THE CHICAGO RAILWAY EXPOSITION. No. VI.
Most American railways are very badly provided with signals, though with characteristic readiness to grasp new ideas, most elaborate forms of block signalling are being rapidly adopted, and the exhibit of signals was consequently very large, and excited much interest among American rail way men, and seems likely to lead to a very considerable improvement on the crude, imperfect, and dangerous appliances now in use. No regular system of signalling or interlocking is yet in general use, though the frequency of facing points on both double and single lines, drawbridges, road crossings, and of railways crossing one
another on the same level, render interlocking even more another on the same level, render interlocking even more
necessary than on some English lines where the trains

are more numerous. It is probable, however, that the next few years will witness a great improvement in the working of the signals in use on American railways, and therefore the interlocking and automatic electric signal systems exhibited may be regarded as most important in their influence on the safety and regularity of American travel in the future.

States has now the choice of all that English experience has approved and American ingenuity recently devised in the matter of signals
The Pennsylvania Steel Company exhibited a full-sized railway yard worked by an American prototype of Saxby ond rarmer roads, \&c., and some apparatus with sidings, crossover roads, \&c., and some good and simple yard points
moved by hand for shunting or marshalling when moved by hand for shunting or marshalling when the signal-box when a through train is due. Semaphore signals were almost exclusively used in this exhibit, which was distinguished by common sense and simplicity, and in many points resembled good English practice.
The most complete collection, however, of signallin apparatus was shown by the Union Switch and Signal Company, Pittsburg, Pa., which in addition to automatic electric signals showed no less than four totally distinct forms of interlocking gear, including Saxby and Farmer's interlocking, Sykes' electric interlocking, and hydraulic and electro-pneumatic interlocking apparatus of American invention. As the former methods are well known in England, we propose only to briefly describe the latter, which are of recent introduction and will repay examination.

The Union Switch and Signal Company's automatic method of working the block system by an electric circuit section, a mile or less. in length, the rails of which a block perly connected to form electrical contact, and are insulated at the ends from the adjacent rails battery is placed at B, one pole being A one-cell gravity rail, and an electro-magnet M is similarly connected at the

It is somewhat singular that the question of uniformity of signals should have received so little attention in the States, where many railways have combined to adopt standard interchangeable axles, wheels, axle-boxes, \&c. In forms when the block system was first introduced all other widest and wildest diversity was first introduced, but the advent of improved methods of signalling therica, and the sified the evil by introducing fresh varieties has even inten discs, diamonds, Most of these signals of spectacles, and badly placed the they of these signals are so smal indicate danger, and when turned be seen when they advancing train to denote safety are practically invisible and give no positive signal. The best signalling appliances are of little use if the form of the signal itself is ambiguous or cannot be clearly distinguished, while the principle that the absence of any danger signal whignifies safety has been found by experience to be faulty, and sema phore arms are now generally made to give permission to proceed by falling to an angle of 45 deg . or 55 deg . from the horizontal, instead of dropping out of sight behind the signal post. It is always possible that a signal which the not be seen may be rendered invisible by a failure of the operating mechanism, and hence signals should always tive positive indications of safety or danger. Our American cousins hardly seem to have paid sufficient attention to these fundamental principles of signalling, but have endeavoured to further improve the block system by rendering it automatic, or, in other words, have substituted mechanical for human agency, and thus endeavoured to eliminate one set of chances of errorbyintroducing others.
The Exposition contained several different systems of automatic signalling in which the passage of the train itself worked protecting block signals without the interin others a signalman. In some systems the rails and tric conductere systems of wires were used as electhe conductors. Both closed and open circuits were used, the signace of an electric current in the one case keeping causing at safety, and the interruption of the current the presence signal to fly to danger. On the other system the presence of the train on the section completes the its norm and the changes the signal to its normal position of safety. The former system is adopted by Pittsburg, and the latter by the Hall Electric Signal Company, of Meriden, Conn. The utilisation of the rails as said to be sonfers certain obvious advantages, but it is when the track is lifted or relaid. Both systems are being when the track is lifted or relaid. Both systems are being
largely adopted, and the railway manager in the United
other end of the section. Thus a complete circuit is established from the battery, through the rails and magnet
back to the battery again. The electric current follows back to the battery again. The electric current follows the path of least electrical resistance, and does not materially leak off to the ground, but keeps the magnet magnetised, holding the signal at safety. When, however, a train enters the section the current is short circuited, passing through the wheels and axles, which are better conductors than the small wire of the magnet. The latter being demagnetised releases the relay, and the signal O flies to danger, remaining in that position until the last pair of wheels has passed on to the next section. It will thus be or trolley broken rail or the presence of a runaway truck Platelayers working on will turn the signal to danger. Platelayers working on the track can dispense with the unsatisfactory plan of sending back a man with a red flag by simply laying a crowbar or rail gauge from rail to rail,
thus short circuiting the current and putting the signal to thus sho
danger.
As shown in Fig. 36a, but one signal is operated; but the system can readily be adapted to work several signals, or the signal O can be placed as shown in dotted lines in advance of the block section. The absence of a home or stop signal is, however, a disadvantage, and therefore the more elaborate system shown by Fig. 37-which represents the signals on three sections of a double line-is very generally adopted. The local battery D, which actuates should be borne in mind that trains in America one. It on a double line generally keep to the right as running this diagram. As before keep to the right, as shown in train on the section A short circuits the current produced by the single cell battery F, and through a relay out the bavery D, the current of which keeps the signals A^{1} and A^{2} at safety. These signals fly to danger simul taneously, acting as home and distant signals, and remain at danger until the train has completely cleared section A Directly the leading wheels of the engine enter section B , the signals B and B^{1} also fly to danger, and the driver can thus see the signal abreast of him move by the action of his own train, and can thus assure himself of the proper working of the apparatus
The length of block sections on lines worked on the automatic principle varies from a quarter to half a mile, and these very short lengths are adopted, even on single lines, to suit the American practice of running several trains on one schedule. In other words, when the traffic demands it, several trains are run in quick succession ; any train coming in the opposite direction having to wait at the crossing place until all the extra trains have passed. It is
important to reduce the period of waiting, by enabling the trains to follow one another as closely as possible; and therefore on some heavily worked single lines the automatic signals have been placed only half a mile apart, though the crossing places may only occur every five or ten miles.
The small expense attending the use of these signals is The small expense attending the use of these signals is Very favitaurable to the adoption of short block sections. Capitalising the wages of the signalmen, a straight line box, worked day and night, represents an outlay of over mile of rater mile of road. ever, adopting boxes fitted with Sykes, electric lock, only a
quarter of a mile apart for the first eighteen miles from quarter of
The system as applied to a single line railway is shown in Fig. 38. Both home and distant signals are provided for trains running in both directions, the signals being train entering section A from A^{1} advancing train. A train entering section A from A^{1} puts the danger, the b^{2} and b^{1} behind it Thent or 1 , and on the same circuit, and are sorked $a_{1} a_{1} a^{1} a^{1}$, are all This system ensures a proper distance being maintained between trains travelling in apr distance being maintained between trains travelling in opposite directions; for when ${ }^{1}{ }^{1}$ in advance of the train and at the end of block A is

thrown to danger in the face of the train on section A advancing on section B. Should the driver fail to stop his train in time and enter section B, the signals b^{1} and b are shown against the train advancing from D and about to enter C. It therefore appears that, assuming the worst possible conditions, each driver sights a distant signal when he is the length of two block sections from the train advancing towards him.
Electric continuity throughout the length of the section does not depend upon the contact of the fish-plates with the rails, but is secured by connecting adjacent rails with wire, as shown in Fig. 39. The ends of this wire are

wrapped and soldered round the heads of small copper rivets driven into holes drilled in the rail flanges. Various methods are used for insulating the rails of adjoining block are placed Strips of non-conducting fibre, about 8 in. thick Another plan is to use a wooden fish plate on the outside Another plan is to use a wooden fish plate on the outside
of the rail, a divided fish-plate on the inside, and a sheet of non-conducting composition between the ends of the rails. This would hardly seem to make an efficient fish joint under a heavy engine, though doubtless its electrical properties are excellent.
The forms of signals actuated by electricity vary greatly on different railways, but that shown on Fig. 40 is often

used. A cast iron box beneath the signal contains the operating mechanism, the details of which are somewhat complicated. The vertical spindle carrying the signal is made to revolve by the action of a stout spiral spring, by electricity tively, the int hold the signal to safety and danger respecand permitting and indicate danger signal to make a quarter revolution An electro-manet and detent when attracted and arrests the other one attracted, while the movement of the shaft restores the
detent to a position where it is ready to engage. The spring when run down expands and strikes a catch which locks the signal to danger, thus guarding against the neglect of the attendant to wind up the spring.
The signal itself is composed of a stout wire ring, accross which are stretched horizontal wires, on which swing freely light metallic slats. The signal can be easily turned, as the slats offer little resistance to the wind. The motive power being small, it is important that little force should be required to turn the signal. A lamp with red and white lenses is mounted on the top of the signal spindle and turns with it.
The Union Switch and Signal Company also exhibited hydraulic and pneumatic methods of working interlocked signals. Both are of recent introduction and as yet have not been extensively applied, but the latter is in use at East
St. Louis, an important railway junction at the eastern end St. Louis, an important raiway junction at the eastern end
of the well known St. Louis Bridge. The hydraulic system of the well known St. Louis Bridge. The hydraulic system
saves the physical labour consumed in handling the levers moving the signals and points of a large yard. A set of small levers put in an interlocking frame works valves in the cabin, which admit and release water under pressure to pipes communicating to hydraulic cylinders which are
directly connected to the various points and signals. Long directly connected to the various points and signals. Long
lengths of rods, wires, \&c., are thus entirely dispensed with, lengths of rods, wires, \&c., are thus entirely dispensed with, the locking apparatus and to move the hydraulic valves.

The points are moved by double-acting pistons with double cup leathers, the pressure being constantly on the pistonrod when it is desired to move the points. Tae signals end when it is desired to move the points. Tue signals by the hydraulic pressure being admitted to a single-acting piston or ram. The points, safety bar, and points lock are piston or ram. The points, safety bar, and points lock are slot in the piston crosshead, so that a single movement of the piston unlocks the points, shifts the safety bar and points, and relocks the latter in their new position. But one signal lever is employed for both home, main, and
branch signals, the movement of the points working a valve which enables the signal lever to move the appropriate signal.

The electro-pneumatic method of working signals has been recently invented by Mr. Geo. Westinghouse, and offers similar advantages to those given by the use of
hydraulic power. A line of pipe laid through the yard conveys the compressed air through branch pipes to the various pistons and cylinders working the points and various pistons and cylinders working the points and
signals. The air is compressed by an air pump constantly forcing air into a receiver or reservoir connected to the ting or releasing the compressed air, these valves beine moved by the making and breaking of an electric circuit The electric currents through these circuits are controlled by small interlocked levers. It will be seen from even this brief description, which we hope to supplement shortly, that both systems of interlocking promise to effect a great saving, not only in the manual labour, but also in the time at present required to shift points and signals.
Messrs. Curran and Wolff, of Chicago, exhibited a large working model of a lumber dryer for the rapid seasoning
of timber by artificial means. The kiln was shown at of timber by artificial means. The kiln was shown at
work, and specimens of different timbers-deal, maple, black walnut, and cedar-seasoned by this means in a few days, could be seen, and certainly appeared to be thoroughly
dry and perfectly free from shakes or cracks, while the dry and perfectly free from shakes or cracks, while the
appearance of the timber was bright and clear, and no appearance of the timber was bright and clear, and no
warp or twist was appareat. The engraving, Fig. 41, illuswarp or twist was appareat. The engraving, Fig. 41, illus-
trates the action of the kiln, The timber to be dried is
loaded transversely on trucks running on rails set at an
incline of about 1 in 35 . These rails extend the length of incline of about 1 in 35 . These rails extend the length of the kiln, which may vary from 50 ft . to 150 ft. ; the width which the kiln is intended to dry. Each plank is so loaded hat a clear space for the circulation of air is left between each piece of timber. Underneath the wrought iron floor of the kiln are a series of coils of steam pipe, exposing some 6000 or 7000 square feet of heating surface to a current of
cold air which enters at the end by which the kiln is fed cold air which enters at the end by which the kiln is fed; but, of course, at a lower level. When heated by its passage through the nest of steam pipes, the air rises
through the floor by a damper at the back of the kiln extending the whole width of the floor, and permitting the hot air to pass through the lumber on its way to the chimney.
Some live steam is allowed to mix with the heated air and checks the tendency of the timber to dry too quickly and superficially. The heat necessary for the proper work 150 deg to 200 deg . It is found very great, ranging only from a swifter cirulation a fre vent ar circulation, and a mise the heart of the timber untouched The time usuall taken in sesoning pin lin thick. fis dasuall days to a fortnight being required for harder timber and for greater thicknesses. When hard and soft woods ar being seasoned at the same time, the former, after passing through the kiln, must be brought back and entered at the ront end again.
Figs. 42 and 43 show other kilns for the same purpose
Mr. C. Wilcox, of Minneapolis, Minnesota model of a kiln for dealing with work of this kind. The trucks containing the lumber can be put through the kiln as often as required; a truck outside, with turntables, being arranged for the purpose. The timber is first seasoned with steam, which dissolves the sap, and is then dried, as in the kiln described above, by means of a current of hot air mixed with steam, and, as will be seen, the details are somewhat differently worked out, and elaborate arrangements are made for the automatic regulation of the supply of air. A kiln of this description, and capable of turning out 1000 cubic feet of seasoned timber daily, can be erected for 2500 dols., equal to $£ 500$. Such a kiln would about 5000 cubic feet of timber. The cost of thoroughly seasoning lin. pine plank in four or five days, fit for use, is stated to be twenty-five cents per metre, or about one shilling per 1000 square feet lin. thick, equal to $\frac{1}{7}$ d. per cubi
foot, which certainly does not appear an extravagantl high price. These quantities may well excite astonishment among those who are used to the scarcity and high price of timber in England and in most of our colonies ; but the enormous supply, and consequent prodigal waste, of timl er in the United States, is a matter which strikes every visitor. As the majority of the foot-pavements in all
small towns and many large cities are composed of deal small towns and many large cities are composed of deal
planks, nailed on stringers and posts, the consumption of planks, nailed on stringers and posts, the consumption of the forests is merely a question of time.

THE DEPRECIATION OF FACTORIES.

 By Efing Matheson, M. Inst. C.E. No. II.Before dealing in detail with the various kinds of pro-
perty in a factory, and attempting to set up a mode of perty in a factory, and attempting to set up a mode of
treatment and rate of depreciation appropriate to each, treatment and rate of depreciation appropriate to each,
there are certain preliminary questions that need attenthere are certain preliminary questions that need atten-
tion. First, the value of any building, plant, or apparatus, or aggregation of them, may be largely affected by circum stances outside of their physical condition, and it may be onvenient at the outse to separal Such sestance from those which result from actual use. Such secondary circumstances are the tenure under which the factory is occupied; the permanency or steadiness of profitable
employment which may be anticipated; the likelihood of new inventions, processes, or machines coming into use which may supersede and render obsolete those whose value and depreciation are in question; or vicissitudes and catastrophes which cannot be provided for by ordinary catastrophes which cannot be provided for by ordinary
insurance. Conditions and contingencies such as these, if they are to be estimated and provided for, may be said to they are to be estimated and provided for, may be said to
demand a reserve or sinking fund, rather than a rate of depreciation, and in some cases it is found desirable and possible to so isolate them in the accounts; but whateve be the precise method of doing it, they must be duly considered.
In regard to tenure, if the factory be only rented by the occupier, as occasionally happens where large factories are sum to be provided for depreciation will depend upon the conditions of tenancy, and if the rent covers fair wea and tear the occupier need only keep the plant in working order for his own purposes. A more usual tenure is that under which the premises are built by the occupier on land held on lease with the usual condition that the building and fixtures become the property of the ground landlord at the end of the term. In such a case the provision of sinking fund sufficient to give back the capital expended by the tenant becomes a matter of great importance. If the lease be for a long term the annual charge, if it begin with the lease, will not be found burdensome, 3s. 8 . invested ever year for eighty yearsat 4 per cent., as with an insurance company, procuring a return at the end of that time of $£ 100$, or such an eth part may be written off annually. Moreover, tenure, because a freeholder would incur a considerable proportion-even if repairs be duly attended to-to coma rate for the reduction in value due to time and use, such value at the end of eighty years. But as the landlord will under most leases, not only take possession of the land and buildings, but of all improvements and fixtures added by
the tenant or his predecessor in title, the sinking fund for the tenant or his predecessor in title, the sinking fund for
these will be onerous, according to the period at which
such additions were made. But as under these circumstances the tenant will feel under no obligation to give up
more than his lease compels, he will, while maintaining the more than his lease compels, he will, while maintaining the
factory to the end of the term in sufficient order for his own purposes, ads of the term in sufficient order for his improved used, may even let them wear port before the lease ends. If the occupier is to deliver up the factory in good tenant able condition it does not follow that the repairs shall have been effected with so liberal a view to the future as the occupier might have done as owner, nor does it follow that fixtures fairly worn out in the work of the factory shall be replaced by new ones. Therefore, as against his sinking fund he will, in the last years of his term, save in the cost of maintenance. Without going into the legal question of what constitutes landlord's fixtures, it may be said that in the case of fixtures added to a building for purposes of trade or manufacture the law leans more to house fixtures
The permanence or steadiness of profitable employment or the reverse has to be taken into account in deciding on the depreciation in the value of plant. A supplying some other undertaking which is not certain of continuing ; or a patent, or a privilege, or a contract for a continuing; or a patent, or a privilege, or a contract for a of this sort, which are too various to enumerate, the advantages of the past may be liable to serious alteration or may be entirely terminated, and it is obvious that a much higher rate of depreciation should be written off the plant, so as to bring down its nominal value to that which it will have under the anticipated contingency. Or a factory may have been erected to utilise a limited quantity of materials, timber, stone, or minerals, which when exhausted would leave machinery and plant of reduced value for removal. Here also the rate of depreciation should really sunk in in tures which, though they may be fairly considered permanent, are subject to violent fluctuations, rendering plant idle for considerable periods. Such is the lace trade and others depending on fashion. In calculating the cost of manufacture and the rate of remunerative profit for trades such as these a higher rate of depreciation should be provided in years when the plant is in full operation, to make up for idle years when little or no earnings are made; for be small the chance of supersession by new inventions still continues.
The likelihood of new inventions, processes, or machines coming into use which may supersede or render obsolete those under review, is a contingency that presses on many manufacturing trades, and especially on those which are of a new kind or in a transition state. The risk, which may be said always to exist to a certain extent, is one of degree. Thus in an engineering factory, although steam engines, steam hammers, lathes, and other machines of an accustomed sort are subject to improvement, and may for particular purposes be superseded, they are of use in so
many kindred trades that they have a value till worn out, even if at worst they have to be sold to other users. So also in a hosiery factory there are certain machines which have been proved by a long experience to be always required, while other of the machines may be liable to become obsolete. In a trade like that of steel-making by modern processes, where radical alterations and improvements are made from time to time in plant which must be of a special kind, most of it useless for any other purpose, loss direbt and tear. As new inventions generally in tirected towards a saving in labour and an improvement by the product, special plant, when once superseded hand plant, except in y prove it hand plant, except meal meal value, because no reduction in price or capital
cost would compensate for the expenditure in labour cost would compensate for the expenditure in labour
its use would involve, or for the inferiority of its productions. Contingencies such as these should encourage an ample reduction of nominal value in the early the plant orking, so as to bring down the bor without to a point which will allow even of dismanting we large enough to allow for a liberal and rapid writing off of capital value The same result is attained by the constant addition of new and improved machinery out of revenue, and undertakings in which the profits f prosperous times have been applied in this way to renew the plant rather than in the distribution of high dividends have a considerable advantage, when trade becomes dull, in competing with rival undertakings burdened with a relatively large capital.
There are other contingencies to be provided for in certain trades before the net earnings can be fairly treated as profit. Such are risks which demand an insurance inapplicable. Fir the ordinary systems of insuran quarry there may be a risk of flooding, which would render useless the machinery and plant; or in a factory, where highly inflammable or explosive articles are made, the risks may be so great or uncertain that no insurance company will underwrite them at any reasonable rate. But while as between a few partners it may be convenient to consider deprese circumstances as part of one general system of or of a joint stock company, be more properly provided for by a reserve fund, stated in the accounts, and distinct from the depreciation by wear and tear. For as it is impossible, by a mere annual writing off, to exactly balance uncertain contingencies, the grouping of all together may tell unfairly in either direction on those who have only a fleeting interest in the undertaking, or who those afford to postpone their claim to a future day. wo know the basis on which a general rate has been arrived at, the name by which the provision is stated may be a matter of indifference; but to partners who are unaware of
the circumstance, a separate reserve fund will allow of a juster appreciation of the facts, and of a fairer valuation of their property; and in case of a change or termination is then a specific fund to be dealt with, which may render a valuation unnecessary. Those who are responsible for the management sometimes prefer to include what is really a reserve or insurance fund in the depreciation rate, so as to disguise the economy they are practising, and avoid the claims of shareholderss, who wre pratd
appropriate an undiminished income.
There is a reverse side to the contingencies just enume rated. Not only may there be an absence of secondary prosperity. Thus the ve an obvious and increasing
pre site on which the factory stands may be increasing in value by the of the town and neighbourhood, or the demand for the products of the factory may be increasing at a greater rate than the competitive supply, or the reputation of the factory may be increasing its trade and profit. But circumstances such alue these, however much they may justify a corresponding valuation in the case of change in partnership or sale of shares, cannot safely be set agaiust actual physical depreciation of the plant. The latter, as a distinct and unavoidable circumstance, should be dealt with on its merits, and improvements in another direction
be left to a subsequent valuation, when the necessity for it arises
In order to estimate correctly the alteration in value which the capital sunk in a factory undergoes from year to year, it is necessary to have some record of the original
value or cost as a starting point. If the factory has been bought the price forms this basis; if it has been built and equipped by the occupiers, there will either be a record of capital expenditure, or if not, as frequently happens in factories which have grown up by slow and irregular additions, and it be desired to inaugurate a proper system, and adjustments can be applied. It may be that each nnual review will show a growth of value by extensions and improvements, even after deducting for deterioration; not to allow the nominal capital to be unduly swelled. In ome undertakings, not only the method, but the rate of f association. It may be a wise precaution to or articles the principle, and even to fix a minimum rate; but it is obviously impossible to thus decide in advance what can only be estimated correctly as it arises. Sometimes it is prescribed that deterioration by time and use are to be met by applying a fixed proportion of the profits to make
good what has been lost. This method is more frequently dopted in the France than in England ; but it is stock undertakings in France than in England; but it is obviously unsound, as A percentage on the output or cost value of the products A percentage on the output or cost value of the products
would be a fairer plan, and by referring to the accounts of preceding years a fair rate from this point of view may be . While, however, this is useful, and indee tions, it is not the best for dealing with the past, a percentage on the capital value as it was left at a previous review being for this purpose the most suitable. The sound plan is to write off this percentage in every year ance. It is, however, quite proper in determining the ates to be written off for any year, to take into account the activity or slackness of cerlain departments, and also give due weight to expenditure for maintenance. etween the system of practice renders a compariso ne the greatest attention will be paid to repairs; In newals and even extensions will be effected out of revenue, and little or nothing written off for depreciation In another there may be apparently an ample provision made in the capital accounts for depreciation; but repairs may be neglected and a too liberal addition be made to capital for so-called new works, which, in that they merely eplace old plant and do not increase the earning capacit be charged to revenue

RIVER Pollution.-At the meeting last week of the Sanitary by Henry Robinson, M. Inst. C.E. The author said "when the
Rivers Pollution Prevention Act was passed in 1876 , hopes were entertained that it would result in stopping the pollution of our is considered, it' must be admitted that it is practically inopert time It is a dead letter, and that unless it is amended it will remain in perative. I do not go so far as to say that it has been a useless
piece of legislation. It served for a time as a rod to be held ove ndividuals and local authorities who were offenders, and to som previously existed. The total effect, however, is innerence ha The rivers continue as before to receive the pollutions which wer that the best practicable method has been employed to a remove in the Act which has contributed as much as anything else tofect eing inoperative is this:-The onus of initiating proce to it against offending persons or authorities is largely cast upon the hat such individual is able and willing to undertake the duty o enforce the Act, it presure the sanitary authority is relicd on t whereas in regard to sewage pollution, the authority itself is th
offender. I think that the burthen of enforcing the Act should no vere purely lauals or local authorities alone, as if the question be removed by the Act, and requires to be treated in a broade lone. In my opinion an alteration in th ntrusted-in addition to the authorities and indisiduals-to phould be and who should be responsible to a Department of authorities, tion of the public, and the existence of causes of pollution would would be unable or unwilling to enter upon the tedious, oostly, and
uncertain course of procedure under the tion Act,"

LEGAL INTELLIGENCE.

WRECK COMMISSIONER'S COURT.

