## INCANDESCENT LAMPS AT THE VIENNA EXHIBITION.

The last few years-even the last few months-have produced many new developments in the manufacture of incandescent lamps. These have been chiefly in the direction of producing lamps of greater candle power, but some entirely novel designs are exhibited at the Vienna Exhibition. The newest and most remarkable of these is that of Bernstein, to which we will refer at some length at the end f this article.
The chief exhibitors of incandescent lamps are Ganz and Co., who exhibit Swan lamps; the Paris Edison Company Siemens and Halske ; Siemens Bros., of Charlottenburg; the International Electric Company (Anglo-Austrian Brush) who use the Lane-Fox lamp; the Société Anonyme d'Electricité de Paris, whose lamp is that of Gérard; Müller, of Hamburg ; Bernstein, of Boston ; and the United States Electric Lighting Company, who work the Maxim lamps.
Swan has for some years past made very small lamps of different sizes, besides the standard size of twenty candles, These small lamps have been called " button-hole" lamps They have been used chiefly in theatrical decoration, and no doubt also for attachment to fancy ball dresses. A this exhibition the new larger sizes of lamps are more interesting. In both the small and the large sizes the double turn given to the filament has been abandoned, and The simple bow, like that of Edison's lamp, is adopted. The largest size is designed for about 200 candle power.
This is enclosed in an oval glass globe $3 \frac{1}{2}$ in. diameter by This is enclosed in an oval glass globe $3 \frac{1}{2} \mathrm{in}$. diameter by the legs. of the arc being $\frac{7}{8}$ in. apart, and the width of the strip $\frac{1}{8} \mathrm{in}$. approximately. The difference between the largest and smaller lamps lies simply in the dimensions of the carbon filament. The small size, rated at 16 candles, has a simple bow 3 in . high, contained in a 2 in . round glass globe. In the 20 -candle lamp the carbon strip takes double turn about lin. high, the glass globe being $2 \frac{1}{2} \mathrm{in}$.
In both these the strip is about 1 mm . wide. These are made longer, slightly thicker, and considerably wider in the large sizes. The length and width are increased in order to give greater light-radiating surface. The section, however, is increased in greater proportion than he length, so that the electrical resistance of the filament dequired. All the lamps proption to the light-giving power electro-motive force when lighting to to require the same electro-motive force when lighting to their full power. It proportioned to the current sent through them. The following are the proportions:-


These must be regarded as only approximate figures. In practice, of course, the electro-motive force is not quite a rough approximation to the truth to say that the lightgiving power is strictly proportional to the curr the lightsame electro-motive force. The heat generated in the filament in the lamp is so, but the light radiated per filais not strictly proportional to the heat generated. On the supposition that this is an exactly true proportion instead of only a roughly approximate one, it may be interesting to show how the above mode of proportioning the resistance gives the required result.
Let L represent the candle-power of the lamp, C the current, and R the resistance of the filament. We notice $R=\frac{16 \times 6 \frac{1}{2}}{C}$. Now the heat generated is proportional to $\mathrm{C}^{2} \mathrm{R}$, and if H represent the heat generated in one second, $\mathbf{H}=0.24 \times 16 \times 6 \frac{1}{2} \mathrm{C}$, or this heat is proportionere, current. According to the above figures the propor$6 \frac{1}{2}$ between the current and the candle-power is $\mathrm{C}=$ ${ }_{100}^{6 \frac{1}{2}} \mathrm{~L}$. Inserting this value of C we get the proportion between the heat generated per second and the candle-power

$$
H=0.24 \times 16 \times \frac{6 \frac{1}{2} \times 6 \frac{1}{2}}{100} \mathrm{~L}=1.62 \mathrm{~L} .
$$

We have called this " heat," but it must be understood that it includes the energy given off as light. The whole form of heat. Part is converted into light, that is, into visible radiating energy. What is not so converted is hrown off from the surface of the filament as non-visible radiating energy. If it were all given off as heat, and utilised to heat water by plunging the lamp in water, the second through one degree Cent. would be 1.62 times the candle-power of the lamp. This is the meaning of the above equation. Otherwise stated, the number of pounds of water heated one degree Cent. in three quarters of an It must be understood, of course, that the lamp.
only to the Swan lamp as of course, that these figures apply principle of using the as above designed, namely, on the of lamps, and making the resistance vary by inverse proportion to the desired candle-power, so that the current portion to the desired candle-power, so that the current
varies in direct proportion to the same. A similar, but not the same, proportion will hold for all other incandescent lamps designed on the same principle; but such lamps do not need to be worked all with the same electro-motive for diff have their full lighting power proportional through them. To make this clear, suppose current sent fourths the electro-m were worked with 78 volts, or threecurrent will now be less current will now be less, and the temperature less ; there-
fore the resistance will now be greater, and the current will be reduced in a greater proportion than three-fourths. The amount of heat generated may, as above, be repre-
sented by $0.24 \mathrm{C}^{2} \mathrm{R}$, but for our present purpose is more conveniently stated by the formula $0.24 \frac{\mathrm{E}^{2}}{\mathrm{R}}$, where E is the electro-motive force in volts. R having increased, this heat generated per second is reduced in a greater proportion than the square of the electro-motive force-
that is than $\left(\frac{3}{4}\right)^{2}$. It is, in fact, considerably less than onethat is than $\left(\frac{3}{4}\right)^{2}$. It is, in fact, considerably less than one-
half of what it was before. Furthermore, the lower the temperature the less is the proportion of the light radiated tomperature the less is the proportion of the light radiated
to the whole radiant energy. Thus the light obtained increases in a very rapid ratio, something like that of the increases in a very rapid ratio, something like that of the
cube, with the electro-motive force. It is also to be noticed that the higher the temperature the greater is the proportion of pure white light to the whole light radiated, as has been shown by Dr. Wm. Siemens' spectroscopic measurements. The object to be aimed at, therefore, is to attain as high a temperature as possible, both for the sake of economy in the expenditure of mechanical power in the production of the light, and for the sake of purity of light. The "full power" of a given lamp is the light it will give when fed by the strongest current it will bear without injury for a long time, say for several months, without injury for a long time, say for several months.
The mode of connection of the terminals of the Swa lamp to the conductors in the holder remains the same as it has been for some time past, and indeed could not be much improved in simplicity and efficiency. It is effected by two pairs of small hooks forming the ends of platinum terminal wires and those of the copper conductors respec tively, which slip over each other, and are made to bear against each other by the expansive elasticity of the bra piral spring which forms the upper part of the holder. and has been so often described remains quite unmodified, of it here There are fur Vienna, of $8,16,33$, and 100 -candle power. This last has been produced for the Exhibition specially, merely as a set-off against the big lamps shown by other makers. The company do not recommend the use of lamps of large
candle-power. The following are the dimensions of the different sizes :-

| Candle power. | Electro-motive force required. | Resistance when cold. | Resistance when hot. | Current. | Length of carbon filament |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8. | Volts. 50 to 55 | $\begin{aligned} & \text { Ohms. } \\ & 125 \end{aligned}$ | Ohms. $70$ | Ampères. $\frac{3}{4}$ about | ${ }_{80}^{\mathrm{mm}} .$ |
| 16 | ... 100 to 110 | . 250 | 140 ... |  | 80 |
| 33 | ... 100 to 110 | 125 | 70 ... |  | 150 |
| 100 | ... 100 to 110 | . - | 25 | 4 to $4 \frac{1}{2}$ | 200 |

There is no essential difference between the incandes cent lamps manufactured by Siemens and Halske, of
 menna, and those by Sie burg. They differ only in external form. The filamen and is bent in a single bow the Ldison The lower ends are thickened at $\alpha \alpha$; the outer small rectangular envelopes $b b$ being of sheet copper. From these issue the platinum wires $c c$,
which lead down to the brass terminal plates $g g ; d$ is a small bead of glass enamel, which serves to keep the part; $e$ is a glass tube packed with an insulating mixture of water-glass and asbestos. sealed by a thick whole is gypsum. The air is exhausted from the upper end of the globe after these parts have
been fixed in place the glass being drawn and sealed when the required angular stripen attained. The plates $g g$ are stout rectthe holder, the inrass, which slip under similar strips in cylindrical block of vulcanised fibre. In two holes in this block lie two brass knobs pressed upwards by spiral springs against the plates $g g$. The dimensions shown on the sketch are those for a 16-candle lamp. There are three
sizes exhibited, whose electric dimensions are as follows :Candles. $\begin{gathered}\text { Resistance } \\ \text { when hot. }\end{gathered}$ Current. $\quad \begin{gathered}\text { Electro- } \\ \text { motive }\end{gathered} \quad \frac{E^{2}}{R} \quad \begin{gathered}\text { Volt. } \\ \text { amperes }\end{gathered}$

The Lane-Fox lamps, used by the International Electric Company, are all-i.e., all in use in this Exhibition-of approximately 18 -candle power. The illumination which does, down the Elizabeth Allée, one of the avengen it through the Prater to th Allee, one of the avenues ver a greater lot to the Ronda, extends probably installation in the present Exhibition. In another article we will give a plan map showing to scale the routes by which the mains are taken and the positions of the two accumulator batteries used as relays. The central station is in the north machine gallery. To the east currents have to be supplied to six of the "interiors" lighted by Lane Fox lamps. Current is also supplied to arc lamps in the gallery of the Rotunda. To the east the mains stretch along the Elizabeth Allée to a distance of 650 metres, or $\frac{4}{10}$ ths of a mile from the central station.
As each lamp forms a bridge from the out to the return main, it is evident that the electro-motive force which feed each lamp, that is, the difference of potential between the terminals of the connections of the lamp with the out and return mains, decreases with the distance of the situation of the lamp from the central station. The decrease is so considerable on a long line that, in order to keep the
distant lamps up to full power, their filament resistance
has to be correspondingly decreased. This is done by sorting out the lamps as received from the factory in power the resistance aimed at is 88 ohms when the lamp is power the resistance aimed at is 88 ohms when the lamp is
cold, but variations always arise in the manufacture, which are taken advantage of in the above manner, The electromotive force available for the lamps in the present case varies from 63 to 51 volts, and the corresponding resistance required in the lamp varies from 50 to 40 ohms when hot. This gives a uniform current of $1 \frac{1}{4}$ ampères to all lamps. The normal, or average, electrical dimensions of the lamps are as follows :-

## 

Since 746 volt ampères are usually reckoned as one electrical horse-power, the above is at the approximate rate of 180 candles per electrical horse-power. The company's of theers calcuate the luminous or light-radiating surface powe flame the rate of one square inch per 180-candle peculior in for the Lane-rox lamps are peculiar in being made of specially small and circular and are about 4 in , a diameter of between $\frac{1}{20 \mathrm{in}} \mathrm{in}$, and ${ }_{10}^{1} \frac{1}{0} \mathrm{in}$., portion aboul 4 n . long. For a 4 in . length the above proportion would give the diameter 008in. Considerable changes and improvements have been lately made in the manufacture these lamps. The filament is made of otid hor fore the fibre and obtain greater homogeneity of substance, the strength of the solution dipp inged about once an hour. The fibres are first dipped in the vessel containing the strongest solution, and enter the weakest last. When thus prepared the thread is coiled round a sort of frame or bobbin formed of a flat plate In groove into whish is lipped groove into which is slipped a piece of millboard, over the projecting edge of which the thread is wound. The desired bow of the carbon disc is rounded off to give the crucirled bow form. These frames are then placed in a and the whole is then baked at a white heat. The heat and the whole is then baked at a white heat. The heat that it gives way and allows for the shrinkage of the thread in being carbonised without breakage of the latter. The acon it. Figs. 3 and 4 show the lately modified forms of lamp

and holder. In Fig. $3 a$ is a stout bridge of enamel, con necting the two small glass rods $b b$, which are again bound together lower down by the glass bridge $c$, and terminate class stems ends in two stout buibs of enamel. These glass stems $b b$ are wrapped round two platinum wires $d d$ to which, just above the points at which they issue from the bulbs of $\alpha$, are fastened the ends of the carbonised filament by carbon paste. The holder B, Fig. 4, is a short length of brass tube split and opened out in trumpet shape at top and having inserted at about the middle of its length a stout diaphragm of vulcanised fibre. To the latter are screwed two angle strips of brass $e e$. The terminal wires
$d d$, Fig. 3, are brought underneath $d$ d, Fig. 3, are brought underneath these screws, and form the only binding connection between the lamp globe and the holder. We should say that the lower ends of $d d$ are frequently made of copper for the sake of greater cheap-
ness. The slit $f$ and a corresponding opposite slit enable this holder to be easily fastened to a lower wooden holder. In this two internal brass fened to a lower wooden holder. against the slightly springy plates $e e$. This contact is not made until the lamp has been properly attached by turning it round, the slits $f$ sliding over the brass pegs on which they catch. The design of the lamp has thus been reduced to a form eminently suitable for cheap manufacture and for simplicity and safety of attachment.
Lighting Comp lamp, used by the United States Electric Lighting Company, has undergone no essential change in design, the company having devoted its attention to the perfecting of the manufacturing processes, so that it now gets carbon filaments of much greater uniformity and reliability than formerly. The carbon is denser and more pomy cous in character and in thickness, and the company is thus enabled now to guarantee its lamps a life but has made its glass globes somewhat smaller. It has only one size in use at the Vienna Exhibition, which has the following electrical dimensions, there being a slight variation made for the lamps used at the end of the circuit where the electro-motive force has fallen off to some extent


The above figures are given on the authority of Mr. Farquahar, the representative of the company at Vienna. It is to be noticed that the volt-ampères per candle-power is
extremely low, and it is possible that the candle power has extremely low, and it is possibl
been somewhat over-estimated.
The lamp of Mr. Muiller, of Hamburg, has been in the market for some time. It is made in various sizes, from 2 up to 100 -candle power. We give the measurements of what is termed the 20 -candle lamp, made by Mr. F.
Uppenborn, of Mr. S. Schuckert's establishment, whose accuracy may be relied on-
$\begin{array}{cccccc}\text { Candle. } \\ \text { power. }\end{array} \begin{array}{c}\text { Electro- } \\ \text { motive } \\ \text { force. }\end{array} \quad$ Current. $\left.\begin{array}{c}\text { Resistance hot }\end{array} \begin{array}{c}\begin{array}{c}\text { (deduced from } \\ \text { electro-motive } \\ \text { forco and C.) }\end{array} \\ \text { amperes. }\end{array} \begin{array}{c}\text { Volt-ampères } \\ \text { per candle- } \\ \text { power. }\end{array}\right\}$
 The carbon filament is in this
a double spiral, its ends being cemented to two tapering
horns of enamel $a$ wrapped ound the upper ends of the platinum wires, and fused to the top of a stout stem of glass $b$, in which the platinum wires are embedded. ebony holder, which has at its base a tapered screwed portion. The platinum wires are led down through the ebony to two small flat brass plates $c c$, which are held to the sides of the ebony block by a bolt and nut also made
of ebony. The larger sizes have two turns of the double spiral, giving the appearance of three loops, as in the figure, while the smaller have one and a-half or only one turn. For all sizes up to the ordinarily used one, namely, 20-candle power, the filament
is evidently made as thin as
 all sizes up to this limit, the lengths being less for smaller candle-power. For the large powers the carbon is made much thicker but very little longer.
The Gérard lamp is quite new.
The Gérard
fic. 6.

. It is shown in the igned for from 150 to 200-candle power. There are two straight carbon filaments of circular section, about $\frac{1}{2} \mathrm{~mm}$. or less
in diameter. These are joined at top as shown by a small cylindrical
lump of carbon, in which lump of carbon, in which carbon paste. The lower ends are similarly ce-
mented to two larger mented to two larger
cylindriclumps of carbon, cylindriclumps of carbon,
where 2 the connections are made with two stout platinum wires. These
are led down through a thick stem of specially prepared enamel, in which they are emcouple of eyes formed by bending them round, and the coupling to the holder is made in a very similar manner to that
of Swan's lamp. In the of Swan's lamp. In the
larger sized lamp, which larger sized lamp, which
is said to give from 400 to 500-candle light, there are four exactly similar carbons coupled in the above manner in two pairs, and through which the current runs in series, the junction between the pairs being made by a short cross piece of some carbon stick, and free expansion of the whole - see Fig. 7. The electrical dimensions given are-
 $400-500 \ldots 56-75 \ldots 6 \frac{1}{4}$ to $7 \frac{1}{2} \quad 19 \quad \ldots 7 \%$ to $12 \ldots 900 \ldots \quad 1 \cdot 8$
One of this latter large power has been tried with a 7 to 8 ampères current for 600 hours, and found to hold out without signs of injury. The experiments are at present being continued. Another was tried with an 18 ampères current, when the platinum wires melted, but the carbons remained intact. Thelong narrow base of the glass globe has for object the diminution of temperatur of the glass where it joins the socket. The carbon sticks are Carré carbons, made by squirting a paste of powdered coke through a tube, and baking the rod thus obtained. To make these suitable for incandescent lighting the sticks so prepared are further carbonised by depositing carbon on their surfaces from a hydrocarbon gas, in which the sticks are held while a current is passed through them to bring them to a white heat. This process is continued until the desired resistance for the lamp is obtained the resistance being measured from time to time as the deposition proceeds. It
difficult to find a paste with which
gether the upper and lower ends of the straight sticks, hich would endure the high temperature sufficiently before the lery large us was decided upon. Thi and the next lamp we describe are among those that This not the said as yet to have been officially tested. The ou be arim the a therity of We will await with interest the results of the exact experiments that the Scientific Commission will presumably make in the to make, in order see whether the high claims put and the Bernstein or "Boston" lamp are entirely well and the
The Bernstein lamp is creating more sensation than any ther at the Exhibition. Mr. Bernstein considers that lher things being equal, the greater the surface of the be the lading solid, the pleasanter and more efficient wil leasantness to the eye due to the less concentration of the ight source There is much debate however, as to the ight source. There is much debate, however, as to the nmitigated advared a large surface. The greate the surface, it is argued, the quicker is the cooling effect and, as the temperature to which the filament is raise do the on the comparatively large filament surface cannot attain a high comparatively land therefore cannot be economical as a light temperar We cannot say that we think this argument safe one. The rate of cooling by conduction or by conaretion would certainly be proportionately greater with nection would certainly be proportionately greater whe to graling here takes place wholly by radiation, and when cooling here takes place wholly by radiation, and when he radialy orre and the total amount of radiation at a given temperature does not increase so rapidly as in direction proportion to the extent of that surface. If Mr. Bernstein's measurements of his own lamp are correct, which is very doubtful, it shows it to be extraordinarily economical as a light producer from mechanical energy.
The mode in which the inventor sought to attain the above object was to make the carbon hollow while not increasing its cross-section an idea that has probably creasing its cross-section, an ide has heretofore carried out with practical success He made many experiments with straw and with carbon cylinders produced by deposit ing carbon on a metal mandril and then dissolving the metal out $A t$ the time of his $A$ mican patent lo sidered paper to be the best material he could use This sidered paper bernd the lifferent layis here a wor solution of which readily carbonise in the subsequent baking process. The thickened ends required for the carbons were produced by cutting the sheet of paper to the shape shown in the annexed sketch The tubes thus produced were baked in a plumbago crucible packed round with powdered plumbago, and the baking took place ata white heat. The contraction found to very contraccion was found to be very great, and on this account, and because greater homogeneity can be obtained with the解 duced were straight, and were stretched between proplatinum wire terminals.
Later wire terminals.
duce these fine tubes in made it possible to promore these arkable still is the form of an arch, and a very large range of pliability. It can be stretched almost straight out when cold, and will spring back exactly to its straigh oum This and wis, of course, a charac oristic of the highest importance in an incandescent lamp carbon. The glass globe is spherical in form, drawn and sealed at the vacuum is made. It has a long cylindrical base to prevent the temperature rising too high at its junction with the gypsum ; $a$ is the hollow carbon tube, cemented with a special carbon paste, the
composition of which is kept secret, to very lar secret, to very large pear-
shaped terminals $b b$. To these are attached stout copper wires $c \quad c$ leading down through the enamel bridge $d$ and the enamel bridge d an en ename brass screw $h$ and the other brass screw $h$ and the other
to the outer brass tube $g$. to the outer brass tube $g$.
The glass globe is cemented in this brass tube $g$ by the means of gypsum $f$. The wood in the centre of which a brass tube, screwed inter-
 nally, screws on to $h$. Small strips of brass, with a tendency to spring outwards from the cylindrical surface of the wood block, come in contact with the interior surface of the tube $g$. To the outside of the wood block connections are made by stout copper wires to these external made, but by means of a small wedge-shaped plug which fits but oble spring plates, but which is pressed outwards out of contact by a small spiral spring.

On pressing it inwards a shoulder on the wedge spindle is caught by a transverse peg, which is also pressed home by a spiral sprin. later transverse pes imperfect connection or imperfect disconnection is made impossible by a very imperfect disconnection is made imposilibe by a very
ingenious device ocoupying very small spaee, the two
small buttons. The electric dimensions of this lamp are:Candle
larger power with 46 is also exhibited, giving about 100-candle accurately measured. Mr. Bernstein has designed his amp for a small E.M.F. on two grounds ; firstly, because it has been practically proved that the carbon disintegrates with a rapidity greater in proportion to the E.M.F.; and, secondly, because the small E.M.F. permits a large number of lamps to be arranged in series. He claims that it is especially suited for separate installations, such as that of a theatre, a large workshop, or a large shop, and Mro for street lighting, but it must not be forgotten that Mr. Bernstein is working in direct opposition to the direction taken by other makers, who all favour high resistances, and high electromotive force, because with these alone can the cost of long leads be kept down. To put this in another form, we may point out that the greater the pressure at which water is delivered, the smaller is the pipe that will suffice to transmit a given power. In the same way the higher the E.M.F. the less in diameter may be the leading mains from the dynamo. These lamps are
at present only made in Boston, but it is intended to at present only made in Boston,

THE BRITISH ASSOCIATION.
The fifty-third meeting of the British Association began at Southport, Lancashire, on the 19th inst. The attendance promises to be fairly large, and some good papers will be read. Among the papers expected or announced or read are the following:In Geography: Mr. H. H. Johnson, on the Congo; Mr. Colborne Baker, on his Chinese experiences and the discovery inland of a buried forest; on the Shan States, by Mr. Holt Hallett; on New Guinea, by Mr. Coutts Trotter; on Madagascar, by the Rev. M. Sibree; on the floral development of the Jordan geographically considered, by Mr. Cope Whitehouse; on Athabasca and the Canadian lakes, by Father Petitot - just awarded the Back premium of the Royal Geographical Society; on the topography and ethnology or Che Territory by the Chevalier Ernst Von. E Way of Birkenhead In Mech ruics: On Alpine railways and the Euphrates Valley In Mechanics: On Apine railways Mr. J. Fell; on the Mersey Tunnel, by Mr. C. D. Fox; on the Portrush Electrical Tramway, by Mr. A. Siemens and Dr. E. Hopkinson ; on the first electric launch, by Mr. E. Reckenzaum; and on the Manchester Ship Canal, by Mr. Leader.
In Economy: On Canada, by Mr. H. Moody, Sir J. Rose and Sir C. Tupper pron Canada, by Mr. H. Moody, depreciation of gold, by Mr. Shadwell: on the distribution of wealth, by Professor Levi; on the uniformity of statistical records, by Mr. Baden Powell; on the cotton trade, by Mr. E. Guthrie; on the teaching of science, by Mr. Lant Carpenter; and on the anomalies and
effects of port charges, by Mr. R. Capper. In Biology commueffects of port charges, by ir. h. Capper. $n$ nications are expected upon the structure of plants in reference to the very recent discovery of a continuity of the protoplasm to the very recent discovery of a continuity of the protoplasm
of plant cells through the cell walls; so that a plant is, as Mr . Darwin suggested, a continuous mass of protoplasm. Papers Darwin suggested, a continuons mation to disease, on new wheel animalcules and new worms, and on the exploration of Timor-laut. On Wednesday evening the first general meeting of members
was held in the pavilion of the Winter Gardens, which had been was held in the pavilion of the Winter Gardens, whicle. On the suitably decorated, and presented an imposing spectacle. On the
platform were the presidents of the sections and Principal Dawplatform were the presidents of the sections and Principal Daw-
son-Montreal-Professor J. C. Adams, Professor Stokes, Pro-son-Montreal-Professor O. C. Adams, Professor Dewer, Principal
fessor Hull, Sir Erasmus Ommanney, Greenwood, Professor Roscoe, Dr. W. B. Carpenter, Captain D. Schuster, Mr A Marshall, and others.
The chair was taken by Sir William Siemens, the retiring president. In introducing the president-elect, Professor Cayley, he said:-"The duty of the President of the British Association was an anxious one in several respects, and during his term of office two questions had arisen which had occupied much attention, and by the vote of the general committee at Southampton Southport was selected as the next place of it was , and Montreal, in Canada, for the year succeeding. many of the older members problematical, and that the visit to Canada was a most advenproblemas undertaking. He was glad to find, at any rate, that the meeting at Southport promised to be a success, and he trusted that their next gathering in Canada would be a success likewise. It must either be a great failure or a great success; but considering that 500 members had already expressed their intention of availing themselves of the opportunity of visiting Canada, and that an influential deputation had come over from that country to welcome them, there was every probability of a most distinct success, and that, through it, the range and influence of the
Association would be very much extended." Association would oo
Professor Cayley then delivered his inaugural address. Contrary in part. It dealt from first to last with transcendental mathematics, ind it is well that thetruth should sometimes bespoken, we may say that it was as dry and uninteresting as it was possible for a man whose type of beauty is the fifth book of Euclid to make it. It
way is as certain as anything can be that not fifty people who heard the address understood it, and that not one half of these enjoyed it. To transcendental mathematics Professor Cayley added interminable disquisitions on metaphysical questions, and he unfortunately entirely lacks that soupson of the poetical element which enables some men, and notably enabled Clerk-Maxwell, to invest the driest matter with a charm. Our readers will feel that we have acted for the best in declining to fillour columns with page after page of disquisions dimensions. No doubt a few of our readers find a charm in
four din such speculations, and it would be quite possible, as Professo Clifford has proved, to make them intensely attractive to the general reader or hearer; but Professor Cayley is a profound mathematician first, and a suitable man to address a British Association audience a long way afterwards. It is not the custom to condemn addresses such as that of Professor Cayley; bu we think it well to depart from the custom. We may add that of its kind, the address was perfect-deep, accurate, far-seeing but, on the other hand, careluly divested or highly imacinative position. In one sense, there are not more highly imaginative dealt ; but be lacked the means of convincing his audience that this the Concerning the subjects dealt with however, we may have more to say at another time.

