VISITS TO THE PROVINCES.
THE WIDNES FOUNDRY
Fourteen thousand tons of pipes is not a small order. It is large enough to make the owners of a foundry, even a large one, feel that the energy usually devoted to tinding Widnes Foundry Company, of Widnes, has now under execution a contract for this quantity of pipes, a part of the execution a contract for this quantity of pipes, a water supply scheme. For this purpose the company has provided itself with some special plant, although the speciality of its works has long been heavy castings and
pipes of all sizes. A large quantity of the 14,000 tons of pipes for Vyrnwy is, however, of great size, for water, viz., pipes for ff yrnwy in. inside, each length weighing about 3 tons 15 cwt . finished, so that it is imperative that every step shall be taken that is necessary to secure economy in ail parts of
the manufacture of so many large castings, which have to be made at a price demanding the most careful management with a view to securing the lowest expenditure on every detail in the processes of production.
These 42in. pipes, which are for the new Vyrnwy Corporation, are made in accordance with the plans and specifications of Mr. Thos.
Hawksley, M.I.C.E., and Mr. G. F. Deacon, M.I.C.E., of Liverpool. The contract is now rapidly approaching completion, under the supervision of Mr. H. Nicholson, the superintending inspector to the Corp
The Widnes Foundry is situated, as its name implies, in the smoky and somewhat odorous alkali metropolis,
Widnes, on the Lancashire side of the Mersey, about twelve miles from Liverpool. The foundry is well known wherever alkali and chemicals of almost any kind are manufactured, as it has long enjoyed a high reputation for the high quality of its productions. It seems like sending coal to Newcastle, but it is a fact that its heavy pans for evaporating and for decomposing salt, and for deep caustic pots, are to be found in every quarter of the
globe-even the tariffs of "Vaterland" and the United globe-even the tariffs of "Vaterland" and the United
States not being sufficiently prohibitory to prevent their importation. Some of these caustic pots will hold 18 tons, and they themselves weigh about $9 \frac{1}{2}$ tons. They are from $2 \mathrm{in} .\mathrm{to} 2.5 \mathrm{in}$. in thickness, and by a lengthy experiense in
the best admixtures of irons which will withstand the effects of the acids on one side and of fire on the other, the effects of the acids on one side these pans very durable -though even so they last but about eight months. We are, however, more particularly concerned with pipes. We propose, therefore, to follow a pipe throug
facture, beginning with the raw material.
The works are conveniently situated on the main line of the London and North-Western Railway to St. Helen's, from which sidings run into them, bringing iron, fuel ce., alongside the cupolas, which are charged wing met siderable saving of labour.
Closely adjoining the cupolas is the pipe "pit," in which the pipes are moulded and cast. Over this pit work two not only the whole length of the foundry, but beyond it across the yard to the siding before mentioned. These cranes are powerfully driven, and move along the shop at moulds, which are drysand, are made vertically, with the sockets downward, the pattern being withdrawn by hydraulic power, and are dried by means of gas flames, the gas for which is produced on the premises by Howson and
Wilson's gas-producer, the cores being also dried by the same means.
Considerable care is used in the preparation and drying of the cores, as it is considered very important that the pipe should present a smooth surface internally, so as not to interfere with the quiet and easy flow of the water, or offer facilities for the attachment of parasitic growths,
which speedily diminish the capacity of the mains. When which speedily diminish the capacity of the mains. When moulds and cores are sufficiently dried, the cores are
brought forward by one of the travelling cranes over the centre of the moulds, and by a special arrangement of the crane are lowered into place with great rapidity.
So quickly is this done that the workmen describe the So quickly is this done that the workmen describe the oparation as "dropping the cor
the mould is ready for casting.
On page 402 we give a general view of the foundry in which the Widnes Company is making these pipes, and of part of the ground occupied by the testing and coating plant. Some description of what is to be seen during a
walk through these parts of the Widnes Works may not be walk through the
without interest.
without interest. Amongst special tools for making pipes, the moulding box or flask, the mould, and the core frame are leading elements. The moulding boxes at Widnes are long cylinders made in halves, and held together by bolts, as
shown by annexed engraving, Fig. 1, or by bolts or cotters shown by annexed engraving, Fig. 1, or by bolts or cotters put into the notches in the vertical flanges, made as also
shown in the annexed engraving, Fig. 2. The latter form is most used, as less time is occupied in putting them together and taking apart. The flasks are about 13 ftt . 6 in . together and taking apart. The flasks are about $13 \mathrm{ft}$. in. when finished, a head of about lft. in length being cast on the end to secure soundness. The lower end of the flask stand, and the core frame is turned to fit in a similar way stand, the base, which is a casting forming a carriage for the spigot end of the mould. The $3 \mathrm{ft}$. . 6 in. pipes are 1.5 in . in
thickness, and the flasks are only made large enough to have about $1 \frac{1}{2} \mathrm{in}$. of sand all round them, a quantity which would seem to leave a very thin wall of sand. It is, however, found that such a wall stands as well or better than one of greater thickness, and the thin one has the great
economical advantage that the time required to dry the mould is reduced to the lowest limit. This is an important consideration, for not only does the number of flasks employed depend upon it, but the size of the casting pit
must be larger or smaller according to the number of must be larger or smaller according to the number of
flasks in use. Thus, by getting the thickness of the sand
down to the lowest, several important economical results are obtained, and these are sufficient to make it expedient to have flasks of different sizes for almost every different size of pipe. The pattern upon which the flask is rammed up is about 6 ft . in length for 3 ft . 6 in . pipes. The lower end of this fits into a base, upon which the flark also
fits. Upon a stage round the flask four wen work with fits. Upon a stage round the flask four buen work with
thin T-headed sand. As soon as the sand is rammed up to near the top of the pattern, or to a height of 6 ft ., the pattern, which is suspended by a chain from the bydraulic crane, shown at page 402, is gradually raised, the hydraulic crane giving it a very steady pull at the rate of about 9 in . per minute, the whole mould being rammed up in from sixteen to eighteen minutes. In the walls of the flasks are holes about 6 in . apart, to facilitate the escape of gas from the sand and
through the sand. The casting pit, shown at page 402, is through the eand. The casting pit, shown at page
40 ft . in length, 25 ft . in breadth, and 12 ft . in depth. 40ft. in length, 25 ft . in breadth, and 12 ft . in deptt.
The core carriers are strong castings split at once side, and provided with internal projections on that side, into which fit the wedge surfaces, which are formed on one long bar. When the core is made this carrier is, of
course, extended by the wedges. The core is then dried in course, extended by the wedges. The core is then
ovens, as shown in the drawing, these ovens being heated by means of the gas jets from the Wilson gas producer

already referred to. The ovens thus require no attention, and the gas is cheaper and cleaner than coke fires. When dried the core is placed on the base above referred to, the
flask lowered over it, and the casting made. The ladles carry about four tons of iron, and a pipe is poured in one minute
In accordance with the specification, special precauIns are taken in the mixture and melting of the metal test-bars of the same metal are cast with each pipe, and numerous tensile test-bars are also cast of the same iron, all of which are subjected to dead-weight tests, a certain proportion of them being also loaded with the prescribed weight for twenty-four hours, the load being then increased broken on the occasion of our visit. Those tested by transverse stress are 2in. by lin., resting upon supports $36 i n$. apart ; one broke with $29 \mathrm{cwt}$. and
30.25 cwt . on the centre, the specified strength being 28 cwt . The tensile strength is ascertained by means of test pieces turned to 1.125 diam., which is 0.994 square inch sectional area, or practically one square inch. Three of these broke 12 tons 2 with, 12 tons 2 cwt . 2 qr . be quality or thered, as it will be seen that the iron is tough as well as of a high tensile strength.
When the pipe has been cast a sufficient time the corewedges are withdrawn, but the pipe is left several hours in the mould to cool, and when sufficiently cooled to be removed without detriment, it is lifted out of the pil As the dressing proceeds it is rolled forward, eventually reaching the lathe, which, while cutting off the head and finishing off the spigot end, simultaneously turns the socket belt for the reception of a wrought iron strengthening hoop. On leaving the lathe it is passed on to the long "proving
house, which is shownin the engraving. This is laid with steel rails, along which the pipes are rolled for inspection here they are each minutely examined, measured, and weighed ; the diameter, thickness, weight, amount of socket joint, and other particulars of each pipe-which has cast on it a consecutive number-are caretuly taken and
separately recorded, and daily reports made to the engineers by their resident inspector. In addition to measure ment by gauges to go over the spigots and inside the
sockets, the pipes are frequently tested by socketting one into the other, as in laying, and the amount of
joint ascertained by the insertion of a gauge. Being
found sound, so far as can be seen, they are rolled forward on the cantry to be proved by hydrostatic pressure by Mr. Hawksley's new system, in which oil is substituted for the water usually employed. The proving machine consists of two fixed whert the ping pees frem together by tie-bars, between which the pipe passes freely; one head contains passages for the supply of oil from a large re wich is forced acainst the pipe after the fashion of the hydraulic press oil being used, however, fashion of the hydraulic press, oil being used, however,
instead of water. A joint is made at each end, by means instead of water. A joint is made at each end, by means of gaskets, and the pipe rapidly filled with the oil, which
is then raised to a pressure equal to 600 ft . or 700 ft . of water, and this pressure maintained for several minutes, the pipe being meanwhile repeatedly struck with sufficient force to produce a strong vibration of the metal. Having satisfied this crucial test, they are rolled onward in the salisice the of the coating tank, commanded by a tall steam jib
direction crane, as shown in the engraving, and are hooped with a 1 square wrought iron hoop shrunk on. This hoop is not only to secure strength in the socket, but to prevent breakage in transit. Being hooped they are now ready for coating, for which purpose they are lifted by the steam crane into an oven, and when sufficiently heated are immersed vertically in a bath of Dr. Angus Smith's solution. When sufficiently cooled, they are lifted by the same crane into the railway trucks, and the distinguishing numbers and hoops finally tested by the inspector with the hammer to detect any possible unsoundness in the welding or loosenes in the fit, and are then despatched. The special pipes and castings, of which, as may be supposed in an undertaking of such magnitude, there are a considerable number and variety, are made in "loam," in a separate foundry, the same precautions being observed in their manufacture a are used in that of the plain pipes. Great importance being attached to the preservation of the pipes from rust the foregoing operations are carried on under cover, and
is principally for this reason that oil has been substituted for water in proving.

ARC LAMPS AT THE VIENNA EXHIBITION.

The Pilsen, Crompton, and Tschikoleff lamps.-In the last lamps we described, namely, those of Schwerd and Siemens, the ratchet escapement motion feeding the carbons was necessary, because the iron cores hanging in the electro-magnets could not shift their position through any except a short range without the ratio of the sucking in force to the current strength varying largely. If the core were allowed considerable extent, there would result a corresponding any considerable extent, there would resulba corcespe escapealteration in the current through the caroon.
ment feed is therefore introduced, in order to allow the regulating core to oscillate through a small range only about its position of nearly neutral equilibrium. In the Pilsen lamp-so called from the name of the village where it is manfactured "slip" feed is done away with by the the escapement or sip feed is done away with by the ing. According to the inventor, this results in the long. According to the inventor, this resutts in the
sucking-in force being the same for all positions of the sucking-in force being the same for all positions of the that is, that the ratio between the sucking-in force and the the current-strength remains the same for all positions of the core, whether it be high up or low down in the
current coil. We are not aware that the theory of this law of attraction of conical cores has been worked out, nor whether it has been proved to be an exact law; but the principle leading in the direction of the above result is easily recognised. It is this. As the cone is drawn into that portion of the magnetic field of maximum intensity. The increase of sucking-in force due to this cause compensates-either approximately, or, according to Mr . Piette, exactly - the simultaneous decrease due to tre pascoil. Originally there was only one core in the Pilsen lamp passing through two coaxial current coils, the one being the arc and the other the shunt circuit. In the recently improved arrangement, however, the two coils are side by side, and through these pass two exactly similar conical cores. These cores are connected by a cord passing over a small pulley situated above both. Both coils have the same external dimensions, namely, 60 mm . diameter and 140 mm . length. Each core has a parallel portion 365 mm . long and 20 mm . in diameter, and a conical portion 280 mm . long, with a straight taper from 20 to 4 m. in of thes. A brass tube surrounds, and is fastened to, each of these cores, serving to protect them from atosp fastened the and to the continuation of these holders. The lower carbon is attached to, and carbon holders. The lower carbon is attached
moves along with, the core passing through the coil through which the arc current circulates; while the upper carbon is fastened to the core in the shunt current coil. This latter is loaded so as to weigh slightly more than the former, so that when no current passes, and the solenoids exercise no magnetic attracther, the upper one pulling up the lower one by means of the cord. As soon as the current flows the arc current coil pulls down its core, thereby lowering the lower and elevating the upper carbon.
This separating movement of the points continues until This separating movement of the poins attraction of its the shunt current is so strong that the attraction of its
solenoid upon its core balances that of the arc current solenoid upon its core balances that of the as arrived at
solenoid upon the other core. This balance is solenoid upon the other core. when the arc and shunt currents have a certain deinite
ratio depending only upon the ratio of the numbers of ratio depending only upon the ratio of the numbers of
turns in the respective coils, and not depending upon the turns in the respective coils, ase coils. Thus as the carbon
position of the cores in these points burn away, the ratio between the two currents remains constant; and, as the resistance of the shunt remains always the same, it follows that the arc resistance,
small shunt current excites another electro-magnet of small size. When the current exceeds a certain safe limit, the tact for a short circuit through a platinum resistance coil, thereby cutting out the one lamp without interfering with the supply of current to the others in the same circuit. Whether this lamp is perfect in theory or not, as a matter of fact it has burnt with very creditable steadiness matter Vienna Exhibition. It is preferred to couple not the than about eight in series; but they can be used with as many as fifteen in series. The lamps that be used with as Exhibition average about 1200-candle power with 7 to 8 ampères and 50 volts. There are forty lamps of nominally 1500 -candle power in the upper gallery of the Rotunda, three of 1000 candles in the Austrian Pavilion, and seven of the same power in the ground gallery of the Rotunda; while they have one lamp of 20,000 nominal candle-power in the lantern at the top of the building.
Another successful lamp shown at Vienna is that of Mr.R. E. Crompton. This is illustrated in Fig. 7. It resembles the Pilsen lamp in having the two carbon holders connected by a cord running over a pulley; but this is really only a superficial point of similarity. The upper carbon c, which is also the positive one, is suspended by the cord which, passing over
the pulley a, is led round the pulleys b and e and thence down the side of the frame to the guide pulleys f and g, nder the pulley h and over another not shown in the drawing to the screw k, where it is fastened. Of these
ance of the arc. The brake pressure exerted by l is regu-
lated by a small spiral spring. When the lamp is working lated by a small spiral spring. When the lamp is working
l never sinks so low below t as shown in the illustration l never sinks so low below t as shown in the illustration,
but, on the contrary, keeps quite close to it, alternately touching it and separating from it a minute distance only. This mechanism is an extremely delicate one if properly adjusted. The lamp, however, suffers from the disadvantage of having large solid parts underneath the light, which throw inconveniently large shadows downwards. This evil is greatly mitigated if, as in the arrangement shown, the
light is thrown downwards by a conical reflector cap. To light is thrown downwards by a conical reflector cap. To
show the direction toward simplicity taken by Mr. Crompshow the direction toward simplicity taken by Mr. Cromp-
ton, we illustrate by Fig. 8 his original lamp, as shown at the we illustrate by Fig. 8 his original lamp, as shown at
thalace. In this there are no fewer than six coils. The general mode of action of the lamp is, however, nearly the same as that of the lamp shown in Fig. 7 the cage being lifted to strike the arc, and the descent of the upper carbon being controlled by a brake and clock train.

It may be interesting to describe very shortly a lamp exhibited by W. N. Tschikoleff, of St. Petersburg. It has and expensive, and the general mechanism is complicated original and ingenious, is rather clumsy. The lower although rests in a fixed brass tube, and is fed upwards carbon stop of refractory material by a spiral spring like that of a wheels, the. The upper carbon is grasped between two wards. Thus there is nothing but foeds this carbon downpart of the mechanism, the carbon sticks alone having longitudinal motion. This is the chief point of merit in the design. Although it is not one of much importance-

because rotating pieces require, coteris paribus, just as
much force to start moving rectilinearly-still it mien motions as do pieces this idea out more neatly than is done in the while to work The arc current comes to the carbon the present lamp. these wheels, which, being centred on through one of is made to press with sufficient force a swing lever contact against the carbon stick by the action good an electro-magnet traversed by the main arc current. This wheel is free to revolve in its bearings. The other is in one piece with a fine thread worm wheel actuated by worm on the vertical spindle of a diminutive electro-motor A shunt to the main current drives this motor so motor lower the upper carbon when the shunt gains sufficient strength to do this work. The speed of rotation of thi motor is regulated by a small four-oall governor, the legs of which when they fly beyond certain limiting positions catch upon stops, thus stopping the rotation of the motor and the feeding of the carbon. It is hardly necessary to say that this arrangement does not regulate well; but, in spite of the crudeness of the design, some ideas expressed in it deserve attention. A second shunt exciting another electro-magnet makes contact for a short circuit when the current reaches the limit considered safe. This contact is made by carbon points, one of which is mounted on the
end of a lever to which the armature of the magnet is end of a lever to which the armature of the magnet is
attached. There are six of these lamps exhibited in the attached. There are six of these lamps exhibited in the
Rotunda. The current used is 12 ampères, .
ACCORDING to recent census returns, there are now 88,544 British born subjects in India. This is exclusive of those British people
born in India.

GRAPHICS, OR THE ART OF MAKING CALCU LATIONS BY DRAWING LINES By Professor R. H. Smith.
 No. III.

Division of the Subjeot-Graph-Arithmetic. Graphics may be divided in correspondence with the ordinarily-recognised different methods and subjects of calculation. These are :- (a) Arithmetic, (b) Algebra, (c)
Trigonometry, (d) Dynamics, (e) Tabulation and Analysis Trigonometry, (d) Dynamics, (e) Tabulation and Analysis of Experimental and Mathematical Results. A few words of explanation regarding each of these sections of the subjects may be useful before proceeding to the detailed treatment.
Graph-arithmetic.-Arithmetic shows how to find in-
creased or decreased quantities when given amounts ${ }^{\text {quantities when they are altered by }}$ every practical problem involves, and, in fact, to a great extent consists in a more or less complex series of such operations, the rules of arithmetic are applied continually throughout all graphic constructions. It is thus of great importance to be thoroughly familiar with them, and with the special suitability of e
which it is most adapted.
Graph-algebra consists in the solution of equations by drawing straight lines and curves. Not much will be said The this subject, as it is not of special interest to engineers. would would be very difficult or impossible to solve by other means, will be illustrated by a few examples.
other rectilinear figures, the "solution" of triangles and other rectilinear figures, that is, the calculation of unmeasured sides, angles, and areas from the sides and angles that have been measured. Applications to surveying measurements will be given, especial attention being given to problems that are difficult to solve by other means.
Grapho-dynamics.-Dynamics may be considered under three heads:-Kinematics, or the pure geometry of motion;
kinetics, or the laws of motion as dependent on the masses of the bodies moving; and statics, that special branch of kinetics dealing with cases in which the motions are zero and the forces in equilibrium. Some simple constructions which apply equally to all three sections of dynamics will which apply equally to all three sections of dynamics will
first be illustrated. There is great practical convenience in treating statics separately from kinetics ; and since the bulk of the interesting engineering problems to which the graphic method has been applied belongs to statics-e.g., applications to bridge and roofwork-this portion of the subject will be taken before the more difficult problems of the kinetics of motion. The plan of separating kinematics from kinetics has been followed in many modern text books of high authority; but, whatever advantages thi may offer from a strictly logical and deductive point o view, it is very questionable whether there is any gain in There is no such thing as pure motion mass ; and, as it is by far the safest course to draw with knowledge from our actual experience, it draw all ou treat the two parts of the subject simultaneously the course that will be followed in these articles, This is because all our examples must be drawn from the region of practical engineering work.
The results of a series of experiments-for example, on the relation between the speed of a vessel and the horsepower indicated by its engine, or on the relation between the pressure and temperature of steam-are best made clear by plotting them graphically, i.e., drawing a curve, the rectangular ordinates to which are the values of the quantities whose relation is to be investigated. This assists in the elimination of experimental errors; it
shows the relation found in a shows the relation found in a very clear manner to the eye, and through it to the mind; and if a formula is desired to represent the variation, the curve can be analysed as to its geometrical properties.
some dimension is often ande formula by which to design some dimension is often complicated and tedious in its application to each special case. This prevents its use in practical life where men are busy and have to economise time. Its use is also prevented by the difficulty of understanding the general meaning or the effect of so complex a rule. These difficulties are entirely done away with if the results of the formula are represented by a curve, and the application of a difficult and cumbrous formula becomes absolutely as easy as that of the most simple. These curves ought to be drawn on square sectional paper, the divisions of which ought usually to be decimal. This plotting out of experimental and mathematical results may be called graphic tabulation.
fimple addition and subtraction can seldom be perormed by graphic means with any advantage, so far as ease and rapidity are concerned. Suppose two or more quantities known, and that they are to be added together. The sum can be found by ordinary numerical addition much more easily and quickly than can be completed the process of plotting off the magnitudes to plotted having its left-htraight line, each successive length the preceding one, and then end at the right-hand end of of the line mane, and then reading off to scale the length dently the only possible graphic process of This is eviaddition. If any ofsible graphic process of arithmetical they are to be measured off in the opposite subtracted, that of the others-that is, backwards along direction to which these others have already been plote the on graphic method of addition is, neen plotced off. This venient as a step in a more lengthy and complex, often conculation. Suppose that by graphic means we have ghic cal ines the lengths of which represent to a certain obtained tain magnitudes. These magnitudes takertain scale cerbe of no interest, but their sum may be separately may of the calculation, or may be needed in order to cobject the calculation to its completion. It would cause more trouble, use more time, and be less accurate to read off each of these parts to scale and add the scaled lengths off each cally than to add them graphically by careful uise of the dividers, or otherwise, and to read off to scale only the
resulting sum of the lengths. The scale cannot be read to such minuteness and accuracy as the dividers can be set to, and the sum of the errors in reading the different quantities to scale is therefore always probably greater than
that of the errors due to inexact setting of the dividers. Moreover, the error in reading to scale is nearly always in the same direction-either always a little too much or else always slightly too small, the direction of the error depending on the peculiarity of the eyesight of the draughtsman. The error in setting the dividers has not the same invariable character; it is as often positive as negative, and the chances are that numerous errors of neutralise each other to so great an extent that the sum of a large number of errors will be by no means correspondingly large.