Before Mr. H. C. Rothery, Wreck Commissioner, with Assessors.

 the austral.ON Saturday judgment was given in the inquiry into the sinking Mr. Howard Smith (with him Mr. Mansel Jones) appeared for the solicitor to the Board of Trade (Mr. W. Murton), Mr. Buok-
nill, with Mr. Baden-Powell, was for the owners ; Mr. Israel Davis, Mr. Batham, for the chief officer.
The ConMrssioner said the Austral was a screw steamer, 5580
tons gross, 3289 net, fitted with engines of 1000 -horse power, built in 1882 at Govan by James Elder and Co., and was the property o the Orient Steam Navigation Company, Limited, Mr. James
Anderson, Fenchurch-avenue, London, being the managing owner. She was in every respect a first-class steamer, built under special survey, both of Lloydds and the Board of Trade, and was in every
respect worthy the high reputation of her builders. After one respect worthy the high reputation of her builders, A Acer one
voyage from London to Syynee and back with passengers and
cargo, she again left London on September 7th, 1882 , for Merbourne cargo, she again 1eft London on September 7th, 1802 , for
and Sydney, with a crew of 195 hands, about 500 passengers, and about 900 tons of general merchandise, of which 283 was dead-
weight, and 600 measurement goods. She called in at St. Vincent were found in her mand soon after leaving the Cape some defects were found in her machinery, which caused her to proceed under
canvas for eighteen hours, during which she made from seven to eight knots an hour. She in due course discharged at Melbourne 100 tons dead-weight, some passengers, and goods. She arrived at
Sydney on the 3rd of November, and was, by direction of the company's agent there, moored at the circular quay. Next day,
Saturday, the 4 th, passengers and luggage were landed. Instructions having been piven to the master before leaving Londo nce of a suggestion of the master himself, orders were given by the master to open the ports on each side,
eight on the starboard, and seven on the port.
According to the chief engineer, instructions were at the same time given
to empty the tanks. There was some dispute as to when the orders were given, but that was of no importance. The empty-
ing of the tanks was under the complete control of the master and none would be emptied without his authority. The evi dence of the two engineers was clear that by the Saturday
evening, at all events, the after port tank was empty. On Sunday
the Wion side of the Austral being to the quay. She began midnight. At 6 a.m. she had discharged about 220 tons of coal. The officers and crew were then aroused for discharging cargo. On
coming on deok it was observed that the vessel lad a list, more or
less to starboard be stopped for trimming coals and emptying a starboard tank aft. fresh-water tanks, 70 tons forward and 111 in the bottom. As the vessel had taken a list, the captain was naturally anxious that the
coaling should not go on on one side. He went on shore and saw Mr. Johnson, the agent's deputy, and obtained authority to move the vessel to the company's moorings in Neutral Bay, so that he
might coal on both sides at the same time it being obviously imposmight coal on both sides at the same time, it being obviously impos-
sible beside the quay, and coaling with steam colliers, to coal on
bot soth sides. On Tuesday morning she was moved, to Neutral
bothe
Bay, where she contined to discher Bay, where she continued to discharge cargo. The pumping
of the tanks had been continued, and by Wednesday morning, the 8 th, they were empty. The cargo was dis-
charged with the greatest promptitude, for Thursday was
the that day. Thes had dischargend all carwore except th 183 tons one firon,
and had taken in, besides the coal still unburn on arrival and
ahe the 220 tons taken in on the Monday, 1216 more tons, total 1621
tons. Nothing was done on Thursday after 8 tons. Nothing was done on Thursday after 8 a.m. On Friday
morning officers and crew turned out early to land 10 tons of shafting in which there was a flaw. This lasted till mid-day. The
same night-Friday, the 10th-at 10.45 , the Woone baside, and the fourth officer told the chief officer, whose duty it was to direct the side to which she should be lashed; and by his the starboard side. The vessel was nearly upright, wath, if any-
thing, a slight list to port. Soon after 11 they comene by the two foremost and two aftermost ports, that was to say, in the pocket bunkers aft, starboard of the engine-room, and the
thwartship bunker forward. In the meantime the captain, who had been ashore, came off at 11.30 p.m., saw the collier, and
hearing the obhief officer, whose duty it was to arrange the
collier's at 12 , but being disturbed deck, saw the coaling going on on starboard, and turned
in. The chief officer, who had turned in at 10 or 10.30 , after being roused by the fourth officer, had, with Lowman, the watchman, covered up some new paint, and at about 1.20 a.m.
turned in, leaving the collier on the starboard, coaling, and leaving with Lowman, the watohman, what he said were the usual direc-
tions. At about 3 a.m., said Haddon, the foreman coal-trimmer at the inquest, the vessel had a slight list to the starboard, but not onough to excite apprehension. The coaling continued. Whether was found that the after ports on the starboard wer about 4 a.m. it and the water flowed in. An alarm was given, and the officers and crew escaped to the Woonoona and a lighter which was lashed to
the port side. In fifteen or twenty minutes from the alarm the vessel sank, righting, however, either on touching, or before touch-
 months afterwards she was raised, cleaned, and temporarily re-
paired, and came home by Cape Horn reaching Glasgow August 3rd this year. She is now being thoroughly overhauled. There were three important questions: - (1) Was the Vessel stable? (2) What was First as to stability. It seemed she was desiged by Mr. Shepherd, then naval architect to the Orient Company, and since manager to John Elder and Co. He said he had designed the Orient, and she was
supposed to be the finest vessel in the world, and that the Austral was intended to be an improvement, having 2 ft. more beam. He class ship; that was confirmed by Mr. Pearce, the sole partner in
John Elder and Co., as well as by the surveyors of the Board of Trade and Lloyd's, who inspected her throughout the building.
Nothing could probably have been better than her structure. and no measures had been taken to test her stability. He ha made some calculations sufficient to satisfy himself, but no curve of
stability. The builders were pressed todeliver her, and he did not stability. The builders were pressed to deliver her, and he did not
think knowing the tyyle of ship, that it was necessary to do tions were made by Mr. Elgar, a gentleman of considerable knowledge on this subject, for the way in which he gave
his evidence showed they could place the utmost reliance
on his evidence, and it it was the only evidence the Court
had as to her stability He inclined her in Quen's Dock,
Glasgow, on August 6th, by moving 10y tons acros heen
 from the middde line she inclined 1.1 deg. The vessel had then
over and above the weight of her hull, machinery, spars, \&co. 1350 ver and above the weight of her hull, machinery, spars, \&c., 1350
tons distributed in the manner stated to the Court. Mr. Elgar
said that when he made his observations on August 6th, the vessel said that when he made his observations on August 6th, the vesse
had 7200 tons total displacement, and drew 2oft.
21 int. 6 forward,

5850 tons, mean draught 17 ft .6 in. , the height of metacentre 21.37t., height of centre of gravity 21.17 ft , giving her a negative
metacentric height of 8 ft . Further, Mr. Elgar said that supposing under these conditions all the water tanks were filled, including
the two fresh water tanks, in all 785 tons ment would be 6635 tons, mean draught 18 ft t. 8 l in., metacentric height $21 \cdot 37$, height of centre of gravity above top of keel Mr. Elgar still further calculated the metacentric height under
other conditions. At the time of the accident the total displace nent, with the weights she had in her, would be 8070 tons, draught the metacentric height would be mean 22 ft . 3 sin ind with th gravity 20.09 aft., and metacentric height +1.276 . Mr. Elgar also
said with a view of testing her stability, that assuming the vessel have had all her cargo spaces filled with a homogeneous cargo 100 cubic feet to the ton (1542 tons), and all her bunkers ful
2530 tons), fresh water (180 tons), stores (65 tons), men and their effects $(20$ tons), she would have 10,188 tons total displacement
nean draught 26 ft . 6 in., and metacentric height $1 \cdot 26 \mathrm{ft}$. H arther said, assuming that all her coal, and all her stores and
water were consumed, her total displacement would be 7412 tons, raught 21 ft . 3 in., metacentric height- 4 Then if the tank
vere filled, giving her 8197 tons total displacement and $22 f$ ft 6 . raught, her metacentric height would immediately become positive
rom negative at 1 1.16. Under two conditions alone, therefore, would , ine metacorso heigu, je., when totally mpty (-8), and when her cargo space was filed with hamoge
heous cargo, with no stores, no water, no coal (-4). But these omogene raised to positive by filling thee tanks. Nor dida a vessel necessarily
recome unstable because in certain conditions she had a neative become unstable because in eertain conditions she had a negative
metacentric height, beoause Mr. Elgar said he had known vessels hand, was it certain that a vessel was stable because when empty Daphne, \&c., showed that vessels may begin with a posi though the stability increases to 30, and is moderate heel, an they might have an intermediate dangerous point It was of stability, and he had given certain data furnish curves curve was that under theaching a correct conclusion. The firs accident. Then her angle of maximum stability was 61 deg., he ot metaphorically, on her beam ends- 13,800 righting moment one with the centre of gravity raised to the height of the met centre, and with the same cargo and draught as at the accident, moment 14,350 foot-tons, and her righting moment at 90 deg 3500 tons. A third curve showedine reduction of stability on th her 12 deg. With the same cargo, and distributed as at the accident, her angle of maximum stability would be $62 \frac{1}{2} \mathrm{deg}$ righting moment 22,100 foot-tons, and at 90 deg. 13,800 foot-tons.
Under the conditions of having her cargo space filled with her righting moment at 90 deg would be 10 , 200 , and store the whole of the coals and stores consumed, but with tanks full, the righting moment at 90 deg . would be 12,640 . It was respect, and under almost every conceivable condition, a ver stable vessel. One fact, however, was to be observed, that by these
curves of stability the righting moment did not increase very
rapidly at first. It was only when the heel that it increased rapidly. At first the increase was but slow. Sh was under almost all conceivable conditions perfectly stable, and
from the curves of stability her stability would increase to a 60 deg angle, the maximum, and even at 90 deg. it would have a righting 12 deg. the vessel was unstable, appeared to the Court to be ludi crously inaccurate, and the fact that the vessel when she touche master seemed to think that the bottom made her upright, but her keel would only diminish th of the casualty? Strict orders had been given by Mr. Ander-
son to the master before leaving London that no coaling wa of a suggestion made by the master, that were in pursuance the coal came from the Bulli mines, sixty miles down the coast, in Austral, and not, as Captain Murdoch said he anticipated, from lighters. So long as the vessel remained at the circular quay it
would be impossible for her to coal on both sides, if she coaled while cargo was discharging. Hence the capta the ship to moorings. The agent acceded, but not till after the
vessel had listed on the Monday. After removal the two colliers and coaled simultaneously from the two then shifted to the other side. The last coal put in one side, night of the disaster was on port-side, on Thursday. She was
then nearly upright, with, if anything, a list to port. This was Mr. Shepherd and Mr. Elgar said that the coal ports were tons of coal additional put into her the after-sill of the lower ports would be 5 ft . 3 in . above the water ; with 120 more they
would be 5 ft above. The fore ports would be ftt . 6 in . to 1 ft . 8 in .
higher, she filling by the stern. to have thought that on Friday evening, before the 120 tons came, lower sills of her after ports were 4 ft . out of water, which was im-
possible. The Court accepted Mr. Elgar's stater possible. The Court accepted Mr. Elgar's statement in preference.
Mr. Elgar said that with the after sills 5 ft. out of water, an inclina-
tion of 12 deg. would put them of coals, the centre of gravity of which He also said that 120 tons would incline the ship 12 deg.-in other words, put the sills under
water. Of course, if the centre of gravity were nearer the side the sills would come sooner in. According to the foreman coalman's first ; they continued till, having filled the after bunkers, they left. Whether they left the two aftermost or only the one quite aftermost, it was clear they left the quite aftermost port which
opened into the starboard bunker beside the engine-room. Haddon, the foreman coal-trimmer, noticed a slight list at 3 a.m., and at
that time the bottom of the ports was only about 2 ft from the water. He did not say which ports he meant, and, un he meant the fore ports, the after ports would him. If then out, and every ton put in would tend to sink her bodily, and
so bring her after-ports in without being seen by the men who
were working forward. A coalman, named Geene, said in his depositions taken by the coroner at Sydney, that at 3.25 a.m. and saw that the Austral's ports were out of water. Perhaps,
however, he only looked at the forward ports. The practice
was to shoot coal through the ports on to a shoot which anded them 6 ft . 6 in . from the side on the steel deck. In
land
the pocket-bunkers the total width was 14ft. 6 in ., and with the pocket-bunkers the total
perfectly level trimming the
been 7 ft . 3 in n at the been 7ft. 3in, at the outside fro
cross-bunkers, if the coal had been
gravity might have been carried further. But it was quite possible
the coal was shot in through the ports close to the side without the the coal was shot in through the ports close to the side without the
inner shoots being used. It was not an improbable supposition
that the whole 120 tons of coal had its centre of gravity within 7ft. 2in, from the side. If so, that would be a sufficient explana
tion how the vessel filled. Probably, seeing that they first filled
the the after pocket-bunker, where they could not possibly get the
centre of gravity more than 7 ft . Tin. from the side, that would put the vessel down by the stern. When they left, off work probably
the water was not up to to the sill, but by 3 a.m., hhen Haddon had
seen the water within $2 f t$. seen the water within 2ft. from the forwward ports, it was within
4in. or 6in. of the after. By 35 a.m., when Geene heard the water, it was then probably that the water was rumning into the
after ports unpercived by anyone on dek., There could be no
doubt doubt after ports calowe of the wase casualty was the se wanking of ther running in,
the
With regard to the third main question, it was admitted that the owners sent the vessel to sea without having inclined her or
taken any steps to obtain her curves of stability. Ought they to have a passenger vessel, Lloyd's would not have, knowing intended struction, required her curves to fix her load-line or have required
her to be inclined. He, however admitted, as did Mr. Shepherd
and and Mr. Elgar, that tit was desirable these valuable vessels were not
sent to sea till atter their curves of staility had been drawn and
年 carrying under varied conditions. Mr. Shepherd said he should have inclined her had they not been so anxious to deliver her. Nene of tric height, \&se.; the only question was what use was to be
metacen
made of the ance, affecting not this case only but the mercantile community generally, that he must make some observations. There seemed of stability was one on with which of che Court in general did
not concern itself. A more erroneous impression, as Mr.
not not concern itself. A more erroneous impression, as Mr.
Bucknill had rightly said, could harrlly be entertained. It showed profound ignorance of the proceedings of the Court. The first
ocasion in which the question was roought prominently before
the Court was in the now famous case of the Marlborough. The the Court was in the now famous case of the Marlborough. The
owner had been a builder of small cottages, and became an amateur shipbuilder. Out of his own consciousness he produced a design
on which he had his ship built. She went to sea with a 5it. load
St line. To every oness astoniishment senh returaned. The folt. load-line
line
was then raised to 4 ft . 6 in.; she returned ; it was raised to 4 ft . She then disappeared. The Court had to inquire, and in its judg. ment remarked on the absence of a check on the stability of vessels
that builders did not trouble themselves, \&e. (The learned Com-
missioner here
 we append a siorter extract.) "With regard to her stability, the
builders received instructions to build her of the dimensions supplied to them.
responsibility, and the Che Che builders' manager repudioned any
that she no the security of the builders sions, they showed considerable instability. She was so unstable
that the extra be sufficient to overturn or swamp here,"," Thipped on deck was on March 23rd,
1880. Two days anterwards the case of the 1880. Two days afterwards the case of the Kensington came before
the Court; and the Court observed on the practice as to making no calculations of stability. The Court said-our quotation is nor the owners seem to have taken the smallest trouble whether the vessel when launched was stable or not. Mr. Walton,
agent for the owners, said he had never oonsidered her. stability.
That without having the least idea whether she was fit to in a vessel seemed incredible, especially when at the shisht expensery or or not
¢25 accurate oalculations could be made as to her stability, and thereby instructions given to capptains as to what depth they could
load." In the Rathmore case the same vear he observations concluding:- "ase the same year he made similar
under whin "-the consulting engineer
under the ship was built-"said he did not think the sta bility of a ship was ever calculated, and he that not hever calcoulated
it. Mr. Parker, one of the prinsipal surverors of Lloyd's, said he had seen the vessel out had not the least idea as to her stability ships to sea, take some means of ascertaining their stability:"
(The Times, July 24, 1880.) In the Saxon February, 1882, the Court said: - " Mre. Warne, Monarch case, in man to the builders, and the gentleman who designed the ship and
under whose superintendence she was built, told us that he considered her to bea stiff vessel, but that he had never made any
ald calculation of her stability. It certainly does seem to be a very
extraorinary thing that owners should send a valuable vessel,
laden with a valuable cargo, to sea without having ever calculated laden with a valuable cargo, to sea without having ever calculated
the stability of the vessel with a view to ascertain what descriptions of cargoes she could safely carry, or to what depth she could be
aden. The expense would be very small; and yet ase after comes before uspense in whioh we find builders turning yout vessels, case
owner
owners filling them with cargo without any out vempt having owners filling them with cargo, without any attempt having
been made to ascertain the vessel's stability, or to relative positions of her metacentre and centre of gravity." (Official
Report.) In the Pelton case, 25 tht Apri, 1882 , the Court
said :- "We asked the designer whether he had ever calculated the vessel's stability, and he tave the answer, which we
usually receive in these cases, that he had never done so. And it certainly doess surprise us that, owners should send valuable ships
with valuale cargoos to sea without knowing whether they are or are not stable."-Official Report.
Mr. HowARD SMITH. - There was also the Ballina. The ComMISsIoNER. - Yes, and a great number of other cases,
Owners could not plead ignorance of these judgments and say that a recent ease had taken them by surprise. Although the Court
had calleded attention to the fact, there were only two cases in which
the Court had ever been furnise whether the vessel had stability. In the Escambia it was furnished by the underwriters, in this by the owners., Although they were
also asked as to stability, they could only answer at a guess by seeing what her behaviour had been on previous voyages. In
most of the cases sthe vessel had disappeared. There were peoph who said he heasesieved, that in in thesespeared. These the were people
wheoret ought to
uspend its judgment, and require the fullest information stability before deciding whether the foundering was due to want of stability or to overlog ing. But they could have little know-
ledg go of the time which would be required to make out the curves
of stability for not only in London, but also at Newpeastle, Swansen Court sat every case were ajdournued for calculations of of stability, to re. Ifturn
to Newcastle, for example, three months afterwards would be mpossible. Moreover, the information in many cases did not exist. . The builing yards had been burned down, plans could not
be foud, or the plans which existed had been modified during
building \&e. If, however, measures were taken to tole
tability of every vessel before leavinge and the curves sent to Lloyds or the Board of Trade, there, would be something for
the Court to go upon. And now they came to the point on
which with
 heir being given to coptains, becausse, forsooth, captains might not ee able to understand them, and then they would be misleading and, as Mr. Martell said, a little knowledge is a dangerous thing."
Old saws and saying had done a great deal of harm in their day,
but few moro harm than this He was old enoogh to hat it was a stock argument against teaching boys and girls t read. If Mr. Martell meant that a little knowledge is in not so good
as a areat deal, the Court would agree, but if Mr. Martell meant
that

bottles-"Well," said Lord Palmerston, "I would sooner have
stuffed bottle than an empty one", It was admitted that calcu
lations should be be made for pigeon-hole them? Then for whose benefit should they pe made? Surely for those who had in foreign ports to
see to the loading of the ships in whose discretion it was
 now, educated officers of the British mercantile marine.
It was said that these gentlemen would not be able to make use of the information. He was told that experience of a clean-s.septet
hold would |not apply to a vessel immersed, and that distribution hold would not apply to a vessel immersed, and that distribution
of cargo affected stability; that there was great pressure now, that
the stowage must be varied to keep the weights at a reasonable height, that dead weight came in late, \&c. Those were the very person who had the control in foreign ports, It was an insult to a body of eduacted men like the captains of our large merchant vessols to say that these calculations would be of no use, Yo
might as well say they must not have lunar observations lest mistake should be made. Taking the present case, supposin Captain Murdoch had been furnished with the corves and angle of heel the vessel did not gain greatlly in righting moment,
and that consequently there was great damage in loading her with ports. open, for that a slight heel might bring the
ports down to the water? Captain Murdoch had in this case
to his cost to his cost found that a little kpain kuledge was a dangerous thing.
His knowledge was formed from the behaviour of his ship sea, which taught him she had a large moment when she heele at arge angle, but not-what the curve would have shown him
-that a slight heel did not supply the like remedy. At any rate to would have been warned of the danger of looding without care
ful supervision The Court, therefore, could not think that the owners were right in sending the vessel to sea as they did withou
calculating her curves of stability, and furnishing them to Captain Murdoch, as they ought to have done. It was charged
against Captain Murdoch that he emptied the tanks. He gave his
res was necessary to raise the ports so as not to lose coal. He saic that this was the more neeessary, because as ose the colliers diss
charged, the vessel herself sank; that if the vessel had been coaled, as he expected, not from the colliers direct, but by lighters
alongside, it would have been unnecessary to empty the tanks
That coaled from the colliers? sixty miles down the coast; but why was it not then put into
lighters? Mr. Yuill might have given some information the point, but he was away; nor had Mr. Anderson been called, though expense of lighterage was a trifle compared with the safety of the she was coaled apppaared from the responsible or the way in whitions of the company which subordinated the captain to the managers and superin tendents. It was clear the captain had nothing to do with the
coaling, which was in Mr. Yuill's hands
captain perfectly justifed in emptying the tauks to to load
It was then said that he ought to have taken warning by experience on previous ocaasions of the vessel's tendency
to list. On the previous voyage, when coaling over deck she had taken a list; so at the Cape, when loading at one The master onswered that try mom herning in Sy Sydney she listed
hel a very stiff yessel, and this view wait at sea he believed het a very stiff vessel, and this view was confirmed by Mr. Ander-
son's semark that she might sail without her ballast tanks being
filed Thed -of course, not perfectly empty, but laden as she usually was.
That was quite true, as appeared not only from the curves, but There she actually was in that condit taking warning from the three ocoasions on which she listed, and there was some want of vigiance on his part. The question was
put by the Board of Trade whether the master was justified in whether the chief officer kept a proper watch. Itt seem, in effect, practice on the ship at Sydney when she was at the quay and cargo
was being discharged that two quartermasters kept watch, but at moorings in Neutral Bay, that there should be only one man, a officer, but only an anable soeaman. The - Lowman-selected by the chief the two stewards and the donkeyman whose duty it was to see
that the fire was kept burning. Practically, however, she had only nots seman as the watch on deok. Was that the right thing?
Both the captain and the chief officer said it was not, and there ought to have been a certicicated officer ser in charge of the deck. The
Court was referred to article 17 of the appeared to the Court that the article rather seemed to warrant
the practice which prevailed at Sydney and to hold it sufficient for if the captain and the chief officer knew waton. It was asked,
there white to be that they had not enough officers for the Their answer was ordinate officiers had a hound each to took therpose. The sub-
officer had the deck all day under his core; and ond the ohief voyage, when they were at Sydney only five days, the orficicers
never took their clothes off, It was quite imposibibe, said both
the chief offcer the chief officer and captain, to make an officer keep watch at
 at sea. A vessel 456ft. long, with 1000 -horse power, and great burden, ought to have had always two officers on watch even at occurrence, as a man overboord, \&co. TTe vevsel ought not of to have
had less than six officers, and so far there was some excouse captain and ohief officer not seeing there was a certificated was altogether. free from blame. The master came on at tili.30,
mid an the collier to starboard. later, and saw her still coaling on the starboard. This, with his at any rate, to have inquired of the chief officer whether it was
not time to shift the collier to the other side was also to blame. He turned in, leaving the deck in charge of said he was not awara that the tanks were empty, he knew that on
the Monday, when it wa left taken a list. The two were not free from blame, but there was much in extenuation. Against the chief engineer it was alleged
that he was not, nor had an officer, in the bunker. But the Court
would ask. would ask, How could he have had an officer there if he was ignorant of the coliier coming alongside? How was it possible for
him to have done otherwise? Nobody expected that the chief engineer would have had one of the engineers in the bunkers necessary to interpose. cane He did havside and when it would be
the sunkers to see the coal was proverly mane Morris-in in, and knew nothing at all of troperly arranged. He turned
Court did not think being there. The Court did not think that any blame attached to the ohief
engineer. It was true he might have asked the chief offier
to call when the collier came alongside, but the chie
officer did not thin officer did not think it necessary for himself to remain on deck took a list, and \dot{d} fortiori he whuld have thought it unnecessary for the chief engineer to be called. The Court must call attesstion tor to
a remark made by learned counsel for the Board of Trade that in
tre the engineer's log -book there was a column left for the draught of
water, which did not seem to have been entered He Court's attention to that. The Commissioner had carefully tone through both the log-books, and could safely say he had never seen
log-bokss so admirabby kept to every respect as theose log.books of
the engineer. He presumed the learned counsel did not meon him
to enter the draught de die in diem. All that would be require it was a to enter it when she arrived and when she left. But control of the captain; the captain was to decide when they
were to be filled or emptied. But the Commissioner did find none of the books that the chief engineer, besides an imno less than four different days. No charge whatever could be made against the engineer for the way in which the books were
kept. On the contrary, the Court were glad their attention had
been called to the sur were the best kept log-books which the abourt had that these Passing to the question whether every possible effort had been made to save life, the learned Commissioner gave the highest credit ond saved a Lascar who officer for having returned to the vessel rescuing him. There was a great deal of truth in what Mr. Nelson $£ 200,000$, and the loss of five lives, was due to a series of small mistakes. It was a mistake in the owners sending her to sea without cal tion. It was a mistake to send her the captain with the informa fficers. It was a mistake of the captain not to have certificated ing from the three previous lists, and to have turned in without satisfying himself that the chief officer was vigilant and attentive he list was. wht ans on his part not to have seen what chief officer to leave the ship in charge of Lowman, the watoh the nd to turn in himself. There was a series of small mistakes Looking to the high character both of Captain Murdoch and the in an exceptionally difficult position owing to the want of harmon between Captain Murdoch and the company's agent at Sydney, the
Court would certainly not deal with their certificates.

THE FIRE RISKS OF ELECTRIC LIGHTING.* By Mr. Klllingworth Hedges.
There is a great difference between the electric currents which which are to be supplied by the undertakers under the Electrio Lighting Act. The latter can only be said to be free from danger when the heat generated by the current is utilised in its right
place, and not developed in the conductors or wires which lead the lectricity to the incandescent lamps. The Fire Risk Committe lave alre
hese can new subject, which can only be arrived at after years of practical work. The necessity of proper regulations has already been
recognised by the insurance offices, both in the United States and The conductors must be properly proportioned for the current the have to carry; whatever resistance there is in the conductor wil cause a corresponding development of heat, which will vary with
the amount of electricity passing, and inverselyas the sectional area The matelial must b p passing, and inversely as the sectional area he material must be free from impurity, otherwise an impure in the conducting power of a sample of "commercial" Rio Tinto copper wire, as compared with the pure metal, was shown in an xperiment by Dr. Matthiessen-the conducting power being only mpure metallic oor pure copper. The contined heating of a resistance. With the soje just mentioned the conds electrical at 100 deg. Cent. decreased from 13.58 to $13 \% 558$ after the wire had been heated for three days. It does not always follow that there
will be a decrease in the conducting power, as with alloys, the opposite effect is produced. A copper-silver alloy showed an increas and a tin-copper alloy an increase of 13
As the temperature in Dre Matthiessen's experiments was not
increased over 100 deg. cent., the author has made some further xperiments-heary to withires by the electric current from oint. The following materials were tried, their melting ooils having such sectiona area, and so arranged that on the current being increased by 20 per cent., they were immediately
fused. The total length of each experiment was twely our hours, during which time the current passing through varied

The resistances were in all cases taken at the temperature of the
air, which averaged 69 deg. The sign - shows that the metal decresed in resistance an the heating. Nos. 1 and 3 , tin and copper, were found to seal
when heated. A currents have been sent through a pure copper wire for some tim under the notice of the author a appeared to be brittle, and came fracture unlike pure copper. The necessity of good electrical con tact breakers which, when left in unskilled hands, are liable to cause dangerous heating or an arc. Short circuit is the danger which may be caused by bady arranged wires; most like y a conflagration will ensu Board of Trade is adopted-of herine Cusk committee and the the circuit, which gives way when the current is in uscess plag in should be arranged to melt if the current is more than 10 or 15 pe cent. of the working strength, otherwise absolute safety is no arrived at. Ordinary lead or tin wire cannot be used except for very small currents, as, on fusing, the metal is scattered in a
globular form, when it is liable to cause fire. The plan adopted by the author is to take pieces of foil arranged like the leaves of a book; the thinness of the foil causes it to be almost volatilised when melted. The material found to be the most reliable is a
special alloy of aluminium, termed Albo metal, which is extremely tough, and can be worked much nearer to its fusing point than tin or testing, which should be done by a current of higher electromotive force than it is intended to use. When the work has been properly supervised no trouble should be experienced, and the
electric light may be said to be much safer than gas, as it is free rom those accidents which are due to a servant's carelessness, or yl leakage of the pipes. Whatever danger there is with electric
lighting is entirely localised to the generating station, where the dynamos and engines would be under constant supervision.

The River Withas. - The flood report of Mr. Williams, C.E., Mr. Williams states that the rainfall for twenty-four hours ending 9 a.m. on the 30 th ult., was equal to 310 tons per acre. The oot for the 11 tt. in twenty-four hours at Bardney, and were it revious maximum flood levels would have been exceeded, the previous maximum flood le

RAILWAY MATTERS.