THE MARIEMONT AND BASCOUP COLLIERIES. (2) Mariemont Colliery - This colliere 202.]
ectares, partly within the Forest of has a royalty of 1480 eighteen seams of coal. They lie with a tolerably regular are towards the south, and are worked by various methods according
to circumstances. from sixstances. Pits-the amount varying between 522 tons per day at
from the the St. Arthur pit, and 100 tons per day at Le Placard pit. chain haulage system, which comnenets all thase. six pits withess
the Triane Central, has a total length of more than $\overline{5} 300$ metres ;
it is like it is likewise shown on the map. The distriet is much out
up by roads and railways, which presented considerable obstacles
in the laying out of the haulage system: on the other whole of the surface is thaulage property of the society. Amonsst the
principal works of the system may be mentioned ponc, by which the haulage road pe messestioner ander the railway from
loane
laume to Marchienne, and another tunnel Baume to Marchienne, and another tunnel of 72 m . passing under
Montaign-road. These tunnels are circular in section, of 2.75 m . diameter. There is also a suspension bridge in iron, by which the
Placard system is carried across the boilers siding Triage workshopss, and over a road. It consists of two s.s.at ansion
spans of $36: 20 \mathrm{~m}$. and 37.30 m ., and of two fixed spans of 12 m . and 20.50 m . The Triage workshops just mentioned have been described in the first section. The coal washing apparatus is on the system of
Lührig and Coppee the sameas at No. 5it described below. The patent fuel works, which are adjacent, are arranged tod yield 250 ot tons
of fuel bricks per day; the system is that of M. Bouriez with some modifications. The coal comes to them still wet from the washers,
and comprises nothing but dust below 5 mm . diameter. It is
raised by plates inclined at 20 deg., which carry it slowly to plates
divided intoed six compartments and capable of containing 200 tons.
From the tower it is delivered by serew distributes. From the tower it is delivered by screw distributors to six hydro-
extractors on the system of M. Briart. This hydro-extractor has its axis horizontal and the usual screw for the delivery of the coal but the water escapes through a narrow slit extending the whole
way round the hydro-extractor. The coal falls into a conical drum
with steep sides, and slips down into a second cone containg with steep sides, and slips down into a second cone containing the
regulating screw; a seond drum, revolving at a different speed, receives it from the screw, and delivers it at the circumference,
while the water escapes by the opening between the two drums The difference in speed always keeps this opening clear. The machine can be so reguated as to dry dust of any size at will. From
the hydroetractors the coal passes ato a dyer consisting of a
sheet-iron eylinder, having fixed blades rivetted on the insides and sheet-irin cylinder, , aving fixed blades rivetted on the insides and
ocoupying a quarter of its section. The coal falls from one blade
to the axis at 50 revolutions per minute. The coal is thus mixed up and
falls as dust into the emoke coming from falls as dust into the esmoke coming from a furnace placed below the dryer. This smoke dries the coal whilst gradually getting
moistened itself. From the dryer the coal passes to the hydraulic presses, which have an improvement due to M. M. Guinotte. Between
the compressing pistons and the cranks which work them are placed two hydraulic cylinders communicating with each other ; in plunger. The result is that thained constant by meanks are double-acting, instead of single-acting as in the ordinary presses. The steam engines
working the washers and pressers have a variable expansion on the
Guinote system Gunote aystem. The governor acts on the expansion valve
through a simple mechanism called the Servomoteur cinematigue This system solves the problem of applying the governor to any
required mode of expansion with as
great regularity as in a Corliss required mode of expansion with as great regularity as in a Corliss
engine. Close to to Triage works is the store for brieks, mortar, se., together with brick making machines and mortar mixers. The
St. Arthur pit is the most important of those in the Mariemont
Colliery. Its daily moutput is rrom 500 to 600 to Colliery. Its daily output is rrom 500 to 600 tons. There is a
winding engine of 200 -horse power, a pumping engine of 600 -hosse power, a man engine of t110-horerse, power, and and engine of 600 -horse
diameter. It fan of 9 . 9 m the first is a winding shaft in two compartments 510 m . deep; the the
second is a similar shaft which is used both for winding and for the ascent and descent of the workmen; the third is an upcast shaft
386 m . deep, and 2.40 m . in diameter. As explained in the first 476 m ., although two higher levels are workel . from thesest lievel, runs on inclined planes to the lowest level. At the mouth of the pit are a number of large rooms warmed by stoves, and containing chests in which the workmen can keep their tools and clothes. The
other pits belonging to the colliery are the St. Henriette pit-of -the Réunion pit, the Abel pit, the L'Etoile pit, and the Placard workmen are raised and lowered by cages.
Bascoup Colliery.-This colliery
Bascoup Colliery.- This colliery has a royalty of 2410 hectares,
lying to the west of the Mariemont Colliery. The output is
fo0,000 tons per To. 5 , which per annum, of which apart from the one othergalf comes from pit 1000 tons per day. It comprises a winding engine of 150 -hors power, shown in elevation and view and plan by engravingso on
page 185 , showing also steam starting and reversing gear, two pages 184 and 204, and shown on page 180, and two Guibal fans, of 9 m. diameter.
There are also twelve boilers, heated res workshop and coal-washing , heaparaturus. Theore are three circulnt shafts, of which the first is 4.25 m . diameter, and is used for
pumping and or the workmen the second, of the same diameter,
is used for winding. entilation. The third pithe third, of 3 m . ciameter, is used fo required by the application of the Clapets d'Aesrage, described in
Section 1. In all these pits it was necessary to sink close to the Section 1 . In all these pits it was necessary to sink close to the
surface through a layer of sand filled with water. This was done surface through a layer of sand filled with water. This was done
by the pressure process, a column of cast iron tubbing being driven
right tbrough the sand by means of screw presses rated about 1 metre into the col screw presses unit it pene formed of whole rings, turned and bolted to each other, as in the Chaudron system; and at the bottom where cutting edges, which
excauated to a diameter 0.25 m . greater than that of the finished excavated to a diameter 0.25 m . greater than that of the finished
pit. There were eight screw presess bearing against a solid scaf.
fold erected above the shatt, and supporting the different to required for the sinking. It was also loaded by pige iron tone a weight
amounting, towards the end of the operation to 450 to amounting, towards the end of the operation, to t tho to tons. weight
tub
tubbing was sunk direct into a seam of coal of great thickness; and as this was very unfavourable for closing the thubbing by the the
vacuum process, the pressure process was employed, and succeeded perfectly. Froess, Fro thensero process was enployed, and succeeded
of 95 m ., all below the the tubbing bere sunk to to the depth
bricked. The treat quantity, of water which was expected induced the society to provide two pumping engines which, with other motors,
are placed in the engine house. The two engines together deliver
half strokes per minute, a total of 6000 metres in ordinary speed of ten ten rotary engines with a high grade of expansion, but have only one cotary engines with a high grade of expansion, but have only one
oplinder, as M. Guinotte considers, contrary to the common
opinon that the compound system is not the most opinion that the compound system in not the the common advan-
tageous for such engines. The pumps are so arranged that the
main rod always works. pump cylinder mores. This rod consists of a single round bar of Iron, going the whole depth of the pits, and not requiring any
guides. There are three lifts of pumps, the height of each being
80 to
solid than if built either of brickwork or of masonry. The advan-
tages of the arrangement are the following. First, the beam is always subjected to the same stress, namely, that due to the main
rod itself, and the column of water raised. The stress is always in the same direction, whether on the ascending or descending stroke,
so that the beam is protected from that reversal of strains which so that the peam is protected from that reversal of strains which
so often pres the detioration and final rupture of such structures. Secondly, the cranks connecting the piston to the
beam are under the same conditions as the beam itself Thirdly, the pressure exereised by the steam on the piston by one set of cranks, another to the fys-wheel by a becond
set of cranks, and a third to the counterweight by links. Each of these parts have only a moderate strain to support, walves are worked by means of slides, and the expansion is on the
val system of M. Guinotte. The man-engine is on the system of
M. Warocque, but with special improvements by M. Guinotte.
Mis. The Warocqué, but with special improvements by M. Guinotte.
The obections to the former system were as follows:-(1) The he, and the number of strokes per the beginning or end, hence ethe speed of arcent or descent is slow.
(2) The steam is always acting at full pressure, and the waste of Th) steam is always acting at full pressure, and the waste of
fuel was therefore large. (3) The valves are worked by the engine man, hence the stop at the end of each stroke is not always rapid starting and stopping; this is another reason why the speed
muust be slow. These objections are all remedied in the present engine-see page 181. The rods with their platforms are, as
before suspended before, suspended from two plungers always in hydraulic balance, two cylinders, but by an intermediate crank-shaft, to which the municates with one of the cylinderece of the balancing apparatus, but the cranks are so disposed that one pump is dilivering into this
apparatus at the time that the other is drawing from it. Since
the stroke of the nversely proportional to their areas, a crank of ordinary dimensions suffices to give a long stroke to the rods. Here the effiective
stroke of the rods is 5 m ,, whilo the cranks have a radius of onl m. The pumps are worked by an ordinary inverted cylinder
engine-shown on page 205-at ten revolutions per minute the pamp shaft makes only one revolution per minute, being variable expansion worked by the governor. The speed
of ascent and descent has by this means been doubled, while at the of ascent and descent has by this means been doubled, while at the
same time the workman has full time for stepping from one plat orm to the other. No unpleasantness results to the workman
because the rods move as they are actuated by the cranks and, therefore, the speed becomes considerably slower at the dead points-that is at the starting and stopping. Moreover, the
platforms always come exactly opposite each other, so that the workman passes easily from one to the other. The steam con-
sumed is much reduced by the employment of expansion; the saving is estimated at 75 per cent. A similar man engine is in which calls for no special remark beyond the dead-weight brake hiinh it carries, and an arrangement which allows the pulleys to the pit. The winding engine is a vertical two-cylinder engine works a round steel rope wound upon cylindrical drums; the guide nention; the principle is the same sound haulage deserves special arrangements are much simplified. On each side of the shaft at the level of 240 metres a chamber is excavated the same height as he cages. From each of these chambers start two inclined galleries,
each with a single track, one to wards the north and the other toward he south. The two northern galleries meet at a poone situated at the
evel of 150 metres, and the two southern galleries also meet at the fthe automese two points of meeting are placed the motor pulley roads which serve as the principal hauling ways and which start two systems of inclined planes are worked by two endles pulleys ; the full trams descending on the one side and the empty trams ascend on the other. The chains pass over return
pulleys placed at the two extremities of the chambers above
mentioned entioned, and cross the shaft without interfering with the cages or with any of the operations within it. The length of the
northern system is 1300 m , and the southern system The screening shop at No. 5 shaft comprises system 490 m . apparatus-one is a revolving circular screen, the two others are on
the same plan as those at Bascoup, and separate the coal into five classes. They have a special arrangemement which allows the distance products coming from the two apparatus can be brought together The finest coal goes to the washing machine ; the other classes taken direct to the wagons on moving bands, the cleaning being done by hand as they go. Each apparatus is able to screen 120 tons
per hour. In moments of pressure this single pit has furnished in per hour. In moments of pressure this single pit has furnished in
one day as much as 2100 tons. The coal washing apparatus is the system of Lïurig and Coppée. The small coal tis raised in a Jacob's Ladder, and thrown on a perforated iron table, which is
shaken violently, and so subdivides the coal into four classes of shaken violently, and so subdivides the coal into four classes of
different size. The first two of these are washed in ordinary tanks, the others on the Felspar screens of the Liuhrig system. After washing, they are brought together again and delivered as one lot.
The finest dust is sometimes delivered senarately the washing apparatus is 40 tons per hour. The other pits of the Bascoup Colliery are the St. Catherine, No. 3 and No. 4. The
number of seams worked is sixteen. There is an aut system leading from each pit to the Atelier Central de Triage at Bascoup, and comprising a tunnel 272 metres long, which passes above the workmen's village at St. Catherine. The water from driven for the purpose to No. 5 pitt, where it is pumped. The wate from the lower levels is pumped from No. 4 pit. The Atelier by Gramme arc lights outside o, sand by bdispor Edinatus, and is lighted ther establiss lighting is sid (4) Workmen's Institutions.-These collieries have for a long
time made a special study of the material, intellectual, and moral good of the numerous workmen whom they employ. In 1872 was lanwelz. This school has now more than 3 30 scholars, who receive
free education, comprising mathematics, drawing physios, mining, sco. The courses of lectures are given by the engineers of the collieries, and the certificates conferred by the
soloool are highly appreciated by the workmen. The societies have
ond also organised a a sanitary service, and have done their utmost to encourage the formation of school clubs and of co-operative stores.
The sanitary service in The sanitary service is under the direction of a committee com-
posed of delegates from the management, from the pased from the thates from the management, from the medical men,
and belonging to these collieries, which in 1882 distributed to sick or stores and the workmen's benefit clubs are not confined to these collieries alone, but are absolutely free, each being managed by a
committee appointed by the shareholders. In committee appointed by the shareholders. In addition, a large
number of saving clubs exist in the collieries, and are worked entirely oby the men themselves. there is a pension fund esta-
blished on the same basis as the by a committee composed of members of the colliery staff. With regard to workmen's dwellings, the societies have e iven all possible
encouragement to the purhase of land and building of houses by
the workmen themselves ; giving them for this purpose advances of
also built numerous houses, large and convenient, whioh they let
at very reduced prices. The success of these endeavours is shown by the fact that prices. per cent. of the adult workmen are now proprietors of the houses they occupy. The Society of Mariemont
owns 280 houses for workmen, and the Society of Bascoup 270 , containing together a porkulation of 3000 souls. Each house consists of a large living room, a kitchen, and a bedroom on the ground-
floor, two bedrooms. Hitor, two bedrooms on the first floor, and some out-buildings.
They are scattered in groups of two, four, or six, and do not take
the the form of a town, for which the workmen often evince a certain repugnance. Each house has its own garden, which the tenant
keeps with the greatest possible care. They are all lighted by gas the cost of fittings being borne by the society. The employment of women underground was some years ago put an end to by the
society, without waiting for a law on the subject. The General Manager is M. Lucien Guinotte, the Engineer of Mines M. Briànt, the Mechanical Engineer M. Weiler, and the Engineer for Transport, col., scricen. - Th. described makes with the horizon is 10 deg., that of the hopper fixed
 ( 6 ftt .6 izn.$)$ ) their width is 1 m . 68 (5ft. $6 \mathrm{in}.$.$) maximum, and$
1 m .32 (4ft. 4in.) minimum; while their maximum and mini-
 centre of bars is 160 mm . (61in.) maximum, and 120 mm . (43in.)
minimum, and their travel 65 mm ( 2 in . sets of bars travel. The speed of the screens is 50 double strokes table about two turns a minute. The external diameter of the horizontally revoving table is 4 m . 9 (16ft.), and the internal timetres (2ft. 7 in .). All shafts and parts liable to friction are of
steel. Working joints are provided with gun-metal coillars and
oil-holes, and all rivets inside the hoin Man engine- Our eng illust Wuntersunk heads.
 metres ( 12 2ini.). The diameters of the pumps are 0 m .8 and $0 \mathrm{~m} .826(321 \mathrm{in}$.$) , with a stroke of 1 \mathrm{~m} .2(477$ in.. . The diame-
ter of the balance plungers is 40 centimetres (15.in.), and their Chere are ten revolutions of the engine shaft to that of the pump, and the weight of the fly-wheel, including boss and arms, is
19,403 kilogs. ( 19 tons 2 ewt.). The following are some of the chief Diameter of cylinder ..


TECHNICAL EDUCATION AT NOTTINGHAM. THAT in some towns at any rate working men exhibit considerevident from the crowded and enthusiastic assembly which met in Nottingham on Thursday evening, the 13 ith inst. The meeting
was couvened by the invitation of the Nottingham "Trades from the several trades' unions of the town, constituted for the
 he chair was occupled by Mr. Eamuel Morley, the member for
Bristol, who expressed bis conviction that the question of technical The first resolution was in favour of tech. The first resolution was in favour of technical education gener-
Wordell , was proposed by Mr. Summers, Mi.P., seconded by Mr.
Wne of the members of the Royal Commission on Techmical Lducation, and supported, in the anavoidable absence of Alderman Gripper. Thector of the City and Guilds Institute, by Mr.
nical eduction in Not Nostintion Adderman Gripper. The second resolution was in favour of tech-
nical eduction in Nottingham, and referred specially to the scheme
now being earried out by the Corporation in the Unimesity lege. This s esolution was proposed by Colonel Sealy, one of the supported by Professor Garnett. It appears that a a complete set of
engineer's worlshops enginecr's workshops has been recently added to the college, and
that a museum of mechanism and of local machinery interest is to be formed in connection with the worksshops. On
the one band it is intended to give a tolerably complete course of instruction in mechanical and electrical engineering to students, hand can spend the whole day in the schools; while, on the other
hand spoial classes will be held in the evenings for artisans. In
these chase these classes instruction will be given not only in the several
branches of mechanical engineering, but also in the technology of
the the lace and hosiery manufacture. In fact, such an education will
be offered to workmen as will qualify them to become foremen in Their shops.
Thill drivershops are provided with a 20 H.P. Robey engine, which will drive the machinery and dynamos. The plant will comprise a
cupola, brass furnace, smiths' hearth, large and small lathes,
planing planing, shaping, milling, shearing, drilling, and other machines, in
addition to which there will be shop, and a aspecial shop for the construction of delicate scientific
instruments all the ordinary operations of a large envineering establishment by Dr. John Ryan, who supervision of Professor Gornett, assisted versity, and Professor Garnett has for in a D.Sc. of London UniExaminer in Natural Philosophy in the same university, so that mathematics, physics, and mechanics ought to be well represented
on the staff of the school. on the staff of the school.
Arrangements
in Nottingham to attend the classes and workshops of the college.
Locomotive Building in The Unitkd States.-The super-
intendent of one of the leading manufactories of in Paterson, New Jersey, said to a New York Tribune reporter the other day: "I should say that there is about
$12,000,000$ dols, of capital invested in the manufacture of locomotives in this country, distributed among a dozen or fifteen com-
panies. Five of these mantefactories are in New England, four in here in Paterson. two or three in Pennsylvania, and there are three ness here, the best workmen earning from 15 dols. to the busi-
week. One company turns out a
ive locomotives a week, the others three each. The weight of a locomotive is nearly 48 tons. There
have been steady the question of economy was a pressing one, and one study was to
ticrease the traction increase the traction power of engines. The result has been that been increased to $20,000 \mathrm{lb}$. now. That is, three of the present
style of engines will do the work of five engines of the style of ten years ago. The change is in the size of the cylinder and the driving
wheels wheels, the latter being eight in number, against six wheels of the
former kind of engines. Our trade is mostly domestic, of course,
though we occasionally export to South America

STEWART'S DIFFERENTIAL BLOWERAND EXHAUSTER.
THE YORK ENGINEERING COMPANY, YORK, ENGINEERS.



PLAN


SECTION





In our account of the machinery exhibited at the York show of the Royal Agricultural Society we referred to Stewart's differential blower and exhauster. This we nowillustrate by the engravings above. The York Engineering Company exhibited a 4-horse power silent blower working one of these blowers. This air or is under widely varying conditions of pressure. Its action may le briefly described as follows:-Two blades or vanes are free to revolve within a horizontal cylinder and upon a common axis, concentric with the axis of the cylinder. The form and arrangement of these vanes may be compared to the flaps of a large hinge, either flap being able to perform nearly a complete revoluFigs. 1, 2, and 3, are respectively plan, elevation, and section of the machine, at the moment when the vanes are in the position of closest proximity to one another, and when their velocity is alike. Figs. 4, 5, and 6 are similar views at the moment when the vanes are at their greatest distance apart, and when the difference in their velocity is greatest. Fig. 7, 8, 9, and 9 are details of the vanes and the crank arms by which they are actuated. Figs, 11 and 12 are perspective when the vanes are in the same respective positions. In these figures the same letters of reference indicate corresponding parts throughout. $A$ is the cylinder, B B ${ }^{1}$ are the inlet and outlet ports, $\mathrm{C}^{1}$ are the inlet the blades or vanes, $\mathrm{F} \mathrm{F}^{1}$ are cylinder ends or covers, $\mathrm{E} \mathrm{E}^{1}$ are adjustable shoes of iron, gun-metal or other suitable metal or alloy, $\mathrm{H} \mathrm{H}^{1}$ are spaces for the insertion of springs of india-rubber or other adjustment, $I \mathrm{I}^{1}$ are packings of any suitable metal or alloy, $J$ is a spindle passing through the axis of the cylinderthis spindle may be either solid or hollow, and in the latter case may be used as a channel of lubrication- $\mathrm{K} \mathrm{K}^{1}$ are stuffing-boxes, $\mathrm{L} \mathrm{L}^{1}$ are crank arms, $\mathrm{M} \mathrm{M}^{1}$ are crank pins, $\mathrm{N}^{1} \mathrm{~N}^{1}$ are slide blocks, $O$ is a cross-head attached to the shaft, from which the motion is to be imparted, and in which the slide blocks $\mathrm{N} \mathrm{N}^{1}$ are free to slide. The spindle $J$ passes through the barrel of each of the vanes. The barrel F is securely fixed to the spindle, while the barrel $\mathrm{F}^{1}$ is free the stuffing-box $\mathrm{K}^{1}$. The crank arms $\mathrm{L} \mathrm{L}^{1}$ being fixed respectively
to the spindle J and to the barrel $\mathrm{F}^{1}$, it will be seen that motion may be imparted to one of the blades by means of the crank arm L , and to the other by means of the crank arm $\mathrm{L}^{1}$. The axis of
the shaft from which motion is to be imparted is excentric to the axis of the cylinder, and the crank arms $\mathrm{L} \mathrm{L}^{1}$ are propelled at constantly changing velocities, according as the slide blocks $N N^{1}$ are brought nearer to, or further from the axis of the shaft and crosshead. The differential movements thus produced may be varied according to the excentricity of the crosshead, the position of the ports being correspondingly varied. Thus the excentricity of the belt pulley spindle, as shown on the drawings, is four-fifths of the radius of the crank arms. If this proportion be increased, their velocity is equal, and the machine will the moment when volume per revolution, but with a resulting decrease of pressure And conversely if a high pressure is required the proportion of excentricity to crank radius may be reduced, and the necessary differential power obtained, The shoes $\mathrm{G}^{1} \mathrm{G}^{1}$, as well as the packings I I ${ }^{1}$, may with advantage be dispensed with where the conditions of pressure permit. In this case the radius of the blades $\mathrm{EEE}^{1}$ is increased, so as to produce contact or a near approach to contact with the shell of the cylinder. By means of the crosshead, driven direct from the belt pulley spindle, the velocity of these crank arms, and consequently of the vanes
within the cylinder, is constantly being varied, the maximum within the cylinder, is constantly being varied, the maximum
velocity of one being simultaneous with the minimum velocity of the other. Thus, referring to Fig. 4 it will be seen that the sliding block $\mathrm{M}^{1}$ of the arm $\mathrm{L}^{1}$ is near the axis of the crosshead 0 , while the other arm L is near the extremity of the crosshead. The arm L will then have a very high velocity as compared with $L^{1}$, and while the blade $E^{1}$, Fig. 3, moves a distance $B^{1}$ to B, the blade E only moves from B to $\mathrm{B}^{1}$. Outlet and inlet ports are provided near the bottom of the cylinder, from 60 deg . to 100 deg. apart, and the movements of the vanes are, it will be seen, such that one or other of them is always between the ports, and acting as an abutment. Thus, the variation of their velocities of the blades is such that during half a revolution of inlet port-or say one-fifth of a revolution in the same to the
of time as is occupied by the other vane in travelling from the inlet to the outlet port or say four-fifths of a revolution. It will thus be seen that a volume of air or gas equal to the difference between these two is delivered alternately by each vane, and as each performs a complete revolution, for every revolution of the belt pulley this volume is delivered twice. By varying the excentricity of the slide which actuates the crank arms the differential movement of the vanes can be regulated to suit the conditionsof volume or pressure which may be required in any particular machine. In cases where pressure is less important than volume, a very high degree of excentricity can be adopted, reducing each vane alternately almost to a state of rest between the outlet and inlet ports, while the other vane is at its maximum velocity. On the volume is sacrificed, by adopting a low degree of excentricity in the slide. The difference in the velocity of the vanes at different parts of their revolution can thus be reduced to any required extent at a proportionate gain of differential power. The motion obtained by this arrangement is a curious and ingenious one, and when at work has a peculiar appearance. The blower runs with great steadiness and ease, and we were much pleased with its performance at York.

The Mason Soienoe College, Birmingham,-During the ensuing session a series of special lectures upon the "Chemistry and Geology of Coal Mining," "Mechanical Engineering as Applied to Coal Mining," and the "Theory and Practice of Coal Mining
and Colliery Management," will be delivered by the professors in and Colliery Management," will be delivered by the professors in
chemistry, geology, and engineering, and Mr. John Brown, chemistry, geology, and engineering, and Mr. John Brown,
M. Inst. C.E., F.G.S., the lecturer on the "Theory and Practice of Coal Mining and Colliery Management." The course will extend over two years, and will embrace about seventy lectures in all. These will be delivered upon the evenings of Monday in each week, from four to six p.m., or at such other hours as shall be
eventually found to be most convenient, during the first termeventually found to be most convenient, during the first termand third terms-January to June. The opening lectures on the "Chemistry and Geology of Coal Mining" will be delivered by Professor Tilden and Professor Lapworth on Monday, the 22nd of
October next, from four to five and five to six p.m.

THE KINGSTON TRAWL WINCH. MESSRS. ROSE, DOWNS, AND THOMPSON, HULL, ENGINEERS.
elevation


The Kingston trawl winch exhibited at the Fisheries Exhibition is for wire trawl warp, and in the form shown above is intended to be placed below the deck. The winch is supplied with steam from an upright boiler, 6 ft . 3 in . high, 2 ft . 8 in . diameter, with two cross tubes 6 in . diameter. It has two 5 in . cylinders 10 in . stroke, B driving a countershaft C which, wrich carries a friction sheave into the winding drum D, which has provision for some 200 fathoms of 3 in . steel wire trawl rope. The rope is led from the gangway roller over a drum on the hatchway combing and under the sheave E to the drum; the sheave E travels from side to side, the bar F being driven from the drum shaft by the crews and gear G G. When a layer of warp is laid on the drum D the sheave and block E catch a stop on the bar H, which everses the revolutions of the screw $G$ by means of the clutch and gear I when the leading sheave moves in the reverse direction, and winds the warp evenly upon the drum until its motion reversed by a stop on the bar H. The winch is worked by one owers hoists excentric of the countershaft brasses, by which it by an arrangement of this kind is it possil ie to work wire trawl ropes without danger of kinking-as with the common steam winch used in the paddle-wheel trawlers of the north-east coastor of life and limb to men, as such warp is worked by the common upright deck capstan. The Kingston trawl winch is made in larger sizes and can with a few unimportant alterations be fixed on a vessel's deck. In the case of steam cutters and steamdriven trawlers it can be driven from the main boilers. An arrangement is fitted by which the warp is prevented from being
slack between the leading sheave and the drum in cases wher the roll of the ship might disengage it from the sheave E .

THE "THAMES" STEAM-CLEANED FILTER The filter shown by the accompanying engraving is constructed more especially for such purposes as filtering boiler feed water, and is a modification recently made by the Pulso was illustrated in our impression for the 16th of June, 1882 The filter then described was fitted with hand apparatus by which the cleansing was effected. In the larger filters for supplying feed water to boilers in large mills, and more especially in those used in steam barges and tugs which often have to use the muddy water of tidal reacbes, this hand apparatus is replaced by a reciprocating lever and connecting rod driven from shafting, or where steam is available, as in steamboats and tugs, the arrange ment we now illustrate is preferred. From the description of learned that the filtering medium is sponge a material beich when pressed is probably better adapted for filtering purposes than any other substance, at the same time washable without removal from the filter casing. When closely compressed it affords not only an effectual, but a rapid filtering medium. To clean it effectually, however, an active alternate compres sion and relaxation analogous to that when a sponge is squeezed and released in the hand under water, is necessary in of the sponge which is required to of water through the pores
attached. The lower part of the cage holding the sponge is for this purpose attached to a piston-rod, upon which is a piston in the steam cylinder placed on the top of the filter. Steam is admitted alternately to the top and the bottom of this piston by hand lever and quadrant valve seen in the front of the cylinder. A few minutes action of the piston, and thereby of the sponge carrier, is sufficient to cleanse the filter of the mud which has collected during the time the filter was in action. The frequency with When this operation must be carried out depends of course upon the water is drawn from the Thames in the neighbourhood of London Bridge. By means of the arrangement of water passages in the flat pipe on the front of the casing, and the two-way cock connected therewith, the filter maybe kept full of water, and the water may be drawn away from the bottom of the sponge as required. While the process of cleaning is going on the whole of the sponge is covered by water, the water having to pass up one part of the flat pipe, which is divided by a vertical diaphragm from the other part, down which it returns, and so away through the cock; when the cleaning is nearly completed, the cock is turned the other way, so that the water can run straight out from the is merely to prevent splashing on to the cover and gland of filter, when the air valve at the top of the pipe is open. The inlet for dirty water is behind the filter when in the position shown in the engraving, but the outlet for clean water and the hand hole for putting in sponge are shown. In washing out, the two-way cock alternately takes two positions: (1) The cock is so turned that the opening is direct from the

bottom of filter to outlet pipe, and thus any dirt which has collected in the bottom is sluiced out; (2) then the cock is so turned that the water has to pass out over the diaphragm, thus ensuring the sponge being covered; (3) the cock is turned back to its original position, so that it allows the flushing out direct into outlet, and leaves all clean at the finish.

Dook Extension. - At a special meeting of the Wisbeach Town Council, Mr. Abernethy, C.E., attended and explained the details the ensuing session of Parliament. The estimate for a six-acre dock is $£ 143,000$, and for ten acres $£ 188,000$. The lock is proposed to be 250 ft . long between gates, and 50 ft . wide; depth of water over sill, 24 ft . at spring tides, and 15 ft . 6 in . at neap tides.
Experiment with Boller Evaporation.-Mr. W. T. Peoples, general master mechanic of the Manhattan Elevated Railway, has been engaged in a series of interesting experiments to test the evaporative service of boilers under varied conditions. The
methods of investigation which he followed were in some instances methods of investigation which he followed were in some instances
quite unique. A locomotive boiler employed to supply steam for driving part of the machinery at the repair shops was not evaporating so much water for the coal consumed as was considered desirable. J. D. Campbell, foreman of the works, who directed the experiments, believed that the flues were too numerous for
efficient evaporation. He kept a record of the fuel used and the water evaporated in the ordinary working of the boiler, and ascertained that $6 \frac{1}{2} \mathrm{lb}$. of water was evaporated for each pound of coal. While the boiler was doing this work, a vessel containing one gallon of water was placed in the fire-box, and the water evaporated in 7 minutes and 2 seconds. The vessel was again filled and put into
the smoke-box, where the water evaporated in 38 minutes experiment was repeatedly tried, and the mean of the periods taken to evaporate the water did not vary materially from the time given. Forty flues were then plugged throughout the centre part of the boiler, and the experiments repeated. It was now found that the gallon of water placed in the fire-box evaporated in 5 minutes and
45 seconds, while it took 60 minutes for it to evaporate in the smoke-box. This showed a remarkable increase of fire-box temperature and decrease in the heat of the smoke-box. Under the last conditions the evaporation of water rose to $8 \frac{1}{7} \frac{1}{6} \mathrm{lb}$. of water to the pound of coal. These figures are curious and startling. We would feel disposed to doubt their accuracy were they not made by horoughly relable engneers, who know perfectiy what they are mony, with their compounds, were used to find the fire-box and smoke-box temperatures, but they did not act so reliably as tho
water vessel. - American water vessel,-American Machinist,

