on
force which appeared in your issue of 17 th inst. As I definition of force which appeared in your issue of 17th inst. As 1 have passed
through the same difficulties as the writer of the article appears to
have done in coming to some consistent conclusion from the study have done in coming to some consistent conclusion from the study
of the numerous statements of great authorities on the subject, perkaps I may make one or two remarks. I think you are
mistaken in looking upon Professor Tait as representing any large party on this particular subject, and the idea that all Edinburgh students should implicitly believe everyething Professor Tait says is
surely unreasonable. The inconsistency between Tait in his
s. surely unreasonable. The inconsistency between "Rait in his
"Recent Advances,", and Thomson and Tait in their "Elements of Natural Philosophy," is to be explained, I suppose, by the fact that
a single man is responsible for the first, and that two are so for the a single man is responsible for the first, and that two are so for the
second. As this inconsistency remains in the latest edition of the two books, we must look upon the definition in the "Elements" as
the result of a compromise.
As an "Edinburgh student," I may say that I, like nearly all
other Edinburgh students with whom I have spoken on the subject, have long been convinced that Professor Tait's definition of forcece in
 examined; and for this reason, namely, that, as Rankine most
truly says, a force is an "action between two bodies." Rankine's truly says, a force is an "action between two bodies." Rankine's
is, to
Tait's my mind, the best definition I have seen in any text-book. only, and does not necessarily imply a any mutual action betwen
two bodies. It is, therefore, faulty as a definition of force a-dozen years ago, I explained in Nature the result of my own
study of study of the question. I concluded that the best definition one
could give would be "the time-rate of transmission or transference of momentum between two or more bodies.". have defined for that although many great authors in physical science use of this part of their cease, thition, have never made any practical
not investigate couse physical science does not investigate
and conseg

and fear that the

of your article is logically entirely fallocions given at the end easily seen. It has often been shown how to reconcile the motion balance of bodies under opposing forces with the idea that these
forces or "actions" are still continuously in activity as "transforces or "actions" "are, still continuously in activity as "trans-
missions of momentum." Although forces are continually coming into and going out of more so than, energy, because they are invariably connected with a condition of matter-called "strain"-which can be measured in an absolute manner. Velocity, momentum, and energy, on the
other hand, are quantities measured only by relative motions that their are quantities measured only by relative motions, so
thates entirely depend on the axes or bodies relatively to which the motions are measured. This invariable
connection between force and stress and strain is a fact which should connection between force and stress and strain is a fact which should
always be steadily borne in mind. If it is so, it will make many
things things appear very much simpler than they do if this is forgotten;
and moreover, this idea will be found perpetually sug probable relations between different physical phenomena.
In declaring "force" to have no objective reality, and to be of only secondary importance as a mathematical aid in investigation,
I believe Professor Tait was as wrong as he was in giving it the I believe Professor Tait was as wrong as he was in giving it the
definition quoted in your article from his "Recent Advances."

```
    The Mason Science College,
```

SIr, -I have read with much care and some pleasure the article on the "Definition of Foree," which appeared in THE ENGINEER
for the 17 th of August. I can say this although I differ former your views in certain respects; but I am pleased to see that you call attention to the fact that there are in pl.
multiplicity of creeds which distract the student.
Id not propose at present to take up much of your space, but I wish for permission to point out certain things which you have
apparently overlooked. You give the various
Spencer, Rankine, Newton, \&sc. Now to me it seems quite olear
that these men formed the word fore by Tait, that these men formed different conceptions. Thus, for example, Spencer and Rankine had different things in their minds when they
wrote. In Walker's Dictionary we have the word Force thus defined:
"Stren "Stotrength, vigour, might; violence, virtue, efficacy, vare validness, defined of law; armament, warlike preparation, destiny, necessity, ${ }^{\text {antal }}$, com-
pulsion.' Webster says all words denoting force, power, strength from verbs which express straining, driving, or rushing, and this word has the elements of the Saxon faranand Latin vireo. Force to the ordinary mind is the complement of resistance; ; with
out resistance there could be no force. We cannot push if we have nothing to persh against, and this is, no doubt, the first,
obvious orthodox sense of the word. comes, or tries to overcome, a resistance. This is the sense in which the word was originally used by all, and in whiheh it is still popularly After a time, however, it was said by a certain school of
thinkers that this sense was too limited. They said that it implied the necessity for the complementary idea of resistance, but they a least admitted at the same time that a force might exist without a
resistance, and they started a now definition of the meaning of the resistance, and they started a now definition of the meaning of the of the whotion, or of the change in the motion, of material bodies." Here we have no mention of resistance.
Now if we examin the
they really convey nothing. They are definitions of the meaning of a word, but they are not explanations. In short, they are transla-
tions, so to speak. If I turn to a French-English tions, so to speak. If I turn to a French-English dictionary for
the meaning of the word maison I find house, but a man who did
not know what a house was would not rest satisfied with this not know what a house was would not rest satisfied with this. He house, and would find, to quote Walker once more, "House: a place wherein a man lives, any place of human abode, \&c." The leave us just as wise as we were before. The student wants to the meaning of force, he is told that it is that which causes Tait, Spencer, and others have round in a vicious circle. nstead of giving a bare definition of force, to explain what circle, and changes or causes motion. Herbert Spencer takes one view of the matter which is in a sense quite intelligible, but is not, think, to the point, being not only extremely metaphysical, not, I think, stated, or rate fairly. He may be said to take the popular or Walker's definition of force, and to say very properly, redit is to be given to both Spencer and Tait for their effort, but I do not think they have been successful. Tait in particular only gives a new
explained it.
The fact that such a great diversity of opinion exists among able men forces one irresistibly to the conclusion that the word is quite
out of place in the stated connection, and should not be used at all. Let it retain its popular meaning and its popular use, and let chief, because Newton and others have attached to it a meaning it was never intended to convey Nothing will put in aning it was never intended to convey. Nothing will put in a stronger
light the real absurdity of regarding Newton's definition as an ex-
planation than to take a different word. planation than to take a different word. Let us suppose that the
student comes across the word "Kaglenko" in a text book. He asks what it means, and finds "kaglenko-anything that causes
atom nearer to understanding what it is changes motion in a body
What the true explanation of the cause of motion or change o motion in a body is has already been stated in your pages by
Professor Oliver Lodge. I will state it again because it is $m y$ own Professor Oliver Lodge. I will state it again because it is my own
explanation in other words; but before doing so I should like to explanation in other words ; but before doing so 1 should like th
elicitit from your readers, and especially from students, a definite utterance as to what they think is the cause of motion
change in the motion of a body, Place d'Armes, Ghent,
August 26 th.

aphne ceport of Sir E. J. Reed on the launching of the subject, that it is probable a question in your columns would be a very important factor in the problem, namely, the thwartship position of the centre of gravity of the vessel.
experiment after the slip had tre of gravity was ascertained by produced by the engines on the heen rasse, and it gives the effec height of metacentre, but does not state whether or no the centre of gravity was in the eentre line of ship.
Reasoning from the facts that the ship. heeled over to port and that her engines were on board, and that screw engines generally ally conclude that the accident was due entirely to the ensines For if the engines wcre of the usual type the weight of condenser and pumps might easily shift the centre of gravity an inch or more to the port side, and as this would require that the ship at rest
would incline over to that side at a considerable angle, and of wours incinee orer to that side at a considerable angle, and of
cours in falling to that angle from the vertical, on leaving the course in falling to that angle from the vertical, on leaving the
ways, she would accumulate work and roll to a much larger angle, and other
accounted for.
It therefore seems to me that the thwartship position of the centre of gravity, and the effect of the engines on that position, are Printing-court-buildings, Newcastle- \quad J. O. SPENNEE.
on-Tyne, August 28 th.
SIR, -May I submit to your consideration the annexed diagram
inlustrative of a method for ascertaining the stability of vessels under the condition of launching
On reading Sir E. J. Reed's
On reading Sir E. J. Reed's report on the above disaster, it suggested itself to me that it might be of interest to place before your
readers any information, however slight, appertaining to such an important subject. The diagram is indicative of the ourves of the
centres of buoyancy for different and increasing draughts of water, centres of buoyancy for different and increasing draughts of water,
and the corresponding height of the metacentre above the centres ond the corresponaing height of the metacentre above the centres of ruoyancy for each sucassive draught, and curves drawn through
hose points ; the probale line of floatation or draught of the vessel on launching, and the approximate height of the metacentre
at this draught; the centre of gravity of hull, \&ce., being then

found or approximated to and set up on the same lines as the intended draught, from which may be seen the relative heights o gravity falls below the height of the metacentre, the vessel will be stable and stand upright; but if the centre of gravity comes above the point of the metacentre, the vessel will be unstable and liable to capsize. If this system were adopted, the stability and probable element of righting power the vessel would have upon launching
to resist any power or force tending to overturn would at once be seen. The operation would not involve a serious amount of time in calculation, and would at once place all information in the hands of the builder for his guidance.
I trust I trust your readers who may be interested in the subject wil
fully understand the method involved.
Charlton, August 27 th.

dites of agricultural meetings

SIR, - 1 trust you may consider the subject I venture to touch
upon of sufficient importance to insert this letter in your valuable paper, so that it may receive the attention of those interested who are also in a position to discuss and deal with the matter. It has
occurred to me it would prove very occurred to me if the dates of these exhibitions could be so arranged as
the ate not to clash with one another, as they do at present. Take, for adjoining counties were fixed for the eame date, viz, the Gloucestershire meeting at Berkeley, the Glamorganshire meeting at Pontyprida, and the Shropshire meeting at Whitchurch, and, in
addition to these, the Leicestershire, Highland and Agricultural of Sootland, the Cambridgeshire and Isle of Ely, Barnsley, Cleveland, and Tyneside, and other societies held their meetings within a day
or so. Now I know that, in the former instance at any rate, it
would have been far better if the exhibitions bad been fixed for
different dates, as both the attendance and entries must have suffered. As a, beneficial remedy, I would respectfully hint that a meeting of the seeretaries or officials representing the various
societies might be arranged to be held in London, or at some central point, early in each year, when the dates of meetings could ee fixed, and no doubt an interchange of ideas would also prove of upon such a, scheme.
I shall be glad to see that the matter is taken up, and to hear ny suggestions pro and con, such an arrangement.
Gaer Fach, Newport, Monmouth- \quad OHABLESS D. Philuirs.
shire, August 28th.
shire, August 28th.
the graphic treatment of stresses.
Sir, - In The Engineer of the 17th inst., Mr. Graham gives In these he has lumped up the accidental loading, including the of pressure, estimating the necessary in these days to poin that this treatment of wind pressure is practically useless. The danger to a roof from wind pressure is mainly due to the unsym-
metrical incidence of the latter. Of course the effect will be less felt in roofs of low pitch, but it is nevers safe tofrect treat wind as a symmetrically distributed, vertical lond. Let Mr. Graham try a diagram of Dideot roof, with a nominal wind pressure of 5s lb. on one side only, and the stresses will probably be greatly altered- on
some of them, possibly, changing from tension to pressure, or vice Insa.
In treating the goods shed roof at Weymouth, Mr. Graham, after centre of the span, states. "Ine the therefore, it were decided to
design these tie-rods round in section and uniform in strenth design these tie-rods round in section and uniform in strength,
they would assume the form of a long truncated cone." This is misleading. The stress is uniform throughout each segment of the place of "a long truncated cone," the tie-bar takes the form of series of cylinders of different diameters.
London, August 27 th.

OONTRAOTS OPEN.

SOUTHERN MAHRATTA RALLWAY COMPANY, LIMIted.
The Mahratta Railway Company wants tenders for the conports names supply, and delivery in England, at one or more of the ironwork for under-frames, and bodies, with all requisite bolts an nuts, coach screws, washers, rivets, and wood screws complete, for
putting the work together in India, and fixing the bodies to putting the work together in India, and fixing the bodies to the
under-frames, for 112 iron low-sided goods wagons, 14 ft . long ; 200 iron covered goods wagon 14st.t long; 2 powder vans, 14 ft , long.
All fastenings, screws, bolts, and nuts, coach serews, washers rivets are to be supplied in quantities sufficient for putting all the work together in India, with an allowance of 20 per cent. extra fo wast draw and buffing oes not include wheels and axles, bearin form the subjects of separate contracte boxes. All these parts wil to be sent to India. The general construction of the under-frames, iron-work for under-frames and bodies, brake, buffing, and drawing gear is shown on the engravings, page
not later than 12 oclock at noon on Tuesday, the 11th day of sen tember next, in sealed envelopes, addressed to the Secretary, street, E.C., and endorsed "Tenders for Under-frames for Wagons."

Mr. R. Brock BkLL, O.E.- We regret to have to record the death of Mr. Robert Bruce Bell, M.I. . . .E., who was buried in West
Oroydon Cemetery on the 17th inst. Mr. Bell had been for some time resident at West Croydon, taking part in the work being car
ried on by his London firm of Bell, Miller, and Bell. His health had for the past two or three years been very unsatisfactory, and he eventually succumbed on the 13 in inst. to an acute attack o
pleurisy. Mr. Bell went to Glasgow when a youth to learn pical engineering as a preliminary step towards securing a high
nolace in his futur place in his future profession as a civil engineer. He served his
apprenticeship with the firm of Murdoch and Aitken, and he
finished his finished his course of mechanical engineering by working as a
journeyman at Lancefield, under the late Mr. Robert Napier civil engineering in the University of Glasgow, Mr. Bell began of devote all his energies to the theoretical and practical work con-
nected with his profession by becoming a student in Professor Gordon's classes and one of the assistants in his office. It was
there that he made the acquaintance of his friend, Mr. Daniel the late Sir James Matheson to design and carry out for him some important improverents in the eisland of Leevis, more especially
the dock and sea walls at the harbour of Stornoway; and after completing that work he returned to Glasgow to become settled for
life in partnership with Mr. Miller. One of the earliest works of any importance undertaken by Mr. Bells of frrm was the eonstruction
of a ship dock for the late Mr. Black, of Kelvinhauph where there was first brought into use his partner's patent
bydraulic purchase machinery for hauling up ships. The same machinery was subsequently laid down at docks at
Cronstadt, Alexandria, Williamstown - Melbourne -and at at at
number of other numbor of other ports at home and abroad. About five-andfirst graving dook made at Glaosgow, namely, that of Tod and Mae-
gregor, at Meadowside, and some years afterwards they designed gregor, at Meadowside, and some years afterwards they designed
and superintended the construction of the slip dock alongside of it, and entered from the river Kelvin. About twenty years ago the
firm received a commission from the Greenock Harbour Trust to make the surveys which eventually resulted in the construction of
the Albert Harbour and of the Esplanade, which was desiun public improvement, to be carried out by the use of the spoil obtained on the site of the Albert Harbour. They also took
hand the building of Princes Pier, using greenheart to a depth frequently of 100 ft . They subse guently designed plans for a graving dock at Singapore, and at
Port-Glasgow they were entrusted with some very important harbour improverents; and after the lapose of some yertant then-
services were again called into requisition at the "Yort," where ervices were again called into requisition at
they practically made a new doock on the site designed and had professional charge of the Saltersuroft Craving
Dock, one of the largest works of the kind in the King dom, For
Messrs. A. Loper and Co. the Spanish stearalid owners Messrs. A. Lopez and Co., the Spanish steamshiy owaers,
they constructed at Cadiz a Iarge graving dook and dew-water
basin. In the year 1868 Mr. Bell was occupid tvith survers buenos. Ayres in view of an important dock channel to the harbour; and from time to time other dock and harbour schemes in hand.
honourable positions in which Mr. honourable positions in which Mr. Bell was eve
commissioner for the examination of the St. view of carrying out an improvement in the

neer-General Newton-and with Mr.-now simanis engi-

 Fleming, then engineer-in-chief of the International and, of thoCanadian Pacific Railways. The Albert Bridge, Thasow, was Canadian Pacific Railways, The Albert Br
built from designs by Mr. Bell's firm about a do elt was unmarried, and was sixty years
brothers are alive, one Mr. Imrie Bell, the Tro late Mr. Bell was two years presid
Tngineers and Shipbuilders io Sr ti nd,

RAILWAY MATTERS.

Mr. ALfred Langlev, chief engineer to the Great Eastern Railway Company, has been appointed engineer to the
Railway Company in place of Mr. A. Johnstone, resigned. Accondive to the Boston Transcript, Mr. Edison says he has
 a loomotive was able to carry itself along; but Edison is original
in everything, though for the life of us we can't see where the in every thing, though for the life of us we can't see where the
money is in a locomotive that has to be pushed by an entire railmoney is in a
road company.
THE report of tre directors for the Cornwall Railway gives the
total train mileage as 147,649 miles by passenger trains, and 132,909 by yoods and mineral trains. The maintenance of way and works cost $£ 14,84218 \mathrm{~s}$. 4 d. , which is 20.01 per cent. of the receipts, or at
the rate of 1s. 0 . A . per train mile, and £226 12. 2. per mile open. The locomotive power cost $£ 9826$ 12s. 7 d ., equal to 13.25 per cent. of the receipts, 8 dd . per train mile, and $£ 150$. Cd . per mile open.
The total working expenses were $5 \cdot 19$ per cent. of receipts, 2 s . 11 d . per train mile, and $£ 624$ 19s. $5 \frac{1}{4} \mathrm{~d}$. per mile open.
Therr have been great festivities at Caracas, in Venuezla, over
the opening of the line from the capital to the port of La Guaira In many respects this bit of railroading in a most extraordinary one. Its total length is only twentyt-three milises, and in twenty-
one miles of this distance it rises over 3100 ft . t is simply a shelf cut on the sides of a series of mountain gorges. At one spot a stone will fall over the edge of the cliff-at 5ft. from the rails-
1700 yards without stopping. The work was done in eighteen months, which is a very short time indeed considering the diffi-
culties which the English engineers who made the line had to encounter.
The Patent Shaft and Axle-tree Company is busy with the construction of the gigantic steel bridge over the Ganges at
Benares for the Oude and Rohilkund Railway Company, The pans are sixteen in number, many of them 350ft. in length, an length of the bridge when completed will be nearly a mile, and it Thomas E. Walker, deputy chairman of the company, the bridg when erected "will be a permanent monument of the skill an
industry of South Staffordshire.". The company has also in han w railway station at Brighton.
ThE contract with the City of Dublin Steam Packet Company
for the conveyance of the Irish mails is dated the 20th of August, ard will commence from the 1st of October next. It will be in
force for twelve years, and thenceforward till terminated by year's notice from either side. The service will be the same as a present for two years, after which there will be an acceleration of
twenty minutes on the outward and ten minutes on the homeww vessel. The amount of the subsidy is $£ 84,000$ a year, and this
will also cover the conveyance of postal parcels. The Government is to receive one-half of the surplus passenger receipts above
£35,000 a year as at present. The contract provides of improved
accommodation both for mails and passengers, at the same time as a higher rate of speed.
Ir is useful to remember that if the number of seconds spent in unning a quarter of a mile be divided into 900 , the quotient is the
speed in miles per hour. The following table can be easily com mitted to memory
One mile in

Speaking of the new Pike's Peak Railway, the Railway Review
 the line down to a maximum grade of 300 ft . per mile, and maxi-
 world. The route is not fully decided upon, and surveyors are
still working busily. The road will be narrow gauge. Trains of three cars will be run, each carrying forty persons. The officers
are making a point of running the road where the finest views can are making a point of running the road where the finest views can
be obtaine- views which will be now to the tourist, not seen
from any of the old trails. The first twelve miles of the route from any of the old trails. The first twelve miles of the route
will be of surpassing beauty. New capighound will be
opened, high up among the mountains, where people can live in opened, high up among the mountains, where people can live in
tents, enjoying the pure air and the wild grandeur of the Rockies tents, enjoying the pure air and the wild grandeur of the Rockies
No road, in America or abroad, has ever been laid through such wonderful and beautiful scenery.
Accordivg to the American. Journal of Railvay Appliances the

 east of Pittsburg and Eriri, eities :-P. Passenger, 9,288, , 388 ; frieight,
$21,097,824 ;$ distributing, $1,050,764 ;$ total, $31,436,426$. The $21,097,824$; distributing, $1,050,764$; total, $31,436,426$. The
greatest average mileage for 1882, with pasenger trains on the
Pennsylvania Railroad, was engine No. $95,7,7258$ miles ; on the
 average mileaze with passenger trains was 32,760 miles on the
Pennslvania Raiiload Division, 28,017 on the United Railroad of
Par
 Railroad of New Jersey, No. 612, with 45,730 miles $;$ and on
the Philadelphia and Erie, No. 2002, with 34,160 miles. The genoral average mileage with freight trains, on the Pennsil/vania
Ravinod-Division, was 25,97 miles; on the United aniilroad of
New Jersey, 21,462 ; and on the Philadelphia and Erie, 22,889 miles. NG the past few years there has been not only a remarkable growth in the extent of the passenger traffic on railways, but there
hai been a remarkable variation in the classes in which the passen-
gers travel. The growth has been in the volume of traffic, as a
 sender hnes in the kinglom. In the first half of the year 1882 it
cared $1,190,068$ first-class pasengers ; in the first half of the pre-
sent year it carried $1,186,134$, so that there was a fall of nearly sent year it carried $1,186,134$, so that there was a fall of nearly
13,000 in the year. In the first of these two periods it carried
$1,964,212$ second-clas passengers but in the lat half-year it
carred $1,962,244$ only. Concurrently, however, the third-class

NOTES AND MEMORANDA.

