THE DEPRECIATION OF FACTORIES By Ewing Matheson, M. Inst. C.E. No. III.
To facilitate a correct estimate of deterioration it is expedient in most undertakings to divide the property into classes, and to deal separately with each. Sometimes
it is preferred to write off one average rate from the whole of the sunk capital, and if the average happens to be a fair one, the method has the advantage of simplicity.
But simplicity is its only merit, and it has many drawbacks. Buildings, machinery, and loose tools gene-
rally require very different rates; and although a fair rally require very different rates; and although a fair
average may have been established, it will evidently be affected by the vicissitudes of particular years, and if not modified may lead to considerable error. For instance, the manufacturing operations of one year, or series of
years, may have told more severely on certain parts of years, may have told more severely on certain parts of
the plant or buildings than on others, and if the wear and tear due to the operations have not been sufficiently noted, estimates for future work of a similar kind, which allow,
only the previous depreciation rate, may prove erroneus only the previous depreciation rate, may prove erroneous.
There are frequent cases of factories engaged in multifarious There are er requent cases of factories engaged in multifarious
operations where a certain total result of profit is achieved, operations where a certain total result of profit is achieved,
concerning which little or no investigation is made to ascertain to which branch of manufacture it is due.
And in the absence of a proper analysis, the most reAnd in the absence of a proper analysis, the most re-
munerative class of operations may be neglected or conmunerative class of operations may be neglected or con-
tracts taken in other branches at prices which would show a loss if the deterioration of plant due to them were pro-
perly allotted. As a corollary to the foregoing, it is dangerous to establish an average rate, because it has
been found appropriate in some other factory apparently been found appropriate in some other factory app
similar, unless the circumstances are exactly alike.
It is usual to write off a percentage, not of the original
value, but of the balance of the preceding year. Thus value, but of the balance of the preceding year. Thus
if at the end of the first year 10 per cent. has been if at the end of the first year 10 per cent. has been
written off $£ 100$, then the 10 per cent. will be written
off $£ 90$ next year, and so on the additions made with off £90 next year, and so on, the additions made within
the year going, however, to neutralise such reductions, the year going, however, to neutralise such reductions,
and in most cases to increase the actual capital value When dividing into classes the capital sunk in a manaWhen dividing into classes the capital sunk in a manu-
facturing business, it is desirable, on the one hand, to
have various distinct categories in regard to future operations or contracts can be made
in correctly only with a knowled correctly only with a knowledge of the deterioration due
to them, and because the work of one department may involve a very different rate to that of another. On the other hand, a minute subdivision is generally imprac-
ticable and inconvenient. The following is an example of the classification frequently adopted is an example
Preliminary expenses; land including adores Preliminary expenses; land, inctuding adaptation;
buildings and wharves; fixed plant and machinery; steam engines, boilers, and furnaces; small loose plant
and tools; horses. In establishing a new manufactory there is often an
outlay of capital for preliminary expenses, giving no actual return in buildings, plant, or other tangible property Such are the legal expenses attending the purchase or
expropriation of land, expropriation of land, or connected with the formation
of a joint-stock company, and in some cases even the expenses of obtaining an Act of Parliament. Outlay of
this kind may be just as necessary to the purpose in view as any other part of the expenditure, and may have been
foreseen and reckoned on as part of the invested foreseen and reckoned on as part of the invested capital.
While, however, the earnings of the factory may, so long as they continue, afford a profit on such accessory out-
lay, it may be quite valueless as an asset in case the
undertaking is wound up or sold, and theref undertaking is wound up or sold, and therefore it is generally deemed prudent to cancel gradually this portion of
the capital by writing off some of it annually out of the
earnings. Strictly this earnings. Strictly, this may be considered as a sinking
fund, but it is sometimes dealt with as part of the general depreciation. If the undertaking has been purchased as a going concern, and a specific sum paid for good-
will, somewhat the same considerations will arise for this
item also item solso. No rule can be set down for a rate of deprecia-
tion for this purpose. If the amount be sill tion for this purpose. If the amount be small, it may be
wiped off at orce out of the earnings of the first few years, or it may form a legitimate object to thich for apply the surplus profits of a prosperous year. On the othher
hand, there are cases where it would be unfair as between partners to cancel out of present earnings an outlay which
was necessary to the establishment of the factory was necessary to the establishment of the factory, and of
which, therefore, future earnings might justly bear a share. Generally it may be said that preliminary expenses should be written off at a more rapid rate than the deterioration
in plant. From three to five years is a usual period.
Where the expenses have been incidental the Where the expenses have been incidental to the purchase an increment may be held to sufficiently baluance the item, which may then need no other consideration, as a So long, however, as the facts are correctly recorded in the books-so that in the case of changing partnership or
sale of shares the reduction in the burden of sale of shares the reduction in the burden of capital can
be taken into account, and the value of the shares
enhanced accoll enhanced accordingly-the writing off of all the shares
expeniminary expenses is a distinct advantage.
Land occupied by a manufacto
full value, and no provision for depry generally maintains its England, especially in large towns, the tendency is towards a growth in value; the factory itself may have become the contributory trades, while the construction of railways and
other facilities for trans other facilities for transport may largely increase the value
of the site. More than this, the expenditure for clearing and preparation of the site, as well as the formation of roads and wharfs may have added a more than correspond
ing value to the land. Where a factory originally built in an open neighbourhood has been long established it may
have become so surrounded by a growing town as to have have become so surrounded by a growing town as to have
acquired value as a site for other classes of buildings
entirely entirely disproportioned to its original purpose ; and in
large cities it constantly occurs that a factory may be dis large cities it constantly occurs that a factory may be dis-
mantled, and the site sold for a price high enough to pay
for the building of for the building of a larger and better factory elsewhere
on a more commodious though less central site. While, however, it may be equitable in the case of a change of
partners or business to re-value the site or take into partners or business to re-value the site or take into
account its prospective value, this increment should not be mixed up with the annual accounts of the undertaking further than to justify the maintaining the capital value of
the land itself without depreciation. But although the tendency is generally upwards, there are occasionally cases where land may depreciate in value. Thus, the growth of
the town, or the opening out of railwaysand roadsin another the town, or the opening out of railwaysand roadsin another
direction, or a change in the locality of the trade may dave left the site isolated or unfavourably placed. From
hed these causes itmight prove necessary, if the factory were to be these causes itmight prove necessary, if the factory were to be
sold, to dismantle it in order to render the land available for a more appropriate purpose. Therefore, even while the
manufactory was a going concern it might be prudent, mhere such a wabiability appeared probable, to write off some-
thing from the original thing from the original value of the land, so as not to leave the burden of the loss to those who might be proprietors
at the time of change. Sometimes a depreciation is neess sary, not because of any real falling off in value, but be cause the land was bought in a time of inflated prices. As a general rule, however, no depreciation rate is needed for the capital sunk in land and in the cost of adaptation.
Buildings may be considered to include all structural additions to the land, and, therefore, not only workshops and offices, but wharfs, railways, and tramways, may for
the present purpose be placed in one category. It very the present purpose be placed in one category. It very
often happens that in the accounts of manufactories no allowance is made for deterioration of buildings, it being considered that if kept in proper repair they are perma-
nent. The term of endurance depends primarily nent. The term of endurance depends primarily on the
solidity and quality of the original work, and then on the solidity and quality of the original work, and then on the
attention paid to repairs. But besides current repairs, there must also be partial renewals from time to time at intervals far apart in the early years of the undertaking, but shorter
as the factory grows older, which would tell heavily, and as the factory grows older, which would tell heavily, and
perhaps unfairly, on those who happened at the later period to be proprietors, unless some provision had been made by writing off some of the value in the early years,
In reckoning the proper rate of depreciation for buildings In reckoning the proper rate of depreciation for buildings
of brick or stone, they may be divided broadly into two classes, as those subject only to ordinary deterioratio from time and weather, and those which suffer also from abrasion, concussion, or other incidents of working. In
an engineer's factory, for instance, the pattern shops an engineer's factory, for instance, the pattern shops,
fitting shops, lofty chimneys, storehouses, and offices might come in the first division; while the foundry, smithy, and in some heavy trades, the machine shops and erectin shops might, as being liable to rougher usage, be place in the second. And even in lighter trades, if quickly-
running shafting or machinery be attached to the walls or running shafting or machinery be attached to the walls or
roof framing, the effect on the building may be consider able. If proper attention be paid to the roof coverin
rater as well as to the painting of ironwork and wooda depreciation rate of $1 \frac{1}{2}$ per cent. would suffice in the firet-class so reducing every original $£ 1000$ to $£ 6355$ in thirty years, and a rate of 4 per cent. might be appropriate for the If, tha-class, reducing every $t 1000$ to $£ 638$ in eleven years,
If, tively $£ 200$ be spent in a thorvugh renewal-as of roof framing, chimneys, window sashes, and in the renovation, where necessary, of brick work-this new expenditure
might be properly added to the capital value, which would then stand at $£ 835$, and the process of depreciation would again. In most factories an average of $2 \frac{1}{2}$ per cent. for
buildings will generally be found appropriate if due atten tion is paid to repairs. Such a rate will bring down a able sum spent on a thorough ryoars, and then a reasonthe capital value, and the rate of depreciation go on. Buildings of wood or iron would require a higher rate, ranging of the buildings, the climate the the design and solidity were periodically painted, and according, also, to the usage they were subjected to. Thus, strong wooden buildings in a cold dry climate might last almost as long as brick
tructures, while light wooden sheds in England would not last one-sixth as long. So, also, the cheaper kind of iron buildings on light colunans, with loosely fitted roof npainted, covered with corrugated iron, gal vanised but and shaken by the wind, that they would be quite worn out in from ten to twenty years, the old materials being almost worthless. In factories where such operations as melting, bammering, and rolling of iron are carried on in buildings of this sort, a depreciation rate of 5 per cent. would be quite inadequate, and even substautial hammers and the strains of heavily loaded cranes might require, even though current repairs were effected, a rate of 5 per cent. to allow for occasional thorough renewals. In any case the object in view in deciding upon the system and rate of depreciation should be to have always a book
value within that which a fresh valuation would give and value within that which a fresh valuation would give, and
periodical valuations may be required to show whether periodical valuations may be required to show whether an
increased or diminished rate was necessary for the future The question as to how far current repairs and renewals would alone meet the case depends, as has already been stated, a good deal on the size or extent of the factory.
Thus in a large and long-established works, a certain Thus in a large and long-established works, a certain
proportion of the whole might be renovated and even re-built every year, and this, if done out of revenue, would render a depreciation rate unnecessary. But in a small factory, or one recently established, such renewals might
not become necessary for many years, and a depreciation not become necessary for many years, and a depreciation
rate, dividing the loss over many years, would be needed to accumulate a fund for future application. The risk of error is greater when divided over many years than in
those cases where the annual expenditure shows clearly those cases where the annual expenditure shows clearly
the fleeting value of the buildings. Furnaces and ovens, the fleeting value of the buildings. Furnaces and ovens,
which wholly or in part are actually destroyed by the which wholly or in part are actually destroyed by the system of depreciation or reserve fund, particularly where they are too few to provide an annuai average of renewals.
revenue, but unless they be of large extent, so that there
will every will every year be an average expenditure for renewals, a effect, serve as works of this kind having an original cost of $£ 1000$, a rate works of this kind having an original cost of $£ 1000$, a rate
of 5 per cent. will in ten years reduce the value to $£ 600$. If at that time $£ 200$ be expended on actual renewals, such as sleepers, rails, and masonry, this new outlay may be properly added to the book value, and the same rate of sufficient to be continued. Where the quantity of rails is sumicient to class as a separate item, it is generally con-
sidered prudent to write the value down to that of old iron or steel, and there leave it, the capital being brought back to its original value by future renewals. The considerations which arise from a limited tenure, or in regard already referred to, and sometimes involve legal questions which need not be dealt with here.

THE "GLADSTONE" EXPRESS LOCOMOTIVE -
L. B. \& S. C. RAILWAY.

WE propose in this and a succeeding article to describe a Brighton, and South Coast Railway, and to supply infor mation concerning its performance. We believe that such a detailed account of a modern first-class locomotive prove extremely interesting to all our readers, and useful to many of them. The engine in question has been de signed and constructed by and locomotive superintendent of the line. It will be seen from ordinary locomotives; but it may be safely said that there is a good reason for every novelty, or departure from existing practice. An external view of the engine will be found in our impression for September 7th, page 193, and last week we gave end views and cross-sections. This week we publish, as a supplement, a longitudinal section of the engine and a plan. The tender forms the subject of a separate illustration.
In designing a locomotive special regard should al way be had for the nature of the traffic which it has to work and of the road over which it has to run. Mistakes are sometimes made on these points. Engines with a very long, in some cases ; while in oen put to work on crooked ace has not been provided, and an engineotherwise good and powerful fails to keep steam. Furthermore, it is highly desirable that in all cases the smallest number of types of engine should be employed, and that, as far as possible, the parts nd ichea about to describe nuplies an admirable illustration of the lesson we would enforce, because it has throughout been schemed to meet all the demands that can be made on it, to satisfy.
The passenger train service on the London, Brighton, and South Coast Railway has, for a long time past, been and are run at higher speeds th therous, mach heavier, notives on the line have been increasing in dimensions to meet the demand for more power. The Gladstone was really designed in 1881, but it was not put in hand then, and has ine it whning few months. Before describing the engine it will be well to say something of the road on which it has to run. It is principally intended for service between We give two profiles of the roads in question. It will be We give two profiles of the roads in question. It will be summits on the line to Brighton there are three principal third at the Brightsenam, the second at Balcombe, and the tance frome brighton end of the Clayton tunnel. The disrunce from time for express trains is 1 is fifty miles, and the rise of 1 in 100 for two and a mile 1 for a quick run but this is the incline from ad beginning Forest Hill From this is the inclue from New Coss to is a rise of 1 in 264 for soven miles Horley the line falls at the same rate for seven miles. The precise character of the rest of the road will be easily be seen tha the profile of the line on thent is page. It wil we compare this road with the first fifty miles out of London of the Great Western, or the London and NorthWestern, the unfavourable character of the Brighton line the Brighton road, esecially near London, aboud that sharp curves, and that there cre umerou, junctions running through which the speed must be reduced fact, until Croydon has been passed, quick running cannot be attempted. If a velocity of thirty-five miles an hour can be maintained, the drivers congratulate themselves.
The line from Victoria to Portsmouth is, if possible worse. We give the profile of it as far as Chichester, thi the racinge having to carry a very heavy traffic during Junction the road is identical with that traversed by train between Victoria and Croydon. Leaving Victoria there is an incline, on a curve, of 1 in 64 to be surmounted then ther is a little further on a bank followed by a bit of 1 in 94 . Indeed, in the whole line between Victoria and Chichester, a distance of sixty-nin miles, there is not in any one place more than a few yards of level, while the curves are sharp and the junctions think, than columns of description, to show that any lo motive proposing to work heavy trains over such roads with We wetuality, at high speeds, must be exceptionally powerful London, Brigh that the trains have grown heavier on the and it has at last come to pass that the "City train," leaving Brighton about $8.45 \mathrm{a} . \mathrm{m}$., is often composed of twenty-five To convey such a load in one hour and tender, 350 tons. uch such a load in one hour and ten minutes over
PROFILES OF THE LONDON AND BRIGHTON AND LONDON AND PORTSMOUTH RAILWAYS.
 Fastern Railways, and the London and South- Western Railway,
in the south , and on the Great Northern, the Midland, and the

 horse power in regular work, and $\frac{1100}{774}=1.42$-that is to say, the engine ives out 1.2 -horse power for every hundred weight,
and this
and
and

 ing out of each other; ;and thus we find on the line no wonderfal ecrakk webs to be sin thick, ives an inside bearing for thre

Ост. 19, 1883.
greatly increasing its cost. It may be urged that the engine would have run much moresmoothly with a bogie than without it. Tocomotives on various lines, we can say that the Gladstone is the easiest engine at all speeds up to sixty-five miles an is the easiest engine at all speeds up to sixty-iive miles an
hour on which we have ridden. It takes curves at least hour quietly as any bogie engine; and there is a remarkable as quietly as any bogie engine; and there is a remarkable absence of the jumping, and oscillating and thumping
over the road, with which every one who has ridden much on foot-plates is only too familiar. Not only has Mr. Stroudley rejected the bogie, he has done what for many years was held to be not only improper but or many years was held to be not only improper but. in diameter, or at least 2 ft . higher than is usually deemed right. It is not easy to see why large leading wheels ave been dence whe is that the rail and escape than the flanges of a small wheel, but there is really nothing in the argument. No bogie, at all events could make the Gladstone run more easily than it does. Besides the saving effected in weight and cost, there were other reasons operating to the rejection of the bogie. One n the Brighton Railway. Not indeed that it should be rejected for that cause alone, but the cause was sufficient torender its introduction undesirable unlessexcellent reasons could be shown to exist for its adoption. No such reasons did exist, however. In designing the Gladstone, Mr Stroudley's object was to attain the greatest amount of engine, therefore, differs but little from any other of his standard engines. Long experience proved that the members, such as piston and connecting rods, axles, boxes, valve motion, and other details, have worked without showing the slightest sign of weakness, and entirely with out failure, so that Mr. Stroudley could afford to increase the diameter of the cylinder without increasing the weight of any of the moving parts. These details are, therefore f the same dimensions generally as those which have been adopted for other engines. There have been, how-
ever, some slight moditications introduced, which have ever, some slight moditications introduced, which have
been found by experience to be of great value. As w have said to have built an engine of the same power with bogie at the front or back end, would have entailed very great increase in the weight and in the cost; it would also have complicated the machine and done away with the uniformity of the system. But to enable the engine with a rigid wheel base to move easily round curves a special arrangement of draw-bar is employed consisting of a T piece fitted with a wheel at each end similar to a blacksmith's crane. This works on a curved path made in the back of the frame under the foot-plate, the centre of which is struck from the centre of the space between the
leading and the driving axles. On the back buffer beam leading and the driving axles. On the back buffer beam a curved plate struck from the same centre rubs against a
flat surface of cast iron which is fitted on the front flat surface of cast iron which is fitted on the front
of the tender, the draw-bar passing through the centre of this central rubbing piece, the who being absolutely rigid. An elastic washer of rubber is placed in a wrought
iron circular case on the back of the tender buffer beam which has a piston, through which the draw-bar is passed, and screwed up with a ratchet handle. This, when se up to a moderate extent, permits the engine to move free o the tender as the curvature of the road requires. Concernpointed out that as the heaviest weight in the natura end, and as the greatest weight is required for safety at the leading end, if the leading and driving wheels are equally weighted, and the trailing weight kept as light much greater ease than when the weights are equal at both ends, as is the case when the engine is coupled backthe leading wheel to leave the rail; and if the leading wheel had less weight than the trailing one, it might do so at the first opportunity. Coupling forwards permits a be got in, and a shorter coupling rod. The system, therefore, of coupling large wheels forward has so many advantages that it is not quite easy to see why the old system
is still continued in this country with all but tank engines With a view to reduce the wear of the leading wheel flanges, Mr. Stroudley has for many years arranged a pround and shom the bottom exhaust, and which bends wheel. The cold wheel condenses the steam, and keeps the flange well lubricated, and no doubt adds to the eas The principal dimensions of the Gladstone are follows:-

THE ENGINEER.

ARC LAMPS AT THE VIENNA EXHIBITION. No. II.
Although as measured by the quantity of light supplied, most of the lighting work at the Exhibition is done by arc lamps-naturally so because of the large spaces to be lighted up-still the arc lamps can hardly compete n interest with their rivals, incandescent lamps. This
arises chiefly because incandescent lighting is still in its most youthful and most rapidly growing stage, while are lighting may be said to have passed beyond this exciting period of development. We are far from asserting or believing that arc lighting is becoming antiquated.
contrary, we believe that wherever very large spaces have to be lighted, arc lamps will always remain the pleasantest, the cheapest, and the most ellicient means of lighting They have still, therefore, in our opinion, a great commercial a great deal remains still to be done in improving them, a great deal remains stile to be done in improving them, regulated lamps, the cost of attendance, cleaning, and renewal of the carbons is very heavy. The whole systen the annual working expenses arise-is still in a high degree clumsy and barbarous as considered from a scientific point There is still room for gees in the methods steady time. Some improvement has certainly been attained in recent times; but the attention of electric engineers has been so concentrated on incandescent lighting of late that the rival system has suffered more neglect than it deserves, and there is thus comparatively little progress to report.
The chief arc-lamps of interest shown in the Exhibition are the Gramme, the Jablochkoff, the Pilsen, the Brush the Siemens, the Gérard, the Schwerd, the improved Soleil, the new lamp of Egger and Kremenezky, the new lamp of F. Klostermann, of Paris; and a curious, someWladimir Tschikoleff, of St. Petersburg. There are also several designs of so-called semi-incandescent lamps, in which the light is produced at a loose contact between two carbon points, which rest agairst each other with a presOn this latter be regulated either by hand dwell. It is not likely ever to come into extensive practical use, although some lamps of this style were considered great successes at the time they were first produced.
The Gramme lamp is used in the Exhibition by Messrs. Briuckner, Ross, and Consorten, of Vienna, and by Heil mann, Ducommun, and Steinlen, of Mühihausen, in Alsatia trate it The sel known that we do upper maintains a constant position, and supports a clock work; the lower consists of a bridge-which forms the
bottom of the lamp, and supports the holder for the lower bottom of the lamp, and supports the holder for the lowe carbon-and of two vertical brass rods, which, as
form the sides of the frame, and which can slide to a limited extent up and down in vertical holes in bosse upon the upper part mentioned above. This lower portion is held up by springs, so that when no current passes the carbon points rest against each other. The vertical brass
rods pass through two electro-magnets excited by the current as soon as it passes, and to the upper ends of these rods is attached a crosspiece of soft iron, forming an armature to the magnets.
on contact being made, and carries the lower portion of the framedown with it, so as to separate the carbon-points the reThe close contact of the armature bridge with the tops of the The close contact of the armature bridge with the tops of the
electro-magnets acts as a gauge for the distance apart of
the carbons. The whole current does not go through the carbons. Part is led by a shunt through another electromagnet. As the carbon points burn away the rios of the current goes through t, and a greater proportion therefore becomes stronger. At a certain limit, corresponding to the limiting suitable distance apart of the carbon points $-2 \frac{1}{2} \mathrm{~mm}$.-this magnet becomes strong enough to draw down a lever which disengages the clockwork. As soon as the clockwork begins to move, it lowers the part of the upper frame in which the upper carbon is held, thus bringing the carbons once more nearer each other. As soon as they have approached sufficiently to lower again the resistance of the arc circuit to the normal limit, the shunt current has fallen off in strength so far that the shunt magnet releases the lever, which falls and, engaging in an escape-
ment, stops the clockwork. This movement of the clock ment, stops the clockwork. of a movemen one time, and
continues only for a fraction of a second at one thus the distance apart of the carbons is kept constant within narrow limits.
Briickner, Ross, and Consorten have forty of these lamps in various positions in the Exhibition. The upper carbon, which is the positive pole of the arc, and which is used up faster than the other, is made $\operatorname{cin}^{2} \mathrm{in}$. in diameter, and the lower or negative carbon is made only sin. The
lamps burn for seven or eight hours at the rate of $1+i \mathrm{in}$. of lamps burn for seven or eight hours at the rath of carbon per hour, of which about one-third length of carbon per hour, of which about one-third
represents the shortening of the negative carbon and twothirds that of the positive.
Heilmanoff, Ducommun, and Steinlein, besides lighting fifteen of the above-mentioned Gramme lamps having a dozen lathes and other machine tools by two Gramme electro-motor hibition in our general description of the Exhibition, but may do so here in passing. It is interesting
as being the only example of the driving of engias being the only example of the driving of engl-
neer's workshop machinery in the Exhibition. It would be more interesting if the machines did more work and were not simply driven back and forward empty.
This firm in ordinary circumstances claims an average efficiency of 55 to 60 per cent. in the electric transmission of power.
regulating described fully the principle of action of the other arc lamps are regulated in a very similar manner, and a repetition of minute explanation will not now be several lamps are placed in series in one circuit the principle of using the magnetic field of a shunt circuit, principle of using the magnetic field of a shunt circuit,
whose strength varies inversely as that of the arc circuit, as the power to actuate the regulating meshanism, is an almost invariable one. It was the invention of the shunt regulating apparatus that rendered it practically possible to put arc lamps in series. This was impossible so long as the regulation depended directly on the strength of the main circuit, because this is affected not only by the varying resistance of each lamp, but by the sum of all the lamp resistance o
resistances.
There exists considerable confusion of mind with regard to the operation of this principle. The regulating apparatus is frequently talked of as if either the electro-motve force through the lamp, were a constant quantity. If the electro-motive force remained constant, the current through the shunt would also remain constant, and it would have no regulating influence. The whole current, also, never remains constant. We think, therefore, that it may be useful to many of our readers to explain, as exactly as
possible, before proceeding further, the law according to which this regulation takes place, the more so because, so
far as we know, an investigation of this law has not hitherto far as we know, an investigation of this law has not hitherto
The sensitiveness of the regulation of the light-giving power of an arc lamp may be considered as dependent upon three things. First, it depends upon the rapidity with which the electric resistance of the arc varies with the amount of light it radiates. The greater the ratio of the variation of this resistance to the corresponding variation Secondly, this sensitiveness is the greater the more rapidly the intensity of the magnetic field, due to the shunt circuit, varies in proportion to the variation of the arc resistance. This intensity is proportional to the magnitude of the hunt current, and also to the number of coils the shunt circuit makes round its electro-magnet. By increasing the number of coils the field is made more power-
ful, and the variation of its power is correspondungly and the variation of its power is correspond-
ingified, but the ratio of the increase of magnetic intensity to the normal intensity remains the ame whatever be the number of coils. It is latter lirge masures the sensitiveness. Thererore, although vide force sufficient to overcome the frictional and other mechanical hindrances to the motion of the regulating mechanism, still, in considering this second factor in the mechanism, still, in considering this second to confine our attention to the law according to which the magnitude of the shunt current varies with the arc resistance.
The third factor consists in the mechanical delicacy of the se or decrease of he magnetic force due to the shunt circuit all thon points nearer or further apart.
he third factors are of paramount importance. It is in between farious lat the chier apparescibe the eccurs mechanisms used in the lamps at the Vienna Exhibition, so far as novelty or recent improvement makes them interesting at the present time. The first factor depends on the quality and size of the carbons used, and on their arrangement, as influencing the shape in which the points are consumed. A lamp may be designed and constructed perfectly with regard to the second and third factors of sensitiveness, as explained above, but if bad carbons be
*These fifteen lamps are fed by three dynamos, which we will illus-
trate separately. One dynamo feeds three lamps, each of 200 Carcels
power; second feeds four lamps of 175 Corcels ; and a third eight lamps,
used in it, its light will be unsteady. If, as the points burn \mid If r increase from 10 to $10 \cdot 1$, shunt current would increa if the shapes of these points change irregularly detached; consumed, from want of home regulary as they are carbon stick then no regulamogeneity of quality in the in itself, will prevent " blinking" apparatus, however perfect in the light. The "atinking and general unsteadiness dense and perfectly homogeneous quality is now very generally recognised by manufacturers, but unfortunately consumers are not yet sufficiently alive to it.
The second item of sensitiveness, namely, the ratio of the variation of the shunt current to that of the are resistnce, can be investigated mathematically. From what ollows, in which the algebraic equations are illustrated by umerical examples, it will be seen that in this respect a onsiderable difference exists between a lamp which is the only one in the circuit and one which is one
only of a series coming "one behind the other," as the Germans say. In the first case the one lamp considered in the following equations offers a very large proportion of in the following equations offers a very large proportion of resistance causes a large variation in the current if the號 lectro-motive force be maintained uniform. This is the case to a much smaller extent if the lamp is only one of a eris. outside ciruit maintermals at the dynamo of the also evidently in er proper supposition to make except the restance of the whole of the outside circuit, ennstant whil of the particular lamp considered, remains electro-motive electro-motive force between the dynamo terminals of the cuit with the cuit with the exception of one particular lamp, whose main are circuit, whose resistance call $r=\frac{1}{l}$, and theshunt circuit, whose resistance call $\rho=\frac{1}{\gamma}$, where k and γ are the "conductivities" of these two branches. Here ρ and γ are
from ${ }^{20}$ to $\cdot 20098$; or, if r increase from 10 to 15 , shun current would increase from $\cdot 20$ to 249 .
Example III.-Single lamp resistance about $\frac{1}{12}$ whole Data : $\mathrm{P}=100, r$

If r increase from 10 to $10^{\circ} 1$, shunt current would increase from 83 to 837 ; or, if r increase from 10 to 15 , shunt arrent would increase from 83 to $1 \cdot 18$.
Example IV.-Single lamp resistance again about $\frac{1}{12}$ Whole external resistance
Data: $\mathrm{R}=100, r=10, \rho=500, \mathrm{E}=1000$

$\mathrm{R}_{1}=9 \cdot 80, \mathrm{R}+\mathrm{R}_{1}$	$=109 \cdot 80$
Whole current	$=9 \cdot 10 ;$
Arc do.	$8 \cdot 92 ;$
Shunt do. $=18 ;$	

$$
\frac{\mathrm{D}}{\text { current }}=\cdot 088
$$

If r increase from 10 to $10^{\circ} 1$, shunt current would increase from $\cdot 18$ to $\cdot 1816$; or, if r increase from 10 to 15 , shunt current would increase from 18 to $\cdot 259$.
Example V.-Same as in IV. with all resistances halved
Data : $\mathrm{R}=50, r=5, \rho=250, \mathrm{E}=500$
$\mathrm{R}_{1}=4.90, \mathrm{R}+\mathrm{R}_{1}=54.90$.
Whole current $=9 \cdot 10$;
Arc do. $=8.92 ;$
Shunt do. $=.18 ;$
$\mathrm{D}=.032$
shunt current $=\cdot 177$.
fectly attained by this as by some other lamps that have not the same simplicity of construction, is amply demon-
strated by a comparison of the behaviour of the Jable with other lamps at of the behaviour of the Jablochkof with other lamps at the Vienna Exhibition. We regret liking for the beautiful we confess to a particular personal their enchanting brilliancy in Paris. We are sorry to but heir enchanting brilliancy in Paris. We are sorry to be wion to ours, because ticularly influential one.

