WHAT NITRO-GLYCERINE IS.

Unfortunately nitro-glycerine enjoys just now an unenviable notoriety. The words are in all mouths, and nitro-glycerine is discussed in every circle. In another place we have said something concerning the effects which it can produce, and the proper method of destroying it. We propose here to explain what nitro-glycerine is, in such a way that our non-chemical readers may understand what this thing is to which appertain such deadly attributes.

Nitro-glycerine is produced by mixing nitric and sulphuric acids with glycerine at a low temperature. The important agents are the glycerine and the nitric acid. The sulphuric acid appears to do little save attract to itself any water which may be present in the glycerine
or the nitric acid. It is well known that sulphuric acid or the nitric acid. It is well known that sulphuric acid has a strong affinity for water, and it is this characteristic which renders it useful in this connection.
Nitric acid is prepared by treating nitrate of potash-
saltpetre-or nitrate of soda with sulphuric acid-oil of saltpetre-or nitrate of soda with sulphuric acid-oil of sulphuric acid is added; the retort or still is heated sulphuric acid is added; the retort or stil is heated which is condensed and collected for use. It can be purified and concentrated by redistillation with a quanpurifed and concentrated by redistillation with a quancorrosive acids known. In chemical notation its formula is $\mathrm{H} \mathrm{NO}_{3}$. That is to say, it is composed of one atom It is known as hydric nitrate and as aquafortis. Its composition was first investigated by Cavendish in 1785 , but position was first investigated by Cavendish in 1785, but
of oxygen; but these two gases have a very feeble
affinity for each other, while, on the contrary, the carbon affinity for each other, while, on the contrary, the carbon
and the hydrogen have intense affinities for oxygen. On and the hydrogen have intense affinities for oxygen. On
the lest provocation, therefore, the oxygen leaves the the lest provocation, therefore, the oxygen leaves the
nitrogen, which, set free, ceases to be a liquid, and nitrogen, which, set free, ceases to be a liquid, and lises and breaks up the other compounds, and augments enormously the pressure of the escaping gases. Those
who are familiar with the experiments of Pictet, on the liquefaction of gas, know how intense is the cold and how liquefaction of gas, know how intense is the cold and how enormous the pressure required to liquefy even a small quantity of such a gas as nitrogen, but this liquefaction has the moment this affinity is destroyed, the chained force is let oose-we know with what result. Now, it will be seen that nitro-glycerine ought to be a powerful explosive, for in it no less than three molecules of NO_{s} take the place of three atoms of hydrogen, as will be seen at a glance if we reproduce the two formulæ here. Glycerine is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$; nitro-glycerine is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$; the carbon remains unaltered; and three atoms of hydrogen have disappeared. In their stead we find three atoms of nitrogen, and oxygen rises from 3 to 9 . Nor does nitro-glycerine fail to satisfy the expectations that we might form concerning it. It is the most powerful explosive known. As will be gathered from the following figures, there are two classes as explosion :-

at the Whitehall Club, when the explosion took place at the Government Offices, the plate-glass windows being blown outwards into the street, not inwards into the house.

STEEL FIRE-BOXES

In January last a paper was read by Mr. Fernie befure the Institution of Civil Engineers on "Mild Steel for the Fireboxes of Locomotive Engines," a subject of much importance to railway engineers and to the builders of boilers of the locomotive type, whether for locomotive, portable, or fixed engines, or for marine purposes. Neither the paper, however, or the discussion upon it added much to the previously existing information on the subject, nor did it mild why American locomotive engineers had adopted and more roundly upbraided English locomotive engineers for moving so slowly and unsuccessfully in the matter; and came to the conclusion that it was because they had not enough courage, ingenuity, or enterprise to command success In one passage in particular he told English engineers: little of his opinion on this subject; and by negative statements insisted on the positive disadvantages, mental and otherwise, under which he considered they laboured. With very slight alterations, so as to make it read as was intended, this passage runs thus:-" There is, unhappily, in England, Government control to hamper or interfere with railroad engineers, both in regard to the material which they employ and their designs. They are not at liberty to exercise their ingenuity in construction, disposition, strength, and choice of materials, and the competition between rival com-
panies is so small, that the whip has to be held over rail-

THE LONDON AND NORTH-WESTERN RAILWAY COMPANY'S S.S. VIOLET,-(For deecription see page 292.)
possesses the property of producing explosive compounds with great freedom, its energy being due principally to the has been pointed out by Kempshead, although apparently possessing nothing but negative qualities, it in combinapossessing nothing but negative qualities, it in combinaknown, as, for examples, nitric acid and ammonia, the known, as, for examples, nitric acid and ammonia, the extremes of acidity and alkalinity. It is a constituent, ponent of all valuable foods.
With the characteristics of glycerine all our readers are, no doubt, familiar. It is found on most toilet tables, and a mixture of glycerine and water is employed for charging the dash-pots or cataracts of certain are lamps. It is a slightly sweet, smooth, clear, syrupy liquid, almost tasteless, and nearly devoid of odour. It will, no doubt, surprise many of our readers to learn that it is an alcohol. It can be obtained from all solid animal and vegetable fats, and from most oils. It is freely produced when an oil is treated with an alkali-saponified-in presence of water. It is made in stearine candle factories, and can also be obtained from old soap lye. It is best produced pure by beating up an oil or fat with about half its weight of water into an emulsion. This is then pumped through a coil of iron piping heated to the temperature of melting lead, the rate of pumping being such that the mixture of oil and water will occupy about ten minutes in traversing the coil. The fluid which comes out from the worm quickly separates into two portions, glycerine lying at the bottom. The super natant oily liquid being drawn off, the glycerine remains,
early pure. Its formula is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$
Nitro-glycerine is made by adding nitric and sulphuric acids to glycerine. Unfortunately, no skill whatever is required to produce the required explosive, only a knowledge of one or two simple facts; but skill is required to produce nitro-glycerine pure enough to be comparatively safe. For obvious reasons we must decline to less cautious readers should undertake our younger and for themselves of a few drops or other small quantity, for the sake of experiment, we decline to give the proportions of acid and glycerine which must be used; and we may add that it is quite possible to make a non-explosive mixture apparently nitro-glycerine, and that, lacking a wants to make it will be pretty certain to fail-on the whole, a very fortunate circumstance.
Nitro-glycerine is a brownish, smooth, oily liquid, and a deadly poison. Its formula is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$. Its pound. We have in most explosives carbon, hydrogen, and oxygen to begin with ; to these have been added-by treatment with nitric acid-a certain portion of nitric peroxide, NO_{2}, that is, one atom of nitrogen and two atoms
way as 1 , it will detonate with four and one-third times more force, and detonated nitro-glycerine is 1013 times dynamic power or potential energy possessed by actual dynamic power or potential energy possessed by 11 b . of gives the facts:-

Chlorine possesses some of the properties of nitrogen as regards the production of explosives, which are, however, so unstable that they are unknown out of the laboratory, as, for example, chloric peroxide $\mathrm{Cl} \mathrm{O}_{2}$. It is obtained by of its weight of sulphuric acid. It is at ordinary temperaof its weight of sulphuric acid. It is at ordinary temperamixture condenses it into a fearfully explosive red liquid Chlorous anhydride is a yet more dangerous compound. Chloride of nitrogen is produced by passing chlorine through a solution of ammonia. Not more than a few drops at a time have been experimented with, for it detonates if blown on or touched with a feather. It is believed that the celebrated scheme of Lord Dundonald for destroying Sebastopol from a balloon during the Crimean War was based on the notion that it would be possible to produce a couple of gallons of chloride of nitrogen, send it up in a
balloon, and drop it in the heart of Sebastopol, when it balloon, and drop it in the heart of Sebastopol, when it
would explode with the shock and wreck everything would explode with the shock and wreck everything.
Apart from the impossibility of doing anything of the Apart from the impossibility of doing anything of the kind, we may say that the chloride of nitrogen would have proved very ineffective. It would not do half asmuch general
mischief as the sameweight of gunpowder, but its local action mischief as the same weight of gunpowder, but its local action would have been very intense. Thus, a drop of it exploded
on a table, will suffice to shatter the leaf of the table, but on a table, will suffice to shatter the leaf of the table, but the actual work which it would perform in raising a weigh or propelling a shot from a gun would be insignificant.
Alves is still involved to a certain of operation of explosives is still involved to a certain extent in doubt. It is mpossible to do more than collect the products of combustion and assume from them that certain chemical changes we can follow the whole chain of events. It is only known hat the mow the whole chall explos sudden menvarion of an element from a solid or liquid sudden conversion of an element from a solid or liquid
state into that of a gas with an enormous augmentation of bulk. It is worth notice, moreover, that every explosion is accompanied by two distinct effects, first, the violent repulsion of the air from a given space, which may be repulsion of the air from a given space, which may be quickly cools, a partial vacuum is formed, and the air rushes in from all sides to fill it. This produces the secondary effect, which may be confounded with the first. An admirable example of the secondary effect was supplied
ways in England to compel them to - adopt improvements, Inventions are not quickly examined or tested and rejected
or adopted, and none of the railways have experimental or adopted, and none of the railways have experimental new materials or inventions. With antiquated rust on shackles, trammeled by official forms or traditions, the English engineer accepts any-say his grandfather's-type of bridge, machine, boiler, or engine as the best thing that can ever be made, and which he slavishly copies and hands down to his successor; he accepts materials from manufacturers who refuse toadoptthe moremodernimprovements. Conservative in the retention of what is best and most this conservatism, there is no desire to excel, and none to receive, as the fruits of his ingenuity, the substantial rewards which the most maligned patent laws in the world give to its inventors."
Now this was a very hard saying, and though English engineers may be obtuse in some things, Mr. Fernie should remember that some at least may be sensitive, and may feel hurt at the disagreeable comparison he draws between those engineers of the two countries, and the way in which not, on this side are handicapped. These eng at any rate did not show that the pring the discussion, or drawn would lead them to pack could do exactly as they chose, where they would have no Government control, and where they could shake off the rust and shackles, and open their eyes. Some of them, however, did gently hint that the bold author might have told them something new-something more than that American master mechanics had succeeded with steel fireboxes because they had made very large numbers of them and used thin plates. Mr. Fernie was not there, however, to reply to the discussion, and so, perhaps, was lost the postscriptal sting of new and clenching facts. As it was, e did not show why American engineers have succeeded, and why English engineers have failed. The latter, we believe, are ready to learn, but they cannot gain much by being told that they have not been successful while others told them something of the character of more good to have of steel in fire-boxes in America, and then of the precau tions and molifins prevent these failures it could fot have been thate to information did not exist for $w e$ have only to turn such reports of the American Master Mechanics' Association to ind records of many of the troubles and trials through which engineers have gone in order to arrive through thing like success. From a perusal of these reports, which have been published by our excellent contemporary the Railroad Gazette, it does not appear that failure or success have been altogether dependent upon the characteristics of the steel, or on the relation between elastic and ultimate tensile strengths and ductility, but rather on the way in
which the steel has been employed, so that it is not because the English engineer "accepts materials from manufacturers, who refuse to adopt Nor does it appear improvements, the specimen specification for mild steel plates as from the specimen specification for miven the Philadelphia railway, as given by Mr. Fernie, that the steel is any better than that which is made in this country. The following is the whole of the specification All specifications for boiler and fire-box stel heretofore issued are
hereby annulled, and superseded by the following-:-1s.. A careful hereby annulled, and superseded by the following: - 1 st. A careful
examination will be madeof every sheet, and none will be received
that show mechanical defects. 2nd. A test strip from each sheet, that show mechanical defects. 2nd. A test strip from each sheet,
taken lengthwise of the sheet, and without annealing, should have a tensile strength of 55,000 lb. per square inch, and an elongation
of 30 per cent. in section, originally 2in. Song. 3rd. Sheets will
 gation falls below 25 per cent. 4th. Should any, sheets develope
defects in working, they will be reeecte. 5 th. Manfacturers must send one test strip for each sheet-this strip must accompany
the sheet in every case-both sheet and strip being properly stamped with the masks desingated by this company, and also
lettered with white lead to facilitate matching.
From the records to which we have referred, and from Mr. Fernie's paper also, it appears that it may be stated generally that though the same steel may be used throughout a box, it behaves differently in different parts, so that
it is not so much the steel that has to be considered, as the disposition of the steel, the form of the box, and the nature and origin of the strains which are gradually set up and result in cracks. It is the result of long expe-
rience that by far the larger proportion of failures are in rience that by far the larger proportion of failures are in
the side sheets, the number of these failures on one railway, extending over a period of several years, being about thirty-seven to two of tube and door plates and one in the crown plates. The cracks have in most instances taken place when the boilers were cold; some after being cold crack when lighting up anew, and some have cracked with a ioud report when a stay was being caulked.
It is also observed that in almost all cases the cracks take place or commence towards the centre of the side sheets, and at from 6 in . to 12 in . above the fire-bars.
These, and the fact that thin plates last longest, tend to the suggestion that in these large boxes the heating is more severe about the central portions of the plates just
above the fire, than at the margins and corners, the result above the fire, than at the margins and corners, the result being that differential expansion takes plaee, and this dif-
ference is greater as the plates are larger. From this it follows that if the margins of the plates and corners are generally at a slightly lower temperature than the central
parts, then compressive strains will be set up in the central parts, then compressive strains will be set up in the central
parts and corresponding tensile strains in the margins, the parts and corresponding tensile strains in the margins, the
sign gradually changing from plus to minus as it is taken from centre to margin. Now this compressive strain on the centre of the plate must result in one of two things, either the plate must buckle a little to relieve itself of the strain, or it must be compressed under that strain; and
considering the high temperature to which the central considering the high temperature to which the central
parts of the plates are raised and the way in which they are closely stayed to the outer shell, it is most likely that this compressive strain gradually causes a flow of the
material until the strain is reduced to equality with its material until the strain is reduced to equality with its
resistance. This may be supposed to go on until, within certain limits, the strains resident in the plates as due to differential expansion are eliminated, the limit being the mechanical equivalent of expansion by heat of the mate-
rial. In this state, then, the plate might be expected to remain free from cracks long as it was kept hot, and for a great length of time it would do so, as
is proved by the fact that the average mileage of the boxes of ninety engines given by Mr. Fernie reached 220,000 miles. When, however, the plates cool down
and reach a uniform temperature, then the range of contraction of the margins of the plates being less than part which is proportional to the compression which has part which is proportional to the compression which has
taken place while hot. This with new and ductile plates may not at first have effect, but after long exposure to a some lower temperature, there is no doubt that the steel soses some of its capability of withstanding the strains set up in it in the manner described.
The most obvious suggestion for a means of overcoming or rather preventing, the compression above referred to, is
that the plates might be slightly buckled, corrugated, or that the plates might be slightly buckled, corrugated, or
channelled between the stays. The latter has been done as described in our impression for the 23 rd August, 1878. This, however, has not been sufficiently successful to warrant its repetition, for although the shallow channel plates, or gave it some bending freedom in a horizontal plates, or gave it some bending freedom in a horizontal
direction, it increased the rigidity in a vertical direction and hence the plates cracked as much as before corrugation, but generally in horizontal lines or lines commencing horizontally. This would follow as a result of strains set
up in manner referred to above, and a little consideration will show that freedom for slight flexture is necessary, not only in one, but in all directions in the plane of the plate. box plates should be stamped between dies, so as to fire them a series of concentric corrugations, zommencing with a small boss at about the centre of the plate between four stay holes. This need not be done over the whole plate, by only over something like half its area, for ber is slace so readily in the smaller end plates as in the big side plates where heating is not so uniform, and where the flexibility ar the small circula corrugations, the plate might be impressed with smal shallow rectangular buckles, one in each space comprised within the area bounded by four stay holes, the concave side of the buckle being placed next the fire
As already suggested, this subject is one which is not alone interesting to locomotive engineers. Portable and semiportable engine builders are daily becoming more interested
in the use of steel for fire-boxes, and already Messrs. Davey, in the use of steel for fire-boxes, and already Messrs. Davey,
Paxman, and Co., Messrs, Garrett and Sons, ard Messrs. John