THE annual rate of mortality in London during the week ending IN New York City there are 486 miles of water pipe, 391 of sewer pipe, 824 of gas pipe, $14 \frac{1}{2}$ of steam pipe, and 15 of underground electric wire.
ADAMAscobite is the local name of a mineral which is said to be found in only one place in the world, and that is the State of
Missouri. in its structure and properties. Its cutting power is diamond-like cutting away steel very rapidly, and still retaining an exceedingly fine edge.
The American Granite Cutters' Journal says :- "Trom surveys and calculations made by Mr. . . A. Farrington, civil engineer, the
famous Washington boulder, near Conway Corner, NH is ound
 weigh. 3867 ton,
in the world."
The annual rate of mortality for the week ending Augnst 25th, in twenty-igght great towns of England and Wales, averaged $19{ }^{\circ}$. per 1000 of their aggregate population, which Th estimated at
$8,620,975$ persons in the middle of this year. The six healthiest places were Huddersfield, Bristol, Bradford, Plymouth, Halifax, and Birke
registered.
The most successful makers of malleable castings in the United States use pig that is very free from phosphorus or sulphur, as metal is melted in crucibles of 50 lb . to 100 lb . capacity, keeping the air out. The metal should be hot enough for a drop, withdrawn on an iron bar to burn on exposure to the air. The
cementation is done in iron boxes, the castings being bedded in powdered hematite or in iron peroxide, and kept from three to iftten days, according to thickness. This
time than is found necessary in this country
The death rate in New York during the week ending Augus
4 th, was $28 \cdot 1$ per 1000 , the rate in thirty-one United State cities being 26.3 . In the North Atlantic cities the rate was $25^{\circ} .0$ in the Eastern cities, $25 \cdot 1$; in the lake cities, $30 \cdot 1$; in the river
cities, $22 \cdot 2$; and in the southern cities, for the whites, 24.5 , and for the coloured, $39 \cdot 1$ per $1000 ; 50 \cdot 3$ per cent. of all deaths were o all deaths. Consumption caused 11.0 per cent. of all deaths, the
prortion proportis. being highest in the North tetlantic cities, 13.5 pe
cent., and lowest among the lake cities 6 per cent. of the deaths.
Lerters from Athens announce an interesting discovery, brought
to light in the course of some excavations which are being carried out int the island of of elos by the pupails of the French Sochool at
out
thens. In the neighourhod of the Thet came upon the remains of a private house, which apparently belonged to the Alexandrine epoch. A court surrounded by pillars and twelve chambers has been opened out. The floor is composed
of mosaic, which is a fine specimen, representing flowers, fishes, and other ornaments. In the middle of the court is a well, now or street leading. to it, have also been disocered. The excavations
will be continued, and it is hoped that a large portion of the old town will be brought to light.
THE Washington correspondent of the Cleveland Leader writes
"The Washington monument is the wonder of Washing -"The Washington monument is the wonder of Washington, and its beauty the admiration of both Americans and foreigners.
Already over 350ft. high, it rises from the banks of the Potomac a great white marble shaft, piercing the clouds, and backed against
the blue of the sky. It is already the grandest obelisk the world has ever seen, and in the xons of the future, should the nations of
the day pass away, leaving no more records of their progress than the day pass away, leaving no more records of their progress than
the mighty ones of the Egytuan past, it will surpass the Pramids
in the wonder of its construction. It is already higher than the Third Pyramid, and within 100ft. of the size of the seond. It is
taller than St. Paull' Cathedral, and when finished it will be the highest structure in the world
M. Rerwaud has found means for utilising for paper making
the whole of the dwarf palm, the fibrous properties of which have long been known to the Arabs, while they have been unable to turn the palm to account, except the root which serves for firing. The pilled with a special lye, and heated. The substance being thus retted, becomes soft, so that the fibre may be readily separated.
It is withdrawn from the bath, and draine the It is withdrawn from the bath, and drained, the lye being saved
for use over again. It is then passed between rollers, while at the for use over again.
same time being made cold by quantities of water. The number of rollings, rinsings, and combings depend upon the degree of fineness
required At last, the product is allo we to fall into receptacle coutaining pure water, whence it is wisthdrawn to be tied up in coundles for transport. As the whole of the tannin
contains is not extracted, this plant is not liable to decay.
The iron and coal production of France up to the end of 1881 , The total yield of iron ore for 1881 was $3,689,000$ tons ; an increase of 5 per cent. over that of 1880 , which was less by 158,000 tons.
The production of Algeria was 657,000 tons for 1881 , an increase of The production of Algeria was 657,000 tons for 181, an increase o
43,000 tons. Iron oro is worked in France in thirty-three depart by the department of Meurthe et Moselle. Next comes Ardêche,
with 197,$000 ;$ Haute Marne, 169,000 ; SaOne et Loire, 162,000 ; Pyrénées Orie
there here has been a similar increase of importation from Algeria,
Spain, Germany, Italy, and Belgium, the total amount being
$1,287,000$ tons ; 119,000 , more than in the previous yenr sumption of iron ore during 1881 in the various smelting works was
$4,231,000$ tons, of which 6 per cent. came from Algeria, and 24 per cent. from foris somes.
THE sea-going German merchant navy comprised on January 1st, Of these 3855 were sailing vessels, having registered tonnage
915,446 tons, and 15 were steamers, with 311,204 registered ton nage. As compared with the figures of January 1 1st, 1882 , there
was a decrease of 139 vessels, but an increase of 32,243 in the tonnage. The number of sailing vessels had decreased by 196 , while
the steamers had increased by 53 . The total number of sailors in 39,031, against 39,109 the previous year, being a falling off of 78 ,
Classifying the vessels as to size, there were on January 1 st, 1883 1366 , or over 31 per cent. of the whole number of vessels, whic were of less than 5 tons; 21 were of more than 2000 tons register,
of which three were sailing ships and 18 steamers. The largest
俍 German sailing vessel is registere
German steamer as of 2937 tons.
A comparrson of the rates charged by the London and other
water companies gives the following results for a $£ 50$ house wit one closet, excluding, in London, any extra charges for either
altitude or high service:- - irimingham, $£ 2$ 2 18 s ; $;$ Bradford, $£ 314 \mathrm{~s}$.
 Lambeth, $£ 3,17 \mathrm{~s}$; $;$ New River, $£ 2$ 4s.; Southwark and Vauxhall,
$£ 214 \mathrm{~s}$; and West Middlesex, $£ 24 \mathrm{~s}$. As in Manchester and Live pool rateable value is the basis of charge, the $£ 210 \mathrm{~s}$. in each case must always be remembered that there are no extra charges for
altitude, high service, elosets, or baths, and baths are found in nearly all houses that have been built since the present charges for water were adopte. Aon seconges, but would not raise the charge
would raise the London charger
on the rateable value in on the rateable value in Manchester or Liverpool

MISCELLANEA

IT has been decided that none of the awards for the Fisheries mony-the 31st of October
Tre number of visitors to the Fisheries Exhibition on Saturday
was 23,163 ; making a total for lost was 23,163 ; making a total for last week of 106,892, and
number from the opening of the Exhibition $1,441,515$. THe Wednesbury Local Board has had the sewerage question
nder consideration again, and has adopted the proposition brought under consideration again, and has adopted the proposition brought
forward by Mr. Trow at the last meeting that the sewage should be purified by precipitation, overflowing tanks, and, if required, by
filtrration. Mr. Pritcoard, C.E., was selected to advise the surveyo filtration. Mr. Pritchard, C.E., was selected
as to the best means of carrying out the work.
A coursg of about thirty lectures on the "Manufacture of Iron
and Steel" will be delivered by Mr. George Chaloner, F.C.S., on Saturday evenings, at seven oc colock, commeneing October 6th, at the Birkbeck Institution. The City and Guilds Institute orfirs
prizes, to be competed for in May, 1884 , to the extent of $£ 19$ in prizes, to be competed for in May, Mr84, to the
money, two silver medals, and five bronze medals,
A NORTHERN contemporary dilates upon a new metal or alloy,
but does not deseribe it, which it is said has the properties of great hardness, strength, homogeneity, and resistance to the corrosive
action of salt water. It has been invented by a Mr. Henry action of salt water. It has been invented by a Mr. Henry
Young, and is to be made by the Redheugh Steel and Meta
It Company. dock gate rollers, bearings, and so on.
ON Wednesday morning the water main connecting Gravelly
Hill and Aston, near Birmingham, burst at a point about 100 yards and Astom, near the Birmingham and Fazeley Canal. The water spurte into the air a height of over 20rt. The traficic was entirely stopped cent houses, and much inconvenience was felt in different parts o Birmingham, owing to the temporary failure of the water supply.
This is the second time within twelve months the main has broken This is the second time within
within a distance of 100 yards.
A MEETING of the subscribers to the parliamentary fund of the was reported that the committee had received from subscribers was reported that the commitenditure amounted to $£ 47,510$. The committee were of opinion that another application to Pariaiament would be suceessful. A motion was passed expressing regret at
the action of the Committee of the House of Lords in stopping the Bill in the ensuing session of Parliam empowered to promot might Be found expeedient or desirable. It was stated that promises of
b5ooo had been received towards the cost of the second application £55000 had been
to Parliament.
A LAREE and influential meeting, representative of the agri-
cultural interest of Chesliire and North Wales, and of the commercial interests of Chester, was held on Monday, when it was mercial
resolved: "That the Ropal Agriecultural Society of England
having decided that the show of 1885 is to be held in the district comprising Cheshire, North Wales, and Lancashire, this meeting pledges itself earnessiy to press the
fitting place for holding the show, urge fact that it has not
been held in Cheshire since 1858 . that while Chester is conveniently situated with regard to Lancashire-in which county the show has been twice held since 1858-it is the natural centre for the large Cheshire and special advantages are offered in the way of general Cheshire, and special advantages sare,
The Gilchrist Engineering Entrance Scholarship at University
Tollege, London, will be open to competition at the end of September. The conditions of examination are this year somewhat altered, in a direction which places the scholarship better within
the reach of those for whose benefit it was founded. The detailed regulations can be obtained on application to the secretary of University College. The following is a summary of them:-Candito compete by the 23 rd of September. The subjects of examination are- (1) Elementary mathematics, and (2) any two or more
the following five subjects :- Mechanics, mechanical drawing, essay on one of three given subjects in connection with mechanics
or etgineering, French or German, the use of tooos, either carpenters' tools, or the lathe-wod or metal-or the file. The
sholarship is of the value of $£ 35$ per annum, and is tenable for two scholarship is of the value of $£ 35$ per annum, and is tenable for two
years. There is also at University College a Senior Enginering Ir the Times of August 22na Ellis compound armour supplied by Sir J. Brown and Co. Shefield, for the Russian Government, on board the Nettle a
Portsmouth. The plate is intended for the bows of the Dmeitr Donsky, and is about 6 ft. square and 4 tin. thick. It it was tested
 cracks. The third round remained embedded in the plate, and
produced several cracks, but none extending to the edge of the plate. The plate was held up by six bolts instead of the fou
previously employed. The German Government are reported by Truth -and we have reason to believe correctly reported-to have just completed an elaborate and important series of experiments
with Wilson compound armour supplied by Messrs. Cammell, at Kummersdorf, The plates were found superior to any hitherto tried, the resistance being 40 per cent. better than that of iron of
similar thickness. The plates were 10in. thick, and were attacked by the $11 \mathrm{in} .-28 \mathrm{c} . \mathrm{m}$.-gun.
OxE of the largest contracts for ship electric lighting up to
Saturday concluded in Glasgow between the owners of the New Zealand shipping Company's fleet and the dison Company's branch in moce fana, under T . which Ir. Charles sister ships
John Elder and Co.s. yand, are to be lighted throughout with the
incandescent light, and fitted with a duplicate set of Edison's marine dyyamos and enginese, one set being for reserve in case of
mergency. The Tongariro and the two sister ships now in cours emergency. The Tongariro and the two sister suips now in course
of construction are built of steel, and have cutwater stems, with figure-heads. They are to be barque-rigged, having masts and yards of steel, with a large spread of canvas. Five divisions are
divided int eight water-tight compartments. carried up between main By thisperrangement the danger of fire spreading, should it break out in any part of the eship, is obviatem, partment in case of damage to the hull and the compartment being flooded.
TrE official report of Colonel Frank Bolton upon the water
supplied by the several metropolitan water companies during July supplied by the several metropolitan water companies during July
last, appears in a different and much better form than these reports
have hitherto nineteen pages of the ordinary Parliamentary paper size. From it it appears that just one-half of the water supplied is from the
Thames; 38 per cent. is from the Lea and springs in the Lea Valley; from the eight weels in the South of London, 6 per cent.;
and from the ten clailk wells in Some new information is given with reference to storage and filtra-
tion, and it is remarked that, no matter how well the work of purification is performed by the water cmpmpaies, "the purest
water in England would be poisoned by such a system of storage" as is the exigencies of the intermitttnt supply. Colonel Bolton says the water supply was good, and Dr. Frankland is again forced
toadmit that the Thames water was "unusually fre from matter." The analy yical table, by Professor Wanklyn and J. W . Cooper, shows that the aibumenoid ammonia-which is the real
tetst for dangerous impurity-is as high in the boasted Kent well
water as in the Chelsea and other Thames waters,

CONTRACTS OPEN.—ROLLING STOCK FOR SOUTHERN MAHRATTA RAILWAY.

AUG. 31, 1883.
THE ENGINEER.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this ocoumn, must, in all
 writer to timself, and bearing a ad. postage stamp, in destination.
answers received by us may be forvarded to their dich
No notice will be taken of communications which do not comply ${ }^{*}$ with these instructions.
must therefore requeqest correspondents so to keep copies.
*All letters intended for insertion in THE ENGIN
An letters intended for insertion in THE ENGINERR, or con. taining questions, must be accompanied by the name and address
of the writer, not necesasarily for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous good faith.
R S. (Widnes). We vill endeavour to obtann the information you require
W . A. (Blackburn).-It is an error in the wood-cutting. The shaft is in one

 the getterdancee at such an exrlibition
lighting alone of the department.

oil gas plant.

SIR, -I ghall be much obbiged to any of your readers who will give me
address of makers of oil gas plant, suitable for a large establishment. addresg of tak
August
29th.

RIDEALGH'S INDICATOR.

 tha steam indicatoors made
in 1859 ?
South Shelds, August 27 th.
milling machine for cutting cams.
(To the Editor of The Engineer.)

 Subseriptions sent by Post-ofice order must oe accompanied py letred a
adivie to the Publisher. Shick Paper copies may be had, if prefere, at
increased rates.

THE ENGINEER.