The Hatton-Ceylon-tunnel, which has been long in hand, is completed by the contract time, May, 1884.
The authorities of the Burslem Tramways announce that they
will be able to effect a reduction in rates so soon as new tramway will be able to effect a reduction in rates
engines now ordered can be put to work.
A shocking steam tramway accident happened in Naples on
Sunday. A train upset on entering the town down a steep incline.
All the carriages were thrown All the carriages were thrown off the rails. Five passengers were
killed, and twenty-four had to be conveyed to the hospital. The management of these lines is said to be extremely bad.
There are now eleven railways on the Rigi cogwheel and rack
system in Europe with a total length of 40 kilos.-nearly 25 miles. system in Europe with a total length of 40 kilos.- nearly 25 miles.
They are as follows:- Vitzan Rigi: Length, $7 \cdot 10$ kilos.; height,
1311 metres ; cost, 244,105 marks. Arth Rigi: Length, $12 \cdot 14$ kilos.; 1311 metres; cost, 244,105 marks. Arth Rigi Length, 12.14 kilos.;
height, 1332 metres; cost, 426,248 marks. Kahlenberg, Vienna:
Length, 5.50 kilos.; height, 285 metres; cost, 696,000 marks. Length, 5.50 kilos.; ; height, 285 metres; cost, 696,000 marks.
Schwabenberg, open: Length, 3.03 kilos.; height, 260 meters; cost, 342,000 marks. Drachenfels: Length, 1.52 kilos.; height,
225 metres; cost, 394,000 markk. Most of the remainder are in
Switzerland and on the mixed system-adhesion and cogwheels 225 metres; cost, 394,000 marks. Mo
Switzerland and on the mixed system
Those given are all cog and rack road.
The last stroke of work on a big tunnel, 1650ft. long, under
Messrs. Jones and Laughlin's Ironworks, Pittsburg, has been com Messrs. Jones and Laughlin's Ironworks, Pittsburg, has been com-
pleted. The tunnel was constructed by the Vanderbilt, Pittsburg McKeesport, and Youghiogheny Rail way Co. Its cost will be $£ 100,000$.
Over 600 men were employed on it for a year. "The tunnel is of the engineering feats of the day. The roof is only a few feet
below the top of the mill floor, whe hundreds of men are working. The mill is the largest single mill in the United States, and none of the buildings were injured, and work was not delayed an hour. The ground through which the
tunnel passes was mill cinder and slag."
A BRIDGE now being built at Minneapolis, Minn., by the St.
Paul, Minneapolis, and Manitoba Road, an American contemporary says, is one of the engineering woaderss of the country. ${ }^{\text {"It }}$ is
composed of twenty-two arches or spans, standing on twenty-four granite piers, the foundations of which rest many feet below the
surface of the seething waters of the river. To tions took a great deal of money and engineering skill. Coffer
dams had to be built and the masonry could be laid, which water pumped out before the solid defiance to the swift
marrent current of the Mississippi. It will be finished by the 1st o
November, and will be double-tracked before snow flies. So
massive is it that trains massive is it that trains will run over it at full speed without
causing a vibration." An explanation of the word vibration when
used in this wis is used in this way is not given.
Georgia pine is a timber which is being more extensively used
every year in the construction of cars, especially the Builder says, in the South, where it is considered superior to oak in many respects. It is so filled with resinous matter as to be almost indestructible, and requires much less paint than the more
porous woods. Although it is very solid and enduring, it is also
heavy, and when used for car siding it makes a ordinary size weigh about 1500 1d. more than if sided with white pine, unless the former is put on thinner, which it is claimed by the structure. For siding, it is necessary that Georgia pine should
be free from knots, as these, under the heat of the sun, are apt to exude a good deal of crude turpentine and make a disagreeably consumption for car work in the Southern, Middle, and Eastern States is sure to increase in prop
more scarce and higher in price.
The following is from a letter written from the city of Mexico through a rocky gorge, and are now well among the mountains, through a rocky gorge, and are now well among the mountains,
crossing dizzy-looking trestle-works, and winding hither and thither
as we steadily climb. The track is well laid, and an army of workmen are thoroughly ballasting it. The curves are sharp, but ne of a dog chasing its tail. . sunlight, There is the the great sheet of is the capital
Lake Texcoco gistening in the in a vague, level mass of buildings. A ring of moyntains walls in
the plain, and above them all, on the opposite horizon in the southeast, towers snow-crowned Popocatepet1, so high that his head
seems to be almost half way to the zenith. It gives one a new conception of mountain sublimity. Leaving this scene behind us, we enter a tunnel, and are soon out on the open divide, the
highest point on the line, 3558 metres, or $11,673 \mathrm{ft}$., above the sea
level. Here it seems as if we might be in New England. Broad and gently undulating glades are bounded by dark pine forests, covering the surrounding summits, and standing, not open and
park-like, as in the Rocky Mountains and in New Mexico and
Arizona, but growing densely, as along the Appalachian chain." The trustees and shareholders of the Shoreham Harbour Company held a special meeting on Wednesday, to consider the con-
struction of a new line of rail way from London to Eastbourne, struction of a new line of railway from London to Eastbourne,
Brighton, and Shorebam. It had been intimated to the trustees
that there was an intention to renew the application to Parliament in the ensuing session for a line London, and that the promoters of the Eastbourne line would be
willing to enter into an arrangement by which the line could be willing to enter into an arrangement by which the line could be
extended. Two resolutions were submitted to the meeting by the extended. Two resolutions were submitted to the meeting by the
chairman and passed. The frst empowered the trustees to pro-
mote a Bill conjointly with the promoters of the Eastbourne line for power to construct a railway, to be called the London and Southern Railway, on certain conditions providing for the exten-
sion of the line to the harbour, the acquirement of the interests sion of the line to the harbour, the acquirement of the interests
of the shareholders at £125 per £100 share, to be paid for in cash
or 4 per cent, debentures of the of the passing of the Act for constructing the railway, and also providing that stations be made on the proposed line at West course of the line to be from Shoreham to Hove, Brighton, and Lewes to the proposed line to Eastbourne, and thence to London,
joining the London, Chatham, and Dover Railway at Beckenham. the company to a petition for the introduction of a Bill into
Parliament. Parliament.
AN important meeting was held at the Victoria Station, Shef-
field, on Tuesday afternoon. The purpose is to secure another line of railway to Sheffield, opening up the Trent Valley and reaching party being favourable to Goole and the other-the promoters of party being favourable to Goole and the other-the promoters of
the Rotherham and Bawtry and Bawtry and Trent Railway and
Docks Act-inclining to Stockwith. The capital authorised Docks Act-inclining to Stockwith. The capital authorised under
the Consolidated Act is $£ 810,000$. The effect of such an undertaking, which would simply be the extension from Rotherham of reduced rates to and from the coast. This, of course, would only
be accomplished if the line was kept in independent local hands Railway companies, when they find competition oppressive,
promptly come to an understanding with each other. On Tuesday promptly come to an understanding with each other. On Tuesday
there was a fairly influential attendance, and a resolution was
passed for the appointment of a veners of the meeting, with the Chamber of Commerce, and the manufacturers interested in the project. The tone of the conver-
sation did not hold out much hope of the proposed new line bein sation enthusiastically taken up by the She proposed neople, line being
very are not
anxious at present to invest capital in fresh railway undertakings, anxious at present to invest capital in fresh railway undertakings,
which may be vigorously opposed by existing confederations. It
is contemplated to proceed with the Rotherham
is contemplated to proceed with the Rotherham and Bawtry line
this season, and it is possible that the Bawtry and Trent may also
be pushed forward. This would open up a fine country, and deve-

NOTES AND MEMORANDA.
In London last week 2387 births and 1252 deaths were registered, or 219 and 208 below the average of the last ten years. The preceding weeks, declined to 16.5 .
AT the Royal Observatory, Greenwich, the mean reading of the
barometer last week was $29 \cdot 63 \mathrm{in}$. The mean temperature was arometer last week was 29.63 in . The mean temperature was
47.7 deg., and 6.3 deg . below the average in the corresponding
week of twenty years. The coldest day week of twenty years. The coldest day was Wednesday, when
the mean was only $44^{\circ} 9$ deg., and $9 \cdot 1$ below the average. In some notes on Aberllefenny Slate Mine, by Mr
Foster, it is stated that the principal vein worked at Aberllefenny has a thickness of 57 ft . to $63 \mathrm{ft}$. , and about 60 ft . on an average. Its strike is from 34 deg. to 44 deg . E. of N., true, and the dip is
about 70 deg. to the S.E. Owing to the fact that the sides of the valley rise up to a height of 700 ft . to 800 ft . above the brook in the
bottom, the vein can easily be attacked by aditlevels,
IT would seem that a very little will upset the nice adjustment
of a roller mill. The coefficient of expansion of cast iron may be taken as but 0.000005 , yet the Roller Mill says: "If your bran
rolls get to cutting your bran up, instead of flattening it out, see rolls get to cutting your bran up, instead of flattening it out, see
if they are not warm at the ends from some cause. This will often cause the bran passing between the expanded ends to be cut up,
while that in the middle goes through in fair shape " In a memoir on induction, recently read before
des Sciéncés, by M. P. Le Cordier, the author adopts the Academie a continuous and incompressible medium, by the translations and pressures of which are produced electric currents and electrostatic phenomena. Electromotor and electrostatic effects of induction are calculated approximately for a hollow sphere forming an insu-
lated conductor, homogeneous, isotropic, and non-magnetic, turning with a constant angular velocity round a fixed axis in a uniform and permanent magnetic field.
THE causes which operated in the destruction in Java were mani-
fested on the shores of Ceylon. On August 27th the se eastern, southern, and western coasts suddenly, the Colonies and India says, receded from 10 ft . to 12 ft ., leaving the shore bare, and Colombo harbour had their moorings broken. The rise and fall occurred repeatedly during the afternoon of the day named,
though no shock or tremour was felt. The inrush of the sea breached the sandbank which forms the bar to the harbour at Persons
Persons who fancy that wetting coal increases the heat in the recently at Bochum, Germany, to determine the values of wet and dry bituuninous coal in making steam. According to the American Mechanical Engineer, washed slack, holding 18 per cent. of water uel ; while the same coal, with only 3 per cent. of water, made reducing to a standard of like quantities of coal from moisture there is found to be a direct loss, by using wet coal, of 14 per cent, AT a recent meeting of the Paris Academy of Sciences, a paper
was read on the possibility of increasing the irrigating water derived from the Rhone by regulating the discharge from the Lak of Geneva, by M. Ar. Dumont. The author dwells on the great France by the project recommended by the Geneva Commission This project, which might be carried out at an expenditure of 7000 -horse power, by which the level of the lake at high water might be reduced by at least 0.60 m , and the minimum di
of the Rhone at the outlet increased by 80 mc . per second.
In London, during the week ending the 6th inst., 2399 births and tively. The births were 211 and the deaths 137 below the averag in corresponding weeks of the last ten years. The annual rate of
mortality, which had been $16^{\circ} 6$ and 17.0 in the two preceding weeks, declined to $16 \cdot 6$. At the Royal Observatory, Greenwich, the mean perature was $57 \cdot 1 \mathrm{deg}$., and $1 \cdot 5 \mathrm{deg}$. above the average in the tem sponding week of twenty years. The mean was below the average
on Sunday and Saturday, whereas it showed an excess on each on Sunday and Saturday, whereas it showed an excess on each
of the other days of the week. The lowest night temperature was $42 \cdot 1$ deg. on Sunday, and the highest day temperature in the shade 69 deg . on Wednesday. The extreme range in the week was,
therefore, 27.6 deg. The next weekly record shows a remark-
able difference, able difference.
ciate the value of thair work. They do not a which sadly deprethe fact that "time is money." An engineer who has just returned from the mines of that country tells the Engineering and Mining entering the mine carries with him a large bundle of from 5ft. to as a torch. It burns fairly well for a few seconds, until a knot is reached, when the light nearly goes out, and the ashes must be Every six or seven minutes a nust be repeated every half-minute. good share of the miner's time is occupied in keeping his illumination are, besides, great smokers, and they use a pipe having a bowl the capacity of which is equal to that of an ordinary thimble. It takes two whiffs to finish it, when the process of filling up and lighting it
must be gone through. Every one has probably had occasion to
watch the great deliberation with which an when at work, will fill his clay bowl when the on him, but imagination simply shrinks from the task of picturing rer THE following description of the road paving of Bury was given
recently in a paper read before the Association of Engineers and Surveyors by Mr. Cartwright :-After the removal of the old
Sapsian First is laid a layer underbed is excavated to the depth required. in size; upon this a layer of cement mortar mixed in the propor-
tion of one to five with clean sharpgravel ; and upon this a second layer of broken stone passed through a 2 in . riddle; the surface is thoroughly incorporated; then another layer of cement mortar, and upon this a layer of stone which is beaten as before, and so on
until the requisite height and curvature are obtained ; a thin coating of cement mortar being thrown over the surface, which is beaten and left smooth to stand for about eight days until thoroughly set before the setts are paved upon it. The proportion
of gravel and stone to cement was as ten to one. The joints are filled with pea gravel, and run with prepared pitch. The cement mesh. The setts were 5in. deep, $3 \not 1 \mathrm{in}$, wide, and from 4in. to 6 in .
long; they were from the Welsh Granite Company and from the before them were practically limitless in wear. The following data being the same in each case $:=$ First cost, granite, 12 s ; ; Haslingden rock, 7s.; sand grit, 6s. 6d. Maintenance per year, granite,
$2 \mathrm{~d} . ;$ Haslingden rock, 1s.; sand grit, 1s. Cost per year over thirty years, first cost and maintenance, granite, 7d.; Haslingden rock,
1s. $7 \mathrm{~d} . ;$ sand grit, $1 \mathrm{~s}, 93 \mathrm{~d}$. Taking the first cost of granite at 12s. per yard, first cost, minus 1 s . 6 d . for the old material taken up,
gives $10 \mathrm{~s}, 6 \mathrm{~d}$, per yard, which might be borrowed at 34
and per cent.,
7 per cent. on $10 \mathrm{~s}, 6 \mathrm{~d},=9 \mathrm{~d}$., with 2 d . for repairs, 11 d . per year
for twenty years, as against 1 s .7 d . in perpetuity for Haslingden
for twenty years, as against 1s. 7d. in perpetuity for Haslingden
rock, and after this the granite would still be in good repair, the
whole money repaid, and would last another twenty years, with

MISCELLANEA.
THE tides from the 17th to the 20th inst. are expected to be very The
The next meeting of the Institution of Mechanical Engineers takes place on Thursday, 1 st Novemb
The Gas Light and Coke Company and the South Metropolitan ational Smoke Abatement Instituted $£ 100$ to the funds of the

The authorities of the Turin Electrical Exhibition, which is to or space has, with a view to the convenience of the exhibitors at IN In excavating at Suresnes, at the extremity of the Bois de
Boulogne, the remains of a lake, or rather river, dwelling have
been found Rappel af piles Rappel, of piles and an enormous quantity and variety of bone
but at present no trace of iron or bronze has been discovered. MessRs. Allhusen, or the Newcastle Chemical Company, are
making satisfactory progress with their salt-boring operations on
the north bank of the Tees, and will probably reach salt at one boring this week. The second hole has now reached a depth of
over 500 ft . Other four bore-holes are to be put down by this firm. The School of Art Wood-carving has reopened after the usual summer vacation, and we are requested by the chairman of the studentships, both in the day and in the evening classes, which the committee are enabled to offer, in consequence of the aid afforded
to the school by the City and Guilds of London Institute are at THE
The works constructed by Mr. Henry Robinson, C.E., for the water supply of Bradford, Wilts, which we described at length Hobhouse, Bart., the chairman of the Town Commissioners. A gaily decorated on the occasion. A banquet took place in the Town Hall in the evening.
belt last him ten years by, the American Miller says, has made side out, washing it well with warm water and sodurning the inne oiling it, and then going over the same operation Monday mornin before starting the machinery. By doping this and keeping his
pulley clean, he finds that they will run at full speed with 5 lb . steam when the belts are on loose pulleys, while a larger engine
alongside, to which no such attention is paid, cannot run with les alongside,
than 38 lb .
IT is stated that the Austrian Ministry of Commerce has given
permission to Herr Hobohn, civil engineer, for the preliminary works in connection with two lines of canals intended to join the Elbe with the Oder and Dneister, and the Elbe with the Danube Both canals run together from near Prague to the Bohemian frontier at Trubau. At this point they separate, the Elbe-Oder touching Cracow in its further course through Poland, while the Elbe-Danube Canal takes its
and Lundenberg to Vienna
The Cleveland ironmasters' returns for September were issued last week. They show that 118 blast furnaces were at work, 83 making
Cleveland iron, and 35 lat quantity of iron produced of all kinds amounted to 223 , The total quantity of iron produced of all kinds amounted to 223,114 tons, iron in makers' hands and public stores amounted altogether at for the month. There were 94,367 tons of pig iron shipped from THE
THE French Government contemplates during the ensuing
financial year the following expenditure on harbour works and inancial year the following expenditure on harbour works and
similar improvements :--Dunkirk, $£ 160,000$; Havre, $£ 139,600$, in addition to $£ 104,000$ for the regulation of the Seine between Rochelle, $£ 72,000 ;$ Marseilles, $£ 60,000 ;$ Cette, $£ 52,000 ;$ Bordeaux Government estimate are the extension of the canal between the the Aisne, $£ 120,000$; and the improvements in the Canal de l'Est, £64,000.
ON Saturday, the 6th inst., the s.s. Cabo Verde, built by Messrs. was taken on trial trips. The dimensions are as follows:- Length
p.p., $310 \mathrm{ft} . ;$ breadth, 37 ft .; depth of hold to spar deck, 26 ft . The gross tonnage is about 2300 . She has accommodation for sixty the cabins and saloons being fitted out in the most complete manner throughout. Four hundred and fifty tons of water ballast is provided for in the main and after holds. The vessel is propelled hy compound surface condensing engines indicating about 1850-double-ended
WE are in frequent receipt of new trade catalogues, many of great deal of trouble with their catalogues must have some wish
that they should be preserved for reference by those who are at all that they should be preserved for reference by those who are at all
likely to wish to know something of the manufactures described in them. Well got-up catalogues of representative machinery, tools, nd other 1 f they were of a nearly and kept in position for ready reference the formes of the printer will allow a fastidious taste or tasteless fastidiousness to range over. From 14in. by 10in. down to 4 in . by
3in. we have received catalogues even recently. What is to be done with such a variety? They will not be put anywhere in particular, and must go everywhere. If manufacturew by about 9 in . by about 6in., these and the catalogues of leading exhi-
bitions could be kept decently and in order. The Lower Thames Valley Main Sewerage Board have obtained
a report from Messrs. Mansergh and Melliss on the collection and disposal of the sewage by chemical treatment and precipitation. cipitation, Surbiton, Molesey, Esher, and other parishes, the rateable value being $£ 762,274$. The engineers have come to the conclusion that
it is better to have only one than several places for the treatment of the whole of the sewage of the district, and that the place
selected must be on the Thames, the natural district. They propose to collect the sewage and subject it to deodorisation and precipitation by means of salts of alumina, iron,
and lime. The effluent water will be passed into the tidal portion of the Thames, and the sludge put through filter presses, and sold
as manure, or removed in boats to the low land on the banks of the river below Woolwich. At site No. 1 the cost of the work rate slightly over 8d. in the pound. At No. 2 site the works would
cost $£ 323,814$, and the annur cost $£ 323,814$, and the annual charges $£ 28,112$, requiring a rate at
rather over 8 3d. At No. 3 site the works would cost $£ 237,634$, and the ancual charges would be £23,597, requiring a rate at nearly Thames waters continue to accord more and more with long experi-
ence and the opinions of others who have to judge by similar
analyses, but taken in confirmation with biological considerations. analyses, but taken in confirmation with biological considerations
His report for September admits that the waters delivered by the
companies drawing their supply companies drawing their supply from the Thames were again un
usually free from organic matter.

TESTING MACHINE, KING'S COLLEGE.

METALLURGICAL DEPARTMENT, KING'S COLLEGE, LONDON
Ir is now four years since the above department was established, although it did not actually commence work until the following January. For some years the Engineering and Applied
Sciences Department of this College had fully appreciated the importance of the study of metallurgy in any system of technical education; but, owing to want of funds for the purpose and the objections to increasing the fees of the departmental students, their views on the subject were not carried out until the year 1879, when the City and Guilds of London Institute was enabled, through the generosity of the Drapers' Company, to make a grant of a considerable sum of money towards the fitting up of a suitable laboratory, and also to endow a chair. The necessary funds having thus been obtained, the Council lost no time in establishing a metallurgical department, A. K. Huntington, the successful candidate for the post The task undertaken by Professor Huntington was by no means an easy one, for there did not exist in this country, nor in any other, so far as we are aware, a laboratory having the scope and aim which he proposed to himself for this. The only metallurgical laboratory in England was that of the School of Mines, and there the work of the students was practically confined to assaying. A metallurgical laboratory attached to an engineering department, whilst not neglecting the assaying and analysis of properties of the metals and their alloys with special reference to their applications in the arts, These applications are daily increasing, and the demand for more systematic, and therefore more scientific treatment in the manufacture of metals has become very great within the last twenty jears, being at the present time greater than ever by reason of the increased competition brought about by the facility of intercommunication. In order that the properties of metals may be properly studied and investigated, it is absolutely essential that they should be examined mechanically and chemically pari passu. In order to invention of Professor Thurston, of the Stevens machine, the America, was first acquired, its cost being very small as compared with others. This machine admits of comparative results being obtained with ease and rapidity; it is extremely useful in carrying out investigations. Professor Thurston's machine has already been described by us. For many purposes, however, in this line of work, one of the more powerful machines of the Kirkaldy or other analogous type is necessary. This want, requiring a considerable outlay, was supplied some two years ago by a grant made by the Clothworkers' Company, in their laudable desire to promote technical education and investigation. The grant was applied to the purchase of a machine of the Kirkaldy design, manufactured by Messrs. issue, and in perspective on this page, and is described issue, and in perspective on this page, and is described joint control of the professors of general engineering and of metallurgical engineering, being available for the students of both departments, as well as for investigations either of a purely scientific or of a commercial nature. In addition to these appliances the laboratory is amply supplied with furnaces for all kinds of metallurgical work, ncluding two hundred pound pot furnaces for casting alloys, also a lathe for turning up large test pieces.
we have just described, and of the good work it is as that which we have just described, and of the good work it is doing, we may
mention that several important investigations for engineering firms have been undertaken during the past year, and a process of dealing with refractory gold ores, and the necessary machinery for carrying it out have been perfected, and have met with a very favourable reception from those interested in mining and melting.
The testing machine, which was constructed by Messrs. Greenwood and Batley, of Leeds, is of the Kirkaldy type. It is calculated to exert a strain of $50,000 \mathrm{lb}$., and may be used for tensile, by means of a hydraulic ram, and determined by a steelyard and system of levers. The illustrations will suffice to explain the principles of its construction. Fig. 1, above, gives a general view of the machine as arranged for tension. In applying the apparatus to tensile testing, the piece is gripped by collar dies, fitting into the forks A and B, page 264, the former A ceing connected with the levers, the latter B rigidly fixed to a movable crosshead C, provided with nuts for the four screws D; these screws are attached to the ram-head E, and terminate in pinions, to which motion is imparted from a hand wheel F , through a pinion and spur wheel, By means of this lated to that required for the piece under test. The pewer applied by the force pump G to the ram, extensions and sets being measured by the rod H, firmly clamped to the crosshead and by means of a rack and pinion arrangement rotating a pointer upon a dial. The necessary increments of strain are applied by altering the position of the weights suspended from the graduated steelyard. The maximum length of test piece
which the machine will take is 4 ft ., allowing for an extension of 30 per cent. during strain. In transverse testing-Fig. 6-the piece is bent over a knife edge on the block J by two knife edges 33.5 in.-bolted to the crosshead C, the connection between the single knife edge and the weight being made by the straps L pulling on the pins M . For compression the block J i
\qquad
SKELTON'S STEEL LIFEBOAT.

The boat illustrated is 24 ft . by 6 ft .8 in . by 2 ft .8 in . The hul is constructed entirely of Siemens steel, the frames and plates being all worked cold and afterwards galvanised. The frames No. $18 \mathrm{~b} . \mathrm{w} . \mathrm{g}$. The inner frames are rivetted to the puter fremes at top and bottom, and the inner plates forming the air casing are flanged and rivetted to the outer plates on upper and lower edges. Strong wales of American elm are worked inside and outside of the upper edge of sheer strake and air casing, and fastened by through bolts, clenched on the inside. A capping piece is worked on top of gunwales, as shown on midship section. Bulkheads are fixed at a distance of 4 ft . from each end, forming air-tight chambers. Manholes, with air-tight covers, are fixed on top of the air chambers at ends, and also on the insides of side air chambers. These side air chambers are further subdivided by transverse bulkheads.
The weight of this size boat, with all fittings, is 15 cwt., and boats are quite insubmergeable, and are self-righting. The formation of the air chambers renders them excessively strong, and being built of galvanised steel they are not affected by exposure to the weather in any climate.

LEAD PIPE MAKING MACHINERY.
Although the use of lead pipes is universal, it does not follow that everyone knows how they are made. Formerly they were all produced by drawing through dies, and this system is still followed. The method of "squirting," however, gives better results. It was first designed, we believe, for the production of
rods of compressed lead in the manufacture of bullets. Messrs Weems, of Johnstone, N.B., have, however, brought. Messrs. of this kind to perfection, and we illustrate it on page 281. The special machinery for the lead trade made by this firm includes patent hydraulic machinery for the manufacture of solid block tin and block tin composition tubes, patent solid block tin-lined lead pipe, lead composition and tinned composition pipes, lead rods for bullets, window leads for glass, \&c., all in long lengths. This patent hydraulic machinery consists of strong copperlined hydraulic cylinder, ram, and crosshead, having a central opening, and supported by four wrought iron columns, bound to the hydraulic cylinder. The ram is fitted with a portable lead or plunger, within which is fitted a die for forming the a ram of the pipe; the core for forming the inside of the pine is fised in the centre of the lead container. The molten lead is conveyed
eversed, the other side being fitted with a compression plateFig. 7-a similar plate P can be fitted to the crosshead C . When test piece resting in the hollow bosses of the wheels, and secured in the centre by the rod R to the fork A; the ends of the chains are fastened to the crosshead C, and thus, by means of the pump G, the requisite torsional movement is given to the piece.

from the melting pot by a portable conductor to the container, and after being filled and allowed to set or solidify at a temperature of about 400 deg. Fah., the water ram being then forced up by the hydraulic pumps at a pressure of from 25 cwt. to 30 cwt. per metal against the face of the lean having no other means of escape passes out through the metal ture between the core and the die, resulting in the continuous formation of a solid pipe, until the metal in the container is exhausted, when the hydraulic return motion in connection with the pumps is put into operation, and the lead container returns to its original position, and is then refilled.
In the interior of the water ram is fitted a small intermediate ram, for the purpose of rapidly changing the cores without removing the containers, as was usually done on the old principle for making the different sizes of pipes; and by connecting hydraulic pipes from the pumps, the same is put into operation when desired. The machine is provided with a safety self-acting
stop motion, whereby the container, when it stop motion, whereby the container, when it has travelled the desired distance, opens the bottom valve, allowing the water to For making

For making lead rods for bullets, lead wire, \&c, the core for forming the inside of the pipe is dispensed with, and a wire desired. The hydraulic pumps may either be driven direct by a vertical or horizontal steam engine, water power, or from gearing, the driving pulley being provided with a clutch. These machines are in operation in the principal lead works of Great Britain, Russia, America, Spain, Mexico, Portugal, Peru, Brazil, \&c., and for the production of lead rods for rifle bullets in the Woolwich Arsenal, as well as in the arsenals of foreign Governments and in various ammunition factories. The advantage claimed is that the core for forming the inside of the pipe being
fixed in the container and surrounded by the metal travels with it, so that there is no actual frictional contact except at the point of escape of the exuding metal, and the pipe is produced while the body of the metal is at rest, and without giving rise to any frictional effect elsewhere. The lead container being open at the top affords every facility for removing the impurities of metal which float on the surface and are skimmed off, and the lubrication of the lead ram is easily effected at each change. No fire being required round the container, the expansion and con traction are equalised. The die requires no adjusting screws, as pipe of equal thilency to come true to the centre to make a pipe of equal thickness, and the metal being pressed at a reduced
temperature gives a solidity and superior brilliancy of finish to

LEAD PIPE MAKING MACHINERY.
MESSRS. J. AND W. WEEMS, JOHNSTONE, NEAR GLASGOW ENGINEERS,

the pipe. Owing to the reduction of the frictional contact the lead container can be made larger, thereby increasing the size of the pipe and the quantity produced. The lead containers for the the machine can be worked at the rate of from five to six charges per day, producing from about 25 to 30 tons per week. The latest improvements effected in this class of machinery are in the appliances for the production of tinned-lined lead pipe produced at one operation under hydraulic pressure of 200 tons per square inch, such as moulds, mandrils, \&c., thereby producing an improved medium for the supply of pure water to dwellings, pre-
venting lead poisoning of water and other liquids. Messrs. J and W. Weems have long endeavoured to produce machinery which would turn out a pipe for domestic purposes entirely free from contamination with lead, and in this way they have produced the lined lead pipe. This pipe may be termed a combination pipe. It consists of a distinct pipe of pure tin protected by an outside covering of lead, and the two pipes are so united at their surfaces of contact as to be inseparable by any contortion to which the pipe may be subjected. In pliability it does not bent to any desired form or angle without in the slightest degree affecting the interior of the pipe, which comports itself physically as a part of the body of the lead pipe. It is stated that this pipe
is so much stronger than lead pipe that a less weight is needed, and have the cost of the two is the same. The Government of Brazi only for the entire service of the city of Rio de Janiero, and on the Continent several municipalities are using it solely. Messrs. Weems had a curious experience in the attempt to produce brass tubing by hydraulic pressure. For this purpose they constructed a water press with a 33in. ram. It was found that when the brass block out of which the pipe was to be ormed came to be subjected to a pressure of 4000 tons, the zinc left the copper, thereby producing a zinc pipe and leaving pected, formed really a contribution to science, by proving that the atoms of the brass composition united together by fusion were only mechanically arranged, and not chemically combined, and practically demonstrating the truth of the atomic theory of Professor Tyndall, that in compound substances the component materials were held together by pressure, and could thereby be separated by pressure.

The next exhibition of brewing plant, machinery, and the will take place in the Agricultural Hall from the 15 th to the 20th instant.

LETTERS TO THE EDITOR.
[We do not hold ourselves responsible for the opinions of our correspondents.

FIRE-BRICK HOT-BLAST STOVES

SIr,-As I was inadvertently prevented from taking part in the liscussion On Recent Improvements in Cowper's Sidev at the perhaps you will permit me to make a few remarks in the columns of your valuable paper in reference to that discussion, and as to fre-brick regenerative stoves for blast furnaces-a subject which is ow radly st importance to all iron sm. I think, Sir, that all iron smelters owe a deep debt of gratitude to Mr. Cowper for having introduced the fire-brick stoves, and for the ability and energy he has displayed in getting his stove so argely adopted, thereby contributing in a marked degree to the toves in the market claiming public favour, and I am sure many melters will agree with me that it is not such an easy matter after all, to choose which is the best, as Mr. Charles Cochrane, in his rather highly laudatory remarks on the Cowper stove, would like us to believe, and for the chief reason that while one stove is suitable and works satisfactorily in one district, where the stove may not be so suitable for another district where the cha-
racter of the materials to be smelted is different, and the deposit
from the gas difficult to remove. know that in West Cumberland, where these stoves stoves, and in use, such has been the case, and the cleaning has been where two of the Cowper stoves and expense. At one works cleaning was so great-the passages of the regenerator getting
completely choked with dust from the gas, particularly at the top, which the process of shooting with gun and powder, recom factory work could be done until a third stove was erected and it was of that much-abused description, Massicks and Crooke which enabled the Cowper stoves to be taken off duty alternately for cleaning.