Fowler, amongst others, have large numbers of steel boxes in successful use. The temperatures in these fire-boxes never, however, reach those in a locomotive fire-box, and for this reason alone greater length of life may be class of engine will make some efforts to secure combustion under very high temperatures as another means of securing increased economy of fuel, for it is pointed out that this is one of the causes of the high duty of good locomotives
We may mention that though some English locomotive engineers maintain that copper boxes are, owing to their ong life, as cheap as steel can be, not a few have been and are trying steel plates for fire-boxes on a considerable little has been made public by the locol concerned, they prefer to keep the matter quiet, and will let something more be known when they have achieved Thatsome fire-boxes have runs, as stated by Mr. Fernie, over 400,000 miles, and in one case over 500,000 miles, is an indication of what may be expected of them, and it also shows that though a copper fire-box will average 500,000 miles, it is not necessarily the cheapest.

THE MALTA RAILWAY.

The Malta Railway, which was opened for traffic on February 28 th, is one of which some account will be found interesting. It is about $6 \frac{3}{4}$ miles in length, and extends from the or Notabile, the ancient capital, and the traditional residence of St. Paul during his abode on the island. Although so short, the
railway possesses several features of interest, both in the nature of the works and the circumstances under which they have been constructed. Casual visitors to Malta are apt to come away with the impression that the island is a mere rocky and barren appen-
dage to the great harbours and naval and military establishments dage to the great harbours and naval and military establishments,
of which Valletta is the nucleus, and surprise has even been expre
fact, the density of the population is quite exceptional, as will be

Of the total population of Malta, about 100,000 are directly served by the railway, or about 16,000 per mile of line. Valletta the Grand Harbour from the Quarantine Harbour. An imposing rampart and ditch separate Valletta from the suburb of Floriana is another line of rampart and ditch, which cuts off the on with the main land. As the High-street-Strad Reale-of Valletta is the centre of all life, business, and amuse-
ment in Malta, it was essential to place the terminus of the rail way there, opposite the Opera House-see Fig. 5 .
Military and topographical conditions alike required that the vel of the rails at the terminus should be some 35it. below the ground terminus-see engravings, Figs. 1, 2, 3, and 4, page 288 . The booking-office and waiting-rooms are on the street level, last are lighted partly by gas, and partly in the daytime by the light from the end of the tunnel station, which opens on the escarp of the main atch of alletta, probably
posing military obstacle to assault in all Europe.
The main ditch is crossed by a timber viauct
The main ditch is crossed by a timber viaduct of four spans
of 22 ft t. 6 in . each, and one of 38 ft ., at the end of which-that is, the counterscarp of the main ditch-the line becomes single nd enters another tunnel 913 yards in length, by which it is lying between the main ditch and the outside of Floriana. The tunnel is ventilated as frecuent intervals by the shafts
were used for its construction. The alignment of the was settled after much consideration, in order to meet, as far a possible, the requirements of the military and civil authorities, which was no easy matter, a tunnel directly through the out-
works of an important fortress being almost unprecedented. It was subsequently discovered that an ancient subterranean reser-voir-the position of which had not been previously known-
would be intersected by the proposed line. In order to avoid this reservoir without altering the general alignment of the unnel, it was decided to go round it, and so the tunnel has the delicate operation of setting out this peculiar alignment under ground was successfully accomplished by the resident engineer, so that the headings met with a difference of about lin. only tation for Floriana-see drawings, Figs. 6, 7, and 8. At thi point the rails are about 90 ft . below the surface of the ground The long stairs necessary to reach the platform are arranged so
as to make the descent and ascent as easy as possible. The line here is single, and space for the platform is provided by inhere is single, and space for the platiorm is provided by in-
creasing the span of the arch forming the roof of the tunnel on ne side only. At 47 chains the line crosses a ditch and enter through the counterscarp, and at 54 chains emerges on the glacis of the outer fortifications. The tunnel is constructed on a $3 \ddagger$ miles the gradients are generally level, but from $3 \frac{1}{4}$ miles to the end of the line is almost a continuous ascent, beginning at
1 in 66 , increasing to 1 in 50 for the greater part of the dis in 66 , increasing to 1 in 50 for the greater part of the dis-
tance and terminating by a short piece of 1 in 40 up to the ance and terminating by a short piece of 1 in 40 up to the
entrance of the Notabile terminus, which is level. There are ntermediate stations at Floriana, Hamrun, Misida, Birchircara, Hamrun and Birchicara. The central depot is at Hamrun, where engine and carriage sheds are provided.
Land being very valuable and reluctantly parted with, advantage has been taken of the circumstance that the cuttings are almost entirely in rock to form the embankment with handpacked pitched slopes of to to 1 , the more regularly shaped
stones being selected for the outside, and the interior of the bank filled up with rubble. The train consequently presents the curious appearance of running along the top of a wall. The to the yard, fish-jointed, secured to the sleepers at the ends and middle of each rail by fang bolts, and at intermediate sleepers by dog spikes. The fang bolts have their nuts on the top of the
flange of the rail, so as to avoid opening out the road for screwing up; the dog spikes are cylindrical, with blunt ends and the
usual head. The flanges of the rail are notnotched, but the square tes, so as to prevent the rails "creeping down the inclines; the gauge is one metre. The carriages, which were supplied by the Railway Carriage Company, Oldbury, are on the American system, with seats placed longitudinally and a central gangway through the cars. From the end platforms convenien re 9 in are 9in. only above rail level. The engines, which were supplied
by Messrs. Manning, Wardle, and Co. Leeds, are tank engines with six wheels coupled, cylinders $10 \frac{1}{2}$ in. diameter, 18 in. stroke the only peculiarity about them is that arrangements are prothrough turning the exhaust steam into the tank when passing
throungel, in order to keep the atmosphere as pure as possible.
The engineers were Messrs. Wells-O owen, and Elwes, MM. Inst. d. Burke, A.M. Inst. C.E., as resident engineer.

NEW TROOPSHIP FOR INDIA.
ON the 15th November last was floated out of the building dook
of Messrs. Laird Brothers, Birkenhead, a new Indian troopship, which was named the Clive by the Countess of Sefton. The Clive has been constructed from designs prepared by Messrs. Laird
Brothers, on the invitation of the Viceregal Government in India and submitted to the approval of the authorities there and at the India-office, who, in conjunction with the Admiralty, gave them
very careful consideration. The Clive has accommodation for 640 military officers and men, 137 ladies, servants, soldiers' wives and en, all told, or a total complement of 1083 persons; or, when ocaasion requires, she will carry 130 of horses, , for which special
ittings are provided. The ventiation-so important a matter in vessels carrying large numbers of passengers, especially in tropical runk ways from the upper deck above the level of the poop owls for carrying off the heated air, and also by an arrangement
of tubes through which the foul air will be drawn by means of fans orked by steam, or by the current induced by the heat passing up
the funnel, which is double. The dimensions of the vessel areength, 300 ft ; ; breadth, 45 ft . 8 in.; depth in hold to upper deck, neasurement, 2730 tons. The mean load draught is 16 ft . 6 in
The engines are a pair of direct-acting inverted cylinder compound
ansines to indicate 200 indicated horsen
 48in. and 84 in . in diameter, and have a stroke of 4ft. The
boilers are cylindrical, four in number, to work at 75 hb .
pressure and iron and partly of steel. She has three decks, with poop and
forecastle connected by sidehouses, which give uninteruted
onem communication from stem to stern for working the ship, and aftord
convenient stowage for boats and other necessary fittings, and is onvenient stowage for boats and other necessary fittings, and
not unlike the five large Indian troopers, one of which, the Euphrates, was buit and engined by Messrs. Laird. There is an
inner wate-tight skin, forming a double botom, and there are
numerous water-tight bulkheads, five of which are carried to the upper deck, and the the remainder to the main deck, and all carefully itted, where necessary, with water-tight doors. Water ballast
an be carried in the compartments of the double bottom to trim the ship as coals or stores are consumed. She has a straight stem and elliptic stern, with show galleries, and is rigged as a
barque and has one funnel. On Wednesday morning the Clive left the Alfred Dock, Birkenhead, for a series of trials, commencing with of ship and engines considearably exceeded the contract requirements, showing a speed of nearly 13 k knots, instead of 12 knots,
with 2300 indicated horse-power, against 2000 indicated horse-

After this several trials were made to test the handiness of the vessel, so important for the special service of going from port to and starting the engines practically at a moment's notice. There ndia-office; Commander Walter Powell whe wemmands the Clive and Lieutenant J. Kocastle Finney; Mr. Lamborne, chief engi-
neer, and other officers of the Indian marine; Mr. T. Dodd, inspector of ships building by contract, and Mr.
Butler, of of the engineers department, Admiraty Messr.
Barnes, William Laird, Henry Laird, R R Beris others. On Thursday week the trial consisted of steaming for
six hours at full boiler power, and this was accomplished most atisfactorily at a speed of over 13 knots, the engines working
hroughout at seventy-two to seventy-four revolutions, and hroughout at seventy-two to seventy-four revolutions, and
developing about 2200 -horse power, the boilers giving an abundant supply of steam with eass firing, the coal used being Nixon's
navigation steam coal. On this occasion besides thise ond present on Wednesday, the Earl of Sefton and three sons and
thers ind about nine o' 'lock, and returned to the party, who embarked o^{\prime} 'lock in the evening. The Clive is now practically ready for
service, and will shortly leave Birkenhead, and may be expected to be a most successful and useful addition to our means of transporting troops in our Eastern seas.
Naval Engiverr Apporivtrients.-The following appointments have been made at the Admiralty:-Alfred Waters, chief engineer,
to the Indus, for service in the Agamemnon; Nicholas Meaden and
Fliza Agamemnon.
The Instivition of Mechanical Enginerrs.-An ordinary general meeting of this Institution took place on W ednesday afternoon
and yesterday morning, and the annual dinner of the Institution tool nd yesterday morning, and the annual dinner of the Institution took was good on Wednesday afternoon, when an interesting paper on
the strength of shafting when exposed to torsion and end thrust, by Professor A. G. Greenhill, was read and discussed, and a paper
on modern methods of cutting metals was read by Mr. W. Ford and was concluded yesterday morning, the proceedings being brought to a close by the reading and discoussion of a paper on im-
provements in the manufacture of coke, by Mr. J. Jameson, the paper describing the system we recently illustrated. We shall
refer at greater length to some of the papers in another impression. MATLOCK Batt WATERSUPPLI.- Captain Robt. C. T. Hill yard, Matlock Bath, on the 4th inst. with respect to an a aplication from the Local Board of Matlock Bath, and Scarthin Nick, for sanction to borrow the sum of £6014 for the purchase of the undertaking of
the Matlock Bath Waterworks Company, and for the execution of works of water supply. In the year 11881 Messrs. G. B. Nivecols
and Sons, engineers, of Handsworth and London, were called in
by the local board to by the local board to report upon a scheme for water supply, and
 tion was held, Mr. Wm. Batten, C, as umpire, whose award was
f1907 10s. Messrs. Nichols and Sons estimate the cost structing new works, and extending the present source of
at \&4077 3s. There was no opposition to the application.