## LETTERS TO THE EDITOR <br> [We do not hold ourrecteves responsible tor the opinions of our

THE PROBLEM OF FLIGHT.
SRR,-The trouble in the way of of FLIIGHT.
the soaring birds arises from the presumed the facts exhibited by imposibility, that a body floating in moving air, entirirely unsupported from without, would experience in resisting the friction of
the wind. With the single exception of the birds, or some identical wechanism, no object is enabied to to theomplishs, or shis rosene identi. That
cal quiescent body resting in and upon a medium which is itself
a qoving must havesting and upon a medium which is itse No peculiarity of s.sape would be lickeled to offer an exe a neeptecsion ing.
nelation of quantity of matter to form or nature of material or relation of quantity of matter to form or nature of material or
any imaginable thing whatever would be likely to overcome the tendency to be driven with the enveloping medium. Imagine
whatever device you will, and if it be quiescent its movement with Whatever device you will, and if it be quiescent its movement with
that which contains it seems imperative. Above all it seems sible that it should move directly against its support. So emphatic is this, and so completely obsucured are the factsort. the easpe, that
were it not that mature has utilised the means which make sunch were it not that nature has utilised the means which make such a
movement possible in the mechanism of soaring birds, it would be hard to see how the process would be discovered during the lifetime of the human race. The birds at once dissipate all doubt that the thing can be done by directly doing it. By doing it so com-
pletely, so easily, and sooconppicououly that the only pertinent ques-
tion remaining is, how is it dones ato
atter the maner mat of an Ofiental, and say may sishmilla, it it is the the will
of God ! Or it may bereferred toa diabolic anuse after the of Lapland witches, or the whole thing may be denied on general principles. But there is no use in settling the matter thus without
you partioularly wish to do oo. Can the phenomena be referred to nown causes? Is there in the action of wind against such a hody
as a bird in the act of soaring any discoverable reason why such an effect shoald be produced? I think there is, and that very little Before proceeding with the explanation, I will say that very
many theories were considered by myself before the one finally dopted was determined upon. I was forced to relinquish them
one after another for the sole reason that the facts were against them. All those efforts at solution which depend on upwar motion, density, or velocity ofrents of air, whether of direction o contests with the facts. The one undoubted truth, that a dead
calm is the very best condition of air for the operations of floating baim is the very best condition of air for the operations of floating objection consists in the fact that ali talk of direction of motion
of either the air or the bird, in relation to any fied object either the heavens above or the earth beneath, has not an atom of
relevancy in the problem of fight. It has no meaning. The only meaning in reference to that problem which eithere the direction,
motion of the bird, or the air has, is in relation to each other motion of the bird, or the air has, is in relation to each other. ${ }^{\text {T }}$
sustain flight in every case, with no exception, with every specie of soaring bird, the wind must be blowing against the advancing creature. If the wind were blowing upwards from the surface of
the earth the bird might be llated with it, this true, by the action
of the nii. but such mone g, as exhibite The velocoity of the wind ing.
direction, may be anything or nothing. So for as the bird is it cerned it is a matter of utter indifference. Its velocity and direcand direction of the bira is determined wholly by the velocity and direction of motion of the latter. Suppose the wind is moving with it at the rate of forty miles an hour, then in relation to the latter that wind is blowing directly eastward at the rate of twenty miles an hour. The relations of bird and air are the only significan
ones in this question.
Thes in this question.
There were also
ut ere were also half a dozen explanations laboriotsly thought the most frequenently observed birds. Observations on the gannet
gave the quietus to all of those, for this bird sails with the wing elevated above the backbone, and usually with the extremities of the pinions depressed two or three inches below the
level. They can maintain themselves more steadily than any bird which ever came under more obseavatily in thit breez exception of the sandhill crane, and this bird closely ry resembles one the
gannet in the position of its wings. No theory of fight is worth rush which leaves out the gannet. The man-of-war hatk is
weighty evidence also in this question. Usully it sails with weighty evidence also in this question. Usually it sails with
wings shaped like a flattened $M$, the outer ends a little above the back. On the approabe a circular segment seemingly or true as if struck with compasses. At times the wings will be so far
deflected beneath a level as to meet under the body of the bird, and deflected beneath a level as to meet under the body of the bird, and
even to passs each other several inches. During those furious puffs, entire wing, excepting the would prostrate a careless person, the body of the bird. The primaries are expanded at an angle of itself. Should one meet with this creature in this position he he
would not take it for a bird at all. Its vibrations while thus poised are through a space of 10 ft . or more vertically, horizontally n air from a pressure blower, when the blast is interfered with by Any theory of flight to be any other way.
hawk in a gale. Returning to the main acuestion, two thing thans must be taken for granted in the outset. One is the bird poised on fixed wings in a horizontal breeze, the other is the resultts obtained by ment tried by myself as not being required in this explanation Briefly, the pertinent results of the above Society were, the equal
force against gravity, and to the rear force against gravity, and to the rear, exerted by wind moving on
an inclined plane of 4 deg. also that the lifting force was to the
rear force of the different inclinations, directly sthe the hoight, to undetermined limits. To make the explanation a
 taining a man in flow of air of thirty miles ancal device for sus-
 The air current, then, in passing the 7 ft . width of surface in about
the one-sixth part of a second gives a lifting force of 350 H ., thus balancing the weight of the device. The rear force of 1 in 7 would
be 501 b . In short, then, the device would be lifted be 0 ib. In short, then, the deviec would be lifted with a force
equal to its weight, and driven to the rear w with a force of 501 b . action, and omit all notice of molecular impact, if there be any and confine the attention to the density of the air alone The
other elements would only confuse the case, without assisting the other elements would only confuse the case, without assisting the
explanation. The upward force of 350 lb . would measure the
comer compression of air below the surface, provided there was a normal
condition of atmosphere above. Work is done vertically upmal by compressing the air below, so that there is a greater tension of
air after it has done its work than there was before, and doing the work makes the tension. Could the compressed air be put to labour after it had escaped from the surface it could acoomplish
350 lb . additional work in falling to the tension of the surrounding air. The air above is rarefied. Bear in mind that it is spassing at
the rate of 44 ft . per second, and the lifting power of this partial The signifieant fact of this mportant
 Along the entire 35 ft . of rear edge of surface prensisely where thight. compression of the air is greatest, it is suddennly discharged into a
partial vacuum at the precise point where that vacuum is greatest,
$\left\lvert\, \begin{aligned} & \text { around and against that rear edge. The result is self-evident. } \\ & \text { There will be a thrust upward and forward along the entire rear }\end{aligned}\right.$ edge made by the escaping air. There exists a miniature whirlwind,
35 ft . in length, against which the rear edge of the surface rest along the line of its greatest intensity. This of thertical tempest is is
placed precisely where it would placed precisely where it would actuate the surface with the
greatest effect. Beneath is a push, above is a pull, while the wedge greatest effect. Beneath is a push, above is a pull, while the wedge
like whirl is driven against the edge in equilibro to foree it
against the advancing air. The entire 50 ib . .ear frece is concelle and a surplus of forward force given to meet the conditions flight. Now there can be no doubt about this triple action. The
air is compressed on the under surface. It is raretied on the upper surface, and it is discharged around the rear edge with a forward
thrust are great enough, flight must be produced. If there be any surplus of forward force in the differential result of this triple alliance fight is explained. I submit that it is a very good working theory,
and when it is further found to explain all the movements of sailing birds, its claims to respect are not lessence.
Ceems to me-to enable those interested to pretty wo it, and will conclude the matter by summing up the whole as
follows :-(1) Birds maintain themselves in air in two contrasted vays. One method is by beating the pinions as a means of employing muscular power to overcome
gravity and the friction of the air. The other is by the fixed wing, or "soaring" process, where the foree to actuate the quiescent soaring is a differential result of the action of wind upon flat
surfaces inclined to the direction of its motion when surfaces incilined to the direction of its motion, where the frictio or the moving atmosphere is neutralised by the escape of the com-
pressed air at the rear edge of the surface. (3) The conditions soaring are complied with on the part of the boly, when there is
distribation of weight, an extent of surface, a shape of surface an inclination of surface, approaching the maximum which is approxi-
mated in the soaring bidd. (4) The conditions of soaring are comdirection opposed to that of the body. Fhight on fixed wing is only possible when it is directed against an opposing current ot
ar ; an imperative rule to which there is no exception. (5) The conditions of soaring are found in their sum total in the relations
of the air to the soaring body. The tendency to refer all phenomena of motion to fixed positions is dangerous when
employed here. A bird standing on fixed wing employed here. A bird standing on fixed wings in a breeze of
thirty miles an hour, and a bird sailing in a calm at the rate of
thirty miles an hour, exhibitsts identical phenomena so ing is concerned. The conditions are the same, the results are the
Name. I submit that this state of things shifts the problem of
Now, region which waits the advent of the first pioneer. The efforts prob an attempt to make a "perpetual motion" would have to problem of mechanics. They are not relevan
The soaring birds unmask previously unknow
resting in It a motter facts of peculiarl these bodies when set free in still air would dessend after the
manner of a parachute until they rested won the surf ace of arth, when to move upon that surface would require the exertio of force to overcome friction. The birds reveal the fact that when
sucha body has initial movement set up in it it finds a point of unlike the earth, there is no friction betwen them, and in thi condition the body has no weight. Now, I understand perfectly
well that this seems incredible. It is saturated with paradox am in receipt of letters every day from men of reputation in the scientific world objecting to my solution of flight on some a prior
ground. But then, gentlemen, the facts as I have stated them are unquestionably true, and the theories advanced completely explain
the facts. This makes it bad for the paradoxes, and the preconeived ideas seem crowded ou
I have to thank thed
or the publication of my papers The Enginkrr for the space given the remote corners of the world for their letters giving habservation on the habits of birds not known in the United Sitates.
I have just read in your issue of the 10th inst. an article
n " The Problem of Flight," by Mr. Quartermain, which I bout " The writed the rares that we now "know all butions in this direction to absolute zero, by asserting that birds do not maintain themselves in the air on fixed wings. From whatever source, then, this gratifying knowledge comes, it does not
not come from the motionless wing birds, for there are none of that eseription. He then goes on to tell of an accident with an active reachery of an iron rod or bolt left fast in the embrace of mother earth, a device which otherwise would have mounted skyward. he past thousand years, either refusing to go up at all, or coming "know it all?" The quiescent proces. Wherein, therefore, do we ctive process a dead failure, as usual, I would respectfully inquire
or
Mr. Ouartermain where his lnowledge proceed to explain another request $I$ have to comes from.
After observing a frigate bird standing to him.
After observing a frigate bird standing in a breeze at a distanc ng at the creature from below, from the rear, from the front, and from above without being able to detect any motion whatever
except the incidental tremors preservative of equilibrium proceeding in the same way with many other species of birds with
the same results, and after continuing these operations through nany years, frequently, at all scasons of the year and in all kind ing the air, all the time though "eluding observation," is simply
astonisbing. There is no marvel connected with which at all equals this marvel. From Darwin, in his "Voyage o a Naturalist around the World," through every observer of soaring
birds who have been in situations suitable for such observations, there must have been present some inscrutable error.
Let anyone take a stick 4 ft . long and no more than 3in. square and pivot it at one end to a post and bring it to a horizontal,
hen view it at right angles to its length from a distancion 10 南 while an assistant moves the free end up and down, and motion a at once 1 ft fro the when gnorant of my presence, and do most positively assert that I could detect no beating of the air whatever
Now it is presumable that Mr. Qua
irds in favourable looations-that he estrels, crows, and blackbirds at a distance-and my request is iff he make known how it is that the wing of a living bird is so till, is is in reality olt the objects, that while appearing perfectly Chicago, Ill, August 29th.
L. LANCASTER.
artificial submarine lines.
SIR, -In the obituary notice of my brother, the late Mr. C. F nentioned as identifeared with your journal, among the the in inventions of the " artififial Ine, which represents in every respect a submarine circuit. The description is given in a paper read by me before the Society of
Arts on March 30 th, 1859 , You did me the hone this paper, and you made it the subject of your leading article in
THE ENGINERR of A pril Sth, 1859 HE ENGINEkR of April 8th, 1859 .
The artificial line which
The artificial line which my late brother turned to such good
account was made some years afterwards, the resistance coils
forming part of it, and which were forming part of it, and which were, I may say, the largest and
most complete which had been made up to that period, were con-
structed by a firm of which I was the active partner, and were
made a present to Mr. Cromwell Varley. I furnished him with madu a present to 1 Ir. Cromwell variey. I furnished him with By way of parenthesis, perhaps you will allow me to state I betieve I was the first to make paper induction plates which would retain a statical charge for any length of time, and as a matter of
fact, my brother tried to disy that paper could not be made to insulate sufficiently, The searet of my success was thoroughly desicating the paper before immersing it in the insulating material.
"The amount of retardation whin
The amount of retarcation which will be experienced in submarine circuits possessing conductors of varying resistance, and
insulated with different thicknesses of appears to me, can, comparatively speaking, be readily determined designing an apparatus for this purpose, and at the time I I arranged to give this paper I fully expected to have had the apparatus completed, and to have been able to lavit before you on this occasion;
and though I regret not being able to do this, yet I I feel I have
sufficiently advanced to warrant my explaining the principles of its constructio
"The principles upon which it is based are, that a body which
offers the same resistance substance or length, may, as far as conducting power is concerned, or metal of any inferior specific conductive capacity to that of the metal employed in submarine circuits, and also of greatly diminished sectional area, the same resistance as that offered by the very
longest circuits can be obtained in a very small compass, and such an arrangement will, as far as simple conducting power is con
cerned, fairly represent a long submarine circuit. The induction which manifests itself in submarine circuits can also be obtained
whes and if the conditions for its development are as favourable as they are in submarine conductors.
of which are known; secondly, of a series of induction plates, the values of which, when compared with a given surface of a gatta-
percha coated wire, are also known ; thirdly, a mechanical ment to accurately measure minute periods of time. By a comb nation of ther eresistances and the inductaos on plates., By a combi-
which will fairly represent a submarine circuit, will be obtained, The resistance can be diminished or increased, and the inductive conductors of abled or halved at pleasure, and thus circuits wit thicknesses of insulating material, be beimitated, and the law which governs the retardation in the transmission of telegraphic signals
letermined by direct experiment. It may be argued that as the determined by direct experiment. It may be argued that as the
inductive surface in a telegraphic circuit is uniformly spread throughout, a series of induction plates will not present the sam evient that they may be divided throughou actually the case, the result will approximate very closely to thos rudent rom a submarine conductor. Perhaps it would have been prudent not to have called attention to an apparatus before ita
completion. I have done so, however, because 1 have felt it was due from me to endeavour at least to point out how some of the tion between the distant stations may be resolved.
I give above an extract from the paper read before the Society of
Arts, giving the description of the construction of the artificial
2, Hamilton-road, Highbury, N
September 18th.
SRR,-Your article in your issue dated August 31st last, headed Beechwood sleepers, contains a translation of a paper read at a
meeting of the German Railway Association, in which my process Permit me to correct it in your paper has absur din the of the papers which have yublished it it in hermany. In in the process
omployed on the Northern employed on the Northern Railway of France, as well as on other
French and Austrian railways for the treatment of beech and rench and Austrian railways for the treatment of beech and oal
sleepers, there is a great difference in the operation as the pape

First, instead of "a current of steam mixed with the vapours creosote oil, to which the sleepers are exposed during five or ten act is as stated in the patent: That the sleepers are expose during thirty to forty-five minutes, or even longer, to a current o
uperheated steam of a temperature that varies between 600 deg and 900 deg. Fah., which carries with it by mechanical action rosote or tarry spray which the steam holds in suspension, as in
fog, water is held in suspension. This current is continuous, the ondensed matter being again converted into spray during th whoe of the operation, and is very penetrating, so that a sleepe in its centre a temperature of 120 deg . to 140 deg . Fah. without any njury to the surface of the wood. The fact is incontestable, and
can be proved at any time by a visit to any of the works on the Northern of France lines
Secondiy, the penetration is not incomplete, as it is a natural
Consequence of the first operation, and the after absorption whe such is considered necessary, may be made to take up any quantity of creosote oill, and what is more, hold it and not run it out into Cauterets, Hautes Pyrenées, $\qquad$ John B. Blythe.

## continental railway speed.

Sull,-Some few months ago you published in your journal par abroad. It may perhaps interest your readers to know that in Doint of fast running our expresses are now equalled by those on
some French lines, as is proved by the train leaving Paris at
8.45 a.m., and arriving at Bordeaux at 5.52 . stoppages, aggregating 48 minutes. The distance is 363 miles. iz, Calais to Portbon, in 27 hours and 10 minutes, the other,
and raversed measuring 872 miles, and the stops lasting over five
Commingoint. Birmingham, September 17th.

## the graphic treatment of stresses

Sir, - Owing to absence from town I have only just seen a writer takes objection to my assumption of 45 lb . per square foot as the weight distributed over a particular roof treated for stress in a former number of your journal. In reply I have only to men-
tion that I adopted these conditions after consultation who know best what are the actual weights of materion with those sory pressures brought to bear upon these special roofs. The same writer also objects to the uniform distribution of wind pressure, for
the reason that the wind only strikes one side of the roof, and might therefore vary not only the amounts, but also the nature of the stresses. Now, it is perfectly true that the wind blows from but different times it blows from different quarters. I would, therefore, ask from which quarter will your correspondent force his
wind to blow? In order to meet all contingencies it is evidently necessary to design the roof for uniform wind pressure. Thirdly,
your correspondent finds fault because I do moter tie rods of short cylindrical lengths of different diameters. But it
the is a golden rule to avoid all sudden changes of form, and on this made up of short cylindrical' lengths of different diameters.
iburnham Villas, Greenwich, S.E., R, H. GRAHAM
September 18th.

## RAILWAY MATTERS.

Mooskivcmaguntio and Jocknahmakantajus are to be stations On a projected railrood in Maine. These are evidently the that names
which prophetic porters have been shouting in the carriage doors all over the country, but which weary travellers have never been
Mr. ALrrkD A. LaNGLLER, who has been for ten years engineer-
in.chief to the Great Eastern Railway Company, bas recently been in-chief to the Great Eastern Railway Company, has recently been
appointed chief engineer to the Midand Railway Company. Mr.
Langley leaves the Great Eastern at the end of this month and Langley leaves the Great Eastern at the en
enters office at Derby on the 1st of October.
THE contract for the Aliwal North Extension Railway, South
Africa, has been let to Messrs. Reid and Mackay, of 13A, Great George-street, Westminster. This frrm is now engaged in constructing the Jamaioa Government Railways, and Mr. Mackay also
constructed the waterworks for Port Elizabeth, South Africa. Tue "Railway Companiess Directory," edited by Mr. Percy ways of the United Kingdom, with capitial, working expenses, and revenue, prices of stock, dividends, mileage, and weekly traffic
receipts, for the last five years, will be published in December. THR general traffic agreement which has subsisted between the
North British and Caledonian Railway Companies during the past North British and Caledonian Railway Companies during the past
ten years has been renewed for another similar term. The agree. ten years mevt covers the working of the Edinburgh and Glasgow and northern traffic, but in respect of the latter it wil tallow certain
stipulated changes to be made on the completion of the Tay Bridge. AT the Staines Junction of the South-Western Rail way a new
curve is being made to the west of the station in order to connect the London line with the Reading branch. The works, under the direction of Mr. W. Jacomb, the company's resident engineer, are
being rapidly pushed forward, and will, it is hoped, be available in of trains will, it is understood, be provided, enabling passengers
to travel between Windsor and Aldershot without entering the old to travel between Windsor and Aldershot without entering the old station at the junction.
We learn from Poor's Railuay Manual the number of passen-
ers moved one mile in the New England group of the United gers moved one mile in the New England group of the United
States in 1882 , was $1,107,045,086$, at a charge of 2.1 .4 . per mile ; in mile ; in the Southern group, $559,577,836$, at a charge of 2.6 c . per
 ${ }_{6}^{\text {per }} 8,834,048,765$ persons moved one mile, at a charge of $2 \cdot 86 \mathrm{c}$. per
The German Railroad Union held its annual meeting in August,
and a report of ittofficers showed that in the middle of July there
were ninety-eight different railroad managements which belonged to the Union, working in the miles-of road; 21,922 miles of which were in Germany, $1,2,21$ in
Austria-Hungary, 91 in Luxemburg 420 in Belgium, 1325 in Holland, 724 in Roumania, and 315 in Russian Poland. The
increase in mileage during one year was 1007 miles. No less than increase in mileage during one year was 1007 miles. No less than
10,951 miles of the roads in the Union were Prusian State railroads, substantially worked by a single authority, but represented
by eleven different "directions," each of which is a member of
the Union
The number of tons of freight transported on the part of the
railroads of the New England group of the United States in 1882 was $28,605,416$ Nows, being seven tons per head of its population. The number of tons transported on the middle group was
$166,272,589$, the number of tons moved per head of population
being 13.6 . The number of tons moved on the railroads of Penn. sylvania, per head, was $23 \cdot 4$. The number of tons transportend on
the southern group was $19,19,096$, the number of tons per head
the being 1.56 . The number of tons transported in the western group
was $140,791,848$, being geven tons per head. The number of tons
transported on the Pacife groun was 5 . 5 . transported on the Pacific group was 5 5,526,426, being four tons per
head. The number transorted on all the railroads of the United
States the past year was $560,490,375$ tons, the average moved per States the past year was $360,490,375$ tons, the average moved per
head of population being very little over seven tons. THE contract for the construction of the railway across Vancouver
Island in Britith Columbia in connection with the Canadian
Pacific Railway has, it is said, been signed. Surveys will be comPacific Railway has, it is said, been signed. Surveys will be com-
nenced immediately, and the centre line placed in running order by the autumn of 1888. A project is before the peopple of St Paul Paul
and Minneapolis for the construction of a line of railway from these ommercial centres of the American North-West to Sault St. Marie, between Lakes Huron and Superior, and thence over the
Canadian Pacific Railway from Algoura inect to Montreal, with a
view to obtaining the shortest possible outlet to the the products of the country north hand wetst of to the Paul. By fy fhis
toute these places would be brought 400 miles nearer the seaboard
rom than by the Chieago and New York route, and as aser the miles of the
455 between Minneapolis and Sault St. Marie are already under contract, and the section of the Canadian Railway east
from Algoura is now nearly completed, there remain but 330 from Algoura is now nearly completed, there
miles to be constructed to carry out the scheme.
Accordive to Poor's Manual the number of passengers trans-
ported in 188 on the rairoods of the New England group of
the Unite States, having E population of $3,990,529$, was
65, 65,220,934-a number $16 \cdot 3$ time greater than its own population.
The number transported in Massachusetts was $48,063,369$, a ported in the middle group of States, having a pumber trans.
$12,196,876$, was $205,844,626$; or deducting $86,161,029$ carried of the New York city elevated railroads, 119,683,597-a number very
nearly equalling ten times its population. The number transported in the southern group of States, having a population of
$12,255,910$, was $10.85,511 ;$ a number of $1,379,399$
pospulation than the population of this group. The number transported on the rail.
roadsof the western and south-western group, having a population of
$20,132,325$, was $82,940,331-a$ number $4 \cdot 1$ times $20,132,325$, was $82,940,331-$ a number 44 t times greater than its
population; the lowe average for this group arising from
embracing in it the south-western States. The number transenbred on the Pacific group, having a population of $1,393,817$, was
porter
$10.510,410-a$ ported on the Pacific group, having a population of $1,33,81$, was
$10,510,110-a$ number 7.5 times greater than its population. The
total number transported on all the railroads of the United States the past year, not including the New York elevated roads, wos
$289,190,783-2$ number equalling very nearly six times the total
population- $50,442,066$ of the United States in 1880. AT the commencement of last year Germany possessed 33,707
kilos. -1 kilo. $=\frac{5}{3}$ mile- of railways of ordinary gauge, 192 of kilos. -1 kilo. $=5$ mile-of railways of ordinary gauge, 192 of
narrow gauge, and 1477 of mountain lines.
were owned and worked by the State, 3737 were owned buer by private companies, but worked by the State, State, while were owned by wer private
 Saxe-Coburg. Gotha, But in Hex Hese, include in oll the prourg, and 89 in
Sdministered by the State, then we find that Prussia possessed administered by the SState, then we find that Prussia possessed
about 15,000 kilos, almost half of the whole German system.
The most important private company lines are those of AltonaThe most important private company lines are those of Altona-
Kiel, Berlin-Harumb, Brunswick, and the Palatinate. The cost
of establishing the German railway system was 8400 millions of of establishing the German railway systom was 8400 millions of
marks $£ 420,000,000-$ varying from 45,33 marks to 75,9 por per
kilo. The proportion of first-class travelling to second-class is 104 first in every 10,000 travellers, to $1355^{\text {second. The railway }}$. The rand
adminstration employs altogether about 300,000 persons, thus dis-
tributed:- In the general manal tributed:- In the general management 7977 , and 3457 , temporary
employés, with 840 artisans; on the lines themselves 30,060 permanent and 2663 temporary employes, with a staff of 58,021 work-
men; or, in round numbers, 90,143 persons, while the traffic neces sitates a body of 72,555 employés and 50,852 workmen.

## NOTES AND MEMORANDA.

One of the oldest Clyde shipbuilding firms, Robert Steele and
Co., of Greenock, closed their yard on Thursday, after launching their last vessel, the Inveru.
firm was established in 1796 .
The Wochenblatt für Architecliten und Ingenieure states that
the Russian Government is causing surveys to be made under the the Russian Government is causing surveys to be made, under the
direction of General Tschernageff, with the ultimate view of of the ang a connection between the river Amu-Darja-the Oxus
 vening small lakes, and thus the long projected direct communica-
tion by water between the Caspian Sea and the Sea of Aral would tion by water between the Caspian Sea and the Sea of A
be accomplished, as the Amu-Darja runs into the latter.
THE Neueste Erfinderung describes an anti-corrosion paint for
iron. It states that if 10 per cent. of burnt magnesia, or even ion. It states that in per cent. of burnt magnesia, or even
baryta or strontia, is mixed cold with ordinary linseed oil paint,
and then enough mineral oil to envelope the alkaline earth, the free and of the paint will be neutralised, while the iron will be protected by the permanent alkaline action of the paint. Iron to bo buried
in damp earth may be painted with a mixture of 100 parts of resin (colop pony), 25 parts of gutta-percha, and 50 parts of paraffine, to
which 20 parts of magnesia and some mineral oil have been added. Profrssor BELL, the electrician, is reported as saying in a
recent conversation that there are more than 500,000 telephones in recent conversation that there are more than 500,000 telephones in
use in the United States, and the manufacturers are unable to supply the demand so as to keep abreast of orders. He said that ap progress of the telephone would have been greater but for the
opposition of the telegraph companies, who regarded it as, in part, oppompetitor instead of an almp. In other countried the etelegraph,
a companies had very generally adopted the telephone as an
com auxiliary, especially at city branch offices and at smank offices in the country. Profeessor Bell said that the sience of electricity
was still in its infancy. He was constantly engaged in further
investivations pamphlets, and even short articles on the subject, with a view to
facilitate his own investigation and that of others. He has the pampinets, and even instigation and that
facilitate his own inver
titles of 40,000 such productions already.
The system of irrigation now in use in the Madras Presidency is n a vast scale; a recora, though imperfect, of the tanks in four-
 embankment required for each may be estimated on a moderate
calculation at half a mile, and the number of masonry works in irrigation sluices, waste weirs, and the like, may be taken to be at
least six. The embankments alone for all these tanks would least six. The embankments alone for all these tanks would
extend over 30,000 miles, while the total number of separate about this gigantic system is that it is entirely of natio not one new tank having been made by Europeans; and, according which have been allowed to fall into decay. equally fine fing to the Tropical Agriculturalist, the rev
is roughly estimated at 150 lakhs
In 1771 the population of the city of New York was a little over
1,000 and in 1786 , three years after the close of the revolutionary war, it had 23,614 inhabitants. The several censuses taken durin the past 100 years exhibit the marvellously rapid strides which New
York has made toward her present imperial position. In 1790 Owever, the population was present imperial position. In more than it was in 1771; but
hy 1800 , it had

 occasions has the enumeration shown a decrease from the figures of
the precding censs. The the ate ate war of 181,
and the second after the civil war. The population of New York city has doubled six times within a century-doubling, on an average, once in every seventen years. In other words, the New
York of tody is sixy four times as large as the New York of 100 years ago. The rate of increase in the country at arge is insig.
nificant beside that of the metropolis. In 100 years the population of the United States has multiplied itself by sixteen; but the population of New York has increased at four times that rate. At ate diminished by the decline of American commerce and the influence of the civil war-there are children who will beho
New York city containing no less than $10,000,000$ inhabitants.
THE exceedingly delicate coloured photographs on glass whic
have come into fashion somewhat of late, are produced by fixing
paper photograph upon a cushion-shaped glass with transparent
cement, and when it is dry rubbing away two-thirds of the thick
 which transparent colours are applied, which appear softened down hien looked at from the front. The background and heavier face of another cushion-shaped piece of glass, which is afterwards inxed beenind the first one. An improvement in this process has
just ben made by Mrs. Nelson Decker, daughter of the late Mr. C.
F. Varley F. family to have produced a scientific novelty. She has just dis covered that the second sheet of glass may be abolished, a better
artistic effect produced, and the picture rendered more permanent y being protected from the action of the air and deleterious gases by being whe phy embedded in paraffine. She does this by quickly
dipping the photograph in paraffine a second time after the transparent colours have been applied, and painting the heavier colours hen applied, and the background. A third layer of paraffine is oat may be finally protected by yet another layer of paraffine. efficiently. It must be done quickly enough not to re-melt previous layers, and the plate must after each dipping be quiekly
tilted on end in such a manner that the paraffine does not run into
ridges and In and thicened nines, but forms an even coating.
Ir is now some sixteen years since. Mr. Crookes introduced in
metallurgy the sodium-amalgam by which the gold miners' difficulty vercome. The addition of a small quantity of this ame exten the mercury used for the extraction of gold from itto ores produces hort time, i.e., until the sodium has become converted into the hydrate of the metal. Within the last twelve months attempts,
have been made by Mr. Barker, and also by Professor Huntington, to render this cleansing and deoxidising effect permanent and con tinuous by the employment of a current of electricity, in the cir
cuit of which the mercury is made a cathode. Mr. Barker's plan has already been dessribed in these columns, and the main result
aimed at by Professor Huntington is to secure a prolonged and erfect contact between the ore and the mercury, which is done by
orcing the finely divided ore into the fluid metal. Quite recently very scientifically devised application of the electrical agency to
her required purpose has been effected by Mr. Bernard O . Molloy,
H.P., of the Inner Temple. We have had the opportunity M.P., of the Inner Temple. We have had the opportunity of seein his system experimentally worked, and it appears to combine all the
requisites for the effective and ceomomical treatment of those ores of requisites for the effective and economical treatment of those ores of
gold which are adapted for the amalgamation process. On a future
occasion we may be able to describe Mr. Molloy's or the present we can only state that the apparatus employed is small and light, so as to admit of ready transport, that the "sickening and llouring" of the emercury are effectually prevented,
and that the ore is brought into very perfect contact with the mercury -improvements which sigigny in inereased contact faciliteies in worke-
ing and a better yield of gold in the case of a large class of auriferous ores.