Massicks the merits of the Whitwell stoves an sive for all the duty they can perform, having comparatively seriously extent of effective heating surface, the latter being attending the Cowper stoves in practical working, I was led las year, when changing from iron pipe to frire-brick stoves at Distington Ironworks, to adopt the new patent stoves of Messrs. Ford
and Moncur, which, in my opinion, have many advantages over any existing stoves.
stoves, contain more effy are somewhat on the lines of the Cowper stoves, contain more effective heating surface in same size of shell,
regulate the heat better, are thoroughly self-cleaning, and, consi dering the immense effective heating surface and the duty they can As cleaning is cheaper than any of the other stoves. by the Ford and Moncur system of concentrationg I may say that, suast pressure through one compartment of the stove and opening
suddenly a relief valve, their stoves can be kept perfectly clean without a penny of expense. This is different from the opening of a valve in a Cowper stove and having a "puff," as has been said;
or in the Cowper stove there is velocity at the valve, but practically no velocity in the stovere itself.
As to the regenerator, it is
pace even mnner, and in such a way as to thorsubstantial and Mrace even more completely than in the Cowper stoves; and how waste here I cannot understand, as the reverse is actually the case The tiles or bricks are arranged in such a way that they cannot be displaced, or get out of line, and clear, vertical openings, perfectly nerator, no matter what its height may be. This entirely the regenerator, no matter what its height may be. This entirely obviates regenerator.
The gases
The gases having full play in a lateral direction round diamond-
shaped stay bricks, the absorbing power of the regenerator is thus shaped stay bricks, the absorbing power of the regenerator is thus
greatly increased, and its entire area is thoroughly effective, as the Cowper stoves, where it has been found that the gases will not ehind the flame parts of the regenerator lying beside and somewhat ehind the flame flue, thereby causing a large loss of heating surment" to obviate this, but still by even this he cannot make it wholly effective, as is the case in the Ford and Moncur stoves. een very satisfactory, and a saving of fuel and increased producCowper. The consumption of coke-one-sixith of which was Mr.
Cocal
Cumberland, and the rest Newestle months, the whole time these stoves have been at work, being
$18^{\circ} 69$ ewt., with $\cdot 82$ of anthracite coal, in all 19.51 cwt, of fuel per on of pig iron, and the proportion of the yield being 93 per cent. iron. These figures, taken into account ony 7 per cent. of the hard nature of During the above period and to date no gun and powder has been ontinusly on duty ; not, no time has been lost, the stoves being the other day when one of the stoves was spent in cleaning, and the walls were found to be perfectly clean. I may say that three
of the Ford and Moncur stoves are being erected by Mr. Hickman t Springvale Ironworks, Staffordshire, two are working at DisSteel Company, after long experience of barrow Hematite Iron and Whitwell stoves, has now given the of boference to the Ford and Moncur stove after a careful trial of one for the past nine months, and are erecting other four, which, in my opinion, goes a long
way to prove the assertion of the patentees, that their stoves "are
the best, most effective, he best, most effective, and cheapest in the market.
Distington Ironworks, October 6th.

Sir, -In The Life of steel rails. it is stated that "the life of a steel rail is estimated equal to that
of three iron rails." There is I think, a mistake in this. As Mr. rice Williams-in a paper read by him at a meeting of the Instiverage life of an iron rail, under heavy traffic, is $17 \frac{1}{2}$ million tons He gives $13,416,832$ tons as the average traffic tonnage required to wear down 1 in. of rail head, and taking in. as the available
wearing depth of each head of a double headed rail, he gets the
tonnage life of an average Bessemer steel rail ons, or roundly about 9 times the average life of an iron rail$13,416,832 \times 6 \times 2=161,001,984$
and $17,500,000 \times 9=157,500,000$
This is borne out by a report of the Great Eastern Railway Company in 1877. As a test they had put down a line of steel rails, Railway, and from January, 1874, to February, 1877, they found that the wear of those steel rails was $\frac{1}{12}$ in., and at this rate these
rails would last for nearly thirty years; whereas iron rails would nly last 3 year

 line would be 42 years if the traffic remained the that portion of the the life of an iron rail as three years, this would dmake the life o a steel rail fourteen times that of the iron $\frac{42}{3}$
the iffe of a steel rail at nine times that of an iron
make the life of the latter $4 \cdot 66$ years $-\frac{42}{9}=4.66$.

October 6th,

iron rail. It may, perhaps, be new to our correspondent to hear that iron rails have endured a heavy main line traffic for twentytion in those qualities on which wear and tear depend. It i before all things necessary that a rail should be homogeneous, and
this a steel rail is certain to can only be obtained in iron by repeated heating and rolling, and careful selection of the materials put in the pile, both as to which would bought for aboumpare very favourably with a steel rail could be price of steel, it is hardly necessary to pursue the argument further.

We have said enough, however, to show that it is quite possible
for three iron rails to alast as long as one steel rail, or even longer Another point to which sumficient importance is is not attached is
that when the loads are reasonably light that when the loads are reasonably light the iron compares better
with the steel rail than when they are heavy, Under loads of 19 tons on a single pair of wheels the iron rail, however good and
heavy, would crush out laterally ; the steel rail will not, but with loads of half thi
work.--ED. E.]
designs, specification, and inspection of ironwork. Sir, -I have just seen the paper on the above subject read by
Mr. Pendred before the Society of Engineers, and as it has now been published in the different journals, I presume he will have no
d
I quite agree with the author when he says that engineer an oontractor wase much to learn from each other, but as I suppos stantly engaged either in designing or constructing ironwork, and not to amateur engineers and blacksmiths, I think he has assumed the other. Concerning the disposition of ande either in the one or says, " These are often bent without the angle irons, the author and, such angles are al ways weakened, and suffer in their fibres by on stiffener over the angle of the ordinary cranking of the angle ders needless and bad. He then sketches the same attachmen with packings, which he considers preferabe in every way. For rough, smail girder work, the packings may be, and are generally
adopted ; but for heavier work the cranking is universally adopted,
for less-on account of the extra weight and which is considerable in girders say 8ft. or 10 ff. deep -adnd the
angle iron is certainly not injured in the cranking when done by angle iron is certainly not injured in the cranking when done by
experienced men with modern tools. The author "s never could ee the reason why covers should be employed when they are no
required to resist either tensile or lateral strain where the plate are in compression properly planed and butted.". He he here assumes
a theoretical condition which he so strongly condems in the first part part of his paper as existing in specifications. Theory requires no
cover for compression joints, but practice does. What does he mean by a "tensile or lateral" strain?
He next gives a sketch of an angle iron joint cover, which,
think, has only existed in his imagination, and he has had "cook" "the sketch to make it appear possible. He suguests, as semedy, that the back of the angle iron cover should be cither special section should be adopted iron; or, as a remedy, that
Shough he objects to the the back of the cove iron, yet headacked" angles for and-banin been obtainabie for as long a period, almost, as the angle iron

themselves. The auth

ontempt, on says: "Contractors often read specifications with clauses; such, for example, as that stipulating that all rivet holes are to be drilled in the position that they are to occupy in th girder, bridge, or roof, \&co, a perfectly abburd demand." This is of plate have to be drilled; and the author actually quotes this methects by absurd "plan later on in the pap
The author says: "Another useless stipulation is that the iron shalr be deivered in lots of not less than so many tons. He conthe first or second lot of iron, may, as a rule, feel confident that the remainder will be of equal quality. Also that large web plates by hammering out of bad iron, and that it can easily be tested amining the 'buttons' from the punching machine." . surely the author must be easily satisfied; for suppose the first lot of plates remainder of the iron may capable of withstanding the tests, the to be sure of the absence of blisters, sirt, and cinders pressed into
the rolls, laminations, or "other defects?" I should like to see him also test, say, a sin. plate by bending the corner when cold no manuiacturer will put any labour on the material until it has been passed?
in many chor objects to the method of work being specified; but knowing some ne engineer, being not altogether theoretical, and he benefit of his experience and knowledge of the particular case hand, which is often not only useful, but essential.
nended by the author is very costly drilling the holes recomhandlings of the plates, and is only adopted in special and rare
instances.
The author objects to the customary plan of attaching the cross bottom to the main girders by means of resting them on the says, "the whole load oft, and borne by, the oross girders is sustained by one side of the main girders, thus tending to tilt over the
latter out of plumb." This is another illustration of the theory
which he so which he so much objects to, for practically the tilting of the main and I may say impracticable girders proposed by the author. With plate girders, where head-
way is of importane way is of importance, it is impossible to do away with the arrange
ment objected to, and although it would appear that the load is not transmitted fairly and equally to the main girder, it is practically, and the arrangememt has the advantage of maling a rigid connec
tion betwen the main and cross gider, thus tion between the main and cross girder, thus converting the cross The author gives a
of cross to main girder which he strog. 6 of a very ugly attachment of cross to main girder which he strongly reeommends. If would
ask him if the drawings of the angle irons are correct; if so, how
are they rivetted are they rivetted to the booms? " The author " fails The author "fails to perceive" the advantages of fish-bellied
girders, and considers them again as a theoretical whim. The advantage of fish-bellied girders is not a theoretical one only, but the bottom of the girder has often to be reduced to a minimum this is best done in open web girders, where the cross girders are
often fixed on the top of the bottom boom by making the cross The author appro
ngle iron stiffeners being cranked because of injuring the of the the iron; but would allow the iron to be submitted to the gentle The autbor 7 mb . sledge on the top of a taper drift
proper position the has for it the girders are not placed in their roper position the holes for the cross girders will not come in.
Why certainly! If the girders are placed upside down the difticulty will be experienced.
The author says, "During rivetting the reside
The author says, During rivetting the resident engineer should see that the rivets are fuly and equady heated all over, and con possible to gortable rivet hearth is greatly needed, it being almost im rivets; consequently there is less probability of the phanks bein upset in the holes, and the rivets have less contraction when cool ng. This idea is certainly original; but the author may be very ap to now only heated the ends of the rivets. In the first
und hot rivet to enter, and if they were marge large enough to allow white-hot rivet, they could not possibly fill the holes when cold, nanger the thation endways would be so great as to seriously en-
date head. Next, in machine rivetting
the rivets would be forced between the plates, as in the follow-
ing sketch, and the plates ing sketch, and the plates could "then never be brought together.
 not be cut with the snap." Is this theory again, or practice? It is
almost an imposibility to avoid
cutting the plate. The author oujects to lugs on columns, but
if they are properly designed, they are very efficient, and form a good
attachment to bracing, and for
large columns are preferable to the large columns are preferable to the
expensive plan ppoposed by the
author. The novel plan proposed by the author of bolting flanges toghother, The novel plan proposed
of antiquity, for the flanges at the bolts in the meorit work is always metal to metal
The author recommends the use of a theodolite for setting out the camber of the girders. It would be rather an interesting sight
to see a theodolite being manipulated by a plater. Imust or the length of my letter. Stephenson Chambers, 25, L
Liverpool, October 8th.

seismic disturbances,

SIR, - Following on the calamitous earthquakes of Ischia and greater magnitude. Whilst I do not profess to predict the coming
arthquake, I am firmly of opinion that it is possible to tell whe occurring, no matter in what part of the globe it may be. . .
Mr. © . Darwin, in his report to the British Association last year,
said:-" ${ }^{\text {oscillations }}$ in the bulb of said:-- Sscillations in the bulb of a level were observed at
Pulkova Obervatory, in Russia, an hour and fourteen minutes
after a severe earthquake at Iquique, 7000 miles away. Similar after a severe earthquake at ITuquque, 7000 milise away. Stimilar
observations were observed twice previously, and on each occasion
it it was learned afterwards that earthquakes had taken place some nvestigating earth tremors in the South of France by means of
reflections from a pool of mercury, also found that there win eriods of agitation and quiescence in the mercury without per ceptible external cause. Again, Professor Milne notices indirect
evidence of the occurrence of earth pulsations too slow in period o be felt. For example, the earthquake which laid Lisbon in ains, he says, produced no perceptible motion in the soil of
Northern Europe. That there was by the fact that throughout the northern hemisphere slow oscillatons of water in lakes, ponds, and canals were observed. The
waters of Loch Lomon rose and fell about 2hyt. every five ninutes, and other lakes were similarly agitated. Electricians the study appears to me to be one peculiarly their own, and may
be considered to class in interest with magnetic storms or earth I urrents.
I seldom care to rush into print, but my reasons for troubling Bottomley, of the National Telephone Company-my collabora-
eur-and I have for many months been making experiments voltaic batteries, which showed a marked change during the earth cuakes of Ischia, and which at the time somewhat confused us when the awful results of the earthquake were made public, we discovered that the time coincided with the disturbances noted.
We therefore determined to be on the qui vive, and very shortly fterwards a similar result was experienced in our tests, and we jaculated, "Another earthquake." The following morning's paper take notes when the Java earthquake occurred, and consequently
missed the opportunity of confirming for a third time
Now, as Dr. Fall and "J. H." prognosticate another disturb a simple cell of Leclanché, Fleming's or other battery, with gal vanometer at their disposal, to examine them frequently, taking particular notes as to "quantity" and "intensity," also the hour,
with the state of the thermometer and barometer. There will probably be found an increased power during the earthquake, an It would appear from our experiments that inorganic eruption. although not connected or joined to "earth," evidently sympa-
thise with abrupt inorganic changes, whilst, on the contrary, our 56 , Leadenhall-street uninfluenced by them. JOHN J. LUNDY,

the definition of force

SIR,- -Having read with much interest your article and corre
pondence on the definition of force, I wish to offer a few remar To a student of mechanics, it must be very perplexing to find so many definitions of one terin; but force, the most important term clear and concise, and having just the same definition given it by all the greatest masters.
We have, however
the mave, however, been told it is insufficient, and simply give
tot its explanation. But it must be remembere there are terms when, from their very nature, they cannct be
explained, yet the terms are required to denote the causes the he mere word is a useful thing, although a correct knowledge may not be forthcoming. Force is one of
those terms ; it has been defined by Newton as an action exercised on a body, tending to change its state either of rest or of uniform
motion in one direction. This definition does is that changes the motion of a body; no one seems to know. It
is true that Newton and Le Sage, of Geneva, did speculate on the nature of the force, gravity; but until the nature of the cause or
action is known, what could be better than the above or Kine's, or Moseley's - they explain clearly the meaning, we are to
attach to the term; they say we are to call force whatever produces or tends to produce motion.
There
There are those who say they know what this cause which tends
to produce motion is-itis motion or rate out can it be, when we know it exists without motion consequently without momentum, as in the case of a pressure. If I hold a body n my hand it tends to move towards the earth, and the cause of
this attraction we call force. The effect of this force is balanced by an equal effect produceed by the opposite force, the force is
there but where is the motion? If I withdraw the the gravitational force produces motion in the body, the rate of momentum changes ; is it not due to the force still a acting on the
body? If the force cease, the momentum does not change. Momentum does not produce momentum, as it must do if it is a force. caused by its velocity; but velocity is rate of motion therefore the force must be momentum or motion, but that is only the force of impact caused by the previous acting force. But there are other forces causing simple atrraction and repulsion, as gravity, cohesion,
chemical affinity, magnetism, and electricity; we know these to Hence I cannot We are all anxious, I am sure, to be put right on this subject, and know what is the cause of motion. All we know at present is
that bodies tend to move, and do move, unless balanced. We We believe ther
call it force.
Force is not the only term the nature of which is unknown and yet they are mind, vitality, and if I may be allowed, electricity, and yet they are convenient to express the causes which produce
certain effects, \mathbb{I} must agree with your article, that the present
definition of force, that is, the definition of either Newton, Ran-
kine, Moseley, Whewell, or Goodwin, is simple and exact for a student who approaches it in the right direction. If, how ever, any one does know the real nature of force, and can improv upon the present definition, let him do so; but it must be con Φ. Π. mentioned in his first letter that the true explanation of the cause of motion had been explained by Professon Oliver Lod odge, an
that he would state it again. I will therefore drop my pen and that he would state it again. I will therefore drop my pen an
await anxiously to be enlightened on such an important subject.

SIR,-Having been away from home I had not until now notice STR,-Having been away from home 1 had not untin now noticed challenged to explain certain things. I have neither time nor
inclination to enter into controversy with this "Student," my interest being at present absorbed in practical applications of
mechanics. But I have formerly taken keen interest in the mechanics. But I have formerly taken keen interest in the theo of $m y$ views as to "force, I must refer "Students" outside $m y$ own classes to the letters in Nature, to which I before referred They are to be found in the issues of January, 1876. These do not deal with the deinition of mass. Of course, so long as one i concerned only about consistency and not about real physica
meanings, one may put his cart before his horse if he likes, and derive "mass" from "force," but what modern mechanician would so fly in the face of settled and systematic modern practice? Has no the C.G.S. system of fundamental units been pretty well accepted In order to learn some of the reasons that have led the scientifi units, "Student" may refer to such a book as Everett's "Unit and Physical Constants.
The "Student's" amusing array of authorities for and agains his onn opinion, owes its whole merit to its grotesqueness- not at
all to its accuracy.
RobRRT H. SMITH. The Mason Science College, Birmingham,
September 2tth.

the late mr. cromwell f. varley

SIR, -Allow me to state that the history of the artificial line
dates back as far as 1854 . It was constructed at that time of such materials as the knowledge of dielectrics and resistance then known copper and the larger of iron wire, and the dielectric for the condensers of paper saturated in a mixture composed chiefly o
Venice turpentine, of beeswax. The condensers were built up of alternate elayers of conductor and dielectric. The maker of the condensers was my
late eldest brother, Cornelius J John Varley, who made them under instructions from Cromwell Fleetwood Varley. The original set copies of the coils were made by Cromwereproduced by Cornelius Saney entirely, bu Varley about this time was away from London, and shortly after wards left for the Crimea, where he had charge during the war o the first military field telegraph. Owing to this absence from home he may have been unacquainted win what Cromwell F , had already been done. With regard to the construction of con densers, it may be interesting to state that Cromwell F . Varley employed papers saturated with Venice turpentine in consequenc The condensers used by S. Alfred Vor
at the Society of Arts, were made of paper, coated with shellac varnish, and subsequently sufficiently heated to evaporate the
alcohol; whilst the artificial lines of greater proportions with which Cromwell F. Varley was justly identified were a great improvement, both upon his former invention and the subsequent re
application of S. Alfred Varley's, insomuch that the condensers possessed greater dielectrric resi by employing for the first time paraffine wax to saturate the paper, and convert the same into a permanent dielectric, whilst more
carefully constructed and adjusted resistance coils were used.
He also added to the arrangement a contrivance for putting in and illustrate the twofold effects of resistance pure and simple of the conductor, or by the insertion of condensers to give the requisite
inductive capacity to illustrate the retardation of the current, as experienced in long submarine cables.
Full credit is doubtless due to aroused the attention of the public to the Alfred Varley for havin than foreshadowed a promise of the commercial success of Atlantic
telegraphy. Still, I cannot allow that Cromwell F. Varley memory should be assailed by the hint of a suspicion that in taking credit to himself for the production of the artificial line he
even for one moment considered that he was depriving his brother S. Alfred Varley, of any credit which might be due to him. I may, however, be asked why the artificial line, though com
paratively in embryo, was thus early invented-1854-it was no brought prominently before the scientific world. In answer, it it
only necessary to say, under the engagement with the only ynecessary to say, under the engagement with the Electric and
International Telegraph Company, he was debarred from making his researches and discoveries public without first having obtained the sanotion of the Board-a disability which in recent years he
frequently complained of.
FREDERICK W. VARIEY,

Mildmay-avenue, Isslington, N .,
September 24th.
the new patent act
Shr, -1 have read with great attention the Patent Act as pub-
lished in your colums, and I am greatly in doubt about some points. Perhaps your readers can help me. If I take out a pro
visional protestion now I shall have nothing more to way of fees until after the 1st of Janoary. What fees mast in the
then? According to one interpretation I come under the new scale, acocording to to onother interprpetation I come und
I find in the Times a letter totan under the old I find in the Times a letter by Mr. J. J. Aston, a well-known
authority on patent law -a letter which expresses my views better authority on patent law-a
than I can. Says Mr. Aston:
is
means easy questions to answer-(1) Whether applications for patents made before the 1st of January next, and on which pro-
visional protection can now be obtained at a cost of $£ 5$, will come visional protection cen now se othe sayale on and after that date, so
within the reduced scale of fees payable on and
the that, if they do, a complete patent will be obtainable at a total
cost of \& \& instead of 2525 as now. And (2) it it is difficult, if not
impossible, to say for impossible, to say for certain whether patents granted after the new Act comes into operation upon applications pending at that
time will be subject to the conditions of the new Patent Act or to
the the old conditions. One section of the new Act would sem to
say, subject to two exceptions, that they will, and another that say, subject they.
Croction 45, sub-sections 2 and 3 , say, except as to binding the patents granted before the commencement of the Act or on appli
cations then pending in substitution have applied thereto if this Act had not been passed
"Section 113 repeals all such enactments, with a provision that the repeal shall not affect any patent granted on applications
pending before or at the commencement of this Act." pending before or at the commencement of this Act.,"
I shall be very much obliged by an expression of op
point.
London, September 26th.
Jon on this
JULIUUS.
competition
SIR, - About twelve months ago we were induced, through seeing
an advertisement in your valuable publication to join a competi an advertisement in your valuable publication, to ooin a competi-
of Bedford for the requisite particulars to enable us to prepare a design and estimate for a new bridge and approaches to the same
or crossing the river Ouse in that town, when we were furnished by the representative or he said and width certain data, such provided, as well as height of road above, and especially the loads the bridge must be designed to carry in safety, \&c. The moving load the bridge was required to carry in addition to anything else that might be passing over it at the same time being a road roller
or traction engine of 20 tons weight--that being the weight of such or traction engine of 20 tons weight-t hat being the weight of such
engines now in use-and there was to be a clear waterway of 200 ft . engines now in use-and there was to be a clear waterway of 200 ft .
Having these particulars, with what could be obtained in addition by a careful examination of the site, we prepared a design, accompanied with estimates and tenders accordingly, and sent them to
the urban authority at the time required. Shortly afterwards we received a letter inf at the time required. shortty arterwaras we competitor, named Webster, had been accepted. Our papers were as it concerned us.
Ine ue early part of August last we were rather surprised to see the pproaches at the same place "the drawings to tor a bridge and titice of Mr. Webster," who, it thereby appears, had been recently ppointed engineer of the work. It then occurred to us that proditions of the competition, and had entered into arrangements to We aperintend instead of carrying out his accepted tender.
We have taken the opportunity thus offered to us of seeing the drawings of Mr. Webster, when we noticed the bridge is to be of a the competition; inasmuch as it is to have only $185{ }^{1} \mathrm{ft}$. clear waterway, instead of 200ft.; and the strength is to be very far short of What was then required.
The strength of the iron floor, for example, is to be only about a
twelfth of that contemplated ; as it is to be conposed twelfth of that contemplated; ;asit is to be composed of No. 3 size
of Westwood and Baillie's flooring plates, of trough-shaped corrugations 5in. deep, Hin. thick, supported on bearings 6 ft . apart centre to centre, or about 5 ft. between. These floor plates have a strength, an inch thick, supported on bearings 8 ditt. apart, of only a vert ittle over 4 cwt. per square foot; that weight causes them to
ieflect as much as shoulㄱ e used, but they are to be 20 per cent. less in thickness, while the load on them is to be very much greater.
tion engine or steam rond roller is passing tion engine or steam road roller is passing over the bridge, whe
they have to support the wheels upon which the twent arried, and that puts seven tons upon sin the twenty tons the floor plates have to bear 140 owt. at any of the points nore than a square foot, which has been tested to carr only 4 owt.; in other words, it owould appear there is a defi-
ciency of strength to the extent of 136 cwt. per square foot. This the trough of the corrugations is 5in. in either case, whilst the of 1 of depth to about 20 of length, whilst in the case of the bridge it is sft. between supports, or in the proportion of 1 of
found by the well-known formula for girders $\frac{\mathrm{W}}{8}$ to stand in the proportion of 5 to 3 , which in effect reduces the 136 cwt. to
three-fifths of that weight, or 81 wwt . (2) Making liberal allow-nce-s for distribution of load, distance apart of corrugations, and the distributing effect of the concrete laid on the floor, by takin $\frac{18}{s}$ square feet, it gives the pressure of 48 owt. per square foot. Without going further into the unfair nature of this competition,
or dealing further with the question of strength of other parts of the work, we suggest that we think the competitors under these dircumstances have a claim upon the authors of the advertisement or expenses in preparing plans, \&o.
Those designers who carefully studied all the stipulations laid lown by the urban authority are thus thrown out of court, their they are less able or have less talent, but because of their honesty, they have benose who have given them the trouble and expense designs that did not comply with the conditions laide doon.
WLPHA AND OMEGA.
Westminster, October 2nd.

the brent viaduct

SIR, -In reply to "Inquirer" the strains on the cross girders of
the Brent Viaduct must be complex, for when the bridge is fully Hoaded each cross girder can only act as a beam supporte considerable weight on cantilevers from their comparative insta. The deflection would therefore be a simple one, concav But the case is very different with the individual cross girder process of gradually loding the bridge by a meving train, the first rossg irder when fuly loaded being rigidly fixed at either end
must act as a fixed girder, for in such case all the other unloaded cross girders give the main girders ample stability to resist the
canting tendency produced by the one. This state of things, also londed the stability of the main as the second cross girder is also ooaded, the stabiilty of the main girders is proportionately
lessened, and the tendency to cant doulded, and this chand
continually goes on as more cross girders get their load, until the continually goes on as more cross girders get their load, until the
main girders have all their stability taken away, when being incapable of supporting a cantilever, the case is as first
supposed and all the cross giriers are practically only loosely supposed, and all the cross girders are practicall
supported beams. The curve of deflection of an
girders would at first be convex at the ends , thus
the convexity gradually diminishing until it entirel
and a simple convex curve remains. So much so far as the cross girders themselves are concerned,
but this is not all that is involved in the question, for if the main girders are to carry cantilevers-and they evidently are-the
perpendiculars must be made stiff enough to support them; which eans so much metal in addition to that neeessary in the case of cross girders at their lower ends have strains similar to those in the shank of an anchor. Seeing, then, that rigidly fixed cross girders
necessitate additional metal in the perpendiculars of the main girders, it is difificult to see the advantage of such a system
Vothing is saved in the cross girders themselves cortainly we have seen, the reverse of a saving occurs in the main girders seem that such provision aould be more economically made at the
Inds in the usual way. In closing it may be well to remembe nds in the usual way. In olosing it may be well to remember
that in the case of a bridge with substantial overhead cross stay the above argument would not holld gooo, for then the main the necessary stability for carrying the cross girders as rigidly fixe
HERBERT GUTHIE.
22, Lime-grove, Longsight, Manchester.
the regulation of the misisisippi
SIR,-I was pleased to read in your issue of September 7th your attempts to improve it. As you correctly infer, , Hat rivarar as
regards floods and inundations and difficulties of navigation is
apparently and actually in proportion to the number of millions
of dollars the Government is spending each year to improve it This cannot be otherwise, as the Government system of improv ment is to dam and narrow it along its length and at its mouth so that its waters are impeded in their escape to the sea, and in con-
sequence, instead of cutting out the sand and sediment sequence, it is actually filling in above all its artificial contract ments; and because of its several mouths being dammed across
and contracted, one-third of its waters now escape to the Gul years years since, instead of all passing as formerly down by New Orleans
The scheme of Mr. Erkson, which you mention, ams and jetties frst an is most absurd, when similar but permanent dams and jetties to produanirent so as to scour the bottom, has always failed in to free flow of current cause many times greater fill along the out between then contractments than such contra engineering the worse the river gets, both for floods and navigation I am somewhat surprised to hear you say the United State Erkson's, as it is virtually their old method of engineering on tha river, varied by an attempt at economy; but as the corps has lately correct.
In conclusion, I wish to say I have been a "kicker" for many harbours and in 1879 I hetal modes of engineering on ivers an paper on the subject, in competition for a prize offered by the King of Belgium, which prize was to have been awarded within three snag, for thre the committee for deciding have evidently struck As I know, from long years of study and pactice, that my paper i ing my paper is most radical one offered, 1 am iustined y bullev award of a prize in such a case is all out and dried beforehand of $m y$
in m to in5, Paun-street, New York,
September 28th.
long span railway bridges.
SIR,-In your impression of last week-September 28 th-unde the head of "Railway Matters," appears a list which has recently
been compiled by a Mr. Pfarsk, of the length of the principal rail way viaducts in the world. I notice in this that he makes no都 ing in this country, namely, that over the river Severn nea
Lydney. The length of this siaduct, of which Mr. G. W. Keeling M. Inst. C.E., and I were joint engineers, and which was opened
for traffic on October 17 th, 1879 , is 1387 yards. Of this a small for traftic on October 17th, 187, is 1887 yaras. Of this a smal portion consists of masonry arches over the land, but the main iron cylindrical piers, comprises the following spans, each measure
from centre to centre of the piers :-One span of $150 f t$.; two from centre to centre of the piers :-One span of 150 ft .; two on
327 ft . each ; one of $178 \mathrm{ft}$. ; four of 171 ftt ; thirteen of 134 ft . 6 in. ; and a swing bridge of two openings 203 ft . long, including the central
Gier. WRLIS OWEN, M. Inst. C.E.
minster-chambers, Victori
London, S.W., Oct. 3rd.
SIR,--I hope you will allow met mon lamps.
be an inaccuracy in your wat we correet what appears to me t In Vienna, viz," "Mr. Bernstein's object is to make the carbon hollow, while not increasing its cross section; an idea that
has probably occurred to many, but no one has hitherto carried it out with practical success.
than that rention of Mr. Cruto, an Italian, is much more perfeet than that referred to above, and was fully exhibited at last year'
Exhibition in Munich. It has, however, been improved again since then. Mr. Cruto prepares his carbons by chemically pure carbon upoo a a fine platinum wire, bent into any
conceivable form, and succeeds in this way in preparing carbons of any size and resistance. After this operation, he platinum wire evaporated by passing a strong current throughit, and thus a very fin radiating surface with a minimum of bodily volume.
FIlabor
Elaborate experiments have proved that a considerably greater percentage of Cruto lamps can be lighted per horse-power than any
other existing systems of ineandescent lamps, and it is surprising other existing systems of ineandescent lamps, and it is surprising
to see that this principle of making carbons is not more universally

I do not know whether Mr. Cruto's invention is represented a being a great improvement in incandescent lighting. DUX. London, September 27th.
the phonograph
Sir, - While reading a treatise on the phonograph, it occurred to me that the following arrangement for transmitting the voice by
telegraph, which to my knowledge has not hitherto been suggested, may be made to act:--Fix the tinfoil containing the message o the barrel of a phonograph, and a pointer resting on it in such a
manner that the rising and falling of the pointer in traversing the indentations in the tinfoil would the other end of the cable or wire have a pointer so arranged that
while the current passed it would be raised, and that when the while the current passed it would be raised, and that when the
current stopped it would fall by its gravity, and make a dent in the
 I shall feel much obliged if any one can inform me whether the bove arrangement is feasible
Cardiff, September 19th.
the trevithick memorial
SIR,-In the notice you were kind enough to give of the f THE ENGINEER, you state that you do not know to whom the credit of initiating the memorial is due. Mr. Hyde Clarke first
brought it forward in the columns of The Mining Journal, and he has taken an active interest in it ever since. I trust you will publish

9th October, 1883.
Naval Enginerr Apporntrirnts:- The following appointments engineer to the Pembroke, additional, for service in the Dolphin, engineer to dhe Pembroke, addar J. J. Mullinger, engineer, to the the
vice Scott, decased, Willial
Exeellent, addititonal, tor service in the Comet, vice Jordan, retired. Enginkering Socirty, King's Collugak, London,-A general meeting of this society was held on Tuesday, ©etores 9 th, when
Mr. Le B. Atkinson delivered his opening address. He comMr. Le B. Atkinson delivered his opening, adress. He com-
menced by commenting upo the Enginering Exhibition at the
Agricultural Hall last July, with senial reference to the exhibits Agricultural Hall last uyy, with special reference to the exhibits
of King's College and University College. He then ave a short of conce concise description of the new Patents Bill, and the advan-
and
and tages which would accrue to inventors thereby ; a aso remarking on
the clause giving to the Board of Trade power to grant compulsory of the Jordan Valley Canal, he gave a short sketch on the objects and working o
addressed to new members. The proceedings closed with a vote of thanks to the president. The next meeting will be held on Tues,
day next, when Mr. R. Anderson will read a paper on "Explosives,"
FOUR-COUPLED EXPRESS PASSENGER ENGINE, LONDONAND BRIGHTON RAILWAY. mr. W. STROUDLEY, M.ILC.E., ENGINEER.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addressed to the public, and intended for insertion in this column, must, in all cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 1 d. postage stamp, in order that
answers received by answers received by us may be for warded to their destination.
No notice will be taken of communications which do not comply ${ }^{\text {with }}$ these instructions.

 taining questions, must be accompanied by the name and addres of the uriter, not necessarily for pubbication, unt as a a proof of ofgood faith. No notice whatever will be taken of anonymous
communication communications.
A. S.- We make no charge for leters of inquiry inserted in this column.
MA vor ssme. -For runs of under 100 miles, the fastest train in the world is

 to aboutt \&2 a day.