RAILWAY MATTERS,

Iv France a Commission has been appointed to consider the various questions and evidence relating to the purchase and work-
ing of railways by the thate, and it seems that at present evidence ays by the State, and generally that thical working of the rail more effective in securing for the public the greatest travelling mare
THE railway scheme so long talked of in British Honduras is
likely at last to be realised, the executive having taken the matter warmly in hand. Surveyors for the preliminary work were expe India says the Docal jour endeavour to open up the resources of this fruitful colony, which ave hitherto been almost undeveloped.
The Braithwaite and Buttermere Railway Bill, which was to be considered by a Select Committee of the House of Lords, was on
Monday withdrawn by the promoters. The object of the Bill was to carry a railway for mineral traffic along the shores of Lake the summit of Honister Pass, the professed aim of the promoter being to convey slates from quarries at the top of the pass to
Braithwaite station, on the Keswick and Cockermouth line. The Braithwaite station, on the Keswick and Cockermouth line, The landowners through whos
A reporr by Colonel Yolland has been published on the collision London Bridge, on the South-Eastern Railway, between a dow train of empty carriages proceeding from Charing-cross to the
Bricklayers' Arms yard and an up passenger train from Tunbridge Wells-Brighton station-to an unnon-street. Two passengers were an in Ras Company, not fair to the passengers whom they carry, or just to the servants whom they employ, to have turned out a passenger
train to run from Tunbridge Wells (Brighton) station to Cannontrain equivalent to nine ordinary carriages, independent of the train equivalent to nine ordinary carr.
hand brake on the tender of the engine.
A rkport has been made by the Board of Trade on the Hull and Works, crossing the river Humber by it viaduot between Hessle
Cliff in Yorkshire, and Barton-upon-Humber in bet the following dimensions, viz: :- (1) One span, 60 Oft. wide, with two spans, each 250 ft . wide, with a head way varying from 89ft. to 36ft. 6 in. above high water of ordinary spring tides; and (3)
thirty-two spans, each 150 ft . wide, and with a headway varying from 88ft., to 46ft. above high water of ordinary spring tides. The Board of rrade have caused inquiries to be made as to the naviga
tion now carried on above the site of the proposed bridge, and are advised that if the navigable span is constructed with a headway of not less than 9 oft. above the level of high-water spring tides,
there will be an available headway of 105 ftt at the probable time of tide when large vessels, bound up or rown the river, would pas the site of the briage, and consequently that by taking down the
upper masts of a few of the largest vessels, the trade will scarcely, if at all, be interfered with. The Board of Trade are further advised that as at the site of the proposed bridge the navigable
channel of the river is liable to change its position from natural channel of the river is liable to change its position from natural river bed under the broadest opening in the bridge, and the
navigable channel on each side of it, leading from the fairway o nhe rive
thater.
THe report of the Illinois State Commissioners of Railroads for 1882 shows that Illinois had a larger mileage than any other
in the American Union. It seems that during the year ending June 30th, 1882, there were constructed in the State of The total mileage now, in round numbers, is as follows:track, 851 miles; ; double track, 394 miles, and side. ways 1 1527-
total, 10,463 miles. This vast extent of line is in the hands of orty-seven corporations, whose total gross ineome for the year was
189,352977 dols. Out of this amount 52,782 竍 passengers, $126,767,839$ dols. from freight, and 9, 802,235 dols. from
ther sources. In English money the income from tho s. railroads for last year amounted to no less a sum than $£ 38,000,000$.
In 1881 the gross income was $176,073,259$ dols., or about $£ 30,215,000$ A vast proportion of this amount was also from freight. The in chat many of the companies have extended their lines which, largely accounts for the increased earnings, and the great inicrease
of earnings made in the last few years is owing to increased mileage, and large interests acquired and never before reported to the Commission. The erross earnings from
to $56,396,287$ dols., of which $14,921,184$ dols. was susiness amounted
promsengers, The total expenses and taxes paid in Ililinois was $37,628,705$ dols., and the aggregate gross profit on Mlinois business $1,876,958$ dols. The returns o dividends, after deducting disbursements for workin apppenses, taxes, interest, rentals, and extraordinany expenses, of
exper expenses, taxes, interest, rentals, and extraordinary expenses, or
$28,912,847$ dols., against $35,743,065$ dols. for the year 1881, and
$32,061,768$ dols. for the year 1880 . During the year 1882 there has been a gradual reduction of passenger rates upon all the lines Three years ago the average passenger tariff was 3.28 cents per
mile, but in 181 it
fiut was redued to 2.68 cents, and in 11822 still mint,
furthe to 2.51 cents. This represerts a co
passenger public in the course of two years.
IN a report on a collision on the 21 st February, between a down
and an up passenger train at Stony-street Junction, as both trains were on their way to the Cannon-street station of the South-
Eastern Railway; and of a subsequent collision betwe Eastern Railway; and of a subsequent collision between some
vehicles at the rear of the ue passen vehicles at the rear of the up passenger train which were thrown
off the rails by the frrst collision, and fouled the adjacent up line of the rails by the frst colision, and fouled the adjacent up line
of rais in front of the engine of another up pasengen train, which
was also running towards Cannon-street station on another line of rails, and was run into by the engine of this second up train,
Colonel Yolland says:- The South-Eastern Railway Uompany
 all railway companies wrill turn out all theies passexgect trains
alter with continuous brakes throughout their whole length
fitter until the law on the subject is altered, and a severe penalty authorised for thus wilfully and unnecessarily endangering the
public safety. Cannon-street station was evidently intended in pubic safety. Cannon-street station was evidently itended in
the first instance as a terminal station for the City, but it has
been converted into a mere road station, and It itelieye it o to be the very worst in the kingdom. There are eight or nine lines of
railway, independent of cross-over roads, on the bridge over the either in the seut of end of the station, and any passenger train those lines of railway on the level, and except for the security which is obtained from the interrocking of the points and secignals by preventing signalmen from making mistakes, the station would
not be workable. It would appear that no less than 379 trains
non run into this station and that 371 trains run out of it, making upa
total of 750 trains passing over the Cannon-street bridge, exclusive of empty engines, ans this number does not int include firfety-nine une up
trains and 73 down trains which run between the Borough Market trains and 73 down trains which run between the Borough Market
and Cannon-street west junction. The comparative freedom from accidents and collisions speaks volumes in favour of the great care as a rule, work this traffic. Between 10 and 11 a.m. no less than thirty-one trains run into Cannon-street and thirty-five out o
at intervals, in some instances, of less than two minutes apart.

NOTES AND MEMORANDA.

THE production of gold in Australia seems to have diminished considerably suane 180, when the mines yieled 1876 the quantity sank below a million ouncess, that is to sayn,
 1880 showed a slight improvement, as the yield rose to 839,121
unces; and 1881 was still better, with 858,146 ounces; although e quantity was
THE Registrar-General's return for the week ending March 31st shows that the annual rate of mortality in that week in twenty-
eight great towns of England and Wales averaged $29 \cdot 2$ per 1000 of their aggregate population, which is estimated at $8,620,975$ persons
hi the middle of this year. In London 2714 births and 2148 deaths vere registered, or $16 \cdot 15$ births and $12 \cdot 8$ deaths every hour. Allow ing for increase of population, the births were 30 , and the deaths
262 , above the average numbers in the corresponding weeks of the

Professor Palmitrer devised a process for silvering glass by PRorsessor Patriker devised a process for silvering glass by have the advantage of producing a very brilliant metallic deposit.
When into an ammoniacal solution of nitrate of silver is poured, frrst a little caustic potash, and then a few drops of glycerine, the lcohol be added to the mixture. A moderate heat and darkness are said to increase the brilliancy of the precipitate, and darkness
also favours the adhesion to the mirror of the deposit.
AT a recent meeting of the Boston Society of Natural History, Dr. M. .E. Wadsworth gave the results of some observations, made in $1871-73$, upon the effect of atmospheric action in indurating the
friable St. Peter's and Potsdam sandstone in Wisconsin. This effect, the new American journal, Science, says, was quite strongly marked upon the exposed surfacees, resulting in induration, the partial obliteration of the granular structure, the formation of con-
cretions ind even of guartz crystals: while the covered portions cretions, and even of quartz crystals; while the covered portions
of the same blocks and slabs retained the usual friable character. AT a recent meeting of the Paris Academy of Science, Mr. M. by several methods. One is to revolve a coil inside of a bobbin which carries a current passing through the resistance to be
neasured. The current induced in the revolving coil is opposed to the difference of potential at two points in the resistance to be
The condition of equilibrium is $r=2 \pi n \mathrm{CS}$, where n in the velocity of rotation, S the distance between the points of contact, and C a constant of the bobbin. The author gave an if the bobbin were extended to infinity in both directions. The value of C for such a bobbin is $4 \frac{\pi}{d}, d$ being the distance between

wo turns of the wire.

IN concluding a valuable paper on steam-raising waters, published Inison Macadam, F.I.C., says:-"Clarke's process, the addition of at the space required for settling feed-water of caustic soda, or, still better, of soda ash, and at the same time raising the temperature by utilising waste steam or reat,
would be beueficial in most cases, care being taken to afterwards settle or filter the water. Soda ash was first recommended in the columns of the Times of March 17 th, 1884 , , ry Mr. Peter Spence,
of the Manchester Alum Works, who sys - For every boiler 2 l of the Manchester Alum Works, who says:- For every boiler 21b. of soda ash-an article easily procured at 11d. per 1 b.- is every day
given to the stoker. This he dissolves in a bucketful of cold water, and puts the solution into the water supply for the boilers. This is that now not the slightest corrosive action takes place, an addi-
ner tional advantage being that no crust is ever formed in my boiler,
all the lime salt that forms these crusts being also destroyed by the THE
THE decline in the United Kingdom in the total number of puddling furnaces during the last few years has been considerable.
The figures issued by the Mining Record Office show that in 1860
 was the greatest number returned in any one year. In 1874 the number had declined to 6803 , and 1877 it rose again to 7159 . The
total number of furnaces returned for $1882-62996$-is 101 less than that for the preceding year. The number of furnaces in actua
operation at the end of 1882 was 814 less than that returned for ope corresponding date in 1881; but of these a good many had probably been working over a ertath part of the year. Thi
indeed, made tolerably evident by the greater production of 1882 , dsst of generally accepted by the trade-it would appear that of the remainder 21 per cent. of the furnaces were inoperative on account of the condition of trade or changes in methods, and of that pro-
portion probably two-thirds will not again be lighted up.
The Registrar-General's return for the week ending February 24th shows that the annua rate of mortaility in twenty-eight great gate population, which is estimated at $8,620,975$ persons in the were the lowest were Brighton, Derby, Plymouth, Bristol, Ports-
mouth mouth, and Salford. In London 2759 births and 1504 deaths, or 9.25 deaths every hour, were registered. Allowing for increase o
population the births exceeded by 10 , whereas the deaths were so many as 299 below the average number of the corresponding
weels weeks of the last ten years. The annual rate of mortality from
all causes, which had been equal to $21 \cdot 7,21 \cdot 5$ and 20.1 per 1000
in the three preceding weeks, was that week 20.5 , 15 , in the three preceding weeks, was that week 20.5 . During the first
eight weeks of the current quarter the death rate averaged only
20.9 wer periods of the three years 1880,1881 , and 1882 . In Greater
prone London 3488 births and 1931 deaths were registered equal to
annual rates of 36.5 and 20.2 per 1000 of the population. The death rate was thus equal to about $11^{\circ} 5$ per hour in a population
AT the last meeting of the Chemical Society Mr. L. T. Wright read a paper on "The Estimation of Hydrogen Sulphide and
Carbonic Anhydride in Coal Gas." The author prefers the following method:-The crude coal gas, dried and freed from ammonia by passing through phosphoric acid, is passed through two weighed U
tubes, the first charged with roughly powdered cupric phosphate in one leg and calcium chloride in the other, the second containing
soda lime-slightly moistened by exposure to the air for about eighteen hours -and calcium chloride. The increase of weight in the first gives the sulphuretted hydrogen in the second the carbonic
anhydride. The copper phosphate is prepared thus:-2 1b. of ordinary phosphate of soda are dissolved in 1 gallon of water, and $2 \frac{1}{2}$ lb of cupric sulphate in $1 \frac{1}{2}$ gallons of water. The two solutions
arevigoorously ytirce to ogether, the precipitate washed by decantation, and dried at 100 deg. C. Phosphate thus prepared absorbs hydrogen sulphide very perfectly. Before using the absorption tubes three
cubic feet of clean dry the reagents. The gas during the absorption should be passed at
the rate of 5 to $\frac{1}{2}$ a cobicic foot per hour. The total quantity must vary with the impurity in the gas. The sum of the hydrogen
sulphide greater than the number obtained by absorbing these gases
simultaneously in one U tube charged with soda lime. A 6 in. tube charged with cupric phosphate will absorb twenty grains of
hydrogen sulphide. A similar sized U tube oharged with soda hydrogen sulpuide. A similar sized tube, oharged with soda
lime, will absor perfectly eighteen grains of carbonic anhydride
Dr. Armstrong suggested that some acetylen might be absorbed by the cupric phosphate.