THE SEVERN TUNNEL

N October, 1879, just four years ago, the progress of the Great Western Railway Company's tunnel under the Severn wa stopped by a heavy influx of land spring water, which entered the river on the Portskewett side. Of this yards inland from in our impression for the 24th October, 1879. After this give ontract for the work was placed in the hands of Mr. T. A Walker, and it has proceeded since without material hitch nother great spring has, however been tapped, or perhap more correctly it may be said that water from the same springs and underground reservoirs has again breached the tunnel rock, and filled the whole of the work below
the level of the breach. On this page will be found scale of part of the tunnel section showing the Monmouth side the deepest part of the river, the Shoots, the pumping shafts Sand s, winding shaft W, drainage headings, old and new, and, by round block dots, the positions of the 1879 and of the 1883 breaches, by which the works have been flooded. This second influx of water took place at $6.50 \mathrm{p} . \mathrm{m}$. on Wednesday, the 10th inst., without any previous sign of water in that particular part of the works ; a large quantity burst in in the bottom heading about 260 yards west of the main shaft on the Monmouthshire side. The water ran at first 9 ft . wide and 3 ft . 6 in . deep, but after running about tinued, however, to pour into the works at er about 30,000 gallons per minute for twelve hours, thege rate of this point lifting only 11,000 gallons per minute, and the balance of 19,000 gallons spreading through the works.
The inflow gradually slackened, till on Sunday it equalled the

constant, while r and k vary as the carbon points are consumed. Also $\mathrm{R}_{1}=\frac{1}{k+\gamma}$

Then we find

whole current through lamp $=\frac{\mathbf{E}}{\mathbf{R}+\mathbf{E}(k+\gamma)}$ Current through carbons and are = whole current

$$
\frac{k}{k+\gamma}=\frac{}{\mathbf{R}(k+\gamma)+1}
$$

Current through shunt $=$ whole current $\times \frac{\gamma}{k+\gamma}=$

$$
\overline{R(k+\gamma)+1}
$$

The only variable in these expressions is
The ratio of variation of shunt current to variation of ar esistance,
or $\frac{d \text { (shunt current) }}{d r}=-\frac{1}{r^{2}} \frac{d \text { (shunt current) }}{d l}=$
$\mathrm{ER} \gamma k^{2} \quad \mathrm{E}_{\rho}^{\mathrm{R}}$
$\overline{\{\mathrm{R}(k+\gamma)+\mathrm{I}\}^{2}}=\frac{\rho}{\left\{\mathrm{R}\left(1+\frac{r}{\rho}\right)+r\right\}^{2}}=$ say D .
The proper measure of the electrical sensitiveness is the ratio of this latter expression-the differential co-efficient rential co-efficiente of the shunt current. Call this diffe-
$\frac{\mathrm{D}}{\text { shant current }}=\frac{1}{r\left(1+\frac{r}{p}+\frac{r}{\mathrm{R}}\right)}$
Take the following numerical examples to illustrate the meaning of these equations:-
Example I.-Resistance of the single lamp about half that of the whole external circuit
Data : $\mathrm{R}=10, r=10, \rho=100, \mathrm{E}=190$ volts
$R_{1}=9 \cdot 09, R+R_{1}=19 \cdot 09$
Whole current $=\frac{190}{19 \cdot 1}=9 \cdot 95$;
$\begin{array}{ll}\text { Arc do. }= \\ \text { Shunt do. } & =\end{array}$
d-shunt curren
$=\mathrm{D}=\cdot 043 ;$ and
$9.05 ;$
90
Thus, if r increased from 10 to $10 \cdot 1$, shunt current $=048$.
increase from 90 to shunt current would increase from ' 90 to $1 \cdot 11$.
Example II.-Single lamp resistance agai
Data: $\mathrm{R}=10$,
$=10, r=10, \rho=500, \mathrm{E}=200$
$\mathrm{R}_{1}=9 \cdot 80, \mathrm{R}+\mathrm{R}_{1}=19 \cdot 80$.
$\begin{aligned}=9 \cdot 80, \mathrm{R}+\mathrm{R}_{1} & =19 \cdot 80 \\ \text { Whole current } & =10 \cdot 10 ; \\ \text { Are do. } & =9 \cdot 90 ; \\ \text { Shunt do. } & =\cdot 20 ; \\ \mathrm{D} & =\cdot 0098 \\ \text { D } & =.049\end{aligned}$
shunt current $={ }^{\circ} 049$.

If r increase from 10 to $10^{\prime} 1$, shunt current would increas from 18 to 183 ; or, if r increase from 10 to 15 , shunt current would increase from ' 18 to $\cdot 34$
Comparing now Example I. with II, and III. with IV altered by changing the the sensitiveness is not materially altered by changing the resistance of the shunt, so as to What small difference this effects is in the direction it. having greater sensitiveness with the weaker current through the shunt. Again, comparing I. with III. and II. with IV., it may be seen that, other things being equal the sensitiveness is much greater when many lamps are arranged in series than when the whole external resistance is furnished by only one or two lamps. Once more comparing IV. with V., one may deduce that by halving all the resistances throughout the whole external circuit, and at the same time halving the electro-motive force, so as to doubled the same current as before, the sent the whole energy absorbed in the circuit is also halved, and the light produced therefore reduced in a still greater ratio This is not, therefore, pointed to as a practicable method of obtaining sensitiveness in the regulating apparatus.
It appears then that, so far as sensitiveness of the reguation is concerned, arc lamps are best arranged as many as electro-m series, the dynamo being worked to give a high obtainable by modification of the ratio between the arc and the shunt resistances. Evidently, then, so far as the good regulation is in the power of the designer, it depends chiefly upon the quality of the carbons-over which, indeed the designer has, properly speaking, no direct control, but which is a matter to be attended to by the consumer-and upon the mechanical delicacy of the regulating mechanism. Those arc lamps termed "candles," in which the two carbon sticks are laid parallel and side by side, require no such regulating apparatus as above described. If the carbon points are consumed equally, they always remain at the same distance apart. This equal consumption can only be attained by using an alternate current. The most noteworthy example is the Jablochkoff lamp.
The Jablochkoff candle has undergone no change in design of late, and, therefore, we need not stop to describe it, its construction being well known. We need only remind our readers that it is only suited for an alternate current. This was an advantage, perhaps, at the time of the invention of the Jablochkoff candle, so far as the generation of the current was concerned, and there was also the other and chief advantage that the two carbons were equally and symmetrically consumed, and that no regulating apparatus was necessary for the continuous adjustment of the length of arc. This latter remains to the present day an advantage in point of simplicity of construction possessed hy no other lamp used in the Exhibition except the Soleil or Sun, but that the desired result, namely, that of constancy of length and resistance
of arc, and consequent steadiness of light, is not so per-
quantity thrown by the pumps, which then held the water a about 130 ft . from the surface of the ground. After so holdin Wednesday night had lowered thegan slowly to gain, and up to A contracting engineer seems ever 6 in.
A contracting engineer seems ever ready to think that things
mightalwaysbe worse. Mr. Walker says, "Only one mile of the tunnel is affected by this inflow," the matter, because with the other three miles work is bein actively pushed on. Walls have been constructed in two places across the tunnel and in the heading, and provided with doors. By this means the part which is flooded could be shut off to clear the works of water below the doors This could be done in about a week, but as the pumping at this point has already reduced the head at the next shaft, so that the Mr . Walker is unwilling to lose the gain obtained without murthe trying to overcome the whole of the inflow. Some mino assistance in raising water was to be set to work yesterday, but if additional large pumps are necessary they will require probably two months for erection. We are glad to learn that as far as can be told the works are not damaged in any way, and the next It days will decide which course must be taken.
It is not altogether a matter of certainty as to where the water which has now drowned the works has come from, because although the breach is so near that of 1879, as shown in the into the tunnel have long since been kept dry by the large pumping power which has been at work during the the large pumping power which has been at work during the past four years, and not only these ponds and springs, but the river Nevyn
is drained for a distance of about five miles. Thus it would appear that a source not previously drawn upon has been tapped, whether it be springs from some considerable distance or underground reservoirs. There seems, however, good reasons for expecting that the source will soon be exhausted, and that under the energetic management of Mr. Walker, his large staff and his four thousand men will soon get over the difficulties. The lining has been completed in those parts shown in black section.

COMPLETE MILL AND PLANT FOR MAKING

 PORTLAND CEMENT.The engraving which we give on page 303 is illustrative of the general arrangement of a building and the necessary plant erected by the Pulsometer Engineering Company for the manufacture of Portland cement, the capacity of the mill being fifty
tons per day. Other engravings and particulars we shall give tons per day. Other
in another impression.

University College, London: Lectures on Chemical Tedhnology during the Session, 1883.- Prof. Charles Graham, chemistry:- "Heating and Lighting," on Tuesdays at applied beginning October 9th; "Metallurgy," on Thursdays at 3 p.m., beginning October 11th; "The Alkali Trade," on Tuesdays at 3 p.m., beginning January 15th; "Agricultural Chemistry," on Thursdays at 3 p.m., beginning January 17th; and on "Brewing" on alternate Mondays at 4 p.m., beginning October 8th. The
laboratories for practical instruction in the above and other branches of applied chemistry are open from October 3rd to the middle of July. Each student works independently, and can join at any time for one or more months. The laboratories, and each course of lecture, are open to all without examination o
attendance on any other lecture given in the college.

ARRANGEMENT OF SIGNALS AT TALBOT ROAD STATION, BLACKPOOL. tHe railway signal company, engineers.

The accompanying illustrations represent signal gear, constructed by the Railway Signal Company, at Blackpool. The diagram shows the new excursion platforms that were brought into use on Bank Holiday, the 14th of May, for accommodating ally during Whit-week. The diagram shows the lines of rail and the arrangement for signalling the same the signal rail an placed where it is marked A on the plan, and is 31 ft . $7 \frac{1}{2}$ in. long, 12 ft . wide, and 15 ft . high from rail to floor level. The locking frame in this cabin consists of fifty-six levers, fifty of which are working levers and six spare levers for any future use.
The engraving below shows the arrangement used by the company for effecting the interlocking of the levers. The sliding locking bars used in this apparatus are of channel iron, section lin. by lin., and in the channels are rivetted the studs for effecteasily taken out, either for cleaning or are very accessible, and the locking, without disturbing any other portion of the appar tus. The locking is actuated by means of motion plates con nected to the levers with slots in them, having inclined termina tions. The first small movement of the lever thus gives motion to

the locking gear for the purpose of locking, and the last movement of the lever when pulled over completes the motion and effect with unlocking. The motion plates are geared into vertical bar required with the studs on the sliding bars, and so effect the locking or unlocking. The motion is given to the sliding ba by bell cranks, which turn upon a centre fixed on a casting between the vertical bars, one end of the crank being connected to a vertical bar, and the other end to a sliding locking bar. The advantages claimed for this locking frame are, fewness of parts,
simplicity, uniformity, and strength, the weight per lever being about $3 \frac{1}{2} \mathrm{cwt}$.
The signal
cabin, twenty-one signals, locking frame, with fifty-six levers the whole of the connections to eighteen pairs of points, and nine facing point locks and the whole of the signal connections wer made, fixed, painted, and opened for the Whit-week traffic, in four weeks from the date of receiving the order, and the whole of the tremendous traffic of the Whit-week holidays and ever since that time has been worked without hitch or delay.

WARNERKE'S POCKET ACTINOMETER.
A description of Warnerke's sensitometer for testing the relative rapidity of photographic dry plates was published by us in a recent impression. Another instrument of his deserving testing the illuminating power of as and similar purposes are inapplicable in photography because of their bulk. An instrument is wanted which can be carried in the pocket, and used a any moment in the open air without loss of time. Mr. Warnerke Woodbury, and others before designing his own. In Weqqerre's actinometer the property of phosphorescence is utilised, a phosphorescent body being exposed to light, and the intensity of the uminosity set up being then measured.
Figs. 1, 2, 3, and 4 represent the instrument and its various portions. A is a circular dise $2 \frac{1}{2} \mathrm{in}$. diameter, in which calcium sulphide is hermetically sealed between two glasses. The brass
rotated with the fingers The partition C has a circular hole i it $\frac{1}{2} \mathrm{in}$. in diameter, through which light is allowed to pass when desired to excite the then-exposed portion of the phosphorescen substance below. The lid D is hinged to the tube B, which hold a certain number on the rim A, shows what part of the disc been excited. The brass tube H, which fits inside the tube B, has a bottom J , made of two discs of thin glass, beween which is inserted
semi-transparentmaterial which is so distributed as by transmitted light to appear as a series of cir opacity opacity, each showing such dises, but L and K have no numbers. K transparent and colour less, L is transparent and of a green colour. Fig. 1 represents the instru-
ment complete, Figs. 2, 3 , and 4 represent its separate parts. To use raised, and the trans parent disc K brough
 over the opening C , so that the light acts on the calcium sulphide beneath. The proper length of exposure to light is then given, after which the lid D is closed, and while the
numbers are examined by the eye through the magnifying glass in the tube H is revolved; consecutive numbers are then seen,

but they diminish in intensity until a disc is reached, the number of which cannot be distinguished; the number of this dise indicates the intensity of the light.
When the next observation is made a fresh surface of the by the rouphide is exposed rim till the indicator G point to the next number. Ten fresh exposures can thus
be made. If it be required be made. If it be required to make more, and por-
tions of the disc are still uminous, that luminosity may be extinguished by the calcium sulphide through the aperture L holding the material for extinguishing
 heresidual phosphorescence. Certain red, orange, and green glasses and transparent liquids Fill extinguish the luminosity of excited calcium sulphide is the rate at which calcium sulphide loses luminosity after exposure to light:-

Time.	Intensity.	Time.	Intensity.
0 secs.	.. 1.	545 secs. 000628
${ }_{75}^{35}$	$\begin{array}{llll}. & . & 0 & 0.076300 \\ & 0 & 0.4883\end{array}$	700	$\begin{array}{lll}\because & . & 0.004582 \\ 0.003084\end{array}$
125	$\begin{array}{llll}. . & . . & 0.026752\end{array}$	1110 ",	.. . 0 0.00025886
170 ", 00017899	1305 ", $0000 \cdot 996$
${ }_{429}^{265}$ "	$\cdots \quad . .00 .017744$	${ }_{1725}^{1525}$ 0.001736
420 0.007765	1725	0.0014

Thus for the first thirty seconds the phosphorescence diminishes rapidly, but afterwards more slowly. Hence observations are after the exposure of the sensitive surface
Mr. Warnerke has another way of preserving calcium sulphide
rom moisture and gases than enclosing it in a glass cell. He mixes it with paraffine wax, and it then seems to be very permanent in its properties.

A NEW RAINBAND SPECTROSCOPE
The complaint that certain persons could not see the rainband in the spectrum with the earlier English pocket rainband spec roscopes, either in consequence of its faintness or the want of experience is using the instrument on the part of observers, has een removed when the latter possess ordinarily clear vision, by a new spectroscopedesigned by Mr. R. P. Grace, and manufactured by the instrument :-A B is a brass tube between 6 in . and 7 in . long,

with a piece of plain glass, worked parallel, at the end B. The slit is at C; the width of this slit can be varied by turning the ring D in front of it. E is an achromatic lens which is placed the distance of its own focus from the slit. F is a compound direct vision prism, containing five prisms, two of which are of 0 deg., and made of the densest flint glass ; these two prisms
 panada balsam and castor oil They serve the purpose with ing the rays into a straight line, and preserving the surfaces of the flint glass from oxidation. This flint glass is of a remark able nature, of a slightly yellowish green tint; blocks of it eel as heavy as lumps of metal, and it oxidises rapidly from the large proportion of lead it contains. Prisms of 90 deg. are beyond the limiting angle between glass and air, consequently not a ray of light could enter them were it not for the action of ine crows glass prisms which are cemented to them. Thus, in this double ortion of the instrument is Gasilen that The peculiarity of this spectroscope is that it band as separate lines, and enveloped in shadow whows the rainvery strong. When the band is weak the lines are still there and are seen fainter on a bright ground. Most persons who fail see the band can easily distinguish the separate lines. The focussing is done by means of a novel arrangement with a
milled head, so as to suit the vision of each observer. This

milled head is represented in the accompanying cut-Fig. 2which also gives an idea of the external appearance of the whole instrument. This diagram is to scale, an
By the aid of Fig. 3 an idea is given of what should be looked two thick lines in the cut represent the double line D , always present and prominent in the orange of the solar spectrum ; R is towards the red end of the spectrum, and G towards the When fine weather may be expected they are invisible; when rain is imminent they become very strong. At times, when a heavy downfall may be anticipated, they are enveloped in shadow, and the space between the D lines is filled up, so that at such times this group of lines with the band becomes the most prominent object in the solar spectrum.
In using the spectroscope it should be directed towards a
 construction, half a turn of the milled head pushes out the eye piece to its full extent; this is done by means of a lever arm, inked on to the brass tube carrying the eyepiece by a light curved connecting rod of brass.

Launoh of Paddle Tug Buffalo.-A steam paddle tug was launched on the 8th inst. from the yard of Messrs. Hepple and Co., North Shields-length B.P., 100 ft ; ; breadth, 17 ft .9 . $\mathrm{in} . ;$ deptb, Mr. J. F. Flannery, for service in Algoa Bay, South Africa, and is expected to steam ten knots per hour, and will have a pair of sur ace-condensing side-lever engines,
A Gigantic Organ.-The largest organ probably ever constructed was lately completed at Ludwigsburg. It is destined for the with pedals, \&co., proportionately numerous A very complete swell arrangement allows the increase and diminution of sound
to be effected with singular perfection and delicacy of effects filling of the pipes could not be carried out by organ blowers, but is effected by machinery worked by a gas engine of 4 -horse power, This organ is 20 metres high, 11 metres broad, and 10 metres deep about $65 \frac{1}{2} \mathrm{ft}, 36 \mathrm{ft}$, and 33 ft . respectively. The largest wooden
pipe is 10 metres (32 ft .) high, and its cubic contents are $70^{\circ} 6 \mathrm{cubi}$ pipe is 10 metres (322 ftt) high, and its cubic contents are 70.6 cubic centimetre and a-half high-little more than $\frac{1}{2} \mathrm{in}$.-and is attached to the greatest one.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our

CAST IRON v. WROUGHT IRON SHAFTS. Sir, -Many users of shafts besides engineers have a perfect
orror of cast iron shafts, and we find in most engineers' specifications, "to be made of best scrap iron, hammered." Now, consider be relied upon. After the order once gets into the forge you will generally find the scrap to make the stat boughied ind stackiminately many sources. Some from shipbuilding yards, boiler yards,
smithies of all kind; much comes in the form of ballast from abrood,
where most of where most of our common iron goes to, and a lot is collected all
over the country by scrap dealers, so the various kinds get generally over the country by scrap dealers, so the various kinds get generally
grouped together. Then the lads usually employed pick up the
pieces required from the ruck, pieking those of most convenient pieces required from the ruck, pioking those of most convenient
shape to make and build up the required pile to size or weight shape to make and build up the required pile to size or weight
required, and with no qualified supervision to select the best, even
if it could be selected under such circumstances; and the engineer if it could be selected under such circumstances; and the engineer haps that all scrap is good; or perhaps it is through the general idea own scrap, and hence sell it as extra quality in consequence of its undergoing an extra process. But it is well known amononst
practical forge men that we do not get this in forged shafts. Well, supposing we get some good scrap and some bad in a shaft; of course, the weakest part is the measure of strength. then piled again, heated, hammered, piled again, and so on as
often as required, according to the size of the shaft or any other forging required. Of cdurse, the larger the shaft the oftener and more numerous the times of process, and who shall shall say that in one of these fifty or a hundred heatings some one portiondoes not get
burned or over-heated, and there lose its nature and strength? burned or over-heated, and there lose its nature and strength?
When such occurs, there again is the measure of strength of the shaft when completed, and even notwithstanding the shaft may be all of good iron, and no bad scrap. It is also a well-known fact the iron granular, even the constant jar or vibrations from the hammer breaks the fibres, and leaves the mass granular. Can anyone who has seen fractures of broken shafts, or piston rods, or any kind of
large forgings, say that he ever saw one of a fibrous fracture? hey are generally of large crystal or flakey kind, often resembling making a long forging the cold end farthest from the when jars and breaks off through the vibrations passing through the mass of iron. If it is preferred to have a hammered iron shaft, why not make it in what ought to be the best known way, by using such the desideratum? Is it not shown that scrap is unreliable at first, o say nothing about the fact that by working it frequently
oses its nature, and is hence reduced in tenacity or strength.
Henoe, it is contended that wrought iron scrap used to produce
a large shaft loses its initial strength. If wrought iron is to be a large shaft loses its initial strength. If wrought iron is to be puddling forge. This should be done by puddling best pig iron,
and producing puddle balls ready for the hammer, and the iron
should be puddled somewhat raw somewhat more cinder should be left in, so as to be of use in the forgings to be made from it. It'should, after hammering, be
rolled into convenient sized square bars; these should then be roled into convenient sized square bars; these should then be
fagatted together according as required, and so prepared for the
heating furnace in the forge. The cinder thus left in the prepared puddle bars is then useful in liquifying the metal in its progress of producing the shaft, inasmuch as the iron heats more thoroughly through, and is not so liable to burn, and the iron from such bars
works up in forging nearer to the approach of fibrous iron, as it
would be if welding heat is produced therefore a much softer and laminations, which is another most important matter, as these
again often oocur in wrought sliafts-and a more nearly homoagain often oocur in wrought shiafts-and a more nearly homo-
geneous piece of iron in the shape of a forging obtained. The
difference in the strengthef ifference in the shought and cast iron to resist torsion not so much as other modes of applying the strains or loads,
From various torsional tests some give about the following: From various torsional tests some give about the following:-
Wrought iron, $12,063 \mathrm{lb}$., and cast iron, $11,943 \mathrm{lb}$. per square inch, In difference being only 120 lb .
In the manufacture of cast iron shafts good iron of equal quality an be obtained throughout without any difficulty, and in melting well known, that where air furnaces are in use for foundry purposes, to produce large castings, such as shafts and rolls for rolling, armour plates, and steel and iron generally, the air furnace degree of reliance Large rolls cannot be made with an mans of melting with a cupola
and when melted in the air furnace casting are mone stronger, more dense, and have the maximum wear. These-the where there is the proper convenience, and, in addition to the vertical column of metal forming the casting, a large and high in producing the density, and also for facility in feeding the cassing during the process of its shrinkage and cooling, this being earried on until the metal settles and becomes thoroughly consolidated. One may say, is not the iron in process of melting liable to become burned
by overreating? The answer is, no, with the most ordinary care and
skill and by this process it is much improved in density toing burned strength; whereas wrought iron, being subject to so many and
tingencies of overheating and all the concomitants enumerated, becomes entirely changed and reduced from what wrought iron material when manufactured into large bodies by heating and hammering. The writer has known a few instances over a oen at work very many years, having heavy work to do
have loroken and been replaced by wronght these have very soon succumbed to the heavy work, and been omewhat of late years cast iron shafts, were success. Until in the driving of heavy rolling mills and forges in Staffordshire and all over the country with the greatest success, and it will no
doubt be admitted that there is no kind of machinery more subject o violent changes and strains than such machinery. Just carry one's observation only to what cast iron rolls have to stand in
rolling mills-say, for instance, a plate mill train. First there is he, say, 300-horse power engine transmitting its cumulative power 48 revolutions per minute then a pinion wheel bringing down the speed of the a prain of rolls to on the fly shaft, minute, a further cumulative power. All in full work, running say, empty, suddenly a plate of iron is put into the rolls, the
strain being so great that instantly one can perceive the of the fly-wheel reduced. Without running through any figures to umulative power of this great wheel and engines, it reduce the that the shafts must be undergoing an immense strain is apparen the last from the prime mover, which is the second motion, or that
immediately connected to the mill train. Then the whole train eceives also these constant and severe shocks, i.e., the coupling pindles, boxes, wobblers on rolls and roll neok bearings. There are ng from these constant and actual strains. The supposed dimensere some of certain machinery and mills constructed anduerected supplied if necessary. country, and many similar instances' can be

Large wrought scrap shafts become much weaker in the course of manufacture. Cast iron shafts, cast vertically from air-furnace, and made of good iron, very materially increase in strength in ron deteriorates whilst cast iron greatly improves in the process of manufacturing large masses-shafts, and such-like productions.
Wrought bars of iron can be produced in small sizes of maximum Wrought bars of iron can be produced in small sizes of maximum
strength, but not in large bodies, as previously mentioned; and as strength, but not in large bodies, as previously mentioned; and as
the tests are from lin. bars of iron, it follows that, although wrought iron is the strongest in the tests, when worked up to large practically the advantage in a most marked degree. Therefore or large shafts, \&c., the writer says, use cast iron for safety and economy. The writer hopes this will induce more able men to favour of his trade. Ironfounder. October 10th.

MARINE BOILERS.

SIr, - Since writing to you on the above subject, I have been
communicated with by several eminent boilermakers, who think they perceive remedies for some of the defects to which attention as drawn.
Most engineers and boilermakers appreciate the fact that marine made in the way of improvement shows that the difficulties are not easy to overcome. The multitubular cylindrical boiler now in general use occasionally gives a great deal of trouble, and suffers
more from inequality in the rate of expansion to which it is subore from inequality in the rate of expansion to which it is sub-
ject, than from the pressure of steam it is required to sustain. If ect, than from the pressure of steam it is required to sustain. If that some rules should be observed in arranging and working it. I have frequently come across ships having engines of equal power
which have differed greatly in many important points, such as Which have differed greatly in many important points, such as ouniversal rule to guide the
But as such great strides are now being made in ship and engine building, the most important question of all must be the consump-
tion of coal. It is obvious that when there is one-third more heat in of coal. It is obvious that when there is one-third more heat th inst,-there must be something radically wrong in the coutruction or working of the boiler.
The question is one that demands theserious attention of all concrned in steam navigation, and I would suggest that it would be a boiler might be set up on land under similar conditions as on shipboard, and appliances of various kinds tried under the direction and superintendence of a committee. This, no doubt, would
stimulate the efforts of inventors, stimulate the efforts of inventors, and if funds were required to
carry out the operations, no doubt a large number who feel an carry out the operations, no doubt a large number who feel an
interest in the subject would be glad to subscribe, among whom would be
Pocock-st
W. A. Martin.

Pocock-street, Blackfriars-road,
London, S.E.
Sib,-"Dux" hollow carbon lamps.
me time he has called attention to an inaccuracy, but at the eaders to an erroneous conclusion. It is quite true that the true that " a greater percentage of Cruto lamps opposite ighted per horse-power than any other existing systems of ceandescent lamps." I fully believe that both the Oruto and the but I am open to conviction, and trust that time will prove the correctness or incorrectness of the opinion. The following are the figures giving the official results of the Munich experiment:-

This authoritative statement gives 10.36 Crut (10 candes) Swan of the same candle-power-facts altogether at variance with the statement of "Dux." I write contradicting "Dux" because the
It may be interesting to give the candle-power per horse-power
It

so that the Cruto, regarded from an efficient point of view, was
the worst of the lot. Of course we shall be told it has been the worst, of the lot. Of course we shall be told it has been
improved. So may the others, and in a higher ratio.
Bromley, October 12th. BIGGS.

trial of engines and boilers.

Sir, -I beg to hand you result of a trial of our engines and the engines and boilers since the trial, the result of which you pub-
lished in THE Enginerr of November 3rd, 1882. Ohief amongst hese are-four Galloway tubes have been put in each flue of the be necessity of leaving the doors partly open to help the con-
thumption of smoke, and the intermediate receiver between the sumption of smoke, and the intermediate receiver between the prevent, as far as possible, the radiation of heat.
Trial of Engines and Boilers at the Old Steam Flour Mills,
Birmingham, October 10th, 1883 .