JOHNSON'S LUBRICATOR.

(To the Editor of The Engineer.)
Str, -Can any of your readers tell us who are the makers of Johnson's
toent llobriantor?
Ootober sth.
Ostober 8th.
COFFEE'S STILLS.
 the address of or Mrofocesis
Barcelona, Ootober 5 th.

Tae Exanere can be had, bubsorder, from anys ne
 * The charge for Advertisements of fourr lines and

THE ENGINEER.
OCTOBER 12, 1883.

the austral.

In another page will be found the judgment pronounced on Saturday by Mr. Rothery in the case of the Austral. The importance of the investigation can hardly be exaggerated; and we have reported the evidence at such length that our readers can form their own opinions con-
cerning the propriety of this judgment. To us it appears cerning the propriety of this judgment. To us it appears
to be in all respects just and consistent with the facts. No one in particular is to blame, because all of a good many people were in fault. The condemnation of the Court is mild and equally distributed. No one is much, if at all, the worse in reputation; and the Austral herself comes out
best of all. The last word, however, has not been said concerning an event which will leave its mark in the mercantile marine. Much of the usually hidden life of a
great ship and her crew has been great ship and her crew has been made public; and the
revelation is curious and suggestive. In commenting on the overturning of the Daphne we pointed out that while high sided tender ships were, with care, perfectly safe,they required
very cautious handling. The evidence given by Mr. Elgar very cautious handling. The evidence given by Mr. Elgar
and others concerning the Austral confirms in the strongest possible way what we published on the 31st August. The
Austral is a very large vessel ; not by any means the largest
vessel afloat, but taking rank nevertheless with the finest ocean-going steamers. Yet a comparatively small quantity
of coal in the wrong place sufficed to sink her. 120 tons of coal in the wrong place sufficed to sink her. 120 tons
of coal put 7 ft . from the side of a ship with a displaceof coal put 7ft. from the side of a ship with a displace-
ment of over 8000 tons, sufficed to send her to the ment of over 8000 tons, sufficed to send her to the
bottom. No one would dream of being anxious conbottom. No one would dream of being anxious con-
cerning the safety of a steamer of the old type, such cerning the safety of a steamer of the old type, such
as the Persia, because 200 or 300 tons more coal was as the ersia, because 200 or 300 tons more coal was
stow one side than the other. But the new type screw steamer is a very different kind of craft, more scientifically constructed we are assured, but requiring much more dainty handling. It is very easy to say that the Austral is an eminently safe and stable ship; we have
said as much. But she is not a safe and stable ship always. She was a thoroughly unsafe ship at the time she was coaling in Sydney harbour. Whether she kept afloat or not depended on the vigilance of two or three men. This vigiance was not exerted, and she filled and when Admiral Kempenfelt and 800 men were drowned But the Royal George sunk because she had been purposely But the Royal George sunk because she had been purposely
careened. She went on taking in stores while she was in this condition, till her lower deck ports, which were open, were submerged, and then all was over. The Austral went to the bottom because she had a little more coal in one bunker than another. Some ships are perfectly safe under all ircumstances while in port. The captain may go ashore, nd all the officers go to sleep; but nothing can happen in Daphne, and certain other ships, are not safe in this sense at all. At sea they are all right; in port and empty the must be watched, or they will go over. We have exply they the nature of the advantages claimed for the deep shi with small initial stability. Some shipowners will thin that they may be too dearly purchased. It is a nervous hing for an underwriter to know that a costly ship may go to the bottom if the captain and chief engineer both go to bed while the ship is lying quietly in harbour. It occurs to us that picked captains and engineers will be needed for this class of vessel. The arrival of a collier will be regarded as the approach of a possible enemy. A new terror is added o get captains, first officers, and chief engineers who will keep watch with the necessary care; but taking all things han the Austral will be found, in the long run, more satisfactory than vessels of her type ever can be.
We have said that some curious things came out in evidence. The captain is responsible for certain statements, the accuracy of which has not been disputed. The Austral is a new ship, she has three cylinder engines, as we gather from the evidence. According to Captain Murdoch they were ina dreadfulstate when the shipreached Sydney. Here are his ords: "The engines had all gone to pieces on the voyage one in Sydney and, and there were heavy repairs to be Sydney. The forward length of shafting had a heavy Haw in it. This was discovered before arriving at Simon's Bay. The high-pressure and the two low-pressure pistons were cracked. The fault in the two latter pistons was discovered at Sydney. The high-pressure valve gear was completely useless. They were trying a little patent with regard to rings inside the valves, and the low-pressure valve gear was in very bad order. When the high-pressure valve gear gave out before arriving at Simon's Bay it broke the
crosshead." This is a heavy indictment. We are told by Mr Rothery and others that the chief engineer was a highly competent man, a first-rate man, indeed. We can well engines went we cannot help asking how it is that new that all the mischief took place during the last voyage o the ship, for, of course, her owners would not send her to sea with a flaw in her crank shaft, to say nothing of the cracked pistons and the damaged valve gear. Even if they had been lax enough to do this the Board of Trade inspector much mischief could have happ en easy to understand sold so and Co., the builders of the engines, are always extremely reticent about their work. They never permit the outer they adopt, and criticism is, of course, easily baftled in this for a Messrs. Flder are not right, or that the dent; but the statements made by Captain Murdoch come as a surprise, and we only utter the sentiments of a great
many engineers when we say that we would like some many engineers when we say that we would like some
information as to the cause of the breakdown all round of the Austral's machinery. If such a thing had happened in a man-of-war, we would not have been surprised because it is well known that men-of-war are engined at enormous cost on very peculiar principles, and the engines never have fair play; but the breaking of anything but that this failure of the Austral's engines cannot be passed over in silence. When pistons are broken it is usually the result of priming. Was this the case with the Austral? This is only one of many questions that may be and will Whether they will obtain answers or no amount re known that a certain ance of the machinery of morch steamers, but we are willing to believe our great ocean of three pistons, the flawing of a crank shaft, and the ruin of the valve gear, do not often all occur on the same There he Welieve the Austral has got piston valves. to their excellence. The grave doubts anong engineers as board the Austral is not re-assuring. It is a fortunate circumstance that after the failure of her machinery the Austral did not meet with exceptionally heavy weather.
railway unpunctuality.
The columns of the daily press have recently been filled with letters complaining of the unpunctuality of railway done more than any other to excite metropolitan wrath and it must be admitted that the statements concerning i
proceedings are sufficiently damaging. There are, however certain points on which the travelling public, from lack of knowledge concerning what we may term the inner life of railways, are mistaken; or concerning which they have removeneous impressions, and it is worth while instead of the causes of the symptoms, and the travelling public pursues much the same plan. They complain because trains are late, and do not keep time ; but railwa unpunctuality is only a symptom of deep-seated evil, and it is to the removal of this attention should be directed.
Unfortunately the subject with which we have to deal is unfortunately the subject with which we have to deal is so complex and extensive that much more space than we
can spare might with advantage be devoted to it. W can, indeed, do little more than glance at some of the mor prominent features of the system, or want of system, that akes trains late
We have often heard it urged that it would be just as easy to run trains with punctuality as without it, if the time tables were properly drawn up. This, however, is not with the. The the or nothing to do with the matter. The primary cause of want of punctuality in such trains as those run by the South-Eastern, is th overcrowded state of the road. The secondary cause lies in the relative incompetence of the traffic manager o his staff. Just as a good coachman will manage to pro driver a pace through crowded streets while a bad driver can scarcely make any progress, so wil one railway
man deal successfully with an amount of traffic which wil drive sibility another hall crazy. But the whole of the respon great deal rests with the n on the tramc manager. A superintendent and we engineer and whe the is usully n, and fear we must add that the forme theoretically perfect railroad would cor of thers up and the other down would consist of two lines, one terminus, without down, extending from terminus to such a road the maximum interruption of continuily. On ducted the trains follow ine nother up and rected, the trans formin one another up and down in this, the simplest form of railway, cannot be worked with out introducing certain complications at the termini On train which we shall all 4 icaives the term, fron country. Another train B is timed to time for the country, and it departs accordingly, As som it has left 4 has to be moved from the to starting platform, and this may be done either by the engine which has just brought it in or by the engine which is just going to take it out. While the train regular traffic, nothing can come in fred as regards and nothing can so out Not only has the country to be shunted, but the engine has to be disposed of; its movements constitute to all intents and purposes a separate is blocked and by this means the time during which the line interval elapses between the arrival and departure of trains here is plenty of time for shunting; but when the trains follow close on each others heels the the esult is that accommodation enough in the shape of docks," as they are called, must be provided so that if a train on its arrival outside the terminus finds one dock occupied, or access to it interrupted, it can be sent into another. This entails the fantail arrangement, with which most railway travellers are familiar. If they take the ind the to think the matter out with a little care, they win it can ho matter how many blades there ap and down main lines-and unless the trains can get off these on to the blades, traffic must be seriously interrupted, even to long distances down the country, for reasons which will no doubt be sufficiently obvious. Trains on crowded roads near the metropolis follow one another like the joints of a caterpillar, the block system establishing an invisible link between them; and no one joint can overtake another, any more than one segment of a caterpillar can go faster than another segment. If our readers have followed us thus , they will see that very great importance attaches andle, or in wher words to thades grow out of the line is connected to the docks way in which the main an is connected to the docks. Nothing, for example proximity to each other serve for several docks; because only one pair xit from other docks may be repeatedly interrupted. It is oot too much to say that more depends on the attention paid to sưch a matter as this than on anything else in the onduct or heavy terminal traflic. Again, we have what解 form are used to enable an engine or a train to procee riterminable of a wide station to the other withou harm than sood. Wh, but they may easily do more ways each grow out of the main road, and not out of each ther. In the latter case min train , aning out in may block two or three others We strongly advis poung engineers who may read this article to take paper, and drawing-board, and lay out a few termini n different systems. In this way they will, after a certain Let them thals and failures, hit on thi best arrangement aran then compare this, when possine, with the actual street, Waterloo, or London Bridge, and they will thus be able to say for themselves whether the most has or has not been made by the engineer of the space gerate the Lest it should ber thought that we exag ment, we call our readers' attention to the fact that trains are constantly delayed. outside of termini. Their own experience will demonstrate this, Delays of this kind are due to the circumstance either that there i no dock empty for the train to run into, or, as is more the lines leading to it a dock or docks may be empty, in or going out. On some roads nothing but the utmost care on the part of pointsmen and station superintendents prevents traffic coming to a dead-lock, A light engine, for
example, getting on to a bit of road between two trains, may tie an almost inextricable knot, leading to an enormous
amount of shunting to get the unlucky intruder out of the amou.
Now, it requires not much experience in the manage ment of railway traffic to perceive that in not a few of our termini the roads have been laid out just as they ought not to be. We can hardly say that this was due directly to
want of-shall we say proper thought?-on the part of the want of-shall we say proper thought?-on the part of the
engineer. The growth of the systemsaccountfor it. Stations engineer. The growth of the systemsaccountfor it. Station
are enlarged, and new docks, and sidings, and cross-over roads have to be put down; and these have to be put in, not where they ought to be, but where they can. The result is disastrous. The effect of crossings, again, is ex tremuce the prising extent. Many examples of these are to be found near London. For example, at Herne Hill the London the Y rumning Dover Railway spits ineo to one leg of But the up line to theria and the other to Ludgate Hill down line from Victoria; consequently, if a train to Ludgate Hill arrives at the junction when a down train from Victoria is nearly due, the up train has to await the arrival of the down train. We have in this case an excellent example of how unpunctuality all over a line may be brought about tilby bad terminal accommodation. Let us for Ludgate a mouth-Western train arrives at Herne Hill to give precedence to the main line trains. The down main line train, let us suppose to Ramsgate, is due the Ramsgate train has been shut in at Victoria by other trains, shunting on the only road out. Consequently it arrives at Herne Hill, we shall say, three minutes late. has cleared the ros in son as the main line train Junction it finds that it is now behind a Crystal Palace up train, instead of before it. The Palace train stops at all stations, the South-Western is express; but it now perforce moves at the sanie pace as the Palace train; and when it does arrive at Ludgate it finds no platform ready to receive it, or if one is ready, it has to wait for a crossing to be cleared. In this way half an hour may be lost entirely because there is a cross-over road at Herne Hill, and main ine trains cannot always get out of Victoria when they ought. The line we have mentioned, however, is well laid out compared to some others. The South-Eastern, including all that portion between Charing-cross and Spa-road, eermondsey, is as bad as it is possible for a road to be Recapitulating what we have said, we repeat that for all that species of unpunctuality of which city men justly complain want of terminal accommodation is
mainly to blame. It is often urged that more cannot be done for want of room. With this we do not agree; a general remodelling of points and crossings and the superseding of some and the putting in of others, might often effect great changes for the better. We could cite cases in which the use of a starting platform as one of arrival nearly oubled station accommodation. In another case, when a rain arrived late, it had to be sent out again at once. It was the practice to draw the train out of the station and ack in on another road at the opposite side of an解 way, then it occurred to the station-master that when the rain went out it might just as well go on instead of coming buck. So the engine wasinn round the island platform while was the result were taking their seats, and great expedition
hat the rescin. But sonctimes the rod was blocked, so that the engine could not get round the train, and delay n a siding noupled on to the train and ready to wo away with it
cous as coupled on to the train and ready to go away with it
almost before the passengers were out. Here we have an example of what may be done by skilful management to xaviate the defects with by despatching the train from the plspensed which it had just ang the train from the plaform a attention has been paid to the laying out of too little moderate or main line traftic layig onythin will. For the case is very differt when normous tide of traffic whio ebbs fows thr London termini and terminal tabs trains and light enges for avom. Notless han 1800 ringdon-street Metropolitan example, pass through farhours of a railway day. These trais belong to six panies, namely, the Metropolitan, the Metropolitan Dis trict, the Metropolitan Extension, the Midland Northern, and the South-Eastern, and they have four lines of rails to run over. This gives 450 trains in twenty-three hours for each line, or, in round numbers, a train every three minutes. This traffic could not possibly have been conducted but for the precautions adopted to Kivid the use of a cross-over road, the trains going to politan line, itself already in a tunnel. Finally we may point out that no amount of complaining on the part of the public will do any good, when fantails are already properly laid out, cross-over roads judiciously put in, and the accommodation available. Unfortunately, however, there are very few lines in which there is not room for improve ment in both respects, if there is not room for anything else. Mr. Nupkin's servant, on being asked by Sam " Not unlesid not answer the drawing-room bell, replied, politan railways are prone to follow this example, and refuse to do anything for the public unless they persevere The public is sometimes not only very unjust but injudicious in its complaints. In the present instance, however, it
appears to be neither one nor the other. The South-Eastern Railway terminal cone nor the other. The Souln-Eastern possible. So is the management of the passenger traffic.

is wood pavement unhealthy?

The re-laying of wood pavements in London has been
sure takes them through Fleet-street or Queen Victoria street will find ample opportunities for learning how it is
done. The use of wood pavement in the metropolis is done. The use of wood pavement in the metropolis is or many years ondition, was paved wath wood, and always in a dreadfu its place, but its use is not extending. In all cases in which stone pavements have been recently discarded, wood has been laid down instead, and it is worth considering whether those in authority have acted wisely in giving the preference to wood. In saying this we have no inten ion of raising any question regarding cost or durability, tions under which we suggest concerns the hygienic conditions under which the inhabitants of great cities live. It may be new to many of our readers to learn that eminent authorities have strongly disapproved of wood pavement nd the municipal authorities of New York have gone so
far as to abandon the use of wood altogether as a material for street roadways, Some time sincer sing wa ddressed to the Journal of Commerce, a very high-class Now York paper, which inquiry ran as follows :- "Wil ment has been discontinued in New York from fear of its liability to harbour infectious diseases?" Our con temporary replied, "The reason assigned was on objection to the use of wood pavements, but the chief total far ther discontinuance was on account of their They very soon answer the purpose of their construction to life and limb." New York is almost entirely paved with stone, and the streets are therefore extremely noisy. A Americans study comfort a great deal, it seems to be Exped that woo pavement has failed in New York its use, and it is quite possible that the peculiar which obtain in New York, and do not pebtain conditions much to do with the r, material in that citr. Now is found par covered with a few feet of soil. Thus cellars have rock, blasted out. This rock is apparently impervious to moisture, and all the rain that falls is trapped in the soil. The hose of the earth in ank draiso defective Fevers of the malarial type are common and there though little known here. The conditions of temperature too, are favourable to the development of infectious and contagious diseases. The temperature in summer constantly exceeds 80 deg., and sometimes passes even 100 deg. For asons wood pavements may be unhealthy there and we in London. As regards wear and tear and durability we have nothing like so much reason to complain as our the wholic friends. Wood pavement here answers on superior to asphalte. It always gives foothold for horses very nearly if not quite as rood as stone. A shower rain on a summer day will render the streets laid with asphalte in the City absolutely impassable in five minutes. Horses fall down as though they tried to stand on ice When quite wet and clean, asphalte is not slippery; but when just moistened, and ever so little dirty, no horse can stand on it. The interruption of traffic from this cause is and thor of anost daily occurrence in spring and summer, many cases illustrating tity day by day could narrate rain in Cheapside, the Poultry, Bishopsgate-street, \&c. But however good wood pavement may be in other respects if it
can really "harbour infectious disease" then we should think twice harbour infectious disease, then we should American engineer officer, and an excellent authority on most of the subjects on which he has written, has handled this question at some length. In his treatise on roads, pubished in New York in 1876, he describes wood pavements of various types much the same as we use now, and
quotes several authorities concerning their unhealthiness. He points out that the joints of a pavement, whether of wood or stone, constitute, after enlargement by wear, fully filth erpere the surface filth exposed to evaporation covers fully three-fourths the entire street. "This foul organic matter, composed is retained in the joints, ruts, grea pud in the joints, ruts, and gutters, where it undergoes putrefactive fermentation in warm, damp weather, dry weather this street soil, of which horse dung is a large ingredient, floats in the atmosphere and penetrates the eyes ans in the form dirritating the The late Mr. P. Le Neve Foster reported totheSociety of Arts in 1873 against wood:-"Impregnation of the wood with mineral matters to preserve it from decay may diminish hese evils, but nothing as yet tried prevents the fibres being separated and the absorption of dung and putrescent damp, more or less, excent continued. Wood is wet o Its structure is admirably adapted to receive and weather then give off by evaporation very foul matters, which taint the atmosphere, and so far injure health." Professor Fonnsagrèves, of France, says :-"The hygienist cannot moreover, look friendly upon a street covering consisting a porous substance capable of absorbing organic noxious miasma, which, proceeding from so large a surface, cannot be regarded as insignificant. I am convinced would a city with a damp climate paved entirely with woo we need proceed further with this indictment. We have quoted enough to show that very strong opinions are held on the subject
Now, we certainly cannot go so far as General Gilmore orderly binn system" by which dung known as "the stree rom the streets, has considerably modified the conditions of relative cleanliness and dirt. It must not be for gotten that the question is complicated by the fact that nce save asphalte, and to that there are, as we have pointed out, grievous objections. The points for discussion are, is
wood pavement worse than stone or macadam from a san on point of view? Our own opinion is that it is not; but pavements. Thus, on one system, creosoted wood blocks re laid direct on a bed of cement concrete, and rendered watertight by a filling of asphalte and gravel put between he blocks. According to another system the blocks are the on a looring of boards interposed between them and not creosoted; these are laid blocks are of yellow pine tarred felt being interposed between the two, a and strips of elt are placed on edge between the blocks. The whole revis then covered with hot asphalte run into every and fine gravel being spread over all, the road and mate. The gravel is crushed into the woo of the road. It is not easy to moting the longevity as this can absorb much putrescible matter, and we ask whether there is really any tangible basis of nhealthy than any of the others available by the more eer. These are very few ; his choice must be made within a very narrow range, but the range is at least wide nough to permit us to reject wood if it could be shown, or example, that it propagated fevers. Theorising on York it really found that suppose that in New rejudicial to health. We do not think that this has bee ound to be the case in this country. It is, however worth while to ask the question, has it? and the appearnce of the query in our pages may perhaps elicit some very little seems to be available.

the realised price of iron

T_{HE} return of the accountants appointed under the sliding cale in the Cleveland iron trade of the North of England shows hat there has been a fall in the realised price of pig iron, and to
an extent that brings that price down below $£ 2$ per ton. It it an extent that brings that price down below $£ 2$ per ton. It is
shown by this that the price has now nearly reached that in the market, and that the rate that now prevails is about as low a allows of a profit. Of course the producer of the iron may n by thigher price, because the price ascertained and reporte on by the accountants is that of Cleveland No. 3 quality; and production also of hematite and other iron that brings a highe phice. For a considerable period the make of pig iron in otal, though and Durham district has been increasing in the total, though iron, it may be looked upon es probable that that classes of the manufacture will be checked, unless the decrease in the stock dee efrect upon prices. The realised price is not likely to move
upwards during the present year, because there have been ment, low though the present price may be. But at the mond of the year the sliding scale that is set in motion by the realised price the stocks of Cleveland iron, and the effect that theduction in must have on the production, and the effect that the low prices and may cause the range of prices in the next year to be very different from what they have been this. The damping down dices at Midade and if that example is largely followed the followed by octock of pig iron in the hands of the makers that has been known during the summer may continue throughout the winter. Inland,
in other centres, the production of crude iron is being reduced, in other centres, the production of crude iron is being reduced,
and the effect of that reduction must speedily tell upon the stocks in Cleveland and Scotland - the two chief reservoirs of ron-and ultimately on the price of iron in those districts.

a vacuem brake collision.

A serious collision has occurred on the Long Island Railroad the circumstances connected with which are somewhat remarkpanied by American papers wad the tragic record with which the Either through the carelessness of an engineer or the use of defective air brakes, the train which left Manhattan Beach at
six o'clock in the evening of September 11th dashed int six o'clock in the evening of September 11th dashed into a North
Shore locomotive at Hunter's Point. The engine of the train, as well as that with which it collided, was reduced to a shapeless heap of shattered metal. The forward cars of the train were many suffered into fragments. In the sudden and terrible collision many suffered injuries. Few of the passengers, indeed, escaped
a bruise or a scar. Two men lost their lives in the disaster three others had to be removed from the scene of the accident in an ambulance. The hospital surgeons found the injuries of all these very serious, and it is thought not improbable that the list
of fatalities may be further extended." It which did the mischief was fitted with a vacuum brake and that when an attempt was made to stop at East New York station, it was found that the brakes were out of order and would
not act. No harm, however, was done the the station and had to be backed up to the platform, in a way vacuum brakes. The train proceeded deprived of brake power We should have supposed that it would have been run afterwards with great caution. Whether it was or not, however, instead of
topping at a junction known as "The Switch," to let another rain pass, it kept on its way and ran into the other train with the result already stated. Taking all the circumstances into with any accession credit

LITERATURE.

The Theoretical and Practical Boiler-maker, containing a Variety of Useful Information for Foremen and Working Boiler-makers,
de. de. By SAMUL NTcHoLLs. Second edition. Published by the Author, South Beach, Blackpool. 322 pp.
The first edition of this book was published in 1876, and its appearance in a second edition is some evidence that it chiefly from the foreman boiler-maker's standpoint It gives fully the practical geometry necessary to enable a plate-worker to set out plates for any forn土 of
boiler work. It gives a number of tables of circumferences
and areas, weights, bursting pressures, and strength of materials. But it gives a good deal more, and this new edition contains some judicious remarks on the use of steel in boiler-making, and its manipulation in the boiler shop. On the strength of flat plates and stayed surfaces the author supplies about all the rules that can be found and on heating surfaces he gives the results of a large number of experiments, which have led to the construction of numerous empirical rules on the subject, from the early days of boiler-making to recent times. From these a fairly accurate idea of the necessary amount of heating and grate surface in any case may be obtained by any reader; but the author might some what increase the value of this important part of the book by entering more fully on the theory which should guide an engineer in with the the amount of lealing surfaces making up the wital, and in proportioning it in accordance with the form and size of the boiler and its requirements. For those for whom the book is intended, however, it is to be recommended, as it contains something on almost every question in boiler-making in general; and the rules are backed by references to experimental proofs, and examples of their applications are given. There is, moreover, nothing in the book which any one wishing to learn cannot understand.