MISCELLANEA.
THERE is but one nickel mine in the United States now in opera-
tion. It is situated in Lancaster county Pa. It is 200ft. deep tion. It is situated in Lancaster county, Pa. It is 200 ft . deep
and has been worked seventeen years. The demand for this meta is rapidly increasing. Croppings of nickel are found also in
Madison, Iowa, and Wayne counties, Missouri. In the States the
refined metal is worth 3 dols, reinned metal is worth 3 aols. a pound.
IT has been suggested that as the officials and a part of the
British Association will go to Canada for its 1884 meeting that the British part, or the home-staying part of the Association porary staff to organise a meeting somewhere i will United Kingdom, for the benefit and amusement of those who
wite prepared, or who do not feel disposed to brave the

ON Tuesday afternoon, Messrs. Robert Thompson and Sons, Sunderland, launched an iron screw steamer, the Kingscote, buil
to the order of Mr. Edward Eccles, Newcastle-on-Tyne, of the to the order of Mr. Edward Eccles, Newcastle-on-Tyne, of the
following dimensions :-Length, 220ft.; breadth, 32ft.; and depth 15 ft . 6 in . The vessel is specially built for making quick return passages in ballast. Her engines are
R. and W. Hawthorn, of Newcastle.
THE project of a canal between Tchernavoda and Kustendji has
been revived at Bucharest, and meets with the support of the Liberal papers, especially the Romanul. It is stated that ther are English capitalists ready to find the necessary funds. In
Bucharest a political argument has been found for undertaking th work-namely, that by the canal Roumania would make hersel
independent of the resolutions of the Conference, and possess an outlet of
Genkral Footr, United States Minister to Corea, has recently been on a mission to Panama, and after inspecting the canal h surface of the ground on the line of the canal has been removed from ocean to ocean. The company has a large number of diggin
machines at work, and the earth is being rapidly cut away. But machines at work, and the earth is being rapidly cut away. Bu T
The East Indian mail, run weekly by contract with the British the peninsula, carried 1155 passengers from Bologna to Brindisi in
1881 , and 1027 from Brindisi to Bologna-an average of 22.2 and $19 \cdot 4$ through passengers per train. The number of employés wa 66,016, or, remakks the American Railroad Gazette, very nearly
12 per mile, against $4 \cdot 8$ per mile in this country. The averag The Council of the Society of Arts have appointed a committe of the committee will be confined to a consideration of the best glad to receive any information in fogs. The committee will b have given their attention to it, or to consider any proposal having for their object the prevention of such collisions. All sucl
communications should be addressed to the secretary of the Societ Arts, John-street, Adelphi.
THE prospectus is issued of the "Electric Motor Syndicate," t o be formed for the purpose of acquiring the electro-motive engin
patents of M. Desire T. Piot and Mr. J. MacDonald for electri tricycles. In pointing to the cost of power by the electro-motor
and by steam engine, a 2 -horse engine is compared with a 2 -horse power at 11d, by the motor 2 2.hd , This ster the the engine d. per horse-power per hour, ought to be put into a museum curiosities, and it would be interesting to know what was the
source of the electricity which worked the electro-motor for 1115 d. per hour. Was this generated by an engine costing 5 d . per horse

THE decline of production of finished iron in 1882, in South tion, is attributable to the fact that two of the largest works there ceased to manufacture wrought iron in 1881, having taken up the
manufacture of steel instead. By this step 149 puddling furnace have been disused. A third works in South Wales was entirely
dismantled in 1882. Only twelve Welsh works are now engaged The ir produced in the Principality mainly takes the form coke bars for the manufacture of tin plates and iron rails. Of the
latter latter, the aggregate make in 1882 was only 46,978
118,177 tons in 1881 , the difference being 71,199 tons
A rEPorT just issued by the borough surveyor of Birmingham
shows that during the past year 129,268 cube yards of mud were rest in the Birmingham Tame and Rea District Drainag 7,007 in the new tanks, making Fifty-six acres of land were used for digging in the mud, and atthe liming sheds 4662 tons of lime were used for precipitating purposes for conveying the sewage to the newly-acquired farm lands, is nearly completed ; and considerable progress has been made in
draining and laying out portions of the farm lands, as well as in
the diversion of streams, formation of roads, and the ereetion of the diversion or
farm buildings.
A NoTable mechanic has recently passed from amongst us b the death, at the East End of London, of Mr. George White, loan
moulder. Originally learning his trade in the establishments Maudslay and Seaward, he early developed unusual ability and judgment in the difficult art of loam moulding, and becoming
foreman at the Canal Ironworks, Millwall, London, he continued for many years to produce a succession of castings of unrivalle years, and it was only within a few weeks that he nearly sixit years, and it was only within a few weeks that he was persuaded
reluctantly to yield to his growing weakness and take rest. His
position he has died esteemed and lamented, at the age of seventy-seven
THE model theatre of Brünn is illuminated by electricity, and also provided with and electrical satety apparatus, evised by Robert
Langstouff Haviland, for use in the event of fire breaking out. By stage and auditorium is allowed to fall; the valves of water pipes are opened, so as to discharge copious volumes of water on various parts of the building; extra doors are opened, and ventilators are
closed. All these actions are effected by a key-board, put in the most convenient place, having five pushes labelled to correspond
while the sixth works all five at once, and may even be made come into action automatically, by means of a very combustible
wick or fusible metal attachment.
The same system has been wick or Vienna. The water pipe arrangement may be successful,
tried at Vien
but the incombustible curtain was found to be useless in the recent Berlin State Theatre
Sivog the opening of the new promenade at the eastern end o
Brighton the West Pier has been almost deserted. To make again attractive it is proposed to build a large structure at the end of the pier, forming a long tee head to it, the building to be nopposed. Its superstructure is compared to the main deck of arge ship, on which will be erected ladies saloons, gentlemen music, and concort-rooms, a general dining hall and saloon, baths
and other aids to comfort and amusement. Visitors will thus be when they feel so inclined. Underneath the main deck will be aptions of baths. Above the fitted with wind screens, seats, and awnings. The works will be
carried out under the direction of Mr. Eugenius Birch, C.E.
THE MALTA RAILWAY.
mbssis. WELLS-owen and gervase elwes, mm.i.c.e., westainster, engineers. (For deccription see page 280.)

C (N甘าd 9 פוป

AUTOMATIC WATER-WHEEL GOVERNORS.
CONSTRUOTED BY MR. H. J. H. King, NEWMARKET, STROUD, GLOUCESTERSHIRE.

The problem of accurately regulating the speed of waterwheels and turbines presents great difficulties which in practice it is impossible to completely overcome, except by means of a governor which applies a brake when the wheel runs too fast, and vice versd. This system, however, is wasteful of water, and should only be resorted or where great accuracy in speed is of importance. The surplus, or of obtaining perfect regulation of speed arises from two causes :-First, from the fact that a heavy sluice or "shut" can at best be but moved slowly; and secondly, because the water which is already in the buckets of the wheel cannot be dealt with except by a brake. This is a factor which makes an overshot wheel impossible to regulate perfectly, except by a brake governor. It is, therefore, best when the water power in a mill is supplemented by a steam engine, to couple the water-wheel and engine together, as by so doing a greater regularity of speed may water. It is obvious that to obtain the maximum power from water. water when the water-wheel and engine are coupled together, all the water should go on the wheel at the maximum fall, and none run to waste over the weir till the full capacity of the wheel is reached. As, however, the water supply of most streams varies very much, being influenced by the requirements of the mills above and other causes, it follows that to maintain the water at weir level, a constant adjustment of the "shut" must take place, which, if done by a man, occupies a great deal of time, and in practice is seldom if ever satisfactorily performed. The governor illustrated in Fig. 1 has been designed automalevel of the water in the mill stream. The other-Fig. 2-regulates the speed of a wheel when not coupled with an engine, this being effected by a movement of the shut in proportion to the
work to be done. Referring to Fig. 1, which is called the float governor, 1 is a cog - wheel, arm, this wheel taking the pla arm, this wheel taking the place
of the ordinary shut handle, of the ordinary shut handie.
It acts also as a double it acts also as a double
ratchet wheel over which the pawls 2 and 3 reciprocate very slowly. These pawls are kept out of gear by the segment ring 4-which is shown in its central position-so that neither pawl acts on the wheel, which is now free to turn by hand in either direction and put water on or off in the usual way, The ring 4 is attached to float 5 through the medium of a
toothed wheel and sector, and as the float rises and falls the toothed wheel and sector, and as the float rises and falls the
ring will be turned accordingly in opposite directions, so that if after the water wheel is started, the water should fall, the top of the ring will move to the right, and the pawl 2 will begin to turn the wheel 1-engaging from one to sixteen teeth each strokeand wind the shut gradually up till the original water-level is restored. If, on the other hand, the water should rise, the pawl 3 will come into action and the shut will be lowered and more water put on. The handle 8 is for locking the ring in its central position and keeping the pawls clear when the wheel is turned by hand. An important feature in this arrangement is the rise and fall of the float. In some or slow in proportion to necessary where there is not water enough to drive the water wheel alone, during certain times of the day, to use a special kind of ratchet clutch, which insures that the water wheel shall always assist the engine when it is able to do so, but which also
insures that the water wheel can never be driven by the engine. The speed governor, Fig. 2, is designed for regulating the speed of water wheels and turbines when working alone. It is in many respects similar to the float governor, the only difference the medium of the lever 11 and the rod 8, instead of the float; 7 is the shaft which is attached to the shut. The wheel 9 is for throwing the governor out of gear when the shut gets wide open, otherwise the strap driving the governors would be thrown off. It is turned by the scroll on the ratchet wheel, and is so set that the arm 10 is lifted by it just before the shuts gets wide open. This stops the pawl 5 from acting on the ratchet wheel and opening the shut wider. A bell may be attached to call attention to the fact that the shut is wide open, and that the governor can no longer keep up the speed if the supply of water should
further diminish. The great feature of this governor is that its rate of correction is proportional to the error to be corrected, as one to any number more teeth may be engaged at each stroke one to any number more teeth may be engaged at each stroke
of the pawl. It should also be noticed that the error in speed will continue to be corrected till it is eliminated, which is not the case with the ordinary centrifugal governor.

HORIZONTAL ENGINES ON WROUGHT IRON BEDPLATES.
messrs. hayward tyler and co., LONDON, ENGINEERS.

The illustration shows one of a class of engines which is being made by Messrs. Hayward Tyler and Co., of Whitecrossstreet, London, especially for foreign and colonial work, where land. It is scarcely necessary to point out the great advantages possessed by wrought iron bed plates where machinery is exposed to rough usage in transit, owing to their greater lightness and the absence of danger of breakage. In Messrs. Hayward Tyler and Co.'s engines of this class the details are all similar
to their standard horizontal engines, and the erection is all by
accurately planed surfaces, suitable blocks being rivetted to the wrought iron girders for this purpose. Thus no difficulty is experienced in putting together on arrival. These engines are
built either singly or in pairs, and in sizes from 9in, cylinders upwards, both high-pressure and condensing. The engine shown in the engraving is fitted with Rider's patent automatic variable expansion.

Palliser Improved Shot.-On Thursday, April 5th, a Palliser improved projectile for the 80 -pounder gun, of chilled iron with
steel jacket, was fired at a 9 in . wrought iron plate at Shoeburyness, The shot weighed 85 lb . The calibre is $6.3 \mathrm{in} .$, the velocity was
about 1400 ft . The projectile passed clean through the plate. This is a very good result indeed, for the calculated limit of perforation is under 8 in. The steel jacket did its work well. MajorAustralia and to be present at the trial of these projectiles against steel-faced plates, which is the particular work for which they are designed, being intended to furnish the 80 -pounder converted Palliser guns at Melbourne and Sydney with the mean of attacking armour-clad vessels.

THE TRANSMISSION OF POWER BY ELECTRICITY AND THE PORTRUSH RAILWAY. Ow Wednesday, April 11th, 1883, a paper was read on (1) "The Transmission of Power by Electricity" and (2) "The Portrush
Electrical Railway," by Mr. Alexander Siemens and Edward Hop. Electrical Railway," by Mr. Alexander Sieme
kinson, D.Sc., of which we give an abstract.
The authors began by referring to existing electrical railways,
nd went on to discuss the question of the transmission of power, and went on to discuss the question of the transmission of power,
illustrating their remarks by models. First, there was an ordinary centrifugal pump drawing water from the tank below, forcing it centrigh the tube, and returning it again to the tank., The pump was worked by a strap from a Siemens' machine, used as a motor,
and the current was obtained from a somewhat larger machine, and the current was obtained from a somewhat larger machine,
which is ordinarily used for lighting the hall of the Society of which is ordinarily used for lighting the hall of the Society of
Arts, but which, for the present, had been taken for the purpose of experiment. Now let the pump be disconnected, and replaced by
the very small motor working the sewing machine. It was imporant to observe that the same generator was used in both cases, nd that neither its speed nor any other of its conditions had been
Iltered, excepting only the pull on the driving strap; but that, in altered, excepting only the pull on the driving strap; but that, in
the case of the pump, probably about 5 -horse power of useful work the case of the pump, probably being done, while in the case of the sewing machine, perhaps
was was beise power. Now, without stopping the sewing machine, the
fohoore
whole of the forty Edison incandescent lamps required for lighting the room were connected with the generator. The sewing
machine
still
performed $i t s$
zond from the same generator and the same leading wires about 5 -horse power was employed in lighting the room. These illustrations would be sufficient to show, in the first place, that when once we have electrical mains of sufficient capacity carried from central stations to our houses, how simple a matter it will be to combine
lighting with domestic operations, and even the larger operations required for purposes of trade; and, in the second place, that each motor of a series placed in parallel circuit performs the work required of it independently of all the others, and independently of the generating machine, provided only that the generator is
capable of producing the power it is called upon to furnish. capable of producing the power it is called upon to furnish.
This second point the author then explained by the
diagram of an electrical hoist, designeed by Dr. John Hopkinson, and made by Messrs. Siemens Brothers. The electrical part consists of an ordinary D_{5} series dynamo, fitted with reversing gear
for reversing the direction of the current and the lead of the brushes, and consequently the direction of rotation of the machine. In the mean position, both pairs of brushes are litted from the high velocity, and consequently is connected by spur gear to the
lifting axle, to diminish the speed of lift and inerease the leverage. On this anle a chain pulley is fitted by means of a special friction
clutch, which need not now be explained. The clutch automatically holds the weight attached to the chain, as soon as the dynamo is stopped. Having coupled up the leads to the terminals
fthe machine, and hung a weight of 1 ewt. on the chain, start the machine, and hung a weight of 1 ewt. on the chain, start the dynamo, measure roughly the speed of lift, and by means of
the electro-dynamometer the current passing through the dynamo-

$$
\begin{aligned}
& \text { Weight. } \\
& 1 \text { swt. }
\end{aligned}
$$

Now let the attached weight be doubled without altering any other

It would be observed that with the heavier weight the speed had diminished and the current increased.
Secondly, he would again put on the
experiment, but insert a resistance in the leading wire the first measuring the current and the speed, we have-

$$
\begin{aligned}
& \text { Weight. } \\
& \text { 1 ewt. } \\
& \hline
\end{aligned}
$$