Sometimes a quantity can only be found by adding up a very long series of very small parts. The magtermined beforehand, but not unfrequently it cannot be found until the sum of all the previous parts in the series has been calculated. This kind of addition is called integration. Sometimes, when the law determining the successive values of the small parts is a simple mathematical one, the process of integration is very much simplified by mathematical calculation, as explained in the Integral and Differential Calculus. To attain a moderate approximation to accuracy, the parts require to be taken very small, and correspondingly numerous. Thus to integrate by ordinary numerical addition is an immensely tedious operation. The same process, however, may be carried out
much more rapidly, and with much less fatigue, by graphic much more rapidly, and with much less fatigue, by graphic
means. In the later of these articles, when we deal with means. In the later of these articles, when we deal with
somewhat complicated constructions, we shall have many somewhat complicated constructions, we shal have many of the beneficial employment of graphic integration occur only in these somewhat difficult problems, we may pass by the subject for the present, promising to return to it when its utility will have become more evident and its interest,
therefore, greater. therefore, greater.
Graphic multiplic
duct of two or more known quantities. Let a and b be the quantities; $x=a b$ is to be found
This may be thrown into one of the two forms-

and-

$$
\begin{aligned}
& \frac{x}{a}=\frac{b}{1} \\
& \frac{x}{b}=\frac{a}{1}
\end{aligned}
$$

The graphic construction is to draw two similar triangles, in one of which two sides are made 1 and b (or 1 and a), (or in the other of which the two similar sides are a and x (or b and x). This will give us a line x, the length of which to the proper scale represents the product $a b$. The pair of triangles may be formed in the two ways repre-
sented in Fig. 5. In the first of the Figs. $5 b$ is associated
intersection becomes less well defined, and the reading of a length to it becomes liable to a greater possible error Fig. 6 the thickness of the intersecting lines is magnified each line being shown by a double line. The intersection of the two has really the length marked e on the diagram,

In the first two constructions of Fig. $5,1=1 \mathrm{in}$. ; in the hird $1=2 \mathrm{in}$.* If $\frac{1}{10} \mathrm{in}$. had been taken as unity, the ines m and m^{1} would have been inclined to b and x at a end of x would have the intersection of m^{1} defining the true that a long length can be read with a smaller percentage of error than a short one. If lengths can be read to 01 lin ., an error of ${ }^{\circ} 005 \mathrm{in}$, is ten times mor serious in a length of 2 in . than it is in one of 20 in . But the error that may arise from a smal inaccuracy in the direction of the line m^{1}-due either to inexact setting of the set-square to the line m, or else occurring in the sliding of the set-square from the position m to the position m^{i}-increase much faster than does the length of x-nearly in the ratio of the square of this length. Also it must be remembered that if it is possible to read the long x with greater proportionate exactitude, to obtain the long x a short 1 must be used. As the proportionate error in reading x decreases, the proportionate error in marking off 1 increases. It is evident, therefore, that such a length should be adopted for 1 as will make the intersection of m^{1} with x as well-conditioned as possible. This result is obtained by adopting for 1 a convenient length as nearly equal either a or b as possible. But it must not be chosen so as to give an awkward scale

The angle of intersection being θ, and the thickness of the line t, it is easily shown that the length of the inter section is-

$e=t \frac{1+\cos \theta}{\sin . \theta}$

which becomes very rapidly larger as θ becomes smaller The reading of a length to this intersection must be inde In Fith win this range e.
In Fig. 7 is shown the error in the position of the inter section resulting from drawing one of the lines in a slightly incorrect direction. If the incorrectly drawn line is drawn from a point distant H from the other line, it is easy to prove that the error e resulting from an angular error ϵ in
the direction is equal to-

$e=\frac{\epsilon H}{\sin .^{2} \theta}$

which for the same error ϵ increases still more rapidly as θ decreases than does the error shown in Fig. 6.
In Fig. 5, of course, a and b may represent any quantities either of the same kind or of different kinds. For instance, they may both be lengths, and then the desired
product is an area. If they are both of the product is an area. If they are both of the same kind they can be marked off to the same scale. If they are of different kinds they must of necessity be represented on measured then, are the relations between the different scales employed in the construction? This is explained t once by observing that a length to represen unity (1) has been marked off. This unit length In the first diagram of Fig. 5, it is set off on the In the first diagram of Fig. 5, it is set off on the same line as α. Suppose it has been measured to the same scale as has been used for a, then x that its length read to that scale may numerically equal the product of a and b, the geometrical ratio equation being-

$\frac{x}{b}=\frac{a}{1}$

But if x is to represent, not only the numerical magnitude of $a \bar{b}$, but the real product $a b$ itself to a scale of its own, that scale cannot be the same as that of b. The unit of that scale represents unit quantity of the particular kind resulting from the multiplication of a and b. For instance, if a and b are lengths, say in feet, foot; or if a is a length in feet, and b a weight in foot; or if a is a length in feet, and b a weight in
pounds-weight, the scale of x is one of quantities pounds-weight, the scale of x is one of quantities
of work, or of force moments, in foot-pounds. This may be more clearly understood, perhaps, by considering the equation in the form-
This equation may be expressed in words thus: " x to the This equation may be expressed in words thus: " x to the
scale of a multiplied by 1 to the scale b equals a multiplied scale of a multiphed by 1 to the scale b equals a multiplied
by b, " or " x to the scale of b multiplied by 1 to the scale by b, " or " x to the scale of b multiplied by 1 to the scale
of a equals b multiplied by a." It is plain that the scale of x depends on that to which 1 has been marked the scale of x depends on that to which 1 has been marked off, and sponding inverse change is made in the scale to which x is sponding inverse change is made in the scale to which x is
read off. For example, in the third diagram of Fig, 5 , 1 is marked off to double the previously used scale, The length in inches obtained for x is just half that obtained in the first two diagrams, but when read to half the scale used for x in these first two diagrams, the same result is obtained as before. To illustrate further, suppose a is a number of pounds weight, say 160 lb ., measured to the scale of $\frac{1}{100} \mathrm{in} .=1 \mathrm{lb}$., and b is a number of feet, say 11ft., measured to the scale of $\frac{1}{10} \mathrm{in} .=1 \mathrm{ft}$. Suppose, now, that unity is marked off to the same scale
as that of b; that is, in, is marked off as as that of b; that is, $\frac{\pi}{10}$ in. is marked off as 1 . Then x must be read to numerically the same scale as a, that is, to the scale $\frac{1}{100} \mathrm{in} .=1$ foot-pound. It would be found to be $17 \cdot 6 \mathrm{in}$. long, and to this scale would mean 1760 footpounds. Suppose, however, that 1 is marked off to double the b-scale, that is, $\cdot 2$ in., is taken as unity ; then the length obtained for x would be 8.8 in., and this length must be read numerically to half the a-scale, namely, $\frac{1}{200} \mathrm{in} .=$ 1 foot-pound ; and to this scale it will mean as before 1760 foot-pounds. Once more, suppose lin. taken as unity (1), that is, ten times as much as represents 1 ft . on the b-scale. Then the length obtained for x will be 1.76 in ., and the unit of the x scale must be $\frac{1}{10}$ of the length that represents 1 lb . on the a scale, that is, $\frac{1}{1000} \mathrm{in}$. To this scale x measures as before 1760 foot-pounds. If 2 in , is taken as unity, the length got for x will be 88 in ., which, read
to the scale शेन in. $=1$ foot-pound, means again 1760 lb .
by which to read x. Thus, if the scales used are
parts of inches, 1 may be chosen 10 in ., or 5 in ., or 2 in ., or
1 in ., or $\frac{1}{2} \mathrm{in}$. If millimetre scales are used, $200,100,50$ in., or $\frac{1}{2} \mathrm{in}$. If millimetre scal
20 , or 10 mm . may be used as 1 .
This rule of arranging the units so as to get well-conditioned triangles cannot always be attended to through long complicated graphic constructions involving series of or quar follow it reatly different magnitudes, because it would be necessary to change the unit and the scales and in such circumstances it is frequently nonfusion, and in such circumstances it is frequently necessary to tions are throughout the whole of graphic calculation, and they have, therefore, been presented here very fully. Whenever it leads to no confusion or other inconvenience, the unit should be chosen according to the above explained principle. Whenever it is impracticable to do so, it is well to remember that increased care and exactitude in drawing is necessary whenever intersections at acute angles have to be used. In all cases it is necessary to have a clear concep tion of the true meanings of the different scales used throughout the diagram, to understand the relations between the scales; and to avoid the confusion of imagining that scales which are essentially different in kind can be in any sense the "same scale"-that is, for example, that $\mathrm{lin} .=1 \mathrm{lb}$. and $\mathrm{lin} .=1 \mathrm{ft} .$, and $\mathrm{lin} .=1$ oot-pound, and in. $=1$ square foot area, are in any sense the same scales, or that they are equal in any way, except that they are to be read numerically in the same manner While the difference of the scale of x from those of a and of b should be remembered, its relation to these should be clearly comprehended, and the manner in which it is to be deduced from these and from the value taken as 1 should never be lost sight of.
The construction of Fig. 5 can be modified in a great variety of ways according to convenience in special circumstances. The special circumstances result chiefly from the different relative positions on the draw ing paper that are found to be occupied by the factors a and b in the course of an extensive graphic calculation. The factors generally result from previous portions of the calculations as lines in certain parts of the drawperform the multiplication They are to be un in what pever position they may . They are to bed what ever positions they may happen to have been placed in already. They may be near or distant, parallel, perpendromar, or oblique to each other. They may both radiate from one point; the extremity of one may lie in some other.

THE WORKS OF MESSRS. ESCHER, WYSS, AND CO. AT ZURICH.

No. I.
THe celebrated Swiss engineering works of Messrs. Escher, Wyss, and Co., of Zurich, were founded in 1807 by M. Hans Kaspar Escher, who had been educated as an architect, and studied for
his profession for some time in Rome. Several buildings his profession for some time in Rome. Several buildings
designed by him may be seen in Zurich, the chief commercial designed by him may be seen in Zurich, the chief commercial town in Switzerland. The natural taste of Kaspar Escher was, however, in the direction of mechanical engineering. When cotton-spioning machines first came into use in England, their
exportation was forbidden by law. Kaspar Escher, who believed they had a great future before them, came to England to examine them ; but the jealousy against their inspection by foreigners was so great, that he had to gather what information about them he could, by inspecting what he could see of them from the streets outside factory windows. He returned to Zurich, and set to work to solve the problem; at first he made small models of machines and parts of machines which were worked by hand, until at last he overcame the difficulties in the way of construct-
ing one for practical use, to be driven by water power bought a flour mill at Zurich, erected a spinning mill on a larger scale on its site, and drove his machinery with two new large water-wheels made by himself. Thus was founded the firm of Escher, Wyss, and Co. At the outset it was a joint stock company, formed to erect and work a cotton mill; there were but few shareholders, most of whom were not responsible for more than the amount of their shares. The liability, however, of two of the members, M. Kaspar Escher and his brother-in-law, M.
De Muralt, was unlimited. Finally, the establishment private firm in the hands of Kaspar Fscher and his bocame a private firm in the hands of Kaspar Escher and his son Albert,
assisted by the afore-mentioned M. De Muralt. The liability of M. Wyss, one of the early shareholders, was limited, and he did not remain a member of the firm longer than any other of the limited liability shareholders. Kaspar Escher was born in
1775 , and died in 1859. His only son, Albert, served his time in

* These are the scales to which these figures were actually drawn for
this article, but the engraver has reduced them to a size convenient for
the width of column.
some engineering works at Manchester, and contributed much by his ability and inventive genius to the extension of the busimarried the daughter of Mr. John Kennedy, of Manchester, in which city he died, and was buried in 1845 . After the death of Albert Escher, M. De May, a lawyer, of Berne, who was the son-in-law of Kaspar Escher, became a partner in the firm. Sub-
sequently, M. De May's son-in-law, Mr. Mousson, likewise Mr de Gonzenbach, of Berne, who married the only daughter of M . Albert Escher, became partners, and took an active part in the management of the establishment. At the present time, M.
De Gonzenbach and M. Gustav Neville, of Geneva, are the sole proprietors of the firm of Escher, Wyss, and Co. ; the liability of
the former partner is limited to the amount of his share, the liability of the latter is unlimited
The first cotton-spinning mill of Kaspar Escher at Zurich was erecter in 1807, and was in use for many years, together with the adjoining shops which he built for the construction of his own machinery. In course of time, between 1820 and 1830, he also constructed water-wheeels, gearing, and such-like, when a
demand for cotion-spinning machinery arose among his neighbours ; consequently, he began the manufacture of machines fo
them. In 1837 the general manufacture of marine and sta them. In 1837 the general manufacture of marine and sta tionary engines commenced th the works, as whell as steamboats
for the Swiss and, indeed, the Italian lakes, which latter steamboats were transported piecemeal over the St. Gothard Pass, an put together in the lakes on the other side. The demand for these lake boats increased from various parts of the world, until
in 1850 more than 1200 men were employed at the works; the present reduction in that number is partly due to the abandonmachinery, and partly to the introduction of labour-saving appliances. In 1841 Messrs. Escher, Wyss, and Co., began to and in 1844 the firm turned out its first turbine. In 1847 it founded the first of two branch establish charge of a local manager. One of these branch establishment 200 to 300 men. The other branch, employing about the same number of men, was established in Ravensburg, Wurtemburg in 1856. At these two branches machinery for paper mills, flour mills, and other purposes is constructed, as well as turbines
water-wheels, and all kinds of gearing. Messrs. Escher W water-wheels, and all kinds of gearing. Messrs. Escher, Wyss,
and Co. were the first on the Continent to make steam engines and Co. Were the first on the Continent to make steam engines
on the Woolf principle. An engine of this description, made by them, was the first and only oue on view in the London Inter-
national Exhibition of 1862 . In 1870 they turned out ferry boats for the Lake of Constance, by which goods trains up to the length of eighteen loaded wagons are to this day ferried acros carried across with them, but could be if necessary. For a shor time Messrs. Escher, Wyss, and Co. made locomotives, and
twenty were supplied by them for the line rumnin twenty were supplied by them for the line running between
Calcutta and Delli. In 1876, the year of the crisis, they Calcutta and Delhi. In 1876, the year of the crisis, they began to specialise more ; then it was they abandoned the mak
cotton-spinning and weaving machines, as already stated.
At present about 900 men are employed in the Zurich works by which the surplus water of the Lake of Zurich is carried off The town of Zurich lies between the lake and the works. It is a remarkable thing to see shipbuilding going on in the middle of
an inland country; at present several steamboats for the Brazils and elsewhere are in course of construaction on the premises
They are put together under sheds, but not rivetted ; after ward chey are taken to pieces and transported to their desti nation. The river alongside the works, although
swift, is too shallow for the floatation of steamboats.

解 the rest of the works to be convenient, so a new one will soon be built. The present foundry employs about 200 workmen The pig iron at present in use in it is English and Scotch The cost of transit to Zurich is from $£ 16 \mathrm{~s}$. to $£ 18$ s. per ton
including the Swiss customs duty of 6 f .-about 5 s .- per ton. It comes usually to Rotterdam ; then is transhipped into the
Rhine boats, by which it is carried to Mannheim, whence it is brought to Zurich by rail.
The machine shop, chiefly devoted to the construction of
turbines, gearing, and paper-making machines, turbines, gearing, and paper-making machines, has about 400 men
workiug in it. The turbines made in it are from power, and, according to their construction, will work with fall of water varying from 1 m , to 200 m . The Zurich establishment, as a whole, consists of two branches-one for turbines,
gearing, and paper-making machines, the other for the construction of land and marine engines and boilers.
At the present time one paper-making machine for Belgium, are in course of construction at the works : are in course of construction at the works ; also some screw
and paddle engines for Rhine boats, and a fine screw yacht for view at the late Swiss National Exhibition at Zurich ; a saloon steamer ordered by the Austrian Government for the Lake o Constance, and which will ply in connection with the Arlberg boats, 30 m . to 70 m . in length, for the Brazilian rivers ; sundry horizontal engines; and various minor pieces of mechanism.
The works themselves present but the usual features of such establishments. In addition to the larger machine shops are carpenters' shop, for the making of patterns; a large black-
smiths' shop, with numerous forges and three small steam hammers; a boiler-house, with an Englishman as its foreman
and the usual smalfer departments. A steam engine of 100 -horse and her usual smailer departments. A steam engine of 100 -horse
power, with sometimes a smaller one in addition, is used to
funnish Limmat
The manufacture of steamboats and marine engines began in 1837, and up to the present time 403 marine engines have been
constructed, in most cases with the boats also. The construction of turbines began in 1844, and the number made in Zurich and the two branch establishments to this date is 1302 . The paper
making machines made since 1841 number 134. The stationary and other engines made in Zurich from the first number 1100. The first tangential turbine ever constructed was turned out the firm are on the Jonval and Girard systems
The first steamboats built for the Swiss Lakes were the LinthEscher for the lake of Zurich, and the Ville de Lucerne for that
of Lucerne. The steamboats on the Lake of Lucerne are well known to most Eirropean tourists, and they are of the description represented in our engravings on page 398, but a few feet
shorter, the dimensions there given by us being those of the Helvetia, which has been plying on the Lake of Zurich since of Geneva for the same time. These boats are of 120 nominal
ne and 600 indicated horse-power; on the trial trips they attained
a speed of 16 miles per hour. Their length between perpendia speed of 16 miles per hour. Their length between perpendi-
culars is 64 metres; they draw $1: 30$ metre of water, and are
licensed to carry 1500 passengers. The scale of Fig. 1 is 1 in
600 ; that of Figs. 2,4 , and 5 is 1 in 275 ; that of Fig. 3 is 1 in 225.' These boats cost at that time all fitted up and 3 is 1 in work, 400,000 .; they are warmed throughout by waste steam ngine m is supplied with steam by two boilers c, having thre furnaces each; they are worked at about six atmospheres. The
$4 \cdot 1$ metres in diameter, and the float 6 metres long. Ropes and other stores are kept in A, to which ess is given by the ladder a. The second-class kitchen is a , and the dining saloon ${ }^{5}$; aloon is separated from the engine-rom by a series of thre cabins E, fitted with seats e, tables, and chairs. These cabin are used solely by the enginemen and stokers, who have direc ontains the engine-room Te boilers c, the coal bunkers s, and is reached by the iron ladder f
In the stern of the boat, near the rudder, is a recess R , with the iron ladder r, to give access to the sleeping cabin G with its
bunks g. In connection with this is the first-class ealoon H, ith its companion h This saloon is lighted, like all the others on his level, by means of portholes. Dinner tables are laid out in department in Near thi, J , is the sleeping cabin of the aptain. A grand saloon $\mathrm{K}, 12$ metres long, occupies one portion of the deck; it is reserved for first-class passengers. Its coninuous lines of windows permit wide views of the surrounding cenery; it is elegantly furnished, and its couches are covere the the left is the door of the water-closet L, and near it the little he side of this is the puraoses of the saloon H N oxes on each side are two little smoking cabins 00^{1}; also the tice T of the ticket collector, and the water-closets Q and q. he main deek. All the main deck is covered by the upper deck , exclusively reserved for first-class passengers. An awning hrown over this in hot weather to shield the passengers from the direct rays of the sun, which have great power on the Swiss ind Italian lakes during the summer months. The staircases ${ }^{\text {in }}$ sive access to this upper deck. High up in the centre of the
boat is the bridge occupied by the captain and by the man at the oneel; it is reached by the ladders $u u^{1}$.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for

the water-tight sub-division of steamshis Sir,-The illustrations of the United States steamship Chica making water-tight the coal bunkers along the sides. This seems to be an admirable arrangement for protection by coal from shot, and as giving a power or reserve of buoyancy for supporting the vessel
in the event of injury to other portions of the hull by torpedoes or other destructive agents. I have for some time advocated this sstem of ut any appreciable increase in cost in the construction; bu instead of making the coal bunkers water-tight as in the Chicago propose to make or constract these chambers or pockets with the vessel herself, and incorporated with and forming part of hee
tructure, and to have water-tight trunks leading to all the holds and spaces of the chambers. If this principle of construction were more generally adopted, there would be one element given to the essel for protection from foundering or sinking
The principle might be introduced with advantage into vessels of nd if the Austral, so recently sunk through water entering her holes, had some arrangement of this kind in her construction she probably would not have so readily foundered. These casings, hambers, or sub-aivisions along the sides give not only protectio prevention from capsize. They may be constructed of light lating and divided by partial bukheads or diaphragms, and e passenger baggage, light and valuable cargo, and for other purposes of the ship as desired. The principle has been recorded
in the Patent-office since 1878, and is one worthy at least of adop. ecially to large armour clad Charlton, S.E., October 29th

> GROYNS F FR PROTECTING FORESHORE cre

SIR,- - Your article in THE ENGINEER of the 26th ult., on groynes
or protecting foreshores, cannot fail to be of interest to those of the profession who are more immediately brought in contact with that dlass of work, and there can be no doubt that in many instances
pen groynes of fir poles would be found to answer where closel sheeted ones have failed to produce any permanent good.
As you rightly observe, the currents generated by wave actio
a day's gale will at many places work a greater change in oreshore than a year's ordinary weather; and although the close
fore groynes doubtlessly retain the shingle silted against them in ordi-
nary weather, yet luring a gale it not unfrequently happens that he back wash of the sea after the water strikes the groynes sufficient to denude the foreshore of the shingle which has probably to be the case where a sea wall exists, About three years a aoo the sea wall of the Esplanade at Ventnor was extended some distance almost undisturbed for years past, but no sooner had the wall been erected than the shingle began to diminish, and in a short tim close sheeted groyne proving altogether ineffectual in permanent1y
retaining the smallest quantity, the little accumulating during fine weather being again swept away by the fter striking the wall during the first gale. To remedy this, the shape of an inverted V, the apex placed seawards. The greater part of one of these has been erected, and although the work has hingle in front fed the wall whan months, there is aiready waves not having sufficient power after striking the wall to draw their shingle with them as they recede, having pre
Ineir have not seen the model pashibited by Mr. Dowson at the British Association conversazione, probably it is an improvement upon that
with which we have been acquainted for years past; but certainly with which we have been acquainted for years past; but certainly
the idea of open groynes has not originated, as your remarks would the idea of open groynes has not originated, as your remarks wou
imply, with that gentleman.
RobrT . Scort.

Sir, - I have not seen your last article on the Brighton beach question, but I understand that you ustate all the defences recently
erected from my design at Hove have been washed away. I am sure you would not intentionally mislead thoss interested in this work, and therefore 1 may be permitted to say that the works
carried away by the gale on the 1st of September last were quite of
very heavy gale. None of the permanent works suffered in the thest degree-not a bolt started nor a plank lost. In addition,
may be interesting to you to know that at those parts of the Yoreshore where the novel system of groyning initiated by me is
complete there was no loss of beach. The scour at the back of hose groynes, bailt in the old-fashioned way, by being at right angles, or nearly right angles, to the shore line, has
invariable rule. Where, however, the groynes are an angle of
co deg and 45 deg, to the shore lines, there is not now, and never 60 deg. and 45 deg. to the shore lines, there is not now, and never
has been since their erection, much scour. At the lee side of the has been since their erection, much scour. At the lee side of the
45 deg. groynes there has never been any scour, while sufficient shingl. has been retained on the weather face to protect the shore, althoug
top of
So fa
So far from the groynes trending to the east having proved a
ailure, I believe the future of all groyning on the south coast will be in this direction.
N. B. Eluick-Clark, Memb. Inst. C.E.

SCIENTIFIC PROGRESS.

$\mathrm{SIR},-$ - Possibly I ought to apologise for forwarding to you an
pistle more calculated to amuse than instruct, but if viewed correctly, it should be both instructive and interesting. In
searching through the national archives collected in the Library searching through the national archives collected in the Liber mand
of the British Museum, I encountered a small pamphlet purporting to offer the causaciu for the seve fair was held upon
the Thames. nothing can be more agreeable than a a philosophic account of the mar-
vellous works of nature," After this inviting prelude, the author proceeds with that peculiar self-sufficiency, characteristic of many scientific authors, to inform his readers "that of all substances the atmosphere either absorbs or throws out heat with the most remarkable facility, and in one or the other of these states $1 t$ always is in regard to the surface of the earth, as for such bodies that
are placed on or near the earth they have no proper temperature of their own. When the air has been for some time absorbing heat from terrestrial bodies, a frost must be the undoubted consequence, and if whole earth would be converted to a frozen mass. There are, however, certain powers in nature by which this is frustrated, and pose, and end in a thaw.
Surely, Sir, this must have been most comforting intelligence.
Authors of to-day, to judge from their writings, possess as direct knowledge as our juthor; but when did a Tyndal a Glashier, or any that professedly devote themselves to these things, after their column upon column of figures or facts, ever derive such
consoling and comforting assurance as this author of the good old mes furnished?
Grange-road, Eastbourne, November 20th.
inside cylinder locomotives.
Sir, - Since perusing your valuable article in your number of
st week under the above heading-which is, perhaps, at this tage of the discussion more suitable than that of "The Glad stone"-I have received two or three letters upon the subject from engineers and others connected in various ways with locomotive Work, of a more or less contradictory nature. Foremost among
these is one who will doubtless not object to publicity being given hese is one who wil doubtiess not object to pubicicty being given or not having sent a crosss-sectional sketch of the cylinders of the Glasgow and South-Western engine, besides the half-plan, as being liable to mislead one in judging of port area, goes on to say:
"In the South-Western-Glasgow and South-Western-engine the In the South-Western-Glasgow and south- Western-engine the
ports are in one length, contracted at centre, but advantage taken ports are in one length, contracted at centre, below. ...It is
of what can be got, and enlarged above and belo well known that these engines are not throttled in any way, quite the reverse, and valves above and valves below are old designs
however some engineers may twist them into irregular shapes as Romespecting the
Respecting the latter part of my correspondent's communication,
he is certainly right as to the antiquity of the employment of valves above the cylinder, but I believe that valves below are a
vertian right as the the and comparatively recent adaptation. With regard, however, to the first part of his letter, surely there must be some comparison
between the values of various forms of exhaust ports, as, for instance, even supposing the space above and bew the centre ing in a port shallow in one part and deep in another, this form, I should think, can searcely be so serviceable as one into which steam can be released directly to an uniform depth, instead of part
of it having to squeeze, as it were, past a narrow neck, to find its of thave to the bast pipeez, neither is this arrangement any remedy for through it is this want of space which conducest pass throttline exhanst, and which obtainable in ordinary engines. yld name, who designed the Glasgow, and South-Western engine, to
which this correspondence refers. The fault is mine, and I must apologise for leaving this unmentioned in my letter of the
F. A. FIELD. London, W.C., November 20th.