## MISCELLANEA.

IT is proposed to establish a permanent industrial exhibition on the banks of the Hudson, within easy distance of Central Park New York city. For this purpose a company has been formed with
a capital fixed at 1,00, oono dols. The company was organised in March, and its
public ere long.
Iv recent experiments which have been made at Grenoble for the transmission of electric force from a distance of 14 kilometres, the ormer occasions. According to $L^{\prime}$ Electricité the results have been very por, a motive power of 45 -horses having been required to
convey $7 \mathbf{7}^{-}$-horse power.
In France in 1830 there were only 115 umbrella makers, and In 1847 the number of umbrella makers in France had increased to 303 , and their business to $£ 400,000$ per annum, while last year the vorkmen, and making £520,000 worth of umbrellas.
The French gun factory at Fives Lille, has just finished a canno which presents some peculiarities of proportion and shape, bu
whose chief novelty is a compact wrapping of fine wire wound around it as tightly as possible by a machine constructed for the purpose. This is of course the Longridge gun. Preliminary test argely increased by this device than it could be from an equal
veight of similar metal cast with the tube itself
The First Commissioner of Works has purchased the Edison ecectric plant, which has been used in the House of Common
during the 103 nights of the past session. The sucess attending his experiment has induced Mr. Lefevre to adopt the light on a permanent footing, and a considerable extension of machinery is ow being made by the Edison Company. Next session, therefore
not only the libraries and the dining rooms of the House o Commons, but also the division lobbies, Minister's rooms, and pre will be ligh
THE Sheffield armour-plate manufacturers-Messrs. John Brown
and Co. and Messrs. Charles Cammell and Co. -have received very ratifying news as to the behaviour of their test plates at Spezzia Chis is all the more satisfactory on account of the outcry which was raised when the Italian Minister of Marine decided on Sheffiel. compound armour in preference to the all-steel plates of schneider, he successful tests at spezzia wil now pass the entire order for he Italia, amounting to 1800 tons, equally
two companies. The plates are 17 in. and 18 in. thick.
ON the 14th inst. Rear-Admiral, T. Y. Ito; Chief Engineer, Ziro G. Ijuin, belonging to the Imperial Japanese Navy, visited the yclops and Atlas Works, to witness the manuracture of armou al navy China is getting together, have decided to begin the buildng of armour-clads in their own dominion at any early date ; and these officials are travelling through Europe to see the provements in
ing the vessels.
The Local Government Board sanction the borrowing of $£ 46,834$ orks, und y Mr. J. Pollard, the engineer to the Hendon Local Board. The
Local Government Board recommended that the Brent Valley Main Sewer, from Mill-hill to the outfall, and the Silk Stream altey sewer, from Sunny Fields to the outfall, should be carried
out at once. In conclusion, the Board offer in the first instance to end $£ 10,000$, plus the costs connected with the purchase of the
and, and recommend that the work should not be let in a lump land, and recommend that the
sum, but on a schedule of prices.
Two ironclads are, according to the Neue Freie Presse, being
viilt for the Russian Government at Sebastopol by the Steen Navigation Cors the the the the the first of these two vessels is to be launched not later than November, 1886, and the second six months later, while both are
o be ready to take the sea by May, 1888. They will be 314ft. o be ready to take the sea by May, 1888 . They will be 3144 tt .
ong by 69 ft . broad and 42 ft . deep, and the plates are to be 5in. above the floating line, and sin. . ${ }^{\text {a }}$. and will carry six 1 iin. and six. Gin. guns. The engines, which will
and double, with three cylinders, fourteen boilers, and two screws, re to be of 9000 -horse powe
Mr. Floov Delafield, of Noroton, Conn., has brought out a of copper. One of the field magnets is terminated at either end y a tubular pole piece; within this pole piece rotates a uxiliar is attached to the axle of the armature. Thus th tubular armature has one pole as its axle, whilst the other pole of the cylinder by brushes. The machine is so arranged that on rmature can be used to excite the magnets, wist the other parposes, or, when required for incandescent lighting, the magnet nay be excited by a small high tension dynamo, and then the two
rmatures may be used for main circuit purposes
The local authorities in the out-districts of Oldham have been
 ne side, and Manchester on the other. The tramway will connect through sysems that have their terminus nd pass on to Middleton, a considerable town now altogethe goods as well as passenger trafffo will be taken. The route will lie tended to convey the raw material to the very doors of the mille The promoters have appeared before the Local Boards of Chadder
ton and Royton, and these ton and Royton, and these authorities have given their hearty
support to the scheme, which promises to develope important support to the soheme, which promises to develope important
manufacturing districts practically untouched by any railway

Messrs. Crookrs, Odinge, and Tidy point out, in their eport to the Registrar-General, water supply, that in the July organic impurity" of the river-derived supply of London is from ply of the Kent Company, selected as a standard. It is not ewage contamination," of the standard well-water is from two to lthough the times as, great as that of the river-derived water esults ane a not meant seriously to imply that the well-water is rendered uncalled by Dr. Frankland "previous sewage contamination," any nore than that the river-derived water is rendered unwholesom
by reason of its unquestioned excess of what he calls "organi mparity. Only, if at a period of general anxiety with respect means of exciting prejudice and alatm, to measure river-water y a wel-water standard, and persistently to stigmatise a charac of people by a nasty-sounding name, it mustied to some four minally justions
of tififiable,
with the same worthy obiject, to with the same worthy object, to measure well-water by a riverwater standard, and to stigmatise a characteristic constituent of
the well water supplied to less than half a million of people, by a similarly nasty-sounding name, also the offspring of Dr. Frankland's
THE WELL PARK BREWERY, EXETER.


FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.



## TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry adaressed to the
pubblic, and intended for insertion in this ocumn, must, in all
cases, be accompanied by a sarge envelope legibly directed by the uniter to herself, and bearing a 1 d. postage stamp, in order that
answers received by us may fo forvarred the their destination.
No otice will be taken of communications which do not comply ${ }^{\text {with }}$ these instructions. ${ }^{*}$ must therefore request correspondents to keep copies. ** All letters intended for insertion in THE ENGINERR, or conof the writer, not necessarily for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous









## DEDERICK'S HAY PRESS.

 Mr. Dederick may
Soptember 15th.

ROAD AND RAIL CARS.
SIR, - May I ask some of your readers to kindly give me some informa-
tion ato to the motat satiffactory scheme for running the same rail or tram
wagon on street or road surf

 LOADS ON INULINES.
(To the Bditor of The Bngineer.)
SIR, - Will any reader kindly tell me formula for ascertaining the strain
co wagn draw- bars whilit otravelling down incline planes? For instance,



## burden's rotary squeezer.









17, Park-road, New-cross, S.E., September 15th.
Tiris Exaingrr can be had, by order, from any ne


 Cloth cases for binding Thr Exainkrr Volume, price 24. 6d.
4 complete set of The Enarnkrr can be had on application






## advertisements.


practical repularity, but regularity yannot be guaranteed in any suc Advortisements cannot be Inserted unlosss Dollvered bbeore six

DEATH.
On the 6th inst., at his residence, Belmont villas, Leicester, Josian
Ginsoon, aged d 4 .,



## THE ENGINEER.

## SEPTEMBER 21, 1883.

## the value of strikes.

A Correspondent, himself a large employer of labour, tells us that while giving a general adhesion to the views expressed recently in our pages in an article on foreign
competition, he holds that we have done the working man scant justice in one respect. To make this matter clear, we must recapitulate a little. We called attention to the fact that it usually happened that months, if not years, must elapse before the working man can hope to repay
himself for the money lost during a strike. Thus, if a man himself for the money lost during a strike. Thus, if a man earning 30s, a week turns out for another shilling, and wins the battle after being out ten weeks, then he will have exwages, leaving interest out of the question, in less than 300 working weeks, or, say, six years. That this is quite true our correspondent admits, but he holds that this is not the right way to look at the matter. If it were not for strikes
the position of the working man would be, he contends, very much worse than it is, and he points to the men engaged in the London building trade in proof of the
accuracy of his views. He maintains that the position of the bricklayer, carpenter, joiner, painter, \&c., has been very much improved by the union of the men, and the repeated strikes which at one time threatened to disorganise the entire building trade. The question thus raised by our correspondent is one of great interest, and it deserves to be more fully discussed than it has been as yet. However, we have not thought it necessary to publish his
The moment an "if" is introduced into any abov. or discussiont an is introduced into any argument or discussion, anything becomes possible in the way of
assertion on the one hand, and of admission assertion on the one hand, and of admission on the other. When, therefore, we are told that if the men did not strike, such and such things would happen, we feel that
we are more than half defeated. It is simply impossible to say with certainty whether they would or would not on the whole be worse off than they are. We believe that wages
and who e be worse oft than they are. We believe that wages
are atter all adjusted by something far more powerful than strikes, namely, by the law of supply and demand, and we have on our side some of the most able poistical economists.
But we arenot sure that we could prove this in a way tosatisfy But we arenotsure that we could prove this in a way tosatisfy
a working man. It is no doubt clear that in a few instances strikes have modified wages, driving them up; but this has never been the case unless the strike was so judiciously timed that the masters could really afford to pay the rise. If we suppose that the members of any trade-say
moulders, for example-had no union, and consequently no real power of striking, it may be contended that they would be ground down in the matter of wages to starvation point, whereas with a union they would be sufficiently powerful to fight the greedy capitalist. This is a very who favour it, however, popuar line of argument. Those low in any trade, men of the proper type avoid it. thus, after a certain point had been reached under be adopted as a trade by men likely to excel in it The whole practice of the art would deteriorate; and even bad and incompetent workmen would become, scarce, and the masters would in self defence have to pay higher
wages. This is by no means a fancy picture ; all that wr have sketched has actually taken place in the case of pattern makers. Several years ago they had no union, or badly paid; first-class workmen were atting 24 were a weery while second-rate moulders had 30 s . But the consequenc was that no more apprentices joined the trade. The competent pattern maker threatened to become extinct. The
masters then began to bid against each other for good men and at the present moment the pattern maker is certainly not the worst paid man in an engineer's works. Such a truth as this goes some way, we think, to confirm the accuracy
of the statement that continuous supply and demand do much more to regulate wages than any intermittent action on the part of men can effect. However, we do not wish be seen at a glance that a strike is nothing moed, it will than a means of reducing suuply. Let ns suppose, for xample, that there were in Great Britain ten thousand oiler-makers, and that these men were all employed at
thirty shillings a week. If, now, nine thousand of the party agreed to kill off the tenth thousand, then, other hings being equal, and the demand for boilers remaining naltered, each of the nine thousand would find his wages increased by one-ninth-for the share of every dead man would bedivided into nine equal portions, and divided among the night sors. To slay is not permisside, but nine thousand might say to the tenth thousand, "Give up boiler-making,
and we will pay you well ;" theresult would be the same. This principle is really put in practice in almost all trades; for in is evident that if even one man were always on strike in some place or another, the whole working power of a
given community would be reduced by so much, and wages given community would be reduced by so much, and wages
raised accordingly. In the same way, if we find that strikes have reduced the whole producing power of a given trase by, say, 10 per cent. in any year, then the result is
just the same as if the number of those pursuing that just the same as if the number of those pursuing that
operate by diminishing supply, and really in no other way; and the question we wish to see discussed from all points of view is, Does it pay the strikers, as a whole, to diminish supply?
If it y the supply be proved that wages were regulated solely only one answer to this question. It would pay very wel ndeed to diminish supply. Thus in some of our colonie physicians earn very large sums, not because they are efficient, but because they are scarce. We find lawyers of reputation making fortunes, because there are not lawyers enough with great reputations to satisfy the demand, and heir services are reserved for the rich. But in the affairs of trades and trades unions, and producers of all kinds, there thrd party, concerning whom we have said notht part in settling wages. We allude to themor an reach a certain point in any trade, the thing produced becomes so dear that the public reduce the extent of their purchases, and so the men suffer again. After all the powe of the consumer is practically unlimited; and in nothing is this more apparent than in trades affected by caprice or ashion, such, for examples, as the silk ribbon, straw bonnet, and crinoline steel trades. In such as these strikes are nd kiny entirely powerless. There is, moreover, another ompetition influence to be taken into account, namely, ducing the supply of labour. The number of workmen may be so great that a strike of feasible dimensions is quite unable to reduce supply sufficiently to have ny effect in the way of raising wages. Thus, for
example, when Messrs. Bull had a strike of $t$ the new Law Courts to contend rew upon Belgium for what they wanted against, they Cany somewhat similar instances might be and got it arthermore, it is worthy of note that no cited; and badly any given class of working men think thatter how here are hundreds of other working men whey are used illing to accept that which the strike who are quite xample, we now and then hear of a strike reject. For gine drivers. Now, these men are in reality mucomotive the result is that the moment much envied srike takes place hundreds of and moment a railway erths present themselves These men have lle vacant hing to do with steam engines, either stationary engines, traction engines, or colliery locomotives. Others, again, a very short time the service of a railway can be fully carried on with such assistance, and the strikers find themselves beaten. The attempt to limit supply fails. If we are right in the line of reasoning we have pee no reason to doubt it-then strikes, instead of being potent elements in settling wages, are realy of very second-
ary power. They do, however, possess one peculiarity ary power. They do, however, possess one peculiarity
worth notice. When they operate at all, they affect wages much more quickly than any other influence, and it is to this, no doubt, that they owe most of their popularity. this, no doubt, that they owe most of their popularity.
Thus, for example, in process of time, the under-paying of Thus, for example, in process of time, the under-paying of wages ; but years might elapse before this was brought about, as in the case of the pattern makers which we have cited. Strikes, by taking all the labour out of a district, act much more promptly, but less permanently.
Under all the conditions, can it be proved that strikes pay the strikers? We think not; but of course, the answer must depend to a great extent on the cost of the strike. It is impossible to witness the effects of a great and prolonged turn-out; the ruin of homes ; the sacrifice of property the bodily health ; the load of debt incurred; the ruin to health of parents, without coming to the conclusion that strikes are far too dear. It does not appear that they con ever pay. If, further, we consider what they cost the country at large, and that they may drive trades entirely away from certain districts, or to other countries, it seems to us to be more and more difficult to urge anything in their favour They may be necessary but it can only be on the same principle that the great standing armies of the European Powers are necessary. We admit with regret that arbitration seems to have almost failed as a means of adjusting wages questions in this country. What is left we know not. He who would suggest some means of determining wages, less costly and less objectionable than strikes, and deserv would be accepted by men and masters alike, would not think it would be possible to award him riches and honours in excess of his deserts.
the continuous brakes return
THE continuous brakes return for the six months ending une last has just been issued, and according to our usua ing features to be found therein. It would seem that th otal carriage stock of the country now amounts to 47,04 vehicles. Of these $37 \frac{1}{2}$ per cent. are fitted with five descriptions of automaticic brakes, or rather, to adopt the cautious phraseology of the Board of Trade, with "brakes which appear to comply" with the conditions of the o brakes which cent. are fitted with thirteen other kind emaining $30 \frac{1}{2}$ make no pretence of doing so, and th These figures, however, show an improvement in the right irection-that is, in the extension of the automatic prin iple. The number of automatic brakes now amounts to 17,662, or an increase of 2597 in the six months, while for the first time since the returns have been issued the nonautomatic stock shows a reduction, there being 341 less han in the previous return. The gross increase
during the half-year may therefore be said to consist altogether of brakes on the automatic principle f we omit sectional brakes, and deal with con inuous brakes only, we find there are now 17,662 vehicles fitted with automatic brakes, and 6467 with nonutomatic brakes, and of the former over 60 per cent. are Westinghouse. But though the general tendency of the figures in this return-in principle, as we have said-leads
to what we have all along insisted on as the right direc-
tion, we cannot say that the brake question is much nearer
a settlement than it was, and we doubt very much whether a satisfactory solution will ever be arrived at without com-
pulsory legislation. We have frequently referred to pulsory legislation. We have frequently referred to the one using. his efforts towards this very desirable end end there are indications in the return, of fresh inventions, and consequently of further complications. For instance, the
matter is by no means simplified by finding that the matter is by no means simplified by finding that the
return from the North London Railway, the stock of which is fitted with the Clark-Webb brake, is now suddenly transferred to the automatic list, while there are still 6087 other Clark-Webb sectional brakes in the non-automatic list. The London and North-Western Company has, as is
well known, always exercised a baneful influence upon this subject, its efforts having been from
the first devoted to the extension of the Clark-Webb brake, and the suppression of other systems which are in every way superior. Some time since, Mr. Moon, the chairman, announced the intention of his company to
discard the chain brake, upon which so much money had discard the chain brake, upon which so much money had which, with the assistance of a good steam brake upon the engine, they hoped to be able to make answer every pur-
pose. What form this vacuum brake was to take was not pose. What form this vacuum brake was to take was not
divulged, and even now there would appear to be some doubt on the subject. In addition to 5518 chain brakes, the North-Western Company returns seventy-five carriages fitted with a brake vaguely described as "vacuum," but which it appears, on further search, can only be applied by the driver, and not by the guard; moreover, in answer
to question No. 2, Whether self-acting? we find it is said to question No. 2, Whether self-acting? we find it is said
to be "self-acting on a van only in case of a break-away." In the return from the North Staffordshire Railway mention is made of a brake called "Webb's vacuum," which is also applied only by the driver, and in answer to the question as to its self-acting properties, the reply is
simply "No." Whether the last-named appliance is the simply "No." Whether the last-named appliance is the
same as the former, we do not know. The modesty of inventors is well known; but it may be that the North Staffordshire Company has been premature in thus fathering an invention which is still in an embryo state. How ever, it would certainly appear that the North-Western Company finds it beneath its dignity to adopt any fully developed appliance, and is again bent upon having a
system which will bear the mark of its own genius That one company, or one man should now be answerable for introducing three or four brakes, certainly does not bring the prospect of an uniform system any nearer. Such a course serves only to check the elucidation of a problem already difficult enough.
Whatever the form of vacuum brake, however, which the North-Western Company intends introducing, it is to
be hoped it will manage to avoid such risks as, to the returns, are such risks as, ascording with the chain brake, and also those which are regularly recorded against the Smith vacuum brake. number of cases of overrunning stations during the half year have arisen from the failure of the vacuum
brake to act; and a perusal of these lists gives rise to very unpleasant sensations. For instance, the first report mentioned in this return runs as follows, from
the Cheshire Lines Committee:-" 7.15 p.m. passenger train from London-road station, Manchester, to Central station Manchester, ran through Stockport-Teviotdale-station." The brake failed to act. Such incidents have occurred so often that it is extraordinary that they have not been only be a question of time. Curiously enough this very place-Stockport-was on the night of the 12th inst. the scene of another illustration of the defective principle of several passengers. It would seem that as a heavy train, drawn by two engines, conveying excursionists from Doncaster races, was approaching Stockport on a steep down gradient, the vacuum brake was applied with the effect
that the train was broken in two. The front part proceeded that the train was broken in two. The front part proceeded
and the detached portion soon followed. A Chester pas senger in it says:-"We ran down the incline for a mile, I should say, amid awful sensations and screanis of 'put on the brake,' when we ran smash into the
first part of the train. I sat in an open third-class carriage ; as the trains met my companion was shot violently over the barrier into the next compartment, and we were all huddled together, the glass was smashed, the lights extinguished, and a scene of terrible confusion ensued." It is true an automatic brake would have pre-
vented all this, but how is the new London and NorthWestern brake, which is self-acting only on the van, to stop the hind part of a heavy train on a steep falling gradient? Can it seriously be considered necessary that Mr. Moon or some other magnate is to be violently shot out of a train in the fashion described above-it may be with the result of a broken neck-before the reas
of the Board of Trade are complied with ?
As has been shown before, frost is a fruitful source of failure with the vacuum brake, and many of the failures in this return are due to this cause, for which we doubt if there is any remedy. Others are due to the couplings
coming undone without warning, and a remedy for this defect has been attempted by providing a tell-tale gauge on the engine, the pointer of which should indicate whether the couplings are separated or not. An illustration of the use of this make-shift is given in the returns of the Great Northern Company, as follows:- "Vacuum pipes became
uncoupled. Driver fined for not uncoupled. Driver fined for not observing tell-tale gauge. Overran station." There can clearly be no proper tell-tale without an automatic brake, by which the driver would have been unmistakeably warned by the stopping of his many serious delays, vacuum brake has again suffered up. In our number of May 11th we pointed out the fact, clearly demonstrated in the previous returns, that these leak-holes gave a great deal more trouble, and, in fact, led to much greater complications than the triple valves in use with the Westinghouse brake, and this feature is
gons brake contains no mention mentioned often enough to show that they exist. The return for this brake is mainly a list of burst hose and mistakes on the part of the companies' servants. We may never eliminate the tendency of human beings to err, but whether these burstings arise from defective material or from injury, it should surely be possible either to provid a better article or to protect them from being damaged.

## dredging and embanking.

$\mathrm{I}_{\mathrm{T}}$ is much to be wished that some competent engineer treatise ontain the requisite material, should give us a quantities of earthwork which are shifted every year in different countries of the world for the making of railways, docks, drains, \&c., it is obvious how important it becomes that the best and cheapest mode of doing this should be generally known. Few will assert that our engineers and contractors are already perfect in this department, or that our practice in excavation leaves nothing to be desired. At present the shovel, pick, and grafting tool, worked by hand, are still the means by which most of our excavation is carried on, both in England and the colonies. In America the higher cost of hand labour has produced a more advanced state of things. In our number for September 14th we described the excavating machinery exhiStates for the making of cuttings and used in the United by the side of new railways. Unfortunately, no details of the cost of such excavations are forthcoming, which would enable us to judge how far they are fitted to replace hand labour on this side the Atlantic. Of course, however such machines are not a monopoly of the United States. Messrs. Ruston and Proctor, Appleby, Priestman, and others, have for some time past exerted themselves in perfecting and selling excavators of various types ; but here again we are not and repairs have ever been laid first cost, working cost, need hardly say that we should be glad to open our columns to any figures which these firms, or those who have employed their machinery, might be disposed to contribute But the subject requires something more than isolated monographs. It should be treated systematically in all its oranches, including, of cour
It is this latter branch of the question on which desire to say a few words. It is, perhaps, the more important and is relatively diminishing, from two causes-the first on ing that the more important and longer lines of railway till to close as made the tendency is more excavation by every possible means. It is possible, indeed that the spread of cheap excavating machinery may gradually cause a reaction in this respect. But however this may be, the excavation required under water is not at all likely to diminish, owing to the unfortunate tendency in nature to remove earth and sand from places where they are harmless, or even useful, and deposit them in other places where they are neither the one nor the other. There are two great examples of this tendency in the action of rivers on the one hand, and of waves and ocean currents on the other. Of the first we have a striking example in the case of the Mississippi, of which we gave some account in a recent issue; while there is scarcely a harbour on the coasts of the German Ocean which does not furnish a more less striking illustration of the latter. The modu not here be dwelt casen. The result in ell known, and need the deposit of a layer of silt at the bottom of the river or estuary, which lessens its depth, and must be artificially re moved, if the depth and water-level are to be maintained the same. In the case of harbours these conditions are imper tive, and consequently the problem thus resolves itself int het best form of dredger to be employed for the purpose In the case of rivers this is not so ; and as a matter of fact, in the rivers on the Continent, where this evil is most common and most serious, very little is done in the way dredging the silt deposited. The regular method is to counteract the evil by raising the embankments along the river, thus allowing its surface level to rise, and maintainng the depth unaltered in spite of the higher level of the received a severe practical reprimand in the problem floods at Szegedin, which occurred in the spring of 1879 In April 11th of that year we dealt with the subject at at length, pointing out that the system, even if cheape disaster ; but that it was in fact dearer and more trouble some, provided only that proper dredging appliances could be obtained
Since the date of that article nothing has occurred to on the contrary, furthess of the conclusions then drawn ratio then assumed to hold between the cost of tred the and embanking, viz., as 1 to 5 , is really higher than the truth. A good deal of information on dredging has since mecome accessible, though it is by no means as full as it nical Engineers for 1879 contains a paper by Mr. Buckley on the "Fouracres Dredger," which gives some useful figures on the subject. It appears in the bucket dredger may be taken at ordinary work by yard, when the circumstances are favourable and the quantities so large as, for instance, is the case on the Clyde working cost of dredging; the remainder is absorbed by repairs, and by interest on first cost, reckoned at 10 per cent. In India, owing to the climate and the high cost of skilled labour, the working cost alone is about 6d. to 9 d . per cube yard, and the total cost about 15d. On the other canal, the total cost was onger, as watna $1 \frac{1}{2} \mathrm{~d}$. This dredger was a comparatively rough apparatus,
fitted up with a crane in an ordinary barge. The dredge when consists of a single bucket made in halves, which The two halves have of clolinder with a horizontal axis The two halves have, of course, sharp edges, and specia themselves in the sand, and then to close upon the mass comprised between them. To the same class bel
Messrs. Bruce and Batho, which well-known dredger of earlier in the field. This which we believe was really described, but a model of it has been exhibiter been fully described, but a model of it has been exhibited on variou or bucket is here of a hemispherical form when The dredge or bucket is here of a hemispherical form when closed, and point. Each of these when open has, therefore lowest end, and somewhese when open has, therefore, a sharp heaver. This deeply, even into hard or clayey soil. When to penetrate required depth hen buried to the means, and the lifted to the surfer wise as required. The apparatus may be worked, like that of Fouracres, by appary of Fouracres, by an ordinary crane, but in practice,
and especially when of large size, it is worked by and especially when of large size, it is worked by
hydraulic pressure. For sea-going vessels the bucket is suspended from one end of a strong iron beam: below through wh openig the bothom of the sessel, being so arranged that it swings out of the whe shoot bucket as it passes, and then drops underneath way of the the contents. The opening can be closed when it to receive is not wanted and the ding bucket For canal work every action of the as ordinary steamer. by hydraulic machinery and is co the th performed be managed by nive, and few, and none of them, excurers. The working parts are are exposed to the them, except the journals of the bucket In the most In the most recent examples the hydraulic pumps are uniform, and an accumulator, which renders the pressure the cost of fuel by 50 er cent so completely as to reduce provement the superin per provement, the superintending engineer of the Punjaub, in there lift 2000 cubic $2 \frac{1}{2}$ d. per cubic yard To this to $2 \frac{1}{2}$ d. per cubic than that of a bueket dred during two years' working sere and the expenses of repairs A special form of this dredger
or the canals of China enormous, and is China, where the dredging needed is tive manner. The difficulty here is that the numerous bridges, with which, as represented on crockery, we are all familiar, have only a span of some 6 ft . or 7 ft ., and a height familiar, have only a span of some 6 ft . or 7 ft ., and a height
of 3 ft . or 4 ft . above water level. Through this restricted opening the dredger must pass. The difficulty has been got over by building the dredger as a long narrow boat, with a pontoon attached on either side. In passing to the deck. On arriving at the scene of action the beam is raised, the dredger is anchored, and the pontoons are brought up alongside to act as platforms for workin
Lailway, Mr. A. A. Langley, now engineer to the Midland Railway, described to the Institution of Mechanical Engineers in 1882 the so-called "Bazin dredger," which has Lowestoft, and also in different districts of the Continent by Mr. Charles Ball. This dredger consists simply of a centrifugal pump mounted on a barge, from which a pipe This pipe is furnished with a mouthpiece, which digs into This pipe is furnished with a mouthpiece, which digs into
the silt, and on starting the pump this silt is driven up the pipe by the head of water, and delivered into a trough on the top of the barge, whence it may be discharged as required. This form is of course applicable only in soft material, as gravel or sand, and even with mud is of doubtful utility, from the great amount of water which is carried $p$ with it. In Lowestoft harbour the total working cost ncluding repairs, was about $2 \frac{1}{2} \mathrm{~d}$. per cube yard, with lead of two miles. To this may be added about $\frac{1}{4} \mathrm{~d}$. for small as compared with any other class of dredger lar dredgers used in Holland have delivered the spoil through pipes to a distance of 1200 yards, thereby saving all the labour of discharging. A similar dredger, no floating, but mounted on wheels, was built for the South of France at a cost of $£ 480$, and was tested to dredge 750 tons per day.
Looking at the information thus obtained, we are dis posed to accept the estimate made by an engineer of great experience with one of the dredgers we have described where the work is under favourable circumstances, an dredging, all told, should not exceed 1 d . per ton. We need hardly say that no process of land excavation, We with the most improved machinery, has ever approximated to such a figure. The result is one which cannot be too prominently put forward, or too vigorously urged upon prominentiy put forward, or too vigorously urged upon removal of silt or earth from below water, whether the Mississippi, the Po, or the Theiss; being surely the cheapest, as it is the most direct means of maintaining channels at their required depth, whilst at the same time frequently attended the almost necessary failures occurring in the rival process of embanking.

Seven hundred and eighty-two miles of railway to be con structed within the United Kingdom represents a quantity of such a length, however, powers have been granted to existing and new railway companies during last session. An expendi-

ture of $£ 30,682,100$ has been authorised for new lines and connected works, and nearly three millions and a-half sterling | 150 miles of tramways, which have also been authorised. Four |
| :--- |

of the companies are each authorised to expend over two millions sterling, viz., the Great Eastern $£ 2,250,000$, for fifty miles of new
railways in Essex, and other works ; the London and NorthWestern $£ 2,433,000$, for fifteen miles of new line and widening of lines ; the London and South-Western, $£ 2,013,000$, for thirty and Yorkshire, $£ 2,600,000$ for various works. Among the new companies in the metropolis and the locality immediately around which have received these powers, is the London, Harrow, and Hendon Company, which is authorised to construct twelve miles
of railway at an outlay of $£ 373,300$. The lines proposed to be of railway at an outlay of $£ 373,300$. The lines proposed to be
constructed are from the authorised Beaconsfield, Uxbridge, and constructed are from the authorised Beaconsfield, Uxbridge, and
Harrow Railway, at Harrow, to Hendon, and the Great Northern -Edgware and Highgate branch - Railway, north of Highgate, and to the Alexandra Branch Railway; also branch lines to the at Harrow, and to the Metropolitan Outer Circle at Kingsbury at Harrow, and to the Metropoiitan Outer Circle at Kingsbury.
Fifteen tramway Bills, eight of which include the use of mecha-
nical power, have been sanctioned for the construction of thirtynical power, have been sanctioned for the construction of thirtye $£ 347,000$ are for the construction of fourteen miles of tramway within the metropolitan area-namely, eight miles in the Nor-
wood and Croydon district, at a cost of $£ 150,000$; three miles wood and Croydon district, at a cost of $£ 150,000$; three miles
in Brentford and Isleworth, at an outlay of $£ 150,000$; and three miles in Peekham and East Dulwich, at a cost of $£ 47,000$ Twenty-six Board of Trade applications for tramway proviional
orders were granted, in sixteen of which mechanical power was orders were granted, in sixteen of which mechanical power was
sanctioned, and in nine the Hallidie cable system. There will thus be a good deal of railway and tramway making, and plenty
of new stock will be required within the next year or two of new stock will be required within the next year or two. outlook.

## wages in the iron trade.

The series of ironworkers' meetings referred to at the late assembling of the Mill and Forge Wages Board have been
inaugurated this week. At West Bromwich Mr. Capper informed the men that he was of the opinion that the present price of labour in the ironworks was too low, and that they were fairly entitled to an advance. A scheme, propounded by a workman, that the minimum should be no lower than 8 s . per ton, and rise and fall 1s. with every 20s. in the selling price of iron, did not,
however, meet with Mr. Capper's support. He contended that it was very difficult, when arranging a sliding scale, to secure resp.ctabe minimum, and the present minimum of 7 s . 3d. per
ton was better than none at all. The result of the meeting revision in the wages' basis that should include all classes of iron, with a premium of 18 in in excess of equal shillings to pounds
sterling. Excepting that an improved sliding scale should have as its basis 8 . per ton, a similar resolution was passed at a meeting at Brierley Hill. The anticipations of the ironworkers in
this district are being upheld by similar action being taken by this district are being upheld by similar action being taken by
the ironworkers in the Sheffield district; and inquiries are reachthe ironworkers in the sheffield district; and inquiries are reach-
ing firms in Wolverhampton showing that, great importance is attached to what is going on there in wages' matters by the iron-
masters in Scotland, where wages are regulated by those fixed by the Wolverhampton Board.
an electrical patent case.
recently tried in the the United States, in which the representatives of the owners of the Gramme dynamo patents were the plaintiffs. Nuage York, has just given his decision the Southern District of by the Gramme Electrical Company against the Arnoux and Hockhausen Electrical Company, in equity, for the infringement of letters patent granted to Zenome Theorhhile Gramme and
Eardley Koms Charles d'Ivernois, October 17th, 1871, for seventeen years from that day, for an improvement in magneto-
electric machines. It was set up for the defence that the electric machinined a patent in Austria on December 30th, 1871, ofice on August 17th, 1870. The Court holds that as the Austrian patent expired at the latest on December thath, 1880 , with the Austrian, there was no ground for this suit in equity when it was brought. The judge added : " "The novelty of the the
invention patented is attacked, and it is also contended that the patent is invalid, because it was issuued for a t term of seventeen
years and not for a shorter term. But the consideration of these years and not for a shorter term. But the consideration of these
questions is unnecessary, and the bill is dismissed with costs." It would appear, therefore, that any one in the United States can now make the Gramme machine.

