THE INSTITUTION OF NAVAL ARCHITECTS. On assembling after luncheon, on Thursday, the 15th inst., a paper was read by Mr. A. F. Yarrow,
On Some Experiments to test the Resistance of a First-class Torpeido Boat, which, as it supplies data not previously given, we produce almost in extenso.
The object of the paper was to give a brief description of some experiments which were recently tried to ascertain in a first-class torpedo boat, propelled at various speeds, the indicated power of the engines, and the thrust on the shaft when steaming in the usual way; also the power
required to tow the boat. The boat upon which the required to tow the boat. The boat upon which 6 in . experiments were tried was 100ft. in length, by 12 ft .6 in
beam, having a displacement of 40 tons, and for the purpose of towing it at as high a speed as possible another torpedo boat was used, somewhat larger, of about 50 tons' displacement. The first set of experiments were to ascertain the indicated power for various speeds. The indicators used were of Mr. Darke's latest pattern. The engines were of the ordinary direct-acting inverted sur-face-condensing type, having cylinders $12 \frac{1}{2} \mathrm{in}$. and $21 \frac{1}{2} \mathrm{in}$.
by 16 in . stroke, capable of making-at 120 lb . per square
so for a correct reading to be obtained, which it is believed was due to the unequal strains on the shaft during each revolution. To obviate this, a large air vessel was placed on the pipe uniting the rams with the pressure gauges. The greatest thrust on the shaft obtained was 4080 lb . at $15 \cdot 735$ knots. The coupling between the thrust shaft and the crank shaft was of the usual type, steel bolts being secured in the one coupling, passing loosely through holes bored out in the other. Consequently, when the thrust came on the shaft and it moved forward, the amount of pressure registered on the rams would be equal to the thrust on the shaft, minus the friction due to these bolts sliding through the holes and forcing the themselves. in arn ward direction the pressure obtained stern shaft in a forion解 the rean between these were nake res and to be as accurate as possible several pairs of these observations were made at pach speed, and the mean of them taken as a fair estimate of the abtained multiplying the thrust into the speed of the boat divided by 33000 gives the curve B. The shaft not being quite horizontal, the thrust obtained in this way clearly does not correctly represent the horizontal pressure. Re-

Admiralty experiments which he was now conducting at Torquay, and remarked on the very close agreement between the results obtained with a model, and those with an actual vessel, especially in the case of the Greyhound.
He thought the resistance to a model would generally be He thought the resistance to a model would generaly Mr. White said he had seen Mr. Yarrow's dynamometric Mr. White said he had seen Mr. Yaratus in working order, and considered it excellent in every respect, and the results might therefore be taken in every respect, and the results might therefore be taken
as trustworthy. This was only the second large scale experiment that had been made, and it was an extremely experiment that had been made, and it was an extremely
valuable one, as, by comparing the curves on the diavaluable one, as, by comparing the curves on the dia-
gram, it was visible at a glance what the screw was gram, it was visible at a glance what C showing the augmentation of resistance due to it. It was also interesting as giving the ratio between indicated and actual horse-power.
Mr. J. Wigham Richardson then read a paper
On the Modes of Estimating the Strains to which Steamers are subject,
the chief object of which was to put forward the view that the scantlings should be determined by a consideration of leverage strains as in a girder. The most obvious way

APPARATUS FOR TESTING THE RESISTANCE OF TORPEDO BOATS.
inch-480 revolutions per minute, giving a speed of twentytwo and a-half knots. The curve obtained is shown by the line A on the diagram, Fig. 4, which has been arrived at by numerous observations. How far diagrams obtal way with exceptionally high-speed engines may be relied on to represent exactly what passes in the cylinders is no doubt a matter for consideration. The next set of experiments was to ascertain the thrust on the shaft at various speeds. For this purpose he designed a dynamometer, which is simply a modification of Mr. Duckham's weighing machine. There are two hydraulic rams of a diameter giving collectively exactly six square inches area. The two ram cylinders were securely bolted to the bed-plate of the engine, Fig. 3, one on each side of the the thrust block, which is generally bolted down to a the thrust block, which is generally bolted down to a bearer in the boat, but which in this instance was left quite oose, and allowed prevented from revolving by means of irection. It weck, Fig. It will be clearly seen that, with this arrangedece is a thrust on the shaft the thrust ment would move bodily forward, pressing the rams into the cylinders. Copper pipes were led from these cylinders to pumps and to pressure gauges fixed in the after cabin, where they could be conveniently observed. As the rams were exactly six square inches in area, and as the exact pressure per square inch could be read off on the gauges, it was a very simple matter to arrive at the total amount of the thrust. There were three pressure gauges, for the sake of comparison, and three pumps, two of them being ordinary vertical reciprocating hand pumps, and the other a ram worked by means of a screw. The vertical hand pumps answered the purpose very well for pumping the ram cylinders full of oil in the first instance, but owing to their intermittent action they were unsuitable for use while any records were being taken. The pump having its ram worked by a screw was found by its steady and required without difficulty. On first testing the apparatus the pressure gauges vibrated very considerably, too much
solving the inclined thrust in a vertical and horizontal direction, the difference between the total pressure in the direction of the shaft and the horizolss due to the inclina e., for purposes of propulsionthe to the eighths per cent ion, as represented boat upon which these experiments were tried was then towed by another boat, as explained. For this purpose the same ystem of obtaining the pull was adopted as previously used in obining the thrust, so that any errors due to the dynamometer itself would be common to both sets of expeiments. The dynamometer was secured on the deck of the hauled boat, the rope passing direct from it over a pulley at the bow to the towing boat, Fig. 2. The towing experiments were limited to 14.97 knots, which was the utmost speed that could be maintained continuously. The length of the tow line varied, the mean length being 450 ft ., which was believed to be sufficient to avoid the sternward column of water produced by the screw of the towing boat from being perceptibly felt by the towed boat. At first great difficulty was found in getting anything reliable, as the wave due to the towing boat materially influenced the result, To meet this a number of experiments were tried at as nearly as possible the same speed, varying the length of tow line, so that in some cases the waves formed should retard, and in others help the boat, taking the mean of them to represent fairly the correct result, which is shown by curve C. In these last experiments the screw of the towed boat was removed. The author said that, through the courtesy of Mr. Barnaby, some model experiments were carried out by Mr. Froude upon a very similar boat, having the same displacement as the one upon which he made the foregoing trials. These experiments extended from speed corresponding to 11.7 up to $23^{\circ} 5$ knots. Although he did not presume that his experiments were cond it same care and accuracy as done by Mr. Froume, stil interesting to note tha Mr. Froude's trials and his, Mr.
In the discussion, Mr. Froude made reference to the
of regarding the ultimate girder stress on a steamer is to suppose her loaded and supported on the crest of a bank, and not in any way water-borne. The stress in this position will manifestiy depend after bodies respectively, and upon the distance of their respective centres of gravity from the point of suspension. This method, and the finding of the neutral axis, are very fully gone into in the work on shipbuilding written by the late Sir William Fairbairn; but it is a stress to which it is usually considered a ship ought never to be subjected. It is contended, and perhaps with reason that a steamer is built to float, and not to be stranded. Still, this way of regarding girder strains has so much to recommend it, that whenever the author's firm builds a steamer without a classification certificate, they always adopt this method. Such instances have usually been paddle steamers intended to carry little or no cargo beyond bunker coal; but it is worthy of remark that thes steamers, which were calculated to bear this stress, and which in more than one instance have borne it success fully, should have been considered inadmissible by the registries. So long as the load-line remains an open question, this is, perhaps, inevitable. It is usual to speak of hogging, sagging, wracking, and torsonal strains, but al of these are derived primraily from the weight of the steamer and of her cargo-in other words, from the dis placement-and from the length. Consider minor or local the purpose sufficient to show that in fixing the scant strains; the suincipal stress will lings of the lencth. This, no no doub, the various rules for scantlings, as given by the Veritas Society, the Underwriters' and Lloyd's Registry, were then criticised at some length, the conclusion arrived at being that the classification societies, forming their rules tentatively, have preferred, not perhaps unnaturally, to make out tables and prescribe rules, both based largely on practice, rather than to enunciate principles, or simply to prescribe a limit, as the Board of Trade do in the case of bridges. It is not therefore easy,
or even possible, to say how far any of them recognise th depth of the girder as an element of strength. In view of this the author thought that it is probable that changes will ere long be made in the rules of one or all the classification societies. Many shipbuilders are far from satisfied, and it is in every way undesirable that the builders, who are the designers and constructors, should not be content with the regulations of those who in so many respects assist and aid them, and to whose funds they are the principal contributors.
The following paper, by Mr. W. E. Smith,
On Hogging and Sagging Strains in a Seaway as Influenced by Wave Struoture,
was then taken, in order that it might be discussed with that of Mr. Richardson. The author thought that the rapidly growing numbers of very long shipships ranging from 450 ft . to 550 ft . in length, and whose scantlings necessarily increase in a more rapid ratio than their dimensions-afforded some excuse for drawing
diagrams these pressures are marked $p_{1}, p_{2}, p_{3}, \& c$. The
ship is then placed in the wave, and the buoyancy at each section is estimated graphically as shown in Fig, 7. W Wa ${ }^{1}{ }^{1}$ is the height of the wave at the section chosen. At the points $3,4,5$, \&c., on the immersed part of the section, the pressures are p_{3}, p_{4}, p_{5}. . Vertical lines of lengths p_{3}, p_{4}, p_{5} being set up from the points $3,4,5$
and a fair curve $w^{1} l^{1}$ passed through their tops, we get the amount of buoyancy at the cross section chosen. The section shown in the figure is at the wave crest. The area of the section below $W^{1} L^{1}$ marks the displacement, and the area below $w^{1} l^{1}$ marks the buoyancy at this section, the shaded part representing the difference between the two ; WL is the line at which the ship floats in still water. The excess of buoyancy amidships at the wave crest over the buoyancy in still water is the area between $w^{1} l^{1}$ and W L, and this, as will be seen, is not nearly so much as the area between $w^{1} l^{1}$ and $W^{1} L^{1}$. The converse holds good at the wave trough, the buoyancy there being greater than the weight of water displaced. The buoyancy at each transverse section was obtained in a
the keel is cut up very much at each end of the ship, so that the buoyancy is very much concentrated aminsms. Th mean draught is 18 ft . . In this example, calling the maxi 100 as calcula moment + the maxis sog moment the other-nearly half as much again. The difference between the maximum hogaing moments obtained by the two methods is not very great, but the sagging moment not allowing for wave structure, is practically double that obtained after making due allowance for wave structure. This difference is important as regards the tendency to produce buckling in the upper works of the ship. In this example the actual distribution of the weight of the ship has been taken as the basis of the numerical work. A different distribution of weight would alter the proportion in which the hogging moments and the sagging moments were separately affected, but would still leave the same difference of 45 per cent. between the sum of the two. For the purpose of investigating the influence of form of vessel in affecting the difference between the two modes of calculating, the author had

renewed attention to the strains brought upon ships by the continually varying buoyancy afforded by a stormy sea In the examples hitherto published the distribution of be the same as the distribution of displacement-ie, of immersed area of transverse section-both for still water and for wave water. It has, however, long been known that the buoyancy of wave water for a given volume of displacement is not the same at all parts of the wave, the weight corresponding to that displacement being less at the crest of the wave and more at the trough of the wave than the weight due to the volume displaced. The great numerical importance of this feature of wave water was first pointed out some years ago by Mr. W. H. White, and although for some purposes it may be safely neglected, he showed in his paper on the rolling of sailing ships that for others its practical influence is very large. The author had recently been extending the application of this feature of wave water to the calculation of the longitudinal bending moments in ships in a seaway, so far as they are produced by variations of buoyancy, and he thought the results obtained could not fail to be of interest to the meeting. The method adopted in performing the work was as follows :-A diagram similar to Fig. 4 was constructed on a wave. sure, the numerical value of which was calculated. In the

Iagam of hogging and sagging strains.

similar manner, and a curve of buoyancy drawn for the fore differs from the ship. This curve of buoyancy there used in previous investigations, in thancy or displacement ancy at the wave crest lass The variation of of buoyancy is therefore less, as calculated than if buoyancy is supposed less, as calculated, than if the ment. The supposed proportional to the displace the buoyancy as influenced by the were struct, taking in like manner also be less than if structure, mus measured by the area displaced at each transverse bection The object of the paper was to place on record the section between the bending moments calculated in the two hypo theses. The difference between the two results depends, as will be seen by the following examples, upon the form and the draught of water of the ship, and in some cases reaches a considerable amount. To avoid compli cation and crowding in the figures accompanying th paper, only the resulting curves of bending moments was given, the dotted lines showing the moments obtained afte allowing for the influence of wave structure, and the solid lines the bending moments not allowing for this influence In all the examples the length of ship is 315 ft ., and the height of wave 20 ft . Fig. 5 gives the results for a vessel of very fine form, both as regards water-lines and also as regards rise of floor, To ensure great manceuvring power
not worked out the actual distribution of weights, as this difference of maximum hogging + maximum sagging will be independent of it. One distribution of weight would another would throw more the hogging moments, while calculated by the two methods. Fig. 6 gives the still water distribution of buoyancy of three ships, all of which are of very full section, and all have a mean draught of 25 ft . 9 in . in still water. The complete curves of hogging and sagging moments were not drawn, but the following table represents the results :-

Ratios of maximum hogging moment. + Maximum sagging moment.		
Buoyancy calculated as explained in the paper.	\divBuoyancy supposed pro- portional to yolume. of wave displaced.	
100	\div	170
100	\div	165
100	\div	155

The differences here are of considerable amount, and, pro vided themethod explained in the paper is not largely in error the habit of computing these moments Theugh implied by the title of the paper, the author thought it necessary
to state explicitly that he was not attempting to take all the circumstances that affect the strain on the ship into account．For reasons stated at length farther on，this course appears to be impracticable．He was simply fol－ lowing to a conclusion a certain reasonable assumption as to the buoyancy afforded by waves supporting the ship． The effect of the up－and－down motion of the vessel in alter－ ing her virtual weight，for instance，has been altogether
omitted．This，however，from rough estimates that were made，can never be very great，as regards longitudinal strains in the case of a ship steaming at right angles to the
wave ridges．If the vessel were brached to in the trough wave ridges．If the vessel were broached to in the trough
of the sea，the alteration of virtual weight might be con of the sea，the alteration of virtual weight might be con－ the transverse and longitudinal strains．The longitudinal strains，under these circumstances，would be simply the still water strains increased or diminished approximately in the same ratio that the virtual weight exceeded or fell short of the actual weight of the ship，and these strains are not nearly so great as the strains brought about by the vessel steaming head to sea．When the vessel is steaming
head to sea there is much less variation in her virtual head to sea there is much less variation in her virtual weight than when steaming on a course parallel to the
wave ridges，and this is especially so in the case of full wave ridges，and this is especially so in the case of full
ships，i．e．，of ships experiencing the greatest changes of ships，i．e．，of ships experiencing the greatest changes of
hogging and sagging strains when in a sea－way．On account of the smallness of this feature，when the longi－ tudinal bending moments are at their greatest，it was altogether neglected．Figs． 1,2 ，and 3 show the influence
of variations of draught of water in affecting the differ－ of variations of draught of water in affecting the differ－ It was thought sufficient in this case not to labour with actual ships，but to take box－shaped vessels，as the general tendency of the figures must of necessity be the same，and the figures themselves cannot be far from the truth，The following are the results when floating on the wave：－

$\begin{gathered} \text { Meang } \\ \text { draught } \\ \text { of box } \end{gathered}$	Maximum hogging moment． ＋Maximum sagging moment		Ratios of maximum hogging ＋Maximum moment． ＋Maximum sagging moment	
	Buoyancy calculated as explained in the paper．	Buoyancy supposed pro－ portional to volume of wave displaced．	Buoyancy explained in the paper．	Buoyancy supposed pro－ portional to volume of wave displaced．
$10^{\prime} 6^{\prime \prime}$	100	125	100	125
$20 \cdot 6$	83	125	100	150
	75	125	100	165

These figures show that as the draught increases the exaggeration of the bending moments caused by not taking little reflection will account rapidy increases also，and for the wave structure we shall ullimately，as the draught of water increases，get to a condition of things in which there is no bending moment at all brought upon the ship by the passage of the wave，the bottom of the ship being so far down in the wave as to experience no variation of pressure throughout its whole length as the wave passes
along it．If we make no allowance for wave structure，but apose the at each section of the ship to be pro portional to the displacement at that section，we shall be supposing the same bending moment to exist as when the draught was shallow，whereas there would be a total absence of bending moment．In this way a vessel of great depth from keel to upper deck gains doubly over a shallow
vessel．On account of the greater depth of the section she vessel．On account of the greater depth of the section she
is more able to bear the varying moments that do occur is more able to bear the varying moments that do occur
than the shallow ship is，and，on account of her deeper than the shallow ship is，and，on account of her deeper
immersion，those variations of bending moments are of immersion，those variations of bending moments are of
less magnitude than in the shallow ship．As the draught diminishes to nothing，the two methods of calculation lead to identical results，and it is therefore immaterial which is
adopted．It was then pointed out that the principle of adopted．It was then pointed out that the principle of
calculation adopted in the paper was certainly open to some calculation adopted in the paper was certainly open to some
question，because it supposes the wave structure uninflu－ question，because it supposes the wave structure uninflu－ in proportion to her length as the Inflexible is there may pos－ sibly be a considerable error in the assumption，but for ships such as recent merchant ships，which are narrow in propor－
tion to their length，and therefore narrow in proportion to the length of wave on which they would be supposed float－ the length of wave on which they would be supposed float－
ing when calculating the hogging and sagging moments， this source of error probably would not be so great．There are other objections of a minor nature that need not be specified．Enough，however，has been brought forward to show that very different results may be obtained by looking at the question from different standpoints，and also that standing how a ship has borne standing how a ship has borne so well and without signs
of distress the strain per square inch of material that was said to be imposed on it，may be due to the strain not having been there at all．This strain，at any part of a ship＇s section，depends upon the bending moment and other forces acting at that section，and also upon the nature of the elasticity possessed by the materials forming the sec－ called the＂equivalent girder．＂There what is usually this part of the subject foreign to this paper，but there this part of the subject foreign to this paper，but there
is little doubt that at the best the ordinary method of assuming perfect elasticity can only give a coarse approxi－ mation to the distribution of the strain across the material of the beuding method of estimating the bending moment on any section， as explained in the paper，omits many considerations，and fect，and under this double uncertainty－uncertainty as to the bending moment and uncertainty as to the distribution of that bending moment across the ship＇s section－it is impracticable to predict，by mere calculation，the actual strain on a given part of the ship＇s structure，even under known conditions of sea and load．What is required is careful watching of ships，especially those that are weak
longitudinally．In the Admiralty service we have no chance of gaining this knowledge，on account of war ships
those of structural strength．In the merchant service this knowledge，even when obtained，is not available to the pro－ fession at large，on account of the natural desire of builder further difficulty－a difficulty which is perhaps peculiar to questions of strength－thatunless the structure breaks down， we only know that it is strong enough，and not how much strain is on the material．If the structure breaks down we only know that it was too weak，and not by how much In other questions，such as propulsion，for instance，if there is a failure，we have a numerical value of the failure，and this accurate knowledge of the shortcoming is available knowidance in future work．At present we have no such this ledge with respect to the strength of ships．To supply the knowledge we must have instrumental observation of ferent mean parts of the ship＇s structure．Such instrumental nachine，however，was never be obtainable．A small ago，and known as Stromeyer＇s strain indicator，that bade air to accomplish this kind of work．The principle of the machine depended on the creation of Newton＇s rings and for some work the delicacy of the machine is mar－ vellous．Nome of the members present may have had experience of the machine on shipboard in a sea－way indicad apo difficult to utilis the author thought it would not be to the passain of ression on the substance varies to perform work of this ind．The readings in such an instrument would be eass o deal with，and might be made self－recording．In con lusion，it was stated that although numerous arithmetic calcuations of hogging and sagging strains had been put actual，strains on shipe wh ther durmation achur or oth ships，hether deducible from cases of lise of therwise，and if the paper should elicit know－ after careful experimenting，its object will have been served．

The discussion ran in two distinct grooves ；one com－ mendation of Mr．Smith＇s paper，and the other，utter con－ demnation of Mr．Wigham Richardson＇s ideas．Mr．John considered that Mr．Smith had taken a step in advancing their knowledge on the effect of wave motion，by showing how to calculate strains，which otherwise had to be pro－ vided for by allowing a margin of safety．With regard ne iota to their knowledge of the strength of ship though he would confess it was an advance on the last on read by the same author，inasmuch as it did not contain so many fallacies．Mr．Martell，who spoke at some length and with considerable emphasis，ridiculed Mr．Richard－ son＇s arguments and deductions from beginning to end，
He contended that Lloyd＇s rules had been totally pprehended，while in putting had been totally mis mendments，the euthor putling forwara his proposed ions as he thought were right without takinc the assump f giving the slightest reasoning to support hise ntirely disputed the statement that the strength of teamer depended on displacement multiplied by length nd referred to the paper by Messrs．Jenkins and Rei fully equal the longitudinal．Mr．White thought that Mr．Richardson＇s paper had so much monopolised attention hat Mr Smith＇paper had so much monopolised attentio nunication had een ore munication had been overlooked．It was the first attemp of strength Mr．Jenkins avo directly into a calculation ules，whil Mr．Jenkins pointed out hat Pairbairn ere melly intended to apply to uoch by Mr．Richardson， ron girders in which apply to such structures as wrough in proportion to the satial coll wed was very sma bottom flanges This horal collected in the top an ron vessel，and he ventured to dispute the case in an arrived at in the paper
Mr．Martell＇s remarks had blied，stating that as he though ment he would take no notiee thened for their a mse afforded the meeting no small degree of amusement．Mr mith，in conclusion，made a few remarks as to the practi cability of applying a strain measurer to the different part the structure of a vessel，so as to actually ascertain th axtent of the stresses．He thought that the difficulty lay he application，but hoped that whatever difficulty di exist might soon be got over，as the results obtained would be so exceedingly valuable．

The last paper was by Mr．J．H．Biles，

On the Advantages of Increased Proportion of Beam o Levgth in Steamships．
The object of this paper was to give some of the advan tages which have actually been obtained by adopting in reased proportions of beam to length in some steamer Thomson，of Glasgow．This firm have for some time past made it a rule，in tendering for any ship of large size or high speed，to suggest an alternative design to that pro－
posed by the shipowner，and the modification has in－ variably taken the form of increased modification has in－ variably taken the form of increased proportion of beam
to length．In some cases the proposed modifications been adopted，and the actual results of some of these ships are now laid before the Institution．It will be on＂Comparative Resistances of some on＂Comparative Resistances of some Long Merchant Ships，＂who first brought prominently into notice the fact the ends to opet a form which considerably less resistance than thigh speeds would have ship form with ten beams in the length．The merchan which he gave were，however，exceedingly fine－ended，and did not appear to possess very much advantage at mode rate speeds．Consequently they have not been much less tendency to look upon an increase of beam as likely to
reduce speed though there has not been much notice taken of the fact that this increase should be associated with an increase of fineness in the ends．It is necessary increase in the it is assumed that it is accompanied by an increase of fine－ ness in the form．Increased proportion of beam to length gives increased speed．It is very difficult to deduce really reliable information as to the relative merits of different forms of ships from the results of their steam trials．The efficiency of the means of propulsion is a large element in the gross result，and it is not possible in the present state of our knowledge to take a proper account of this efficiency． The only possible method of comparison is to choose ships somewhat similar in size speed，and elements of propeller， and from the results of their steam trials deduce the relative efficiencies of the form by means of the Admiralty formula，or some similar one，which we know for small variations cannot be very far wrong．The comparative results cannot，however，be considered as accurate，but will give some rough guide to the relative merits of different forms．The foll built by Messrs．J．and G．Thomson．They are mail steamers carrying cargo of such a nature that internal capacity is of more importance than the weight－carrying：

These two cases were submitted to this Institution as a direct proof that the broad but fine－ended steamship B is a more economical form to drive than the longer，narrower， and fuller－ended form A．As may be seen by the coefficients，they are both fine ships，and，therefore，the comparison is a fair and typical one．The displacement on
trial was 5500 tons in A，and 5900 in B．The particulars trial was 5500 tons in
of the propellers are：－

A．	Diameter．	Pitch．	Actual surface．	Revolutions at 15 knots.	Slip per cent．
A	$18 \cdot 6$	$28 \cdot 6$	102	$63 \cdot 6$	$15 \cdot 8$
B	$18 \cdot 0$	$28 \cdot 0$	112	$63 \cdot 4$	$14 \cdot 5$

These propellers are both of comparatively small diameter for the power developed，but it was not necessary to state why they were made so small．They are not very dissimilar，except in the surface，which is 10 per cent． greater in the case of B than A．The forms of the two
propellers are very similar．Whatever advantage there is propellers are very similar．Whatever advantage there is peller cannot be great compared with the whole difference in the results．The only other difference which may have affected the result is the state of the bottom．A had been aunched five months before trial，and her bottom had not been painted again below the 10ft．water line．B had been docked three weeks before her trial．This，however， could not have caused much loss of speed，as it was always ound that vessels wich have been lying in Messrs．Thom－ son＇s wet dock，when they have gone into dry dock，have
 eefore docking and they several before docking，and they have been tried at Stokes Bay mifferatately atter docking，and generally with very little to 61 per to $6 \frac{1}{2}$ per cent．The Admiralty constants show that the
vessel B was nearly 30 per cent．better than A．In further confirmation of the superiority of the broader ships，the conirmation of the superiority of
following two cases are given ：－

	$\begin{aligned} & \text { 要 } \\ & \text { 茑 } \end{aligned}$	賈		Block ce－effi cient		$\begin{gathered} \text { Kirk's, } \\ \text { Kngle. } \end{gathered}$	$\begin{aligned} & \text { L.H.P. } \\ & 14 \mathrm{ghnte} \end{aligned}$	Admiralty constant at 14 knots．
c	365	43	$17 \cdot 1$	－588	． 656	8.37	2910	257
D	365	45t	$17 \cdot 4$	${ }^{513}$	624	$8 \cdot 41$	2740	282

These are two steamers built by Messrs．Thomson．In these cases there is a differerence of 10 per cent．in favour of
the broader ship．These vessels had lain about the same time in the water after launching，and had not been docked previous to their trials．Their propellers are very similar，being as follows ：－

	Diameter．	Pitch．	Actual surface．	Revolutions at 14 knots at
C	$17 \cdot 6$	$25 \cdot 6$	95	$61 \cdot 8$
D	$17 \cdot 6$	$25 \cdot 6$	90	$61 \cdot 5$

Though there may be some reason for doubting the whole of the advantage in the case of A and B ，there appears to be quite sufficient to warrant one in saying that increased proportion of beam to length gives greater speed when it at 24 ft mith finer ends．The displacement of A and aspectively．Assuming that the total tons and 7240 tons achinery are Assuming in the total weight of hull and ary to increase the dimensions of \mathbf{B} to length 386 ，and the readth to 46.4 in order that the two ships may carry the same total dead weight of coals and cargo on commencing
a voyage．From data obtained from ships built to Lloyd＇s hree－deck rules，it appears that the vessel B enlarged would not exceed A in the weight of hull more than 1 per cent．，the depth being the same．The difference in first cost in the two vessels， A and B ，as enlarged，would not be nore than 5 per cent．，but the difference in horse－power，
and therefore in coal consumption，for the same speed
this class costs $£ 90,000$, and that the machinery costs about $£ 40,000$, the extra first cost on the vessel will be about $£ 4500$, and the decreased first cost on the machinery about $£ 4000$, or a total increased first cost of $£ 500$ for a decreased consumption of fuel of 10 per cent., which is equal to at
least $£ 1000$ per annum. This is assuming that the same least $£ 1000$ per annum. This is assuming that the same
total weight of coals and cargo be carried as in A, but obviously a decreased coal consumption means an increased cargo-carrying on the same draught. The actual dimensions which would give the same cargo-carrying in the two types, after providing sufficient coal for the voyage, must
depend upon the length of the voyage, so that each case must be decided according to its special circumstances. must be decided according to its special circumstances. depth for the same amount of initial stability. The advandepth for the same amount of initial stability. The advan-
tages due to this extra depth are : Increased strength due tages due to this extra depth are: Increased strength due
to the increase in the depth of the virtual girder which the to the increase in the depth of the virtual girder which the ship forms; increased finite stability, on account of
greater freeboard; increased surplus buoyancy, on account of greater freeboard; increased internal capacity for cargo. If the cargoees are generally dead weight, this increased capacity will be useless for cargo purposes, and will be costly for maintenance, on account of the extra tonnage
dues which must be paid. If, on the other hand the cargoes are light in density, the extra capacity will be of value, and if the increase of proportion of beams to length be made with the increase of depth, a point must be reached where limitation of amount of cargo which can be carried will be the same as in a dead weight trade, viz, draught of water and freeboard, and in that way all cargoes may be reduced to the same basis as a dead weight one. One consequence of this will be, that the saving of
weight which follows the adoption of steel will be as remunerative in a ship carrying light as in one carrying
heavy goods. It may be remarked, however, that generally an increase of depth is not a necessity of increased proportion of beam to length, as few ships have toomuch initial stability. Increased proportion of beam to length gives of itself increased strength to the ship longitudinally by: (1) Generally reducing the absolute length of the ship,
and thus reducing the straining action due to length. and thus reducing the straining action due to length.
(2) Increasing the breadth of the decks and the bottom amidships, where the ship receives the greatest straining
action. This is most increased in the decks, as the openaction. This is most increased in the decks, as the openingu intly deck are not increased with the beam, and conture is not cut.
In the discussion on this paper, Mr. Inglis quite agreed in many. cases be thinking that an increase in beam would thought the tables distinctly showed that the greatest benefit would be gained in the fast ocean-going steamers-
of which so many had been built by Messra rather th so inay had been built by Messsa. Thomsontion of this was that at low speeds the skin friction formed a much larger proportion of the total resistance than at high speeds; a remark which was also confirmed ends and concentrating the weight towards the centre, pitching would be much increased, and therefore the performance of these vessels would probably be not nearly so good when at sea as when on the measured mile. Mr.
John said that it was worth consideration whether the slight difference in the propellers mentioned in the paper did not account for a great deal of the difference in speed, and instanced some experiments in which half a knot was gained by merely lessening the immersion of the pro-
peller. He thought the tendency at present was certinly peller. He thought the tendency at present was certainly in the direction of increase of beam, and he feared this
would go on till we had ships far too stiff and which would roll quite heavily; then a backward movement would set in and the beam would be cut down until the other extreme was reached.
Mr. Biles, in reply, said he had fully appreciated the differences that might be produced in slight variations in propellers, and had been fully alive to the fact when preparing his paper. This brought the day's meeting to a close, the attendance having been fairly good throughout,
though it would add much to the comfort of many if though it would add much to the comfort of many if
members would make a point of being in their places at members would make a point of being in their places at Architects meet only once every year, this surely would not Architects meet only once every year, this surel
be a great tax upon the time of the members.