Old Steam Flour Mills, Birmingham.
October 13th.

THE NEW PATENT AOT,

issued from the Patent-office it appears that all applications for patents before the 1st of January next are subject to the present
fees and only come under the new. Act after being granted, or in other words, "completed." Referring to section 45, subsection 3, of the Act the following is my reading of it :-"(3) In all othe respects-including the amount and time of payment of fees-this of this Act or " to all patents granted "on applications then pend ing in substitution for such enactments as would have applie 124, Chancery-lane, London, October 13th.

SIR,-In reply to "Julius" in your impression of last week, and as considerable misapprehension prevails as to the meaning of
certain clauses in the Patents, Designs, and Trade Marks' Act, 1883 , I venture to write you upon the subject. Let me premise my rema alone, but are endorsed by hereinafter expressed are no agents in London, and that they are confirmed by the opinion of
one of the present law officers of the Crown. The new Act comes one of the present law officers of the Crown. The new Act comes
into operation on the 1st of January next, and the question of into operation on the 1st of January next, and the question of
doubt is as to how applications for letters patent, which are made before that date, are affected by the new law. These applications under the existing law, for Clause 1 of section 45 says: "The provisions of this Act relating to applications for patents and pro-
ceedings thereon shall have effect in respect only of applications made after the commencement of this Act "-viz., January 1st, are mine. In other words, an applicy st of January next will have to take the further proceedings
thereon under the old law. Hence, if he has not given " notice to proceed" with his application he will have to do so in the usual course and pay the $£ 5$ duty thereupon, then apply for the warrant
of the law officer and for the sealing of the letters patent, the $£ 10$ duty just as if the new law had not come into operation. This brings him, however, to the point where the patent may be
said to be "granted before the commencement of this Act," and no longer pending in its application, and the question remains as remember takes place under the old law after the sealing or grant remember takes place under the old law after the sealing or grant
new law, which in effect sayserer: "A provided for by Clause 4 of the
netruments relating to patents new law, which in effect says: "All instruments relating to patents
granted before the commencement of this Act" shall be filed in the Patent-office. Under the new law the sealing of the patent will
take place after the filing of the complete specification. In interpretating these clauses of the 45 th section,
borne in mind that a patent both under the old and new law whe granted is sealed and dated back to the date of application, and
therefore all applications made before the 1st therefore all applications made before the 1st of January next
will be sealed, and in the language of the new Act, are said to will be sealed, and in the language of the new Act, are said to be
"granted before the commencement of this Act." But assuming the foregoing to be the correct interpretation with regard to pending applications, what, it may be asked, is the meaning of the
third clause, which says : "In all other respects-including the amount and time of payment of fees-this Act shall extend to al patents granted before the commencement of this Act, or on
applications then pending in substitution for such enactments as would have applied thereto if this Act had not been passed." I reply that so far as this refers to fees, it relates to the $£ 50$ and
$£ 100$ stamp duty now payable upon letters the stamp duty now payable upon letters patent at the end of in all cases where it becomes due on or after the 1st of January and with regard to the latter-or $£ 100$ duty-this remains able at the end of the seventh year upon all old applications-se schedule to the new Act-but is deferred to the end of the eighth year on all new applications made after the 1st of January next.
It is quite evident that this third clause doesnot refer to the ± 3 duty provided to be paid upon the complete specification under the new
law, as this duty is payable upon a document which has to be submitted to an examiner, and which has, in his opinion, to accord
with the provisional specification which he with the provisional specification which he has already examined
before even the patent can be granted or sealed. Patent-office, 71, Market-street, JoHN G. Wirson.
tober 16 th.

ENGINE SPEED
SIR,-I have lately designed, and my firm has since obtained the
order for a complete plant of machinery, including shafting, pulleys, \&c., for a mill. All the machines will be driven by belting from a common shaft, which must run at 200 revolutions per minute. This shaft will be driven by a steam engine through belting. Unluckily the steam
engine has been ordered elsewhere at rather a low engine being ordered elsewhere, my firm did not contract to supply
the pulley for the engine shaft, nor its respective driven pulley the first motion shaft as described above, nor did the engine-maker contract to supply these two pulleys. The private firm for whom than a stated sum, and they have simply placed themselves in the than a stated sum, and they have simply placed themselves in the
hands of the two contracting engineers, viz., ourselves and the engine maker.
The engine is horizontal, and to have a cylinder 18 in . diameter by 32 in , stroke. The maker says the fly-wheel he supplies with
the engine is 9 ft. Gin, diameter, and that the maximum speed he
will will allow his engine to run at is 65 revolutions per minute. The driven pulley on the first motion shaft for important reasons should
not be much less than 4 ft . diameter, so that with the engine running at 65 revolutions to drive the 4 ft . pulley at 200 revolutions necessitates a 12 ft . pulley on the engine shaft, but the extra
expense of a 12 ft . pulley the purchaser of the machinery never I suggest to the engine maker to avoid letting the purchaser into
unnecessary expense unnecessary expense, that he should allow his engine to run at 80
revolutions, and that the strap should be driven off of his 9 ft . 6 in . fly-wheel on to about a 3 ft . 10in. pulley, and so give to this pulley refuses to drive his engine more than 65 revolutions per minute, for the reason that he considers 80 revolutions an undue speed for
his engine of 32 in. stroke to run at, and says that if the purcher his engine of 32 in . stroke to run at, and says that if the purchaser
requires the first motion shaft to be driven at 200 revolutions through a 4 ft . pulley, then the purchaser must pay the extra
expense, which, of course, is very great, of substituting for the
9 ft . 6 in. expense, which, of course, is very great, of substituting for the
9 ft . 6 in . pulley fly-wheel a 12 ft . pulley fly-wheel. An engine
of 32 in . stroke at 65 revolutions gives a piston speed of 346.6 ft per minute, which now-a-days is considered a rather slow speed. I
asked the maker to run this engine at the moderate speed of 80 revolutions per minute, equal to $426^{\circ} 6 \mathrm{ft}$. per minute, and so save
the purchaser the extraexpense asdescribed, but herefuses to do this declaring the maximum speed his engine mustrun to be from 60 to 65 revolutions. Moreover, amongst other machines the engine has to
drive several pairs of millstones, which must have a periphery speed sheel, to prevent backlash. But with an engine fly-wheel
fly-wher than that of the engine
of 9 ft . 6 in . of the wheel is only 6 per cent. greater than that of the millstonery,
buit if he runs his engine at 80 revolutions with a 9 ft. 6 in . fly-wheel, then the ratio of periphery speed could pass. But knowing all to run more than from 60 to 65 revolutions. What can your readers structed that it would break down running at the moderate speed of
80 revolutions per minute? Does he want to make something out of 80 revolutions per minute? Does he want to make something out of
supplying a larger fly-wheel at an extra cost? or is he not used to making steam engines, and perlans does not understand the
number of revolutions, at which an engine can be run smioothly
and well? or am I asking him too much to run his engine of
stroke at 80 revolutions per minute equal to $426 \cdot 6 \mathrm{ft}$ speed of piston
per minute?
A.M.I.C.E. per minute?
[Our correspondent seems to forget that the engine referred to has been bought at a low price. A good and well-made engine,
with a 32 in . stroke, may be run with perfect ease and safety at 100 revolutions. We have seen cheap engines, however, which
with a 32in. stroke would be best run at about 20 revolutions, with a $32 i n$. stroke would be best run at about 20 revolutions. No
one is more likely to know what an engine will or will not stand than the maker, who is, no doubt, in this case exercising a very
wise discretion. What would "A.M.I.C.E." say if his advice wa carried out, and the engine broke down during the first week? It seems to us that the purchaser
and pound-foolish.-ED. E.]

ENGLISH v. CONTINENTAL RAILWAY SPEED. Sir,-In The Enginerr of the 21st ult., p. 224, "Commercial says that "in point of fast running, our expresses are now equalled
by those on some of the French railways." He gives as an instance the train leaving Paris at 8.45 a.m, and arriving at Bordeaux at
5.52 p.m., making ten stops, a aggregating 48 min., distance 363 5.52 p.m., making ten stops, aggregating 48 min., distance 363
miles ; also, Calais to Portbon, 827 miles, in 27 h .10 min., stops miles ; also, Calais to Portbon, 827 miles, in $27 \mathrm{~h} .10 \mathrm{~min} .$, stops
lasting over five hours, the first of which gives a speed of 43.80 miles per hour, the latter $37 \frac{1}{2}$ miles per hour.
He also refers to a paragraph which
e months a "Thaph which appeared in The EngineER Railway Speed," quoted from the Annales Industrielles on data

For instance,
1 kilo. $=1093.66$ yards
1 mile $=1760$
Then for a speed of 60 kilos. per hour $\frac{1093 \cdot 66 \times}{1760}$ per hour.
Now, the following table which I have prepared will, I think, in excess of that on the continental lines. In deducting the time for stoppages I have allowed four minutes for each stop where the length of the actual stop is not given in the time-tables, and three minutes for all other stops, so as to allow one minate for the stop and th:
speed:-

Railway.

 London, October 2nd.Str,--The collisision which onovs BRakes. Great Northern Railway, on the 15 th Lh September, is another
 automatio vacuum brakes. Here was as short, passenger train,
consisting of engine, tender, and seven vehicle, running at
apped
 yet all the continuous vacuum brake could do was to reduce the
speed to about fitteen miles an hour in a distance of forty or fifty
 harmesest if, indeed, not entirely avoided. The moment the

 that the continuuous brakes had not time to act so so sto to prevent the collision " " but they no doubt prevented the reeoil of the
carriages, and thus saved the passengers trom being more severely carriages, and thus saved the passengers from being more severely
injured," $A t$ present I f fail to toe how a non-automatio brake,
 carriages; ;and as amateres of fact it it statad that there was avery threw him against one end of his compartment, and then he was
thrown across against the other, just as the train was omming toa stand. This appears to oonfirm the statement that the recoil was not prevented ob the brake
40 , Saxe-Coburbstreet, Leicester,
CLLEMYKNT E. STRETTON.

comprtition

Sin, -If "Alpha and Omean," two oompetitiors for the Beiford were facts, they woold perhaps bo entitited to to they porbof of the honesty to whion they lay claim. Hi they had taken the trouble to
inquire they would
have found that the ber bridge was. required to to have a widith of 20oft. between north and oouthabutmentsiod Upon
this information the design of the 4 other competitor, named this information the dexign of the " other oompe
Webster.," was made, and is now being carried out.
Webster," was made, and is now being carried out.
For the information of "Alpha and Omega," who attempt to prove that the accepted design is actually unsafe, I may mention that the detail plans were not only pased by the engineers of the
Local Coverument Board, but, before being acoepted by the authority, were submitted to an eminent engineer in Westminster, who is one of the highest, if not the highest, authority on bridges. stress on any part of the structure under the heaviest loading would be slightly under 4 tons per square inch.
The wonderful calculation "Alpha and Omega" for the and requires a powerful mind to grasp it; but if the results they have arrived at be even approximately, true, scores of railway
bridges I could name whieh have their floorings constructed of bridges I could name whieh have their floorings constructed of
these plates of the same proportional strength as the one under of the load to which they are daily submitted; but strange to say, they are still standing as firm and rigid as ever they were,
I may further mention that I do not, like them, gain my knowledge from information as set forth in advertisements, but prefer
to consult more reliable authorities; and in the case of the corruto consult more reliable authorities; and in the case of the corru-
gated flooring I had for my guidance the results of some experiments most carefully conducted by an eminent member of the In conclusion, I wish to say distinctly that I shall not enter into any further correspondence upon this subject. John J. Webster.
Stephenson-chambers, 25, Lord-street, Liverpool,
Ootober 17 th.
Sir, -Having been a competitor for the construction of a uew
bridge over the Ouse at Bedford, I read with some interest the letter of "Alpha and Omega" in your last week's issue, and I was corrugated plate, 5 in deep, want of knowledge there displayed. A And 2 ft . 8in. wide, will carry being strained to a greater extent of a 5 ft . span without the metal 5 tons per square inch. If and the partial distribution of the load by the road material, even when one of the wheels of a traction engine is at the centre of the
epan, a load of not very far short of 7 tons can be supported, this

Having due regard to the permanency of the structure, I should no myself have employed a plate less than $6 \frac{2}{2} \mathrm{in}$. deep and 3 in. thick like "Alpha and Omege" understod that the Corporation Bedford required that the successful competitor should construct the bridge for the sum named in his estimate. In such competitions I do not think it is fair for estimates to be asked for unless indeed they are to be based on certain fixed prices. There are some
engineers who do not care to risk their reputations either by the carrying out of works which are not thoroughly substantial, or by exceeding the estimates without being able to give a satisfactory explanation of the cause of their doing so.
29, Victoria-park-road, 29, Victoria-park-road, London,
October 16th. October 16th.

THE PHONOGRAPH

SIR,-With reference to the letter of your correspondent, M_{1} W. F. Fremersdorf, allow me to inform him that his apparatus would
fail in that it would onlyrender the tone or musical pitch of the words spoken with would onlyrender the tone or musical pitch of the words No arrangement which works by make-and-break only can do more than this, for the number of vibrations only will be recorded, while to give a true rendering of the words uttered the shape and depth of the phonographic indentation must be transmitted as well as the contact of their occurrence. Perhaps by means of a microphonic transmitting phonograph this might be accomplished; but it seems be obt whether the fluctuations in the current transmitted could be obtained in a sufficiently marked degree to produce indentations
on the tinfoil of the receiving instrument, except in the case of very short line of extremely high conductivity and insulation.
63, Westmoreland-road, Newcaistle-on-Tyne,
October 15th.
THE DEFINIPION OF FOROE.
Sir,-I hasten to enlighten your correspondent, Mr. Eddy
Professor Professor Lodge has explained that motion is the sole cause of
motion. This is my view of the matter. Perhaps Mr. Eddy will kindly state his views on the same subject.
The point at issue is simply this:-Foree is said to be the cause of motion. To this I have no objection; but the theory does not end here. Students immediately ask, what is force? They get no answer. If they were told that a railway train was drawn by a
locomotive they would naturally ask, what is a locomotive? If we let the matter drop here there would be an end to inquiry. Mr. Eddy may not want to know any
go on even though Mr. Eddy stands still.
Most important deductions follow from the statement that motion, and nothing but motion, can produce motion. For
example, if this be true there can be no such thing as attraction. No influence can be exerted by matter where it is, on other matter where it is not. Gravity produces motion, therefore gravity must be itself a mode of motion. There can be no such thing as statical energy; all energy must be dynamic or kinetic. Pressure
motion. Mr. Eddy will be puzzled to prove that it is not.

London, October 15th.
SQUIRTING BRASS PIPES
Sir,-In an article upon "Lead Pipe Making Machinery"-
Messrs. J. and W. Weems-in ThE Enginerr of October 12th, is an account of an attempt to make brass tubing by hydraulic pressure, the result being that the zinc was separated from the copper,
It would be interesting to know what was the temperature of the alloy at the time of being operated upon, together with the heat likely to be generated by the pressure of the ram, as the separation
of the two metals in the way described may have been due merely to the difference in their melting points, the heat having been sufficient to melt the zinc at 773 deg . Fah.-412 deg. O.-which would melting point of which, 2192 deg. Fah. -1200 deg. C. - is so much
higher than that of zinc.
J. H. HUXLEY, A.R.S.M., F.I.C. melting pomt of wring,
higher than that of zinc.
Sheffield, Oct. 17 th.
DESIGNS, SPECIFICATIONS, AND INSPEOLION OF IRONWORK Srk,-Mr, Webster's letter in your last impression gives me the im-
pression that he hasstill a great deal tolearn, especially as tocourtesy with which a scientific discussion should be conducted. He has criticised Mr. H. W. Pedred's paper with little mercy. I have neither the time not the wish to take up as much of your space as he bas
done; but I wish to point out that his criticism is simply destructive not constructive, and I think it would be interesting if he
would supply some sketches of the way in whieh he would put bridges together in order that we might know what
concerning the proprieties of bridge construction are.

I will only deal with three points. First, as regards angle covers. is just a fact and not an opinion that specifications are prepared in which angle irons are put on one another as shown, and I have eard it contended that this makes a bettor job than hollow rolled ngles, because the sharp edge of the cover plate cuts into the
plate under it, as shown exaggerated in the diagram. I have purposely drawn the diagram as I have in order
FIC. 1 lower plate clearly. of the upper into the in is exaggerated. I have also seen the
swaging of cover plates specified, and done.
If Mr. Webster's experience was greater If Mr. Webster's experience was greater
than it seems to be, he would have raised no question on this point.
r. Pendred, and I would ask Mr. Webster Mr. Pendred, and I would ask Mr. Webster in situ without the use of a drift? and did he ever know a bridge all down because a drift had been used? An explicit answer to
hese two questions is desirable. There is only one class of wort in which in all my experience I ever saw the use of the drift dis pensed with, and that is in locomotive boiler work, where the plates are drilled and rivetted without ever being taken apart. But it is not necessary to use a 7 lb . sledge. Bridge curve, say, of the upper boom, and when several plates come
cole together as in the sketch the bending throws the holes out, and the
 pitch should vary, increasing ont the
without; but
difference is so small difference is so smal
that it is almost im-
possible to vary it possible to vary it as
much as is needed and no more, and a drift has to be used to get the holes fair ; and repeat that with punched work in several thicknesses it is abso Pendred points out that a rimer to be worked by a hand wheel would be a great boon to bridge builders.
Lastly, as to the heating of rivets, Mr. Webster ought to know that there is a wide division of opinion conoerning whether rivet
ought to be heated all the way or not. He forgets that a hot rive ought to be heated all the way or not. He forgets that a hot rivet machine rivetting in drilled plates from which the burr has not been removed, what he has shown in his sketch cannot take place,
On the contrary, the great difficulty is to get long rivets to fill the On the contrary, the great difficulty is to get long rivets to fill the
holes properly, and unless they are hot throughout they will not fill them at all. Mr. H. W. Pendred has only echoed the statements of the best authorities when he urges that rivets ought to be heated thoroughly throughout. It would have added to the value
of your correspondent's criticisms if he had stated exactly how of your correspondent's criticisms if he had stated exactiy how
far a rivet ought to be heated for, say, four 軼in. plates. It is quite clear that if he is right not more than an inch or so of rivet ought to be heated, or else the metal will find its way between the first joint under the snap. By the way, I may remark that in good work the snap marks never appear on the plate. There out I ha a statement this will be seen by others, and I shall no extend this already too long letter. J. M. Dorntos. extend this already too long letter.
Bermondsey, October 15th.
ROLLING SCREWS.
STR,-In your Notes from Lanoashire, page 290 of your last issue,
note the description of a machine invented by a rolling screw threads on bolt blanks. I presume this is to be done while the blanks are hot, and if so the description exactly -suits machine invented hy, I believe, a Mr. Oameron, of Dublin, and tried by the late Mr. Ashbury in his works at Openshaw in 1856 Mr . Ashbury had a contract for bolts and nuts for fishing the joint
of rails, the bolts, $\frac{,}{4}$ in. diameter, with square heads, were rounded of rails, the bolts, headed by hand, and were then passed into the screwing machine to be threaded. The thread formed was very good, and the bolt when tested proved to be stronger than others with the thread cu by dies in the ordinary manner. It was, however, found that unles
the blanks were of uniform temperature when placed in the the blanks were of uniform temperature when placed in thia referred to above, as the blanks were forged two at a heat, th second was always somewhat colder than the first, and was found in every case to be so much larger that the nuts, tapped uniformly,
would not fit, hence the machine failed to accomplish the object in vould not nt, hence the machine falis machine bas overcome this difficulty.

THE S.S. ST. GERMATN.

SIR,-Some of your readers would like to know, perhaps, that they can have photographs of each side of is no doubt but the fractures differ greatly, maybe owing to the It appears to me that all the information offered throuch this It appears to me that anl the information ofvered utrough ons disaster is worth a careful study, as a trine mbly deprived us of al
the part of the Woodburn would have probably W. W. SOANLAN.
the evidence of the St. Germain.

Naval Enginker Abpointmients, - The following appointments the Pembroke, additional, vice Sagar; and H. Laughrin, ohief engineer, to the Indus, additional, for service in the Wild Swan, The New Wet Dook at Maryport, - Rapid progress has been
made with the construction of the new dock at Maryport, and on Saturday last the works were inspected by the engineers, Sir John Hawkshaw and Mr. Hayter, who expressed themselves as pleased with the progress that had been made.
dock ready for the admittance of water by next week, when the
work of dredging the channel will be commenced. It is also prowork of dredging the channel will be commenced. It is also pro-
posed by the trustees of the town to lengthen the present piers, so posed by the trustees of the town to lengthe
as to afford a better shelter for the harbour.
Death of Mons. Alfrred Niauder.-We announce with much of the firm of Breguet, of Paris. He was manager of the Société Générale des Téléphones, of the Compagnie Electrique, and of the Société d'Eolairage Electrique, as well as chairman of the Compagnie Internationale Téléphones. He was a member of various scientific societies-amongst others, the Société Française de Phy-
sigue. He was also elected a foreign member of our own Society of Telegraph Engineers and of Electricians on the 8th May, 1872, of activity and energy were well known, and his authority on
His a ctation
questions of electrical science or practice unquestionable. We quy quote here a paragraph from a brief notice of his death that appears in the Revue Industrielle for Wednesday week. Our
contemporary says: "Inventors always experienced a kindly reception at his hands; workmen consulted him to their benefit, whilst savants themselves appreciated his experience. An inventor of an electric battery, he was one of the first to foresee the part that would be played by machines in the production of electricity;
indeed, he had himself designed a small and very ingenious machine for "laboratory use." He wrote several books, amongs
which were "Applications du Diapason a "Horlogerie," published in 1866 ; "Machines Magneto-Electriques Gratume," published at
Paris in 1875, and written in the name of A. Niaudet-Breguet; Paris, 1878; "Traité élémentaire de la Pile Electriquè," Paris, 1878, of which an English translation was made by L. M. Fisbach, and published in New York in 1870; and "Machines Electriques
à Courants Continus," of which a second edition was published in 1881. Hisresearches in dynamos entitle him to a high rank among
those who have studied in this direction. He died rather suddenly

BRIDGE OVER THE TAFF, PONTYPRIDD, GLAMORGAN.
messis. MAYNARD AND COOKE, WESTMINSTER, ENGINEERS.

HAEE TRANSVERSE SECTION

QETALLQFJQINTS IN BOTIOM BOOM NEAREST CENTRE

 SCALE OE EEET
COMPLETE MILLAND PLANT FOR MAKING PORTLANDICEMENT. THE PULSOMETER ENGINEERING COMPANY, LONDON, ENGINEERS.
(For description see page 298.)

RAILWAY MATTERS.

Ihe Midland Railway Company and the Eastern Railway Company have each invited tenders for 500 sets of wheels and axles.
A BRIDGE on the Mexican Central Railway near Aquas Calicutes two locomotives. Five persons were killed, and the train was
THE Arlberg. unnel is said now to be within 1180 metres of com-
pletion. Boring the advance heading will probably be finished by pletion. Boring the advance heading will probably be finished by
the end of this month, and the whole rail way opened for tratfo the course of 1884 . The total length of the great tunnel will be
10,270 metres--nearly $6 \frac{1}{2}$
miles rapidly
STEAM tramways have been reeently introduced in Sydney. The principally from America, and are compact, light, and of of consider roof being under shelter. At the close of 1881 there were the miles of tramway in actual use, the number of passengers during
the year being $7,090,125$, as a against $2,086,897$ during the previous year. In 1882 thhere was a further increase, which is said to be
maintained during the present year. maintained during the present year.
A Railwar has just been completed for the Arizona Copper Com.
pany which is rather steep. The length of the track is 3000 ft ., with a rise of 1100 oft. The track is laid with three rails, with turn. out in centre. It works by foree of gravitation; the loaded car
down hauls the empty car up, and the company has been running
two loaded cars down and hauling up two loaded with 1500 lb. of two loaded cars down and hauling up two loaded with 1500 ling of
iron rails. The cable is 1 inin. steel wire. The machinery consists ron rails. The cable is 1 in statel wire. The machinery consist
of two grip pulley wheels and two plain wheels, with band brakes attached to the grip puiley wheels. Two other inclines, one 1500ft.
long, with a gad of 7ooft., and one 1200ft. long, with 580 oft.
grade, have also been made for this com comany.

which Board or Trared on 19th report by Magust, at Gror Marindin, on a a collision South-Eastern Railway, containst, the following amongst station, on the conCluding remarks:- "I believe this accident to have been due to a
slight miscalculation of speed on the part of the driver, who pro-
 been fitted with a continuous brake, and the driver would have had far better chance of stopping his train if he had been running been run freely on to the rail instead of having to be applied by
hand."

THE following is a summary of the American railway accidents
in August, taken from the Railroad Gazecte. There were 144
accidents, in which 42 persons were killed and 136 inived ancuugust, taken from the Railroad Gazelte. There were 144
accidents, in which 42 persons were killed and 136 injured; an
increase of 5 accidents, but a adeorease of 4 killed and of 86 injured, increase of 5 accidents, but a decrease of 4 killed and of 86 injured,
as compared with August, 1882 . The month of August has usually made a very unfavourable showing, and this year is no exception, months of the eurreme year to the end over last year. Agust show a total of of
1074 acoidents, 320 killed and 1118 injured; a monthly average of 134 accidents, forty killed and d 144 injured, A A munthly average of
average in the number of aco acidents, above it also in killed, but average in the number of acidents, above it also in killed, but
slightly below in injured. There were no notably fatal accidents
during the mont
IN his report on a collision which occurred on the 13th August,
at Carlisle station, to o North-
wictertern excursion train from Keswickrisie station, to a North-Eastern excursion train from Kes-
wick tunderland, Major Marindin says, "The aceident might
easily have been prevented if the driver of the excursion train hit easily have been prevented if the driver of the excurrion train had
had a continuous brake at his command, but, as is too frequently the case, owing to the various classes of brakes in une upon diffler-
ent lines, the Westinghouse brake with which the train was fitted Western engine. It will train was drawn by a London and Northvery serious consideration whether stock shocould be allowestion to be
transferred from one line to another, unless means are provided transferred from one line to another, unless means are provided
for utilising the brakes with which it is fitted, and whioh are necessary for the safety of the passengers."
ON the 11th inst. an accident of an alarming nature occurred on
the North-Eastern Railway, near Leeds, by which the lives of fifty the North-Eastern Railway, near Leeds, by which the lives of fifty
persons were placed in inminent danger. The express train from persons to Leds, which is due at the latter town at five minutes to
Hwo passed through Crossates two, passed through Crossgates, a roadside station four miles from
Leed, at its usual high rate of speed. Near this part there is a
siding belonging to the Waterloo Colliery Company, Limited, siding belonging to the Waterloo Colliery Company, Limited,
whioh is reached by a switco. Owing to some mistake which cannot at present be explained, the signalman from whose box this
branch line is worked moved the wrong lever on the approach of
the train, and thereby moved the express from the up rapron the train, and thereby moved the express from the up road into the
siding. The moment the driver saw the error he applied the
Westinghouse brake and reduced the speed of the train considerWestinghouse brake and reduced the speed of the train consider-
ably. But as the engine was crossing a set of points one of the
rails broke, and the engine and vehicles following all left the rails, and the luggage van turned over on its side, and thus helped to
bring the train to a standstill. Many of the passengers were severely shaken, but the driver and stoker stuck to their post.
THE ceremony of turning the first sod of the Barking and Pitsea
Extension of the London, Tilbury, and Southend Railway took place this week. Having to make, some provision for the greatly
increased traffic which the oonstruction of the East and West India line, the direoctors came to whater doocks onclusion thilbury will brintead of ou to the
the line to Tilbury they would do better to running nearly straight across the country from Barking by Dagen-
ham, Hornchurch, Upminster, ham, Hornchurch, Upminster, and Langdon Hillss to Pitisea, whenere
the existing Southend line would be joined. The Act of 1882 which gave the company powers to make this connecting line, some
191 miles in length, also empowered them to make an extension of
their line from Southend to Shoeburyness, expected will be ready for use before the end on of the yeyoar. Which it it is
powers obtained in the last session of Parliamert powers obtained in the last Bession of Parliament will enable the
company to make a line from Romford to Tilibury, with a junction
at Upminster. The line will shorten the at pminster. The line will shorten the distance between London
and Southend by 7 miles-that is to say, from 43 miles via Tilhory and Southend by 7 miles-tha
to 36 miles by this direct line.
A sHoRT inclined railroad has recently been built near High
Bridge, in New York, by which pleasure seekers are carried from
landing on the banks of the Harlem landing on the barks of the Harlem River to the the tap of the from a a ain-
ing bluff. The road is bilt up the side of the hill at an inclination
of 43 ft . in 100 , and of 43 fit. in 100 , and has a length alongt the slope of 240 Ift. The
rails are of maple 3in. wide by 2 in. thick, and are spiked raiss are of maple 3in. wide by $2 \frac{2 i n i n .}{}$. thick, and are spiked to. string
pieces running up the track of yellow pine 8in. square. These are
supported on framework where the ground hollows, surface in other places. The gauge of the road is about 4ft, 52 in.
The frame of the car is triangular, the hypothenuse being The frame of the car is triangular, the hypothenuse being parallel
to the track, thus bringing the flor hooizontal. They are 6 ft .
wide and 7 ft . long, with doors in the entre
 50-horse power engine, with two collinders power inis. by furniished on ay a
crank shaft are two pinions, 12 in. in diameter and 8in. face, ene crank shaft are two pinions, 12 in. in diameter and 8in. face, en-
gaging with two spur wheels 7 tt. in diameter, keyed on the same
shaft. This shaft is of hame
 3 ft across. The axis of theese drumms is prerpendiciluar to to the line of
the track.
Around each one is wound two coils of Zin. wire-rop the winding being in contrary direoutions, so that one car will be raised while the other is being lowered, The seoond rope is pot
on to guard agoinst acoident. The engines have a link motion
and automatlo hrale be run independently, Either of the gears is of sufffoient gtrength