> Dowson's gas as a motive power.

STR, While thanking you for the able criticism of my work,
which appeared in your issue of the 2nd inst., permit me to make the following remarks on some points you have referred to :-
The seventeen days' trial recorded was made with one 12 -hors power and five 16-horse power nominal Otto engines. The engines
were watched during the trial, and the power of those not fully loaded was reckonec partly by indicator diagrams, and partly by
counting the intakes of gas. It is believed that 90 indicated horse-power is rather under than over the average power exerted.
A $3 \hat{l}$-horse power nominal worked with this gas was tested by Mr. D. K. Clark-vide Smoke Abatement Report, 1802- and the fuel consumption of
horse-power per hour.
Later Messrs, Crossley and myself tested an ordinary 16 -hors
power with a constant load, working with my gas, and the fue consumption was $1 \cdot 41 \mathrm{~b}$. per indicated horse-pow then a new 16 -horse power, specially made for this gas, was tested 1.2 lb . per indicated horse-power per hour. Details of these trials and sketches of the apparatus used,
together with the actual composition of the gas, , cc., are eiven in
the last volume- lxxiii. -of the "Minutes of Procedings of the Institution of Civil Engineera
as coal gas, it is not correct to supposed to develope the same powe much larger cylinder is required, and that the volume of beated products passing through the exhaust is much augmented. Fo
coal gas the cylinder of this engine is proportioned to receive a large excess oo air above the e. $\cdot 3$ volumes theorectically required foo
its combustion. On the other hand my yas requires theoreticall only $1 \cdot 1$ volume of air, and without altering the ordinary engine it is possible to obtain 85 per cent. of the maximum power obtainable is with coal gas. With the same sized cylinder, but with some other
parts modified, the same maximum power can be obtained as with existing coal gas engines.
Replying to your question, "Can an engine be made to develope, say, 100 -horse power in this way?" I may mention that Messrs.
Crossley have already made a double-cylinder engine to indicate
soh-horose powere with $m y$ gas, and they are prepared to make still
larger onesf

 MODERN PHYSICS.

 inguining mate my protest, , may bealowed for a moment to inguire metherer hhere if really yany juat ground for theosepipin
 pot at totings. It it in not that soience makeses confitititing watate.

 Mrass remains the same, whetherat test or in motion." Mr. Staill

 massis onntant may or mam not bot trie. That motion is is onstantat

 used in a least two eneses-(1) athing may be called "inert "wher

 has been guity of the common falatace of sobstitutuing one state. net rom ano
Assumption as os or almicic constitution of matter-" "Mases is not
 or mase we subsititite materer; but tit should not be given nse

 Avour -We are therefore redued to the third supposition, in

thear ofor he prof of the cromatary

 torore hate thins statement is oumded on a fallacy, and the preesent

nelatio. As I have ponitede of mansareo aboolutuly hard and

 teatio in the other and seientifion sense-a statement whieh ib

 inert
 fom at lost ounjectere wat yir stalo mana by pimputed Sat whaterer they be, they ata onither mass nor motion, and

 theory, and it has ben doabtauly suygested in some confeseselly Oid speacuations-c.a,s, the Unseen Universe - that it may some
 xiom I am not aware. But NII. Stainlo adde to to it, by was of
 How ho ememe to have let this stand inn acoond edition, when at
 Hernation ico ort the bood hameny that it does
Here end what Mr. Stallo adrances as the ultimato priniplese of noaer physies, in oraer that, in the nex pix. chapter, he may

 aro expanaded into throe heade, as follows:

 tinuty of ppacos stands the the diseontinainity of matter the the expan

Leterme atems sompoing the difierent ohemialal elements are of combination.
Hiowi, the word "a atom" in wed in at least thred ififerent egnes aah other, and eall by different names. They are as of oil

 that no known proeess of nature is able to to braak them, orto offoet

 the intst enese, in No. 2 int the seond; ind in No. 3 in the third

 weiahthis isited as ol lantly oontradiditory to the ideathat tho ultian axiom that the ultimate atoms areall alike; but it he didid here

 expresesing my admiration for his vigour and aututeneas, mingsed

 a gatrel in which I entirell symmathibere, and in in whiche, if he

 tratites on which their repptation is hased, are both harmonious puted tot them. If any doont thisi, let him refere to theirier workd beifore he pronomences in orinion. Mr. Stallo, parthly for wort

 which he finds himaefif creatited with a number of opminins which hedoes not tool, and deauctions from thoses opimions wich are

 an with made on itte etiri, among those

 mhereas it is a well-mown faot that more than one ralluav oom:
 the valves betwen, and that thundrededof suche engines areat workin

 pasese part of novety in the deximan ;and with regasid to the valuve under

 no oxprees
 Springburn, Glasgow, Nov, 19th.

GOLD MINING MACHINERY.
 dent tatatest that our moudil of a batitery of of cilifirminan gravitation
 Tate thre years we have made cravitation tampst to that deimp, and moincations of tt, tor eighteen of the leading gold mining

 Improvenentst that have been introduced by thooe haring the
The Sandygroft Foundry and Engine Works Company
raliway sprbi.

M. ar.
$S_{\text {Sim }}$ the strexati of Lemp pipgs
Sinc, Seeing in your latat impresesion that bursting of tead pipes
 tion purpoe, wo bey to ay that we as patentese of apparatuis

Gothit Eny ineoring and builier Works,
Naval Engineer Appointments. - The following appointments

SWISS LAKE STEAMER, HELVETIA.
messrs. Escher, wYss, and co., Zurioh, enaineers,

IMPROVED OIL MILL ON THE ANGLOAMERICAN PRINCIPLE.

THE old and cumbersome methods of crushing oil seeds by mechanical means have, during the lass few years, undergone a
complete revolution. By the old process, the seed having been complete revolution. By the old process, the seed having been
flattened between a pair of stones, was afterwards ground by flattened between a pair of stones, was afterwards ground by
edge stones, weighing in some cases as much as 20 tons, and edge stones, weighing in some cases as much as 2 tons, and
working at about eighteen revolutions per minute. Having jacketted vessel, where it was heasted, quantities sufficient for a cake-in woollen bags, which were placed in a hydraulic press. From four to six bags was the utmost that could be got into the press at one time, and the cakes were pressed between wrappers of horsehair or similar
material. All this involved a good deal of manual labour, cumbersome plant, and a considerable expense in the frequent replacing of the horsehair wrappers, each of which involved a cost or about ex. The modern requirements of trade have in every branch of industry ruthlessly compelled the aban-
donment of the slow, easy-going methods which satisfied the times when competition was less keen. Automatic mechanical arrangements, almost at every turn, more effectually, and at greatly increased speed, complete manufacturing operations has been no exception to the general rule. A couple of years back reference was made in the columns of THE ENGINERR to

7in. This ram gives only a limited pressure, and the arrangements are such as to obtain this pressure upon each press running, and the work is taken up by a sesond plunger, having ram lin. diameter and a stroke of 7in., the second pump continuing its work until a gross pressure of 2 tons per square inch is attained, which is the maximum, and is arrived at in less than two minutes. For shutting off the communication between the presses, the stop valves are so arranged that either press may be let down or set to work without in the smallest degree affecting the other. The oil from the presses is caught in an oil tank behind, from which an oil pump, worked by an excentric, forces
it in any desired direction the press, are stripped of the bacging, on being withdrawn from ally arranged pairing machine, which is placed off the bed-plate behind the kettle, and is driven by the pulley shown on the main shaft. The paring machine is also fitted with an arrangement for reducing the parings to meal, which is returned the kettle, and again made up into cakes. The presses shown have corrugated press plates of Messrs. Rose, Downs, and Thompson's latest type, but the cakes produced by this process can have any desired name or brand in block letters put upon
them. The edges on the upper plate, it may be added, are found of great use in crushing some plate, it may be added, are found The prant use in crushing some classes of green or moist seed. to crush about 4 tons of seed per day of page 399, is constructed manual labour has been so reduced to a minimum that it is

ESTIMATING STARCH IN CEREALS.

AT the meeting of the Chemical Society on November 15th, Mr The author has used the on "The Estitimation of described belorch." eight to ten years for estimating starch in cereals and malted las The method mayy be briefly described as follows :-The finely ground 90 grain is successively extracted with ether, alcohol-specific gravit residue is gelatinised by boiling with water cooled to 60 deg., and converted by diastase into dextrin and maltose; if a quantitative determination of these two products be made, the starch originall present can be calculated. The author describes the method a
follows:-About 5 grms. of the finely-ground flour are onows :- About 5 grms. of the finely-ground flour are introduce
into a wide-necked 100 co. flask, and just saturated with alcohol specific gravity $0.82,20$ to 25 cc. of ether are added. After stand ing several hours, with occasional shaking, the ethereal solution decanted through a filter, and the residue in the flask washed with
ether. To the residue 80 to 90 cce of alcoho ether. added, and the moisture warmed to 95 specific gravity 0.90 hours. The alcoholic solution is then decanted through the same filter, and the residue washed with alcohol, specific gravity 0.90 , 35 to 38 deg. The residue in the flakk and on the filter is washed
into a 500 cc . beaker, and the baker filled with into a
twenty-four hours the solution is deanted residue washed with water at 35 to 38 deg. The residue in the
rent beaker and on the filter is washed with a short camel hair hrush bearer and jot into 100 cc. beaker. The whole is then boiled for a
and a fine
few few minutes in the water bath, with constant stirring, to gelatinise the starch. The beaker and its contents are cooled to 62 to 63 deg,
and about 0.03 grm. of diastase added; the digestion at 62 deg. is and about 0.03 grm . of diastase added; the digestion at 62 deg . is
continued for an hour. The beaker is then boiled for eight to ten conninued for an hour. The baiker is then boiled for eight to ten
minutes, the solution filtered into a 100 co. measuring flask, the mesidue carefully washed with successive small quantities of boiling water, and the whole made up to 100 cc at $15^{\circ} 5$ deg. The ether frees the grain from fat, \&c., the alcohol- $90-$ removes the sugars, albumenoids other than casein, \&c., whilst water at 35 to 38 deg.
dissolves out the amylams. Dextrin and maltose are the sole prodissolves out the amylams. Dextrin and maltose are the sole pro-
ducts of the action of diastase on starch. The diastase is prepared as follows:- -2 to 3 kilisos. of of finely-ground pale barley malt are
mixed with sufficient water to saturate and cover the whole mixed with sufficient water to saturate and cover the whole
After standing three or four hours, the mass is squeezed After standing three or four hours, the mass is squaezed
with a filter press, If not bright the liquid is filtered. To
the clear solution, alcohol, specific gravity 0.83 , is added, as cloar so asution, alcohol, specitio gravity 0.83 , is adeced
asecipitate falls; as soon as the super-
natant liquid becomes milky natant liquid becomes milky the addition of aleohol is dison-
tinued. The precipitate is washed with alcohol 0.88 to 0.88 , dehydrated with absolute alcohol, pressed and dried in vacuo over
sulphuric acid until its weight is constant sulphuric acid until its weight is constant. Diastase thus pre-
pared is a white, friable, easily soluble powder, which retains its activity for a considerable time. Five grms. of barley flour thus
treated

 matter; taking $1 \cdot 0039$ as the specific gravity of a solution con-
taining 1 per cent. of starch products- 9.178 grms. of this solution reduced 0.241 grms. cupric oxide, and 200 mmm of it it gave a devia-
tion in tion in the Soleil Wentzke-Scheibler saccharimeter of $21 \cdot 1$ divisions. Thus we have $0 \cdot 241$ grm. $\times 7250 \cdot 1.748$ grm. maltose in
$9 \cdot 178$ grms.; in the 100 co. or $101 \cdot 003$ grms. there are $1 \cdot 923$ grms. $9 \cdot 1.18$ grms.; in the 102 co. or 101.003 grms. there are 1.923 grms .
maltoges ; 1 grm. of maltose in 100 co. gives a deviation in 200 mm . of 8.02 division, and 1 grm. of dextrin in 100 ce. gives 11.56 divi-
sions. So $1.923 \times 8.02=15 \cdot 422$, the optical activity of the maltose; and $21 \cdot 1-15 \cdot 422=5 \cdot 678$, the optical activity of the dextrin; therefore, in 100 cc . there are $\frac{5 \cdot 678}{11 \cdot 56}=0.491 \mathrm{grms}$, of dextrin. We have, therefore, in the 100 co. maltose 1.923 grms. of dextrin,
0.491 grm. diastase, 0.03 grm. $=2 \cdot 414$ grms. out of 2.539 solids, as 0.491 grm. diastase, $0.03 \mathrm{grm}=2.44 \mathrm{grms}$. out of 2.539 solids, as
indicated by the specific gravity; of this deficiency of 0.095 grm . 0.083 proved to be an amylam which had not been washed out. 1 part of starch yeields 1 part of dextrin and 1 part of starech yields
1.055 maltose. The starch represented by the above numbers is therefore dextrin $=0 \cdot 491$, maltose $\frac{1 \cdot 928}{1 \cdot 055}=1 \cdot 822$, or a total of 2.313 grms. starch from 5 grms . of barley. Barley thus contains
46.26 per cent. of starch. A A second experiment gave 46.38 per 46.26 per cent. of starch. A second experiment gave 46.38 per
cent. The author gives many other determinations in detail ; barley cent. The author gives many other determinations in detail; barley
malt contains $39 \cdot 9$ per cent.; wheat, $55 \cdot 4$ per cent.; wheat malt
 cent. In some experiments the author estimated the starch in a sample of pure starch containing 89.36 per cent. of dry starch.
He obtained 87772 per cent. and 89.54 per cent. He obtained $87 \cdot 72$ per cent. and 8954 per ecnt. The author states as the result of his experience with the method that the differene
in results obtained by any two observers need not exceed 0.5 per cent. of the total starch. Dr. Armstrong said the paper was one
what was being done in this direction, and a description was given of an altogether new departure from the old method introthen just completed, at Wateringbury Kont, of Hull, who had then just completed, at Wateringbury, Kent, for Mr. R. Leigh, Since the mill at Wateringbury was built, further improvements have been introduced by Messrs. Rose, Downs, and has been erected in various parts of the world a number of mills we give on page 399 represent the latest devolopment in im proved oil mill machinery introduced by this firm. This mill, Messrs. Rose, Downs, and Thompson have named the "Colonial " mill, and recently we had an opportunity of inspecting the machinery complete before shipment to Calcutta, where
it is being sent for the approaching exhibition. As compared it is being sent for the approaching exhibition. As compared
with the old system of oil seed crushing, Messrs. Rose, Downs, with the old system of oil seed crushing, Messrs. Rose, Downs,
and Thompson claim for their method, amongst other advantages, and Thompson claim for their method, amongst other advantages, a great saving in driving power, economy of space, a
extraction of the oil, an improved branding of the cakes, a saving of 50 per cent. in the labour employed in the press room, with applicable to ling in wear and tear, whie the process is equally addition to these improvements in the system, the "Colonial" mill has been specially designed in structural arrangement to meet the requirements of exporters. The machinery and engine are self-contained on an iron foundation, so that
there is no need of skilled mechanics to erect the mill, there is no need of skilled mechanics to erect the mill,
nor of expensive stone foundations, whilst the building covering nor of expensive stone foundations, whilst the building covering
the mill can, if desired, he of the lightest possible description, as no wall support is required. The mill consists of the following machinery :-A vertical steel boiler, 3 ft . 7 in . diameter, 8 ft . $1 \frac{1}{2} \mathrm{in}$. high, with three cross tubes $7 \frac{1}{2} \mathrm{in}$. diameter, shell $\frac{5}{5} \mathrm{in}$. thick,
crown $\frac{3}{8} \mathrm{in}$. thick, uptake 9 in . diameter, with all necessary fittings, and where wood fuel is used extra grate area can be provided. This boiler supplies the steam not only for the engine, but also for heating and damping the seed in the kettle. The engine is
vertical, with 8 in . cylinder and 12 in . stroke, with high governors, and stands on the cast iron bed-plate of the mill This bed-plate, which is in three sections, is about 30ft. long, and is planed and shaped to receive the various machines, which when the top is levelled, can be fixed in their respective places by form a support for the shafting. The seed to be crushed is stored in a wooden bin, placed above and behind the roll frame hoper The roll frame has four chilled cast iron rolls, 15 in . face, 12 in , dia meter, so arranged as to subject the seed to three rollings, with patent pressure giving apparatus. These rolls are driven by fast and loose pulleys by the shaft above. After the last rolling the seed falls through an opening in the foundation plate in a screen driven from the bottom roll shaft by a belt. This conveys the seed in a trough to a set of elevators, which supply it continuously to the kettle.
This kettle, which is 3 ft . 6 in . internal diameter This kettle, which is 3 ft . 6 in . internal diameter and 20 in . deep, is made of cast iron and of specially strong construction. There age this joint is faced in a lathe. The inside furnishings leakkettle are a damping apparatus with perforarishings of the shaft, stirrer and delivery plate, and patent slide. The kettle body is fitted with a wood frame and covered with felt, which is enclosed within iron sheeting. The crushed seed is heated in the kettle to the required temperature by steam from the boiler, and it is also damped by a jet of steam which is regulated by a wheel valve with indicating plate. When the required temperabox has been obtained the seed is withdrawn by a measuring box through a self-acting shuttle in the kettle bottom, and even ly distributed over a strip of bagging supported on a steel tray compression sufficient to reduce it to the size that can be taken in by the presses, but not sufficient to cause any extraction of the oil. The seed leaves the moulding machine in the form of a thick cake from nine to eleven pounds in weight, and each press is constructed to take in twelve of these cakes at once. The press cylinders are 12 in . diameter and are of crucible cast steel To ensure strength of construction and even distribution of strain throughout the press, all the columns, cylinders, rams, and
heads are planed and turned accurately to pockets that take the columns, in the planely to gauges, and the pockets that take the columns, in the place of being cast, as is throughout, and are planed or slotted out of the solid to gauges The pressure is given by a set of hydraulic pumps made of crucible cast steel and bored out of the solid. One
of the pump rams is $2 \frac{1}{2}$ in. diameter, and has a stroke of
intended to be worked by one man, who moulds and puts the twenty-four cakes into the presses, [and [whilst they are unde presssure is engaged paring the cakes that have been previously separator can be combined with the mill, but in such a case the engine and boiler would require to be made larger. The illus trations we give will in themselves furnish a pretty full explana1881, other details were given in connection with the mill erected by Messrs. Rose, Downs, and Thompson, at Wateringbury, which will also be of interest.

ENDLESS TROUGH CONVEYOR.
The endless trough conveyor is one of the latest applications of link-belting, consisting primarily of a heavy chain belt carried which the chain runs. This chain or belt is provided with pans

which, as they overlap, form an endless trough. Power being applied to revolve one of the wheels, the whole belt is thereby set in motion and at once becomes an endless trough conveyor.
The accompanying engraving illustrates a section of this con-
great value, and the amount of work involved was not by any
means represented by the length of the paper. The progress of

veyor. A few of the pans are removed, to show the construc-
tion of the links ; and above this a link and coupler on a larger scale. As will be seen, this link is provided with wings, to form a rigid support for the pan to be rivetted to it. To reduce friction each link is provided with three rollers, as will be seen in the engraving. This outfit makes a fire-proof conveyor which will handle hot ore from roasting kiln to crusher,
and convey coal, broken stone, or other gritty and coarse material. The Link-belt Machinery Company, of Chicago, is now erecting The Link-belt Machinery Company, of Chicago, is now erecting
for Mr. Charles E. Coffin, of Muirkirk, Md., about 450 ft . of this oonveyor, which is to carry the hot roasted about 450 ft . of this conveyor, which is to carry the hot roasted iron ore from the kilns on an incline of about one foot in twelve up to the crusher.
This dispenses with the barrow-men, and at an expenditure of few more horse-power becomes a faithful servant, ready for wor in all weather and at all times of day or night. This company also manufactures ore elevators of any capacity, which, used in connection with this apparatus, will handle perfectly anything in the shape of coarse, gritty material. It might be added that the endless trough conveyer is no experiment. Although comparaMining new in this country, the American Engineering and Mining Journal says it has been in successful operation for some time in England, the English manufacturers of link-belting
having had great success with it.
physiological chemistry must depend upon the accuracy of the Such researches must contribute a great deal to the constituents of vital problems. In answer to Dr. Armstrong, Mr. O'Sullivan stated that methylated spirit could be used in the extraction of the
flour. .
AT " Reddich, Germany," the Scientific American says, 14,000 persons are engaged in making needles. The total production of
needles in the world is $200,000,000$ per week, or $10,000,000,000$ per year Silk Manufacture in England.-A correspondent writes from Lucerne:- "Would you kindly open your columns to the consideration of all the aspects of the question why silk manufacture has no position in England, the home of the cotton spinning industry The raw material can be as easily purchased by the English as by
others, from Northern Italy, and shipping freights are cheap. The impediments stated out here are : (1) That the British Gevernment places a heavy tax on the raw material; (2) that we have no workmen with the experience and 'touch' of those engaged in the industry in various countries in Southern Europe; (3) that if we had the workmen, or educated or imported them, the art taste
does not yet exist to produce similarly elegant and refined patterns (4) that high rents and limited tenure in England are patterns; forces; (5) that money wages are higher, due in part to the pre-
ceding cause."

RAILWAY MATTERS.