## the trevithick memorial fund

In our impression for February 16th, 1883, we brought before our readers a proposal for the formation of a fund for the erec-
tion of a memorial to Richard Trevithick. A committee has
been been formed, and we are happy to find that success appeers to
attend their labours. A list of subscribers has been published, attend their labours. A hist on subscribers has been published, and at the other 10 s subscribed in pence by the workmen of
Mr. P. Brotherhood; we imagine that this latter contribution would be more pleasing to Trevithick than the former. A fair
sum has been collected, but more is wanted and more will. we sum has been collected, but more is wanted and more will, we
have no doubt, be forthoming. Mr. Henry Chapman, of Vic-toria-street, is , the treasurer. A memorial edition of the "LLife
of Trevithick," from, we suspect, the pen of Major Davis, has of Trevithick, from, we suspect, ho, pe. Charing-cross. It is a
just been published by Messrs. I
pamphlet of but twenty-four pages, but it is profusely illustrated pamphlet of but twenty-four pages,
and very well written; it leaves nothing indeed to to be desired,
and we heartily recommend it, not only to those who are specially interested in Trevithick, but to all who care for an extremely interesting chapter in the history of the steam engine. We trust
that such a generous response will be made to the request of the committee for more funds, that a memorial will be provided really worthy of the genius of a most able engineer.

The FLorida Ship CANALL - The engineer of the Florida
Ship Canal has presented a report as to the feasibility of Ship Canal has presented a report as to the feasibility o
cutitig across the peninsula, and thus avoiding the long and
perilous journey round through the Florida Straits. The
The
 dols.; harbburs, at each end, $4,500,000$ dols.s. engineering, right of
way, and contingences, $5,50,000$ dols
proposed canal is 137 the miles, proposed canal is is 137es, iniles, and for the whole distance the highest
elevation to be cut through on crossing the watershed is only $143 f$.,
en the and this but for a a short distance. The advantages of the canal are
a great saving of distance and risk between the Mexican Gulf and the Atlantic ports, the saving between New York and New Orleanns
being 500 miles, and between New York and Pensacola 600 miles.
The cost will be lessened also in the smaller proportion of canal
dues to the insurance charged for vessels going round the Straits,
which often amount to from 500 dols, to 800 dols.

## THE IRON AND STEEL INSTITUTE.

Middlesbrough-on-Tees must decidedly be regarded a the birthplace of the Iron and Steel Institute-althoug the idea of its formation was started at Newcastle, in paper by the late Mr. John Jones, read before the North of England Iron Manufacturers' Association on the 29th brough men, and the first general meeting was held a Middlesbrough, under the presidency of the Duke of Devonshire, in September, 1869.
During the fourteen years which have elapsed between the first meeting and that which began last Tuesday the Miportance of the Cleveland district and its centre, Middlesbrough, has greatly increased; and this is due most entirely to the development of the iron manufacture, and more lately to the commencement of the steel
manufacture. It is estimated by Mr. Edward Williams that the quantity of pig iron made in the district during 1869 did not exceed 1,500,000 tons, whereas in the year ending with June of the present year $2,730,000$ tons were produced, the number of blast furnaces having increased rom 93 to 117 , and the weekly production per furnace
from 310 to 440 tons. Although the make of finished ron was nnt very much greater in 1882 than in 1869 being 726,000 tons against $600,000-$ about 400,000 tons o steel are now produced yearly in the district, the acid pro-
cess being adopted at Eston, Darlington, and Tudhoe, while the new basic process has been taken up actively by Bolckow, Vaughan, and Co. and the North-Eastern Stee Company
Thus, the iron mines of Cleveland, which suffered a temporary check through the universal superseding of iron
by steel rails, which require pure ores for their production by steel rails, which require pure ores for their production
by the old Bessemer process, are in a fair way to receive a faller development than ever, thanks to the dephosphorising process brought into practical working by Messrs. Thomas nd Gilchrist, so ably seconded by Mr. Windsor Richards. Nor could any time or place have been more apropos for
conferring on Mr. Thomas the Bessemer gold medal for the present year, which, on account of his regretted absence hiough ilness, was received on his behar from the Pre sidents hands by Sir Henry Bessemer himself.
Another interesting event in the first
Another interesting event in the first day's proceeding was the formal presentation to the Institute, by Mr. T
Hugh Bell, on behalf of his father, of an advance copy of Hugh Bell, on behall' of wis father, of an advance copy of
Mr. Lowthian Bell's work, "Elements in the Manufacure of Iron and Steel," which was begun for the British Iron Trade Association, but has so grown in course of pre-
paration that its presentation to the technical body seemed more appropriate. This circumstance also was tinged with sadness, because the state of Mr. Bell's health had prevented his finishing the work, so as to be published, as he intended, concurrently with the meeting, and also the
reading of his promised paper on "The Use of Raw reading of his promised paper on "The Use of Raw
Coal in the Blast Furnace." The sympathy with Mr. Bell and his family, expressed by the President,
found a ready echo among the members generally found a ready echo among the members generally.
The welcome of the members to their home, as it were, was appropriately given by Mr. C. F. H. Bolckow, chair man of the Local Executive Committee, who commented upon the remarkably rapid progress of the Institute, the
number of members being now 1350 , including the sixty elected on Tuesday
muelson, M.P., F. his address the president, Mr. B. iron trade were best met by effecting fluctuation in the iron trade were best met by effecting economy in the pro-
duction of that article which was of the first importance to all engaged in the trade, and it was the special mission of號 that, while they were doing their best to cheapen the production of iron and steel and encourage its consumption the railway companies would second such efforts by proveying the finished products at the cheapest possible rate. He also hoped that the endeavour to preserve the peace
between France and China-which was the Granville's absence-would be crowned with success, because it was most important to the country at large, and not least to the iron manufacturers.
Che first papers taken were those on new methods of Simon-Carvè System," by R. Dixon, Peases' West, and "The Jameson System of Coke Manufacture," by Mr. J Jameson, of Neweastle-on-Tyne, the object of both methods being to produce a high quality of coke for are now generally wasted volatile matters th having the management of Messrs. Pease's extensiv coking establishments in the county of Durham, was instructed to visit the Bessèges works of the Terrequainted with coking, and its applicability to the coal of the county of Durham. Having reported favourably, he was instructed to proceed with the erection of a battery of twenty-five ovens, with adjuncts for utilising the waste products, not power and corched to the twenty-iive ovens, but of such advantageous, The paper was designed merely to give read in 1880 by Mr. H. Simon. There are twenty-fiv ovens, each 23 ft . long, 6 ft . 6 in . high, and $19 \frac{1}{2}$ in. wide, with side and bottom flues, the capacity of each oven being equal to a charge of 44 tons of coal. The cost of the an equal number, twenty-five, of pertt, ordinary beehive ovens, built on the same site as the Simon-Carvès ovens, would be approximately $£ 5710 \mathrm{~s}$. 9 d . per oven. Up to the date of this paper the battery of twenty-five ovens has been working on gas 215 days, during which time 7042 -or 7703 per cent.-of good coke; and the bye-products from the above quantity of coal were 43,164 gallons of tar, and 195,076 gallons of ammoniacal liquor, or $6 \cdot 12$ gallons
of tar and 27.70 gallons of ammoniacal liquor per ton of
coal, the liquor being 6 to 7 deg . Twaddell. The cost of coke-burning, including all labour connected with obtaining he bye-products. amounts to $2 \mathrm{~s}, 3 \cdot 96 \mathrm{~d}$. per ton of coke vens , the author expected, with a larger number of production be somewhat reduced. In comparing thè coke ovens with ordinary beehive in the simot-C find hat the yield is 15 per cent. more in the Simon-Carvè vens, which is equal to 1056 additional tons of coke from he 7042 tons of coal. The extra cost of labour per ton o coke produced in the Simon-Carves ovens over that of the ordinary beehive oven is 1 s .331 d . per ton, which cover expenses connected with obtaining the bye-products.
The Jameson process has already been fully described and illustrated in our pages. It is for effecting recovery of volatile products in the beehive oven worked in the ordinary way, except that suction is applied to the oven bottom while he kind of being coked. The products vary greaty win arieties of coll operated upon. Phe results or from 3.2 to $13^{\circ} 5$ gallons of oiv (o) $1: 3 \mathrm{lb}$. of sulphate of ammonia. The yield of coke at Pag Bank Colliery-Messrs. Bell Bros.-is 675 per cent, and at
Tudhoe Grange-Weardale Irom and Coal Co.-70 per Tudhoe Grange-Weardale Iron and Coal Co.- 70 per cent. At Felling the range is from 60 to $77 \cdot 75$ per cent.
The appearance and quality of the coke are absolutely The appearance and quality of the coke are absolutel phur is reduced. The cost of working the recovery process, including repair, is stated to be about $1 \frac{3}{3} \mathrm{~d}$. per ton
of coal. The cost of converting ovens is stated to be overed by $£ 20$ each, including all necessary appliances nd the converting power of each oven appears to be 1 tons per week, or 1.57 tons per oven per day. The gas in
the Jameson process is available for use as fuel. The pecial advantage of this process appears to be that it i vailable with existing plant, that the coke is made in he ordinary way, and no special men are required. Moreover, the cost of conversion of ovens, and of the
recovery plant, is very small, while the converting power ocovery plant, is very smail, while the converting power epairs, inconsiderable.
The discussion of these two papers, taken together occupied the remainder of Tuesday morning. It was
opened by Mr. Henry Aitken, of Falkirk, whose system opened by Mr. Henry Aitken, of Falkirk, whose system
had been referred to in Mr. Jameson's paper. He defended the beehive oven, stating that it could be contructed so as to give within 1 or 2 per cent. of what is btained in a retort, that it made excellent coke, and proHuced a very satisfactory quantity of tar and ammonia.
He thought sufficient weight had not been attached to the value of a silvery appearance in coke, because this silvery kin was almost entirely composed of pure carbon, which prevented the coke from suffering in its downward passage Me bast
Mr. Stevenson observed that furnace managers preferred light, silvery, hard coke, because if the coke be too solid, the air cannot get through it, but it passes down uncon-
sumed, and floats upon the slag. There were now twentysumed, and floats upon the slag. There were now twenty-
five Simon-Carvès ovens, and twenty-five more were soon to be erected ; he would suggest that two other firms who lead the van of progress, say Messrs. Bolckow and Vaughan and Messrs. Bell Bros, erect twenty-five more furnaces each, so that Mr. Edward Williams might keep a furnace going entirely with coke from the Simon-Carves ovens, and then give the members the benefit of his experience. Different Systems of Hydraulic Cranes for Steel Works," by Mr. R. M. Daelen, Diisseldorf. This was a descriptive paper, which would be unintelligible without drawings, was followed by a paper "On a New Form of Centre Crane for Bessemer Plant," by Mr. T. Wrightson, which may be thus described:-A strong wrought iron post is carried from a socket in the foundation to a socket in the roof. This post is enlarged in diameter at its lower portion. A cylinder works up and down upon this part, the top gland of the cylinder working on the smaller diameter of the post. Thus when water is admitted into the cylinder through a hole in the post, the cylinder itself rises with a lifting power equal to the difference of the areas of the post multiplied by the effective pressure of the water. Further, by flattening one side of the post at the larger diameter, and adapting the lower gland-box to this form, a sliding-key arrangement is produced, so that for horizontal rotation the cylinder and post move round cylinder, and the platform for supporting the ladle is poised upon these in such a way that a very slight rocking motion of the platform upon these trunnions can take place. The maximum made very rigid by trussing, and half the balanced by a fixed counter-weight at the opposite end of the platform. We have still left one half the weight of the steel unbalanced, the effect of which we wish to neutralise or remove to another portion of each end of the girdery firmish this, chains are led from fixed in a strong frame at the top, and forming part of the crane post immediately under the top socket, so that the and cylinder. Throtate horizof wally with passing over their respective sheaves, descend to a heavy balance weight of annular form surrounding the upper portion of the crane post, which acts as its guide, the points of connection passing sets of chains being the same, and in a plane or the other sot tha chains. Let us first imagine the ladle half full of steel. It is obvious that the fixed counterweight at the opposite end of the platform balances this amount of steel, and the two sets of chains neutralising so much of the dead weight of the platform, and thus saving so much water pressure in the cylinder. Secondly, let us suppose the ladle to be
filled with steel. Half the total weight of steel then becomes preponderant at that end, and tends to bring down
the ladle end of the platform. This, however, cannot tak place, owing to the rigidity of the platfors, The th sion of the ladle raised to an equere its chains, whil the elevation of the opposite end slackens its chains. By on the tight whole weight of the annular balance co any preponderant weight in the ladle is balanced. As the seel is run into the ingot moulds the preponderance become ess, until, when more than half is run out, the preponder ance is transferred to the opposite end of the platform. this takes place the opposite chains are tightened by the action of the fixed balance-weight, until, by the time the whole of the steel has run out of the ladle, the entire weigh of the annular balance is hanging on the set of chains pposite to the ladle, and in fact balances the whole effect the fixed weight on the platform. This transmission of the forces is entirely automatic. The annular balance by means of this special mechanical arrangement, divides its weight between the two ends of the platform in the exact proportions required to maintain equilibrium, and this without effecting any of the other motions of the crane which may be going on at the same time. In the crane ately erected by Messrs. Head, Wrightson, and Co. for the North-Eastern Steel Company, on this principle, 15 tons at a rake of 26 ft . is capable of being lifted and turned. The possible to the top and bottom, and the maximum horipontal strain at the top support does not exceed $4 \frac{1}{\frac{1}{2}}$ tons A few well-arranged tie-rods in the roof is all the support necessary to meet so small a strain
The discussion was opened by Mr. E. Windsor Richards, the ingenuity of Mr. Wrightson's invention, failed to see how it would prevent damage, in the event of an accident any more than the ordinary centre cranes. He would like to see if Mr. Wrightson could find out what quantity of steel was left in the ladle, so that in turning it would be possible to save loss of steel. Mr. Walker agreed with the marks of the previous speaker, and pointed out another ifficulty in the shape of the fixture of the crane. He ery strongly objected to the use of chains in work ing, as they were liable to breakage and disorder. method, however, and are of hydraulic power in this labour should be practised. economy in the amount of mate of the efficiency of the He always measured his estimen employed. Mr. Snelus, of the West Cumberland Works, stated that in the works under his control he had nearly every kind of crane at work ; and he proceeded to give an account of their comparative efficacy and economy He had introduced certain improvements of his own, which had worked satisfactorily. Sir H. Bessemer said that when the price of steel was high, economy in connection with so small a matter as the crane was not worth great attention, but the fall in prices had brou not worth great notice of ironmasters. He referred to the patents which he had taken out on the subject, commenting specially upon one which provided a counterbalancing weight $\mathrm{Mr}_{\mathrm{r}}$ Daelen and Mr. Wrightson having replied, a vote of thanks was passed.
A paper was then read "On Recent Improvements in London. This," by Mr. Edward A. Cowper, M.I.C.E., an account of several short history of the invention, and begged those who are not intimately acquainted with the subject to bear in mind that the regenerator is not simply a mass of brickwork, alternately heated and cooled; but it is also a mass, the top of which is always as hot as the gas flame can make it, and the bottom always cool; whilst between the two there is a zone of gradation, which is near the bottom when the stove has completed its turn on gas, and commences its duty of heating the blast, and near the top when its turn at the latter duty is completed. The smallest fire-brick stove ever made was one made for the table, and shown by Mr. Cowper, to explain the action of regenerative furnaces. The interior is only 6 in . in diameter, and the regenerator, 12 in . deep, is composed of a mass of clean broken tobacco pipes. On heating it for three hours with a gas flame, the top became only just mop warm, and yet when cold blast was turned in at the top, it cut lead well as it issued as hot llast at the bottom, having only traversed a regenerator 12 in . deep, as just stated. This thoroughly proves huw perfectly a regenerator works when heated at one end and cooled at the other by the introduction of cold blast With a view to increase the power of the stove, he is now arranging to draw off the products of combustion from several points opposite to the circular flame flue, which is placed opose as may be almass the same, distribution of the causing a more perfect and of the cold blast in coming ing out being in this way in coming in, the power of the stove improvement is in the burner for theased. Another recen in the bottom of the circular fase gas, which is placed numerous experiments mad with from forms, that the greatest quantity of heat is prou the best and hottest flame obtained when uced, and properly burnt at one place, and is kept well the gas is one solid flame. It then turns over under the demer a distributes itself in the best possible manner throug the whole area of the rerer with a statement of the advanta The next paper read was "On Blast Furnace Eeno. in Relation to Design," by Mr. R. Howson. This was somewhat discursive paper, extremely technical, dealing means to be adopted in preventing them. It cannot be abstracted with any advantage.
The discussion on this paper was begun, and was inter rupted by the announcement that a deplorable accident had taken place at the North-Eastern Steel Works, and the meeting was immediately adjourned. It appears that few of the members, instead of going to the that fellows' Hall to hear papers read, proceeded in the morning
to the North-Eastern Steel Works to witness the manuacture of basic steel. About twelve o'clock a blow wa into a ladle and lifted on to a bogie drawn by a small engine. In some way, not quite satisfactorily explained, be balane of the quite satisfactorily explained, teel was poured out on the foor below, 10 mon molten isitors and worm who was close by Mr. S. Davison, manar of the bury Ironworks, near Wakeid, is fast is follow. Mr. Davison did not do so, but made spring at a lift which was at hand, and instantly involved himself in a bath of molten metal. The ft was lowered as speedily as possble, when it was been burned from his body. His face was fearfull charred. His hair and whiskers had disappeared, and his whole body bore marks of fearful injury, from which there was no hope of his recovery He was taken tretcher to the North Riding Infirmary, where he died etween eleven and twelve o'clock last night 1 mied thers who received injuries were M. Simon, inventor of process; Mr Leonard Cooper f Leeds; Mr. James Whetham, of Leeds ; and Major Stevenson, of Middlesbrough. Several workmen were also injured. One of them, named Ramsden, is not expected to survive; while the rest are all badly burned. Mr Davison was about forty years of age.
After luncheon a trip was made to the Port Clarence must reserve particulars until next week

HALL'S DETACHABLE PITCH CHAIN.
We illustrate below a form of pitch chain exhibited during the York Show of the Royal Agricultural Society, by Mr. Charles
Hall, Saville-street, Sheffield. Its construction will be readily

understood from the plan and elevation annexed. It is made of malleable castings. A link can at any time be removed in the
way shown; but while the chain is at work a link cannot become detached. This is a very simple, efficient, and inexpen e chain.

BREECH MECHANISM FOR HEAVY B.L. GUNS Afrer many experimental trials with various devices, our Army Probably, the first successful application of this kind of sorew to a B.L. gun was made by the late John P. Schenkl,
Boston, in 1853. F. Krupp, and the German,
Austrian Ordnance Boards, prefer the primitive wedge; while Sir
William Armstrong and the French Ordnance Corps prefer silited scrmstrong and the French Ordnance Corps prefer the
slote wedge is the only system which has been tested possiv/jice. The slotted sorew, though strongly recommended Chinese may taign out as did Sir W. Armstrong's invention in the
Cof 180 . Had the brave E Eyptian ginner Alexandria had a few of Sir W. Armstrong's latest guns, we to-day might know more of the capabilities of the slotted screw fermature
The single Nordenfelt the heavy guns opposed to it, and scored them in such to make it almost certain that any projection in such a manner a guns would have been hit. That is to say, if the end of a Krupp wedge had projected beyond the body of the gun-as it must
project during the loading of the gun- it would have been hit by project during the loading of the gun- it would have been hit by
the machine shot; or, if the slotted screw fermature had been opened for loading it would have been hit. When the Krupp and
slotted screw fermet is specially exposed to injury. In the case of the Krupp wedge, it is neeessary to slide the wedge outward in its slot, to open the bore
for Ioding. The outer end of the wedge is then beyond the circle end of the wedge, with its two machine shot, being without shelter, except such partial shelter of the cheek of the carriage affords. In the case of the slotted sorew, its seat in the swung upon its hinge outward. It is partially sheltered ben the cheek of the carriage and behind the gun; but a considerable part of this delicate machine is unprotected, and may be hit by any
nissile. A projectile, or a fragment, might smash the tray whe nissile, A projectile, or a fragment, might smash the tray, when needed, but it is difficult to see ${ }^{\text {th }}$ how to attach it in th is greatly manner to the gun. It may be said of the wedge, that less of its mechanism is exposed, beause of the thick hoop in
front of the slot. It Itcertainly does afford some shelter, the hoop was increased into a mantelet, by increasing the dia actuating screws are liable to be bent or broken, and except buwo which the wedge might receive, this might be the extent of th injury from machine fire. Any casualty of this kind might
seriously delay firing. The slotted screw fermature permits a close seriously delay firing. The slotted screw fermature permits a close
visual inspection after each fire ; but coupled with this advantage is tha inspection after each fire; but coupled with this advantage
is therent exposure to being hit and disabled. It is also liable og get fouled, and needs frequent cleaning to keep it in working
order. Firing If ant from this cause
If all of our guns were to be mounted in turrets, or in Gruson
casemates, on muzzle-pivotted.carriages, they would nop be pasily
disabled. But most of them will be mounted, as heretofore, in
earthworks. Many of these earthworks will be newly made, so that the enemy's projectiles will scatter dirt in liberal quantitites
ther over our guns. Many must be built on ground so low that our purposely omitted to consider the dons they must ight. We have ordinary gun and mortar fire, because this new danger from shells, The machine guns alone should have early and special attention, augment machine fire in future attacks, and render it more more necessary to shield the mechanism of our B.L possible. It is a moot case whether the slotted sorew fermature is best fitted for guns in earthworks, where hard and steady work
may be required of them. Is it not wise the weak points which are insparably sonected with screw fermature, and not wait even for a Chinese war to foroe
them upon our attention?-United States Army and Nary Journal

ExprriminNTS With STEAM Whistlise, - Messrs. Lloyd and Gazette, describe certain interesting experiments which they hav carried out. They were made on a locomotive, and with stean varying from 60 bb . to 135 lb. pressure, and most of them with
whiste having a bell 4 l 1 in diameter 3 3in long -inside-and an annular steam opening of $\frac{1}{\mathrm{in}}$. wide. This of F sharp, at 90 lb . of $G$, at 110 lb . of A, ond at natural, at 125 lb . to 130 lb of C sharp in alt. The distance between the steam opening an the power of the sound was sensibly lessened, but its pitch win altered relatively but half a tone. When, on the contrary, it was
diminished to Tin. and to 7 zin., the whistle would sound nothing
but its supertones, or "squeal" as the boys call it. The bell in but its supertones, or "squeal" as the boys call it. The bell in character, and the lip or edge carefully chamfered $1 m$, not a har edge, set so as to stand exactly over the steam opening. The the from Attleboro' a distanil night, it has been heard at Mansfield repeated the experiment with a bell of the same dimensions, but made of brass tubing, annealed, hammered, and then heated andin, with somewhat the same results, the intensity of the sound was made with an iron whistle of the same size, which was un reduced. The last trial was made with a whistle 64in. $3 \frac{1}{2}$ in. long, and set over an annular opening $5 \frac{7}{8}$ in. diameter, blow at a pressure of 150 lb . The sound given by this whistle was
greatly inferior to that of the first one, lacking power and which was of tone, which they attribute to the size of the bell, as to make of it what Professor Henry calls a "resounding cavity. As confirmation of this, they add that they took a bell of the size frst named, and cut into it three longitudinal and three perpen-
dicular slits 3 in . long, which had some effect on the character but none on the power of the sound. With regard to the penetration
of the sound obtained from the whistle in distinction to othe sounds or noises made at the same time, the greatest effect was
obtained by "dragging" the whistle, as it is termed; that is, gradually opening and closing the valve, by which means a grada
tion of five semi-tones peculiar appreciation of this change of relation-as in an organ
the effect of power is gained more from the crescendo of the swell than from the full organ itself.
A Railioad in Palestine.-The first railroad in Palestine is as the Jordan. It is to run between Acre and Damascus, and it oalled the Harmidié line, because it is named after his presen the firman has been granted so easily lies in the fact theason why through a great extent of property which he has recently acquired
to the east of the plain of Esdraelon. The concession is held by ten or twelve gentlemen, some of whom are Moslems and some the most influential are the Messrs. Sursock, bankers, who own the greater part of the plain of Esdraelon, and who have, there fore, a large interest in the success of the line. Starting from
Acre, it will follow the curve of the bay for ten miles, in a southerly direction, at a distance of about two miles from the beach ing the Kishon by a 60ft. bridge, it will turn east at the junction oot of the Carmel range, so as to avoid the Kishon marshes, it will pass through the gorge which separates that mountain from Esdraelon. This plain it will hills, and debouch into the plain of ion for Nazareth will be distant about twelve miles from the stathere may, however, be a short branch to the foot of the hills. So of 210 ft ., so that the grade is imperceptible. It now crosses the峟 ncline as far as Beisan, the ancient Bethshan, and every mile of he country it has traversed so far is private property, and fairly owing to malaria and partly to its insecurity, been abandoned to fall others which the passage of railway is likely to transfigure, for the abundance of the water, which is now allowed to stagnate in marshes, and which causes fertility and natural advantages, which would, with its great fertility and natural advantages, which would, with proper
drainage, render it the most profitable region in Palestine. Owing to the elevation of the springs, which send their copious streams across the site of Beisan, the engineering required to carry the line down to the valley of the
Jordan, here 800 ft , below the level of the sea, which is then fol owed north as far as the Djisr el Medjàmieh. Near this ancient Roman bridge of three arches, which is used to this day by the caravans of camels which bring the produce of the Hauran to the oast, the new railway bridge will cross the Jordan, probably the
only one in the world which will have for its neighbour an actual only one in the world which will have for its neighbour an actual
bridge in use which was built by the Romans, thus, in this now semi-barbarous country, bringing into close contact an ancient and a modern civilisation. After crossing the Jordan, the line will follow the banks of that river to its junction with the Yarmuk, which it will also cross, and then traverse a fertile plain of rich ridge which overlooks the long and four wide, to the banks of the ridge which overlooks the eastern margin of the Sea of Tiberias.
This is the extent to which the survey has been completed. It is not decided whether to rise from the valley by the ridge which
overlooks the Yarmuk, or to follow the east shore of the Lake overlooks the Yarmuk, or to follow the east shore of the Lake of
Tiberias to the Wady grade by which to ascend nearly 3000 ft . in about fifteen miles. This is mity to the steep of engineering on the line, and is in close proxiare said to have rushed into the sea. Once on the plateau, it will traverse the magnificent pasture lands of Jaulan and the grain-
growing country of Hauran, with probably growing country of Hauran, with probably a short branch to
Mezrib, which is the principal grain emporium, and one of the most important halting-places on the great pilgrimage road from the most cus to Mecca. It is calculated that the transport of grain amas from this region to the coast will suffice to pay a large dividend upon the capital required for the construction of the road, which
will be about 130 miles in length. The grantees have also secured will be about 130 miles in length. The grantees have also secured
the right to put steam tugs upon the Lake of Tiberias, and under
the influence of this new means of

THE NEWPORT ROLLING MILLS, MIDDLESBROUGH.