AVGUST 31, 1883.

the patent act.
Tuz Patent Bill received the Royal Assent on Saturday lant, and is now part of the law of the land, though it does
not come into operation until the 1st of January next. not come into operation until the 1st of January next.
The Act is not yet printed, but a careful collation of the
measure in it various stages with the notices of amendmeasure in its various stages with the notices of amend-
ments proposed, enables us to state accurately what the
ensectuttents are. We assume our readers to be familiar with the provisions of the present law, so that we shall only notice the changes which the new Act introuces.
The procedure is much simplified, the applicant being only required to deposit at the office, or send through the post, of some improvement, and that he desires a patent for it.
This is accompanied by a specification, which may be eith is "provisional" or "complete." In the former case
the foe is $£ 1$, and in the latter $£ 4$, and for this sum he has a paient lasting for four years. In the case of the
filing of a complete specification after a provisional, which may be done at any time within nine, months, he pays $£ 3$
$\$ 00$ that in either case the fee is the same, viz, $£ 4$.
whom need necessarily declare himself to be an inventor. The specification, whether provisional or complete, must describe the invention, and in the case of a complete specification it must, in addition," "end with a distinct
statement of the invention claimed." The application will statement of the invention claines duty it will be to report
be referred to an examiner, whose to the "Controller," as the new head of the department is to be called, whether "the nature of documents are in been fairly described," whether the documents are
the proper official form, and also whether the "title" the proper official form, and also whe If everything be satisfactory, the patent passes on to the next stage, but if
sel not, the Controller from his decision an appeal lies to the specification, but from his decerison whose judgment is final. The Act contains provisions for dealing with conflicting applications pending provisions for dealing with conflicting applications pending
at the same time, thus introducing, in a modified form, the vicious principle of preliminary examination as to priority. The examiner is expected to keep his eyes open in this The examiner to expected the keep his eytroler accordingly. The direction and that functionary is, as before, subject to review by the law officer. The same procedure obtains when a complete specitication is the ruling of the Controller or unless officer he loses his patent. When at length the differ ences between the applicant and the authorities have been amicably settled, the specification is made porld to come and see if they have any objection to make. It would appear that the documents are to be printed at this stage but there is nothing more than an incidental provision which secures this. Section 100 of the Act directs that copies of all specifications, drawings, and ament of this Act, printed for and sealed with the seal of the Patent office, shall be transmitted to the Edinburgh Museum of Science and Art within twenty-one days after the same shall respectively have been accepted or allowed at the
Patent-office." This language is obscure. A document may be said to be "accepted" when it has been receive by the clerk in attendance, and the word "allowed" is not used in any other part of the Act in connection with th rejection or acceptance of specifications.
The grounds on which an application may be opposed are: (1) fraud ; (2) the existence of a prior patent; and (3) similarity to a previous application then pending in
the office. Oppositions will be heard by the Controller in the first instance, and then, if one of the parties desire it, by the law officer, whose decision is final. We have already expressed our fears that this opposition on open documents will give rise to grave injustice. It is not at
all improbable that powerful syndicates or committees all improbable that powerful syndicates or committees
will be formed by the various trades, for the purpose of pposing every meritorious invention on the ground o want of novelty. It will not be at all which have been
from the thousands of specifications whin from the thousands of specifications an anticipation. published, something which looks likes an andortunate inventor will then find himself face to face with a powerful body of persons, to whom a fel hundreds or even thousands oper by the fear whatever. Nor will they the officer is empowered to having to pay costs, It must be remembered, too, that there is no question of "damages," and, further, the unfortunate inventor is placed in the inferior position of defendant. Supposing, however, that there be no opposition, or that the opposition should be unsucessfur, the patent is sealed, such sealing not the take of aplication, expiration of fifteen months from the dalt to the law officer or by proceedings on opposition. Should the applicant die during the fifteen months, the patent may be granted to his representatives at any time within a year from his death. Tish would appear thadiately after filing his applicapublish his in prejudice to his patent, but he cannot tion without prejudice in tringements until it is sealed.
The patent, when sealed, will be good for four years, but it may be extended by periodical payments as at present. Before the expiration of the fourth, fifth, sixth, and seventh years respectively, an annual sum of $£ 10$; before the expiration of the eighth and ninth years, an annual sum of $£ 15$; and before the expiration of the tenth, eleventh, twelfth, and thirteenth years, $£ 20$. 10 r before the end of the fourth and seventh years from the date of the patent. These provisions are, as far as possibe, appricable to pall patent of fourteen years is the same whichever mode of payment be adopted; but for a seven years' patent there is a saving of $£ 10$ by adopting
sen
the method of payment by instalments. Should the patentee fail to keep up his payments, a period of grace is allowed, not, however, exceeding six months. A specification may be amended at any time either by way of disclaimer, correction, or explanation, and the application to
amend will be treated very much as if it were an original amend will be treated very much as if it were an origina application, any person interested being allowed infringe notice of opposition. When an action for ind
ment is pending, the judge is empowered to postpone the case in order to give an opportunity to the plaintiff to apply to the Patent-office for permission to amend. The Board of Trade may order patentees to grant licences on certain conditions named in the Act.
Considerable facilities are given as regards the revocation of a patent, the old proceeding by scire facias being abolished. A patent may be revoked on the ground of fraud, that the patentee was not the inventor, and also on the ground of prior user. A patent is good against the Crown,
but the officers of any department may make use of an invention when required for the service of that department, paying the inventor a sum to be settled by the Treasury. In any legal proceedings relating
to a patent, skilled assessors may be called in to assist to a patent, skilled assessors may be called for restraining
the court. Facilities are also given for the court. Facilities are also given for restraining
the issue of circulars containing groundless threats of legal
proceedings against persons using a particular article. A patent must contain one invention onty, buiscellaneous provisions of the Act there is one for securing the publication of an illustrated journal of patented inventions, reports of patent cases, and other information of a sinserred to the The Patent-office Museum is to be transferred to the Department of science and Art, which is empowered require models of any patented in Pion on pay men now the costs. The Con. charged with the adm abolished, the entire dupar. Board of Trade. The registral" ofesigs is much simplified, and the dind It has been the practice to protect uect mechanical conmany "designs" which are of a patent. The section devoted to trade-mar ment of the present Trade-marks Registration Acs, certain alterations in detai trade-marks of single letters and ands the registro it abolishes the statutory declaration fancy words, and by arsons seeking registration. It per hits the required ben persos of marks differing only by me the or symbols common to the trade, the addition of words aring the principle laid down in "Barrow's Case" decided by the Court of Appeal some Ba We mented at the time very strongly upon the he hardships if that decained. The authorities have a length recognised the justice of our strictures by a formal enactment directing them to do that which they declared hey never would do. The relations between the shes Cutlers' Company and the Trade-marks Registry cult to understand than they were before. In the section relating to "offences," it will be well to call attention to the fact that the use of the word "patent upon any article for which no patent has ever be By ranted renders the offender liable to a cerson who make clause 106 a similar penalyy aw due authority and with intention to deceive. These two clauses should be care fully studied by manufacturers and others.
Such is a brief outline of the most important changes brought about by the new Act. For the details we must refer our readers to the document itself, which we shall print as soon as it is published. It should be borne in mind that a series of ruils and regly not be out for some months. We shall probably return to the subject shortly for the purpose of discussing the question of the qualica Upon thd caties of these functionaries much of the sucess of the measure depends.
the stability of ships.
Sir Edward Reed's report on the capsizing of the Daphne, published in our last impression, corroborates in every particular the statements which we made concerning
Writing of such ships as the Thames and the Daphe, wo said. They are unstable because they are too high for Min. is precisely what Sir Edward Reed and Mr. Elgar repeat. It must be remembered that three principal theories were advanced to account for the catastrophe. One was that the ship had a great deal too much deck load in the shape of men, tools, and materials; a second altrier by turning of the vessel to the strain put upo her by heck chains; and a third asserted that she as cang an under tow or current, which, operating . overset her. We rejected all the the lacked initial asserting that the ship capsized because she current stability. Neither the chains, deck load, nor current could, separately or combined, have overset her $\begin{aligned} & \text { a sufficient amount of initial stability. No doubt the }\end{aligned}$ a sufficient amount of initial stailt in a Glasgow yard too assertion that a ship could be buifty appeared in certain tender to be launched incious; but not only has Sir quarters sufficiently audacious; Edward Reed arrived at a conclusion similar to ours, he has elicited the fact that ships are designed and built has elicited the fact that ships are for stability. That is left to take care of itself. Indeed, he has elicited state ments which are almost sensational. Let us hope that they will prove useful. It must not be inferred that the Daphne was an exceptional craft ; on the contrary, ther is every reason to beleve that there are verylit 1 le better ships alloal-s ach that in very well-informel quarters it it is an oped the steamer which-start n and are never afterwards which-start on a given han me don by weep the the gublic for while so that free discussion may evoke infor pation That information is wanted is proved by the mation. There in cause to statements many designers of ships do not know how to believe curve of stability; and that they probably hardly know the difference between a metacentre and centre of gravity. We do not propose to go into any mathematical details on the subject here. The laws on which the stability of a ship depends have already been fully stated in our columns, but we desire to call attention to some considerations concerning the stability of ships which are often overlooked.
Mr. Elgar has very fully explained the reason why high-sided ships are tender. His illustration, drawn from a floating cube, is so happy that we do not hesitate to re produce it in a slightly different form from that in which it appeared in his report. If we take a bar of wood 2 in. square and 20 in . long, and float it on water, it will, if the wood be of the right density, float with two sides vertical and two horizontal. This is approximately the condition of a high-sided ship with a nearly flat bottom and no ballast or cargo. It has hitherto been assumed that such a bar of wood is in very stable equilibrium ; but Mr. Elgar
points out that, if it be heeled over a little way, its stability vanishes, and it is then quite ready to take up a new position, and float on another of its sides. This is just the case of the Daphne. It was a matter of indifference to her whether she floated on her bottom or on her beam-ends; and if the water had not got into her when she heeled over, through hatches and open ports, she
would not have sunk at all, and might have floated quietly down the Clyde with her crew standing on her side instead of her deck. A comparison may be drawn here between the case of a low-sided and a high-sided craft, the former being represented by H.M.S. Captain. it will be remembered, upset off the coast of Spain in a beyond gale. Tit her side ; but the low-sided Captain could not do this any more than a board can float on its edge. She turned clean over, and one of the survivors actually ran along her bottom, which remained high out of the water until the extremes, and the and and suggestive. The question here presents itself, Whyshould ships be built with either very low or very high sides? With the former we need not deal. The latter is very
much to the point, and can be readily answered. High sided ships are built in order that the maximum amounto cargo may be carried for the minimum expenditure of power and first cost. To make this clear we must repeat
an old school-boy puzzle. A farmer had tifty-two hurdles, and with these he constructed a pen which held two hundred sheep. He bought two hundred more sheep and two more hurdles, and with these two he doubled the size of the pen, and this provided the requisite accommodation. was a long parallelogram, with twenty-five hurdles at each side and one at each end. By putting two hurdles at each end and shifting one side, the breadth of the pen was doubled. If we apply this to a ship it will be seen that
the capacity of a given hull can be more cheaply in-creased-other things being equal-by augmenting her beam than in any other way. Thus, a ship 300 ft .
long and 30 ft . beam would have about half the long and 30 ft . beam would have about half the capa
city of a ship 300 ft . long and 60 ft . beam, but the latter ship would not cost twice as much as the fcrmer Of course we cite an imaginary case, but it will serve our
purpose. . But unfortunately increasing the beam of a ship at first aight It isemse at first sight. It ebvious that wid hot require much more plating for the shell than the narrow
hull. But this is not the case with the decks and the beams. These last to be equally strong in both cases must be of much heavier sections, or much more numerous than in required to the narrow ship. Furthermore, the power that demanded by the narrow ship. A ship, like greaterythan else, has, however, three dimensions, breadth, depth, and length; and although it is not economical to augment beam much, it is economical to augment depth. For in that case we retain deck beams as they were in the smaller ship; the area of deck plating is not increased, and the only addition is in the side plating, about the cheapest work in the hull. Besides this it is held in many quarters that a given speed can be imparted to a given tonnage with less power in the case of a long, deep, narrow ship than in the case of a long, shallow, wide ship. Th here and thect, bearing these things in mind, and giving most economical hull for a given trade, and this in the case of certain trades is a high-sided narrow ship, such, for example, as the Austral, the Thames, and the Daphne.
Now, although such ships may have little or practically that they are bad and dangerous vessels, which ought not to be built. On the contrary, we are disposed to believe that they are pre-eminently safe ships in proper hands. Everything depends, however, on the way in which they with. It is evident that the terms high-sided and lowsided are merely relative. If we sink a deep ship far ably stable. If we lighten a low-sided ship enough, she will carry her sides high out of the water, and may become extremely tender. The best ship, of course, will be a loaded that their safety will such vessels and but the fact remains, as we have said, that hulls of the Daphne type this is a serious qualification properly dealt with; bu in satety by putting a little ballast on board, in
the first plase; but when plying their calling unless unusual be run. Thus, the Austral foundered in port on very small provocation. A valuable cargo of light bulky she will not be brought down to her prep Again a cargo of railroad iron may be taken; with this the ship will be safe enough from capsizing, but on the other to pieces, and render the life of everyone on board miser able. Nevertheless, as we have said, the use of high-sided ships in certain trades and under certain conditions is to always be looked upon as exceptional. Their curves of sta bility for various loads ought to be calculated with great
care, and the Board of Trade should see that the captains are provided with copies of these curves ; and the owners would do well to remember that it is not every captain who is fit to have charge of such craft.
The universal calculation of the curves of stability is to be recommended for reasons which have nothing specially to do
with high-sided ships. With such curves, and drawings of the ship, it becomes possible to form some idea concerning the amount to which she will roll; and it appears to be
highly desirable that rolling should be kept within the highly desirable that rolling should be kept within the
smallest practical limits. If a ship has a high range of smallest practical limits. If a ship has a high range of
stability quickly reached, she is almost certain to be a lively stability quickly reached, she is almost certain to be a lively
roller, because every ship will roll under sufficient provoca-
tion to just that point where her own momentum and the push of the sea are balanced by her moment of stability Thus, for example, if we have two ships, one of which attains her maximum stability at 30 deg., and the other at 60 deg ., it will be safe to assume, other things being equal, that the he former. We say thout twice as great an angle as the rolling of ships is affected materially by the nature of the waves with which they have to contend, the influence of periodic impulses, the form of the hull, and many other points which render the invesabstruse problem. But what we have said may be taken as approaching the truth, and a deep ship, if
properly loaded, may roll much less than a shallow ship; indeed, some shallow and extremely stable ship are awful rollers. Now, generally speaking, a ship which rolls heavily is in one sense an easy ship. Each roll is the ships rolling through small angles, because of excess of stability-among other causes-are so lively that they are extremely uncomfortable and even dangerous. As a rule, attempts are made to secure eacy rolling ships, the present, we wish to call attention, namely, that the further a ship rolls the more likely she is to shift her cargo. We are not aware that attention has ever before been prominentiy called to this most important point,
although it is very obvious. No matter how badly a ship was loaded, say, with grain, she would run no risk if she had to traverse a calm sea. The moment she begins so roll her cargo tends to shift, and if the point is reached shift. If we place a penny on the cover of a book and lift one end, an angle will be reached when the coin will
slide off. In just the same way, if a ship rolls to a suffslide off. In just the same way, if a ship rolls to a sufficient angle, her cargo must move. We have not the least that ships are built without any special overlooked, and rolling. As the whole subject of stability is to be fully dealt with, no doubt, in every shipyard in the kingdom, w trust that this matter of rolling may not be overlooked.
the board of trade and electric lighting.
There is only too much reason to conclude that Parliament and the Board of Trade have together done a good
deal of mischief in the matter of electric lighting. As things stand, any electric lighting company may apply for by the Board of Trade provided there is no opposition, or by the Board of Trade provided there is no opposition, or,
in case of opposition, the company can apply for a provisional order, which will be granted or refused after a committee has order, which will be granted or refused atter a committee has hearo evidence and arguments on both sides. In fact a empowering the company to do certain things. It thus appears that a particular system of lighting may be forced on a town or corporation against their will ; and to guard against abuses, certain rules have been laid down by the be complied with by the company. It is clear that these rules ought to have been prepared with great care, in order that injustice should be done neither to the company nor the consumer. But it requires nothing more than little attention to facts to prove that the rules are, in many espects, extremely unsatisfactory. Attention has alread
been called to this on several occasions; but the Board of Trade appears to have been quite incompetent to prepare proper regulations, and it will, of course, be difficult to rules err for the most part in favour of the companies, and do not do the consumer justice.
In 1882 eighty-three applications were made to the a licence. This goes far to show that one was made for companies the cordial support of the towns. 'They were either regarded with apathy or resisted, and where the resistance was strong the companies gave way and with-
drew. If the inhabitants of a town are not satisfied with the proposals made to them, they can demand an enquiry by the Board of Trade. Such a demand was made in the case of Edinburgh, but the scientific advisers of the company did not appear to support the case, and it fell disposal to show how and where the rules are wrong, unjust, or inept. Those who wish to go further into the matter may consult with advantage a pamphlet by Mr. T. Co., where they will find details, But althoug and cannot go fully into the matter, we can point put a few of the weak points. It has been said that it is ment. There is certainly no trouble in driving an electric current through one. The existing Act has ludicrous flaws in it. In a certain Dutch town it once became a bye-law citizen was shortly after wards taken up by the watch and brought before the authorities for breaking this rule; but the man proved that at the time of his arrest he was carrying a lantern, to which it was replied by the watch Nevertheless it was held that he had complied with the law and must be discharged; but the law was altered, and every citizen was instructed to carry a lantern with a without a light, but he proved in his defence that there was not a syllable about a light in the bye-law, and that he had with him a lantern with a candle in it, unlighted it is true, but a sufficiently legal candle; therefore he was again discharged, and the law was altered once more, and every citizen was told to carry after dark a lantern with a lighted candle in it. Now Parliament apparently had not heard this story when it passed the Electric Lighting
Act. We will suppose that Mr. Apsley Jorkin, living in Matilda Villa, Crowthorpe-street, Herdsbush, wants to light the said villa by electricity, the Positive Rectilinear Electric Current Company being at work in his
district. But the company does not care to light Matilda

Villa and one or two others alongside it. Mr. Jorkin, tributing stands upon his rights, and demands that a dis company gives shall be laid in crowaid and ane end of the street Mr. Jorkin finds a distributing box. Now, Matilda Villa is a great deal more than 30 ft from the dis tributing box, and Mr. Jorkin will have to pay for all the service save 30ft.; and the service line may be made of any length the company thinks proper. In order to put this end of a street a mile long a company put down at the full of gas; from this box the householders might draw but they would have to lay down their own services pipes thoir own cost, or rather at any price the gas company cought proper to charge. Of course, Parliament did not shall bpate this; but instead of saying that electric mains the drawer of the provisional steet or throughout a street and this the company has done. It has laid a service main in the street, and Mr. Jorkin may go and fetch the electricity thence at his own cost, It may be urged that such a course is impossible, but it is well known that it is not impossible; and in case the Board of Trade has done nothing to render it impossible. Another very important matter is that any company may supply an intermitten current if it thinks proper. Such currents are useles either for driving motors or charging secondary batteries They are extremely dangerous, and ought, in point of fact, never to be used for domestic purposes. They suit however, certain systems of lighting, and certain forms of dynamo, and for this reason they may be forced on the

The Board of Trade is at this moment, and has been for some time past, in this difficulty, that none of its responis of the subject, ond them know something of the theory versed in telegraphic electrical work; but this is o practically no use in lighting operations. The country is therefore, so far, at the mercy of a Government body which has virtually to legislate concerning things about which it knows nothing. Its difficulties will increase We understand, for example, that certain fittings, such as safety switches, cut outs, keys, \&c., must comply with is a fact thetions laid down standards approved by the Board. What action will be taken in the matter remains to be seen ; but we anticipate a reign of confusion and turmoil in the autumn and winter, which will, on the one hand, tell against the pro-
gress of electric lighting, while on the other it will gress of electric lighting, while on the other it will be a
disgrace to the Board. Government would do well, while there is time and fully competent to deal with the subject. Such an with all honest with all honest lighting companies. It is not fair to
expect both to be made the subject of legislative and other experiments by wh dealing either with the electric light, or with those who undertake to supply it.

shipbuilding in the north

A careful tabulation of the numbers of the vessels now in course of construction in the north-eastern district, between Whitby and Blyth, both inclusive, shows that there are about
155 on the stocks; but there is not quite that pressure in the 10e on the stocks; but there is not quite that pressure in the
demand for the vessels that there was, and that and another circumstance will probably prevent the tonnage launched being quite so large as in the past year, when the maximum was retarded by the long strike of a number of the engineers; for when the engines are not likely to be had, builders retain the vessels on their own stocks instead of launching them and risking them in the river and increasing the river dues. A part from the strike on the Wear the production has been tolerably steady, but there in that beliet that the orders on hand by the builders will keep most of the prospect is rather doubtful. Vessels are far less profitable than they were; and though the tendency of freights is just now upwards again, there is no probability that the earnings will be sufficient to pay the large dividends that have been paid and thus capital will not be so readily turned into shipping as it has been. Hence, the prospect before the shipbuilders is not so
bright as it was, but there must always be a number of order for new ships for purposes of replacement. These will give partial employment to the shipyards ; but it is probable that there another large series of orders given out for new vessels. In the running of steamers, with working expenses generally in a fixed
ratio, it is the cost of the steamer that determines the extent of remuneration of the owner. Freights having fallen, it is probable that the first cost of vessels will have to fall to some extent before capital enters as freely as before into the trade. The prospect it has been; but as the North of England has facilities for very
it cheap construction, through its cheap materials near to the shipyards, it should receive a full share of the orders for new
vessels that are in the market in any period of dulness, and be prepared for the time of full work in the more distant future.