They would see that the current was exactly the same as before, while the speed had diminished. Taking again the double weight,
and leaving the resistance inserted, we haveWeight.
2 owt.
speed.
ft. per see.
Current.
13
amperes.
Again the same current as they had before with the double weight,
but a diminished speed. From these experiments it was clear that for a given load the current remains constant, whatever the speed may be, and that the speed principally depends upon the resist-
anoe through which the current passes.
on anoe through which the current passes.
Three conclusions are to be drawn,
principles of the theory of the electrical transmission of generator, and must be designed for the particularen went of the do without reference to the generator. (2) The current depends upon the load on the motor, and upon no other thing whatever.
3) The speed depends upon the E. M. F. of the enerator and the so
total resistance in the circuit of the machines. If the mains whieh supply the current to the motor be maintained at a constant
potential, and the motor be separately excited, or have permanent potential, and the motor be separately excited, or have permanent
magnets, the speed is proportional to the potential of the main, ess the loss of potential due to the resistance of the armature. As a practioal corollary, the generator must be designed to give the
ourrent required of it by the motor, and E.M.F. sufficient after
allowing for fall of potential through the resistance of the main allowing for fall of potential through the resistance of the mains,
to give the requisite speed. Keeping these points in view, it is to give the requisite sped. Keeping these points in view, it is
easy to design a combination of machines for performing any
and particular work, and to calculate exactly the efficiency of
combination, and to account for the various losses that occur.
Now let us put these considerations in a mathematical form.
The first problem is :-Given a main with a constant E.M.F. denoted by E, to construct a dynamo machine, drawing its current from the main, to work with a given load L , and at a given num-

ber of revolutions n per minute. Let us make use of the charac-
teristic curves, used by Dr. J. Hopkinson, Dr. Frölich, M. Marcel Depristic, and ourves, used by Dr. J. Hops y as along OO, cut off O M, representing the E.M.F. of the main in
volts. Now the makers of each type of dynamo machine know vits. Now the makers of eaoh type of dynamo machine know
approximately the percentage of energy therr machines absorb in
producing the necessary magnetio field. Take a point N in O M, such that the ratio $\frac{\mathrm{ON}}{\mathrm{OM}}$ is equal to this peroentage. Again, it is Known that a dynamo is not an aboolutely perfect machine, but
that a certain amount of energy is wasted in the friction of the
begriigs, and of the brushes against the commutator, and also in
induced currents in the core of the armature. Take OR, such
that OR represents the efficiency of the machine. This, in the case of the Siemens machine, is at least 90 per cent. From $0 x$ cut off OH , such that the rectangle $O \mathrm{HR}^{\prime} \mathrm{R}$ wats. Then 0 H is the current passing thotrough the motorn,
reatsured in amperes, and HP is the inverse E.M.F. The proper
meate Measured in amperese, and HP is the inverse E.M.F. The proper
motor, therefore, is that dynamo which, when running at the given motor, therefore, is that dynamo which, when running at the given
number of revolutions n per minute, has a characteristic curve number of revolutions n per minute, has a characteristic cuve
passing through the point P Phe total efficiency is evidently the ratio of the rectangle $\mathrm{OH} \mathrm{R}^{\prime} \mathrm{R}$ to the rectangles $\mathrm{OH} \mathrm{M}^{\prime} \mathrm{M}$, which is equal to $\frac{H R^{\prime}}{H \mathrm{~N}^{\prime}}$; the electrical efficiency is $\frac{H \mathrm{P}}{\mathrm{H} \mathrm{M}^{\prime}}=\frac{\mathrm{E}^{\prime}}{\mathrm{E}}$, the ratio of the inverse E.M.F. of the motor to the E.M.F. of the main. The energy spent in magnetisation is measured by PNMM N , and
the tangent of the angle PN M' represents the resistance of the the tangent of the ang
The second problem is:-Given a motor requiring a certain construct a suitable generator, the distance between the being represented by an electrical resistance R measured in ohms.
Let O P P ${ }^{\prime}$-Fig. 2-be the characteristic curve of the motor, when Let O PP'-Fig. 2-be the characteristic curve of the motor, when
running at the required speed; PM the electro-motive force in

volts, and OH the current in ampères. Let R^{\prime} be the sum of the resistances of the motors, and R of the conductor. Draw PN perpendicular to $O y$, and make the angle $P N M^{\prime}$ having its tan-
gent equal to R^{\prime}; then $\mathrm{M}^{\prime} H$ represents the gent equal to R^{\prime}; then $M^{\prime} H$ represents the difference of potential
between the terminals of the generator. Produce $H M^{\prime}$ to Q, so that $\frac{Q M^{\prime}}{Q H}$ is the ratio of the energy expended in producing the magnetic field to the total energy of the machine; then the generator is that dynamo which, when running at its proper speed has a characteristic curve passing through the point Q.
The electrical efficiency of the combination is the ratio $\frac{\mathrm{PH}}{\mathrm{Q} H}$, i.e., the ratio of the E.M.F. of the motor to the E.M.F. of the generator, which, if the machines are similar, is equal to the ratio of their speeds. The energy converted into heat in the wires of the machine, and in the conductor, is NP QS, and the total
efficiency of the combination is the ratio of the electro-motive efficiency of the combination is the ratio of the electro-motive
force multiplied by the product of the efficiencies of the two machines, considered separately. The conductor connecting the course this is not practically attained, but I will not now consider the point particularly, as it has very recently been discussed from ny hel point or view by Dr. O. J. Lodge.
Dr. Hopkinson then described the Portrush Railway. In the suggested to Dr. Siemens that the line between Portrush and suggestells, for which parliamentary powers had been obtained, would be suitable in many respectst for electricala working, especiailly
as there was abundant water power available in the neighbourhod as there was abundant water power available in the neighbourhood.
Dr. Siemens at once joined in the undertaking, which has been Dr. Siemens at once joined in the undertaking, which has been
carried out under his direction. The line extends from Portrush,
the terminus of the Relfast the terminus of the Belfast and Northern Counties Railway, to half a mile the line passes down the principal street of Portrush, and has an exitension along the Northern Counties Railway to the harbour. For the rest of the distance the rails are laid on the sea-
side of the county road, and the head of the rails being level
with the tance, separated from the road by a kerbstone. The line is single, and has a gauge of 3 ft ., the standard of the existing narrow gauge lines in Ulister. The gradients are exceedingly heayy, being
in parts as steep as 1 in 35 . The curves are also in many cases very sharp, having necessarily to follow the existing road. There are it passing paraces, in addition to the sidings at the termini
and the carriage depot. At the Bushmills end the line is
laid for laid for about 200 yards along the street, and ends in the market-
place of the town. It is intended to connect it with an electrical place of the town. It is intended to connect it with an electrical
railway from Dervock, for which parliamentary powers have already
been obtained, thus completing the connection with the been obtained, thus compleing the connection with the narrowg gaug from the end of the line there is a waterfall on the river Bush,
 at all seassons of the year. Turbines are now being ereeted, and
the necessary works executed for employing the fall for working
the ve generating dynamo machines, and able current will be con-
veyd by means of an underground cable to the end of the line Of the appliantion of the water power, it it is unneecessary to speak
further, as the works are not yet completed. For the present, the further, as the works are not yet completed. For the present, the
line is worked by a small steam engine placed at the carriage depot
at the Portrush end. The whole of the at the Portrush end. The whole of the constructive works have been
designed and carried out by Mr. Traill, assisted by Mr. E. B. Price The system employed may be described as that of the separate conductor. A rail of T-iron weighing 19 lb . to the yard is carried
on wooden posts, boiled in piteh, and placed 10ft. apart, at distance of 22 in. from the inside rail, and 17 in . above the ground
This rail comes close up against the fence on the side of the road This rail comes cose ep apainst the fence on the side of the road,
thus forming an additional protection. The conduetor is connected by an underground cable to a single shunt wound dynamo machine
placed in the engine shed, and worked by a small agricultural steam engine of about 25 indicated horse-power. The current i
conveyed from the conductor by means of two springs conveyed from the conductor by means of two springs, made of
steel, rigidly held by two steel bars placed one at each end of the car, and projecting about 6in. from the side. Since the
conducting rail is iron, whine the brushes are steel, the
wear of the latter is excedinly small, In dry weather they
require the rail to be slightly lubricated. in wet weather the wate require the rail to be slightly lubricated; in wet weather the water
on the surface of the iron provides all the lubrication required.
The le The double brushes, placed at the extremities of the ear, enable it to bridge over the numerous gaps, which necessarily interrupt the
conductor to allow cart ways into the fields and commons adjoin ing the shore. On a diagram the car was shown passing one of these gaps; the front brush had broken contact, but since the back Before the back brush leaves the conductor the front brush wil have again risen upon it, so that the current is never interrupted
There are two or three gaps too broad to be bridged in this way There are two or three gaps too broad to be bridged in this way. In these cases the driver will break the eurrent before reaching the gap
the momentum of the car carrying it the 10 or 12 yards $i t$ milt the momentum of the car carrying it the 10 or 12 yards it must trave of an insulated copper cable carried in wrought iron pipes, placed
hill also runs on the inside, while the car descending the hill pro
ceeds by gravity on the outside lines ceeds by gravity on, the outside lines. From the brushes the
current is taken to a commutator worked by a lever, which switches resistance frames placed under the car, in or out, as may be desired. The same lever alters the position of the brushes on the commutator of the dynamo machine, reversing the direction of rotation in the manner shown by the electrical hoist. The current is not, as it were, turned on full saddenly, but passe hrough the resistances, which are afterwards cut out in part or
altogether, according as the driver desires to run at part speed oo full speed.
From the dynamo, the current is conveyed through the axleback by the axies, thence to the tires of the wheels, and finally The conductor is laid in lengths of about 21 ft ., the lengths being connected by fish-plates and also by a double copper loop securely soldered to the iron. It is also necessary that the rails of the
permanent way should be conneeted in a similar manner as the permanent way should be connected in a similar manner, as the
ordinary fish-plates give a very uncertain electrical contact, and the earth for large currents is altogether untrustworthy as a conductor,
though, no doubt, materially reducing the total resistance of the The dynamo machine is placed in the centre of the car, beneath the fioor, and through intermediate spur gear drives by a stee chain on to one axle only. The reversiing levers, and also the levers car, so that the driver can al ways stand at the front and haye interrupted view of the rails, which is of course essential in the case of a line laid by the side of the public road. The cars are first and third-class, some opened and some covered, and are con structed to hold twenty peopie, exclusive of the driver. At presen only one is fitted with a dynamo machine, but four more machine
are now being constructed by Messrs, Siemens Brothers, so that before the beginning of the heavy summer traftic five cars will b ready; and since two of these will be fitted with machines capable seven cars. It is not intended at preant to work eoletrically the portion of the line in the town at Portrush, though this will pro bably be done hereafter, and a portion, at least, of the mineral obtained for left for the two steam tramway engines, which were pletion of the elecerporary working of the line pending the comto put into a form suitable for calculation the principles which Mr Siemens had illustrated in a graphic form more convenient for the had been applied in the present case.
In determining the proper dimensions of a conductor for railway
purposes, Sir William Thomson's law should properly apply. But on a line, where the gradients and traffic are very irregular, it is difficult to estimate the average current, and the desirability of
having the rail mechanically strong and of such low resistance that the potential shall not vary very materially throughout its length,
becomes more important than the economic considerations involved in Sir William Thomson's law. At Portrush the thations involve mile incluam Thomsons law. At Porrush the resistance of mile, including the return by earth and the ground rails, is actually
about 0.23 ohms. If calculated from the section of the iron it would of the copper loops, and occasional imperfect contacts. The 225 v-mone force at wich the conductor is maintained is abou 225 volts, which is well within the limit of perfect safety assignee
by Sir William Thomson and Dr by Sir William Thomson and Dr. Siemens. At the same time the
shock received by touching the iron is sufficient to be and hence is some protection against the conductor being tampered with.
Consider a car requiring a given constant current, evidently the maximum loss due to resistance will occur when the car is at the resistance of the line provided the two extremities are maintaine by the generators at the same potential. Again, by integration, the mean resistance can be shown to be one-sixth of the resistanc of the line. Applying these figures, and assuming four cars are running, requiring 4-horse power each, the loss due to resistanc if one car only be running, the loss is less than 1 per cent. But in actual practice at Portrush even these estimates are too high, a the generators are placed at the bottom of the hills, and the current is reauired when the resistance is at its maximum malue current is required when the resistance is at its maximum value.
The insulation of the conductor has been a matter of conside able difficulty, chiefly on account of the moistness of the climate. An insulation has now, however, been obtained of from 500 to 1000 ohms per mile, according to the state of the weather, by
placing a cap of insulite between the wooden posts and T-iron.
 Hence the total leakage cannot three-fourths of of esenting a horse-power, or or
under 5 per cent., when four cars are under 5 per cent., when four cars are
running.
But apart from these figures they have had materials for an actual comparison of the cost of working the line by electricity and steam. The employed at Portrush, are made by Messss. Wilkinson, of Wigan, and are generally considered as satisfactory as
any of the various tramway engines any of the various tramway engines,
They have a pair of vertical cllinders
Sin. diameter, and 1ft. stroke work at a boiler pressure of 120 lb. lb .
the total weight of the 7 tons. The electrical car, with which dyn comparison is made, has
dane of wighing 13 ewt., and the
tare the car is 52 owt. The steam engines are capable of drawing a total load of about 12 tons up the hill, excluding the weight of the engine; the dynamo over tons, excluding its own weight; hence, weight for weight, the
dynamo will draw five times as much as the steam engine. From actual experience, the steam engine, taking an average over a week, costs :-