Among the works visited by the members of the Iron and Steel Institute may be mentioned those of Messrs. Fox, Head, and Co. On entering Middlesbrough from the south or west the traveller by rail passes these works situated on the left close to
the line, and about a mile from the station. This place, among the line, and about a mile from the station. This place, among
others, was thrown open to the members of the Iron and Steel others, was thrown open to the members of the Iron and Steel
Institute during their recent visit to the metropolis of Cleveland. The engraving represents them as seen from the north-west or river side, and, being made from a photograph recently taken, is closely accurate. Twenty years ago the site now so largely built over and so fully utilised was still a green marsh, intersected by dykes and serving as pasture land for sheep and oxen. In 1863 Messrs. Fox, Head, and Newcomen-the latter gentleman has since retired-combined to form the firm and build the works under consideration. In 1864 the first plate was rolled. From that time to the present a gradual and continuous expansion has
taken place, though occasionally interrupted by strikes and taken place, though occasionally interrupted by strikes and
impediments of various kinds. At the present time the plant, which occupies over twelve acres, comprises twenty steam engines, two locomotives, twenty-five boilers, five steam hammers, two forge trains, two finishing mills, one blooming mill, forty-seven puddling furnaces, eighteen heating furnaces, five shearing machines, and various other machinery, tools, and appliances. The specialities produced are : boiler, bridge, and ship plates, and welded, flanged, and punched work. The output of plates of all qualities is from 600 to 700 tons per week.
To effect this, about 600 men are employed ; three-fourths of these are paid by the ton, and one-fourth by the hour, or the these are paid by the ton, and one-fourth by the hour, or the
shift. The average earnings are, approximately, 30s. per man per week; but some few, notably rollers and shear men, earn from $£ 1$ to $£ 2$ per diem. The principal materials used are : pig iron, made from Cleveland or local ores; hematite pig iron,
smelted locally, but made from the ores of Bilbao, in Spain ; smelted locally, but made from the ores of Bilbao, in Spain ;
coal, from South Durham ; purple ore, or spent pyrites, from coal, from South Durham ; purple ore, or spent pyrites, from Tyneside or Lancashire chemical works; refractory fire bricks
from Scotland, Durham, and mid-Yorkshire ; sand, from the nearest sea shore ; old iron rails, brought by sea from Middlesbrough, or Darlington; iron and bross castings, made by local founders to patterns sent by the firm; coke, made by local flounders iron from the shipyards and engineering works; and general stores from various parts. The consumption of pig iron is about 700 tons per week. For the cheap purchase of this important material great facilities exist, there being a private line of railway to most of the surrounding blast furnace works. The average railway carriage incurred for this purpose is only 8d. per
ton. The coal used amounts to 1200 tons per week. Of this, one-third is used for heating, and costs 7 s . per ton, and twothirds is used for puddling, and costs 5 s . per ton delivered. The finished iron produced is sent to all parts of the kingdom, the Continent, America, and the Colonies, in fact, wherever constructive engineering is carried on. The facilities for export are unusually good, the cost of putting f.o.b. the nearest Tees whari being only 1s. 6 d. per ton. When iron plates were first rolled in the Cleveland district, they were only of the quality required for
shipbuilding purposes. It was not then believed possible to shipbuilding purposes. It was not then believed possible to
make the higher qualities. Messrs, Fox, Head, and Co., howmake the higher quaities. Messrs. Fox, Head, and Co., howin current demand, as good in quality and, if possible, cheaper in in price than any procurable elsewhere. In this endeavour they hav been favoured by the gradual improvement which has latterly taken place in the quality of Cleveland pig iron, and also by th introduction and growth of the hematite pig iron trade in the Cleveland district.
Finding everywhere a strong, and as they thought unfair, pre judice in favour of the productions of older districts, they deter-
mined some time since to commence the manufacture of the more difficult parts of boilers and sell them ready made, thus more difficucut parts omonstration of the capabilities of their boiler plates. They established a new department with this object, and this branch of their business has now grown to considerable di mensions. Boiler-makers, especially those situated abroad and at a distance from manufacturing districts, have often found it a great convenience to be able to procure such articles, enabling
them to be independent of the more highly skilled labour and the more costly appliances. In view of the possible change from iron to steel in shipbuilding, Messrs. Fox, Head, and Co. have latterly given considerable attention to the latter material, and
have already rolled a quantity of plates from ingots made by have already rolled a quantity of plates from ingots made by modern processes. So far, these plates have given complete satisaction to the users. In preparation for the probable increase in the demand for steel, the mills and other machinery have them to deal with every extra strain which may in future have to be met to suit the requirements of consumers. In welded and flanged work Messrs. Fox, Head, and Co. claim that they are able to make out of their own iron or steel anything which can be made out of any other iron or steel. At the Amsterdam Exhibition still open, and at the Engineering and Metal Trades Exhibition held in London in July last, they exhibited trophies composed of parallel and conical flanged boilers, domes, uptakes, neck-pieces, and so forth. In all these
plates articles their own treble best iron or mild steel was exclusively used. For their Amsterdam exhibit a silver medal has been awarded to them.

THE WELL PARK BREWERY, EXETER.
This brewery, illustrated on page 226, has been built for Messrs Stevens, Pidslele, and Co., from the designs of Mr. G. R. Wilson, of the firm of Wilson and Co.,engineers, Frome. Thedesign is the very opposite of that known as the tower or gravitation system, in
which the liquor, wort, or beer is made to flow by its own gravity from vessel to vessel in the successive stages of manufacture. Under certain accidents of position, when the site of a brewery is commanded by a supply of water-liguor-from hills in the vicinity, no doubt the tower principle has certain advantages, but when the brewer has to pump his "liquor" from a well, the very opposite prevails, for not only has he to force the water up to double the height necessary in the present
design, but he has also to lift his malt a proportionate height as design, but he has also to lift his malt a proportionate height as it was necessary to pump the liguor from a well on the site cong sequently it was determined to pump the "worts" from the hop back to wort receiver, placing the copper on the ground loor next the boiler and under the same roof, with lourres for the escape of steam. The process is now as follows :-Liquor-water-pumped by well pumps to the cold liquor back. It then uns by gravity to the hot liquor back, where it is heated by steam coil for mashing. Malt is lifted by hoist to the secondfloor, where it is discharged into malt hopper, screened, ground,
and lifted by elevator to the grist case over the mash tues After mashing the worts are rum successively by mash tun. After tun to under back, copper, and hop back; thence trom mash archimedean pump to wort receiver, afterwards rumning by gravity to refrigerator, fermenting rounds, and racking back Service pipes for hot and cold liquor are fitted for mashing, sparging, attemperating, and washing down, the latter being one of the most important processes in a brewery.

## DEATH OF MR. WERDERMANN.

Richard Sigismun to announce the death of Mr. Werdermann. Silesia-Prussia - Karl Werdermann was born in 1828, in artillery regiment, went then to Paris, and established himself here as a civil engineer. In Paris he made the acquaintance of M. Gramme, at that time a working man, and seeing the Gramme machine, he began to be interested in the electric light and transmission of power. Like many other Germans he found M. Gramme's English and American patents. He came to England in September, 1870, and exhibited here the firs Gramme machine. Ever since then he has been actively engaged in the introduction of the electric light, and the development of the Gramme machine on a large scale. Only a few months before his death, a large modified Gramme has been
finished at Stockport which was built to his designs. He was the first to show-in the Institution of Civil Engineers- the transmission of power by the Gramme machine, and he had also graph-office, taking the place of batteries the electrice arc light from the top of Charing-cross Hotel, and in 1878 he invented-and exhibited in a factory in the Euston-road-his well-known Werdermann semi-incandescent lamp. candle, and sold himultaneously with Jablochkon, the electric At the Paris Exhibition of 1881, the Salle du President, one of the most attractive rooms of the Exhibition, was lit by Werdermann lamps. Like many inventors, Mr. Werdermann, although very fertile in brilliant and ingenious ideas, was not a sufficiently shrewd business man to reap material benefits by his inventions. There was a certain child-like simplicity in his character which made him look only to the successful carrying out of an in-
vention, and not to what it might bring commercially the commercial part to others, and with the usual results, viz, very little benefit to himself; l lww suits and interminable vexations, which at last undermined his health. It is a fact which redounds very much to Mr. Werdermann's credit, and is characteristic of his scientific dignity and honesty, that last year, when, during the electric light craze, inventors could ask and obtain their own price for inventions, good, bad, or indifferent, he would have nothing to do with limited companies.
Mr . Werdermann leaves a widow, three diul Mr. Werdermann leaves a widow, three daughters, and one son.

## TENDERS.

LIVERPOOL ARTISANS' DWELLINGS
For the erection of thirteen blocks of five-storey dwellings, conClement Dunscombe, M.A., M. Inst. C.E., city engineer of Live Mr.
Lith pool. Quantities supplied by the engineer.

Messrs. Hughes and Sterling, Liverpool-accepted $\quad . .$| $\mathcal{E}$ | g. | d. |
| :---: | :---: | :---: | :---: |

ROADWAY BBIDGE, BEDFORD.
Roadway Bridge across the River Ouse at Bedford, with north
and south approaches. John J. Webster, Assoc. M. Inst. C.E. Stephenson-chambers, Lord-street, Liverpool, engineer.


South Kensington Moseum.--Visitors during the week ending Sept. $15 \mathrm{th}, 1883:-$ On Monday, Tuesday, and Saturday, free, from
$10 \mathrm{a} . \mathrm{m}$. to 10 p.m., Museum, 11,160 ; mercantile marine, Indian section, and other collections, 5515 . On Wednesday, Thursday and Friday, admission 6d., from $10 \mathrm{a} . \mathrm{m}$. to 6 p.mn., Museum, 2005 ; mercantile marine, Indian section, and other collections, 1492.
Total, 20,172 . Average of corresponding weels in former Total, 20,172. Average of corresponding week in former years
19,344 . Total from the opening of the Museum, $22,390,295$,

THE IRON，COAL，AND GENERAL TRADES OF BIRMINGHAM，WOLVERHAMPTON，AND OTHER DISTRICTS
（Fom our own Correspondent．）
yesterday in Wolverhampton，and to－day－Thursday－in Birming they were a week ago，there was less inclination than then to accept tother than advanced rates．For most common and medium accept other twan advanced rates．For most common and medium
sorts a rise of from 2s． 6 d ．to 5．．was generally required，and in
only few instances cold only few instances
under those terms．
Bars，angles，and girder plates were most in request．The prices
most quoted for the first two were $£ 67 \mathrm{~s}$ ． 6 d ．to $£ 6$ 10s．，and $£ 7$ to


 to under each of the foregoing heads．
For sheets there is less disposition
offers under $£ 810 \mathrm{~s}$ ，for doubles，and $£ 910 \mathrm{~s}$ ．for trebles，while for all singles the prices for doubles are quoted．
Pig iron is in heavier stock at the furnaces
the case but for the strike before noticed．Resum would have been equal to supply Pricomers，and the consumption is now about

 prices of crude，even more then the prices of finished irmon，The
stiffer to－day and yesterday because of the anticipation entertained that coal may be advanted in price in in the ensuruily
few weeks to the extent of 1s．per ton in furnace sorts，which few weeks to the exte
present remain at 9 s ．
The majority of the constructive engineers，the district through， are busily engaged，and in some cases can see two or three months anead．
plant．
India and South America both continue to require bridges of descriptions．
One firm have now no fewer than twelve bridges on hand．
The Wolverhampton Chamber of Commerce memorialise Government in favour of England being at once memoriaise Government in favour of England being．at once
inoluded in the International Patents and Trade Marks Conven－ tion，in the hope mainly that manufacturers，in this country，of
goods secured by a patent obtained in France， compelled to manufacture such goods in France if he desires to sell
in that country． in that country．

## NOTES FROM LANCASHIRE．

## （From our oun Correspondents．）

Manchester．－With both pig and finishendents．） fully employeyed as a rule；the market continues in a very unsatis－
factory condition． factory condition．
For delivery eq
 these figures．For district brands delivered here 44s．10d．to
 shire，remains the basis of
book orders at less money．
In finished iron there is
In finished iron there is plenty of business doing for prompt
delivery，and for quick specifications prices are fully maintained

 Thoops，and $£ 8$ s．s．to $£ 8$ 7s． 6 d ．per ton for good qualities of sheets．
The rerts as to the condition of the engineering trades con－
tinue in the direction tinue in the direction of lessening activity．The only branch of
industry in this district in which there is any real pressure of work
is locomotive build is locomotive building，and in this department some of the works are kept in double shiftst to get out orders．
The construction of baling
The construction of baling presses for the Eastern cotton－growing
districts．comes witinin one of the important branches of engineer－
ing in this district and districts comes within one of the important branches of engineer－
ing in this district，and as an illustration of the powerful class of machinery now being supplied，a brief description of a cotton press
which is being erected by Mr．Wm．Turner，of Salford，for a
 baling purposes．The total height to the top of crosshead is a little portions of the maccine weighing up to 18 tons．The press is
constructed on the compound steam and hydranlic．principle with constructed on the compound steam and hydraulic principle，with
4Sin．steam and 16 iin ．hydraulic cylinders，the primary object of his system being，by the combination of steam and hydrauli is given quiessly by sotteam rapidy．The only first the seco．t．of compression
is or finishing
down stroke of the steam piston，hrings into sction or解 is completed in one up－and－down stroke of the pistossing The pres sure is siven in an upward direction，the cotton presses being filled boxes may keep time with the quick action of the mailing in of the the presses are arranged with three
column，twoxes reveolving round a central coiumn，two of the boxes being filled by separate sets of men，
whilst the third is under the press．By this arrangement an and
and 1 am informed that during a packecial and baled per minute，
and machines as many as seventy－five Esyptian bales have been made up within the hour．
millers，in which he has introduced an ingenious system of apply ing the pressure upon the roll．This is ussually accomplished by brought to one centre selers，but in the Turner system it is a the rolls absolutely trae in all parts of the grinding surfaces．The necessity for skilled labour is in large measure dispensed with by
the above arrangement，and where a large number of mills are in
use its simplicity of action For the time of the year airly steady business is bei． the coal trade of this district．The advance in prices ang done in mencement of the month has tended to keep back any actual pres－ sure of orders，and this has induced a little giving way on the part
of sellers in some cases．Generally，however，both the better of sellers in some cases．Generally，however，both the better
qualities of round coal for house fire consumption and the com－ the demand keeping thd forge purposes are going off pretty freely， steady at 9 s ． 6 d ．to 10 s ．for best coals， 8 s ． 6 ．to 8 s ．for prices are and 6s．to 6s． 6 d ．for common round coals．Engine classes of fuel
continue bad to sell；burgy is only in poor demand，and slack is continue bad to sell；burgy is only in poor demand，and slack is
more or less of a drug in the market，with heavy stocks accumu
lating at some of the colleries lating at some of the colliereies．Burgy at the pitt mouth a averages
4 s .6 d. to 5 ss ；best slack，4s．；good ordinary qualities， 3 s .6 d ；and common sorts from 2s． 9 d．per ton upwards．
Barrow．－A fine new vessel，which for some time has been in the
process of building at the extensive yards of Messrs．Williamson， process of building at the extensive yards of Messrs．Williamson，
at Workington，was launched on Monday．The ship has been
built to the order of Mess the third boat built at this yard for the same firm．The lines the vessel are the same as those of her predecossors，and the ship
is considered to be a fine model and a thoroughly substantial is considered to be a fine model and a thoroughly substastial
vessel in all respects，and will add to the reputation of Messrs．
Will


Steel Company．The plates are of mild steel of the highes
quality，and are more substantial than iron plates．The vessel
which is called the Gaston， quality，and are more substantial than iron plates．The vessel，
which is called the Garston，is built to the requirements of the
colonial trade，and when rig colonial trade，and when rigged will be towed to Cardiff to take There is very little animation to note in the hematite pig iron
rade this week，buyers being practically few，and alto trade this week，buyers being practically fow，and altogether
makers occupy a worse position than they did some few weks The furnaces are producing a heavy tonnage of pig iron，and the orders at present coming to hand are not sufficient to meet the out解 that before long makers will restrict the out－ values，which are far below the cost of production．They are nereore actually stocking iron in the face of the present dull The prices quoted this upon the stocks by the steel makers at works； 48 s ． 6 d. ，No．2，and 47 se ．46．．，No．．3．The steel trade is
very brisk in all departments，the demand for rails and merchan quaitities being exceptionally heavy，but there are no signs of con iven at from $£ 415$ s，to $£ 5$ 號 the winter months．Quotations are given at from etris．to \＆or ton．Iron ore in great demand at
from 9s．to 11s．per ton at works．Coal and coke is steady．
Shipping has not improved in any departments，freights being Shipping has not im
only scarce but low．

## THE SHEFFIELD DISTRICT． <br> \section*{（From our own Correspondent．）}

The Sheffield ironworkers have taken definite action in regard to
wages．At a very largely－attended meeting，on Monday losti，the wages．At a very largely－attended meeting，on Monday y ast，they
passed a resolution declaring that the present price of iron war－ ranted an advancee of 9 d ．per thon on puddling，and $7 \frac{1}{2}$ per cent．on
all other kinds of work．Mr．William Ellis，the representat． the South Yorkshire district on the Staffordshire Mrill and Forge Wages Board，counselled the men to make no unreasonable
demand，but to apply for such an increase as trade justified and demana，but to apply for such an increase as trade justified and
argument allowed．The meeting further resolved that their wages
be goundage．This means a return to the old method of niling above fouding by the price of idon，receiving 1s．for every $£ 1$ ，and 6 d ．for
faver every 10s．，with 1s．added．Thus，if iron were selling at $£ 7$ 10s．
per ton，the wages would be 8s． 6 d ．；viz．， 7 s ． 6 d ．and 1s．added agitation among the miners Yorkshire Miners Association the most moderate members talke of 15 per cent，while others suggested advances up to 20 and 50
per cent．Very elaborate measures were adopted for takin opinion of the men on the subject．Pit－gate meetings are to be
held throughout the held throughou Me district，and conferences are to be held at
Rotherham and Manchester．Simultaneously with the the counncil there comest the news of a demand at Hoyland Silk－ stone Colliery for a reduction of 10 per cent．The men regard this
st as a counterblast to the movement for an increase in wages．The
leading colliery in South Yorkshire has advices from its London
and provincial agents this week reat and provincial agents this week reporting a lull in the demand，
and any idea of further advancing prices has receive A survey is being made on behalf of the Great Northern Rail Way with a view to a line of railway from Rossington through line near South Kirkley．This proposed line is intended to work Conisbro＇ Brewery，Conisbro＇，to Bramley，beyond which it has not been
followed．The ore is stated to be superior to Frodingham le within a few inches of the be superior to Frodingham，and to pected，if further investigations bear out the favourable report
already received，that the directors of the and Lincolnsherire Company will rovive its project forser，Sheffield，line from
and
Shire Oals to Warmsworth， direction．The Rotheriam and Bawtry Railway，which＂hang fire，＂would reach the ironstone at a third point．
Messrs．Charles Cammell and Co
Exhibition a selection of their productions in raily to the Calcutta ing springs，conical and volute springs for buffers，bends of bear plates，and fractures of tires and rails，a large propeller blade steel shells，crank axle，\＆co．An item of unusual interest is a cast steel
railway wheel．Fractures are also shown valleay wheel．Hractures are also shown of Wilson＇s compound
steel－faced armour plates．The exhibit is of a high character，and On the 19th inst．the Earl and Countess of Wharnecliffe，Colonel well－known naval officer－Mrs．Ronald，and Mr．Henry Manners Visited the Atlas Works，and were shown the various processes，
including the casting of a compound armour plate on the Ellis ncluding the casting of a compound
system，for the Brazilian Government．

THE NORTH OF ENGLAND．
There was a good attendance at the Cleveland iron market held of the Iron and Steel Institute being present．
onver
Business
，however was exceedingly quiet，prices being about the same as last week， No． 3 g．m．b．for for prompt delivery．The tock of small parcels of
No． 3 in makers hands is very low．Ordinary brands cannot be had for less than 39s．3d．per ton，and special brands are 3 d ．per ton more．Grey
forge iron is offered at 37 s ． 6 d ，，and No．No． 4 foundry iron at 38 s ．per ton for early delivery，slightly higher prices being asked for forward delivery．
Warrants are offered at 38 s .9 d ．per ton，but the demand is very
poor．
The stock of Cleveland iron in Messrs，Connal and $\mathrm{O}_{\mathrm{o}}$ ，＇s store at
Middlesbrough decreased 1310 tons during the week ending Mon－ day last，the quantity then held being 70.071 tons
The shipments of pig iron from the Tees continu
and promise to be hieavier than for any month this yrisk rate quantity exported up to Monday night was 53,586 tons，as against Finished iron manufacturers are still busy on old co
are booking very few fresh orders．The prices which have ruled for some weeks are well maintained，and are as follows ：－Ship plates，£6 5s．per ton；shiphuilding angles，$£ 512 \mathrm{~s}$ ． 6 d. ；and com－
mon bars，$£ 517 \mathrm{~s}$ ， 6 d ．to $£ 6$ ，all cash 10 th ，less 2 L per cent．free on Owing to the contins
large numbers of shipyance of the engineers＇strike at Sunderland， that workmen been issued at all the marine engine works stating stated that new hands have been engaged to fill the places of the men on strike，and that temporary buildings are being prepared for The mechanics in I
advance of wages，and threaten to strike unless the masters for an their request．The minimum rate of wa wes ins now 2as，per week，
as fixed by the Amalgamated Society of Engineers，and the men ask that all the members of the society who are receiving less than 28s．per week be advanced to that rate on or before October 1st．
About t 1000 men will be affected by this decision．It is said that some of the firms have already agreed to pay the higher rate．
The North－Eastern Marine Engineering Company has inst The North－Eastern Marine Engineering Company has just had
a very large anvil block－weighing 36 tons－cast for its new works at Wallsend
South Shields，and
Tyneside foult
tart their new shipbuilding yard at South Stockton some time
next month，and that other parties are also contemplating the The enement of a similar enterprise on the banks of the Tees． likely to beoome an acomplished fact．Attrall events the Elder
Brethren of the Trinity Her about to send their engineer，Mr．Douglas，to make a survey of the site and prepare an estimate of cost．
The Middesbrough meeting of the
The Middlesbrough meeting oo the Iron and Steel Institute seems present，and interest in the proceedings ．in por four of numbers said to have arrived，and are proceedings．Over four hundred are
tion．The district in every dircc orabie circumstances，has been greatly deplored．Amons，through un－ may be mentioned Earl Granville，who in indetained．Among these
ness，and Mr．I．L．Bell and Mr．S．G．Thomas by ill－health．busi－ Mr．Waterhouse＇s rind Mr．S．G．Thomas by ill－health． manufactured ionsen during July and August has beene reecived by
the joint secretaries to the Board of Arbitration，teut the rest has not yet been publicly made known．A meetin，kut the result committee was to be held at Darlington on Thursday to consider per cent．is anticipated．

NOTES FROM SCOTLAND．

## （From our own Correspondent．）

AITHOUGH there is a very extensive business doing in the Scotch
pig iron trade，the profits are exceptionally small．Competition is pig iron trade，the profits are exceptionally small．Competition is
allo very keen，and the production is likely to be increased instead of diminished．In the warrant market a large business has been orders being yet far from plentiful，although rather better than of
late．Prices improved somewhat towards the close of last week but were again down at the last and the beginning of the present not quite makers＇iron the demand is fair，but the quotations are shipment of Scotch pigs in the past week amounted to 10，311，The
she compared with 10,902 in the corresponding week of last year．
Business was done in the warrant market on Friday at from Business was done in the warrant market on Friday at from
46s． 4 d．to 46 s ．5d．cash，and 46．
Nond．
Nonday transaction cash，and 46s．62d．to 46 s ．42d．one month．The market was quiet on Tuesday at 46s．11d．to 46s．2d．cash，and 46s．4d．to 46s．42dd． one month．On Wednesday business．was done at 46s．1d．cash，
and 46s．3d．to 46s． 3 did．one month．To－day－Thursday－there
were transactions down to 46 ． The values of makers＇iron are slightly lower，as fod．one month．



 The malleable iron trade is very brisk，a largan business being weeks．The steel works are also very busy，and important exten－ sions of premises are being made to cope with the growing demand
for goods constructed of this material．
Ground has been secure gentlemen ；and it is also reported that another new steel works is
 gentlemen whose relatives have been long and honourably con－
nected with the Scotch iron trade．Some very good shinbyid contracts have recently been placeed，and these will help to to prolong
the activity that tharacterises the estel t the The engineering trades are at present also well employed，amon
The more successful being those eng sugar－making machinery．The complete plant of an extensive sugar refining work，to be erected in Cuba，has just been shipped at Glasgow．It was constructed by Messrs．J．Copeland and Co．，of
Putteney－street Engine Works，in that city，and weighed upwards In the coail trade there is much animation all over the country， The agitation amongst the miners for increased wages proceeds，
but as yet with no real success．

## WALES AND ADJOINING COUNTIES

（From our own Correspondent．）
THE latest information current with reference to the BarryDock
 nd Bute Dooks gives in the matter of expediting and lessening
cost as only temporary relief，and are determined to do their best o afiord the district a rival dock and railway．In the meantime beore eaction can be taken in a prominent manner，the alleviating
movements are being steadily oarried on．The Taff Vale Railway at the Cathays－yard will soon be in a position to water，coal，and
turn all locomotives there instead of at the terminus．New shunt are being prepared，and marked benefit is derived from coal bein agents are equally active，and there is scarcely a week but some beneficial change is brought about．
Thomas in loading bunker coal and cargo at the same time．Thi as successfully done in the presence of a large number of coal－
The graving doci
I regret to note the
steel trades．Even the low market quotations now ruling fail to prompt anything like active business，and the best placed may be
said to have only a hand－to－mouth trade．Prices ruling are ：Rails，

Letwe work remains to be done to complete the railway link
between the Rhondda coalfield and Newport．This new line will ＂tap＂several rich coal valleys．One in particular I may note Craig－an－Allt．This contains all the best seams，but is a deep pit， A still richer coalfield I hear，that of the develope．
central part of the South Wales coal basin，has been securred by central part of the South Wales coal basin，has been secured by
Mr．Davies，of the Ocean Collieries．I I reoollect several years ago bringing this very coalfield under public notice in these columns as one of the most desirable of the unlet．properties．This is one of
the largest，and also one of the last in the immediate neighbour－ hood of the Taft Vale．One of the remaining coalfields，sunk by
Miliams，of Penygraig，still awaits that development which an energetic company and large capital can effect．
Tin－plate is steadily stagnant works which may result in restarts．Prices are keeping
up very well．
The coal trade maintains its vigour．
A mass meeting of colliers from Dowlais，Cyfarthfa，and the that there is any grievance to disouss．Their rate of wages is now

[^0]
## NAvaL ENGivekr AprointurnTs．－James Hook，chief engineer， to the Asia，for service in the Shah，viee Herrmann $;$ and Adam Shoolbred，chief engineer，to the Enchantress，vice Nott，

## THE PATENT JOURNAL.

##   giving the number and the pape of Tirite Exicicuser at  

## Applications for Letters Patent.

 ** When patents have been "communicated." thename and address of the compuunicating party are
printed in italics. $11 t$
11th September, 1883.
4336. Producisg Inflamable Gas, E. Duchamps,
West Dulwich. West Dulwich.
4337. SULPHUROUS ACDD, C. A. Allison.-(National
Chemical Machine and Manufacturing Company, U.S.)
4338. VELOCIPEDEs, C. A. Allison.-(C. F. Waldo, New York. V.S.).
4339. FUNACES for Consumina Smoke, C. Edmeston,
Manchester. 4340. Cleaning the Sides and Bottoms of Ships
afloat, D. Hunter, Troon, N.B. 4341. LaMps, J. Hinks, Birmingham.

 tonstone, and T. Rowan, Westminster. 4346. Sklf-levelelna Berths, B. Merrill, Boston, U.S.
4347. Opekating Safety Signals, T. A. B. Putnam,
New York, U.S. New York, U.S.
4348. Combined Roller and Wrapper, E. E. Merriek,
Clifton. 4349. Gas Generators, L. A. Groth.-(W. Budcker,
Budweis, Austria.) Budweis, Austria.)
4350. NuMberiva,
4351. Svarivas, J. Thompsonts, London. Black, London.
4352.
 of Man.
4354. Earhenware-lined Smoking Pipes, \&e., J. E
Walsh, Halifax. $-(A$. Burkeard and P. Galmarl;
Antwerp.) Antwerp.
4355. SCRIBLER Carding Enaines, W. Houghton and
. Knowles, Gomersal, \& T. H. Kilner, Kirkheaton.
4356. Manuracture of Glue, W. R. Lake.-(C. $\overline{\text { and }}$ E. Knowles, Gomersal, \& T. H. Kilner, Kirkheaton.
4356. MANUAOCTUR of GLUE, W. R. Lake.-(C. V.
Flodgvist, Mölndal, Sweden.) 12th September, 1883 .
4357. STeam Engines, M. J. Brewer, Cardiff
4358. Spring, \&c., TAPs, R. H. Perks and B5irminghame. ©., Taps, R. H. Perks and J. Morley
4559. Spring Bufyers, E. Jackson, Birmingham 4359. SpRiNG BUFFRRS, E. Jackson, Birmingham.
430. OPERTMING the HARNEs FRAMES of Looms, H. J
Haddan.- $($ L. Mercier, Louviers, France.) Haddan.- (L. Mercier, Louviers, France.)
4361. PREVENTING the Corrosion of SHIPs' Bottoms, J.
B. Hanney, Glasgow,
4362. Rotary Enaings, G. Gore, Balsall Heath, and W.
Pearson, Stourtridge 4362. Rotary Engings, G. Gore, Balsall H
Pearson, Stourbridgge
4833. VRLLET, . Halworth, Manchester.
4364. Looms for WEAVING, R. Brownridge 436. Vrleve, J. Hallworth, Manchester.
4364. Looms for WeAving, R. Brownridge and P. Bond,
Macelesfield. 4365. Electric Metrers, P. Jolin and J. Parsons,
Bristol, and M. F. Purcell, Dublin,
4366. PrEERVING Grasses, W. Cowley and J. Makin, 4366. Preserving Grasses, W. Cowley and J. Makin,
iviverpool.
4367. Requating Gas Burner, T. Thorpe, Whitefield.
4368. Cases for CUTLERY, T. and J. Brooke, Sheffield. 4369. Decoration by Enamel upon Metal articles,
T. Reeves, Birmingham.
4370. Spinning, \&e Cotron,
 (A. Mitzcherlich, Germany.)
4872. Errcring Costinuos Feed of Granular
Materatic. C . Gill, London. 4373. Testing, \&c., the London.
Imray.-(J. F. R. Siebelist ond $C$. Jai. J. Steibelt, Trucks, Berlin.) J.
4374. Cleaning WHEAT, J. Ritchie, Liverpool. 4375. RAIIING, \&C., SHIPs, A. Grothe and C.J.Appleby,
London. 13th September, 1883 .
4376. Bicycles, dic., F. Beauchmp, Edmonton.
4377. Excavators, C. Pieper, Berlin.-(C. Vering H. Verng, Hanover.)
4378. ELAsTI SIDE SPRing Boots, E. Jennings and J.
Butcher, Leicestes. Lining Furnages, J. Imray.-(H. Rémaury and F. Valton, Paris.).
4830. GAs STovEs, C. H. Robinson, Glasgow.
4381. Electric Lamps, J. W. Swan, Bromley.
4381. ELECTRIC LAMPs, J. W. Swan, Bromley.
4382. CARRYNG, dC., WIRE, H. J. Haddan.-(L. P.
Johnsom, New York, U.S.) Johnon, New York, U.S.).
4383. RoTTAY EnaINE, H. J. Haddan.-(A. Decher,
Munich, Bavaria.) Munich, Bavaria.)
4334. Locks, \&r., E. J. Smith, London.
4385. VELOCIPEDES, A. Barham, Anerley,
4358. VELocIPDEs, A. Barham, Anerley.
4886. Burrovs, H. H. Haddan.- (F. Kammerer, Pforz-
heim, Germany.) heim, Germany.)
4387. MANOFACTuRE of Glucose, H. J. Haddan,-(c.
Coster, Bruxelles, Belgium.)