IT is expected that the inner circle completion will be finished in the early parto of next year. The t.
stations are being pushed forward.
IN a report on a collision which occurred on the 6th ult. at
Aldeburgh, on the Great Eastern Railway, Major Marindin Aldeburgh, on the Great Eastern Railway, Major Marindin
remarks that the driver appears to have discovered that he was running too fast when he was still over 300 y yards from the buffer
stops ; and, therefore, if he had had a continuous brake at his command he might easily have averted the collision.
THE railways of South Australia bring in a total revenue of
$£ 469,000$, yet the actual net receipts to be set against the interest on cost of construction is only $£ 146,000$. The Colonies and India says economical management might make these railways indeed a
splendid property equal in value perhaps to three-quarters of the splendid property, equal in value perhaps to three-quarters of
national debt. but as things are at present it can only be said th
they pay about half the interest on their cost of construction.
THE directors of the Oregon and California Railway have received $^{\text {dices }}$ advies from their English engineer at Oregon, stating that the
completion of the line to a junction with the Central Pacific is completerion of troceeded with, and out of a total of ontral macilitice from
boseburg, about 110 miles to Ashland will be in working order by January, next. The last section of 38 miles, including the tunnelJanuary next.
ling of the Siskiyo Mountains, is also in an act
expected to be completed by the close of 1884.
A Parlamesitary paper has been published, giving the report
by the Board of Trade on the applications made in the year 1882, under the Railways Construction Facilities Act, 1864, and of their
proceedings under that Act and the Railwways-Powers. and
Construction-Acts return contains a report on the applications made during the year
1882 under the Railway Companies' Powers Act, 1864, and of the proceedings of the Board of Tranae with rewspect thereto.
A Large new signal-box, on the Great Western Railway at
Ruabon, had been constructed to contain about fifty levers, when landslip in the embankment behind, on Monday, swept down the entire structure into the railway, with a large quantity of earth
and a massive stone wall. The signal-box was completely wrecked, and a foreman and two workmen were buried beneath the debris. Some thirty or forty workmen in the station yard hearing the
crash hurried to the spot, and dug out the men before they were suffocated.
THE Swansea Harbour Trust has decided that, while the London
and North-Western Railway Company go to Parliament next and North-Western Railway Company go to Parriament next
session for powers to extend its line from Blackpill to the water pier 500 yards long, so as to accommodate the makeat steam water pier soo yards long, so as to accommodate the great steam-
ship traffic for passengers and goods which will be created between
Wales and Devonshire, Cornwall, \&c. This ine will give a new Wales and Devonshire, Cornwall, \&o. This line will give a new
and direct through route between Wales and the north and southwest of England. It is looked upon as a project of the greatest
importance to the district and the Bristol Channel generally, as it
win will enable steamers of the largest capacity to load and unload a any state of the tide without docking. One-sixth of th
England's shipping yearly enters the Bristol Channel.
Durine a recent visit to Darjeeling, writes a Times correspon-
dent, II was much himpressed by the great advance visible in the
prosperity of the station and district prosperity of ene thation and district since they were brought into connection with the Indian railway system two years ago. Within
few
days' march of the terminus of the mountain railway lines is trans-frontier districts of the Punjab, by Mahomedan cut-throats but by a peaceable and trade-loving people. At Apesesent the bulk
of the trade between India and Tibet is obliged to follow a most circuitous route, through Nepaul, and it it charged duty on enter-
ing and leaving that country. Notwithstanding these difficulties ing and leaving that country. The direct route lies unquestionably through Darjeeling, and goods can now be conveyed by rail to
within a week's journey from the frontier. The removal of the existing restrictions would open new and enormous markets for
tea, indigo, tobaco, and other Indian products, as well a for hard
ware and supply us in return with inexhaustible quantities of the finest wool,
and with musk, borax, \&c." Cheap railway extension works would it would appear, promise a good furure
AT the Petty Session at Watford on Tuesday, Frederick Ridg.
way, aged thirty years, signalman, surrendered to his bail in answer to a charge of manslaughter, in cuusing the death of
Joseph W. LLongtaffe, engine driver, who died from the injuries
received in the collision on the London and North-Western Railway at Watford, on October 31 st. Ridg gway wrote a statement, in
which he expressed his regret at having forgotten that three empt coaches detached from the 5.40 train were standing on the up fas
line waiting to be shanted, when the 2.5 Liverpool express dashed into thein. It appeared from the evidence of a witness named
Griffin, who was acting as station-master on the evenis Grifinn, who was atting as station-master on the evening of the
accident, that at 6.14 there were obstructions on seven of the lines
which which delayed the shunting for some little time. He thought, down goods train at Bushey had been kept back. It was admittee
that the shunting engine and empty carriages were at a distanceo
about 170 yards and that there was no red light shown at the rear of the vehicle as required by the rules supplied to the company's servants. At
the conclusion of the evidence, Mr. Robert Pryor, the chairman of the bench of magistrates, said the case was one of great public in-
portance. The magistrates had given it their most careful con-
sideration, and they came to the conclusion that Ridgway had not been proved to be guilty of manslaughter.
THE Arlberg Tunnel was completed on November 19th. The ceremony was completed on the eastern or Tyrolese side, at th
village of St. Anton, at the foot of the mountain. Atter a
adde
and resto Baron Pied tion the Minister of Commerce, had been read and replied to by him, the guests, among whom was the Governo
of the Tyrol, Herr von Widman, went to the entranee of th
tunnel, which was decorated with pine branches, and near whic an altar had been erected. A Te De per Was chanted. The miners,
carrying the green and white flag of St. Barbara, the carrying the green and white flag of St. Barbara, their patron
saint, stood round the carved wooden altar, while thousands of
workmen listened bareheaded cluded, the guests dressed themselves in long frocks and moen eon
 berg side, had assembled in a body at the entrance of the tunne
where also an altar had been erected, over which Mass was said Over the entrance of the tunnel three large flags floated, with th
Imperial eagle. Two medallions were also affixed bearing the in 1883 ." The train disappeared into the tunnel, moving to mee
the other. In the meantime, the train from the east had made could scarcely light up the gloom. In places the but the transparencies with the
55 minutes to the to look at the sheet of rock 170 centimetres thick, which, though
pierced with a hole for communication, still intervened between pierced with a hole for communcation, still intervened betwee
the two passages. The Minister, mine, and a deep, rumbling noise announced the final piercing o joined the rails on both sides, The chief engineer next delivered
an address, expressing satisfaction at the completion of the work, and pointed out the importance of the completion of the line of communick,
tion. The Minister replied, and distributed the commemoration tion. The Minister replied, and distributed the commemoration
medal. It shows two female figures, Tyrol and Vorariberg, whe
join hands.

NOTES AND MEMORANDA.
THE density of the new standard pound weight made of plati-
num, under order by the Board of Trade, is 21.3857 the air bein at a mean temperature of 12.77 deg . C., and the water in which it was weighed 10.81 .
Rrcent experiments give the coefficient of cubic expansion of
bronze as used in the Mint as 0.00005322 per deg C bronze as used in the Mint as 0.0000 an322 per deg. C., and of brass
0.00005166 , the linear coeftieients being consequently 0.00001774 and 0.00001722 . The cubic expansion of white glass is given at

The Board of Trade "Report of Proceedings und

THE Board of Trade Report of Proceedings under the Weights sure of aqueous vapour at temperatures from 0 deg. O . to 30 deg. C., of the density of air; of the density of water at dif
ferent temperatures; table of corrections on the gallon of water
for temperatures from 50 to 75 deg. F, in brass and for temperatures from 50 to 75 deg. F. in brass and in glas ties, coefficients of expansion, and on petroleum testing
Accordivg to report, the exploring party in the Accrington pit
have discovered the source of the fre-damp whence resulted the explosion. Among the numerous contrivances proposed for pre
venting the recurrence of such calamities, it is curious how little is venting the recurrence of such calamities, it is curious how little is
said of the use of fire-damp itself as a warning of danger. There is an apparatus, familiar in most chemical laboratories, constructed on porous plate as quickly as will 100 volumes of air. This being so,
the increased volume within the vessel is used to raise a column of mercury, so as to make contant with a battery, and then to ring
warning bell.
A German mile - about five English miles-contains $25,856 \mathrm{ft}$.; square German mile contains therefore $688 \frac{1}{2}$ million 8 square feet.
The superficial area of the Lake of Constance being $8 \frac{1}{2}$ German square miles, therefore contains 5682 million square feet. There
are living on the surface of the globe at this are living on the surface of the globe at this moment, in round
numbers, about 1430 million human beings. Let every man hav numbers, about 1403 million human beings. Let every, man have
4 square feet alloted to him, and if it were frozen over, the whol laman family might find standing room upon the surface of th whole human race be submerged, it would only raise the level the lake about bin. This seems incredible, but figures prove it. Iv the monthly report to the Water Examiner, Metropolis Wate
Act, 1871 , Messrs. William Crookes, William Odling, and Meymott Tidy say: -"With respect to the frequently considerable matter met with in London water, it results from our experiment that the mean amount of organic carbon in the water furnishe during October by the companies taking their supply exclusively
from the Thames, was just $0 \cdot 100$ part in 100,000 parts of the water, the avere Thames, was just 0100 part in 100,000 parts of the water, corresponding to about two-tenths of a grain of organic matter per gallon. With the coming on, however, of winter, the low amounts of organic carbon, and consequently of organic matter, present in
the water, for so many months past can scarcely any longer be
A BELGIAN bye-law was recently published instituting a diploma for electrical engieers which will be conferred on engineers after a
year's special study according to a programe which also considers engaged with suceecss in electrical engineering. Programme
relates to those who may gain the diploma at the end of one reates to those who may gain the diploma at the end of one
year's studies, which are to include - theory of electricity, electrotory work in electricity of electrotechnics. Programme B includes theory of electricity, electrotechnics, applied mechanics, industrial physics, with thermo-
dynamics, industrial architecture, design and operation of machines yynamics, industrial architecture, design and operation of machines,
laboratory work, and the English or German language. Pro gramme C includes electrotechnics, working of railways, industrial electrical projects, and one or other of the above languages.
IN a Board of Trade "Repport of Proeedings under the Weights
and Measures Act, 1878 ," just issued, Mr. H. J. Chaney remarks on his visit to the Paris Bureau, that "there can be no
doubt that, in the construction and arrangement of the comparing
rooms, and in the design and use of the comparing apparat the rooms, and in the design and use of the comparing apparatus, the
office at Sevres has made important advances towards that high accuracy of work which science now demands. With the means there provided it is possible, for instance, to ascertain a difference
between two kilogram weights so small as 0.000000003 kilog., less than a three hundred millionth part of the whole weight. In the comparison of two metres, a difference so small as 0.1 micron
0.0001 mm ., or 0.0000039 in .) could be determined. Standards-office, which is perhaps as well equipped as the best
offices of other Governments, it is at present not possible, with the microscopic apparatus alone, to ascertain differences in kilogram
weights smaller than 0 o.ooooooom kilog., or the twenty millionth of the whole quantity weighed; or the di,
measures of length to less than $0.0000095 i n . "$
AT the meeting of the Chemical Society on the 1st inst, a paper was read On the Alleged Decomposition of Phosphorons Anhy
dride by Sunlight," by Iessrs. . . Cowper and V. V. Lewes, In a
paper read before the Southport meeting of the British Association paper read before the Southport meeting of the British Association
by the Rev. A. Irving, the author stated that phosphorous anhydride, prepared by passing a slow stream of dry air over molten phos
phorus, decomposed when exposed to sunlight into amorphous phosphorus and phosphoric anhydride. The authors have re-
peated this experiment, and analysed the sublimate obtained in the manner deseribed by Irving- -1 consisted of $78 \cdot 2$ per cent. of phos-
phoric anhydride, 47 per cent. phosphorous anhydride, and 17 per cent. of phosphorus. On exposing this white mixture to sunlight
it became red, the phosphorus being converted into the amorphous variety. In another experiment the air, after passing over the
melted phoshorus, bubble through carbon disulphide. After
some time the bisulphide was allowed to evaporate on some time the bisulphide was allowed to evaporate on blotting
paper, when enough phosphorus was left behind to give dense paper,
fumes.
In his recent lectures on "Transmission of Energy," Professor
Osborne Reynolds said:-"In a revolving shaft, neither the stress nor the velocity are uniform over the section, both varying
uniformly from nothing in the middle to their greatest value on the outside ; so that their mean product is exactly half the produc of the greatest values. The greatest power per square unit o
section a shaft can transmit is half the product of the greates the greatest safe working stress of steel at $15,000 \mathrm{lb}$. on the square nch, taking what is the greatest practical velocity at the surface,
1oft. per second-the speed of railway journals-the work trans1oft. per second-the speed of railway journa1s-the work trans-
mitted is 75,00 foot-pounds per seond per square inch of section
-135 -horse power ; so that we should have to have upwards of 7 square inches in section to transmit 1000-horse
power, that is, a shaft of over 3in. diameter. The friction between such a shaft and labricated bearings is well known, 04 ; so that, calculating the weight of the shaft 24 ib. per fout, we have
power spent in friction about 52,000 foot-pounds per mile, that is put 1000 -horse power into a 3 in. shaft, making 500 revolutions per horse power out of it. If we had to go farther, the size of the lose a tenth, and if we repeat this process seven times we shall, at the end of seven miles, have left about half the original power put
in. It will be thought, perhaps, that a 3in. shaft is very small to transmit so large a force; this is because the speed of 500 revolutions per minute is inconveniently high for purposes of employing
the poweribut bi it were merely a question of transmission, it
would be about the best speed. This, then, shows the limit of the capacity of shafts as transmitters of work."

MISCELLANEA.
THE construction of the Highgate Hill steep grade tramway is
now being energetically pushed all along the line. THE petition for the winding up of
Lighting Company has been withdrawn.
The West Metropolitan Tramways Company mentary notices with the view of introducing a Bill next Session empowering the company to extend its tramway system from
Hammersmith to Victoria. Hamm
The Moorfield Pit, the seene of the reecnt explosion, where
ixty-seven lives were lost, was partially rep sixty-seven lives were lost, was partially reopened on Tuesday,
several coal-getters being set to work. The other parts of the mine
are being got ready for work. Mrssps. Rayiton Dixon and Co. have launched from their yard the steamer named the Welcombe. Her length is 285 ftt ;
breadth, 38 ft ; depth moulded, 25 ft . 3in.; ; and she is estimated to carry a dead weight of 3150 tons. The engines, which will be of Sons.
Hadrielip's STREL Foundry Conpany, our Sheffield correspon-
dent writes, has been awarded the only gold medal for its collection of steel castings, varying in weight from a few pounds up to
several tons each, at the International Exhibition held at Madrid this year. This, was the only gold medal granted for steel castings,
thus rendering the award of even more special merit and value, Alss rendering the award of even more special merit and value.
Also the fact of it being in the face of severe competition from German, French, and other continental manufacturers, is some-
what encouraging, as sustaining the reputation of Sheffield steel abroad.
AT the Staines Petty Sessions proceedings were taken by the of the pollution of the Thames by drains flowing through their district. Mr. G. Payne, solicitor to the Thames Conservancy, who since notice was served upon the Board, in September, 1879, to put a stop to the pollution of the river in this way, they had been
ive times convicted penalties had been imposed nothing had yet been done to remedy he evil. As it was estimated that the outlay upon a general
sewage system, such as Mr. Hawkesley recommended, would amount to $£ 32,000, \mathrm{Mr}$. Engall urged that this was a very serious question for a population numbering only 5000 . The Bench
deoided, under the circumstances, to impose a mitigated penalty of $£ 1$ 1s., and $£ 555$ s. costs in this case
A STRIKE of moulders has this week begun at the Cornwall Works, Birmingham, of Messrs. Tanyye's. It involves a principle
of considerable importance.
Hitherto the firm have had two Foundries in operation-one at the Cornwall Works, and another at ncreasing demand for their work have led to the erection of a new and extensive building adjoining the Cornwall Works, sufficiently
spacious to supply the whole of the castings. The moulders a Winson-green were non-society men, but those at the Cornwal Works were all in the Moulders' Union; and the preparations for
putting them to work together under the same roof originated putting them to work together under the same roof originated a
difficulty. Sixty moulders have struck against an attempt by the frm to introduce a uniform system of piecework, whereby every performs his work, and the firm is able to ascertain the exact cos of the work he produces.
A LARGE twin screw hopper dredger, built and engined by Messrs.
W. Simons and Co., was launched on the 17th inst., complete from their works at Renfrew. It is the property of the Queensland G. G. Dick, their engineer. It is named the Platypus, and it will
drent dredge to 30 ft . depth, and carry 800 tons of its own dredging sets of compound engines of 500 -horse power, and an awning dect for shelter in hot weather. It is besides inted ind an engineer workshop and tools, driven bs steam power, and seel has bee
used everywhere. In this vessel has been adopted the traversing
buck bucket girder and every appliance conducive to the economy and
efficiency of one of the most complete and powerful dredgers afloat This is the eighteenth hoper dredgger Messrs. Simons have con-
structed, and its place will be occupied by two duplicate vessels for the Spanish Government.
THE low prices which are known to have regulated the
big contracts reeently placed in Birmingham for copper wire for big contracts recently placed in Birmingham for copper wire fo
the new cables were quoted on Thursday afternoon on 'Ohang as an additional iilustration of the fineness to which profits have to
be cut in every department of business. The prices acceptea are reported to have been quite a half-penny per lb, under the market
quotation for wire of the specified quality. The latest contract, for 400 tons of copper wire for a new cable to North America, has been shared by Messrs. Jno. Wilkes and Sons, Thos. Bolton, and
Sons, and Elliott's Metal Company. This contract follows ano the one secured by the two first-named firms a few weeks back for the new cable to Brazil. Execution is urgent, and the North
American order is, it it believed, being rolled off at the rate eo nearly sixty tons a week. Copper wire makers cherish the expecta
tion that at least one other similar contract may before long be
idded added to those now in hand.
The great difficulties which were encountered in the earlier
stages of the Lorne Graving Dock, Quebec, have now been entirely surmounted. The whole of the dock works, except a
portion of the caisson chamber near the entrance, is founded upo rock, but at this place we understand that sand, to a considerable depth, was unexpectedly discovered, which necessitated extra
works being carried out within a confined space inside the cofferdam before the water could be excluded, and previous to getting in the foundationl
nature in Canada can only be carried on for six months in the year owing to the severity of the winter season, the progress made up result of the suggestions made by the engineers, Messrs Kinipple and Morris, to overcome the difficulties which have
arisen has proved most sucessful, and the works are now expected to be com
dock is 530 tt . in len
 American Continent. The resident engineer is Mr Woodfor Pilkington, M.I.C.E., and the
Connolly, and Co., of Canada.
THe principle already carried out with respect to the technical and Baden, has now been adopted in Wurtemburg. According t a decree lately issued in that coultry, there ha. ber two Stato examinations introduced in addition to a preliminary test of pro
ficiency in mathematical and physical knowledge. Attendance a technical school is a necessary preparation for candidates. The State examination is divided into two parts. The first includes practical geometry, the mechanical theory of heat-including
aerostatics and aerodynamics-the theory of building construction and of building materials, mechanical and chemical technology legislation affecting them, and, finally, motors and transport ma-
chines. The second examination is more specially intended to test chines. The second examination is more specially intended to tes
the practical knowledge of the candidates. A duly prepared pla has to be drawn up in accordance with a programme which i
issued, and as this has necessarily to be prepared at home, the can
didat is res. didate is required to make a formal declaration as to his having
been unaided in the work submitted examinations on technical subjects are also included in the scheme These tests are specially designed for mechanical engineers, and to skill in the construction of machinery.
PIPE FOUNDRYOF THE WIDNES FOUNDRY COMPANY, WIDNES.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary th inform correspondents that letters of inquiry addressed to the
pubbic, and intended for insertion in this ocumn, muts, in all
 answers received by us may be forvarded to their destination.
No notice vill be taken of communications which do not comply ${ }^{*}$ with these inst ructions.
${ }_{*}$ must therefore request correspondents to keep copies.
 taining questions, must be accompanied by the name and address
of the uriter, not neceasarivy for pubbication, but as a proof of
good faith. No notice whatever vill be taken of anonymous communi iations.
T. Appply to the Clerk of Contracts, Bard of Almiralty, Whithall.
J. . G. -You had better vrite to the inventor to 0 , Trafalgar ro

portland pumps.
SIR, - We shall be obliged to any of your readers who can tell us where
L. L. $A \geqslant$ Dortiand pumps are to be had.

belt tensions.

SIR, - Will any reader of THE ENEONRER inform me how to obtain the
tensions in the tight and slack sides of a belt transmitting power? London, November 19th.

Waterproof varnish.

USSIAN Sheet iron.
 $\substack{\text { cimin te tatained } \\ \text { ced } \\ \text { Peterborough, November 20th. }}$
the treatment of belts.

CONTINUOUS GIRDERS.

SIR,- In going through my article on "Continuous Girders" which
appeared in your iesue of the 9 th inst.. I find I Ihave to make the follow-
 $P=7.56+3=94$ e and $Q=3.52-2553 \mathrm{e}$
3, Westminster-chambers, Victoria.street, S.W., $\begin{aligned} & \text { London, Nuvember } 19 \text { th. }\end{aligned}$

THE ENGINEER.

NOVEMBER 23, 1883.

the coal trade.

The condition of the coal trade of Great Britain is now, and has been for some time past, very anomalous. Coal is an be readily effected ; but the prices obtained in England and Scotland are so low that next to no profit is realised by the coalowner, and an enormous strike is impending because the wages of miners cannot be raised. On the present of December next, if the colliers keep in thei ness to secure an advance of 15 per cent. in their wages This number will be in South and West Yorkshire and North Derbyshire. If Lancashire and other counties oin, probabiy the figures will be nearer 160,000. Dependent on thes 3 breadwinners are at least three times the number of wives and children. A serious question sug ests itself-how are they to be supported? Several of the miners are frugal and have saved some money, but as a rule they live from hand to mouth, and the first ques tion asked at the Rotherham conference was on this point. It is said that the union officials told the delegates plainly there were no funds sufficient to maintain them. One member reminded the conference of a balance of $£ 3000$
at the credit of the Yorkshire Miners' Association. "Yes," at the credit of the Yorkshire Miners' Association. "Yes,"
is said to have been the reply of the president, "there is $£ 3000$; that is just one shilling to eighteenpence each for each of you, and I shall take care you have the whole of it the first day you are out." The public are not likely to respond readily to appeals from the miners, and the number on strike will put it out of the power of
ther trade unions to support them other trade unions to support them. There is an idea among the men that after they have been out a
week or a fortnight the masters will be glad to make terms; but there is no likelihood of this taking place, Arrangements have been in progress ever since the advance and soted ompanies have heavy supplies of and steel companies have heavy supplies of coal stacked deliveries dronworkers will cenerally be put on half time, and as all Ironworkers will generally be put onil contracts are taken subject to a strict will be made to complete deliveries which cannot possibly be
effected. At present there is every prospect of the struggle being severe, and as there never yet was a strike which paid the working man the amount of wages he lost in fighting for an extra shilling or two per week, it is as certain as anything in the future can be, that the present dis pute, while it will seriously cripple capital and commerce pute, while it will ser, and will most assuredly entail widespread suffering in every mining village to which it extends in South Wales. There there is a brisk demand for coal at remunerative rates, and the men appear to be tol rably wel contented with their wages. The colliery proprietors make no complaints. What is the cause of this? So far as can be seen, it is a result, for one thing, of the fact that South Wales coal can be transmitted to the consumer at a less rate than Midland or North-country coal; but there is more than this ; and it appears to us that both men and masters in England would do well toconsider carefully the precise nature of the conditions under which the coal trade is carried on. It is possible that information might be obtained in this way colliery might be valuable. It may, no dat is to be known From their actions, are not well informed; and the master appear in too many cases to take a circumscribed and localised view of their position with regard to the consumer. Nothing is more likely to be injurious to the interests of masters and men than this. Unless a grasp will be made. To draw conclusions, for example, from what takes place in Durham, and to apply them to
Staffordshire and Scotland, is to proceed on an entirely wrong principle, and it is still worse to assume that what holds good of one colliery must hold good of a great many in various parts of the country; and not only should the position and relations to the consumer of the capital and labour employed in coal winning be considered, but also the relation and position of the consumer to the rest of the
world. Thus, for example, to assume, as too many miners world. Thus, for example, to assume, as too many miners
do, that the shipbuilder must have plates, and the For thaker must have coal, is to make a radical mistake For the building of ships and the making of plates depend at present very much on the price at which coal can be
bought. Unless ships are cheap they will not be purchased, and this fact of course affects everything connected chased, and
with ships

If we put on one side abnormal and short-lived rises in price, such as those which occurred about a dozen years ago, it will be found that the value of coal has not altered much for a comparatively long period, but the alterations have bertain hower that conditions under which coal i obtained are not the same as those which prevailed thirty or forty years a The pits are deeper. Seams thirty or forty years ago. orker which had nothitherto been touched because they were so deep. All the plant and machinery about a modern colliery is much better and more expensive than such machinery used to be. The capital expended is greater than at any previous time. The interference of Parliament has to a certain extent hampered men and masters. All these things must be taken into account. As far, however, as the expenditure of capital is concerned, the masters alone suffer. The men are better off than they ever were before. If the life of a working collier and his family in 1883 is compared with that of the collier and his family in 1833 or even in 1853, it will be found that their positions have been greatly ameliorated. They are better fed, better housed, have shorter hours of labour, and they work in mines uniformly better ventilated. Wages,
too, have risen ; and it is at least as cheap to live now as it was when every necessary of life save meat was much also derived advantages fromimprovements in the method of winning coal adopted, and we are not disposed to deny hat this is true to a certain extent; but after every allowance has been made, we think it is tolerably clear that the actual cost of getting coal is in many cases much greater han it ever was before. Of course there are exceptions to this; but, as we have tried to explain, it is essential that his subject should be dealt with on an extended basis, and arge deductions must not be drawn from exceptional cases. We do not, however, assert positively that the getting of coal has augmented materially in cost. Whi poino assert is that it is advisable that the truth on this pointshould be ascertained and made public; but so far as ricts are, no trustworthy statistics applying to the coal raised in Great Britain every year can be obtained rom the mining records; but it is at least doubtful whether the value has been properly estimated, and it is certain that it does not set forth the price paid per ton in money for putting the coal on bank. If it can be shown that this cost has sisen by degrees in a larger proportion than the price, then the olliers who demand more wages will be deprived of one rgument at all events; and here the question presents itself, Is it not possible that some collieries have cost a reat deal more than they are worth? Some men seem to old that no matter how great is the depth to which a haft has to be sunk, if only coal is reached, a profit must be made on the capital expended. To us this seems to be an absurd argument. The deep mine will have in any ase, to compete with the shallow, an it clear that clliery which has absorbed a capital of $£ 100,000$ must be orse -other things being equal-chan a coal mine
 the enormous capital charges on solise pits ror for f win 8 , lo pis working very deep pits is also much greater than the pumping and winding must obviously be larger
We need hardly point out that the relations of the rail way companies to both the consumer and the raiser of coal have a very important influence on the prosperity of the country. It appears, for example, that beyond all uestion an enormous profit is made on the conveyance of oal by rail to London. It may be added that were the cost of carriage reduced, a still larger profit would be companies are deaf to all denoning on the subject, They ay it is useless to ask them to reduce rates, they have now more coal to carry than they can deal with; if they cutdown heir tariffs they would not be able to get on at all. and no doubt the companies are, on the whole, right. Much the same thing applies in the manufacturing districts, and it is well known that the railway companies are often called upon ow to carry more coal than they are able. Of course the will not cut down prices under the circumstances. Fron Il this it appears that more mineral railways are wanted and much would be gained if the consumer and the producer were brought, virtually, closer together.
In dealing with this question it must not be forgotten hat we have now to compete with the foreigner unde conditions much more severe than those which existed me years ago. For better or for worse, protective dutie ave stimulated the growth of the iron trade on the Continent to an enormous extent. The machinery and appliances used in France, Belgium, and Germany are equal to anything of the same nature to be found in Great Britain. A rail mill in France will turn out as much as a rail mill in Sheffield. Labour costs less on the whole than in this country, and if it were not for the war taxation which exists abroad, we could not compete at all for the custom of the worid Iron can be put into London from Belgium The fact is worth notice. The coal trade is an send it. The fact is worth notice. The coal trade is an immense ndustry in Great Britain, but it resembles in some respects a gantic pumpkin. Its very existence is imperilled by such trikes as that now contemplated. The miners say it is ot worth while to be a collier, wages are so small ; master: say it is not worth while to be a colliery proprietor, profits re so small. When all concerned are disposed to conWe hope that such utterances as we now be worth much We hope that such utterances as we now hear daily are at least a little exaggerated; but it is none the less clear, we wht, what is really the cost of winning coal in Great Britain as whole, and whether it is or is not possible to reduce that ost. This is a case in which concerted action is essential miners , and in like it miners sho of the placed, whether they frequently in the rion of of ris the men. In the present cese no pains should be spared to let the men know the true position of the capitalist.