THE TRANSPORT OF MEAT.

IT seems the time has arrived when British engineers and inventors may advisedly turn their attention at once to the carrying of animal food as still practised in this country. With
the present increased value of beef and mutton, any improved the presentincreased value of beer and mutton, any improved system of conveying meat from the producer to the consumer
will be a public advantage, and it cannot fail to be profitable to
any ingenious and enterprising men of business by whom it may any ingenious
be established.
Everything is now appearing in favour of the importance of a carcase trade being substituted for live animal traffic. A number
of Americans have practically shown this by the way they have of Americans have practically shown this by the way they have
built some refrigerating cars, and are rapidly increasing the number of them, for conveying meat through the hot Western
States to Chicago, and hundreds of miles further, viz., to New York and such more southern towns as Phildelphia, Washingcommercial principles, that is, because it is found to be cheaper to carry 100 quarters of beef or sheep hung up in a car than it is to "run" ten live beasts or a corresponding number of sheep
squeezed into a truck, The carcases improve in the cool air squeezed into a truck, The carcases improve in the cool air
which is circulated among them during the two or three days they are on the way, while the live animals, which are necessarily
about double the time on the road, get so bruised and jaded from want of regular feeding and rest, that cattle waste from 8 lb . to 10 lb . per head a day, and sheep at an equal or greater rate according to their size.
About the economy of the carcase trade, and the superior carried long distances alive, it will be as well to relate here some of the adverse experience of the promoters of the carcase trade. In the first place, soon after the refrigerating trucks had been
started it was found by the managers of the railways that as so
much more animal food could be carried in a carcase car than in a live-stock truck at the ordinary rate for space, the receipts of
the rail carcase trade came to be greatly extended. After what world over, the authorities threw every obstacle in the way of the progress and development of this new traffic. The owner the progress and development of this new tramic. The owners
of stock-yards, too, at Chicago, New York, and elsewhere, joined
the railway manacers in their opposition, as also, as a matter of the railway managers in their opposition, as also, as a matter of
course, did the commission agents for the sale of live stock ; for if course, did the commission agents for the sale of live stock; for if
animals arrived at New York and other centres of population in the carcase, their occupation would plainly be gone. Butchers, too, were influenced, either through their own prejudices, or by the pressure put on them by the salesmen who gave them credit.
This is the point where the economy of the traffic in carcases and the quality and flavour of the meat so carried, were brought into close connection, Everything that could be invented was done to prejudice consumers against refrigerated meat. Railway managers and shareholders, stock-yard and slaughter-house owners, salesmen and butchers, vied with each other in con-
demning refrigerated meat. The butchers would not have it on their stalls. But Americans, when they think they have got hold of something that is worth carrying out, are not to be
easily frightened out of their intentions. So the promoters of the refrigerating car system opened stores of their own, and began by offering joints at such low prices that needy folks
could not resist buying them. This point having been accomplished, and the refrigerated meat pronounced to be excellent, there was soon a run upon the stores where the meat that was
brought in the carcase was sold. Consumers in the towns where brought in the carcase was sold. Consumers in the towns where
this has been going on now prefer the carcase meat to that which this has been going on now prefer the carcase meat to that which
has been brought long distances alive. This is not to be wondered at, for our own experience at home is that A berdeen cattle if killed before they are started for London, arrive in a bright while on the carcases being cut into joints they are found to be "hile on the carcases being cut into joints they are found to be se sent, to London alive, and killed after arrival, they are found to yield joints of a greatly deteriorated quality. In fact, they have wasted a stone of 8 lb . a day while in the market whence they started, while in the trucks on the railway, and while they
were in the lairs and stalls of the live stock market. In a word, were in the lairs and stalls of the live stock market. In a word,
that which remains as gravy and flavour in the carcase is that which remains as gravy and flavour in the carcase is
pumped out of the animals by sweating and quickened breathing pumped out of the animals by sweating and quickened breathing
from the excitement and punishment and fatigue which they neom the excitement and
neessarily have to undergo.
The opposition that will be made to any general change in our doubt, be various, and in some instances food at home will, no It is worth while, therefore, to give some consideration to this point before we come to an outline of the machinery required
for the carcase trade, so far as it is possible to carry it out at home. Vested interests die hard, whatever may be their errors, and however contemptible their claims may appear to be when
looked back upou after they have been overcome and set aside. Master chimney-sweeps, not so very long since, reckoned they had a vested interest ins the boys they used to send up flues and chimneys to clean them. But fortunately for the benevolent opponents of his practice, master chimney-sweeps were not men was their own right, and, from a business point of view, in their own favour. They thought they were to be hardly treated,
however. But when they saw the Legislature was in earnest they resorted to additional and mechanical contrivances that did their work better than the barbarous practice of employing boys. persons or companies, will resort to for defending what the look upon as their vested interests or "rights," the discussion to agricultural questions may be briefly summarised atent mated above, a ring of railway chairmen, directors, stock-
yard owners, salesmen, and butchers was formed to obstruct, yard owners, salesmen, and butchers was formed to obstruct,
and, if possible, to swamp the capitalists who had started carcase trade by employing refrigerating cars. The well-known Mr. Vanderbilt was the leader of this ring. Mr. Vanderbilt
is reputed to be the owner of property and cash amounting is reputed to be the owner of property and cash amounting
to many million dollars. Threats, however, are often more easily made than what they imply is accomplished. The carcase trade promoters from the Western toir cars and running Whereupon Mr. Vanderbilt and his supporters issued further threats, which were to the effect that thry would eatablish ${ }^{2}$
carcase trade on their own account, and through Mr. Vanderbilts carcase trade on their own account, and through Mr. Vanderbilt's
influence with the railway companies, get a running contract on influence with the railway companies, get a rumning contract on
such favourable terms that they would be able to ruin the original promoters of the carcase trade system. The ring also threatened, as a preliminary notion, to buy cattle in the West and ship the in such numbers to the West that they could "undersel the refrigerating people, and thereby break them down in every
market to which they have access." One writer on these threats said :-"This must mean ruin and utter destruction to one party or the other." The New York butchers acknowledged
at this time that they lost 10 dols, a head on live beasts they at this time that they lost 10 dols, a head on live beasts they
bought in competing with the "refrigerator people." The points bought in competing with the "refrigerator people" The points
to be extracted for British advantages from this current commercial contest or fight in America-of which the above
extracts of evidence are a mere trifle-are simply these:-(1) It is proved in America that animal food can be carried cheaper in cattle, sheep, or pigs ; and (2) it is proved in America that
animal food so carried is far better in quality-which indud flavour-than the meat which is the qualry - which maluces have been torsured by railway journeys and standing for sale in more than one market.
Now let
Now let us see how advantageously a carcase trade may be
iopted in this country. We do this on commercial grounds, adopted in this country. We do this on commercial grounds,
apart from the fact that such a system of distribution, if estaaparthed, would reduce the spread or dissemination of diseases to a minimum. We have far greater advantages in favour of a carcase trade in Great Britain and Ireland than exist in America, Our climate is in a general way much cooler. It is only in very hot weather, suchasoccurs in June, July, and August, that anything like a refrigerating process would be necessary. It is true that much meat goes bad, that is, is reduced greatly in value, if not
rendered unfit for human food, in such muggy weather as often rencered unfit for human food, in such muggy weather as often
occurs in the autumn, winter, and spring months ; but this can be obviated by the simplest well-known appliances, and at a very
trifling cost. At every large centre for assembling trining cost. At every large centre for assembing animals-and
as we say, where they ought to be slaughtered, instead of being
sent to London sent to London or elsewhere alive-refrigerating rooms should
be established, so that the animal heat may be speedily dissip from carcases, and the fat and flesh thereby firmly "set." This is done in Chicago and other great centres of slaughtering in
America. It is done by Messrs. Harris and Co, of Calne, Wilts, the great bacon curers, who kill from 200 to 400 pigs every day
in the year. The pigs that are killed between $4 \mathrm{a} . \mathrm{m}$, and 6 a.m.
are put into an iee house at 9 a.m., and the temperature of the
sides is reduced in a ferw hours from between 70 deg. and 80 deg. sides is reduced in a few hours from betw
Fah., to between 45 deg. and 50 deg. Fah. Fah., to between 45 deg. and 50 deg. Fah. But cool cars for conveying carcases long and short distances ance before us. As a rule, in nine months of the year nothing but properly-constructed cars can be required for carrying animal food in the best possible condition. The best place on
land for a warm carcase of meat is a well-ventilated railway car that is travelling from twenty to thirty miles an hour. All the dissipating heat may be at once driven away by the current pro-
duced by rapid motion. If tubes with large bell mouths facing auced by rapid motion. If tubes with large bell mouths facing
the engine be inserted in the top of the car, and proper provision is made for excluding dust, the whole thing is done. In hot weather a truck of ice might preeede the cars containing the carcases, and the bell-mouthed tubes might be
carried over that, and the iced air communicated to the cars containing the meat by connecting tubes, a small escape-pipe
being arranged in the hindermost car to allow any vapour from All this may be so easily accomplished, and the whole traffic in and food may be carried out with so is that the primitive barbarity of migrating live animals, and is that the primitive barbarity of migrating live animals, and
the wastefulness of carrying carcases or parts of carcases, should be continued in this age. Animal food may be brought from about half the cost at which live animal are now carried, while the waste of a stone of 8 lb . per day, while the live animals are in transitu in markets and on the way
will be saved, the exquisite flavour of animals pastures or fatting stalls being at the same time retained. We have mentioned a travelling railway car as the best place on land
for preserving animal food. But the best place in the excepting an artificially-fitted refrigerating chamber-for reduc ing cepting an artificially-fitted refrigerating chamber-for reducdryness for keeping, is the hold of a steamship on the North continuing a live stock trade, therefore, from the continent of Europe, whereby the diseases that are known to be imported periodically arrive to decimate our home stock, as foot-and-mouth
disease has again been doing, owing to a cargo of French cattle, for more than two years. It is time this question was thoroughly understood, to promote wich engineers and inventors appear
have before them a profitable opportunity.
W. W. G.

RED-SHORTNESS OF COPPER DUE TO ADMIX TURE OF TELLURIUM.
A PAPER on this subject was recently read by Dr. T. Egleston, nstitute of Mining Engineers. Some months before samples of black copper oxide and of pig copper from Colorado were sent to him to examine for arsenic and antimony. He examined them both by the blowpipe and in the wet way, and found none
present. A quantity of this material was purchased by a large present. A quantity of this material was purchased by a large
metallurgical works, and when they attempted to refine it, they pronounced it to be full of arsenic and antimony; so much so
that their furnaces were, as they said, "poisoned," and rendered unfit for refining. He then re-examined the samples, and at the same time some of the material which had poisoned the usual amounts for analysis were used; but on taking very large amounts he found traces merely in some parts of the sample,
but not in all. As it was a matter of interest to ascertain what the white substance that "poisoned" the furnace was, he sen to the works making the black copper and obtained some of the matte from which the black corper was made. He
then found the impurity to be tellurium, a substance not then found the impurity to be tellurium, a substance not
heretofore known as occurring in copper. He gives in this paper heretofore known as occurring in copper. He gives in this paper
one analysis of the matte, two of the black, and one of the refined copper.

The mattes and the black copper are results of the treatment of copper ores with the tellurium ores of Colorado. In the but when the metal in the furnace was subjected to the process
but of "dry roasting," as was unintentionally done, very dense white
fumes were given off. When refined and cast into cale, fumes were given off. When refined and cast into cake,
it had the ordinary appearance of calee copper. At the first pass in the rolls very fine cracks showed themselves,
which opened in succeeding passes. At a thickness of about 0.03 metre the cracks on each side nearly penetrated the cake, and at about 0.008 metre it began to all to pieces. It wa heated and rolled at different temperatures, buta ways with the Although the cakes in the moulds showed no coating, when they were heated repeatedly and allowed to cool in the air they became
covered with a white powder which proved to be oxide of covered with a white powder which proved to be oxide of
tellurium. The copper, as it comes from the cake mould has every appearance of being good copper. This is the first time, so
far as Dr. Egleston knew, that the presence of tellurium has been detected in commercial copper. But very little of it is removed in we try small a quantity renders the copper red-
surprising how
short, and consequently worthless for rolling.

ENGINES FOR THE CAPE RAILWAYS
WE publish this week a supplement representing the standard type of goods locomotive adopted by the Cape Government for
their railways, on the advice of their engineer, Mr. Charles Hutton Gregory. They were built by Messrs. Neilson and Co., of Glas-
grow, the first being under the supervision of Thornton, the chief locomotive supperintendent to the Cape Government. The passenger engines are of similar type, but
have only four wheels coupled, but most of the details are all duplicates, including the valve gear. There are ovér sixty ordered, o valve gear, the theory of which is now being considered in our valve gear, the theory of which is now being considered in our
columns by Mr. Graham. The cylinders are 15in. diameter, the colrmns
stroke 20 in .; the wheels are 3 ft . 4in. diameter, and the gauge ftt . 6 in .

RAILWAY MATTERS.

Mr. Plnssolu is lealing an agitation in favour of the ventilators
along the District Railway, because they along the District Rail way, beausse they are, he says, of
to the 90,000 passengers who daily make use of the line. The tunnel known as the Weehawken tunnel on the New York,
West Shore, and Buffalo Railway, New York, has been completed. West Shore, and Buffalo Railway, New York, has been completed. It is nearly 4000ft. in length, and leads to a riverside terminus of
440 acres in extent, where it is joined by the New York, Ontario,
and Western Railways.
WE are requested by Messrs. Wilkinson and Co. to state that
Messrs. Beeyer, Peacock, and Co., of Gorton Foundry, Manchester, have received an order from the North Staffordshire Tramways Company for twenty-one Wilkinson tramway locomotives, the
company having decided to substitute them for the Merryweather engines hitherto in use on this line.
IN writing upon the District Railway ventilating shafts a leading evening paper raid: " The thue means of keeping the air aure in a
tunnel must be sought in the substitution of a suitable motor for tunnel must be sought in the substitution of a suitable motor for
the obsolete locomotive." The Pall Mall Gazette might say what the obsolete locomotive." The Pall Mall Gazette might say what
it consider a "suitale motor" and what it means by "obsolete "
when applied to locoomotives in universal employment.
A HANDY method of finding the speed of a locomotive when the size of the drivers and the number of revolutions are known has
been given by Professor Frederick Steiner, of the High Polytech-
nical School, Prague. He takes IT of the locomotive wheel diameter nical Shenol, Prague. He takes ? 7 of the locomotive wheel diameter
in inches, and the result is a number which represents in seconds the period during which the revolutions of the wheel equal in
number the speed of the train in miles per hour $;$ I $=0.179$ so so
that with a locomotive having wheels 5 bin. in inameter, if it is that with a plocomotive having wheels $555 i n$. in diameter, if it it is
observed that in $\times 55=10$ seconds, it makes twenty-four revolu-
tions that observed that in $\frac{7}{2} \times 55=10$ seconds, it makes twenty-fo
tions, the speed of the train is twenty-four miles an hour
THE half-yearly report of the directors of the Great North of
Sootland Railway Company shows that the maintenance of way Scotland Railway Company shows silat the maintenance of way
and works cost 9.16 d . per train mile or 15.04 per cent. of traffic receipts, locomotive power conctiage and wagon rile, or 11.25 per
cent. of the traftic receipts, 2.95 d or
 cent; compensation, personal and goods, 0.29 d ., or 0.47 per cent.;
the total working expenses being 28.74 . ${ }^{\circ}$ per train mile, or 47.12 the total working expenses be
per cent., while the total expe
or 5409 per cent. of receipps.
WE have been officially informed by the Austrian-Hungarian tions of freight on all objects sent to the Elecetric Exhibition to Vienna, which, according to the different tarifis on piece goods, reduced tarift is relating to the transport of yoods. to and from
Vienna. Besides, the insurance of the full value on the objects lestined for the International Electric Exhibition will be allowed, and a simple certificate issued by the Commission, and added to
the bill of lading will suffice to give all these benefits to the exhibitors.
begun which will, we have no doubt, lead to favourable results. OUR Sheffield correspondent writes:-A provisional committee
including the Hon. H. W. Fitzwilliam, Colonel W. S Stante including the Hon. H. W. Fitzwilliam, Colonel W. S. Stanhope,
and Mr. A. A. Jowitt, the Master Cutler, has been appointed t, and Mr. A. A. Jowitt, the Master Cutler, has been appointed to
direct a movement in opposition to the Bill of the Hull and Lincoln Railway, which proposes to erect a bridge across the
river Humber. The length of the proposed bridge is 5270 yards, in

 tion in towns which now have a free access to the sea; that it
would seriously jeopardise the trading interests of the West Riding by blocking up its great waterway; and that if vessels had tod tids.
charge and receive their cargoes at Hull instead of Goole, which now received a very large tonnage annually of foreign produce for
the Humber to be transhipped to the inland towns the the Humber to be transhipped to the inland towns, the manu-
facturers would h have to pay a somewhat serious item extra in carriage overland.
Mississippio and north of the Potomac and Ohio has a poanthot of the $26,973,250$, and had at the beginning of the present year 49,558
miles of road. This ratio gives 544 persons to the mile, and yet it supports its railroad system far better than the Southern States
which have The reason for this is is to be found in the great diversity of industry, in the development of mines and manufactures, and in the consen.
tration of foreign trade at Northern seaports, which causes tration of foreign trade at Northern seaports, which causes the
produce of the Far West and South to be moved largely over the Northern roads. The Southern states east of the Mississippi have
436,370 square miles to 16,108 miles of road, or $27 \cdot 1$ to one, while
the Northern miles to 45,598 miles of road, or 8.4 tiss more railways are not yet demanded for the South with anytuning
approaching the eagerness shown in adding to the mileage of the Northern States. In the North many more railways are in progress,
while rail way construction in the South is insignificant in IN a report on the collision which occurred on the 4th January,
at Cowlairs west junction, on the North British Rail at
the 7.10 p... exprestion, on train from Edinth Ergritish Railway, when
Cowlairs at 8.10 p.m. , ran into ingo the 9.10 a.m. Cowlairs at 8.10 p.m., ran into the 9.10 a.m. goods train from
Berwick to Sighthill, due at Cowlairs at 7.40 p.m., Major-General Hutchinson says :- "Until the engine of the express train was
being turned into the Sighthill branch not fifty yarrs from the van of the goods train, no danger was anticipated by the driver, when
there was time to do nothing more than apply the Westinghous brake, which was fitted to nine out of the eleven vehicles compose-
ing the train, but not to the engine or tende. ing the traia, but not to the engine or tender. The guard of the
express train noticed the west junction home-signal standing at
danger after possing the danger after passing the east junction, but he did sid nothing in
consequence to stop the train, though he no doubt, might have done good service by applying the Westinghouse brake, of which he
had control. The violence of this collision would doubtless have been much lessened had the driver been able by one and the same
operation to apply a continuous brake to the whole of this Weration the bpplakes having to be applied by three operations, viz,
whereas
by steam to the engine wheels by hand to the te by steam to the engine wheels, by hand to the tender wheels, and
by the Westinghouse brake to the train, there was time to use only
the last of theese. the last of these.
Sows interesting statistics have been published relating to recent
railway extenion in India. At the end of the year 1882-3 there
were open for traffic 10,251 miles of railway, and in course of construction 2332 miles. There has been during the year an addition of
290 290 miles of completed line, and an increase of the railways sancvast benefits conferred on I Iddia. Int the year 1860 the Indieatian
railways carried under 4 millions of passengers; in 1881 they car railways carried under 4 millions of passengers; in 1881 they car-
ried over 52 milions. In 1860 the merchandise carried was
632,613 tons; ;in 1881 it had risen to 11,637 whon to receipts in the earlier year were $£ 586,000$; in the later the trafice
\&13, 726,000 . These figures, says the Times, are remarkable in
the themselves, but their full significance may very easily be missed,
unless we take the rouble to pitaure to ourselves what was the
condition of India in respect English capital and enterprise provided railways. In Indi before were practically no means of intercommunication, except in the vicinity of navigable rivers, until we provided them. No Roman
conqueror had bequeathed to his abandoned provinces his all but imperishabe roods, nor had any vigorous and progressive race con-
structed highways for itself. Thus, it happens that 10,000 miles of

NOTES AND MEMORANDA

AN oil for belting is recommended, which consists of nine parts
of linseed oil and four parts of litharge ground in water ; these boiled to a plastic consistency, and then liqueucied by an an addition
of turpentine, furnishes an oil which possesses, it is said, many
admirable qualities
Society, Dr. Joule recead before the Manchester Philosophical
 about bin. above a a as burner, as more effective than the zinc he
previously proposed for removing the acid vapours from the pro-
ducts of combustion of conl

A cheap durable belt for elevators, designed for carrying suc
material as flour, middlings, sco., may be made, the American
Milter says, of ordinary ticking. The tieking should be folded so as to have four thickknesses, and then be firking s.ewedo on a machachino
The cups can be fastened to the belt by using ordinary blunt screws, the head running from the belt into the cup. A piece of
tin can be used between the head of the ser the screw fastened on the inside of the cup by a leather washer. TH
The highest bridge in the world is the rail way viaduct of Garabit Cantal. This bridge is designed by MM. Banby and Boyer, and constructed by M . Eiffel and Co., the builders of the Douro Bridge
has a total length of 564 metres--say, 1880 ft .-and near the midel of the great centre arch-which is the most remarkable featurethe height from the bed of the river to the rail is 124 metres,
413 ft . The viaduct was begun in 1881 , next year. It is estimated to cost about $£ 120,000$.
IT is stated that the distinction of making the deepest sounding
in the Atlantic ever yet recorded has been achieved by the of the Coast and Geodetic Survey steamer Blake, recently returned to New York from a two months' survey. The deepest by the Challenger, sent out by the Royal Society The dept reached by the Blake was 4561 fathoms. The place of sounding
was 7 miles north of San Juan, Porto Rico, and not far from the
point at which the Challenger sunk her deepest hed point at which the Challenger sunk her deepest lead
A NEW use for yeast has been suggested. The St. James's Gazette
says:-"A German brewer in Nevada, having heard of the lime process for mining coal, proposes to use yeast as an agent for
rending rocks. He has in his experiments blown strongly hooped casks to pieces, and forced out one end of his brewery. He desire to make experiments in the Comstock mines, the heat of which
will set up fermentation the moment the yeast charge is damped, which will soon become soa moctive ast to overcoaste charge is is damped,
The growth of the yeast fungus is apparently not much a affected by a squeeze
Tre report of the British. Iron Trade Association, just issued
shows that the total output of coal in the United Kingdom in 1188 amounted to 156,499977 tons, being an increase of $2,315,677$ tons production of 1880 . South an increase of $9,530,568$ tons on the an output of $21,780,808$ tons, an increase of $249,89 \mathrm{E}$ tons over
1881 . North Durham turned out $7,458,006$ tons, an increase of 471,076 tons. Yorkshire turned out $18,530,331$ tons, an increase of 30,154 tons. Scotland turned out 20,515, , 34 tons, a decreas
of 307,21 tons, and Ireland, 127,777 tons, an increase of 192
Lancashire turned out $19,780,645$,an increase of $1,280,855$ more than half the whole increase for the year of the whole kingdom. THE Registrar-General's return for the week ending March 17 th
shows that the annual rate of mortality in twenty-eight large towns of England and Wales averaged 26 per 1000 of their aggre gate pppulation, which is estimated at $8,620,975$ persons in the
middle of this year. Che places in which the rate of mortality was
the lowest were Portsmouth, Salford Derby, Brighton Hinders the lowest were Portsmouth, Salford, Derby, Brighton, Hudders
fied, and Bradford. In London 2771 births and 1854 deaths were
registered, or an average of $16{ }^{\circ} 5$ births and 11 .04 deaths every bor registered, or an average of 16° births and $11^{\circ} 04$ deaths every hour,
Allowing for increase of population, the births were 62 below,
whereas the deaths exceeded whereas the deaths exceeded by 74 , the average numbers in the
corresponding weeks of the last ten years. The annual rate of
mortality from all causes, which tad mortality from all causes, which had bean equal to 20.5 ,
21.7 per 1000 in the three preceding weeks, rose to 24.5 .
Accordina to published analyses, perfectly dry maize contains $67 \frac{1}{2}$ per cent. of starch, and 4 per cent. of intermediate carbohy-
drates, but dry, rice contains 89 per cent. of starch and 1 per cent. of
intermediate bodies, making a total of 90 per cent. Taking maiz at 6 s . 6 d . per cental, and rice at 7 s . 6 d . per ewt., excluding the moisture, maize now costs 7 s . 4 d . per 1001 lb , and rice 8s. 5d...per
owt., or 7 s . 6 d . per 100 lb .; at these rates every pound of avaiable sacocharine extract from maize costs $1 \cdot 23$ of a penny, or about 11 d.,
whilst a pound of available extract from rice costs one penny, that is, about 20 per cent. less. The cost of working the two materials
is as nearly as possible the same, for the expense of separating the
fatty and fatty and albuminous constituents of maize is just
by the value of these constituents for other purposes.
THE addition of a small quantity of sodium to potassium yields oi the two metals, potassium, requires a temperature of 60 deg.
Cent. to melt it. A mixture of sodium Cent. to melt it. A mixture of sodium and potassium carbonates
fuses considerably below the fusing point Separately. Several other salts of point of eithere of the carbonates
selkali metals exhibit a similar phenomenon, and amongst organic compounds there are
many such instances, notably in the case of the fatt mixtures of which usaally exhibit a much lower melting point than any of the constituents separately. But the most striking effects
of this kind are to be observed amongst the alloys of bismuth and
on of cadmium. Lead melts at 3iso deg. Cent., bismuth at 268 deg., proportions melts in boiling water, and by adding cadmium, whi has almost as high a melting point as lead, an allogy is obtained which
is fluid at about 60 deg. Cent. These phenomena have not hee is ffuid at about 60 deg. Ont. These phenomena have not been
sufficiently investigated, and they cannot at present be satisfactorily explained. Too the enterrprising student there is here a most
promising field for research.
In an article on the use of new iron, and the effect on it of the "The scrap for founding car wheels, the Railroad Gazette says:-
"The diminution of the silicon increases the amount of combine carbon, and consequently, up to a certain point, if the iron had
considerable silicon to start with $-i . e .$, before repeated cupola meltings-increases the strength of the metal. At the same time
the increase in the amount of toreign substand xides, continually weakens the metal by interfering with its and tinuity. The phenomena resulting from successive remeltings of
the same iron can be almost entirely explained in this way Starting wirth an ion iron pretty high in inelily enpanained consequently low diminishes the siliocon, inoreasing sthereby th, the combint remedting
and consequently the strength, the increase of foreige substan and consequently the strength, the increase of foreign substances,
slag and oxides not being sufficient to counterbalance the increas strength due to increase in combined carbon. Each successiv has become so small and of the foreign substances so large that the metal has reached its maximum of strength, and each subsequent
remelting diminishes this valuable property. It is possible that the amount of slag and oxides may reach a maximum before the
maximum of strength is obtained, since, if at enth maximum of strength in obtained, since, if at each melting the
metal is allowed to stand quiet in the molten condition for a
period of time betore casting substances rises to the top and is removed. In this case, the ultimate diminution in strength arises from the diminution of the
silicon, as has already heen silicon, as has already been explained. In the case of car wheels,
the number of remeltings that the metal can endure without to
great injury is undoubtedly small