The distance run was 312 miles. Also, from actual experience he electrical car, drawing a second behind it, and hence providing for the same number of passengers, oonsumed 1812 . of coke per
mile run. Hence, calculating the cost in the same way, for a istance run of 312 miles in a week:-

THE INSTITUTION OF CIVIL ENGINEERS. on the summir-Level tunnel rip the bettws and festiniog AT the ordinary meeting on the 3 rd of April, Mr. Brunlees,
president, in the chair, the paper read was "s On the Sunnmitlevel president, in the ehair, the paper read was "On the Sunmit-level
Tunnel of the Bettws and Festiniog Railway," by Mr. William
Smith, M. Inst. C.E. The author stated that the object of this railway was to afford
Thith
more direct communication between the more direct communication between the slate-producing district
of Festiniog and the home markets. The line commened at
Bettws-y-Coed traversed the valley of the river Con Dettws-y-Coed, traversed the valley of the river Conway for about
one mile, and then followed the valley of the river Lledr. It next passed under the mountainous ridge between Carnarvonshire and Merionethshire in a long tunnel, ran along the Dinas branch of
the Festiniog narrow gauge line, and terminated at Blaenau at the stations, the line was laid with a single way, The summitlevel tunnel was 3860 yards in lenthth. It was caarried out by the
staff of the London and North-Western Railway Company, the greater part of the remainder of ethern waiks way componpany, the exeuted by
contract. The tunnel works comprised the sinking of three ehafts the driving of eight headings, and opening them out to the fuld
size of the tunnel. The rocks perforated consisted of very hard members of the metamorphic system; and it was stated that at the soath end, in passing under the Welsh Slate Company's works, great care was necessary, and a strong casing or lining was
required to sustain the heavy weights above and around. The
tunnel had an ascending hravient from the north end of 1 in 60 tunnel had an ascending gradient from the north end of 1 in 660
for a distance of one mile and 58.4 chains, followed by a level
portion portion at the summit of 0.75 chain, and then a descending
gradient of 1 in 660 for a distance of 36 chains to the south end gradient of 1 in 660 for a distance of 36 chains to the south end.
It was $18 \mathrm{ftt}, 6 \mathrm{in}$. in height and 16 ft .6 . 6 in. in width. The deepest of the three, shafts slightly exceeded 143 yards, and all were rect-
angular, 12ft. by 6 6t., with the longer side in the direction of the
line of line of the tunnel. The winding machinery comprised, at each shaft, a boiler of the locomotive type, two small high-pressure
engines, with spur wheel and pinion and winding drums; the of 30 cwt . ft . in diameter, and the whole could raise a gross load two pulleys, each st. per second. The tiameter, and war head-gearing carried detaching hook to prevent over winding. The ropes were of steel
wire, the breaking strain being 20 tons. Five air compressors were construated to compress, to a pressure of 501b. per square nach, sufficient air to supply six rock-boring machines at each
face. The compressor steam generators were second-hand boilers. The pipes for conveying the compressed air to the workings were
of wrought iron, of 3 inin. bore to the bottom of the shafts, and of 2, in. bore from the the ourf face of the workings. Superfluous water the shafts by a wrought iron vessel, attached to the under side of
the cage, which filled and emptied itself automatically; but at the other shaft water was in excess, and a foree pump had to be employed. The shafts were mainly sunk by hand labour. The
author then proceeded to describe at length the drill carriages for supporting the machines, the drilling machines themselves, and
the modes of actuating them. At the north end of the tunnel an experimental drill corriage was employed, in conjunction with electric firing, with the view of taking out, as one large heading,
the full section of the tunnel; but for want of success in electric the full section of the tunnel; but for want of sucess in electric
fring it was eventually abandoned, and the St. Gothard type of
carriage and machine was substituted te It carriage and machine was subsstitutede. It It was .equipped with six
Ingersoll drills, fitted with automatic feed. At the south end a small drill carriage was oonstruateded, suitable for an advanced
heading only, and provided with six Burleigh drilling machines with hand feed. At the six intermediate faces the carriages were of the type adopted at the St. Gothared tuanes the warriages were
drilling machines, four at each face, driven Two forms oon drill points were used, the chisel single-outting edge
drime
for solid rock for solid rock, and the cross point for jointed rock. With regard
to the workings at the bottom of each shaft rot top heading was driven in the first instance. Driving the advanced heading wom
prised three distinct operations, namely boring the holes at the face charging and firing, and removing the delris. of the various explosives used, cotton powder or tonite answered well for the
removal of rocks in unconfined places; but dynamite and lithoremoval of rocks in uncontined places but dynamite and litho-
fracteur were the most effectual in the avvanced headings.
The advanced heading was 8 ft The advanced heading was 8ft. square, and nsually required from diameter, to remove a complete slice off the face. The operation described, a speed of 300 to 500 stro on the carriages was then described, a speed of
also the method of charging the thokes pes and minute being by hand attained which
was somewhat different to that ordinarily pursued.
Following in was somewhat different to that ordinarily pursued. Following in
the wake of the advanced heading in the top of the tunnel was the removal of the two sides. This was done principally by hand semicircle. The excavation of the lower porngtion was efteceted by
driving a gullet along one side of about half the width of the tunnel to the full depth, leaving the other half for a roadway. The remaining portion was then attacked, partly by hand partly by
machine drills at various points. The author next referred to the progress made at each of the shafts and headings, from which it appeared that the average upon the whole of the eight faces
amounted to $14 \cdot 09 f t$. per week. The total quantity of water finding its way into the tunnel was about 100,000 gallons per day. ing labaur, plant, materials, and sundries, was $£ 302,550$, divided as follows, viz, labour, $£ 203000$; plant, $£ 2525030$ and materials and
sundries, $£ 4,220$. Allowing as a credit the half cost of the plant,
which it was assumed might eventually be realised, the reduced cost would be $£ 75$ per lineal yard; and taking the whole cubical
contents of rock and other substances per cubic yard was $£ 2$ 8s. 10 d. The tunnel was opened for public
traffic on the 22 nd of July, 1879 .

STEEL CRUISERS FOR THE UNITED STATES NAVY.
Ir is proposed to add three steel cruisers to the American navy. notice to the parties interested :-The Naval Appropriation Act, ied by lin case the three steel cruisers and posals shall be invited from "all American shipbuilders whose ${ }_{\text {shipyards are fully equipped for building or repairing iron and steel }}$ steamships, and constructors of marine engines, machinery, and
boilers." All American shipbuilders engines who may desire to bid for the construction of such vessels are requested to communicate immediately with the Navy Department, stating the facilities furnished by their establishments for doing the required work.

Wm. E. Chandler, Seoretary of the Navy.
The following come from the Naval Advisory Board :-

The battery* should consist of nine 6 in . rifles, two of which
should have a direct head fire, and one a direct stern fire. Ports and guns should be so arranged as to admit of fighting five 6 in. guns in either broadside.
An allowance of 28 tons should be made from the weight of ordnance for machine guns, torpedoes, and electric gear.
In the opinion of the Board wood casing and metal sheathing
are neither necesary nor desirable, and hence the Board recom. mends that they be not fitted.
The bow should be of a modified ram shape, and whilst not
intended to develope full ram power, it should possess a greater intended to develope full ram power, it should possess a greater
strength than is applied to ordinary types of unarmoured cruisers.解 It is the opinion of the Board that a steel deck, 1 thin, in thickness, should be fitted over the space occupied by the boilers and
machinery, the outer edges to be about ffti below the load line. The magazines and shell-rooms should be enclosed by waterTo have no main projecting keel, but bilge keels extending well fore and aft
The vessel
The vessel should be barque-rigged to topgallant sails. The area of the plain sail should not exceed 12,600 square feet.
All main water-tight transverse bulkheads to
deck main
To have a complete system of drainage, consisting of two large main drain pipes, one on eithter ride of the vertical keel in the the
double bottom, and connected with a stand box in each main compartment, which shall contain valves and sluices open by rods led othe gun deok.
in the drains to be so arranged that water can be drawn from each compartment, and the full pumping power con centrated on any compartment.
Sluice valves and water-tight doors in all water-tight bulkheads,
including coal bunkers, shall be arranged to work both from belo ind lading coal benkers,
and from the berth deck.
The ships should have single screws, operated by horizontal cylinder engines placed in separate water-tight compartments beneath, and thorooghly protected by the steel deck.
The boilers should be cylindrical
To be in at least two distinct grouns in water-tight compurnases, To be in at least two distinct groups in water-tight compartments. pressure above the atmosphere to be maintained in it by means of blowers.
In all In all other respects it is considered that the vessel should conform to
circular.

Tery respectfully, your obedient servants

R. W. SHFFELDT, Commo. U.S.N.N., President of Board.

Mifers Corybli, Marine Engineer, Member.
ALEX. HENDERSON, Chief Engineer U.S.N.N., Member.
J. A. Howkit, Commander U.S. N., Member.
S. A. HowELL, Commander U.S.N., Member.
EDWRD W. ERY, (ieutenant U.S.N. Member.
F. L. FERNALD, Naval Constructor, U.S.S.N., Member.

Hon. W. E. Chandier, Secretary of the Navy.

navy Depaptanent.

Naval Advisory Board, Washington, March 9th, 1883. designs of unarmoured cruisers, herewith suggest the general feawith the provisions of the act of Congress of August Г̄th, 1882 for the guidance of parties desiring o o submit plans. The Board
wishes it understood, however, that these dimensions need not be igidly adhered to.
Principal dimensions.- Length between perpendiculars, 270 ft . breadth, extreme, 42ft.; mean draught (exceluding keell, 1 , ftt. 6in.
Displacement, in sea water, not less than 2750 tons, nor more than 3000 tons.
Maximum speed of 14 knots in smooth water, and a maintained
Height of port sill above L. W. L., 9 ft. Gin.
Height of port sill above gun deck, 14t.
Spring of longest gun deck beam, 4 in.
Height in clear on berth deck 6 fit 6 in
Height in clear on berth deck, 6 ft . 6 in.
To be built with a double bottom for a length of not less than All principal transverse bulkheads to extend to the upper deck, horoughly water-tight.
The boilers and
by coal and a steel machinery, so far as practicable, to be protected
The bunker capacity to be at least 500 tons of coal
The magazines and shell roo
armoured deek, or other means.
The vessel to be divided into as man water-tight as possible, and each compartment to be fitted with drainage The battery to consist of not more than nine 6in. B.L.R., two of which to have a forward and one a direct stern fire side. Steerages to contain 600 superficial feet
To be provided with steam steering apparatus, steam capstan, and steam ventilators.
days.
nnformation as to the weight of provisions, anchors, cables so The weight of on applination must bo the reserved. for ordnance, and the hip shall be pierced for a broadside battery of not less than five guns on a side, with such additional ports as may be designated espect.
Memoranda relating to the engines, boilers, and all their appur-
tenances, proposed for the steam machinery for an indicated horsetenances, proposed for the steam machinery for an indicated horse
pover of 3500 or more
Engines.engines and their appurtenances, steam pumpss- and codrculating
and air pumps if separate-will be about 31ft. 6in. in length, between the a thwarts hip bulkheads, and includes sufficient passag way around both ends of engines. Such width of the vessel as is
necessary may be utilised for this machinery, leaving the largest possible amount of coal on each side. The height above inner skin
of vessel to water-line will be about 13 ft . in order to keep this machinery below that point. If a vertical or any other form of engine be proposed in which the machinery extends above the load
water-line, the plan must show the method and extent of protection against injury from shot. The height of shaft above the inner skin will be at centre of engine space, sufficient to admit a
stroke of piston of not less than 42 in. Each cylinder used is to be fitted with an independent expansion gear having an easy adjustment, varying from one-quarter to three-quarters of the stroke.
The oglinders are to be fitted with steam jackets. There are to be two independent surface condensers, circulating the water through the tubees, each condenser having its own separate pumps, \&co., and
capable of maintaining a vacuum of 26in. of mercury. The screw capable of maintaining a vacuum of 26 in. of mercury. The screw
will be fixed, and have a diameter not exceeding 17 ft, , with such length,
to obtain the requisite speed. The mes as may be deem ed bess rate and interchangeabee for each cylinder, with intermediate
couplings, and of "built up" steel forgings. There will be two couplings, and of "built up" steel forgings. There will be two
ordinary
couplch gears for disisengaging the propellere shafting, one screw shaft. In connection with this latter there will be a suitable *The Board reserves the arrangement and character of the battery fo
future consideration; the weight of ordmance not to oxceed 177 tons.
friction arrangement to secure the serew from revolving when
"coupling up," which may be necessary at sea. The reversing gear to be operated by steam, and of approved design. A marine governor is desirable, if applied without complication and in a practical manner. There shall be fitted the necessary gear operated by a pair of small steam cylinders for turning the main engines for adjustment, \&c. Suitable provisions are to be made to
admit of the convenient removal of crank shafts and other principal working parts.
Boilers.--There will be not less than two independent fire-rooms for the boilers, and superheaters, if proposed; the total length occupied by boilers not to exceed 63 ft, , and a width of 29 ft . 8in.,
and admitting a diameter of boiler not exceeding 11ft. The boilers are to contain an effective grate surface of about 400 square feet, and a heating surface of about 10,000 square feet. There will be two smoke pipes, fitted with telescopic arrangements, raised and lowered by small stean engines. Each boiler is to be fitted with to be operated frem outside the boiler compartments. The valves sary ventilation, \&c., requisite for a full supply of air to the fire-
rooms are to be provided for a forced combustion. The proposed plan and arrangements to be fully shown. A suitable steam ashhoister is to be group of boilers, on each side of vessel, is to be fitted a duplex steam pump of requisite capacity for supplying the same, in addi-
tion to the feed pumps proper. There will also be in the engine compartment two large steam pumps arranged in usual manner for fire and other purposes, having suitable bilge connections
leading from all parts abaft engine bulkhead. A distilling apparatus of approved form to be fitted with a capacity to supply 3000 gallons per diem. The total weight of the steam machinery, including water in boilers and in condenser, with shatting, propeller, and all appurtenances and spare machinery, will not exceed
638 tons. It is to be understood that the reguirements of the of Congress, under which the designing of this machinery is authorised, shall be fully complied with in relation to any patented their appurtenances shall have the strensth proportioned to a safe and continuous working pressure of 90 lb . of steam above the sions, proportions, \&co., to be filled in and forwarded with the plans, together with an inventory of the principal weights of the most important parts, with location of centres of gravily of said weights. The general plans accompanying any proposed design
shall be in sufficient detail and with figured dimensions to enable working plans to be made from the same. It will be required that
all parts of the machinery shall be of the best material and firstclass in workmanship and finish
all
R. W. Shurfidr, President Naval Advisory Board.