American Foundry Practice. Treating of Loam, Dry Sand, and Green Sand Moulding, and containing a Practical Treatise on
the Management of Cupolas and Melting of Iron. By T. D. the Management of Cupolas and Meting of Tron,
West. New York : J. Wiley and Son. 391 pp .
In the opening chapter of this book the author, who it soon becomes evident is what he describes himself to be, a practical moulder and foundry foreman, takes up the cudgels in praise of moulders in a style which is American in freshness. Although he tells the moulder it is his fault when he loses a casting, he tells others that the draughts-
man, pattern-maker, and fitter are not more necessary to
men entering foundries, and it is not at all of the sort men entering foundries, and it is not at all of the sort
written by the lettered but unpractised compiler of books.
$\overline{\underline{ }}$
ON THE CHANGES BROUGHT ABOUT BY ARTI FICIAL ILLUMINATION IN THE COMPOSITION OF THE AIR OF CLOSED ROOMS.
ON the contamination of the air of rooms by artificial illumina Erismann. These, however, applied to rooms with and F.
tion natural change of air, and in the case of the work of the lastmentioned showed the percentage of carbonic acid only was from $1 \cdot 3$ to $3 \cdot 4$. Such experiments can only have a value for the room in which they are carried out, We here purpose to draw
attention to the investigations of Ferdinand Fischer; attention to the investigations of Ferdinand Fischer; he takes
for the material of his experiments the gas of Hanover, which for the material of his experiments the gas of Hanover, which according to the published analyses requires, when it is burnt, 0.57 cubic metre or 1.13 kilogs. of carbonic acid, and 1.07 kilogs. 57 cubic metre or 1.13 kilogs. of carbonic acid, and 1.07 kilogs. illuminating materials may be represented, so that the by other the air by this loss of oxygen cannot be compared with the con tamination of the same by the quantity of carbonic acid and watery vapour produced, as can be seen from the following composition :-

Illuminating mate rials.	Percentage composition.			1 kilog. requires for combustion. Oxgen. Kilogs.	1 kilog. produces	
	Carbon.	Hydro'n	Oxygen		Cabonic acid:kiogs	Water kilogs.
Stearine	$76 \cdot 1$	12.5	$11 \cdot 4$	$2 \cdot 92$	$2 \cdot 79$	$1 \cdot 13$
Rape oil	$77 \cdot 2$	$13 \cdot 4$	$9 \cdot 4$	$3 \cdot 04$	$2 \cdot 83$	$1 \cdot 21$
Tallow	$78 \cdot 1$	$11 \cdot 7$	$9 \cdot 3$	$2 \cdot 91$	$2 \cdot 86$	$1 \cdot 05$
Spermaceti	$81 \cdot 6$	12.8	$5 \cdot 6$	3.14	$2 \cdot 99$	$1 \cdot 15$
Bees-wax	$81 \cdot 8$	$12 \cdot 7$	$5 \cdot 5$	$3 \cdot 14$	$3 \cdot 00$	$1 \cdot 14$
Petroleum	$85 \cdot 2$	14.8	-	3.45	$3 \cdot 12$	$1 \cdot 33$
Paraffin	$85 \cdot 7$	$14 \cdot 3$	-	3.43	3.14	1-29

According to the experiments of the Paris Commission, the
vapour claim our first attention. From the numbers given in the above table, it follows that carbonic acid and water have to be acid and water, and coal-gas and tallow the the least carbonic of testing whether the composition of the air is likewise changed during artificial illumination by products of incomplete combustion, such as carbonic oxide, hydrocarbons, \&c., an apparatus was prepared by which the gas coming from the cylinder of a lamp
was conducted through a series of tubes, which could collect whatever might be formed. Only of tubes, which could collect hydrocarbons could be recognised in 12 litres of burned gases. When the flame is made very large or very small, however, the admixture becomes more apparent, and they all yield a large excess of free oxygen. Flat wicks of solar oil or petroleum give
from 4 to 5 per cent. of carbonic acid and about 15 per cent of excess of oxygen; small round burners from 5 to 6 per cent. of excess of oxygen; small round burners from 5 to 6 per cent., to 14.0 per cent. of oxygen. Argand burners yield from 8 to 9.3 per cent. of excess of oxygen. The larger the excess of air, the lower is the temperature of the flame, and the smaller the amount of light emitted, till, by continued diminution of the flame, the temperature at last falls so low that a part of the gas finally escapes unburnt.
Immediately above the points of spermaceti and stearine
flames, the developed gases flames, the developed gases give no combustible gases, provided the flames are quite steady; but as soon as the flame
begins to flicker, the combustion commences to be incomplete, In the awkward treatment of the burning is badly placed, or by escapes direct into the room, the impurities which are stantly present in this illuminant must not be forgotten. The gas illumination, too, developes much more heat than an oil illumi nant. Of the solid materials, tallow burns with the least incou venience in this respect. Among the cheapest are solar oil an petroleum. Ordinary gas illumination is decidedly dearer, an renders the air more impure by its great heat. Where all othe conditions are the same, the illumination with the so-called or electric illumination-especially the products of combustion, accumulators, which give a quiet and pleasant light-amps with preferred to others, because they do not render the air im pure, and give the least heat of all kinds not render the air im

production of that sublime structure a steam engine than the mond he complains that the importance he real skill and ability displayed in making good casting is only sufficiently appreciated when the moulder is wanted to explain his reason for ornamenting his work with scab and sand holes, The author is amusing on moulders excuses, and does the moulder no more than justice when he says that there is no trade that keeps the mind so unsettled, expectant of reverses, and likely to produce Books on foundry wo the moulder.
good. There is yet room are not very numerous or too good. There is yet room for a really well-written book on foundry work. The book before us is quite a valuable addition to those on the subject. It is written by one who writes of his own experience and knowledge, and no merely of what he has read. The fault of the book i that where illustrated descriptions are necessary, the author, knowing of the thing or things himself, cannot know. Hence some of the position of one who does not know. Hence some of those parts of the volume which are hand, the author has given more need be. On the othe proceed with a job, from the point of view of one who proceed with a job, from the point of view of one who
really has to do it, than has been published in any previous work. He does not tell a student, for example, that a box is rammed up, but he tells him a great deal of how different must be rammed for successful mimplest of arts. Of coring, venting, supp is far from the projections, he gives information which terporting cores and projections, he gives information which tells a man how have to be done carefully and properly. Some parts of the book properly
not easily at first understood, and the followin expressions not easily at first understood, and the following, from the chapter on iron mixtures, for sash-weight mixture, may
be a joke; but the author is and does not follow thuthor is not explicit in this matter and say when follow the commendable plan of Mark Twain and say when a joke is meant: "Two-thirds scrap tin one-third stone plate scrap. This mixture when melted deals with American practice in matters which aressarily equal importance with us; but his matters which are of value only. For instance, in the chaptermation has a local melting iron, and fuel, melting iron, and fuel, and charging iron, the different known British pigs; but numbers as some of the best different, and hence much that is said on these subjects is more illustrative than specific. On fuel, and charging into the cupola, the author speaks at considerable length on their effects on the iron and on the coal in cupolas, and castings the author is less specific as to mola. On chilled other castings; but on the means of obtaining clean than on castings he gives some useful hints, evidently clean chilled experience. The book is a useful one, especially for young
equival Carcel ; in the electric candle it gives what is equivalent to from 25 to 52 Carcels ; and in the incandescen German candles, there are consequently a light power of 100 light 0.09 to 0.25 of e-by which is mean requnit of an electric lighting power-for an incandescent light, 0.46 deg. to 0.85 hour of 57 deg . to 158 correspond to an amount of heat per respectively. The costs given in the following to 536 deg . Cent. founded on the experiments which have been made at Strasburg. According to the experiments which have been tade Schilling, the Paris Carcel lamp burns hourly 42 grammes of purified rape oil; the Munich normal candle, 10.4 grammes of stearine ; the German candle, 7.7 grammes of paraffine ; and the English normal candle, $7 \cdot 82$ grammes of spermaceti. The quantities in the following table reckoned from this, as well as the quantities of gas calculated from the results of Fr. Siemens and Rudon, correspond to most favourable conditions. Th remaining numbers are the result of personal investigations :-
For the hourly production $\begin{gathered}\text { are requi }\end{gathered}$

Nature of illuminant.	Quantity.	Price in pfennigs.			Heat, Centigrade.
Electric are light..	09 to0.25 e.	$5 \cdot 4$ to $12 \cdot 3$	0	0	7
cent light...	$0 \cdot 46$ to 0.85 e.	14.8 to 14.9	0	0	0 to
Gas in Siemens' regenerative lamp.	0.35 to 0.56 c. m.	$6 \cdot 3$ to $10 \cdot 1$	-		about 1500
Gas in Argand					
Gas in fish-tail Petroleum in larg	$2 \mathrm{cb} . \mathrm{m}$. to 8	36.0	$\begin{aligned} & 0.86 \\ & 2.14 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 1 \cdot 14 \end{aligned}$	$\begin{array}{r} 4,860 \\ 12,150 \end{array}$
round burner	0.23 kilo.	$5{ }^{\circ}$	0.37	0.44	3,360
Petroleum in small flat burner ..	0.60	$10 \cdot 8$			
Solar oil lamp Solar oil small	0.2	$5 \cdot 3$	0.37	$0 \cdot 44$	3,360
burner \because Rape oil in Carcei	$0 \cdot 60$	11	0.80	0.	7,200
Ramp in in Carcel	0.43	41		0.61	
Rape oil in study lamp				0.61	
	0.70 0.77	67.2	0.85	${ }^{1} \cdot 06$	6,800
Spermaceti ..	$0 \cdot 77$	${ }_{270}$	0.89	1.17	7,9
Beeswax	0.77	308	0.88	1.18	7,960
Stearine	$0 \cdot 92$	166	$1 \cdot 04$	$1 \cdot 30$	
Tallow	$1 \cdot 00$	160	1.05	$1 \cdot 45$	9,700

If we calculate one cubic metre of coal-gas to be worth 18 pfennigs, including interest, 1 kilo. petroleum to be worth 18 pfennigs, 1 kilo. solar oil at 19 pfennigs, stearine and paraffin at 180, tallow at 160, purified rape oil at 96, values per hour given in the second column for 100 candles lighting power; they depend naturally, especially where thes electric lighting is concerned, on local circumstances. With regard to the contamination of the air, carbonic acid and watery * 1 Carcel is equal to 9.6 English spermaceti candles, equal to 8.7 Munich
tearine candles, and equal to 9.8 German parafine candles stearine candles, and equal to $9 \cdot 8$ German paraffine equal to $8 \cdot 7$ Munich
With Schilling on "The Luminous Powers of Gas," page 214 . Compare

STABILITY CURVES OF THE S.S. AUSTRAL
In view of the very great interest that has been shown by the public generally, and cspecially by those interested in shipping tability of the Austral as duced from give above the curves o The curve marked A is the curve of stability the vessel Elgar. have had on the night of the disaster had the centre of gravity of the 120 tons of coal taken on board that night been at the middle line. The mean draught at that time was 22 ft . $3 \frac{1}{2}$ in. and the displacement at that draught 8070 tons. The metacentric height was 1.276ft.; the maximum righting noment is reached at an inclination of 61 deg ., where the length of the righting lever is 2.88 ft ., and the right90 deg., when the vessel-tons; while at an inclination of 90 deg., when the vessel is on her beam ends, the length of the righting lever is $1 \cdot 71 \mathrm{ft}$. , and the righting moment
13,800 foot-tons. With the 120 tons of with its centre of gravity at a distance of 7 ft . 2 in . from however, with its centre of gravity at a distance of 7 ft . 2 in . from the side
of the vessel, the centre of gravity of the vessel itself is towards that side a distance of about 3in., and the stability becomes reduced, as shown by curve B, which gives the stability under those circumstances. It will be seen that curve B crosses the base line at an inclination of 12 deg., and the vessel would, therefore, incline through that angle before attaining a position of equilibrium. When this position is reached, however, the lower edge of the aftermost coaling port is at the water level, and the water commences to enter the vessel. It will be seen that at large argles of inclination the difference between curves A and B is but small. Curve C represents the stability the Austral would have if the centre of gravity were raised $1 \cdot 276 \mathrm{ft}$., so as to make the metacentric height nil. In this case the curve rises
very slowly, starting from the upright position, but siderable maximum righting moment, and a large range. Figshows the position of the aftermost coaling port relative to the water level with the vessel upright, and also its position when the vessel is inclined through an angle of 12 deg .

EXPRESS PASSENGER ENGINE, LONDON AND BRIGHTON RAILWAY.
In our impression for September 7th we illustrated a new express locomotive designed and constructed by Mr . 'W. Stroudley, locomotive superintendent of the London, Brighton, and South Coast Railway, for working fast trains. On page 284 will be found end views and cross sections of this engine, which
we shall further illustrate and fully describe in an early imwe shall further illustrate and fully describe in an early im-
pression. The engravings we now publish are dimensioned, and pression. The engravings we now publish are dimensioned, and
explain themselves. We may add that the slide valves are placed under the cylinders instead of on top or at the side.

South Kensington Moseum, - Visitors during the week ending
Oct. 6th, 1883 :-On Monday, Tuessay, and Salur Oct. 6 th, $1883:-$ On Monday, Tuesday, and Saturday, free, from
10 a.m. to 10 p.m., Museum, 11,491 , 10 a.m. to section, and other., collections, 5247. On Wednesday, Thursday and Friday, admission $6 \mathrm{~d} .$, from $10 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$. , Museum, 1768 ; mercantile marine, Indian section, and other collections, 1789 .
Total, 20,295 . Average of corresponding week in former years,
17,511 . Total

THE BOWS OF THE S.S. ST. GERMAINS AFTER COLLISION.

In tl e month of August the steamship St. Germains, of the French Transatlantic Company, ran into the Woodburn, a disabled and eighteen lives were lost. The St. Germains was on her way from Havre to New York with 600 passengers on board. She is over 400 ft . long, and 4000 tons burthen. The passengers were rescued by the tug, and the St. Germains at slow speed ran for Devonport. She was then taken into dock at Plymouth, and round to Southampton to be repaired. Our engraving is from a photograph, by Messrs. Adams and Stilliard, Southampton, showing the condition of her bows when the wood patching was removed. She reached Southampton on September 4th, and was docked on the 8th, and repairs commenced by Messrs. Oswald, Mordaunt, and Co.
An examination of the ship when docked showed that the plating was broken above the water line for a distance of 40 ft ., and on the starboard the side is crushed in below the water not so great, was sufficiently alarming. The forward bulkhead was also greatly damaged. The next one, however, stood very was also greatly damaged. The next one, however, stood very
well, and it was owing to this and to the calm weather prevailing that the ship remained afloat. The extreme shortness of the fracture, and apparent brittleness of the plates, has excited some amount of remark. The iron has, however, every appearance of being good quality, and experimental fractures give good results. On removal of the plates the frames of the ship were found greatly damaged, being forced from 2 ft . to 3 ft . into the ship.

GRADIENTS AND CURVES ON AUSTRIAN RAILWAYS.
The following paper is a translation of directions for determining the steepness of gradients, and for interpolating transition curves, between curves and straights, adopted by the Austrian State Railway Department:-
(1) Principles on which the instructions are based.-For the purpose of increasing the capacity of railways without adding to the cost of construction, or altering the average gradients, or lengthening the line, it is necessary, on lengths in which the maximum gradient allowed by the conditions of concession is adopted, to decrease the same in proportion to the sharpness of the curves, but at the same time to make up for the lost height applies specially to the working of long and anticipatedly wet tunnels. The idea is taken from a train travelling on a gradient from A to B, in whose several lengths the maximum gradient has been adopted that attains one and the same speed with the same expenditure of power.
(2) Formula for calculation.-The formula adopted, on the one hand, is d per mille $=\frac{650}{\mathrm{R}-55}$, in which R is expressed in metres, d represents, in per mille, the decrease of the gradients as calcu-
lated for a straight line to suit the curves, by which the resistanc on the same is reduced. This formula gives in round numbers Radius $150-170$ M. per 1000 . Radius $150-170 d=6$
Radius $171-20 d=5$ Radius $171-20 d=5$ Radius $351-600 d^{\text {M. }}$ per 1000 Radius $201-250 d=4$ Radius $601-1300 d=1$ - mille. capacity, the gradients calculated to suit the curves, when the tunnels are more than 40 metres long, must be further decreased 2 per mille. The following formula is to be used for further 2 per mille.
calculation :-
$\varepsilon_{0}=\mathrm{S}+\frac{l_{1}+2 l_{2}+3 l_{3}+4 l_{4}+5 l_{5}+6 l_{6}+2 t}{\mathrm{~L}}$
L represents the entire length of adjoining or separate sections, on which the maximum gradient S per mille occurs ; $l_{1}, l_{2}, l_{3}, l_{4}$ l_{5}, l_{6} denote the total length of the several curves of radii between
$601-1300,351-600,251-300,201-250,171-200$ and $150-170$ in the length L; whereby the transition curves are to $150-170$ as belonging one-half to the main curves and one half to the straights.
(3) An example.-Suppose on any length of a railway A B the aximum gradient $S=20$ per mille occurs without a break, say From kilos. 10.5 to kilos. 16.5 , length 6.0 kilos.
From kilos. 32.5 to kilos, 40.0 , length $7 \cdot 5$ kilos.
Further, the total of the curves in the same length are-
Of a radius between 171 and $200 l_{5}=2.0$ kilos.
Of a radius between 201 and $250 l_{4}=2.5$ kilos.
Of a radius between 251 and $350 l_{3}=3.5$ kilos.
Of a radius between 601 and $1300 l_{1}=3.0$ kilos.
Of a radius between 1301 and $\infty \quad l_{0}=4.0$ kilos.
and the total length of the anticipated wet tunnels $t=1.5$ kilos of which 1 kilo. is on the straight, and 0.5 kilo. in curve
between 601 and 1300 metres ; therefore-
$S_{0} \quad 3 \cdot 0+3 \cdot 0+10 \cdot 5+10 \cdot 0+10 \cdot 0+3 \cdot 00$
$16 \cdot 5$
r, say, $22 \cdot 4$, and the section in this case must be so arranged hat the gradients shall be as follows :- Per 1000 per cent
 In curves of between 201 and 250 rad . In curves of between 251 and 350 rad .
In curves of between 351 and 600 rad .
In curves of between 601 and 1300 rad . $20 \cdot 4$ In curves of between 601 and 1300 ad. open line $21 \cdot 4$ In curves of between 1301 and ∞ rad. open line 22.4 In curves of between 1301 and ∞ rad. tunnel 20.4
(4) Olosing remarks.-It is naturally to be understood that, on
radients steeper than those obtained by the formulæ contained in (2) must not be used.

Directions as to the Use of Transition Curves between Stratghts and Curves.
(1) Principle on which the instructions are based.-The intro luction of transition curves between straights and curves i rincipally necessary for calculating the amount of the necessary evation of the outer rail.
(2) Form of the transition curve.-The form of the transition urve for main railways is shown in the following Fig. 1 :-

hiz transition curve is a parabola of the third order, which rms a tangent with the straight in the point A, and consists in he points
of a radius of 1200 metres
of a radius of 600 metres
4 of a radius of 300 metres
(3) Determining the point of commencement.-The interpola-

tiin of a compound, or " transition," curve necessitates either the alteration of the cuive towards the centre, or that the position f shifting represented below by v, can be taken from the follow ing table. The alteration of the originally intended commence ment of the curve denoted by C in Fig. 2 is $t=v \tan . \beta$, in which β represents half the central angle of the curve. The arrangement of the straights and curves, irrespective of the con ditions necessitated by the ground, must be so ordored that in the case of counter curves both in main and local railways, th piece of straight between them must have a length of at leas gradually. As for ine transition romporve the outer rail in the pro portion of $1: 300$, it follows that, in using the elevation, shar urves require a longer and flat ones a shorter transition curve, und that where the radius is great it is not necessary.
(4) Setting out.-The method of setting out transition curves
is shown in the above Fig. 2 , The values of $l_{\text {a }}$ and v calculated is shown in the above Fig. 2. The values of $l l_{2}$ and v calculated or different radii from 200 metres up to $10 C 0$ metres, are shown in the following table:
Radius of curve.
250
2750
2700
350
450
500
600
700
7800
ono
1000
Metres.
24.80
21.82
20.80
17.14
15.00
12.00
10.00
857
750
767
6.60

0.384 0.288 0.222 0.140 $0.09 \pm$ 0.018 0.018 0.028 0.017 0.012 0.008 0.006

1.596 1.152 0.88 0.560 0.376 0.192 0.12 0.088 0.048 0.032 0.024

The values of x and y, the intermediate points, are to be calculated according to the formula IV. and Fig 1. The circular or by ordinates from B_{1}. In the lattter case v must be added to each ordinate.
In this case I. $t=v \tan$. β
II. $v=\frac{6,000,000}{r^{3}}=\frac{e}{4}$
III. $l=\frac{12,000}{r}$
IV. $y=\frac{x^{3}}{72,000}$ from $x=0$ to $x=$
V. $e=\frac{21,000,000}{r^{3}}=4 v$

The ramp of the outer rail is constant 1:300
II.-Local Railways.
(5) Form of the transition curve.-The form of transition curves on local railways is shown in Fig. 3. This curve is also a parabola of the third order, which forms a tangent in the point A, and consists in the points-

> the points1 of a radius of 600 metres. 2 of a radius of 300 metres. 3 of a radius of 200 metres. 4 of a radius of 100 metres.

(6) Setting out.-The method of setting out the transition
curve is the same as in Fig. 2. The values of l_{2} and v are calculated for different radii from 150-600 metres, and shown in the following table:-

Radius of curve.	$l / 2$	v	e
	Metres.		
150 160	$20 \cdot 00$ 18.75	0.444 0.366	${ }_{1}^{1 / 776}$
170	17.65	$0 \cdot 305$	1.220
180	16.67 1579	0.257	1.028
${ }_{200}$	1500	0.219 0.188	0.752
220	1364	$0 \cdot 141$	$0 \cdot 564$
${ }_{260}^{240}$	${ }_{1154}^{12.50}$	0.109 0185	0.436 0.340
280	1072	${ }_{0}^{0185}$	- 0272
300	10.00	0056	$0 \cdot 224$
350	8.57	0.035	0.140
400 450	750 667	0.023 0016	0.092 0.064
450 600	667 600	${ }_{0} 012$	${ }_{0} 0.048$
600	500	0007	0028

In which case $-\frac{1}{\text { I. }} t=v \tan . \beta$

$$
\begin{aligned}
\text { I. } t & =v \tan . \beta \\
\text { II. } v & =\frac{1,500,000}{r^{3}}=\frac{e}{4} \\
\text { III. } l & =\frac{6000}{r} \\
\text { IV. } y & =\frac{x^{3}}{36,000} \text { from } x=o \text { to } x=l \\
\text { V. } e & =\frac{6.000,000}{r^{3}}=4 v
\end{aligned}
$$

The ramp of the outer rail is censtant, $1: 600$.
Theoretical development of the transition curre $-h=$ the eleva

tion of the outer rail in metres ; $\mathrm{W}=$ the distance centre to entre between the two rails, $\mathrm{L}=$ the angle of inclination of the ne A B to the horizontal; $Q=$ the weight of engine in kilo-俍 metres per second; $\rho=$ the radius of the axis of the line in metres. As the centrifugal force $\mathrm{P}=\mathrm{Q} \sin . \mathrm{E}=\underset{g \rho}{\mathrm{QV}}$ and \sin.
$\mathrm{E}=\frac{h}{\mathrm{~W}}$, we getthe equation $: \frac{\mathrm{Q} h}{\mathrm{~W}}=\frac{\mathrm{Q} \mathrm{V}^{2}}{g \cdot \rho}$ or-

$$
\text { I. } \quad \quad \quad=\frac{\mathrm{W} \mathrm{~V}^{2}}{g \cdot \rho} \text {; }
$$

W and g are constant quantities, i.e., $\mathrm{W}=1 \cdot 5$ and $g=9 \cdot 81$, II.

$$
h=0.153 \frac{\mathrm{~V}^{2}}{\rho}
$$

further, X and Y indicate the co-ordinates of any point of the the same. h_{x} the amount of elevation for the said point; $\rho=$ radius for the same; $\frac{1}{i}$ the proportion of ramp in the outer rail of the transition curve, which is taken as constant. Hence the proportion-
III.
$h_{x}=\frac{x}{2} ;$
by amalgamation of the equations I. and III. we obtain- $\frac{x}{i} \frac{\mathrm{~W} \cdot \mathrm{~V}^{2}}{g \cdot \rho}$ or $\rho=\frac{\mathrm{W} \cdot \mathrm{V}^{2} i}{g \cdot x}$; if we substitute

$$
\begin{array}{ll}
\text { IV. } & \frac{\mathrm{W} . \mathrm{V}^{2} \cdot i}{g}=\mathrm{C} \text {; we get } \\
\text { v. } & \rho=\frac{\mathrm{C}}{x} .
\end{array}
$$

If s be the length of the curve and x the abscissa, so is in general $\rho=\frac{d s^{3}}{d x \cdot d^{3} y}$; as in the present case $d x$ can be substituted for
$d s$, with sufficient exactness so $\rho=\frac{d x^{2}}{d^{2} y}$, and according to formula $\mathrm{V} \cdot \frac{\mathrm{C}}{x}=\frac{d x^{2}}{d^{2} y}$ or $d^{2} y=\frac{x \cdot d x^{2}}{\mathrm{C}}$, whence through double integration,
VI. $y=\frac{x^{3}}{6 c}$, as equation for the transition curve.

The tangent of the angle ϕx-Fig. 6-of a tangent to the ransition curve is taken from the above equation, and is :

$$
\text { VII. } \quad \tan . \phi x=\frac{d y}{d x}=\frac{x^{2}}{2 \mathrm{C}}
$$

The length Z of the subtangent for any point (x, y) of the transition curve is found by amalgamating the equations VI. and VII. into
VIII.

$$
z=\frac{\frac{x^{3}}{6 C}}{\frac{x}{2 C}}=\frac{x}{3}
$$

when $x=l$ and $\rho=r$ it follows from V . that $r=\frac{\mathrm{C}}{l}$ o IX.

$$
l=\frac{\mathrm{C}}{r},
$$

and when $y=e$ it follows from VI. that $e=\frac{l^{3}}{6 \mathrm{C}}$, and having regard to IX. that

$$
e=\frac{\mathrm{C}^{2}}{6 r^{3}}
$$

In determining the position of the transition curye with regard to the circular curve, care must be taken that both have a
CIG.F
continued severe competition of the Westphalian makers who are
taking the bulk of the trade. Our prices for the sizes that are in taking the bulk of the trade. Our prices $\begin{aligned} & \text { tor } \\ & \text { mosuest vary from } £ 6 \text { s. to } £ 710 \text { s. per ton delivered }\end{aligned}$ Liverpool or equal
Plate-makers were eagerly on the look-out for orders alike for tank and boiler sorts, since their mills have for a long time past been only partially occupied, and there is at present no improvefair and increasing. Boiler-plates of ordinary quality were £8 10 s. o $£ 9$, up to 5 cwt, each ; superior sorts, up to 4 owt each, were ariously quoted at $£ 10$, £11, and $£ 12$; and plates for flanging, cc., up to 3 cwt. each, were $£ 1510 \mathrm{~s}$.; while charcoal plates were 17 10s. and $£ 19$ 万็s., according to quality. Common tank plates or use without angles might have been had to
$£ 712 \mathrm{~s}$. 6 d ., but the more general figure was $£ 8$
Makers of best thin sheets, and also of best tin-plates, reported a big business doing at remunerative prices. Not only are home orders good, but merchant orders for Australia, Canada, the European Continent, and other export markets are highly gratifying. Wilden B, £12; ditto B.B., £13; B.B.B., $£ 14$; charcoal quality, $£ 16$ 10s.; best charcoal, £19 10s.; and E. Bt. charcoal, $£ 21$ 10s. A steadily growing business is doing in mild steel sheets for stamping and other best purposes. They are mostly rolled in this district by the thin sheet iron makers from blooms bought in the at date at £13 per ton hereabouts. The class of iron that has been in largest demand at this week's gatherings are ordinary merchant and galvanising sheets.
Numerous and heavy home and export inquiries have been and till are on the market for these, and makers are booked well with the needed promptitude, but the makers are so many that it is impossible to get up prices, and on the quarter they are easier by 2s. 6d, per ton. Doubles
and lattens $£ 95 \mathrm{~s}$. to $£ 910 \mathrm{~s}$.
All-mine pig makers have redeclared the former quotations of sorts. The first-named quotation as to each quality it is impossible to obtain, and one or two makers were prepared to-day to take 60 s . for hot blast. The demand was very slack, and makers' stocks are heavy. Indeed the staffordshire pig trade as a whole has not yet got over the accumulation of stocks that occurred during the
late ironworkers' strike. Some all-mine firms have 5000 or 6000 tons stocked. Spring Vale pigs were nominal at: Hydrates, 60s.; mine, 52 s .6 d .; and common, 42 s . 6 d . Common cinder pigs were to be had at 40 s . down to even 37 s .6 d . in a few cases.
Hematites were quiet. The Barrow brand was quoted 61s. to Tredegar pigs were "down" 5 s . on the quarter. There were some
The fair sales of foreign medium class pigs. Cumberland pigs were 61s. net cash delivery ; Thornecliffe pigs, 57 s . 6d., a drop on the quarer 2 s .6 d .; Lincolnshire, common Wigan, and Fenton-North Staffordshire-mine pigs were all quoted 50 s .; Derbyshires varied
from 47 s .6 d . to 50 s .; Northamptons were 46 s .3 d . Manufacturing coal is very abundant. Owners do not favour the idea that there will be any conspicuous advance this winter, and they are prepared to enter into forward contracts for half a year at present low prices, which are for forge coal 5 s .9 d . to 6 s .6 d ., and furnace, 8 s . to 9 s .
The it has not yet andinue their agitation for 10 per cent. rise in wages, of delegates at Tipton, on Tuesday, at which it was claimed that some 12,000 miners were represented, it was resolved that, " Wages being too low and the time having arrived for an advance, the secretary should be empowered to ask for a full meeting of the Cos , Heavy machinery for ironworks is just now leaving this district Germany and Russia. The home call is quiet. Engineers report that heavy cast iron wheels and pinions with helical teeth are teadily getting into increased favour, by reason of their endurance ess with which they worl
An increased number of orders are arriving for roofing, bridges,
and gasometers. One local firm is just completing the erection of massive bridge over the Avon at Bristol, which carries the roadway, and connects Bristol and Bedminster. The bridge is a very substantial one, and the two outer girders are excellent specimens f decorative cast inon work
The new wire gauge is still calling forth many suggestions as to modifications. Among several deserving of consideration is one
which is intended to meet the desire of iron manufacturers- that the smaller fractions of an inch should not be dropped. Sheetmakers and hoopmakers may readily, it is urged, have gauges cut to the standard, and may, in addition, have $\frac{1}{2}, \frac{3}{13}, \frac{1}{8}, \frac{1}{18}$, $\frac{1}{32}$, and ${ }_{40} \frac{1}{0}$ cut in these gauges to meet the requirements of the trade. It at in the new gauge in order to get in a few sizes that do not require any number to express them. The meeting of the sheetmakers that was convened for Thursday, in Birmingham, to consider this question, bas been postponed for a week.
The various industries of Birmingham will have full representation at the coming Calcutta Exhibition, as leading firms in nearly
all departments are sending out. Few more handsome collections will go from any part of England than that got together by Messrs. Ralph Heaton and Sons, the well-known Government coiners and ammunition contractors, of the Mint, Birmingham. The case may be described as a spacious and lofty quadrangular stall of solid the four corners, and heraldic shields on the cornices, the name of the firm being set forth in ebony letters in full relief upon a panelling of light wood. The centre of the stall is occupied by an upright cluster of solid brass and copper tubes, plain, twisted, and ornamented with spiral coils of rolled metal arranged
round the base. On the four sides of the stall, which slope inwards towards the tube trophy, are grouped in tasteful devices the various other articles for the manufacture of which the firm is famed. These include coins, medals, and checks and name plates; gas, water, and bedstead fittings ; stamped brass panels in imitation of refpoussé work, ceiling plates for Russia, brass stirrups for Mexico,
brass bangles, armlets, and leglets for India and parts of Africa, brass bangles, armlets, and leglets for ndia and parts of Ald The importance to local industries of technical instruction becoming more and more recognised in this district. A short time back I recorded the institution of engineering lectures at our Mason's College and the teaching of modelling in Wolverhampton; Now arrangements are being made for the Birmingham Trades teaching given at the Birmingham and Midland Institute, whilst in the town of Wednesbury a fund has been opened for the building of a laboratory in connection with the Science and Art Institute classes.

