ARC LAMPS AT THE VIENNA EXHIBITION. No. III.
W_{E} have mentioned before that the arc lamps of L. E. Schwerd, of Carlsruhe, give as steady and pure a light as any in the Exhibition. No doubt this is partly owing to the excellent workmanship and steady running of his dynamo machines, which we will illustrate in a later article, but we also consider that much of the efficiency of
the lamp is due to the good design of the regulating the lamp is due to the good design of the regulating
mechanism. Electrically the principle of this regulation is the same as that of Siemens and Halske, but there is a mechanical difference, which is in favour of the Schwerd lamp. This is, that in the Schwerd the lower carbon, and in the Siemens and Halske the upper carbon, is floated by the balance of the attractions of the two electro-magnets. The accompanying Fig. 5 shows most of the details, and is drawn to scale. The courses of the main and shunt currents are indicated by arrows. The positive current enters at P and leaves by Q. From P there is a small branch leading downwards, and connecting with a short upright wire spindle, moving vertically in guide brackets button on its upper end, and is pushed downwards by a button on its upper end, and is pushed downwards by a
small spiral spring surrounding its lower end. When thus small spiral spring surrounding its lower end. When thus
pushed down, the button touches a flat spring, and thus pushed down, the button touches a flat spring, and thas the current passing the carbons until all is ready, and the lass globe fixed in place, because this wire and button is lifted in opposition to the spiral spring by a little piece of the globe is pushed up into place, the short circuit as the globe is pushed up into place, the short circuit is
broken and the current is sent through the carbons. There are two electro-magnets, one directly above and in line with the other. The main current is passed through the upper, and the shunt through the lower, coil. A soft iron core hangs in the axis of these two electro-magnets, its length stretching from the centre of the one to that of the other. At its upper end this core is suspended from one end of a horizontal lever, from the other end of which passing down by the right-hand frame pillar. Here the wire is attached to the end of a second horizontal lever, which has its fulcrum in the left-hand pillar of the frame, and which bears at its middle point the lower carbon magnets sinks, the lower carbon rises, and vice versa. The ratios of the lengths of the lever arms are such that the up or down motion of the carbon is half the reverse motion long rack moving in vertical guides, and supported or moved downwards by a small pinion, whose teeth gear with it. The rack has forty-five teeth, to 100 mm . length, and the pinion has sixteen teeth. On the same arbor with this pinion is fixed a ratchet escapement wheel having
fifty teeth. The pawl escapement permitting this to fifty teeth. The pawl escapement permitting this to turn is like that of a clock, and is simple in construc-
tion. Its speed of oscillation is regulated by a miniation. Its speed of oscillation is regulated by a minia-
ture fly-wheel attached to the pallet axle. Projecting ture fly-wheel attached to the pallet axle. Projecting
from the lower rim of this wheel hangs a little pendulum. This is caught and prevented from oscillating by the cup-shaped extremity of the short lever α. This lever is pivotted at its middle point, and its right-hand end is the heavier, so that the cup always catches
the pendulum, except when the outside end of the the pendulum, except when the outside end of the
lever is lifted. This is done by a small wooden tappet fastened to the wire connecting-rod previously mentioned. This happens when the iron core in the electro-magnets reaches its lowest position. Suppose that the carbons are far apart when the current is turned on The shunt circuit nagnet has all the current passing through it, and draws the iron core to its lowest position. This disengages the pendulum of the escapement, and the upper carbon-holder falls slowly by its own weight until passes through the carbons and through the upper electromagnet. The core is at once drawn up, the pendulum caught so that the upper carbon cannot slide further downwards, and the lower carbon is drawn downwards the distance the points require to be separated to make the desired arc, this length being about $2 \frac{1}{2} \mathrm{~mm}$. This amount of separation depends on the rise of the determined, is, in by any mechanical stop, but by the core rising to such a position that the magnetic upward and downward attractions of the two coils balance each other. At the first instant of lighting the upper coil exerts the greater attraction, because the current through the shunt is very small. As the core rises-if the two currents through the two coils remained the same-each of the two magnets would attract the core with varying forces, in
conseouence of the variation of the distances between their consequence of the variation of the distances between their centres and that of the core. The attractive force between a coil-current and a core placed axially inside the coil the centre of the coil and that of the core. At what exact relative position the maximum force is reached has not as yet been exactly determined, but it occurs when the end of the core is somewhere near the centre of the
coil. At this position the attractive force does not vary coil. At this position the attractive force does not vary
rapidly with change of position of the core. In the lamp under notice the core presition of the core. In the lamp two coils, so that if the two currents remained constant while the core moved this latter would move freely through a small range in nearly neutral equilibrium, the resultant attraction of the two coils upon it varying very little with small changes in its position. But as the core rises the the arc-current separate, the are resistance increases, and creases. Thus, decreases, while the shunt-current inupper magnet becomes feebler because of the decrease its current, while that of the lower magnet in which point is one of stable equilibrium for the core The equilibrium is thus one between two increasing rents bave altained a certain definite ratio to each other
this ratio depending chiefly on the relative number of windings in the two ccils, and only very slightly on the exact position-within a small range-of the core. The carbon points now begin to burn away, and the length of the arc would in consequence increase, causing greater arc resistance. But this would-and does to a very small extent-change the ratio of the two currents, the lower core and raises the lower carbon so as to correct the increase of length of the arc due to the burning. If the mechanism were quite frictionless this regulation might be absolutely continuous and gradual, the ratio of the current remaining perfectly steady. But this is not so. The correcting movement does not occur until this current ratio has varied to such a degree that the excess of the shunt magnet's attraction is sufficient to overcome the frictional resistance to movement in the joints of the mechanism. The regulation thus takes place by small jumps or starts. Also this being so, at the beginning of each start the parts of the mechanism have to acquire a certain small velocity and momentum. The force necessary to generate this being supplied by the difference of the magnetic attractions, the beginning of each start is still further delayed by this

nertia resistance to motion. It is, therefore, of prime importance to make the mechanism as frictionless and as
light as possible. Again the change in the intensity light as possible. Again the change in the intensity of
each branch of the current is retarded by self-induction each branch of the current is retarded by self-induction
to a small extent. This regulating action continues for some time, the lower carbon rising and the iron cor lowering in position, until the long wire connecting rod has risen so high that its wooden tappet has raised engage the escapement and the catch a, so as to dis engage the escapement, and allow the upper carbon to
descend by at least the distance corresponding to the descend by at least the distance corresponding to the
passage of one tooth of the escapement wheel. In the passage of one tooth of the escapement wheel. In the
lamp described this distance is $\frac{100}{45} \times \frac{16}{50}=\frac{7}{10} \mathrm{~mm}$. The arc current becomes momentarily stronger, and the uppe magnet, being thus strengthened, the iron core is again rawn up, and the lower carbon lowered, so as to correct this sudden approach of the points by the above $\frac{7}{10} \mathrm{~mm}$. This sudden movement of the suspended parts must produce a certain amount of swinging, which, although imhe above dimension, $\frac{7}{10} \mathrm{~mm}$., were diminished. The core
will not rise now quite so high as it did at the first moment of lighting, because, while it starts its upward motion from the same position as before-its lowest as regulated by the mechanical stop-the are is not now zero in length as before, for this lowest position of the core. As the core lower-shunt-magnet, the lamp burns a little less brightly than it did at the first moment of lighting. But owing to the approximate equilibrium of the core, so long as the ratio between the currents remains the same this dimming of the lamp is unappreciable. A second period of slow "floating" regulation now begins, which is quite similar to the first described above, but not exactly the same, in consequence of the slightly altered position of the core. The third similar period is almost exactly the same as the second, and the fourth still more exactly the same as the third, and so on. A second shunt circuit leads a small portion of the current through another electro-magnet. This actuates a safety short circuit. When the current from any cause rises above a certain limit, an armature is attracted, which makes contact for the short circuit, thus cutting out the one special lamp in danger without interfering with the supply of current to other lamps. The weight of the swinging system, composed of the core, the lever gear, the carbon holder and carbon, is balanced in the proper position by a small suspending spiral spring, which on the then on the top of the frame. The two electro-magnets are each abor 7 in about $\frac{10}{10} \mathrm{in}$. dimeter. $5 \frac{1}{2} \mathrm{~mm}$. The electro-motive force used varies from 45 to dimensions of three sizes have been furnished us by the dimensions of three si
makers. They are:-

Candle-power.	Dia. of Carbon. mm .	Resistance. Ohms.	Current. Ampères.	$\begin{gathered} \text { EM.F, } \\ \text { Volts. } \end{gathered}$	Voltampòres.	Volt amperes per candle.
1000 to 1200	10	5	84	42!	300	36
2500 to 3000	12	3	14	42	590	-24
4000	14	$2 \cdot 5$	20	50	1000	$\cdot 25$

The differential arc lamp of Siemens and Halske is designed on exactly the same principle as that of Schwerd
 Nescribed all the details of its construction are of its construction are nexed. The shunt cirabove that of the main circuit R . The current passes from P to Q through the two branches, the routes
being clearly indicated in the figure. The core S hangs on one end of the lever c, to the other end of which, and to the corresponding end suspending link C^{1}, is attached by knife-edge joints the frame A.
This frame is thus free to swing vertically through a small range, in which swing it is guided always paral-
lelly to itself. lelly to itself. This
frame has guide surframe has guide sur-
faces formed in it, up faces formed in it, up and down which may
slide the rack Z. This slide the rack is in one piece with the upper carbon holder. The rack is prevented fromslipping pinion gearing with it, this pinion and the wheel r bingement wheel r being on one bearings in the frame A. The escapement E, when allowed to E, when allowed to gradual rotation of r, and the downward and the sliding of Z and of the upper carbon. The speed is regulated by an ordinary pendulum bob. This bob, the escapement E , and the little segment m are all in one piece, oscillating on an axle with bearings in A . In A also is hinged at x a jhort lever, a notch in which catches in a corresponding projecting tooth on the segment m, and prevents the above is effectent motion until the lever is lifted. ier a cainst a peg fixed at a definite level. As the carbon points burn away, in order to keep the balancing ratio of the two currents constant, or nearly so, the frame A and r E $m x$ -all of which have their bearings in A-sink, and conof S , and the lower limiting position of A , in this adjusting motion, the lever x catches on the above-mentioned peg and disengages the escapement. Comparing this arrangement with Schwerd's, it is evident that the parts that move up and down are much heavier in the former. The advantage of reducing to the utmost the weight of these parts may be readily recognised when it is considered
that at each escapement feed movement there must be a
sudden＂recovery＂of level of the parts．The carbon，its holder，and the rack suddenly drop from the frame and gearing attached to it．Immediately afterwards，when the attachment between them is again made fast，the two rise together again until the new equilibriating position is reached．Although the range of this＂jump＂down and up may be extremely small，it is not to be forgotten that the speed at which it is performed may be great，and it must throw the parts beyond their eventual position of equilibrium，and thus produce a certain amount of un－ steadiness．
An example of the electrical dmensions of these lamps is as follows ：－

Candle－ power．	$\left\|\begin{array}{c} \text { Carbon } \\ \text { diae } \\ \text { meter. } \\ \text { mm. } \end{array}\right\|$	$\begin{array}{\|l\|l} \text { Consump.o. } \\ \text { tion of }- \text { - } \\ \text { bon perr } \\ \text { hour, } \end{array}$	Resistance of ari bet carbeen contints ohmis			咅高品	$\begin{aligned} & \text { Volt-am } \\ & \text { peres per } \\ & \text { peander } \\ & \text { powar } \end{aligned}$
880	11	53	45	11	495	545	${ }^{62}$

Mr．O．Fröhlich has been experimenting with Messrs Siemens and Halke＇s lamps for three years，on the relation between the are resistance and the length of are and the current．He gives the following formulas as repre－ senting as nearly as pnssible the results of these experi－ ments－

$$
\mathrm{R}=\frac{\mathrm{E}}{\mathrm{C}}=\frac{39+1 \cdot 8 \mathrm{~L}}{\mathrm{C}}
$$

Here E is the electro－motive force in volts， R the resist－ ance in ohms， C the current in ampères，and L the arc length in millimetres．

EXAMPLES OF THE GRAPBIC TREATMENT OF STRESSES IN FRAMEWORK．
By Robert Hudson Graham，c．e．
No. III.

The Neath Bridge．－This example of a lattice girder is treated both for static and rolling loads．The static load is distributed over the lower boom of the gitder by appor A B C D E，Fig．1．The rolling load is distributed over the same joints，each of which may be called upon to carry when loaded an instantaneous concentrated weight of 5.6 tons．
（1）Reciprocal diagram of static loads．－The general recip－ rocal diagram for static loads is given in Fig．5，which is a combination of two separate diagrams，corresponding to the double system of lattices in the girder．The static load of 1.6 tons at any apex B is halved，one part being transferred the upper boom and apportioned to one system of attices，whilst the other half of the same load is trans mitted through the alternate system of lattices．Diagonals such as 22,26 ，\＆c．，belong to one system，and diagonals，such as $22,26, \& c$ ．，to the alternate system． The compressive stresses induced in the first system are shown by shaded lines $22^{\prime}, 26^{\prime}$ ，\＆c．，on the left of the vertical line of loads，Fig．5，whereas the tensive stresse of the alternate system are represented by light lines 22, 26 ，\＆c．，on the right of the same centre line．Thus， diagonal stresses are derived from opposite sides of the diagram，Fig． 5 ；but stresses in the struts 12，16， 20 ， \＆c．，are found by taking the graphic sum of the stresses on both sides of the same diagram．If，moreover，the stresses furnished by opposite sides are of the same nature or sign，as occurs in bar 24，the component stresses stress he added together in order to find the resultant sar But if the stresses are of different sign，as diagram is where the stress derived fom the ensive，and that on the right－hand comaic sum，and will esultant stress whe equal tre ores in the郎 flanges are cum memb from both sides of diagram， Fig． 5

2）Reciprocal diagrams of moving loads．－Figs．2，3， and 4 are the reciprocal diagrams for rolling loads．Fig． 2 is drawn on the supposition that a rolling load of 56 tons －shown on a reduced scale of $\frac{1 \cdot 6}{5 \cdot 6}$ expressing the ratio between static and rolling loads－is instantaneously con－ centrated at the apex A，Fig．1，whilst the other apices are unloaded．The division of the vertical line of loads，in the ratio of the reactions ar funicular polygon， $9^{\prime} 6^{\prime \prime} 8^{\prime}$ ，Fig．1，relatively to the pole 0^{\prime} ， funicular polygon， $9^{\prime} 6^{\prime \prime} 8^{\prime}$ ，Fig．1，relatively to the pole scaled off the diagram Fig．2，according to the principle scaled off the diagram Fig．2，according to the principle already explained in connection with the generasition that a rolling load of 5.6 tons，shown on a reduced scale of $\frac{1.6}{56}$ ，is instantaneously concentrated at the apex B；whilst the other apices are free of load．The division of the vertical line loads in the ratio of the reactions at the vertical ris is loads，ined by the ordinary graphic method abutments，is determined by the ordinary graphic method of drawing the polar or funicular polygon 4 is drawn on the supposition that a rolling load of 56 tous，shown on a reduced scale of $\frac{1.6}{5 \cdot 6}$ ，is instantaneously concentrated at
the centre of the span C，whilst other apices are free of In this case position of the and the rertical line of loads is halved，and the reaction the abutments are equal to each other，and to half the rolling load．
（3）The stresses induced in the various （abs of the Neath Bridge outside girder，are tabulated in the annexeditable．
In the first column，under the headings $\mathrm{W}_{6}-\mathrm{W}_{2}$ ，are given the stresses brought to bear upon the diagonals，in virtue of the separate static loads，each of 1.6 tons，dis－ tributed over the joints A，B，C，D，E，Fig．1，and derived directly from diagrams Figs，2，3，4，by aid of the given
decimal scale of tons．It will be observed that the independent loads at D and E furnish reciprocal diagrams， which are the inverted forms of Figs． 2 and 3 ；that is to say，the stresses in bars 14 and 18，derived from Fig．2，
in the five columns preceding it，and therefore furnishes the resultant stresses in the various diagonals due to eneral static loads．In the next column is given the coefficient of reduction for rolling loads；that is，the

FOR MOVABLE LOAD，5

Fig． 4 RECIPROGAL DIAGRAM

Fig． 2

DECIMAL SCALE OF TONS
｜．3．8．7．6．5．4．3．2．70
$\begin{array}{cc}\text { FIg．} 5 \text { GENERAL RECIPROCAL DIAG } \\ & \text { FOR STATIG LOADS }\end{array}$

DECIMAL SCALE OF TONS

will be identical in nature and amount with those in bars $\left\lvert\, \begin{aligned} & \text { number of times the lines of the reciprocal diagrams Figs．}\end{aligned}\right.$ 26 and 22 ，taken from the reciprocal diagram correspond－ 2,3 ，and 4 ，must be magnified，in order to furnish the ing to a moving load at E ．On this account it is Table of Stresses in Neath Bridge．

Diagonals．	Component stresses due to the separate static loads．					Resultant permanent stress in tons．	Coefficient for rolling load． $\frac{5 \cdot 6}{1 \cdot 6}=3.5$	Resultant stress due to rolling load．				$\begin{aligned} & \begin{array}{c} \text { Coefficient } \\ \text { of } \\ \text { reduction, } \end{array} \\ & \frac{56+1 \cdot 6}{1 \cdot 6 .} \end{aligned}$	Maxima－ stresses due to both loads．
	W_{6} ．	W_{5} ．	W_{4} ．	W_{3} ．	W_{2} ．			Due to loads．	$\begin{gathered} \text { Nature } \\ \text { and } \\ \text { amount } \end{gathered}$				
							$3 \cdot 5$	6－2	11．62－	$\overline{1494-}$	10	$4 \cdot 5$	$14.67+$
11		＇45－	$\cdot 66-$	－875－	1．11－			$6-2$	12．95＋	$16.65+$	10^{\prime}	45	14.4 －
11^{\prime}	－ $250+$	$\cdot 50+$	$\cdot 735+$	$\cdot 975+$	$1 \cdot 24+$	$3 \cdot 70+$	$3 \cdot 5$	6－2	$5 \cdot 08$－	$6.08-$	13	45	$32 \cdot 63+$
14	$\cdot 150-$	－30－	－45－	$\cdot 55-$	$\cdot 45+$	$1.00-$	$3 \cdot 5$	6－3	$5681+$		15	4.5	$32 \cdot \mathrm{C0}-$
14^{\prime}	－170＋	$\cdot 325+$	－485＋	$\cdot 625+$	－512－	$1 \cdot 10+$	$3 \cdot 5$	6－3	$561+$	$671+$ $4 \cdot 11-$	17	45	$37 \cdot 8+$
18	－175－	－365－	－530－	$\cdot 45+$	$\cdot 25+$	$\cdot 37-$	$3 \cdot 5$	$6-4$	$8 \cdot 74-$		17	4.5	$37 \cdot 44$－
18^{\prime}	－175＋	－375＋	$\cdot 55+$	$475-$	$\cdot 25$－	$\cdot 375+$	$3 \cdot 5$						
Flange， 19												8．341－	－
Static stresses	－821－	1.64 －	$2 \cdot 46-$			8．341－						$29230-$	37．571－
Rolling stresses	$2 \cdot 87$－	5.74 －	8．61－	$7 \cdot 91$	4•10	29．23－							

unnecessary | unnecessary to construct the reciprocal | |
| :--- | :--- |
| loads at D and E ．The column headed＂Resultant per－ | most unfavourable conditions of loading of the different |
| mere | | manent stress＂includes the algebraic sums of the terms apices of the girder．In the next column are found the

algebraic sums of the resultant diagonal stresses, due to general static and most unfavourable rolling loads. The flanges of the girder, as derived from the general reciprocal diagram Fig. 5 , in which each line is magnified $\frac{56+1 \cdot 6}{1 \cdot 6}=4 \cdot 5$ times, in order to obtain the combined or cumulative effects of rolling and static loads. These maxima-stresses can be found in another way, a exemplified at the end of the table for member 19 of the ower flange. Here, in the first horizontal line, the stresse in 19 due to the separate static loads on the joints ABCD E are derived directly by measurement off the reciprocal diagrams, Figs. 2, 3, and 4. Each of these stresses is then multiplied by the factor $\frac{5 \cdot 6}{1 \cdot 6}$, in order to find the stresses due to the separate rolling loads at the same joints, which are given in the second horizontal line. The sum of all hese stresses, viz, $8 \cdot 341+29^{\prime 2}=37 \cdot 571$, represents the esultant or maximum stress in bar 19 arising from the double system of loads. The difference $(37 \cdot 571-37 \cdot 44)=$ $0 \cdot 131$ is a measure of the divergence between the results of the two methods. Assuming, therefore, that the truth lies between these two results, we find the absolute error to be $\frac{0.131}{2}=0.065$ tons; or only 0.17 per cent. of the total stress in the member of the flange considered.

NEW STROKE COUNTER.

Having occasion some short time since to record the speed of a minute, at which speed there was some chance of the ordinary revolution counter missing some turns by jumping out of the centre mark on the main shaft, we ordered a special stroke counter, which would serve as a check on the revolution counter, or independently ment shown in the cut. It consists work. We got the instru-

rotating dial, graduated to hundredths, and correspondingly vibrating in front of the dial, and attached by an inelastic cord or wire to any reciprocating part of the engine, or to the indicator rig. A torsion spring returns the vibratory lever when not drawn
by the cord. This spring may be twisted either why counter can be used either right or left hand, and yet drive the counter can be used either right or left- hand, and yet drive the
dial "watch-wise." The main dial bears a graduated star wheel with ten ratchet teeth, and the index pointer at the bottom of the central back bar or frame, gives it one-tenth of a revolution for each complete rotation of the main or units dial. The pawl may speed the stiffer should be the spring of the vibratory lever and the pawl.-The American Journal of Railway Appliances.

Dinner to Sir Robert Rawlinson.-On Saturday, 27th October, the engineering inspectors of the Local Government Board entertained the head of the department, Sir Robert Rawlinson, by the Queen. The party, which numbered eight, consisted of Sir Harrison, Major Hector Tulloch, Captain R, Mr. John Thornhil Stephen H. Terry, Mr. Thomas Codrington, and Mr. SamuelJ. Smith. by Mr. Arnold Taylor, Sir Robert briefly replied, thanking his by Mr. Arnold Taylor, Sir Robert briefly replied, thanking his
colleagues for the practical token of their gratitude and esteem.
He then alluded colleagues for the practical token of their gratitude and esteem.
He then alluded to the length of his official connection with Mr.
Arnold Taylor Arnold Taylor, dating as it did from the time of the Crimea. Sir
Robert next called attention to the vast national importance of the works of sanitation and water supply, \&c., carried out under the annually some 600 inquiries, public and informal, throughout the length and breadth of England and Wales. The works thus sanctioned affecting, as he hoped for good, not only undoubtedly preseration, but probably many future generations, and undoubtedly improving the general health of the community, as is the total number of deaths per annum in the do $4 \frac{1}{2}$ per cent. o since the adoption of the Public Health Act of 1848. He also referred to the beneficial results which had been attained by those cotton famine of 1863 , By thich carried out relief works during the many thousands of people who would otherwise was given to paupers. Towns were sewered and supplied with water; mprovements, paving, flagging, \&c., were carried out to an extent the acretal miled amounted to 400 , whilst the aoreage was over 800 . The total expenditure was $£ 1,850,000$,
nearly all of which is now repaid by equal annual instalments.