MISCELLANEA

The Consul-General for Denmark calls attention to the Exhibition and competitive trial of cream separators, which will take
place at the fifteenth Danish agricultural meeting, at Aallorg, in June next. Applications for space, and for information as to prizes
to be awarded, should be made before the 15 th April, to Mr. J. to be awarded, should be made before the 15.th April,
Hoegh-Guldberge, barrister, Store Torv, No. 5, Aarhus.
Thr American Woodworker says :- "French band saw blades, of
which great numbers have been sold in this country, are gradually giving way to home-made blades. Our saw-makers can now pro-
duce as good blades as can be found in the world," English wood duce as good blades as can be found in the world.". English wood-
workers are still large users of French saws, and there are it has workers are stili large users of French saws, and there are, it has
often been noticed, several " sole" agents for Perrin's band saws England.
A sistem of ventilation by means of a current of air of large Volume, induced y in means of a smale quantity of compressed air
from an airpump in anvent place for the supply of one or of
several buildings, is to be sen in
 street. The compressed air is permitted to escape from a nozzle
into a large pipe, and thus induce a current, as does a Körting's steam ejecto
A SHIP CANAL is projected in the North of Florida, from a
point in the river Suwanee, flowing into the Gulf of Mexico, point in the river Suwanee, flowing into the Gulf of Mexico,
to Jacksonvile in the St. John's river, flowing into the Atlantic. The distance is about sixty miles, and the estimated cost $\& 4,000,000$. The New York Chamber of Commeree calculates the
probable traffic at three times that through the Suez Canal, while the great loss of shipping that now occurs will be avoided.
A NEw twin-screw dredger, named the Crocodile, of 800 tons,
built and engined by Messrs. William Simons and Coo., was launched on the 27th inst., complete, from their works at Renfrew. This
vessel will dredge to over 3oft. depth, and raise 400 tons per hour. vessel will dredge to over 30 ft . depth, and raise 400 tons per hour.
It is fitted with compound engines of 100 -horse power, two steel boilers, and steam appliances throughout. This vessel i is the pree-
perty of the Melbourne Harbour Commissioners, and is the second
Ine ore this irm lave constructed for them.
On the 24 th inst. Messrs. Raylton Dixon and Co. launched
from their shipyard a screw steamer, the Machin, built entirely of steel, to the order of Spanish owners.: Her dimensions are: 2oft. 3in.; and she will carry about 2600 tons, is bisilt with waterballast throughout, on the cellular system, and has steel decks,
with cabin amidship. Her engines, of 200 -horse power, will be itted by Messrs. Blair and Co., of Stockton,
IT appears that for the fiscal year ending July 1st, 1882, the
exports to Mexio from the United States reached the sum of (3,333,500 dols. In this were included the following items:Horses, sheep, cattle, 8 c., 182,432 dols,; carriages, carts, \&c.,
173,015 dols.s. railroad cars, 579,221 dols. , locomotives, 647,117 dols.; boots and shoes, \&c., 85,327 dols. The value of saddlery and
harness was 34,497 dols., and of all other manufactures of leather, 31,020 dols. The imports from Mexico to the United States for the specie. The value of hides and skins imported from Mexico was
$1,525,107$ dols,
The advertisement, recently quoted in these columns from the ducated chemist, fully acquainted with the manufacture of suga who can undertake in summer the coppersmith's work, or the
oversight of the teams of draught oxen," as well as the one with which it is compared, about the American ironmaster who wanted a chemist capable of keeping a watch on the phospherus and teaching the cornet, for labourer's wages, these two adver fifteen years ago, according te which the services of a chemicat assistant were required, who was to be well acquainted with the various branches of analysis, and "must be prepared to wait at
table when called upon to do so." NAVAL reorganisation projects in Spain include the improvement and torpedoes for the colonies; also the reorganimation of tho
recruiting system, so as to increase the present force of 7000 ports, ports, and the provision of other coast defencts, mounting od
heavy guns, of 40 and 80 tons, at Ceuta, Tarifa, and Algesiras, and in positions commanding the Straits of Gibraltar.. These points
have lately been inspected by three general officers, the comman of Andalusia, who reported on the and the artillery commandan Minister's plans would rcquire an outlay of at least 16 millions sterling, spread over severaly years. The outlay will be obtained
from the eale of the State lands and forests, wittout

Threre hundred workmen held a meeting on Sunday at Mat seilles to discuss the questions of workmen's assurances and the
hours of labour. After a long discussion the following resoworkmen be undertaken by the y:- (1) That the assurance of Workmen be undertaaken by the state, and not by companies paid
to insure the workmen by employers of labour, who deduct a daily
percenta percentage from the wages of their workmen. (2) That the hours
of labour be fixed from 7 a.m. to 7 p.m., with a break of two hours
f for the midday meal, and not, as it is settled that they shall be on that the working day be fixed at ten hours, and not at thirteen these extra hours to be are to work extra hours when required, The correspondent of the Standard says these resolutions will be
submitted to the Municipal and General Councils of the district. Grkeral Techernaiger has announced the sale by auction, at
Tashkend, of four springs of naphtha, discovered in Central Asia, one near the city of Namangan; another in the district of
Tchangyr Tash, 35 versts to the east of And Oakara Daria, the third near the of village of Karin Douvan,
30 vests south-west of the city of Khotand, where Dhere are 30 vests south-west of the city of Khokand, where theneraare
also sulphur mines; and the fourth 6 vests from the village of
IT, Khiond Bodam, south-west of Khokand, and 70 vests east of
Khojend. Thoscouv Gazzette calls attention to these and other petroleum springs in Ferghana, which bid fair to compete seriously
with those of Salu and the Transcaspian. The quality of the pro duct is said to be in no way inferior to that produced in the pros-
mentioned regions. With modern means of production, a flourish-
men ing industry is looked forward to in Ferghana by the new Governor
General ; but the absence of means of trana General; but the absence of means of transport to any part of the
empire where the naphtha can be made use of in any large quan-
tity will probably be a serious impediment for some considerable time to come.
THE anthracite coal trade statistics of Pennsylvania show that
the output for 1882 was twenty-vine and a-half million tons, being an increase of one million tons over the previous year. The outrate of increase showed a a great falling off. No fewer, so than twelve
lines of railroad and a canal unite to transport the the coal collieries, upwards of 300 in number, while e 75,000 men find
employment in getting out the fuel, which is found in eight vania comprises but a small area coal comade of Western Pennsyl-
harder coal; but and with that of the furrish the main coal basins reached by the Monongahela The river pits are seventy-four in number, and employ in round
numbers 5000 miners, working in a vein usually but half as thick as that of the anthracite deposit. Although the outlet for all this
working locks, by a sing sing river, hampered by narrow and slow
four millision timited field sent out more than
fon of coal, and the figures of the last ten years show

BALL'S UNIPOLAR DYNAMO-ELECTRIC MACHINE.

The peculiar machine which we illustrate above is to be seen 41, Kirby-street, Hatton-garden, where it is driven through the medium of a transmission dynamometer, and has in circuit six arc lamps, and five incandescent of different resistances. The machine has been running some time in London, and has been tested by Mr. Robert Sabine, the results of whose tests have been embodied in a report from which we take the following:-This machine consists of a long rectangular frame of soft iron, coiled so as to form the field magnets, and which longitudinally supports the axes carrying two bobbins of the Pacinotti type. The the presence of only one magnetic pole, the opposite side of the bobbin facing a neutral point of the field. Hence the name "Unipolar," by which the inventor designates his dynamo. The effect of this so-called unipolar arrangement, in so far as the field is concerned, appears to be that the rectangular soft iron frame is converted into two long electro-magnets with two poles, only one being presented to each of the rotating bobbins, instead of four shorter and proportionally weaker electro-magnets having four poles as in the ordinary way, by which two opposite poles would
be presented to each of the bobbins. When I tested the system the d lamps, also said to be of Mr. Ball's invention, the dynamo being worked on the "series" system, that is to say, field magnets, armatures, and lamps all joined up in series. The speed of the machine was not so regular as could have been desired, and the Morin dynamometer by which the power given to the dynamo was measured, would have worked steadier had it been driven quicker or with a heavier load. The following are the mean results which I found:-

Current in circuit $=c=15.0$ ampères

Potential difference between terminals $=\mathrm{E}=195$ volts. Resistance of dynamo $=r=4.5$ ohms.
Speed of dynamo, 1650 to 1715 revolutions per minute. Speed or minute. mymoter, less pull when circui From these values :-
(1) Given to dynamo for electrical work,
$\frac{1.5 \mathrm{ks}}{60 \times 76}=5.68$-horse power.
(2) Accounted for in outer circuit,
$\frac{\mathrm{EC}}{746}=3.92$-H.P.
(3) Accounted for in inner circuit,
$\frac{{ }^{2}}{746}=1 \cdot 35-$ H.P.
The proportion accounted for electrically, therefore, $\frac{5.27}{5.68}=0.92$,
of which $\frac{3.92}{5.68}=0.69$ was accounted for in the lamps. This would leave only 8 per cent. for the so-called Foucault currents. Photometric measurements were made with one of the lamps, placed apart from the others in a dark recess, the light of the
five remaining lamps not being measured. The following mean ve remaining lamps not being measured. lamp, $13 \cdot 9$ ampères ; potential difference, $40 \cdot 1$ volts.
Accounted for in lamps,
$\frac{13.9 \times 40.1}{746}=0.75-$ H.P.

The illuminating effects were as follows :-

Position of are with regard to photometer.	Illuminating power.	
	Observed.	Per I.H.P. accounted for in the lamp.
22 deg. below.	Standard candles. 602	Standard candles.
11 deg. do.	626	835
Horizontal.	887	1183
11 deg. above.	1213	1617
22 deg. do.	1831	2441
31 deg. do.	1859	2479
35 deg . do.	1690	2253

To the particulars given in this report by Mr. Sabine we may a few supplied by Mr. C. W. Raymond, who represents the inventor at the address already given :-
The machin is simple in construction. Tha armatures, and ye diameter, revolving in opposite directions.
Weight of No. 14 (Am. gauge) copper wire on two arma-
tures (about)
Weight of No. $\because \stackrel{8}{*}(\mathrm{Am}$, gauge $)$ copper wire on fiel \ddot{d} magnets
Weight of No. 8 (Am. gauge) copper wire on field magne
Total copper on machine
Each armature contains 60 sections ; the commutator also contains 60 sections.
$\begin{aligned} \text { Periphery speed at } 1650 \text { revs per min. } & =3450 \mathrm{ft}, \text { gives } 6 \text { are lights } \\ & =3700 \text { ft.; }\end{aligned}$
Magnet bars, "in. $\times 1800$ in.
Magnet bars, The above machine is of the the latest pattern, both in copper and iron, the weight being about 750 lb . The following figures relating to a New York city, are of some interest :-

Two armatures, 12in. dia. No. 14 (Am. gange) copper wire 1 lb .

Total weight of iron Total copper ${ }_{661}^{280 \cdot}$
Copper in two commutators
Bearings (composition)
Total weight of 15 -light machine 38
30 Weight of machine per lamp webout 6
Internal resistance, about 7 ohms.
It has two commutators and two armatures on one shaft, revolving in same direction, with connections coupled as to give the same effect as in the case of the 6 -light machine above described, and with but one soft iron pole piece to each armature$\begin{aligned} \text { With a periphery speed } 3600 \mathrm{ft.} \text { per min. } & =1146 \text { revs., gives } 15 \mathrm{arc} \text { lights } \\ =12000 \mathrm{tt} \text {. } & =124\end{aligned}$ A more recently finished machine for five lights, by advice from A more recently finished machine for five lights, Yy ad weice from New York, has the following description:- 88 lb .; total weight of machine (about) 350 lb ; weight of machine per lamp (about) 70 lb . Revolutions, 1190 per minute, gives five arc lights of the same candle power as those referred to by Mr. Sabine. Two armatures, with but one pole piece to each armature, and but one commutator mounted on one shaft, revolving in same direction, with one belt. The commutator has 2 " sections, the armatures have 60 sections each. Resistance of machine $2 \frac{6}{6}$ ohms. commutator wears to a polish. Resistance of machine 10 Io
The machine at Kirby-street has been running in New York City and in London for a greater part of the time during the city and in London for months, and has, we are informed, had no repairs, and has been taken apart but once, and then for the purpose of cleaning and painting previous to its shipment from New York to London. This freedom from repairs is due to the simplicity of construction and the lightstrain on the straps by which it is driven. It will be noticed that our engraving shows very narrow driving straps. Those used are as narrow as shown, namely, from about $\frac{1}{2} \mathrm{in}$. to $\frac{3}{4} \mathrm{in}$. in width and about $\frac{4}{4} \mathrm{in}$. in thickness, running on pulleys 8 in . in diameter the machine is running at 1700 revolutions per minute, and absorbing 5.68 -horse power, is not very great, and taking the circumference at 2 ft ., the strain would be $\frac{5 \cdot 68 \times 33000}{2 \times 2 \times 1700}=27 \cdot 5$, and allowing as tightness for adhesion and extra pull of, say 7.5 lb ., we have a total of 35 lb . as the strain, which, though small, would probably soon destroy a strap, say, 0.6 in . by 0.25 in . The diagram in the next column shows the peculiar way in which the winding is connected through the commutators and across the machine. Taking the negative or return wire C and following it, it will be found B , thence to central bobbin, hand comm to brem cross bar below the armatures to bobbin A, across to central bobbin next the south pole, and from this to bobbin C through left-hand commutator, and on to the positive terminal carrying the lead C .

DEATH OF MR. FRANK HATTON.
A telegram has been received by the directors of the British North Borneo Company in London, announcing the death of their scientific explorer, Mr. Frank Hatton, only son of Mr. Joseph Hatton, the well-known author and journalist. Sir was out elephant hunting when his rifle caught in the bushes. was was accidently shot through the lungs and died instantly, He was accidently shot through at Elopuran. This brings to a too early close a career of something more than promise. Although he had not yet completed his twenty-second year, his name was already associated with some good work. He had successfully endured the hardships of travel in North Borneo, exploring the greater part of the companysat tact, courage, and conducted his various expeditions wirn to England for a welldiscredion, earrics. An only son, in whose success lay his father's chie ambition, he had already distinguished himself in scientific research, and in other directions. A few weeks ago Professor Frankland publicly expressed his indebtedness to him for some original ideas employed in carrying out the filtration of water at Brussels. He was made a Fellow of the Chemical Society at nineteen, and in the same year was admitted ans into the influence Institute of Chemistry, forteria. He was recently nominated to of gases on the life of Asctic Society at Singapore, and was prefellowship of dictionary for the use of the Bishop of Singapore. paring a both Malay and Dusun, and was especially happy in his power of establishing the warmest relations between the native chiefs and himself, having more than once been referred to in the Governor's despatches. He was to have returned in the autumn to prepare his diary and notes for publication

HORSEAND CART FERRY LANDING STAGE AT JARROW
MR. C. J. TATE, C.E., ENGINEER.

HORSE AND CART FERRY, JARROW. THe Jarrow Corporation having obtained powers by the
Jarrow Improvement Act, 1878 , to establish a ferry to ply between Jarrow and the opposite bank of the river Tyne,
have now put in operation that power by commencing to have now put in operation that power by commencing to
lay foundations for landing stages, the contracts having been entered into for the due completion of the work. The
ferry, which we illustrate on pages 245 and 248 , is approached ring tides, and supported at the outer end on pitch pine piles driven into the bed of the river. Above, these cross-beams of pitch pine are tetoned and bolted to pile heads, and over the cross-beams
longitudinal balks are fixed, with diagonal struts beneath. Laid crosswise on top are planks of pitch pine, covered with Portland cement concrete, laid alternately in squares and grooved on the
top side to provide a secure foothold for horses and a suitable road for the wheels of carts and carriages. On the longitudinal balks at each side of the carriage-way cast iron chairs are fixed,
supporting a double-headed rail 75 lb . per yard, the ends being turned up to prevent the wheels of the girders from moving too far up or down the incline.
river is outer end of the fixed landing on each side of the on wheels running on the before-mentioned double-headed rails, the outer ends being attached to a pontoon built of iron, having three water-tight compartments, on which are waiting rooms
providing convenience for passengers. The lattice girders are They are connected on the under side by bulb iron 8in. deep with double angle irons rivetted on the top edge, alternately extending beyond the sides of girders, to which double stiftening
bars of T-iron are welded together at the ends, and rivetted to the sides of girders and to top of cross-beams. Between the girders and on the top of cross-beams diagonal plates
are rivetted, upon which is laid a roadway of pitch pine 5in. thick and 5 ft . 6 in . wide, with cross-pieces to
prevent the slip of horsses'. feet. A wood kerb is laid at each side of the carriage road 9 in. deep and 6 in. wide, on the upper
inside edge of which is an angle iron chafing bar, and at the outside of each kerb is a foot-walk 2 ft . 9 in . wide. The shore
end of the bridge is fitted with a tail piece on rollers travelling outside of each kerb is a foot-walk brid. en. wide. She shore
ond of the incline, connected to the the brieco on rollers traveling a special chain
on coupling, by which provision is made for considerable lateral movement of the pontoon, yet without causing inconvenience to
the traffic, the joint being covered by an iron flap plate fitted to the bridge. For the mooring of each pontoon two mushroon moozings are screwed into the clay bed of the river below low-
water mark. From these the mooring chains are carried over
sheaves and provided with a screw arrangement for regulating thei respective lengths, from bars attached to stone anchors,
fixed several feet below the surface of the ground. The mooring chains being held firm at both ends and hung over
sheaves, and the girder supported on wheels at the shore end, while the outer end is rivetted to the floating pon-
toon, as the tide rises the whole structure is moved along toon, as the tide rises the whole structure is moved along
and up the inclited plane of thed landing stage to the posi-
tion shown by ticked lines on the section and elevation. The weight being on wheels on an inclined plane, causes a down-
ward movement as the tide falls, which is continued until the water has reached its lowest level, or the bridge is checked by the turned-up ends of the rails. The estimated weight of one
pontoon and bridge complete being as follows:-Plating knee pontoon and bridge complete being as follows:- Plating knees
and packing, $20,840 \mathrm{lb}$; angle bars and rivets, 9098 lb ; wood-

 the lower flanges have, exclusive of rivet holes, a collective sectional
area of $13: 56$ square inches. Taking the eltimate strength of iron at 20 tons per inch of section, the engineer estimate
breaking weight of the girders by breaking weight of the girders by
$\quad \frac{a d k}{l} \times 4=\frac{13.56 \times 6 \times 20 \times 4}{60}=104.48$ tons.
Deduct the weight of girders, $17 \cdot 46$ tons, leaving $91 \cdot 02$ tons,
which represents the breaking weight of the girder. Assuming which represents the breaking weight of the girder. Assuming
the safe load to be one-fith, 18 tons may be taken as a a sefe workmore than the ion more than the Hoating power provided for by the pontoons.
Contracts have been entered into by the Jarrow Corpon with Mr. J. Lane, South Shields, for the landing stage and
approaches, Messrs. Sproat, Marley, and Co., Hebburn, for the pontoons and girders, and Messrs. Hepple, of North Shields, for
the building of the ferry, from the designs of Mr. C. J. Tate the building of the ferry, from the designs of Mr. C. J. Tate,
Newcastle,
The works are expected to be completed three months hence.
THE DEVELOPMENT OF ANIMAL LIEE DURING THE PRIMARY FORMATIONS.
AT the sitting, on the 12th February, of the Académie des
Sciences, M. Albert Gaudry made some observations on the development of animal life during the primary formations. We
know nothing of animal life on our planet before the Cambrian Epoch, and it it in the Silurian that are found the most ancient forms accessihie to our study. The trilobites and cephalopods,
the kings of the sea during that period, seem to have been attack. Their organs were inclosed in strong cases ; the thindow by which they could communinicate with the outside were pro-
vided with covers, or constrictor appliances, a condition favourable to the increase of the species. The Devonian period corresponds with the development of the vertebrate animals,
fish of strange form. In the carboniferous era reptiles multiplied, and they swarmed during the secondary formations. The and in the quartenary period man appeared. Such are the and in the quartenary period man appeared. Such are the general characteristics of the progress of animal life during the
immense geological ages; but certain errors have crept into the
details of this progress. details of this progress. It must not be supposed that each
of these classes of animals was developed with precision in one and the same epoch, for the most recent researches show that
the different types were continued over several epochs. There are also great inequalities in the duration and the prolongation of these types, and they cannot be explained by what is called perfect have been those destined to the shortest existence. The truth is, that the paloontologist can distinguish in the ensemble of this great history periods which seem to characterise a species,
and he will speak of one of these periods as "the epoch of the
ammonite," $u s$ th ammonite,", just as one says "the age of Pericles." It is at the
same time true that there are some forms which perish or consame time true that there are some forms which perish or con-
tinue which appear to play the part of permanent reservoirs. In
these inequalities, in these changes, in these oscillations, there is these inequalities, in these changes, in these oscillations, there is
marvellous beauty; but it is a great mistake to suppose that the
principle of the strife for existence, which resolves itself int If this were the case there would have been on the surface of the whom they might devour; and the harmony between the specie would be destroyed.

LETTERS TO THE EDITOR.
 [We do not hold ourselves responsible for the opinions of our

the smoke abatement committee's official report. Sir,-I certainly thought, when Mr. Frederick Edwards' letter
which was quoted in your last number, first appeared elsewhere that it did not require any notice. The argument was poor, and
the animus was evident on the face of the letter. He makes very strong assertions, and though Mr. Edwards may be thought to be omebody, I only now notice his letter, and ask you to be goo seeing that you have conferred importance upon his utterances by giving them a place in your influential journal.
Mr. Edwards is in error on a few points of detail. The test houses at South Kensington were thoroughly repaired and re-conAbatement Committee. They are constructed entirely of concrete excepting the roof, which is of wood, and there is not a brick in th whole structure. The chimneys, or flues, are round, 8 in. in Mr. Edwards does not attempt to produce an atom of proof in sup port of his assertion that they were too small for properly testing ordinary chimneys measure 14in. by 9 in." When one reflects that absick measures 9in, long, and a brick and a-half 14in. long, it being to pass throug for tortuosities of flues in house walls, although when such flues are lined with $\frac{1}{2}$ in. of cement, their dimensions are reduced to 13 in
by 8in. But there are many instances of round, house flues 9 in . in ions of this kind are matter chimneys and the vents of grates are frequently contracted to hav an area much less than the section of an 8 8in. round chimney
The chimneys at South Kensington were, it is true, contracted a The chimneys at South Kensington were, it is true, contracted a ry chimneys are often cont part to have ignored the practice of contracting the flue thorough As at the top as well as at the bottom
As a matter of fact, the draught at South Kensington was goo another matter of fact, corroborated by the results of the tests, chester Smoke Abatement Exhibition, where the comparativel tortuous chimneys were 14 in . by 14 in . in section, was not a bit
better than the draught at South Kensington, with the $83 \mathrm{I}_{1}$. straight chimneys. By reference to the official report it will be seen that in the grates, which happened to have been tested both
at South Kensington and at Manchester, the fuel was consume practically at the same rates per hour ; taking averages, indeed, it Manchester. It can be proved in another way that the draught had an average velocity of upward draught at the rate of 411 ft. per
minute at South Kensington in the 8 inin. straight chimney, and an minute at South Kensington in the 8 in . straight chimney, and an in the 14 in . tortuous chimney. These velocities of draught, singular areas of the chimneys, which are 60 square inches and 196 square inches respectively; and the volumes of draught per minute are
respectively :- 8 in chimney $(60 \div 144 \times 411)=171$ cubic feet per minute, Here, it is seen, that the volumes of draught are almost precisely equal with the 83 in , and 14 in . chimneys. The volume is
a trifle the less-about 3 per cent. -in the 8 in. chimney ; and this is accounted for by the fact that the average temperature in the
smaller chimey was 210 deg., against 223 deg. in the larger chimney.
I have thus demonstrated that there is not a pin to choose between the smaller and the larger chimney for the purpose of the between the smaller and the larger chimney for the purpose of the
tests, and I am of opinion that my ounce of fact outweighs Mr. Edwards's pound of rhodomontade. entiating power of the $8 \frac{83}{3} \mathrm{in}$. chimneys, and to have shown, on purpose ; but I feared to extend were quite large enough for the
forced to go this letter. I have been
tito detail in order to meet and expose the allacious generalities in which Mr. Edwards has been permitted to indulge.
Mr. Edwards's baseless insinuations with respect to indi vidual members of the Smoke Abatement Committee needed only
to be uttered to be repudiated. I may add that he, as an exhibitor, did not receive any award from the committee.

Testing Engineer to the Smoke Abate
GLASS AND GUNPOWDER.
SIR,-I know but little of plate-glass and scarcely more about
explosions, yet, after reading the interesting notice on the two-fold subject which appeared in a recent issue of your paper, it occurred phenomenon must be sought rather in the nature of the substance acted upon than in peculiarities of the acting force. With nothing
but the description of the oblong regularly scored glass slabs to but the description of the oblong regularly scored glass slabs
guide me, and surmising backwards from effect to cause, I reach the preliminary conclusions, subject to confirmation, modification, or refutation by the tests of inquiry and experiment, First, that
the bed upon which the glass was cast was either strengthened supported at certain distances by a network of more rapid heat
conducting power than the main substance of the bed itsel Secondly, that at intervals some of the ribs composing the ne work were thicker, and consequently more rapid heat-conductors than the rest. Thirdly, that in the process of cooling the hea passed from the glass most quickly where it found the largest mass of the glass-plate apparently homogeneous, but in reality crossed an caused by the explosion pressing equally upon the surfaceof the plate,
the latter began yielding along all the lines of brittleness. And, Fifthly, that the lines of greatest brittleness, where the ribshad been Fitthly, that the lines of greatest brittleness, where the
most massy, breaking first, left the air-wave without a basis
of resistance for further action upon the lines of secondary brittle ness, which therefore closed up again, by the power of elasticity,
the glass along their course having suffered fracture only through the glass along their course having suffered fracture only through
a portion of its thickness. Whether or not this theory is correct might be ascertained by inquiring of a few glass founders as to the it to be borne out thus far-by fixing some plate-glass slabs to the bottom of receivers, and subjecting them to sudden jerks of equally The attainment of pressure.
The attainment of approximately analagous results by such subject of explosives and explosions barely touched. With regard to their investigation I can only suggest that experiments might
be tried with small and accurately measured quantities of explosive
set provided with fixed plates, the other set with rapidly revolving earn something concerning the characteristic shapes, dimensions, lightions, and morphic phases of explosion flames, and perhaps
unhoped-for vein of interesting or useful discovery. The Tom Tiddler's ground of science is rich in unsuspecte Finborough-road, South Kensington, March 27th.

Sir,-The letter from "MATENT LAWright"

Nrw Ame letter from "Millwright" on the subject of "Patent xpressed. The only fault I find with him is, that he has not pu the ordinary manufacturers' side of the case sufficiently strongly
The granting of letters patent, or exclusive privileges, to an invento or a limited period, is, in the eye of the law, a simple contrac between the Crown, on behalf of the nation at large, and the
iventor. The latter gives to the public what it did not posses inventor. The latter gives to the public what it did, not possesn
before- the full details of a new invention; the Crown, in return ives the inventor the exclusive right of working that inventio
or a limited period, at the end of which time the full benefit o the discovery reverts to the public. No one will dispute that thi is the theory of the patent law. Now, Sir, when as one of the public the Crown bargains on my behalf that I shall not make a hat time I shall reap the benefit of a new invention as an lent to the temporary prohibition, what guarantee have I that I am not defrauded? Am I not, in nine cases out of ten? Who will venture to say that more than one patent in ten protects a reall yto a tortuous lawsuit by a previous patentee, who alleges that infringe his patent, and ruined-not, perhaps, because I do infringe
his patent, but because he has a longer purse than I have? But is patent, but because he has a longer purse than I have? Bu on behalf of the nation as really new, ought not the Crown to solely responsible for its own blunder? As matters stand, word ever hangs over the head of an enterprising manufacturer sword ever hang onufacture hundreds of articles, which are no
He is afraid to mand
more new inventions than clay marbles, and the public have to pay an exorbitant price for them in consequence. Again, if h may be drawn into a tortuous lawsuit. In fact the patent law, a it stands, is sufficiently effective to seriously harass honest manu facturers, though it affords no real security to deserving inventors.
First, and before all else, we require some perfect system by which nventions that are not new are rejec re require a law which throws the Crown, if it grants letters patent for an alleged invention what it
infringes a prior one, and which, consequently, is not what
CUI BoNo. professes to be.
March 15th.
STR,-The Patent Law, as it now exists, and the new one proposed profit by inventions, and although patents are so fertile in thei creation, no one yet has propounded a system of patent law calculated to do justice to the real inventor. If it is right to
patent inventions there must be a law in the natural elements o patent inventions there must be a law in the natural element the valuable inventions which have enriched the country have emanated from the brains of working mechanics, and yet they as the Patent Law ; and I can safely say no measure, howeve artfully framed, will give satisfaction unless the State protects the
poor inventor the same as the rich; and so far as I can judge of the poor inventor the same as the
proposed new law, it will leave
ame position as the old law.
It is only the capitalists who can secure to themselves a monoply of inventions. Now I maintain the State and the capitalist ought If it is right and just for the State and capitalists to participate in an invention, surely it is right the Stape should protect the poor
man's relative right and interest in the property of his invention. American and Continental statesmen have learned the relative rights of inventors, and foster and protect them; our stay 10 the mechanical trade of the country is concerned, and rather than see another Bill brought into the House to be mutilated by the
men of figures, who know little or nothing of what is really wanted men of figures, who know little or nothing of what is really wante
by those most deserving, I say do away with the Patent Law allmanufac prevent pilfering and otherwise mutilating really good inventions published. [Our correspondent ought to say what it is that he thinks the
working mechanic wants. Vague statements or wishes do no nic wants.
-ED. E.]
the mfficiency of turbines.
Sir,- - As a regular reader of your valuable journal for a number
of years, I have of late been more amused than edified with the letters on turbines, which I take to bea second-hand way of adver tising the said turbine or turbines which their advocates so highly
extol. I am also astonished that no English makers of turbines come forward to state what their turbines will do, with the excep tion of Mr. Hett, whose turbines I have heard are after the Ameri can pattern. Now, having been accustomed to water-power for
thirty years, and having erected overshot, breast, and undershot water wheels, as well as turbines-not of my backshot wheel to give out the same power. Finding this to be the case I have for years been experimenting with turbines, so as to get
the best effect due to the various heads of water, and have proved conclusively that a given turbine may give a good result under a
high head of water, but under a low head was nowhere. This led me to experiment as to the best forms of turbines for taking the places of the old style of water wheels. For high heads of water to take the place of an overshot wheel, I use a top-delivery turbine;
for a medium head to take the place of a breast wheel, I use a for a medium head to take the place of a breast wheel, I use a
turbine with a bottom delivery; and for a turbine to take the place of an undershot wheel for low heads of water, I use a top-
and bottom delivery turbine. These can be made to deal with very large quantities of water, such as working from the tides, \&c., as \mathbf{I} can use them for working both ways, say from a tidal river to run continuously
have also another turbine, or rather a double one, on the same shaft, and which will work either way, that is, with or against the
sun. I will now mention some experiments I have made with models. The turbine to take the place of an overshot wheel with one to take the place of a breast wheel with 6 in . of head of water the place of an undershot wheel with 2 in . of head will run nearly
300 revolutions per minute. The head is calculated from the centre of the turbine to the top of the water driving it. I can
show any party these experiments. No doubt some parties will say there is no heed to be taken of models ; but I say there is, and I have proved over and over that if you can get a model of any well, in most cases better, which I proved with one of the top-
delivery turbines under a head of about 20ft., driving millstones, delivery turbines under a head of about 20 ft , driving
whioh is a good test. My turbine actually developed 25 per cent. more power than the one I tested it against, of which there are, 1
believe, numbers at work. The wheels were the same size, and the quantity of water used exactly the same.
I shall be glad if the parties who so strongly advocate American
turbines will inform your readers if they can govern their turbine
to the nicety required for electrio much doubt. Thenagain, how would they work one of their turbines, say from a tidal river into a tank or tanks and back again through
the same turbine, the said turbine to continue running all the time the same way; and how can they make a turbine that will run at the same speed with a head of water varying from 8 ft . down to
4 ft ? I am happy to say that an English turbine can be made the will do all that I have stated above. As my time at present is fully occupied, I shall not be able to do much letter writing, but at work to any parties who take àn interest in water power, especially "Aquarius," whose sensible letter appeared in your issue o I may say that my turbines are patented, and will, most likely
be introduced to the public before long. be introduced to the public before long.
London, March 20 th