NOTES FROM LANCASHIRE

(From our own Correrpmdents.)

Manchester.-A general quieting down is noticeable throughout the iron trade of this district, and there is a very prevalent conviction that we are approaching a period of dulness in most
branches of industry. There is still a fair amount of present work in hand, but there is very little indication in the market of any large forward requirements. Users of iron are evidently buying very cautiously, and limit their purchases as much as possible to unsettled state of the men with regard to wages both in the iron and the coal trades, are also cautious about committing themselves
to forward engagements. The present condition of trade may be
described generally as of a hand-to-mouth character, but fairly
steady. The tendency of prices is in a downward direction, but
there there is no great pressure to spell, and aoncessions, which are only
made slowly, are confined chiefly to pis in made slowly, are confined chiefly to pig iron, where makers' order
books are getting bare and there is a disposition to entertain
Thers, business doing in the Manchester market continues small,
Thd although there and although there was a fair average attendance on 'Change last Tuesday, a very quiet tone prevailed generally. Pig iron buyers
who had anything like large orders to place were holding back for money rather than let were open to entertain offers for foundry qualities at about 3 d .
to 6 d . per ton under the list rates which have recently been quoted, o 6 . per ton under the list rates which have recently been quoted,
but for forge qualities they are still very firm at full prices. tations for both forge and foundry iron are, in fact, now practically on the same basis, and average 45s. ad, per ton, , ness 2 prace cent.
delivered equal to Manchester. In district brands, some of the Lincolnshire makers have been quoting 6d. under list rates for forge qualities, and exceptional sales have been made at 1s. per ton
under the full prices recently quoted. Delivered equal to Manchester, Lincolnshire forge now averages 44s. 4l., with foundry
pualities up to 45s. 10d., less $2 \downarrow$. Good brands of Middlesbrout oundry have been sold, at 47 s s. 6 d . net cash for delivery equal to Finchester over the first three months of next year. Findished iron makers continue busily engaged on present orders,
and are firm in their prices at $£ 62 \mathrm{~s}$. 6 d . to $£ 65 \mathrm{~s}$. for bars,
 are underselling
Ironfounders generally report trade as very quiet. Even at low prices they are only indifferently employed, and the limited weight
of work giving out is keenly competed for delivered into the Manchester district can be bought at $£ 5$ cor tor and ordinary pipe castings can be got at as low as $£ 411 \mathrm{~s}$. per ton A gradua
A gradual quieting down is reported in nearly all branches of
engineering, locomotive building being about the only department in which activity is being maintained.
The Lancashire sheet and hoop iron makers do not, I understand, regard very favourably the operation of the new standard wire
gauge under existing conditions. Indirectly sheet and hoo makers are materially affected by the new standard, and they conany definite arrangement was come to. At present any action
with regard to the question as affecting their interests is betig helt with regard to the question as affecting their interests is being held in abeyance.
Recently se
Recently several specialities in engineering? have been brought
under my notice, to which a brief reference will be of interest. under my notice, to which a brief reference will be of interest.
Last week I was at the works of Mesesrs. Rose, Downs, and Thomp-
son, of Hull, and was there shown an completed for a firm abroad. In an this mill a number of special
imprever improvements have been introduced, and the work of extracting
the oil and pressing the crushed seed into cakes is made as automatic as possible. The machine is complete in an independent
frame and foundation, with engine attached, so that it an ber exerted without the necessity of employing skilled labour. The
seed is conveyed into the heating pettle by eleyan seed is conveyed into the heating kettle by elevators, and dies
charged from the bottom in regular quantities sufficient for a single cake, an ingenious arrangement automatically opening and closing
the door as each charge is tetken automatic mechanical pressure to the size of the press, which constructed to take in a number of moulds simultaneously; and
here the oil is extracted and the seed finally pressed into The old-fashioned, cumbersome methods are prestirely into cispensed with, the only actual handling of the seed being in transferring
from the mould to the press, and when once started the work progresses without interruption, requiring only one attendant for the Whole of the requisite operations.
Tion pump, which is to also in hand a novel arrangement of a suc-
rivers supposed to up almost any ordinary material, including fairly large drawing which would compose the bed of a river, and dirsbarging it into a
receptacle provided. receptacle provided. The pump, engines, and boilers are carried
in light pontoons, and the whole apparatus is constructed in small
sections, ever required.
An Mother speciality I may mention is a new machine just completed
by Messs. Kendal and Gent, of Manchester, for rolling screw drills, spindle ends so. The morther similar work such as twist drills, spindle ends, \&o. The machine, which has been patented
by Mr. Fairbairn, is the result of experiments and improvements carriied out by the inventor over a number of years, and consists of
three revolving steel rollers three revolving steel rollers having threads cut on their edges, and Which are brought together under pressure upon the rod or bolt.
By pressing gown foot lever the bolt blank is drawn inward with its adjustable sliding support; on arriving at a fixed point the screw is then rolled in the opposite direction and delivered finished An exceptionally powerful steam hammer has been constructed
by Messrs. B. and S. Massey $\mathbf{~ S o f ~ o f ~}$ the Mersey Forge, Liverpool. The hammer is of the bow form, specially for deeling with heavy marine stank words, and is mode
10-ton hammer, butt it hally it is a cylinder is 344 n . diameter, and the piston thas a a stroke of 7 tht
dit the total weight of the hammer, exclusive of base-plate and anvil
block, is about 50 tons. One or two block, is about 50 tons, One or two special improvements have
been introduced into the hammer, which all through is an excel-
lent piece of work. lent piece of work. The entablature, instead of being a simple
casting, as is often the case, has been carefully bored acourate bearing support for the piston, and the the that sides are
guided by steel slides let into the entable guided by steel slides let into the entablature, thus securing pre-
cision and free working to the hammer. In order that the floor
space space round the anvil may be left perfectly clear, the hammer is Business in the coal trade of this district is inaiet. Prits are stili
kept going about full time, but the output generally is amply suficient to meet requirements, and prices are scarcely being maintained at the full rates. Slack, if anything, is moving rather
better, but is still abundant in the market. At the pit mouth

 Docks.
Barrov. Is I per ton at the high-level, Liverpool, or the Garston pacirow. - notice that no perceptible improvement has taken
There in the tone of the hematite piz ion trade of this district.
Thand demand for all 1 ualitities, but the business done on ope of any decided improvement inextensive that there is no Although thy de busides improvement during the coming winter
his small, the yield of metal is weli maintained, and thus there is a tendency to increase the already
arge stocks. Prices, I Ihink, are somewhat easier, and a lower
value can be puoted per ton net quoted all round. No. 1 Nessemer is selling at 49s.
ner ordinary heavy sections and prompt
 limited request at 4 ss . per ton and upwards, and inferior samples
at 45s. per ton. 1 should think there would hardly be any further
ceduction in Keaduction in prices, as the above quotations are eertainly as low as
the metal can be produced at a proftit. Steel makers are fairly well
emploted, but orders are not plentiful Steel rails ore in
 Cew. Prices are a little easier. Shipbuilaers are still badly off for
orders. Marine engineers, boiler-makers, and the other minor
departments of the iron and steel trades are in receipt of few orders. Iron ore remains in quiet demand at from 9 s , to 10 s , per
ton at mines,

THE SHEFFIELD DISTRICT.

(From our own Correspondent.)
THE agitation for advanced wages in the colliery district is being
actively pursued. Following the Manchester actively pursued. Following the Manchester meeting another con-
ference has been held at Rotherham, at which the Mancheste ference has been held at Rotherham, at which the Manchester
resolutions came up for confrration. The uphhot of the adjourned
meeting was to homologate everything that had been done at Manmeeting was to homologate everything that had been done at Man-
chester, and a deputation of nineteen persons was appointed to meet the colliery owners to ask for an advance of 15 per cent. on the present rate of wages, to be paid on and from the first tepay. day
in November next. Mr. Pickard, who has been the leader in this new movement, was instructed to write to the coalowners' secre-
taries, asking them to arrange a meeting for Tuesday next, October 16th, and meanwhile it was resolved that no colliery should accept any settlement whatever except with the sanction of the further
conference to be held at Rotherham on the 22 nd inst. In the conference to be held at Rotherham on the 22 nd inst. In the
interval a ballot is to be taken of the men at the various pits to ascertain whether the men are prepared to give in their notices to The Manchester meeting of the miners has bede in
meeting of the masters. A deputation of South Yorkshire coal owners met the West Yorkshire coalowners, and it was agreed to take joint action in resisting any advance sought by the men. The of the "enormous profits" alleged by Mr. Pickard to have been made by coalowners during the past twelve months.
Some capital has been made out of an advance Some capital has been made out of an advance of 1s, a ton
coal in London a fortnight ago. This, it may be stated, w entirely owing to the collier ships from the north being prevented reaching London by stress of weather, and thus giving a temporary
fillip to the South Yorkshire coal. The advance, howevpe, Mr. B. Pickai
Mr. B. Pickard has forwarded a letter to Mr. F. C. Rhodes, the
secretary of the Coalowners' Association, ssling for between the employers and a deputation of miners in regard to the In the wire mills there are some interesting item-Friday. American trade in soft rods for harvest purposes has, it appears,
been monopolised by Germany, where, on account of their superior water-ways, they can supply those quantities of wire at from 30 s.
to $£ 2$ per ton less than inland such as rods for spring and umbrella wires, there is still demand for America.
An order of considerable magnitude has been received by Messrs.
Wm. Cooke and Co., of the Tinsley Iron, Steel, and Wire Works Wm. Cooke and Co., of the Tinsley Iron, Steel, and Wire Works,
from the Argentine Republic from the Argentine Republic, for steel wire for fencing purposes,
that Government being engaged in enclosing large tracts of country.

THE NORTH OF ENGLAND.

(From our mon Correapondent.)

THE quarterly meeting of the Cleveland iron trade was held Mas firm and stendy, but prices did not well attended. The tone some makers willing to accept 39s. per ton for No. 3 g. am. b. . for
early delivery, which is also the price merchants are quoting. The principal makers, however, ask 39s. 3d. to 39s. 6d. for that grade on. The general quotation to ut sales have been made as low as 37 s .
There were several exhibits at the market on Tuesday, the most pamples of coke produced by that oven from various kinds of coal ery little business is reported in warrants, though they are The stock of Cleveland pig iron per ton. Middlesbrough has decereased 150 tons during the Connal's store and ther which prevailed during the moth. Up to Monday night only 18,748 tons of pig those for last exported, as against 26,737 tons during the corresponding period The manu
The manufactured iron trade continues steady, and numbers o
small orders for prompt execution have been mhill orders for prompt execution have been given out at the rates
whied have for some time past, viz, ship plates, $£ 6$ os. per ton ; shiphuilding angles, \&5 12s. 6d.; and common bars, uddled bars are $£ 312 \mathrm{~s}$. 6 d . to to $£ 317 \mathrm{cs}$ s. 6 d d. per ton ton net on trucks at is done.
TTe bulk of the workmen reecntly paid off by the Darlington vorks on Saturday last saying that the two small rail mills which ere at work last week would be started again on Monday. No
intimation was made as to when the remainder of the men would be required. The majority of the men are, it is said, men willing to The reductions vary from $7 \frac{1}{2}$ to 15 per cent.
The accountant's certificate issuued in connection with the Cleve-
and miners' and blast furnacemen's sliding scales shows that net average invoiced price of No. 3 Clieveland pig shows that the three months ending September 30th was 39 s . 2.24 d . per ton ne-eighth of a penny in miners' tonnage in blast furnacemen's wages, in datal wages from the present time to the end of the year. The Den have given notice to terminate their sliding scale on the 31st The man Rawdon, who was severely burned at the
Steel Company's works during the visit of the Iron and Steel Insti tute, died on Thursday last.
The pier jutting out
The pier jutting out into the sea at Saltburn has been for years This is due to the destructive action of former storms. The property having passed into the hands of former storms. The pro-
engineer, Mr. Whipham, recently seat about sumper faily, their Scaffolding was erected and several iron piles were driven. But
the gale of Sat surday the gale of Saturday week raised an angry sea, which swept away
everything new and exactly restored the pier end to its previous
unfinished condition unfnished condition.

NOTES FROM SCOTLAND.

THE pig iron man
eet quieter at the opening of the present week, but a feeling o Hamess was imparted by an unexpected strike of miners in the of long duration; but yet it had an effect upon the current guotations. Since last report five furnaces have eboen put out of blast,
reducing the output of pig iron by about 1000 tons per week, wa the shipments have been good, the addition to stocks in the Business was done in than for a number of weeks past. 47s. to 47s. 1dd. cash, and 47s. 2d. to 47s. 4d. one month, the after-

$\left\lvert\, \begin{aligned} & \text { the values of makers' iron are firmer all round, there being a } \\ & \text { slight advance in certain cases. }\end{aligned}\right.$ slight advance in certain cases. The quotations are as follows:-
Gartsherrie, f.o.b. at Glasgow, per ton, No. 1, 55s. 6 .
 50s.
5as.
and

 garnoock, at Ardrossan, 54s. 6d. and 47s. 6d.; Eglinton, 48s. 6d
and 45s. 3 d . Dalmellington, 48s. 3d. and 47 s . 3 d . Up till date the total shipment of Sootch pig iron has been of 1882 , while the stock in the Glasgow warrant stores is 589,054 the manufactured iron and steel works are year,

1 works are both well employed, out appreciable change. In the course of the week there were
shipped from Glasgow $£ 17,270$ worth se shipped from Glasgow $£ 17,270$ worth of machinery, $£ 5660$ sewing
machines, $£ 39,900$ iron manufactures, and $£ 17,000$ worth of steel In the coal trade there is considerable activity, although the quantities shipped have not been so large at some of the ports as
of atat. It would be no unusual occurrence were the trade to experience a slight check at the present season. Happily business hax beeen excellent all through the summer, although prices have not been
full enough to enable masters to meet the wishe at this advanced period of the season any further increase will be obtained. Still the coal-
masters of Hamilton have offered to give an advance of 6d. a day o their men on 1st November.
There have been sectional strikes of miners here and there in addition to the large turn-out in Hamilton distsirit; but the dise dis-
putes have arisen from local causes, and ought not to be difficult of settlement.

WALES AND ADJOINING COUNTIES.
IPADD a visit to Cyfarthfa this week, and was astonished at the progress made, though a good deal remains undone. Three fur-
naces are nearly complete and the fond naces are nearly complete, and the foundation is laid for another ;
the stack is finished, and a good many of the boilers placed, and ome of the most important machinery fixed. The chief plant, so from D. Adamson and Co., Dukinfield, Manchester, and all appear to be excellent, The best class of bricks I have seen there come
from Scotland, and appear quite of a granitic character. Another good sample is from Risca. In one respect, at least, Cyfarthfa
will be placed in a superior position. It has is no cramping for want of room. This is noticeable in the area before the mills, which will be devoted to the reversing rolls, and
here the longest lengths may be worked without interfering with ny other branch of labour.
There is no change to report of any account in the iron trade. Orders are rather tardy in coming to hand, as buyers wait to see fthe reduction will be followed by lower quotations. When A tolerably large quantity of manufactured iron, amounting to That there is some degree of vitality ports this week.
he re-starting of the Milford Steel Works, and general alterations and improvements carried on in most of the large establishments. The reduction is now accepted in nearly all the works, the pro-
minent exception being Llynvi Works, Maesteg, where a strike
pevail In the tin trade there is a gratifying movement, and the meeting rict, such as Machen and Rudry, good work is being done. Morriston continues to turn out excellent plates, under the special
direction of Mr. Davies, and good results are obtained in neighouring establishments, I see that Llangennech is likely to be sold Practical results are forthcoming from the new industry at Car-
(iff-the Hift-the Bute Shipbuilding, Engineering, and Dry Dock Company.
The hands of the company are full. Three steel steamers of 2000 ons and two hopper barges are in the list, and one of the steamers There is no falli
in the coal trade, either in steam or house Plymouth Works are being dismantled steadily, but a good coal The last report of the Miners' Provident Society is hopeful. here are now neal.
mounts to $£ 10,000$,
A mass meeting was held by the colliers at Merthyr on Monday
to further unionism and reduction of prices on
\qquad
THe Coninvt CANAL.-In a report to the Foreign Office on the the Isthmus of Corinth, which was commenced in May last year the first mine being fired by Queen Olga, in the presence of Kear,
King George, the diplomatic corps, and the principal Greek Governmen
officials. The actual length of the canal when finised ficials. The actual length of the canal when finished will be
6342 metres; the entrances to the channel will be 100 metres in breadth, diminishing to 22 , and the depth 8 metres. According to studies madimy M . Gerster, the total quantity of material to be ground through which this channel has to be cut is composed
gre according to the report of the engineers of the company, of three
distinet kinds :- Firstly, from the Gulf of Corinth, throuhh plain, consisting of sand and alluvial soil, for a distance of $1 \ddagger$ kilo from 40 to 80 metroush a mountain range, varying in height byond the mountain range to the sea, in the Bay of Chimaki the proposed canal will traverse a lithle plain of the length of
600 metres, composed of alluvial soil and rocks. The excavation of those parts of the canal situated in the plains pre-
sents no difficulties; but this is not the case tainous parts, where on enormous mass of $8,000,000$ metres of solid
rock will have to be excavated and transported to a distance, which rock will have to be excavated and transported to a distance, which
labour, according to the contract, has to be done within three labour, according to the contract, has to be done within three
years. The following plan of executing the work has been decided on by the engineers of the company, M. Gerster and M. Kazaser:-
That part of the canal situated in the plains will be excavated ordinary means, namely, hand labour, dredging machines, a rail-
way, and sand pumps. This portion of the labour, it is calcul way, and sand, pumps. This portion of the labour, it is, calcu-
lated, will be finished at the end of the present year, 1883. At the same time as the above-mentioned work is in progress, the upper
portion of the rocky crest will be excavated by mines and the refuse carried away by railway, for which purpose four locomotives and 200 trucks wie be employed. Towards the end of the year
1883 several large dredging machines, constructed on the most approved modern principles, will be delivered to the company. soil in ten hours. They will be each of 300 -horse power. As regards the system of excavating the rock, M. Gerster's slan is to
sink vertical shafts in the mountain by means of perforation nachines constructed expressly for the purpoese, which shafrsting wil
be sunk to the level of the proposed canal, for which cartridges of dynamite will be employed at distances of 2 to 3 metroe friges each other, which will be exploded simultaneously. The execu-
tion of this enterprise has been confided to the Societe des Ponts et Travaux en Fer (ancienne maison Joret et Cie.), in conjunction with

THE PATENT JOURNAL. Condensed from the Jourral | Patent. |
| :---: |

** It has come to our notice that some applicants of the
Patent-ofice Sales Department, forn Patent Specitcations
 giving the number of the page of TME Exarsirn at
whicict the Specifcation they require is referred to, instead

 refer to the pages, in place of turning to those pase
tinding the numbers of the Specifcation.

Applications for Letters Patent
 printed in italices.
4668. Velocipents 2 nd ${ }^{\text {October, } 1883 .}$

 H671. ALABMM BELL

 46si. Geas Propvockrs, J. E. Bott, Manchester. oxeter and H. Nehmer

4699. Drying Soank, C. A. Das.-(G. M. Neephall, U.S.)
4700. SEWING MAchINs, J. Mciovitt, Belfast.

 4732. TRangporting Sessuyiged Photooraphic Platrs,
 4734. Cotton, Birmirmingham, G. Bray, Deptford.

4739. Trpe Writrgs, H. J. Aliison-(W, Parecergies,

 Valparaiso.)
4751. PYROMERS, W. Wise.-(A. © E. B. Boulier, Paris.
6th October, 1883 .
4752. Cuarss, \&c. C. H. Reed, Sunde

4761. Ghindiva Apparatus, J. S. Dronsfield and C
Butterworth, Oldham.

4766. Coks Ovess, J. Jectober, 1888,
 G. Twigg, Birmingham.
476s. STorise up Power Apparatus, R. Heyworth,

Inventions Protected for Six Months
Deposit of omplete Specifications.

 communication from J. H. Ring, C. Calahan, J. H
Pirdan, and J. H. Morrison, Loweli, U.S. -2 nd O octo
ber, 1883. 4688. Makisg Woopze Boxes, W. P. Thompson, Liver
pool.A communication from The United Stat pool.- communication from The United, stater
Box Machine Company, New York-2 ind octoer
Box

Patents on which the stamp Duty of $\mathfrak{\& 5 0}$ 3979. Sroves, W. Smith, jun, Barnard Castle.-1 3984. Horsssioe Nails, W. R. Lake, London,-18

 4012. VELOOIPEDEs, W. R. Lalke, London.-2nd October
 4050. Morvive Power, J. Robson, Falmouth Road.
5th
toct

 4065. Repriagrating Apparatus, T. B. Lightioo
Dartford-6th Other
 4097. Prodocira CoLoorred Desions, H. C. Webb, Wor

Patents on which the Btamp
has been paid. 3812. SeLp-CLEaning Furnacks, T. Henderson, Birken
head. -2 nd Octber, 1876 .

 399. Makivg Gas, E. Brook and A. Wilison, Middles

Notices of Intention to Proceed with (Last day for fling opposition, 26th October, 1883.)

 2949. ELEETrRcAL CowDucrors, J. H. Johnson, Lon-
don. - communication from La societe A. Cher-
temm

 3070. GAs-Moror Exaines, J. Fielding, Gloucester.'
2ith. June, 1883.

 V. Brooks, London. -A come comunication from D. F.
simpon.

 46e9. TELEEPHoNic AppaRatus, E. Goorge, F. A. Pocock,
J. S. Muir, and J. S. Muir, jun,, London.-2nd octo
(Last day for fling opposition, 30th October, 1883.) 2757. Moublina in SAsp, S. E. S. Seanor and J. . Hill
teeds, and J. Butlor, Bradford. 4 tho June, 1883. 2771. Liovrous Compoovis, C. D. Abel, London.-
communication from B. Harrass. -4 th J June, 1883 .

 June, 1883. Primary Voltato Batteries, G. G. André, Dorl

 2006. Wziohino Δ PrARATUS, \&co., I. and A. Wallwork

 Dalston. - A communication from D. M. Mefford.7th June, 1883.

 J. ELectrodes, D. G. Fitz-Gerald, Brixton.-7t 2859. GLLALss, \&co., J. Reynolds, Mount Greenwich.-8t 2869. TRERTMENT of Mile, G. Lawrence, London.-8th
June, 18s3.
 2873. Pistroows, W. Vale, Birmingham.-8th Junc,

 2943. Fastesing Apraratus for SCafroubing, w. P.
Thompson, London. $-A$ communication from C,

 293. GALVANIC. Elemensts, F. Wirth, Frankfort-on-the-
Main.-Com, from C. Pabst- 15 th

 337. Horssshozs, T. H. Heard, Sheffield.- 5 th July,
1883 ,
 S336. Holinise GABLEss, F. C. Guillaume, Cologne. -76
 August, 1883. ALS. Chist 191. OCMupust, APPB. ARTTS, J. A. Wade and J. Cherry, H20. Insea, -30th Aupust, 1883. H. Chameroy, Vesinet,

 346. SELF-LEv ELLING BERTHS, B. F. Merrill, Boston,

 communication from J. H. Ring, C. Callahan, J. H.
Pindar, and J. H. Morrison. -2 2nd
october, 1883 .

 1824. SHIPs, de., N. do Teiescheff, Paris.-10th April
 and J. Deeley, Birmingham. - 11 th Aprilit 1883.
 155t. Bregch-Lonanisg Fire-abiss, W. Gardner, Lon

 2071. RALLW
1883 . 2os9. Selz-activa Febd-watrer Requlator, \&ce., A. M. Clark, London. 24 tht April, 1883. J . Walker, Leeds

 ${ }_{1883}$. ${ }^{23 \%}$ Dye Srufrs, \&ce., S. Pitt, Sutton.-2nd May, ${ }^{248983}$ Rock Driles, A. M. Clark, London, -12 th May 2435. Treantivg Phosphatic Slags, C. Pieper, Berlin.

 3029. Suppobrise Shaftiva, A. G. Brookes, London.-
19th June, 1883. 114. MARTNER'. Compasses, w. R. Lake, London.3549. Washivo Machises, J. Heselwood, Leeds.- 10 th 3643. Jiticerrs for Looms, J. K. Tullis, Glasgow,-25th 385. . Fastenisas for Boor. casse, w. A. Bonella, Lon
din
736.
 Augustostable Chatrs, W. R. Lake, London. -7 th

(List of Letters Patent which passed the Great Seal on the 9 oth October, 1883.)

 1808. GAs Regulators, S. Slack, Sheffield.-10th April,

 1344. Preventing Water going down Ventriatina
Shafts, R. Oakley, London,-12th April 1883 . 1845. VENTLLATIMQ SToves, R. Oakley, London.- -12 th
 1849. Prousectiles for Fire-arms, L. A. Groth, London, 185s. WT TICR TRIMARERS, A. J. Boult, London. -12 th

 APMril. 1883. 18.

 ${ }^{\text {1933. }}$.crrw Proprlebrs, dc., S. W. Snowden, West
 1933. GVo Trasecin 1981 M Merourit
$-19 t h$ April, 1883. 1999. PREPARING FLAX, J. Reynolds, Belfast.- -19 hh 2003. PREvEs.rive the Corrosion of Iron Surs, J. B.

 2045. Gun Carriaces, w. r. Lake, London. $-23 r d$ 2047. SERPRRATING SUGAR from Molasses, C. Pieper,
Berlin. $-23 r d$ April 1883 .
 2095. IITP KExs, J. \&. Beeman, London, -25 th April,

 April, 1883.
2162. Hosisticg Machinerry, , Thomas, Cardiff.- -28 th

 2674. . A AlIFs.
May, 1883.

List of Speciflications published during the
week ending October 6 tht, 1883 .

ABSTRAOTS OF SPEOIFIOATIONS.

ared by oursel

 One ond of the opipe has a part of its substance part of its substance remored from the inderior sor so
that a oint mayb mate metwen two lengtho of pipe.
A covering is placed round the jointo
 tection not allowed.) 15 This relates to the employment of an electric current

 278. CaLouvartion il of current.
 This relates th the arrangement of squares bearing

 form of the word or design required, and enclosed in a
suitubly formed glase casing.

 349. Telepronic Apparatus, A. Teske, London. -22 nd The instriment comprises a combined transmitter, sigignilling gircuilt, and completing that of the distant
instrument ; also instrument, also means for rlpa
receiver in circuit as required.
400. ELecrrio Gengrators AxD Morors, W. M.
Mordey, London. $-24 t h$ January, 1883. $6 d$.

 deseribed. The connections to the commustrator and pass
boetween a hollow sleeve and the shat to diamotrically
bopoits

 ordinary manner.
460 Tklephoses. T. J. Handford, London. $-27 t h$ Jan-
 atrached to a alaphragm at about tts entre, the other
end of the oon oning ated upon by asprig tending
to force the diaphragm outwards in opposition to the octoren to the diaphragn
cotion of the current.

 whith are played on by the fingers, and cause hammers
to strike wirse, so that the ounds
the compass of the human vouce produced are within

 11 kt sportion of of it is eapabie of rec vibrations. The diaphragm may be of non inductive
material a piece of tseel being fix ed oo it, or it may be
extended in the form of tin amature 323. Apparatug for Measuring and regulating
 wire placed in then circcuit actuatases a a pivottred porticer
the outer end of which sweeps over a graduated are
 mercury, and thus effects the current passing through 624. ELEOTRO Morons, W. R. Lake, London.-5th Viena, and F. Kilhmaier, Pressurg.) 6 .d.
This relates to meane for for reg
 reversing the direection of rotation of the motor.
628. DYNAMO-ELECTRIC OR ELLEORRO-DYNAMIC MA-

 ture are divtied in a line obliquely to the radius or in are parallel to the axig, and are oach connmature conte
bars to their diametrically opposite cores

silver, preferably formed of pieces of carbon eoated
with silver, s.olotion of canustic potash or soda being
employed as the exciting fuid.

 by ane oum ureato
descent lamp.