Our engravings illustrate a pump of novel design, the inven tion of Mr. E. Peck, of Old Charlton. It belongs partly to the
type of pump known as "rotary" and partly to that of the type of pump known as "rotary," and partly to that of the
"ordinary plunger;" it is, in fact, a combination of the two The pump consists of an outer casing of cylindrical form, carrying suction and delivery branches, at one end of which is attached a cover, having an internal crank and pin, see Figs. A, and 5; at the other end, a bearing or journal, in which the crank shaft revolves. In the above-described cylinder revolves a cylindrical drum, with shaft attached, fitting the periphery
The drum is pierced by a cylindrical bore at right angles to the axis of the shaft, of as large a diameter as can conveniently be got in. Within this bore a piston is fitted, which again is pierced at right angles to its length by a cylindrical bore, and into this in it at right angles to its length, and parallel an opening bored into which the crank pin fits. The action is as follows. The main shaft, with drum attached, revolves on its own centre: The smaller piston revolves on the fixed crank pin centre, which, being excentric to the shaft, represents half the stroke of the pump piston. These two revolving parts are connected by the main piston, which is free to move in one direction in its own cylinder, and in the other at right angles to it, on the smaller ciston, and is hence capable of adjusting its motion to the so it has a combined revolving revolving around it; in doing say, the consequent effect is that reciprocating motion, that is to and drum the main or larger piston traverses up and the shaft cylindrical bore in the drum, and up and down the smaller piston at right angles to its own axis, revolving at the same time with the drum, and as, at each revolution, the alternate ends of these cylinders are presented to the suction and delivery pipes, the contents of the two cylinders are transferred from one to the ther without disturbing them.
Suppose the pipe connection
in a horizontal position, as shown in cylindrical casing to be grams-Figs. 1, 2, 3, and 4-that at the right accompanying diasuction, and that at the left the delivery, and the being the vertically below the centre of the casing, the main piston will be at the end of its stroke at the bottom, as shown in Fig be Supposing the drum to revolve towards the left, as indicated by the arrow, at one-eighth of a revolution the position of the two pistons will be as shown by Fig. 2; at one-fourth revolution as shown by Fig. 3 ; at three-eighths revolution by Fig. 4.
It will be seen that in Fig. 1 the smaller piston is on one side and discharging. 1 the smaller piston is drawing in on one side and discharging on the other ; in Fig. 2 both pistons and discharging, the smaller larger is in mid-stroke, drawing in Fig. 4 both are in action. The next eighth of a revolution would complete one half-turn, and would be represented in Fig 1, but each piston would be reversed in position. Revolved quickly, the motion of the pistons much resembles that of an ordinary excentric, and as both pistons discharge twice in a revolution, the flow of the fluid is nearly constant, and is extremely steady, wort, oils, lighter dimensions al lquors, \&cc. Made on a large scale, and of for light pressures. It would not gas exhauster or an air pump dimensions-about 3 ft . by 3 ft . by 2 ft . stroke-to 50 cubic feet per revolution, and as the motion is steady and easy, and all wheels or gearing dispensed with, it could be revolved at 100 per minute, or 5000 cubic feet per minute, or 300,000 cubic feet per hour, and this quantity could with ease be doubled.
In adapting these machines to gas exhausting purposes, Mr. Okes, of Queen Victoria-street, E.C., who is the owner of the
patent, proposes making them on the original plan as first designed, viz., with square pistons with the crank pin fixed in ex excentric position in the cover. For light pressures, such as form of construction absolute tightness is not required, this internal working parts to be readily removed by simply taking off the front cover, whereas in the case of the circular pistons, as arranged for pumps, it is necessary to partly withdraw the drum from the casing for purposes of examination. Mr. Okes has applied the same principle to a compound high-speed steam agine which on a small trial engine developing about 2 -horse
power has given good results. We are told that at 800 revolutions per minute it is perfectly steady and quiet. The steam is
expanded in the smaller or high-pressure cylinder before being exhausted into the larger or low-pressure cylinder, thus orming a compound engine.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
correspondents.]

THE "GLADSTONE."

SIR,-Allow me to corroborate the statement made by " Young of cylinders, with slide-valves between them, used in the diameters locomotive engines, and to add that several lines have engines so constructed, with cylinders from $17 \frac{1}{4} \mathrm{in}$. to 18 in . diameter inclusive, among which are the London, Chatham, and Dover Railway,

land Railway, South-Eastern Railway, and North British Railway. Besides these are the new passenger engines on the Glasgow and South-Western Railway, with cylinders as much as 18 in. in diameter, the slide-valves being placed between them, as shown in th London, W.C., October 27th.

TELEPHONES.
Sir,-Referring to your article on "The Defects of our Telehave not fairly stated the the 1s either as regards tho think you companies or the Post-office. You would make it appear that the Post-office have (1) the best instruments, (2) the best switchboards, (3) the best telephonic apparatus, and, in fact, have an almost perthe very reverse of this picture, and as being unwilling to ud as any improvement in apparatus or wire, and that their main or only object is to get their system taken over by the Government by pur chase; and you sum up the shortcomings of the telephone com panies thus:--(1) Employing apparatus that is wasteful of time,
(2) that does not allow of secrecy, (3) that tends to sounds; (4) wires obtrusive to the sight, and in some cases obstructive to traffic, (5) and the whole without systematic arrangement whilst the charges are excessive. The only foundation for the praise of the one system, on the one hand, or the condemnation on the other, is that Mr. Preece stated so in a paper read by him at
the British Association, and that no one ventured to dispute the correctness of the conclusions.
Not having read the paper, I am not in a position to say whether it bears out or not the very sweeping praise and condemnation of the Post-office and the private companies; but I should very much doubt it, and I hope to show that neither the one nor the other are
at all justified. I feel confident Mr. Preece would not and could not olaim perfection for the Post-office, and whilst no doubt he believes in the superiority of the system over which he presides, and for which he is responsible, I believe he would be the first to admit that the companies are not so bad as you have printed them, customers as you would make out.
First, as to the best instruments-that is, transmitters and receivers. If those of the Post-office were the best, it is rather curious that they should use Blake transmitters-those of the comurious that they are so ancious to
ments over which the companies have exclusive control. That ments over which the companies have exclusive control. That
they are so anxious is shown by the condition -a most unfair and
inicuito exchange licence which is now granted by them, namely, "That the Post-office shall have the right of using, purchasing, and
manuuatatuing the same kind of instrument which the company from the company use of instruments for which large sums have been paid for patent rights withont any payment whatever by
them; but the customers are the best judges, and wherever they them; but the customers are the best judges, and wherever they
have the opportunity they do not prefer the Post-ofice instruhave the opportunity they do ny
ments, but those of the company.
men
unwilling to have haraus, your statements as to the companies being can be got are wholly incorrect. and vie with each other in ingtining from always anxious to to to time, the best possible apparatus, whether in switchboards or other articles that
can be obtained, and this their self-interest oompels them to do
even if they were-which is not the case-actuated by the sole
 Government. As to their employing apparatus wasteful of time,
I ar sure that the work of their exchanges will show a much
larger amount of business done than at the Post-ffice exchanges. The other charges sou make are equally incorrect. Ast to the wires the companies are in many instances adopting phosphor bronze
and I have not heard of the Post-office doing so. The Post-office
just just as much as the companies, find it necessary to run partly their
wires overhead, and are at this moment taking proceedings against wires overhead, and are at this moment taking proceedings against
a London vestry to enforce such wires
As to the last charge of excessive charges, I venture to say that it it entirely owing to competition of the private companies that
the charges are being gradually reduced, and that if the public the charges are being gradually reduced, and that if the public
want excessive charges they may go in for a monopoly, but if they want excessive charges they
want moderate charges they
Sunderland, October 24th.
professional etiquette
SIR, $-I$ have read with much interest an artiole in The Enginger
of 19 th inst. under the above heading. It is much to be desired of 19 th inst. under the above heading. It is much to be desired
that some course should be initiated whereby those in the profession whe are members of the Institution of contair conduct towards their bretrren, shours, be be
who
brought to took for their actions. It is no doubt true that com petition for work is more than ever keen, and that, in som
instances, engineers are forced into a position they would not otherwise have assumed by reason of an iignorance of professiona
etiquette on the part of their clients.
still, this is no excuse for etiquette on the part of their cients. silil, this is no excuse for
the instances of tlagrant injustice and the absence of fair dealing
which not infrequently come to light-and oceasionally, too, in which not infrequently come to light-and occasionally, too, in
quarters where one would have looked for better things.
The Institution has its hands pretty full, and is beyond question The Institution has its hand sprety full, and is beyond questio
doing excellent service. Che Council might, therefore, hesitate to
ith stances of professional sharp practice towards individual members.
severtheless, unless the Institution takes the matter in hand, it is Nevertheless, unless the Institution takes the matter in hand, it is
difficult to see how the state of things to which reference is made in your article can be coped with. Is it not reasonable that, if a mellow member, that he should be called upon to retract, or to
fithdraw from the Institution? The fear of deprivation of mem-
wer wership would alone be sufficient to cure half the offending spirits in the profession,
Hesign a work, after spending, when an engineer is emplount of thought, worry,
and the expenditure of a life-long axperience, having finally piloted the scheme into a smothe-h water, somene some, having finaly midget, by
reason of influence or other questionable reason of influence or other questionable motive, is employed to
carry into effect-and not infrequently to make a mess of -what his professional brother has fought so hard to attan., In medicine sicians, but with the engineerrs there ise ione such boopy to foll fhy- back
upon for redress. If your article succeeds even in ventilating this upon cor redress. My your art
subbect it will , min view, have
Westminster, October 24 th.

testing engines.

Sir,--The engineer at the Old Steam Flour Mills, Birmingham, has been good enough to publish the result of his trial of the
engines and boilers under his care, but he must excuse me as an inspector and a person of a haggling and suspicious disposition,
taking exceptions to the correctness of his data.. The © Old
, Steam Flour Mills, Birmingham, happens to be a brand new modern
nill with all the latest improvements, Ibelieve, adopted throughout mill with all the latest improvements, , beiieve, adopted throughout
the machinery. Nevertheless, I am still sumpicious, and I directly
challenge the correctuness of Mr. Crossley's trial and data. I will challenge the correctness of Mr. Crosley's that onal and ongen ofter to Mr. Crossley and his employer the following, viz, I will attend at the
Old Steam Flour Mills examine and indicate the engines and
ovilest satisfaction of Mr. Crossley's own employer that the data, as satisfaction o THE ENGINEER, is correct, then I will not only
published in The
humbly apologise to Mr. Crossley, but I will give a donation -such humbly apologise to Mr. Crossiey, but I will give a donation-such
as I can afford to Mr. Jafrays new Suburban Hospital. On the
other hand, if I prove the incorrectness of the oubbished data I ther hand, if I prove the incorrectness of the published data, I
will leave it to Mr. Crossley to make amends for publishing false data, and to his highly respected employen an opportunity of con-
tributing to the said benevolent institution. If my proposition is
reclined with thanks-as probably it will be mol declined with thanks-as probably it will be- you may perhaps
ellow me just to say that, taking it for granted that the mean allow me just to say that, taking it for granted that the mean
indicated horse-power is $24900-$ why the two last figures are put
in I in 1 am not sumfiently well learned to know-and the total coal
burnt, 2128 8 ..the coal per horse-power per hour, 2.016 is is
certainly not correctly coleculated. I dispute both, however, certainly not correctly calculated. I dispute both, however,
because I know there is not an engine in Birmingham, fairly
kested but what is taking double 2 lb. per horse-power per hory tested, but what is taking double 2lbi per horse-power per hour,
and the great majoirity of engines working here are consuming 5 ,
6,7 , and up to 10 and 12 lb . per horse-power per hour. 6, 7 , and up to 10 and 12 lb . per horse-power per hour.
Ayrfield, Stannmore-road, Edgbaston,
October 23rd.

RICHARD trevithick.

"like blue fire," but these boilers were so badly made that "th
place was in a cloud of steam" - no wonder, considering the state o boiler making at that time ; no plates to be had larger that 3 ft . by 2it., and packed with rope yarn between them to make a tigh
joint. His must have been a daring spirit that ventured on 150 lb , pressure in those days. It would indeed be wrong were the name
of such a man allowed to sink into undeserved oblivion, especially when others who never approached him in genius or inventive
power have been held up to the admiration of the world as the inventors of the steam engine and the locomotive.
Trevithick sowed that others may ress were copied by hosts of imitators. It would be intresenting to know at what date the high-pressure engine was introduced into
the United States; ;high-pressure steamboats were used on the Mississippi early in the present century.
The life of Richard Trevithick,解 shape, which could be done without in any way impairing its value.
It is to be hoped that the Memorial Committee will find sufficient funds forthcoming to accomplish a laudable object in a
manner worthy of British engineers, and of the memory of the
mat gifted man whose name it is to preserve
London, October 27 th.
notes on the vienna electrical exhibition
SIR,- As exhibitions go at the present day, that at Vienna must
be considered to have been in many ways excellent, especially in be considered to have been in many ways excellent, especialy in
the matter of adhering closely to its professed object. It professed to be an electrical exhibition, ald it was so. At most shows we are
accustomed to see objects displayed for sale which the exercise of the highest intelligence fails to connect even remotely with the
title of the exhibition. How far this was the case at Munich I am unable to say, but at Vienna I do not remember to have seen any
stalls for wall papers or meerschaum pipes, nor more than one or two for glass and crockery. I do not attribute this purity to any
extreme virtue in the management of the exhibition. On the Continent the utilisistion of exhibitions is thoroughly well understood by municipal authoritites and othens, and local exhibitions are of Constant occurrence whose only merit lies in the relief aforued
the local ratepayers, arising from the gate money taken and the invariable lottery. An appearance of completion is, of oourse, con-
sidered important, and stalls are readily assigned to applicants who will cover them with something. But in the matter of electrical exhibitions the management can afford to be virtuous. Electricity, when nuhampered by departmental shortsightedness, can be applied of a judiciously-conducted sho
from the highways and hedges.
The importance of thise exhibition at Vienna is said not to have
ben fully appreciated in England at the time it was opened. The British section was certainly not at any time among the most interesting; it gave one the impression of being too historical. The
proper place for old-fashioned telegraph apparatus which is of too much historical interest to be destroyed is a museum, not an exhibition building. The sentiment of antiquity is carrumed too far when
ber apparatus, which the owners do not take the trouble to keep in It would save the visitor some thoukle if it were replaced by a good to me the general feeling of disappointment in the British section,
Mr. Killingworth Hedges has indeed done something to modify this impression by the exhibition of his very ingenious safety foils,
and apparatus connected with them, with which he has done so much to relieve the domestio supply of electricity of the imputation
of increasing fire risk with which some people have sought to saddle it. The simplicicity of these foils, and the accuracy with which they come into action have ea
Exhibition building itself
I do not propose to describe apparatus in detail; that has
already been done by others. Nor was there so very much that was new in the Exhibition. The most striking features are the improvement in the workmanship and design of instruments, the
principles of which have been well known for some time, and the attention shown to particular developments of apparatus. The celebrated Philedelphia verdict, "Billig aber sohlecht -CMeap
but bad-applied to German manufactures, has had an excellent but bad-applied to German manufactures, paid to details abroad
effect in Germany. The attention now paid to enebbles foreign manufacturers to beat English productions, even
ent when working with an inferior material. The care bestowed ona
particular application is exemplified in the number of instruments particular application is exemplified in the number of instrumetwre
exhibited, for giving, recording, or controlling the temperature
from a distance. In many manufactures, notably in those of beer and wine, the greatest attention should be paid to temper ure in order to, avoid loss. The German does not spare the necessary
attention, nor are his pains thrown away; for his countrymen, in attention, nor are his pains thrown away; for his countrymen, in
whatever other virtues they may fail, have certainly the gift of taste in matters of drinking, and it is often a surprise to Englishiokly a German will been vitiated by the poisonous fluids which pass among us and down It is
It is not generally known in England how carefully temperature
is regulated even in private houses abroad. In some schools it is a rule to coso if the temperature rises above a certain point; not-
withstanding which hiatus in their education the inhabitants Whtustanding which hiatus in tersir education the inhabitants
actualy sometimes grow up understanding their business in life better than many of the Red-tape Army at ane
Thus there were many instruments in the foreign sections at it at any particular moment, or for raising an alarm automatically when it rises above or falls below certain points. Some of these are extremely accurate in action, and this subject deserves greater attention than has been pata
how useful such instruments would be in our ships and our mines, and to the due derpe of temperature to be maintained, and how and when it should be varied. Abroad they seem to have settled such details; it is at home that we are abroad about thel
Another apparatus of which one could see several good forms at
Vienna is the optical speed indicator, by which the apparently Vienna is the optical speed indicator, by which the apparently
stationary portion of the image of a revolving disc coloured radially The controlling of systems of clocks by one pendulum through the action of an electrical current has received great attention abroad, and has met with very general application in public places,
as at railway stations ; and it is wonderful that this use of electricity has received so little encouragement in England. How ground railway were under the control of the Westminster pendulum; that is to say, if the company consented to refrain
from that other electrical application, the sheet of the Daily There can be no doubt that before long electricity will find field of work in the actuation of musical instruments. Dr, v Dvorak, of Agram Universiy, called the germs of an electrical organ, in his resonance forks.
I cannot $g o$ through the numerous other applications city, from warming Samovars to protecting aash-boxes, which were entioned in Vienna, but there was one extraordinary apparatu mentioned in the catalogue which I was not fortunate enough to
discover, though I made anxious inquiries after it- I mean an enterprising Frenchman, M. Albert de Balmas, for combatting astatrix. Perhaps the patents are not $\frac{\text { quit }}{\text { B. }}$
perfect yet.
London, October 27 th.
the problem of flighi
SIr, - I have not entered into the question of what might be
called the philosophy of soaring, for the reason that I mistrust my
ability to put the matter into the best form of words, and am very
sure that others are better qualified to do this than myself. Relying, however, on the indulgence of the reader for any slips which ng, however, on the indulgence of the reader for and in this somewhat new field, I will state what seems oo me to be the underlying truth of this subject, hoping that the The facts of soaring as exhibited by the birds, as well as the explanatory theory iving signinicance to those facts, I have else-
where piven, and refer to the letters containing them which have where published in this journal.
Soaring I conceive to be a corollary from the law that fluids
scted upon by mechanical forces exert reactive forces in all directions. The tlowing river, steam exgine, air pump, and hydraulic works are examples of this law of the dynamics of fluids. Given
the force of gravity acting through some rightly-constructed the force of gravity acting through some rightly-constructed
mechanical device upon the highly-elastic fluid, atmospheric air, I believe that there is no phase of this subject which cannot be referred to this law, though it must be admitted that there are so many seeming contracichons running through an easy one
that the task of removing the difficulties is not an As a soaring bird will be found to be an atmospheric engine of the most economical character, it will greatly assist this explanation to take some analogous mechanism of a familiar sort and compare the two, standing the unknown by the side of the known, I will take then an ordinary high-pressure steam engine with an empty boiler, which we will fill with compressed air by means of an air pump. We can then drive the engine with this air instead of nechanical force of the air pump. It reacts in all directions no only on the shell of the builer, but on the paiston of the pump, forces or condenses the air into the boiler. This compressed air, or air acted on by a mechanical force, passes into the cylinder of the engine, against which it reacts in all directions, and forces the piston into action. The pump does work by condensing the air.
The condensed air does work by moving the piston. So far there does not appear to be anything hard to understand, and the presumption is that everyone would see this part of the matter in the same way substantially.
Let us now take the soaring bird, and what have we? A surface of certain weight, shape. and inclination. with a current of hori-
zontal air moving against it. The bird is the pump compressing zontal air moving against it. The bird is the pump compressing
the air. It is more than the pump, it is the piston of the engine, The bird compresses the air py forcing it down an inclined plane. The.pump pushes it wita a piston. The air of the boiler does not
do work by reacting against the piston of the pump but the air compressed by the bird does do work by reacting against it, and
very important work-it sustains the weight of the bird. If the very important park- as to be sustained upon the dense air of the
pump were so pore
boiler, and if the result of such support were valuable, then the two cases would be similar as regards this reaction.
We have, then, in the case of the bird, the weight sustained in dense fluid with which to do work. This, in the case of the engine, reacts in all directions in the cylinder, driving the piston. In the case of the bird it reacts at the rear edge of the wings in all directions, and consequently against the edge, driving the bird up
wards and forwards, and the facts conclusively prove that this force is greater than the wl
If we suppose that the air of the boiler falls to the pressure of
the atmosphere in doing work by moving the piston, then the work done by the piston of the cylinder would just equal the work done by the pump, less friction, so that it would take all this reactive
force and a little more to drive the pump. In the case of the bird force and a little more to drive the pump. In the case of the bir
it takes but a trifing part of this reactive force to drive the it takes but a trifing part of this reactive force to drive the
creature upon the air, and it is bouyed entirely by the original re action, so that there is a great s of the dense air to the tension of the surrounding atmosphere in the rear of the soaring creature. If this force could be put to work, nearly equal that of plainly do an amoun For this work, plus the reaction on the rear edge of the wings, equal the original force of compression, which, as action and reaction i
equal is the same as the weight of the bird. The original force of the pump is the horse-power, or man-power, or steam-powe which works it. The origina torce of the bird is that of gravity
which u ugges bodies to the centre of the earth at the rate of 16 ft is abundant, incessant, and it costs nothing
The criticism might be made that I have set off the action of gravity of only dird against the power of the pump, and that
grave by the fall of the body exhibiting it ; and blast of wind. But I submit that it does fall, and rapidy, durin every instant of time. Not relatively to the earth nor of any fixed point, as these have nothing to do with the matter, but in relation to the moving air it does unquestionably fall. The horizontal force
is changed to vertical by the inclination of the surface of the wings according to the law of the composition of forces, so that the fall is as complete as it would be if the air were blowing from
surface of the earth directly toward the zenith. There is a portion of force lost in making the change, and this is measured by wha is restored to the rear edge of the wings by the reacting atmo-
sphere. Everyone must have noticed the extreme pliability of the sphere. Everyone must tave noticed the extreme phave repeatedly
tips of the large feathers of a bird's wing. I have observed the gannet in the act of soaring at the distance on a
from my eyes, and the rear ends of the feathers of the wings wer curved upwards for at least an inch of their length through the entire wing expanse, a distance of nearly 6 ftt , and the force required
to bend their feathers in this shape would account completely for to bend their feathers in this shape would ac
the impulse holding the creature in the wind.
If I am in error here, criticism is certainly able to point it out which does not obey the law of the action and reaction of elastic fluids as completely as the atmospheric engine of our supposition. Soaring is a condition of equilibrium mobile, as a French mathe-
matician would be likely to term it. Say that the adjustments of the surface determining the two reactions are such that it will remain in one place relatively to the earth in a breeze of twenty miles an reaction remain unchanged, while those of the first are change for a breeze of, say, twenty-one miles, the surface wound rise everid
cally or move away from the wind until a velocity of twenty miles cally or mostored; and the upward flight would then continue at the ng as those conditions remained. If the second first were made for a current of nineteen miles, the surface woul If or move against the air until the twenty-mile rate was restorface would move to the rear; if for twenty-one miles it would pass to the front, and so on, for every movement made in every direction Equilibrium is at once sought after any change in the adjust
ments. I have not the most remote idea to what velocity of air current these adjustments may be carried. It seems reasonable
suppose that a limit would be found somewhere, though theoretically equilibrium seems as easily established with one rate of speed
as with another. I believe that I have witnessed a frigate bird adjusted to a wind of 200 miles an hour. If any one should dis-
pute this, I would not defend it, for the reason that no accurate measures were used, and I might be in many ways deceived. I
would be likely to confuse the objector, however, if he were asked to give a reason for his distrust. I also think an artificial device
Ith can be used which will give better results than is possible with any
bird. Of course it can be seen that direction of wind relatively to
he earth's surface, or whether there be any at all, is indifferent to the earth's surface, or whether there be any at all, is indifferent to

thing marvellous, and any relatively zephyr- fifty miles an hour is hardly worth counting
 Strictly speaking, a soaring bird is a weight or gravity engine cut loose from all ground supports, and utilising reactions which are lost in earth-fixed machines. There must be given it an initial momentum, after which the inevitable reactions sustain and translate it. It obeys the well-known laws of mechanics as comtranslate it. It obeys the well-known laws of mechanics as com- pletely through all its phases as do all other familiar machines, and I am unable to discover any necessity for even a different interpretation of those laws to fit the case It tement that a device of proper construction could me to the ever after the initial start was given. I admit that it does, and am disposed to defend that position. But wherein does any machine differ from this - is it not true of a steam engine? As long as the conditions of steam engine running are complied with, the supply of steam kept up and the working parts in order, it would go for ever. So would the soaring device. It would beat the engine by just as much as the force of gravity was more economical than steam. Allow me to add for the benefit of those paper tube an inch in diameter, parted along the upper rear edg of the surface, is beneficial. It, gives a base for the second reaction Chicago, Ill., October 14th. I. LANOASTER.
 Chicago, Ill., October 14th.

engine driving in america.
SIR,-Engine driving heroism has evidently entered on a new
phase, as the following will testify:-An American contemporary says: "John Bull, of Galion, Ohio, ought to have his name recorded in an enduring way, for few have ever behaved so nobly as that Railroad. As he was driving a passenger train last month he found that, through somebody's blunder, a freight train was approaching
on the same track, and a collision was inevitable. He could have saved his own life by leaping from the engine; but, dismissing all
thought of himself, he resolved to try and save the passengers committed to his care. So he reversed the engine and set the air the shock of the collision. The passengers escaped all injury, whe shock of the colision. The passengers escaped all in ary, few
hours. Such heroism as this should not not that he died innoticed. The Cincinnatti Inquirer says: 'He remained in the car until the engine
leaped into the air and was dashed into the ditch, when he attempted to spring to the ground, but had his foot caught between the
frames of the engines and tender, striking his head on the ground frames of the engines and tender, striking his head on the ground
and causing the fatal injuries. Rairoad men say that the act of
detaching the engine as he did, not even derailing the baggage car detaching the engine as he did, not even derailing the baggage car
with his engine at the high rate of speed, and all in 150 ft . is withgrateful, passengers., The body has been shipped to Galion for
burial.' graterul ', passengers. Why didn't he jump sooner
burial.'
October 29 th.