London, March 20th.
trial of the capell double power blast fan. Sir, -The following particulars of a trial of one of my fans may
interest your readers:-This 20 in, fan was made for a speciol pur pose, viz., to give draught to the furnaces of a steam yacht. It
was stipulated that the speed of the fan was not to exceed 1400 revolutions per minute, and the discharge to be 4000 cubic feet pe minute. To obtain these results, the fan was made with large inlets, and a large discharge port. The principal dimensions were, area; width of fan, 9 in .; discharge port, 144in. area. The fan was made for volume, not for intensity of blast. The inlets would
have been modified if intensity had been the object. In workin out the speeds decimals of inches have been omitted. In this fan the air speeds are reduced by the case, which I find absorbs from
800 ft . to 1000 ft . of the blade tip velocity, where the outlet is of large size. By reducing the area of outlet to that of an ordinary
fan, the air speed at once rises from 1000 ft . to 1800 ft . above the blade tip speed, by compression in the case.
lutions, 1200 ; blad trials of the 20 in . fan were as follows:- (1) Revo speed of meter, 5030 ft . per minute ; water pressure, 6.2 in. 2 (2) Revolutions, 1460 ; blade tip, $7540 \mathrm{ft}$. ; air speed by meter, 6730 ft .
$=$ cubic feet of discharge. (3) Revolutions, 980 ; blade tip, 5063 ft . air speed by meter, 3680 ft . $=$ cubic feet of discharge. (4) Revolu-
tions, 1140 ; air speed, $4620 \mathrm{ft}=$ cubic feet discharged; blade tip 5890 ft . per minute. (5) Discharge port contracted to equal 10 in , by meter, 6430 ft .; meter used, Casella's Counter Harding's. Trials of a regular pressure blast fan will follow these.
The results I set before you agree
those from the 6 in . fan tried at the office of THE E manner with described on February 16th. A 3ft. diameter exhaust fan will be ready for trial in a week. Professors Ayrton and Perry's electromill probably reach one million cubic feet per hour. It will be carefully tested for discharge, and power required to effect the
discharge.
$\begin{aligned} & \text { Passenham, March } 27 \text { th. }\end{aligned}$
the electric light installation at waterloo station. $\mathrm{SIR},-\mathrm{We}$ notice in your account of the Edison electric light
installation at Waterloo station that you state the power of the Field boiler, made by us for this installation, to be 20 -horse power We shall be glad if you will correct this in your next impression,
as that boiler is only a 12 -horse power-in other words, it is calculated to economically evaporate twelve cubic feet of water per
hour at 80 lb . In point of fact, this boiler, which is 8 ft . 2 in . high ne 150 diameter, supplies feam for the Armington engine, drivin one 150 and one 60 light Edison dynamo, representing about
$35-\mathrm{I}$.H.P., or 1400 lb . of water evaporated per hour, since, in a
rough test, the Armington engine used 401 b , of water per I.H. rough test, the Armington engine used 401 b . of water per I.H.P.
per hour. We consider this a very high duty for so small a boiler.
We have not We have not made any economy tests at present, but we may say
that recent testsmade with boilersof this type, built by us for Messrs. Sales, Pollard, Lloyd, and Co., of Farringdon-road, an evaporative efficiency was obtained, on a two days trial, of 10.83 lb . of water per
pound of ordinary Welsh coal, from and at 212 deg., and the
boilers worked up to their full duty for which they were designe boilers worked up to their full duty for which they were designed.
At the Richmond Waterworks also, with Field boilers seven years old, recent trials have given the very gratifying result of 10.93 lb of water per pound of good Welsh coal, from and at 212 deg .
It was the knowledge of the economy of these boilers which
induced us, as consulting engineers to the Edison Company to induced us, as consulting engineers to the Edison Company, to
recommend one for this iostallation. We may further remark that the water at Waterloo station is so bad that ordinary portable find that the Field boiler only requires to be cleaned oncerience in five 27, Leadenhall-street, London, Lewis Olbick and Co.

March 21st. London,

Sir,-On the PRINCIPLES OF MODERN PHYSICS.
SIR,-On the subject of conservation of energy I note
Student's" curious letter in your issue of the 16th. Surely
Student" does not seriously suppose that by burning 50 lb . of oal at the top of a 50 ft . building he has succeeded in destroying the energy stored up in raising 50 lb . 50ft. high? He must be the earth was proportionately shifted, and, as Mr. Groves has it the length of the day was altered; and whether the coal be allowed water, makes no solifference to the above fact. If, when burnt, the resultant gases again find their way to the earth's surface the the energy spent in raising the coal "0ft. will be given out by the fall rom this if he is to prove the fallacy of conservation. His spring dea is better, apparently, but as I take it "equally morer s"; on not so readily oxidised. A spring when wound up is in a staten and not so readily oxidised. A spring when wound up is in a state of amount of time to dissolve, or would generate more heat in the
process.
WILLIAM Hy. Bоoth. Manchester.

STEAM POWER ON TRAMWAYS.
Sir,--Referring to a letter from Mr. Hughes in your last issue, we notice one sentence which requires contradiction at our hand.,
We therefore beg to say we have not 'copied Mr. Hughes', water
condenser, and made use of Messrs. Kitson's air condenser," Our vater condenser is totally different in construction to any we have seen described of Mr. Hughes', and was specially designed to obtain the best possible condensing effect with a limited supply of water, Kitson's and others in mere outside appearance, is construoted in a taken to bring the steam into contact with the cooling surfaces are With regard to superhe extending over several years. With regard to superheating the exhaust steam, from the results of our early experiments our opinion has long been that this
arrangement is quite unsuitable for heavy work. We consider that it increases rather than diminishes the nuisance from the chimney of the locomotive. The reports of recent trials of this ystem appear to support us in this opinion. Merrweather and Son,
Greenwioh-road, London, Maroh 27th.

SIR,--Since reading the letter signed "Aston," and also that
rom Messrs. Marple and Co., which appeared in your issue of 16th inst., we have made careful inquiries as to the statements with
respect to our engines therein contained.

When the Birmingham and Aston Tramway was first opened,
we saw our engines on several occasions take two heavily loaded cars up the long incline from Aston with the greatest ease and a the time with less than 150 lb , steam pressure in the boiler. We may add that the safety-valves are loaded to 150 lb , and the
pressure cannot exceed this amount. We are also informed by pressure cannot exceed this amount. We are also informed by perform their work with much greater ease than those from Messrs Wilkinson.
We are not acquainted with Messrs. Marple and Co., and are also ignorant as to the source of their information-which they pur engines. We can engines failed to mount the long incline at Aston. During the heavy fall of snow about three weeks ago, the manager sent one of our engines, with a car attached, thinking that it would be best
able to force its way up the incline, and clear the line for traffic. ble to force its way up the incline, and clear the line for traffic fter mounting for a considerable distance it came to a stand-still, Messrs. Wilkinson's, which happened to be the engine to rune the next trip, having a clean rail came up behind, and assisted the first ngine to mount to the top of the incline. We shall not commen pour readers to decide in fut leave the matter in the hands of "speak volumes."
In conclusion we may say that we can fully confirm the state ment contained in Mr. J. S. Batchelor's letter with reference to he fuel consumption necessary to render the exhaust steam inviprinciple, and, like other manufacturers, we have long since aban doned it.
Kitson and Co.
Airedale Foundry, Leeds, March 28th.
THE POLYPHEMUS.
Sre, -In your impression for the 9th ult. appeared an article
upon the Polyphemus, and it struck me upon reading it that the difficulty experienced in getting the long torpedoes clear of the ship was one most easy to overcome. I particularly refer to thos yards in advance of the ports through of the ship, say, some six discharged, a bent plate forming half a tube, or possibly a lo be title urved urved outwards. A rod passing through a stu ust before a torpedo was to be liberated, and behind this the

torpedo might easily be got clear of the ship, and the curved end of far less unfavourable to the course of the torpedo than would be the ase even though it were possible to get the torpedo clear of the hip as it was first intended.
That the direction of the torpedo would be affected to some
xtent under the most favourable conditions is certain, but an intelligent estimate of the distance of the object, coupled with the peed of the ship, and an allowance based upon such estimate being case ; that is, the torpedo would have to be slipped when the ship was at a greater or less distance in advance of the object aimed at, istance from the object desired to be struck by the torpedo. The side of the ship might be so made where this semi-tube was surrounding parts, and so not affect its speed in any way. J. C. D.
Worcester, March 27 th.

GUIDE-BLADE PROPELLERS,

Sir,-Having read the letter in your last issue from Mr. Arthur seems to think that I am anxious to call his guide-blade propeller by my name. This, however, is not the case, and I have no doubt Mr. Rigg will find, on carefully comparing the two, that my propeller of Mr. Rigg, like the ordinary screw propeller, acts on the stream of water which it has previously accelerated, and main-
tains no considerable difference of velocity between the water entering and that leaving his propeller, for even in those propellers where Mr. Rigg uses a large boss he does not make provision for
maintaining the contraction of the stream which he has provided maintaining the contraction of the stream which he has provided
and, as stated in his letter, he does not see the use of the conical projection to my propeller, which is the means I employ for main-
taining the contraction, which is an important feature, and neces sary to ensure success. The propeller of the Hon. Richard Parsons is a great advance on the guide-blade propeller as previously described by Mr. Rigg; and the screw and guide bladesin his pro-
peller are so curved as to be well adapted to act smoothly peller are so curved as to be well adapted to act smoothly and
uniformly on the stream of water flowing through the instrument but this propeller, like that of Mr. Rigg's, does not provide a graarual contraction of the stream maintained to the point of dis-
charge; but the increasing pitch of the screw and guides is so far in the propeller that it seemed necessary to make mention of this have mentioned the name of Mr. A. Rigg. Bepre proceding for with my propeller I examined all the papers by Mr. A. Rigg that
I could obtain, as I was anxious to know all that had been done on the subject. 1 also wrote personally to him, asking for any further lers, but my gain by this last venture was of a necative character. I believe Professor Rankine, Mr. Napier, and Mr. Griffiths als
I made experiments with guide blades, but have been unable to described in my paper read at the recent meeting of the Institute of Naval Archwects, do noter mish in any way to detract from the
propeller propeller my own, but Mrg's invention. To further illustrate the value of the gradual acceleration of the water within the field of operation
of the propelling instrument, I may mention that in the year 1851 Sir F. Bramwell patented an arrangement for carrying out this principle in the paddle-wheel when used as a propeller. In this
arrangement the paddle floats gradually separated from each other during their operation on the water. In this way they had an
accelerating velocity, which would inorease the efficieney of their accelerating velocity, which would inorease the efficiency of their
action. This mode of action was described to me by the late Mr Froude, who explained how this gradual acceleration, starting velocity, constituted the most perfect idea of propeller for the velocity, conside said he would see if this could not be done for the
paddle, and is
sorew. It is to be regretted that death prevented Mr. Froude from carrying further many valuable investigations, among them the to the sorew. Having this principle so forcibly explained to me, mind, the propeller I have described in my paper seems to to my best solution of the problem.
Torquay, March 27 th.

Sir,-I am glad to see that Mr. J. I. Thornyoroft has published with guide blades. Some the action of sorew propellers fitted attention to this subjeot, and by the assistance of Messrs, Easton and Anderson I was enabled to carry out some experiments on a
read before the Institute of Mechanical Engineers in October, 1879. important respect from those used by Mr. Rigg many years ago,
viz., in their having a very rapidly-increasing pitch. The object of this is that this form of blade is essential in order to derive any benefit whatever by the addition of guide blades. It is unnecessary here to but I may add that I believe that with a carefully designed to, peller with the addition of guide blades, a higher efficiency may be attained than with an ordinary one. Mr. Thornycroft's experiments, although on a small scale, go far to corroborate the above statement, and hope tis mportant question may receive more There are other advantages besides increase of efficiency which may. be derived by the use of a circular casing surrounding the propeller and the addition of guide blades. The vessel is rendered far more manageable, and is capable of being turned in smaller circle. The commotion produced at the stern of the vessel by the ordinary ncreased, both of which peculiarities should be of great advantage to those who employ steam canal boats. The most important advantage, however, appears to be that with a considerably smaller propetler and the addition of guide blades a larger horse-power can towards which we are rapidly approaching.
would add that Mr. Thornycroft is not quite correct in saying that his propeller differs from the one I used by mentioned he will observe that I was fully aware of the necessity of large boss, and that all my propellers were constructed with one.
Airedale Foundry, Leeds, March 29th.
R. C. PaRsons.

TESTING SCREW PROPELLERS
Sir,-I have read Mr. Froude's "Description of a Method of Having invented a propeller, I offer to give you a description, for the benefit of your readers, of how I tested its efficiency over that the propeller, and confine myself to the method of testing them.

B B_{1} is a box containing water to C . Through the box a shaft D_{1} is passed, to which is fastened the propeller A , whose be done in the same way and under the same circumstances. At D is the driving pulley, to which is fastened a cord E passing over
a pulley P_{1}, and suspending a weight W. At the other end of the a pulley P_{1}, and suspending a weight W. At the other end of the
shaft D_{1} is a cap which fits so as to give little resistance to the wo pulleys $P_{3} P_{3}$-fastened to the box-and attached to a spring balance S at the loop X . The spring balance is firmly fastened and kept horizontal. When the indicator moves it takes a very
small weight along with it N . The cord E is wound round the riving pulley D until the weight W is as close as possible to the cords FF may just keep the indicator at 0 lb ., but so that the least pressure of the shaft will give an indication. All this time the
weight is kept still, but when all is ready the weight is allowed to all to the ground, and so gives the shaft and propeller a rotary motion. The propeller presses forward against the cap at D_{1} and ressure or propulsion forward. When the indicator is moved it takes a very small brass weight along with it, and on the stoppage
of the propeller when the weight comes to the ground the indicator of the propeller when the weight comes to the ground the indicator the balance by the propeller. The other propeller to be tested through. The great point in these experiments is to get the weight to fall in the same time in each case, so that their relative efficiency may be shown. The efficiency of one propeller over that of another
is shown by the pressure, and is-as the pressure, in lbs., in the is shown by the pressure, and is-as the pre
ne case is to pressure, in lbs., of the other.
I have tried various models of the common propeller, and obtained, with few exceptions, the same results. The following table will show the result of the common propeller as compared
with my spiral propeller, the conditions in either case being the

Propeller.	$\begin{gathered} \text { Diam. } \\ \text { of } \\ \text { prop } \end{gathered}$	Diameter of driving pulley.	Weight.	Distance	Time.	Pressure.
Common	-	3 in .	$1 \frac{1}{2} \mathrm{lb}$.	10 ft .	5 sec .	1 lb .
Spiral	-	3 in .	$1 \frac{1}{4} \mathrm{lb}$.	10 ft .	5 sec .	12lb.

Another way of testing propellers will be seen from the sketch
below, the letters in both cases being the same. The propeller in

this oase draws a weight N, instead of pulling the spring balanoe. In testing the propulsion of the two screws the relative values will o the number of inches the weight is drawn in the other. In test ing various models of the common form the results are pretty pearly

Propeller.	Propelling weight.	Distance weight falls.	Dlameter of propeller.	Distance the weight is drawn.
Common	$1 \frac{11}{10}$ b.	8 ft .	$6 \ln$.	$4 \frac{1}{} \mathrm{in}$,
Spiral	1119 1 b	git.	${ }_{6}^{4} \frac{1}{4} \mathrm{in}$.	6 in .

I have found that 1 lb . of the propelling weight is lost in drawing the shaft through the bearings. I tested the speed of the proo pellers in the following manner:-The cap is taken from the shaft,
which is then drawn towards the left-first sketch-and the distance of the end D_{1} is then measured from the side of the box. distance of the end D_{1} is then measured from the side of the box.
The weight is wound up till it is 3 ft . from the ground and allowed to fall. The distance is again measured, and the former measurement subtracted, which gives the relative speed or distanoe
travelled. Common propeller travelled 10in., and the spiral 13in, 37, St. Martin's Cottages, Silvester-street, ROBERT GIBB, Liverpool, March 26th.

HORSE AND CART FERRY LANDING STAGE AT JARROW. MR. O. J. TATE, C.E., ENGINEER.
(For description see page 246.)

Cross Section Through Lanoing Stage
1/8 inch Scale

J Swain. Eng.

FOREIGN AGENTS FOR THE SALE OFTHE ENGINEER

PUBLISHER'S NOTIOE.

*With this weel's number is issued as a Supplement, a Locomotive
Goods Engine for the Cape Government Railvays, fitted vith D.
 this Supplement, and subs
should they not receive it.

TO OORRESPONDENTS

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all public, and intended for insertion in this column, must, in all
cases, e accompanied by a large envelope legibly directed by the cases, oe accompaniud bearing a 1 d. poostage stamp, in order that
writer to himsif, and
answers received by us may be forvorded to their destination. answers received by us may be forvarded to their destination.
No notice vill be taken of communications which do not comply with these instructions.

*must therefore request correrespondents so keep ocopies. containing questions, must be accompanied by the name and address of the writer, not necessarily for publicat proof of good fitht, Not no nocssaricily for putevicication, but as

 (To the TAR Partor paving.

 edit occur, an extra charge of two shillings and sixpence per a cases ,or binding The Engineer Volume, price 2 s .6 d. each mplete set of The Engineer can be had on application. ign Subscriptions for Thin Paper Copies will, until further the published rates will receive THE ENGINEER weeklly an bscriptions sent by Post-office order must be accompanied vice to the Publisher. Thick Paper Copies may be had, if p ttance by Post-office Order. - Australia, Belgium, Brazi Otane ypt, France, Germany, Gibraltar, Italy, Malta, Natal, Ne rtugal, Roumania, Switzerland, Tasmania, Turkey, Unit dia, $£ 20 \mathrm{~s}$. 6 d . ttance by Bill in London.-Austria, Buenos Ayres and eece, Ionian Islands, Norway, Panama, Peru, Russia, Spain ili, £1 16s. Borneo, Ceylon, Java, and Singapore, $£ 20 \mathrm{~s} .6 \mathrm{~d}$. uritius, Sandwich Isles, £2 5 s . ADVERTISEMENTS. The charge for Advertisements of four lines and under is three every two lines aftervoards one shilling and sixpence; odd int measures an inch or more the charge is ten shillings per gle advertisements from the country must be accompanied by extical regularity, but regularity cannot be guaranteed in any artisements cannot be Inserted unless Dellivered b o'clock on Thursday Evening in each Week.相 are to be addressed to the Publisher, Mr. George Leopold letters to be addressed to the Bditor of THE EngINEER, 163,

MEETINGS NEXT WEEK

THE ENGINEER.

MARCH 30, 1883.

the irish mail contract.
The proposal recently made to put the whole work of carrying the mails between England and Ireland into the pany, has evoked a somewhat curious discussion. That is to say, the merits of the case are being argued on abstract -namely, the possible acceleration of the mails-is bein put on one side. It is quite unnecessary to enter into the All that we have to do with just now is the present and the future. The mails are now being carried by two companies - the London and North-Western Company
providing the land, and the City of Dublin Steam Packet

Company the sea service. It is understood-though the the proposed contract are not yet fully knownthat the railway company proposes to do the whole of the work at a reduced rate, representing a saving to the Post-
office of, in all, about $£ 5000$; but that, if the present system ismaintained, an augmented charge, as compared with existing rates, will be made for the land service. It is urged on the other hand, with some truth, that a greatinjustice will be done to the Irish company if the contract be taken from it, and that a staff of old and deserving officers, engineers, and others will be cast adrift; and it is furthermore asserted that the steamers with which the railway company proposes to carry on the service are not sufficiently them. We hear little or nothing, however, concerning the acceleration of the mails; and it seems to be lost sight of that not one word of proof has been adduced of the proposed service. Again, it seems to be lost sight of that the ccncern of the public is simply that the mails shall be carried as safely, punctually, and expeditiously as possible.
We may regretthat old servants would find theiroccupation wone may regret that old servants would find theiroccupations it would no doubt bity could no doubt be got over-and pany should continue to carry the mails across the channel, Sentiment, however, must not be permitted to interfere and that system of transport ought to be adopted which is most efficient, no matter by whom supplied. Up to the present time the mail service between this country and
Ireland has not been as good as it ought to be, and we have no hesitation in saying that if the Dublin company should now lose the contract it will have itself in some measure to blame, because it has not done the most that could be done with its four steamers. Let us see what the facts are. The distance from London to Holy head is 268 miles, from Holyhead to Kingstown the six miles ; the total distance is, therefore, 338 miles. The average speed of the London and North-Western mail trains is forty miles an hour, including stops. The mail boats take about four hours in making the passage, and a little over half-an-hour is expended in transferring the Dublin. Taking the night mail as an example, we find that the mails leave Euston at 8.25 p.m., and reach Dublin at 7.35 a.m., according to the time-tables. This is 11 hours 10 min ., and gives an average velocity of litte more than 25.5 miles an hour. The train reaches Holyhead at 3.5 a.m., so its running time is 6 hours $25 \mathrm{~min} .$, or, as we
have said, forty miles an hour, including three stops. The have said, forty miles an hour, including three stops. The
steamer starts as soon after the arrival of the train as the mails and passengers can be got on board. Thus, according to the time tables, she has but 3.5 hours to make the run; but in practice it is never made in that time, which would, indeed, imply a speed of
nearly nineteen miles an hour, or not far short of half that made by the trains. The steamers used for the purpose are the Ulster, Leinster, Munster, and Connaught. They are all nearly alike in dimensions, and power of
engines ; but two of them have four funnels and the others engines; but two of them have four funnels and the others
two funnels each. If we describe one we virtually describe all, though there are some small differences between the Ulster and Munster and the Leinster and Connaught. The Ulster, then, is 328 ft . long, 35 ft . beam 21 ft . deep, and measures about 2000 tons builders measure ment. She was built in 1860, and is propelled by engines by Messrs. Boulton and Watt, indicating on the measured
mile 4100 -horse power, at 23 revolutions per minute ; the mile ed $4100-$-norse power, at 23 revolutions per minute ; the
speed being close on twenty statute miles per hour. The engines are oscillating, with jet condensers; the cylinders are $96 \mathrm{in}. \mathrm{diameter}$,and the stroke is 7 ft ; the safety valves
are loaded to 25 lb . on the square inch. There are eight are loaded to 2510 . on the square inch. There are eight
boilers with 18,400 square feet of surface, and forty-eight boilers with 18,400 square feet of surface, and forty-eign
furnaces, with 840 square feet of fire-bar ; the weight furnaces, with 840 square feet ongines is 220 tons ; of the paddle wheels, 110 tons the engines is 220 tons; ; of the padale wheels, 1 boilers,
of the boilers, 230 tons; and of the water in the bois 170 tons ; and the draught of the ship ready for sea, with 75 tons of coal on board, is 13 ft . The wheels are 29 ft . in diameter, and have fourteen floats. The average number of revolutions at sea is 18 , and for a considerable time before Holyhead or Kingstown is reached the fires are permitted to burn down, so that as we have seen over
and over again, should the order for full speed coming into and over again, should the order for full speed coming into
harbour be given, it means 9 revolutions. The object in harbour be given, it means 9 revolutions. The object in
view is, of course, to save fuel, but it will be readily understood that in this way a great deal of time is lost on a run of but four hours' duration. It is well known, indeed, that the mail boats are never run nearly so fast as they might be run, and this is a factor which must be taken into account in dealing with the proposed supercession of the the letter the terms of its contract, but it has never manithe letter the terms of its con tract, b.
fested the smallest desire to do more.

The boats proposed to take the place of these vessels are the Rose, Shamrock, Violet, and Lily. They are in many respects alike, but the Violet and Lily are faster than the hre two. It has been loudly asserted that these boad are not as good as the existing mail oats. It is as well
that facts should be known. It is true that the Irish boats are larger than the railway companies' boats; but it must be borne in mind that they were built more than wenty years ago, and that remarkable in and shipbuilding The Rose and the Shamrock are as fast as the present mail boats, but the Lily and the Violet are much faster. A trial was arranged between the Violet and one of the City beat her by three miles, and it took the mail boat ten minutes to come up with the Violet after she stopped Nor is this to be wondered at, for the engines of the Violet and Lily indicate 3200 -horse power, and their displacement is much less than that of the mail Wall, Dublinermore, the railway boats leave the North leave Kingstown; but the railway boats can arrive at Holy-
head at the same time, although handicapped by six head at the same time, although handicapped oy six
miles and twenty minutes, The Violet on one occasion,
with everything in her favour save the tide, which was dead against her, made the run from Poolbeg Light to have to run, in 3 hours 5 min ,, which is the shortest pas sage on record. The boats have a tonnage of 1400 tons, so that it will be seen they are by no means the cockle shells some persons would persuade the world, and they draw only 2 ft . less than the mail boats. As regards the accommodation for passengers, we may say that the railway boats are better than the mail boats. They are passed by the Board of Trade to carry more passengers and excellent second-class accommodation is provided on board them, while there is next to none on board the mai the flush spar deck, which runs right fore and aft. We do not desire to underrate the Leinster and her sisters, but the do not, so far as we can see, possess any advantage ove their rivals, and it is a suggestive fact that the opponent of the railway company have adduced no figures of any kin in support of the case they try to make out against thes steamers. It is evident that an important mail service con in the present day at an average sped to sey-ive miles an hour is an anachronism, and the way o acceleratin no mechanical dimiculty stands are strictly limited, and the weight seldom exceeds abou 80 tons without the engine. Under the circumstances velocity of fifty miles an hour could easily be maintained The road is good, and heavy tenders are not needed, thank to Ramsbottom's water troughs. Stops might be made at Rugby, Crewe, and Chester, of five minutes each-occupying a quarter of an hour. Slowing down and getting up speed, uarts and leaving these stations, whour, the run to Holyhead would be made in five hours and twent minutes. Deducting forty minutes for stops and slowing and taking tickets at Holyhead, we have six hours as the time between Euston and the steamer; and thus a train leaving Euston at 9 p.m. would reach Holyhead at 3 A saving of about half an hour would thus be effected in the land portion of the route. Again, there would be no difficulty in driving suitable vessels across the Irish Channel in all but the heaviest weather in three hours and twenty minutes. The little Banshee did this more than thirty years ago, when carrying the mails for the Admiralty under the old contract. Allowing ten minutes for putting the mails and passengers on board-and this would ampl suffice under a proper system-Kingstown ought to b reached at 6.30, English time, with certainty. The whol time, then, required for the transport of the mails from Euston to Dublin would be but ten hours, instead of, a now, eleven hours ten minutes. We understand that the railway company has promised to accelerate the service
by half an hour, but this is less than half what may easily by half an hour, but this is less than half what may easily
be done, and Parliament ought not to be satisfied with half.