The Chirf Cities of Europe.-Recently there have been compiled from official and late sources, statistics of population for
some of the principal cities of Europe, from which it appears that
the properly be applied, that have a total population of more than 100,000; but there are only four cities that possess more than $1,000,000$ inhabitants. These four are London, with $3,832,440$; $1,103,110$. Of the other capitals, St. Petersburg possesses 876,570 ; Constantinople, 600,$000 ;$ Madrid, 367,$280 ;$ Buda-Pesth, 360,580 ;
Warsaw, 339,$340 ;$ Warsaw, 339,$340 ;$ Amsterdam, 117,$010 ;$ Rome, 300,470 ; Lisbon,
243,340 Palerme. 244,990 ; Copenhagen, 2344.80 ; Munich,
230,020 , Bucharest, 230,$020 ;$ Bucharest, 221,$800 ;$ Dresden, 220,$820 ;$ Antwerp,
200,$000 ;$ Stockholm, 168,$770 ;$ Brussels, 161,$820 ;$ Venice, 132,830 ; Stutgardt, 117,300. In addition to these, Moscow, contains
611,970; Naples, 933 ,110; Hamburg, 410,120; Iyons, 72,800 ; Marseilles, 337,530; Milan, 321,840; Florence, 169,000; Cologne,
144,770; Frankfort, 136,820; and Rouen, 104,010. Triai Trip of S.S. Matok. - On Thursday last this vessel, taken on her trial trip. She is 250 ft . long by 34ft. . .in. beam, and is apable of carrying about 2500 tons dead weight of cargo. She
is built on the spar deck rule to the highest class of Lloyd's. Her 'tween decks are specially ventilated for the conveyance of pilgrims.
The vessel is fitted with four hatchways, and all accommodation The vessel is fitted with four hatehways, and all accommodation
for quick despatch of cargo. Steam steering gear amidships, and accommodation for a limited number of saloon passengers. The cylinders, having a stroke of 42in. The boilers, two in number, are passed by the Board of Trade to 901 b . Working pressure and
 machinery have been built by Messrs. Wigham Richardson, of
Newcastle-on-Tyne, under the superintendence of Mr. J. F. Flannery, consulting engineer, Fenchurch-street, Londo ; this
being the third vessel for the Persian Gulf S S . Company Luntil A, Lubrication :-A subject which does not generally receive
the attention it deserves was brought before the members of the Manchester Association of Employers, Foremen, and Draughtsmen, at their meeting on Saturday week, in an interest.
ing paper read by Mr. J. Veitch Wilson, on the lubricaing paper read by Mr. J. Veitch Wilson, on the lubrica-
tion of ordinary bearings and of bearings and faces subject to the action of steam. Mr. Wilson dealt with the quesings under normal atmospheric conditions, he le laid down
that the lubricants to be employed should possess the following essential properties: They must not pive off inflammable vapour under 350 deg. Fah.; they must not act act upon the metals
with which they come in contact, nor oxidise, which tended to spontaneous combunstion and cologged the machinery; they must
have body adapted to the work to be done; their boiling point must be sufficiently high to prevent evaporation and secure
durability, and their freezing point must be low enough to ensure regularity of feed from the oil cups and convenience in handling. but bearing in mind the fact that mineral oils could now be
obtained in every respect as safe as the finest animal oils, and that obtained in every respect as safe as the finest animal oils, and that
the admixture of mineral ool with animal or vegetable oils neutralis
ing tend
effient efficient, and in most economomeal wabrof opininion that for mane mer of bearings
were to be found in a judicious mixture of animal or vegetable with wore to be found in a judicious mixture of animal or vegetable wila
good mineral oils. With regard to cylinder lubricants, the peculiar conditions were the liberation of natural acids from vegetable and acids on the cylinders, and the evidence that in these acids were constituent parts, of all animal and vegetable fats and oils; they could not be removed by any process of refining. One of the
lubrioants largely in use was tallow, but that this was the cause of considerable injury to the engine cylinders he had abundant evithe subject, he was convinced that if care were exercised in the selection of the oil, and equal care in its preparation and applica.
tion, hydrocarbon oil would be found thoroughly efflelent cylinder lubricant, absolutely harmless and much more economical animal matter was added, in order to increase the lubrieating properties, and in his experience this had always been attended
witt favourable results. Hot-air engines might be lubricated on the same principle as steam cyliniders, but gas engines presented a

THE MALTA RAILWAY,
MESSRS, WELLS-OWEN AND GERVASE ELWES, MM.I.C.E., WESTMINSTER, ENGINEERS,
(For description see page 280.)
FIG. I. ELEVATION

FIG.3. SECTION ON AB.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 1 d. postage stamp, in order that answers received by us may be forwarrded to their destination.
No notice vill be taken of communications which do not comply No notice will be taken
with these instructions.
with these instructions.
${ }^{*}{ }^{*}$ We cannot undertake to return drawings or man
must therefore request correspondents to keep conies. must therefore request correspondents to keep conies.
${ }^{*}$ Al letters intended for insertion in THe Engineer, containing questions, must be accompanied by the name and
address of the writer, not necessarily for publication, but as a
proof of good faith. No notice whatever will be tahen of proof of good faith, No
anonymous communications.
M. S. There is no rule for the weophth of engine foundations. The hecerica

solenoids.

AI

THE ENGINEER.

APRIL 13, 1883.

the dynamite peril.

Five years ago we made reference to an extraordinary and not very pleasant pamphlet, entitled "A Plot to Burn
London." The title page of this anonymous brochure further described its contents as "A Revelation and Warning for the Times." It is impossible not to be struck with described ity which exists between the diabolical scheme recent dynamite conspiracy appear to have been conducted. The only substantial difference consists in the
circumstance that the original "plot" had reference to petroleum instead of nitro-glycerine, and contemplated the petroltaneous outburst of a number of incendiary fires,
simslat
instad of an outbreak of explosions. By this substitution of terms, the account given in a daily paper of Tuesday last corresponds to a singular extent with the words of the pamphleteer. Thus we are told :-"It was seemingly proposed to place in different parts of London-in obscare private and public hotels, and other places, quantities of nitro-glycerine." Further, our contemporary states, "there was to be no consideration given to nationality or creed particular hour, the machinery was to be set in motion for simultaneous destruction in different parts of the metropolis." In the "plot" of the pamphleteer it was proposed to make extensive use of hotels, which lodging houses in the immediate vicinity of Finsburysquare" were included in the line of operations, together with others. Some of our readers will remember the astute device of the "petroleum kettle," which contrivance together with the petroleum itself, was to be concealed in the portmanteau which each of the astive agents was to proper time the "" bachelor's kettle," filled with petroleum, was to be put over the flame of a spirit lamp, and certain arrangements having been duly perfected, the affair was to be left to take its course, the design being that the kettle chould boil over and set fire to the furniture, the door of
the room being secured in such a manner as to preclude
its boing readily opened. From half past four to a quarter
past iive on the afternoon of Lord Mayor's day, was
The time appointed for tbe consimmation of the scheme.
Forsumataly-as the siny went at the lost moment the

chief consphator saying "Do not mive yot" But in
closing address "To the Resder, the writer of this Batito
of-Dorking narrative expresed his conviction that there existed in the world, and even in Eoodon itself, hundreds of men capable of constructing plots far far less likely to break down through treachery of
the conspirators, than that which he had portrayed.
That a plot, even worse than that of the "petroleum kettle," has been really organised against the security of
the metropolis, is now beyond dispute. The pamphlet to the metropolis, is now beyond dispute. The pamphlet to the Metropolitan Fire Brigade ought to be strengthened so as to give London the protection which it required against the risk of an overwhelming conflagration. The
writer declared that his object was "to stimulate that movement which has at length been undertaken by patriotic men to increase the power of Londoners to deal
with the ever present danger of fire." It was for the same with the ever present danger of fire." It was for the same
reason that we drew attention to the burden of the narrareason that we drew attention to the burden of the narra
tive. Its moral was obvious ; but it is only in the present session of Parliament that we find the Metropolitan Board seeking power to go beyond the narrow limits of a
halfpenny rate in order to provide a Fire Brigade which halfpenny rate in order to provide a Fire Brigade which
shall give to London that defence which its enormous aggregation of human beings and of wealth unquestionably demands. A new peril now presents itself, against which the Legislature has launched an Act of Parliament, of which the urgency was so distinctly felt that the Bill was rushed
through bothHouses in a singlenight and received the Royal Assent the next day. Had not anew and powerful explosive come within reach of the disaffected, it is quite possible that the agency of fire, rather than of explosion, would
have been employed by the miscreants who are now have been employed by the miscreants who are now
happily coming within reach of justice. Society is prohapply coming within reach of justice. Society is pro-
foundly impressed with the terrific force which has been lately seized by evil hands. But while the force is undoubtedy great, and while the mischief to be apprehended is sufficiently serious, it is not clear that it wil answer all apprehensions that are entertained concerning it. Fearfully violent and dangerous within a limited sphere, and under certain conditions, nitro-glycerine yet fails to compass all the purposes which fiendish malice would desire. It is worth while to look calmly at this terrible foe to our present peace, and see what is the actual extent of present peace, and see what is the actual extent of
the mischief it is calculated to inflict. A "Plot to Blow up London" has been announced; but London is more difficult to blow up than to burn. A couple of hundredweight of nitro-glycerine is a fearful cargo, and would strike terror into thousands, and many buildings not strike terror into tho the ds, and many buings not of ruins. A box of gunpowder would be far less terrible in its effects, and yet a large proportion of the energy possessed by the nitro-glycerine would be practically to the nitro-glycerine were presented in the form of gunpowder, considerably more ruin would be wrought amo surrounding buildings. On this point it may be as well to adduce a little practical experience:
Considerable excitement was created in the summer of 1881 by the discovery of sundry "infernal machines" concealed in the cargoes which arrived at Liverpool from clockwork arrangement, and containing about 2 lb . of
lignin-dynamite. Colonel Majendie and Major Ford, in their last annual report under the Explosives Act of 1875, state have the experiments which they afterwards conducted
with one of these machines against a masonry structure, with one of these machines against a masonry structure,
"showed that the machines were not nearly so destructive as was popularly supposed." The force of the explosive was tried upon a brick building erected in the Plumstead marshes, and the effect of one of the Liverpool machines proved to be "absolutely insignificant." The experiments conducted by Colonel Majendie and his colleague, as well were considered to prove that " the effect of small chittee, of dynamite and similar explosives tures is essentially local" The results would necessarily vary according to the relation between the charge employed, the strength presented by the structure, and the position selected for the charge. "But," it was added, "any general, or even partial, destruction of a public building, or of a substantial dwelling-house, could not be accomplished except by the use of very much larger charges of dynamite and similar substances than could usually be brought to bear without attracting observation; and the effect of a single 'infernal machine, containing a few pounds of explosive, would be structurally insignificant." The explosion at the offices of the Local Government Board may apparently be considered as showing the maximum effect which is to be expected from such a charge of dynamite as can be readily exploded in a public thoroughfare The local effect was intense the stonework close at hand being pulverised, while the general structure of the building stood firm.
The views thus expressed are in substantial agreement with those which have been put forward by Sir Frederick A. Abel, who observes that while the shattering and mond gun-cotton upon he rock is not generally thrown off by them to the same extent as by the less violent agent. Dynamite has sometimes been employed to fissure the rock, and afterwards arge quantities of gunpowder have been poured into the crevices, by the explosion of which enormous masses of rock have been removed. In submarine demolitions it has in like manner been found that when iron-built ships have to be destroyed, the lifting effect of large charges of gunpowder is advantageous in clearing the framework and other parts which have been shattered, but not actually removed, by the more violent class of explosives. It is a curious fact that even gunpowder can be made to approximate in its character to the nitro-glycerine compounds, if this fired by means of a powerful detonating fuse. If for the gunpowder to be closely confined, but it shares with the dynamite class the property of displaying great force when placed merely in contact
With-the traterial to be destroyed. It is this quality of