Sir,-Mr. Howard Kidd in recating " q gies.

of obtaining sewage sludge for manurial purposes, has, I venture chemically valuable constituents of sewage are precisely those fore, quiescence does not as he states render the effluent as
pure, if not purer, than the effluent obtained by the use of pre-
cipitation;" nor is the resulting sludge of any great value. The cipitation;" nor is the resulting sludge of any great value. The
Rivers' Pollution Commissioners give the value of the con stituents dissolved in 100 tons of town sewage at 15 s , and the
value of the suspended matters at 2 s .; so that from each ton of sewage manure worth one farthing may possibly be obtained by
natural deposition. In practice the disposal of sludge is seldom natural deposition. In practice the disposal of means of filtration
remunerative, and where purification by means usually dug into the land to get rid of it.

1, Westminster-chambers, Victoria-street London, S. W., October 29th.

Sir,-Kindly allow me a little space in your next issue for the SIR,-Kindy alow me a little space in your next issue ar arie
following. In your isse of the 26 th instant, you give a brief
description of a large lathe made by the firm of Messrs. W. Muir and Co., of Manchester, for the British Government Dockyard at
Malta, in which this passage appears :- "In the place of the ord nary V strips to the bed and slides of the carriage and compound
slide rest, right angled strips have been introduced, which, whils slide rest, right angled strips have been the pressure to act direct
being stronger than the V strips, bring the and not like a wedge as in the V strip
I fully endorse this opinion, having
lathes, found it an impossibility to prevent "lift" when V strips are used. The method adopted by the above firm is indisputably an
improvement in the right direction, and I have no doubt so far as Manchester is concerned a wise and new departure from the old
groove. But it is not altogether original, inasmuch as the wellGlasgow, have constructed their heavy lathes and other machine
tools on that sound principle for some years past, with the most satisfactory resuits, and I think it but fair to them that this shoul
be generally known.

SIR, - I think that " M. M "
English railways in his letter published in your issue of the 19th inst. Allowing, ine him, three minute stop where the time is not stated, it appears from the time-table that the Great Northern,
Midland, and Great Western, are the fastest lines out of London, all having trains which travel fifty miles per hour for 200 miles : for example :-The 10 a.m. from King's-cross to York, with one stop
in 188 miles; the 10 a.m. from St. Pancras to Leeds, with three
stops in 204 miles; the 4.45 . with five stops in 228 miles. This last does the distance to
Birmingham in three minutes less time than the fastest NorthWestern train, although it goes $129 \frac{1}{2}$ miles instead of 113, but it
only stops once to the other three times. Also having to travel forty miles further to make one extra stop, it only takes twentyfour minutes longer to get to Chester than the $8.25 \mathrm{p} . \mathrm{m}$. Irish mail
from Euston. The two fastest trains in the world are the 11.45 and the 3 p.m. from Paddington to Exeter. They average fifty-
two miles per hour for the whole 194 miles, and fifty-five miles per
hour for miles on one nearly level portion in eighteen minutes. The SouthWiles on one nearly level portion in eighteen minutes. but then the
Western get to Exeter in fifteen minutes less time,
distance is twenty-three miles less, and there are not such long stops. Their speed for the whole distance is forty-eight miles per
hour.
RICHD. Parkinson.

29, Victoria Park-road, London, E.,
October 29th.
SIR,- In The ENGINEER of the 26th inst., your correspondent,
Mr. E: Stretton, complains of "some inaccuracies" in my table of railway speed, "which," he says, "unfortunately render the con-
elusion at which I have arrived incorrect." He says that the
Midland 5.15 a.m. newspaper Midland 5.15 a.m. newspaper train is practically a Manchester
express, and that the conneeting train from Trent to Leeds is only of secondary importance. He also says that there are by this
train nine stops between St. Pancras and Leeds-not eight, as stated by me; and that the distance is 197 miles 68 chains, and
not 204 miles. Now, I have very often travelled by that par-
ticular train, and know it well as far as Sheffield, and I have ticular train, and know it well as far as Sheffield, and I have
always arrived there with great punctuality, direct from St,

Pancras, and without any change whatever at Trent. Iff, how-
ever, your correspondent will refer to Bradshaw's Railway Guide ever, your correspondent will refer to Bradshaw's
he will find the time, distance, and stops as follows :
Miles.

There is, however, I perceive, a stop of four minutes at
Sheffield -not one minute as I took it t and this will account for my divisor being 1.24 and not 1.2 minute as it should be, and
will make the speed of this train 49 miles per hour. 204:1::250:1:22 ${ }^{2}$ miles per hour. $\frac{60 \cdot 00}{1 \cdot 22}=49 \cdot 18$ miles per hour.
Your correspondent also states that there is a stop of three
minutes at Bedford. That, however, , had no means of ascertaining, as the time-table does not give any "departure" from Bed
ford. Your correspondent also disputes the time being five hours but if a train leaves at 5.15 and arrives at $10.15, I$ think it In y reasonable to assume that thejourney occupies five hours.
Inat thy add that the primary object of my letter was ot on on the Continent, and that, I think, I have sufficiently proved.
L. M.
M.
designs, specifications, and inspection of tronwork.
SIR,-Mr. Yendred has asked me such a number of questions kindly grant me a little space for reply, but I will be as brief as In
In the first place. Mr. Pendred accuses me of discourtess. I regret very much that he should have considered any part of my
letter as discourteous, for nothing was further from my thoughts ot intentions, and I wished simply to discuss fairly and honestly the
question raised in his paper. He feels hurt that I should have strongly to the "adjective." As he lays the blame upon you, Mr. Editor, for the incorrectness of his drawings, I I suppose, then, that you are
responsible for the sketch of the angle iron joint cover; and I now enke if it the enclosed arkentch is
not
not more like what the result would be if not more like what the result would be if
anyone were stupid enough to thttempt to put
the covers, as Mr. Pendred says, "in the
 manner which such covers are usaally put on."
I maintain that no sensible man would
I have nothing further to add to my remarks about bend angle irons, and am still of opinion that it makes better work in every way than packing, except in small girders. Mr. Pendred
does not explain his meaning of " tensile or lateral tensile etrain describes the nature of the strain, and a al ateral strain junction or. Mr. Pendred's interpretation of the clause about plates being drilled in their place is certainly literal, but is not
what is actually meant and generally accepted. Mr. Pendred's burst of virtuous indignation about my doubting the quality of
plates from respectable palt? If he is so sure of the quality of the subsequent deliveries of plates, why not trust the makers for the first delivery? Thave
inspected many hundred tons of plates, and have always found it necessary to inspect each delivery. The makers themselves are no doubt anxious to supply the best materials, but they cannot answer
for the action of their servants. Mr. Pendred next makes capital out of what he must know was either a clerical or a printer's erro when I spoke of dirt and cinder being pressed in by the rolls. I
may remind Mr. Pendred that it is not necessary to spoil a large plate to obtain test bars, and experienood inspectors never attemp
it. I maintain that Mr Pendred's test of iron by hammering th corner down is perfectly useless, and a report ou such a test would be interesting.
Messrs, Coc
Messrs, Cockerill and Co., no doubt, as Mr. Pendred says, kno their business, but I prefer to quote the practice of British man
facturers, and I maintain that the practice of first punching and then drililing holes in plates is very expensive, and only adopted
in rare instances, and not always by Messrs. Cockerell and Co. Mr. Pendred's illustration of the tilting of the hoop is so similar i all its onditions to the action of a load on the edge of a main
girder, that it quite settles the question, and nothing further need
be drifting. I quite thought he said it was absurd to forbid it. Fo drawing plates together in position a long taper-ended spanne In come now to
rivets. In the first plase I may mention that I am well aware
that the the that the holes have to be much larger than the rivets, but I have always been accustomed to seeing the clearance vary with the
diameter of the rivet, and not the universal by Mr. Pendred. I mentioned in my letter, as a possible objection
to the heating of the rivet the whole length, that if the plates wer not bolted together, the powerful action of an hydraulic rivetter might squaeeze the metal of the rivets between the plates, and so
prevent a tight joint from being made, and I made a sketch illus trating my meaning. The iidea was immediately ridiculed by Mr
Pendred, and also by Mr. Dornton, who propounded about a a skin forming on the rivet by contact with the plates.
Facts, however, are stubborn things, and since writing, I have been able to prove practically the truth of what I said, and I have to-day forwarded to you the result of the experiment, for the inspection
of Mr. Pendred, Mr. Dornton, or anybody who takes an interest in the matter. I bolted four plates together with a thin packin between, and having a $\frac{1}{\text { I }}$ rivet hole in in the centre. The Trivet was
bhen heated all over and rivetted with a Tweddell's hydraulic
the of the rivet, and cold, 1 cut the plates in two, through the centr of the rivet, and collar on the rivet, the plates, 1 found a distinc just as I had anticipated. The section of the rivet shows the wonsuperiority over any hand rivetting. But Mr. Pendred must no suppose that this is my first experience of hydraulic rivetters.
used one of the first

Stephenson-chambers, Liverpool,

$$
\text { CAST IRON } v \text { WROUGHT IRON SHAFTS. }
$$

SRr, - Your correspondent "ronfounder," in last week's issue, nate in his experience of wrought iron shafts, as also in his knowledge of their manufacture. The practice of the best forges is not to mix scrap iron heterogeneously together in the manner indi-
cated by "Ironfounder," though it may be the case with some cated by "Ironfounder, though throug a man's hand for examination before going into the pile, its nature to a practised eye can be detected, and some classiitation of the scrap be made prior to
its use. This, with efficient supervision by some one directly inte its use. This, with efficient supervision by some one directly yinte-"
rested in the results, avoisd the danger which "Ironfounder"
facture of a wrought iron shaft from scrap. Bad practice must
not be allowed to condemn every maker but those who take the extra precaution must, of course, be paid the extra cost it entails y those who are wishful to secure good forging
I agree with "Ironfounder" when he says that iron can be over-
worked in shaft manufacture, and that short of the "fifty or a hundred heatings" which he states the iron in some shafts is sub jected to. Herein lies much of the skill of one forgeman over another, in that after he gets his iron prepared as beforenamed, he
will finish his forging with that amount of heating and hammering s will bring out the maximum strength of the iron heis working shafts especially, this is easily attained by good workmen with
appliances proportionate with the various sizes and descriptions of appliances proportionate with the various sizes and descriptions of
work, and what is essentially necessary, sufficiently large and heavy
 "Ironfounder," who after all would hardly have the boldness ng advocate these for the mail service, being of cast iron. Build
ng a throw crank up in the solid with a shaft of 20 in. diameter o upwards does require more than the ordinary amount of
repeated heatings, \&c., and leads to some deterioration in the fibrous quality of the iron, but we need not necessarily give up wrought iron on this account. Our substitute is to build up shaft of this size in separate shaft pieces, webs and pins, by the variou" methods now in vogue, patent and otherwise, Mronfounder
seems to overlook the fact that there are other than torsional curring and alternate bending strains set up throug anequal bearings and other causes, especially in screw steamers Even steel has lost some or its boasted superiority over wrought
ron-as I will presently show in one case only-under such advers ircumstances. But even with regard to the torsional tests quoted will "Ironfounder" "or the benefit of your readers be good enough noe of 50 per cent in for the same? Should there not be a dife To authorities? and which he has omitted giving wrought shafts by those who, ground down to low unnemuacture of prices, go in for what Charles Kingsley styled in relation to the world by fifty years. If there is to be any change let it be in he direction of reliable steel or ingot iron ; but just as there are there are in steel. As exhibiting this, and bearing in mind the bending strains before alluded to, I give you the following:large ventilating fan shaft, 16 in . diameter and 2 aft. between
bearings, repeatedly broke, the two last Bessemer steel ones only lasting a few months each-under eighteen months for the two
The owners applied to my firm for a wrought iron one and this ww made and finished to precisely the same dimensions as the previous steel ones. It has $n d$ beer rum ing tre and a-quarter year from the very nature of the strains some change must have taken place in the molecules of the iron, and if it broke, would withou "oubt show some of that crystalline or granular appearance whic
"Ironfounder" thinks is attributable to I would not claim superiority for wrought iron over mild openearth steel, well wrought, but the reverse. Still 1 give the ave
to show that wrought iron shafts are not yet played out.
SAlus. Ince Forge, Wigan, October 26th.

lectrical contact

Sir, -Will you permit me to announce in your columns one of engaged in the Cavendish laboratory during the past summer After endeavouring to measure the electrical resistance of imperfeo success, I determined to multiply the number of contant 1 . chain with a pan attached so that different weights could be suspended by it. In this way I was able to vary at will the pressur withe contacts between the adjoining links. The results obtained varied small brass chain showed that the resistance of the contach hain. I afterwards tried stronger chains of different makes netals, and obtained a remarkable confirmation of the same lav arough wider ranges. One curious observation was that when an did not decrease immediately, but, on the contrary, increased the permanent value was attained. This a mugrests that a sudde
then ncrease of pressure in a microphone may in some cases increase the resistance during the short time it acts.
Other work prevents my collecting all the results and following out the conclusions for the present, but I hope to do so shortly, as
I believe they may help to illustrate some of the properties of metals. I should say that in calculating the resistance of the
contacts I allow for the resistance of the material of the chain, and take into consideration its weight; but these
severat of the experiments are of little importance. JoHN RYAN,
University College, Nottingham,
October 30th.
the definition of force.
SIR, -As Mr. Eddy appears to be familiar with the letters I have Written on the laws of moilion, and kindly pubished by you in Th he cause of motion
under a tap from which wr. Eddy will hold a plate in hes ha if he will endeavour to keep an oar blade in the water while a boat is forging ahead, he he seems to have confused notions. If we assume with Le Sage that gravity is caused by a rain of ether atoms on the earth, it will be seen that the pressure of a weight on the earth, or of an engine
on a railway bridge, and so on, may be due to motion.
क. II. on a railway bridge, and
London, October 30th.

Sir,- The Disincrustant Marseillais Company, of Knowsley Works, Cheetham, Manchester, for whom I act as solicitor, have drawn my attention th an article in your issue of the 26 thinst,
page 327 , entitled " The Use of Catechu in the Removal and Pre ention of Incrustation in Boilers." The right to prepare and sel granted in the United Kingdom and several other of the
European nations, which are now existing, and is duly vested the company, the patent having been granted in the United Kingdom in 1874 . 1 perusal of the article may lead your readers any one who chooses to do so, which is not the case, as the right is still protected by the letters patent, and in order that they may
not fall into error on this point, perhaps you will kindly pive this a place in your next issue,
26, Brown-street, Manchester,
October 30th.

Compound engine diagrams.

SIr,-In my letter on the above subject which you published last week, a part, I fear, will be quite unintelligible owing to your part read: "The authors usually instruct us to make the length of the low-pressure is to the length of the high-pressure diagram as the area of the large is to that of the small cylinder
9, Glasgow-street, Hillhead, Glasgow, October 29th 9, Glasgow-street, Hillhead, Glasgow, October 29th.
[Our correspondent would have had no reason to comp
THE FERRANTI DYNAMO ELECTRIC MACHINE. messrs. ferranti, thompson, and ince, London, engineers.

THE FERRANTI DYNAMO ELECTRIC MACHINE.

FIg. 20.-ARMATURE BOSS.
On the 17th ult. Messrs. Ferranti, Thompson, and Ince carried out a series of tests of a thousand-light Ferranti generator,
about to be fixed in the First Avenue Hotel, in the presence of a number of electricians and electrical engineers, at whose disposal the arrangements for the tests were placed, with a view of showing the efficiency of this generator. Arrangements were made for lighting 960 Swan lamps, almost all of which were placed in one large group, only forty being placed outside the group. As, however, there was some mechanical
difficulty in transmitting the power necessary for this number of lamps, 120 of the lamps were cut out of the circuit, leaving lamps, 120 of the lamps were cut out of the circuit, leaving
840 in use. The engine, shafting and dynamo-electric were placed as shown in the annexed sketch plan, Fig. A.

The engine \mathbf{E} is a Fowler's semi-portable compound, with cylinders 13 in . and 23 in . diameter, and a stroke of 24 in . The engine fly-wheels F are 9 ft . in diameter, the pulleys A 2 ft . $7 \cdot 5 \mathrm{in}$.,

HICH PRES:REVS BO.MEAN PRES.35.62

the large pulleys B 7ft. 6 in . diameter, and the generator pulleys
1 ft . Sin. The main belts F A are 12in. in width, belts B C 10in, width, The exciter used was a Siemens' D2

Fig. 23.-COLLECTORS.

machine, giving a current of 20 ampères. During the tests numbers of diagrams were taken. Of the former the annexed are examples.
From the diagrams, Figs. B and C, the gross indicated horsepower is found to be $126 \cdot 13$ horse-power, and from the friction diagrams, Figs. D and E, the power taken to work the engine
and the shafting carrying the large pulleys B is found to be no and the sharting carrying the large pulleys B is found to be no
less than 37.06 indicated horse-power, the net horse-power used in driving the generator and its belts being $88 \cdot 07$. These two pairs of friction diagrams were, however, taken when the engine was regulated by hand and running at 84 revolutions per minute, as the governors will not hold the engine at anything like normal speed when doing about one-fourth work. To allow for this difference in the speed, and for the excess of power used may be taken that the indication should be reduced in proportion may be taken that the indication should be reduced in proportion
to the difference in the squares of the relative velocities, which will give us a reciprocal of 0.914 , reducing the indicated horsepower of the friction diagrams to 33.87 . This quantity taken from the gross horse-power indicated gives us $92 \cdot 26$ indicated

SOO-LIGHT SHIP MACHINE.
horse-power transmitted to the generator and its two large belts. Assuming the large link leather belts B C to absorb five horsepower, then the net horse-power absorbed by the machine was
$87 \cdot 26$. It m
It must, however, be assumed that the consumption of a large quantity of power is inseparable from the machinery employed results in current are concerned, a machine must be debited with the cost of the power used in this way. The percentage of indicated power given to the dynamo was, however, but 73 per cent. of the gross indicated power, which, it must be remarked, was very low. A loss of 27 per cent. is to begin with high; and Under better conditions, therefore, there is little doubt that the figures would be more favourable than those which follow. The large pulleys B are, however, uncovered. They are fitted with a large number of double spokes, and without doubt take up a good deal of the 33.87 -horse power above indicated. For the purpose of comparison, it may be assumed that the engine itself, of the $33 \cdot 87$ indicated frictional horse-power took about 16, and the belts 10 , leaving 7.87 -horse power as consumed by the large pulleys B and assigned to the big pulleys acting as fans. If the power can be been one of several driven by one large engine, the hader absorbed per machine for shafting and straps would probably not have been so high; but inasmuch as a machine must be driven by some motor and transmitters, it must be
debited with the losses attending this. We must there-
fore charge the 1000 -light machine, supplying 840 lamps, with $126 \cdot 13-(6+5)$ and we have $115 \cdot 13$, or say 115 indicated horse-power as necessary to work the machine on the assumption that one set of straps can be dispensed with and the air friction of the large pulleys can be avoided. The net horsepower put into the machine remains, however, $92 \cdot 26$ indicated Per lamp, therefore, we have on the one hand $840 \div 92 \cdot 26=$ $9 \cdot 13$ as the number of lamps per indicated horse-power in the power consumed. The number of lamps per gross horse-power are not usually given as thus stated; but if they were, there is no doubt that these results would compare well. The conditions, moreover, as far as lamp connections are concerned, were not as favourable as they would generally be in practice, as owing to the temporary nature of the lamp attachments, the resistance in the leads was higb, and about six times as much current was passed through the branch circuit wires as would, under ordinary work ing, be considered proper and safe. The following electrical measurements may here be given :-

collectors, as tested cold
Resistance of one lamp, as tested cold $\because .$.
field magnets
fin
exciter
lamp, as tested hot
Current for lamp to give
gocandle power Current for lamp to give emotive force of lamp Total main current
Exciting current Candle-power of lamps \qquad

rom the above data we have-
$\begin{array}{lll}\text { The total hot resistance of the lamps alone. } & .1508 \text { ohms. } \\ \text { The total resistance of the leads cold, } 343-34-292 & .051 \\ \text { The external resistance is } \cdot 051+1508= & -2018\end{array}$
After the tests the resistance of the lead was again taken an found to have fallen very low indeed, or to about 1 per cent. of the resistance of the lamps in the main circuit, while the resist of the resistance of the lamps; these being up to power the lamps in the main circuit were probably giving about 23 candles. The contacts, which were bad at first, soon became better after the passage of an alternating current.
When the lamps are working this resistance is probably higher, but we cannot tell how high, as there is no means of measuring it at present. The internal resistance is 005 , which would remain almost constant, for as the resistance of the helin rises on account of heating, the resistance due to the oil on the on their rings ; thus we have the ratio of internal to external esistance as 1 to $40 \cdot 36$. The electro-motive force at the terminals is $\cdot 2018 \times 630=127 \cdot 134$ volts.
On this page and on pages 344 and 340 we illustrate two forms of the generator. Figs. 1 to 13 illustrate a new 500 -light machine pecially designed for ship lighting, and the remaining figures illustrate the 1000 -light machine, to which the preceding figures relate, and of which we may now give a description. The base plate of this machine is 39.5 in . by 16 in ., the pulleys projecting over the base plate by about 14 in . on each side. The total
breadth, therefore, is 44 in ., that is 2 by 14 by 16 . The height breadth, therefore, is 44 in ., that is 2 by 14 by 16 . The height of the machine is 34 in . Roughly speaking, the machine
may be said to be constructed of two similar halves, between which the armature revolves. The complete machine
to simestres of two sial tween which the armature revolves. The complete machine
is shown in Fig. 14. The shaft is of steel, $2 \cdot 25 \mathrm{in}$. diameter, and 42 in . in length, with bearings of phosphor bronze, the bearings being 9.75 in . long. The pulleys are 15 in . diameter and 12 in . face. Fig. 15 shows one half of the cast iron frame of the machine. The ends of the magnets C C are faced up, and the holes for shaft and bolts bored out. Two rings encircle the ring of magnet cores, as shown in Fig. 15 and in section at Fig. 16. These latter are of brass, and fastened by screws to The use of the latter being cut away slightly to fit the brass ring A piece of vulcanised fibre sheet with holes is cut to allow the fibre pass over the cores, and the shaft to pass through. This form an insulation between the coils and sides. Before use it is well varnished with shellac and baked. This process has been found to get rid of various difficulties which others have met with in the use of the fibre. The coils for the cores are wound separately in the lathe. A movable core piece slightly taper is taken, and flanged with removable flange pieces at each end. In th lange is cut a small groove, the use of which will be seen directly. A short connecting piece of tin-covered copper wire
is soldered to the wire to be used in winding the coil, and is soldered to the wire to be used in winding the coil, and
laid in the flange groove, which it fits exactly. Before the winding is commenced, a thin sheet of vulcanised fibre is put upon the core. The winding then goes on, each layer
being shellaced, and the complete coil has also a coat of being shellaced, and the complete coil has also a coat of
shellac; the other end of the coil has a connecting piece soldered shellac ; the other end of the coil has a connecting piece soldered
on, and the whole coil is slipped off the core then and put upon on, and the whole coil is slipped off the core then and put upon
the cores of the machine. The connections are made so that all the cores of the machine. The connections are made so that all
the magnet coils are in series, and that alternate poles are N and S. The total resistance of the field magnets of the machine under notice is 7.57 ohms. When the two halves of the machin is, a north pole is opposite a south pole, and so on. In this machine there are 32 such coils, weighing altogether 6 cwt .3 gr . 201b. The are wound with wire 3.5 mm . diameter, or about No. 10 B.W.G. Each coil has seven layers of wire, and each layer forty-eight convolutions. Fig. 17 shows three coils. Fig. 18 is an illustration of the armature to show the type-form, and assist partly to make them the description of the building up of the armature. the white lines represent the copper strips, the shaded portion represents the star-shaped piece of brass which forms the portion of body and should have a hole through the centre. The middle convolution on the right side of the figure shows the beginning T of one strip and M the end of a strip. Tracing the white line from T to T T T, it will be found to pass from the inside to the No. 2 strip; at the second bend from the starting point, and after another similar interval it becomes No. 3 strip, and finally the outside strip being connected to the rivet M. In this figure the phosphor bronze rivets MM are those connected to the
collecting ring, while those indicated by N N are insulated. H H indicate the bolt holes-see G, Figs. 19 and 20 . X X indiH H indicate the bolt holes-see G, Figs. 19 and $20 . \mathrm{XX}$ indiwhere are the insulated rivets N N. The armature in Fig. 21 is shown separately; it is 30 in , in diameter. Fig. 20 is a section through the whole boss. The top rivet in this corresponds to M in Fig. 18, while the lower rivet corresponds to N in Fig. 18. The boss part A is insulated, as shown at F F by vulcanised fibre, and is connected by means of the rivet M to the ferrule at the end of the copper strip. A is, however, connected by the
bolt G to the collector ring R. The collector ring is insulated from the sha collector ring of papier maché, held in position by screws encircling the shaft-see Figs. 5 and 9. Looking at the lower parts, the other end of the strip is connected to the starpiece