Locomotives for underground railways,
IT is by no means certain that the effort now being made to prevent the construction of ventilators in West minster and the City by the Metropolitan District Railway company will not be successful. It is worthy of notic that the supporters of the company are few in number Sifthat the arguments they advance are very feeble. sifted down, these amount to a stament that the lin the be cila the company cannot possibly find any expedient fo purifying the air in the tunds, except makig holes in the streets. Wo have already explain that the vennh not being put in to promote the comfort of passengers but to enable the engine drivers to see the signals, whic hey can tho Whe that steam is resit the unsuitability of the 0 tives for result of the unsuitability of the locomotives for their work, and of the penuriousness of the company which will no pay fond whe en the the fing the first point, and the best method of putting the facts in it clear light
The Metropolitan Railway as first laid out was a broad gauge line, worked by the Great Western Railway Com at Paddington and ended at Foring-road, and its tota at Paddington and ended al but four trains each way every hour, but the number rapidly but four trains each way every hour, but the number rapidly experienced from want of ventilation. After a time experienced from want of ventilation. After a time the Great Western Company ceased to work the line, and a contest arose between the owners of the railway and the
Great Western Company, and for a time it seemed as though traffic must be suspended. The Great Northern Railway Company came to the rescue, and Mr . Sturrock then locomotive superintendent of the line, hastily fitted up some tender engines with pipes to lead the exhaust up some tender engines with pipes to lead the exhaus
steam into the tenders. On the whole the service was tolerably well carried on by these engines. But ex tensions were in progress, and it became evident that some thing must be done to provide for augmented traffic. Mr_{r} Burnett was appointed locomotive superintendent, and Mr John Fowler designed a complete set of rolling stock. It had in his mind when to understand what Mr. Fowle securing as much room for passengers as possible with a minimum of weight, he designed the heaviest rolling stock known on an English railway up to that time. The passenger coaches, hung on a bogie at each end, weighed 16 portion of dead weight to live load, taking the train as a whole, is enormous. No doubt the stock is strong, and the expenses for repairs to it moderate, but it is heavy stock on the road, as the permanent way accounts of the company prove. After a time, the Metropolitan
District Railway was opened, and the engineers of the company determined to avoid the mistake made by the Metropolitan Company, and instead of the great 16-ton bogie coaches, they ordered much
smaller carriages, supported on four wheels, and weighing
much less per passenger. But no change was made in the
type of locomotive, and the whole of the Metronalite type of locomotive, and the whole of the Metropolitan
traffic was worked for some time with engines identical in pattern. Some years ago Mr. Armstrong, locomotive superintendent of the Gireat Western Railway, designed tank engines for working his metropolitan traflic, which
engines have been illustrated in THe ExaINER, and they engines have been illustrated in The Engineer, and they
do their work in the most satisfactory manner, although do their work in the most satisfactory manner, although
they weigh nearly nine tons less than the Metropolitan engines proper. The perpetuation of the Fowler type of locomotive has been a great mistake. Indeed, the defective nature of the rolling stock of the line has heavily handi-
capped the venture, and done much to keep down dividends. Nor is it to be supposed that we are alone in saying this. Mr. Webb, of Crewe, who will be admitted to be an authority, has stated at the Institution of Civil Engineers
that the work could be done with engines weighing that the work could be done with engines weighing 27 tons, with 16 in . cylinder, 20 in . stroke, and carrying 700
gallons of condensing water. The 5ft. 9in. driving wheels gallons of condensing water. The $5 \mathrm{ft} .9 \mathrm{in}$.driving wheels
of Mr. Fowler's engines he held to be too large, and would use a 4ft. wheel instead, and by this means and using
 of transport would be saved per year. Mr. Tomlinson, who supported Mr. Fowlers views, admitted thatthe engines
might be made $4 \frac{1}{2}$ tons lighter, and other speakers followed suit. We have given the merest sketch of the history of the line. Our readers may easily fill in the details, in some and most probably ; buter much of it has yet lo us see what the rolling stock ought to have been.
The maximum number of passengers to be provided for is about 400 per train. In the mornings and evenings the carriages are crowded until there is no standing room;
but 400 is a sufficient basis to go upon. This number could be readily provided for in eight coaches, the total weight of which need not exceed 48 tons. This is an ample allowance. The coaches would beclose-coupled with centre buffers, and care would be taken to keep down weight in every possible way. The maximum velocity at
which the trains now run is twenty miles an hour, and it is important that the trains should get away as quickly as possible. This result may be readily obtained by either of two expedients, namely, the use of large cylinders or the
use of small driving wheels. There is this important difference in the result, that a resort to the first expedient augments the cost and weight of the whole
engine, while the use of small driving wheels has precisely engine, while the use of small driving wheels has precisely
the contrary effect. Unfortunately, Mr. Fowler chose the former alternative, and his engines have 17in. cylinders 24in. stroke, $5 \mathrm{ft} .9 \mathrm{in}$. driving wheels, and carry 130 lb . pres-
sure. The maximum tractive 100 lb . per one pound of average pressure in the cylinder. If, now, the driving wheels had been made 4 ft . in diameter the cylinder might have been reduced to 15 in . in diameter, engine would then be over 103 lb . per pound of cylinder pressure. Under the circumstances it would be possible to make an engine which would weigh with its tanks we should thus have a gross weight of train of 68 tons. To this we must add say 30 tons of passengers, or in ali bunkers and sundries, we have a total train weight engine tons. The resistance of this train at twenty miles an hour on a level would be about 1200 lb ., while on an incline and our loco would amount in round numbers to b401b. average cylinder pressure of only 34 lb . to overcome this resistance, and assuming the co-efficient of friction to be only one-eighth, a load on the driving wheels of $12 \cdot 25$ tons would suffice, or for four-coupled wheels, a little over 3 tons per wheel, as against $7 \cdot 5$ tons on each driving wheel of the existing engines. We have said nothing as yet concerning the provisions to be made for condensing steam. To be quite satisfactory the engines ought to be able to make a run of ten miles without needing more condensing water and to secure a satisfactory result the water ought not to be allowed to exceed a temperature of about 180 deg . We may assume that it will be taken in at 60 deg., and we may be elevated in temperature. Each pound of steam condensed will be nearly at atmospheric pressure when discharged into the tank, and will represent 1146 units per pound from 32 deg.; from 60 deg. it will represent 1118 units, and from 180 deg . it will reprefigures, we find that each pound of steam delivered into the tank will represent 1058 units. But each pound of water in the tank will be able to absorb 180 of these units; and dividing 1058 by 180 , we have, in round numbers, 6 -that is to say, if the tank holds six times as much water as is densed, and none will be given out to fill the tunnels with vapour. Now, the consumption of fuel per running mile
will not at the most exceed that each pound of coal evaporates 10 lb . of water, we have 180 lb . of steam per mile, and six times this gives us needed per mile; and multiplying this by 10 , we have $10,800 \mathrm{lb}$., or, in round numbers, let us say, 5 tons, or 1080 gallons. The addition of this will bring up the something must be added for the tanks. The total weight may be taken then at 28 tons, but this will but
little modify the figures we have given. It will perhaps, be objected that the figures we have given are could not work the traffic of the Metropolitan Railway Our reply is, that it certainly could not if the existing rolling stock were retained ; for example, it could not satisfactorily deal with a train the coaches of which alone weigh 113 tons, instead of 48 . It will be seen that the quantity of condensing water which the existin engines must carry is very much larger than that indicated
by the weight of the coaches alone. They actually carry but by the weight of the coaches alone. They actually carry bu is augmented in one place in rolling stock, it is increased
way round. Thus, the total weight of a Metropolitan Rail way train is now, including passengers, $42+113+30=$ loubt that the whole traffic could be worked with much less expense than it is worked now by using lighter stock, and it is quite certain that the stock could be had. We have drawn no fancy picture; engines and trains of the
kind we have in our mind may be seen daily kind we have in our mind may be seen daily at London-
bridge and Victoria-stations of the London, Brighton, and It is Coast Railway.
It is hardly necessary to point out that the reduction in weight, being accompanied by a reduction in the con-
sumption of fuel, the air in the tunnel would be so much the purer. Indeed, years ago Mr Burnett before he gav place to Mr. Tomlinson as engineer of the line, endeavoure We reduce weight by introducing double or twin carriage We never found out exactly what these thin canlag weigh. That an advantage was to be had by improving on Mr. Fowler's designs is shown by the action taken by
Mr. Armstrong and perpetuated by Mr. Dean. Mr Mr. Armstrong and perpetuated by Mr. Dean. Mr.
Fowler's stock would have given little trouble, as far as Fowlers stock would have given little trouble, as far as
polluting the air was concerned, if only the traffic had not polluting the air was concerned, if only the traffic had not
increased far beyond what was anticipated. His idea was, we have heard, to produce engines and trains that would never break down; and to do this he used much more weight than was needed. In one respect this has been satisfactory ; in the other respect it has created the exist ing demand for ventilators on the Embankment and in Queen Victoria-street. We presume that the existing the directors of all the companies using the District Rai way that a new departure should be taken, and that, as new stock is required, a change should be made. There would be no difficulty in the existing type of train and engine taking their turn with the new type until the old was entirely extinct. No doubt the company would
suffer some loss by making the change, but we believe the whole outlay would soon be repaid by the reduction in fuel and permanent-way accounts.

The Institution of Naval Architects is to be congratulated on the very practical character of many of the papers read recently in the Hall of the Society of Arts. What
was written and said concerning cargo steamers wa specially worthy of attention, two papers in particular claiming notice. The first was by Mr. James Dunn "On
Bulkheads," and the second by Mr. Hamilton "On the Speed and Form of Steamships considered in Relation to Length of Voyage." The part played in promoting the prosperity of this country by the modern cargo steamer
cannot be exceeded in importance. We have in our own hands nearly the whole ocean-carrying trade of the world and a very large proportion of the work is done by cargo steamers. enie construction of hrese craat keeps our shipyards and engine builders busy from one end of the
year to the other; while thousands of hands are employed in producing the materials of which they are built. They are costly craft in the sense that each of them represents large capital. The economy with which their engines about them in which all concerned may be congratulated but when we come to look into matters a little, we find, w regret to say, much to condemn, and many things which ought to be changed for the better. The loss of life in the cargo steamer fleet is dreadful; and these ships are lost a
sea in such numbers, that great as the annual productio of them is, it does not in the winter season more than keep pace with the demand. If the loss of ships and lives and cargoes was unavoidable, we might deplore it and among, but there is a universal consensus of opinion care exercised inate and conipetend management of thes craft would have the happiest results. A great deal plain speaking was heard during the recent meeting of the should hardly fulfil our duty did we keep silence with sucl an example before us of the outspoken expression opinions.
The modern cargo steamer of the normal type is an iron vessel, capable of stowing from 2000 to 3000 tons of grain.
She is propelled by compound engines, usually indicating She is propelled by compound engines, usually indicating
from 500 to 700 -horse power, and driving the ship eight to nine knots as an average velocity. Her bunker will stow about 400 tons of coal, and such ships have usually about five bulkheads nominally serviceable. These ship are contracted for and built at a low price under the
supervision of Lloyd's or the Liverpool Underwriters' Association. They are owned sometimes by single firms but more frequently, although sailing under the house flag individuls who company, they really belong to many get as large a return as possible out of them. What the return will be depends largely on the captain, and may it fach as much as 14 to 15 per cent. net per annum. When it falls below 4 or 5 per cent. the ship is a bad
speculation. She is kept carefully insured; and if she
is wrecked inasmuch as the underwiters divide lose nothing; and and profits among themselves, they have very little individual interest in seeing that steamers insured with them do not sink or upset. The result of all this is that it is nobody's business to take much trouble to secure safety and so cargo steamers and their crews have a bad time o it, especially in winter. There are two bodies, howing good work at all events, namely, Lloyd's and the Liverpool Association. We have no desire to write terms; but speaking plainly, we say that much has recently been said, and many facts have come to light which tend to show that they are by no means so particular as the ought to be, We do not refer to the engineer surveyors, are combined in the one individual, but it would appear that the practice of the surveyor is not uniform
and that he will permit things to be done with the hul
which he would not tolerate with the engines. Take, for example, the following passage from Mr. Dunn's paper :"Bulkheads," he said, "are useless when found as we have found them, with stiffeners cut, with rivets omitted, with caulking neglected, with plates removed, with large holes cut in them for small pipes to pass through, with sluice holes and no covers, with doors and worthless securities, surveyors are not answerable for all these things, but they are answerable for a good many of them. The charges
urged against that body by Mr. Samuda were perhaps too severe and too sweeping; but Mr. Martell's defence of Lloyd's action was weak and violent, and lacking in logic,
and it left the impression on the minds of those and it left the impression on the minds of those present Samuda. Nor are these charges confined to this country We regret to say that in the United States the British cargo steamer is becoming a byword and a reproach. As
an instance we quote the following from the New. York Times:- "It may almost be said that no steamer without a spar deck can safely cross the North Atlantic in winter. Such a vessel is always liable to ship a sea that may put
out her fires, crush in her hatches, and sink suddenly and surely than would a collision with another vessel. That this is the way in which dozens of missing disasters would not have happened had the unfortunate vessels been designed for the rough weather of an Atlantic sources of dancer, overloading adds to the original port overloaded is notorious. It is an every-day matter for freight steamers and tramps to leave our harbour in winter so heavily loaded that the water is within a few three successive trins is sufficient to reconcile the owne to the loss of the vessel, when that by no means unexpected pecuniarily for the lise the owners are not responsible not grieve to any great extent over the men whose death they have virtually procured. Much could be done to prevent the employment of open-waisted ships in the are imposed upon tonnage entering our harbour. The system at present in force places a premium upon unseais totally unsuited to the Atlantic tradeloading, that is surely a matter which we have a right to on Congress can pass a law forbidding any vessel rreeboard; American port without a certain amount of or, at any rate, is enforced. There is scarcely a weel Yrom October to April when steamers do not leave New Atlantic weather. We cannot very well compel foreigner to build vessels after any one particular pattern, but we can forbid overloading, and we can take off the premium
that is now offered to owners of open-waisted ships." W earnestly deprecate Government interference in this matter, but the appalling fact that, as stated by Mr. Samuda, no
fewer than 550 vessels were lost last year from preventible fewer than 550 vessels were lost last year from preventible
causes, cannot be repeated in succeeding years without eliciting a Parliamentary inquiry which may have very mpleasant results.
the most prominent defect in the cargo steamer herself is the want of efficient bulkheads. The most prominen asserted that plenty of bulkheads would so much interfere with the stowage of a steamer that she would be put out Samuda's strictures, had no better defence replying to Mr shortcoming the existence of which he did not deny ought to no means ready to say that a cargo steame steamer, nor do we assert that commercial loss ought to be incurred that ample margins of safety may be secured but we do assert that everything that can be done within afe. her with example, although it may not be possible to fit desirable, is that any reason why the bulkheads with which she is fitted should be worthless? The first principle we contend for is that every bulkhead in be staunch, strong, and kept in good order as regards all fittings, such as doors, attached to it. It is impossible to
read Lloyd's Rules on the subject of bulkheads and not perceive that they are inadequate to secure the desire end. Some time ago the Admiralty decided that it would be well to prepare a list of steamships complying with
certain conditions in the matter of structural details, certain conditions in the matter of structural details,
which ships would probably be of service in time of Vessels on this list enjoy some privileges. Thus, fo example, when Government wishes to charter a ship for any purpose, one of those on the Admiralty list is selected Under the circumstances it will surprise no one to
learn that the Admiralty were offered a great many hips. Mr. Dunn told his hearers that out of 3640 only 157 were found to comply with the very reason demands of the Government, and that during which did not comply with the stated conditions was 11 in 25 , while of those which did comply only 1 in 86 was lost, But something more may be done than seeing that a fev sound and serviceable bulkheads are put into every cargo steamer. These may be carried up high enough and put
in the proper place. Nothing which we could say in this in the proper place. Nothing which we could say in this the diagrams which will be found in our last impression on page 201. It was worth notice that in the discussion phage followed the reading of Mr. Dunn's paper, although there were many shipowners present, not one had anything to say against the introduction of more and better bulkheads than are now in use. It was argued, not by a ship owner, that certain classes of cargo, as, for example, 40 ,
rails, could not be stowed if ships had compartments close tagether. But Mr. Biles, who knows as much about a
ship as most men, explained that not only. was there no
difficulty in so fitting bulkheads that this particular kind difficulty in so fitting bulkheads that this particular kind
of cargo could be loaded, but that ships were actually being of cargo could The truth is that nothing is wanted in this matter but the will, and the way will soon follow. If Lloyd's made the fitting of proper bulkheads compulsory
to-morrow, we feel certain they would be fitted. But it to-morrow, we feel certain they would be fitted.
seems that the directors of the body lack courage, and fear seems that the directors of the body lack courage, and fear
to do that which might give offence to their clients. In to do that which might give offence to their clients. In
no other way can. we explain the laxity of the body on no other way can we

Concerning the influence of load line on the safety of cargo steamers much might be said; a great deal was said when Mr. West had concluded his paper. The large to handle fully here, There is evecry reason, however, to believe that in dealing with this question Lloyd's have acted with the utmost prudence and quod sense. The aggravating thing about Lloyd's Registry good sense. The aggravating thing about Lloyd's Registry
is that it can do some things so thoroughly well, that its neglect and incompetence in other respects are shown up
in a very broad light. Its officers have prepared with in a very broad light. Its officers have prepared with
immense pains and judgment a set of tables setting forth the proper load line for almost every conceivable class of ship, and they recommend, but do not attempt to enforce,
the adoption of this line on their clients. We can find the adoption of this line on their clients. We can find space for the consideration of but one more point con-
neoted with cargo steamers, namely, speed. Mr. Hamilton showed on Friday week that in voyages extending over 5000 miles, eight knots was the maximum paying speed. He entirely neglected to take into his calculations the effect
of want of sufficient power on the life of a steamer. of want of sufficient power on the life of a steamer.
There cannot be the least doubt but that many steamers are lost in gales entirely because they lack sufficient engine power. It would, however, be too much to expect that shipowners should take this point into serious consideration; all the same, it would have been well if the Institu-
tion of Naval Architects had said something about it.
?
the grocers' company's endownent of research in
santary science. THE endowment of research, for which great schemes were in
the air some years ango, and respecting which the astronomers the air some years ago, and respecting which the astronomers
especially fought so keenly, has now been actually realised for one department of science by the Grocers' Company. In most of the daily papers appears a detailed advertisement of the
liberal offer of the City company and of the objects it has in viev. It is going to endow research in the most magnifi-
cent way, and will shortly employ three seekers after truth in matters sanitary at $£ 250$ a year each, while every four year in matters sanitary at $£ 250$ a year each, while every four years
it intends to give \&1000 to some sanitary Pasteur who has
made a startling discovery in this very necessary science. What made a startling discovery in this very necessary science. What
will Sir George Biddell Airy, the late Astronomer Royal, say to will Sir George Biddell Airy, the late Astronomer Royal, say to
this? It may, of course, happen that before the four years are over the Grocers' Company may find its money devoted by a
ruthless municipality to other purposes, including, perhaps, the ruthless municipality to other purposes, including perhaps, the
practice and not the theory of sanitation. Still it must be given credit for the best intentions. Cynics may indeed say that
the proceeding reminds them of the unjust steward, who
beeame excessively liberal shortly before his retirement, and that became excessively liberal shortly before his retirement, and that
they fail to trace the connection between grocery and sanitation But cynics will alwwass say disangeeable thingess and the Grocers
Company may pass into oblivion without it being said of it Company may pass into oblivion without it being said of it
that it is an association which has disposed of a good many thousands of pounds without saying a good thing or doing
good action. It has done a good action, and, we believe, it may be placed on record that the Grocers' Company collectively
made a joke. So far as the administration of the scheme wil involve scientific considerations, the Court of the company 1 pose to act with the advice of a committee of scientific men, an
the following gentlemen have kindly consented to form the firs committee:- Mr. John Simon, Dr. Tyndall, Dr. J. Burdon Sanderson, and Dr. Buchanan. With a view to encouraging the
making of exact researches into the causes of important making of exact researches into the causes of important
diseases, and into the means by which they may be prevented or obviated, the company offers three shol. The appointments one year, with eligibility for re-appointment. The appointments are
to be made in May next, and persons who may wish to offer not later than the last day of April. The scholarships are open not later than the last day of April.
only to British subjects under the age of thirty-five. Under the same scheme, and with the same object in view, the company also proposes to offer for competition, once in every four years,
discovery-prize of the value of $£ 1000$. The prize is to be open to universal competition, British or foreign. In the month of May next the company will announce the subject proposed for
the first competition, which is to terminate at the end of 1886; the first competition, which is to terminate at the end of and the time of announcing the subject they will announce conditions as are hitherto settled will be communicated by the clerk of the company,

LITERATURE.

New Valve Diagrams. Der Practischer Machinen-Constructeur ramme. Von C. Falkenburg. 1882 The title of "New Valve Gear Diagrams," which Herr
Falkenburg has thought fit to bestow upon the papers we Falkenburg has thought fit to bestow upon the papers we
are about to review, is a misnomer calculated to mislead. are about to review, is a misnomer calculated to mislead.
A close perusal of them has convinced us that they contain nothing new, as far as valve gear diagrams are concerned. In other parts, however, where the author treats of the
clearances, port dimensions, and piston velocities, we find clearances, port dimensions, and piston velocities, we find substance, is at least new in form. The form of valve
diagram attributed by Herr Falkenburg to Miller is simply an inferior reproduction of the "great circle valve diagram" of John F. Gray. It is a well-known fact that the imaginary straight line, joining the end of the crank same plane surface, is constant in length for any position of the piston and at any part of the stroke. By the aid of this principle the position of the valve excentric arm can be found corresponding to any given position of the
crank. French writers make great use of this method, and have given it a far more elegant form and development than that claimed by Herr Falkenburg as new and original.
Judging only from the evidence of these papers, it would seem that Herr Falkenburg has not much faith in definite information concerning the amounts of clearance,
and the conditions of temperature and moisture, all of steam in a cylinder. Until, therefore, the instrument has been fitted with apparatus to define not only the conditions of temperature, moisture, and clearance, but also the electrical state of the steam, all its indications are equiva lent only to scientific guess (wissenschaftliches Rathen) Electricity, it is stated, is freed during each partia condensation of steam in the cylinder; in other words, again, electricity is made prisoner during the whole time to know what influence is to be attributed to these changes in the electrical conditions of steam; and until indicator diagrams can satisfy his curiosity, he withholds his acceptance of the mechanical theory of heat. Now the influence of electricity on the work done by steam is very small; in fact, steam under the most favourable con-
ditions, as in the Armstrong apparatus, furnishes only an in ditions, as in the Armstrong apparatus, furnishes only an insignificant quantity of high-tension electricity, representing
no appreciable amount of work or loss of work. Hence no appreciable amount of work or loss of work. Hence,
Herr Falkenburg is not justified in rejecting the whole Herr Falkenburg is not justified in rejecting the whole
mechanical theory of heat, merely because he does not understand the influence of the small amount of electricity possibly generated by steam friction.
In another part of these papers we find steam jackets condemned in terms almost as emphatic as those quoted in reference to indicators; and why? Because the super-
ficial area which steam jackets offer to the cooling medium ficial area which steam jackets offer to the cooling medium, air, is larger than the corresponding surface of the cylinder
which they enclose. Hence, according to Herr Falkenburg, the cooling effect of the air upon steam jackets must e greater than upon the cylinders which they are mean to protect. This reasoning is all very specious, but it is,
nevertheless, perniciously false. The writer seems to
for forget that the cooling effect of the external air upon a volume of steam enclosed in cylinders of equal length, bu varying diameters, is expressed by the general ratio

$\frac{2 \pi r}{\pi r^{2}}=\frac{2}{r} ;$

in which $r=$ radius of the cylindrical cross-section. I as the radius of the steam envelope. Moreover, Her Falkenburg has attributed to the steam jacket an improper function. Its cbief office is to protect the meta
surface of the steam cylinder, and to counteract the cooling influence of the condenser.
So far we have taken the liberty of pointing out some of the errors which disfigure the papers under review. It which, our duty to indicate a few. A crertain amount instructive writing is to be found in the parts relating to the clearance spaces, port dimensions, and the varying as embracing: (1) the volumes of the two steam channel leading to the ends of the cylinder; (2) the spaces left between the cylinder-covers and the piston, when the onstant quantity, but the two components of the second part-viz, the spaces between piston and cylinder-cover - are variable, or at least have a tendency to vary.
According to the author it is not rare to find the course of the piston, looked upon as a whole, gradually displace owards one or other of the cylinder ends; and he furthe dds that cases have often occurred where this displace ment has led to a succession of bumps of the piston against one of the covers. The cause of this irregular action is assigned to the fact that the maker has not taken care to provide that the wear of the crosshead pin, the crank pin,
and its brass should be compensated by a correspondin and its brass should be compensated by a corresponding
wear of the crank shaft and its bearings. Now the wear of the crank shatt and its bearings. Now the oscillation of the connecting rod. Taking the latter a five times the length of the crank, the limiting angle θ of
its oscillation above and below the centre line of the pistonits oscillation above and below the centre line of the
rod produced can be determined by the equation-
whence, $\quad \begin{aligned} \tan . \theta & =\frac{1}{5}, \\ \theta & =11^{\circ} 18^{\prime} 35^{\prime \prime} .\end{aligned}$
This angle is described by the connecting rod four times during each revolution of the fly-wheel. Hence, the sum total of its angular movement will be represented by
$45^{\circ} 14^{\prime} 20^{\prime \prime}$. But during the same time the crank pin makes a complete revolution of 360 deg ., or nearly eight times the angular movement of the crosshead pin.
Therefore, if it be assumed that the pressures conveyed by Therefore, if it be assumed that the pressures conveyed by
the piston to the crank pin and crosshead bolt are approxithe piston to the crank pin and crosshead bolt are approxi-
mately equal, and that the coefficient and area of friction are the same in both cases, it follows that the wear of the If, however, the length and diameter of the crank pin be aade double the same dimensions of the crosshead pin original value, because the friction area of the crank pin is now four times that of the crosshead bolt. In other terms, the reduced wear of the crank pin will be now only twice, instead of eight times that of the considerable time this relative wear will show itself, and the cotters must be tightened up in such a way as to drive the centre points of the crank and crosshead bolt in one and the same direction, say towards the cylin necting rod will be effectively shortened by the difference in wear of the pin and bolt; or, since one has sustained double the wear of the other, by the linear wear of the ooked upon as a whole, will be displaced towards the front cylinder cover. To provide against this displacement, the journal of the driving axle should have double the friction area of the crank pin, so that keeping the same ratio of diameter to length of wearing surface for the crank pin, crosshead bolt, and axle journal, the diameters of these three parts should be in the proportion of $1: 2:: 2 \sqrt{2}$, in order that their friction areas, which are as the squares of their diameters, may be

Under these conditions the linear wear of the journal will e half that of the crank pin, or, in other terms, equal to an the crosshead, and the centre of the the course of he piston elative wear is neutralised, and the resultant displace ment of the piston course is $n u$.
The object of this minute calculation is to minimise the learance spaces, which Herr Falkenburg considers to be one of the greatest evils of working by steam in a cylinder. He holds that compression is only a partial remedy for the baneful effects of these spaces, which richly deserve the name given them in German, die schädichen Ridume. Hence, it becomes a matter of the highest interest and economy to re
But it seems to us that Herr Falkenburg has exag gerated the evil influences of the clearance spaces. By aid of the principles just explained, he says the clearances at
each end of the cylinder can be reduced in length to $\frac{\square}{200}$ th ; each end of the cylinder can be reduced in length to $\frac{1}{20}$ th and in the case of large machines, to so $\frac{\text { th }}{}$ th of the pisting
stroke. But if Herr Falkenburg and his engineering riends are in the habit of allowing such small clearance as this statement would lead us to suppose, we are no surprised to learn that the piston occasionally takes a fancy o bump up against the cylinder covers. We do not quarrel wit it puth ; it not new, but it is put into good form. Scill, ever nachine, no matt 1 if the reduced to a theoretical minimum, there can be no doubt that the greatest care and attention would fail to keep the that the greatest care and attention would fail to keep the at the end of the stroke, close up to one of the cylinder vers
Herr Falkenburg next discusses the problem of finding the proper dimensions of the steam ports. In old times German engineers prescribed that the steam port should prefers the formula $\frac{\mathrm{Oc}}{30}$; where O is the cylinder cross section, and c the mean velocity of the piston. The Hütte gives the rule, $\frac{\mathrm{Oc}}{40}$; and Professor Hràbak the formula, $\frac{c}{5 \sqrt{p}}$; where p is the absolute pressure of steam during admission. But, according to Herr Falkenburg, the formulæ just cited are not generally applicable. They take no account of the difference of the presores in the between the pressures in the cylinder and the outer air or condenser. In addition, these formule neglect the relative densities of steam. It is stated that, looking only at the volume of steam to be exhausted during a given time, an engine working at a great ratio of expansion does not require so large a port as one working with full admission. Hence, the dimensions of the port involve as functions the ing medium. Therefore, it is only when the difference of the pressure in the valve box and cylinder during admission is equal to the difference betweon that rigorously speaking, the same port can perform the double service of admission and exhaust. But, if these differences are very marked, it is necessary to use separate ports for quantity Herr Falkenburg informs us that the cross section of the exhaust port will bear a certain proportion to the cross section of the admission port, expressed by the square root of the quotient of the two differences in let the mentioned in the last paragraph. For exare in the valve box 53 pressure indicator durins Moreover, let the pressure of expanded steam at the moment of release equal $1 \frac{1}{2}$ atmospheres, then, supposing steam to be
exhausted into the open air, we shall have by the foregoing rule :-

And in the case of condensing engines:-
Exhaust port $=\sqrt{\frac{1 \frac{1}{2}-0.055}{5 \frac{3}{4}-5 \frac{1}{2}}}$. Steam port. =2. Steam port (nearly).
This rule supposes the section of the steam port to be a $\frac{\text { known quantity. }}{\frac{0}{50} \text {, where } w \text { equals the piston velocity at the point of }}$ 50 at metres second, and O the effective piston area. For all grades of expansion which lie beyond the point of maximum piston velocity the maximum value of w must be retained as a factor. It is doubtful whether this formula is elastic enough to meet all cases. It would, however, seem to give approximate results for express engines going atina at the rate due to a pis exaple, a locomotive travend Reducing feet to metres, and substituting in the given formula, we find a cross section for the steam port of $\frac{6 \cdot 7^{m}}{50} 0$; or $\cdot 134$ of the

effective piston area.

Taken as a whole, the papers of Herr. Falkenburg betray evidence of careless thought and writing. The formuly given do not always tally with ordinary practice, and the style of the author, making every allowites is heavy and laborious. But, as the special papers we have criticised form part of a work on practical mechanics, it would be unfair for our readers to form an unfavourable opinion of he rest of the work from the judgment which we are com pelled to pass upon this particular part.

ON RADIAL VALVE GEARS
 By Robert Hudson Graham, C.E.