NOTES AND MEMORANDA.
THE proportion of doctors to the population in different countries
 wwitzerland, 7 Heng per 10,000 ; United States, $16 \cdot 24$ per 10,000 . For an etching liquid for steel the following is given :-Mix 1 oz
sulphate of copper, $\mathbf{2}$ oz, of alum, and one half a teaspoonful of aalt reduced to powder with one gill of vinegar and twenty drop
of nitric acid. This liquid may be used for either eating deeply into the metal or for iquic may be used for either eating deeply the surface, according to the time it is allowed to ato. Cover the
parts it is necessary to protect from its influence with beeswax, parts it is necessary to protect fr
tallow, or some similar substance.
Some notes on verification of the atomic weights of zinc and
nagnesium, have been contributed to the magnesium, have been contributed to the Archives of the Physical
and Natural Sciences, Geneva, by M. C. Marignac. The atomic weight of zinc, fixed by Erdmann at 65.05 and by Fave Fre and
Iacquelain raised to 66 , is approximately figure which further analysis may show to be slightly too low. For magnesium, oaleulated by MM, Marchand and Scheerer at 24 and
by others at $24^{\prime 5}$, the number of $24^{\prime 3}$ results from [the author's by others at $24 \cdot 5$,
fresh experiments.
In America paper gas pipes are said to be made by passing an endless strip of hemp paper, the width of which equals the length
of the tube, through a bath of melted asphalte, and then rolling it tightly and smoothly on a core, to give the required diameter.
When the number of layers thus rolled is sufficient to afford the desired thickness, the tube is strongly compressed, the outsid prinkled with fine sand, and the whole cooled in water. When proofing composition. In addition to being arsolutely tight and prooncg composition. Tn addition to being absolutely tight and
smooth, and much cheaper than iron, these pipes have great
strength; for when the sides are scarcely fin. thick, they will with stand a pressure of more than fifteen atmospheres. If buried
underground they will not be broken by settlement, nor when underground they will not be broken by settlement, nor when
violently shaken or jarred. The material being a bad conductor of

eat, the pipes do not

Proprsson E.S. Morse has recently described his deviee for deseribes it as consisting of a slaty surface, painted black, placed vertically on the outside wall of the building, with flues to conduot
the warm air to the inside he warrn air on the inside. Che slates are inserted in a groove like
glame. One made within the last year was stt. long by
 the winter, except on a few of the coldest days. When the sun's rays rested, directlly on the apparatus, , the ary. passing through it
was raised about 30 deg., and it discharged 3206 cubbiceet of was raised about 30 deg., and it discharged 3206 cubio feet of warm
air per hour. This was in the morning. At 11.45 a.m. the air 12.45 p.m. ., 29 deg, and 4019 cubic feet; at 1.55 p.m., 24 deg. and 30 deg. can be secured during the four or five working hours of the
HER MAJJSTTY's Inspector of Mines for the district of Yorkshire -Mr. F. We. Wardell-in his report for 1882 , states that in that $18,287,141$ tons in 1881. There were last year raised, as against accidents, causing ninety-five deaths, so that one life was lost to
every 648 persons employed. In 1881 there were seventy-five every 648 persons employed. In 1881 there were seventy-five fatal
accidents, each causing one death; and there was one life lost accidents, each causing one death; and there was one life lost to
every 807 employed. Last year one life was lost to every 199, 12
tons 249,376 tons wrought. Viewed in this light, mining in the district appears to have been more dangerous last year. Throughout the
kingdom the result is similar, the average loss of life last year being one to every 122,161 tons wrought, as against one to every
177,106 tons wrought in 1881. In Yorkshire there were last year year of nineteen.
AT a recent meeting of the Paris Academy of Soiences, a paper Ground," by M. Faye. In reply to M. Issel, of Genoe, the author
revives the old theories of Elie de Beaumont, Cordier, and many revives the old theories of Elie de Beaumont, Cordie, and many
others, and argues that the progressive cooling of the earth's crust others, and argues that the progressive cooling of the earth's crust
goes on at a more rapid rate under water than on dry land. There
io noth is nothing hypothetic in this view, whioh might have been deduced Venus in deep seaes, and repeated with similar reasults in recent
times. It follows that the tolidifed times. It follows that the solidified crust may be much thicker
under oceans than continents. Hence he concludes the liquid mass in the interior of the globe is subjected to greater pressure under diffused more or less main land; and as this excess of pressure in tinental crust must yiild to the pressure exercised on it from
within. It is thus being everywhere continually uphe the submarine crust, becoming denser and denser, is slowly
bsiding.
The battery, as described in the sists of a ghas vessel conting ol 15 and 7 parts of sulphate of copper in 106 parts of water. Within is a porous cell containing mercury. One electrode is made of platinum, and is put in the mercury, the other is of sulphide of silver,
and is placed in the salt solution galvanometer, and the whole is inclosed in a box when not in use
When the battery is placed in the sul needle is deflected to a certain point, and the sulphide of silvetr found to be the negative pole, Any change in the intensity of the
light- such as a cloud over the sun-is indicated The action of the battery depends on the effect of the chloride copper upon the mercury. Subchloride is formed, and reduces the sunlight. Hitherto the only manner in whiche wight seemed to
affect electrical action was by increasing the selenium cell, and all photo-electrical experiments were based on
this phenomeno
dis phen
ALTHovaH boring for coal has been carried out in several places in only, ond workiery at present in complete in some of these, there is the colliery plant of which has been not far from Peking The coal is said to belong to the true carboniferous system, and the the Gulf of Pehchihli. No fear is entertained that the measures will run short. So far as has been ascertained, the coal-bearing winter months 200 tons sper day of the inferior kings. During the
be sold to the natives in the vicinity who and lime kilns ; indeed, one of the most important results ach, brick, by the opening of the colliery has been the revival of several indusof the surface coal of the district being mostly worked out, and the price of coal being too high to be used with profit. In connecIts length is but six and a-half miles, and at the terminus the coa is placed in barges and carried down by canal. After a little oppo
sition the locoomotives were allowed to run freely. But ironworks
whing which it was also intended to start, could not get over the super perial tombs, and the consequent geomantio disturbances caused
by finking shafta, to. The iron ore is said to exist in by sinking shafts, soo. The iron ore is said to exist in enormous
quantities, bat it is not easy to work owing to the amount of silioa
present.

WE are informed that in several pending actions by Mr. Ottothe defendants have submitted to judgment.
AT the recent exhibition of the Royal Cornwall Polytechnio
Society, the dead-beat sectioner made by Mr. James P. Maginnis as described in these columns, was awarded a silver medal, and his, THE wor for
THE work of regulating the Lower Weser has been begun in
Bremen. The socalled "long bag" is to be removed, and thus Bremen. The so-called "long bag" is to be removed, and thus
the Weser straightened. The expense will be borne by Bremen,
and is estimated at more than £100,

THE armour-plate experiments in Denmark are now expected to
They will deal with compond "Fllis" take place in November. They will deal with compound "Ellis"
plates sy Messss. J. Brown and Co., Atlas Works, Messrs. Charles
Cammell and Co., Cyclops Works ; Marvel Freeres . . French firm, Cammell and Co., Oyclops Works; Marvel Freres-a French firm;
and a steel plate by Cruzot. The experiments are therefore of
special interest to Shefteld.
Howand Prize of prizes announced by the Society of Arts is the Utilisation of Electricity for Motive Power. Preference will the given to that essay which, besides setting forth the etheory of the
subject, contains records with detailed results of actual subject, contains records with detailed results of actual working or
experiment. The Society reserves the right of publishing the prize тн
THE Prince of Wales has definitely fixed the 31st of October for the ciosing of the International Fisheries Exhibition. The list of
awards of the International Juries confrmed and issued by the
Comes Commissioners acting on behalf of her Majesty's Governeent thas
been published. The number of visitors jon Saturday was 51,973 , making a total for last week of 122,267 . The total number from
the opening of the Exhibition has been
A NEW way of producing name and inscription plates, door
plates, panels, and so on, has been brought out by Mr. C. L. H.
Lammers, of Gosforth, by which a cheaper and ore Lam mers, of Gosforth, by which a cheaper and more durable article
may be obtained. Instead of engraving the letters in a door pote for instance, Mr. Lammers cuts the letters quite through the plate,
and into the spaces glass instead of wax may be inserte. Thin brass plates fastened to iron backings could also be used.
IT is stated that the French Government has granted a loan of
$2,200,000$, toward the cost of carrying out extensive harbour works at Calais, and that a duty will carrying outat extensive harbour works Commerce to recoup this loan. French and English ships, and will have to para at the rate, ofe of 15 centiones per merchandise, \&ee,
registered tonnage, but a considerable reduction will beon thade in respect of passenger and mail carrying vessels.
A PAMPHLET has been published by the Edison Electric Light
Company descriptive of the Hopkinson-Edison dynamo, and giving THE E Nance of the report on this machine which was printed in give an efficiency of 95 per cent. In the larger Edison machines
multiple cylindrical field magnets were used, but oval or ohlong field magnets are now used instead of these. The cylindrical, or big and long bar magnets, have been found to possess no advantages
The Colossal Palais de Justice, Brussels, which was projected in
1847, designed in 1862 and begun in 1866, was inaugurated on Mond designed in 1862 and begun in 1866, was inaugurated on
Monday last by the King of the Belgians. The building, which is of classical design, covers an area of 26,700 square metres, equal
287,407 square feet, is 102 metres, equal 335 ft . high and will cost nearly two million pounds. The architect is M. Poelaert, who died nearly ytwo years ago, and the work has been carried out under the
superintendence of M. Wellens, Ingenieur-en-chef des Ponts et
Chausses, ships on the than Ministry of Marine is preparing to place seven new torpedo ram built on the model of the Etna, and four tymall two first-class ships will be laid down, one at Castellamare and the are launched, early, it is expected, in 1884. The other five ships
ard have further given the draught of those of the first-class Ittaly already possesses.
They are to have a speed of 21 knots and to be able to follow the squadron in all weathers, and to carry sufficient coal to make three runs along the length
quiring a fresh supply.
A MEETTNG of the executive committee of shipowners formed for was held this week at the offices of of the Association of Steamship
Owners engaged in Eastern Trade Fenchurb Owners engaged in Eastern Trade, Fenchurhoh-street. "It was them not to leave the matter in its present unsatisfactory position, but to take prompt measures to ensure greater facilities for passing growing traffic with the East,") Al letter is abount od be forwarded by
the committee to Lord Granille, recapitulating the which they have taken since their appointment, drawing attention to the increasing importance of the construction as speedily as
possible of a second Suez Canal, and repeating their readiness to ndertake the necessary preliminary surveys,
A NEw work, by Robert Hudson Graham, C.E., will be shortly
issued by Messrs. Crosby Lockwood and Co., London, "Graphic and Analytic Statics in Theory and Comparison ; their practical application to the Treatment of Stresses in Roofs, Girders, on Wind Pressures, and a number of Diagrams and Plates to Scale Mublishers also - mannynece for immediate publication, "' The Art of
Soap-making: a Practical Handbolk and Soft Soaps, Toilet Soaps, \&c. ;" by , Alexander Watt. "The
Engineers' and Shipowners' Coal Tables; " by Nels son Foley, authe f "The Engineers Office Book of Boiler Construction." And the following works in "Weale's Rudimentary Series:"-
'Farm Buildings: T Treatise on the Buildings necessary for various Kinds of Farms, and their Arrangement and Construction, with Plans
and Estimates;" by Professor John Scott-being the fourth volume f Scott's "Farm Engineering Text Books-and a revised and en larged edition of "Sanitary Work in the Smaller Towns and
Villages ;" by Charles Slagg, A.M. Inst. C.E. Toverrisg on shipbuilding, Messrs. Bolling and Lowe say in their
hall-yearly report, " The fact that nine-tenths of the new vessels are steamers, apart from their greater burden, has multiplied the carrying power of this country to an unexampled extent. Lloyd's
Register for 1882 gave as built in Great Britain, 44 k ste 372,740 tons burden. While from other sources we find built in
United States (fiscal year 1882 , 43 steamers Germany, 60 steamers of 67,873 tons burden. In addition to those registered at Lloyd's, vessels of a total tonnage of some 400,000
tons were launched, which will include steamers of companies. Again, according to Loy ${ }^{\prime}$'s Register, there were built
in Great Britain 337 sailing vessels of a burden of 138,396 tons, equal average 40 tons each ship; and there were lost 814 sailing
vessels of a burden of 210,446 tons, equal average 250 tons each ship. Steam bing the motive power of the ship of the present Auenoed by the e ristence of oong voyages will be materialy in
hequently the development of coalfields in Bengal, Norts and Zealand our Australian Colonies, and elsewhere, becomes doubly important goods, whilst the return cargoes are mostly in raw and bulky materials for manufaoture, without ogloplathing the enormous quantitien
of food we require,".

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.
 stone," London and Brighton Railuay. Every copy ane issued by
the Pubishher contains this Supplement, and subscribers are

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform corressondents that letters of inquiry addressed to the
pubbic,
cases, be o intended for insertion in this
 answers received by us may be forvearded to their destination.
No notice well be taken of communications which do not comply No nth these instructions.
$* W e$
${ }^{*}{ }^{*}$ *We We cannot undertake to return drawings or manuscripts; we
 taining questions, must be accompanied by the name and address
of the uriter, not ecessariy for pubbication, but as a proof of
good faith. No notice woratever will be taken of anonymous good faith.
J. R. (Barcelona).- A letter lies at our offce for this correspondent.
DARuscros.-What kind of book do you wount ?-one on strcins, or one on

THE STRENGTH OF CHAINS. (To the Bditor of The Engineer.) SIR,-Can any reader give me a rule for calculatin chains with circular rings? Wigan, October 16th. The Engineer can be had, by order, from any ne at the various railioay stations; or it can, if preferent trom the office on the follonoing or term (paid in advance). Half-yearly (including double numbers). Harf-yearly (including double numbers) If credit occur, an extra charge of two shillings and sixpe be made. THE ENGINEER is reqistered for transmission Ioth cases for binding The Enginerr Volume, price 28 . A complete set of The Evanemr can be had on Foreign Subscriptions for Thin Paper Copies voill, until received at the rales given belovo:-Foreign Subscribers Subscriptions sent by Post-office order must be accom advice to the Publisher. Thick Paper Copies may be h increased Remittance by Post-office order.-Australia, Belgium Columbia, British Guiana, Canada, Clape of Good Egypt, France, Germany, Gibratitar, Itape, Malta, N New Brunswick, Newfoundland, New South Wale Portugal, Roumania, Switzzerland, Tasmania, Turke West Coast of Africa, West Indies, Cyprus, $\& 116$ India, \&2 0s. 6d. Remittance by Bill in London. - Austria, Buenos Ay Greece, Ionian Islands, Norway, Panama, Peru, Russ Cheece, Ionlan Islands, Norway, Panama, Peru, Russ Chili, f116s. Borneo, Ceylon, Java, and Singapore, £ Mauritius, Sandwich Isles, £2 5s. ADVERTISEMENTS. ** The charge for Advertisements of four lines and under for every two lines afterwards one shilling and sict charged one shilling. The line averages seven words. ment measures an inch or more the charge is ten shill single advertisements from the country must be accompa practical regularity, but regularity cannot be guarante Advertisements cannot be Inserted unless Dell o'clock on Thursday Evening in each paper are to be addressed to the Publisher, Mi. George other letters to be addressed to the Editor of THE ENGINERE	

THE ENGINEER.

OOTOBER 19, 1883.
THE DEFECTS of our teleprone systen. are slow to adopt improvements. We do not think that this is true. The history of progress in certain directions
is that of a series of accidents, and when inventions have is that of a series of accidents, and when inventions have
been put on one side for a time it will usually be found been put on one side for a time it will usually be found
that the world was not quite ready for them, and does not that the world was not quite ready for them, and does not
deserve to be called hard names. The world is always ready to receive and use improvements, provided they are brought forward in the proper way; but the way is pecu-
liar. There are men who have been duly apprenticed liar. There are men who have been duly apprenticed
and have become masters in the art of appealing to
influence influence and cupidity in order that the world may go
forward. Those who heard Mr. Preece's paper at the late meeting of the British Association, and the discussion thereon, know that some light was thrown on the action of
the Post-office authorities the Post-office authorities, As we have hitherto been un-
able to find space for this paper, the gist may be given here, able to find space for this paper, the gist may be given here,
Mr. Preece contended that the defects of telephony arising
from electric induction Mr. Preece contended that the defects of telephony arising
from electric induction could be completely overcome ; in
fact, he had shown this last year at Southampton. He mainclearly, secretly, silently-so far as regarded extraneous clearly, secretty, silenty-so far as regarded extraneous
noise-and with great facility by the use of apparatus similar to that adopted by the post-office at Newcastle. The arguments advanced were so clear, and the logic so sound, that no one ventured to dispute the correctness sound, that no one ventured to dispute the correctness directed to the adverse criticism of the telephonic system as known in London. The fact is rather startling to find no one ready to speak favourably of the system adopted, and therefore demands attention. The experience of the speakers in the discussion pointed to a great loss of time in
not being able to obtain communication as desired, and to the annoyance, at times rendering it impossible to hear a word distinctly, of the inductive action.
Sir F. Bramwell tried to throw oil upon the troubled waters, and asked how it was possible to expect perfection in so short a time, that is, after two or three years' work. The telephone introduced a new application of science ; many difficulties had to be encountered and overcome, but he tacitly admitted that the companies had not realised the necessities of the case, and that so far as trunk lines were concerned, the provision had been too meagre. We may be allowed to formulate a sharper criticism than was heard at Southport, to say that all the arraiggements are defective; that from the first there has never been the slightest sign of the companies being able to organise a proper telephone system, and that time and extensions only tend to make matters worse. Ignorant and inefficient administration is sufficient to account for all shortcomings. Nevertheless it must be assumed that the children of mammon are still wise in their generation, and it will then be seen how such a weak-kneed system has arisen. It is no secret that the inmost idea of the company promotersthe always present expectation-is that very soon the
Government will see the necessity of taking over the tele phone system is see the necessity of taking ov just as well known that the officials realise the fact that sooner or later the question of taking over the system must arise, Hence we find telephony in the anomalous position of being worked by men who think little of perfection of
system, who apparently know little of the principles of system, who apparently know little of the principles of
telephony, but desire to get the whole affair taken up by Government as soon as possible. The tax-payer may also realise this fact, and recollecting the purchase of the telegraphs, may kick against another such
arrangement. The result of this condition of affairs is that business men have become acquainted with telephony, have begun to learn its value even in the defective state in which it is put before them, and are
ready to agitate for a better state of things. A careful examination of the telegraph system of this country shows that in the hands of the Government it has caught up to and far surpassed in excellence that of any other country.
We have never failed to point out the weaknesses of a We have never failed to point out the weaknesses of a
monopoly; how it prevents to a certain extent the intromonopoly; how it prevents to a certain extent the intro-
duction of new inventions; but it will be found that the duction of new inventions; but it will be found that the
telegraph authorities have not followed in the footsteps of ordinary monopolists. They have introduced improvement after improvement till the apparatus they employ is admitted to be unequalled by that of any other administration. The cry for cheap telegrams was not resisted by the Post-office because the organisation was wanting, but
because the loss, if any, accruing would beayuse the loss, if any, accruing would fall upon the tax-
payers, so that the merchants and others using the telepayers, so that the merchants and others using the tele-
graph would benefit at the expense of those not using it, and presumably not so well able to pay. Just as the Postoffice has the best telegraphic apparain, so is now annoying inductive action is neutraliser apparatus. The the twisting annoying inductive action is neutralised by the twisting
of the wires. The Post-office adopts the necessary arrangement both with overhead and underground wires; the telephone companies do not use the plan. The switchboard of the Post-office shows the operator in the switchis made, so saving time; it shows whether a subscriber is in his office or out, again saving time; it shows whether a switch-board is but not, another saving of time. This arrangement of wires more complicated than the board or the arrangement of the companies; and when the pertinent question was asked, Why do not the companies adopt the plan described? the answer was forthcoming. The board is not patented; it is not the interest of any one to introduce it. The companies do not care about such articles; the interest of promoters lies in patented articles,
and hence the latter is handed better.
We can find only one reason why some special attempt has not been made to overcome the evils of induction. Given two wires nearer to each other than any other conductor-if a current is sent through one wire it induces a current in the
other wire. Now, introduce a third wire a the three wire may be so arranged that a current can be sent through two of them without any current being noticeable in the third -the actions must be made equal and opposite in direction, the one action neutralising that of the other. Given a hundred or a thousand wires, it may have been thought by those who are hiding the clouds from our streets, that by the law of averages equal currents would be going at the bad effects of induction would be avoided. The wires could be arranged so that their counteractions might come
into play, but the arrangement would differ considerably into play, but the arrangement would differ considerably
from that now used. However, the simpler effective plan is the twisting of the wimpler and more other, as described by Mr. Preece at Southampton and Southport. Another fixed idea of the London telephone companies seems to be that only one particular kind of
wire can be used for telepho wire can be used for telephonic purposes, and this wire of
comparatively large section, almost hiding the light of the comparatively large section, almost hiding the light of the
san from some streets where the wires are very At Vienna, both in the Exhibition and in the town, phosphor bronze wire is largely used for telephone lines, and in no case does it obtrude itself like the wires of

London. Those who have had experience with phosphor bronze wire state that it is better suited for telephonic use than the ordin up-employ telephone companies may up-employing apparatus that is wasteful of time, that sounds, wires obtrusive to the sight in some cases obstructive to traffic-and the whole without systematio arrangement, while the charges made are reatly in excess of what they ought to be orgwould be if the system was properly designed.

professional etiquette.

The relations which should subsist between the fellow members of any profession must always be matters of delicacy exceedingly difficult to treat of in writing, because so much must be left to those niceties of personal feeling which will of necessity vary considerably among the members. But there are in nearly all professions certain broad rules of conduct which cannot be departed from without injury to the general body, or without entailing certain social disqualifications lowering to the position of any particular calling which neglects them. The legal and medical professions have a high and recognised standard, to depart from which is likely, and, indeed, almost certain to bring socienties and to the which certificates or diplontly of the feeling which should govern all members of a gentleman's profession in their dealings with one another, is undoubtedly due the rarity with which we hear of any breach of etiquette in these professions.
It has been recently, and to our great regret, brought to our notice that in several instances engineers have shown an entire disregard of that unwritten law which their fellows. the profession all round, there is no other that can boast of a larger proportion of highly educated men than belongs to that of the civil engineer. Not only is the course of study necessarily one of the most elevating character, but the profession demands for its practice habits of self-command, as well as those necessary for the ruling of others. Hence there is good cause why it should and does attract into its fellowship men who are emphatically gentlemen. Its prizes are high; its pursuit one especially suited to the enjoyment of that out-of-door exercise and of sport which are emphatically characteristic of the well-bred Englishman, and there is therefore every reason why it should draw to it men who, from their early training and position in social life, are accustomed to the amenities which govern their relations in such circumstances. That it succeeds in doing so to a very large extent we have evidence every day, and the fact makes it more regrettable when we hear of exceptions to what is a general rule, exceptions which prove that we have associated with us some who are forgetful of the obligations the position they claim to hold imposes on them. The Institution of Civil Engineers holds towards the great body of the profession a relation which unfortunately caunot at present be said to assimilate in many important characteristics wister the societies which control the sister callings of law and medicine. True, no higher distinction can be hoped for or desired than that of being honourably enrolled among its leading grades; but there are many men worthily following the pursuit of a civil is is the diplita necessity. Hence it is that the council of the indurion canol exercise over the profession at large ties refence on its eliquette practised by the other sociemuch bymarkingin we hold that it may and should do tion when the gore distindive manner its disapprobaof the Instituturs such instute comes its awards under the afion for good practice outside the pale of the Institution. practice outside the pale of the Institution.
We can find no excuse for the
Wer notice and no excuse for the cases recently brought to our notice, and which, unfortunately, impugn the good feeling of some men holding the high position of members competition which the needs of in the plea of the excessive A civilion wich the needs of present day life creates. tion towards his breth on tha does towards his rival ine advertising shopkeeper which claims, and justly, to occupy a higher social rank than the class last referred to, must accept as a condition of such a clxim a higher social standard governing its sideration of the council of the Tnstiny of the con Engineers as to whether it may not be in its power enforce, or at all events effectively not be in its power to of that higher standard. Since the first establishment there have been occasions on which the council has not hesitated to pronounce very decidedly the view taken by it of quesnot spared Bactions by members, and when doing so it has and they might, we hold, be effect. In the cases which have called for these tain municipalities have sought the advice of some of our leading experts, have availed themselves of it not only to the their advisers , but have also made use of the high posion parliamentary sanction to the and their tains th obtain for them; and then, having obtained by such aid every thing that to them seemed necessary, they have thrown over their trusted and trusting advisers, and offered the who execation of the work designed to some local engineer, brother engineer to take over the brain labour of which has been capable of an apparent breach of implied faith. We need scarcely point out that such a course is likely in very many instances to recoil seriously upon the offending municipalities; but, unfortunately, the members of many corporations are but too ready to apply to the public affairs of which they have the control those
standard of a large proportion of the class of which corpora tions are mainly composed. Whileregretting that this should be so, our experience of such bodies forbids us to feel sur
prise; but we do feel both surprise and regret that any members of our profession can consider it proper to occupy the, to say the least, doubtful position offered them. It is a cruel injustice-neglecting the consideration
of lost remuneration-to make the reputation of leading engineer dependent upon the uncontrolled
carrying out of his carrying out of his designs by a person perhaps wholly un-
practised in the branch to which the former may have depractised in the branch to which the former may have de-
voted a lifelong experience. The brain that conceived should voted a lifelong experience. The brain that conceived should
also carry out if justice is must prove in most cases as false economy to withdraw such carrying out from the control of the designer, as it
would be to place a valuable chronometer in the would be to place a valuable chronometer in the hands
of some little village watchmaker for repairs to its delicate mechanism. We think that the Council of the Institution of Civil Engineers should be empowered to deal with such cases as those which we have indicated, as affecting the reputation of all men composing the
various classes of the Institute. The honour of the provarious classes of the Institute. The honour of the pro-
fession, which stands so deservedly high, it will be the wish of the whole body corporate to maintain as high as possible, and it would surely not be difficult to mark in some way the feelings of displeasure with which all
members must regard any conduct seriously affecting that members