LITERATURE.

The Concepts and Theories of Modern Physics. By J. B. STailo.

[First Notice.]

Mr. Stallo has succeeded in writing the most remarkable scientific book that has appeared for years. It is doubtfal indeed if any single work has ever been published which demands so much consideration from those who have to instruct the rising generation in the principles of physics to deal with the laws of nature; or to make advances in natural science. It is a noteworthy fact that so far as we are aware Mr. Stallo's book has never yet been reviewed. Notices of it have appeared in several journals, and Mr.
W. R. Browne has said a good deal concerning it in Tre W. R. Browne has said a good deal concerning it in The
ENGIIEER for January 19th, 1883. But nothing like an

Aug. 31, 1883.
adequate criticism of the book has ever yet appeared in print. The reason seems to us to be that those who have read it have either failed to understand they have not known what to say. It is said that Professor Tait having read it, said that "he could not answer it, but he did not
believe it." We fancy that Professor Tait is incorrectly believe it." but no doubt the utterance adequately represents the state of mind which must be produced in thoughtful men who peruse it with care.
"The following pages," says Mr. Stallo in his preface, "are designed as a contribation, not to physiç, nor, cer-,
tainly, to metaphysics, but to the Theory of Cognition." The work may be read with advantage by any one who has been fairly trained to think clearly; but some of the words and phrases used will not be understood by those who are not more or less familiar with the style of Bain,
Sir W. Hamilton, and others who have dealt with metaphysical questions. What, they may ask, for example, is meant by the words "Theory of Cognition?" The answer is that the theory of cognition explains how we know
things. This is the key or centre on which the whole work turns. All knowledge is based on an acquaintance with things, phenomena, circumstances, events-and the further we extend this acquaintance the greater is our
knowledge. The uneducated savage knows that the sun knowledge. The uneducated savage knows that the sun
rises. The educated man knows more than this ; he can tell why the sun rises. The savage knows that the sun is hot, but he does not know or care kn know why
it is hot. The philosopher, like the savage, knows that the sun is hot; unlike him, he wants to know the reason why; but it is not too much to say that at this moment he cannot tell any more than a Kaftir or a Hottentot. The
philosopher of another kind watches the mental processes philosopher of another kind going on in both, and proceeds a certain point be common to on a given subject may up to a certain point be common to all men, and why beyontions point these the theory of cognia few. With such questions as deals, and it has been laid down as a principle that tion deals, and it has been laid down as a principle that certain thile on the other hand, metaphysicians of no mean order while on the other hand, metaphysicians of no mean order have maintained Now, Mr. Stallo to a large extent preaches power of man. phenomena concerning the nature of which we not only know nothing, but never can know anything. It would instructive unless it was based on special and powerful instructive, unless it wasents; and it is these arguments, and not Mr. Stallo's arguments; and it is theory, which lend weight and importance to the volume before us.
Before advancing another step, we must here stop to explain that Mr. Stallo scarcely theorises at all. All chapter of fourteen octavo pages, at the very end of the Mr. Stallo to draw their own deductions, and on the whole the method which he has adopted in dealing with his subject is eminently satisfactory and scientific. We may add that Mr. Stallo's reading has obviously been immense, and page very careful to quote his authorities on almost every page. remarkable book. It is well known that the bigotry and dogmatism of science are intense above and beyond all religion. The tendency is now and always has been for the man of science to say "I know," when he ought to say, "I think I know." Of course thereare honourable exceptions, but they are exceptions. The most recondite and elaborate theories and hypotheses have been put forward from time to time by men of science in one generation as absolutely final; and they have been disproved and shown to be wholly untenable in the next generation. Things have been taught,and are taughtnow, as true in our colleges, which are not true. As an example of the first statement, we may cite the doctriue of potential energy, which asserted that when work was done in lifting a weight the work was stored
up in the weight, only to be given out when the weight fell to the ground again. No one having any pretensions to be a man of science teaches such a doctrine now. Instead of
" potential energy " we have "energy of position," which is quitea different thing. At every turn the thoughtful student encounters difficullies, even in the best modern text books, which he cannot solve himself, and which no one will solve for him. We had recently to call attention to one of these difficulties, namely, that met with in defining the term Force, and the letters which will be found on another page show, that the question cannot be easily settled. But the
average teacher or lecturer has neither the time nor the inclination to deal with matters of this kind. Force is defined in a particular way in text books, and students are compelled to accept this definition or go without any.
The student asks for bread and is supplied with stones. On this point there can be no room for doubt. Mr. Stallo shows how large is the supply of stones, and how general is their use. His purpose is to prove that nearly all that has been laid down as certain in physical science is uncertain; and that to all intents and purposes we have
hitherto been unable to form accurate or truthful conhitherto been unable to form accurate or
ceptions of things passing around us. Thus of the real nature of Time and Space we know nothing at all, and the same kind of ignorance extends all round. It we accepted this as true
little harm would be done, but those who ought to act most wisely, dogmatise and speak as though they were infallible concerving subjects about which they have ondeptions may pertain to hem. Mr. Stallo bears much the same relation the scientific world that an agnostic does to the religious disbliever, as a whole. Concerning some things he points out dovious and essential contradictions which prove that
both of two hypotheses cannot be true. Concerning other matters, he suspends his judgment, contenting himthing at all about these matters with certainty. Wha you say, represents a convenient hypothesis to work
with; but you do not know that it embodies the truth, and you should not assert that it does." Need we say that such a man must be eminently antagonistic to a very large and we know that it has caused a good deal of commotion; but no attempt at an answer has yet been made. No one has tried to refute his propositions as a whole. A A ew insignificant joints in his armour have beenarently fled for his life. Why is it that Mr. Stallo has escaped? The answer is to be found in Mr. Stallo's method of attack. In desperate assaults, the bodies of the slain have been used, a similar course. He slays his foes, and uses their bodies as a ladder when he makes further attacks. His method is equally simple and effective. He takes any importan theory taught more or less dogmatially important theory if it be true, then some other equaily important theory he does by setting the two theories, as enunciated by the ablest authorities, side by side, and leaving the reader to draw his own deductions.
His great onslaught is on the atomic theory, which lies at the root of all physical teaching

There is the assumption," writes Mr. Stallo, "generally
Talent among physicists and chemists of the molecular or atomic prevalent among physiiists and chemists of the molecular or atom
constitution of bodies, according to which mass is not continuous but disisete, being an aggregate of unchangeable, and in that sense
at least, simple units. This assumption leads to four other proat least, simple units. This assump then reads to four other pro positions, which, in conju
tion of foundations of the atomo-mechanical theory. They are these : (1) The elementary units of mass, being simple, are in all respects
equal. This is manifestly nothing more than an assertion of the homogeneity of mass, in conformity with the hypothesis of its molecular or atomic constitution. (2) The etenentary units of mass
are absolutely hard and inelastic-a necessary consequence of their are absor utely harr and inelasic-a necessary consequence of the ear
simplicity, which precludes all motion of parts, and therefore all
change of figure. (3) The elementary units of mass are absolutely change of figure. (3) The elementary units of mass are absotutery
inert, and therefore purely passice ; hence there can be no mutual action between them, other than muiual displacement caused by mpulses from without. (4 " "anergy," in the language of modern
reality kinetic. The term physics, denotes the cause of motion, and motion cannot originate
in , nor can it be converted into, anything but motion. The invariable units of mass are inert, whate,
vergy due to mere position is impossible.,
We would have our readers carefully peruse the pr ceding quotation until they have fulty doubt it accurately represents the teaching of very eminent zuthorities in physical science. Mr. Stallo gots on to quote a whole host of authorities who take tie view thas laid down. Among these may be named Descartes; and Pror.
Wundt, who says:- "Chemistry still refers the divergent uality, who says:- Chemistry stil qualitative difference between the atoms, but the whole tendency of physical atomism is to derive all the qualitative properties of bodies from forms of atomic motion. Thus the atoms themselves remain as elements utterly devoid of quality. Herbert Spencer is quoted to the same is thus laid down as the Our readers will see that what is tins laid-down as the atomic theory, is that matter in every form is composed of ultimate atoms, particles, they cannot be divided, and what we will-so small that they cannot qualities of any kind save weight. All these molecules or grains are exactly of the same size and form and weight, and differ ences between one form of matter and and and numbers of
differences in the motions, arrangements, and differences in the motions, molecule This the doctrine which is laid down in many text books, and with which the student is eariy made familiar
Mr. Stallo compares this hypothesis with that of Dalton, on which all chemical science is founded, and he show that, according to this last, instead of there being only one kind of atom, there are as many knds as the same weight, of them are very much heavier than others Thus, for example, the molecular weight of chlorine is 35° times as great as that of hene weights are in proportion to the number such molecule tained in each molecyle of chos ; but in this case, for reasons well understood, its specific heat would be far greater than has been ascertained by experiment. Again hydrogen and chlorine are both held ot be diato the mole is, their molecule cousists each of chlorine is said to weigh 355 times as much as the molecule of hydrogen. It is obvious that if the physical atomic theory is right the chemical
the student first learns the physical theory in, let us say, the engincering classes of his college on two days in explains to him that they are totally inconsistent and irreexplains to him that they are totally inconsistent ard ine-
concileable. We cannot quote Mr. Stallo's arguments at length, but we reproduce the concluding paragraphs of his third chapter -
In view of all this there seems to be no escape from the conclusion that the claim, according to which modern physical science
is throughout a partial and progressive solution of the problem of reducing all physical phenomena to a system of atomic mechanics,
is very imperfectly, if at all, countenanced by the actual constituis very mpeorectiy, chemistry- that this science, whiol is peculiarly
tion of theoretical conversant about atoms and their motions, is founded upon pro-
positions destructive of the very basis spon which alonea consistent positions destructive of the very basis upon which alone a consistent
superstructure of atomic mechanics can be reared. And there superstructure of atomiun mer the hope that these propositions
appears to be little ground for the
may be speeily abandoned; for, in the opinion of the most
distinguished chemists of the day, such an abandonment would distinguished chemists of the day, such an abandonment would
throw the mass of chemical facts. , aboriously ascertained by ex-
periment and observation- induced partly atleast, by the proposiperiment and observation-induced, partly at least, by the proposi-
tions in question-into a state of hoveless prescientific confusion. tions in question-into a state of hopeless prescientinic confusion.
In referenoe to the speculations of those who seelt de dedue the
speciific differences between the ultimate units of mass from differspecific differences between the ultimate units of mass from differ-
ences between their supposed inalienable velocities of motion or ences between their supposed inalienawle ver latent is to
amount the presence of the inexorable demands of the mechanical theory, the presence of e the attribution of inaliienable energy or motion to a
but als
given mass is repugant to the fundamental postulate of the given mass if repus on mass to motion. Helmholtz and others
absolute indiference on mond
have investigated the conditions of vortex motion in a perfectly

Maxwell has shown-is of necessity continuous and cannot be
molecular or atomic. If these conditions could be realised, we should have constant but undistinguishable volumes of a permanently homogeneous fluid, so-called, endowed with constant
quantities of inalienable motion. But no energy or motion can quantities of inalienable motion. But no energy or motion can
inhere essentially in distinct and separate masses - molecules or atoms-if, as the mechanical theory assumes, mass and motion are
disparate-if mass is indifferent to motion so as to remain the disparate-if mass is indifferent re motion so as to
same whether in motion or at rest, and if motion is transferable same whether in motion or Th This is one of the points distinctly
from one mass another.
insisted insisted upon by Sir İsaac Newton, the greatest among the founders
of the mechanical theory. Newton distinguishes between two kinds of the mechanical theory. Newton distinguishes between two kinds
of force-the force of inertia (vis inertiee), and impressed force (vis
 nheres in matter; while of the latter he expressly says that that
torce consists in action alone and does not abide in the body after action."
We have now said enough to indicate the line Mr. Stallo takes, and to make our readers in some degree acquainted way in which he has dealt with other questions nearly as important as the atomic theory.

BOOKS RECEIVED.

Elementary Text-book of Physics. By J. D. Everett, M.A.,
R.S. London: Blackie and Son. 1883. R.S. London: Blackie and Son. 1883 .
Strains on Braced Iroo Arcles and Arc
A. S. Heaford. London: E. and F. N. Spon. 1883. . Journal of the Society of Telegraph Engineers. vii. Nos. 46 and 48 .
Conversion Tables of Metric and British or United States Weights
nd Measures; with an Introduction. By Robert H. Thurston, and Measures; with an Introduction. By Robert H. Thurston,
A.M.C.E. New York: John Wiley and Sons; London: Trübner and Co. 1883.
Physical Treatise on Electricity and Magnetism. By J. E. H.
Gordon, B.A. Second edition; revised, rearranged, and enlarged Two vols. London: Sampson Low and Co. 1883. Transcctions of the Institution of Naral Architects. Vol. xx
Edited by G. Holmes. London: H. Sotheran and Co. 1883.

BEECHWOOD SLEEPERS.

A PAPER on the above subject was read at a recent meeting of
A the German Railway Association by Herr Claus, who alluded to the relatively small proportion of railways in Germany-only per cent.- on whicher in the form of longitudinal or transverse sections, notwithstanding the undeniable advantages of that mode of construction. Thus the question of wooden sleepers is an important one, more particularly on accourt of the special ject has of late assumed the form of a discussion as to the supply of wood available for this purpose, in the course of which several reliable authorities have been commenting upon the relatively limited demand for beechwood, and hav been while in Ger more extensive use 17 the cent of the wood surface is many and Austria the the ren repre plant 1 and 3 per cent, of the total quantities on the railways of sent 1 and 3 per cent
these two countries.
Experience has shown that rough beechwood sleepers not impregnated, do not possess sufficient properties of endurance ; their period of service averaging only $2 \frac{1}{2}$ to 3 years, as compared with 7 to 8 years for those of rough pine, and 14 to 16 years for those of rough oak. Of impregnated beechwood sleepers, those impregnated with creosote have proved the most dint line period of service being reckoned on the dolognde chlen ine at nearly 18 years. Those impregnated with chioride of zinc have proved less durable, wimpernated with sulphate of copper and ulphuret of baium. In those parts of Germany where beec sulphuret of barium. In those parts the cost of a well impreg nated beechwood sleeper is said to be only about half that of an impregnated oak sleeper. The principal obstacle to their use would seem, however, to have been the fact that the interior in a good state of preservation.
In France the employment of beech-wood sleepers is upon a more extensive scale. Detailed reference was made by Herr Claus to the process of thermo-carbolisation, invented by John Blythe, of Bordeaux. According to this process the sleepers are first dried to a given point in which they are exposed during five
 vapours of crecsote oil. Creosote oil is then pourtd into the cslinders, and by the pressure of steam, the absorption of $2 \neq$. nation of the central portion of the sleepers by this process being ncomplete, Herr Claus expressed his opinion that the process of Herr Riitgers-in general use in Germany-was more suitable
for the purpose indicated. By this process the sleepers are or the purpose indicated. By 266 deg. Fah., and are allowed to remain there until no more queous vapours are thrown off, the minimum time being four hours. They are then placed in turing the continuous action of the air pump the cylinder is filled with tar oil containing creosote, previously warmed by steam pipes. A pressure is then created by a force pump, and is maintained until the normal quantity of oil- $39 \frac{1}{2}$ lb. - has been absorbed, the greater amount uppose, to effect mare thorough impregnation.
Herr Ruitgers, who was present, remarked that, according to his experience of many years, beechwood sleepers were well
adapted for use on both main and branch lines; but special knowledge of their properties was required in their employment. In cregnation is useless. In order to render it safe for railway purposes it is necessary to subject the prepared sleepers, when as resh as possible, to the siccative action of a high temperature, or difiviate them by the action of steam. The spitst and therefore it is usually considered preferable to heat the wood into the centre by steam above 212 deg . Fah, and to lixiviate it as much as pos-
sible. Should an aqueous impregnating fluid be afterwards employed the sleepers must first be let dry, for which purpose sidered that beechwood sleepers thus impregnated could compete with those of any other wood, and were decidedly to be recommended, although the price was somewhat higher than that plates sleepers. He suggested the more extensive ase ol destruction of wood sleepers in railway traffic.

COMPOUND GOODS ENGINE.
 messrs. hensohel and son, dassel, engineers.

THE COMPOUND LOCOMOTIVE IN GERMANY. Herr Borries, who has made a special study of the compound locomotive in Germany, has lately read, before the Union of German Engineers, an interesting paper on the present condition of the problem. He observes that the application of the compound system, which has been of such advantage in stationary and marine engines, is beset with difficulties in the case of
locomotives. This is due to the necessity for great simplicity locomotives. This is due to the necessity for great simplicity in construction and working, the great variations in the power
required, and the large amount of that power as compared with the narrow dimensions within which it must be developed. The author of the compound locomotive is M. A. Mallet, of Paris. His first engine was started in 1876 on the branch from Bayonne to Biarritz, and some forty locomotives on this system are now
 especially in England.

In 1881 Herr Schichau, of Elbing, made two small compound engines for the Eastern Railway of Prussia, and later compounded London and North-Western Railway, built in 1881 a compound engine for express trains. This engine has two small cylinders, coupled to the central axle, and one large cylinder coupled to the leading axle. The author considers that this arrangement is very complicated, and that the large cylinder will have a very unequal action on the leading axle, so that practically all the tractive force will be derived from the action of a single \pair of
wheels. He also speaks of minor disadvantages, and predicts that as two cylinders are really sufficient and have the great advantage of simplicity, there is no future for the Webb engine,

The author began his study of the compound system in 1880, the subject in the Railway Organ, lowing principles :-(1) To reap the full benefit of the system the engine 3 should always work compound, not be as simple as possible, both in construction and working; (3) the correct cut-off for both cylinders should be given automatically by the valve gear, to prevent any loss of steam from faulty handling. Two small engines for omnibus trains were built on these principles in Railway and started on the Hanover f a tank engine and a luggage van weighing 18 tons loaded, and having 22 square metres of heating surface. The valve gear was such that when the regulator was quite open the full boiler pressure came on the mall cylinder, whilst at the same led port into thed through a throtled port into the receiver, and thus cylinder to ensure starting the engine. As soon as the train was fairly started the regulator was partly closed, thereby shutting the direct communication to the large cylinder.
At the same time two other en gines of exactly similar construction, but not compounded, were built; and hence it was possible to tak the same train was hauled alternately by a simple and a compound engine. The saving in fuel thu observed was 18 per cent. on the side of the compound engine, and this would have been greater ha not the steam ports on the side of the large cylinder been too narrow equally good with the compound engine, the running was easier, and he successive emissions of steam were scarcely perceptible. Hence the fire burnt steadily, and there were scarcely any cinders or spark
nly two cylinders, of different sizes. A special feature is a valve near the smoke box, which enables the engines to be worked valve chest a reducing valve, which enables the steam passing to the large cylinder, when working simple, to be of a lower pressure than that passing to the small cylinder. The reversing gear is working each cylinder, which can, however, be connected if required. The main advantage of this system is the great variation which can be made in the power developed. The disadvantages are: (1) The construction, handling, and working are complicated; (2) the full pressure comes sometimes upon the large piston and its mechanism; (3) the distribution of the team, especially as regards compression, cannot be equally perfect with both methods of working.