No. II.
The Crewe gear treated by geometric method.- In the present paper, the principles expounded in the first part will be applied to a methodical construction of ocomotive by Mr. Webb, of Crewe. The usual data will be taken for granted, viz, the course of the piston, ditto of slide valve, the lap and the lead, the engths of the valve-rod, and valve link, \&c. It is a generally admitted principle in locomotive engineering that the travel of the valve in mid gear action is equal to twice the sum of the lap and lead. Now, whether we consider the excentric link or the radial slot, each is vertically placed at mid-gear, so that the part of the full gear travel of the valve depending on the inclination of link or slot is entirely eliminated in this position. From the fact of the elimination in mid gear of that part of the full gear travel depending on the inclination of the link or the slot, a useul and important principle is deduced; for if the travel in full gear be divided into two parts, one part representng the travel in mid gear action, the other expressing the difference between the travel in full, and that in mid gear,
9. From the mid vertical line $\mathrm{H}_{0} \mathrm{O}_{2}$ and along the principal centre line, set off the distance $\mathbf{X} T=3 \mathrm{ft}$. 5 in . The point T will be the centre of the crank shaft.
10. About the centre T describe a circle, representing the crank motion,
11. Divide this circle into any
qual parts, marked as in the figure.
12. From each of these divisions, as a centre with the length of the connecting rod-between centres-equal to fft. 8in. as a radius, describe arcs of circles, cutting the principal centre line in points corresponding to the position of the crosshead centre for the selected phases of the crank motion.
13. Join the division points on the crank circle with those similarly marked on principal centre line.
14. Set off from each of the divisions on the crank circle, along the line joining each division with its co-relative on the principal centre line, the distance of the point A from the crank end of the connecting rod, equal in the present instance to 3 ft . 5in. The positions of the centre A so found will mark its varying movement for the different phases of the crank motion, and the curve drawn through
hem will constitute the ellipse path of A.
15. Let the rod $\mathrm{M} N$ be supposed horizontal, and equal
from A_{2} to D_{1}, Fig. 5, and shift the lever rod from its initial position $\mathbf{E}_{2} \mathbf{A}_{2}$ to its second position $\mathbf{E}_{2} D$
21. From D_{1} set off along the rod $A_{2} N$ the correction required for the decentralisation of the slot (page 139, ante) 22. Again depress the centre $\mathrm{D}_{1} \mathrm{D}_{2}=\mathrm{H}_{1}$
22. Again depress the centre D_{2} to the position D_{3}, such 23. Apply the correction $\mathrm{D}_{2} \mathrm{D}_{3}=\mathrm{H}_{1} \mathrm{H}$
23. App od the lever rod, depressing D_{3} into the position D_{4}, so that
(see page 139, ante)
24. Move the centre D_{4} into its final position D_{5}, by the amount of decentralisation of the slot centre induced by this last change in position of the $\operatorname{rod} \mathrm{DE}$, or by the length
$\mathrm{D}_{4} \mathrm{D}_{5}=\mathrm{H}_{2,3} \mathrm{H}_{4,5}$,
the symbels $\mathrm{H}_{2,3}$ and $\mathrm{H}_{4}, 5$ implying that the position of the slot, corresponding respectively to the positions of ends of the lever rod D_{2} and D_{3}, D_{4} and D_{5}, are coincident
25. The final position of the lever rod will be $\mathrm{E}_{2} \mathrm{D}_{5}$, and the final centre of the slot H_{5}.
26. Through the centre of the slot H_{5} draw the line $\mathrm{P}_{5} \mathrm{H}_{5}$ parallel to the centre line of valve link, and equal in length to 3 ft . 9 in .
27. About P_{5}, as a centre with the length of the valve

this second part will constitute the amount of trave derived from the inclination of the link or slot. Consequently the first part must be induced by some cause independent of the inclination of the link or slot, seeing that this part of the travel exists at mid gear, when the inclination of the link or slot has ceased to exist. In the particular form of gear under consideration this mid element of travel, as it may be fittingly called, is due to the advance extent of mid gear valve motion be attentively regarded, it will be clear that the slide valve is at one extremity of its travel when the piston is at the commencement of the stroke, because at that moment the steam port must be open to the extent of the lead, which in mid gear action represents the maximum admission of steam. In like manner the slide valve will be at the other end of its mid gear travel when the piston has finished the stroke. Now, it has been proved above that the mid gear travel is derived-in Joy's gear-from the to-and fro movement of the lever-extreme E, so that during the time of the stroke the point E must have travelled over the same distance, in a horizontal sense, as the slide valve in mid gear action, from which it follows that the horizontal distance between the two positions of E, corresponding to the ends of the piston stroke, must be equal to the travel of the valve at mid gear, or, Fig. 5-

$$
\begin{aligned}
5-\mathrm{E}_{2} \mathrm{E}_{0} & =2(\text { lap }+ \text { lead }) \\
& =2(\mathrm{~L}+1) \\
& =2 \frac{3}{8} \mathrm{in} \text {. (Crewe engine) }
\end{aligned}
$$

The above determination of the horizontal distance between the relative positions of E, at the ends of the stroke, when the gear is set for the mid travel of the valve, is the foundation stone, so to speak, on which the whole construction can be built up.

Construction of the Creeve gear (Figs. 3, 4, and 5).-1. Make the continuation of the centre line of the piston-rod the horizontal centre line of the system.
2. On each side of this centre line lay off the centre lines of the valve link $S L$ and lever rod $M N$ at equal given perpendicular distances, 1 ft . 3 in . from the principal entre line OX.
3. Draw the vertical line through the edge of the slide valve in the position of lead. Make this line the base line of the system.
4. From this base line, along the centre line of valve link produced, set off a length equal to that part of the vaive link-S L-external to the edge of the valve, added to the length of the valve rod, or equal to-Fig. 5-

$$
\mathrm{SL}+\mathrm{L} \mathrm{E}_{2}=5 \mathrm{ft} .6 \mathrm{in}
$$

5. Call the end of this line E_{2}, which marks the position of the centre E when the piston is at the end of the stroke towards the crank shaft.
6. From E_{2} lay off the length $\mathrm{E}_{2} \mathrm{E}_{0}$ along the valve link centre line equal to

$$
2(\mathrm{~L}+\mathrm{l})=2 \frac{3}{8} \mathrm{in}
$$

7. Draw a mid vertical line, bisecting the line just drawn, $\mathrm{E}_{2} \mathrm{E}_{0}$, and letter this line $\mathrm{H}_{0} \mathrm{O}_{2}$.
8. The centre of the slot being symmetrically placed this line.
in this case to 3 ft .; and let the extreme N be found at the intersection of the mid vertical line $\mathrm{H}_{0} \mathrm{O}_{2}$ with the centre line of the rod M when the piston is at the end of the stroke towards the crank shaft.
9. Let A_{2} be the position of the centre A when the piston is at the same end of the stroke
10. Join the centres A_{2} and N by the line $A_{2} N$. The centre D will be found somewhere on this line
11. Join the centres A_{2} and E_{2} by the line $\mathrm{E}_{2} \mathrm{~A}_{2}$, which will cut the mid vertical line $\mathrm{H}_{0} \mathrm{O}_{2}$ in a point H_{0}^{2}, repre in its initial centre A_{2}.
rod $=3 \mathrm{ft} .9 \mathrm{in}$. as a radius, describe the circular arc $h_{5} \mathrm{H}_{5} h^{5}$; this will be the central curve of the slot 28. About the centre of the slot \mathbf{H}_{5}, with a radius equal to $A_{1} X$, or half the minor axis of the ellipse path of A, describe a circle, cutting the central curve of the slot in the points $h_{5} h^{5}$. These points mark the ends of travel The construction of radial slot.
The construction of the gear may be now considered implicitly complete, although the angle through which the full gear working, has not been calculated. This angle termed the "angle of cant," will be now determined, termed certain elements of the Crewe gear will be further

12. But, as we have shown earlier in these pages, the point of attachment of the lever rod D E must be depressed along the $\operatorname{rod} \mathrm{A}_{2} \mathrm{~N}$ by an amount equal to

$$
A_{2} D_{1}=\frac{A_{2} H_{0} \text { vers }}{\cos \theta_{2}}
$$

see Fig. 5, in which these quantities are indicated)

$$
=\frac{18.125 \mathrm{in} . \times \operatorname{vers} 41^{\frac{1}{2}}}{\cos \theta}
$$

since by the virtual circles-Fig. 3 and Fig. 5-

$$
\begin{gathered}
\mathrm{A}_{2} \mathrm{H}_{0}=18 \frac{1}{\mathrm{l}} \mathrm{in} . \\
\phi=41 \frac{10}{2}^{\circ} .
\end{gathered}
$$

Wherefore the angle θ_{2} being equal in this instance to nearly $2 \frac{1}{2}$ deg.,

$$
\begin{aligned}
\mathrm{A}_{2} \mathrm{D}_{1} & =\frac{18.125 \mathrm{in} . \times \text { vers } 41 \frac{1}{2}{ }^{\circ}}{\cos \theta_{2}} \\
& =\frac{18.125 \times{ }^{\circ} 252}{\cos 2 \frac{1}{2}^{\circ}} \\
& =4 \frac{5}{8} \mathrm{in}, \text { approximately. }
\end{aligned}
$$

20. Lay off the value found for $\mathrm{A}_{2} \mathrm{D}$ in the last article
discussed, with special reference to their functions and the final object of their existence in the gear. In the next paper other forms of Joy's excellent gear will first principles which underlie the gear, the construction of which has just been given.
The angle of cant.-The angle, through which the radial slot or, as the case may be, the radial lever rod, must be turned, to change it from its mid gear or vertical position to its full gear or inclined position, is termed in these papers the angle of cant. This angle will be seen to depend upon the difference between the travel of the valve in full gear and its reduced travel, corresponding to mid gear action.
Let, $\quad T=$ full gear travel of the valve

$$
\begin{aligned}
\mathbf{L} & =\text { the lap } \\
l & =\text { the lead. }
\end{aligned}
$$

Then, if the difference above mentioned be represented by $\mathrm{D}, \quad \mathrm{D}=\mathrm{T}-2(\mathrm{~L}+l)$

In order graphically to construct this forward position of the slot, it will be necessary to develope a few simple
geometrical considerations. Taking the Crewe gear-Fig 6 geometrical considerations. Laking the Crewe gear-Fig. 6
-in its mid gear position, $\mathrm{LE} \mathrm{H}_{5} \mathrm{D} \mathrm{A}$, corresponding to the valve in the position of lead - see Fig. 5 -it will be seen that, in order to work the engine in full gear, a further opening of the steam port to the extent of $\frac{D}{2}$ or $\frac{13}{1} \frac{3}{6}$ n. must be effected by means of an equal increment of travel given to the slide valve; or, if L-Fig. 6-be the position of the end of the valve link, when the steam port is
uncovered to the extent of the lead, L must suffer a further horizontal displacement, $L L_{1}$ equal to $\frac{13}{1} \frac{3}{6}$., in order that the steam port may be fully opened for full gear action. Let us suppose that the steam port be opened
by the action of the valve to its maximum extent, whilst by the action of the valve to its maximum extent, whilst
the engine is going forward and the piston is on its stroke the engine is going forward and the piston is on its stroke
from the crank shaft. The end L of the valve link would from the crank shaft. The end L_{1} of the valve link would
then be situate at L_{1}, where $\mathrm{L} \mathrm{L}_{1}$ is equal to $\frac{1}{1} \frac{3}{16}$ in. Conseguently, if a circle be described about the centre L_{1}, with the length of the valve rod L E as a radius, the other end E_{1} of the valve rod must be situated on this circle. At the same time, since the valve has to travel a distance equal to $L L_{\text {, forward and back again to lead, whilst the point }}^{A}$ is in motion from one extreme A_{0} to the other A_{0} of the major axis of its ellipse path, it follows that when the major axis of its ellipse path, it follows that when the
valve has moved forward by the amount $L L_{1}$, the centre A will occupy a position midway between A_{9} and A_{0}, or in other terms, A will be placed somewhere in the vicinity of the end of the minor axis of its path. Let A_{1}, be the position of A corresponding to that L_{1} of L; and let D_{1} be
the relative position of D. If about the centre D_{1} an arc of a circle be described with a radius equal to the length
of the lever rod D E, the other extreme E , of the lever of the lever rod D E, the other extreme E_{1} of the lever
rod must be found on this arc. But it has been previously rod must be found on this arc.
shown that \mathbf{E}_{1} is also found on the circle already described about the centre L_{1}; therefore the position
of E_{1} is defined by the point of intersection of these two circular arcs. Join the determined points D_{1} and
 revolve about the centre H_{5}, which is supposed immovable, the are described by its upper extreme h_{5}-Fig. 6 -will fulcrum H for all positions of the radial slot. Consequently since H is granted to be at the end of its travel in the slot, when A is at the end A_{1} of the minor axis of its
ellipse path, the position of H corresponding to A_{1} and E_{1} will be found somewhere on the arc $h_{5} h_{1} 1_{5}$-Fig. ${ }^{6}$. Moreover, it has been previously shown that H must be
somewhere on the line $D_{1} E_{1}$; therefore it will be at the point of intersection $h^{1}{ }_{s}$ of the line $\mathrm{D}_{1} \mathrm{E}_{1}$, and the circular are $h_{5} h^{\prime}{ }_{5}$. If, therefore, with the length of the valve rod as radius, an are of a circle be described, passing
through the points h^{1} and H, this arc $h^{1} H, h^{5}$ will form the central curve of the slot for full forward gear, and the angle through which the slot must turn, to change
from mid to full gear action, will be measured by $\mathrm{P}_{5} \mathrm{H}_{5} \mathrm{P}^{5}$ -Fig. 6. The above method is very nearly geometrically exact. It is, however, subject to certain imperfections.
For example, owing to the different inclinations to the vertical of the rod $\AA \mathrm{N}$, when A is passing the ends A , and A_{3} of its ellipse path, the steam port will be opened a little more on the stroke towards than from the crank shaft; and in general the events taking place on the
stroke towards the crank shaft would be somewhat stroke towards the crank shaft would be somewhat accelerated relatively to the times of the same events on
the stroke from the same centre of reference. On these accounts the angle of cant as found by the above method would ke subject a a slight correction, if it were desirable to secure a mathematically equal port; but in
general the induced error is so very small and unimportant that it is permissible to pass it over.
Discussion of certain elements of the Crewe gear.-The elemental centres E and A , being those first determined in
the Crewe gear, may be called the primary centres, and the centres H and D, being derived from these primary centres, may be fitly named the secondary centres of motion. The centre M , being only an external point of support, and not intimately connected with the radial system, does not admit of strict geometrical determination, neither is there any it will be observed that the most symmetrical position for the $\operatorname{od} \mathrm{M} N$ is horizontal, whilst the natural place for the poin N is on the mid vertical line-Fig. 5 . With regard to the length of the rod M N, there arise certain questions of an economical nature, which it may be well to mention. For example, if the point M were too distant from the centre of the radial system, an undue increase of length would beedom to the rod MN, which, endowing it wremour and nervous pulsation at high speeds; whereas, again, if M N were cut too short, the arc of its oscillation would be unduly increased, and the inclination of the rod AN to axis of its ellipse path, would be vastly more accentuated than when passing its higher extreme.
Functions of the element AD.-The element A D has for its sole object and cause of existence the versina correction of the unequal vibration of the fulcrum-centre
H in its motion through the radial slot. This fact is worthy of mention, because A D is liable, from its position in the gear, to be turned to a very illegal and abnormal use as an instrument to vary the lead. For example (Fig. 6),
the centre H_{5} may be approximately found by mental trial and failure, and then by moving the centre D nearer to or farther from the centre N , the amount of lead ment will be confirmed by an inspection of the fisure by moving D mearer to the point N whilst the centre H yy moving D nearer to the point whilst the centre H_{s} laterally nearer to the mid vertical line $\mathrm{H}_{1} \mathrm{O}_{2}$, and in consequence, the line $\mathrm{E}_{2} \mathrm{E}_{\text {, }}$ representing the mid gear drave, will be shortened, which will effect a proportionate is to take a most unlawful and unwarrantable liberty, and
which-it is unnecessary to repeat it-are entirely comprised in the correction of the error induced by the unequal vibration of the fulcrum H. According to the methods employed in these papers, the variation of the lead is provided for prior to the determination of the element
A D, and therefore, any subsequent handling of this element with a view to a change of lead is not only wrong in itself, but introduces an error into the vibration of the fulcrum H in the radial slot. It is nothing to the purpose to answer that this effect does not occur in the act of shay ting the centre D nearer to or farther from the point N, because whilst the centre D is being chus varied in position, the DO DE is similarly varied in length, on accou entre H_{b}, slot remaining fixed. But the influence during the action of the gear, and more especially at mid stroke, when the centre D having been brought to an abnormally high or low level, will lift up or drag down with it the fulcrum centre H. This error may be compensated for by some other modification in the gear ; but tion depends on principles fundamentally wrong.
The element $H E$.-The element H E may vary in two ways and under two conditions. First, HE may vary maining fixed. This may be done by cansing E_{5}, re maining fixed. This may be done by causing
D to glide along the lines $\mathrm{E}_{2} \mathrm{E}_{\mathrm{o}}$ and A and N repectively ; whilst the rod $\mathrm{E}_{2} \mathrm{D}$ may vary in length, slot. Secondly, H E may vary with the centre of the slot; or rather the centre of the slot may be made to depend on he amount of lap and required and represented in Fig. 6 by the element $\mathrm{E}_{2} \mathrm{Y}$. The first method of variation applied to the element $H E$ is comprised in the principle already explained and condemned, that the lead can be varied by varying AD; or, in other terms, by changing the position of D along the rod A N. The arguments condemnatory of this unlawful practice need not be repeated. The second method contains the statean t is mas the position of the he wo quantitios :- (1) Upon the amount of lap and lead required to be given to the valve, and represented in Fig. 6 by the length $E_{2} Y$. (2) Upon the final position ap, of rod AN, as geometrically determined the lot-centre has been determined for any particular lap and ead, and any geometrically defined position of D, it is absolutely illegal to tamper with the rod DE in order to
vary the lead of the slide valve. It would be equally lle ${ }^{\text {itima }}$ teau a to feel for the correct position of the slot-centre correspond pricular lap and lead, by means of shifting the end D of the lever rod up and down the rod $A N$.

The Huddersfield Fine Art and Industrial Exibition promises to e very successful, and especially so in the machinery department. The applications for space have been so numerous and important
that the committee have been compelled to provide more shed
THE ISTHMUS OF CORINTH CANAL-The Athens correspondent in progress for cutting a canal through th
 of rather less than a million sterling. The total length of the
canal will be just under four miles, and it will be quite straight and of the same dimensions as the Suez Canal-that is to say, 72 ft .
broad and 26 ft . deep throughout. The correspondent of the Temp says that the work of cutting through the rocks, which will form a natural wall upon both sides, has not so far given rise to any difficulties, and that the quantity of rock and earth to be removed will
be about $11,000,000$ cubic yards. It has already been mentioned that this canal will shorten by 185 miles the passage from the while from the Mediterranean ports and Gibraltar the difference will be about 95 miles, thus effecting a great saving in time
nid coal, to say nothing of avoiding the dangerous coast around and coal,
Cape Ma,
of men."
Llverpooo Lnginkering Society. The fifth meeting of the ession was held on Wednesday, the 14th of March, at the Royal
nstitution, Colquit-street, Mr.' H. Bramall in the chair, when paper, entitled "Wire-rope Traction on Tramways, as Practised in
American Cities," was read by Mr. C. F. Findlay, M.A., Assoc M. Inst. C.E. The author pointed out the reason why stationary way purposes in favour of locomotives, and described the onditions
under which alone the stationary system could successfully compete, the advantage in economy whichresulted when the stationar system could be adopted, the difficulties in the way of its adoption,
and how these difficulties had been met first in San Francisco, and hen in Chicago, and other cities. The grip used on the Clay-street
Hill-road, the first of the kind constructed in 1873, was described and a model of it exhibited. The author then went on to give a detailed account of the latest and more extensive appplication on
the system to the tramway lines of the Chicago City Roads Com. he system to the tramway lines orter is complete will embrace
pany, which whe the whole system
hearly fifty miles ten long endless cables. Various plans of the works were shown, and the result of the experience of the system, so far twenty miles of
cable being now at work, were described as being entirely satisfac tory, and surpassing the expectations of its promoters; burning
630 bb. of coal per hour, they were doing work which would require 600 horses to be kept. The engine indicated 115 -horse power when moving the cables of one street $4 \frac{1}{2}$ miles in length at the busiest part of the day, there being 43 trains of two cars each on the
cables, and 1900 passengers-estimated- -on board. The line conwas the Union Passenger Road Company, in Philadelphia was described, and also the grip used on the rope tramway or rail-
way over the East River Bridge, from NNew York to Brooklyn. Plans were also shown of the Highgate-hill tramway, now bein built in London from the designs of Mr. James Cleminson,
M. Inst. C.E. A visit of this Society was made to Mr. C. Wells quarry, Bootle, on Friday afternoon, 2nd of March, on the invita
tion of Mr. Mrunton, to osee his "heding machine for tunnels" at
work. The machine itself was entirely in the heading, so that only a few could get in at a time to see it at work. It is of a somean angle and revolving or rolling on the face of the rock in two groups of six working in sets of three alternately, a revolving
motion being also given to the two groups of cutters which are
fied to a cross-head revolved at its centre. It is caphb ef

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM,
OTHER DISTRICTS.

(From our ovon Correspondent.)

Those mills and forges which did not intend to remain idle all ight. But, through lack of demand, the number of places where he whole week will be an idle one is unusually large.
Pending the
Pending the quarterly meetings nat are fixed for April 11th in Wverhampton, and apris finished iron to give out are enerally have orders of much size for finished iron to give out are generally
holding off. It is scarcely likely, however, that there will be any alteration in crucial prices.
Messrs. William Milling
orks, Tipton, quote bars on and Co., of the Summerhill Iron-
 sutter bar iron, $£ 7$ 10s., small ditto
$£ 91$
$£ 13$
$£ 13$ bes
bes
1

 treble best, $£ 12$ 10s. Trable best "L. M." plates are £15 10 s . heets are £9 10s. to $£ 10$ 10s., according to quality.
The bar pries of Messrs. E. T. Wright and Son, of the Monmoor
Works, Wolverhampton, are: :" "M Monmoor" crown, $\frac{1}{2}$ in. to in, Works, Wolverhampton, are :- Monmoor crown, $\frac{1}{2 i n .}$. to 3 in. double best $£ 10$ Anmoor best rivet iron united inches is $£ 9$, and best, \&8 15s.; and double best, $£ 915 . \quad$ T bars ranged from $£ 85 \mathrm{~s}$. qualities of th
ave price
Ordinary Ordinary hoop and bar makers report this week a steady
business not on home account alone, but likewise for O Oporto, Australia, the Cape, India, and other export markets. $£ 6$ 10s. to
$£ 612 \mathrm{~s} .6 \mathrm{~d}$. is quoted for hoops, and $£ 6$ upwards for common bars. Sheet makers who supply the galvanisers still complain of a
want of orders, and prices are easier at $£ 7$ 1文s., and on for singles." Thin sheets are in inquiry on United States account, but the terms are not such as makers care much about.
The mail from Melbourne brings news of a fair inquiry for iron. alvanised ron has been moving freely at from $£ 20$ to $£ 2110 \mathrm{~s}$, $£ 205 \mathrm{~s}$. to $£ 2010 \mathrm{~s}$. A fair parcel of Redcliffe has been disposed of at a full price, while for a shipment of Orb $£ 22$ was obtained. Ba tod ion. Black sheets have been moving quietly . fr $£ 8$. 18 , $£ 1010 \mathrm{~s}$. has been paid; and for Nos. 20 to $26, £ 13$. Plates worth £10.
The pig market keeps firm, notwithstanding the easier prices for
finished iron. The selling price of Derbyshires is this week about 48s. 9 d ., though 50 s . is quoted. Northamptons are quoted 47 s . 6 d . brand 50 s. is asked but it annot be go
 Messrs. T. .and I. Bradley Bres., of the Copperfield furnaces,
Bilston, have just rented the Darlaston Coal and Iron Co.'s Nos. 2 ailston, have just rented the Darlaston coal and iron o.il 3 furnaces. The plant is now being repaired, and will be set and on common iron.
The blast furnace operatives are accepting their o per cent. drop in wages with the best grace possible.
Next week the finished in
tion of 6 d . per ton in puddlers' and 5 per begin work at a reduc igation under the new sliding scale of the book rice obtained for bars bar firms has shown that the average seling 1ast, was only $£ 6$ 19s. $6 \cdot 79 \mathrm{~g}$. per ton. Puddlers' wages now
become 7 s . 9 d . and millmen's wages in proportion. This wage will ontinue until the 30th of June next.
Steelmaking by the basic process continues at the works at
Wednesbury of the P Wed the method is proving very successfulu, but the directors have The unequal working of the new American procifs.
The unequal working of the new American tariff appears in the concern for the making of shingles of stamped sheet iron. Under
he late tariff it paid it to remove its machinery to this side and having made the shingles of British iron, import them into menica, as well as export them to entral America, New Zealand and other markets. Under the new tariff it will be to its advan
tage to remove back to the United States such machines as are needed to manufacture the shingles demanded in that country,
By the 1st of July the company will have its machinery fixed ap and running in the States again. The Central American an ther customers will still be supplied from Wolverhampton
igour amongst the japanners, and the falling away of the trade of the galvanisers, is making against them, and they are eagerly looking after any new business.
ooks shows that the average of the Cannock Chase coalmasters wes 2.92 d The masters now claim reduc tion in wages, but the men maintain that under the sliding scale no made 1 the props to be tio Wales, South Yorkshire, and the North of England.
At a meetiny of the Iron Trade Wages Board in Birmingham this afternoon, resolutions were passed carrying out the proposal)
o increase the contributions of the Board from 3d. to 6d. per man per quarter, and to increase by one--half the salaries of the opera ives and employers' secretaries. The chairman said the expenses
of the Staffordshire Board were e less than one-half those of did not subscribe. It was urged that all masters who bene-
fitted by the Board's decision ought to subscribe, and the hope was expressed that they would.

NOTES FROM LANCASHIRE.

Manchester:-The past week has been so much of a holiday coracter that it is difficult to form any accurate estimate as to the een stopped for about three days, and business more or less inter in interting apart from any elfory transactions may have hal dull, and so far as pig iron is concerned, there are, scarcely any of
the large buyers at present in the market. The contracts recently entered into appear for the most part. to have covered current equirements, and as values show no upward tendency, there is no

ad to be sought, it is doubtful whether present could be

fully, maintained; but as makers are not pressing sales, prices
remain unchanged. In the finished iron trade buyers show no
anxiety to place out orders even at the present comparatively low two inches an
in Australia.

The Manchester market on Tuesday was characterised by the
usual slow resumption of business after the holidays. There was ussa siow an average attendance, and little or no in inuiry of any
less than and
description.
For Lancashire pig iron makers were stil quoting 47 s . 6 d . to 48 s. less 2 for forge and foundry qualities delivered
equal to Manchester, but as they are undersold by some district brands by quite 2. p. per ton, they are practicallly out of the
market. Local makers are, howeve, so fully sold over the next three months, and the whole of their output is at present going
away in deliveries against contracts, that they are indifferent effect sales at their list rates, show no disposition to give way. For Lincolnshire brands quotations remain at $45 s$. 4 d . for forge, to
46 s . 10 d . for foundry, less $2 \frac{1}{\text { d }}$ delivered equal to Manchester 46s. 10d. for foundry, less $2 \frac{1}{2}$ delivered equal ${ }^{\text {and }}$. Manchester; but plaints are made that customers are not taking their deliveries of iron already bought. Derbsshire brands vary so much in price according as makers are well sold. But quotations are of Pittle
practical value ; $48 s$. to 50 s., less $2 \frac{2}{2}$, appear to be about average igures for delivery
For finished iron tory this district.
For finished iron very few orders have been given out, either for
hipment or home requirements. Some of the South Staffordshire makers show a firmer tone, and for bars delivered into the Manchester district ask about $£ 67 \mathrm{~s}$. 6 d. per ton, but local makers are
still open to book orders at $£ 6$. 5 s , and in a few exceptional case there are oodd sellers to be found at $£ 62 \mathrm{~s}$. 6 d . per ton. Staffordshire under the operation of the sliding scale, thare will be a reduction of about 5 per cent. in the rate of wages paid a the Lancashire forges, which will come into operation with the
commencement of next month. Some timent I briefly refe
Some time back I brieffl referred in my "notes" to a couple of
exceptionally large gun-boring machines which are being made for
the Government by Messrs. Craven Brothers, of Manchester these machines are now in a fairly advanced state, a few additional
then particulars will be of interest. The main beds, which are com pleted, weigh in each case 76 tons, and the main driving head
stocks, which are 6 ft . high from the face of the beds to the centres, and are in a forward state, weigh, with the spindles and 11 ft . face plate, 28 tons each; the steady rests for carrying the guns weigh 12 , long, weigh 16 tons each. The total weight of the machines when 6ft. 6 in. diameter and 50 ft . long, and the main headstock i
driven by a worm wheel 8 ft . diameter and 4in. pitch. The motion is the same as in two similar though lighter machines made for
the Government by Messrs. Craven several years back and it given results so satisfactory that it has induced the Government to advantage in this means of driving, and es machines. One grea machines to which it it is being applied, is that there is none of the back-lash which would be
the same amount of power.
It will probably
It will probachy be remembered that the last great colliers sthat has ever taken place in the coal trade of this district
that
originated primarily on the unestion whether the men should con originated primarily on the question whether the men should con-
tract themselves out of the Employers' Liability Act through the medium of the Lancashire and Chefl in carrying their point, but
Society although, the coalowners abandoned any attempt at insisting upon
the miners contracting out of the Act, the suggestion that in case of accident they should obtain relief through the Society and no under the provisions of the Employers 'iability
practically carried into effect, and the Society now numbers up
now wards of 34,000 members. It Seems, however, very doubtful
whether the Lancashire and Cheshire Society, which has been th pioneer of other similar organisations in the leading coal mining
districts, has not been started on too liberal a basis of allowanc districts, , has
for relief in proportion to to the subscriptions it receives from the coliery proprietors and the men. A report presented at the annua finanicial prospect, Mr. Neison estimates the prosent liabilities, as represented by the value of the allowances to widows, children,
and disabled members, at $\& 58,733$, whilst the total accumu
 of weakness has been the large drain upon the income of the
Socoity to meet claims for temporary disablement, and this
is se is so abnormally large as to suggest that undue advantage and low
taken of this class of benefit. In times of bad trade and low selves of any colourable pretext for going on the funds, but seeing that the large expenditure for temporary disabiementis tureatenin the very existence of the society, it is incumbent on those who
have the management to see that this sisk is removed. It would liabilities should be the means of triking a fatal blow at a syste of relief which has already proved of so inestimable a benefit in
connection with a branch of industry so peculiarly liable to accident connection with a aranch of industry so p p
and unforeseen disaster as coal mining.
The coal trade throughout the district maintains a generally steady tone, and the month closes without any indication of a
giving way in prices. The continued cold weather keeps up an
active dem active demand for house-fire coals, and other classes of fuel for iron making, steam, and general trade purposes, move off without
difficulty. As regards slack there is quite a pressure for supplies, and for the better qualities slightly advanced prices are in many cases being obtained qualities slightliy advanced priceses are in many
cone output of the pits sis all going
away, and the holiday stoppages during the week have away, and the holiday stoppages during the week have
necestited some filling up out of stoks to meet requirements,
At the pit mouth prices average about as under:- Clest coals
9s. 6d to

 best qualities fetching 4s. 6d. per ton.
The shipping trade has been
is serios There is a continued scarcity but apart from this orders have not been at all plentiful, and there
is a good deal of coal lying at the ports. Somewhat low prices are ruling, and Lancashire steam coal deliverel at the high level, Liverpool, or the Garston Dooks can be bought at about 7s. 6d. per
ton, or delivered alongside at Liverpool on boats at about 8s. 6 d . ton, or de
per ton.
Barrov.-The hematite pig iron market is still flat, and gives very silght evidence of any immediate animation. Sales are few, butt
as stel makers are largely sold forward, it is likely that some fair parcels of pig iron will be sold in order to enable steel producers to meet their engagements. Deliveries by sea and rail have decreased
considerably within the past few weeks. Te shipping season is, of course, closed at present, but in a short time the shipments of of
metal, especilly rails, will be heavy. There is no diminution in the output, nor any signs of a decrease. Pries of pig iran are
uncohanged, althought there is a slight incease in cheaper samples.
No. 1 Bessemer is quoted at 53 s .; No. 2, 52s.; and No. 3 , 51 s . net at works
Iron shipbuilders are likely to be fairly well employed in a short
Tron shipbuilders are likely to be fairly well employed in a short
time, as it is said a few good orders have been secured, and in-
quiries are being made. . Iron ore is in fair request, but owing to quiries are being made. Iron ore is in fair request, but owing to
heayy stocks at the mennes, there is not much activity. The coal
and coke trades are well employed.