recent railway accidents,

Anoterer batch of reports to the Board of Trade on
recent rail way accidents, which has just been issued, serves recent railway accidents, which has just been issued, serves
to illustrate several points in connection with the subject to illustrate several points in connection with the subject
of brakes which should be interesting both to the public and the railway companies. Of six accidents reported
upon by various inspectors, two show the want of brake upun by various inspectors, two show the want of brakes,
two the want of uniformity in brakes necessitated by the two the want of uniformity in brakes necessitated by the
constant interchange of stock, and two the uselessness and dangerous character of certain forms of what some people
claim to be safety appliances. In the first category are the claim to be safety appliances. In the first category are the
accident at Raith sidings on the North British Railway on accident at Raith sidings on the North British Railway on
17th August last, and that on the South-Eastern Railway 17th August last, and that on the South-Eastern Railway
at Grove Park station on the 19th of the same month. at Grove Park station on the 19th of the same month.
These two collisions caused injury to eighteen people, and were both cases of sudden emergency, which were no
doubt quite unexpected by the officials, and, therefore, not doubt quite unexpected by the officials, and, therefore, not
provided against. In the second category come two more provided against. In the second category come two more
collisions, one at Mexbro' station on the Manchester, Shefcoilisions, one at Mexbro station on the Manchester, Shef-
fincolnshire Railway, on the 7th August,
and the other and the other at Carlisle on the 13th August. fitted with the Smith vacuum brake, which, however, was not available, since the brake van between the tender and the coaches was not so fitted. In the Carlisle case, 2
return North-Eastern excursion train from Keswick to return North-Eastern excursion train from Keswick to
Sunderland, fitted with the Westinghouse brake, was being Sunder land, fitted with the Westinghouse brake, was being
drawn by a London and North-Western engine without drawn bey a London and North-Western engine without the necessary appliances. These two cases are credited
with injury to thirty-three persons. Like most sensible with injury to thirty-three persons. Like most sensible
men, Major Marindin has views on the absurdity of such a system, or want of system, and he also has the courage to
speak very plainly on the subject. Referring to the Car-
lisle and lisle accident, he says:- "The accident might easily have
been prevented if the driver of the excursion train had been prevented if the driver of the excursion train had
had a continuous brake at his command; but, as is too frequently the case, owing to the various classes of brakes in use upon different lines, the Westinghouse brake with which the train was fitted was useless so long as the train waid drawn by a London and North-Western engine. It
will sooner or later become a question for very serious consideration whether stock should be allowed to be transferred from one line to another, unless means are provided for utilising the brakes with which it is fitted, and which are necessary for the safety of the passengers."
Under our third heading come two
killing one and injuring thirty people two more collisions, on the Caledonian Railway, on July 28th, and another at Lofthouse station, on the Great Northern Railway, on the 15th of September. The Perth case gives Major Marindin another opportunity of speaking his mind. It seems that Perth ticket platform, was run violently into by a West Coast train from Euston, consisting of ten vehicles. The driver was supposed to have control over the Clark-Webb driver was supposed to have control over the Clark-Webb
brake, with which the four vehicles in front of the rear
van were fitted but van were fitted, but this, as on many previous occasions,
was found to be a delusion. From the driver's evidence we may learn the method of operating the chain brake. He says, "I pulled my patent brake cord before getting
to Edinburgh-road, and directly after I asked my fireman to help me, because I thought the train was not pulling up quick enough." Then, seeing the East Coast engine at the ticket platform, he " "then gave the cord another pull, helped by my fireman, but could get nothing out of it. When I saw the engine I was running perhaps twenty miles an
hour. My steam was off, my tender brake hard on, and my cord was pulled as hard as I could get it." Yet the brakes would not go on. Major Marindin having made
several experiments with a train made several experiments with a train made up exactly like the
one in question, with the identical brake van, says the resuit " shows that it is an absurdity to talk of a patent chain brake at the rear section of a train of ten vehicles being under the control of the driver by means of the connecting cord, if by 'control" is meant the power of apply-
ing the brake. ing the brake. . I believe that to a driver accustomed to drive with a train fitted with a proper continuous brake under m whine is nothing but a trap, and it is to be hoped that this fatal accident, following so soon after the terrible
dis.ster at Lockerbie, will cause the Caledonian Rail way disaster at Lockerbie, will cause the Caledonian Railway
C s mp nay to insist upon having the West Coast stock fitted with the brake which they have adopted for their line, and with whic all their own engines are being fitted." It is gratifying to learn that the Caledonian Company has
carried out Major Marindin's suggestion in the Lockerbie report, and that it has insisted upon the West Coast joint stook, owned by it and the North-Western Company, being
fitted with the Westinghouse brake, and the work is now North of Scotland Railway having also now adopted the Westinghouse brake, as well as the Caledonian, North Scotch railway companies are entitled to the credit of having done what they can to further the question of uniformity in brakes; and this can hardly be said for certain companies south of the Tweed.
The last case we have to comment upon was, there can rake. The 9 ane to the slow action of the Smith vacuum into a coal train standing at Lofthouse station, on the Great Northern Railway. The signals were off, but the the speed could be seen for a distance of $180 \mathrm{ya} h$, and a rising gradient of 1 in 100 . The driver asserts that he never saw the obstruction until within 40 or 50 yards of it-a statement which scarcely harmonises with other shut off steam, reverse the engine, apply was the time to brake, and to reduce the speed to fifteen miles per Now at twenty-fime his engine struck the coal train. passed over in one second; so that about twelve yards are and reduction of speed must have been performed in four seconds or less; and numerous experiments with the
vacuum brake have shown this to moreover, in the middle of the day, and ip clear weather, and the inference is that there was a considerably longer distance-sufficient with a quick acting brake to have stopped the train at the speed mentioned. This, however, is not all. A brake constructed upon proper principles should not only go on quickly, but should stay on; and double collision. The driver states: "My engine made a the brake van, and broke off the vacuum pipes, and then I felt the train press the engine forward. My engine appeared to carry forward the upper part of the brake van, crushed up the wagon of drain-pipes next to it, and came All the wheels of myengine were lifted from the raits Rich, in reporting, says: "The brakes no doubt prevented the recoil of the carriages," which from the evidence quoted and from the principle of all non-automatic brakes, they could not have done. So soon as the vacuum pipes on the front end of the engine were broken, the brakes, if already applied, would at once come off, and the train would then be free to overrun the engine. Indeed, from the reports of passengers in the local papers, it would seem that was the second collision which caused the most injury
The six accidents, resulting in a list of one killed an eighty-one injured, all point to the necessity for insisting on the Board of Trade requirements in brakes, and the justice of the demand for uniformity. They illustrate railways exist, and the necessity for a powerful a pong as instantaneous and certain in action; or, in other words, an automatic brake.
"nest gearing" and roller friction.
UNDER this title Professor Fleeming Jenkin described at great length to the mechanical section of the British Associanest gearing, in virtue of one form of gearing which he called gearing is really frictional gearing as it angement. The wheels or rollers which transmit motion by reason of fricmonal adhesion between them and the wheels to which motion is transferred. A nest, as exemplified in a large winch
exhibited by Professor Jenkin, consists of a central or nearly central wheel, to which motion is given by these rollers, which ring. The arrangement is a slight mean encircling annular adopted by Mechwart in the roller mill moxhibited at Carlisl in 1881 by Messrs. Bucholz and Co as illustrated in Tн ENGINEER of the 30th July, 1880 . The modification is,
however, an important one, as whilst the nest is in prope adjustment, the journal of the shaft to which motion is transmitted is held in equilibrium, and the friction in its rearing is one of the chief objections to The this, of course, removes one of the chief objections to the ordinary fric-
tional gearing, in which one smooth wheel transmitted motion to another by meane smooth wheel transmitted bear between their surfaces, that pressure being borne by the bearings of the shaft carrying the two wheels. Gear ing of this sort has long been in use, one of the two wheel usually being provided with a wood or a paper periphery
as providing greater frictional adhesion with less wear and an adaptation of this gear was exhibited at Southpor dynamo-electric mens Brothers, who showed two of their way the-electric machines driven by engines geared in this for lighting the winter gardens during the evenings of the conversazioné. The "nest" above described, possesses the daft, of the reassure of relieving the journal of the driven adhesion ; but several of the modifications describe frictional fessor Jenkin offered no such advantage-one of these beinga elt held in frictional contact by a roge-one of these being a driven wheel, an arrangement calculated to roll out or elongate the belt in the most efficient manner. Professor enkin seems to have had his attention directed to gearing of "telpher" by a consideration of the necessities of the r rod tramway. In this an electro mofor use on a wire high speed, has to transmit motion to the car of the locomotive, running at a much smaller velocity, and frictional gear, no doubt, offers the advantage of simplicity and itself is the durability of the surfaces in contact, and also, we may be permitted to say, the power which
gearing of this kind will consume after it running some time. In the illustretions it has been exhibited in the electric locomotives at Southport the surfaces in contact were small. For high speed gear, or gear the pressure between the surfaces in contact may be small,
and the destruction of the surfaces in contact may be very
slow, but when two wheels, which slow, but when two wheels, which have their contact peripheries between their centres, are running together as
an ordinary pair of rolls, the surface in contact is so small an ordinary pair of rolls, the surface in contact is so small in this case the destructit of area may be very large, and less rapid. When the of the surface must be more or less rapid. When the centre of one of the wheels is within the diameter of the other of a pair, as with a
pinion running within a crown wheel pinion running within a crown wheel, then the surfaces in
contact may be considerable, and the destructive effect of the transmission of motion by frictional adhesion may be very small. This arrangement is, however, of very limited application. The question then arises, what is to be gained by the gearing described by Professor Fleeming Jenkin one sort or another which than the frictional gearing of one sort or another which has been long in use ? The
answer seems to be that the adver form which is strictly described advantage is confined to that form which is strictly described as the nest gear, namely,
that in which the several rollers and the driver wheel are in which the several rollers and the driver wheel
are contained within a ring, as in the case of the winch referred to.

The question may, however, be looked upon from another point of view. The wear of this form of gearing may be supposed to bear some relation to the intensity of its rolling
friction. Professor Osborne Reynolds has shown that with friction. Professor Osborne Reynolds has shown that with
a wheel of elastic materials the rolling friction will be greatest when the path in whe rolling friction will be curvature which is as nearly as possible the same as that of the wheel, in which case the centre of the curved path will therefore near that of the wheel. The rolling friction will and will be least with simir of whel runng upon a plane, surfaces in cost wir surfaces in the case of materials of the wheel and the, materials of the wheel and the surface it rolls upon, or the materials to the elasticity of which there is a limit, and with very small surfaces in contact it is easily conceisable that this limit may be quickly reached. This being the case, rolling friction would be greatest with wheels whose reverse of the case with wheels of extremelyes, or exactly the such as glass. With wheels of perfectly helastic materials, rialsitis possible to wheeive th perfectly homogeneous matethan the elastic resistance of the material would be greater tive of uniform wear of the it is difficult or impossible to realise this perfection, and any imperfection must result in variable wear or variable destruction of surface, and once irreyularity of surface is set up by destructive compression, the smooth running of the frictional gear is lost, or at least it rapidly
decreases, and with it the economy of power sumed as compared with tooth gearing. Practical The wear of railway tires and rance in the matter rubbing friction is so considerable The afords none, a faces the less, of course, will be the rolling friction; but experience with chilled railway wheels on steel rails indicates that crumbling of the wheel surface would take place with even very hard surface under any considerable pressure, though the conditions of working on such railway wheels are in their favour, as compared with wheel used in frictional gear. It certainly does not seem apparen vantest gearing in most of its forms is clear of the vantages which have hitherto attended gear of the frictiona Fleeming Jenkin gave a blackboard lecture and did not read a paper on the subject, he may have something more to say about it.
the ammonia obtained by the distillation of coal, In a recent number of Thr Engrnker-July 13th, 1883-we
drew attention to a paper by Mr. Foster, lecturer on chemistry drew attention to a paper by Mr. Foster, lecturer on chemistry
at the Middlesex Hospital, on the behaviour of the nitrogen of coal during destructive distillation. He had found that of thi itrogen only 14.5 per cent. left as ammonia, $1 \cdot 56$ per cent. as
cyanogen, $35 \cdot 26$ per cent. is present in the coal gas in the clementary condition, and $48 \cdot 68$ per cent., or nearly half the retained by the present, remains papers of popular interest which has been communicated reeently
to the Chemical Section of the British Association bears on the overy of this ammonia. The system described is themore interesting on the present occasion from the fact that it had been in use in of the Brough of Southport during the whole time of the meeting of the British Association. In the gas manufacture, as usually
carried on, very little of all the nitrogen contained in the recovered in the form of ammonia, and whilst there is nitrogen to furnish 25 lb . to 30 lb . of ammonia per ton, the average las led to the ined is only 5 lb . to 6 lb . per ton. The idea that lime the yield of ammmonia mivestion we we greatly increased with
very little disturbance of the ordinary process of gas produc ion. The first practical operations were tried at the Vauxhall Gasworks, and at the outset were of a very primitive descrip-
tion. The slaked lime was carried into the retort house in sacks, and then spread over the heap of coals. In charging the retorts, and partly allowed to fall into the surface was partly scraped and this with the smallest amount of extra labour, and a cost of less than a halfpenny per ton of coal carbonised. The work was performed with striking advantage, both in the quality of the gas and in the bye-products realised. The process has been now used to the ton its details, and half a hundred of ime is been already carbonised on this system, yielding 20,000 tons of coke, which has been partly employed in the gasworks and partly
sold for all kinds of duties. The sold for all kinds of duties. The results of experiments carried out at the Beckton Gasworks, at the Commercial Gasworks, and at the
gasworks at Cheltenham, were quoted to show the gain in ammonia gasworks
respectively as 36 per cent., 28 per cent., and 20 per cent. In larger makings a gain of 35 per cent. of ammoniacal liquor was
obtained from the limed coals over the percentage of liguor obtained by the ame coals not limed. The gas, instead of being impurities through the the retort, is evolved without sulphur quantities provious to distillation. The coke by this system, ammonia and tar products are ineresed sulphurous acia, the
was expressed by several persons, including Dr. Wright, of St.
Mary's Hospital, London, and Mr. Fletcher, H.M. Inspector nder the Alkali Acts at Warrington. It should be stated here that the liquids deposited in the condenser during the manuacture of coal gas, are those which are devoted to the production
af sulphate and chloride of ammonium. They are usually reof sulphate and chloride of ammonium. They are usually re-
moved from the gasworks in flats or canal boats of known capacity, under contracts commonly taken out at so much per 10,000 gallons. The manufacture of chloride of ammonium direct from the liquors is conducted on a large scale in Liver pool, and consists essentially in saturating with hydrochloric pool, and consists essentially in saturating with hydrochloric
caid, concentrating the liquor, crystallising and subsequently subliming the crystals. A far larger proportion, however, of the crude gas-liquid is consumed in the production of sulphate of ammonium, by processes which consist essentially of distilla tion, with addition of lime, to decompose ammoniacal salts, and condensation of the vapour in sulphuric acid, concentration and crystal isation of the solution after saturation has been effected
Sulphate of ammonium is employed in large quantities in the Sulphate of ammonium is employed in large quantities in the
omposition of artificial manures. Moreover, the above proces is based on a method in common use for the edetection of nitrogen in an organic body. If such a body is heated with lime, or still better, soda-lime, to a red heat, the nitrogen is evolved in combination with hydrogen as ammonia, and the presence of this compound can at once be recognised by the characteristic smel
of the ammonia. It will be seen above that, according to Mr Foster's experiments, nearly one-half the nitrogen remains in th

shipbuilding at sunderland.

The effect that can be produced by the action of men in one industry on another to which their work contributes may be easily ascertained by a glance at the concition of the shipbuilding
industry in Sunderland. During the early part of the present year there were from sixty to sixty-five vessels usually on the ways of the shipyards on the Wear; but there are now
barely thirty. Since the end of June last a large number of barely thirty. Since the end of June last a large number o engineers have been on strike, and though work has been carrie
on at the engine works, it has been with a staft that was ver on at the engine works, it thas been with a stafr that was very
limited, and for a time largely composed of apprentices. Work naturally fell behind ; engines that had been contracted to be delivered in August were not delivered two months later ; an though now the employers are beginning to fill their workshops,
the result of about thre monthe idleness of the men who are on strike is felt keenly by the associated trades. Vessels that we launched and in the river were delayed for want of engin power; others that were ready to be launched were delayed on
the stocks as long as possible, so that they might not have to encounter river risks; and thus the work of the shipbuilders, th boilermakers, and onthers, enaineers is brought abreast of that the leading position amongst northern shipbuilding ports; this year it must expect to lose it. The injury done will be far greate than anything that could be hoped to result in the shape of goo
to the workmen, and the folly of the strike is now manifested.

RESULT Of the daphne disaster,

In various ways carefulness and method are now manifested in Clyde shipyards in connection with shipbuilding and launching, which can directly be traced to the lessons taught by the
disaster which attended the launching of the Daphne on the Clyde. A strict surveillance is being exercised in connection
with the number of workmen allowed on board vessels about to be launched, the number, indeed, being, as a rule, minimised simply to what is necessary for the purpose of managing the
vessels after launching. Loose weights are more carefully looked vessels after launching. Loose weights are more carefully looked
after, being mostly collected and made fast about the mid line of the vessel's decks, and in some cases these weights are placed with the special object of ballasting. Approximations to th stability of vessels, at the estimated launching draughts, are now tions are not entirely new, greater accuracy is aimed at than wa formerly thought necessary. The steamer Daphne-now named
the Rose-has had her character as to stability in the loaded seathe Rose-has had her character, as to stability in the loaded sea
going condition thoroughly approved by exhaustive inclining experiments, and she is now busily engaged in the service fo which she was intended. The company who own her have lately have recently been issued to several builders for a new vessel to careful regard for the question of stability, and makes clear where the respossibility of such matters will rest. It is state gressive stability, with outtit complete, boilers and fresh wate tanks full, but with no coal, ballast, or cargo of any kind, the
builders must satisfy themselves that, consistently with the requirements of the specification, the designs they will supply
for the vessel will accomplish this end, they being held responsible that the conditions will be fulfilled. The specification further finished, and to supply the owners with her curve of stability and the calculations of the same, with formula, also inclined
body plans showing centres of gravity and buoyancy, and metacentre. The adoption of this plan of stipulating for accurat data and curves of stability, we hope will become more egeneral
as it will doubtless have the effect of improving the designs of new vessels, and of creating that regard for scientific me
shipbuilding which even at present is not over plentiful.

Counterfeiting the lowmoor brand.
In another column we report the trial at the Staffordshire Quarter Sessions of a rivet manufacturer in that shire, who had
been committed for trial for counterfeiting the Lowmoor brand apon some rivets which it had been specified should be made of the iron of that well-known Yorkshire firm, and stamped "Low-
moor" upon the head. The order was let out by the prisoner to another rivet maker, the prisoner promising to find the iron, and sed is sold by the Lowmoor Company at 19s. per cwt., and the sed is sold by the Lowmoor Company at 19s. per cwt., and they
make rivets themselves, and stamp them "Lowmoor." Througha second party, whogave 12 s . 6 d . a cwt. for it, the prisoner laimed had been rolled from Lowmoor tires, and he had a die made, with which the heads of the rivets were stamped "Low Moor." But before this stamp was ready, the rivet maker seems orrowed a stamp with "Low Moor" upon it "from a friend." The defence was that as the prisoner believed that he was using on the completed rivets. And a technical defence was set up that "Low Moor" in two words was no infringement of "Lowmark. The jury found the prisoner guilty, but strongly recommark. The jury found the prisoner guilty, but strongly recom-
and the prosecutors did not seek a heavy punishment. Sir Rupert Kettle pointed out that "Lowmor had been a trache
mark for ninety-four years in the possession of the firm who mark for ninety-four years in their predecessors. Though it was of great ow held it, and the safety of life that rivets of an indifferent quality should not be put into boilers, and rivet makers must learn that they must not make rivets which purported to be made yy the well-known Bradford firm, yet, as he believed that the der him tia not know hat he wrosecution, and to find recognisances. This case is notable as the first with which we are amiliar in which the infringement of the brand in question yy rivet makers has been attended by com the same district, ut previously the offenders have been let off with a fine Henceforth Messrs. Hird, Dawson, and Haray should have les.

LITERATURE.

Development of Armour for Naval Use.

Pubilc attention in America is being directed specially the questions of guns and armour at the present time, Institute brought out under the above title, has attracted considerable notice, and deserves our attention.
The author tirst takes up the question of energy. Dealing generally with the matter, he observes that the striking power of a given gun depends on the muzzle energy of the shot, less the energy expended in counteracting the resistance of the air and the energy represented by breaking up or deformation of the projectile before it has pierced the armour. He points out the extent of the advance that has been achieved in the development of modern armourpored giting projectiles, compared with those others, the fact that the 68 -pounder smooth bore, having a muzzle energy of 1145 foot-tons, loses 68.4 per cent. of it at a range of 1200 yards; while the 100 -ton gun, with an energy of 35,094 foot-tons, loses only 14 per cent. in the has been increased from about 30 to 83 per cent.; in the case of the 68 and 120 -pounders at even 600 yards range that is to say, whilst in the old guns about half the tota work of which a shot was capable of doing was wasted a 600 yards range, only about 17 per cent. is lost now
The question of loss of energy in figght owing to the resistance of the air is, we think, best dealt with on the system of comparing what is called the sectional densities" of the projectiles; that is to say, the weight in pro portion to the cross section. The montion 12 pos by a trumpery little projectile like that of the 32 -pounder mooth bore in comparison to that of the 100 -ton gun io very well in its way; but it is more a curious popula
tatistic as to the development of modern artillery than ne of any present scientific bearing. The comparison of the loss of two projectiles of nearly equal weight show more truly the advantage of rifled guns discharging elongated projectiles over smooth bores. On this accoun bore shot shown in the table. The statistics as to the loss of 66 per cent. of energy in cast iron breaking up, and of 14 per core inte wrought iron in becon'g decriments were not made with resting, buw in and only a in a very limited the metal , antions punching and racking measure us face to face with the problems of the day. Racking originally referred to the bending and distortion of structure, such as took place on tearing laminated armou open, and such as was attempted when and experiment of 1872 Latterly we have applied the word racking to all forms of smashing and cracking u armour when the destruction of the front armour is effected in contrast to punching when the projectile passes through in contrast ar with a minimum of loss of energy and injury to the armour, and works mischief on whatever is behind it. We are glad to find that the term "racking," which was originated in America when soft armour was used is there also applied to the smashing of hard armou
in the way we have employed it. Mr. Very says on thi question: "Punching is produced by concentrating the striking energy on the smallest possible space of the armour, and racking is produced by spreadin ended producing one effect is, as a matter of course, so much los from the production of the other. Therefore, in dealing with the subject, the mind must never lose sight of the most tetective distribution of energy", Again : "Of al descriptions of projectiles striking armor with a give energy, that one will be more certain to reach the object protected which concentrates its energy on the smallest space of the armour. The shape of the elongated one
gives the particles of metal of which it is composed the best possible support in overcoming resistance, thus per mitting the use of shells, and the artllerist takes advantag of this quality in utilising the shell charge to increase the distribution of the surplus energy, as well as to give ne energy to the broken pieces, thus really attaining the object sought." ${ }^{\text {a }}$. "When a certain projectile strikes a certain plate and smashes it like glass, it 18 not the poor quality of the armour. It is in this particula that the advocates of the extreme racking theory hav fallen into error." Speaking of the Spezia experiments o 1876, when steel plates first attracted general notice from their powers of resistance, of artillery is now, as it has
theory in the development of always been, that of punching. Conversely, the true theory of armour development is now, as it has been, that of racking; that is, of offering increased resistance
punching. Wrought iron was developed out the other theory punching. Wrought rion was developed existing exigences $\left.\begin{aligned} & \text { but when the development of steel had progressed to a } \\ & \text { certain point, a complete and sudden revolution took }\end{aligned} \right\rvert\, \begin{aligned} & \text { on a subs } \\ & \text { obsolete. }\end{aligned}$
place. But this revolution was no surprise to those who had carefully studied the subject; it was, in fact, forced by of the in discussing the punching and rackin of those who, in discussing fact that since artillery and theories, lose sight of the are directly opposed to each other, the theory which is true for one must be false for the other."
We have quoted these paragraphs at some length because tionably the artilleryman attacking exsed in them. Urefer to fire at soft material such as he could punch with well-made rigid projectiles, which should perform a mini mum of work on the front plates and pass through with out deformation into the interior of the ship. Such pro jectiles might be made to contain bursting charges, so as to carry fire and deal destruction in the ship in its most terrible form. Such a measure of success would, however, as we have before now poin that form of attack, for entrance of live shell into a ship. Hence it is certain that vessels will carry plates sufficiently hard to keep shell out, and we hold that, consequently, the destruction of ships for the future will chiefly take the shape of racking. Now will follow a modification of what seems to be implied by Mr. Very's line of reasoning, that is to say, the developracking work as would have been the case had punching held its own. Speaking generally, a shot punches directly in proportion to is energy and inversely to the size of the hole it has to make, but it racks simply in proportion to its energy. The size of a hole which would make if it could, but never can make, clearly does not enter into the question. Hence, guns will not be developed simply according the punching powers, bat in a modilied form. Tt is true that the same qualities that give punching give good aid , for calling through the ait ad is the enera nusure as punching: but long small bore guns will only be good for racking in the measure in which they possess stored-up work-thus they gain little or nothing by their small diameter except in for the the wo expect to see monster guns, for which tue long small
bored pieces can only be a temporary substitute. For example, the 43 -ton gun appears as if it were equal to the rought iron, while the 100 ton muzzle-loading gun can only master 208., butagainul hard pmour the the 43 -ton power, for its energy is urther advantage in the fact that, striking at a lower velocity, it probably breaks up less,
velocity, it probaboy breaks Mr. Very does not seem to be
On the subject of energy lear. He finds fault with the expression that steel plate bsorb the shock of the projectio to the laws of guse and effect. We think ne does not clearly understand what is meant. The energy of the projectile has to be accounted or. A soft iron plate absorbs a part of the energy of a the shot, having punched it, passes on with the remaining energy left in it. A corresponding steel plate, though outmatched, absorbs the whole work stopping the shot. The shape the work takes is that the plate is broken to pieces. The actual work of fracture represents the energy, One or two slight mistakes occur here. For example : On page 542 chilled iron is said to be used for inland forts,
Now even France has condemned it as unsuitable for this purpose, and it is likely only to be employed on coasts, exceptions. The deinitions ann explanations on page 547 seem to argue a state of knowledge in a reader We would hude to follow a great deal that is information on experiments, especially those conducted at Gâvre which we have not met with elsewhere. By the way, we notice a good many cuts-abour Lieut. Very is welcome more so had he acknowledged the source from which he obtained them. The sam remark applies to matter extracted verbatim from Captain Academy
Passing on to the question of gun construction, Mr Very remarks that the system of conversion had been pushed too far in America, so that, for the sake of utilising the guns existing, the opportunity had been sacrificed od making any really powerful weapons. Thus no eggs bee obtained." The opinions expressed on the line taken by different Powers as to guns are, we think, very good
According to Mr. Very, England made a mistake in taking According to Mr. Very, England made a mistake in taking nuch to conversion. Germany seems to have a specially good system of using up her gu
obsolete before they are worn out
The American preference for cast iron meets with no nore favour in this paper than that for smooth bores General Rosels attempt to make a lhelos in Italy is instanced as a proof of the hopelessness ordnance ing to cast iron as a fit material for powerr, orough in justice to the Gen we would his gun fulfilled what he promised, though, of course, of the of the shot whe the protection afforded by coal aginst attillery fire were made at Gâvre in 1844 Space fail us to follow the remarks on construction of ships, but we may say briefly that as a type the Monitor is declared superb, though the individual ships made in of this the stel plate of the later being preferre to the weught ion sandich armour of the forme Altogether we commend this work as valuable and concis on a subject on which most often existing literature

A NEW FORM OF FLEXIBLE BAND DYNAMO METER. By Pronessor W. C. Unwin.
In the ordinary strap dynamometer a flexible band, sometimes carrying segments of wood blocks, is hung over a pulley rotated by
the motor, the power of which is to be meathe motor, the power of which is to be mea-
sured. If the pulley turns with left-handed
rotation, the friction would carry the strap rotation, the Priction would carry the strap
towards the left, unless the weight Q were
greater than P. If the belt does not slip in greater than P. If the belt does not slip in
either direction when the pulley rotates under it, then $Q-P$ exactly measures the friction on
the surface of the pulley; and V being the surface velocity of the pulley (Q-P) V , is
exactly the work consumed by the dynamo-
meter. But the work consumed in friction meter. But the work consumed in friction
can be expressed in another way. Putting
mbraced by the belt, and μ for the coefficient of θ for the arc embraced by the belt, and μ for the coefficient of
friction, $\frac{Q}{P}=\epsilon^{\mu \theta}$, or for a given arc of contact $Q=k P$, where k depends only on the coeffifient of friction, increasing as μ in-
creases, and vice vers d. Hence, for the belt to remain at rest with creases, and vice versa. Hence, for the belt to remain at rest with
two fixed weights, Q and P, it is neeessary that the coefficient of
friet frition should be eexactly constant. But buis constancy cannot be
fibtained. The coefficient of friction varies with the condition of lubrication of the surface of the pulley, which alters during the
running and with every change in the velocity and temperature of running and with every change in the velocity and temperature of
the rubbing surfaces. Consequently, in a dynamometer in this the rubbing surfaces. Consequentily, in a dynamometer in this
simple form more or less violent osciliations of the weights are set up, whick cannot be directly contronlled without impairing the recently used a modification of this dynamometer, in which the part of the cord nearest to P is larger and rougher t than the part
nearest to Q. The effect of this is that when the coefficients of nearest to Q. The effect of this is that when the coefficients of
friction increase, Q rises a little, and diminishes the amount of the rougher cordease, in contact, and vice versa. Thus reducing again the
friction, notwithstanding the incease of the coeftien frietion, notwithstanding the increase of the coeducicient again this is
very ingenious, and the only objection to it, if it is an objection, is very ingenious, and the only objection to it, if it is an objection,
that only a purely empirial adjustment of the friction can b great. If in place of one of the weights we use a spring balance, as in Figs. ${ }^{2}$
and 3, we get a dynamometer which
automatically adjusts itself to changes andomatioally adjusts itsemeteter to changes
antomet the coefficient of friction. For any
in increase in the coefficient, the spring in
Fri. 2 lengthens, Q inceases, and the
frictional resistance on the surface of the pulley increasses, both in ionsequanence
of the increase of Q which increases the pressure on the pulley and of the in-

larly for any increase of the coefficient of friction, the spring face of the pulley diminishes so far as the diminution of P diminishes the normal pressure, but on the whole increases in consequence of the increase of the coefficient of friction. The value of the friction on the surface of the pulley, however, is more con-
stant for a given variation of the frictional coefficient in Fig. 3 than in Fig. 2, and the variation of the difference of tensions to be measured is less. Fig. 3, therefore, is the better form. A
numerical calculation here may be useful. Supposing the break set to a given difference of tension, $Q-P$, and that in conse quence of any cause the coefficient of friction increases 20 per cent. the difference of tensions for an ordinary value of the co-
efficient of friction would increase from 1.5 P to 2 P in Fig. 2, and from 1.5 P to 1.67 P in Fig. 3. That is the vibration of the spring, would be much greater in Fig. 2 than in Fig. 3 . It has recently occurred to the author that a further change in the dynamometer would make the friction on the pulley
still more independent of changes in the coeffic cient of friction, and consequently the measure
cind ment of the work absorbed still more accurate. Suppose the cord talen twice over a pulley fixed
on the shaft driven by the motor and round on the shaft driven by the motor and round a fixed pulley, C. For clearness, the pulleys A B conveniently of the same size. Further, let the
spring balance be at the free end of the cord towards which the pulley runs. Then it will be found that a variation of 20 per cent. in
the friction produces a somewhat greater variathe friction produces. a somewhat greater varia-
tion of P than in Fig. 3 . But P is now so much
men smater ban before that $Q-P$ is much less
affected by any error in the estimate of P. An alteration of 20 per cent. in the friction will
only alter the quantity $Q-\mathrm{P}$ from 5.25 P to
$5^{\circ} 5 \mathrm{P}$, or an alteration of less than 6 per Ho put it in another way, the errors in which measures P , and are caused by variations of the coefficient of friction of the dynamometer. By making P very much smaller
than in the usual form of the dynamometer, any errors in than in the usual form of the dynamome
determining it have much less influence on may go further. The cord may be taken over four pulleys; in that case a variation of
20 per cent. in the frictional coefficient only alters the total friction on the pulleys $1 \ddagger$ per cent. P is now so insignificant compared
with Q that an error in determining it is of with Q that an error in determining it is of
comparatively little consequence. The dynamometer is now more powerful in absorbing work than in the form Fig. 3. As to the practical construction of the brake, the author thinks that simple wires for the flexible bands,
lying in V grooves in the pulleys, of no acuteness, would give the greatest resistanc with the least variation of the coefficient of friction; the heat developed being in that case neutralised by a jet of water on the
pulley. It would be quite possible with a pulley. It would be quite possible with a
pulley. of say 3 dtt diameter, and running
nt 50 oft. of surface velocity per second, to a sufficiently flexible wire, capable of carrying
1001 b . as the greater load, Q. Now with these
 proportions a brake of the form in Fig. 3 would, with a probable value of the coefficient of friction, absorb 6 -horse power. With a brake in the form Fig. 4,8 , 8 -horse power would be absorbed; and with
a brake in the form Fig. $5,8,8$-horse power would be absorbed. But since it would be easy to have two, three, or more wises side by side, each carrying its load of 100 lb., large amounts of horse-