MARINE BOILERS AND THE BOARD OF TRADE.
Steamers making long voyages must of necessity carry a great deal of coal under any circumstances, but the less they have to carry the better. Thus it happens that the best for Australian or Indian commerce. For this reason every nerve is being strained by engineers to produce more and more economical machinery, and the march of improvement is just now all in the direction of higher pressures and three-cylinder engines. The yacht Isa, built some six years ago, was fitted with three-cylinder engines, designed by Mr. Taylor, Douglas and Grant, of Kirkaldy. Tird cylinder standing ping on one. The pistons are respectively $10 \mathrm{in} ., 17 \mathrm{in}$, and 24 in . diameter, with a stroke of 24 in . The working pressure is 120 lb .; the indicated horse-power about 200 . This was,
we believe, the first successful marine engine with three expans, the highe the pressure was, with one or two excep Millicent was built and fitted with engines of similar the Millicent was built and fitted with engines of similar type -illustrated in our impression for February 2nd, 1883 by Messrs. Wigham, Richardson, and Co., Newcastle-on-
Tyne. There are now several engines of the kind at work Tyne. There are now several engines of the kind at work and giving satisfaction. A considerable time after the to triple expansion engines. The Aberdeen's machinery, an engraving, of which will be found in our impression for
April 28th, 1882 , illustrates this type. To do this class of April $28 \mathrm{th}, 1882$, illustrates this type. To do this class of
engine justice a pressure of about 150 lb . ought to be engine justice a pressure of about 150 lb . ought to be
carried. The difference in the consumption of fuel between the three-cylinder and the double-cylinder compound engine is not much, but it is sufficiently great to be worth having. If we say that the ordinary compound per horse-power per hour, we shall not be very wide of per horse-power per hour, we shall not be very wide of 1.3 lb . only has been attained, but the figures we With a power of 2000 horses this means, in round numbers, a reduction in the consumption of coal by engine of 5 cwt. per hour, or 6 tons per day, or 180 tons on a month's steaming. When it is borne in mind that at such places as Aden coal is seven or eight times as dear as mical of the two types of engine has strong claims on the shipowner, and what was done in a small way to begin with, is now being done on a very large scale indeed On Tuesday week the steamship Tamaulipas arrived in
the Mersey, having run from the Clyde at the rate of nearly ixteen knots an hour. She is built of steel, is classed 100 Al at Lloyd's, is 400 ft . long, 44 ft . wide, and 32 ft . 6 in . deep ; her gross tonnage is 4150 ; her engines indicate 500 -horse power, and steam is supplied by four double-ended steel
boilers 13 ft . 6 in . diameter, 15 ft . long, with 24 corrugated furnaces. The working pressure is 140 lb . The cylinders are $40 \mathrm{in} ., 64 \mathrm{in}$., and 92 in . diameter, with a stroke of 5 ft . The ship has been builtand engined by Messrs. R. Napier and Sons, Glasgow, and is the first of three ordered by Senor Claudio
A. Martinez for the Compania Mexicana Transatlantica. A. Martinez for the Compania Mexicana Transatlantica.
These three ships are the pioneer vessels of a fleet intended o carry passengers and mails between Liverpool and Vera Cruz, under a subvention with the Mexican Government. It is worth notice that the Tamaulipas is the first large steamer ever owned by Mexico. Her engines re-
semble those of the Aberdeen, which ship has steamed semble those of the Aberdeen, which ship has steamed
95,000 miles, without engines or boilers needing an outlay 95,000 miles, without engines or boilers needing an outlay
of one penny for repairs-a circumstance which bears high estimony to the workmanship and materials of the machinery. The Tamaulipas sails under the Mexican
flag, and requires no Board of Trade certificate. We lay special stress on this fact, because the ship could not be sailed under the English flag, for the oppressive
cules of the Marine Department of the Board of Trade wules of the Marine Department of the Board of Trade
would not permit a pressure of 140 lb , to be carried in her would not permit a pressure of 140 lb , to be carried in her
boilers. Boilers built to carry 150 lb . will not be certified or more than 95 lb ., and so on. It might be supposed that the difficulty arises about the furnaces, but this is not he case. Exception is taken by the Department to the shells of the boilers, which, it is insisted, must have a
thickness which practically prohibits their use on board ship. It would be easy to supply instances to illustrate the work. One will suffice. Certain limits are laid down for work. One will suffice. Certain limits are laid down for
steel ; but engineers are informed that if plates not conforming to these requirements should get into a boiler " by accident," they need not be cut out. This is one of the The collapse of furnaces is by no means an unknown thing at sea; but we think we are correct in stating that there is no instance of the explosion of the shell of a marine
boiler of the modern type. There have been scaldings and even deaths caused by the giving way of corroded plates in the shells of badly-kept small marine boilers, in tug-boats and such like, but the shells of boilers in sea-going vessels have never, so far as we know, given way with explosive
violence. The catastrophes on board H.M.S. Thistle and Thunderer really prove nothing to the contrary. The main point at issue between the engineers and shipowners and the Board of Trade takes the shape of the question, What
is to be the factor of safety? The Board of Trade insists is that thick boilers shall have a factor of safety of 5 5, while that thick boilers shall have a factor of safety of 5, while above $\frac{3}{4}$ in. thick, and it is with such shells we are now dealing. It seems to be quite clear that the coefficient for boiler has been tested and found strong enongh, no danger is to be apprehended until it is weakened by corrosion, but and we ourselves see no reason why boilers properly made-and we write now of no others-should have be too high to secure safety with a bad boiler. It is asserted by engineers and shipowners that the carrying 120 lb . would not be passed by the Board for more than 47 lb . to 50 lb . If the Board had control over loco motive boilers, railway travelling under existing condition would beimpossible. We find that Mr. Trail and Mr. Macfarlane Gray set themselves up against the engineering opinion firms assert that a given boiler is quite strong generto carry, say, 125 lb., Lloyd's Registry being willing, we may note, to certify for that pressure, the officers of the 90 lb . Either of two deductions may be drawn. The Board of Trade pronounces, by its action, the engineers t asserts that those who wish to carry the higher pressure are willing in pursuit of gain to risk the lives of passengers and crews, or else that they do not know the difference
between a safe and an unsafe boiler. If it was certain that he gentlemen who constitute the Marine Department of the

Board of Trade were specially skilful and experienced engineers we might feel disposed to accept their deci-
sion; but it is not for a moment to be supposed that the combined talent of the Department can bring knowledge to bear on this subject not possessed by
men who have been building and working boilers all their lives. The result of the operation of the law as it stands is that foreigners like Nenor Martinez can lishmen to produce, or rather to use; and if this is once generally understood our supremacy as ocean carriers will with for the moderately economical ship cannot compet with the most economical ship. Thus for example owners of the Tamaulipas. It may be thought that we take an exaggerated view of the importance of this ques tion, but we only repeat the words of shipowners and engineers in all parts of the country when we say that the mischief. Thade rules concerning boilers may do incalculable is being made, and that engineering will not stand still to please Government officials. A set of rules has been qualified by experiencent, not the opinions of those bes most a couple of men. It is time that these but of a revised; and the pressure of public opinion will, it is to be hoped, be sufficient to procure their revision. The departgraceful retreat from a false position before it is ignominiously driven out of it.

RIVETTED JOINTS
The literature of the strength of rivetted joints is already extensive ; we have no intention of augmenting it. What we are about to say concerning them at present bears relation to worknianship, and not to proportions. No
doubt workmanship affects the strength of structures joined by means of rivets; but the fact is not taken too much note of by those who carry out experiments and tabulate results for the benefit of engineers. It is very commonly assumed that a rivetted joint is a rivetted joint, and that differences in the qualities of rivetted joints, and more attention should be paid than is paid to the circumstance, Thus it is very commonly assumed that a single rivetted joint properly proportioned has a strength of 56 per cent. of that of the solid plate. We have ourselves seen ma-chine-rivetted seams tested, which broke with less than 30 per cent. of the strength of the plate, albeit that exter-
nally, the seam was to all appearance a good and well made seam ; and we believe that in practice seams with a strength equal to that given for them in text-books such
as Fairbairn's are rarely met with except in the very best as Fairbairn's are rarely met with except in the very best
class of work. Attention has been called to the subject by class of work. Attention has been called to the subject by
more than one correspondent; and the discussion now being carried on in our correspondence columns by practical men may be expected to elicit some information which
will usefully supplement that acquired with the testing will usefully supplement that acquired with the testing machine. Our purpose in writing this article is to direct
the discussion in question, and to call to the minds of our the discussion in question, and to call to the minds of our
readers those points which most deserve consideration. Rivetted work may be classed under three heads: First, work such as suffices for bridges and girders, the joints of which need not be water or steam tight; second,
a superior kind of rivetting, such as that employed in a superior kind of rivetting, such as that employed in
iron shipbuilding; and, third, boiler rivetting, which ought to be as good as possible. Now as regards the first, there appears to be a general consensus of opinion that nothing can be better for it than the hydraulic rivetter, but it does facility in that the machine can be used with sufficient hand rivetting to be wholly dispensed with. No doubt many of our readers have used the hydraulic system, and can tell exactly what percentage of work can be done under it, and what percentage must be done by hand; and to simplify would suggest that a typical bridge be had in mind-let us say a railway bridge, with one span of 180 ft t. and two spans of 75 ft . each, plain lattice girders, the larger 16 ft . deep and the shorter 7 ft ., the whole to be floored with flat iron plates, the rails to be carried on longitudinal timbers rivetting is possible on such a say, ten miles from a town? Concerning ship work there can be no doubt that the use of the machine system is rapidly extending, and there is now hardly a hole or corner in a ship's hull into which the machine will not find its way. Despatch is the great object had in view in this class concerning the places where hand rivetting can information well and more quickly than machine rivetting. It seems to be tolerably plain that such do exist, and that finish are prom and in fixing a machine in place. No doubt there will be machine rivetting ho ding the posis advocates of the old system another. It is more than probable that the truth lies between the two. The results of practical experience can alone be relied on to settle the point.
delicaten we come to deal with boilers we get on very are very particular about the workmanship of their boilers will not have machine rivetting at any price. They rely entirely on skilled labour, and no doubt a thoroughly well made locomotive boiler is the most beautiful and perfect specimen of hand rivetted work that can he had. Such boilers as made in this country require no caulking. The workmanship is exquisite, and one result is that the strength of the seams in locomotive boilers are often in excess of that laid down in text-books, the 75 per cent. for a double rivetted seam rising to as much as 78 per cent, or a little more. It is urged that machine rivetting cannot produce such results; it is far too inflexible; it takes no account of the heat of a rivet, or its quality, whereas an experienced man knows exactly what to do with a rivet, and
machine cannot do. As bearing on this point, we may say that cold rivetting has been extensively practise the muddy rivers more long than st. in diameter, $\frac{8}{8}$ in. thick, and about 30 ft nace these are arranged side by side, with a large fur traight to the chimney Such cases a flash flue running far too dirty chmney. Such boilers will work with wate pressures of about 150 lb ., and the seams are made up with cold rivets of a peculiarly soft and ductile iron. Is said that these joints stand far better than any ot rivetted joint that could be made, and we have no used. Going to the other end of the scale, we have the modern marine boiler, with plate lin thick It is asserted by one party that such rivets cannot be closed by hand in a satisfactory foshion, and that the closed machinery must be called in; but, on the other side, it is pointed out that boiler fronts have always to be put in by hand, and that this hand rivetting is quite as good as the machine work, and it is also contended that machin
 hat it will not leak Many able ainers hold entirely opposed to these, and assert that the best kind of boiler work cannot be produced at all without the aid of machinery. The arguments they urge in favour of machine rivetting, as a matter of workmanship, are that it compels the rivets to fill the holes, and effectually closes the plates on each other. The arguments against it are that split heads are apt to be produced, and that the rivet not only fill the holes, but now and then burst the plate re employed, the iron will be severely strained and a bad instead of a good, boiler produced. Nothing of this kind can, however, be urged against the machine system, when several plates have to be joined, as in bridge work, because
the great length of the rivet permits it to give way without training the plate
On none of the points we have stated as open to dis cussion do we at present express any opinion; that diverse views are held by experienced practical men is, however disputable, and we must beg our readers, no matter which and that impartial men will like there another side, arriving at a conclusion as to which is best. It is most desirable that facts, not opinions, should be adduced Opinions have held sway long enough; it is time that cost and efficiency, should be made public

the slip at black rock

In a recent article on the subject of the Brighton beach we referred to a serious slip which had occurred on the chalk cliffs which succeed to the high protecting wall at Town. We have recently had an opportunit how far such a cusualty is likely to extend, the result which would probably follow such extension, and of th means which appear to us to be necessary to check the further inroad of the sea àt the threatened point. A regards the last, although we have met those who deem that the fall of the cliff is due to causes other than that of the undermining of its base by the waves, we cannot say that we can see in their argument anything to
justify such a conclusion. That high chalk cliffs ar justify such a conclusion. That high chalk cliffs are iable to slips even when situated inland we have of course ample experience to show; but such rarely occur in what
may be termed the "solid" chalk. As a rule, it is only when the chalk is veined by a lighter stratum, such a clay, that slips of a serious character are common in this
formation. In such cases the combined action of wet and frost causes a swelling of the less solid material which force away overlying masses of chalk, but there are none of ou readers, perhaps, who have not observed how very sligh the natural wear of the face of those deep railway fore, we hold, the cliff or soure left, we hold, the cliffs to the immediate east of Brighto left unattacked by any more destructive agency than th weather, they, being free from any of the clay strata or
pockets above alluded to, would stand unaffected probably pockets above

But in the case of these Brighton cliffs, those whose memory of the locality reaches back but a very few year memory of the locality reaches back out a very few years
have seen a great change in their configuration. Indeed scarcely a twelvemonth has passed without some slip more or less serious, having been observed, and these hav for the greater part, taken place just beyond where th protecting works erected by the Brighton authorities cease concentrated in its force. It has been fortunate for the comparative past immunity which has been experienced that, stretching seaward from the base of the cliffs under reference, there is a ledge of rock which has, without doubt, done much to break the force of the incoming rollers before they strike the vertical walls of chalk; but the destructive process, though slow, has nevertheless been sure, and our examination of the locality the othe day showed the danger to be becoming of a critical character. Apparently, those responsible for the safety of
visitors and others who make a walk of the paths along the edge of the cliff take but few precautions to warn such th the danger they run in continuing to follow their favourit promenade. It is true that when first quitting the per manent walks of the parade a notice-board is observable which calls attention to the dangerous condition of the stil well-followed out noticing it, and the slight barriers which mark the site of the latest slip are scarcely sufficient, to our judgment to hinder children from pursuing their course into a fearful danger. That, however is matter which concern alone the parties who would be held responsible in the event of an accident occurring. Our object is to conside how far it is safe to allow the present condition of thing to continue, and the results that will probably follow
should no steps be taken to prevent further damage arising.

Quite independently of the difficulty in which the town will be placed, should further slips occur, as regards the blocks of buildings which have of late years been erected in near proximity to the site of the recent slip, there is an important matter to be considered which we have not seen or heard in any way referred to, but which is one, as it appears to us, which sooner or later may be
disagreeably forced on the attention of the Brighton ratepayers. Some years ago a very extensive and admirably designed system of drainage was carried out, and along a main intercepting sewer by which the entire sewage of the town was conveyed by gravitation to a point some miles beyond its eastern end, and there discharged by an outlet pipe extending a long distance below low-water mark, the discharge into the sea occurring at such a level as along the town frontage. At the point where the slip under reference has occurred, this intercepting sewer was and we should posed face of the cliff cannot be more than some 20 ft . from the line followed by that sewer. It is true, we believe,
that at this particular spot this is laid 8 ft . below the level that at this particular spot this is laid 8ft. below the level
of the beach at the foot of the cliff, and there are thcse who argue upon that fact that perfect immunity from danger is secured for it. Such a conclusion does not
appear to us to be satisfactorily based. As we have said, appear to us to be satisfactorily based. As we have said,
there can be no doubt that the falls which have taken there can be no doubt that the falls which have taken
place have been due to the undermining which has been place have been due to the undermining which has been
steadily going on. It will be safe to predict that but a few years more of its present rate of destructive progres will cause the entire disappearance of the Rottingdean
road, and when that happens the site of the sewer itself road, and when that happens the site of the sewer itself
will be laid bare and the sea will roll in over it. How long it might take to disintegrate the 8 ft . of covering materal between the sea and the brikwork of the sewe would probably be so reduced as to afford but slight pro would probably be so reduced as to afford but slight pro ever, it is extremely probable that the arched work would
yield to the thundering force of the breakers expending yield to the thundering force
their strength above its crown.
To this danger therefore we desire to call early attention. It may not, it is true, develope itself in a critical form fo some years to come, but it is a question of economic polity of events we have pointed out results in making the difficulty one of far greater expense to deal with than culty one of far greater expense to deal with than will have to be of a vecy extensive character. T this case the old adage of a stitch in time applies
most strongly. On examining the works which have from time to time been erected to protect the foreshore opposite to the Black Rock Gasworks, we find them to consist of a project into the sea for the purpose of accumulating shingle. This system appears to have acted efficiently, and if its extension be at once undertaken it will probably arrest any further tendency of the clifi to fall. But at the
same time those slips which have occurred have so broken the line of that cliff that the breaches formed have become drainage be permitted to continue unchecked, its action must sooner or later lead to further falls. It seems a most important desideratum that this should be at once attended safety would zonstitute the small space which still remains between the road and the edge of the cliff a "no man's
land" Within that reserve should be cut a drain which water now finding its way through the breaches down the face of the chalk, proper outlets being provided to stay its disintegrating action. It
is true that the amount of such drainage water is small is true that the amount of such drainage water is smail
but though its resulting action is consequently slow, it wil nevertheless be certain. The outlay required to give effec to our suggestions, if they or some similar measures be early given effect to, will be comparatively trifling; but we
have seen enough to satisfy ourselves that if they be much have seen enough to satisfy ourselves that if they be much
longer neglected the Brighton ratepayers will have to face a very large expenditure, and even then will not secure
the continuous line of frontage which it is most desirable should be maintained.

northern shipbuilding.

Thrre are indications that the briskness in the shipbuilding being checked, though some of the builders have orders that will keep them employed for four or five months to come, and
though in the next few months it is to be expected that though in the next few months it is to be expected that the rate
of progress will be less rapid. But at some of the northern ports there are idle berths. On the Tees the number of vessels in course of construction is less than it was a year ago, and on
the Wear there are now only about fifty ships on the stocks,
instead of sixty-four, as there were at the beginning tit the instead of sixty-four, as there were at the beginning of the year.
There is, moreover, less pressure for orders, and that naturally, because the steamships at work earn less, than they didurally, and because the immediate prospects in the freight market are not
most promising. This slackening of the great briskness is likely
to bring about the cure. Winter is the season for loss of vessels to bring about the cure. Winter is the season for loss of vessels,
and also for slower construction of new ships, so that it may be expected that there will be after the winter a lessened produc
tion of new tonnage, and a levelling up in the freight market, as the of new tonnage, and a levelling up in the freight market, as
the lessened output make themselves felt. The sbipbuilders in the North of England should obtain orders as
long as there are any in the market, because they have the fuel and skilled labour. But it is to be expected that there will be a a flling of even this year in the tonnage of vessels built
and so far as can be foreseen, a still more marked folling oft in the tonnage to be turreded out next year. For the present, the rushof capital into shipping has stopped, and that capital will have
to be more productive than it now is before there is a further large supply. The equalisation of demand and supply is now commencing, the rate of construction is being reduced, and the
dropin freights will speedily cease. So soon as freights begin to rise possibly the construction of vessels of other kinds will aid in
he movement-so soon we may expect that there will be a
return of activity to our shipyards; whilst, in the meantime, the orders for replacement, renewal, and repairs may prevent any-
hing like positive stagnation.

LITERATURE.

Graphic and Analytic Statics. By R. H. Gra
Lockwood and Co. 1883.
This book follows the novel plan of interspersing the eethods of analytic algebra and the differentiare ordmar calculus. We entirely approve of bringing these various methods to assist each other and co-operate towards the solution of practical problems. But here we find very much the same problems treated in different parts of the book by the two different methods, and we hardly see what the resulting advantage is. Few or no examples are given showing how in working out a practical problem part of the work may be most easily and rapidly done by the one About one-third of the book is devoted to graphic methods the rest to ordinary analytic investigations in statics. The volume will no doubt be useful to many, the number of those anxious to master the new graphic processes being the work is therease. Cone verion of several chapters there is given a large number of exercises to be worked out, the ctually which are in many cases taken from structures stated, and the num these the problem and the data are being left to work out this answer without aid or explanation. Such explanation might have been given with advantage in very many of these exercises, and we are it difficuat without such assistance students will often ind arly in tho arrive at the desired results. For example, proper treatment of redundant structures, we find exercise in such structures set. The student cannot reach any
accurate result in such cases, because the sections which accurate result in such cases, because the sections which form part of the requisite data for the correct solution of
this class of problem are not given. Later on the author hows his own method of solution, which, we may say, is one very commonly followed in practice. This consists in supposing removed certain bars of the structure so as to reduce it to non-redundancy, and making the calculation on the supposition that these bars do not exist. Then
these are supposed replaced, another set of similar bars supposed removed, and the calculation made over again. The mean of the two results for each bar is taken. This method gives an approximation to the true stress in the most important parts of the structure, but it is capable o giving results very largely at variance with truth in the
sheer-memberz-in the diagonals of a lattice girder for heer-memberz-in the diagonals of a lattice girder for
instance. The general unreliability of the method is most easily recognised by observing that in a roof or girder of only moderate complexity there is a large number of different ways in which the structure could be reduced to non-redundancy. Those who use this method pick out proceed as if there were no others.

The book is well illustrated, the diagrams being carefully drawn and nicely engraved. We observe that the autho of lettering introduced into practice by Bow. Mr. Graham seems not to appreciate the peculiarity of this system which makes it superior to all others, and in fact, this peculiarity is overlooked by too many. It not only general mathematics of reciprocal figures in a singularly clear and easily comprehensible manner, but it also a glance for each bar in the diagram whether it is in page 16 the compression. Mr. Graham explains at with his system of notation. In practical work it is awkward to use, more especially so for joints where no oads act. Mr. Graham uses figures instead of letters, an avoids the use of such indices as $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$, and so on, when all the letters of the alphabet are used.
Thus, although we find much merit in the book, we cannot say that it is free from blemish. For instance, at page 6 the proposition on which reststhe whole of graphicstatics, so
far as it depends on the properties of reciprocal figures is ntended to be proved; but this proof is introduced by the words, "As a premise to the proof it will generally be admitted," and then follows, as "generally admitted," what in reality contains the whole gist and difficulty of the proof, and what, in fact, is a pretty hard nut to crack for o reconcile the statement that the laws of graphic statics are only applicable to figures which are made up of links is less by three than double the number number of with thes by three than double the number of joints, structions both to unstiffened and also to redundant link works.
As minor matters we may point out that at page 26 the calculation of the supporting force at the foot of the crane post is omitted, and that the simple link-polygon introexample, Fig. 23, at page 27 , the joint $l k j \mathrm{M}$ M is missed out Fig. 168, page 29, gives an example of what we have
already mentioned, namely, an exercise, the method of reatment for which has not been explained, and we could multiply illustrations of the same sort of omission. At
pages 45 and 48 Mr . Graham follows a habit which has become rather Mr. Graham follows a habit which ha namely, that of finding fault with Rankine. No doub Rankine must have occasionally made a mistake, although e must always be venerated as the father of modern scien tifc engineering; and it is distinctly advantageous to the engineering public to have whatever mistakes he may have
made pointed out. But in the two instances in which Mr. Graham differs from Professor Rankine, it is quite certain
that Professor Rankine is strictly accurate and Mr.