S-Fig. 20--and through the bolt G, which screws into S, to the for ease in construction. Fig 22 shows viprious important parts of the boss in an expanded form. S is the star piece upon which the armature is wound ; B B the inner boss with rivets N insulated; AA the outer boss with rivet M connected, as explained above; $\mathrm{CC}, \mathrm{R} R$, the collector rings and connections; the whelse-
held together by rivets A and B and bolts G. Here, as else held together by rivets A and B and boits G. Here, at and
where, FF shows the vulcanised fibre for insulation. At the end of the shaft is a screw pressing insulation against C, and keeping the whole mine together are 1.5 in . diameter, the two lower being 1.75 in . diameter. The total weight of the machine is 32 cwt . The path of the current generated from the beginning of a copper strip to the collector ring may thus be traced. The armature of the 1000 -light machine is made by three copper strips, two of which are 75 in . wide and 1.5 mm . thick, while the third is 1.75 in . thick, the total depth of copper thas Each slip is separated by 02in. strips of fibre. The length of each strip is $13 \mathrm{ft}$. 10in,, and as each strip makes ten the armature is 3 qr . 12 lb ., of which the star piece weighs 11 lb . The resistance is given at $\cdot 005 \mathrm{ohm}$. Fig. 23 shows the collectors. The diameter of the collecting rings is 4 in . and width 2 in . They are 2 in . wide, and fastened by universal joints, and are provided with a spring to allow of automatic adjustment. In order to ensure good conduction the collectors are connected by strips of copper 38 mm . by 25 mm ., forming altogether
strips 2 ft . by sin. to a copper bar 1.5 in . diameter, and hence to strips V, 2 .5in. by sin. and terminals.
strip strip In the new 500 -light machine the diameter, and is the same size as in the ordinary 2500 -light Ferranti machine. It is, however, intended to run the machine we illustrate at about 300 revolutions per minute, thus making it a slow speed machine. The armature helix has sixteen coils or loops, as shown at Figs. 10 and 11 , the construction of this part being clear from the description already given. The loops
are of copper, 2 mm . in thickness and lin. wide, separated by are of copper, 2 mm . in thickness and lin. wide, separated by thin asbestos paint covered paper. Each loop has eighteen
layers, and the strip is 470 ft. in length. The bobbins are shorter than in the 1000 -light machine, and weigh 3 cwt .3 qr .12 lb , and are wound with 3.5 mm . wire- No .10 - and have four layers and twenty-six convolutions.
Fig. 3 shows the insulated connection between the two bobbin castings. Fig. 6 is an enlarged view of the connecting piece between the terminal and the collector holder seen at Fig. 5 Figs. 7 and 8 being details of the collector and terminals. Fig. 9 of the design in devices for oiling and keeping oil away from the armature and bobbins. Figs. 1,2 , show parts of the side frames carrying the bearings. From our engravings it will be seen that it is a most simple machine. The armature is very strong, and the manufacturers have some fine special tools for its construction

AUTOMATIC ATR RELIEF FOR PUMPS.

THE accompanying engraving shows a very simple and ingenious device for expelling the air from the valve cha the Societté de Ingenieurs Civiles be M. Auguste Normand. In ordinary pump the pet cook serves this purpose; but when the capacity of the pump is much larger than the quantity of water usually passed is not so easily expelled, and much trouble is sometimes cause by the pumps losing water. To obviate the difficulty and

make pet cocks unnecessary, M. Normand attaches a small pipe to the pump, so as to communicate between the highes place where air accumulates and the tank from which water is pumped. When the plunger descends, the air is driven through the pipe, which is very small in diameter, only from $\frac{1}{3} \mathrm{in}$. to ${ }_{1}{ }^{3} \mathrm{in}$.,
and when the plunger rises a small quantity of water enters the pipe and helps to prime the pump. The position of the little pipe is shown by the dotted lines. It will be seen that the pipe must be very small, so that the volume of its capacity and that of the space between the valve shall bear a small proportion to the volume of the pump plunger, and the pipe must be so small that no material reduction of the quantity of water thrown by the pump shall take place.

FARCOT'S FANS AT THE CHAMPAGNAC

 The Farcot fan differs from those more generally known in this country chiefly in the form of the blades. These are notstraight or bent in a regular curve, in such manner as the openstraight or bent in a regular curve, in such manner as the openbut are of the arrangement and form shown in elevation at Fig. 1 . The admission of the air by the central orifice is effected at about an angle of 45 deg., so that the blades will not suddenly strike the air on entering, but simply divide it. After this curve of 45 deg., the blade is bent back in the opposite direction, so as to coincide with the radius of the fan, the outer ends being
suddenly. bent again in the opposite direction, so as to suddenly bent again in the opposite direction, so as to
cause the escape of the air to take place only in the direction opposite to that of the rotation of the fan. The air is, as a rule taken in by the openings on each side of the fan, so as to prevent any side thrust; the leakage between the top of the intake and the orifice of the fan is prevented in a simple and effective manner by providing grooves of sheet iron in each of the faces which interlock without friction. This plan of baffling the air, which may be compared to the turned grooves in a piston, is found to Farcot to be employed than that of Guibal or Schiele. The casing is

FARCOT FANSATCHAMPAGNACCOLLIERY.

made of wrought iron plates, and the fan blades of steel, the entire weight of an 8 ft . fan and shaft being under a ton. Figs. 1 and 2 show the general arrangement of the ventilating plant at the Champagnac Colliery, Cantal, France, the fan having pulleys on each end of its shaft, which are driven by means of a
countershaft actuated by a portable engine. Fig. 4 shows a countershaft actuated by a portable engine. Fig. 4 shows a
sketch plan of the mine, the fans placed over the shaft at C, the ketch plan of the mine, the fans placed over the shat air intakes
depth of which is about 197 ft . The orifices of the air epth of which is about levtrt. the distance from A to H being 756 ft ., B to H 492 ft ., and H to D 1213 ft . The diameter o the fan is 2 mm .50 , or 8.2 ft .; number of revolutions per minute, 170 ; horse-power used by the fan (French), 27 ; depression in the water gauge at bottom of shaft C, $0.7 \mathrm{in} .=0 \mathrm{~m} .18$; velocity of the air at $\mathrm{D}, 13 \mathrm{ft}$.; volume of air at D per minute, 20,300 cub feet $=9.6 \mathrm{~m}$. 3. Duty, useful work, $9.6 \mathrm{~m} 3 \times 018=172$
kilogrammetres $=2.304$ French horse-power. Power taken by kilogrammetres $=2 \cdot 7$ horse-power.
From the above figures, which are furnished by the directing $2 \cdot 304$ HP $=85$ per $\frac{3.7}{2 .}$ H.P. $=85$ per cent. Colliery ventilation in France is not always carried out by means of exhaustion. For instance, at the Aveyron Colliery, Decazeville, the workings are put under pressure which in ordinary work is about 30 milimetres of wate but when the galleries are obstructed sometimes attains a pres sure of 80 milimetres. The engine and fan in this colliery are in duplicate, the lirect to the fan shaft, whichit drives at the rat of ninety-five turns per minute. The disc of the fan is 6 metre in diameter, and consists of a number of blades similar to those in the exhaust fan, with the exception that they are not curve back at the periphery of the fan. The Farcot system is now very generally used throughout the Continent for fans of al sizes, and is being introduced into England by Mr. Killingworth
Hedges, of Westminster, who has just completed the designs for Hedges, of Westminster, who has just completed the designs for
ventilating a large colliery, in which a Farcot exhaust fan will be ventilating
employed.
TABLE OF DIFFERENT VELOCITIES EXPRESSED IN METRES PER SECOND.
The following table, if cut out and put into the reader's most used book of tables librarian to the Paris Geographical Society, and published in Nature:-

Aman walking 4 kilometres an hour

The" comet" of Halley in aphelion".

A ship going 12 knots an hour $(12 \times 1852$ mettres
A wave 30 metres in magnitude with a depth of 300 metres A wave so metres in magnituue with a depth of 1700 metres A fresh breeze

An express train rungning 60 metres a minute metres an hour:
".
light of a falcon, or a carrier pigeon
$\begin{array}{llll}\text { an express train running } 60 \text { English miles an hour } & \ddot{0} 60 & \ddot{x} & 21 \cdot 85\end{array}$

The transmission of sensation by human nerve
Flight of one of the swiftest birds
Flight of one of the sw the equator of Mercury $\ddot{\ddot{y}} \quad \ddot{\text { Velocity of a point on tir }}$.
Propagation of the tide cused by the earthquake of Aric
Propagation of the tide causid by the earthquake of Arica
on August 13th, 1868 (Arica to Honolulu), according to
Hochstetter $\ddot{3}$. $\ddot{2}$ the equator of Mars
Velocity of a point on
sound in the air ($+10^{\circ} \mathrm{C}$.)
a point on the equator of Venus
the Eari
A cannon ball of the mörement of tides (\#North Pacific
Ocean); maximum according to Whewell :
The moon's revolution round the Earth
Velocity of a point en the equator of Merciry
Revolution of the second satellite of Mars
Revolution of the second eqatellite of Mars
Concussion of the earthquake of Viege (July 2 2th,
i855)
Concussion of the earthquake of Viege (July
from Turin to Geneva in 126 seconds
velocity of sound in watar $\left(+8^{\circ} \cdot 1 \mathrm{C}\right.$.)

Revolution of the fourth satellite of Uranus
velocity of a point third the equator of Uranus
Velocity of a point on the equator of Uran
Revolution of the satellite of Neptune ..
of" "Neptune round the Sun ..
of the first atellite of Uranus
seventh
Saturn
" seventh ",
sixth
of "Uranus round "the Sun."

$\begin{gathered}\text { cules } \\ \text { Revolution of the fourth satelile of of Jupiter } \\ \text { of Saturn round the Sun. }\end{gathered} . .$.
of Saturn round the Sun. Velocity of a point on the equator of Saturn
Revolution of the third satellite of Jupiter
Saturn
Velocity of a point on the equator of
Revolution of Jupiter round the Sun
of the

$$
\begin{aligned}
& \text { secor } \\
& \text { first }
\end{aligned}
$$

Saturn
Jupite
of"Mars round ", Jupite
of "Mars '"ound the sun
of the Earth
of Venver
Jupiter
of Venus
roper movement of Capelia. " s,
Proper movement of Sirius
Ordinary movement of the solar atmosphere $\begin{array}{r}\text { to } 65,000 \\ 71,60 \\ 8,000 \\ 39,260 \\ 402,000 \\ 4,000,000 \\ 36,000,000 \\ \hline\end{array}$
Proper movement of the 61st of
Arcturus
The comet of "Halley in perihelion
The" comet of "Halley ircturus perihelion
Tempests of the solar atmosphere
Tempests of the elolar atmosphere .ire .
Velocity of light \qquad $4,000,000$
$30,000,000$
$300,400,000$
The Society of Engineers.-The Council having had under mesent hall and offices of the Society to others of a more suitable character, we are happy to be able to announce that arrangements have been made for holding the ordinary meetings at the West minster Town Hall. The offices, library, and reading-room of the Town Hall is situated in Caxton-street, close to St. James's Park Railway station
City and Guilds of London Institute.-The Holt scholar ship, tenable at the Technical College, Finsbury, has been awarde for the first time this year. The student who has gained it is
Charles Priest, aged 15, a pupil of the United Westminster Schools The value of the scholarship is $£ 20$ a year for two years, with free education. The fund which provides this scholarship was be queathed by the will, dated 1838, of Mary Ann Holt, for the benefit of a school she had established at Genoa, and was trans
ferred, by direction of the late Master of the Rolls, to the "Officia ferred, by direction of the late Master of the Rolls, to the "Officiar
Trustees of Charitable Funds," for the establishment of a scholar ship in connection with the City and Guilds of London Institute. The amount of money transferred not being sufficient to provide scholarship of $£ 20$ a year for two years, the Council of the Insti tute supplemented
The Institution of Civil Engineers. - The success which
attended the course of lectures delivered this year has induced the council of the Institution of Civil Engineers to make arrangement for a similar series next session. Electricity-one of the great sources of power in nature, which, according to the charter, it is
the object of the civil engineer to direct-was then dealt with the object of ther sortant source will now be treated, namely, "Heat in its Mechanical Applications." The lectures will be delivered on Thursday evenings, at 8 p.m., in the months from November to April, as under:-(1883) November 15th- "The General Theory of Thermodynamics," by Professor Osborne
Reynolds, F.R.S.; December 6th-"The Generation of Steam, and the Thermodynamic Problems Involved," by Mr. W. Anderson, M. Inst. C.E. (1884), January 17th-"The Steam Engine," by
Mr. E. A. Cowper, M. Inst. C.E.; February 21st-"Gas and Caloric Engines," by Professor Fleeming Jenkin, F.R.S.S. L. and E., M. Inst. C.E.; March 20th-" Compressed Air and other
Refrigerating Machinery," by Mr. A. C. Kirk, M. Inst. O.E.; Refrigerating Machinery, By Mr. A. Meat Action of Explosives," by Captain Andrew Noble, F.R.S., M. Inst. C.E. Admission to these lectures will be
as to the ordinary meetings of the Institution, that is to say, as to the ordinary meetings of the Institution, that is to sanal
members, associates and students will have the right of personal members, associates and students will have the right of personal introducing one friend,

RAILWAY MATTERS.

THE Government of Queensland is calling for tenders for the

construction $31 \frac{1}{2}$ miles.

The tender of Messrs. Garget and Co. for the construction of the eighth section of the Western Railway, a distance of forty-one
miles, including a bridge over the Maranora, New Zealand, has miles, including a bridge over the Maranora, New Zea
been accepted. The amount of the tender was $\$ 86,850$.
THe following item of intelligence is from the Anglo-American Nice:-" 0 n the Paris and Marseilles Railway, sixty-ieight trains,
including about 1500 carriages and wagns, , have been
fitted with and 500f. for each 'coach,
A "PuNCH," which had been inaugurated in honour of M. Laguerre by French railway servants, under the guidance of $L e$
Moniteur des Employes
Oe Chemins de Fer, came off on the 25 th
Ont October at the Cafe Central, Place d
Pichon, municipal councillor, presided.
THe property necessary for the junction of the Mersey Tunnel Railway with the Birkenhead and Chester line having been Mr. John Waddell, is pushing on the works, and this section o the work will probably be completed by the end of Februar Wrri reference to the schemes for land-grant railways in
Western Australia, from Beverley to Albany, and from York to Eucla, the Legislature, by a majority of eleven to nine, has affirmed that the subject is now finally disposed of by the House. and tha the Government is empowered to negotiate for the construction o the two lines.
In concluding a report on a collision which occurred on the 29th September, at Waverley station, Edinburgh, on the North British
Railway, Major F. A. Maraindin says: "The train was not provided wehicles and only one braked vehicle besides the engine. If the driver had had a continuous brake at his command he could cer
tainly have stopped his train when he found that he was running tainly have,
The Agent-General for the Cape of Good Hope-Captain Millshas recently been advised that 100 miles of new rail way have been
recently opened for traffic -36 miles on the Eastern system, and 64 on the Midland system, where Colesberg, and practically also the border of the Orange Free State, have been reached. By the end
of the year 1884 the colony will have-including 40 miles of private of the year 1884 the colony will have- including 40 miles of private
line- 1510 miles of railway, costing the Government of the country ine- 1510 miles of railway,
A REPRoRT to the Board of Trade has been made by Major Retford, on the Manchester, Sheffield, and Lincolnshire Railway Major Marindin says : "' The guarr, saw the home signal at of the mineral train very soon afterwards, and his brake was at the
time hard on, but if he had had the power of applying the con tinuous brake, which is a most msential condition for a proper brake, he woold
avert the collision.
In the small talk running the round of the Swiss newspapers, is 25 th, as well as in several other Swiss journals. Mons. PetitpierreSteiger, Neuchatel Councillor of State, and director of finances,
met, in a railway carriage full of people, Mons. Ladame, the canonal engineer, and demanded where he was going. An evasive answer was given. Whereupon "his majesty the director on
finances," to quote the report, exclaimed, "Understand that I am
Councillor of State, consequently your superior, and that I have a Councillor of State, consequently your superior, and that thave
the right to demand how my subordinates employ their time." the right to demand how my subordinates employ their te Ruz considers this censure "decidedly very scandalous." AT one of the Northern States dep \hat{t} s lately an old lady, whom man and asked if he knew whereabouts on the line her nephew was employed. "Abner ?" said the railroad man, "Oh, he's been
changed about considerably latety. He fired the John Edward till they gave him the Owl for a while, then he broke the two-eight passenger till she jumped a know-nothing, and he got pinched somewhere, and now I believe he's spare round the yard. You see, as if trying to digest the old lady stood speechiess for a moment, hought he had -Boston Globe. paying one is that from Adelaide to the Semaphore, which yiel best
 Yevenione 25 2s.; Port Pirire, Terrowie, and Quorn gave a balance
revenue over working expenses of $£ 25,836$ 12s. 8 d . on a total cost revenue over orn of $£ 820,632$ 14s. 8 d . Alll the other lines gave lower
of constrution
returns, the Strathalbyn and Middeton, Goolwa and Victor returns, and Port Broughton and Barrunga Range showing an
Harbor, and
excess of working expenditure over revenue of E533 1 1s. 7d.,

NEw South Wales has nothing to complain of in the results
of her railway enterprise. Indeed, we find, says the Colonies and
 some returns. In 1881 the return paid was $5 \frac{1}{2}$ per cent.; in 1882,
with the large capial of filu,760,500, and notwithstanding the large increase made to the mileage open, the return paid was
nearrly 5 市 per cent.- a result due not alone to the vast resources have been worked, the proportion of expenditure to the earnings being less in New South Wales than in any of the Australian
colonies. When it is remembered
 The following figures show more clearly perhaps than words the extent of these railway transactions:-In 1882 the total earnings was $2,619,000$, and the number of passengers ' journeys made was A PULLMAN dining car of the 5.40 express to Leeds has been li by six swan incan of twelve cells, the dimensions of the battery bein -Length, 4ft.; breadth, Sin.; and depth, 8in. The battery is of zinc and carbon, with a new depolarising arrangement, the details
of which have not been made public. The lamps diffused a bright, warm, and perfectly steady light, which was aich mome it not only by the oscillation of the carriage, and which made it not only
possible, but perfectly easy, to read a newspaper or book printed in small type. The resull of other preliminary trials of the system Eastern, the South-Eastern, and the London and South-Western have shown a desire to adopt it. The light can be turned on or off
at pleasure, and it can therefore be used in the day when a train is passing through a tunner. The inventors of the battery express
a belief that they will be able to suppply private dwellings with electric light for less than the estimate lately put forward by the was used on Thyursday the Golcher Company. The battery which G. C. V. Holmes and Mr. F. E. Burke. Mr. F. Cheeswright, ative share in the introduction of the light, which was on Thur day week under the management of Mr. F. Trevers Zohrab.