THE PREVENTION OF BLOWHOLES IN THE MANUFACTURE OF STEEL
THk winter session in connection with the Manchester Associa-
tion of Employers, Foremen, and Draughtsmen, was opened on tion of Employers, Foremen, and Draughtsmen, was opened on Saturday, when a well-attended meeting was hell, in the Me Mehedanies'
Institution, Mr. Thomas Ashbury, C.E., occupying the chair An interesting paper on "The Manufacture of Steel"" was read by devoted to a discussion of the best methods to be adopted in over-

Read before Section G of British Association.
coming one of the serious difficulties-the existence of blowhole-
in the manufacture of steel. Mr. Annable having uoted several
 cally mixed with the metal, said they were told that the mechani-
cally mixed gases tried to escape during the time the metal was cally mixed gases tried to escape during the time the metal was
passing from the fluid to the solid state, but as steel set so rapidly a goodly portion of this gas was entrapped and formed blowhioles, near the top end of ingory feasible, as cavities were morenumerous to demonstrate that if the metal had remained fluid a little longer these gases would have escaped. In practice, however, this was
not the case, for metal that was not "dead melted" and contained these gases, was always the longest in setting, and instead of going down in the mould as contraction took place, did the revererse, begain to come up, and unless force were applied would come over the top
of the mould. As it seemed to be tho mechanically mixed gase that gave us the blowholes, these were the gases that makers an
users of steel were interested in, and to which many methods had been adopted. Having desaribed ects of the best known of these methods, M. Annmble sid his owner ence told him that if the steel were well saturated with any of the five following elements-carbon, manganese, silicon, phosphorus,
and sulphur-which wwere always associated with iron and steel more or less, the metal would sink down in the mould and would
be found quite free from blowholes. He believed that ironfounders found the same thing ; that common iron was easier to deal with
for in casting than the better brands were. But this metal, although free from "blows," would not be suitable for our everyday re-
quirements, as we must have a definite composition for each and quirements, as we must have a definite composition for each and
every purpose. Consequantly the important question arose as to What was needed was a simple practical method whereby the could produce all classes of steel free from blowholes or cavitie He had , tried several methods with success. One was "dead
melting," but this did not always give the desired results' whe dealing with large masses of metal, as they could not get rid of the metal before the temperature became reduced, and this gav metal, "dead melting" was all that was required; it answered admirably, and could be depended upon. One method he had tried,
and which he would recommend, was to cast the ingots in closed to moulds. These were run from the bottom, and inside each mould small quantity of combustible material was, placed, which was fired by
the incoming metal. This at once expanded the air in the mold and created a pressure, as it could not readily escape by the holesi in the
top of the mould, which were only two, each 3 jin. whilst the head of metal they had in the runner counterbalanced the pressure, and the gases rushed out of the two small openings with a loud roar.
It was not, however, pressure to which he wished to draw theii It was not, however, pressure to which he wished to draw their
attention, but to one fact, that the metal was being cast free from atmospheric air, to which Dr. Müller and others assigned the cause of blowholos. The metal was being cast in an atmosphere of carbonic acid, brought about by the combustion of the shaving
which were placed in the moulds before casting began. Besides they had all the ingot cast at one temperature and one density, and i
would be found perfectly homogeneous, which conld not be those cast from the top, whilst it would be also free from blowholes. In addition the "pipe" "n the top of the ingot would be ngots received a supply of metal from it during the time the lace the ladle on to the centre runner, and then they excluded t air besides using the weight of metal in the ladle to force the metal home asainst the pressure of gas set up in the mould. The openopped mould, so much used for Bessemer and Siemens' ingots, was
objectionable in more than one sense. When the metal fell from the ladie to the bottom of of the. When the metal fell from sometimes 8 ft . or
tht., it not only took down with it atiling on the bottom of the with it a stream of air, but the first 201 lb or 30 lb .
ant
netal were splashed in all netal were splashed in all directions, and if they were a bue scale, which was oxide of iron. As they went on pouring the place in the stal at re-melted the splashes and quate a reaction took ave up its oxygen and attacked the carbon and manganese of th and they could at any time see the brownish red fumes leave a pen-topped ingot mould when casting. These fumes which were
the result of the chemical action below, became less and less as the metal got nearer the top. He had stated that open-topped ingots vere not homogeneous. To prove that this theory was correct he
ad several ingots analysed, and the result showed that at any rate arbon was eliminated by the reaction of which he had spoken caused wis the interference of the atmospheric jair. Some might
think lie had exagerarated the effects of oxygen on molten or heated xperience of any smith, as a small bar of ion by the practical heat under the hammer woold yield a thin film of scoale at every
low. This seale was oxide of iron, and showed with what avidity xygen attacked metals even at a red heat. They might, there Core, assume that with fuid metal broken up or disintegrated as it
was when falling some feet to to bottom of the mould, that oxidation would take place at a greater ratio than when metal was only hat when brought under the hammer the bottom end had dropper off at the first blow, after which the remainder of the ingot had attributed to the manner in which the ingot was cast. What they wanted was some simple method of treatment which would give them all tempers of steel free from cavities. Pot metal, which
gave them all kinds of tools they could get free. Castings also
aisht might be made free by conforming to certain treatment and
chemical mixture by skili and care in preparing the moulds, and by lenty of head large enough in diameter. As the bulk contracted in cooling it would get its feed or supply from the centre of this
head or column of metal put there for the purpose, and by making provision in cores for that large amount of contraction in steel this would take place without tearing the easting assunder.
The ordinary Bessemer metal was very frothy and lively when cast it was kept in the mould ; but even should it be wrevented coming over the top, it was not free from blow-holes, which would be found being produced in steel, but the great difficulty arose where they
bet had to make ordinary soft steel free from blowholes, and this
was a dificulty which led to enormous waste in manufacturing operations. The subject was, however, receiving the
fullest attention, and he had not the least doubt but that the difficulty would shortly be overcome, and that they would be enabed to produce ingots and castings that would be as sound and
free from cavities as though they had been forged under the hammer A discussion followed the reading of the paper, and Mr. Annable replying toa few questions, said a good trustworthy cylinder could not be made without putting a large head upon it; if it were made in any other way it was sure to be a failure on account of the con-
traction which took place all the way down. In his opinion the steel made by compression was really no stronger than steel made treatment afterwards. He believed the report with reference to the large output of steel in America was perfectly true; but speaking for himself, he would only say that he had never gone in for
quantity, but for quality. He did not think they could get a quantity, but for quality. He did not think they could get a of carbmanganese was too great, and they could not get the amount ofements which was required. Tocol steel must have its chemical weould be unsuitible for the ppurposes. The chairman, in colosing the
discussion, observed that the dificulties connected with the manu-
them confidence in ultimate success. Good sound ingots and sound castings were the great desideratum in the use of steel, and he had upon quite as much as any other metal. The varieties of steel began and where it was sometimes difficult to discover where steel was that the user of steel did not always speeify the purpose for whioh the steel was required, and if engineers or other persons designing anything where steel was required would be frank and position, they would frequently get more satisfactory results. With the tools of such immense power as were now being produced, many of the difficulties which had hitherto stood in the way of the
manipulation of steel would disappear. The usual yote of thanks to the reader of the paper closed the proceedings.

ON THE ADVANTAGES OF CONSTRUCTING, VENTILATING, AND WORKING LONG RAILWAY TUNNELS, WITH THREE SEPARATE OPENINGS.* By Mr. т. r. Crampton,
Mr purpose is to endeavour to show that by the construction of rails laid in each, not only that they can be constructed cheaper than one of 30 ft . with two sets of rails, but at the same time will secure the maximum of advantages with a minimum of disadvantages. It is assumed that the well-known coal or coke-burning
locomotives would be employed up to the present time, no other system has been worked out practically for long tunnels, so as to justify the ordinary system being
dispensed with. The tunnels should be so constructed that motors than ordinary locomotives may be employed, that it other coo much to hope that such will be brought into practical operation, evoiving no deleterious gases, and requiring little artificial
ventilation, in which event all the three tunnels could be used for traffic-in fact, give a third set of rails, without extra outlay. It may be remarked that double tunnels, of the length mentioned, where the men repairing have to be on the watch for passing trains

should be somewhat wider than usual. Mr. J. Clarke Hawkshaw, ion held at Southampton last year, proposed 30ft. tunnels, and so ar as I am aware, is the only paper that deals with this questio truct between two vertical shafts twenty miles proposes to conunnel, having 470ft. of area for the trains. About half the equired for ventiliation passes through a large chamber, of 106 ft t rea, constructed on the bottom of the tunnel. The air entering it teach end, on meeting at the centre, it passes into the working
unnel at that point. The other halt, entering the woling t their ends, traveling to a point been the ends, where it and that coming from the centre meet half whe oth passing into a separate ventilating tunnel, through which th air and gases are drawn to a convenient outlet. A similar venti-
ating tunnel is employed for each half, thereby splitting up the

air, thus giving advantages as compared with end to end ventilation. The system I propose to adopt may be described an follows:-
Side by side three separate tunnels A A A are formed each of sufficient dimensions to allow of a train passing through, say, 17 ft . in diameter, or 227 ft area, the area of two together in which are connected together by large passages BB without valves, so that air may have free access from one to the other; and about midway between the centre or the a melels and each of their ends is
 of the other tunnels are formed, these openings being pro-
vided with doors or valves E E E, quite clear of the main tumnel, any two of which may be closed, and separating at this
point the corresponding tunnels from the third. The branch C C point the corresponding tunneles from the third. The branch CD
to be led to any convenient position at which an exhausting apparatus may be erected for withdrawing air and gases from the
branch. If two of the tunnels are left onen to this branch that the third one shut off from it by closing the doors or valves E E, the vitiated air will be drawn from the two working tunnels, through the connecting branch, while fresh air will be partly
suoked down the vertical shaft through their open ends F F and sucked down the vertical shaft throung their open ends F F and
partly at the centre B, which is supplied by forcing air down the
Vert vertical shaft G in communication with it, a stop or door H being placed just outside of the bottom of the shaft so as to compel the
air to flow to the centre of the tunnel. It will be observed that no trains are running in this air tunnel so long as it is so used ; there are similar doors for the working tunnel, but they are kept open that the passing trains run no risk of running into the doors, means of the doors or valves E E E above mentioned, any one of the three tunnels can be used as a fresh-air tunnel, in which the men doing the repairs to the road would be clear of the traffic,
whilst the other two are used for the traffic, as well as outlets for
the mixed impure gas and air. If a breakdown of a train occurs
in any one tunnel it can at once be converted into the mixed impure gas and air. If a breakdown of a train occurs
in any one tunnel it can at once be converted into a fresh-ain one,
whilst its traffic is transferred to the one previously used for air, whist its trattic is transerred to the one previous sy used or air,
thereby avoiding delay. The system described for spliting the air and drawing off the noxious gases is, it will be seen, very similar
to that described by Mr. Hawkshaw in his previously alluded to paper. The valves and other details being added, to make the paper. Mee valves and other deta,lis being added, oo make the
system appliabhe to thre tunnels,
modes of ventilation may be be adopted. In order to that other
meduce the mooess of venilation may be adopted. In order to reduce the
number of men working in the tunnel it is proposed, if found prac-
ticable, not to adopt the ordinary ballast and cross sleepers, but to ticable, not to adopt the ordinary ballast and cross sleepers, but to
substitute the longitudinal timber system, the timbers to be substitute the longitudinal timber, system, the timbers
secured to brickwork or concrete H , forming a part of the tunnel seurg, placing efficient elastic material between the founda-
liniong and longitudinals for their whole area, also between the
tion and tion and longitudinals for their whole area, also between the
tails and sleepers. An open drain $\overline{\text { is }}$ formed between the rails; rails and sleepers. An open drain I is formed between the rails;
by this plan any water accumulating flows over smooth surfaces through small channels into the drain, the tunnel on each side employed, is so evident that a large amount of money might be expended, in endeavouring to discover a suitable elastic material
for the purpose. There is data on many long viaducts sufficient to for the purpose. There is data on many long viaducts sufficient to
justify experiments being made on the subject, and it is not unjustify experiments being made on the subject, and it is not un-
reasonable to expect that suitable material may be met with. In very long tumnels, nothing should be omitted tending to reduce the very yong tunnens, orking in theom. My impression is that tunnels
number of men working passing through solid materials, and proper foundations being made
for the longitudinals to rest upon, with good elastic material placed between the rails and sleepers and foondations, one half on ballast would be saved, more particularly where the repairs on effected in pure air free fre particularly where the repairs
are exter expencined.
In order to compare the system of constructing three tunnels In order to compare the system of constructing three tunnels
with one, I have taken the dimensions given by Mr. Hawkshaw as with one, I I have taken the dimensions given by Mr. Hawkshaw as
a base for calculation, particularly as it is proposed to ventilate the a base for calculation, particularly asit is proposed o ve ventilate the
three tunnels substantially on his plan. The quantity of excavation and brickwork or concrete in each case will be as follows:Single tunnel: 30 ft . dia. lining, 3ft. thick, with the brickwork forming the air passage $=$ to 39.5 cube yards per yard forward.
Excavation to outside of brickwork 36 fft dia. $=$ to 113 cube yards Exaavation to outside of briokwork 36 ft . dia. = to 113 cube yards
per yard forward. Three tunnels 17t. dia. and 18in. briokwork. per yard forwing for three tumnels $=24 \cdot 5$ cobe yards per yard. yards per yard forward. It is assumed that three 17 ft . tunnels are stronger, more conveniently formed, and involve less risks in construction than one of 30ft. dia., at the same time there is
no difficulty in making the latter.' The above shows a saving in the three tunnels of 23 per cent. in brickwork, and about regard to ventilation, it is well known that the power required to force air along passages is practically as the cube of the velocity,
and as the area of the air passages in the single tunnel is 106 tt . with speed ten miles per hour, and that of one of the 17 ft. diaper hour velocity, it follows that the power for this portion would per hour velocity, it
be einght timesess 1has for that working tunnels would be practi-
cally the same, the velocities being nearly alike in both cases, which would be about $2 \frac{1}{2}$ miles per hour-the 30ft. having an area
of 47 ft ., the two single ones together necessary here to enter into any great detail, sufffice it to say, by simply increasing the inlet for the air as described, using the ordi-
nary formula, the 480 -horse power required for the one tumel is reduced to 170 for the three tumnels, or a saving of nearly two the length proposed by passing the air through the whole length of them for the purpose of ventilation, coors being placed across the one end of each tunnel, which have to be removed for the passage of each train. Such, a device I can hardly conceive would be
dopted, particularly if it could be avoided; besides which, the power required to force sufficieint air for ventilation for, say, , forty-unnels-would be much larger, and the velocity of current mor than ten miles per hour, or four times greater, than in the other cases, which is only two and a.half miles per hour.
In concluding this paper, Mr.
In concluding this paper, Mr. Orampton referred to the hydraulic esseribed last year at Southampton, as reported in our columns, he discossion on the above paper elicited opinion in favour of the hatee tunnel system, but Mr. John Clarke Hawkshaw pointed ou that the brick

INFRINGEMENT OF THE LOWMOOR BRAND IN RIVET-MAKING
AT the Staffordshire Quarter Sessions on Monday last, Thomas Williams, rivet and chain maker, of Hales Owen, was arraigned
before Sir Rupert Kettle, assistant cairman, coarged with
" unlawfully causing to be applied to certain chattels, to wit, iro "unlawfully causing to be applied to certain chattels, to wit, iron
rivets, on the e 1 th May Mast at Rowley Regis, a counterfeit mark,
'Lowmoor,' being the trade-mark of Hird, Dawson, and Hardy." Lowmoor, being the trade-mark of Hird, Dawson, and Hardy.
The prisoner had been committed tothe session sy the Hales Owen
magistrates, but had been admitted to bsii, upon which he surrendered.
Mr. Alfre
Mr. Alfred Young, with whom was Mr. Neville, were the
counsel for the prosecution, and Mr. Harris-of the Midand
Circuit-with whom was Mr. R. C. E. Kettle, were for the defence Circuit-with whom was Mr. R. C. E. Kettle, were for the defence.
In opening the case for the erosecution Mr. Young said that the charge was a misdemeanour which came under the provision of the was that the prisoner, with intent to defraud, had caused and pro-
cured another person to apply the trade mark of the prosecutors to
certain iron rivets. The facts were that on May 9th last the prisoner certain iron rivets. The facts were that on May 9th last the prisoner
called upon Messrs. Morcy, Carney, and Co., who carry on busi-
ness at Newport, Mon, apparently for orders, and succeeded in ness at Newport, Mon., apparently for orders, and suceeceded in
obtaining an order for 26 owt. of rivets, which were specified to be the prisoner, on May 11th, put himself finto communication with a asked if he could make the rivets, and stamp them "Lowmoor," since the rivets were of no value for use in boilermaking unless
they were made of the peculiar qualily and calibre of Lowmoor iron. Potter said he could, and prisoner promised to supply him
with the iron and with the stamp. The prisoner, for the time
being, had some difficulty in sending the stamp being, had some difticulty in sending the stamp with "Lowmoor"
upon it; but Potter appeared to have had no dificulty, for he borrowed one and went on making the rivets until the prisoner
succeeded in having one designed. The order was completed, and they were stamped with the Lowmoor mark, would pass as genuine articles made by the prosecutors, whose trade-mark was well-
known in the market. A very singular part of the transaction, however, was that after the prisoner had been committed for trial
at Hales Owen, he went to Newport with the oriminal order in hls
pbssession, and induced one of Messrss Mordy's clerks to introduce ppssession, and induced one of Messrs Mordy's clerks to introduce
the words "to be made from Lowmoor iron and stamped Lowmoor on the head.
Thomas j
deposed that the firm began to trade with the prisoner in January
last. In re last. In reply to a letter, they gave prisonerss son an order for
30 curt. of Lowmoor rivets at certain prices, which were mentioned in the written order -the dooument was put in and read. It
showed that the goods were to be of 3 in, 2 tin, and gine ounter-
sunk, and to be made of Lowmoor iron. The order was duly carried up, rets heing received with the word .Lowmoro" stamped
unon the head. Cross-examined by Mr. Harris, witness stated
that he ws

be stamped "Lowmoor" upon the head, and he had no idea that
he was doing anything wrong since the firm did not care who made he was doing anything wrong since the firm did not care who made
them. He knew that buyers had no guarantee that rivets were not spurious unless they had the 10 ,
 Dawson, and Hardy, stated that bar ron, stamped with the Low noor mark, of from $\frac{\text { din. }}{}$ upwards, was utilised for rivet purposes.
The firm supplied iron thus marked to merchants. The price of thet particular lin would be 19s. per ewt. at the works: manufactured rivets of $\overline{\text { Bin., }}$ 25s. per cwt.; and itin., ivin., and upwards, would be 24 s . per cwt. In cross-examination witness said Wn was made from Lowmoor iron.
Thomas Potter stated that the prisoner had engaged him to nanufacture the rivets, "a friend" to mark the rivets, until the prisoner supplied him with one; but the friend's name he would not divulge. When the prosecutors charged him with making
rivets with their stamp he had replied that the order protected him. ivets with their stamp he had replied that the order protected him.
Mr. Harris denied that the trade-mark had been infringed or mitated by the prisoner. The stamped rivets bore, he pointed
mita noor; and it was not possible for any one manufacturer to patent the name of a place and have the exclusive right of using it, as an exclusive trade-mark by speculators. The prisoner had not since to his knowledge he did not know of a registered mark called "Low Moor." The learned counsel now called the prisoner's
Mr. Geo. Stones, of Stones Bros., of Smethwick, stated that he
 of Smethwick, stated that Mr. Stones had bought the iron from hose of the iron from which the rivets were made. Naboth Priest, clerk to Mr. Williams, said he ordered the stamp from a button maker and die sinker, of Smethwick, named Groves. That
tradesman now said that the stamp supplied to Mr. Williams had been made by one of his operatives, from, he believed, a printed sketch that was found about. Other witnesses were called, who
deposed that the prisoner had borne a good character for many Mr. Harr
Mr. Harris, in addressing the jury for the defence, said that it construed into a fraudulent act; and that the only inference was that the prisoner knew nothing of the trade-mark.
Mr. Young, replying for the prosecution, remarked that no wonder the prisoner occupied good positions when he sold rivets

His Honour, in summing up, said that the jury must divest their minds of sympathy for the prisoner because of his looal position, If it were to become a general thing to have rivets of inferior iron
put into boilers the results would be extremely disastrous; and put into boilers the results would be extremesy disastrous; and perty would be safe. The trade-mark had been in the possession of Messrs. Hird's firm for ninety-four years. It was for the jury o decide whether the name ne only was intended to convey tuat they were made at Lowmoo But even if the rivets were made from Lowmoor iron, the jury had Sot devend whether it wes lawful for the prisoner to put "Low-
moor" upon them. He was of the opinion that the prisoner was not aware of the magnitude of the offence.
The jury, after a short deliberation, returned a verdict
Guilty," with a strong recommendation to mercy, on account prisoner's good character.
Mr. Neville, on behalf of Messrs. Hird, said that they were not an example on any vindictive motives. The mer merely son
and
His
His Honour, in addressing the prisoner, said he believed that he would regret as much as any one that he had been led into the
commission of this misdemeanour, and that what had happene would prevent him from again pirating the Lowmoor trade-mark. By virtue of a recent Act of Parliament he had power to order
the payment of the cost of the prosecution, and he did not propose to inflict any further punishment; but at the same time, it was industries were carried on so extensively that they must not tamper with trade-marks. The sentence would be that the prisoner pay
the costs of the prosecution and enter into recognisances to the costs of the prosecution, and ente
come up for judgment when called upon.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

FINISHED iron consumers mostly continue satisfied with individual transactions of no great extent; ;ut the total is very considerable,
as sis evidenced by the activity at the works. The majority of the mills are running actively, and some sheet makers are booked fully
forward up to Ohristmas. These people are looking for forward up to Christmas. These people are looking for better
prices before very long. At present, however, they still quote
es 5 , to $\& 10$,
 year, singe they believe that the tendence of the market at date is
ypwards, especially bearing in mind the possibilities of an early upwaras, es
rise in coal.
Rest-thin
Best-thin-sheet makers this week again speak of business as
 plates, too, they are busy, and in this department they quote:and cokes, 21s. per box, with 5s., additional for each X. quarterly meetings, and they do not express surprise that at the gathering on 'Change this-Thursday-afternoon in Birmingham,
there should be a quietude in new business. This is not at all there should be a quietude in new business. This is not at ali
unusual at the gatherings immediately succeeding quarter-day. £6 10s. to $£ 62 \mathrm{~s} .6 \mathrm{~d}$
Instances were mentioned to-day in which foreign enquiries that are reaching the ironworks are for such small lots of bars, hoops, cc., of assorted sizes, that a year or two ago similar orders would
have been at once placed with a merchant to satisfy out of his warehouse stock. But such is the rage for low prices that even
small foreign buyers are bent upon taking every possible advantage of the present state of things.
The galvanised iron roofing makers are doing a large colonial and South American trade, and other branches of the galvanised trade are also fairly brisk. For corrugated sheets of 22 to 24 gauge
makers are firm in their quotation of $£ 135 \mathrm{~s}$, delivered Liverpool, makers are firm in their quotation of $£ 13$ 5s. delivered Liverpool,
and $£ 13$ 13s. deilivered London; and they are helped to get the figure by the rising tendency of the spelter market. The represen-
tatives here of the Birkenhead Galvanising Company state that that firm have this week secured orders at $£ 1310 \mathrm{~s}$, per ton.
A meeting of the makers of sheets of all descriptions and of
standard wire gauge. Mr. B. Hingley presided. It was explained
that the proposed gaye would be very inconvenient in the sheet
and hoo trade, and tit was resolved that a deputation should wait
tpon the Boafd of TTade to sele

Pig iron ruled quiet to-day, but the vendors of outside brand
were nevertheless pretty strong in their prices. Derbyshire sorts were nevertheless pretty strong in their prices. Derbyshire sorts
were 47 s . d ., and Northamptons 46 s , 3d. Ulverstone forge hematites were 60s. delivered, and Barrow ditto 61s. Native all-mine ccepted for 0. , am hor wor The number of furnaces now blowing is estimated at forty-two, but not all the output is going into current consumption. The 1200 tons weekly at the Spring Vale Works. The proprietaryItesers. A. Hickman and Son-are pressing forward with the erection of their two new large furnaces for the smelting of native ores
out of which to manufacture steel by the Thomas-Gilchrist process and they state that they hope to have the finished steel plant ready Lilleshall Iron Company, Shropshire, are producing at the present time 1100 tons of pigs
300 tons cold-blast. To do of whis they are running, in all, five furnaces.
Consequent upon the recent ironstone miners' strike in North taffordshire, pottery mine from that district is very scaroe, and
ronmasters who use it for blast furnace purposes and for fetting in the puddling furnaces are this week willing to give big prices if
only they can secure supplies.
The colliers is evest wages question is every dassuming a graver
aspect. The South staffordshire masters are anticipatitg wwith
The some pardonable anxiety the meeting of the Coal Trade Wages Board, which is summoned for Monday in Wolverhampton to an advance of 10 pe presidency of the umpire, the men's claim for tive but to stoutly resist the claim is universally admitted, and it annot be seen what good arguments the men have to support their panufacturing the face of the present over-abundant supply of nanuacturing cool and the low prices which are resulting.
The mineowners in certain of the districts in North Staffordshire, where ronstone is chielly roaise, have for the momen - for whioh they struck five months ago-if they will for a fortnight frst work at the 10 per cent. drop. Some 2000 men are affecte this arrangement, and they have consented to it. The main and valuable. But it would not seem that all the master are willing to allow the men to resume. Yet at pits where
ather than play for five months, the men accepted the 10 pe cent. drop some time ago, notices are now to be handed in by the men for a return to the old rate. And more than this, the open tive leaders are this week trying to incite the men to take part in
the general agitation throughout the country for a 15 per cent. dvance
A new rotary steam engine which is comprised in the space of
bout 2 ft . by 3 fft , and will develope 25 -horse power, is this week on view at the iron planing works, at Bridge-street, Broad-street,
 ngineers. They state that it was their intention to introduce this engine as a gas exhauster and blowing engine, but that as it was steam engine. The pistons expose a surface of 50 in , to he action of the steam, and this surface never varies, The arrangements are such, that before one piston leaves the
working part the other piston has entered. They therefore compare it to an engine with an endless stroke. It would be imwork directly steam is admitted, for it will start at any point. By reversing steam and exhaust, a back as well as a forward action is
obtained. Used as a gas exhauster, it will deliver, the patenees explain, the gas or air in one uniform stream without any is not a perfect one, since it is very loud in worlit Birmingham
sim stand, however, that it was constructed before the ping. I underout, and that its various parts were made at four different engicensing shotion this defect will no longer a spear, but that there will Merchants in the hardware trades report a lull in the Australian rade at the moment, with a disinclination by deales to in fteir stocks. The Meatteranean trade is gradually righting itself after the panic caused by the cholera in several lines, and the fag end of the Canadian season shows up
well. The European countries indicate clearly that more might be done if the tariffs were less hostile.
In consequence of the horse-nail manufacturers having refused to actories are this week out on strike. The men state that they cannot get a living at present prices, and the employers, on their
part, that they cannot give an advance through machine-made nails having been imported into the markets.
The series of lectures upon coal mining in all its aspects, which
has been arranged for at the Mason's Science College, Birmingham, was inaugurated on Monday with a lecture by Mr. W. Y. Craig, M.P., who remarked that he had spent the greater part of
his working life in the management of oollieries. In the course of
his address Mr. Craig sketched the training which in his oninion should be given to make the pupil an efficient colliery manager, rom thocated a system of apprenticing managers and engineers Passing on to speak of colliers' wages, Mr. Craig said that what required to be considered at once was whether some substitute
could not be found to do much of that work whioh was now done
by the pick in the hand of the collicr. Would science and by the pick in the hand of the collicr. Would science and
practical training lead to the discovery of some force and machinery
that could get coal at the face? They had had machines, but they had never come into general use. It was not the machine itself that was at fault, but they required some force which did
not need to be conducted from the surface, but which was selfcontained in the machine, and could be safely employed at the working face. They had, arrived at considerable perfection as
regarded machinery for haulage, but there was much yet to be regarden maachinery
done in this direction also.