 One electrod id is formed of black oxide of manganese
and the other of orbon, thenese are imerese in
tion of dituon
silute sulphuric ache $\stackrel{8}{\text { salt. }}$

 634. Apparatus for Regulatina Electrio Lamps,
 A. and T. Gray, Glasgon.
(Not oroceded ovit. 2 .
The feed of the carbons is

The feed of the carbons is regulated by a continuous
enlosess moto controlled by a ther To measure our
rent a
 The potential
into the circuit.
 This releruaresy,
To a
To receive the tiles.
659. Vouralc Bartikrisg, W. R. Lake, London,-6th

 The armature is constructed of grids of copper placed
radially on the sides of artating diso ; or the grids may be in the form of longitudinal bars arranged upon 678. Tmlepronic Apparatus, H. H. Bldred, London.-
Tith February, 1883.6 . The diapharary, is of of nod.inductive material, and has
a small steel disc attached to its centre.
 Teeded with.)
This orelates o cortain appliances to be fitted to the
Oork or frame of a bieycle, tricycle, or other like
 round by the hands of the rider alon
tion tot that of tho foet also
facilitate the the guid
alidig of the vehicle.
 This relates to modifications of patents No. 4472, of of the current to work a small motor, whichuby , meant
of a recoil escapement, divides a heary balance.

 ing or sprouting.

 of self-cocoking breech-loading small-arms.
694. Construction or Poitable Rivertina MA.
chivs, R. Binns, Halifax. -8 th February, 1883 . This (Not proceceded with.) 2 ta .
 The objeet is to prevent continuous wasto of fluid
when oocks are left fully or partly open by design or
hegligence.

 with contact poits. The turning of the plug com-
iletes or breaks the ciruit. The plug is secured in
he acesing in the ordinaty was.
 The mould is constructed with a bottom part formed

The object is to construct an ink reservoir within a nit of a nozzle opening and ink to fo fow to feed a perib
or other writing point and the to return under the or other writing point, and then to return undor the
oction of a pring th. return closing the nozze to to
fine the remaining ink in the reservoir.

 This
Triatest on onoulding the label in clay or similar
naterial, on which the inseription is stamped or 710. Railway SLekerprs, F. G. M. Stoney and R.

steel or wrought iron plate of sy suitable or thicklapess by means of dies.
14. Apparatus por Warying Hovess, S. Deards, This consists essentially in constructing behind the nto the of the grate a number of openings leading with means whereby the produects of combustion may
be aused to pass as required e either direct into the
dind be caun
ordina
box.
715.
box. apparatus for Extracting Ammonia from suob
715.
Solutiona

 Ing ammonia from solutions containing both volatile
salts of omion onial
the chloride.
 This relates chiefis.
cooling of the salts.

This relates to the construction of lamps and their fitting sfor ship' binnacles, for the purpose of burning
heavy mineral oils in them.

 Colected ends being clamped to the main conductors,
The fusing of the plug completes a by-pass circuit and diso causes a beil to ring. A T-Trame placed between
the main conductors arries a purgo itits upper part
cases where a local connection has to bo made to an

The object is the employment of magnetic power
discs or ends of mounts.

ing or contracting for the parpose of taking measures.

 The apparatus consists of a series of polishing devices
set in motion by a single driving shaft actuated by
steam or other suitable power, accidental tearing or steam or other suitabie power, accidental tearing or
fraying bing prevented by making the polishing
devices flexibl and ond opratink against a
aupport

Thee obed joct is. to to provido means (either combined with
a roasting jack or independent therefrom) by which roasting jack or independent therefrom) by which
the basting of the meat, tce., is effected automatically.

This relates, First, to a sawing machine for cutting
blocks of stone, $\mathbb{\text { cos., into }}$ pieces of various thickneses according to the number of sasw used and the dise
tances the
 means of a rotating wheel of high speed composed ot
emery or other sutiable orinding material azainst
which the stone or material to be ground is held and
whed passed ; Thirdly y to a machine for grinding the face of
stonfoor other like articles, such, for example, as tiles
perfectly true

 sulphuric acid, whereby they are left with a hard
woody shell, cande

756. Gun Carriags, A. Noble, Newcastle-upon-Tyna

The carriage is arranged as a threepivot carriage
that is, it may be pivoted centrally, or at a forwari point within the carrrage, or at an oxternal point by
use of pivot bars, whose length may be arranged suit the circumstances of the case. The rollera
which the carriage trains can be set to any required

 recor presses, the pistons of which are fitted with
sping loaded valves, which allow water to pass from
ne sido to the other. A hand pump is attached to the
and one side to the other. A hand pump is attached to the
reooil presses for the purpose of pumping the gun in
and

The subject matter of this invention consists in im provements in machines or mills on which grain is
broken or reduced between two discs having annular
758. Prrssing Glass, J. G. Sovorrby, Gateshead.on
 proved procoss of working.", and it oonsists in an im

 Ades of which will not fall in or the bottom suck up
Aosinter and an inner plunge aro used, and sup
posing both to be dow ditrectly the outer plungee
 759. Wassivo Machises, J. Kennedy, Strabane, Iree
land. \rightarrow 2th
February, 1883 . (Not proceded woith.) This relates to the arrangement of a tub provided
with friction rollers. 760. AppaRatus for Exerising with Velocirpdes
For ITvoo or Like PRactio, J. M. Smith, West This relates to an apparatus for exercising with Velocipedes in such mapner that texerciseremays bay talten
with the machine indoors or otherwise without pro. gressive movement.
761 Manvecture of Lace in Twist Lace mat
 This relates to the manufact
lace, also to the manufacture of such hace witith hifferent coloured diffects theron, also to the manufacture of
combination net or lace, also to the manufacture of
 dratting the same in five different colours; also to the
manufacture of combination throw thread lace; also
 the same time with combination or ordinary work
required, and to working colours in the same.

 smailier one is pivotted dand supplied with water by a
baal valve, and connected to the pull of the urinal, so
as to empty itself into the
763. Trativeser

action of caustic alkali and pressure, or first subjecting
hem to the a attion of oxidants, such as nitric or chromic acids, permanganate of potassa, hypochlorites
chlorine, bromine, oxygenated water, or unstable oxides generallin, and when the cement ord peltilicule
are transformed into resinous acids, subjecting them It the action of solutions of alkalies or their carbonates mix xurese of these, under ordin
 The filaments are made from a mixture of finely
divided carbon and a solution of sugar. The mass ig placed in a vessel having a minute orifice, through
which tit forsed by means of a plunger. Carbonisa.
tion is effected in the usual manner.

This relates to the process of washing and casting
the gum into blocks.

 an opening is formed on cach side, the narrow part
in the carburetting chamber.
From near the top of
 either of the two arms.

 The object tis to attach corkscroens nat and other useful
or faney articles to b tiles by means of a cover of wood, pasteboard, glases, meta, or or other maver of
closing the recess formed to the bottom of bottles. 768. FAstreniva of Ab3100n PLates, L. W. Broadvell, This oonsists in securing armour-plates to ehips,
forts, or backings by the use of recessed bolts, in con. junction with expanding devices, whereby the ends of
the bolts are expanded within recesses in the armour-

The object is to utilise match-boxes for advertising. 70 Trawlisg Nexs, W. B. Wiison, Aberdeen.-12th This realates to an appliance for effectually spreading
 Thdis relates to machines for rolling the threads of
screws, und consists in shaping the adjacent or work ing faces of a curved stationary die and a cylindricial
rotating die, so that they approach each other at the portion where the point of tho screw is other at, and
the inclined ribs on the faces of the die form over the inwardily-extending or ap approaching surface
whereby a spiral the blank, thus forming a ", "imletet-poonteta derew." A
 curved stationary dies dadjustable with relation to enah
other to enable tho blanks to pass freely from one pair
of dies to the e exat.
 This relates to the arrangement of the mechanism
or actuating pneumatic signalling apparatus,

 is then caused to boil for about an hour, when the
grain is reoved and drained, the wator when cool
being used to mix the flour and, for the fermentatiol beng nased to mix
in making bread.

 the former acting as a bearing for the and pionded tand on on
the later the bobin is placed, and it consists of an adjustable projection or overlap outwardly applied in
uch a manner as to be readily turned on or off a flang n the loose tube, whereby the latter may be readily
cemoved from or secured steadily in position on the
 he spindoo or against a aolar. or ring freely mounted
on the top of the fixed tube.

sdo
This ocnsists essentially in in causing the furnace door
regulate
dhe supply of air to the furnace when it is to regulate the supply of air to the furnace when iot is
oppond and cosed. Various arrangements for effecting
this sare deseribed.
 This relates to the parts of self-acting excavators thinh lifting arate apparatus used in conjunction therewith
Any ordinary crane can be used by adding didscharg
tid ng frame or hook, suspended from the jib at a auitabble
ilevation above the wagon or barge to reeetve the

 engage with and support the opening bar when sus.
pended bod the hoisthg chain, but release it when the
excavator rests on thg ground.
${ }_{4 d .}$. Brveriss, C. Jack, Lonion.-12th February, 1883.
This consists in in fting hair brushes with a reservoir
to hold any suitable liquid, which may be discharged in suitable quantitities by tounching or or pressing a apring
lever to open the discharge orifco.

780 Forato STEAMER, C. F. Boveor, London.- 13 th

A perforated tin or wirework receptacle receives the
potatoes, and is placed in an ordinary sauceapan,
 suspended in the top of the sacepan above the water,
orit may rest the the bottom of the saucepan and be
immerred in the water as desired

 787. Rraxisiso Pro Trow, te. J. J. Fuans, Gaythorne,

 of one cara is caused to bo transmitted to the thanism

 ${ }^{2} 880$

Ior its gerwination in oerthar oand dampokneses suitable

 anduated acaording to the plaitit or frill to be pro
duced on the fabrici. 791. Steovinay or Sronar Batrears, T. Rovan,

 Thitif reatest to tho general construction of a eell-clos.

 This reatase to fastenings in which a atud fixed on
 cupt torm, and those se in of a a cormorepeononding torm.

 802. Constructros or \mathbf{B} ㄱTr

 803. w

 808. Kxirtrit Loopren Fannics, H. Kidait, Notitin,

 stiring.
808 . TR.
 The oriject is to coonomise steam and reduce labour 810. Gas Cookrso Srovzs, J. Rusell. Reading.-14th
 by being partally turned off, oither by the opening
oit the door or on the remoral trom the oven of the
 or on a joint or or other artiolet being phateod in the o oven,
the supply of g gas is automatically turned on

 prexes ht,
consumed.

 814. Locrss Axp Lurcorss, J. Kaye, Londom, -14th Thil relatate to improvements on patants No. 4873,

 parts of wood, without t wisting or turning the the shank
of the ecrews

 Shis relates to the manutacture of "broad.-back
 means for gluting or weldingy una the sonoke and

 822. Conpunga Aphantus for Ranw vovivia

 in the pealiar construction of the ver,
thinus
theri combinatition and operatiton and
823. Firtannus, F. Beetely, Lmido

The object is to utilise the expl 1 sion of the arrtrige
 824. E.

 The object isto os oontrol the expansion from the

 The boidet isis. is. onstruct portable batteries by em

 The objee tigo oprovide a a arrangement tor roceiv
and directipg the nicotine away from the

 the arpet is a tached to one roller and partly rollod
therom, and the other end is atachoded $t o$ the other隹

 B40

Galacoused to rotato by gearing, and upon it ita box

nut H haring a weightoco lever oonnoctet thereto and Brovied with agrooved ant.frition pulley J, which | roller A. |
| :--- |
| 842. |

42. Appantus for Workiva Gras, BogkTs, AxD
 Inventor clasims to raibe, tomporarily gutspend, disis
charge and lower grabs, tipping buikets and other
hat
 sidisfo chanin controlled by one man.
43. Apparatug for hoodixa Div plarts of Finss CHANGING THEM IN THE PHotooraphe CDD For
T. Samuels, Monken Hadley. $-15 t h$ February, 1883 ,
Thisi realtes to an apparatus in tho naturu of a am-

 tion for exposure, and for reeetring and paacking away 844 Tanasw inms arter exposure

rthid relates to the obtaining sulphum from sulphuv

 840. Saddia bar

 of briok work with an upper part or mouth onastructed
 he gaid cover aseornd
petween the two covers.

 Thiseated colatested to th
This relates to the arrangement of drag boards

 smith, Loimion -1 16th February, 1883 - - (Not pro.

The F First part rolatest to that part of the fromury

 85 action of the apparatus.

 The inventor claimo 2 treble bridge for pian fortess

 The invertor colimim the manu uataturo and employ-

 or alkalies, or produced in the process of making the
composition.
 This relates to the general construction of the parts.
44. Lock-stitch SEWIN MACHINEs, 876. Lock-stitch SEwing Machisks, \&c., L. Silver-
man, Westminster. - 17th February, $1883 .-$ (Complete.) - (Void.) $6 d$.
This . .atece more especially to an improved thread
mobbin or cop to be employed for the production of bobbin or cop to be employed for the production of
what is known as the under thread ; also to the
huttles for carrying such improved bobin shuttles for carrying such improved, bobbinn or cops
through the loops formed by the upper thread, and to
certain modifications in sewing machines to adapt
them to the employment of the said bobbins or cop them to the employment of the said bobbins or cops 875. Reducing Metals from their Ores of Caem
ical Compounds, \&ce., J. Claik, Kensington. $-17 t h$

Tebruary. 1883. $6 d$ d.
The object is to obtain intense heat necessary in
recucing metals from their natural ores or from chem-
by means of a large and powerful lens or reflecting
mirror, to a focuus, while at the same time a suitable
gaseous or other re-agent is blown upon the heated gaseous or other re-agent is blown upon the heated
ore.
877. Bhlelard Tables, J. Reap, Grove Park, Surrey.This relh February a a method and apparatus for raising 879. Beds or Bertas yor Surps, J. Hamilton, jun.,
and R. McIntyre, Glasgoov. -17 th February, 1883. This relates to means for simplifying the framing or
supports and other parts of beds or berths. 880. Construction, Arrangement, and Working of
Clocks or Trime-k kerprs, \&c., J. A. McFerran, This relates to the generalarrangement, construction, or exhibiting uniform time at several points, purpose 882. Boor and Shos Tips, J. Foster, Kettering.-17th This consists in making the tips bevelled or wedge shape in cross section, and that the inner edge is
higher or thicker than the outer edge; and further, in
making them hollow and with a rim on the underside. 884. Preservation of Smoked Figh, H. J. Haddan,
Kensington. 7 , 1 the February, 11883.- (A communication from o. Sylluzasschy, Leipzig.) $2 d$.
This relates to a process for rendering smoked fish
talatable, and for preserving the same for a long period 885. Apparatus to be USED when Playing Accom-
pANIMENTS ON ORGANS, HARMONIOMs, AND SIMLAR INRMRUMENS, H. J. Haddan, Kensington. -17 the
February, 1883. - (A communication from M. van Thech, Breda, Holland.)-(Not proceeded woith.) $2 d$. organs or similar instru
choral songs or hymns.
889. Cooking Stoves or Ranges for Gas
Sortid Fuess, T. Fletcher, Warrington.-17th FebThe object is to enable ovens to be used for cooking
by the simultaneous or alternative use of gas or of the ordinary funel without structural alteration of the
range or stove. 890. Maintaining the Proper Level of Water in
STkam Boikrs, H. H. Lake, Lovdon. 17 Febru. ary, 1883.- (4 communication from the Automatic
Safety Boiler and Bnine Company (Incorporated),
Nevo Haven, V.s.) 6d. This relates to apparatus for sutomatically supplying
water to steam boilers or removing it therefrom so as to maintain a constant level, and it consists in the comand B its plunger. X is a valve working in the inlet second pump cylinder, the piston of which is con-
 piston in rising will draw water from the boiler, and
in descending force the same through valve M to the
top of cylinder C , and from the latter a pipe N leads

to a chamber o near the outlet passage F from the
pumps to the boiler, a double valve P working between chamber O and passage $F_{\text {, }}$ and the parsager R from
pump A to a a chamber \mathbb{S} below chamber 0 ; and m chamber O fitted with. H i Q, the upper larger end of which is exposed to the
boiler pressure in passage F. When the pump C draws
water from the boiler it will between chamber O and passage F to clomese, and the
 flow passaising the differential valve Q, pass to the over-
the boilerg.
892. Apparatus yor Preventing Fluctuation of
Gas IN Mans or Pipes From which Gas
Einaing ARE Suppien
 This relates to an apparatus to preventthe fluctuation
which is chiefly due to repeated inflation or expansion and recoil or contraction of the indiation or exper bansion
equivalent device which is employed as a sort of reserequivalent device which is employed as a sort of reser-
voir or gasholder between the main or supply pipe and
the gas inlet of the engine the gas inlet of the engine.
894. Apparatus yor Clipping Horses or orter
ANimais, J. c. Mevoburn, Londom. -17 th February, 1883.-(A communication, from Messrs. . F. Guillaume
et Cie., Paris.) $2 d$. This relates to the construction of the apparatus, so
that it can be readily taken to pieces. 895. Apparatus for Starghing Collars, de., S. The orrett, Keighley.- 19 th February, 1883.
nd othje arrangement for starching collars
naterials in such a raanner, that during the operation of starching, tne articles are exposed to the
view of the attendant.
 The inventor claims the process of obtaining sepa rately phosphoric acid and phosphate of lime from
metalluricial slags containing oxide of iron, by preci-
pitating erric oxdde in combination with part of the phosphoric acid, by means of chalk, and subsequently
precfpitating the phosphate of lime remaining in the lution.
899. Jonnt or Union Contact for Electric Fittinas,
W Defries, London. $19 t h$ February, 1883, $6 d$. The endio of the conductors are drawn through holes
in a plug of insulating material. One end terminates in a plug of insulating material. One end terminates roove and is concentric with the helix contained in a line on to which fits a coupling having
a piece of insulating material provided with corre-
sponding central and piece of insulating material provided with corre-
sponding central and side contacts respectively con-
pected to the conductors contained in the fittings.
900. Water Heater ubed in Conneotion with Cir-
colating Hoo Water Pipes for Grenhouske, do.,

This relates to the arrangement and construction of
water heaters or low-pressure boilers, in which the
water is surrounded by a large area of heating surface,
and the combustion of the fuel so efficiently effected

that om

 905. Fire-Gratre, J. Dunbar, Coalbrookdate, ShropThe object is to make the same fire-grate capable of being used with openings of different sizes in thechimney-pieces, and it consists in making the panels or cheeksp adjustable laterally.
906. Looss for Weavina, J. W. Cotton and H. Barnes,
Burnley. - $19 t h$ February, 1883. 6d. This consists of a meanss or apparatus whereby both ends thereof mave a heading and fringe at one o
then continuously witho 907 . Assity of stopping the loom.
907. Apparatus por Steeping Grain, C. D. Abel,
London.- $19 t$ h
February, 1883.- (A communicatio from D. L. L. Maurner R. R. von. Markhof, Vienna) -
(Not proceeded woith.) $2 d$. This relates to a new steeping process which enable the grain to be succeessivelyp steeped into the water and
subjected to the action of the atmosphere, by which subjected to the action of the atmosphere, by which
process all the grains are subjected for an equal length
of time to the action of the water, process all
of time to
softened.
910. Apparatus for Concentrating and Hrating
Wines, S. Pitt, Sutton. - 19 hi February 1883. communication from the Cie. Industrielle des Proceddes Raoul Pictet, Paris.)
is deposited from consists ind cooling the wine until ice ratus is such as to economise the refrigerant and to
facilitate the operation.
911. Morors Worked By Arr, GAs, STEAM, \&c., A.
M. Capell, Passenham.. 19 th February 1888 . $8 d$. as applied to air, gas, steam, or other fluid motors or
pumps, and pumps, and consisting of outer and inner wings
mounted on a cylinder or drum, which latter is pro-
vided with vided with apertures, or portholes.
914. KExEEss WATches, dc., C. Lange, London.-19th The object is to increase the strength of the attach-
ment between the watch and chain, and render the winding "pendent" moro eady manipulated,
for artificial Butter, \&c., C. A. Meinert and Th. Jeserich, Berlin.- -20 th Ferruary, 1883 . $2 d$.
917. Bread Loap-cutrer, T. M. Ford, Bristol.-20 Tebruary, 1883 . $6 d$.
This inven, M. Ford, Bristol. -20
is cleandy-cut radial incigions to to the a regular series of
bread loaves while in the unbaked state. 918. Steam, Hydradici, AND oterer Joints, B. D. Penning, London. - 20 th February, 1883 . 4 d .
This consists in a packing composed of a ring rings of a triangular, wedge, or analogous shape in
cross section, combined with a similar shaped cavity
in joint formed by the 920.
920. Asbisting the Combustion of Fuel in Gratrs
AND IN Promoting the Dafught theren,
H. W. Davidson and J. Speir, London.-20th February, 1883. 10 d . The objects are to promote draught, aid combustion
stop down draught, and in the case of bituminous coa considerably reduce the quantity of smoke in and
from fire-grates, and consists in the use of asbesto paper, or cloth, or material consisting wholly or par
tially of asbestos or of textile or other fabrics or mate rials, so treated as to render or other fabrics or mate
partially incombustible.
 The object is to provide a fastening which is auto
matically locked by the act of shutting the sashes 924. Elegotric Mrtrr, A. S. Butler, St. Andrevs, N.B.
-20 .h February, 1883. 5d. Two platinum plates are immersed in a vessel con
taining acidulated water, and connected to the main
conductors through a known resistance. The gases generated by the passage of the current cause mercury
to rise in a tube and complete the circuit of an electrong mechanism. At the same time the circuit of an induction coil is completed, the spark from the second-
ary coil of which ignites the gaseous mixture and
permits of the descent of the mercury 925. Butron Fasteninas, J. Imray, London.- 20 th
February, 1883.- (A communication from A. McKevit,

Chicago, U.S) 6d. ttached to the body, and which is passed through the two collars on the shank with an intermediate spatoe ufficient to
hole is formed
 The inventors wash the negative or spongy lead
plate in ammoniac salts, or a hot alkali to get rid of the ulphate of lead; and to prevent the formation of the
ulphate metalicic zinc is immersed in the acid liquid of the cell, and makes metallic contact with the lead
plate. The zinc may be used as a supporting plote 928. Apparatus Applicable for the pointina anb

Firing of Guss, H. J. Haddan, London.- $200 t h$ Fieb
ruary, 1883.- (A communication from A. Bouilly
France.) $4 d$.
A mercury tube and series of contact points are so arranged as to fire the
931. Printing Telegraphs, H. J. Allison, London,
-20th February, 1883.-(A communication from S. D. Field, February, 1883.- (A Mommunication from S.
D.S.)
Dd. The type wheels of which have ciass of instrumented to them a ondency to continuously rotate, which is however, escapement. The instrument is provided with two ype wheels mounted on independent shafts and mechanisms.
933. Congtruction or Arrangemment of Blooks or
Frames by a Moulding Process Sutable for - -20 th February, Lee and D. F. Beale, Maidstone. This relates to the construction of building blocks having two sides at right angles to each other, the top
and bottom ends or surfaces having grooves or channels.
937 .
37. Construction of Railway and other Wheels
AND Mode or Fixing sucy Whens on their
AxLes, W. Wyre, Shefield.-20th February 1883

The object is the construction of wheels from a
plate of wrought steel or iron, thereby rendering plate of wrought steel or iron, thereby rendering
them more durable and less liable to break than
when cast as usual ; also an improved mode of fixing when cast as usual; also an in
such wheels upon their axles.
938. Steam Boilers and Safety Combination
therewith, do., J. Hall, Manchester.-20th Feb-
ruary, 1883. $6 d$.
The object is, First, to combine in one apparatus an
automatic spring spiral safety valve, , water gparatuse, and
automatic water float, the two latter pointing to one level at the same time by an index on the float rocking
shaft, and the water in a vertical gauge glass with a
mud collector at the bottom of the combination and a mud cock to draw oft the refuse matter. Fig. 1
shows this arrangement. The float works in shows this arrangement. The float works in vessel
A as the level of the water varies, and actuates pointer
B working over a suitable index; and connected to B working over a suitable index; and connected to
vessel A is the gauge glass C . On top of gauge C is
a steam pressure gauge D , E being the steam pipe arom pressure gauge D, E being the steam pipe
from the boiler. Fis the safety valve above the vessel
A. I is the mul A. I is the mud collector, and Hy the above dischare vesselk
The back pressure valve J is for retaining the water in
the boiler in connection with water pipe K and stop
valves L and L , both of whith m may be colosed to
close any part of the combination for repairs.

 injector, and S the overflow pipe for discharge of air
and water when starting the injector. The inventio further relates to the construction of the double lifting

and forcing injector shown in Fig. 2 , and consists, First,
in forming the water supply oritice A^{1} of less diamoter than usual-that is, about one-third, or say, by a stan dard No. 5 injector of 5 millimetres, the water supply
orifice should be 10 millimetres ; and Secondly, in the
 When starting the injector. When the smail coned end
of the spinde is brought down into orifice D^{1} about

 part F1 being regulated up or down sumpicient to ofoce
ho water through a second orifico 1 I into the boiler to

 threaded through bead-shaped pieces of insulating
material, these on turn being heldin place in within a
tubula envelope of non-conducting material
 London.-20th Februarry $1883 .-$ (A communication,
from A. D. Ancel and J. M. A. Thiollier, Paris.) This consists essentially in causing the metallifirous substance itself to act as a soluble electrode when im-
mersed in a liquid capable of acting upon the metal.
 1883. $4 d$. Of sat metals are separated from their ores in the form
ay suita shate these are reduced to the metalilic state by any suit table method
 The hides are suspended in a weak solution of
tannin, in which are placed the two electrodes con-

 This relates to sewing machines called "elastio"
machines, and consists in the mode of the shuttle-driver and its arrangement in the " arm" and in the arrangement of the meohanisism for griving
oscillatory motion to the shuttle-driver, by which
 is dis with
950. Kvirtixe Machinvs, F. J. Dreory, Burton-on-
Trent (exeutor of W, Morgan-Brown, London).-

The object is to enable the changes in position of
the iffferent cams which actuate the plate and
calinder cyinder needles, and also the needlo cylinder, to be face when ini is deinoteded auto mantically by a pattern sur-
kind of knitting.

SELLEOTED AMERIOAN PATENTS.

 necessary strains, and an anvelope, sheoath, or coverin
 and an envelope, shire of requisite tensil strent overing of copper wire,
braided thereon,

283764
tively low resistance. (4) The compound electrical
conductor herein described, consisting of the comconauctor herein describob, consisting of the com-
bination of the train wire or central core of requisite
tensile tre tresth braided thereon, and an outer coating of opper wire
material consisting of a strain wire, its enenvelope or
compoctor
comen

Claim-. (1) In apparatus for disistegrating and com- minuting rrain and other frangible substances, the feendin feeding and conducting tube or chute having at the end an orifoce that tis lovg and narrow, in combination with a chamber

The end or orifice of the feeding and conducting tube
 grain and other frangible surubusanees, of an oe jeotor
formed with an elongated orifife of discharge, with correspondingly elongated abutment, substantially as

 h, having teeth on its periphery corresponding to the
teeth of the bar b the pivo for the exeentric a spring
to tomove the excentric and bring its teeth into contact
with the toeth on the bar, and a lever for moving the

284.162

excentric in the opposite direction, substantially as
speceified. (2) The toothed bar b, fixed jaw a, and sididng jaw f, in combination with the toothe and
otehed excentric h, the lever i, with itt short end in
 upon the
specified.
 Chairch (1) In In a gear. moulding machine, and in com-
nation with a stationary bed and a central hub one or more arms Ol D projecting from a saidra, hub, and
having a worm or serew and locking device, with

outward from gaid hub, an extension E , to which ${ }^{\text {and }}$
pattern is attached, a worm or serow connected with
the
 xatension, and a lock by which this extension is
guzed, in combination with a central graduated diso
fixe
 tially for each new operation, as set forth.

CONTENTS.

The Exoingre, October 12th, 1883. pace

 RALLWAY MATTRRS
Notes AND M EMORANDA
Mbitellanea -. ..
(IIlustrated.)

IRoswork
Ironwork
SEISMIC DISTURBANCES
DEFINITION OF Force.

Compertition
The Brent Vidu
TTET
the Regulation of tue
Hollow Carbon Lississipp
\ldots
The phonograph......
Leabing Articles-
The AUstral.
RALLWAY UNPUNOUALTY.
Is Wood PAVEMENT UNHF

LtTERature-
The Theoretical and Practical Boiler-maker
American Foundry Practice
Effect on Air of Artificlal Illumination

mingham, Wolvenerbamptor, and District..
Notes from Lancasirie
Notes From Sherfirld..
Notes from the Noll

Abstracts of Patent American Specticications. 29
Paragraphs-
ARAgraphs-
River Pollution
River Witham
Evgineering Society, K̈ngg's
Naval Engineer Appointments
Corinth Canal
..
Naval Engineoriety, King's Appointment
Corinth Cinal