THE SHEFFIELD DISTRICT (From Our Own Correspondent.)

Ths has been a week of holiday making, and no change of con.
sequence is to be noted in the position of the heavy trades. The sequence is
miners have devoted most of their leisure to addressing meetings
in various parts of the South and West Yorkshire and the North

Derbyshire districts, counselling the men to join the Yorkssire
Miners Association, with the view of securing the restriction of the output. Mr. Benjamin Pickard, addressing the miners employed at Car House Colliery-Messrs. John Brown and Co., Limited
advocated a policy of restriction. He asked, if because one mprket at a lower price than at other pits, were the men to help him "to ruin the trade." Manvers Main, and Denaby Main, and
other "mains" which he could mention were doing this, "and it simply meant selling or giving away the coal in order that the pit have been made in nearly all the South and West Yorkshire colliery districts during the holidays; but in Derbyshire there have output of coal. At a miners' meeting, held at New Whittington, restriction was held to be impracticable.
The price of house coal continues firm owing to the spell of cold
weather, and the demand for the London market as well as for the eastern counties continues to improve.
In the file trade arranyements have
the strike being of short duration. Messrs. Spencer Brothers t Pea Croft, have arranged for their men to continue working at ful statement prices. Messrs. Shear and Jackson are ello continuing at the same rates, though their men are not formally engaged on
these terms, and are liable to notice at any time. The file trade is not so profitable as it has been, but the men urge that is largely owing to firms "giving away"
orders in the heavier branche
The report of Mr. A. Morley, M.P., upon the Clay-cross explosion in November last, by which forty-ive wes were
received. Mr. Morley finds that has been signs as would have enabled even the most perfect management to have averted the disaster. The manager of the colliery believes
he explosion originated in a locality where there is no possible eceptacle in which a gradual storage of gas could collect. Mr ,
Morley goes on to say: "If, however, the theory that the firs explosion took place in No. 1 flat and the others were consequen upon it is the true one, it becomes important to see that every
precaution was taken which might have led to the detection of an accumulation of gas, supposing such to have existed previous to
the ignition." $\begin{aligned} & \text { With reference to this point he thought the }\end{aligned}$ the ignition. examination of the working places should be made as late a possible erevious to the men going to work early in the morning.
Messs. Charles Cammell and Co.s annual meeting took place on Wednesday, and Messrs. Wm. Jessop and Sons' on Thursday
At the former, Mr. George Wilson, the chairman, made the nteresting statement that our ordnance authorities had at length decided to make the guns wholly of steel, and not of coiled wrought
iron, as heretofore : and he also expressed his firm conviction that iron, as heretofore ; and he also expressed his firm conviction that
the result of the trials of armour-plates on the Continent would be the adoption by every European Power of the Sheffiel Dronfield Steel Works and the Derwent Company's blast furnaces, now being amalgamated at Workington for the steel rail trade,
received the emphatic endorsement of the shareholders ; and Mr H. Munster, a director and large en hareholeder, who had taken up an re-elected a director. Mr. Munster has announced his intention o applying for an injunction to prevent the directors paying the
dividend of $£ \&$ per share recommended in the report.

THE NORTH OF ENGLAND.

(From our oven Correspondent.)

Owing to the holidays the attendance at the Cleveland iron market, held at Middlesbrough on Tuesday last, was exceedingly
small, and little business of any kind was transacted. The tone of the market was, however, more cheerful than it has been for the
last two or three weeks, as the shipments for this month are very good, and there is every prospect that they will be better in Aprii
Some few sales of No. 3 g.m.b. were made by merchants at 40s. 3 . per ton f.o.b. for prompt delivery. Some of the makers were
willing to take 40 s. $6 d$, per ton for No. 3 , but the majority quoted 41s. and 41s, 6 d, , and were no disposed to to take less. Warrants
were but little pressed upon the market. Holders asked, and in f.o.b. took place in Connal's No. 3 warrants.

The stock of Cleveland iron in Messrs. Connal's Middlesbrough
store on Monday night was 82,646 tons, being exactly the same as store on Monday night
on the previous Monday.
have been satisfactory this month spite of the stormy weather. Up to Monday night 57,340 tons
pig iron and 22,144 tons of manufactured iron and steel had le
In the firt.
In the
In the finished iron trade quietness prevails, most makers having advanced rates are therefore being fully maintained. Ship. plates
ade are quoted at $£ 65 \mathrm{~s}$. to $£ 610 \mathrm{~s}$. per ton; angles for shipbuilding,
$£ 510 \mathrm{~s}$. to $£ 515 \mathrm{~s}$, and common bars, $£ 515 \mathrm{~s}$. to $£ 517 \mathrm{~s}$. 6 d . fo.t. at works ; cash 10 th, less $2 \frac{1}{3}$ per cent. Puddled bars are still
E3 15s. per ton net at makers' works. Most of the manufactured ronworks were closed on Easter Monday and Tuesday, on Thursday, the 22nd inst., to consider the question of restrinam he output of coal throughout the county of Durham. After lebating the subject for some hours, and no definite resolution
having been come to, the meeting was adjourned until March 31st Ure Bishop Auckand Local Board have decided not to press Ironworks Company The case, therefore, will not again be gone
into in court. Considering the works have now ben closed some weeks, and the staff of foremen and workmen disbanded, this
decision is almost amusing. It brings to mind the locked stable door with the horse at large. Te-side Iron and Engine Work
The annual report of the Company, Limited, has been issued. It shows that during the
past year the profit made was $£ 13,24314 \mathrm{~s}$. 7 d . Adding an amount rrought forward from the previous years the total is $£ 13,2664 \mathrm{~s} .7 \mathrm{~d}$ must first be writen off, leaving £77366 Os, 9d. to be deall with. Arears of interest due to preferenee shareholders up to June 30th,
1881, will absorb ¢6630 2s.,. leaving £745 18s. 9d. to be carried forward. The blast turnaces have worked well during the year,
but owing to the restrictive arrangements they have not produced the full quantity of piririven they are capable of making. Prices for pig iron were fairly remunerative until near the end of the
year, but at present very little profit is being made from smelting
pig iron. The engineering pig iron. The engineering and foundry department has not been
fully at work, as sufficient orders were not obtainable at paying be kept going except at a loss.
The first reference under the new Board of Arbitration rules will take place on Saturday next at Darlington. Mr. David Dale, the
chosen referee to the Standing Committee, will then hear a chosen referee to the Standing Committee, will then hear a case
between the heaters employed by the Walker Iron and Steel Com pany and that company. The question has already been discussed
at the Standing Committee, and it was found impossible to decide it, as all the employers voted one way and all the operatives the
other. There is no doubt but that Mr. Dale will very quickly settle the matter.

NOTES FROM SCOTLAND.
(From our oven Correspondent.)
THE iron market was closed from Thursday till Tuesday account of the holidays, and so far the present week has likewise
been a quiet one in the trade, although the tone of business is
rather more cheerful than it was a week ago. The past week's
shipments of Scotch pigs turned out very well, and the inproved erports Irom Coeveland have allo exerted a ravourabe is hoped that presently our merchants will enjoy a bette tun of business with the Continent, and that the Canadian trade,
which has just commenced, may prove satisfactory. The reduction n stocks in the warrant stores continues, and amounted in the pas veek to 2200 tons, the aggregate stocks now amounting to about
585,000 tons, or 41,000 tons less than at the same date last year, nce last week two furnaces producing hematite, one a crovan 111 in operation comparee with 107 in the last week of March,
1882 . The demand for hematite here is again rather limited, and
and the prices range from 51s. 6d. to 53 s s. for No. 1, 2, and 3 Bessemer,
o.b. at Cumberland ports. Makers of Scotch pig find business at home steady, with very little alteration in values.
When the warrant market re-opened on Tuesday forenoon after the holidays, business was done at 47 s .6 d . to 47 s . 7 Ind. cash,
also 47 s . $8 \frac{1}{2} \mathrm{~d}$. to 47 s . 9 d d. one month. The markct was ide in the
 78. 7. cash. Business was done on wenesday from 47 s.
78.
42. Business down to 47s. 1 Thd d. cash and 47s. 3ys. one month.
The quotations of the principl makers brands, which show little
 61s. 6d. and 54s.; Calder, 62s. 6d. and 53s.; Carnbroe, 56s. and
 specially selected, 58s. 6d.-and 48s. 6d.; Kinneil, at Bo'ness,
48 s . 6 d and 47 s . 6d.; Glengarnocks. A Adrossan, 55 s . 6d. and
 In the malleable iron department, the works are being kept well employed, although it is admitted that fresh orders are not coming
to hand quite so freely as could be desired. Prices are withou nating to a want of vessels, resulting from stormy weather, the
Owhe shipping trade in coals at some of the west coast ports was begin
ning to suffer but ships are now coming freely into harbour, shippers are likely to be very busy working up arrears. Complaints are again made of a short supply of rail way wagons, by which the
coal trade is so frequently hampered ; and it is reported that some coalmasters are about to provide trucks for their own use. The the very cold weather which now prevails. In prices there is no much change. There e has been rather more doing in the shipment
mole
ond he mining trade of the Lothians. The sporm of the previous week arving detained steamers, a arger number than usual arrived a
the same time for cargo; and hence the activity which has pre vailed. Prices at that port are without change, but freights ar somewhat firmer. Upwards of 2000 tons of coals were shipped at
Boness, which is a very quantity despatched from Grangemouth was 2586 tons.
The whole of the eastern mining counties is at present agitated The whie of the eastern mining counties is at present agitate is not the place to determine, ,utit it is certain that the miners entertain a very strong impression that in the reductions lately
made in their wages they have not been well treated by their made in their wage gen allege that since they obtained a rise of
employers. The met
wise in per ton, and that, therefore, it is unfair to reduce their pay. In
Mid and East Lothian, where the reduction of wages amounts to 10 per strike for nearly a fortnight, and some of the larger collieries are
practically idle in consequence. The miners of Fife and Clackmannan resolved at a meeting held at Dunfermline on Monday, to forcing the employers to withdraw the reduction. They agreed to commence the restriction in fourteen days.
Mr. James Gale, C.E., superintendent Mr. James Gale, C.E., superintendent engineer of the Glasgow
Corporation Waterworks, has read an interesting paper on the Loch Katrine Waterworks, from which the city of Glasgow is supplied,
at a meeting of the local Institution of Engineers and Shipbuilders, Mr. James Reid, of the Hyde Park Locomotive Works, in th chair. The various additions made to the works from time to time
were described, together with the extensions now in progress. Mr . Gale stated that the piping now in use in connection with the
works was 360 miles in length, and that the outlay upon the works works was 360 miles
had been $£ 1,451,000$.

WALES AND ADJOINING COUNTIES

The impression that the Valley of Aberdare is nearly worked out asely in the action of the Powell Duffryn Company which has 5 expected that nearly 500 acres of the best four-feet will be won There is no o uestion but that a large cutting has been made into the stores of the best Aberdare coals, but it will be a long time
before they are worked out. The Dare line is now one of the prince
valley is one of the best new coal takings in the county, the coal won there being second to none.
The coal trade is in excellent condition, but the holidays and adverse east winds have affected the output this week, though as regards prices and orders in hand there is no cause for complaint.
It is true that coalowners would like to see coal run up a shilling in quotations, a possibility, considering the great competition
existing, which is rather remote. The statistics of output for rest year are of the most satisfactory
kind, and if the present year sees that maintained there will kind, and if the present year sees that maintained there will be
little cause for complaint, though coalowners, I may add, are calculating upon a progressive increase for the next five years. In
clamorganshire the output of the year was $16,399,263$ tons; in Carmarthenshire the output of the year was 48,796 tons; Pembrekshire, 71,615 ; and
Breconshire, 143,753 . Acidents
Phow an increase of thirty-two Breconshire, 143,753. Accidents show an increase of thirty-two
fatalities compared with 1881 The number of colliers employed
in Glamoryan is 53,845 ; Pembrokeshire, 59 ; Parmathenshre, 2123 ; and Breconshire, 622 . The difference between the number
of coliers in North and South Wales is enormous. The total in North Wales during 1882 amounted to a little over 10,000 .
Pitwood is again moving upwards ; patent fuel is firm and in Foreign trade is firm, and for some destinations coal prices are
hardening. Business yet, prospectively, for the Baltic is dull, and may be expected to continue so a little while.
The iron trade is tolerably good ; prices cont rails to go up. parts of the district there is a tendency in same, Australian colonies will not be much short of 20,000 tons, including fish-plates, \&c., and as the delivery will be extended, a tolerable
years work is seure. An important movement is now before the public-the Bute
Shipbuilding, Engineering, and Dry Dook Company. The company Shas been formed for the purpose of acouiring and carrying on
houndries at Treherbert and Cardift, shipbuilding yards, engine works, \&o. Messrs. Morel, who are prominent in this undertaking, own about twenty steamships trading to and from Cardiff.
A good deal of excitement prevails in the Forest of Dean. A few colliers have been induced to work, and some of those on strike few coniersstody cearged with intimidation, Money support has
are in cen recived from Durham and South Wales, but I anticipate
been rem that the strike is coming to an end.
Deliveries this week will be scant as the Easter holidays have
told at most of the coal pits, and shipping has suffer

THE PATENT JOURNAL.

condensed from the Journal of the Commissioners of *** It has come to our natice that some applicants of the

Applications for Letters Patent. $* *$ When patents have been "communicated." the name and address of the communicating party are printed in italics.

 17lh March, 1883. 1415. Layivg OUT LITEEs of RAILWAY, \&co., A. Haman,San Franciseo, U.S. San Francisoc, U.S.
1416. Croocs for ADVERTIsing Purposes, F. W. Little,
London.

Warrington. Sond Forss, H. Walker, Sheffield

 Burton, London.
1432. Resprina Pargr, dc., Uninflammable, S. J.

 (C. A. Kraemer, Berlin.)

 20th March, 1883.

 1472. Propeastivira CARs, P. R. Allen, London.

21st March, 1883.

 1483. Sorrw Avarrs, G. Heaton, Birmingham
1484. Nox-tockivg DEvice, W. J. Brewer, Londo
1195.

 T. Oakley, Tottenham.
149. Skiving MAchinss, W. R. Lake.-(F. F. Raymond,
Neovton, U.S.)
1495. COTING MACHiNE Screws, W. P. Thompson,-

 1499. Peramion 22nd March, 1883.

 W. Whin. ${ }_{\text {Witle, White- }}$ 1515. Bremech-Loadisa Small-Abus, H. Tolley, Bir-

 (J. F. Bapterosses, Paris.)
1525. CARTRIDEE Boxes, G. Pitt.-(G. Fosbery, Liége.) 24th March, 1883 .
1526. Checkina Passkiaeks
Brighton.
B27
1527. Knirtrixg Machinerr, F. and S. Keywood, Not-
tingham.
1523

 Bourcart, Zurich.) 26 th March, 1883.
1541. ELEcrrio Batrerizs H, H. H. Lake.-(H. A. and
A. H. Radiguet, Paris.) Inventions Protected for Six Months on
Deposit of Complete Specifleations.

Patents on which the Stamp. Duty of $£ 50$ 1218. Stehting Ordnance, L. K. Scott, London.- 22 nd
March 1880 .

. West, Maidstone. -22 n

London. -23 and Lace Machines, A. Budenbinder
 1515. GAs Burners, W. T. Sugg, London. $-151 /$ April 1508. Extractiss Tanein, w. A. Barlow, London.
 1260. SEPRARATIING Liouti from Sourd MATter, W. R.
Lake, London- $-24 t h$ March, 1880 .

 1227. Biovole Bearixas, W. Bown and J. H. Hughes,
Birmingham. $-22 n d$
Narch 1880
 ${ }^{1287}$. Explosive Matter, we., C. Pieper, Berlin. - 27 th
 30th March, 1880.
1324. Marser,
March, 1880. Troysdale, Whitley Bridge.- 318 s ${ }^{1397 \text {. }} 1880$ Lectric Lamps, C. D. Abel, London. -6 th A April 1710. SEwing MAchines, A. Anderson, S. Mort, and J.
Walker, Glasgow. $26 i h$ April. 1880.

 1478. PVRIFYysa Coat d As, W. Mann, Gunnersbury
and W. T. Walker, Highgate. $-10 t h$ d pril, 1880.

Patents on which the Stamp
has been paid. Duty of
$\& 100$

Notices of Intention to $\begin{gathered}\text { Applications. }\end{gathered}$ Proceed wtih (Last day for flling opposition, 10th April, 1883.)
866. HAT-PREssING M Mcunse, H. C. Birlev, London

(Last cay for illing opposition, 13th April, 1883.)

munication from R. Turner. -28 28ll Novenber, 18 com November, 888.

 bisicabernikure and Meraturisp Glass, de., A. M. M.
Clark, London.-A communication from J. Feix.-
 6241. Tocaluk, A. A. Clark, London. A. communi-
cation from E . Dervaux-Ibled and G. . Schoenberg.

(Last day for fluing opposition, 17th April, 1883.) 5157. Hypravic Prissure Valvis, H. Berry, Glou-
cester- 1661 November, 1882 .

 1888. Bithrosatry of SSodA, E. Potter and W. Higgin,
Bolton.-2nd February, is83.

854. Screw Prorelers, R. M. Steele, London.-16th
February, 1883 .
 1037. Generating Livicirkiotr, A. M. Clark, London.

Patents Sealed.
List of Letters Patent which passed the Great Seal on the ${ }^{4583}$ Rotary Puaps, M. Benson, London. -27 th Sep.
 4592. VENTIMATMEO Soil PIres, H. Blair, Glasgow,-

 4880. Fivzes for Progroriess, A. Noble, Newcastle-
upon- Tyne $-11 t h$ october 1882 .

 (List of Letters Patent which passed the Great Seal on the
22nd March, 1883.)
 3481. PRINTING MAchinker, w. c. Kritch, Leeds.-

 4565. Bortitizs and BToperkR, A. Pullan, London, -25 th h

 4718. Eulectric Rallways, J. Hopkinson, Westminster.
 47729. VRLocipedss,
ber, 1882 . Brown, Birmingham. $-4 t h ~ o c t o-~$

 4737. Fowstan Perv-HorDERS, F. F. Benvenuti, Swan-

 $50-24$.th October, 1882. .

 (Last of Letters Patent which pasesed the Great Seal on the
27 th March, 1883.)

4635. Bissurvr Browza, J. Webster, Solihull., $-29 t h$ Gestember, 1882 . Sreatic
 4645. ELLecrrric Mgrers, S. D. Mott, Pimlico.-29th

 5191. Combined Reaping and Sheaf Binding Machine,
 Cymmer, and H. Harries, Glyn Neath. -27 th Decem
ber, 1882 . 57. LUBRICAToRs, T. Duff. Upton.-4th January, 1883.
96. SULPGRIC Acid
W. Weldon, Burstow. - 8th 105. Reguanting the SUpply of AIr and Gas to GAs
BURNERS, J. Lewis, Brockley.- 8 th January,
and Burners, J. Lewis, Brockley--8th January, 1883.
243. GALVNIC Batic
Batreries, H. H. Lake, London.-15t) 281. Merchanical Musical Instruments, H. H. Lake, London.-17th Janvary, 1883.
358. SHPs SLEEPING BERTHS, H. H. Lake, London.-
22nd January, 1883. 22nd January, 188 , ${ }^{\text {Bracks }}$. Hovenden, West Dulwich. -23 rd
January, 1883. January, 1883 .
380. Priving and Bookbinding Mactinery, w. R. Lake, London.-23rd January, 1883 .
S6i. BRAKE APPARATUS, W. R. Lake, London. $-18 t$
Febhuary, 1883 . February, 1883 .
621. Aprapatos for Fining Malt Liquors, R. Dean,
London. -5 th February, 1883 ,
 ** Specifications will be forwarded by post from the
Patent-office on receipt of the amount of price and
postage . Sums exceeding is must be remitted by

ABSTRAOTS OF SPEOIFIOATIONS. Prepared by ourselves expressly for THz Exarrser at the ofice of Her Majestys sommissioners of Patents.

773. Knirring Machinss, J. Poole, Bradford. -17 th The object is to make. knittted looped fabrics frimer and os that they will not stretch so much as at present
A carriage is mounted at the back of the knitting ma chine in front of the needles and warp guides, and
traversed on slides extending across the machine.

 each ond of the machine the carrier is actuated by an
fnclined plate and is moved towards the warp guide

 Thith relunese, to pobidic washing houses having dis.
tinct compartments for the separate accommodation of several persons, and it consists in forming the com-
paprment partly of unperforated plates and partly of
wire netting the
 boiler to lead the vapour away to a condensing appas
ratus Heoting pipes are arrange oo as to poros
under or over the drying frames, and heated air is under or over the drying frames, and heated air is
caused to dry the clothes.
774. Cocks or Vavys, J. W. Restler, Nunhead.-
 Valves. while under pressure, the gland round the
spindle ebeing bolished. Means
wiop provided ot deteet waste and provent improper opening of the valve when
desired to cut off the supply. The valve spindle carries which serves to co close the valve in the usinal while the other, when forced against its seating,
allows the
examive to
oran 3400. Per anbuLators, \&c., J. Ayloard, Birmingham.

 allows the perambulato to be reversed. The wheold
haver metal spokes, at hat bush bering provided, and
collars cuased to to hear against the rivetted heads of the spokes.
775. Passemarr Tickets, J. A. Prancis, Nevinoton-
 ticets so as to torm projections or openings, by which
they may be secured to the dress or to the finger of
posen passenger.
3427 .

 opening of shuttina the admission ports, and with thout
the uso of a sparate valve, the aubutment value boing
Iso the steam admission valve. A is an ordinary

3427

the piston by the pressure of steam entering at F ; H
is a valve rocking on the lower end of silide E and is a valve rocking on the lower end of side
harivg a broand face fitting on piston , and having
passage which opens or shuts according to the angle it su
3435. Gas Moror Evanses C. D. Abel, London.-19th
July, 1882.-(A communication from C. Beisse, near Theogne.e. 6 . de effectually remove the gaseous pro-
nucts of of the combustion from the evlinders of

and, , tecondly, with the compressing pump 2 for com
bustible mixture of gas and air through cheek valve 11 and passage 10. The pump draws in a charge of gas
and air through valve 3 , and discharges it through
and
 whilie the piston is beginning its return stroke. The
opening 6 is open and the incoming charg dires out
the prod ucts of combustion. The pump will dra w in
and

 This relates principaly to the employment of the upper cap of a coupling divided lognitudinally in the
rougis state as acas witho
beint tounning the bore, the o ojecet being to decrease the cost of the coupling and increase
the grip the thend of the shaftros hen thet two halves
are tightened up by suitahbe bolts. dro gightened up by suitable bolts. A projection or ormed in the shafts.
3527. Coupuriso CLUTronss, E. J. Sterling, Brooklyn, This relates to clutehes that grasp the body to be
rotated, and hold the same with af frmness of ofrasp
proportional to the roportiona to tho power exerted to rotate the body
As applied to connecting the ends of two shafts, heliix with an internal diameter corresponding to that
of hhe shats hasits two ends oonnected, one to the end
 pressed against the revolving surface by a lever.

 ised. A working cylinder is provided, in which a piston
is forced outwards by heated air and vapour. A pump compresses air and forces it into a reservoir, which may
also be used as a saturating veesel, where the air is
lis saturated with vapourfrom wworer heated by the he heat
ejected fom the worliog futh the saturation being rejected from the working furd, the e saturation being
effected by causing sheets of wire guzze to be bipped
nto ated. Volatile hydrocarbons may be added to the Water. The air then passes through a regenerator on
its pasage ot the y ylinder, the exhausted fluid also passing through the same. When unisg sold tuou the
ir is forced through the furnace. Means are provided
 3555. Warcimex's TkL-TALEs, C. R. F. Schloeser,
Manchester.-27th
July, 1882 . Trom Messrs. Kreutz and Bawer, Viemna.) $6 d$.
This relates to clocks to indicato the times at which
 nechanism, while at the same time it is capable of
ranserse vibration to press the paper against the bit of a key which has a type projectinan therefrom, the
vibration being effected by a curved lever acted upon

key.
3575

3575. ELectric Lasprs, J. G. Lorrain, Westminster.-
27th July, 1882.

6d. | The hamp which is the subject of this invention is |
| :--- |
| shown in the companying ilustration. Its action is | as oitows: $:-$ The carbons being apart, and the current

swithed on, the latter passes through the electro-

 Latter is fixed, the electro-magnet is attracted towardis
it and swing on tits ifovoted oxais against the action
of apring P. The whole of the current now pases
through the carbons as they are in contact, and the
electro-magnet is no longer energised, consequently the spring forces the core A out into contact with the
upper aarbon, while spring P pulls the electro-magnet
3575

into a horizontal position and into contact with stop
scrow G, at the same time lifting the upper carbon a short distance and striking the arc.
3593. APPARATVS To BE USED IN THE TREATMENT OF
 The object is to effect the several operations of sifting and cleaning grain, the gan ging of the grains and meal than hitherto. A log frame consisting of thow end
plates connected by horizontal bors of angle iro Whith are held so as to prevent flexion by external
rings of angle iron, is surrounded with wire or silk
 bares a series of pockets into which the material 1
rasised as the apparatus ortates, to fall a amanin at the
proper time into the compartments formed by the nex proper time into the compartments iormed dy the next
set of blades, by which means it is radually worked
at

 This consists in the application of a shrouding or
hood which will corer and enclose the acge formed by
the teeth the tetet of the grae an in teacoose the grognd and will
prevent the loss of small particles which could pass phrough the teeth.
 The toot, of the button can oseillate on the shank
 hole passed over the end and secured in posi
inserting a pin through the hole in the shank.

This rilates to the production of blocks of amber by

 T Therin relates, First, to the method of fastening the maching, and, secondly, to the combination with
such machine of an automatic elevator delivering the grist by means of a conveying worm into some centri-
fugal feed apparatus which may throw it into the grinding rollers as usual. The bolting cloth has a thick edge, which may be produced by enclosing
a rope or cord therein, and which is passed into arope or cord therein, and which is passed into
longitudina slot formed bys, pipes. r rings ifed
to the heads of the machine. An elevator formed with to the heads of the machine. An elevator formed with
a number of buckets revolves with the head of the machine and at a less speed than the beater wheel in the o yinder. The rrist is raised by the buckets and
delivered to a conveyor. 3652. Driving Beli Fastrgnkrs, ©e., W. D. Chase, This rolates to fasteners for connecting the ends of nachine bands, and consists preferably of a silightind ent with an oblong ring, each extremity of which formed with an eye the ends of the wrir ebing bent
down in wontact with the contre, the butting ends
nearly tounhing eathyt touching. The eyes pass through holes in the
e cros pin is is inserted through them. A tool is described for slotting the leather so that the holes
for the eyes of the ring are all at equal distances from the eages.
 Aholow screw spinili has a valve loosely mounted
thereon, and is connnected by a hollow arm to a float. a valve chamber, whence it escapes throur ports in a valve chamber, whence it escapese through ports in
the olollow spinde into the foot the issuo of steam
raising the float by turning the spindie, and closing the
 This relates to for
This retates to fortenings specially adapted for
securing tarpaulins
over the hate hatches of ships, and it consists in placing over the edges of the same a bar pin, passing through a a support secured to the hatches,
ind formed with a slot to receive wed which, when foreed home, presses the bar birmy
 This consists, First, in applyinga loose or removable oil reservoir to spindies mounted in rails of spinning
machines, and siocondy, in an arrangement of afy aly
comb-motion box, whereby thoroush lubrication and perfectly even motion can be obtained, such box
having an accurately -fitting cover secured by bolts, and
 the join
parts.
3869.
and

B69. Looms For Wravisa, J. Whittaker, Padiham,
and R. Clayton, Rishton, Lancosshire. $-2 n d$ August, This relatases to to ocoeded for with.) 2 w . . saving sateen and other fancy cloths, the object being to provido simple appar
ratus for lifting the healds, and to avoid risk of injury to the cloth by the dropping of oil from the tappets,
and a aloo to admit light freely to the shed. The tappets are placed under the loom and the jeack below them,
and connected to the top staves of the healds by cords.

points and sismals which will prevent a signal being
owered for a train to pass over the peints unless the 3672. Figured Cloth, J. Kirkman, R. Smith, and P
 on a twill or satin ground, the figure to be plain satin

 and indicate, by the collapse of the
fact of anything being on the line.