NOTES FROM LANCASHIRE.

Manchester.-Occasional orders come forward which prevent the den tression, but the market continues devoid of all buoyancy, with an indifference on the part of buyers about giving out any orders It is not that there is a high to covel of prices standing in the way of business, the present basis of value being really so low that there is practically little or no margin to work upon for any further reduction. It is the prevailing want of confidence in the future that is keeping back buyers. The recent activity in the shipbuilding
trade is rapidly slippnng away, and this, it is held, must materially affect the iny silppug a to a close, and with an evident tapering down in nearly all the iron-using branches of industry, consumers andarly come to the conclusion that if makers, in the midst of a fairly active trade have not been able to bring prices up to a higher level than their
present basis, it will be scarcely possible for them to be maintained present basis, it wil be scarcely possible for
when trade has dropped off. Consequently, where buyers can wait they are holding back.
During the past week or so there has been a moderate amount of quarte buying in pig ron to
quarter, and in son
for the present.
tion than they were a week or two back to the extent that there is
lessened disposition to entertain low offers. If, however, the market were really tested by offers of of any weight of ing iron,
there is little doubt buyers would still be able to find out weal points.
At Manchester on Tuesday there was only a quiet 引market. and quoted prices were 45 s .3 d . less $2 \frac{1}{2}$ for forge and foundry Lancashire, and 47 s . 6 d . to 44 s .10 d . for forge and 45 s .6 d . to 45 s . 10d. less $2 \frac{1}{2}$ for foundry as
the minimum for district brands represented by Lincolnshire iron delivered equal to Manchester. Only a very small inquiry was eported, and actual transactions at the above figures were very limited. n Scotch iron some very low sales were reported, and
there is evidently a disposition to "bear" the market in this irection.
unchanged. Makers are still kept going with present businescally for prompt specifications buyers have to pay full rates whind average $£ 62 \mathrm{~s} .6 \mathrm{~d}$. to $£ 65 \mathrm{~s}$. for bars, $£ 612 \mathrm{~s}$. 6 d . to $£ 6615 \mathrm{~s}$. fo
hoops, and $£ 8$ to $£ 85 \mathrm{~s}$. for sheets, delivered equal to Manchester hoops, and $£ 8$ to £ $£ 5$ s. for sheets, delivered equal to Manchester. There is, however, no pressure on the p
ward delivery very little is being done.
The engineering branches of trade
The engineering branches of trade are unquestionably getting
quieter. Heavy tool-makers in this district are still getting a fair amount of work, and locomotive builders are kept very busy on ol contracts, but these are not being replaced by any weight of new
work. Small stationary engine builders are very quiet, and the work. Small stationary engine builders are very quiet, an
same remark applies pretty generally to the machine trade. the men generally are not as yet at all badly off for work , but stil reports for the past month from the various districts of the Trades
Union Societies Union Societies connected with the engineering branches of
industry show comparatively little change in the industry show comparatively little change in the industrial con-
dition of the country, but from the point of vie dition of the country, but from the point of view indicating any
recovery from the decreasing activity which has recently been recorded, they can scarcely be regarded as satisfactory, the general tenour of the reports being discouraging rather than otherwise as to any improvement in trade. The branch reports sent in to the Amalgamated Society of Engineers are much on the same lines as
those of last month. With the exception affected by dispute, employment generally is reported to district. good, and the returns as to the number of men in receipt of out of-work support are practically the same as last month. What
little variation they do show is in the direction of a slight decrease in the numbers on donation. The secretary of the taken place during the past month, but that in some ceses has returns sent in were of a more despondent nature. The number of unemployed had not increased to any great extent, but the list was far heavier than they cared to see. It was, however,
well known that good work had been extensively carried out in the past, and it was to be hoped it would be repeated wages disputes at Leeds, Bolton, and Sunderland, states tinued more than three months, the signs of any settlement were more remote than at the outset. Up to the present time no men they would like to see exemplified at Leeds, where the men this made a claim for a minimum rate of wages of 28 s . per week, had report points out that at Sunderland the present rate of wages verages 36 s . to 38 s . per week.
The members of the Man
Foremen, and Draughtsmen on Saturday evening made amployers, Foremen, and Draughtsmen on Saturday evening made an inspec-
tion of the various departments in the new technical school, which has been established on a very complete basis in the premises of the old Manchester Mechanics' Institute, which is now practically merged into the new school. A course of instruction has been arranged, which includes most of the subjects in the Science and Art Department's syliabus, as well as the theory and practice of
mechanical engineering, builders' work, weaving and designing,
bleaching, dyeing, and printing, art and design, and the chool is equipped with machine and other tools, appliances, and laboratories for the effective illustration of the various subjects of art and technology. The whole of the departments are now practically fitted up with the necessary appliances, with the exception of
the section for spinning and weaving, for which the machinery is at present being made. The mechanical engineering section includes, on the ground floor, a thoroughly fitted-up mechanics' shop, work 3 ft . long by 2 ft . wide and 2 ft . high, a slotting machine, with a 6 in . stroke; a drilling machine, a screw-cutting lathe, sets of ools being driven by a 3 -horse Otto gas engine. In the basement are a complete moulders' shop, a smiths' forge, and an excellently fitted-up metallurgical laboratory, with nine wind furnaces, two muffle furnaces, and all the requisite apparatus for making assays
and testing ores. lecture rooms. Other departments are also fitted upin a similarly efficient manner, and already upwards of 900 students for the day and evening classes have been entered on the books. The member of the association expressed their gratification at the completenes will fhich the school had been arranged; and there is no doubt i various industries connected with the district
In the coal trade, business has been quieting down considerably since the commencement of the month, and generally there is only
a very moderate demand for any description of fuel. A few collieries are still filling up out of stock, but supplies in the mar ket are plentiful, and there is an easier tendency in prices. Special
sales are made at low figures, and to secure orders sellers, in
large number of large number of cases, are willing to give way a little on their lis rates. The average prices at the pit mouth are about 9 s . up to
10 s for best coals, 7 s .6 d . to 8 s , for seconds, 5 s .6 d . to 6 s . for com mon, 4 s . 6 d . to 5 s . for burgy, 3 s . 6 d . to 4 s . for good slack, and about
The miners have this week commenced their agitation for an advance of wages, but from what I hear the more sensible of the
leaders are not disposed to push matters to extremes. In the
present state of the market it can scarcely be expected that the present state of the market it can scarecly be expected that the
coalowners will entertain any question of an upward movement in wages, and it is, I fancy, more with a view of keeping up appearpressing the application for an advance of 15 per cent. that the present action is being taken.
Barrov.-I notice that the
Barrov. - I notice that the demand for hematite pig iron still
continues very quiet, and the orders coming to continues very quiet, and the orders coming to hands of makers safely say that no change has taken place which leads one to hope that an early departure from the present quiet will be the result The deliveries have not for some time been anything like the production, which has been well maintained up to the present, so that the stocks have been increasing and in most cases are now of great weight.
The prices at present ruling are far below the actual cost of produr The prices at present ruling are far below the actual cost of produc-
tion, leaving no margin for the producer. A few orders have been offered at lower quotations than are now ruling, but they have been refused, makers preferring to stock metal in the hopes of a sudden change in the state of the market. Prices remain at No. 1
Bessemer, 49 s . per ton net prompt delivery; No. 2, 48s.; and No. 3 47 s .; while No. 3 forge has been in limited request, at 47 s. . per
ton at works. The steel trade is not very busy, but there is ton at works. The steel trade is not very busy, but there is a little
activity in the rail and merchant departments ; but it is noticeable
that orders are not near so plentiful that orders are not near so plentiful as they have been. Rails are
guoted at from $£ 410$ s. to $£ 5$ per ton at works. Shipbuilders are not well off for orders, and
Iron ore is in fair request at from 9s.

THE SHEFFIELD DISTRICT.

From our ovon Correspondent.)
Sherfirici is at present placarded with announcements requesting engineers and similar workmen to keep away from Sunderland in the North.

in the North. The colliery

colliery owners of the Midland Counties at Derkshire met the
Me when it was unanimously resolved by the latter, "That this meeting is of opinion that neither the present state nor the immediat prospect of the ocal trade warrants any advance in wages, and that,
any demand on the part of the workmen be strenuously resisted,"
Following this meet on the following meeting, a further gathering took place at Sheffield emphatically confirmed. The meeting further resolved thance were colifiers had asked the coalowners to grant an interview to certain
representatives fur representatives they had appointed, the request should be complied
with, and fixed Tuesday next for the present on the 17th inst. represented the leading collieries in South Yorkshire, West Yorkshire, Derbyshire, Leicestershire, and Nottinghamshire.
Seventen Sheffield firms have now forwarded examples of thei Several foaicutta Exhibition.
Several foreign markets show a very serious falling off in hard-
ware and cutlery. During September last the only showed an improvement were Holland, Brazil, and Spain Canaries, and the whole amount of that improvement was not termany from $£ 16,033$ to $£ 15,295$; France from $£ 19,500$ to West Indies United States from $£ 9018$ to $£ 8009$; Argentine Republic from Sritish to $£ 9717$; British North America from $£ 23,429$ to $£ 17,360$, East Indies from $£ 29,804$ to $£ 23,334 ;$ Australasi for $6570 ;$ Britis E60,308. The total decline during September, 1883 , as compared vittr September, 1882, is a lit
being $£ 350,509$ and $£ 365,600$.
Steel rails, on the other hand, show an increase during September, 188, as compared with September, 1882 , of nearly $£ 50,000$ vast incerease-from rails is almost at a stand. Sweden and Norway show vas advanceas from $£ \pm 3038$ to $£ 214,087$; British North America
hat
hat
 $£ 46,244$ to $£ 34,565 ;$; Brazil, from $£ 23,338$ to $£ 13,147$; Chili, from
$£ 5937$ to $£ 2939 ;$ British East Indies, from $£ 24,076$ to $£ 22,362$, At the Manvers' Main Colliery the operation of the sliding scale for the regulation of wages can scarcely have been satisfactory, for
a joint meeting bas been held representing both the employers and " 0 nployed, at which the following resolution has been passed -r On behalf of the underground workmen employed at the Man
vers Main Collieries, we, the undersigned, hereby give six months" ers Main Collieries, we, the undersigned, hereby give six months
ootice to terminate the existing sliding scale agreement; but at the expiration of such notice there shall be a meeting between the the scale for the future regulation of the wages to be paid to the
underground workmen."

THE NORTH OF ENGLAND.

Contrari to expectation, the condition of the Cleveland pig iron trade has not improved during the last few days. Prices were, in
fact, slightly weaker at the market held at Midlesbrough on fact, slightly weaker at the market held at Middlesbrough on
Tuesday last.
Some merchants accepted 38 . prompt delivery oof No. N . 3 g g.m.b., and and a majority of on the makers
pren wd. to 6 d . ton more. Not much busin and a few holding out for consumers believe they will be able to do better when the shipping
season is ended. For forward delivery No. 3 is quoted at season is ended. For forward delivery No. 3 is quoted at
38s. 6 d . per ton. There is an abundant supply of grey forge ward deliver
Holders of
they have of warrants are more anxious to sell. In some cases price. The stock The stock of Cleveland pig iron in Messrs, Connal's. Middles1273 tons during the week.
from the the improved weather of the last few days the expor shipped up to Monday night was 46,459 tons, quantity of ping 49 , 808 tons in in the corresponding period of September, and 46,932 tons in October
Finished iron makers are still booking orders for prompt delivery at the old rates, which are as follows :-Ship-plates, $£ 6$ 2s. 6 d . to
$E 65 \mathrm{~s}$.; angles, $£ 512 \mathrm{~s}$, 6 d .

 rue do not entertain such offers. Stee rails are still to be had
at $£ 4$ 7s. fd . to £4 12s. d . per ton, but few sales are made. A satisfactory arrangement was come to last week with the men reeently employed at the Darlington Steel and Ironworks, and who
had been. dismissed. On Monday morning the whole of the works were again in operation. The reductions in wages agreed to vary
from $7 \frac{7}{2}$ to 1.5 per cent. The men employed in the steel departnent are said to have decided to join the Board of Arbitration. The workmen employed at Messrs. Bolckow, Vaughan, and Co,'s
Eston Steel Works have decided to become members of the Boar of Arbitration. A deputation will wait upon the manager to try It is
Yt is rumoured that active preparations are being made for
restarting No. 1 plate mill and No. 1 forge at Messs. Bolekow,
Vaughan, and Co,'s Witton Park Ironworks. Thes have been Tor a considerable time.
The Sunderland engineers have been on strike since June 21st, and still show no signs of giving in. A good many apprentices are
now on the side of the men, and the majority of those employed by Messrs. Dickenson and Messrs. Carr and Co. came out on strike on the 15th inst.
The whole of the plant belonging to the North of England Wago
Company, Limited, West Hartlepool, was sold by auction Company, Limited, West Hartlepool, was sold by auction on
Thursday last. The machinery, which has been idle for some hursday last. The machinery, which has been idle for some
years, was valued at $£ 9000$. The sale attracted a large number of
The accountants appointed by the Cumberland Coalowners Association and the Miners' Association have issued their eertificate
for the quarter ending September 30th, which or the quarter ending September 30 th, which shows the net
average selling price of cool to have been 5s. 3 . 5 d. per ton. nd Steel Institute to Middlesbrough bit of the members of the Iron subscribers to the guarantee fund by Mr. Walter Johnson, their honorary secretary. It appears that rather over Ji2000 was sub-
scribed and between 41500 and $£ 160$. scribed and between $£ 1500$ and $£ 1600$ was expended, leaving a
balance on the right side of something like $£ 500$. Out of this balance on the right side of something like \& 5000 . Ot of this
residue a certain sum has been voted as a present to the Middles-
brough Volunters for the use of their hall as a a luncheon-room, and another sum to defray the cost of sented to Mr. Johnson, in recognition of hise of preat servioes. A
suitable contribution will also be made to Mrs. Kawdon wid suitable contribution will also be made to Mrs. Kawdon, widow of
the workman who unfortunately died of injuries received at the the workman who unfortunately died of injuries received at the
North-Eastern Steel Works during the visit. The balance will be returned pror rata to the the subscribers.
gineers was held in the Exxhange on Tuesday last, and was well
attended. Mr. Ewin F. Jones was ree-lected president for the
ensuing session. The previous officers were also all re-elected.
ensuing session. The The Frevious owas reere-ected president for the
The reault of the ballot for members of council showed re-ele no changed.
except the election of Mr. Edward Williams in place of Mr. J. W.
Williams, who has left the Williams, who has left the district. The programme for the ensuung iession seems likely to prove a very attractive one, includ-
ing, as it does, some good names and papers on important subjects.

NOTES FROM SCOTLAND

NOTES FROM SCOTLAND (From our oven Correspondent.)

$\mathrm{THR}_{\text {Ge }}$ Glasgow pig iron market has been comparatively without animation during the past week. As the promised advance of
miners' wages did not permanently affect the value of warrants, a short time has failed to impart that number of blast furnaces for might have been expected. The holders of warrants in some instances have been anxious to dispose of them, and as the inguiry
has not been very pressing, prices naturally declined. In Messrs. t stores the increase in stocks has course of the past week. The week's, ssipments of pig iron were
11,787 tons, as compared with 12,023 in the preceding week, and 14,199 in the corresponding week of 1882 .
Business was done in the warrant market on Friday forenoon at
46 s .8 d . to 46 s . 7 d . and again 46 s .8 d ash the

 done on Wednesday down to 46 s. 10.d. cash, while to-day-
Thursday $-a \frac{1}{2}$ d. less was quoted, and the tone of the market was very flat.
There
of makers' iron, which

 Last week's imports of minerals to the Clyde were smaller than
usual, consisting of 2202 tons of ore from Bibao, and 718 tons of copper pyrites from Huelva.
In the malleable iron de
where the industry is prosearted abundane is in most industries ame time, it is useless to disguise the fact that, owing to the ot regarded with satisfaction. The different branches prospects ar ounding and engineering trades are likewise active at present, but The coal to a similar fering of doubt as to the future
The coal trade in the West of Scootland keeps fairly active, but lacks the pressing demand that was experienced lately. The nquiry for shipment is not quite so good; and but for the three
days stoppage of work in the Hamilton district last week, dificulty might possibly have been experienced in disposing of the current production. Among the principal shipments from Glasgow
were 3500 tons to Odessa, 1385 tons to Martinique, 850 tons to Ayr 9059 tons of coal were dispatched in tons to Gothenburg. At and 7322 tons at Troon. In the West prices are not materially altered, and it is regarded as quite uncertain whether the coal
masters will be able to secure an increase of prices on the 1 st November, , when they have promised to advance the miners' wages
by 6 d. a day. Business has scarcely been so brisk in Fife and the Lothians. The export of coal at Grangemouth during the week
was 922 tons. All over the country the inland consumption is
good, and will doubtless improve as colder weather increases the
The
The agitation for increased wages so long carried on in Fifeshire appears as far as ever from being successful. A conference was
lately asked for by the secretary of the men; but Mr. Connel, the mine-owners' secretary, has written, that they cannot see their way current prices of coarssesentatatives of the maran. That an advance of find wases thut
they suggest the adoption of a sliding scale for the regulation of they suggest the adoption of a sliding scale for the regulation of
wages.

WALES AND ADJOINING COUNTIES.

 (From our oun Correspondent.)IT is premature, perhaps, to state what the action of the assobut it is expected that a small advance will be recorded. 'lhis scales now in operation in the district-that of the associated owners, the Ocean, and the Ferndale. It has happened once or of the associated owners did not justify one. Now the Ocean has of the associated owners did not justify one. Now the Ocean has
signified that wages must remain unaltered, and Ferndale has delared a $2 \frac{1}{2}$ per cent., advance. It is most unfortunate in the
interests of peaceful trade that the colliers cannot by one scale. The steam coal men are working tranquilly at pre vigour. There is the fullest activity at all the ports, and a marked stiffness in price. Owners too are chary in accoepting business,
ensen does not extend to the sister trad
The stagnation of the iron trade continues, and winter prospects whe not encouraging. The only hopeful branch is that of tin-plate, and more for best samples. A Aarge trade has been done in wasters, but this is declining, and the chief inquiry is is ore $A 1$ brands.
I hear rumours of a steel works to be started in
Thear rumours of a steel works to be started in Carmarthenshire but have not much faith in anything far inland and out of the way
of exports. A good venture, too, in the crucible steel line is pro jected for Glamorganshire by a capitalist, who has further the acter . the present flourishing condition, capital is finding out various new channels of enterprise. I hear that an effort is making to conver
the Glamorganshire Canal into a railway. This would run into th very heart of Cyfarthfa works, and command a series of collierie A new line is projected too from Haverfordwest to St David, The country is sparsely peopled; agriculture not forward, but a
small percentage might be realised on modern pilgrims, black farm produce. The pion atchways, and drop the cargo in little bays at high tide, open th his is taken away in small carts. I should like to see a railway et the light of civilisation into the country.
Pitwood is in good demand, but with Pitwood fields there is no growth. Last week prices waste around The leading price at Wolsh ports of best steam prices advanced 1 s . The strike of the ironworkers at Tondu is ending . per ton generally do. The joiners have resumed work at 5 per cent. reduc
tion; the forgemen have had a slight concession, and will resume work forthwith, and the artisans are expected to follow.
Mr. Walker, the able contractor
Mr. Walker, the able contractor of the Severn Tunnel, has had
another mishap in the form of an irruption of gious vo
mastery.
An inquest on the sufferers of the Gelli, Rhondda, was held last which showed verdict returned in accordance with the evidence, The North Wales colliers are agitating for an advance, but it is

Some degree of sympathy is being expressed in Wales by the
olliers for the colliers of Staffordshire, though, as yet, I do not colliers for the colliers of Staffordshire, though, as yet, I do not
hear of any fund being started.

THE PATENT JOURNAL. condensed from the Journal of the Commissioners of $*^{* *}$ It has come to our notice that some applicants of the refer to the pages, in ploce of turning t Inding the numbers of the Specifcation

Applications for Letters Patent $*$ *hhen patents have been "communicated." the name and dadress of the communicating party are printed in italics.

 -9th October, 1883.
Tich. Combriso Macounses, C. Hoyle, and I. and J.

 806. PuLverisise Mackines, w. R. Lake.-(r. D.

$$
\text { 10th october, } 1883 .
$$

4814. Prokivo Motion for Looss, J. Richardson and J
Robinson, Farnworth.

 and J. MCFie, Rutherglen.
4815. Specractes, \&c, W. Vale, Birmingham.

 12th october, 1888.

 4861. Galvanisinge Wires, L. A. Groth.-(E. Deutgen,

 66. Pbyvil, \&e., Holobris, S. Moore, Manchester. 4866%
4816.
4817.
4818. Pozous Vkssels, A. G. Biffo and G. Dionisio
London. 4870. Combinem Locker and TEtober, 1888.

Germany.
4871. Prodering Ammonia, de., H. Simon and W. Smith, Manches
4872. CARTRIDABS 487.2. CARTRDDERS, C. D. Abel-(W. Lorenz, Germany.)

 Frrance.)
4887. Tore

 Darwen.
489.t Sisining, de., Machinery, w. J. Kinder, Man 4892. Dissifegctivg Apparatus, O. Schimmel, Saxony
4893.
FAstreninas, R. Lewtr, Manchester.
 4895. Toppor October, 1883.
4895. Torproozs, R. H. Brandon-(IV. E. Winsor, U.S)

 R. Gould, Birmingham.
4900.
L901.

 4907. Trkativa the Linge and Respreatory Oranss
W. P. Thompson.-(J. Retchum, jun, Brooklyn, U.S.

Inventions Protected for Six Months on
Deposit of Complete Speciffeations.

 4804. Nails, H. J. Haddan, London- Com. from A. 4806. Polverisixo Machivss, W. R. Lake, London.
A communication from R. D. Gates, Chicago, U.S.-

Patents on which the Stamp. Duty of 250

 4100. Vatves for Gas, ice., J. Woodward, Ancoits.-
9it October, 1880 . 4116. Tansmsirtivg Electrical Cureents, w. R 4175. Boorrinkini. Macelines, S. Galle, Birkenhead. 427 Aerlisinga and Tarowiso Watrer, de., C. Kesseler,

 son, Strat ord.-23rd october, 1880.

 148t. October, 1880 . Bromhead, Glasgow. -1 15th october,
488.
180. 4251. Portable Hydrant, J. H. Greathead, London.-

 24tio srick fors for Umbrbluas, de., C. D. Abel, London.

1269. Hydraduic Liets, E. B. Ellington, Chester.-

Patents on which the Stamp Duty of $\& 100$ 4101. Lace Machines, E. Simon, Paris.--23rd october,

 Forster, Streatham. - 10 th october, 1876 . Leeds,
4011. CIRcIE Conss, \&ce., T. W. Harding, Leeds. 1 the

Notices of Intention to Applications. Proceed with (Last day jor flung opposition, 2nd November, 1883.) 4326. Fixing Strreo Pluttrs in Position, T. T. Hod
Bon, London. 7 th June, 1883.

 28th June, 1883. WWaving. W. Irving and F. Howarth,

 12.h Jume 1883.
2937. STraM Tricle, J . Imray, London - - commu-

 communication from H. Friederichs and C. Philippti.
14th June, 1883.
2975. Exns of Braces, G. Walker, Birmingham. -15 th June, 1883.
Sos.
1883.
IRNING MACHINE,

 10th July, 1883. f594. Box or CABE for Pels Post, R. B. Jackson,

Teulon, Lon

 don.-A comn
October, 1883.
(Last day for fling opposition, 6th Novenber, 1883.)

 2929. WATERE-CLOsBrs, F. Piercy, London. -12 th June,
 2935. Loors for Wraving, R. S. and R. Collinge, Old-
ham. $-13 t h$
$J u n e$
, 1383 . 2942. Sprishiviv Machiviry, F. Heslop, Leeds, -13 th

 don.-A communication from E. G. Shortt: $-2 n$
 4054. UNIVERSAL Jotrsiss, W. G. Edmonds, Devonport,

Pist of Patents Sealed.

 12 th October, 1883.)

1943. ALbDuss, R. Mosar, Berlin. -17 tht April, 1888.
1947. HAxD. WRAving DEvicks, E. Wernicke, Berlin.17th April, 1883. Oiling Apparatus, C. A. Paterson,

 ${ }_{2}^{\text {Aprili, }} 1883$.

 Lyman, London. 1 t. May, 1883.
2232. Sprinisg, B. A. Dobson and w. H. Singleton,

 Sti May, 1883 .
 3088. RALILWAY Chatrs, J. Hopkinson, Rowsley.- 21 st
June 1883 .

 3353. ELEcrrac METRRS, G. Hammersley and C. H.
Worsey, London. $19 t h$
July

 (List of Letters Patent vohich passed the Great Seal on the
16 th 0 october, 1883.) 1401. Top Norches for Usbrellas, w. Miliner, Car-
brook.- 1 leth Mareh, 1883. 1935. Vesgels for Horming Oirs, G. A. J. Schott,

 ${ }_{188}^{\text {and } J \text {. Croe, Denton, near Manchester. }-18 t h ~ A p r i l}$
 1980. Regulative the Spred of Machivery, de., w. o.
Aves and G. Moss, London. $-19 t h$ A pril , 888 . 1981. Tires, W. O. Aves and G. Moss, London.- 19 h
 1989. Aswing Machinss, J. Fox, London. $-19 t$ th April,
 199s. ELJFcrrncic Batrikirse, B. W. Webb and H. P. F.

 2027. Dispriavise Goons, W. P. Thompson, London.-

 2072. A ABH Buckert, R. D. Jones, Liverpool.-244h

 poi. -2cin Apri. 1883.

 hausen, Now York. 15 th May, 1883.
2455. Controulse the SUPPLY of GAs, S. Hyame,

 ${ }^{\text {July, } 1883 .}$ Merres, H. H. Lake, London.-14th

 188.1. STopprgs for Borties, H. H. Lake, London.-
21st August, 1883.

\because. Sppefficatlons will be forwarded by poot trom th

ABSTRAOTS OF SPEOIFIOATIONS.

repared by ourzelves erpealy for The ExaurzzR a

 Tho objeot is the manitatature moro especilly of
 of peroxide of manganese.

 Tho inventor utiliseas tho earth, railway lines, water

 windmills, water-wheels, gas enginins, \&c. Reference

procalae wimb.) Iod. Numather, Paria.) -(Not

 713. Hose Revis, \&ce

This relatece, Frrit, to to turnover handio as applico to

 a coned cylinder.
 To sippress the induoed umrents in the ore proees

finger ring or recektio ring. wiloh may be worn as a

This rolates to the peacular arrangement of lovers in
 ${ }_{841}$
 $T_{\text {Thary } 1,188}^{\text {ren }}$
 mith) $\frac{2 d}{\text { mid }}$ o object is to to economise the consump.

 on and by the
 This selitesesto to the application of metallic patterns.

 to reotive tho water and act tas the top or internal dio
of the presing machine.
 The commitat 18.

 worrine

 This relates to a number of horizonta, and morro or and fractions of fnchos, or other convenient divisionoss.
 Thist rointas
constriction.

 minches, cranes or orther similar machines, or for dis

 steam, or as circulating pumps when distilling fresh
water.