In consequence of these favourable ystem fanover Railway Company resolved to give the of Publio further trial, and with the approval of the Minister built on the ordered system. These engines, together with en normal and Son, of Cassel, and were set to work in December, 1882 These engines are shown above, and only differed from th ther engines so far as was necessary for the compounding to

* See however Mr. Webb's paper recently read before the Institution
of Mechanical Engineers git tiege, and the gisçussjon thereupon.

Abstract

Diameter of wheel Total wheel base.. Total lengtt of frames Total length of engine Steam pressure Steam pressure Size of grate Total heating surface Weight empty Weight empty :

The cylinder is inclined at a slope of 1 in 40 . The steam passes from the steam dome to the right-hand or small cylinder partially expands there, and exhausts into the receiver pipe ndin the smoke-box. From thence it enters the large cylinder, To start the engine a reduction there, passes to the chimney placed on the steam of one-third the boiler pressure could be admitted into the receiver, and so to the large cylinder. After starting, this valve was closed by a hand lever, placed close to the reversing screw One of the engines was subsequently fitted with a Hensche reducing valve, shown below, having a piston behind the Ive proper. On starting, this valve opens automa'ically, and

coses again as soon as the proper pressure is attained in th receiver, the pressure on the smaller area of the valve not bein able to open it against the pressure on the piston ct a starting as a back pressure against the smaller pure woutd prevent this a small valve, 1 in . diameter, is provided, by which in such a case steam may be admitted to the other side of the smaller piston and thus put it in balance. The arranging of the points of cut-off was managed, not by dividing the reversing shaft, but by placing the levers which work the valves at an angle of 50 deg. from each other, instead of parallel as usual, the rod being, of course, of different lengths. Thus, in full forward gear, the lever of the righth of the left-hand valve is inclined to it. It the position is now changed from forward gear to mid gear, the ight-hand slide moves more quickly than the left on account of the more favourable position of the lever, and the cut-of diminishes more quickly in the right cylinder than in the left, For torward gear the variations of cut-off are as follows: Smal
cylinder (right hand), $0.2,0.4,0.6,0.8$; large cylinder (left hand)
$0.32,0.5,0.66,0.8$. In backward gear the reverse is the case, but as tender engines never ru
The action of the steam is sufficiently shown by the indicator diagrams below. These give the diagrams taken from each end of each cylinder, with cut-off varying from eight to two-tenths of the stroke. It will be seen that with each cut-off the mean pressure on the small piston is about double that on the large piston, so that they do nearly the same work. Again, with diagrams are very sharp and rood, showing that there is no diagrams are very sharp and good, showing that there is to both pistons is alike, and precisely the same as on the normal engines. It was not thought necessary even to increase the counterweight on the side of the large cylinder, as its piston is only 100 lb . heavier than the other. The boiler was made of 2 in . less diameter than the normal engines, on account of the higher pressure, and had five tubes fewer. The smoke-box was made somewhat longer to accommodate the receiver pipe. In all other points the two classes of engines were alike, the compound being distinguished merely by the different diameter of cylinders, difes, and the presence of the reducing valve and back steam pipes, and the presence of the reducing valve and backwheels is as follows, in kilogrammes

	Empty.			Working order.		
	Left.	Right.	Tutal.	Left.	Right.	Total.
Leauing axle ..	6300	6350	12,650	6850	6850	13,700
Driving axle ..	6400	6200	12,600	6150	6450	12,900
Trailing axle ..	5050	5300	10,350	6550	6550	13,100
Grand total..	-	-	35,600	-	-	39,700

This distribution is very good. The equality of the load on the right and left wheels is due to the fact that the large cylinder as kilogs. ($1 \cdot 1$ tons) more than the normal engine, and this difference might be easily decreased. The working of the compound engines is thoroughly satisfactory. Their power is somewhat in excess of the normal engines, i.e., they can haul about 10 pairs of wheels more under equal conditions. Fully loaded trains, say of 120 to 130 pairs of wheels, can be hauled on gradients of 1 in 0.4 . With such cut-offs the action of the steam is very regular 0.4 . With such cut-offs the action of the steam is very regular
and perfect. With a cut-off of 0.4 or less there is no audible and perfect. With a cut-off of 0.4 or less there is no audible There is never any escape of sparks from the funnel, so that a

Small Cylinter.

Laroe Cylinder.

Small Cylinder

Laroe Cylinder.
 sq . cm.; pressure in large cylinder re-
duced to dimensions of small cylinder, $4 \cdot 14 \mathrm{~kg}$. per sq. cm.

Cut-off $=0.3$; b biler pressure $=11$ '4atm.; mean effective pressure in small cylinder, 3.08 kg .; mean effective pressure in
large cylinder, $1: 55$ kg ; ; pressureinlarge $\mathrm{kg} \cdot$; pressureinlarge
cylinder reduced to dimensions of small
cylinder, $3 \cdot 10 \mathrm{~kg}$.

spark-arreater, which was originally fitted, has been removed; and only a very small quantity of fine ash collects in the smokebox. The easy going of the engine is much praised by the
drivers, and is no doubt due to the fact that the pressures on the two pistous ere better arranged in relation to each other than
work perfectly, and in shunting, \&c., the engine is just as handy
worm as any other.
The comparative economy of fuel was tried by running the two compound engines alternately with two normal engines of the same set, on two quick and heavy trains, and upon a trip which told severely upon the power of the engines. In eigh of the trains was on the average 6 per cent. greater with the compound than with the normal engines. Thus it appears that the saving in fuel was only one-half what it had been with the omnibus engines. The reason of this difference lies in the fact that the goods engines when on steep gradients, and therefore using most steam, had to go very slowly, and therefore the
action of the blast pipe at each semi-revolution was very irregu-

Cut-off, 0.2 ; boiler pressure, 12 atm.; mean effective pressure in small cylinder, 1.83 kg .; mean effective pressure in
large cylinder, 1.01 kg ; $;$ pressure inlarge cylinder reduced to dimensions of small
cylinder, 2.02 kg .

Cut-off at $0 \cdot 4$; boiler pressure $=12 \mathrm{~atm}$.; sure in small pressure in small cylinder, 3.68 kg per sq.
cm.; mean effective cm .; mean effective
pressure in large cypressure in large cy-
linder, 207 kg . per

Smail Cylinder.

Large Cylinder.
Cut-off at 0.8 (small cylinder after starting); boiler pressure
$=12 \mathrm{~atm} . ;$ mean effective pressure in effective pressure in
small cylinder, 4.59 smal per sq. cm.:
kg.
mean effective pres. sure in large cylinder, 223 kg . per sq cm. ; pressure
large
cylinder
re large cylinder re-
duced to dimensions duced to dimension-
of small cylinder $4.46 \mathrm{~kg} \cdot$ per $\mathrm{Eq} . \mathrm{cm}$.

Cut-off, 06 ; boiler pressure, 11.8 atm ; mean effective pres-
sure in small cylinsure in small cylinder, 5.32 kg .; mean large cylinder, 2.61 kg .; pressure in large cylinder reduced to pressure in small
cylinder, 5.22 kg .

Cut-off, 0.7 ; boiler pressure, 11 atm.; mean effective pressure in small cylinder, 6.48 kg .; mean effective pressure in kg.; pressure in large cy:inder reduced to cylinder, $6 \cdot 32 \mathrm{~kg}$.

No. 10.

Cut-off, 0.3 .; boiler pressure, $11 \cdot 5$ atm.; mean effective presmean effective pres- sure in small cylinsure in small cylin- der, 2.88 kg ; mean effective pressure in effective pronder, 1-29 kg.; pressure inlarge cylinder reduced to dimensions in large cylinder, $2 \cdot 58 \mathrm{~kg}$.

lar. This irregularity causes defects in the combustion, and cooling in the gases of the tubes. On the other hand in the omnibus trains the speed was much higher, and the cut-off was seldom more than 0.4 ; the combustion was then very uniform
and the working perfect. It follows that the compound system and the working perfect. It follows that the compound system
will give best results with passenger or express trains. Now such will give best results with passenger or express trains. Now such
engines consume a large part of the power-in express trains often one-half-in moving themselves; and since the better utilisation of the steam comes in aid of the compound system, it may be expected that the power of a locomotive for the same consump-
tion of steam will be much greater, in some cases as much as 20 to 30 per cent. The smaller consumption of steam will also improve the working of the boiler, and it may be expected that a
saving of at least 15 to 20 per cent. of fuel will be effected. saving of at least 15 to 20 per cent. of fuel will be effected.
The cost of the compound engines here described was about $£ 75$,
or 4 per cent., above that of the normal engines, whilst their power was greater by at least 6 per cent. Therefore, for goods engines the cost compared to the power may be considered equal, whilst with passenger engines it is in favour of the compound system.
In conclusion, this experience has established the fact that compound engines are thoroughly satisfactory as far as power is
concerned, whilst their safety in working is superior to that of ordinary engines, inasmuch as the mechanism has a smaller strain upon it, and friction, with the accompanying danger of heating, is diminished. In special cases there is the advantage that the full steam pressure can be at once turned on the small cylinder, whilst if there is a breakdown on one side, the other can still be used as usual.
In the discussion Herr Stambke, the president, observed that the applicability of the compound system to locomotives was no engines described was a distinct advance in the question.

Indicator Diagrams from Compound Engine No. 545.

Date.			商荡		Mean effective pressure.		
January 23	${ }^{4} 1$. 8	atm. 12	-	$\begin{aligned} & \overline{\mathrm{kg} . \text { per }} \\ & \text { Eq. in. } \\ & 4.59 \end{aligned}$	$\begin{aligned} & \text { kg. per } \\ & \text { mq. in. } \\ & 2 \cdot 23 \end{aligned}$	$\overline{\substack{\text { kg. per } \\ \text { sq } \\ 4.46 \\ 4.46}}$
	2	$\cdot 6$	11	1.5	$4 \cdot \overline{0}$	$2 \cdot 61$	$5 \cdot 24$
,	3	$\cdot 5$	$11 \cdot 4$	2	$4 \cdot 49$	2.34	$4 \cdot 68$
"	* 4	$\cdot 4$	12	2	$3 \cdot 68$	2.07	$4 \cdot 14$
"	*5	$\cdot 3$	$11 \cdot 4$	2	3.03	$1 \cdot 55$	3.10
"	* 6	$\cdot 2$	12	2	1.83	1.01	$2 \cdot 02$
February 13	* 7	$\cdot 9$	11	-	6.48	3.16	6.32
"	* 8	$\cdot 6$	11.8	$1: 5$	$5 \cdot 32$	$2 \cdot 61$	$5 \cdot 22$
"	-	- 4	11.8	$1 \cdot 6$	$3 \cdot 29$	1.70	3.40
	*10	$\cdot 3$	$11 \cdot 5$	$2 \cdot 6$	2.88	1-29	2.58

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS,
(From our own Correspondent.)
On 'Change to-day-Thursday-in Birmingham, and yesterday in
Wolverhampton, business was more active; but the extent of new business done was not very considerable. 20 w.g., $£ 9$; 21 w.g. to
Bloomfield sheets were named as $24 \mathrm{w} . \mathrm{g}, \mathrm{E} £ 10 \mathrm{l} 10 \mathrm{~s} . ; 25 \mathrm{w} . \mathrm{g}$. to $27 \mathrm{w} . \mathrm{g}$. ., £12; best sheets, 30 s . per
ton extra ; best best ditto, 50 s . per to extra ; and best charcoal ton extra; best best ditto, 50 s. per ton extra; and best charcoal
ditto, £10 5 s . per ton extra. Summer-hill sheets not larger than ditto, £10 5s. per ton extra. Summer-hill sheets not larger than
10 ft . by 3 ft . by $\frac{1}{8} \mathrm{in}$., $£ 910 \mathrm{~s}$.; best sheets of the same price, $£ 10$ 10s. $10 \mathrm{ft}$. by 3 ft . by $\frac{1}{8} \mathrm{in} ., £ 910 \mathrm{~s}$; ; best sheets of the same price, $£ 10$ 10s.
Monmoor sheets, $£ 810 \mathrm{~s}$.; best, $£ 910 \mathrm{~s}$.; best best, $£ 1010 \mathrm{~s}$.; and Monmoor sheets, £8 10 s.; best, £9 10s.; best best, £10 10s.; and
charcoal sheets, $£ 17$. Gold's-hill sheets, singles, 96 in. by 36 in ,
 best sheets, $£ 1$ per ton extra; and best best dito, 22 per ton
extra.

 double best, $£ 14, £ 1510 \mathrm{~s}, £ 17$, and $£ 17$ 10s. respectively; Wood-
ford treble best, $£ 15, £ 1610$ s., $£ 18$, and $£ 18$ 10s. respectively $;$ ford treble best, $£ 15, £ 1610 \mathrm{~s}, \ldots 18$, and $£ 1810 \mathrm{~s}$. respectively
Woodford charcoal, $£ 17, £ 1810 \mathrm{~s}$, $£ 20$, and $£ 20$ 10s. respecTively. Close annealed Siemens-Martin mild steel sheets
$£ 15$, $£ 1610 \mathrm{~s}$., £18, and $£ 1810 \mathrm{~s}$. according to gauge. Angles, £8 10s.; best ditto, £9; and double best, £10. Rivet
iron, $£ 810 \mathrm{~s} . ;$ best, $£ 815 \mathrm{~s}$.; and double best, $£ 10$ 5s. Tang iron, iron, £8 10s.; best, $£ 815 \mathrm{~s}$; ; and double best, £10 5s. Tang iron, $\frac{1}{3}$ in. and $\frac{7}{7}$ in., was $£ 710 \mathrm{~s}$.; best, $£ 810$ s.; and best best, $£ 910 \mathrm{~s}$.
Plating bars and cable iron were $£ 8$ for common, $£ 9$ for best, and £10 for double best sorts.
William Barrows and Sons' angles, rivet iron, and T-iron,
$£ 910 \mathrm{~s}$. for ordinary sorts; and best best, $£ 10$ 10s. Plating bars, $£ 910 \mathrm{~s}$. for ordinary sorts; and best best, £10 10s. Plating bars,
marked "B.B.H. Crown" were £ ; best ditto, £9 10s.; and best marked "B.B.H. Crown" were $£ 8$; best ditto, $£ 9$ dos.; and best
best charcoal ditto, $£ 16$.
Bars, $£ 7.10 \mathrm{~s}$. to $£ 82 \mathrm{~s} .6 \mathrm{~d}$. Common qualities move steadily at $£ 6$ 5s. and $£ 62 \mathrm{~s} .6 \mathrm{~d}$.
Strip iron was firm in price to-day. Most makers were quoting £65s.
In new business the pig market is not brisk, consumers still hold ing aloof in the belief that the tendency is towards further weak-
ness. Average all-mines are quoted 60 s a ton, with best houses ness. Average ali-miner are 50 s .; and part-mines 45 s . Serviceable descriptions at 42 s .6 d . and 40s. run some of the established part-
mine qualities hard. Hematites were not largely offered. The mine qualities hard. Hematites were not largely offered. The prices mostiy quoted was quiet. Forge qualiti
from Cannock Chase at 6s. per tran at for agricultural requisites has this season improved. Galvanised light roofing work keeps many hands in active em-
ployment, but the roofing engineers complain that the little new ployment, but the roofing engineers complain that the little new
business coming forward is without tone, and that prices are unremuneratively low.
The Midland Steam
The Midland Steam Boiler Inspection and Assurance Company at its annual meeting on Wednesday, in Wolverhampton, reporte
a profit on the year of $£ 567$. The payment of a 4 s . per share a profit on the year of $£ 567$. The payment of a 4 s . per share
dividend absorbed this, together with a further $£ 47$ taken from the dividend absorbed this, together with a 10 . In the Southern district the boilers assured numbered 1257, and those inspected 809, making a total of 2166. In the Northern district the boilers assure
numbered 673 , and those inspected 329 , making a total of 1002 ; numbered 673, and those inspected 329 , making a total of 1002;
making a grand total of 3068 boilers under the company's supervision, or 40 fewer than last year. Some little time ago a new company for insurance and inspection, consisting of influential members of the iron trade, was projected, bnt arrangements have been made for averting the threatened competition by the projectors taking
shares in the Midland Company, and being represented on the directorate. During an existence of twenty-one years the operations of this company have exercised a very sensible influence in preventing explosions in Staffordshire, and the suggestions of its engineers have done much to improve the types of construc-
tion now in vogue in the district. With but one or two exceptions, it is the oldest company of the kind in the king
dome present chief engineer--Mr. E. B. Marten-who dom. The present chief engineer--Mr. E. B. Marten-who showed at the annual meeting in Wolverhampton on Wednesday, as examples of the various effects of explosions met with in
practice, a number of models of fractured plates and the like, practice, a number of models of fractured plates and the like, brough, and other large engineering centres. In his report for the year ended June 30th last, Mr. Marten says there was no explosion
during the year among the 1138 boilers under inspection, but a during the year among the 1138 boilers under inspection, but a
compressed air cylinder ruptured through the firing of gas within compressed air cylinder ruptured through the firing of gas within
it. Of the 1930 assured there were seven slight cases of injury
Them shortness of water.
The South Staffordshire Institute of Iron and Steel Works
managers on Friday had their annual excursion ; the place chosen managers on Friday had their annual excursion; the place chosen
being Messrs. Tangye's works at Soho. Amongst the many things being Messrs. Tangye's works at Soho. Amongst the many thing
inspected were the hydraulic lifting jacks and other hydraulio inspected were the hydraulic litting jacks and other hydraulio
machinery, steam and gas engines in motion, the Wilson gas
m

produce furnace

 ironworkers in North Staffordshire, a large meeting of workme Was herd on Monday at Hanley. Since 1878 , their wages had,speakers stated, been regulated by the South staffordshire Wages
Board, and they were tions were adopted giving notice of secession from the asking the employers to hold af meeeting writh a the view to to the
formation of a Conciliation Board for the noth formation of a Conciliation Board for the north of the county.
The market in North staffordshire for light rolle than of larket and the demand is is now more appreciable for heaevy
finished iron. Current demand for theless, the output and the sales of ironstone do not diminish.

NOTES FROM LANCASHIRE

(From our own Correspondents.)