Graham is quite wrong. Again, we would suggest that There is also much inexactness of language throughout Part IV., entitled, "Comparative Statics." For example, what can we think of the statement at page 119, that the algebraic sum of the forces being zero "implies
the absence of rectilinear movement of translation," where, of course, movement-or possibly velocity?-is conbetween rotation and acceleration of rotational velocity occurs on the same page. In explaining moment diagrams at page 178, it is very distinctly said that the moment is to be read to the scale of which the polar distance (EO) is unity. Now exactly the reverse is true. The larger EO is taken the smaller is the scale to which the moment is to be read. The unit of the scale is inversely proportionate to EO. The treatment of the arch is also unsatisfactory, the lines of the two abutment re-actions being assumed to have equal inclinations to the horizontal with the load unsymmetrically distributed. The chapter on deflection of beams contains some useful explanations regarding the distribution of sheanig stress which is, unfortunately, not commonly met with in English text-books, but it also is
blemished by error and confusion of ideas. The strangely mistaken idea that each particle of the beam reacts in the direction of its displacement is followed out throughout several pages, leading to this false conclusion, among is any, a ceam cannot be kept in equilibrium if there is any longitudinal force applied to its end section. It is also not true that each deflected transyerse section-
originally in the unstrained condition perpendicular to the axis-remains perpendicular to the deflected axis. If this were true there would evidently be no shear strain. At page 262 an error in dinerentia ing force in terms of bending moment. The correction is really infinitesimally small in the strict mathematical sense of the term. At page 327 the reader will find two very useful tables obtained from French sources bearing on bridge loads. The portion from page 345 onwards, upon their requisite important matter. We are the more glad to find this correctly explained because it is a subject not commonly the Institution of Civil Engineers as the 72nd contan paper on the same subject by Mr. Buck, which is altogether wrong. In illustrating his equations, however Mr Graham falls into remarkable error. He calculates that a beam 30ft. long, of material weighing 288 ton per cubic foot-which, by the way, is $1 \frac{1}{3}$ times as heavy as wrough
iron-of circular section, and bearing a useful $\frac{1}{1}$ ton per foot run, would require to be exactly 12 in diameter to be stressed to 4 tons per square inch, and fnrthermore, finds that if the weight of the beam itself were neglected in the calculation, the required diameter would be $11 \frac{1}{2}$ in., or only $\frac{1}{2} \mathrm{in}$. less. There is evidently weighs more than $2 \frac{1}{2}$ times the useful load. Three ponderous pages are filled with the solution of a cubic equation in order to arrive at this result. Now, any cubic equation can be solved in about two minutes' time by writing down some half-dozen lines of figures extracted from a table of cubes and squares, such as is found in is 2.02 ft ., instead of 1 ft .
In a future edition we trust the author may find it practicable to improve his book in the directions we have indicated. We have thorough sympathy with all attempts to we thard the study of modern methods of calculation, and haverefore trust that the friendly criticism in which we have indulged may not be without result in future rectiffrom this it believe we have pointed Mr. Grahe errors, and one which will find a place wherever graphic and analytic
statics are used or studied. statics are used or studied.

CHARLES WILLIAM SIEMENS.

The death of Sir Chas. William Siemens will have been learned from the daily newspapers by our readers with real regret. His remarkable ability had made him a leader of thought and proin arts and manufactures, that his name is familiar to people in every walk in life, and every one will experience the feeling that a great and unexpected loss has taken place in the ranks of the modern leaders of men and makers of great industries. Science
loses by his death one of its most remarkable thinkers. In him was found that most unusual combination, orginality, guided by accurate and diverse knowledge, and backed by executive ability and untiring energy in the pursuit of any piece of work from to its coption to its completion, from the birth of an invention 18 th inst, as the result of an injury to the heart caused by a fall
while walking home on the afternoon of the 5th inst. from a while walking ho
scientific meeting.
Charles William Siemens was born at Lenthe, in Hanover, on
the 4th of April, 1823. He descended from an old German family the 4th of April, 1823. He descended from an old German family,
the motto on whose coat-of-arms freely translated signifies "through energy I will succeed." He became an English subject in the Polytechnic Scheod at Magdeburg and at Liubeck, afterwards at the Polytechnic School at Magdeburg, and finally at the University
of Göttingen. Here he studied under Wöhler and Himly 1842 he became a pupil in the engine works of Count Stolberg, where he laid the foundation of the engineering knowledge one of a f nily of aburned ond as nearly all are inventons it is difficult to apportion their shares in the many inventions with which the name of Siemens is associated. There is, however, no
doubt that the four brothers-Werner, William, Carl, and doubt that the four brothers-Werner, William, Carl, and
Frederick-always worked harmoniously together-an idia suggested by one being taken up and elaborated by anotherso that it is difficult to award to each his own proper
credit for his joint labour. In electrical work William and Werner were principally associated, while the regen
is due not only to Willim, but also to Frederick.
It was, as Siemens himself told when speaking at the Birming. ham and Midland Institute in 1881, to introduce to the English public a joint invention of his own and his brother Werner in
electro-gilding that he first came to England in 1843. Ou
the above-mentioned occasion he gave an interesting account
of the difficulties which not unnaturally beset the young foreign inventor. It was due to the discrimination of Mr . some of who perceived that certain processes described in some of own patents could only be carried into effect
by the improvements of Messrs. Siemens, that William was able to in the following year to come successfully as to be induced in the following year to come back again on a similar errand. speak further on. Though not very successful commercially it introduced him into the engineering world, and was really the cause of his settling in this country. The chief use of this apparatus, intended originally for steam engines, has been found
in its application to regulate the movement of the great transi instrument at Greenwich. His studies in the dynamical theory of heat led him to pay special attention to preventing its loss in various engineering and manufacturing processes. The first in 1847 in the factory of Mr. Hicks at Bolton. In this superheated steam was employed, but its use was attended with of Arts awarded Siemens a gold medal in the year 1850 for his regenerative Mr denser, and at the Institution of Civil Engineers in 1853 a paper,
of which we shall speak again, on the conversion of heat int mechanical effect, gained him the Telford premium and medal Siemens' activity in a practical sense did not prevent his making use of his pen to record his discoveries and inventions, and hence the
learned societies of which he was a member afford a good
index to the subjects which successively occupied his attention. Amongst his engineering papers mentioned in the Royal Society catalogue is one on a "Regenerative Condenser for High of Mechanical Engineers in 1851. "In this he described Institution length, but with much clearness, a form of condenser in which an arrangement of regenerator, after the manner of that used in his hot-air engine, was employed to condense the whole or a part of the exhaust steam; usually only a part would be condensed,
and so the regenerative effect was only that part, and the regenerative surfaces could only increase the efficiency of the engine in proportion to their area. Hence large areas would be requited, and as the condenser seems not to have been much used, it would appear that what was gained by the use of the combination of surface and injection which the con-
denser really was, was not so great as could be obtained by the use of a larger quantity of water and larger surfaces in a surface con denser which would receive
part, of the exhaust steam.
Journal in 1853, and in the " to engineers appeared in Dingler" in 1852, and was on the "Expansion of Isolated Steam and th in 1852, and was on the "Expansion of Isolated Steam and the into Mechanical Effect," appears in the "Proceedings" of the Institution of Civil Engineers, vol. xii., 1852-3, of which he was then an Associate. In this paper he gave a brief resume of what though this is chiefly with a view of describing his theory and in vention with reference to the hot-air, or caloric engine, as it was then more generally called, the paper is a valuable one as having given
at this distant time some very clear ideas on a subject with which few were at all familiar, and as showing the author's grip of the whole subject. It follows two papers, the one by Mr
Charles Manby, and the other by Mr. James Leslie, on the caloric engine, and on the principle of the caloric or heated air engines;" but Siemens' paper is the only one of the three showing a really scientific knowledge of the principles involved. In the paper on isolated steam he describes experiments which
corroborated those of Regnault, conducted with very complicated corroborated those of Regnault, conducted with very complicated
apparatus, and showed that Watt was not quite right when he said that the total heat of steam was the same at all tempera ment that the latent heat was the same at all pressures, the truth lying between the two. He gave here his views, based upon experiments described on the expansion of steam in engine cylinders, and a reason for expecting that the mean pressure of steam so expanded would be greater than could follow from
Watt's law, although Watt's law is quoted in one of our best text-books on heat published at this date. His chronomet governor is described in its several forms in the "Proceedings" of the Institute of Mechanical Engineers for 1853, and his water
meter in several forms in the "Proceedings" of the same institution for 1854.
The regenerative steam engine idea seemed to have taken Royal Institution. From this date his attention seems to have been turned again more to electrical subjects and on the regenerative gas furnace. His bathometer, or instrument for measuring the depth of the sea on board ship without submerg ing a line is described in the British Association "Report," 1863 his studies and mental grasp of physical science in all its aspects This studies and mental grasp of physical science in all its aspect, must be observable, in the attractive power of the earth over lan and where covered by great depths of a comparatively light
coating material like sea water. He found this difference to be s\%20 of the total gravitation effect for each 1000 fathoms proposed for use in measuring heights.
With his brother Werner he wrote a number of papers on
electrical, electro-chemical, and other subjects, and his own paper electrical, electro-chemical, and other subjects, and his own paper
on the "Conversion of Dynamical into Electrical Force without the Aid of Permanent Magnetism," appeared in the "Proceed paper describing the now well-known Siemens' armature, The description of this invention, which was made by Werner Siemens, was received on the 4th February, 1867, while the paper by Wheatstone on the "Augmentation of the Power of a Magnet by Itself," was received on the 14th February, and follows that of Siemens. These are two of the most important papers in the history of the dynamo-electric machine.
His first paper, in 1847, was on the "Mercaptan of Selenium, published in Liebig's Annalen der Chemie, and sufficiently indi-
cative of the lines of thought in which his mind had been directed at Göttingen. In 1857 William Siemens, in connection with his younger brother and then pupil Frederick, turned his attention to regenerative furnaces for metallurgical purposes, The regenerative gas furnace, as it is certainly the greatest inven-
tion due to the Siemens, so it is the one in which William Siemens is believed to have had the greatest share. The first
successful application of these furnaces was in 1861. The principle of the regenerative furnace is tolerably well known; it may
suffice to say that its main features consist in an arrangement by suffice to say that its main features consist in an arrangement by
which the waste heat of the products of combustion is utilised
ombustion is supported. This is effected by cansing the promasses of brickwork, and afterw in which the heat is takeing cu rents of air and gas among the heated brickwork. The earlie applications of this principle to steel and glass making have been ollowed by its extension to many other industrial purposes in which great heat is required, the power of the furnace being only
imited in practice by the nature of the materials of which it limited in practice
The application of the furnace to the making of iron and steel naturally led the attention of its inventors to other improvements in the same manufacture. In 1862 he endeavoured to making steel by some years' experimenting, the Siemens process of steel-making was perfected, and a little later still the Siemens-Martin process, In the latter scrap iron is melted in a bath of pig iron on the hearth of the furnace; in the former ore is reduced. The pro
duction of steel in this country under Sir William Siemens' pro cess was over 340,000 tons in 1881,
The history of the production of cast steel by dissolving malleable scrap in molten cast iron without the use of crucibles process," he remarks, "was patented by Heath in 1845, and similar method in 1855 hy Price and Nicholson. The first actual fusion of cast steel in the bed of a reverberatory furnace
was effected by Sudre, in France, in 1860, when quantities of was effected by Sudre, in France, in 1860, when quantities of
tool steel up to two tons at a time were run into ingots from urnace analogous to that used in iron melting, the heat bein of rapidly destroying the furnace the grate, with the result regenerative furnace, in which the highest temperature can be obtained without strong draught or cutting flame, has, however furnished the required solution of the problem, and in 1862 it was applied by Attwood, of Towlaw, and Martin, of Sireuil, in
France, and subsequently with improvements and modification in the furnaces and the modes of manipulation by Siemens, Pernot, and others. As it was first worked on the large scale by
Mesars. Martin, the name Martin-Siemens process is generally Messrs. Martin, the name Martin-siemens process is generally of scrap in is known as the Siemens prong iron ore instead general name of open-hearth process has come into use for both" Bauerman also describes the process as follows :- "In the burised by the addition of rich pure hematite or magnetite, i about 2 in. lumps. This causes a violent boiling, which is kep up until the metal is nearly soft enough, when it is allowed to
stand for a short time to allow the iron to clear from the slag, mall quantity of limestone being added at intervals to thro down some of the iron. The spiegel is then added, about 1 per
cent. more being used than in the scrap procsss. From 20 cwt . to 24 cwt . of ore are used in a 5 -ton charge; about ne-half the metal is reduced and passes into the steel, so the weight of pig metal and spiegeleisen charge. The conor from 14 cwt. to 15 cwt. per ton of steel. The scrap process are often combined, both scrap and ore being used in the
same charge. The latter is obviously of value as a tempering material.'
The perfection of the regenerative furnace was undoubiedl him a patent, on the grounds that the system of heating build him a patent, on the grounds that the system of heating build
ings used in old Rome constituted an anticipation. The objec tion was, of course, an absurd one, as must be the decision on the merits of new things by examiners whose judgment is formed simply upon a literary knowledge of things apparentl of the same character
Experiments were carried out by him for some time with view to the use of basic linings for the open hearth furnaces a
the Landure Steel Works, which are so well known as the chie eat of the production of Siemens steel. Some time since, whe direction had resulted in obtaining basic bricks which would withstand the work, but we have not learned that much has been done in the matter since. It is probably in the history or alreafacture of steel that Siemens name will most be know for already it occurs on every pa
relates to modern iron and steel.
The address as President of the British Association at South port, which will be found in our impression for the 25th Augus give a picture of the diversified bent of the author's mind. It cal unitge chemistry in thity, electrical applications, and electriof iron and steel, deep sea sounding, chemistry applied explosives, and solar physics, the general tendency of the whole address being to show that "in the great workshop of nature exalted speculation and common-place practice." He much objected to the separation of the pursuit of science from
its application, his idea being that that man of science does most for mankind who shows the world how to make use of the results of his scientific investigations. "The
time was," he said, "when science was cultivated only by the few who looked upon its application to the arts and manu content to leave in the hands of others who with only com mercial aims in view, did not aspire to further the objects of
science for its own sake." "Progress could not be rapid unde this condition of things, because the man of pure science rarel pursued his inquiry beyond the mere enunciation of a physical or chemical principle, whilst the simpler practitioner was at a loss tion which formed his mental capital in trade." This extract hows Siemens' views on science and practice, if his life's work had not. It is quite clear, however, that he allowed in his constances under which men lived in days gone by and more recently. Education itself was pursued by the few, mostly who are not wealthy, but who have to make use of their mental capital to get a living. This has produced workers its practical application in the arts or manufactures. But after all this is rather rare. The man who has pursued science who would, as much as any one, like to receive the most sub stantial rewards for his work of this kind. There are, however many who can pursue science in the laboratory, and mature ns there, but their energy and interest in the The inventions often fail to come before the world, because the cannot be brought into commercial shape for want of the help of the inventor. Siemens could go into the laboratory, and with the results of his labour there, he could, to use a homely illustration
go to market, and he would work at it until the market believe
in it. The market pa
In telegraphs the
romi United States Cin this branch being probably the Direct Siemens designed the special ship which is so well known as the Faraday, a ship full of special appliances and fitted with twin screws on converging-not parallel-shafts; so set with a view
to get the greatest mancouvring power, so that any order endered necessary by cable laying and grappling exigencies
might be rapidly complied with. With electric lighting the pame of Siemens is synonymous, his firm having carried out large quantity of work of which little has been said, though the Siemens system of machines and arc lamps have long been familiarised by exhibitions in England, France, Austria, and
Germany. The Siemens firm did not come before the world with an incandescent lamp but always used Swan's, nor did Siemens produce a secondary battery, though he made some very important experiments in this direction. In the electrical stood first, especially as relates to electrical tramweys, two of which were shown at work in 1880, one being in the grounds of Düssusseldorf Geological Gardens, used in that year for the laid several electrical tramways, the most recently completed being that at Portrush, which is worked by a waterfall.
enter into anything like a complete account or ove disposal to all his work. We have been only able to mention the most printing" and had almost forgotten the process of anastatio printing, a process superseded by recent advances in photo-
graphic processes. This was due to William and Werner and the in vention of a double-cylinder air pump. Among more recent nventions may be noted his electrion urnace, described in our furnace for the production cf iron and steel by the direct process, his deep-sea electrical thermometer, and his regenerative gas
Sir William Siemens was elected a Fellow of the Royal Society in 1862, and in 1869-70 he served as one of the Council. He became a member of the Institution of Civil Engineers in 1854,
and has been on its Council for some years. He was the first president of the Society of Telegraph Engineers, and served a Institution of Mechanical Engineers, of the Iron and Steel
Insatity. He has been president of the Institute, and of the British Association, and in April last, in recognition of his eminent services to science generally, he
received the honour of knighthood. He was chairman of the Council of the Society of Arts, and wave delivered the opening address of that Society's session on Wednesday English society of importance, and by foreign societies and Governments. Those who knew him well respected him most for his kindness and generosity, and it is said of him that while he was very ready to overlook imperfect knowledge, he hated he superficial talk which in some places passes for science.
How great were the inventive resources of Sir William is well shown by the saying common in his workshops, that as soon as any particular problem had been given up by everybody
as a bad job, it had only to be taken to Dr. Siemens for him to suggest half-a-dozen ways of solving it, two of which would be satisfactory
Early this year he published his volume, "On the Conservain which his paper, sent the preceding year to the Royal Society, was examined afresh by himself and a number of scientific men
at home and abroad. Whether from its novelty or as emanating at home and abroad. Whether from its novelty or as emanating from one not claiming to be an authority on the subject, the Had its author lived a few years longer he would doubtless have aboured to strengthen it with yet further observation and argu-tion-the effort of a keen and sagacious mind to bring to fresh subjects the experience and the knowledge accumulated by work of a totally different kind.
Recent events, and the development of the use of the electric ight. He made an extensive series of experiments on the effect of continual light on plants, by the use of electric light in a conservatory, and the last paper he wrote, read before the Royal
Society in April last, was on the dependence of radiation on

It has been suggested that Sir William Siemens should be buried in Westminster Abbey. The conflict of opinion which has characterised all recent proposals of this kind will no doubt express itself on this. There are, however, names which have
become descriptive words, and posthumous honours can add little to the esteem in which the memory of Siemens will be held.
At the meeting of the Institute of Civil Engineers on Tuesday evening, the president, Mr. Brunlees, spoke as follows :- "It is
with the deepest sorrow that I have to inform you of the death of our highly-valued and esteemed member of Council, Sir William Siemens, which took place last night after a short illness
believed to be the result of a fall two or three weeks ago. Sir Welieved to be the result of a fall two or three weeks ago. Sir William was a man whose power of intellect and whose services
in the application of practical ecience to almost every branch in the application of practical ecience to almost every branch
within the range of the profession of the civil engineer were universally appreciated. His fame was world-wide, as it deserved to be, and those who knew Sir William Siemens best will be the most ready to acknowledge that the qualities of his heart were sure that they will than those of his intellect. The Council are proposing to adjourn this meeting as a mark of respect to the The fory of one who was so greatly honoured and beloved. The following resolution, which had just been passed at a
meeting of the Council, was then read and adopted as the expression of the views of the members present :- "That this tion has sustained by the decease of their eminent and highlyesteemed colleague Sir William Siemens, and their sincere
sympathy with Lady Siemens in her irreparable bereavement."

Satisfaction is expressed by the sheet and hoop makers at the result of their interview upon the subject of the wire guage with
the President of the Board of Trade. That they are not under any necessity to conform to the new standard, providing that they
give notice to the Department, is information which they gladly welcome. In fact, this is practically all that they sought. The
disarrangement of a complicated scale of wages based upon the old
Birmingham gauge would have been very inconvenient and foreign Birmingham gauge would have been very inconvenient, and foreign
customers would not have understood the new gauge without much
difficulty. The general opinion in Birmingham yeaterday was that
the branches named will continue working on yesterday was that
not trouble the Department to establish a new standard,

CIRCULAR SAW FOR CUTTING HOT IRON

The above illustration represents an improved hot iron sawing bed-plate, and forming part of the machine. The iron to be sawn is laid in the V bearings, and held fast by a bridge and screw, as shown. The casting carrying it is mounted upon a strong bed, and is moved nearer or farther from the 3aw by means of the hand wheel and screw shown at the end of the bed. There is also a provision made for supporting the sweep ends of cranks when the webs have to be sawn out. The up to it by means of screw motion, actuated by spur and bevel gearing, which is driven by a belt, the pulley being driven by a counter crank, and by simply moving the hand lever the saw can be worked in or out. There is also provided a self-acting stopping motion, so as to prevent the machine being broken or damaged through the inattention of the operator. It is also fitted with a hand wheel for moving the saw up to its work by hand, which is sometimes of great advantage. The steam starting valve and hand motions are arranged close to where the The mode of its operation is as follows :-Upon the crank shaft is keyed a steel bevel wheel which drives another steel bevel wheel with a long boss or sleeve running in a bearing.-Through this sleeve or boss slides a shaft with a groove formed upon it, and by a suitable feather key fixed in the long sleeve or boss it is driven, and yet free to slide backwards and forwards. At the other end of the shaft is keyed a steel bevel wheel giving motion to another steel bevel wheel which is keyed upon the saw spindle ; these work in suitable gun-metal bearings fixed upon a sliding saddle, movable upon suitable ways in the main casting. motion from the crank pin, and drives on to the pulleys at the other end of the machine, and the return motion is greatly accelerated. Every part is very strong, and well fitted for driving the saw at the proper speed. The saw used is 53in. diameter, and is capable of sawing large pieces of iron or steel. The approximate weight is $4 \frac{1}{2}$ tons. The machine is manufactured by Messrs. J. Pickles and Son, Royd Ironworks, Hebden Bridge.

MULTIPLEX CAMERA BACK.
Photography is now so much used by engineers for various business purposes, and to some extent while on pleasure tours, engravings may be of interest to many of our readers. The back

is made for different sizes of camera, and contains its sensitised plates packed and held in such a way that they may be exposed as required without opening the case or in any way interfering with the plates. The risk of fogging through changing outdoors is thus avoided. The change of plates is effected by gravity, no springs being used, and any particular plate may be re-exposed by revolving the back until the number of that plate is seen in
the window in the shutter. The apparatus is made by Messrs.
H. and E. Dale, Ludgate-hill, and is shown as out of use, but partly in section below.

ASTBURY AND DAWSON'S STANDARD 6-INCH The accompanying illustration lathe, manufactured by Messrs. Astbury and Dawson, of Grantham, self-acting for sliding, surfacing, and screw-cutting, with a gap bed, the usual length of which is from 6 ft . to 8 ft . long, admitting in the
at 1-man power requiring twelve similar cells. For convenience in household use all the electrodes are hung to a single bar which, by means of a lever and foot-treadle, can be lifted or lowered, so as to raise the plates either wholly or more or less out of the electrolyte. The armature of piemens form, with two broad pole pieces forming portions of a cylindrical surface, each extending through between onequarter and one-third of the circle. Two tiny copper wire brushes send the current to this armature through a two-segment commutator. The field magnet surrounds the armature in the shape of a cylinder of wrought iron. Two opposite portions of

former case 3 ft . between the centres, and 1ft. 9 in . diameter in the gap. This latter is provided with a movable bridge accurately fitted The headstock is double-geared and fitted with conical bushes of phosphor bronze ; these are finished out to form a true bearing for the spindle; this is of mild cast steel and provided with suitable means for adjustment. An instantaneous reversing motion is fitted for right and letion; the working parts of this motion are neatly covered in. The tailstock has a wrought iron poppet are neatly covered in. The tailstock has a wrought hand wheel in the usual manner. The saddle has long guiding surfaces and carries a compound slide rest arranged for turning conical, and surfacing either by hand or self-acting from the guide screw through a brass worm wheel and spur gear, with friction cone for disengaging the motion. The handles for actuating the slides, which it will be noticed are a departure from the ordinary kind, are convenient and have a pleasant action. When preferred, the lack shaft. Between the standards is an arrangement pendent back shaft. Between the standards is ander a the cuttings, oil, water, \&c. A set of twenty-two for catching the cuttings, oil, water, \&c. A sets, top driving apparatus, face plate, back stay, and set of screw keys are provided. This lathe is one of a series adopted by the makers as standard patterns, and made on the gauge and template system; they are designed specially for taking heavy cuts in iron or steel. The beds are very strong in section, and all the gearing, shafts, and screws are well proportioned. A variety of these lathes, from 5 in . to 7 in . centres, were exhibited at the recent Engineering Exhibition in the Agricultural Hall
excellent.