 Thisi rolatese to improvements in an arrangement of

 the power of ascending hills ; and rolates alsono t t

 Toc lens is constructed of two plano.convex lensee

 to leeward or wind ward.

 910 Masurfacturg or Gase AxD Vaporss rol
 tructi
 Thiti relotase to the construction of an automatio 921. Watrer gavars

 preser or orther wise
 Thitid relotarer to, arrand odents for removing dirt

 Thisi rolates to the introduction of from 0.1 to 2.0

936. Skuwn Mcew in use. in place of the vartous

 and

 ment of the parts.

Nebit, Lomdon-2lat tebruary, 188 s . (Notot pro
The inventor claims the use of auchusine oralkanine In the manufacturo of ink or printing materal tor use
no printing postage stamps and other Ilike stam pa, and 51. ELizeThe and oner monetary doouments,

 052. Hosassgoss, J. Fertis, Athlone.-21st Feiruan

This sonsists in forming oegs or projections on tho
underadide of the phoo, wheroby a a securo foothold is
 heietotore attending the uso of such cog.

 This rilatest to tmprovementsis in tho ofirmo ot the can

 Thidififirs to the or podiotion ot bases whith are

 958. Castixa Inox

 This raiates to improvements in the general con.

983: Guaros for Canving Forss, A. M. Clarke, LonThis consists, in means for locking the guards in | not bec |
| :--- |
| 964 |
| or |

poses of thh eatid process, comprisisg the fu
moulds, the mould carrages, and the press.

 onductors of disesimiliar metale, exposed to the action
 The objoct ig, Firist, to onsuro a better supply of aif
 880. M M AVTrFCTM

 suttorrarkg in ixd.

This r Plates in ansars frame to the employment thero

 The invention io pratitularis y appliablib for the olarit
 down wardid betweon inctined pintase, botween whic

 The mprovements conasist thin Incrasing the sectional In tho example illustrataded the sectional arean of thi

974. Rallwax Siovaiulva, W. W. Linseotit, London. This apparatus is intonded eppocially for tignaliting the required position from the siggal-box, and actu"
 This rilatesestotothe the procheses of proparing wire or flat strips of steel for watch and other springs.

 977. Wzeoriro Macoives B. Wolner, LiverpoolTho inventor clime, Firtst a Aystom of levers with
diagonal lover comectung them with the indicating yparates, boo or cylinder osecillating overy of of
 of welghing machine: Fourthly, an indicioating app

 The apparatus is appocinly applicable to foating

979. Appratus pon Workivo Ranw sionil
 morement of the lever to take off of ower the sign Grat draws down the home gignal) and the furthe movement owerr the datant signa, whil in puttiog

 In arrying out the invention threre is oprovidad of

 982. Furnaces, Gr. Taylor, Middleton.- 23 rd February
1883.-(Not proceded vith.) This consists of improvements. upon patent dated
12th May, 1876, No. 1996, the object being to prevent 12th May, 1876, No. 1996, the object being to prevent
the valve or damper from becoming closed till a cer
tain time after the furnace door has been closed. 983. Knitting Machinery, F. Johnson, Nottinghan To either end of a knitting machine, arranged to
produce narrowings by automatic means, a bracket is secured, and carries an axle, on revolves, the bracket also forming bearings for siliding
bolts, actuated by cam plates on the axle, and which
operate at will narrowing bars, which, when the operate at will narrowing bars, which, when the
machine is making the gusset or the ordinary narrow machine is making the gusset or the ordinary narrow
ings, are operated by the narrowing screws in the
usual way , whe
half-hose, half-hose, such bars are operated by the cam plates, so
as to produce narrowing by either one or more
needles at a time. A suffieient number of points or
coverers are emplo needles at a time. A sufficient number of points or
coverers are employed tomove as many loops as required
from selvages inwards. When making what is known
as the French foot or toe, the point or coverer boxes

 link to a truck bearing lever, operated bya a am on the
cam shatt each revolution of the cam shaft racking the
tooth whel on or
 The object istruarys. colre an apparard draught in chim-
neys and to avoid a down draught.

 The obect is to torm letters or orther characters on
paper or othor materiat tron a dotance, throurt the
medium of fluids, such as air, which is for this purpose confined with a special apparatus.
 The object is
wound pirn or so spoci, and a to rodure firmly and evenly friction
 employed. In carrying out this invention the eninventors
dippopsse with the lioted cup or its equivanent and
substitute therefor two or more conical or oylindical rollers.
 TTis relatese to radiators of hot-water apparatus for
heating buildings, the object being to improve the
 in 2 and of space. The radiator has a horizontal main pipe forming the base, and which is in con-
nection with and prefrably over the horizontal por-
tion of the hot-water mains, to which it is connected

 upper ends
air to escape
900
990. CmLDREN's Cors or CRadLes, J. Broon, Mont.
rose. $-238 d$ February, 1883.-(Not The object is to arrange and combine with children's
cots or crades, mechanical devices for rocking or cowingin them
991. Fun

 Thitrdy, a system of hermetical and indestructible
closers or fystenting whith tomplete the strultion
ali eady produced by the masonry, and particularty by alieady produced by the maso
the dry sand preferably used.
 The object is to prevent the exit of gases from the supplied under the bars by a fan or other mechanical
contrivance, and at the same time to ovooid the trouble
 openian in front of the ashpit. ATr Ar is supplied under
presure to the chamber by a
fan throsh the air

 merely turned on its pin at its, upper end, and the fire
door only commences to open when the door f has been IThned. In this waxy the presesure of air ir ir weraciced ine in
Ine furnace before the fire door is opened without
the stopping the ef an by which the air ir is supplitid. When . When
the door f is fully opened fre access can be had to the

 shown.
993. Whekis of Verooiprdes or orrer Veriolvs

more spokeses in order to insert what are commonly
994. Fis hub lamp.
 The invention relates to arrangements of machinery
and form of hull, so that floating docks may be made

 dook may be inclined up to centre line or bottom oof
dookk first put one side then the other, $\begin{aligned} & \text { os that repars } \\ & \text { oncleaning of the bottom may be easily offected willst }\end{aligned}$ the dook is afloat.

Thuretted hydrog in impen from coal gas.

 The drawing is a longitudinal view of a corank shaft
constructed in accordance with one part of the inven-

to slide in grooves, slots, or recesses in the disc
couplings c cl. d d arre rings formed in one pieeo with the couplings el cl for the purpose of retaining the parts
n correct position. The said rings may be sepurate Yrom the couplings and be secured thereto sot set
soress or equivalot means. Tho groves.
recesses in the or couplings are two in number, one in rocesses in the couplings are etwo in number, one in
each side, and at right angles or nearly so to one
enoth another. Aduatable weade picees may be used to pro-
vide for war ond tear in the stots. eareberring. If
ary unequal or irregular wear in the bearings takes

place, so that the longitudinal axes of two abutting partions of the shaft are not in the same straight line,
each portion of the shaft is able to revolve freely in its each portion of the shaft is aboe to revolve freely in its
bearings without being subjececed to transverse strains a account of the couping siliding on the end pieces or sooplers ousting itself to any irreguatrities of position of
the suid end pieces or couplers.

 Thith.) $2 d$.
 extent corresponding precisely
ment of the primary apparatus

This consists in fixing the blades of screw propellers
 taining the eame in
bolts, or guard rings
1003. ATraching A HandLe to A Stone to Enable

This.
Thelates to the means of attaching a movable
handle.

 This relates to a mod ode or means of treating vegetable
fibous zubstancos in oomination to make what is
known as half stuff for paper making.

 mechanical means the operation, hitherto effected by by
hand, of linking into hinantin the y yarn or thread dell.
vered from warping mahine or Thed from warping machines or similar apparatus
Trde invention also comprises improvements applied to
ord

 sure in the camera either in idirect succession or in any
doesired order, and to retain thes optase proted
against farther active action until they can be bonve-

 fixed to the saddle at the same points, and their
inner ends oonnected by a spring, so as to form an
elastion

 shuttle by a novel ball motion, suoh ball being fitted
on tho
marizontal shaft machine, and having a groove round it at an acute
ancle from a hole through which the shatt paseses.
Over the centre of the ball it the by th
 carries on top the shuttle carrier within the race. To a circle or a bowl, which hie in the groove in the ball.
The shuttle may be worked vertically from the end of The shuttle may be worked vertically from the end of
a rocking haft at the hase of the machine, by fixing
the ball on a vertical shaft. 1010. Gas Exarnss, C. H. Andrev, Stockport.-24th
February, 1883. The object is to obtain a more explosive mixture of
air and gas upplied to gas engines, and it icomsists in in
supplying the gas and air to the explosion suphling the gas and air to toen, explosion colisinder
through a bilde valve as usual, a second supply of gas and air being allowed to passi intothe oylinder through piston, and closed in any convenient manner. The
seoond supply may be talenen rom the main gas upply
nine before ndependent supply the piston is able to draw a small quantity of the mixture into the oylinder as required,
and the working of the engine thereby improved.

 enables the weft to ob woven without gnarls or knote
when passing through the shed in the loom for the

R. Cunkifie and J. Croom, Manchester. - 24 th Febru.
 introduce the lubricant,

This consists in making such stands so that they can bo costruat the stand st hat thees, together with the
costume thereon, can be turned round without moving

 the current from the conductors, preferably formed as
a central rail, to the electric conduactors
 means of emptring and filing the cells, and to the
exaiting liquid.

 charging current being conveeved by metallic con
ducturs imersed int ine liquig, The clls arehrged
with oxygen until the positive electrodes are saturated with oxygen
therewith

 This relates principalily to furnaces for bourning
 or other materinas, and is especialy adapted ior pro
ducing sulphrous acid gas for ornersion int oul
phuric acid or for other purposes, and it consists of series of superposed dhambers furnishod with asitator
and feederar to feed the material oontinuously through
them whilst being submited to the burning or roust them whilst being submitted to the burning or roast
ing process. The agitators and feeders are fixed to

 purnes anter thees leave the furnace and
to
 This oonsists in the use of an air blast to distributea
spray oo water on to taricis in place of the brush
usually emploged, such blast being produced by a bluwer, pump, or tan.

 are preferably employed as the resistances, the branch
coutaning the graitest number of lamps being thrown
cot into circuit last,
1020 A PpuyIn

 one being capable of sliding within the outer one, and upon an iron core cut with a screve throad, which
eugages with the interior of the smaller solenoid.
elo

 cook opening into a bent tube leading to a fan chamber, the blades of the fan in which divide such
chamber into equal parts. The outloet of the fan
chamber is rovidel with an ordinary bit piece. The
shim spinide
or index.
1024. CRIRs for Chrderen, A. M. Clark, London.-
24th February, 1883.-(A communnication from Mrs
R. Opdyke, Nen Jereyey. $V .5 .5$. $6 d$.
One to slide verticall in grooves in the ports, and is counterbalanced by
weights and cords, the object being to facilitate
 sie night by lowering the side and placing it at
side of bed.
1025. Hydraulic Machinery for Puschise, Shear

 to the piston-roc and the counter punch or die is is inace in the Prame. The stroke of the piston can ber orpulated
to omit the thickness of material The water is forced
into the into the cylinder by a pump through a pipo and enter
ing the cylinder by the cover causes the 位her form
 The toon is ceausectod ot return automatically by cyeans of
T valve actuated by a lever. 1028. Actuatisa Cross-OUT SAWs And means prere-
Fros, J. Richmond and W. Whiting, London. -24 th Actroury, 1838.
 the seoond lever being fulcrumed on a bracket sup.
porting a large whee
driving shive iby a pinion on the gives motion to the block, and so causes the saw to be
moved to and fro automatically for cutting lengthe of

 This roruary, restes to means for superheatiug exhauss
steam from an engine and boiler, so as to discharg it into the atmosphere mixed with the proucts of con
bustion
 flue tubes from the furnace terminate. Within this
smokebo ion is caused to pass, and may afterwards mix with the
products of combustion which heat the chamber and erve as the blast for th

 frepproof or other bydaulic or other power, travellin
hoists worked by hydr platiorms, , and other appliancos for moving and hoist
ing or lowering furnturo or ortor good the varis
floor levels and positions in the bob bocks of build dings.

their shafts, the pick blade being recessed, and a suit

 The tine frame consists of parallel bars separated by
 slip, and are secured by keys which are driven between
he tines and the blocks.

 pattern to be woven, the part inserted in the hole in
the peg lag or boarre forming a spring by being made or hoinow metal sil longta analy.

 and fastened to it the whole revolving on an iron
shaft. Four sorubbers are fastened to the cylinder,
 side of the ressel, the progreess of which through the
water causes the apparatus to revolve and rise up to the vessel's bottom and sides.
 This consists in the these, in combination with suit-
 year one end in the ppace betweon the rollis, and their
opposite ends are fifted with suitable gearing to cause
them to revolve.
1035. Signal Lasps and Lantrenss, J. Rogers, Londom In order to transmit
he leoloure light in signal lamps, nens
her of coloured glass between them
1036. Cartridoss, T. Nordenfelt, Westminster. -266 This relateses more especially to cartridges for use with
machine guns of larger dimensions than the milltary machine guns of larger dimensions than the military
or Martini- e enry cortridges. The case consists of a islinder of thin drawn metal closed at the base, which
is held betwen
diamoter as the cylind and and and dise of the sing of the same 1037. Geveratina Elecrracirt, A. M. Clark, London.

 hortzon
and
and the and the part removed is cut tinto blocks and dried by
compressiun under rollers, and afterwards in a covered shed heated by flues or pipes.
 lating cowls having a turning or adjustable mouth, so that ventilating air currents may be inducod through
the ventilating pipe when required by putting the jet
het
 In the drawing A are convex-lilk metal cells sitted
one on the other within the cylindrical contaniner B, C^{CC} a are internal and external joints, oonstructed with

ni cells A, , as as to keep them in position; F perforated
pipa, extending down the central opening $G ;$ G H tay

 from O. Hammerstein, Neev York 6 d. .
This consists in the use of a hollow movable table with h perforated upper face, and connected with suc tion apparte, for the purpose of holding the wrappers
of tigars and cigarettes in place before and at the time of cigars and cigareottes in place before and at the
they are being applied to the cigars or oigarettes.

 an electric supply is used to contain the pulverised
ore, and is fitted with a metallic stirrer connected to the positive pole.
1044. Tiv

 alone or witha lead alloy, and then with a final and
moun thinner protective ooating of pure tin oy passing
it between one or more paira of roles over whic
 for coating and finishing tin and torne plates so as to
obviate the tendency of the plates to stick in the guides
in the metal bath; and Thirdly, to an instrument for
handling the plates so as to prevent the marking the handing the plates so as to prevent the marking the
surface.
 of coke, such as described in patent No. 1947, ADD
1882 , of a series of main pipes extending along the range of ovens, and with the separate suction pipe to sluice cock, so that communication may be established between the oven, and any one main only, and that at opened to a certain main, and at a later stage to
nother main, and so on, and thus the difterent qualities of gas and products given off at different
times are separated, and at the same time a simple mode is provided for regulating the suction applied to applied, so as also to some extent separate fractionally effected by tapping the condensers at various points,
cecording to the degree of cooling. A main pipe is
also capable of being connected to the ovens when Oesired to quench the coke.
 This relates to the employment of a locking device,
and means of actuating same. 1047. Attachment for Spinn
treland.-27th February, 1883. 6d.
This relates to mechanism for This relates to mechanism for automatically stopping which give motion to the same. Attached to the rove guide is a bracket, supporting a vertical shaft, and
above this bracket, and secured to the shaft, is an arm, abo this bracket, and secured to the shaft, is an arm,
through which the rove runs to the fed roller.
Below the latter is a second arm, bifureated at its位e second arm has a quadrant rack, eng aging with The second arm has a quadrant rack, eng aging with a
weighted rack or pinion, pivotted to the bracket. An
oye is fixed to the loweredge of the bea eye is fixed to the loweredge of the beam of the eframe and forms a further bearing for the vertical shaft, to
the lower end of which a third arm is secured, and is
pivotted to a horizontal axis, and at its outer end conpivotted to a horizontal axis, and at its outer end con-
sists of a wire rod, its inner end being so weighted
that the wire, if left free in a certain position, would e raised towards a vertical position. When the thread is broken, the vertical shaft is caused to partly
revolve, and its arms withdraw the thread from the 1049. Producina Figured Designs on Textile
 A continuousdy revolving card cylinder acts on the
abric, which is moved continuously over an edge prefabric, which is moved continuously over an edge pre-
sented towards the card, so as to raise a pile on the
fabrie, a thin sheet of metal, perforated with a suitable design, being interposed between the cylinder and the
fabrio, with the latter of which it is caused to travel fabric, with
uniformly.
1050. BIryoless, IV. Morgan-Brown, London. -27 th
February, 1883.-(A communication from M. Raschke, Berlin.)- (Not proceeded vith.) $2 d$.
The two axles are rigidly conneted by two vertical by connecting rods, so as to form a frame in the shape
a rhomboid. The lateral tub ower entering the lateral tubes are in two parts, the ithin certain limits determined by springs fixed to ected by a cord passing over a pulley, treadnes are cononveyed to the diving aver a pulley, bevel wheello from
an intermediate shaft.
other improvements are described.
1055. Manupadture of White Lead, L. Brumlen,
Wrexham. -27 th February, 1883. 6d. This consists in the process and anparatus for the
nanufacture of white lead by drawing or forcing carmanufacture of white lead by drawing or forcing car-
bonic acid gas from a furnace of special construction,
hrough a washing device also of special construction and then through an oscillating chamber with double
bottom filled with wires of lead kept wet with a solubottom filled with wires of lead kept wet with a solu-
tion of basic acetate of lead, and formed so that the
carbonic acid is forced to pass through the lead wire. 1058. Cup Pulleys, R., J., and H. Wilder, WallingThe clips are mounted on flanges or grooves formed on the periphery of the pulleys, and on which they
have a limited oscillation so as to grip or nip the rope
between them. 1059. Telephonic Apparatus, \&c., L. J. Crossley
and W. Emmott, Halifax.-27th Tebruary, 1883. Relates to an indicating relay for use in telephone
exchanges and other purposes, such as railway
signalling. 060. G

February, 1883 , 8 \& von Martini, Frauenfeld.-27th The object is to utilise the expansion as much as
possible, and for this purpose the engine works with a a
peecially arranged compression and ignition chamber such a manner that the suction and compression akes place during one rotation of the fly-wheel shaft with a small piston stroke, while a complete expansion
ocurs during the following revolution with large piston stroke.
1061. Sknaitising Photographic Paper and DevelopFebruary, 1883 . (A A communication from . . B. and
B. C. West, Guilford, U.S.) This relates to photocraphy, and has special referand the development of the print, the object of the
invention being principally to avoid the necessity for invention being principally to avoid the necessity for
using the expensive silver solution now generally em-
ployed in this 1084. Apparatus for Heating Air for Warming
Buildings, doe, W. Brierley, Halifax.- 27 th February, $1883 .-$ (A communication from R. Tungler,
Prussia.). 6 .
The apparatus is constructed wholly of brick and The apparatus is constructed wholly of brick and
 February 1883.- (A communication from J. Mellette,
Winama, U.S.) $6 d$.
This relates to a ribbon holder constructed of two
ire
oller. 1070. Manufacture of Emery, Glass, or other
Abrasive Substanoe in Combination with Woven

This relates partly to the method of applying and
fxing abrasive powder to the surface of flexible materials in alternate strips of coarse and fine powder.
1073. Apparatus yor Transferring
 London.-27th February, 1883 .- - A communication
from Messieurs Hozard et cie, Paris) 6 6.
This relates partly to the combination of an inverted yphon of india-rubber or other suitable elastic matethe syphon, so as to flatten the same, and drive out the 1079. Mechanical wedges.

This consists, First, in the mode of and means for su
 In the construction andi arrangement of other parts of
1082. STREMA AND ortrer Borlers, T. Robottom, NunThis consists in applyinga stuffing.box and gland t to
end of firing tube or box or smoke pipe, and in end o shell of boiler, and stuffing the same with asbestos or
other packing to allow of the free expansion other packing to allow of the free expansion and con-
traction of firing tube or fire-box, and to focalitate the
rithd withdrawal of the same for the purpose of cleaning or

 supply oil or melted fat or fiubricant to the cylinders
or other parts of steam engines, or to the bearings and parts of engines or machines.
1093. PREPARIIIG Insulated WIres,
H. E. Neocton, from A. A. Concles, Neno York, V.S.S.) bd.
The wire is
first covered with a aterial, then with a layer or paint (preferably whito

 object is to produce alcohol, preferably a pure, alcohol
free of fusel oil, in one process directly from amyleo ous fruits or erceals swithouts resorting to the numer
ous intermediate proceses herettog to
 tained an an waste product in applying the said process 1126. Brackets for Supp
 The object tis that the anglo of the supporting sur-
faceis of jorcket set semployed for the support of rods or
ralls and other articles may be readily varied 1167 . Boukr FURNACss, H. J. Haddan, , Kensington.--
Sth March, 1888. $-(A$ communnication from
E. The main objects are to prevent smoke in the burnperfect feed of the air to the furnace chambers,
 Thader, Sch h Luckenau, Bohemia) 6 d.
sist in the means for fastening the simprovements con button heads, which may be formed of horn, wood,
bone, 1207. F
1207. Filtration, and Apparatus thereror, W, R.
Latie, London
 This.

which thpe cartridg ges are onsintroduceed, by forciong them in

 The main signal is held at safety by tho attraction

March, $1883.4 d$. 4 .
The process embodies the placing of colouring matte between the transparented photograph and tho paper,
card, or other substance upon or before which it is laid card, or other
or mounted.

 This consists in a machine for rolling or colling on posed mainly of two hellicoidal parts, ach being made
In one or soreral parts. of a rod or shant passing
trough the centre of them and serving as a cord

 edges of the fabric from curling ov,
before the edgges are stitcheded together.
1434. Sorgw ProprLLERS, G. B. Vaughan, London.-
19th March, 1883.-(A communication from C. H. This relateses to the form 8
1442. Boalies for Transio

 ing frames, on whith are formed or attacheod the axle
bearing blocke, the whole being carried on ordinary wheels and axiles.

 steam or other motor fund and actuanes ot eeth phitico
radiall upon a wheel, which latter is keyed to its
shaty
1548. Loconorives, H. A. Bomneville, Paris.-27th
March, 1883.-(A Communication from I. N. Forbes,

Abutment rollers geared to rotate in unison with piston wheol. One or more of these engines aro
mivanted directly oo an axle or arles of the locom-
tive, so as to apply the power diroctily thereto, thereb
 the use of reciprocating engines.
1813. CARRIGE Will HEELS, B. J. B. Mils, London,-10tic April, 188s.- (A communication from C. Deigrange, This consists in strengthening whels of wod, or
partly of
wood and parthy of metal by
and metalic mounting uniting the spokes to the nave in a rigid
manner, and faciithtating oompensation for play of the
parts caused by hirinkeg 2270. Actioss of Praxorortss, J. Herrburger, Paris.
-4th May, 18ss.
6d. This relates to the combination of the hammer pro-
Vided with aregulating serew, the prolonged butt of
which serves as a beck

 or actuating a metal stud in inang uataphapagm coartact wini piece of carbonaceoous material attuached to a freely
supgende. bar, and an induction coil for producing the
intense intermittent induced second or
 Saciation, so that a much more powerful induced or secondary current may be sent to line to work upon
thd distant reecving telephone. The induction cool 1
nddition to et pressure between thane metal stund orves the centre of to
the diaphragm and the carbon tutton atteched to the bar. When the the carbon button attached to the net acting upon the suspended bar causes an in in
creaned contact between tho metal stud and carbo button. The receiver consists of a stock or holde
with an ear piece to hold the vibrating diaphragm.
 stronger magnetic effect is produced between the
other pole of the magnet and the diaphragm. The in
oncin

 through the coils of all the parts successively, so so to
form in addition to the central magnet core a tubular diectro-magnet made of the iron wire, which while
acting as an inducing helix to the central coro is istsilf acted upon and renderod magnetic b b the action of the outer corper wire coil, and to a con
siderabe oxten react ppor titelf to produce the
same result, whereby the viborations of the same result,
are amplified.
2475. Wispow Sashrs, A. Rudolohh, San Francisco.
 pivotted in side bars sliding in the casing, and con-
sists in forming the sashes and side barss with tongues and grooves so as to make a tight joint when closee
in combination with central pivots and centre piece
 to be turned, and kept apart by ba gravitating liever.

 Th iff reliates to the general constra
 The invenianted to work with a supply of of gmember air and gas an independently operating air compressor
sorving both as a motro to start the engine and supply
it with com cosed converting the fuel into gas under sufficient pressure Co be supplied direct to the engine, and of burning
 ng conditions of use It also comprehends a gas
ongre in which the eylinder is totally onveloped by boiler encasement, which also envelopes flues for the the
ecapen of waste gases, so os to utiliso waste hata. Also
gas combustion of thh enagro insion is madrade tor a slow
oxplosion. There are thirty-two tlasims

The object is to produce light and heat by the volati-
lisation of mineral oils or hydrocarbons, which is lisation of mineral oils
effeted in close proximity to the burner, where the
fesulte te the are necessary, In ono wheroby no noparaturs tho ooil flow.
to tho burnor, which is surrounded by a curved metal oxposed to the thame of thin gas whon burnt, and which
beoming heated, volatilises the oil as it is supplied to
 This reletese, to to that class of corsets which are spe-
dilly designed to form a spinal support.

 burners whero it is to be used in a steady equable flow
without the use of governors, or regulators, or accu-
mulators nuators, or the like, so that the carburetted air will
reach the burners at a certain determined pressure

communication from D. Pricto, Washington, U.S.S.)
A sot of oresuhning groved rollers, arrying chains, that the fibrous plants to be treated are first broken on crushod, then acted upon by one stet of knives which
sorape one partof the plant, and then by another set

 This ry,
Thachines.

SELEOTED AMERIOAN PATENTS.

284,357. Dyvaro-ELEcrric Machive, Charles B.
 or connected tojether as set forth, each, oup seaid
rmatures being located and adopted to be rotated

different lengths on the two sides of the pole pieces, said bars being wound over theirie entire extent, excoept
where the pol. pieces ar oloated substantialy as
shown and described. (3) Thhe combination, in a

inductive field of only one pole, and said poles betng
of unlike sign, substantially as set forth. (4) The
co combination of the armatures conneeted by wires
with a supporting disc, substantially as shown and
described described.

- Filed Gas Everve, George M. Hopkins, Brooklyn. Claim- - (1) In a gas ensine.the ombination, with a
gas inpply pipe and an ingite blow pipa, of a pump,
serving the double purpose of a governor to the gai suplo and moans for suppos of a governor to the gai a. gas engine, the coorinthation and described. (2) Ind Slower pipe U, of the igniter V, secured in the the
side of the cylinder, and the piston G, serving the side of the cylinder, and the piston G, gerving as as
guard to prevent iginition until it has passed above
 in combination with ite en flexiblexex gat supplyp turabe R,
as shown and described. (4) In a gas engine, the ombination of the flexible air pressed diaphragm,

egulating valve, the gas supply pipe R, and blow pipe
in combination, as and for the purposes specfied) In a gas engine, the piston slide varpoe K, made ind in
 arrying the crank arms, and journalied ex encentrically
n relation to the main shaft I , the link, and crank H. in combination for operating the valve K , as hereinn
specifed. (8) The combination of the dise and

CONTENTS.

The Enginerr, October 19th, 1883, paer

 complete Mlll and Plant for Making Portland ${ }^{2}$

Mast Iron $?$. Wroveat Iron Shafts

Contivvous
The fionoorap

IRoNwork

 ERNON's ChiNa AND GLASs
HE Caloutra Exilition.

REGENT RALlway Acolden
Ammonia Obtana and Ry Dilinga Friction.

$\because:$	$: \begin{array}{l}307 \\ 307 \\ : . \\ 307\end{array}$

Infringement of the Lowhoor Brand in Rived

Notes from Lancashire

ARAGRapHS-
University College
Launch of Paddle Tug

The Meteobologioal Society.-The Home Secretary has acquainted the Meteorological Society that her Majesty has been graciously
pleased to grant it permission to adopt the prefix "Rleased to grant it permission to adopt the prefix Royal Meteorological Society."
Epps's Cocoa.- Grateful and Comforting. which govern the operations of digestion and nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epps has
provided our breakfast tables with a delicately flavoured boverage which may save us many heavy
doctors' bills. It is by the judicious use of such articles of diet that a constitution may be gradually built up until strong enough to resist every ten-
dency to disease. Hundreds of subtle maladies are floating around us ready to attack wherever
there is a weak point. We may escape many a fatal shaft by keeping ourselves well fortified with Civil Service Gazette.-Made simply with boiling water or milk. Sold only in Packets, labelled-
"JAMES EPPS and Co., Homœopathic Chemists, London."-[ADVT.]