Manchester. - In a mand-to-mouth fashion there is a quiet, steady well maintained, but the market continues without animation their immediate requirem a strong disinclination to buy beyond their immediate requirements, and as users of pig iron have in
most cases pretty large deliveries still to come in on account o
old contracts, the weight of raw material actually old contracts, the weight of raw material actually required for
present tuse is only very small. Finished iron makers generall
bhave their boks have their books full of orders, but these are chieffy for early
delivery, and they are more open to sell forward than for prompt specification.
The business doing at the Manchester iron market on Tuesday was again only small. For pig iron there was only a very meagre had the effect of bringing sellers of some of the low-class district brands into the market at low prices, as iron was reported to hav
been bought at considerably under the current rates however, no perceptible weakening on the part of the better clas makers, except that the silight attempt at an advance which was recently attempted in some cases has been scarcely maintained.
Lanoashire pig iron makers still hold firmly to 45 s . and 45 s . 6 d .,
less 24 for for less $2 \frac{4}{2}$ for forge and foundry qualities delivered equal to Man
chester, and for good brands of district iron 44 . less 2 2, for forge and foundry. Lincolnshire is the minimum basis
of quotations.
In hematises there is still only a very small business doing, but occa-
sional sales are made at about 59 s , less $2 \frac{1}{2}$ for good foundry brands
deli sole delivered into this district
At the comparatively low prices now ruling for finished iron makers are kept fairly busy, and in most cases are indifferent about booking orders for quick delivery. The chief demand is for hoops
and sheets, bars if anything being rather and sheets, bars if anything being rather quiet. The minimum
 Shipping inquiries for sheets.
advances, and I hear of Amer showing more animation as the season
watch on watch on the market. At present there are several questions under the new tariff before the United States Treasury for con-
inderation, and the decision with regard to these will no doubt influence the orders given out here
The demand for locomotive and general railway plant, and for
marine engine work, is keeping some marine engine work,
engineering keeping some of of the leading brandy pranches of the
the engineering trade fully employed, but indications point rather in
the direction of deereasing activity with a continued quietening
down in the cotton machine trade.
Messrs. W. H. Bailey and Co., of Salford, have in hand for
the Russian Government the construction of one of Professor Thurston's testing machines, for tenstrung the of torsion ond Professor of metals
Engineering.
The
The action of the House of Lords Committee in throwing out rom renewed efforts to canal Bill has not deterred the promoters ing of the subserribers to the the Parliamentaje Fund held on Wen Wednes-
day, resolutions were unanimously pessed met. day, resolutions were unanimously passed empowering the com-
mittee to procede with the scheme, and it was strongly to secure the consent of the Mersey Conservators one taken plans for the improvement of the estuary. We may add that
the rejection of the Bill has been a great disappointment to the commercial classes in the district, but whilst there is no foubt a very strong conviction that the construction of the canal, Mat absolutely"necessary to preserve the commercial position of financial support which the scheme is likely to receive from the
investing public is a very doubtful question. The financial aspect of the project is in fact its least satisfactory. feature, and the state ment presented to the subscribers with regard to the Parliamentary fund can scarcely be regarded as one likely to encourage the most sanguine expectations of success.
Messrs. . Mather and Platt, of Stard, have put down special
plant for lighting the whole of the Manchester Theatre Royal, plant for lighting the whole of the Manchester Theatre Royal,
where nearly 500 lights are employed each evening. The installa tion is placed in the basement of an adjoining warehouse, and
consists of boilers, with engines and dynang in section supplying the light each evening, whilst the other is kept revining slowly in readiness for any mishap, or in the event of it can be readily effected with scarcely any perceptible pulsation can be readily effected with searcely any perceptible pulsation
being caused in the lights. The boilers are of the locomotive fy-wheel end raised higher than the cylinder ends, the bed-plate being carried belts for the dynamos above the floor line. The high-pressure cylinders are 1 inin, and the low-pressure 19in. diameter, with a
stroke of 1 bin., and fitted with Mather and metallic piston and steel rods cottered together inside the lowpressure cylinder. The valves are of the ordinary slide and
expansion class, the expansion plates of each being adjusted expansion class, the expansion plates of each being adjusted
separately by hand-wheels, and the cut-off for each cylinder
is entirely independent with wrought iron slides moving in cast iron brackets. The piston crosshead is turned to fit the slide, which is bored. The fly shaft is of wrought iron, and has the crank disc shrunk on the front end and the couling on the back end, this coupling being added
for the purpose of connecting the engines, if neeessary, and running them together. The fly-wheel is very massive, and has two cost iron rings bolted on the rim, for driving the dynamos direct. The engines run at 190 revolutions, or 506 fta . of piston per minetute, and
are governed with a quick-speed "Porter" and equilibrium valve are governed with a quick-speed "Porter" and equilibrium valve.
The dynamos are of the Edison K, or 250 -light class, and are four in number, being used alternately in pairs, and are driven, as
already stated, direct from the fly-wheel by \sin, patent link belts rumning at 3280 ft . per minute. The electric current is transmitted from the dynamos to the theatre through four cables placed under
the floor of the warehouse, and carried under the street in cast iron pipes 4 in. in diameter.
of coal has tended to bring forticipation of an advance in the price however, no great pressure for supplies generally, and there is no very great anxiety on the part of buyerss to peracaec out orders. As
intimated last week most of the coalowners in West Lancashire have, with the close of the month, decided to adyance their pit firms have advanced their delivered rates for house coal 10d. per ton. This upward movement is. is, howes for , hased more one on ther
anticipation of a rush of orders during the ensuing month, rather
than upon any present greatly increased demand, as trade generally
year. In burgy and slack, which still meet with only a slow sale a
late rates, no alteration is being made. At the pit mouth prices
 6d. to 5 s . for burgy, and 3s. 6 d . to 4s. for good slack.
The hematite pizg iron trade still maintains its inactivity of the previous week, and the position at present is less satis
factory than it has been during the dull time of the past few manths. From all quarters there is a falling off in the demand
mespensily especially on American account. It was from this quarter that the the wants of some consumers in the country can be fully satisfied
 maintained to the same extent as the past few months, and this is found to be quite sufficient to meet deliveries and fresh contracts; consequently, stocks which aro largely held do not diminishb, not-
withstanding the exportation of metal. Steel makers fairly well
 axeeng quoted for heavy sections of steel rails. Iron ore quiet, with
bin incer
an increasing stock at the mincs. Present
 or orders, but negotiations likely to lead to business are going on.
Other industries steady. Shipping rather quien

THE SHEFFIELD DISTRICT

e time ago, a movement ha among the miners for securing an advaneen in wases. The South
Yorkshire and North Derbyshire Miners mously passed a resolution to the effect "that the Council is
strongly in favour of asking the owners for a 5 per cent, advance Mron the present rate of wages, and hereby instructs the secretary Yorkshire Miners' Association, with a view of asking the owners to convene a meeting at which the proposal may be amicably dis-
cussed." It was also resolved to render vigorous cussed." It was also resolved to render vigorous assistance to the
men in North Staffordshire, who are out on strike against the men in North Staffordshire, who are out on strike against the
demands of the owners for a reduction of 10 per cent. in their
wages.
The coalowners, I have reason to believe, will set their faces
against any disturbance of the wages questionat present.
A strong against any disturbance of the wages questionat present. A strong
feeling prevails that a period of quiet will do pade on a sound basis than any other cause. Trade is undoubtedly ments, it is held by the coalowners, could only have one effeet, and that the retarding of the gradual revival. Demand is steadily
overtaking supply, and no
process.
The
orkshire Miners' Association has just issued a report with regard to the trade, the wages, the output, the acoidents, and
deaths in the Yorkshire coalfield. In 1882 -the report states trade of Yorkshire and the United Kingdom has art. states-th vast increase over that of 1881 . In the year 1881 there was a large
increase over that of $1880-$ an increase many people thoubt increase over that of 1880 -an increase many people thought which
could not be over-topped in 1882 , but in the latter year the figures of 1881 were increased by 288,265 tons. The increase of miners in the pits had taken place to the extent of 1017 over 1881 . "The seing that the output per man does not come up to the general
average for Yorkshire by about 66 tons per man." In the United
Kingdom they had Kingdom they had an output of $156,499,977$ tons of coal, or an
average of about 301 tons per man, or $9 \frac{1}{2}$ tons per man less than
 miners to decrease the output, in order to remedy the presen wrong system of bartering away owners' profits and men's wages
"Restriction or regulation of the output means a great deal to the produce change will come over the various markets connected with the trade. Non-paying-if there are any-collieries will realise
dividends, and collieries now paying dividends will realise immense proits. In consequence of such a state of things wages are bound
to improve, never allow the agitation to drop, "but more than ever ard with increased zeal stir up the whole country to take action, and so hasten good times," all which means that as the winter approaches
we shall have the old struggle renewed. Prince Swasti Cold struggle renewed.
by his attachis and tutor, has visited Sheff Siam, accompanied inspected the processes of manufacture at the works of Messrs.
Thos. Firth and Sons, Jolin Brown and Co., Messrs. Joseph Moders Thos. Firth and Son, John Brown and Co, M
and Sons, and Messrs. James Dixon and Sons.

THE NORTH OF ENGLAND.
 (From our oun Correspondent.)

The Cleveland pig iron trade has been quiet and steady during the past week. No. 3 , G.M.B.,., is still very sarioe, but makers
have not advanced their prices as it was thought they would do.
Not much business was done the marke hes on Tuesday. Whatever iron did change hands, was for prompt delivery, and on the basis of 39s. per ton for No. 3, G.M. B. The
principal makers continue to quote 39s. 3d. to 39s. 6d. for that grade. No. 4 forge was not so scarce, and could be had at 37 s , 9 d ,
to $£ 38$ per ton net cash; very few sales were, however, made. Buyers generally were foffering 38 se . 9 da . for No. No. 3 forer, marwa.
dorward
delivery, but sellers held back in the expectation of doin better delivery, bu.
by waiting.
Warrants
Warrants are in slightly improved demand now that No. 3 is so difficult to get from makers, and 39s. per ton f.o.b. is freely given by merchants who require iron to make up shipments.
brough on Monday last was 71,991 tons, or 500 tons less ons
The pig iron shipments have improved somewhat during the last
ew days, and on Monday night they amounted to 71.955 ton compared with 76,245 tons in the corresponding twenty-seven days of July, and 78,905 tons during the same period in August, 1882 . There is no change in the manufactured iron trade. The pres-
sure for delivery is still maintained, as the shipyards are all workgo full time and making the most of the fine weather. Shi plates are $£ 65 \mathrm{~s}$. per ton; angles, $£ 510 \mathrm{~s}$. to $£ 512 \mathrm{~s}$. 6 d. ; and bars,
$£ 517 \mathrm{~s}$. 6 d, , less $2 \frac{2}{2}$ per cent. discount, and delivered free on trucks thakers' works.
The North-Eas
The North-Eastern Railway Company has let the contract for the extensive alterations to be made at the Middlesbrough Docks,
and operations have already been commenced. About $£ 10,000$ will be expended on the new work.
The half-yearly meeting of the shareholders of the Scarborough and Whithy Raily meet Company was held at Scarborough on Satur day last. The report stated that about one-half of the permanent
way was now laid, and the engineers and contractors see no reason why was now laid, and the engineers and contractors see no reason
why thine should not be opened for traffic by June next. The
Esk Viaduct, one of the met Esk Viaduct, one of the most important works on the line, is in
pletion. Council meeting of the Cleveland Miners' Association wa held on the 27th inst, at Saltburn, to discuss the desirability of
having a new sliding saale to take the place of the present one
which terminates at the end of the yeare which terminates at the end of the year. It was unanimously
resolved that no future slidinngscale ee agreed upon unless it can be
made to regulate the wages of members of the Association only. It
butions to the Association so soon as the wages are fixed for a defi-
nite period, and this has given rise to Mr. F. W. Stoker, formerly rise to greal great dissatisfaction,
Manager to Messrs. Johnson
and Reay, iron manufacturers. Stockton manager, of the ranufacturers, Stockton, and more recently
Shipbuilding Works, Jarrow-on-TTyne tment of Messrs. Pallerts the position of assistant general manager at the last-mentioned The devastation at Boosbeck, in Cleveland, owing to subIt appears that the land and mingerapers bothon, belonged to Mr.
Ohristopher Jackson, of Saltburn. He sold the surface to various persons for building purposes, and the minerals to Messrs. Steven son, Jacques, and do., of Middlesbrough. He did not insist upon
the latter firm leaving pillars in order to support the surface. Consequently, after mining to the end of their limit, they came back taking out the pillars. Presently, as might be expeeted, the sur,
face fell in. The damage is estimated at $£ 10$, face fell in. The damage is estimated at $£ 10,000$, and the value of
the pillars removed at $£ 200$. It will be for the law courts
decide The North of England iron manufacturers will have to conside
next month whether or not they present restrictive arran not they will give notice to terminate th are worked, at the end of the present year. It has now lasted for nearly six months. It was entered into by the wish of a majogity
of the employers, and of the whole of the operative representatives in the hope itse, and of the whole of the operative representatives
ho to higher . prices of fipished iron and is impossible to say how much worse things might have been but for its existence. At any rate, the employers have found the
arrangement irksome, and of doubtful benefit, and in all arrangement irksome, and of doubtful benefit, and in all proba
bility they will not consent to its renewal next year. In the Dale's sliding scale, the first effect of which will probably be to
make a reduction of from 5 to

NOTES FROM SCOTLAND.

From our oun Co

THERE is no improvement in the condition of the Glasgov with prices showing hardly any change. But while the entire week department is thus inactive, a large business is being done both for home consumption and shipment, and thestocks have consequently
not increased so much as in the past few weeks pigs for last week are particularly gratifying, amounting to week of last year. An additional furno in the corresponding tion at the Calder Ironworks, there being now 115 blowing, compared with 109 in the last week of August, 1882 . The demand
rom the United States is still rather unsatisfate shipments are taking place to Canada, Italy, and Germany. This week the values of iron show little change.
Business was do
Business was done in the warrant market on Friday morning at being 46s. 112d. and 46s. 11d. oash, and 47s. 1dd. one month. 0 on
 the figures both forenoon and afternoon, and there was scarcely any change on Tuesday. Business was done on Wednesday at
6 s . 100 d. to 47 s . $0 \frac{1}{2} \mathrm{~d}$. To-day-Thursday-transaction fffected at 47 s . 1d, to 46 s . 11d. cash and 47 s . 3d., to 47 s . 2 d , one
nonth.

 specially selected, 54s. 6d.) and 47s.; Kinneil, at Bo'ness, 49s. and
7s. 6d.; Glengarnock, 47s. 6d.; Glengarnock, at Ardrossan, 55s. and 47s. 6d. . Eglinton,
48s. 6d.and 45s. 6 d ; Dalmellington, 49s. 3d. and 48s. 3d. eing a considerable pressure put upon some marmer activity, there goods, but prices exhibit little or no alteration.
In the coal trade an active dem
shiping orders at some of the demand is experienced, although the not quite so heavy for future er, good cargoes antipated. To the Continent and Canada, howtwo. These observations apply chiefly to the thlasgow week or
district. many years back, and the trade is good, while the inquiries seem The miners do not show so much enthusiasm in their ember. tion in their movement for advanced wages as might be expected. nn some places the men act at the open-air meetings as if thei Thursday as an idleday-were merely for holiday purposes. The fact is the colliers have been earning good steady wages for a conwhom they can place confidence. The advance sought for in both to pay it, so soon as the price of coal lisesseso fars as to warrant the
concession being made without loss to the trade. Mr. Connel, secretary to the Mineowners' Association of Fife secretary for the two counties in which to Mr. Weir, the miners meeting of coalowners at which I submitted your letter in which you state that the men are of opinion that the greatly improved prices and continued good trade sufficiently warrant their asking nust have been misinformed, as the prices realised will not affor further advance of wages at present, but the coalowners are in tunity that they can they will only be too glad to increase the
wages." At a public meeting of the men since held, Mr. Weir has asserted that trade never was so brisk, and shipping prices had nceased 1s. od. per ton, Notwithstanding the refusal contained mployers on the question, and this was agreed to

WALES AND ADJOINING COUNTIES

I Cominented last week on the decline in steamship speculations. Singularly enough this week has been wrecked, and amongst these the City of Durram, a vessel that has been the subject of more
discussion than any other of late years, though, having got into discusssion than any other of late years, though, having got into
new hands, it was expected that her subsequent history, would be
a gratifying one to shareholders. Mr. Ansel, Cardit, reecived gratifying one to sharehoiders. Mr. Angel, Cardift, reeeived
notice on Monday of the total loss of this vessel on Saint's Head,
Ushant Ushant. The same day Mr. John Cory heard of the loss of the
Rydal, Mr. Fowley of the loss of the Edith, and on Tuesday
Messrs. Cory were advised of the loss of the Rapid off Brest. These disasters may now improve steam shipping investment.
New coal finds have been a feature of late. The four-feet and six-feet have been struck near Cefn Pennar by Messrs. Beith.
On the Plymouth estate a large area of four-feet has been
found, and will be worked from Abercannaid by Mr. Bailey for
he Plymouth Company; and Cyfarthfa has struck upon a missing
seam near Pleasant View, which will prove a valuable addition.
The Plymouth

It is the intention at Cyfarthfa to have a lengthy series of coke ovens erected, and the site
is to be immediately in the rear of Ynysfach furis to be immediately in the rear of Yyystach fur-
naces, but the kind of oven has not been decided
upon. Dowlais has entered upon a contract with the Coppée Company for the construction of the It will take seven tons of coal every five minutes, and manage easily a thoussnd tons per diem. The abandonment of tin-plate at Dowlais, no virtually decided upon, will give room for exten-
sion of mills, \&c., and aid in the development of the steel works. Cyfarthfa is pushing on well, and the spring
may be said to give the date of practical operations.
The iron and steel trades are slow; little is doing, and prices are note of the iron trade shows any movement of note is that connected with the tin-plate trade, which shows distinct improvement and an upward scale of prices. The lowest quotation for
ordinary coke tin-plate is now 16 s . ordinary coke tin-plate plates at present, and its other business is active In coal it despatched 34,000 tons last week, and nearly 9000 tons patent fuel. Cardiff and Newport are similarly busy in coal, and the highest averages of exports are kept up with
vigour. Prices too are firm even for seconds, which realise freely 11s. f.o.b
The action of the Marquis of Bute in continuing worked concessions, irrespective of the receiver
being or not a Barry man, speaks well for the being or not a Barry man, speaks well for the
judgment and capacity by which he is advised. Lately two of the largest firms have had special tips allowed to them. Some of my contemporaries point to Ogmore as the next base of operations for the Barry promoters, but this is doubt-
ful, as also an idea just floated that a branch of ful, as also an idea just floated that a branch of Great Western Railway to Barry. There is a strong impression amongst the profession that if a Barry Bill came in again next session the preamble would be "not proven." Every month The estimated cost of the Barry Bill promotion was 5 guineas per minute for the whole period, forty-three days, the Bill was in committee. Amongst the new companies started are the Cambrian Copper Company, Talybout, Cardiganenterprise in company likely to promote railway and Pontnewydd Tin-plate Company, which is to acquire the business so well carried on by Conway and Co.
The Bristol Channel Fxpress Steamship Company is going to take will put a fleet of steamers on service between Bristol, Cardiff, Weston-superMare, and other towns, on the shores of the
channel. The first of the fleet, the Lady Margaret so-called after the daughter of the
Marquis of Bute, was launched this week at Glasgow.
Several of the "Gales" of the Forest of Dean fell in this week to the Crown, royalties not aving been paid up
M. E. Peyrusson recently read a paper before别 He says the germs of cholera, typhoid fever, and similar diseases may be preserved even in the light fissures on the glazed surface of crockery The Shipping Trade.-Messrs. H. E. Moss and e., of Liverpool and London, in their halfearly circular just issued, take a somewhat un-
favourable view of the future of shipbuilding They say that since February a large business in steamers has been done, and many of those buildmargin of profit to the contractors, but that in June a reaction took place so rapidly that for time shipowners and builders feared a panic might set in, with results that would prove fatal
in many cases. Matters have, however, now in moothed down somewhat, and though the anxiety to realise is rather too eagerly shown by some holders, there is a decidedly better feeling, and there are better hopes of getting through the
crisis with less calamity than was at first excrisis with less calamity than was at first ex
pected. Several causes have contributed to wards this unquiet feeling, notably the low freights which have now been ruling for several months; and, secondly, the very general feeling unfortunately still exist, but as regards the new unfortunately still exist, but as regards the new difficult to say by whom, but the fact exists-and it seems that very few steamers have been forced on the market and sold below contract price.
Fortunately the foreigner is still as of heretofore Fortunately the foreigner is stil as of heretoore
large buyer, and in addition to numerous purchases of ready boats, has placed orders with Chases of ready boats, has placed orders wild fors many others. Though with few exceptions, yards are ful for several months to come, there is an in-
creasing anxiety among builders to book orders with the usual result, viz., that prices are easier for the buyer and worse for the producer. Mr. Moss holds, however, that there is no chance of any serious reduction in the cost of building for
long time to come. Materials are, as a rule ang time to come. Materials are, as a rule, as low as they can be produced or imported, ane so Whrcasomable, that it will prove a very unstable
factor when any calculations of future cost have
Iro made. Iron sailing vessels are much Io made. Iron sailing vessels are much C13 to 1310 . The French Bounty seriously h. premium paid by the Government to the Natowner would exceed by upwards of £5000
mnum the premium he would receive for
milar vessel if built in England; but,
horer, in spite of all this, orders are still given
long Coura vessels; and for coasting $25=4$
$= \pm+2=2$

THE PATENT JOURNAL.
\square ** It has come to our notice that some applicants of the Patent-ofice sales Department, for Patent specifcations
have caused much unnecessary trowble and annoyance
 of giving the proaion they require is referred to, insteai

 refer to the pages, in place of turning
inding the numbers of the specificatio

Applications for Letters Patent.