NOTES AND MEMORANDA.
THE substance known as anthracene has been found by D_{1} lighmasi to possess a new property, namely, a sensitiveness to to light acquires different physical and chemical properties withou
any change in its composition. If a cold, clear, saturated solution any change in its composition. If a cold, clear, saturated sloution
of anthracene in beezzo is exposed to the direct rays of the sun, it
it of paranthracene.
M. P. TiHoN has lately shown at the Industrial Science Society
of Lyons a new semi-incandescent lamp, giving the brilliancy of an of Lyons a new semi-incandescent lamp, giving the brilliancy of an
arc light. This, Nature says, is attained by having two carbon rods, slightly inclined to one another, brought down on to a small
prism of chalk, and separated from one another by a small rod of prism of chalk, and separated from one another by a smal rod o making it incandescent. By this means the light is rendered
steadier than an arc light, and it is said to have the same brilliancy, which we doubt.
Acoording to a communication made to the London sectlon of
the Society of Chemical Industry, by Mr. W. Weldon, F.R.S., it does not seem that we are much nearer to cheap aluminium than we have been of an of production had been invented and was is use, but Mr. Weldon says this invention only relates to the producion of anhydrous alumina from potash alum, and if the method of obtaining this were 50 per cent. cheaper that of M . Pechine
of Salindres, it would only cheapen aluminium by 5 per cent. THE number of miles of streets which at present contain mains constantly charged, and from which constanc supply can ee given, district of the metropolis, is as follows :-Kent, about 85 miles New River, about 218 ; East London, 120 ; Southwark and Vaux
 The companies are ready to gure tonsta.
hydrants whenever legally required to do so.
CoLonkr Borron says in his September report on the London 'standard of filtration' regulating the volume of water to be passed through a given area of sand in a given eme, it was been
found, during the past eleven years by the London Water Com-
panies, that when the rate of filtration does not exceed 540 panies, that when the rate of filtration does not exceed
gallons per square yard of filter-bed each twenty-four hours, the ilteration is effectual, and this has been generally recognised a.
tentative standard rate of filtration. The filters have, however, different thicknesses of filtering material,
A vineyard proprietor near Nimes having had several complaints made lto him about his wines, requested M. Barthélemy, for him. In some of them a rather large proportion of arsenic was found, larger than the trace sometimes found in certain red all, and in this instance the cask containing the wine was a new one, it had not been previously used. The other barrels had
been cleaned after use with "drogue," which, in point of fact, is
diluted sulphuric acid, and the sulphuric acid of the central diluted sulphuric acid, and the sulphuric acid of the central diss
tricts of France has of late years contained so much arsenic that tricts of France has of late years contained so much arsenic that
M. Barthelemy has sometimes used it to obtain a supply of that material.
"Bradshaw's Railway Guide" map of Great Britain which acompanies that indispensable manual is now ruled with meridian lines at every $1 \frac{1}{4}$ deg. of longitude, or every $5 m$ on of time from
Greenwich, so as to show at a glance, sufficiently nearly for practical purposes, the difference between the local time at every
town in the United Kingdom, and Greenwich or railway time. The difference it is true is sall enough to be neqlected in the eastern counties; but is considerable enough to require to be remembered in the western half of these islands. There is, Natur remarks, an advantage which will be reailsed whenever these time meridians replace meridians of longitude on school maps, as they
are bound to do by degrees., It is that they tend to to give clear ideas of longitude, of the earth's diurnal $\begin{aligned} & \text { Meridians as such are mere coordinates of position, and have no }\end{aligned}$ necessary connection with time, and the ideas of many even educated people are extremely hazy on lieer mutual relations, Messrs. Blacklock, of Manchester, probabiy make no pretension to
be educational reformers, but in taking the initiative in this "Bravemhaw," helping to prepare the public mind for the adoptio of a universal first meridian, and giving great assistance to th schoolmaster.
Marseliles is supplied with water from the Durance by a canal constructed at a cost of nearly two millions sterling. It is 81,62
metres in length, and after it was completed the death-rate of the porr, which amounted during the tenp years previous to the con-
struction of the canal $1840-9-$ to $39 \cdot 23$ deaths per 1000 of the
 $30 \cdot 60$ per 1000 . Yet even in 1882 it was ascertained that out
the 39,727 houses existing in Marseilles only about 18,000 had water supply from this source. There are some quarters where the
mortality reaches an apalling figure. In the Ninth Arrondissement, for instance, it amounts to $48^{\circ} 67$ per 1000, and in the Thir
teenth, or Belle-de-Mai district, to 50.90 . A state of insalubrity that an produce snch a death-rate must be most propitious to the
propagation of cholera if once the germs are introduced, and the statistics show this to be the case. There died at Marseilles from Asiatic cholera, 865 persons in 1834,2576 in 1835,1526 in
22111 in 1849,3069 in 1854,1410 in 1855 , and 2037 in 1865.
population increased in that period of time from about 150,00
 death-rate for the year 1882 of 30.31 per 11000 . The sewage of
Marseilles and the house drainage is generally in a most unsatis factory state
In "Notes on some recent Astronomical Experiments at High
Elevations on the Andes," described to the British Association by Mr. Ralph Copeland, made during the first half of this year at the
cost of the Earl of Orawford, some figures are given which are Interest. At La Puz , in Borivia, 12,0 oootes, with the full moon in
the sky, ten stars were seen in the Pleiades with the nated the sky, ten stars were seen in the Pleiades with the naked eye,
and also two stars in the head of the Bull that are not in Argelander's Uranometria Nova. The rainy season lasted rough
until the end of March, after which there was a large proportion
of of fine sky. At Puno, on Lake Titicaca, $12,600 \mathrm{ft}$. , with a 6in.
telescope mounted on a lathe headstock, a number of small plane tary nebule, and some stars with very remarkable spectra, wer
found by sweeping the southern part of the Milky Way with
prism on Proessor Pickerin's prism on Professor Pickering's plan. Observations were also max
at Vincocaya, 14,360 It.
Attempts to see the corona proved futil
nor were the prominences seen otherwise than in the spectron nor were the prominences seen otherwise than in the spectroscope,
the only difference being that the slit could be opened far wid the only difference being that the slit could be opened far wide
than down at the sea level. A most careful examination of the zodiacal light failed to show even the sightest shaspicion of a lhat at
in its spectrum, which was continuous although siort. Both at in
Puno and Vincocaya the air was very dry, the relative humidity
there and arequip, 7700 ott, being as low as 2 per cent. At
VVe Vincocaya the black bulb at one time stood above the local boiling
point, while the wet bulb was coated with ice. TThe author was of opinion that an observatory might be maintaned
fort up to 12, oooft., or even a little higher-the night temperature falling only slightly below the freezing point. At greater eleva-
tions the thermoter fall 1 deg. for every 150 oft. of height, the
barometer sinking about 0 . 1 in. for the same change. At 15 , 0 oft. barometer sinking about 0 . 1 in. for the same change. At A5, 000 tt.
it will thus be seen that arduous winter conditions are reached
without any very material gain in the transparency of the
athosphere.

MISCELLANEA.
MR. John C. Traurwing, a well-known American engineer and rechil at seveny-three years.
A USEFPL and interesting paper on magneto and dynamo-electric is now published as a separate pamphlet by Mr. Falconer, Dublin,
The Paris Figaro says that the eminent French chemist, M.
Basset, has discovered a method of producing currents of elecBasset, has discovered a me mod of producing currents of elec-
tricity at a fabulously cheap rate, and is working with M. Bazin, an engineer, to bring his discovery into practical use.
M. E. CAZELLS the new prefect of the Bouches-du-Rhone, is a
cientific man versed in English literature. He has translated most of the works of Herbert Spencer, Grote, and others, into Frenoh; also Liebig's "Letters on Chemistry," from the German. THE Electrical Power and Storage Company is withholding the that an improvement will be affected, which will, we are told, dispense with metalit connec
and will dispense with boxes.
Durivg the week ending October 20th the new mill just opened 2580 tons of rails and 119 tons of blooms, total 2699 tons. It has been calculated that of the time worked one rail was rolled in every thirty-two seconds. The mill worked eleven turns,
THe Municipal Council of Boulogne, the Chamber of Commerce,
and the Geographical Society of that town, are in favour of tunnelling the Alps at the Great St. Bernard, that route being the best for the trade of Boulogne; Dunkirk, Calais, and the ports of
the North of France are seconding the endeavours of Boulogne to the North of France are
get this route selected.
THE demolition of the palace of the Tuileries having been decreed by the Parisian authorities, it has been resolved to preserve
those portions which are interesting from an artistic and historial point of view. Consequently some porticos from the ruins of the
Tvileries are now being re-erected on the left side of the Seine, in Tuileries are now being re-e.
the park of the Trocadero.
LasT year, at this time, parts of Southern Europe began to be deluged by rain brought down by the Alps. This year nese may posseady complaints of inadequate rainfall, and at Zurich, north o the Alps, the weather is fine and warm, although in
the district is under snow before the end of October.
ON Wednesday afternoon Messrs Robert Thompson and Sons, of
Southwick and Bridge dockyards, launched from their former yard Southwick and Bridge dockyards, launched
an iron serew an irone screw steamer-She will be fitted with engines of 300 ,-horse power by the Wallsend Shipway and Engineering Company,
Wallsend-on-Tyne. As the vessel left the ways she was named the "Regian" by Miss Conaway
MoNs, BreGUET, who was noted in France for his improvements
in ships; chronometers, died in Paris on the evening of October 27 th. His father was a maker of chronometers. He was an early worker in the improvement of telegraphic instruments, and was an honorary member of the Bureau des Longitudes. He obtained
several cold medals for his improvements in clocks ; obtained the several oo the Legion of Honour in 1878, and was made a member
medal on In this column in our impression of the 19th ult., reference was made to a new system of producing door and other name plates,
panels, \&o., invented by Mr. C. L. H. Summers, of Gosforth. It should, have been said that the letters were stamped through the
brass plate for the receipt of glass letters, instead of wax filling brass plate for the receipt of glass letters, instead of wax
and not that the lettering is cut through. The name plates are thus produced by a process very much oh
the filling may last as long as the plate.
The Nice Exhibition is in a backward state, and wifl probably
not be opened till the middle of December. A characteristic feature opened will be the display of articles of luxury. The glass-
painting industry will be largely represented. The firm of Veuve painting industry will be largely represented, semicircular window
Lorin, and Co., of Chartres, will fill the large sen of the transept- 39tt. Iong-with a magninicent specimen of their
work; the subject is the car of the sun, driven by Apollo, an
apropriate allegory for the sun-favoured shores of the Mediterappropri
ranean.
ON the 24 th ult. a fine new passenger steamer, named the Dart,
built by Messrs. Raylton Dixon and Co. for the Royal Mail Steam Packet Company, for service between Southampton and the West
Indies, Bravil, went to sea from Middleshrough The vesel is in Indies, Brazzi, went to sea from Nith of hold, 26ft. The engines
length 332 ft ; breadth, $38 t \mathrm{t}$.; depthas Richardson and Sons, of
 ormed, she maintained a speed of thirteen knot
ON Wednesday afternoon Messrs. Schlesinger, Davis, and Co.
launched from their shipbuilding yard at Wallsend a finely-
 ing capacity of 2300 tons dead-weight. Her engines, of 150 -horse
power nominal, have been constructed by the North-Eastern Marine Engineering Company at Wallsend, and will at once be put on
board. The cylinders are 29in. and 56in. diameter respectively, with a stroke of 42in. The boilers, which have a total heating
surface of 2700 square feet, will work at a pressure of 901 lb . per

A FEW days ago a fire occurred on the premises of M. Rousselot,
banker in Nantes, and the iron safe of the bank was for ten hours subjected to furnace heat. The calcined safe was afterwards dug out, and the Mayor of Nantes. It was long and tedious work to remove the remains of the outer part of the safe, and the excitement of the ruined man or not, for it was possible that notes and securities
worth six or ieight millions of franss had been destroyed. By the
aid of oil and a key the inner safe was opened, and the papers found intact.
In the course of the execution of the works at Rome for the
mprovement of the flow of the Tiber, it has been decided to employ dynamite to disintegrate the foundations of ancient works in
the bed of the river. The dynamite will not be used within 20 m . at least of any bridge, and within less than 10 m . of the river bank,
and will be employed only where the depth of water is not less
and than 1 sm . Only one charge of dynamite will be exploded at a
time, and one minute before each explosion three clarion notes
will be sounded as a warning to the public ; the spectators will be will be sounded as a w warning to the public ; the spectators will be
kept at a safe distance by the municipal guards. The charges of dynamite will not exceed a auarterico o a kilogramme each, and they
dyill be prepared outside the city. The dynamite store will be will be prepared outside the city,
placed far from any human habitation
The electric lighting of the Manchester Royal Exchange, which for something hile a couple of years has been carried out success-
fully by the British Electric Lighting Company, has this week come to a sudden and extraordinary collapse. With the improve-
ments, which have been gradually worked out here and there in the arrangements, the system had been got into thoroughly satis-
factory working order, but with the close of last week the comfactory working order, but with the ciose of does not appear to
pany's servants, for some reason of which there pany sservants, for sone
be any definite explat at present, were withdrawn, and since
then the whole of the plant has been lying idle. Fortunately,
this had no more serious results than a eompulsory return to the old this had no more serious results than a compulsory return to the old
system of lighting by gas, the fittings for which the Exchange
directors have very wisely maintained intact as a reserve in view directors have very wisely
of any possible erentualities,

THE FERRANTI DYNAMO ELECTRIC MACHINE. MESSRS. FERRANTI, THOMPSON, AND INGE, LONDON, ENGINEERS.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

aquarium builders, and Using the heated water from

Thr Encorver can be had, by order, from any at the varionse naind

 ADVERTISEMENTS.

MEETINGS NEXT WEER.

THE ENGINEER

NOVEMBER 2, 1883

further amalgamation of london gas companies. The amalgamation of the South Metropolitan Gas
Company with the Chartered, which has been spoken of in Company with the Chartered, which has been spoken of in some quarters as an assured transaction, will leave only
one more company to be absorbed in order to subject the one more company to be absorbed in order to subject the As for the certainty of this event, the process has gone so far that the two companies are agreed upon the terms as between themselves. The Board of Trade have now to see that the terms of the compact are such as can be
endorsed on behalf of the public. If all is well in this endorsed on behalf of the public. If all is well in this
respect, the Board of Trade have only to approve, an Order in Council will complete the legal procedure, and the South Metropolitan will follow in the wake of the the South Metropolitan will follow in the wake of the
eleven other companies which have been absorbed by the eleven ambitious and successful corporation. Earliest in
same ander same ambitious and successful corporation. Earliest in
the field, the Chartered Company was at one time by no the field, the Chartered Company was at one time by no
means the largest of the organisations which supplied Lonmeans the largest of the organisations which supplied Lon
don with gas. When Parliament addressed itself anew to the subject of the metropolitan gas supply in 1868, the capout employed the excelled it in magnitude. But the Imperial alone far being distinctly promoted by the legislation followed accordance with the opinion which legislation of 1868, in and out of Parliament, that amalgamation waied, both in to economy. Obviously it should be las fase have a district supplied by one company than expensive to but some controlling power outside the companies necessary, otherwise the phareholders the companies is reap the benefit rather than the consumers. How far this has been secured may be judged by the financial results. In 1869 the management charges of all the London gas companies, taken in the aggregate, amซunted to $19 \cdot 24 \mathrm{~d}$. per ton of coal, or $2 \cdot 28 \mathrm{~d}$. per 1000 ft . of gas sold. In 1882 these items were reduced to 11.56 d . per ton, and $1 \cdot 21 \mathrm{~d}$. per ast year remained on Company, which down to the close of the management charges merely falling from 15.93 d , per ton of coal to $15 \cdot 45 \mathrm{~d}$., and from 1.95 d . per 1000 ft , of gas to 1.64d. The management charges of the Chartered Company fell in the meantime from 18.26 d . per ton to $10 \cdot 19 \mathrm{~d}$., and from $2 \cdot 21 \mathrm{~d}$. per 1000 ft . of gas to 1.05 The diminution of expense is still more marked when we look at the amount absorbed by the directors agregate of all the companies, amounted tos, taking the 869, and fell to $£ 17,584$ in 1882, although the quantity of coals carbonised had risen in that period from lise han $1,200,000$ tons per annum to more than $2,000,000$ The fees to the directors and auditors of the Chartered Company have fallen in three years from $4 \cdot 61 \mathrm{ld}$. per ton of coal to $1 \cdot 47 \mathrm{~d}$., while the proportion for the London Company scarcely shows any diminution. The disadvantages comparatively small scale are shown by the of gas on a the Ratcliffe Company in 1869. This was the smallest of all the companies, its consumption of coal being less than
20,000 tons per annum. Its management charges 20,000 tons per annum. Its management charges exceeded 2s. Id. per ton, and amounted to 3.34 d . per 1000 ft . It was subsequently absorbed in the Commercial, which has otherwise remained in its original condition down to the
present time, with management charges which pressiderably, with management charges which pro rata 1869 the baly exceed those of the Chartered, though in
The economy of amal other way.
The economy of amalgamation is, however, to be repre-
ented by something more than a reduction on account of directors' fees and the like. If affairs are properl administered, consolidation should have an effect on every class of outlay. One remarkable result which presents the net cost of coals of the London gas companies is that ing the receipts for the residual say, the cost after deductin 1882 than it was in 1869 , consumed is nat companies spent for coals at the earlier doubled. The £955,618, whereas last at the earlier date the sum of $£ 1,466,771$. But the net cost had fallen from $£ 581,955$ to $£ 531,756$. So far as coals were concerned, the companies were making 21 million thousands of gas last year for in 1869 less than it cost them to make half that quantity coals they received words, wie paying $£ 511,000$ more fo coals, they received last year $£ 561,000$ more for residuals.
The difference represents more than $7 \frac{1}{2} \mathrm{~d}$. per 1000 ft . of gas. The improvement is especially marked in the case of coals at the Company, which is 1869, falling to 71d in 1882 . The peduction is thy gas in than a shilling per 1000 ft ., and it is instructive to observe that the reduction in the charge for the Chartered gas, as supplied to the consumer, has been 10d., the price coming down from 4s. per 1000 ft . to 3 s .2 d . Next year the price is to be lowered to 3s., thus representing, within a fraction, the full difference in the net cost of coal. Comparing the state of affairs at the two dates, 1869 and 1882, we find the receipts for residuals rising rather more than 2 d . per 1000 ft . of gas, while the gross cost of coal has fallen by Chartered. The actual cheapening of coal to the Chartered at first hand has been nearly 5 s. per ton.
For much of the foregoing data we are indebted to Mr. Field's excellent yearly "Analysis," a work which may be gress of the London gas supply. The magnitude of the amalgamation now on the tapis is an interesting feature. By its absorption of the London Company a few months ago, the Chartered has now an employed capital amounting Metropolitan exceeds two millipoyed If the latter should be absorbed in the former, the united capital at the
beginning will be $£ 13,352,000$, The sole remaining
company, the Commercial, has a capital of about three-quarters of a million. The outstanding company will therefore be a pigmy by the side of a giant, if the great amalgamation takes place. The terms on which the
South Metropolitan is to be absorbed have been skilfully evised with a view to reconcile conflicting interests if po ible. It has long been thought that there would be considerable difficulty in uniting the South Metropolitan with th Chartered ; but it happens that the arrangements hav been made at last with singular swiftness. The refusal on the part of the Commercial to join in the fusion has been the act of the directors without consulting the shareholders, neciseems to have been a somewhat abrupt and hasty ecision. Possibly a different feeling will prevail on absequent occasion. Win respect to the public interest, oeing thection appears to lie against the present scheme
 (he listrict is 3s. 6d., and in the Chartered 3s. 9d. he sling scale gover the Mable in the southern district. The Sout etropolitan Company is supplying gas at 2 s. 10 d . pe
1000 ft ., whereby the limit of the statutory dividend星 penny below the initial price. The Chartered Company might divide three-quarters per cent. more than the South Metropolitan, and hence it has been argued that when the amalgamation takes place the initial price should be made 3s. 6d. for the whole undertaking. This point will doubtles be laid before the Board of Trade; but there appear to be some counterbalancing elements in the well-contrived scheme which now awaits the approval of the Department The answer to the appeal is that the capital of the South Metropolitan, so far as it comes under the sliding scale will henceforth receive a fixed dividend equal to that which cheapened in reived. Hence, however much gas may be Metronolitan capital will not rise and the profit thus sout will help to bring down the price of pep O the whole the scheme has much to recommend it, though it meets with opposition from the local authorities in the present South Metropolitan district. It is even questioned whether the initial price for gas in that district can be ignored without the direct authority of Parliament.