(J. Lutted, Buffialo, V.S.)
4390. Looms, E. Edwards.-(H. Gallant, Paris.)
4391. Prepravin Raw Hide, A. G. Brookes.-(o. B.
Wait, Provident, 4392. BARRELD or Tower Bours, W. Davison, London.
439. TELERHONIC APPARATUS, T. H. Meatchem, Water-
ford, Ireland. 4394. Steam Enainge, R. Ogden and 4394. Steam Enaings, R. Ogden and I. M. Livsey,
Ashton-under-Lyne. 4305. Preventing the Radiation of Heat, W. E.
Williamson and E. V. New, London. 4396. STEAM Borcers, D. Francis, Rhymney.
4397. Combined Brooch and FLowEr HoLDEr, H. J.
Davis, London. Davis, London.
4338. Filing, \&c., Bottleks, J. Phillips, London.
4399. Pentagrapi Enaraving Machines, J. Mowat, 440. Lawn Tenvis, \&c., T. B. H. Cochrane, Ryde.
4401. REskvoir PEN-HODERS W. Vale, Birmingham
4402. Joinive Le 4401. Reservoir Pek-Holders, W. Vale, Birmingham,
4402. Joinive Lead PIpEs, J. Jakens, Bury.
4403. CARPET SWEEPER, H. J. Haddan.-(G. W. Gates,
Michigan, U.S.) Michigan, U.S.)
104. CAsEs for Roasted Corfee, E. de Pass.-(V. A
Billette, Paris.)
405. CLEANAING, \&c., FABRICs, D, Haworth 4405. Cleansing, \&e., FABRICs, D. Haworth an
Hanson, Mottram.
4406. CARDING ENGINEs, J. Constantine, Heaton.
4407. Hoose Hoes, W. Smith, Kettering.

 -(J. Morgan, Brookslynal U.S.) INSTRUMENT,
441. FouDINe. Tables, de., W. R. Lake.-(C. E. F.
Couturier, Paris.). 4412. Fabstrnisas for Boors, \&c., A. J. Boult.-(I
Maurie, Montreuil, France.)
4413. Vapour Bate, 4413. VAPOVR BATH, A. J. Boult. - (G. Dyrna, Austria.
4414. CAUSING STREING CLocks to REPEAT, A. J. Boult.
 and E. C. Rimington, London.
$15 t h$ September, 1883.
1417. Drlivering Tickets to Travellers, \&o., J. M
Black, London.
 Putney.
4420. STriking Work for Clocks, A. G. Hovde, Hönefos, Norway.
4241. Sowalionalina, A. Price, London,
4422. PAPER, J. Dixon, Oughtybridge.
4423. CLosing, 4423. Closing, \&c, Carriage Doors, F. Pontifex, W.
J. Rosser, and F. E. Pontifex, London. 4424. Gas Metzrs, H. Green, Preston,
4525. Transerrina Coal from Wagons, G. Taylor Penarth.
4426. Ploogs, E. Edwards.-(J. and M. Grize, Paris.)
4antra Cartridges by Electricity, T. P. Wood, Bristol.
4428. Colourivg Matters, A. P. Price.-(H. Caro,
Mannheim, Germany.) Mannheim, Germany.)
4429, Loading VEssels with Coas, G. Taylor, Penarth. 17th September, 1883.
4430. Injectors, R. G. Brooke and T. H. White, Man
chester.
443. Produring Ice-flower-Like Fraures on Glass,
C. Pieper- - Dunkel C. Pieper.- (Dunkel und Compagnie, Prussia.)
4432. PAPRR PoLP, H. J. Haddan. (C. Coster, Bruxelles.)
4433. Looms, D. Whittaker, Blackburn.

4435. Table Cutlery, J. Ball, Sheffield.
4436. Lassiva Boots, \&c., C. F. Gardner.-(G. McKay,
Boston $V$, Boston,
4437. SALs for Vessels, I. A. Storer, Newport.
4348. WATER Cricoulating Bourre, J. Heal, Southsea.
4439. RoLLER MILA, J. A. A. Buchholz, Twickenham. 4438. Water Circulating Boilers, J. Heal, Southsea.
4439. Rolek Mils, J. A. A. Bucholz, Twickenham.
4440. Elictrical Signaling ApeAratus, G. Porter, 4440. Elenctrical Signalling Apparatus, G.
London.
4442. Mats and Matting, W. Cooper, Nantwich. 4442. Roller Mills, F. C. Glaser.- (A. Mechwar
Budapest, Hungary.)
4443. Measuring, \&e., Calorific Energy, W. Siemen London.
444. Prearing Antiseptic Surgical Dressisgs, G
W. von Nawrocki.-( $P$. Hartmarn

Inventions Protected for Six Months on
Deposit of Complete Specifications 4337. Manufacture of Solphurous Acid, C. A. Alli-
son, Southampton-buildings, London.-A communication from the National Chemical Machine and
Manufacturing Company, Newark, U.S. $-11 t h$ September, 1883.
4338. VELocipedes, C. A. Allison, Southampton-buildings, London.- A communication from C. F. Waldo
New York, U.S. $-11 t h$ September, 1833 4366. SELF-LEvELLING BERTHS, B. F. Merrill, Boston,
U.S. -11th September, 1883. U.S. - 11 th September, 1883.
437. MANOFAcTuring Cel
Upton -

Uton-A communication from
Germany. -12 th September, 1883 . A. Brydges, 4382. CARYYING, \&c., WIre, H. J. Haddan, Kensing.
ton, London.-A communication from L. P. John.
son, New York, U.S. $-13 t h$ September,

## Patents on which the Stamp Duty of \&50 has been paid.

 3685. Atmospherric Gas Endines, H. Williams and J. Malam, Southport.-10th September, 1880.3716. SEwING MAchinEs, T. Thad wick, T. Sugden, and
C. Shaw, Oldham, -13th September 1880. C. Shaw, Oldham. 13th September, 1880 .
3717. STEAM Boukrs, W. R. Lake, London.-14th Sep-
tember 1880 . tember, 1880 .
3718. Nozingas for STarr Treads, F. W. Hembry, Lon-
don. $-18 t h$ September, 1880 . don.- 18 th September, 1880 .
3719. Working GLAss out of TANK Furnaces, W. Horn
and R. Bell, Sunderland -27 th September, 1880. and R. Bell, Sunderland-27th September, 1880.
3720. Joinss for PIPEs, J. Page, Glasgow, 17 th Septem.
ber, 1880 . ber, 1880 .
3721. Coatina Tiv with Zinc, W. R. Lake, London.-
15th September, 1880 . 15th September, 1880.
3722. HEAVY GUNs, J. B. Howell, Sheffield. -16 th Sep-
tember, 1880 . 3765. ELETRIIC LAMPs, E. G. Brewer, London.-16th 3784. Electrie Type Printing Telegraph Apparatus, G. J. Droste, Bremen.-18th September, 1880.
3723. HAY and Cons BARNs, J. Coteman and I. Henson,
Derby. $18 t h$ September, 1880 . 3803. Operatise, \&e., RALWWAY Switches, W. R. Lake,
London. - 18th September, 11880. 3880. Condocroos for ElECTICITY, P. Jensen, London.
$-24 t h$ September, 1880 . -244 September, 1880.
se3s. SETTING, \&c., TYPE, W. Morgan-Brown, London.
-23 .

 September, 1880 .
3724. RaLw F .
September, 1880 . 3766. Governing the Sperd of Engines, J. G. Jones,
London.-16th September, 1880 .

Patents on which the Stamp Duty of $\mathbf{~} \& 100$
has been paid. 3561. Hydraulio Pumping Apparatus, J. Hastie,
Greenock.-11th September, 1876. Greenock.- 11 th September, 1876 .
3569. METAL RoLLERS for PRINTIVG CALICo, H. Wilde,
Manchester.- $12 t h$ September, 1876 . Manchester,-12th September, 1876.
3580. WINING Hosiker YARN, H. G. Warburton,
Leicester. -12 th September, 1876 . Leicester.-12th September, 1876 .
3562. STopring the MoT1oN of SHip's CABLEs, A. J.
Alderman, London. 11 th September, 1876 . Alderman, London. 11 th S September, 1876 .
3579. BuIDING MATEM. J .
September, 1876 . 3594. Refrigerativg, F. P. E. Carré, Paris, and E.
Jullien, Marseilles.- 13 th September, 1876 .
 pool. - 18th September, 1876 .
3602. DraNTER, ©c., J. Vernon, Newton Stewart.-
14th September, 1876 .
3714. IRove and 'STEEL, C. W. Siemens, London.-22nd 3144. IRoN and STEEL, C. W. Siemens, London. -22 nd
September, 1876 or
3648. Windows for CARriages, H. Brittain, Birming3648. Winnows for Carriages, H. Brittain, Birming-
ham. 18 sth September, 18766 .
302.. SwING MAchines, A. V. Newton, London.- 21 st
September, 1876 . September, 1876.
Notices of Intention to Procsed with (Last day for flling opposition, 5th October, 1883.) 2362. Elevating and Discharging Grain, \&c., G. J.
Hone, London.- 9ht May, 1883.
2365. Bearings, J. E. Price, near Wrexham.- $-9 t h$ May, 2387. Combined Net-haulina Maching and Boat's
Capstan, J. D. Jack, Elgin. -10 th May, 1883 . 2378. CuEcKING the RECEIPT of MoNEY, J. M. Black,
London.-10th May, 1883 .
 2399. STore-room, O. Reynolds, Rockland St. Mary.-
11th May. 1883.
2405. STEAM Boilers, H. Lane, London.-11th May,
1883.
 communication from P. P. Hure.- 11 th May, Mas 1883 ,
2414. LAsmps, J, Matthews, London.-12th May, 1883 ,
2424. TTAPOTs, de., J. Ridge, Sheffield.-12th May,
1883.








 Germany- 30 oth Jiant, 1833. 3313. Counting and Registering Appabatos for Tilis J. Imray, London.-A communication from H.
Pottin. - 4th July, 1883. 3370. apparatus for Getting Coal, \&c., W. F. Hall and W. Low, Durham,-6th July; 1883.
3387. BAKING by STRAM, H. E. Newton, London.-A
communication from E. Yaiger.- $-9 t h$ July 1883 , communication from E. Yïger.- 9 th July, 1883 .
3557. Cuosing CANITTERS, A. W. Jaeger and C. A. Far-
wig, London.-199th July.
 municalo Producing Soda Crystals, C. D. Abel, London Procommunication from La Société Anonyme des
Pronits Chimiques de Sud-Ouest.- 8 th hugust, 1883 , August, 1883.
3867. BARRINO
3867. Barring Enoines, W. Hargreaves and W. Inglis,
Bolton.-9th August, 1883.
3873. Boiton.-9th August,
3873. SEPARATNO M MTALS, \&c., H. H. Cassel, London. 3875. MANUFACTURING SEWing Needles, R. Brandon, 3897, Regulating the Speed of Engines, N. Macbeth, Bolton-le-Moors.- -1 th August, 1883 ,
3915. Iccandscer Elecrric LAMPs, G. F. Redfern, LondonNDESCEM
13th August, 1883
(Last day for fling opposition, 9th October, 1883.) 2415. Disisfecting Rags, J. Illingworth, Batley.-12
May, 1883 . 2422. Examining Samples of Wine, \&c., A. J. Boult,
London. - Com. from P. Contant.
(2th May, 1883 . 2437. Differential Geating, F. Wynne, London.2450. Carding Fibrous Materiale, W. Tatham, Roch-dale.-16th May, 1883 .
2400MATIC Coupling, G. F. Belling, Little Iford
-6 . May, 2454. SpRING, MATTREsses, G. A. Biliington, Wallasey
$-16 t h$ May, 8 , -16th May, 1883.
2458. METALLIC PACKING of Pistons, A. Spagl, Munich

- 16 th May 2467. GOMMING Apparatus, C. Pieper, Berlin.-A com
munication from J. E. Parmentier. $-17 t h$ May, 1883 munication from J. Fint . Extinguishing Fires, G. W. von Nay, 1883 Berlin.-A com. from C. J. Mönch.-17th May, 1883

2481. Sobstrivtes for Ivory, dic., F. Greening, Southall 2487. OLL CANs, L. A. Walters, London, and J. Brad-
bury, Braintree. 18 th May, 1883 .
2482. SEPARATINe 2506. Separating Iron from Solutions, G. W. von
Nawrocki, Berlin-A -A communication from Lowig
and Co.-19th May, and Co.- 19 ch May, 1883.
2483. Kwitring Machinkry, H. J. Haddan, London.-
A com. from W. W, Clay -2ind May al 2547. SEOURING ChEsts of DRawers, © ©., R. Mander
Birmingh Birmingham.-22nd May, 1883 . W. J. McCormack
2484. SREW STocks and DIEs, W. 2712. Cocks or TAPs, J. Ohren, Rio de Janeiro.-31
May, 1883.
2485. May, 1883.
2486. Playing Puzzle, de., Games, T. H. Ward, Tipton. 3130. Rings and Travellers of Spinging Machines,
J . Wetter, London. $-\Lambda$ communication from $H$ Dodt,-23rd June, 1888. Hugett and J. Swalwell, London.-30th June, 1883.
2487. Cuting PAPER, T. G. and J. Dawson, Otley, 6th July, 1883 . Werarts and Forces, T. H. Waro
2488. Indicating
Tipton.- $44 t h$ Tipton.-24f/ ${ }^{\text {3816. Poless }}$ for Lawn TenNIS NETs, S. C. Davidson, 3007. Timgrieces, O. Fleischhauer, Berlin. - 11 th August, 1883 .
2489. KiLNs, Wemp, Miller's Dale. -13 th August,
1883 . 3930. Artificial Ivoky, H. H. Lake, London.-A com
munication from J. B. Edson. $-14 t h$ August, 1883 . 3939. Couphivges, L. Anderson, Lamar, U.S. $-14 t$ 3972. Treatisg Volatile Fluids, \&C., \&. M. Eiseman London.-16th August, 1883. 18 . F. W. Scott, London.-
2490. Moroxs for LIFTING, \&c., F.
17th August, 1883. 17th August, 1883 .
2491. OrE Roastivg Furnacrs, H. H. Lake, London.

- A communication from T. Walker and J. F. Carter -A communication from T. Walker and J. F. Carter
-17th August, 1883 .

4009. WeIGHiNg and Measuring Parcels, W. Tozer


## Patents Sealed

(List of Letters Patent which passed the Great Seal on the
$14 t h$ September, 1883.) 1376. Wood-working Machinery, E. Cory, Barnes. 1878. FIRE-ESCAPE, S. Bott, Birmingham, -15 th March
1883. 1382. InJECTING Insgericide Liquid into Vińes, \&c., E.
Edwards, London. $-15 t h$ Marech, 1883 . 1395. Tiuting, \&cc. RALLWAY CoAL WAGONs, G. Taylor
Penarth. - 16 th March, 1883 . 1396. Valvelems Rotary Motor Pump, \&c., W. Dawe
Leeds, - 1 bith Mat Leeds.-16th March, 1883.
1397. Lodn ING V vsskLs with Coas, G. Taylor, Penarth.

- 16 th March, 1883. 1398. Straightening and Bending Metallic Plates,
Seriven, Leeds, and J. Tweedy, Walker-on-Tyne,
16th. March Scriven, Leeds, and J. Tweedy, Walker-on-Tyne.
139th March, 1883.

1399. AUTOMATIC Pencil-HoLder, O, Buse 1399. AUTOMATIC PENCIL-HOLDER, O. Bussler, London

- 16 th March, 1883 . TELEPHONIC APPI 1403. Telephonic Apparatus, W. Moseley, London.-
140 th March, 1883 . 1404. Cutting Leather, C. P. Carpenter, London.
16th March, 1883 . 1408. Disintegrating Fibres, G. and J. E. Tolson, 1412. Latie Chucks, W. R. Lake, London,-16t
March, 1883. March, 1883.

1416. OLocks for ADVERTISING, F. W. Little, London

- 1 th March, 1435. Spinnina Mnchines, L. A. Groth, London. -19 1436. Preppriva, \&c., Firrous Material, L. A. Groth,
London - $19 t h$ March, 1883 . London.-19th March, 1883.

1450. Lamps, J. H. Johnoon, London.-19th Marci
1451. 1503. Umbrellas and Parasols, R. H. Brandon, Paris 1508. Strekotype Plates, A. Sauvée, London.-22na
March, 1883 . 1532. AUTOMATI

Kirkcaldy. 244 flushing Apparatus, A. C. Boothby
 pool.-29th March, 1883.
1589. SBsTrTUTE for INDIGO, W.
29th March, 1883 . 161. Mandeacturina Tissues, H. J. Haddan, London.
1618 . ${ }^{\text {ath }}$. March, 1883 . 1618. ELECTRO-
March, 1883.
1645. TEIE
$\underset{G}{167}$
1678. Producing Sterl Bands, J. Sheldon, Stock
bridge.- 3 -d April, 1883 . 729. Remedying Prysioal Defects of the Mouth and PALATE, R. H. Brandon, Paris.-6th April, 1883.
733. RoTARY Knotreks, H. J. Haddan, London.-6th
April, 1883. 1790. Gril As REGulator, H. J. Haddan, London.-9th April, 1883 .
1818. STEERING Apparatus, \&c., J. Philp and W. For-
rester, Liverpool. -10 th April, 1883 . rester, Liverpool,-10ignalino, dc., J. H. Johnson, London. -13 th April, 1883 .
1892. AERATED WATERS, F. Bennett, London. -13 th
April. 1883 . 1918. Harmonisisg Melodies, \&c., B. S. Maitland, London.- 16 th April, 1883 .
1995. Obtaining Aluminiva from its Ore, H. A. Gads-
den, London den, London.- 19 th April. 1883 .
2107 . FLEECE D1viDERS, C. Pieper, London, -26 th
April, 1883 . 26 2ll $^{2} 11$ Cartridges and Wads, R. Morris, Blackheath.26th April, 1883 .
2291. Reversico Motion of Engines, E. Boutard,
Leiston. -5 th May Leiston. - 5 th May, 1883.
2308. Heatina or Cooling Liquids, \&c., J. Price, jun.
 dc., H. H. Lake, London.-9th May, 1883.
2380. Crushina Stone, S. Mason, Leicester.-10th May, 1883. Laying Elegtrioal Conduoting Wires in the
Ground, H. J. Allison, London.-29th May, 1883. Ground, H. J. Allison, London. - 29 th May, 1883.
2659. HARNEs8 SHAFT-TVGS, S. E. Davies, Liverpool. 29th May, 1883. 1880. Automatid Momentum Brakes, H. J. Allison
London.-5th 2861. Looms for WEAvING, M. Sowden, Bradford.-8th 3053. ANTISEPTIC Fluids, \&c., B. Nickels, London,-
20th June, 1883. 20th June, 1883 . Enornes, F. W. Crossley, Manchester.
3079. Gas Moror Eent
-21 tht June 1883 . 1883. Baling Presses, J. Watson, London.-21st June, 1883.
3115. Dynamo-mlectric Machines, G. Forbes, London.

- 22 nd June, 1883. 3127. Preparisg a Compound from Vegetable MA
TERIALS, E. C. T. Blake, London - $23 r d$ June, 1883 , TERials, E. C. T. Blake, London - 23 red June, 1883 .

3133. Coupling Hosks, ©C., J. ©. Hudson, London.-
23rd June, 1883 . 3169. MATTINE, đc., W. R. Lake, London. -26 th June, 188.
3134. Boring Rock, W. L. Wise, London. -26 th June,
3135. 1875. Steam Engines, W. P. Thompson, Liverpool.3300. Manuracturing Springs, W. R. Lake, London ${ }^{-1}{ }^{-3 r d r d u l y}$. Cooling.the Lining Tubes for Artillery, S. Pitt Sutton.-6th July, 1883.
1. CorsETs, H. H. Lake, London.-21st July, 1883. (List of Letters Patent which passed the Great Seal on the
$18 t i$ September, 1888.) 1318. Condensing Wool, \&c., J. Wilkinson, Yeadon.-
13 th March, 1883 . 1444. Skctional Warping, H. Yates, Manchester.19th March, 1883.
2. PICKING Morion for Looms, H. Yates, Man
chester.-19th March. 1883, 1453. Tobacco Pipes, C. Jackson, Nottingham.-20th
March, 1883 . 1460. HyDRavich Motors, W. P. Thompson, Liverpool, 1467. FURNTTURE for VEsseLs, A. E. Maudslay, Little bourne.-20th March, 1883. Zingler, London.- 20 th
3. Treating OfraL, M. Zind March, 1883.
4. Pomps, A. Russell and F. Curtis, Newburyport,
U.S. - 20 th March, 1883,
 1476. STopprine GEAR for MACHINERY, W. H. Beck,
London. -21 St March, 1883 . London.- 21 st March, 1883 .
5. GENERATING ELEcTRCITY, J. A. Kendall, Middles
brough. $-21 s t$ March 1883 , brough.- 21 Ist March, 1883.
6. NVT-LockING DEVICE, W. J. Brewer, London.-
21st March, 1883. 1486. "Lar " Fooming MACHiNEs, J. Walker and T. G.
Beaumont, Dewsbury Mills.-21st March. 1883 . Beaumont, Dewsbury Mills.- 2 1 Ist March. 1883 ,
7. Rovulva ANGULAR WIRE, J. W. and J. Hirst and
J. Bottomley

 1823. Treating Sewage, \&c., J. H. Kidd, Wrexham 1522. ReATINa SEWAGE, dc., J. H. Kidd, Wrexham
and T. J. Barnard, London.- 2nd March, 883.
153s. ELECTRICAL Conducrors and CABLEs, H. H. Lake London.-24th March. 1883 ,
8. MANOACTURING PAPER BAGs, T. and J. Bibby
and J. Duerden, Burnley, and J. and W. Baron,
Rochdale. -27th March, 1883. and J. Duerden, Burnley, and J. and W. Baron,
Rochale.- 27 Th March, 1838 ,
9. AERIAL NAVIaATION, B. Maughan and S. D. Waddy, London.-27th March, 1888,
10. AUTOMATICALLY OPENING the Doors of LivTs, \&cc.
J. Stones, Ulverston, and T. Kirby, Barrow-in-Furness -27th March, 1883.1 1883.
11. Electrical Safety Pluga, C. V. Boys, Wing, and
H. H. Cunynghame, London.-2nd April, 1883. H. Cunynghame, London.-2nd April, 1883. 1743. Utilising Phosphatic Metallio Scoria, G. Pitt,
Sutton.-6th April, 1883. Sutton. 6 th April, 1883.
12. Regibtering Distance Travelled, \&c., J. Imray, London.- 9 th April, 1883 .
13. WHEELS, J. and H. McLaren, Leeds. - 9 th April,
1883 . 1822. Hose Pipes, J. C. Merryweather, Greenwich.1968. STopping
Shields. -18 th
April in SHIPs, J. B. Wilkie, North 2109. Conibisa SLIK, ©e., J. Thompson and T. Barker,
Manchester.-26th Ap 2298. Insstarnss, H. Lake, London,- 5 th May, 1883.
14. KNITTING MACHINERY, S, Lowe and J. W. Lamb
 CEnt Lamps, C. H. Stearn, London. - 1 thth June, 11883 29th June, 1883 .
15. Telepphonic Afparatus, W. R. Lake, 3302. Telephonic Afparatus, W. R. Lake, London.-
3rd July, 1883 .
16. Mañacturing Carpets, \&c., T. Tempest-Rad ford, Kidderminster.- 11 th July, 1883.
17. RoLING MMLs and RoLLs, A. W. L. Reddie,
London. -17 th July, 1883 , London, -17th July, 1883 .
18. Lassivg Bors and Siroes, W. R. Lake, London:

- 19 July,





ABSTRAOTS OF SPEOIFIOATIONS.


142, Skwisg MAchisss, W. Walker, Dunstable,-100n Thisi reale testo to asinjig thread chain stitch machito



































 Kalle and Co., Germany,)-(Not proceaded with.
This relates to the production of red colournin mat.











 221. Bzaniries $A \times \mathrm{ND}$ Lubzicarti














 224. Mrchanisy to be arployed for Deliverivo



 actuating the rollers by ar plonger or orm

 vith a block of marble, donse chalk, or other mineral
apable of kiving oft carbonic acid, which drives out any gases present.
 Terms of ferment preservation of millk by killing the formation of new germs by eaturating the milk with
carbonic acid, which is forced into the vessels contain228. K हтT
 The opening in the top of the kettle is made outside
the hatde so thatintwil be much easier to remove the
lid fitting the opening 229. R





231. Machinss for

The stamp is connected to a vibrating arm mounted
looselly on astud on the frame, and acted upon by losely on a stud on the frame, and acted upon by
spring, the free end of which is a stud actuated by
double the is ouble tappet on the driving shaft, , io that the stamy
is caried down with an almost vertical movement $t)$ the letters below. The atanp is raised dovement apring
When ink is is used an ink roller is caused to traverse 233.
 This consists in forming a lantern glass either with vertical flutings, or both combined, , of or the numbero of
offecting a uniform distribution and diftuston of offecting a uniform distribution and diffusion of ray
of light passing through such glass.
234. Hoonrv
 The roller has a stud at one end and a double flanged
cord pulley and stud at the other. The bracket sup

 bracket has a propecting piece slightly convexed
inside, and when the actuatiog orro is pulled out-
warde the stud travels alo along the slot and binds the ward the stud travels along the slot and binds the
edte of the pulley against the projection. Aorro is
atached too the bottom of the blind to pull it down
when required.

 Jute firreis is openeded and comuared, and. 2 cleansed from
Ji extraneous matter, and then built up into the form of a bowl or roller upon an iron or steel axis and sub-
mitted to powerful hydraulic prossure axter which it mitter to powerful hydra
is turned true and polished.

The object is to utilise waste heat or gases from
 are arranged and open at one end into the furnace, and at the other into the atmosphere. The gases from
the funnaee are made o pass trough fluges rumning
by the side of the air fues, whereby the air passing to
the furnaco is heater
237. SCREW TAPs, H. H. Lake, London.- 1 15th January
1883.- (A communication from O. A. C. French and
 adjusted to compensete for wear, and which can be
made paralle in its leng th or tapering in either direc-
tion tion as desired. The body of the tap has a longitudinal
cout extending throumh the threated part, and
gerew cut extending through the threaded part, and as
corew passing throug the tap transersely
draws the the
dwo sides
tongether. Two taper sorews


 piece, the outlet and the enlete of the trap being con
neeced by a removabe retainer so as to gian acoses
 the hopper is actuated by a shaft and liever, while the
ball in the through the trap t. is operated by then the wat water passing
other prothor and
gaskets. 239. Prxs, W. Brierley. Halifax. -1 15th January, 1883 ,



 241. Redoction of Metaliic Oris, S. H. Bmmens, This relates to the eliectrolytitial reduction of metals
from their ores, and isedigned to effect this by the
leectrolytical decomposition of solutions of the eleetrolytical docomposition of solutions of the salts
of sodium or orher hememically equivalent salte, in the
presence of such ores


 the electrodes conneeted withe the epoles of ambined, and and
dynamo so that a current flows through the tank from
the one to the the one to the oppositent extrowsithrough the tank trant chom
or nitric acid, or a mix mure of the two is everine
ond

 at intervais rrom the two compartments and mixed,
the metals being rreepitated by the fre alkalid derived
from the electroytyic decomposition of the original from the electroptric decomposition of the origina
salt. The supernatant liquor can be again used.





 masticator with oleaginous materials, and then rolle
 per cent. of flower (cf sulphur may be used, and fron
sot 5 per cent. crud camphor, wher
for in dia-rubber is producher. 243 GavisyIc Bartrgiss, H. Ho. Lake, London. -15 tht
 of electricity at a small cost. This oonsists in causing
 acid and exposed to the action of the atmosphere, and
then again plunged into the liquid. Various method
 another in makinig gthese plates in the form of discs,
which are caused to revolve.

 door, and the antan on on which of in limited by by a metal
drap in which works its upper end, the bar having
 pulled back by a anande. A Look in the jamb or post
of the door trame has abolt which when hhot prevents the projecti
in the
tor

 added a weak solution of muriaticio or hhdrochonloric acid.
 prelimininary coating of of provectected is corvered with a
naphthaline, stenrine, pitch or ther mixed with constituting an adhesive composition, to which the
anti-fouling composition above doerribe to anti-fouling composition above described is applied in
a heated state.

This consists in a gas producer with openings to to
admit air
vapourt the top tor the purposoof of oxdisisg the the vapours of carbonic oxide produced from the combus.
tion of coke into carbonic acid gas, and so producins mirture of carbonic acid and carbonic oxide gas in th
caroprtion of carbonio acid gas, the maxture beeng coolder, cend.t then
passing into proserving chambers containing the

 with metal picker spindle sildes securad in the tops of
the pickers, and over which are paseed and secured
the body of the pickers conical holes, in which are secure
cone
the conical pieces of india-rubber, which strike and actuat
the shuttles when weaving. 249. Smp-actixg Mulis fo
 This relates to means for cheoking the carriage so as stoppers, and it it running op win with force against the
by a frever and spring.
 The object is to cool the beer in casks, and at the
same time the air which enters such cask. An ic same oir is placed on to of the cask, and from it
reosre
coling pipe

 top through the tioe and into the cask, Ais throm the the
teads from the bottom of the cooling tite thit the
ice ice reservorr, and allows water to escape from the
cooling pipe.