* When patentr have boen "communiogtod." the
namo and dadres of the communicating party are
printed in talilis.

4034. Preventina
Walley, Manchester

 London. to3. Hand-grip for Brezch-Iosdiva Brylus, S. Bex-
field, London.

 son, Bast Rockport, U, S)
4035. Explosive Compouns. J. C. . de Castro, London,
4036. Firmous Packing, B. Pitt.- (W. H. Perrine, Nee

4037. GA8 Morors, D. Clork, Glaggow.

404s. Tramways, J. Hayes.-(T. Sanders, Spuistrraat

 Thatcher and J. W. Johnson, Connecticut, U. SI)
409. © AuvvNuct Batikites, G. C. V. Holmes and S. H.
Emmens, London.

22nd August, 1883.

4063
400
4

O6f. Spurting Grais, H. Simon.-(B. Seck, Dresden.)
London.
4069... Brocres, A. C. Henderson.-(W. Banerle, Augs.

 (H. Aboot and W. C. Garrison, Neevark, U.S)

$23 r d$ August, 1888.

4Bie6. Low.watre Safety Apparatus, J. w. Kenyon,
Manchester.
i057. SLDLDEs,
Valves,
J. Thom, Barrow-in-Furness.

Schaper, Hamburg.
4092. VELOCIPEDES,
J.

24th August, 1883.

4093. Surface Condexsers, S. G. Browne, London.
4094. WalLs for Fexcers, de., w. Thompon, Wextord

Innocent, Grantham
4095. PAckive Case,

H. Selwyn, London $\begin{aligned} & \text { Hen } \\ & \text { 109. Supplyine Dissivectants to Urinais, J. C. Kent, }\end{aligned}$

Bodfont.
4110. Elecro-trlegraphic System, A. Guattari, Pad-
25th August, 1883.
411. Strainina Strinas of Lawn Tennis Bats, W.

Lionson. BRam, H. Pilkington, Bury.
4119. FITrs, J. Heap, Ashton-unde

430. Sreart Generators, W. A. G. Schonheyder,
 4132. Brop WATcHEs, A. Hugnenin, Chaux-de-Fonds,
 Thames.
Thisg Gorin, do., T. stevens, Kingston-on

Invontions Protected for Six Months on
Deposit of Complete Speoifications.

 August, 1883 .
Patenta on which the stamp Duty of $\mathcal{S E O}$
3480. Hydraulic Hoisting Apparatus, A. B. Brown,

 ${ }^{266 t h}$ August, 1880 . A A Lust 1880,
 3341. Couplriso for Rantverm CARBIAGEs, E. C. Bowen L513. OILCUus, E. Ludlow, Birmingham.- 30 th August
18S0 3331. Wrswows, \&co., H. Brittain, Birmingham.-31d S49. Vessest for Liquids, E. Edwards, London. $-25 t$ 3457. Sivikes for Raswway Porposes, w. Clark, London,

Patents on which the stamp $\begin{gathered}\text { has been paid. } \\ \text { haty of } \mathbb{E 1 0} 0\end{gathered}$ 3307. Pruniryivg Fouk. Watrrs, H. Staples, London. 3312. Vextilatina Cowl, T. Lloyd, Winchester.-23r 3290. ARtiriciai Leather, J. Harrington, Ryde.

Notices of Intention to Proceed with (Last day for suing opposition, 14th september, 1883.)
 1997. Doons ©c., for Formices, J. Shepherd, Man

 ${ }^{2037 .}$. Propellere for VEssis, A. Figge, London, -218

 2054. CLisining Boirs, J. Hargrave, Burley, Leeds.-
 205r. ELEctrris Le Lasps, \&c., w. Hochhausen, Ne

2066. PRINTrinc Macherinss, H. M. Nicholls, Lonďon.

Appil, 1888.
2100. HARERs for Boruers, C. D. Yates, London.
25th April, 1883. STEPERE, A. J. T. Wild, London.

 son. -28 th 4 Pril, 1883 .
A1. Miritiva 188.

2372. Ship Wrobiasses, F. s. Manton, Providence

3255. Exhavstive, de., FLumps, W. B. Wright, Brom-
ley-by-Bow. -30 h June, 1883 ,

 3549. WAs. Hing Machilins, J. Hesel wood, Leeds $-19 t h$ July. 1883. .
3729. Deso. \&c., Rocks, A. Shedlock, New York. ${ }^{3755}$. Triovoless, J. and T. Webb, Coventry.- 31 Ist July, 1888. FAgrexses for GLovvs, \&c., F. K. Dutton, Man-
chester.A communication from C. A. Pfenning.-

 (Last day for fling opposition, 18th september, 1883.)

 April, 1883.

 2117. SW ITroi AppaRatus, J. Imray, London.-A com.
munication from T. A. Connolly. -26 th April, 1883 . 223. Lobricatisa
 Walter A. Wood Reaping and Mowing Machine

 2230. CLEANINAG Tosicco Pitpss, H. Emery, Burslem.-

 Ma76. Prevyenticg the Corrosion of Water Pipes, J,
 1888.
2421. Fountais Pens, J. Morton, London. $-12 t h \mathrm{May}$,
1883. 2442.

 3123. ELLEorncicit Apparatus, w. Hochhausen, New

 ${ }_{\text {don. }}^{\text {dit }}$, A

 Blyth.-12th June, 1883.

 3706. Stran Sterrivg apparatus, J. Downton and
E. Wimshurst, London. $-28 / h$ July, i883.

 son. -21 st August, 1883.

Patents sealed.

(List of Lettur Patent which porased the Great Seal on the 3809. Chemicals, J. W. Kynaston, Liverpool.- -12 th

 1002. Preparixa Decoctrons from TEA, \&c., E. G.

 115s. DATE INDIOATOR, G. H. T. Hawley, Bromley.-
 Pieper, Berlin.- 5 th March, 1883.
1224. TRUSs for RUPTVRE, E*., E. Bourjeaurd, 122. TrUss for RUpTURE, \&e., E. M. Bourjeaurd,
London.-7th March, 1883.
1388. Treativa Flax, \&c., J. R. Dry, London.- 15 th March, 1883.
1414. APPARATUS for BoLling, SEED-sEParativg, \&e
J. R. Dry, London-16th March, 1883 . 1612. Cleaning. \&c. the Journals of Car-axles, W.
G. Mitchell, New York. 30 th March, 1883 G. Mitchell, New York.- -30 th March, 1883
1625. MINIINING the EFECrs of Coulsisons at SEs,
W. Nmith and R. R. Swann, London. -318 1697 AL. ALo BoL, J. H. Loder, Leiden, Holland.-4th
 Worcester.- $14 t h$ June, 1883.
3191. BrIck-MAAKING MAchinEs, P. Effertz, London.-
27th June, 1883. $($ List of Letters Patent vechich passed the Great Seal on the
$28(i n$ August, 1883 .) 1101. Applyivg Motive-power to Railways, T. W
Rammell, London.-1s March, 1883.
1113. Electric Generators, R. D. Bowman, Leyton Rammell, London.-1st March,
113. Elecric Geverators, R. Dowman, Leyton-
stone, and J. E. L. and W. J. K. Clark, London.-1s March, 1883 .
L116. GAs EsGINEs, R. Steel and H. W. Whitehead,
London. -1 st March, 1883 . 1133. Giving Alarms or sionals, A. M. Gibson,
stonedale. -2nd March , 1883.
1139. Indicating, \&r. the Flow of Electric Cur

 1183. Joints of PEp 183. Joints of Perambolator and Carriage Hoode
J. Collett, Olton.- 5 March , , 18833.
120.5. Brewing, W. Lawrence, London.-6th March 1211. Targets for Rifle Practice, F. Clarke, Canter-
bury - 6 th March, bury. - 6 th March, 1883
122. Impative HEAT to WATER and other Fluids,
Jameson, Newcastle-on-Tye.
T7h March, 1883 , 1325. HYDRAULIC LIFTS, W. H. Johnson, London. 1393. Looped Fabrics, H. H. Lake, London.- 15 th
March, 1883 ,
1417. Ventidat apparatus for Railway Cars, R. 150.. GENERTIING GASEs, J. McEwen, Manchester.-
22nd March, 1883. 1524. Atraching Shanks to Buttons, J. H. Johnson.-
22nd March, 1883.
1860. STEEL, 1883.
193. Centrifugal Machines, A. G. Brookes, London.
-17th A pril, 1883 . 1937. Centrifugal Machines, A. G. Brookes, London 2491 Expansion Valve Gear, W. E Rich, London.-
18th May, 1883.
2514. Makhs Sterl by the Bessemer Process, A
Divy, Sheffield. $-19 t h$ May, 1883 . 2573. Porous or Sponov PLATEs. F. T. Williams and
J. . Howell, Llanelly. -23rd May, 1883. J. . Howell, Liane of. SiLrs, J. W. Butler, Black-
heath. - 26 th May, May, 1883 . 2841. SAFETY SadDLE Bars, Sir T. Dancer, Malmes-
bury. 7 th June, 1883 .
2925. Obrativig Morve-power, A. W. L. Reddie,
London-12th June, 1883. 3111. Separating ORTho-roluiding from Paratolul-
dink, Dr. Weiler, Ehrenfeld, near Cologne.-22nd
June, 1883.

Llet of Speolifoations pablityod durlng the

** Specifications will be forwarded by post from the

ABSTRAOTS OF SPEOIFIOATIONS. Prepared by ourselves expressly for The Enainezr at ofice of Her Majesty's Commissioners of Patents.

5552. Voltaic Batreries, L. Hartmann, Middletorne
square. -22 nd November, 1882 ,- (Not proceeded voith.

This relates to a zinc and silver battery, with
solution of caustic potashor soda as the exciting liquid
 This ing and other purposes.
5586. Underoround Conductors for Elzctric Cur-
rents for Lighting, R. J. Gillcher, Notting-hill.23rd November, 1889.- (Not proceeded woith) 2 d . Acording to this invention the conductors are made
entirely of iron, and the protecting tube for the con-
ductor does duty as the return. 5584. Elecrric Bell, W. R. Lake, London.- 23 rd
Nevember, 1882.-(A communication from C. F. de Redon, Paris) $6 d$.
The object of this invention is to simplify the
arrangement of the parts of electric bells. According arrangement of the parts of electric bells. According
to the inventor's design the movable armature, the
opposing spring, and the rod which carries the hammer
e united and constitute
 aptor of the current.
 Ci. Rosesert, Pruris) bid This reatase to the employment of particular forme

 to the compres.
the o
thanast.

 588

This relatase to varions modes of and apparatus for
 to break the eircuit through the rails, and cause oft to
 jiead int suita
graphic apparatus.

The object isto obtain ammonini from the hot gases

 in the aid tower.
8020

 sispper
coun
coun

as to incrase oth diamoter to that of the fango, and
19 seourroby by ake and oollar on the ond of the axxe,

 lo automatalyly lovered

 ar with an upper arm acting as a spring and a lower

 curted to the plate and pasising through an ese ojin he
3059. Distruturior or Coant. E. Dreop Bayswater.-

 iderably raduding the pressure within the eries or or
ondensers by the application of a autablo exhauster

from D. M. Lamb, New York.)-(Not proceeded with.)
2d. Thitis consists in combining the material to bo ren-
 ulphurico arid strter which it its purfied, and then

 prepare them for more rapid and succeassiul smelting 3078 Hispow Bisp , L. A. Grath, London.-200t

 Bos3. Loous foe Wenvirg,
Thit relates to looms for weaving bygs,

condenser a senies.

6112. Sargary Boar, B. Bdatarte, London. 2 2lst peecm.
 The bati ijspherial and mado preferably of shoot
metai, and it it ividided by h horizontal partition, the
 the passengers.
8113 A Amou

 on oppos
monat.
Ond

Onis reateses to photometrical apparatus dependipg

 get botween them; and it consitsta in forming the
ooupling of two hooks with indilined faces, which on oming in contatat fore
 engaged by mans of terers
from the sido of the vehicle.

 Which paseses a toothed begment, and on anch isido of th

 frees thater

 alectrilysis by he applititation of a aoating of onamol
orwhin
tiso 6119. Diss Covers A. A. Henith Shelitad. $222 n d$

 123. Foonvisa Cor Curn108ss, T. Trotman, Canden

 the body can be removers.
6113. CoLour Boxss, T. Foxall, Euston-square. $-22 n d$
December, 1882. 6d. The boxes have a series of compartments to receive
the colour tubes, preferably formed by a corrugated metal plate mounted on a platform
bottom, and forming a raised rack.
6114. Railway Fog Signal apparatus,
and J. Henson, Derby.-22nd December and J. Henson, Derby.-22nd December, 1882 . $6 d$.
This relates to apparatus for placing fog signals on
the rails, and can be either worked by the semaphore signal wire or by a separate wire. The sigaplare are
piled one on the other in a cylinder placed below the
ground level, and are raised by a weighted cord.
ground level, and are raised by a weighted cord.
Above the reeseroir is a stop plate, with a space
between sufficiont for one signal to be pushed away
edgewise. A horizontal lever arm is actuated through
suitable means by the wire, and when brought over
the eylinder receives a signal which it then carries for-
ward until tit rests upon the rail.

 with a sstem of hot-water circulation on either
sido of the tirir basket is an uppirght tox, the two being
connected by curved horizontal pipes passing behind connected by curved horizontal pipes. passing behind
the frot Iron pipes lead from the stove to the place to
be heated.
 tion from F. Gutemann, Germany.)-(Not proceeded
zoitht)
ad .
metallic plate has a hook at one end which passes
 other side of the glove is passed. A spring cap hinged
to the rear of the plate prevents the glove becoming
unfastened.

 whilst a spray of cold water prevents it heating. The
compressed gases aro hhen heated in tregnerator to
about zoo de. or 30 deg Cont by utisising the sen.
abo sibie heat of the gases whe ghase then etherir work hand cyin-
are being explile
dien by a valve, which remains open during a portion
of the
 concentric circles, so as to be distributed over the
whole raeo of the oclinder. The used gases then pass
during the backe stroke to the regenerator and give up

 gurides, and the levers are extended and work a pump,
which delivers Water to a ohambrt, zuch water
being partly used to cool the first cylinder, and partly
bit

 6132. Mrchanical Retort for Destructive DistiL-
Lation or Animat and Vegrable Matress, . Wiethin zod circular casing rollers are arranged in
annular rioves made to receive them, prefrably in
concentric order. concentric order. A pan also with anguar bive by
resto uron the rollers, and is caused to revile by
suitable gearing. The contral part of the pan has an

duct, in addition to a two-page and a four-page cylin-
der, also to meechanism for laying or fyying the open

 as theo issuup efrom a a printing or
folled and sealed in a wrapper.
6115. Lubracouniva Cerranin Parts of Machinkrv,

 therein, and filling them with "metalline" or "oil-
less carbonate. 6139. Shuvruss, T. Brooks and T. Tweedale, near Raw.
tenstall, Lancaushire.- 23 Rrd December, 1882 .- (Not poo.
 cop or spool may be easily placed thereon when raised,
and held more securely when pressed down into the 6140. Tractron Enginss, B. Foden, Sandbach.-23rd

 which can be serewed down to take the weight off the the
springs, and put it direct on the spindle if desired.

 extenaing round the periphery, and being reeessed at
the base and bevelled oft onthe upper patt tof orm a
oovetail to reeive rim on the tire, which is shrunk
on and secured by boits.

apparatus to lamps.
6116. Driserervira Corrouspos, J. S. MeDougall,
Manchester. 23 Srd December, 1882.
 in adading crude tar oils or crude tar acids, or carbolic or
cresylig acid or their homologues, to soluble salts of
the bases.
 1882 od chlinder has perforated ends to receive
tubes outer cyling throught he cylinder, and is iploced in
a flue and the heated gases caused to circulate through a flue and the heated gases caused to circulat.
the tubes while water circulates round them.

 sheet copper dises placed side by side in a plane at
right angles to the axis or rotatiton, and cut, stamped
or

 similar disc, so so to have no projections in the way of
the magnets. The dises for single ooilis form tig-zag
spaces

 made rodial, the number of internal enclosures equal to
beigg rad
the number of like polar magnetio filds round a core of
pith
 that the pairs of coils or dises are not at their maximum
induction at the same time.

 can be ciused to actuate the driving axie.
6117. Kins Forsaces, \&ce, J. Savoyer, Hoxton.- $23 r$ rd
 flue which conduats air to the back of the fire, while
bobind the bras s perforad bridge In the upper
parto
sididing toor. font of the furnace is a feed hole with a

This relates to automatic apparatus for communi-
cating between different station of a railway, and is

 each ond an extension situated over a mercury cup.
The multipyin lever has a buy by whit then be
held in the required position, the locking taking place When the armature of an electro-magnet is placed
under the lug by the atranction the magnet at the
moment when the contact with the wheel and the
whe