Is our impression for October 5th, 260 , we illustrated the plant devised by Mr. Dowson for utilising water gas as a motive power. It has since been publicly stated that their Openshaw Works, Manchester, of the fuel consumed by Crossley gas engines worked with Dowson's gas ; that the by Crossley gas engines worked with Dowson's gas; that the engines indicat that average of 90 -horse power for seven-
teen days, and that the fuel consumed was 8 tons, equivalent to a consumption of 1.3 lb . per indicated horse-power per hour. This is a very remarkable statement. We do not know how many engines were employed, but we have no authentic record of a steam engine indicating but 90-horse power working with so small an allowance of fuel No ey ailed information has been supplied by Messrs. Crossley as to the conditions under which the engines were accuracy of the statement. We have not the leasting the that it has been made in perfect good faith. In other words, we are sure that Messers. Croseley believe that they have during seventeen days obtained 90 -horse power, that they have burned but 8 tons of coal. Concerning the last point there is no room for doubt; but so much cannot he work done is er exerted. Everything depends, whe diagrams are taken. In the Openshaw Works the ga engines are employed in driving sop expended must vary continually, and nothing would be easier than either to over or under estimate its amount Our readers can attach their own value to the statemen we have quoted. To us it seems that, even if we mak considerable allowances, there must inevitably remain so large a difference between the consumption of coal for 0 -horse engine, and thatapparently demanded by the engines eferred to, that Dowson's gas may claim to be the most conomical source of power yet brought into actual use conomy heeding to investigate the questions on which it as engine system is. Instead of using ordinary coal gas, Mr. Dowson employs cas. He manufactures this gas as the engine wants it nd the space occupied by the generating apparatus is bout equal to that which would be taken up by a boile developing equal power. The Dowson gas plant consists irst, of a small steam boiler; secondly, of a stove in which oal or anthracite is burned ; and, thirdly, of a gasholder, has been charged with colce and is fully alight en thestove team is turned from the coke and is fully alight, superheated eferred into rom ll in injoile to which we have alr thi referred, into a small air injector or blower, and by this means sufficient oxygen is supplied to the coke to mainas given off is conveyed in the stove, now shut close. The it is washed and is then ready for use in the engine. The air injector maintains a pressure equal to 2ing. or 3in, of water in the coke stove, so that the gas passes freely from e latter into the gasholder The stea his end for one thing, but it also serves another purpose, When performs
say, after the few adjustments ning as it ought, that is to about 6 lb of ew adjustments necessary have been made or anthracite burned to besupplied for every pound of coke or $1 \frac{1}{3} \mathrm{lb}$. of $2 \frac{1}{3} \mathrm{lb}$. of carbonic oxide - CO The st com or corb is de with it CO and loceng the takes the oxygen, making data as to quantity lef ling hydrogen free. We have no very small. Attempts haved, but it is comparatively very small. Attempts have been made over and over agan to make "water gas" -so called because steam is
used in its manufacture-rich in plenty of steam ; but the heat absorbed in breaking up plenty of steam; but the heat absorbed in breaking up
$\mathrm{H}_{8} \mathrm{O}$ into its separate gases is so great that the coke is
quickly cooled down and extinguished if more than a very moderau when two ath with given out when two atoms of hydrogen combine wise equivalent of of oxygen to produce waien, the gases are dissociated in the furnace It appers here that Mr Dowion con blow furnace. It appears, howe vr, hat Mr. Bo without to in enough steam to supply ant of his furnace; and this much lowering the temperature of his furnere, others havi failed. The gas which leaves the producer is theoretically $2 \frac{10}{}$. of an and oxide, $4 \frac{2}{3} \mathrm{lb}$. of nitrogen, and an quantity of hydrogen per pound of carbon burned. But in practice, more air than enough finds its way in ; some of
the coke, too, is burned to carbonic acid-CO. This is to be avoided as much as possible, because it represents a direct waste of fuel, carbonic acid being unable to combine further with oxygen, or to give out any heat, or do any work in the cylinder of the engine. It and the nitrogen serve only to dilute the CO and H , and are so far prevent combustion in any gaseous mixture in which it is present. The hydrogen set free from the steam, renders the mixture more inflammable when air comes to water-gas is admitted to the engine cylinder with the proper quantity of air, the carbonic oxide, during explosion, takes up another atom of oxygen and becomes carbonic acid. The hydrogen also combines with oxygen and becomes steam. There is some reason to believe that the effect of the hydrogen may be almost omitted in dealso the temperature throughout the explosion is too high to permit of the oxygen and the whole of the hydrogen combining. As to the actual work done, the coke developes in the producer in being converted into carbonic oxide 4400 units, which is all expended in providing for loss by radiation; heating the air introduced; heating the fresh fuel added, and breaking up the steam into its constituent gases. Any heat left passes away with the gas into the holder, where it is got rid of by the water used for washing, \&c. In the cylinder each $2 \frac{1}{3}$ of carbonic oxide combines with 13 lb . of oxygen, and in so doing developes 10,100 , or, in round numbers, 10,000 units of heat. This, then, may be regarded as the maximum return,
that can be had from 1 lb . of coke burned in Dowson's apparatus.
Now, $10,000 \times 772=7,720,000$ foot-pounds; a horsepower exerted for one hour equals $1,980,000$ foot-pounds, and $\frac{120,000}{198000}=3 \cdot 9$, that is to say, the heat developed by the combustion of 1 lb . of coke in one hour in the way stated would suffice to develope $3 \cdot 9$-horse power, if there were no loss, and $\frac{3 \cdot 90}{1 \cdot 33}=2 \cdot 932$. Thus Messrs. Crossley's statement that they have obtained a horse-power with $1 \frac{1}{3} \mathrm{lb}$. of coal-anthracite or nearly pure carbon we presume-im-
plies that the efficiency of the whole Dowson apparatus is, in round numbers, one-third. This is a very high coefficient undoubtedly, but the margin left is so large that we see, so far, no reason why their statement should not be perfectly true. As to the losses, we think we may neglect as we must, that they are fully provided for by the heat developed in the generator during the production of CO. The remaining sources of loss must all be sought for in the gas engine. Owing to the dilution of the Dowson gas with employed than would suffice when ordinary coal gas is used. This renders a larger engine for the same power necessary, and the quantity of products of combustion
discharged from the cylinder at a comparatively high temperature is augmented, and wilh it the waste. It may be taken for granted, therefore, that Dowson gas is not nearly so efficient pound for pound as coal gas, the waste of heat attending its use being far greater, thanks to the quantity of useless nitrogen and carbonic acid present; but the cost of the gas is, of course, a mere triffe as compared with that of coal gas. As regards the actual waste in the engine, we are not aware that any investigation, theoretical or practical, has ever been carried out with water gas; cer-
tainly none has been made public. Mr. Dugald Clerk read tainly none has been made pubic. "The Theory of the Gas Engine" before the Institute of Civil Engineers on the 4th of April, 1882 , to which we must refer such of our readers as desire to go further into the matter, but it deals only with coal gas.
It must be clearly understood that water gas or Dowson gas is a very different thing from coal gas. The latter is
produced by distillation from bituminous coal, and contains of hydrogen about 50 parts, marsh gas about 32 parts and of carbonic oxide only about 10 parts in 100 , the remainder are complex compounds. One pound of it wil
measure about $35^{\circ} 5$ cubic feet, and can on combustion measure about 35.5 cubic feet, and can on combustion
develope energy to the amount of $17,370,000$ foot-pounds ; while, as we have seen, a pound of coke converted int Dowson gas represents but 7,720,000 foot-pouns. But or $1,102,857$ foot-pounds. On the other hand, the pound of coal gas represents nearly 8 lb . of coal, and it must not be forgotten that after all the coal gas, properly so cet his as deen got out one minera, in it is int ca ing hows to note coke which less effient than coal gas is water gas, and the fact must be carefully borne in righ orying out any investigation based on the Crossley the res working on it appears that th per cent. of the total heat generated into useful work obtains about $3,126,600$ foot-pounds. Now if the efficiency of the engine working on Dowson's gas is the same then each pound of Dowson's gas will develope about 198,500 foot-pounds, and each $1 \cdot 3 \mathrm{lb}$. of coke will give
$9 \cdot 1 \times 198,500=1,806,350$ foot-pounds; but a horse-power per hour represents $1,980,000$ foot-pounds, so that the
efficiency of an engine working on Dowson gas must be more than that of an engine working on coal gas in order
that the result stated by Messrs. Crossley may be reached We need, we think, hardly point out that a satisfactory power for one-half as much fuel developing a horse engine, ought to have a great future before it. The question is, Can an engine be made to develope, say, 100 -hors power in this way? and can engines on he kisu, iose, wil answer these questions; but the problem ought at all events to be attacked as soon as possible.
the weakness of the vacuum brake.
A Noteworthy example of the weakness of the vacuum brake is supplied by a railway accident which took place at Brinning-
ton Junction on the Cheshire Lines Committee Railway on the 2 th of September. Colonel Rich's report sets forth the fact very fully. An excursion train, from Doncaster to Liverpool and Brinnington Junctions, and the leading portion of the train was twice run into by the portion that had broken loose. The excurwith a guard, five third-class carriages, a bogie, a composite, four third-class carriages, two third-class carriages with brakes-the guard in charge was riding in the leading brake coach of these two third-class carriages-a saloon, a first-class carriage, two
third-class carriages, a saloon, a third- class carriage, and a thirdclass brake coach with a guard. The vehicles were coupled
together in the order in which they are given. Three coache were detached from the rear of the train at Woodley and were
sent to Macclesfield. The train on leaving Woodley consisted of sent to Macclesfield. The train on leaving Woodley consisted
two engines and tenders, and nineteen coaches, with thre guards in three brake coaches. It was stopped at Bredbury
Junction as the signals were at danger, and after waiting there for about twenty minutes it proceeded on its journey. The Bredbury advance signal was at danger, and the train was slightly checked before reaching it, but the sigual was then lowered and the train went forward at a speed variously estion Junction, which is about a mile and a-quarter from Bredbury Junction. All the vehicles of the train were fitted with Smith's
vacuum brake, but the vacuum brake pipe on the leading engine vacuum brake, but the vacuum brake pipe on the leading engine
was not connected with the rest of the train, although the wrake was effective on its own engine. The engine-driver on other vehid engine had conards had screw brakes in the all the other vehicles, and the guaras had screw brakes in the conches immediately after passing Bredbury Junction advance signal, observed that the indicator on his vacuum gauge showed that the
brake was out of order. He looked back, but could not ascertain brake was out of order. He looked back, but could not ascertain the cause, and therefore he drew gently down towards Brinnington
Junction. As the train reached the first tunnel, which is about unction. As the train reached the first tunnel, which is about
1100 yards from the advance-signal, the servants in charge felt a shock. The guards looked out, but could not ascertain the cause
Both the Both the guards in the tail portion of the train which had broken
loose applied their brakes, as soon asthey recovered from the shock, but the tail portion of the train was not stopped before it ran into the leading portion, at a point about 1280 yards from the Bredbury advance signal, and while the train was between the two tumnels. A second sight colilision occurred when the leading portion were at danger. No vehicles left the rails, the permanent way was not damaged, and the only damage to the rolling stock was
that the drawbar, at the leading end of the twelth carriage别 of this carriage was broken. The line from Bredbury
Junction to Brinnington falls on an incline of 1 in 63 and 1 in 80 , with a short interval of nine chains in the
centre, which is 1 in 144 . The two collisions occurred on the gradient of 1 in 80 , and fourteen passengers were injured. The breaking away was caused by the failure of a draw bar, the
collision was due to the inefficiency of the brake. Colonel Rich says: " When the train parted the vacuum brake pipe was broken, and, consequently, the only brake power that remainec
on the train was the vacuum on the leading engine and the screw brakes on the tender of the second engine and in the guard's brake vehicles, which appear to have been used, under
he circumstances, in a proper manner. If the continuous brake had been of an automatic kind the accident would, probably, have been prevented, by the brake applying itself to the rear portion of the train as soon as the air pipe was broken." Why
Colonel Rich uses the word "probably," it is not easy to see the accident would have been certainly prevented had the train been fitted with the Westinghouse brake.

CCIDENTS AND OFFENCES

Ir appears to be probable that we shall have to institute watters proceed as they have done this week. To say nothing of minor events, on Tuesday night two explosions, apparently of dynamite, took place one, on the Metropolitan District Railway courred ne on the Metroet about 8 p.m., and the second a few minutes later between Charing-cross and Westminster. The particulars have been so fully given in the columns of the daily
press that we need not further refer to them here, no scientific press that we need not further refer to them here, no scientific evidence on the subject being yet available. there can be no
doubt that both explosions were the work of the miscreants who have done so much to render dynamite infamous, and for whose chastisement some new form of punishment adequate to thei
iniquities may be devised and applied with the best effects. Fo he moment we are tempted to regret that we do not live in the good old times of the rack and the stake. Penal servitude is not properly appreciated, because those who have not undergone
nil , we are told by prison authorities, to realise its horrors. fail, we are told by prison authorities, to realise its horrors.
railway disaster of a different kind occurred at Watford Wednesday evening. The 5.40 p.m. train from Euston dropped, a usual, three carriages at Watford station, the train itself passing
through. These carriages were attached to an engine just outshrough. These carriages were attached to an engine The signals were made for clear, and as exe carriages frem Liverpool, which
back through the station the express train from was running through Watford station at the rate of over fifty miles an hour, dashed into the carriages,
empty at the time, and completely smashed them. The engine attached to the carriages kept the rails, but the tender was partially torn away. The driver and storer, realising the danger,
jumped off and escaped with a few bruises, The engine of the express train left the rails and turned over on its side. The driver, named Langstaffe, an old servant of the company, was shockingly mutilated, and died shortly afterwards. The stoker,
whose name has not yet been stated, was also seriously injured, whose name has not yet been stated, was also seriously injured,
and died about an hour after removal into the town. Most of the carriages left the rails, the first two lying on the top of the engine The Clark-Webb emergency brake, pronounced not so very long
ago by Mr. Moon as almost perfect, has apparently failed again
then wanted, as it always does fall. The run into Watford is o see the three coaches in his way at some distance off, and a good brake would have enabled him either to pull up in time, or at all which we hagoto h o 1 the Western Company's fine twin screw steamer Holyhead. This vessel has only been a few months on the line between Dublin modern type, and of was a corgsiderable and cattle boat of thensions. A nearly sister ship, the North Wall, has just been put on the same service. The Hoyhead ran, it is said, on Tuesday night, into the German ship Alhambra, twenty miles off Holyhead. The German ship sank
Imost immediately. Seven of the crew were saved by the steamer's boats. The steamer afterwards sank. All the passeners and crew, except one sailor and a boy, were also saved by the Board of Trade inquiry has taken place, it would be improper to pronounce an opinion on the merits of this case; but it is at seems to have been useless.

Mons. Pierre Giffard publishes in the Paris Figaro of Oct. 25th, a plan of new Atlantic cable projected by a Dutch engiGovernment the exciusive right for twenty years of landing ous directions on the American side. The author says that the the length of submarine cables the less they cost to esta blish, and adds that the rapidity of signalling through short caused by electrical induction being greatly diminished. Mr Braam says that the present rate of transmission by Atlantic cables is eight or ten words per minute in their practical working, shorter lengths. The line, with its two branches, he says, wil not cost more than 35 millions of francs, and he has estiamount to but 10 million francs, so that less capital will be to lay it than has been expended on existing cables, and the charge to the public for each word can be reduced to half ably ro begin with. As the other companies cannot profit line is expected. The southern branch from the Azores i planned to touch at the Bermudas, Cuba, and Panama
This line, he says, will be of special value to Spain, giving it direct communication with Havana, instead of the present round about communication via North America. The English naval
station in the Bermudas being reached by the branch line, the project, he thinks, should find favour in England. The ques Azores an be laid and repaired but he has encouraging inform tion on this point. By the new direct American cable, unde he auspices of Mr. Bennett, now also proposed, it is contemplated reduce the price of messages to but one shilling per word of depth of water, gentle inclines, and of good landing places at
the Azores. In, one of the earliest books printed under the uspices of the first Atlantic Telegraph Company, diagrams ar iven showing a kind of railway embankment between Irelan nas then in the realms hypothesis; whilst another diagram i the book shows frightful inclines in the way of any bold projecto advantages of a half-way station to America cang route denied by electricians, and the chief question is whether the gradients at articular of the ocean on the route proposed are so great at Independent surveys and official Government charts are the The depths given in book of the Atlantic Telegraph Company are doubtlessly accurate, but the gradients nevertheless may on map of the sea-bed but a few inches long

We have previously referred in The Evainerer to the question f the water supply of the Tees.side district. The halt-yearly
report of the Water Board just issued water have been pumped from the Tees by the Board, the weight of coals used for the work being 3044 tons 11 cwt ,., on
about $4 \cdot 194 \mathrm{lb}$ of coal for every thousand gallons pumped. The total revenue of the Board has been $£ 56,546$ for the financial yea ending in August, and the expenditure $£ 12,878$, so that there
has been a handsome surplus to pay the interest on the borrowed mas moey. For the half year the cost of the pumping has been for coals $\cdot 201 \mathrm{~d}$. per thousand gallons; the maintenance of works haa
cost $\cdot 185 \mathrm{~d}$; and the total cost, rates, \&c., was 972 d . per thousand gallons, an increase over the corresponding half of the past year., It is worthy of remark that whilst years the income of the Boars has increased It, profitable undertaking, but it is evident there will be a nee fhe river Tees $2,000,000$ gallons more than it has legal power for and thus it must its ald with other extensions of mains before it, that increase early is imperative, and a prolonged drought or a sharp frost would call forth such a demand that it so that there is a pressing need for additional supplies to be procured. The difficulty of the Board is that it is unable to
carry out the works for which it has power, and one of the greatest problems of the North is how the demand for water on the Tees is to be met. The present supply is already taxed beyond the legal limit; none of the neighouring companies can
help the district to any great extent, and if the demand for water help the district to as
grows as it has of late, there will be a check to the prosperity of
the district till the works are undertaken and carried out that will meet the growing demand.
the fisheries exhibition.
The Fisheries Exhibition was closed without much ceremony on Wednesday by the Prince of Wales. The whole number of visitors on that day was 12, 12,704 . The total number from the opening of understood that the above numbers do not include the opening day, present. The Exhibition has been an unqualified success. It pay. It must that an attendance of one milion would make pay. The extra $, 700,000$ are all clear profit. The expenses kept
from te
pace with the attendance, or rather preceded it. It would be
difficult to account for the popularity of the Exhibition if we
did not bear in mind the skill with which it was worked. did not bear in mind the skill with which it was worked.
Arrangements were made, for example, with a large advertising Arrangements were made, for example, with a large advertising
contractor, under which he was paid not for the work he did but for the number of people who paid at the turnstiles, so much per head; need we say what was the result? Again, special
arrangements were made with railway companies, and thousands apon thousands of hand bills were circulated, with the results
uponith
familiar, during the last couple of months, to those Londoners familiar, during the last couple of months, to those Londoners
who went to the Exhibition. Nor is it to be denied that every effort was made to make the Exhibition enjoyable. The clerk of the weather smiled on the undertaking, and it was not dificult to fancy oneseif in Paris or up and thed by a first-rate English military band. Minus the band, the electric light, the efforts of Mr. Willing, the patronage of boyaity, would have been a failure instead of a well-deserved suc cess, reflecting infinite credit on all concerned, and demonstra-
ting that the British public can fully appreciate good things provided for their entertainment.

the french telegraphic service.

On the 25th October M. Cochery, French Minister of Posts
and Telegraphs, attended before the Budget Conmission of the and Telegraphs, attended before the Budget Commission of the now in use in the French telegraphic service. He produced maps of the completed underground lines and those yet to be
finished, and he laid emphasis on the utility of these wires because of their greater freedom from interruption than those suspended in air. A lively discussion followed about the com-
pletion of the plans, because subterranean lines cost from 4000 . pletion of the plans, because subterranean lines cost from 4000 f .
to $12,000 \mathrm{f}$. per kilometre, whereas aerial lines cost but 300 f . He was accompanied by General Saget, inspector of military tele-
graphs and president of the mixed commission on subterranen graphs and president of the mixed commission on subterranean
lines. It was argued before the financial commissioners that the military value of underground lines justified the extra expenditure, and M. Cochery, in justifying the credit of three million
francs demanded for the Budget of 1884, promised to go on with the work planned, but not to make arrangements for any-
thing further. On this understanding the eredit of three thing further. On this understanding the credit of three
million francs was voted. The commissioners next considered million francs was voted. The commissioners next considered penses, in the form of salaries, connected with the postal and
telegraphic services of Algeria. M. Letellier pointed out that telegraphic services of Algeria. M. Letelier pointed out to the guarantees of interest on the expenses of the construction of to twelve millions of francs. The consideration of these Algerian expenses was adjourned.

LITERATURE.

The Concepts and Theories of Modern Physics. By J. B. Stallo. London : Kegan Paul, Trench, and Co. 1882

[Concludina Noticr.

We have dealt at some length with Dr. Stallo's attack on the atomic theory. We would gladly follow him were it expedient through the large portion of his book which
deals with metaphysical speculations. To dothis, however, in anything like a satisfactory way, would take up more space than we feel justified in devoting to a subject which is,
perhaps, a little beyond the purview of this journal. We perhaps, a little beyond the purview of this journal. We
must content ourselves, therefore, with the statement that in certain respects we are completely at variance from Dr.
Stallo. While it is impossible to dispute the skill with Stallo. While it is impossible to dispute the skill with
which he destroys, it is equally impossible to avoid the conclusion that he cannot construct. When he is driven to frame a theory to support his own views, the result of his labours is not quite satisfactory. Thus, for example, he lays
it down as metaphysical truth that the human mind it down as metaphysical truth that the human mind
is quite incapable of forming a concept which is not based on the differentiation of the things concerned -that is to say, we know nothing by or of itself;
we only know it by its differences from other things. For example, light is only cognisable by the difference which we perceive to exist between it and sound, colour, bread
and butter, coals, horses, and so on. At first sight this proposition seems to be manifestly untrue. Now we at first it seems to be. For example, it is impossible to recognise the existence of motion unless we have bodies at rest with which to compare that which moves. We are moving through space with an angular velocity of about 1000 miles per hour ; and we only know that we are so moving because, for one thing, the sun, relatively at rest,
rises and sets. If two stars alone occupied a given area of rises and sets. If two stars alone occupied a given area on
the heavens, and it was noticed that the distance between them augmented or diminished, it would be impossible to say which moved and which remained at rest, unless a third star was available with which to compare the two ; moved an entirely erroneous impression might be conveyed was held that the sun went round the earth, not the earth revolved on its axis, Such a line of reasoning as this implicitly supports Dr. Stallo's views; but it is, we
think, improper to deduce too much from it, and we think, improper to deduce too much from it, and we
hold that the mind is capable of recognising peculiarities of individualisation which are entirely independent of comparison. We recognise a thing for itself, not for its
differences; but the point raised by Dr. Stallo is one of considerable interest. The deductions which he draws are not alarming.
The thesis maintained by Dr. Stallo throughout his book is that nothing is really known with any certainty con-
cerning physics, and it is impossible to deny that he has cerning physics, and it is impossible to deny that he has
made out a most powerful case. It must not for a moment made out a most powerful case. It must not for a moment
be supposed that he has any objection to urge against
all mathematical all mathematical deductions from experimental inquiries.
Thus, for example, the statement that the formula Thus, for example, the statement that the formula
$\frac{\mathrm{W} v^{2}}{2 g}=\mathrm{E}$, where W is the weight of a body moving at the velocity v and $2 g=64 \cdot 2$, is quite accurate. In like manner, when we say that light diminishes in intensity as the square of the distance between the light-giving
body and the point illuminated, nothing is taught which is not sound science. When, however, a college professor
tells his classes that the pressure of a gas is due to the motion of perfectiy elastic atoms moving at tremendous velocities other, he teaches, according to Dr. Stallo, not only what is presumably uncertain, but what is demonstrably false and it is highly improbable that any ordinary lecturer wil is simply a convenient working hypothesis, probably far removed from the truth. It is still less likely that he will go on to say that the inconsistencies and defects of the theory are so great, that the most able men who ludicrous assumptions in order to shore it up, and keep the miserable structure of assumptions from toppling about our heads. "There is," says Dr. Stallo, "another very extraordinary, and in the light of all the teachings of ing the movements of the alleged solid constituent particles. I allude to the absolute discontinuity between the violent mutual action attributed to these particles during the few instants of time before and atter their
collisions and their total freedom from mutual action during the comparatively long periods of their rectilinear motion along 'free paths,' and this leads me to say a few words in regard to certain subsidiary assumptions made ies exhibited by thers in order to account for the anoma in their deviations from Bayle's and Charles ' Low. Max well assumes that the gas molecules are neither strictly spherical nor absolutely elastic, and that their centres repe each other with a force inversely proportional to the fifth power of their distance," while stefan endeavoured to adjust the hypothesis to the phenomena in question by postulating that the molecules are absolutely elastic and perfect spheres, whose diameters are inversely proportional to the fourt roots of the absolute temperatures of the gas. A theory
which requires to be thus supported is better dismissed We quite agree with Dr. Stallo that both assumptions are non-congruence with the facts - pure peace offerings for 1 t non-congruence with the facts-pure inventions to satisfy another place he says:- "The delusion that the elasticity of a solid atom is in less need of explanation than that of a bulky gaseous body is closely related to the conceit that may chasm between the world of matter and that of min matter narrowed, if not bridged, by a rarefaction that Dr. Stallo hits hard, but it was quite time that some hard knocks were bestowed.
The chapter on transcendental geometry will open a new, and we fear a very foolish, page in the book of so-
called science to Dr. Stallo's readers. some length the views held by mathematicians concerning the nature of space, which has come to be regarded by laces, and in which may exist many dimensions tions into the in fluence of a fourth dimension, \&c., were made the subject of a mathematical game with impossible quantities, no harm was done; but what are we to think when we ind grave and sober mathematicians actually asking astronomers to ransack the heavens in search of a place where space is
curved? "The astronomer," says Dr. Stallo, "would at once meet every suggestion of the sort with the objection that an inherent curvature of space pre-supposes differences between its several parts - heterogeneity in its internal constitution-and that the hypothesis suggested therefore involved nothing less than the attribution to space of the
very very properties by the
guishable from matter.,
The fifteenth chapter of this book is devoted to the slaughter of certain cosmological speculations. Dr. Stallo pursues his usual plan. He first sets forth the authoritativ statement of some one who is regarded as a trustworthy exponent of scientific truths; and he then proceeds to show
how this statement has been supported or disputed by how this statement has been supported or disputed by others, the result usualy being disastrous for the reputa
tion of the original statement. Here, for example, he takes for one thing Sir William Thomson's celebrated paper "On a Universal Tendency in Nature to the Dissi pation of Mechanical Energy." We fancy that there no tolerably advanced student in any of our engineering Thomson's well-known theory of the dissipation of energy and no doubt students, and to a considerable exten teachers, have accepted his dictum as true, and have no stupendous difficulties. Professor Rankine early pointed out that if there be a limit to the space occupied by what is known as the universe, there must also b the other hand, there is no such limitation, then in proces of time there must be an end of the universe ; the proand of nature eventuating in a thorough homogeneity, which complete absence of all the attributes and difference dealing constitute the attestation of its existence. Again, is entirely the nebular theory, Dr: Stalo shownets, an that the origin of these motions has not as yet bee accounted for by any satisfactory hypothesis,
The sixteenth is the last chapter of the book. It is devoted principally to a discussion of the mechanico-
chemical theory, on which the author is much less severe than he is on others ; and so the book closes.
We may be asked, What good can such a book do ? and we reply much. In the present day there is a growing
tendency to exalt physical science to a position to which it is in no sense entitled. The progress of discovery in chemistry and electricity has been so rapid and extensive that the unlettered or half-taught world has been inclined to pronounce men of science gods, and to regard all that that all the scientific teaching of the present day-which must not be confounded with the scientific work-is due to a very small number of men. Probably not more tha twenty have had weight enough to make a mark or
influence the current of thought. Among these may be Maxwell, Clausius, and Thompson, nearly in the order of their periods of influence. Around these luminaries have circulated a host of minor planets. Each great man has views, and supporting his theories with all their own powers of invention. During the last fifty years the world has taken the dicta of a few men as enunciations of absolute truth, in this respect usually going a great dea further than the authors of the theories in question; and it is no uncommon thing to find what is put forward as thing of doubt and hesitation by a master mind, is cooll set forth on the lecture platform as absolute truth. Mr Stallo has done good service by coming forward and lifttime t know nothing at all with certainty of the ultimate con stitution of matter. It is well that every young chemist should know that the atomic theory has little or no basis in fact. The engineer will be none the wiser reconciong that the kinetic theory of gases results of experim 0 a certain limited extent wh Nor will the and so made to carry itsef well in text bo that the theory rising astronomer be injured by nacory Th good which Dr Stall of may mest will be great Much will be ained if in books, take care to explain that the theories they enunciat are not necessarily truths, but are to be used as a ca penter might use a rule. The rule does not preten to be an accurate measure of length ; but it is good enough for its purpose. In the same way the atomic theory, for exampessential to the chemist; but to that thought of a man who taught that a carpenter's rule was perfectly accurate measure of length? He who asserts that it is quite true that molecules of air bombard the inside of a bladder and so swell it up when we hold it before the fire, is not more accurate. It is conceivable that one carpenter's rule out of hundreds might chance to be neither too long nor too short; but it is not conceivable that the physical theory of the atom and the chemical theory of the atom can both be true.
The fact is that concerning what goes on around us in nature we know next to nothing, and are so constitute that it is unlikely we ever shall know. We cannot tel why an apple falls off a tree, in spite of the story abou Newton. Nor can we tell why the sun is hot, or why magnet produces electricity ; how mechanical effect his heamed into heat, or how a man can lift his heyon all things to be modest; but modesty is the last thing practised now-a-days by the man of science, falsely so called in many cases. There are and there have bee glorious exceptions. If Dr. Stallo augments the number y even one he will have done good service. We have Tho Por Concepts a most task, and will be disposed to agree with us in the concept we have formed of it.