THE GRISCOM MOTOR.

One interesting exhibit in the British section of the Rotunda of the Vienna Exhibition consisted of several of Griscom's smal electro-motors, which were shown driving sewing machines, fan ventilators for household purposes, dentists drills, and circular saws for use in surgery. These very neat and handy little motor
have been in use for the last two or three years. The accom panying engraving shows two modifications, one for working a table fan; the other is a general motor. Exact electric measurements do not seem to have been made, and we, therefore, cannot
say what the efficiency really is. Preferably the "half-man power" the efine is driven by a six-cell bichromate zinc carbon battery, the six cells being coupled in series, a larger form rated
this cylinder are wound after the manner of a Gramme ring, The current passes through these two coils in opposite directions, and thus opposite polarities are induced in the two opposite bare portions of the iron ring. The $\frac{1}{2}$-man machine measures only

4 in . from end to end, the coils being $2 \frac{1}{4} \mathrm{in}$. in axial length, and the outer diameter is no more than $2 \frac{1}{2} \mathrm{in}$. It weighs $2 \frac{1}{2} \mathrm{lb}$., and can be fixed in any corner of a room by two or three screw nails

South Kensington Museum.-Visitors during the week ending Nov. 17th, 1883 :-On Monday, Tuesday, and Saturday, free, from 10 a.m. to 10 p.m., Museum, 8852 ; mercantile marine, Indian section, and other collections, 2127 . On Wednesday, Thursday, mercantile marise, Indian section, and other collections, 129 , Total, 12,440. Average of corresponding week in former years, 13,063 . Total from the opening of the Museum, 22,576,700.
S MITH'S HYDRAULIC DREDGER.
 the distributing wagon to travel the full length of the hopper well
while the excavator riedgesin diminished depths. The position of the
dredger Figs 7 and 8 , while engaged in dredging is shifted by means of dredger, Figs. 7 and 8 , while engaged in dredging is shifted by means of
two hydrulic capstans actuating the mooring chains. There are two
mooring chains, one in the bow of the vesesel for heaving it ahead,
and the other athwart the vessel for shifting it laterally. The bottom
 hydraulic engine and kept shut by a pitched chain and pulley with a
toothed ratchet on the same shatit as the pulley, retained by a pawl.
The dredging, distributing, depositing, and mooring machinery is con. rolled by one man by means of hydraulic valves placed all together in
valve chest. These valves are :-The jigger valve communicating with the supply and exhaust pipes and the jigger cylinder ; two valu a
for controlling the hydraulic capstans ; a hopper door valve, and a double-acting supply and exhaust yalve for the excavator cylinders.
The hydraulic power is supplied from a set of high-pressure pumps,
driven by the steam engines used for propelling the vessel when not
 during short intervals of comparative calm, and thus make use of
opportunities of which it would not pay to do with oblique-laden
dredgers dredgers, which take time to set and move.
The dredging action of SSith's dredger, being vertical, is resisted
by the weight and friction of the excavator, and places no strain on The dredging action of Smith's dredger, being vertical, is resist on
by the weight and friction of the excavator, and places no strain on
the mooring of the vessel, which are thus only used to guide the

VOLTA-ELECTRIC INDUCTION.*
By Willoughby Siuth, Pres. Soc. Tel. Eng.
Now let us go more minutely into the subject by the aid of
Figs. 4 and 5 . In Fig. 4 let A and B represent two flat spirals, spiral A being connected to a battery with a key in circuit, and spiral B connected to a galvanometer; then, on closing the battery
circuit, an instantaneous current is induced in spiral B. If a nonmagnetic metal plate $\frac{1}{2}$ in. thick be placed midway between the magnetic metal plate sin.
spirala, and the experiment repeated, , it will be found that the the
indued current received by B is the same in amount as in the first spirac, ancurrent received by B is the same in amount as in the first
induced cold
case. This does not prove, as would at first appear, that the metal case. This does not prove, as would at first appara, that the metal
plate fails to intercept the indnctive radiant energy; and it
cat can soarcely be so, for if the plate is replaced by a coil of wire, it
is found that induced currents are set up therein, and therefore inis tound that induced currents are set up therein, and therefore in-
ductive radiant energy must have been intercepted. This apparent
contradiction may beexplained as follows :-II Fig. 3 let De representa contradiction may beexplained as follows:-In Fig. 3 letD representa
source of heat-a vessel of boiling water for instance-and Ea sensitive source of heat-a -aessel of boiling water for instance -and Ea assenitive
thermometer receiving and measuring the radiant heat. Now if, for instance, a plate of vulcanite is interposed, it cuts off and absorbs a part of the radiant heat emitted by D, and thus a fal is prouced in tene thermometer reading. But ene valcanite soon
becoming heated by the radiant heat cut off and absorbed by itself,

radiates that heat, and causes the thermometer reading to return The whole arrangement of this experiment is as shown on to about its original amount. The false impression is thus pro-
duced that the original radiated heat was unaffected by the vulcanite plate, instead of which, as a matter of fact, the vuleanite
plate had cut off the radiant heat, becoming heated itself by so doing, and was consequently then the radiating body affecting the thermometer. The effect is similar in the case of induc-
tion, between the two spirals tion, between the two spirals. Spiral A in-
duces and spiral B receives the induced effect. The metal plate being then interposed cuts off
and absorbs either all, or part of the inducand absorbs either all, or part of the induc-
tive radiant energy emitted by A. The in-
ductive radiant energy thus tive radiant energy emitted by A. The in-
ductive radiant energy thus cut off, however, is not lost, but is ionverter into electrical energy
in the metal plate, thereby cussing it in the metal plate, thereby causing it to be.
come, as in the case of the vulcanite in the heat experiment, a source of radiation which heon-
pensates, as far as spiral 1 is concerned, for the pensates, as far as spiral B is concerned, for the
orisinal inductive radiant energy cut off. The
only material difference noticeable in the only material difference noticeable in the two
experiments is that in the case of heat the time experiments is that in the case of heat the time
that elapses between the momentary fall in the thermometer reading-due to the interception
by the vulcanite plate of the radiant heat-and the subsequent rise-due to the interposing plate, tself radiating that heat-is long enough
to render the effect clearly manifest; whereas in the case of induction, the time that elapses is so exaceedingly short that, unless special lpses.
cautions are talken, the radiant energy emitted cautions are taken, the radiant energy emitted
by the metal plate is liable to be mistaken
lo for the primary energy emitted by the inducing
spiral.
The current induced in the receiving ppiral. by the inducing one is practically instan-
staneous; but on the interposition of a metal plate the induced current which, as before described, is set up by the plate itself, has a perceep-
tible duration depending upon the nature and mass of metal thus interposed. Copper and zinc produce in this manner an induced current
of greater length than metals of lower conducof greater length than metals of lower conduc-
tivity, with the exception of iron, which gives It induced current of extremely short duration. to ascertain what I term the specific inductive resistance of different metalas by the means de-
scribed, notice must be taken of, and allowance made for, two points. Firstly, that the metal pecondly, that the duration of the induced currents radiated by the plates varies with each different metal under
experiment. This explains the fact before pointed out that experiment.
the apparent percentage of ind inctive radiant energysy intercepted ted by
metal plates varies with the speed of the eeversals; of copper the induced current set up by such a plate has so duration that if thee speed of the reverses is is a all rapidid the induced
current has not time to exhaust itself before current has not time to exhanst itself before the galvanometer is
reversed, and thus the current being on the opposite side of the galvanometer tensd to produce a lower deflection. If the speed of
the reverser be further current is received on the opposite terminal of the galvanometer current is received on the opposite terminal of the galvanometer,
so that a negative result is obtained. We know that it was the

* A paper read at the Society of Telegraph Engineers and Electricians,
strong analogies which exist between electricity and magnetism
that led experimentalists to seek for proofs that would identify them as one and the same thing, and it was the result of Professor Oersted's experiment, to which I have already referrer, that first identified them. Probably the time is not far
distant when it will be possible to demonstrate clearly that heat distant when it will be possible to demonstrate clearly that heat
and electricity are as closely allied; ; then, knowing the great analogies existing between heat and light, may we not find that eat, property, susceptible under varying conditions of producing the will frrst produce electricity, then heat, and lastly light. As is well known, heat and light are reflected by metals; 1 was therefore
anxious to learn whether electricity could be reflected in the same way. In order to ascertain this spiral B was placed in this position, which you will observe is parallel to the lines of force emitted by spiral A. In this position no induced cur-
rent is set up therein, so the galvanometer is not affected; rent is set up therein, so the galvanometer is not affected;
but when this plate of metal is placed at this angle it intercepts the lines of force, which paced ate it to tadiate, and
teat on to the secondary lines of force are intercepted and converted into
induced currents meter. Thus the phenomenon of reflection appears to be produce in a somewhat similar manner to reflection of heat and light
shown in Fig. 8, each transmitter having a sound perfectly distinct
from that of the other, when the circuits are completed the separate sounds given out by the two transmitters can be distinctly
heard at the same time by the aid of a telephone ; but by placing the telephone in a position neutral to one of the spirals, then only
the sound proceeding from the other can be heard. These results the sound proceeding from the other can be hear relatively tosults occor
other, thus proving that there
of no in interference with or blending of the separate lines of force. The whole arrangement will be left
in working order at the close of the meeting, for any gentleman in working order at the close of the meeting, for any gentleman
present to verify my statements or to make what experi${ }_{\text {me as }}$ menactical men gather from these experiments? A great we as practical men gather from thes been written and said as to the best means to secure conductors carrying currents of very low tension, such as telephone
cirouits, from being influenced by induction from conductors in circuits, from being influenced by induction from conductors in
their immediate vicinity employed in carrying currents of comtheir immediate vicinity employed in carrying currents of com-
paratively very high tension, such as the ordinary telegraph wires, Covering the insulated wires with one or other of the various metals has not only been suggested but said to have been actually
employed with marked success. Now it will be found that a thin sheet of any known metal will in no appreciable way interrupt the
inductive lines of being so, it is difficult to understand how inductive effects are influenced by a metal covering as described. Telegraph engineers and electricians have done murh towards acomplishing
the sucessful working of our present railway system ; but arrangements. In fogey weather the system now adopted is comparatively useless, and recourse has to be had at such times to the dangerous and somewhat clumsy method of signalling by means of etonating charges paceed upon the rails. Now, it has occurred to me, that volta induction might be employed with advantage in wire spirals could be fixed between the rails at any convenient distance from the signalling station, so that when necessary inter-
mittent currents could be sent through the spirals; and another spiral could be fixed beneath the engine or guard's van and con the train. Then as the train passed over the fixed spiral, the sound given out by the transmitter would be loudly repro-
duced by the telephone and indicate by its character the signal intended. One of my experiments in this direction
will perhaps better illustrate mye meaning. The lare spiral
was connected in circuit with twelve Leclanche cells and the two make-and-break transmitters before descoribed. They into circuit when required, and this I considered the signalling of the large one at the distance of 8 in. and at a speed of twenty eight miles an hour. The terminals of the small spiral were connected to a telephone fixed in a distant room, the result being that he sonnd reproduced from ellher thansm heard and recognised every time the spirals passed each other
With a knowledge of this fact, I think it will be readily under railway signalling could be obtained by such means as I have ven tured to bring to your notice this evening. Thus have I given you
some of the thoughts and experiments which have occupied my some of the thought and experiments whice long under the imprese
attention during my lesure.
sion that already in a position to give an answer to almost every questio relating to electricity or magnetism. All I can say is, that the more I endeavour to advance in a knowledge of these subjects, the
more am I convinced of the fallacy of such a position. There much yet to be learnt, and if there be present either member tion, I shall feel that I have not unprofitably occupied my time

THE INSTITUTION OF CIVIL ENGINEERS.

 At the opening meeting of the session on the 13th of NovemberMr. Brunlees, President, in the chair, Mr. G. B. Bruce, Vice President, gave an account of his recent visit to the United States
of America as the representative of the Institution, on the occasion of the opening of the through line of the Northern Pacific
Railroad. The invitation came from the president and directors of the railroad, through Lord Granville, and Mr. Bruce took the place of Mr. Brunlees, President of the Institution, who was
unable, through other engagements, to go himself. Invitations other countries, the as guests of the company from the time of their leaving Europe until their return. The railroud is based upon a concession from
the Government, the comany maling the road, and the Governthe Government, the company making the roar, and the Govern
ment giving 25,000 acres of land per mile of road constructed, in alternate sections, the Government holding one bock and
company the ext. The railroad lies mainly between the 46 th and 59 phat parallels of north latitude, about 200 miles south from the boundary between Canada and the States, and 300 miles south o
the Canadian Pacific railway. The distance between the termini, Lake Superior and Puget Sound, was about 2200 miles. Stoside
this, there was a branch from Brainerd on the main line to St. Pau on the Mississippi, which would probably be the chief route fo
traffic between the Northern Pacific towns and the eastern ports. Proceeding north-westwards from St. Paul, the country at first wa
chiefiy under wheat ; some distance after passing the Missouri it chiefiy under wheat, some distance after passing the Missouri
was mainl devoted to raising gattle. MMr. Brace was particularly at Bismarck was effected by an iron bridge 1450ft. long, having three spans of 400 ft . each and two spans of 113 ft . each, and was
50 ft above the highest level of summer floods. The large girders 5oft. above the highest level of summer floods. The large girders
were about 5oft. deep. The majority of the bridges throughout Rocky Mountains. Here, too mere the steepest gradients on the line, the maximum being 116 dit. . to the mile. The crossing of the $_{\text {summits of the two ranges would be by two tunnels, each } 1200}$ yards long; at present temporary roads had been laid over the river through the Cascade Range the most imposing feature of the line. The road at this point, for a considerable distance, is carried along a ledge made
dicular hyill-side into blasting away the almost perpento the yard; the road was well sleepered and reasonably ballasted
and there were all the elements of a good and substantial road which in time will doubtless rank among the best in the United States. There was no siignalling apporatus but treat use was
made of the telegraph. In one feature the American engineers seemed to be particularly distinguished, namely, in the arrange-
ment of their work, and in the strictly systematic manner in which they carried it forward under very difficulte and trying circumstances The visitors were conducted in four trains of about ten Pullman carriages each. They all left New York, and were ready to start
from Chicago on the 1st of September. They met with a hearty reception at the cities of St. Paul and Minneapolis which, thoug
not forty years old, each contain a population of between 80,000 not forty years old, each contain a population of betwen
and 90,000 , and are the centres of large industries. Notwithstand ing the lack of timber over many hundreds of miles in the centre, supply the engines with fuel. The Westinghouse brake seemed t be in general use in America. The whole trip was carried out wit
very few mishaps; one or two slight accidents were the outcome of the running together of carriages from different lines the couplings
of which did not correspond. The great ceremony of the occasion was driving the last spike at the "Garrison" station, at the foot o the eastern side of the Rocky Mountains, when about half a mile
of track was laid in about half an hour, Mr. Bruee then alluded Railroad. He was struck with the much greater use made of the
electric light in America than in England. In many little eities
in the prairies, a high pole in the middle of the town with a light on it illuminated the whole place. He very much admired the
steamboat accommodation in the United States, and remarked that the arrangements for landing in LLiverpool, in as asteam-tug without with it, and were a disgrace to our country and to the companies which perpetuated them. While at Chicago Mr. Bruce went to see the new works of the Pullman Car Company. There was now there a town of 7000 inhabitants, where three years ago there was
nothing but an unoccupied stretch of country. The chief feature was in the surroundings of the works ; everything had been done for the welfare and comfort of the workmen, and the whole had Bruce stated that he had been greatly impressed with the Oregon, for instance where there American people. In Porband o the party were received into the private houses of the citizens and right hospitably entertained, and everywhere they went as oppor-
tunity offered they were received in the same way. We always tunity offered they were received in the same way. We always
knew that America was a great and magnificent country ; great at and magnificent in the future which lies beatore it. Wee knew all this upon ample $t \mathrm{in}$ books for ourselves. But it required us to cross the Atlantic brave all its storms and wisit America as the guests of guests of the owns and cities along its route, in order to know, as we now most thoroughly do, that America is great and magnificent even in its
hospitality. Sir James Hannen, Mr. Holmes, M.P., and General Hutchinson, R.E., having offered some additional observations,
vote of thanks was, on the motion of the President, passed to Mr. Bruce by acolamation, for devoting so much valuable time and
undertaking so long a journey in the interests of the Institution, as well as for the narrative he had just given.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
(From our oron Correcepondent.)
To-DAT-Thurs hampton, business was disorganised by the fear which is enter-
tained that the threatened strike of oolliers will come about, and
that there will be a prolonged struggle. Notices from some 16,000 colliers, young and old, have been served upon the employers by the men's chifer union agent in this district; and the employers
have been informed that if the 10 per cent. $\mathbf{a d v a n c e ~ w h i c h ~ t h e ~ e m e n ~}$ omand is not cor
The notice does not apply to the miners upon Cannock Chase, but
that district also the men have this week determined to give otice for such a change in their wages when the existing arrange ment runs out at the close of this year, as shall place them in
position corresponding with that ococupied by their fellows in the ther portions of South Staffordshire. At the same time they oo at the Manchester conferencee of miners., Tested by the crucial quotations for coal-those for Carl Dudiey's furnace
quality, which are 9 s. 6 d . and 10s. respectively upon the receiving are 5d. "per day," or stint, in advance of what the men would be entitled to if the late sliding soale were still in vogue,
ond as iron, even in the teeth of a probable strike, cannot be sold th other than weakening rates, the colliery proprietors declare tha
is impossible to concede higher wages. Earl Dudley's manager has taken the initiative, and has gaven. .atice to the operative employed upon the surface, including the mechanics and the
enginemen, that their services will not be required after the notices the colliers have expired.
At a large and influential
-day it was unanimously resolved after two hours in deliberation to gnore the notices given by the colliers' agents, to decline to acced
o the men's demand, and that in the event of a strike they b allowed to return only at 3s. 4 d . per stint in the thick seams, or
drop on the xesisting wages of d. ropp on the existing wages of 4a.
The demand for bars was fairly steady to-day, but there was no
ntion ind
 Sin. by 11 in.; best bars and best scrap bars were $£ 9$, and best bes
c10 per ton; best angle, tee, and rivet iron was $£ 9$ 10s.; and double best $£$ per ton additional.; "B.B.H.H", plating bars were $£ 8$, and
superior sorts $£ 1$ 10s. per ton additional; charcoal bars of best best quality were quoted at $£ 16$ nominal. Other merchant sections of
iron were without alteration upon the week. Sheets of the "Woodford" brand were quoted delivered at out

The galvanisers were not in the market to so large an extent a

 Lion " brand was $£ 13$, $£ 14, £ 16$, and $£ 18$ per ton, according to
gauge.
Sellers of pigs produced outside this district reported here and sellers of pigs produced outside this district reported " "no im
there rather better sales. , but the majority had to advis off, and soon heary quantities of pigs will have to be put upon th market by makers who will cover the ow prices which ocept by forward purchases of cokes and ston Native all-mine pigs were to-day 65 s. to 60 s. for hot blast sorts L5s. 45 . for part mines; and 40 s. easy for cinder qualities,
Best forge hematites were 60 s , nominal in the absence of much business to test prices. Lincoolnshire pigs were 50 .
Derbyshires, 46 s . 3 d ; and Northampton sorts 45 s .
Shropshire wire drawers were in better spirits to-day, since it
believed that about 1000 tons of galvanised iron wire, require or covering purposesin connection with the ocean cable contracts, will have to bb supplied by that district. The Lancashire iron wire
makers are, however, likely to get the bulk of the orders for the outside wire.
The Iron and Steel Works Manager's Institution discussed a C. H. Triglown, on ", The Wiaper recently read Gas Producer.
The latest
reights is a notice which has been served upon the cycle manufac turers of Coventry, Birmingham, Wolverhampton, and Notting ham, that after January 1st cycles packed in parts and those sen whole will be charged at the same rate. At present, cycles in
parte are chargea less than whole cyoles. This the
moventry the co-operation of the other towns mentioned in their resistanc
The President of the Walsall Chamber of Commerce holds that "the anomalousrailway freights on the carriage of wire from the Con
tinent to Birmingham, and vice versa, gives a fearful and absolute tinent to Birmingham, and vice versa, gives a fearful and absolute
monopoly to the foreigner." Further, they compelled the manuacturers in the centre of England to pay four times as much for the conveyance of his goods as the foreigner paid.

NOTES FROM LANCASHIRE.

Manchester.- The weight of actual business doing in the iron
trade of this district continues small, and there is very little change trade of this district continues small, ane there is sew really pressing
to note as regards prices. There are very foll off for work for the present, and rather than seek new business at less prices than the already very low basis, they prefer to work on as long as possible with existing contracts. Buyers, on the other
hand, apparently anticipate a quiet winter's trade, and beyond covering absolute requirements, they are not disposed to give out cessions upon current rates. Lancashire pig iron makers have
deliveries on account of contracts which will see them over the present year, and the leading finished iron makers have also plenty of work in hand at present, wat some o stie complain of slackesess of
rather short of orders. Ironfounders still compling trade so far as the general run of work is concerned, and brass.
founders report orders for engineers' and marine fittings falling off, with prices cut extremely fine to secure business,
There was only a flat market at Manchester
yery little business reported in either pig or manufactured iron. nufactured iron.
, a shade easier
thair minimum sellers being now prepared to come down to 45s. as thair minimum,
with 45y foundry qualities delivered equal to Manchester; but practically no business is being done at these figures. The fact that two o
the large Lincolnshire makers are so fully sold that for the present they are practically not seeking new business in the market, tends
to give a firmness to district brands of pig, which, however, is not sustained by any increased weight of business. Aithough it would
be difficult to get any orderso
for importance at prices above 4se 6 d here, and large buyers
 Middlesbrough iron has long been out of this market as a really
competing brand, but prices appear to be gradually getting to
and the week g.m.b.'s delivered equal to Manchester could have been bought at 45s. 6 d. net cash.
Fairly large sales of hematite were made last week at low figures,
but Io not hear of any order of importance at present coming int the market. In the finished trade the weight of new business coming forward is only limited, and the closing of shipments to the Baltic market. Makers who in a few cases are getting short of orders are open to quote under current rates for good specifications, and hoops
have been offered at as low as $£ 67 \mathrm{~s}$. d . per ton delivered equal to Manchester, but the giving way in prices generally is only very
slight; the leading makers are still firm ate late rates, and the
ninimu thera minimum average guotations for delivery into the Manchester dis
trict are about $£ 6$ 2s. 6 d . to $£ 65 \mathrm{~s}$. for bars, $£ 610 \mathrm{~s}$. to $£ 6$. 12 s . 6 d . for hoops, and $£ 715 s$. to $£ 8$ per ton for sheers.
I understand that it is probable the dificiulty with regard to the new standard wire gauge as it applies to the hoop and sheet iron
trade, and to which I have referred in previous "Notes," may be
solve by the solved by the adoption of an independent gauge specially framed
to meet the requirements of the iron trade. sheet iron makers agree to work upon an independent gauge thus arranged there would I believe be no difficulty in the way of its
being authoritatively accepted as a standard gauge for the iron trade.
Recently one of your correspondents, in noticing a short descrip-
tion I gave of a alarge lathe manufactured by MIessss. W. Muir and
Co., introduced the
 o meet special requirements, which I saw introduced in anothe
ool works I visited the other day.
 nore specially adapted and suitable than the others. In going ver the works of Messrs. Hulse and Co., Sallofrd, I saw maahine
tools exhibiting in some part or other both V strips and flat strips, planer both flat and angular strips were used. In another planing machine just completed, there were six tools carried on wha
might be termed a telescopic cross slide, which, whilst it enabled the tools to be brought within so small a distance as 9 in, apart,
provided a sufficiently long bearing surface to keep the tools per
fectly ectly steady . This was a powerful machine, treble-geared, and
constructed to plane 16 ft . long by 6 ft . wide. The large plane previously referred to, with flat and angular strips, was con-
structed to plane 18 ft . longitudinally,
deep, and though so large or two other special tools at the works which I may briefly notice One of these was a a patent planing machine for taking in work
10 ft . long by 4 ft . wide, and so arranged that when required in traversing to enable could be made to raise the cross silie, whilst it
was also oconstructed as to give a variable traverse to the two the variations of feed being as readily made as the varying length apping, a ng a vertical area of 10 ft . high and 16 fft . long, and a smalle
machine which, in a addition, was arranged for miling the parts of cylinders and drilling the flanges of propeller couplings, covering esign of a vertical drilling and boring machas as an regards the
driving gear. The table, which has compound slides and a grooved driving gear. The table, which has compound slides and a groove
curtain for chucking work vertically, is raised by power, and all onstruy fred to the spinithe is 0 diameter. I may add that constructed to admit work
Messrs. Hulse, who have orders in hamet for exceptionally heavy
tools are The capabilities of the new tilting weir erected from the design chester, have during the recent floods been put to a tolearbly sever designed in the motst satisfactory manner. A full description, with detailed illustrations, of the weir has already been given in TH
ENGINEER, and it will be of interest to add a short description o the manner in which it has done its work. The weir was designed time of flood and to be easily opened or closed whe required. During the recent floods in September and October the
weir has required no other attendants than the ordinary lockkepers, of the
more is the action of the gates, that when glood is approaching one main is able to open as many as three of the sluices simultaneously
whilst frequently they have opened automatically, and it has only
 of its special features, as the Bridgewater Navigation Company proved that in case of any possible night or sudden flood this utomatic action would come into operation. As to the effective the low-lying districts in Manchester were previously subject, I may wards, on the 17th October last showed that the flood was at the
same height at the Douglas-green Weir, Agecroft, as the flood of
 was, however, 6 ftt. lower than during the flood of 1880, and at the
cesto of the Throstle Nest Weir was only lftabove the low.water
level.
dredging, is also rapidly lowering the river bed, and thus creating
a much larger sectional area in the river, a much arger sectional area in the river, with a consequent increased
discharging power, so that the new weir, which Alderman Hop-
king kinson, the ex-mayor, has referred to as a practical solution of the
flood question by which the whole county might profit, is giving more relief now than it did when first opened
In the coal trade the threatened strike is keeping up a consider
able inquiry for forward delivery at present rates, but there is no able inquiry for forward delivery at present rates, but there is no
actually great pressure upon the market, and except that sellers, actually great pressure upon the market, and except that sellers,
where they have been taking orders at under list rates, are stiffening up to full quotations, no materially higher prices are being
obtained. All classes of round coal most noticeable feature is the increased demand for slack, which for some time past has been a drug in the market, but which is now going of without difficulty, many of the stocks having already
been cleared away. At the pit mouth prices average 9 s . 6 d . to 10 s .
for