 ${ }^{\text {London. }}$ Led 23 d December, 1882 .- (Not proceeded vith.) $\xrightarrow{\text { The }}$
 shallat copal, turpentine, and dyeing ingredients. A
part of tho varnish is reaved by rubbing with oil of
turpentine when only partially dry. 6154. Bedstrans, G. Gentle, Lond

This consists in a bedstead of ordinary appearance, but which forms two or more distinct and separate
bedsteads side by side. 6155. Maccirss For Calesperisa, P. Jeneen, Lon-
din.-23rd December, 1882.-(A communication from

 the motion of the paper other glass rollers are moved
tha p produce the required calendering or smothing.
and The latter rollers are hollow for cooling purposes, and
their position may be changed while in motion.
 The object is to form a sash fastener so that it can-
not be beoned from the outside by inserting a knife
between the meoting of rails and sashes and it con-
 pasition behtind the latter when closed. A. fixixecogyard
puard
may be used instead of the pivotted guard if desired. 6157. Fastexivas for GLoves, de., G. Capevell, BirThis relates to fostemings, with hingod arms, which
are passed through eyelets in the article to be fastened, and it consists, First, in arranging the spring actions so
that they aronot in contact with th obse plate; and
Secondy, in the use of a ring or slide to secure the arm, instead of the spring action
B158. CARPETr
This consists, First, in saving weft material by the
omisision of pieks ; Secondly, in saving time and
 the back; Thirdly, in the method of working the
thaffer warp, detaching its heald from the comber
obord

 rifthy, in weaving throe shot fabries, instad oi
raising tho pilion roops under and betwren two
upper shoots, raisising thent upper shoots, raising them over one of chem, wherest
the Ioops are made fuller and rounder ;ixthy in
weaving three-shot fabrics in which the third shoot is removed from the face to the back, thereby avodiaing
the pinching of the pile loopa and prouding a firmer
fabric ; Seventhy, the ombination of thick and thin figure warps; Eighthly, the employment of two
frames of similar warps from which threads are raised over wires sometimes together and sometimes sepa
rately, along with threads from other frames ;
Ninth, Ninthly, the employment of the frames of similar
threads rising over wires to the right and ent;
Tenthly, raising over wires sometimes g thread from one frame and sometimes from two or more frames.
615 . Looms
ceeded vith.) 2 . 2 . dobby or jacquard mechanism,
This relates ot tho

 goods the other portion is caused to produce the
gross borders. 6160. Skwrig Maonisks, A. Guillaume and A. Lam-
bert, Belgium. $-23 r d$ December, 1882.

 on which are supports placed against the shuttle, and
which alterantes
andide in the silides of the bobbin carrier guide at one side
of the carrier; Secondly, in the combination of the guide with a ring fixed in the middle, and of a ring having a continuououe rotation in in thearing on ring and the the
shuttle carrier ; Thirdly in the gradual diminution of

 Fifthly, in the arrangemen.
pended to the needle lever.
6161. Hyeromerres, sc., F. H. F. Engel, Hamburg.--
23rd December, $1882 .-(4$ communication from This consists in the combinatio

 manner that the shortening of the hair-string deopens
the bend of the slack string whilst the lengthening of
the hair-string reduces the bend.

 ofening receive a china cone, and on one side is a a
brast axo pasing through undor the top, with an air-
tight socketate eat each hend.
 balance arm on the side
itis a balance weight.
8163

$-23 r$ Deceember, 1882 . .d. is arranged immediately
n inverted trough or hood dis above the line of travel of the chimmey of the loco-
motive enines, sot that the moke issuing therefrom
enters such hood, nnd is
 suitable blowing apparatus or steam jet arranged at
proper distance apart in the hood, and directed so as proper distance apart in the of hir.
to produce an onward flow of air

 the intensitito of the magnetit, field and its action upon
the armature by the particular form of the pole pieces;
 or inducting current distinct from the exterior current
without the assistance of an auxiliary dynamo
Tourtht Fourthy, to allow in a modified forme of dynano,
thant several ormature rings on arme shaft, with
their respective collectors, and under the influence of

and Sixthly, to provide an apparatus which will per-
mit of the extinction of a lapap or the stoppage of a
 consists of as many cast iron sector-shaped segmonts,
as there are bobbins in the ring. The middle part of these segments is cut away, leaving a flat core to wind the induced wire upon, and the form of the ends is
such as to leave radial slots between the segments to promote ventilation and check local currents in the
ring ring, plates of non namgnetic material being inter-
posed between the ends to magnetialy insuate the
geements. segments. The segmentr are screwwed toarms of a hub
of non-magenetic material keyed to the shaft. The
of field magnets may be in two sets, with ie auilt poies
facing each other. The pole pieces are built up of
 sides of the ring, but also the the perer part of its
internal periphery. The armature shaft
is mounted
 connected to their respective commutator blades, part
of the eurrent generated being utilised in maintaining in the oxterior circuit, and so as the field independent of variations in work in the
exterior circuit, the induced wire two distinct circuits, each provided with its own com-
mutator, and respectively used for the field and for
men exterior work. Each commutator is a plain disc of
non
 out of circuit, and corresponding to the bobbins
passing through the neutral region of the magnetic field. These strips are of logarithmic, spiral or opi-
eycelodal shape. Apparatus sis provided for inserting aresistance in the exterior circuit equivalent to that
af en to
of any

6186. Lirter for use in STables, de., H. Symons,

 grated, and intimately mixed with one or more of the
sulphates of magnesia,
ime, potash, or sooda.
 This relates principally to breech-loading fire-arms other cock mechanism is pivotted within the receiver,
and it and it consists, First, in the combination with the
reoeiver and a blook pivotede ot swing bok ward and
downward therein, and a tever for oporatig the block pivotted on the same centre as the blook and receiver,
havig between them abor formed partly in therer
wall of each of a
 latera movement; secondy, in forming the elocking
keyw with a notch in its rear side, and the lever with a
lithe projecting hook to engage the notch,
combination with the receiver, block liver, and locking
key of
koy a hammer with a projection upon its tumbler, sey of a hammer with a projection upori iss tumber,
which comes against the lever in cooking and prevents
it haminging down to withdraw the key while the
of of a spiral main spring to the esinging hammer;
Fifthly in the combnantton with ano xtactor working
under the barrel, and with a bifurcattec front, of an under the barrel, and with a bifurcated front, of an
operating lever with a horn to enter the bifurcated
 forming the bayonet with two sockets, one of which
fits the barrel, and the other receives the end of the

 A main patate is formed with two parallel rows of
fattened tapering teeth at each side, the inner rows

 mentary plates may be used and provided with teeth,
Which pass through the forst tlate and secure the two
together, and other teeth to socure them to the
leather.

Thisecomsisistin the thanufacture of silica fro-bricks,
to by the use of a small proportion of Portland cement in addition to or in in liou of the lime which is
usually added to te ground silcict usually added to the ground silica.
 Thennsyivanial. obbects. are to provide means for
twisting the bar as it passes from pore pair of rolls to twisting the sar as it pasese from one pair of rolls to
the next so that itmay then bo prosed at righ angles
to the previous pressury. To means for separating the rolls so as to give access to the metal under operation
in case of accident ; to means for correctly adjusting
in In deas of ining gear of the successive rolls so as to make

 against the bending of the bars as they are delivered
 o the next rolls through a helical guide. To give
ready access to the metal between the rolls the
the housings of horizontal rolls and the guides attached
to them are divided in a h horizontal plane passing
throum
 be effected by hydraulic power.
6171. VACUOCI BRAKE APPRATUS, J. Gresham, Salford. This relates, First, to the combination of parts of This relates, frrst, to the comination of partson
the roling ring systom with the diaphragm or sack
system of brake cylinders. The vacuum chamber is mounted on trunnions, and the cylinder has a thango
at itst upper end to thinh tho outer eode of tho dal
phragm is secured, the inner part being seoured to the

 Thirdly, to improvements for signalling, and also to
modifications of valve mechanism
mescribed in patent NO. 1494, and
 This consists in constructing continuous or semi-
continuous action kilns with separate chambers
 with dampers In the partitions are vertieal flues
with inlet passages at bottom one side such pas-
sage sages opening into one chamber, and outlet pasasges
at the unper part of the other
oise of the partitions
pening into the adionining chamber, through which opening into the adjoining chamber, through which
flues and passages the wast oheat and product of om-
bustion from one ohamber are ouncod to the othor
chamber, and utilised in drying and burning tho ogoods

 point of water, and atmo.
 from
G. Michectet, Bruselse- - (Not proceceded with.).
he rail consits of a main

 batited
rated
rited
B17.

 with hadesesive materap) or othat they man mad
to the box, and prevent the remoral of the lid

 conductivity, and makimaternato in inferior eleotrical

 anco of tho oirruits, the commmutatar bars my be con.

 hence thel ocoal current generitad is
gpark reduced to compparatively
nil
 $\begin{gathered}\text { ceeded vith. } \\ \text { This eonsists of. a dise to which levers carrying } \\ \text { weights are pivotted. }\end{gathered}$ 6185. Electric Arc Lamps, A. M. Clark, London.-
27th December, 1882 -- (A communication from La This relates to an are. lamp.) 6 . which the upper
arbon is made to act also as a reflector, for which purparbon is made to act also as a reflector, for which pur-
pively large section a block or stick of carbon of relacup or large section enclosed by resting in an annulatar
side and allows only the material which protects its
sider end to be consum side and allows only the lower end to be consumed.
This end consumes evenly over its whole surface, whicl remains consumes evenly over its whole surface, which
forms a powerful reflection in clos 6188. Steam and other Motive Power Engines,
Hancock, Wolverhampton. $-28 t h$ December, 1882 . The following is a description of the application ylindrical, with a sts axis engine :-The steam chest
cyirection across the main separate chests, one end of each of which forming two
the other, and a piston valve being fitted is loss than
work on in each of such parts of different diameter in ene ene nected and move together. One steam chest acts to supply steam to one side of the main piston only and
to oxhaust it from the ofther. Each main cylinder into the small part to act as the steam port for one end
and the other by a port into the larger part to act a the exhaust port from the other erd of the cylinder. between the cylinder and the back port communicatin
end causes both the larger valve and causes both the valves to be driven forward and
the ports closed, a ring working in the chest and con
nected with the larger nected with the larger valve closing the small port
from the cylinder. As the valves in one chest close
those in the other nicating with the steamened obest at a the outer face of the commu maller valve, thus driving both valver open. The
steam pressure at the back of the larger valve, after ately those in the other are opest, is relieved immedinicating between the space containing such pressure
and the space in the other steam chest which is open to
the exhaust. When desired to work steam chest has added to the smaller part a smaller
port in which are the steam port port in which are the steam port and inlet, and the
steam valve is of two diameters, and slides on a stalk prolonged from the other valves, and steam is admitted
by a port to close the inlet at the desired time. To
control the degree formed at increasing distances from one end of the cylinder so as to communicate with a passage running
parallel to the cylinder, and a small port communi-
cates between the latter stean to close the steam valve. Within the parallel passage is a hollow cylinder with a number of holes cylinder, a long of the holes opposite the holes in the the
ceng one side of the hollow cylinder being always in communication with the port
to supply steam for closing the steam valve. 6187 . Collapsible Packing Case, R R. Blandy,
Shepherd's Bush.- $28 t h$ December, $1882 .-$ (Not proThe sides and ends of the case are hinged together,
and the bottom is hinged to one side, while the lid is
hinged to the other side of the case wo hinged to the other side of the case, wo that the case
when not in use can be folded flat. Angle irons
secure the sides and ends in position 6188. Printina Machines, B. Anthony, Neeo York.). $18.2 d$. taneously on both sides of two webs, and printing simul-
to issue so that the method of associating them together, described in pethon of No. 2ssociating A.D. 1882 , wabs
be used, type plates continuously on both sides of one or stereo. webs, and in such a way as to produce perfected papers
at twice the rate which an ordinary web press does,
while papers of various numbers of pages may be

 mean amount and to bo practically ind opend anto of thy
fizo of the roll, of the velocity of the machine, and

 ant the cylindor of the pross, and a a dapase ourve

 curved cylyindre in pally and ad, Seventhly, in a chase column rules with inclined sides fastened thereto, so
that the sides facing one another of any two consethat the sides facing one another of any two conse-
cutive rules are parallel, and the rules lie parallel to
the axis of the type the axis of the type cylinder when the chase is placed
thereon; Eighthiy, in the combination with a shaft carrying a roll of paper and brake acting thereon, of
a tension roller connected to the brake lever and freel movable in a guiding slot, whereby variations in the
tension of the paper cause movements of the tension tension of the paper cause movements of the tension
roller, and the latter in turn acts upon the brake. 6195. Illumination of Lighthouses, J. R. Wigham, This consists in arranging two or more lenses side
by side in lighthouses, with lamps or burners situated
in the by side in lighthouses, with lamps or burners situated
in the focus of each such lense, so as to form a much
broader beam of light than hitherto broader beam of light than hitherto, the spaces between
the lenses being either fitted or not with dioptric or other reflecting apparatus for throwing back the light
and heat on the focal burners. and heat on the focal burners.
6196. Insulating Conducrors for Electric Light-
ING AND other Purposes, W. Smith, London.-28th This consists in the use of gutta-percha mixed with 6197. Shoots Applicable more Espegially for
 to a table supported by leferably two shoots are hinged
hatchway, and abospended over the contway, and above which his tho hopporto to lead the

 through which a screw works, so as to incline the
troughs as desired. 6200. Drying Starch and other Amylageous Sub-
stances, W. R. Lake, London. $-28 t h$ December, 1888 . STANoEs, W. R. Lake, London. - 28th December, 1882.
This Acommunication from L. Maiche Paris.) $6 d$.

 8207. ATTMcused apparatu.

A Emal wristband is a stachod to the shirt slever, so

 6211. Appan atus por Turuysmo Lemves

inication from 0 . Erganian and $0,1882 .-(A$ com

 The apparatus podal, and
 2215. Reabitrzaiso the Milmaer Bisoon, Pariiser, 1882. (A communn

 give them a gentle helical twiti throughout their
fengthe 8217. VELeorpzpzes te., J. Harrington, Coventry.This relates, Hirst, to prorit Tide velocipoded capable o

6232

 6220. Gaxvaric Bartreruss, T. J. Hovell, Lambech. -

 of the inne elecemtrode

 8230. UйRBII
 To form the joints comneoting ribs of "Paragon"
form with the top noteth, a T piceo is is attacheod to the

19. Gas Morr

 the back Beconaly, constructing the oytinder with
oxternal helical ribs, elther solid or hol

43.
43. Faroctor deycer for Sedingo Carper Loons

material from bulk to a mould box, in which it is
measured and compressed into a cake, the cakes bein expelled ilet. analogous substances into compact cakes a mould bo to receive and measure the material, a plunger adaptec
to traverse such box and compress the material, and aid box such te, when in one extren onstituting the bulkhead which closes the mouth
the box. and against which the cake is compressed,
and in the other position opening the box nitting the other position opening the box and per or the purposes set forth (3) In combination, the
mould box, the gate, the plunger. and the cut-off plate,
with the feed witantially as set forth. (4) A step in the pate, sub
stace
forming bran and analogous substances into portable
cakes, which consists in discharging cakes, which consists in discharging steam into the
material in its descent to the mould box. (5) In
machines for forming bran and analogous substances
inth ios machines for forming bran and analogous substances
into compate cakes, the combination, with mechanism
for reducing the material to solid cakes, of means for introducing a current of steam to intercept and
moisten such material in its passage to the moulding
chamber. (6) The herein-described hopper, consisting of the chute C^{2}, with its partition hopper, consisting
Entet the gate F^{2}, and
nlet port G^{2}, and the bin D^{2}. (7) In combination, the inlet port G^{2}, and the bin D^{2}. (7) In coobination, the
lever B^{1}, cam D^{1}, bar C^{1}, wedge q, bar t, and shipper
the nuts \mathbf{D} and E the driving wheel is tightened on strain being brought to bear upon the wheel it wil
lip round the bush B. 86. SHADDEE FOR LAMPs, \&c., J. H. Johnson, London.
4th January, 1888.-(A communication from B.

Lefebure, Paris.) 6 . . rame similar to that of an umprbella, so what a jointed
can be opened or closed when desired. 2241. Furnaces for stind

Berlin.-2nd May, 1883.-(A communication from C
A. Petzold, Berlin)
A. Petzold, Berlin) -(Complete) $4 d$.
This consists in in effecting the oonsumption of smoke divided streams alasing heated air to enter, Firstly, in
dire firegrate, and also in
ivided streams divided streams at the fire-bridgge. In the middle of
the fire-grate is a cast iron hollow partition B, serving
to support the double-arched fire.brick to support the double-arched fire-brick top of the
furnace, and which has opening in front provided
with regulating valves. The upper part serves to
[284]

the fireplace. Above the arched top and behind the outer sides are other air passages, with opening the
front provided with regulating valve while the arches and sides of the furnace are pierced with holes. through
which heated air passes to the space above the grate. Which heated air passes to the space above the grate.
The lower part of the partition serves to lead arir to
the hollow cast steel rings A at the fire-bridge, which are formed with a chamber, through which cold water
circulates, and can be afterwards used to supply the
boiler.

SELEOTED AMERIOAN PATENTS.

 Cambridge, Mass.-Filed April 12 th, 1883 .
Claim.- (1) A method of preparing bran and kindred

bar R, substantially as stated. (8) The combinatio
with the mould box and its
 mould box and its plunger, the dogs kill, the counter-balance arm c°, secured to the dog x, an
vhich chat which carres et the said arm, m s. substantially a
described. (1) In combination, the mould box an
iss cut-orf wirt, the the eut-iff, the lever N, comnecting suc
teeth i, th the shiper bar R, the sector Ei , with i plunger. the shipper bar R, and the clutch mechanis with which such oar operates. substantially as set
forth.
(11) The combination, with the mould box, it plunger, and the cut-off, of, with the mould box, its
R, and sector EI , with its teeth i , shipper bar tail to said the shi, sububstantially as the levein pivortted at it The sector, with its teeth $i j$, in combination with the the sector being connected with and opuch plunger, reverse the shipper bar, substantially as set forth.
(13) In combination with the lever Bl and gate Z, the
wedge q, curved bar t, and shipper bar R , carrying wedge q, curved bar t, and shipper bar Re, carrying
such bar t, substantially as stated. (14) The combina-
tion with the tion, with the sector and its dogs $k \ell$, and the shipper
bar R, of the arm m, carried by the rock shaft n and
adapted to interpose its upper end between the dog k adapted to interpose its upper end between the dog k
and the forward tooth of the sector, substantially as
hereinbefore described. hereinbefore described. (15) In combination wilty the
ever BL , its pendant arm Cl , and the cam D1, the post
$l 3$, and latch h^{3}, the and and lath $h^{3,}$ the latter being the cam D1, the post
bracket f^{3}, substantially as set forth.

CONTENTS.
——

Hull and Barnsley Railway and Dock Corshareholders and directors of this company was held on Saturday, at noon, Lieut,-Colonel Smith,
M.P., presiding. The chairman said he tid see why the line should not be opened to Howlen with the Aire and Ouse bridges, If all went vel why the whole line
30th June next year