 Coree the wool in among the needles, and washes it, at
the same time clearing it from thistles, which remain the same wolle and areare remorem into a trough by a roll
on the rold
provided with blades. The wool passes to other rolls, and is further subjected to the action of water.

 The ris relates to silid valves fitted to work beneath
the face-plat on the states, and consist in
making such values hollow, of restangunglar form, ind with perpendicular faces on, of both its itagular form, and outer
ide sides. The face-plateces on on both them chest above the
valve, beneath the face-plate. The upper edges are formed
with corners by lap joints, and beneath them are spring
pressig the pressing the packiigs outward. In the sides of the
valves are apertures to admit steam beneath the packvalves are.
ing bars.
3678.

 A vessel is so divided by walls into several spaces of
increasingly harge section that the movent of the
water through them is retarded and the deposit of the water through them
precipitate ensured.
3679. Ranwars, L. A. Groth, London.- 2nd August.
1882.- (A communication from F. Schauman, Sweden.)

The object is to obtain a durable elastio and safe
permanent way, and it consists in the employment of permanent way, and it consists in the employment
stone or concret ileopers, with washer plates of com
pressed cork as as an elastic medium between the rails and the sleepors, both the rails and washers being
conneoted to the sleepers by bolts and nuts and sprin clip plates.
 This relates to rings, the bow of which can be
ajusten to suit
different fingers by mann of a pin mounted on the ring and engaging with heoth on on the
bow, the pinion being actuated by a suitable key. 3682. Grass Edge Cuiprers, T. Green, Leeds.-2nd

 of the machine.

1s. 6did from H. F. Newoury, Brooklyn, U.S.
Tr bro object is to prevent the locking beeing unseated
or bor by the use of explosives phaced against the
door or wall of safe or door or wall of a asate or vaxult opposite the part where
the lock is situated, and it consists principaly in com
 the safe or vault, springs or other yielding and elastic
connections.
 The object is to enable a number of bullets to be
 breech block is hinged to the barrel plate, and whe
shut the bolts of the latter pass into slots in the block sha by turning their heads the block is secured. The
and
block whole of which are actuated simultaneously when the
3686. Exiavar Fans axd Browers, F. M. Bden
Kettering. 2 2nd August, 1882 .-(Not proceeded with. Kettering.-2nd August, 1882.-(Not proceeded with.) The fan is in the form of a hollow annular narrow
or odde vane wheel carried on the end of its
driving shaft by an eye in the eentro of a fat diso we whorming
the olose end of the fan, which exhaust in through
disa large eye in the centre of an annular curvilinear disc
forming the other side of the wheel, with a number of curvilinear radial vanes inside extending from the eye
to the outer primeter, where the fan discharges the
ait through air through the spaces between the vanes.
3687. Workivg Machivery by Masomorive PowzR,
J. T. M. Hircock, Birmingham. -2 nd August, 8882 .

 while on that of the other is a driving wheel and al
small toothed wheel gearing with another small wheel on the opposite spindle. The action upon the pinions
from the lever is by springs and clutches in the ratchet boxes alternately in and out of gear, so that one of thi
spindles is always travelling in the right direction.
3688. Doon Kxons, W. Thomson, Shavv, Lancashire.-

This relatases to konobs not secured directly on the
spindle, but to washers attached to the door, and it The washer is formed with a shallow socket to receive the inner end of the knob, and from such socket holow esinde projects and enters a corresponding
central hole in tho kotb, its outer end being sorwed
to to recive a nut inserted through an opening in tho
front of the knob, which is preferably afterwards
clo closed oy a plug
3690 . Horses
 The object is to prevent the injurious concussive
effecta of ordinary shoos upon horses 'legs and to pre
fent
 sists in the combination with the motal parts of tand
shoe of an indiai-rubber pad or cushion, formed and shoe of an ind
saranged as to
secure foothold.
3602. Winding on Motions for Taprixa Machinerpy

This relates to a winding on motion of a tensional or fro fulcrum and preferably forked so as to span the
on triving shaft. On each fork leg is an anti-friction
diow

weight can slide so as to regulate the tension applie
to the fabric or yarn being wound on to the beam.

cation from F. Bich . Nichols and C. Thomson, Halyaz,
Che odjeect is to expose a large surface of slowly

 slips of ofilid material bent over their edges to main-
tain on oontinous tow of liquid out of the evesel and
diffusing strips or broad strips of thin material,

 Iugs on the underside connected by pins to links on
the main shaft, and on the sivel mechanism of front
wheel. Around the swivelling link carrying the front wheel is a stationary annular ring supporting one end
of two arms, he ther ond of such arms supporting or two arms, the other end oo such arms supporting
a cros-shat carrying the back wheels by which the
turntable can be tevolved without disturbing the
the

 drawn so as to form a aup, the bottom of which is the
stopper. Oll or other riquid is placed in the cup and
the jars heated by steam or hot water, so as to expel all air and kill the germs of fermentation
 An elastic wheol is let into the window frame and
bears on the sash, so as to keep it firmly in its place. bears on the essh, so as to keep it firmly in its place,
3699. Bexis for Bicyous, te., J. Harrison, BirThe clapper or the bell is is in the orm of a rod with a
ball at its ower end and another arranged at its
and per
 vent the

 greater when the agitator is moved in one direction
than when it is moved in the other. The aigitor
toves inside the cells, and the faps adjust themselves
mot to the space left as the ice is formed, so that the
asitation may be continued until the cells are nearly
filud with ice.

 3708. Combinisg Harnonicys, with Pranos, L.

 Throceaceisistsiarincipally in making the acting surface

 admission of air to the hollow interior below the fire-
bars, and aloan onening above the frie-arars for the
escape of air from the interior on to the fuel. 3714. SOLPHणRovs AxHypride, 8 . Pitt, Sutton.- 4 hh
August, 1882. (A A communication from the Compognie

 low tomperatures obtained airectly by the natural
evaporation of this body, sparating from the gas by
crystalisation and condensation all the hydrates of
sulphus acid.

 "Hickerin" must be clothed with much coarser cards
than thosesenerally used, and the ongle of the pins
or teeth not so keen as is now the practice.
 This invention oonsists in boring and cotting off in
ona
callect ouration fro-lighters.

 springs.
3721.

 boling cistern, the inlet pipe from the cistern being
cononoted to the lower port of the heater, and the
retur pipe being connected from the top part of the
heater to the said cistern. heater
3722
3722. Mechaniosi Burrox, A. Combaut, Regent-
strect, and W. W. Taylor, Westlourne-terrace. -4 th Tho button consists of knob and a shank, the former

 which four slots radiate to near the circumference.
The shank is anarowed boow the head, which is fat,
forced through the hole in the upper disc whid can only
 7725. APp
 This relates to apparatus for use for purposes of
raporisig, refrigeratigg, or heating, and application of heated, refrigerated, scented or medicated vapours,
the primary object being to employ the fan-operating
 intital blast of atr, employ for the proaction of turbine serews, rotary fans,
or pump device.
 $T \mathrm{TWO}$ board, are employed, one recessed inside and taining a sheet of watergroof cloth. Betheteen the
boards are placed two or more cushions, consisting of boarde are place two or more eussions, consisting or
endless shete of calico, with an interior layer of folt
coored Covered with flannel, and on one side of each cushon
isplaced a thin hieot of metal or waterproof material
which folds over the transfer sheet. 3727. Type.writers 4 H Boid

Th. P. Hansen, Hamburg, Gernany.) 6d.
 sliding in a hinge, from upon one or both sides of which
corresponding letters are marked. On one or both sides of the frame are rack bars with recesses corre
sponimg with the letter of the frame, and into which
an inde an index figure attached to the bar fits. The bar
extends beyond the ramee and passes over the roller on
which be which tho printing is effected, pach roller being moved
from right to left as the printing progresses.

 Mndiar rubber combined with wood and metal in making
tires and naves of the wheols and also in makig
brake blocks of indiarrubber, feit, or similar material. 3729. Wassstasps, A. J. Boult, London.- Sth August
1882.- (A communication from N. O. Bond, Fairfax,

A box is. fixed runasthe thaxle between the fork of a
 3732. Fistral 6

 The object is to provide a propeller in which the
fore obiant for the steam eng ine will at directy
in a horizontal lime on the mater to propel the vessel. Acorring to one arrangement tow or more pistons
working in open cylinders are caused to act directly on
the water.
3735. Apparatus For Reducing Mingrats Asd.
Metatio Orks, R. J. Cunnack, Helston, Cornuoall.
 simiar dimensions, the lower one being appied with
istupper surface in alovel position, white the upper
rubber is moved upon it.
upertures are made in and

 oppoite circumferencecausing it at the same time to
rovolve on its axis about the crank by which it is

 pulverised volcanic matter known as lava and scorizo
mixed with fluxes and dely or other euvivantent plastic
material, as also with colouring matters ; Secondly, all
 whinh is sitted with a shouth so as to ooper up the

 blocks B coupled together through the partition, and
having axes oxcontrio to the clinder. Fato blook
has a slot on one side to receive sliding tongues D

be shio
motio
3740. Chemidal Prodoct for Bleachiso, J. c. MeeThis consists of a mixture of equal parts of hypochlorites of soda, potass, and magneesit, put in in a-
solution with one.thousandth of potassic permanga3741. Bricks, Tiuse, PAvinges, tc., A. Bouquie, Paris. This relates to the manufacture of bricks, tiles, and other articless from sand and gas or mineral tar or
pitch, by mixing them together and converting them pitch, by mixing them togesta which is then moulded
by haat into a plastic mass and compressed. The articies so prepared can then
be immersed in water saturated with sulphato of iron
mixed with red or yellow ochre. 3742
3742. Tricrcless, J. T. Toovnsend, Coventry.-5th This relates to convertiblo sociable tricycles, , the
ojject being to enable two riders of unequal strength orde the tricycle without any liability of ruming to
ne side, with equal ad vantages for

 dition is driven by doubling driving gear from one
chain or other medium 3744. Painting, Printisg, or Dyeng Woven
Fabriss,
do.,

The farbic or material is steeped in a colourless size
prepared from skins of animals, and then coated with aregetable size prepared from linseed or other suit.
able seeds, such size being quite colourless. When dry ordinary colours or dyes are applied and the material
placed in n hot dry kinn, after which it is submitted to
the 3745 .
3745. Reculatisi The Flow of Gases and Liquids, The apparatus consists of a dave through. which
he steam, gas, or liquid passes, and another

 piston completes its down stroke, a projection on its
rod acts on the valve in the supply pipe and closes the
 Slack, Manchester. - 5 th Au Austst, 1882. 4 d.
An eve is formed at one end of a pieco of steel wire, ne ta a suitable distance therefrom the wire is irrs
bent into a semicircular segmental form and then into one two two more coils of smalier riameter, after which
in
it sis again bent to a segmental form, and continued in straight line to be made at its en
imilar to that at the other end.
3748. Moles For Spinsirg wouliex Frbrzs, se., J,

18s2.- (Not proceeded vith.) ${ }^{2 d .}$. In and out for drawing the thread and for wind ployed, so that the traverse of the carrage is regular,
the delivery rollers being driven so so to revolve and ontinu to deliver until the carriago reaches the end
of its traverse, when they stop for the wwist to be be
put ji put in the thred and wound upon the spinde, the
pueseasary draught or or thathening medium beong
obtained by the carriage travelling out ward faster than necessary draught or lengthening medium beting
obtaned by the arriage travelling outward faster than
the thread is delivered.
3749. FABrio por Wail Haxorsas, sec, A. M. Clark,
London- 5 th Aupust, 1882.- (A communication from
 tion of waterproof agglomerating and textile mattorr,
the olttur in the ofrm of loose fibres distributed
throughout the mas. throughout the mass.
 ${ }_{T}^{1852}$ Thede. ${ }^{\text {Thes }}$ to apparatus in which the cellular or other plasticm matepraal to form the plates is forced
into mould after the fask contining the same is
placed in the boiler or heate placed mould the ofter ther or haester and titghtly closed, and and
t consists of improved means for tightly closing the mould, and in constructing the apparatus so that it
can be heated either by steanm or hot ant Maeans are
Iso provided whereby in the latter also provided whereby in the latter case the necessary
team pressure can be obtained for indicating the temperature upon a gauge, and the supply of gas to
the burner be regulated. The cylinder for injecting the cellulord is als
the manipulation.
3760. Turbines, J. McConnell, Ireland.-7th August,

This. relates to the construction and to means for
regulating or governing the regulating or governing the speed of turbines, of the
kisul in which the enater for driving is aruse, to fow
towards the eentre. The turbine has curved blades or buckets increasing in depth as they approach the
centre. A chute surround the wheel, and in it it are
station stationary Euide oblades set at such an angle to the
radial position as to cause the water delivered between radial position as to cause the water delivered between
themt ot strike tho bucketa at right angles,
ndis of the outer buckets being curved back tor Iull fffective prossure of the water. Outside the ehute
casing rof four revistor gates or orvable guide blates
contred centred close to the outer edge or the casing, and when
the wheol out of aotion they ilie in clooo oontact with
the guide blades, so that no water can pass through

 and it consistst in carrring
the end of the bobbin.

 hase a main carrying frame orounted oo os to turn
thereon, and the of the rame is ormed with a
centre bearing for the carrying frame or block of the

each lens inside the lamp, and a suitable refeecor pro.
vided to concentrate the rays of light upon the lens.

 upper shaft and conneoted by a vertical and horizontal
lever to lever to the shuthe so as to actuate the samo;
Seoondly, to meahanism for oparating a four-moto
feed and for deadening the sound of is ant

 tightly; Fourthly, to an iuprovement in the throat
plate so as to enable the slides to be dispensed with.

 This relates to machines operated by admitting
steam or compressed air at the rear end and exhauststeam or compressed air at the rear ennand exhause
ing it at torward end of piston clinder and
vice versa, alternately, and the object of one part of
 air cushion of adjustable pressure between them. A. A
siliding vave regulateo the addimsion and esape of
sin and is operated by an auxiliary engine provided air, and vive opated by an auxiliary engine provided
with an exhaust outlet, through which the escape of air is regulated by a valve. The invention further
relates to ${ }_{\text {so }}$ constructing the machine that the

 This consisist in in incrasing the diametor of the
pulley mounted on the thrashing drum, an intermediate power-transmitting apparatus being inserted
between
engine which trashating machinn and trives the partable engine which drives the same so as to obtain the
desired speed

 of soda, potassa, magnesia, or ammonia into sulphites
or bisulphites suitabie for bleaching materials for pulp or textile purposes. In a vessel with an agitator a
current of sulphurous acid is passed through a milk of lime or carbonate of lime, and when the solution is
concentrated to 8 deg. or 9 deg. Beaume the sulphato
to to be treated is added. When thesolution is sufficiently
sulphited the current of sulthurous acid is itopped,
 377
August 1882 ((RE-ARMs, I. Mray, London. -8 Thich rel, Vees to an ed.
so as roflates to an arrangement of the etock of a rlife, means for advancing them and raisising eanh in turn to
a position where it can be introduced into the breech of the barrel.
3775 . BRICOK, TILEs, or SLAB3, J. C. Bloom feld and
 mixiog sand and chalk together and adding sufficient
water to cause the mixture to cohero. It is then
 boiling coal and kept there from one to two hours,
when they are thrown into cold water. 3776. Manvencture or Core, J. Wood, near Wake-
 in the manufacture of gas. These retorts are encolosed
in brickwork, having flues for the passage of heat, which may be obtained from ordinary yooke ovens, with or without the addition of gas, which is produced in
the retort atter sudh gases ghe beor distillided and the
bye-products extracted

3777 Gus Carriags, P. Jensen, London. -8 th
August, 1882 P. - 4 communication from M. M. A. The action of the recoil causes the piece of ordnance to descend or inted under cover. Hit is protected by a parapet of horseshoe shape with two loading recesses.
Part of the mechanism is underground and protected from shots, consisting of a crane poes which can tharn
on ths axis and
of the ereocilt to raise the the orake utilising the power of the recoil to raise the gun again. A frame extend.
ing towards the front is fastened on the head of the
 between the ends of this inm a rod is jointed which
conneets with the top of the ram which works in a
col conneets with the top of the ram
hydraulic cylinder in the crane post.
 An open cage works up and down in a box and compresses or squeezes the clothes against a stationary
grating corresponding to the internal area of the cage. 1882.-(Not proceceded viith.) 2 d. The machine consists of two large wheels keyed on
a double-cranked axle, the seat being arranged below
then 3782. Bicroces, J. Beale, Blackheath.-9th August,
 levers and rods, arranged so as to render the mode of
working the cranks applicable to bicceles of various
 is jinted, and to its other end a frame is connected
isth bars for the foo of the rider, the rame being
kent tin round a centro in the prolongation of the ofk in or
during all positions of the lever, the reeiprocating motion imparted to which through the intervention
of a conneecting-rod works the crank on the driving
arle
 Heamburg.). $6 d$.
Thate inven in combination with the firegrate and the fire space and ashpit of a furnace, a,
heating shitel, and its communications with a nozzle,
a mouth and
 This relates to means for controlling steam engines,
especial

 cylinder having a passage from one end to the other,
Which an be regulated by a oock or valve. The phiston
of the cataract cylinder is connected to the engine by

opposition of the liguid in the cataract eylinder to the
motion of the prison exceed st that of evither, primg
mot moteased, so that the valve closes.t rod and the trigge
 Into a strong boiler with an internal fire-box, air and pas under pressure are introduced. From the ire-box
passages lead int the bod of wato in the bior the
passes being provided with check valves to prevent Ppassgeses being provided with check valves to preven
return of water from the boiler into the fro-box. A A returno water from the boiner it the air and gas in
engine working puns suph
proper proportions and water for feed. andegulating the pumping engines auto Eovernod by reguating the pumping live to a piston
maticall by conneting the throtlo vand
loaded to the maximum pressure desired, and subloaded to the maximum prossure desired, and sul
jected to the pressure of the fluid in the generator.

 motion, of a yoke receiving lateral motion from suit. neodio bar, while at the same time it acts as a guide
to the vertian motion therof , and socondy, thin use,
for imparting lateral to-and-fro motion to the needle
 motion of the needide bar is stopped or regulated.
B790. PAINT Yor Pressrving Woon,
B. P. Wells
 mixed witht, paint or other substanco capabie of being
used as paint.
 This consists, First, in the distillation of Kim-
meridge shate by the introduction of superheated
 athe quantity of ammonia in the aqueous portion of the
thistilate Secondly, the cooling of the carbone
dise

 a large surfaced condonser with a vacuum "drag" to
produce the least proportion of permanent gas in the first portion of the distillate.
3794 Lids or Fusk Ecosomisers, \&c., B. Green, This consits in tho use of filid or oovers with angled edges to fit corresponding apertures in the top casing
of fuel eoconomisers, such lids being put into position from the inside.
 This rolatestor the construction and combination of parts for supporting and fixing swing lookigg-gl.
swing ventilators, and other swieg ing articles.
3797. Looks Axp Larchess, J. Waller and H. B. This relates to the
 dered unpickabable.
3799. Sten Strerivo Grar, J. H. Smiles, StocktonThis relates to the method of controlling the valves
 of the rudder. A sheave is attached to and sliung frome and round a shatt, so that its centre is side to side
freedom of aniver radial movement from
in the plane of revolution of the shaft.
It is silung on fulcrum, the centre of which is in line with the tho opposite side of the shatt to to the crank pin, The culcum is arranged on artarn arm on the shaft, so moved from side to side it it beoonestion, respectively a Dackward" or "forward" excentric. The sheave as usual gear, and when concontric, the valves are closed
and are in mid gear. By the side of the shoave is
wheel wheel engaring by a pin and slot with the sheave, so
sito carry it round with it. The secondary wheel is as to carry it round with it. The seoondary wheel iis
connected by any suitable gear to the steoring wheels. 3800. CaRDBoARD Boxes, P. Jensen, London.-9th
August, 1882.-(A communication from D. L. Caillat $)$ Pharis) ed. essentially in the manufacture of card
Thand onsist in one pioce by the operation of suitable dies.
bit

 hollow handles all in one piece of iron or steel, the
handle being formed in two parts (one of which may handile being formed in two partso (one of which may
be in one piece with the blade) and then welded toge
ther.
 The apparatus consists of double metal shells with
an intermediate space filled with non-conducting material. It is mounted on wheels, and provision ${ }^{\text {B }}$ ingots by means of combuastible gas. The carring may consist of a platorron on wheels, and a hood proo
vided to tover the ingots during transit, thoo hood
being lined with or made principally of non-conduct being lined with or made principaly of no
ing materfak. 3808. STEM August 1882. Bollers, G. Sincluir, Leik.-10
 apparatus. A reciprocating posher box pubthes the
coals from the bottom of a hopper into the thrnce The fire-bars aro made ot recippocotel engotitudinally by
cranks on a shaft, and their inner ends are a little above a transverse water casing, the fire-briage being
some distaño imards from tho ends of the barg
The invention further consists in forming fire-brick kiit
 consists in forming in the lower parts of the oute
shell, and the lower parts of the internal flues one o moro indentations or corrugations, so as to prevent
them being injured by hrot top parts becoming heated
whill the bottom parts are still cold.
 Thnis relates to an apparatus to clean windows on the a spring bow frame, each arm of which carries a
rubber to bear on one side of the window pane.

 tions. It further consists in meehanism for printing
tho symbor on travellig sheet of paper by means of
five parallel keys.
3819. Gas Exarives,
August, 1882.
6d This relates espocially to the construction and irr, causing the ignition of the charge and exhausting regulating the admission one garang andir, and that controling the ignition, are arranged horizontally and
ranssersely or across the cylinder, and are operated tranversely or across the cylinder, and are operated
against spring ybammor wipers on a shat paralel
othe longitudinal centre line of the cyllinder, and riven by gearing from the crank shaft. The valve to
 port to admit the gas trirougha tubuar casing. The
nlet tube leading tothe rean end of the cylinder. The
ir enters by a similar valve. 3823. Expluss Basp Ksvrvs, T. Clark, London.-10th
Aupust, $1882 .-1$ communication from J. A. Kay
 mives used to cut cloth, leather, rubber, or other material, with a succession of ourves or wases so as to
enable it to cut through tough, gritty material more
nsily easty. Kintisa MA Manses, A. M. Clark, London.-
3826. Kith Aupust, 1882. (A communication from I. W.
 C.D. 1856, and consists, First, in a a sectional neeale-bed
h. comb nation with needle shifters, whereby great in combination with neeate sum great, durability are
facilty of contrution and
secured ; Secondly, in the manner of supporting and
 and tho mannor of at attoching the jacks thereto; and
Fourthly, to the general construction and arrangement
 The object is to disponse with the fire-bricks at the eteriorate and require renewing, and it consists in the use of cast iron linings or bearers applied to the the
sidos and ond of the grat and formed with perfora
tions on their faces next the grate and on ther
torer aces, through which cher
ahhing to the linings.
3830. Drfing and Treating Textlle Fabrics, 7
 Prom the vegetable ffbres. The rags, after being subs
jected to a chemical tratment as usual are jected to a chemical tratment as usual, are passed
between rollers which squeeze out excess of molisure, or they may be dried in a centrifugal machine or by
hot afr. They are then conveyed round a large cylinder heated to a temperature of from 200 deg. to the cotton is somplitely meansed, the mondeuderat the action of beaters can bo eat.
in the form of dust.

 ing then to heat and agitation in a dooxdiating atmo
sphere in presence of melted metal, such as lead, zinc sphere in presence
or their equivalents.

 ply and revolving with, shafts or yudgeons, the
 shovels are arranged behind the picks and turn over
the loosened earth; when necessary they discharge it into elevators for removal A Asead sower and a harrow
are combined with the machin

 Torsis relates to to the uso of fabrics of reeds and wire
for makking eelingss, such fatrics being woon in lows,
the wire serving to secure the reeds together
 The object is to remove arsenic and phosphorus from
alkaline solutions which have been employed for the
 solutions with caleium hydrate.

 Ishes, or like absorbent material into a vessel, wit the

 Rhe boiler or generator consists of a number of sets
 requirod, and all the sets when the boiller is in use

 he operator, and before the ejector bar is depresised
Seoondil, the ejector bar is is outuatod tat the reuired moment by a mechanism worked by any averatab
power, such meehanism being made to aet on the bar
Wy
 composing race to the galley by a mechanical device race into the type channels aro pushed forward withtn
the olatter by a evice operating independently of the 3953 Darsa
 The inventor claims, First, the application of guide dredsing buckets siecondly, the application of end
dess pitch chains or endless ropes for diriving the upper
lon pulleys, of endless chains of dredging ionger boad
Thirdy, an anrangement for moving a dredger wherein the moving ohains aro led down fixed wells o
tubes and through swivelling tubes therein,
 whinding or hauling the mooring chains of dredgers, Firthly, the arrangement of colour in combination 3069. Guizing Ginesworass, de, J.Chafte, Bath.Thish rolates to improvements on provisional protec

the rafters, where they are secured by placing a strip
of motal over the adjacent edges of the ehheots of glase,
 3972. Utilising the Heat in youtan sab,
 The inventor claims adding lime or limestone or iron ore or other suitable material to slag or other pro-
ducts contaning iron while in a molten tata, extract tho iron contained therein, and for the purpose of purifying the same.

 ally in any attained position without running bach reversal of the direction of the motive power the load will be automatically freed. According to one arrange.
ment, when the motive power is withdrawn the load ment, when the motite power is witharawn the load
reversesthe otion of the inding barrel and cams
in contat with one end thereof are turned and bear upon a collar, whereny the winding barrel (which is mounted loosely on a sleeve surrounding the driving
axle) is thrust against a fixed bearing, and its motion
4518. Mounting so As to Fadirtatate the Shipping or
Unshipping or Ruders, M. Horsley, Hartlepool.The inventor claimims the method of mounting so as to
 or more parts, and coupling such parts together when
mounted. 4850. apparatus for Ventilating, W. Teague, ComA wheel with flaper or fans is fitted at the upper ond of the outlet pipe, with one or more encircing tubes
or covers, to toph of thich anothor pipe is attached,
and leasis into the place to be ventilated.
 1. Cis2.-Complete.). $4 d$.

The object is to utilise the table and driving mechanim of sewing machines for the purpose of operating
mechanical musical instruments, the band from the mechang pulley of the sewing machine stand beeng
driving
passed over the driving wheel of the musical instru5201.
201. MAchingrv Usemintiemanuracture of Paper

November, 1882 thek " jog " knotter or strainer, the This reite
object being to render tho morement or action equal
over all its surfacd The strainer consists of the ordi nary vat and strainer plate frame, the former mounted on vertical standard sams or tappets, the shaft being
shaft with step
driven by a pulley. The bearings are fixed in boxes
 hlate frame is supported by vertical rods, the lower The anount of of iog is reguluted by a wedge adjustable
by serews. The pulp on leaving the vat, and on its Sourse to the madine wifo, pases down an inclined
plane covered with wire cloth, through which the sur plus water falls into a box and is drawn off.
 The object is to produco a pocking which can be readily put in place, and which on account of the
 arranged round prevrarod, or pipeo with their bases alternately in opposite directions, Each ring oonsists of
hollow tub win
tuin
round i it and then encosed in coating of asbestos or equivalent of fibrous strands. The ends of the ring are loft open to admit stean or water to the inter or, the
assist in forming a tight joint.

 put into the
the pooket.
outside of the caisson assist in sinking the samo
Clain, -(1) In combination, in a caison an air- .ight
Coint oraining chanker having, an open-ended bottom, ${ }^{\text {a }}$
compressed air-supply tube opening into said chamber and an exhaust tubpe opening into said chamber at point slightly below the lower odge of tho same, am
ppecified. (2) In combination, in a caisson an air-tight

with the two adjacent compartments located and
adapted to be operated upon each side of said doors, respectively, as specified. (3) In 2 caisson an annular
chamber tormed of double walls © D , said chamber having an open top communcatis pith the interiol
of the working chamber for the suply or removal of weight material. (4) The combination with the frameWork of a caisson, and upon the outside of the eame of
drills or stamps $\mathrm{K} K$, for the purpose specified. 273,098. Houder for Acmid Carboys, Chartes S. Joslin, clainM-In a holder for acid carboys, the combina Ho of the supporting standards and ratchet bar wild
the pivotted frame, and the ratechet catch provided

carboy to an inclined position for pouring acid there-
from, and to retanin the point of the catcon in contact
rith) the to with the ontcthes of the ratconet bar, and wheroby the
point of the atch mat be eleazted preparatory to the
bock Sackward movement of the cardoy from its pouring
position, substantially as desoribed.

CONTENTS.

and operating to deliver the water from the ejector
into the injector, substantially as and for the purpose
 Vacuum in the injector or ejector by the mixing of
liquid of two
different tempertures in tho prining chamber, and regulat
stantially
as set forth.
272.722. FLoATIXO Carsoon, Philologus H. Loud,
Williston, S.C.- Fited July 17th. 1882. Brief- (1) The chisson, provided with double walls caisson interior , has a atark with doors, forming an
ar lock, and valves communicating therowith capable of operation from each side. A suotion tube extends
below the edgo tho calsoon to tako water with the

South Krnsington Muskum. - Visitors dur ng the week ending March 24 th, $1883:-$ On Monday Thesday, and saturday, free, from 10 a.m. to Indian section, and other collections, 4893 . O 10 a.m. to 5 p.m., Museum, 947 ; mercantile
edna marine, Indian section, and other collections,
175. Total, 17,012 . Average of corresponding week in former years, 14, Pen. Total from the
opening of the Museum, $21,795,592$,