Shipping is quiet, with Lancashire steam coal not averaging more
than 7s. d . to 7s. 9d. delivered at Garston or Liverpool.
It is expected that in West Lancashire the miners
their notices for an advance of 15 per cent. at the close of in their notices for an advance of 15 per cent. at the close of the
present week, but that they will cease work when these notices
expire is consid expire is considered very doubtful.
Barrovo. -1 I notice the
Barrow. - I notice that very little business is being done in the
hematite pig iron trade, and makers are receiving but few hematite pig iron trade, and makers are receiving but few
good orders. The business being transacted on both home and
foreign foreign account is not extensive, and there are no signs of an early change in the state of the market. The stocks warehoused at
makers' yards have be rapidly, as the deliieriries are by no means equal to the output of
metal, which up the present has been well maintaine metal, which up the present has been well maintained. I think
that if the present bad trade continues much longer-and there is every signe of it donng so-it winues much longer-and
for makers to blow out one or two fureessary
furnaes and thus reduce the output. Prices remain very low, indeed they are now so low that makers do not realise any profits on their sales. A few
buyers are offering orders at lower prices than those now ruling buyers are offering orders at lower prices than those now ruling;
but of course it cannot be expected that the makers will accept
them ber
them. Although there is certainly, It that the the makers will accept
ing tendis week a cheapening tendency all round, prices remain steady. No. 1 Bessemer is
selling at 48s. per ton; No. 2, 47 s .; and No. 3 , 46s. per ton net at selling at 48s. per ton; No. 2, 47s. and No. 3 , 46s. per ton net at
works, prompt delivery. Steel makers have been so far well em-
ployed, but they are not ployed, but they are not obtaining many large orders. The output are some good controchats on the theonsts has been large, and the demand for mild steel
has improved, and there is every has improved, and there is every prospect of this trade becoming
one of great importance in the distriet. Rails are quoted at from \& 10s. to \&5 per ton net. Shipbuilders are but indifferently mployed, and there are but few inquiries. Iron ore is in fair
lemand at from 9 s , to 11 s . 6d. per ton at mines $;$ stocks all round. Coal and coke stady, with at tendency to higher prices.
Shipping quiet, with a scarcity of orders. Shipping quiet, with a scarcity of orders.

THE SHEFFIELD DISTRICT

(From our ouon Correspondent)

AN intoresting gathering took place at the Atlas Steel and Iron
Works, Sheffield -Messrs. John Works, Shefield-Messrs. John Brown and Co., Limited-on
Monday laste. Mr. J. D. Ellis, the chairman of the company,
invited the puddlers and other ironworkers in their employes-to meet him in the No. 2 planing shop. About ppeared in the Times-accepted the invitation. Thers piled-up plates forming a platform, invition. There a mass of addressed a
surroundings. Peeting under unusual and even picturesque the cut of the plane, and looking down from cranes high overhe were the men, while in front of them, on a lesser pile of plates,
were Mr. Ellis's colleague in the management, Mr. S. Burridse were Mr. Ellis's colleague in the management, M
and a mall army of managers and other officials.
and
of affairs in regard to the threatened strike. After showing by figures that the coalowners could not possibly give the miners thy 15 per cent. advance, he intimated that it was first feared
it would be necessary to give the whole of the employes it would be necessary to give the whole of the empioges
notice to leave their work., But, on seoon thoughts, they
had decided not to take this, step, but to put the men in possession of the precise condition of ant of to puts, the the men
frankly what might be expected. The ocmpany had resolved carry on its business as well as it coulp, and with t that view
they were buying coal in other districts so as to enable them to highere price for the coal; and it was not so good as as thei higher price for the coal; and it was not so good as thei
own. They would be unable to find full employment for the men
-probably not half work-and he counselled them to much money as they coul- before the estrike them to makted, and to be
prudent in the use of it while the miners were idle. Mr. Ellis a higher price for coal would, cause as ship plates and boiler plates, and in such an event he did not believe it would ever Sheffield again. The question of coal was more important aser to iomen than
as to steel, but they could not make tires and axles without coal. At the moment the Germans were pushing tires into England and them. An addition of 15 per cent. upon the present pompete with would drive away a very considerable amount of the tire and
axle and steel plate trade of Sheffield. Mr. Ellis closed selling the workmen if they had any influence with the colliers to Appearances, however, point to the strike taking place. Mr. B Pickard has undoubtedly the ear of the men, who have. sent in
their notices with a unanimity which has rarely been seen in this district. The employers published a verbatim report of their con-
ference with Mr. Pickard, Mr. Frith, Mr. Cowey, Mr. Parritt, and
other other officials and delegates, and circulated it among themselves among the miners. Not a single reason urged for the advance was
sustained; in fact, there was the colliers' representatives, while the coalowners urged thabside of cause why an increase in prices was not only not warranted, but
would in the end injure none so seriously as the driving trade out of the country; and yet the coalown man by content with circulating this report among themselves, when the
perusal by the they drew out their tools in December. The coalowners are to hold another meeting at Sheffield on Monday, and there may yet Prices are still tending downwards in iron and steel. In 1880 hematite pig iron was sold at $£ 6$ 10s. to $£ 7$ per ton; now it is

 per at works
demand of late. The Great Eastern, Company has divided 500 sets of wheels between Messrs. Owen and Dyson, Rotherham, and sets
Leeds Wheel Company, Leeds; the Great Northern Railway Company has placed 400 sets of wheels with the Darnall Carriage Company has siven the order for 500 sett of wheels to the Ashbury
Carriage Company, Manchester Western order for 20,000 tons of steel rails for the London and North-

The United States Government have at last decided, after
testing compound armour and steel plates, in favour of compound armour for the turrets and look-out towers of the Mianto-
nomah, and have placed the order with the Atlas and Cyclop nomah,
nomas.
Works.
The lighter departments are well employed on Christmas orders. nheep shears are freely ordered for the United States, and there is every day, will be pretty gratifyying. The Cape trade is scarcely
worth mentioning. An order or two drops in ocoasionally by worth mentioning. An order or two drops in ocasionally, but
nothing to indicate any decided improvement for a long time. The disastrous effects of the diamond speculations are still severel felt.

THE NORTH OF ENGLAND

Notwithistanding that prices were again lower at the Clevelan amount of buying and selling was done. It is said that but few pis ison smelters can make a profit at the prices now obtainable, and On Tuesday merchants were willing to sell No. 3 G.M.B. a 37s. 1 d d. per ton for prompt delivery, butasked 37s. 3d. for forwar were not above accepting orders at 37s. 3d. per ton. The demand for No. 4 forge iron in ont so great as it was. The price usaally quoted was 36 s ., but the sales actually made were mostly at 35s. 9 d
There is nothing doing in warrants, as makers iron can be ha There is nothing doing in warrants, as makers iron can be had The stook of Cleveland pig iron in Messrs. Connal's Middles
brough store amounted, on Monday last, to 63,895 tons, being reduction of 650 tons for the week, The shipments of pig iron from the continue excellent Large quantities are being sent to Germany and other foreig countries. Up to Monday night 70,793 tons had been exported
In the first nineteen days of October 59,045 tons; in November 1882, 37,901 tons were sent away in a corresponding period of time The manufactured iron trade is in a fairly steady condition most of the works having orders which will keep them going to
the end of the year. For prompt delivery prices are fuly the end of the year. For prompt delivery prices are fully main
tained, and are about as follows:-Ship plates, $£ 6$ per ton; ship free ong angles, £5 12s. 6d.; and common bar iron, 5515 s. as are $£ 3$ 12s. 6 d . per ton net at works. For forward delivery maker are not willing to take lower rates, and consequently no business is
done. Orders for steel rails are very scarce, and ordinary sections can be bought for $£ 4$ sts. per ton.
Loftus and Whitby Railway for passenger and goods trafto Monday, December 3ra.
It
about to put down dow plant at the Tudhoe Ironworks for the
manufacture of steel on then
shipbuilding yard at South Hylton. It has been obtained nearly oppositit e the yard of Masesss. .bourne,
Graham, and Co., and that a start will be made early in the new
year
Messrs. G. K. Smith and Co., iron shipbuilders and repairers, of Court on Friday last. The liabilities are $£ 10,250$, and assets about
£1000 £1000.
Mnother mass meeting of ironworkers was held at Stockton on
Monday last, when an address on "Organisation" was delivered
by Mr. Lloyd Jones. The following resolution was unanimously carried :-"That organisation is an absolute necessity for working men in a defence of the interests of labour, as without such organisation nothing effectual can be done to secure proper wages
to the worker, and to enforce such other conditions as will bring ndependence and comfort to the torking population of the
The failure is announced of the Vulcan Ironworks Company
Limited, which succeeded to Messrs. Fowler and M. Colon, formerly engineers, at Hull. Mr. Peat, of the firm of R. Mackay and Co.,
has been appointed receiver. It it m not yet known what are has been appointed receiver. It is not yet known what are the
liabilities. The company in making an announcement to the abe effect says. that its principal losses have been incurred in the shipbuilding branch of its business.
The North-Eastern Railway Company has given notice that it intends to ask for parliamentary powers to purchase all the private
lines of railway hitherto belonging to the Middlesbrough owners r in other words, to the Pease family. These railways form of the Tees, from near Nowport to Cargo on the south bank years since it was proposed to invite the Midland Railway
Company to extend its line to Middeshroul he scheme to form a connection between the new line and the net giving a new waccess to most of the existing works. The NorthMidland and all other schemes whoposed action, put a stop to the it, and will place the district more completely than ever in its
power. An early meeting will take place of the Marshowners power. An early meeting will take place of the Marshowners to
consider their interests, and petition Parliament against the ne Bill, unless satisfactory conditions can in the meantime be The death of Sir C. W. Siemens has produced universal
in Cleveland, where he was well known and highly esteemed in Cleveland, where he was well known and highly esteemed.
The collapse of the mining village of Boosheck, in Cleveland,
owing to subsidence of the surface produed by is giving rise to an extensive crop of litigation. The surface owners are in all cases plaintiffs, and Mr. O. Jackson, land and nine, are defendants.

NOTES FROM SCOTLAND

(
cose of last week, has been scarcelo so strons this this week towards the The quotations, but a large quantity of warrants changed hands. duced a series of covering operations on the part of bears, and nembers oen at the same time more inquiry than usual from
 an average about 200 tons each a week, as compared with 114 an the corresponding date last year. The stock of pigs in Messrs.
Connal and Co.'s Glasgow stores continues to dealine the tion for the past week being upwards of 1000 tons. The general but this process has not as yet been found so effective as to free makers' iron from the depressing influence of the warrant market.
Business was done in the warrent On Monday forenoon the market was dull, with at at 44s. cash 44s. 3d. to 44s. 1 dd . cash, and 44s. 5d. to. 44s. 4d. one month, the
quotations in the afternoon being 44s. 1d. . to 44s. cash, and

 day-Thursday-transact
and 44 s . 7d. one month.
The quotations of makers' iron are again somewhat easier a

51s. 3 d. ; Summerlee, 55s. and 49s. 6d.; Chapelhall, 54s. and 5 s.
Calder,
C8s. 48s. 3d.and 46s. 3d.; Monkland, 45s. 9d. and 43s. 6d.; ; Quarter

 The total import of Cleveland pir 235, 243 tons, showing an increase of 27,781 tons as compared with the arrivals in the corresponding period of 1882 .
A somewhat
A somewhat gloomy view is now being taken of the condition of
the malleable iron trade. Several firms in the central districts of Lanarkshire are now reported to be engaged upon their last ords of with little or no prospect of securing others that will at all equal them in importance. The want of fresh contracts in the ship. building department is severely felt at the malleable works, and
unless an improvement occurs in the demand for other articles, unless an improvement occurs in the demand for other articles,
there can be little doubt that a period of slackness will ere long have to be encountered. Makers complain much of extrere ong petition, and it is pointed out that the eprices are from this cause in the past ten mon ths being something like 10s. to 10 15s. per ton The mild steel trade will be iikely to suffer to a considerable extent teel works proceeds with scarcely any interruption The thick fogs that prevailed during the greater part of last week had a tendency to check the business in coals, by throwing the
railway traffic into confusion, but a large amount of business has 1500 tons 5 been done. Among the quantities despatched were o Odessa, 500 to Rouen, and 5912 coastwise. The inland trade is active, and as yet the recent advances in prices are fully mainThe sixth annual report of the committee entrusted with the large fund subscribed to relieve the dependents of men who lost
their lives in the memorable explosions at High Blantyre Collieries was presented to the public meeting of subscribers in Clasgov few weeks ago. It stated that there are still 245 persons dependent
on the fund, that there has been spent since the first $£ 21,461$, and that the committee have still in hand since the first $£ 21,461$, and at the late incerease in their wark district are now quietly working ment seems to be spreading both on the East and ; Wut the move Ayrshire it has been resolved to form a union, and in East Lothian the question appears to be as far from settlement in Fife ases, and The boilermakers of Greenock propose to reduce the wages of

their men by 5 per cent,

WALES AND ADJOINING COUNTIES.

THE mineral world of Wales was electrified this week by the Canal. This is the Marquis of Bute had bought the Glamorga ating from 1790, and was an enterprise undertaken by all the old ironmasters of rawshay, Guest, Paitt, Cockshutt, and Farman,
with a few of the landed proprietors, the banker Wilkins, and the old Vicar Meybery. It has done good service, and if served by old hiar ineerbery. It has done good service, "and if, served by
smals steamers, the banks secured from the "wash," as on the Berkeley Canal, might yet figure well, but I Imagine that the out-
let of the canal at the West Mud, Cardiff, will figure in its new more conspicuously than the canal itself, and that docking the tive to barry Dock schemes. So pro an efrectul prevenpromoters of the Barry yare bent upon their suicidal course. They
will take their coal traffic twelve miles what will.
The committees of the Houses of Lords and Commons will hav the Darwinian principle of selection to carry out most carefully propounded in this age of lust for coal. No less than eight schem be are now being prepared that will impinge on tha Taff! Some of
these are excellent, skilfully designed, and will be suportem much common sense as capital. Others appear vupported by as by a greater desire to have a share appear vofisionary, and It is here that committees of both Houses will do good work-the pace may be too fast for the country's welfare.
sent, and the pressure is something enormous ine coal trade at pre the Rhondda collieries-the Clydach Vale:-This is per week, and every working hour 200 tons of magnificent coal sent to bank. The area of this pit is not a very large one; bu
even if of good size, such an output would soon tell years again for many of the Rhondda pits, and after that, lower The colliers are delighted with their sliding-scale results, and Cave now warmly supported the farthing movement in aid of the -are-the sliding scale, the Association, and the Permanent Fund moral and social benefit will be the result. I should like to to that general Colliers' Building Fund started. It was suggested, I think, Mus securing the maintenance of pleasant relations betwn house ployer and employed, and leaving the widow the homestead after
The thirst for coal property is excessive. I hear of no less than branch of the projected line-the Risca and Cardiff-a capital pro jection. Here we have an instance of railway speculation, prompt-
ing well in mineral enterprise, not following as is ing wein in mineral enterprise, not following as is generally done.
The anthracite colliers have had an advance of 5 per cent. The The anthracite colliers have had an advance of 5 per cent. They
now work by sliding scale. Both house and steam colliers are agitating for an increased number of sub-inspectors.
Trade is still dull; iron ore is a drug, and low prices fail to templ. At the Rhymney Works 1 regret to hear of a breakage entailing Cyfarthfo iortunatelyit will only keep the works idle a few days. onormous outlay going ponshed on on wite in the spire spirit. There is an
got the old Crawshay Very sincer
week, just on the eve of the banquet to siemens, who died this He dic good work in Wales, and realised the in his honour. pressed in these columns when he began at the Landorenations exnd ther high works now manuacture 1000 tons of steel per week, Tin-plate is drooping again, ali but best steel plates, which are demand. Wire works are fairly busy again. Coal prices firm,
Pitwood prices are high, and maintained well. Col Iron prices low, and but little doing out of old contracts, which are running to an end. Better figures are hoped for with the new
vear.

LasT week on the Birkenhead side of the river the boring
 orward on bother has been passed some days, and the progress be bored between the extremities of the two tunnels to something

THE PATENT JOURNAL. Condensed from the Jourralal of the Commissioners of $* *$ It has come to our notite that some applicants of the
Patetet-ofice sales Department, for Patent Speciifcations

 Index and giving the umberar there found, weotich only
Iefer to the pages, in ploce of turning to those pxges and refer to the papess, in place of turning to to
Inding the numbers of the Specifcation.

Applications for Letters Patent. ** When patentr save been "communicated." the name and dadress of the communicating party are printed in talilics.

 134h November, 1883.5347. HATs, \&ce., J. H. Jobnson. - (c. H.

 S307. STrEL, W. Bardmore and J. MacC. Cherrie,

 Mathews, London:
5348. CAR Coupluas,
H. J. Haddan.- (J. W. Snyder,

 Ciounn, Paris) 15 November, 1833.
53s2. Conpoovd Marine Eserings, W. B. Thompson
Dundee, , B.

 Hind, Pre eston.
5349. Propkluina Stips, w. Lockwood, Sheffield. 16 th November, 1883
5350. Communicating Motion to Seafts, W. Ross,
London,

 Dresden.
5H2 Moviss for GLassess, de., J. Dawson and T. F. D.
H.an. London.

17th November, 1883.

5351. Usisg Steam and Hot A'r Combined, w. Turn-
bull, New Hampton.

 Dis. Thasasyristisa Motios to Machinery. P.
 st33. Vestruativa Apparstus, T. E. Bladon and W.
Mathews, Birmingham. Mathews, Birmir
Sisham. Biovices, de., J. Bradshaw and J. Bradshaw
 19th November, 1883.
5352. Sroppraing Botiles, G. C. and A. G. Thompson,
Sheefield.

 5452. Smerilino orks, đu, B. R. Smyth, London.

Inventions Protected for Six Months
Deposit of Complete Specifications. 5350. Nor Lock, A. M. Clark, Chancery-lane, London.
A communication from H. Schwarz walder, New

Patents on which the stamp $\begin{aligned} & \text { has been paid. }\end{aligned}$ 4751. TReithent of MAize, E. R. S Juthby, London.-

 4767. Thicroless, \&e, H. Weatherill, Manchester.-
1907. November, 1880 .

 and F. Lockhart, Belfast, - 18 th N Noveenbert, 1880 .
4982.
1siovzs,

 4700. CLort, S. Thacker, Nottingham.- 1 5th November 4718. Coxppssivg or Coolisa, J. H. Johnson, London
-160 Nowern 484. Loont for w invisa Carpets, w. Adam, Kidder
minster- 2 2nd November, 1880 . Joffries, jun, and J . R. Williams, Handsworth.
fith Dise

 4819. Gas Exginss, H. L Muller and W. Adkins, Bir-

 November, 1880 .
Patents on which the Stamp Duty of $\& 100$
has been paid. 4455. Skying MAchings, A. Anderson, Glasgow.-17th
November, 1876.
 4409. BLast Furdicess, W. S. Williamson, Congleton
 1876.

Notices of Intention to Proceed with (Last day for fling oppposition, 7th. December, 1883.) 3408. Portable Ovess, J. H. Johnson, London.-
communication from L. Dathis. -10 th $j u l y, 1883$.

 -11th Jully, 1883. Ji26. Combive Woot, deo, J. H. Whitehend, Leeds.

3448. Prok krs, J. Holding, Lower Broughton. -13 th
July, 18ss.

 July, 1883.1 Mill MAbbLE, J. Heinemann, Hanover.-

 July, 1883 , mat

 September, 1883.
ter Srisk
ber, 1883.

 pool.-A communication from V. D. stock bridge.-
Sh 0 octobec, 1883
 mingham. 10 th october, 1883 .

 London. A communication from A. Guilbert. Martin.
 (Last day tor fling opposition, 11th December, 1888.) 2500. Ambulange Carriagrs, do., R. A. Westhorpe,
London. 19 th May, 1883 .

 \pm communication from the Larsen Rifle Company. 3515. Frekzino Aparatus, J. H Johnson, London.-
A com. from E Fixary. $-18 i h$
July 1883 . 546. Moulds for REFining SUGAR, J. Duncan and B.

 3644. VALVEs or Buck ETs, J. K. Tullis, Glaggow. -25 th

 1883. Wrushes, J. Thompson, London-25th August,
470. Washing Machines, J. Child, Headingley.-3rd

4961. Elegtrical Heating, J. s. Sellon, London.-

 tion from H. Sch warzwalder. 13 13h November, 1883 . commung for WEan Wivag, W. R. Lake, London-- A.
November, 1883.

Patents sealed.

(List of Letters Patent whicich hasased the Great seal on the
$16: /$ November, 1883.)
 2182. Electro-motiva Esoine, A. Browne, London.2505. Cossiver 1883.
$-19 t h$ May, 188s.
 von Nuwrocki, Berlin - 19 igh May, 1883.

 2558. Wrionivi Michinss, w. P. Thompson, Liver 2559. FerDixa-boyTLLEs for Babres, A. Horne and J,

 2633. Payoperlers for Navianble Vebsels, N. D.

 (List of Letters Patent which passed the Great Seal on the
$20: h$ Novenber, 1833.) 2315. Ekamellina Cast Ieos, G. J. Rhodes, Wolver-h3ampton-7, May, May, 18s3.

 Dunstable.-22nd May, 1883.
2555. HoLDive Hate, A. Pyke, London.-22nd May, 2568. Oprinsa Doons by means of Elscrtioctry, G. F.

 2577. Mkrallising Now-metaluic Sobstanobs, C. G

 2600. Tramwa Ys, A. H. Rowan, London. -24 th Moy,

 2643. STrEAM Bourkr FurNuger, J. Elliot, jun, and T.

 333. Here 1888. 34893. Looms for WEAving, T. Hanson, Bradford.- 12 th

 4191. Pumping Apparatus, J. A. Wade and J. Cherty, Hornsea- $\mathbf{3 0 t h}$ August, 1883.
4225. INTERMITTENT Cocks, B. H. Chameroy, France. 4276. ELETRICAL Switches, H. H. Lake, London,

 463. ANNMLAL and MAN TRAPz, W. Burgess, Worcestor.

List of Specifications published during the
week ending November 17 th, 1883 .