BOOKS RECEIVED.

Professional Papers of the Corps of Engineers. Edited by Major
R. H. Vetch, R.E. Royal EEngineer Institute Occasional Papers. London: Ed. Stanford. 1883 .
Graphic and A nalytic Statica
Graphic and Analytic Statics in Theory and Comparison: their Applications to the Treatment of Stresses in Roofs, Girders, \&ce.
By R. Hudson Graham, C.E. London : Lockwood and Co. The Bratish Navy: its Strength, Resources, and Administration.
By Sir Thomas Brassey, K.O.B., M.P. Vol. 5. Part V. British Seamen. London: Longmans and Co. 1883
cations and Details of Recent American and Euroopan and Specie Reprinted from the Railroad Gazette. London: E. and F. N. $\underset{\substack{\text { Spon. } \\ \text { Eltricity }}}{ }$
Electricity, and its Uses. By J. Munro. London: Religious
Trath Society. 1883. Proceedings of the United
Annapolis: The Institute. 1883.
Zeitschrit des Electro-technischen Vereines in Wien. Rediger
von Josef Kæreis. Heft VI. Wien 1883 R. Spies.
$\bar{\square}$
TENDERS.
WROUGHT IRON TANK.
List of tenders for wrought iron tank for Clatterbridge Work
house, Birkenhead. Mr. A. Culshaw, architect, Liverpool.

Lindsay and Co., London Walker, Pendleton, and Co., Liverpool Tangye Brothers, Manchester Robert Daglish and Co., St. Helens Caleb Smith and Co, Liverpool.. H. Gielgud, London J. Shewell and Co., Darlington .. Francis B. Welch and Co., Manchester

The Westinghouse Brake.--On October 24th the 5.13 p.m Midand train from Leeds to Bradford was stopped by signal it Whitehall Junction, outside Leeds station. As the lin
is curved, and on the inner side of the ourve a goods
train was standing, the signalman forgot that the Midland train
expr
train
the the til y a few yards bebind the Midland train when hes saw of train when the buffers of the North-Eastern just touched those
of the Midand rear van, But for the prompt action of the
Westinghouse brake there would have been a smart collision

N
N
t
t
t
t

parties to drive the gas up the downeast shaft resulted on Wednes-
day in the explosions mentioned, since the gas was driven to that part of the explosions mention ined, since the gas was dire. The damage to property was consire out.

NOTES FROM LANCASHIRE.

Manchester:-The condition of the iron trade in this distric certainly does not improve, nor. does it get very much worse. Pig
iron makers manage to keep pretty well supplied with work, and as there is really no margin on the present low basis of prices for the small orders they are abie to secure at current rates rather than accept offers for forward sales at lower prices. Viewed from
this point the market may be said to be steady, for although the
actual business doing at full current rates is only small, and buyers still hold back any orders of weight for lower prices, it is
only in very exceptional cases that they are able to find makers who will meet them with any concessions. Where there is any underselling it is chisfly in outside brands, such as scotch and cases at co orders apper makers' prices. In the finished iron coming in, but the leading makerss are still kept busy.
Tuesday added another to the long succession narkets at Manchester. The actual business report was a arain ery iron makers were very firm great pressure to sell. For Lancashire quoted for both forge and foundry qualities delivered equal to Manchester. It is only on a few odd sales that makers are getting
this figure; offers at about t s . less have been pending for the last where buyers have come within 6 d . of the list price local makers have deolined. For the present they are pretty well off for orders and the opinion is evidently entertained that prices will improve.
For Lincolnshire iron delivered here the average price is about For . 10 d . to 45s. 6 d. less $2 \frac{1}{2}$ for forge and foundry qualities
44s.
respectively, and occasional orders sufficient to keep makers going are obtained on the basis of these figures. For Middlesbrough iron prices are irregular; choice brands cannot be bought from makers
under about 4 s . 4d. net cash delivered equal to Manchester, but iron out of store
under this figure.
nderer this figure.
Hematites continue bad to sell, and it is difficult to get at actual Hematites continue bad to sell, and it is difficult to get at actual
prices. Recently a tolerably large quantity was bought in this prices. Recently a tolerably large quantity was bought in this
district at an extremely low figure very far below the basis of
©s. to 58 s . 6 d ., less 2 p per cent., which makers are asking for good foundry brands delilvered equal to Manchester. is beginning to make itself felt, as it is evident that home requirements are not sufficient to keep up the recent activity. There is not as yet any actual scarcity of work, but makers are not getting
new orders on their books at the same rate as they are clearing them off, and this is tending towards a slightly easier tone in the market. Bars are still quoted at $£ 6$ 2s. 6 d . to $£ 6$ 5s. per ton,
delivered into the Manchester distriet; but hoops are getting back to the minimum rates, and can be bought at $£ 610 \mathrm{~s}$. to $£ 6$ 12s. 1 dd ., and the same may be said of sheets, which scarcely average more
than $£ 8$ for good ordinary qualities, whilst sales have been made as low as $£ 7$ giss. per ton.
With regard to the en
Whh regard to the engineering trades there is not much to add
to what I reported last week. In some special branches there is
still plenty of activity, but in the still plenty of activity, but in the general class of work trade con-
tinues to quieten down. The leading cotton machinists in the Oldham district, such as Messrs. Platt Bros. and Co., Asa Lees and Co., are very buss, and working overtime to keep up with
their orders. Work, however, has to be taken at prices which do not leave any great margin of profit, and any real activity in the
cotton machine trade seems to be almost entirely cotton machine trade seems to be almost entirely confined to the
town of Oldham. Reports from nearly all the other districts are machinery being to the condition of trade, apart from the new machinery being put down in Oldaham, which is, of course, supplied
locally. The home demand is very, quiet, and it is chiefly with
foreign work that machinists are kept going. foreign work that machinists are kept going.
The condition of the coal trade shows no ment. for manufacturing purposes meet with only a slow sale. Supplies continue ample for all requirements, and except that one large
Manchester firm has advanced furnace coal, nuts, burgy, and slack 5 d . per ton, there has been no further announced upward at the pit mouth prices remain about as under: :-Best coal, 9 s . 6 d .

per ton.
Notwit
otwithstanding the unsatisfactory state of trade, the men seem determined to persist in their agitation for an advance of wages,
and at the Manchester Conference this week it was decided to send in notices.
Barronv.
Barrove. - The hematite pig iron market is still in a quiet posi-
tion, and no advanoement has taken place in the business doing for tion, and no advancement haar of but few orders, either on home or
some weeks past. I can hear or
colonial colonial account, coming to hand, and makers shave feev, if any, heavy contracts on the books. The production of metal has been very
large for some time past, and the deliveries having been very small, the stocks have now become of some magnitude. The prices
obtained are so small that makers find it impossible to realise any profits on the transactions. It is becoming more and more evident
that the output of the furnaces will have to be reduced, and several furnaces will have to be blown out till there is a decided change in the state of the market. If this is not done it will be necessary for
the makers to accept orders at lower prices than are now ruling, to enable them to lower their stocks. This they have refused to do up to the present, many of them preferring to stock the metal in the hopes of a anpeddy change. The pricess generally accented are
int No. 3 , 47 s . per ton, but a few orders
Steel makers are still well employed both in the merchant and
rail departments. Ordinary heary sections of rails are at present selling at from $\mathfrak{E} 410$ s. to $£ 5$ per ton, prompt delivery. The consumption of mild steel for spring and cutlery purposes is increasing
The minor branches of the iron and steel trades are fairly wei employed. Shipbuilders are quiet with few inquiries. Iron ore is
in fair demand at unchanged prices, quotations being from 9 s . to 11s. per ton at mines., Stocks are verations heavy all round the
district. Coal and coke are steady. Shipping quiet.

THE SHEFFIELD DISTRICT.

ThrRe is no change in the condition of affairs in the coal trade, and there is very little doubt that they will continue in the course they have indicated, by ordering notices to be served for an advance
of 15 per cent. They have been joined in this step by the miners
of Derbyshire. At a meeting at Chesterfield last Saturday at
of which 20,000 miners were represented, it was decided to take
similar decisive steps. The employers are determined to resist this gitation, believing that any advance in wages would have a mos detrimental effect, not only upon the coal trade of South York-
shire, but upon the iron and steel industries and general commerce of the country. An attempt is beeng made to have the dispute referred to arbitration, but both employers and employed do not
seem to regrd the proposition with favour. At the present time
the outlook is excessively gloomy.

The lighter trades of the town are at present well employed, completion. We hear of some good orders of saws, engineers home and foreign account. Shepe-shears are seated to be very
dull, and there is no improvement in files. In the heavy ranches, such as armour-plates, boiler-plates, steel castings, rail vay wheels, tramway wheels, and colliery gear generally, there is
considerable activity, particularly in the former departments. It questionable, however, if Sheftield will much longer retain her imPorree Chineseironclads, all armoured with compound plating; and the
trane
manacture has been for some time carried on in France. I I hear manufacture has been for some time carried on in France. 1 hear
it is not improbable that Russia may be soon found following in he example of these two great Powers. In that case the heavy he Russian Government will by-and-bye build not only their own Iosss, Chates Cammell and Co. intended to have invited their
Marehrlders to see the new works they have planted at Wo筑. The intention was that this should have been done early in Vainty of the weather, the directors on Wednesday resolved to postpone the visit until spring, when pleasure can be combine
with business. I Iuderstand that these works are now producing

At the uaarterly public ivory sales, which commenced in London n the 2 2th October, a total weight of 101 tons of this valuabl material was offered. The lot comprised 45 tons East India an
Zanzibar, 24 tons Egyptian, 2 tons Cape, 20 tons West Coast, with 6 tons mammoth, 2 tons waste, and 2 tons sea horse teeth, a against total of only 67 tons in October, 1882 . A good demand for all
descriptions of teeth, and ffull rices were realised. Billiard ball descriptions of teeth, and full prices were realised. rales.

THE NORTH OF ENGLAND.

Prom our mon Correspondent.)

THE Cleveland pig iron trade is in a depressed condition, and the prospect held at Middlesbrough on Tuesday last prices were fully 3d. per ton lower than a week previously, and it it is thought that
the minimum has not yet been reached. No. 3 g.m.b. for prompt
 willing to the 3s. do. per For forward deliserver orders for No. 3
little business was done. For
can be placed at 38s. No. 4 forge iron has been sold as low as

demand.
The stock of Clevel Middiesbrough decreased 865 tons during the past week, the quanThe exports have lallen off somewhat
Still the figures compare not unfavourably with those for last monthe fro the Tees, as against 94,367 tons in in September. In
shipped from October last year the quantity was 95,112 tons
Prices are much easier in the finished iron
only a small amount of business is being done. Manufacturers to take $£ 517 \mathrm{~s}$, 6 d , to $£ 6$ per ton for ship por building angles are offered at $£ 510 \mathrm{~s}$. to po plo 12s. 6d., and common bars at \&5 12s $6 d$. to £5 15s. per ton, free on trucks at works less
$2 \pm$ per cent. discount.
21 per cent. discount.
Puddlled bars are still about $£ 312 \mathrm{ss}$. 6 d . per ton net. The steel
rail trade continues dull and huyers are not tempted even by such prices as $£ 410 \mathrm{~s}$. to $£ 412 \mathrm{~s}$. 6 d . per ton.
Mr. Oharles WVod, of Midlesbrugh, has receivsd an order for a quantity of his patent wrought iron sleepers, rails, and rolling
stock for light railways, to be sent out to the West Indies. Messrs. Bolckow, Vaughan, and Co., Limited, paidoft about rio0 men
at the Eston Steel Works on Monday last. and one of the rail mills is now idle. This is owing to the depression in the steel rail trade,
and it is not unlikely that this firm will have to stop other mills shortly.
Messrs.
Messrs. Bell Bros. are about to blow-out two of their hematite blast furnaces at Low waiker, in order that they may
This will reduce the output by about 1000 tons per week.
The accountants' certificate under the Durham and Northumberland collieries sliding scale was issued last week, showing that the net average selling price of coal for the three months ending
September 30 th was 4 . 11. 48 d . per ton. The present rate of
wite
The Cleveland blast furnacemen have formulated the details of their proposed new sliding scale, which they submit for the mineowners acceptance. The men ask an advance of 5 per cent. on
standard rates, and are willing that the sliding scale should be standard rates, and are willing that the sidengifal
framed, so that 14 per cent. be given or taken uniformly for every
 Saturdays.
Most of the Sunderland engineer apprentices who came out on
strike last week have returned to work again. The Sunderland magistrates, before whom some were summoned, ordered them to return to work at once and pay the damages-10s, each-and costs.
The report that Messrs. Allhusen and Co,'s salt boring operations had been suspended turns out to be incorrect. Progress was interrupted for a few days by an accident, but all has now been put
right, and boring is proceeding as usual. A mass meeting of the ironworkers of Stockton, Middlesbrough,
and district, was held at Stockton on Monday last, to consider the question of a new sliding scale. The following resolution was unanimously carried: "Notice having been given by the Board
of Arbitration for the recosideration of the wages question, we
the ironworkers the ironworkers of the Stockton district, consider the present rate
of payment is unsatisfactory, and would recommend in its stead minimum rate of 8 s . per ton, imperial Weight, with a basis of
half-a-crown above shillings for pounds." This means an advance of 10 per cent. on present rates, and under no circumstances any
reduction below. Should the ironworkers obtain their wishes, which is unlikely, it would lead at once to widespread suspension of operations among the northern ironworks.
sent very clear and very oyers upon the thame subject are at pre
Shaw-Lefevre, Sir J. W. Pease, and other seay that Mr. Dale, Mr
Mr again pointed out that the increase of confidence which is the natural offspring of a sliding scale has a certain commercial value
They agree with this view, and are willing to peace and quiet. This they estimate at 5 per cent. They say, a
regards basis rates, that noth regards basis rates, that nothing above Dale's sale, or one shilling one moment entertained, and that if the scale is to come to an end they will require a reduction of at least 5 per cent. upon the rate hich otherwise employers views or those of the workmen will prevail but the the alterations brought about by the immediate future are more likely to be downwards than upwards.

NOTES FROM SCOTLLAND

SINCE last report a further decline has occurred in the pig iron

market. The shipments of pig iron were a good average, and the
home consumption appeared to be well maintained in the course of he week. There is scarcely any addition to stock in the warrant stores, and the impression is that makers cannot at present be diding to their holaings.
Business was done in the warrant market on Friday forenoon at
 corenoon transactions occurred at 44s. 103d. to 44s. 11d., and down

 took place at 44s. 81d. to 44s. 1012d. cash. To-day-Thursday-
transactions were effected from 44s. 8d. to 44s. 10d. cash, and 45s. one month
The valu
The values of makers' iron, which are lower, are subjoined:-Gart h7errie, f.o.b. at Glasgow, per ton, No. 1, 54s.; \%No. 3, 51s.; Coltness,
57. and 5s. 5 d. ; Langloan, 5ss. 6d. and 51 s . 6d.; Summerlee

 The imports of cleveland pig iron into Scotland are on a liberal scale, showing to date a comparative increase of 23,190 tons, th
whole arrivals since the first of the year being 218,679 tons. At present the ore trade from abroad is not quite so active; still, there are good arrivals of iron ore at Glasgow from catioa.
In the malleable iron department the main feature of interest his week is the action of the workmen with reference to the that the puddlers, millmen, \&c., were dissatisfied with the reduction made in their pay, following upon a curtailment of wages in
the North of England. The cause of this dissatisfaction is that the agreement, whereby the wage is regualat by those across the at a time when the works are fully employed, and but for the English award there might have been no talk of reducing pay here. justified in the action they have adopted., Large numbers of the shire on Monday, and they held a mass meeting at Coatbridge on the afternoon of that day, when it was resolved that representatives of both parties be asked to confer on the subject.
The coal trade in most district
The coal trade in most districts continues fairly active, and condiderable interest is felt in the Week's shipments have been good; 5841 tons were shipped at ayr, and fair cargoes were despatched from other
The sale and other coalmasters of Lanarkshire give an advance 6d. a day to the colliers in their employment, the increase
dating from the 1st inst. Unless the condition of the iron markett should improve it is not believed that the advance will long be maintained. The miners, however, are likely to continue the
agitation, with the object of rendering the increase general agitation, with the ob
throughout the country.

WALES AND ADJOINING CÕUNTIES.

 (From our ovo Correspondent.)IT is not to be wondered at that strenuous efforts are being made to secure all untaken coal property of the best kind. Sir George
Elliott is well represented in inquiries as to deep measures in the for disposal. for disposal.
The Ocean
the Garw Valley, Comp Company has secured the Ffald Colliery in the Garw valley, and it is a moot point in the colliery world
whether the closer proximity to the Ogwr may not tend to further dock schemes. The Barry promoters are understood not to be pledged to Barry, but, for want of somet
resolutely to go to work, and, if possible, win.
Two good dredgers have been bought from the Cork Harbour Commissioners by Mr. W. T. Lewis, for the use of the Bute Dooks, and will soon clear. a wide channel. I see, further, ,hat it is
intended to go to Parliament next session for a supply of water to intended to go to Parliament
the docks from a new source.
Mr. Nelson is doing good work at the new docks, Cardiff, and in
Mr order to push on the work, has brought the electric light into
requisition.
exporte that notwithstanding storms and untoward winds, the
expoll the ports are well sustained, prices, too, are firm for exports at all the ports are well sustained, prices, too, are firm foi
best coal, but in some cases a little slackness has prevailed principally in districts supplying coall for the ironworks, such as the much, especially as the deep sinking is not attended with the best results. Bedlinog and the Treharris. Colliery are amongst the least
successful ventures of recent years. It is estimated that at the successful ventures of recent years. It is estimated that at the
latter an output of 2000 tons a day would only yield a reasonable leter an now the ountput traery exyeeds 600 tons. The coal is, how-
rever, there in abundance, and the difficulty would only seem to be An morary and mechanical.
An indication of colliery prosperity is to be seen in the spread of
telephonic arrangements. A trunk wire between Cardiff and Newport, the first of the kind in this country, has long been in active use. It is now increased to three. This year a new one was
started up the Monmouthshire valleys, and this week, one of forty-seven miles in length connecting Cardiff and Swansea. This
will give in length eighty-two miles, the longest yet formed. will give in length eighty-two miles, the longest yet formed. when it was decided to support the claimants of the Gelli explo sion inquiry. This means a fight in the law courts, which will accordingly take place. It will be remembered that the jury found defective system of ventilation as the chief cause of the explosion a conflict, would seem to be the wiser course.
The colliery enginemen have now started a protective society and this week met in private to arrange a code of rules.
I cannot as yet report though there are not wanting some promising indications. It is
mown that Messrs, Bolckow, Vaughan, and Co. have reduced make at their rail mills, finding that they cannot compete with the Welsh makers as to price, and it is likely that some business may now b done by our ironmasters after the relief of the last reduction.
Wagesin the iron trade are regarded asfixed now for onths. They are sufficiently low to meet present quotations, and I do not despair of seeing something done. It is notorious that rails are wanted both for
only difficulty is financial
At Swansea general industries are in a favourable state, and the
only complaint is that the iron trade shows such little buoyancy The tin-plate on foot for a banquet to Dr. Siemens. week. Makers, however, are well placed for orders, and prices I am told an interesting anecdote of the sagacious contractor of
the Severn tunnel. Previous to beginning operations Mr. Walker earefully sought for evidence of highest known tides, and findin that one a hundred years ago was up to a certain point, made his openings accordingly, and so arranged his defences that when the
ate unusually high tide occurred he was "a few yards to the ood," But for this-and many thought him too fearful-the

THE PATENT JOURNAL.

 Condensed from the Journal of the Commissioners of **: It has come to our notice trat some applicants of the

Applications © Tor Letters Patent.

 printed in italics.
$23 r d$ october, 1883
5024. Printing Telegrapas, H. J. Allison.-(S. D.

 Drew. London
5040. DENTAL PLAT

 5018. Blanks for Horsmshoe NAILs, 2 ,

 London.
5052. Mrichanical Lamps, H. H. Allison.-(a. Hasel.

 eekham, Canonbury

 Giiford, lleveland $\begin{aligned} & \text { U.8.). } \\ & \text { GErTill Coall , W. F. Hall and W. Low, Durham, }\end{aligned}$ Presprccroarapphs,
itter, Germany

 Muchals.
Soft Trent Porcelain, do , E. P. Evans and S.
Ranford, Worcester. RRanford, Worcester.
OT5. VALVE GEAR for Steam Esgines, A. Paul, Dum-

 26th october, 1883.

 York.).
soins ikavino up Slips, T. Summers and A. J. Day,
Southampton.
 ${ }^{\text {Soprusels. AsH-PAss, wc., G. Asher, Balsall Heath. }}$

27 th October, 1883.
K MAPSAOKE,
\&o.,
${ }^{5098}$, Supportisg Knapsacess, ©c., J. C. Mewburn.
 Francee.)
sion
ham

5106. Reservorr Pentolders, T. A. Hearson, Black-
hoath
5107. Peve, \&c., CAses, S. Dunkelbbuhler, Bavaria.

 29th october, 1883

 Chippenham. Susprsprrs, J. B. Fournier and J. B

 Francisco, U. .8
5125. ExTraction of Metals from Oars, A. P. Price, 5126. Clonalipytiva Berb, H. H. Lake- - (Drs. H. Kun-

Inventions Protected for Six Months o
Deposit of Complete specifications.

 Glaser, Berlin.-A communication from E. Rumme
lin, Erstein, Germany. $-266 L^{\prime}$ October, 1883.

Patents on which the Stamp $\begin{aligned} & \text { has been paid. }\end{aligned}$ ${ }_{2324 \text {. Fluypino Leather Skins, S. Haley, Bramley.- }}^{\text {23tober } 1880 \text {. }}$

 J. Weir, Glasgow. 27 Tht october, 1880. Craven, Bradford.- 28 th October, 1880.
4348. Excoubs
B.
 don. - 25th october, 1880.
 Jackson and E. R. Austin, Manchester.- 28 sth October,
1880.
404. Sewwing MAchinss, G. Browning and S. Mort,

 Octooer, 18800
4365. Domesio Batrs, W. T. Sugs, London.- 26 th October, 1880.
403. MAsHING Maxr, G. G. Cave, Dowlais - 28 th octo

 465. Avoromers, 18. . Baxter, London-11th November, 4362.
ber, 1880.
Orato Diagrrs,
J. Wallace, Glasgow. -26 bth octo409., Sorekess, T. Davids and C. Weiss, Hanover.-
28th october, 1880 .

Patents on which the stamp Duty of $\& 100$

 ber, 1876 .
4170. . EBGR R
4311. RAIITW Octore, 1876.

Notices of $\begin{gathered}\text { Intention } \\ \text { Applications. }\end{gathered}$ Proceed with (Last day for flung opposition, 16th November, 1888.)

 field $-212 t$ June, 1883.
3087. Meoh inical Rkiorts, J. Lyle, London. -21 st
 3098. OU Ju Burvers, J. C. Morrison and R. Smith, Lon

 3147. Supplyivg Charass, R. Morris, Blackheath. 3164. Manto Pater, A. O. A. Feret, C. L. L. . V. Ladame,
and A. H. Feret, Paris. -26 th June, 1883.

 Maxim, London.-26th June, 1883
3197. FIREARMs, W. R. Lake, London.-A communi

 20th August, 1883.