The object is to operate cranes and similar apparatus
with variabe pped and with adety without requiring
complicated meen complicated mechanism. On the main shatit, whing
carries the crank and chain pulley, three disce or
carriers, a spur whel carrier
mount
whael
ixed it xnd an third wheol gearing with an internal toothed
onheel on the therd carren will



descent of the piston
the hoisting apparatus.

 apher power trakes and compressed air, steam, or
othre the them off.
One end of each cai spring securad to the axle-boxes is connected to
hangger bya tik.
hangers are securred the ounder side of the car othe which is connecected to one carry bell cranks, one arm of while to the other arm are ond one the espring by a brake bars fitted
with shoed are pivotted to the the opposesite ebars, ands theirnecting rod a lever, the upper end of whind
piston-rod of the power cylinder.



 regulate, will water or whatever it is is intended to
gauging
 Artificialiy produced or natural finely-divided silicious arths with organic materials and alkalies or alkaline
 cereeny the organic masses are cartonised and the
carbon wholy or partly burnt up, while the silicious
cid, partly unititng nder the influence of the heat, will form silicteat, so
that they will be cemented or but togethe and form
very porous but suffion ty us but sufficiently cohes


 256. Portable Ranways, H. Woods, Lee, Kent.- 16 thh
January, 1883.- (A communication from B. G. Chap





257. Filtering Saccharine and other Solutions, 1883. -A A commuxication from P. Casamajor, Brook,
The object 4 . 4 . surfaces by the solid matters held in suspension in in the filting
liquid to be filtered, and it iiquid to we filtered, and it consists in mixing such
mixed through suitat and then forcing the liquid so 260. Centre-board Vkssels, P. M. Justice, London.-
16th January, 1883.-(A communication trom J. \&. Toard vessels, whereby the centre-board may be ex board vessels, whereby the centre-board may be ex
tended lenthwise of a vessel nearly the whole length,
so that it may be correspondingly diminished in depth
The centreeb The centre-board is arranged to slide in ways, placed
at an angle of about 45 deg., and is raised or lowered
by a by a
262
$J$ January, 1883 - (A communication from B. $B$. Cogs.
weell, Nevo York.) 6 . Granular cork is immersed in liguid parafine so as
to become coated with it, and is enclosed in a fabric or envelope, also coated with paraffine, and of a shape tr:
produce a jacket, bell, buoy, or other object for sup-
porting persons in win
263. Locks AND Kkys, H. H. Lake, London. $-16 t h$
January, $1883 .,-(A$ communication from J.
White, Savannah, Georgia, U.S.)-(Not proceeded woith.) $4 d$.
The object is to prevent the lock being opened by
drilling or cutting away the bolts, and it consists in mailling or cutting away the bolts, and it consists in
cast ing the front plate of hardened steel or chilled
co as to be capable of resisting a drill, and as a further protection the locking cylinger is provided
with a collar of larger diameter, also hardened and
placed between placed between the plate and aneter,
struction of lock is also described.
264. Steam Generators, A. M. Clark, London.-16th
January, 1883.-(A communication fiom M. W. A water chamber or boiler forms the back or bridge chamber. The upper side of the fire-box combustion
and the water chamber extends into the side walls. The combustion chamber is at the back of the boiler.
and leads to the chimney. The steam drum extends
transversely of the fire.botes sta ranssersely of the fire-boxes and above the boiler,
being supported by the side wall, and it is connected to tene boiler by a tube furnished with an inner tube
extending down to near the middle of the water
chamber.


 under a die by elastic fingers on endloss travelling card bed or o bed formed of wires or botrietron set wire on
end. The stamping device has a flat face and is mounted on the end of a vibrating 1 lever a a ctuated bya
cam and to which
Fied and yialec of pressure. An in
face the
inel counting meensansism aeliverring the stamped eotricall, lettere anmi-
cally, hydrostatically, or by mechanical conneection with the $\quad$ 271. How


 the enas or which can pr.
holl the scar in position.



 space between them, and from which it is led to a
filtering apparatus containing powdered peat, while the solid matters are dried in a furnace.

Which coatho of the the poltate pupporting the stopper engage.
 phoceeded with. 2 . 2 .
This consists antiseptios suitabie for preserving alimentary substances of metaboric acid,
motaborate of potassium
sodium metabododrate, with or or withoot potassium and
bithe addition of other chemicals
 ${ }^{-17 \text { tht }}$ January, 1883.2 e .
of thin sheeets, oonstructed py paper with alterng piles composed in parafinine, ar.

 size and treated with an aqueous solution of hydro-
fuuric acid, and are then fixed on the keys to be fluorio acia, and ane the the a pecial cement.

 by means of a loose chain secured to the fore and rear
edges of the cart and pasing beneath the amme, and
over a chain wheel secured to edges of the cart and passing beneath the same, and
over a chain wheol securod to an axle at the fron of
the cart and actuated by a crank and suitable gearing.

 matter ealed benten bue,
salts of the aromatic uaternary ammines (ammonium
bases). and particuluruty form

 formed leuco base oonverted into the
matter by employing oxidising media.
 This consists in the manulacture of bricks, thles,
pipen, and earthenware artices and coment from the
dred
 alluvial deposits, either alone
chalk and silicious material.
281. MEEFANIISAL Mositai Instronesws, H. H.
tion from the American. Automatic Organ Company,
Incoropated, Boston, $V . S$.$) . 6 d .0$ This relates to instruments in which the playing is
effeceted by the opassage of 2 perforated dheet through
the instrument, snd it the instrument, and it consists in various in
ments in the construction of such instruments.

at an exceiting liquid saresuppliied from cisterns placed at an altituda. A system of pipes and valves is so
arranged that fresh liquid con to turned rint the
batteries when required, and waste liquid drawn off. 283. Apparatus Connected with the fitting and
 This consists in providing a tube or channel at or
near the sern of the vessel, and as low down in the
dead wood



 and having a hole over each one ono othat the cane falls

 mentary oxtractor, where it is subjected to the aetion
of stampers or banters, the cane having been first
treate

 spheric pressure. The o juice is then treated with
chemicals to neutralise its acidity
tha ceavse the more solids. A filtor to separate the solid matter held in
suspension is arranged so that the bass can be allowed
.
 described
285. E
 and fed up against the lower end of an iron
carried by a spring attached to its upper end.

The object is to reduce the size and weight and the
power requrred to drive trimashing machinses; and it
consists, First, in the emplogment behind the

means for supporting and adjusting the position of the
drum relatively to the concave; and Thirdy, in a special arrangement of the fore, carriage. The drum seociap arted on
is rum to yield.

188. - ( 4 communication from N. de Kabath, Paris.)
 projecting parts aro folded or curled over on to the
plate. The plate is then folded on ittesf In a modi-
fication plate, the upper part of each projection being per-
forated. plate, th.
forated.
$288 . ~$
 January, 1883 . - (A communication from N. de
Kabath, Paris.)
10d. Relates to apparatus designed to control and main-
tin constant lectric currents
and
comprises magnet placed in the main or a shunt circuit, having
an armature withdrawn by a spring. When the cur rent is strong enough to attract the armature it causes the current to flow in one direction in an electro-
motor. When the spring preponderates, it reverses the current and the direction of rotation of the motor
The movement of the motor operates a commutator Which introuduese into the oircriut tadiditional sources of
electrieity or resistance coils, as the case may be.
 The cord is passed througha a silit in a case fixed to The cord is passed through a sit in a case fixed to
the wind eeth, and when the orrd is pane released the cord pulls
are forced into it, so that when rell the pawl round on its pivot, and is jammed tight.
By puling the ord down slighty the pawl drops, and
he cord is free 291. Conssrs, H. C. Leprince, Paris.- 18 th Jamuary, This consists in abolishing gussets or gores, and
reducing the whatebone necessary by the particular
the mode of forming the body of the corset of three pieces
on each side, vik, a top piece and a bottom piece,

 Thish consisisty in subbe faing sulphnte of strontia to
repanted boiling with earbonate of soda, using sue repeated boiling with carbonate of foda, using suc
cesively solutions more or less spent by previous
boild boilings, and attacking with the fresh Botint the


 of a mixture or sulphate or stronania and carbonate o
soda into oarbonate of trontia and sulphate of soda
and secondy, in the manufacture of carbonate o
 press.
pron 294. Hydrallic Machingry for Produclsc Power
or for Purpina, $W$. Donaldson, 4 mbleside. $-18 t h$ One or more eylinders are each open at one end and
Oered with a toose lid at the other, and on the outside a balanced cylindrical valvo works with an eass
fit. A case usrounds the cylinder and throug oon
side the open end projets. side the open end projects. A piston fits easily in the
cylinder, and its ron
two excentrics sactuateorks thro

 egress of water, and one ordinarily covered by the the ndd acting as a safety valve. The lid has valves to
admit air at the instant of the termination of the full stroke and allow it to escape during the return stroke,
the valves closing the instant the water is admitted.


 in heated ozolkerite. The braiding spindle has its
head formed with a slot opposite the opening, in which the dropper works, and which acts as a guide
for the front extremity of the dropper.
This facili tates threading the yarn through the hole at thactop top
of the drop rod, the hole being parallel with the
dropper 296. Drivina Bexirs, G. H. Hebblethzaite, HuddersThe belt 1 ist compunaary, of on iss. idner leather belt and an secured together and forming a complete belt of great
strength
 ceeded veith.) 2 L. Auschuzky, France.) -(Not proThis consists essentrally in forming the floor or
bottom of the basin or stagel so that it can bo raised 299. Vemtilatino Tramway Carbiages, \&o. and foin


A spinclo is driven by a chain from one of the wheel
axpes and by means of pulleys and cordspactuates a
ventlotin ventilating fan arranged above the roof, and also drums
 (Not proceceded vith.) $2 d$.
transmit the power from the piston-rod by emploging
 annular wheol as the pinion revolves, and to this stud
the piston-rod sis connected
Bydriving the pininon the purposes.
301. Wars Baxps por Trowsers, de., B. Dastot,
Brusels. $-18 t h$ January, 1883 . - (Not proceded woith.) A stout elastic gusset or oxpanding piece is lined
with a suitabole material and secured by a metallic rim round its edge to the points of the tro busers where the
front and back braco buttons her usuall attached,
thus for thus forming a waist band which will do away with
the necossity for using braces.
 This relpecestad to the operataion of boiling the wort, and
to the preparation of the hop element to be added to


hops added, the latter having had their volatile oils
extracted by distillation. The volatile oils are collected and added to the wort in the gyle tun,

The objects are to indicate when leakage occurs in


 also provided. The sismals will be actuated if
pasenger opens a valve in the vacuum pipa, or if air
onters the same by leakage. Onters the same
304. Fornaces for the Treatment op Matrenals for
the Provection or Sulpants or Sod or Potase,
¿ce., J. Mackenzee, Stockton-on- Tees.-18th January,
This reates to furnaces which may bo worked on a
continuous system for the treatment of materials for the production of sulphate of soda or potash, or for
carbonating, calcining, or drying other chemical pro ducts or materials, and it consists in the use of a aeries
retorts placed in a furnace and each provided with
wither
 carry the material through the retort
necting it with the next of the series.
305. Appliancrs Eaployed in the Loading, UnN
LoAning, AND Convyying or Merohandisk, de.

This relatos to improvements on patent No. 5177,
A.D. 1882 , in which a system is deseribed for conveying nerchandise on railumys in the same wayons as in in rucks are used to receive the road wagons. This
 the wagons, and the front wheis are placed closer
together than the hind wheels. Means aro provided to
prevent the wagons shifting on the platiform. 308. Eleorrio Signalisiso Apparatus for Use on
Ranwas, $W$. Walker, London,-18th Janvary

The signal indicates "safety" only as long as an ratus comprises a main and auxiliary circuit, the lhatter serving by means of sutable appliances, to complote
the main cirouits at the desired points. The circuit 309. SOg. Factory Chinsey Shafts, S. Hart, Hul.- 18 The base is constructed of iron girders bolted

 irron colininder bolited togetere, and lined with brick o $o$ or
stonework. Near the bottom of the shaft a number oo tubes pass obliquely from the outside to the inside and
erve to admit air and also allow some of the hot air to escape from the shafl.

from C. Joutrray, France). $6 d$.
cast iron roller is is caused to revolve, and on it hollow cylinder rests freely, and upon the interior o cylinder rests on guide rollers, and the material to be
crushed is fod inside the oylinder and pasees under the crushing roller. Scoops lift the crushed material, the malliler particlese passing through wire gaze to
receptacle benaeth, while the large particles return to
the cylinder again,
313. Hearthruos on Ma Ts, B. Taylor, near Hudders.
jeld. $19 t h$ January, 1883.-(Not proceded with.) The rug is made of pieces or lists of cloth, stuffs,
fents,
back. or ther suitabie material woren into a canvas

 n a straight lin or or tan varying anglee, and consisistsed in
ormina each part of the union nearly semi-slobular and with a soreved soo inet for connectiom withoblar the
and
and
 on one part and passes through the
secured by a nut coned to fita seating.

The object is to form cylinders for hard waste
breakers, combining lightness, rigidity, simp waste
nd economy of construction. The ends are of cast
rnon or steel or orrought iron, and aro soeured ot cost the
rhaft. The shell is formed of $a$ plate of wrought iron or steel and secured to flanges on the onds. An outer
case is fasteneet to the shel and reoevives the teoth
The ends sre provided with sheet metol covers to The endd are provided with sheet metal covers to keop
y or dust out of the cylinder.



 aving segmontal projections on their peripheries.
pair of collecting brushos are applied to each ring. 317. Skcondary or Storage Batteries, H. J. Had
dan, London.-19th January, 1883.- (A communica-
 phate of yinc on a cathode of thin puro sheot zinic. The
node is formed of a thin sheet of lead covered on node is formed of a thin sheet of lead coverea on
joch sides with porous metalice lead obtaine by the
deomposition of an oxite of lead. The decomposi decomposition of an oxide of lead. The decomposi-
tion is aidid by the addition of a small amount of
coetio acid or acetate of خinc.
 The object is to render the interior of lanterns easily in formingt the lantern of two parts, the lower having
a flanged base-plate, with the lamp in the centre, and the upper comprising the glass sheets, frame, roof, and
chimney. From the base-plate vertical bars extend upwards, ayd pase though a guide attached to the
ring carring the troof. to the top of the bars id
hinged a hoop serving to suspend the lantern and secure the otwo parts together. By turning the hoop
down, the top part of the lantern can be removed. 319. Machives for the Manvencrupe or Burtons,
 and reseses buttons by milling tools in in three difif cerent operations, carried on simultaneously yon throe different
ojiects, the frst operation serving to remove the crust rom the article, while the second produces the
required shape, and the third cuts or dresses the back.
 The object is to more effectually consumme the omoke
in steam boiler and other furnaces, and it consists in

the top of each fire-bar a piece of wrought iron is
inserted, and runs the whole length, so as to considerably strengthen the bars and provido a hard wearing
surface on the face. The furnace ooor is formed of
three or tor

## 320

outer and inner plates having a number of perforations,
and the centre plate a single hole in the centro, the and the centre plate a single hole in the centre, the
object being to indita a ourentof hented air orer the
fire. A valve is itted to the hole in the centre plate. 321. Switch for Iverenswa or Diminishina thi


More or less resistance coils are interposed in tho 322.

322 Elecorric Arc Lampary, F. Mori, Leeds.- 198 th The e escent ond of the upper carbon is controlled by a
worm whel and pinion. The cage containing the finion is attached by a lever to the core of a solenoid placed in the main circuit, which on the passage of arrent lifts the cage and etablishes the arc. The up
stroke of the cage brings the wheel in contact with an apper brake, a lower brake acting on it when the cage despend. In a modification the cage is balanced by
dwo solenolid, one of high the other of low resistance.
 lectro-mačut, wh
Carbon to descend.

 880, and consists in twisting mo, wires for securing
he corks before cutting the same, and so that a portion the corks before cutting he eame, and is applied to the
of the twisted part is ready and is ape
securing of the next cork.
To effect the twist the securing of the next cork, To effect the twist the
wirr orbottl ifr orvold, and the wirr thus seaured
arross the top of the cork and round the rim of the
 This relates to engines in which the motive gases are
not compressed previous to ignition. The e rawings show the invention as applied to a vertical engine.
The cylinder $A$ is provided with a water jacket, and its

trunk piston $C$ is connectod to the orank shaft in the
usual manner $; F$ is a circular valve casing, and $G$ the port leading into the cylinder ; IIs the ignition slide
H the rotating or cylindrical valve, with suitable ports for mixing the motive graes and, exhasting the resi-
dues after combustion. Valve $H$ is driven at the same

speed as the engino by mitre wheols, and on its lower
portion is a grooved cam $K$, which actuates a lever connected to the ifgnition valve. The rising and falling
of the governor silide regulates the tap or valve in tho the governor sidao 328. Ventlativa Watzrproor Overcoats or
Macintoshes, $H$.
Sax,
London. $-19 t h$
January, A ventilating fabecice is is ins.) 2 .erto in the back of the garment, and covered with a flap or hood open at
ootcom and with an exit tat top atthon apoo of heneck.
The fabric wonsists of tapes or bands interlaced so so to bave apertures, and securred together wherere they ar aros
m metallic eyelets. Ventilators with a bellows-like action are also provided, and arranged to be actuated
oy the movement of the arms in walking y the movement of the arms in waking.

a arge heating surface, produce a free eirculation of
water and
joints
rapid generation of steam, while the sion or contraction. The pipes are of $U$ form by expanleg is extenaded a tew ine inhes above the ermeter and one in
the boiler. The tubes can be applied to vertical or
330. Groynes for Raising or Protecting Fore-
shores, $A$. Doovon, Westminster.-20th January,
1883. $6 d$. . The object is to gather or retain shingle washed up
by the sea, and it consists in building groynes of open
construction, which allow water to pass freely after construction, which allow wat
having deposited the shingle.
331. Couplisa ind Uninglo.

| de., J. Darling, Glasgove.- 20 th January Jarriages, 1883 . $6 d$, |
| :--- | The ebject is to coouple and ancounte rain railway carriages without having to get between them. The

hooks are arranged to enter each other in a vertical
position, and they are pivotted to draw-bars provided hooks are arranged to enter each other in a vertical
position, and they are pivotted to draw-bars provided
with levers for lowering the hooks, so as to disconnect 332. Treatment of Sewage, de., J. Young, Kelly, This relates to the treatment of sewage and other liquids such sas refuse from the beet sugar mananufac-
ture. in order to obtain ammonia and in the apparatus or the same; and it consists in improvements on patent No 3562 , A.D. 1882 , in which a partial vacuum
was formed, so as to enable the sewage to be boiled at low temperature. This vacuum is utilised, together wewage through the apparatus. The atmosphere acts upon the ingoing sewape or other liquid, pressing on one side of a piston against the vacuum, and the power
thus obtained is utilised to force or draw the sewage through the apparatus. To separate the ammonia from the steam, the steam is brought in contact with 333. Foot Mats For Doors, Bath Rooms, \&c., S. P.
Alexander, London.- 20 .h JJanuary, 1883.- (A com-
number of strips of wood a jo.) oo as to leave interstices between them to receive the irt. The mats can be folded up when not in use, and backing of canvas may be applied to collect the dirt. use in bath rooms, and the backing may be of water-
proof material.
5. Apparatus dsed for the Distillation of Coal,
Shale, \&c., B. P. Walker. Birmingham, and J. A. B. Bennett, King's Heath, Worcester.-20th January, 188. obect is to reduce the manual labour, and effect
The distillation of coal, \&c., more economically. orizontal retort, with its lower part of semicircular he front a hopper, from which the coal is fed to the pipe is connected to convey the gas away, and from pipe is connected to convey the gas away, and from
the lower part a shoot depends for the discharge of the works, and is mounted on a hollow shaftert a serving to onvey heated air to the furnace. The serew is made
336. Preveenting the Frefzing of Water in Water-
 the water main and the discharge opening, and is has to pass.
Salt Pree from Iron, $\boldsymbol{H}$. J. Haddan, Kensington, from Dr. B This consists in adding to a hot solution of kieserit, mixed with common salt, a liquid obtained by pouring
concentrated hydrochloric acid over ordinary Glauber's salt, and subsequently filtering the whole through rock
salt for the purpose of obtaining Glauber's salt free rom iron by means of crystallisation.
January, 1883. $6 d$. . W. Hebler, Suitzerland.-20th This relates to improvements in the cartridges and
the interior of the barrel of small-arms, the object being to obtain greater accuracy in shooting. The projectile with its paper envelope is slightly larger in
diameter than the barrel in its grooves, and during th pccharge the lands of the barrel press into the promade much with the cartridge bed. The land nstead of forming a sharp edge with the lands have heual are formed in the barrel, and both the grooze nd lands are curved concentrically to the axis of the arrel.
339. Teleprionic Apparatus, J. Graham, London.-

The transmitter has its iron core surrounded by an
insulated winding of coarse iron wire, the ends o insulated winding of coars iron wire, the ends
which are in the battery circuit. At each extremit placed a coil of fine wire having their innerior conds con nected together, the outer end of one coil being con-
nected to line and the other outer end to earth. Oppo site each end of the cone is a suitable diaphragm. The 342. Couplivos or

The on Manchester.- 20th January, 1883, ©c. d. Attock etting between them, and it consists in elongating the the draw bar hook to which it is linked, and when not lovel. This link is fitted with a rigid lever higher oach side, by which it is lifted over the draw bar hook is preferably a small. length of chain attached to the
wagon end

The object is to prevent the ends or threads fouling
ach other through the "ballooning" of the threads rretched parallel with the line of spindles, so that the will be caused to collapse.
344. Sizing Machines, E. Tweedale and A. Hitchon This relatestos, First. - Jo a friction motion for the un Secondly, in the markers or apparatus for marking the concave plates, one driven and having studs which im part motion to an internal carrier wheel gearing with ernal teeth on the second plate, which thus rotate plates is a friction pinion gearing with a carrier and oing gripped through plates or clutch boxes actuate oay be driven from the worm shaft by marke carrier wheel, and on the stud is a pinion change
wheel gearing with a large wheel, on whose axis is axis of the cam operating the hammers, both of whic perate on one bowl and are arranged to strike approximately the same line of threads.

Combination Tools for Kitchen Use, W. W.
Brierley, Halifax. -20 th January, 1883.- (A commu
nication $2 d$ from P. Frost, Germany.)-(Not proceeded
This relates to a combination tool which may be used
or splitting wood, cutting or breaking bones or other
material, for
346. Preparation of yarns Expressly Intended
To be Usen as Wert in the operation or Weavina
Fabrics Fabricos, having when Finished a Crimped of
Criniled Surface, January, 1883. 4d. This consists in applying size, and especially vege-
table size made from the gum weed (gracillaria tenax) or other soluble seaweed, to hard or highly-twisted or Canton crape or other fabrie which, when woven
and finished have whereby such havens are primed or cred crinkled surface,
snarling during the weaving process. 347. Appliances for the Game of Crigket, G. G. The blade of cricket bats is formed of two or more leather or canvas, with which the blade may also be
faced. cane soaked in glue into a mould by hydraulic or other
pressure. pressure. The handle is glued in a dovetailed recess and ellarged and athe ends, ap aplug of ebonite being forced
into it in a plastic condition. The stumps are inserted in a plate pinned to the ground, and provided with receive the stumps.
348. Voltaic Batreries, R. H. Courtenay, London.-
20th January $1883,2 d$. In batteries of low tension
by fixing in a suitable vessel, impervion is prevented partitions composed of a material not a cted on by the
battery excitant, in which partitions the placed. The conductors are fixed on the partition Should a higher electro-motive force be required a
bibulous substance is fixed to the conductors. In strong current batteries three elements are used-one
negative another partly negative, and the third posi tive. The solution containing the first is tho-
roughly insulated from that containing the other two. 351. Apparatus for Coupling and Uncoupling
Railway Wagons, $\mathcal{S}$. $A$. Croft and $R$. Lomax, Man. Thester.- 22 2nd January, 1883. 6 d wagons in order to couple and uncouple themeen the draw-bars are fixed at both ends of the wagon and bracket to which the shackle and links ane sorms a and the end of the other is shaped like a jaw, the bars
being fixed so that the bracket for one wagon comes being fixed so that the bracket for one wagon comes
opposite the jaw on the next wagon. The end link has
a bridge a bridge on the upper side near one end, and it rests in cally enters the jaw of the next wagon when the two caused to pass through the a pink, being the jaw is tuated by side
levers and rods. 352. Fire-res
-22nd January, 1883. 10d. This consists, First, in forming doors with air spaces
between the locking or bolting chamber and the fireretween the locking or bolting chamber and the fire-
restang portion of the doors or between the outer
plate aplying additional locking bolts or stops acted upon ocking of the door or cover, exceept when such extra bolts have been acted upon before the key is removed;
Thirdy, in applying clamping plates both to the inirdily, in applying clamping plates both to the external surface plates of doors near their
inters, and in protecting the edges of the doors by overedges, and in protecting the edges of the doors by over-
lapping flanges covering the openings between the door and the frame; Fourthly, in protecting the edges hannels or guard plates which prevent the hot air or flame at such parts, and thereby retaining
the door in position; Fifthly, in applying to doors hung to rise in opening and tending to close by gravity
in shutting, $V$-shaped or inclined planes for the hollow edge to ride in aided by rollers. The hinge
pivot or pin may be formed with male and female
hreads of threads of an acute pitch to cause the door to fall by
its weight acting on the incline plane of the thread 354 Apparatus Applicable to Wire and Similab
Conneotions for Working Railway Signals, ac.
 The object is to overcome the inconveniences arising from the wire slackening, and it consists in passing
the wire over a grooved drum, near the periphery of which a link is pivotted, and, its outer end suitably
guided. The link carries a roller near the middle which travels in a slot formed in a sliding bar convey355. Apparatus yor Sounding Siavals, K. F. ${ }^{\text {B. }}$.
Boehm, Manchester.- $22 n d$ January, 1883.- (A (Not poceeded with.) 2d.
This relates to an apparatus by which signals are sounded by the action of steam or compressed air,
which instead of acting direct on the resonant part,
creates a vacuum, and by suction draws the external creates a vacuum, and by suction draws the external
atmosphere through a resonant instrument, consisting 356. Metal Cases or Canisters for Holding Tea,
\&e, G. L. Cumberland, London. $-22 n d$ January, The canisters are made meded smaller at bottom than at The canisters are made smaller at bottom than at
top, so that when the lids are removed they can be
placed one inside another, and so occupy less space for placed one
transport.
 cation from H. R. Boissier, Neeo York, U.S.) $6 d$.
This invention relates to improvements in. the brushes invention their holderess, and almpoovements a shant circuit
around the armature. The brush holder is fitted with around the armature. The brush holder is fitted with
a spindle having an insulated knob, the turning of which operates an excentric or clamping device, by which the brush is locked in position. The free end
of the brush is covered with insulating material. The hunt circuit consists of two resilient conductors part. These are so connected to the brushes as to which, whon their ends are in contact, they divert the
wirrent. 359. Fasteninas for Stay Busks, Boots, Gloves,
de., F. R. Baker, Birmingham, 1883. 6 d. ${ }^{\text {N. Baker, Birmingham. }-22 n d}$ January, The fastening consists of two pieces of metal, one in
the form of a tongue piece with a part stamped out,
and raised above the surface to form a and the other having its end turned up and the edge
turned slightly back again to form a lip. In the urned-up end a slot is cut to receive the tongue piece, the catch on which takes under the lip of the
turned-up end. By depressing the spring catch the
fastening is undone. 367. Removing $V$
37. Removing Vegetable Impurities from Wool,
\&e., $H$. J. Haddan, Kensington. 23 Jd January,
1383,
 This consists in coating the metallic parts of card-
lothing or carding sheets with magnetic oxide, when they are used to remove vegetable impurities from protected from rusting.
597. Direct-acting Hydradlio Machings for Rivet-
ting, Punching, Forging, de., Westminster, and J. Patat and.'J. Fielding, Glou-
cester.-3rd February, 1883 , This relates to means of varying the power of directforging, むc., and consists in providing the hydraulic cylinder with a differential plunger and suitable valves the plunger or on its annular act on the smaller area of on both. A is
the plunger, and the fluid pressure can act on the annular area B , and when valve C is opened on the cir-
cular end area D . By also providing a valve for area
the pressure can be brought to bear on either area or
on both. The head of the plunger which carries the

rivetting tool is made excentric and in one piece with

## SELEOTED AMERIOAN PATENTS

282,487. Speed Indiator, Thos. Blanchard, Stough
ton, Mass.- Filed March 29th, 1833. Claim. - (1) In a speed indicator, the bracket $L$,
shaft $N$, segment 0 , shaft $S$, spur wheel $T$, pinion $V$
shaft $Z$, pinion, hand, and dial $W$, in combination with means for supporting the bracket, and wit
operative mechanism, substantially as set forth. (2) operative mechanism, substantially as set forth. (2)
The improved speed indicator herein described, the
rivetting to
the plunger.

same consisting of the body A, shaft B, whirl
sleeve $H$, collet $Q$, bars J, arms E, balls $G$, lever collet $P$, shaft $N$, segment $O$, pinion, shaft $S$, wheel $T$
pinion, shaft $Z$, weight, cord, dial $W$, hand, and brackets Y M, constructed, combi
operate substantially as set forth.
282 489. Telegraph Pole, Tho
Pa.- Filed December 16 th, 1882







Tho wire holder, aperturod and slottod for reeeption
 longitudidinal lotot, subustantially as haown, and tor the


 bolder D and aetions B and A ,
sbown, and or trin turpose deseribed.







with a tap-hole, and the plug corresponding approxi adapted to close the tap-hole of the board, substantially as and for the purposes set forth. (3) In apparatua
for coating or blacking mould, the combination, with the plug G, having the stopperH, of the board A, having
the tap-hole E and trough $F$, substantially as and for the purpose
282,686. Rock Drilunva Machise, Thomas Thelfall
San Francisco, Cal.-Filed December 7th, 1881, renewed June 7 th,, 1883 .
Brief. - The drill is driv
retracted and partially revolved by bell-crank levers
and suitable connectious, the hammer and lever being
operated by wiper cams. Before the blow of the

hammer, after the partial revolution, the drill is borne by a spring against the rock. The rotating lever is
connected to a swinging pawl-plate, the pawl of which ngages with a ratchet wheel concentric with the 282 771. Babk Mil La Flavius $R$
N.Y.- Filed June 15th, 1883 .

282771



and means for holding the same securely in place
when the mill is in use, as and for the purpose shown get forth.

## CONTENTS.

The Engineer, September 21st, 1883. page Incandescent Lamps at the Vienna Exhibition. 219
The Britise association ..
.. The Mariemont and Basooup Colluiery. (ïlus.) 22 Trchnical Educaticn at Nottinge
STEWART's BlowEr. (Illustrated.)
 The Problem of Flight. ARTIFICIAL SUBBARINE LINES
BEECHWOOD SLEEPERS Begohwood Slekerrs
Continental Rallway Speed The Graphio Treatment of Stresses Road and Rail Cars Loadd on Inclines
BURDEN's
Rotary
Sqegzeir Notes and Memoranda
Lisading Abticless-
The Value of Strikes $\begin{gathered}\text { The Continuous Brakes Returns }\end{gathered}$
Dredging and Embanking
Coming Rallway Work ..
anges in the Iron Trade
The Tretrichick patent case.:
The Iron and Stell Isstitute
Halli's Pitce Chain. (Ilustrated,
Breech Mechanism for Heavy Guns $\because . . . .$.
The Newport Rolling Mils, Middlesbrovai.


MINGHAM, WOLVERHAMpTON, AND District.. Notes from Sheffield..
Notrs from the North of England
Notes from Wales and adooning Counties
The Patent
 Locomotive Building in the United States.
The Mason Scientific College, Birmingham Dock Extension
Experiment with Boiler Ëaporation
The The Florida Ship Canal
Experiments with Steam Whistles
A Railroad in Palestine

Messrs. Witty and Wyatt, Billiter House City, have obtained a silver medal for asbesto


[^0]:    good，and many men are able to earn $£ 2$ per week easily．