 (Last day for fling opposition, 20th November, 1888.) 3188. VELocipgdes, W. Wright, Droylsden.-25th Junc | 3143. Regulativa Prassures. of Gas, H. Devine, Man. |
| :--- |
| chester. $25 t h J u n e$ |
| 1883 . |

 June, 1883 .
3157. M MKING Tiles, ce., T. H. Rees, London. $-26 t$,

 dion-27th June, 1883. tion from La Sooiete Anonyme do Machunes
Bougtes et Chandelles systemo Royau. -27 th June,
 3203. LLaADisi © ©TEAMERS, G. Taylor, Penarth. -27 th

 3210. PRoprLLINo Shirs, J. stowart, London.-28t

 June, $18,3.3$.
$\begin{aligned} & 3223 . \mathrm{Hooks}\end{aligned}$
 Reher.-30th June, 1883. H. Whitehead, Leeds.-30ti
324s. ComBisa WooL, J. H.

 3as3. TrEATIING Liend. P. M. Justice, London, $-\mathbf{A}$ com

4253. STartixg Verioles, E. E. Cook, Brighton.-4th
September, 1883.
 4312. Reked Oraans, J. B. Hamilton, London.- 7 th
 4554. SAFETY CA TCH for Bronches, we., D. MacGregor
Perth. -24 th September
1883 4563 ARM A TUNESS, H. J. Had

 don. $28 t h$ September, 1883. . s. Hill, Ciifton. -28%

 from G. M. Nowhail. -3 A. R. Reed, sunderland. $-6^{\prime / h}$

 ${ }_{-24 / \mathrm{h} ~ o c t o b e r, 1883 .}^{\text {Bran }}$

(List of Letters Patent which pasaes dhe Great Seal on the

 1869. Permanent Way, G. Wilson, London. $-12 t h$

 2228. Canrridee Poachise, T. H. Kinvig, Castletown. 2229. Reprinviso
 2278. Courtinsos for Tousks, w. R. Lake, London. -4 th
 Liverpool- 5 th May, 1883.
217. EmbBonkry M Mohives, A. w. L. Reddie,
 2345. Revpastive Fire-Arms, C. D. Abel, London. $-8 / h$ 2349. TRANs.ropmisg Fats into Fatty Acids, \&c., A.
Marix, Paris. $-9 t h$ May, 1883 .

 1858. ${ }^{\text {2357. }}$ 1883. ${ }^{\text {2378. }}$ 83. Preventing Corrosion of Piprs, J. B. Hannay,

 M47. 1883 .

 2531. WAKkiso TrpR, F. Wirth, Frankfort-on-the-Main.
 shaw, Leods. -24th May, 1883. 2 . Fulham.-6th June, ${ }^{2968 .} 188$. Span Nerrs, tec., J. C. Bauer, London.- $14 t h$ June, 1883.
3018.
1883
Trevch-TRAPs, 3241. GAs-Berners, H. H. Lake, London. $-29 t h$ June,

 July. 1888.
3619. GLLAB8
1883 RE, A. A. G. Brookes, London. $-24 t h$ July,

 M. H. Dement, London. - $815 t$ Juy, 1883 .

 August, 1883.
3556. PRoporise Soda Crystals, C. D. Abel, London.

 (List of Letters Patent which pased dhe Great Seal on the
30 oth 0 october, 1883.) 2056. Workiva BRAKzs, J. Armstrong, New Swindon.

 2225. Whan VING F FBisicis, E. Crossloy and R. Cochrane, Halifax. -2nd May, 1883.
23s. Looms, . L. Leming and R. Wilkinison, Bradford.
-2 2nd May, 883. .
 May, 1888.
${ }^{2240 . \text { Sswisg Machinge, w. R. Lake, London. }-2 \text { nd }}$ May

 ${ }^{2326}$. P Pbrify May, 188 .

List of Speciflcations pubilished during the
weeet ending October
swingle-tree, wh
the other end.

 trolling apparatuer
nad the indicator.
1182. Brovcless, dec., J. H. Adams, Wandsworth.-5th bearings.
1188 . MA 1188. Miacive For Cotring Corks, J. Hix, London.

 for artanace or superheating and extracting the solidid
boilers
matters of the water prior, when possible or con matters of the water prior, when possiblo, or con
venient, to the same being supplied to the boiler.

 The invention essentrially consists in the combina-
tion with the stitching machin of a devico wheroby
the automaticall supplied wire is cut off and bent into the automaticaly stppp.
the shape of a fastener.
1171. Elecrrio Lamps or Liourtra Apparatus, H. H.
Lake, London. 6 th March, 188s.-(A communicatio
 Reeates ot the general arrangement of the magnots
and armatures in an arc lamp, and to the method of and armatures in an arc lamp, and to
connecting and suspending the lamp.

 This consists in making keens consists in making the eentre-board or sliding
kend work in and out of its well or casing with a per
pendicular or vertical motion
 This consists in apparatus forapplication to governors
of motors wherein a silining spindlow heel
onnects Governor with the cut-off or regulating apparatus, and
is turned in one direction or the other when the speed of the engine varies by means of vibrating pawls apting
upon reverse ratchet wheels or of continuoult $\begin{aligned} & \text { ren }\end{aligned}$
 whereby a screw forming part of the connection is
turned is a nut so as to lengthen or shorten the con 1190. Skondary or Srorage Batteries, T. Rovan,
not Relantes to constructing the containing vessel with suitable grooves, against which thin sheots of lead or
other sumable material are laid so as to form a series of
com

 This relates. to the
a groved spindle.

 Thith. l .ates. to the onstruction of driving and elutch
Techanism, principally applicabble to velo

 In a mane mhine in in which, both. the armature and field
magnets are stationary a polarised revolving inductor magnets are stationary a polarised revolving inductor
magneticaly ocnneoted to tis parangetion pindil
revolves in one or more pole pieces of the the field

 This relatesessen A aily to the rope gripping apparatus.

 electron-magnet. In a modifination the foed is oon
trolled by train of colow ork, the last wheel of which
engages with the rack of the unper carbon holder. The engages with the rack of the upere rarbon holder. The
lamp is adaptect oring thre or mor pairs of carbons
into

 mente in the manutacture oy casting the
white
cont contact with oxides or other matter having an a memitity
for carbon, if an excess of carbon is present; surfacing
 and finally by cone comerting and ooling the some ind in an
atmosphere of hydroarbon where all traces of oxygen
 This relates to improvements in the whole process
of brewing.
 The pump is constructed so that the plunger or
bucket when at the lower end of tis traverse shail close the esuction pipe, and thus prevent the escape of beer
through the barrel.
 This relates to the general
and to a lubricated packing.

2.2.
rhis relates principally to the construction of the
1211. TARoErs Fon Riple Practioe, F. Clarke, canter-
bury.- 6 th March, 1883 . $8 d$. ement of running targets.

The ring has in its upper peripheral edge or flange an

 The object iseceded mixing of hot and cold water (or
other liquid or liguids, such, for instance, as brine)
 quired tem
the latter.
214. Cupprng Machives, J. Range, Nottingham.-7th
March, 1883. This relates to. the general construction of the ma-
hine for lip -

 This relates to the employment of

This. relates to the use of a sealed cistern partly filled
 jither separately. To this cistern is conneeted a pipe,
ono end of which is attached to the oupper surface of a tationary outer shell or drum ; this drum is watertight and provided with an opening on its upper sur-
face, through which it may be filled with water to
to Sout one and a-half its depth or more or less; this apen is a collinder with buckets. round its periphery
duhich revolves in the water. This cylinder runs in
rin which revolves in the water. This cylinder runs in
bearing made in the endo of the hollow dum dand its
axis or shafte projectets at one end, and may be driven in xxis or shaft projects at
ny convenient manner.
1219. Laws Texnis Bats, R. C. Povell and F. Thomp-

 Theeded moulht. or or utensils aro mado with an outer
asing of metal and an isner shell or mould of refrac Cory material, with an annular space between the two
which space is filled with friable, porous, non-conducting materials.
1222. Applances for Impartiva Hzat to Water,
This consids in the introduction of an easily fusible metal or metalitio allo y y within a r recentacle or recep. any of them, and capable of circulating when in a meited state, so as to come in contact with the water
or other fuid to beaned o oveporade, whereby a
vot int保y intense heat may be conveyed to the intermeadate interposing medium and int anetual ocontat win wirt the
water to be evaporated or other fluid to be dealt with 1223. Dyersa Loosk Corron BLack, G. W. von Nawo-
rocki. Berlin- 7 th March, 1883 .- (4 communication

 Bovajeaurd, London-7th March, 1883. $6 d$.
This rolates to the general construction of the truss
 This rellates to the arrangement of the rolls so as
admit variable thicknesses of web between them.

 section be
water heat
each end.
and

 manner that the sped increases as they travel fron
the frrs pair of rollers towards the delivery yollers and the gills or fallers are arranged to be close together
at the end where the material enters the machine and
to seapate as
rollers.
reso.

March, 1883. - (Not proceeded oith.) 22 .
This relates. to an anpparatus for setting the teeth of
 This rolates to an ingtrument. in which reeds on
 tunes, harmonies, and so forth automatically by the
mere fact of working the bellows.
 Thith.) ${ }^{\text {The }}$. 2 . apparatus for propelling tram-cars by 1233. Manupacturg of Barbed Fescing Wire, W.
R. Lake, Londom. -7 th March, $1883 .-$ (A communicai
tion from 0 . P. Brigo, chicajo.) $6 d$.
his relates to the two-strand twisted or cable form This relates to the two-strand twisted or cable form
of fene wire provide with four-pointed wiro barb,
in which the barbs are secured to the table by the con In which the barbs are secured to the cable by the con-
formation of the parts joined.
or
 The object is to indurate the plaster by means of
dextrine 1235. Lathes sutable por Turviso Shafts, W.
Allan, Sunderland. - -th March, 1883.
8d. This rilates to providing two headstocks to carry
between them the shaft to be turned and a hollow
 rotate the shaft, the said ho
being itself
123 driven by gearing.

The object is the construction of a coupling for
metallic fonctin, by means whereof such fencing can be readily orected and removed, and a temporary
opening formed therein where required, and subse-
quently closed.

 have heretofore been drawn into the steam pasagaes
when the engine is running with the steam shut off. 1238 Thelepronio Apparatus, S. Thompson, Bristol. Relates to vorious details of cons
arrangement of the Reiss instruments.

 an air course.
1240. Elecrical Indoction Apparatus, E. Edvaards,

 primary current was obtained from a small dynamo
machine actuated by hand, the secondary regulated
 exciting induction machines of increasing magnitude,
the final current would be of an intensity so much the fina current would beo of an intonsits so muich
greater that the work it could do would be many times
 This. Filatoos, to the methe mod of composing the boillor of any desired number of separate elements, each con-
sisting of a distributor, a eocresponding evaporating
cupple couple, and a collector, ,o that each such olement tig
capahl on and

 THE LIKE IN RIvERE, ©e., IV. R. Lake, London. 7 Th
March, $1883-(4$ communication from H. B. HarThis relates ot to the employment of an apparatus
whereby jets of water are disharged from one or more or channel.
1243 . One part relates to the construction of the portion
 part relates
of hurdes.

 aponso are used, so constructed, grranged, and ope-
 subjected to any undue friction dur
through the consolidator or condenser

 Thrs. .E. Weiss, Berelian). (Not orroceded with.) $2 d$.

 Thiter within a cap.

 prossed air.
 Kensington. 8 Sth March, 1883.-(A communiation.
from J. P. Northey, Toronto.) This. relates to the construction of apparatus for
 This realese tothee geeneral. construction of the appa-

 125. BALE TiEs or Bands. Iron Hoor Fescisc,
de. A. Hale, Liverpool. $-8 t h$ March, 1883.
6d. The bale ties or bends, cie., are made, with punched
1253. Heatrd or Drying Rolurps or Cylinders, J.
 of the apparatus for that purpose.
1254. STzMM Geverators, do., H. Gerner, Neo York Thity.- - 1 dher March, 1s provided with two internal conical
 manner that the gaseous products of combustion
travel from the wide part towards the narrow part of 1255. Elizocrrio Lamps and Fittinas thererpor, J. G. Selates to an are are lamp, to auttomatically outting the Relates oo an arc lamp, to automaticaily cuthng the
amp out of cirouit when the earbons are consumed,
and to allow of extinguishing the lamp without interCoring with the other lamps of the circuit. Also to
dapting the existing gas fittings to electric light
 The mechanism comprises, First, a novel construction of gearing for actuating the excentrics or cranks
which raise and lower the shutte-boxes ; and Seoch rly, novela arrangememtes of lever apparatus or
Sevices operated by the jacquard or pattern mechaniem
 the lath as may be required.

 permid of driver.
and
 This reatesesto a mentho o of and apparatus for manu-
acturing fabrics of the kinds of velvets, so., which
 have their upper and under surfaces

${ }^{18883} \mathbf{P}$
This relates to the cumbination of the ordinary lev1-
 diftusion, conosisting in the use of a sman stream of
diquid, which is caused to displace very slowly and fin fin
horizontal layers a solution circulating through the horizontal layers a solution ci
substances to be operated upon.
1261
 The inventor clisims stopping the coffor short and
continuing the solid rib down the centre of the blade of the shovel.
1262. ADJusting Roluer axd other Axirs in their

This relltes to. the use of bearings whereby the shaft
or axle mounted therein is free to wield to an undue rosistance presented to the rotation of such axle or to the instrument mounted thereon, while at athe or the
time the axle is prevented from shifting in the time the axle is prevented from shifting in the oppo-
sitiod direction sumh uxle being free to oppand by heat
without the liability of becoming tocked in its bearwithou
ings.
ind
 pool.-9th March, 1883.- (Not troceededed zoith') Led.
This relates to self-closing umbrellas and parasols or
nshades 1264. AuTo
 supply of the use and compminatition in in the chating ther
A of the rigid diaphragm B, wheroin is an aperture

controlled by the valve D, which valve is actuated by
the flexible diaphragm

 March, 1883.-(Not proceeded woith.) 2 2d. The object is to combine the advantages of the high.
pressure system with the safety of the low-pressure system.

 This consists of a particular construction of axilla
rosts or crutches, which support tho patient under the armopits, withes, their lower ends resting upon the chair,
couch, or bed.
 This rol. $2 d$ es to rods pivotted together, so that the
stand may be lengthened or shortened.
 The chair is rocked by means of levers and cranks.
 Thisis relates to the use, in connection with telegraph instrumonts, of two or more sounding devices having
different ontes or tones to
orders by 1270 .

 ter.-9ht March, 1883. $6 d$.
This rolates partly to the construction of the pails. 1272. Cosstruccrion or Wrieks surrable por dise on
Common Roads, J. Burbridge and
T. Oakley,
 pedes, perambulators, \&c, 1273. Fastennves for Scarves and Ties, E. Hevith, This relates to a metalicic spring clip fastener.

 This relates to the construction of the connection at "plates placed out of line with one another, so as to "break joint," and parallel with tho orater, so so as to to
 1275. ELEETrRio Lasps, J. S. Kelso, Stamford, Conn., Relates to arranging two flaments in an incandescent 1278.

 This relates to the arrangement of the lens,
 The appparatch, 1883. 6 .d.
upon an endess band.
unded with a series of bucket

 which apparatus is is provided with a movable tray, upon
springs at a certain
period. and which is ratsed up by 1280. Apparatus Emploved in the Application or
Hoops to Wood Caske, de., T. C. Hooman, London,
 1281. Loonss, G. H. :Hodgson, Bradford. - 18 th Mareh, This relates partly to apparatus for raising and
lowering the drop boxes, and for locking the same in
 This consists partly in the combination with an updrains, of a hot-water circulating cistern.

 with coal, proferably aunthracito, in powdor or smanl
pie ces, ccompounded with on, chloride of sodium, lime
chalk, common soda,
body to give cohesion. 1283. Adorvsiable Spansers, C. Neil, Sheffild. -10 the This relates to the use of a solid worm or roller for 128 .
 Trom The United States Box Machine Company, Nero This relates to to impoeeded with.) 4 d. . struction of the
1288. Books
 This reletes. the thoo manufacture of books with. backs for advertising or other purposes, in which a series of
leaves at the beginning or end of the book, or both
bex begrinning and end, are arragne w with a oongrid orathe
strip of each leaf projecting beyond those in front of it, upon which strip the title or distinguishing or most
important point of the advertisement, table, or other
matter st important point of the ad devertisement,
matter set forth on said page is placed.
1287. Kaleridoscopro Tops, A. A. King, London.-10th This relates to the use in spinning tops or wheels of
one or more freely revolving cind one or more freely revolving oylinders, prisms, or
spheres, having various colours at their peripheries. 1288 GuN Carriags, de., W. R. Lake, London.This rolates Buckau, Magdeburg.) 6 . . .

 released therefrom.
 The transmitter ris modification of Hughes micro-

 Mareh, 1883. ${ }^{\text {Mad. }}$ Relates to a self-inducing apparatus cont
closed case for igniting inflammable gases.

 The conductors are carried ins. longitudinal slabs of slate having a series of longitudinal grooves and pro
vided with a slate cover. 0 one wire is laid in end groone, and t the wholover. sis. Sultably wire is is aid in each
bolts and nuts or towels.
suther by
 The armature and field magnet, coils are wound with
insulated iron or steel wire in place of the copper wire insulated iron or s
usually employed.
ind

 cylisis relatase to the anppication of the pressiro in the
 is increased the speed of the engine shall automati-
cally increase, and as the load on the engine is take e speed shall automatically diminish.

The invention consists in constructing the point 1329

shaped to conform to the lower part or shank of the
outer or wing rails, to which they are secured
bolts or otherwise

 steam or other fluids.
1363. Manveactury of Colouring Matrers And
theme Solpho Acids
or Salts from Patald

 1400. Stud or Buiton for Fastening the Ends
 Sxcentrically disposed so as to project beyonond at leas three sides of the shank for fastening the ends
metal bale bands. 1430. Galvinio Battrivies, J. B. Hannay, Glasgov.In the botto of a wooden barrel a board, provided
with vertical pegs, is placed. The pegs form a rock to supporting the alternate plates of copper and zinc. A
solution ob bisulphate of sodia is used as the exciting
lid iquid and the praces are flled with rougly crushed
 19th Marerh, 1883. ${ }^{6}{ }^{6}$ This relates partly to means for preventing the cart-
ridges from turning over in the hopper.
 This relates to the general arrangement of the tap.

 1477. Wrenches or Spanyers for Nuts, Boltt, o

stationary jast in bare, coosbination in a wronch of a aw movaboe with and adjustable along the bar, and ${ }^{\text {a }}$
handol pivotaly connected with the stationary jaw for moving the bar.

 hristlos, combined with a frame to carry it, provided
with journal bearings therein for the spool formed s.
that they can be opened to remove and replace the
 Cologne-on-the-ARhine.) $6 d$. Thilis consists in constructing a number of tubular
bor or
firmy comprtments containing two chambers firmly closed at their outer ends by means of detach
able covers, communicating with each other by number of tubes tightly fitted into the opposite walls
of the said two chambers, and in arranging these
tubulor bill tubular boilers or compartments in sets above or
alongside each other, or both, and connecting the fron
 as to form one single large boiler.

 The invention consists in melting steel which is rich
enough in carbon to be hardened and tempered in conjunction with chareoal pig iron, pouring such fuid
or molten mixture into any desired form of mould and then annealing the metal Io cost. It alaso inculudes
the peculiar composition of metal or material which年e peculiar composition of
 1888. - (AREOMmunnication from D. D. McC. Weston This consists partly in ine the combination with revolving cylinder of a centrifugal machine with an
impervious pan-like charger located within it to receive the sprupy manso or charge, hold it and when the
machine is in motion, dischargo the charge outwardly against the wall of the the cylinder. red describea.

 basseend or be lowered to close the openings at th bottom or the basket, either by the weight upon it o
the sugar or material being introduced into the baske and rugar or on the said valve, or by slight downward
pressure
by the pressure ey the workman on the sleeve of the valve
tho tatter aghin
birisig to uncorer the oponings at the botom of the basket as soon as the sugar, or the
material resting on the valve, is thrown therefrom in the rotation of the basket

The sleove A sliding upon but revolving with the
 2006

FIG.I.

springs E , so that when the sleeve A is pushed in
wards tho blocks are first brought in contact with the im $\mathrm{FV}^{\text {of }}$ of the dise F on the shaft G, whereupon the
spring E will bo compresed somenhat on the con.
finued tinued m, tion of the tle ve, thereby increasing the
frictional contact botwcen the blociks and disc, and on

A completing its motion and attaining the positio them to the ineeveve will be acrried spinhitly beonenecting the
plane in which the outer pivots are sifuated, and ther
 2878. Hydradic Crank with Varable Exomyrio
Motion, J. c. Muller, Paris.-Oth June, $1883 .-$ This relates to the general construction of the appa2916. Car Axle-boxes, H. J. Haddan, London.- 122 h Neo York, U.S., - Complete.) od d. J . A. Aamillon,
This relates to the construction of dust shields for Car axlo-boxes; also to the arrangement of springs for Yose contruction and a arrangement of oill recoptacles
tho lubsing
or lubitign the journals. for lubricating the journals.

 chine.
3000.
 Tdgerton, Philuadelphia, Pen, $V . S . S$. $6 d$.
The power fixed electrode is of refractory material
 provided at its lower end with detaining pins, and
attached to the armature of an eleoctromagmet placed in the lamp circuit. A A supply of carbon pencils is
contained in a magazin.

SELEOTED AMERIOAN PATENTS.

Claim.-(1) In a fertiliser distributor, the rotating
axle, in combination with a stationary excentr
securred to tho distributor wheel casing ard surround
ing said axt d

combination with a pin or pins, adapted, when undue
pressure is exerted upon the bottom, to break o yield and allow the sond bottom tom, drop oreak or or
downward upon its pivot, substantially as doseribed. 285,548. Dynaro--blecrric Machive, Chas. B. Ball Clazm.-(1) The combination with the field-magnet if a aynamo-electric machine, of an exe citer compris
ing an armure in icreut with said field-magnets, and located externally in opposition to a pole piece
sustained u upon the magnet bars of such field ustained upon the magnet bars of such field-magnets
2) The combination, with a dyyamo-electrio machin

[28554:]

mounted upon an externally-located shaft, said arma-
ture being adapted and designed to act as an

 of an externaly-extended pole-plece, and an armaturc
E, located in opposition to said pole-piece, and

CONTENTS

The Enginerr, November 2nd, 1883. pain

 TELEEPGLLDESS

Treatuent of Sew
Machive Tous
Rant

Eleotrion Contacts.
Catrchu as a Disiscrositant:

Tre
Amalaanation of Gas Companies -

Ther Frexin tritearaphic sërvice
Lurrera Conce-
The
Conceps and Theories of Modern Phy

Notes from sherfield.
Notes from the north
Notes from Scotiand
Notes from Solland \because ales and adjoining Counties
Abstracts of Patent Specifications. (̈llü.) :. $_{353}^{352}$
Dinner to Sir R. Rawlinson
Citty and Guilas Institute
Institution of Cirit
Institution of Civil Engineers
Liverpool Engineering Society
\(\begin{array}{r}337

\)| 342 |
| :--- |
| 342 |
| 342 |
| .342 |
| .350 |

\hline\end{array}
Epps's Cocoa.-Gratervel and Comporting. which govern the operations of digestion and nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epps has
provided our breakfast tables with a delicately lavoured beverage which may save us many heavy articles of diet that a constitution may be gradually built up until strong enough to resist every tendency to disease. Hundreds of subtle maladies are Hoating around us ready to attack wherever
there is a weak point. We may escape many there is a weak point. We may escape many a
fatal shaft by keeping ourselves well fortified with pure blood and a properly nourished frame. '-
Civil Service Gazette.-Made simply with boiling water or milk. Sold only in Packets, labelled"James Eprs and Co., Homeeopathic Chemists,
London,"-[ADVI.]