 which detonates, and thereby starts the explogiva wit which it is in contact. Some time ago Sir F. Abel stated that the mechanical force exerted by the explosion of
nitro-glycerine is fully equal to that developed by the ful-nitro-glycerine is fully equal to that developed by the ful-
minate of mercury. Yet this does not adapt it for all purposes. Comparing dynamite and gun-cotton wion gunpowder, we are told that "in military operations, where great displacing action is required, gunpowder has the undoubted advantage." This is really what the "dynamite army" would desire in carrying out their designs for the destruction of London. But as the conspirators are obliged to act furtively, they have resorted to a fiercer and less cumbrous agent than gunpowder. If the nitro-glycerine seized by the police in Southampton-street was intended to form the basis of one explosion, and if it was arranged that similar quantities should be fired in Southwark and else where, the effect must needs have been tremendous, supposing the fiendish programme to have been successfully carried out. The deafening nature of explosion would itself constitute a moral effect of a very intense description.
The smashing of brickwork and masonry, the crash of falling buildings, and the general uproar and confusion would create a scene of the most fearful nature, inevit ably accompanied by an extensive sacrifice of human life Yet even 2 cwt . of nitro-glycerine, despite its terrible energy, would fail to accomplish all the desolation which writers have generally predicted concerning it. The most reasonable conclusion is that the force let loose destruction effected wit fo far everything would be practically and h ated, and the force thus superfuously expended would happily detract explo panic the case is bad enough, and it is well that Parliament has been aroused to take decided measures against the malignant plotters who are threatening the peace and safety of unnumbered homes.
the energy expended in propelling a bicycle.
In the 28th volume of The Engineer we published an laborate investigation by Professor Rankine of the cause ject too insignificant, Since Re did not consider the subbicycles has increased tonfold, and an and in many respects far more ingious mache the tricycle hasy respects far more ingenious machine, the tricycle, has come has become an important branch of trade; and it is not easy to see the end. The bicycle appears to be falling off in favour, while its rival with three wheels daily beomes more popular.- There is a very keen demand, too, wholly unsupplied at present for a tricycle which can corry pro pelling gear, working by stored-up power in some form, or even by steam. Two causes have contributed to stop progress in this direction. One is the oppressive nature of the legal restrictions on the ise of steam on common roads, the steam tricycle being confounded with the traction
engine, with which it has really nothing in common; and
the other being the belief that electricians will supply the other being the belief that electricians will supply to believe that the period is not now far off when electrical tricycles will be as easily obtained as the ordinary tricycle is now. The one thing wanted is a secondary battery.
We had recently reason to point out that too much must not be expected ; and we showed that a carriage which, while carrying four people could also carry a store of energy sufficient to propel it for a whole day, is not likely to be
obtained. But it is quite another matter to construct a obtained. But it is quite another matter to construct a
carriage which would contain a very useful store of energy. On the levelor going down hill this store would not be drawn on, but it would become available to help the rider when much
wanted. Every tricyclist knows how welcome would be the wanted. Every tricyclist knows how welcome would be the
services of a secondary battery ready to help him at a pinch. services of a secondary battery ready to help him at a pinch,
It is, of course, possible-for all things seem possible in electricity-that a battery may be produced which will be small and light, and yet will give out enough energy to
drive a little carriage forty or fifty miles. But while the drive a little carriage forty or fifty miles. But while the
world is waiting for this, it would be well content to have the half loaf which, according to the old adage, is better the half loaf which, according to the old adage, is better
than no bread. Unfortunately, however, as will be seen further on, the half loaf is as yet to be had only under very objectionable conditions, which go far to rend
than useless, save under special circumstances.
than useless, save under special circumstances.
In dealing with this subject hitherto there has been a plentiful lack of information as to the power required to exist no longer Dr. Stoney, F.R.S., and Mr. G Gerald Stoney, of Dublin, have followed in a sense Professor Rankine's example; or rather, they have contributed another chapter to the literature of pedo-motor carriages.
In the January number of the scientific translations of the Royal Dublin Society will be found a paper by Messre Stoney "On the Energy Expended in Propelling a Bicycle." Without engravings we could not explain satis-
factorily the method devised by Messrs. Stoney of measuring the power expended by the rider. The machine used was that known as the "Xtraordinary." The feet of the rider do not act directly on the crank pins, but on treadles secured to pendulous levers, the object being to keep the pitched over the machine-a common and dangerous acci-
dent-should the driving wheel encounter a stone or other dent-should the driving wheel encounter a stone or other obstacle of some dimensions. This type of machine lent
itself readily to the wants of the investigators, and Messrs. Stoney contrived in a very simple and ingenious way to register in a species of indicator diagrams the force
exerted by the rider. The results obtained are, to say the least, remarkable. It has long been known
that men with no pretentions to excessive strength or power of endurance could perform astounding
journeys on bicycles. "Several riders," say riéssrs, Stoney, "of exceptional strength and enaurance, have travelled considerably more thair 200 miles in one day along common roads; ancinher has twice maintained an average speed of msre than twenty miles an hour along a
prepared path for a whole hour ; another has ridden from Land's Epd to John o^{\prime} Groat's house, a distance of almost 1900 miles, in thirteen days, averaging more than seventysix miles a day. These astonishing feats have been accomplished on bicycles, and the tricycle does not fall far
behind. A tricycle has been ridden 150 miles in one day, behind. A tricycle has been ridden 150 miles in one day,
and hundred mile journeys on both classes of machines have become frequent." We may add that to run a distance of twenty or thirty miles with a tricycle is no uncommon feat for men who could not walk half the distance
without being knocked up. It is not too much to say that without being knocked up. It is not too much to say that
the bicycle has increased the locomotive power of the ordinary man at least three-fold if we take distance alone into consideration. It has at least doubled his speed. As for the young and active, it has trebled their speed and augmented the distance they can travel five to one. There ought to be some reason for this remarkable efficiency ; and
it was to find out its cause that Messrs. Stoney did what they have done. The results obtained go to show, not that the bicycle reduces the power expended in a given time, but that, on the contrary, it increases it, without at the
same time inducing fatigue; and this Dr. Stoney very properly attributes to physiological as well as mechanical causes. It is well known that a man rowing under the best conditions cannot for any time exert more than
about one-eighth of a horse-power, or 4125 foot pounds. According to Rankine, the greatest power getting into a bucket on a rope over a wheel, causes it to descend by his weight, pulling up a loaded bucket at the other end of the rope. In this way a man can expend
energy at the rate of 72.5 foot-pounds per second, or 4350 foot-pounds per hour, or 133 of a horse-power-less than one-seventh. But the average performance on level ground of a bicyclist gives between a seventh and a sixth
of a horse-power. We may compare, for example, the 4350 foot-pounds per minute given by Rankine with the following figures. On a wet, gravelled path up 1 in 160 the coefficient of resistance at 96 miles per hour was $\frac{1}{6}$,
and the energy exerted $21,800 \mathrm{lb}$. per mile, or, per minute, 3500 ; but at 117 miles an hour the coefficient rose to $\frac{1}{\tau}$ in. and the energy expended 40,500 foot-pounds per mile,
equivalent to no less than 7900 foot-pounds per minute, or to nearly one-fourth of a steam engine horse-power. It is worth while to compare the performance, however, with actual horse-power, which is about three-fourths of that
assigned to it by Watt, or say 430 foot-pounds per second, or 25,800 foot-pounds per minute the bicyelist was therefore more than one-fourth of that of a horse; and if we bear in mind that a horse moving at nearly
twelve miles an hour has little energy left to pull a load, twelve miles an hour has little energy left to pull a load,
it will be seen that the excellence of the performance of the man came out still more prominently. The average of
sixteen experiments, particulars of which are supplied by sixteen experiments, particulars of which are supplied by
Dr. Stoney, give 5350 foot-pounds as the normal performance of a bicyclist under very varying conditions of
road, wind, and inclination. In a second series of experiroad, wind, and inclination. In a second series of experi-
ments, made in summer, the average of fifteen gave 5100 foot-pounds as the performance of the rider. The co
efficient of resistance varied very much; on a hard, dry gravelled path, down 1 in 160 , at speeds of $7,10 \cdot 4$, and
$13 \div 5$ miles an hour, the coefficients of resistance were $\frac{1}{1}$, and $\frac{1}{2}$; from which it appears that they augment verage of resistance of much value. Professor Stoney, however, gives it at about $\frac{1}{v}$ The experiments were varied in different ways, and other apparatus were devised
and used to check the first result ; but in all cases the and used to check the first result; but in all cases the
figures closely approximated, and the average energy figures closely approximated, and the average energy
expended may be put down at 35,000 foot-pounds per mile. This may be taken to represent the expenditure of energy which would suffice in a long journey over good
roads, and without exceptionally heavy hills. Hills, be it roass, and without exceptionally heavy hills. Huck, bedalng on the brake becomes necessary ; and to prevent this ought to be traversed, otherwise the energy expended in going up is greater than can be utilised in coming down again.
e may well ask with Dr. Stoney how are we to account for the enormous efficiency of a man working a bicycle. "The real sanswer appears to be the only one possible parison of the feats accomplished with the energy expended, as with the fatigue incurred; and this in riding bicycle is small, not only from the mechanical efficiency possess, but also for other reasons. Part of these are physiological. The rider is seated on the machine, and in walking-the weight of his own body on his limbs. He is in the posture best adapted to the healthy play of the vital organs in the chest, and the constant slight movehealthy play. Again, while the arms perform some of the work, the principal part is relegated to the most powerful muscles in the body-those of the leg. It is also material to observe that these limbs are left very unusually free in their movements, and that the choice of what length of stroke he will employ, what force he will exert, and at what speed he will move his limbs, are left to the rider, who can adjust those details to what best suit his own body. Dr. Stoney also credits the exhilaration produced by rapid ecorded houghle this may do something for moderate distances, we cannot accept it as proved that it can do much. We have this peculiarity in bicycle riding, that only one principal set of muscles, those of the lower limbs, are used energetically, and those muscles are spared
the duty of carrying the weight of the body. If we compare the work done on a bicycle with that expended in rowing, it will be seen that in the latter case
although the weight of the body is supported, all the muscles of the body are body is supporable extent employed, but those of the legs least of all, and the work they do is expended in holding the boat back, with the feet while the hands laid hold of the stretcher the result would possibly be akin to that obtained with
the bicycle, and it is worth considering whether the water the bicycle, and it is worth considering whether the water
velocipede may not be susceptible of such improvements that the paddle-wheel or the screw worked by the foot that the paddle-wheel or the screw worked by the foot
may beat oars worked by hand. Perhaps someone who has may beat oars worked by hand. Pernaps someone who has the time and
Before concluding, we would warn our readers that they must by no means conclude that an expenditure of energy of 4000 foot-pounds or so per miee wically suffice for and carriage. The battery and motor are not likely to weigh ess than the man, and we have then virtually two bicycle and men to provide power for. It would not be safe to calculate on less than 80,000 foot-pounds per mile, or for
ten miles 800,000 foot-pounds net. Going down hill there would be no demand on this, and we may suppose that wevels and pedal power and hill together would repre sent twenty miles of a thirty-mile trip, leaving ten miles up which the assistance appears that the aid needed. At first sight it appears that the aid
given by the motor would be very great, but it must not be forgotten that the rider must propel all off and put it on at pleasure, and thus it becomes a question, whether under any circumstances, what may be termed auxiliary power can be of service. This cannot be example, a man living in a valley might find it much to his advantage to carry a few pounds of battery, which would suffice to help him over the surrounding highland; while it is evident that in a level country the game of carrying even 40 lb . or 50 lb . of battery would not be worth the candle. For these reasons it seems to be pretty clear that it will be best to provide sufficient power to do all the driving at a
moderate speed, and on levels, and that the rider shal exert himself to help the machine up hills, and to augment its pace. In this way the man will be auxiliary to the distinction which will be found on examination to be one with a difference,
ent itho ntro-ghyerrine.
Now that wehave been madesointimately acquainted with mycerinte, surreptitious, and illegal manufacture of nitromeans can be taken t effect its destruction, when quantities such as we recently heard of fall into our hands. The coffin-like box seized in Southampton-street, Strand, contained nearly 200 lb . weight. It was sent off during the night to Woolwich, and taken to the Royal Laboratory Department. The staff of the chemical establishment are
too familiar with explosive compounds to feel nervous in the presence even of such a villainous agent as nitroglycerine; but there were circumstances which rendered obnoxious visitor. One of these circumstances was the
insecurity of the envelope, which allowed the nitro-
glycerine continually to escape; and the other, which was of more consequence, was a suspicion that the
compound had been manufactured by inexperienced hands, that it had been imperfectly cleansed of acid, nd that it was therefore impure and especially liable
 the jolting of the train from Birmingham, and the rattling of the cab over the stones from London, showed that if eave produced it ; but it was nevertheless decided to place it out of harm's way as soon as possible. It was conveyed to hree miles from the Arsenal crate, and immersed in water someone frestel to the it in ther but the pro fessional reply was that it would sink in a cohesive mass to he bottom, and perhaps be detonated by the keel of some hip. There was too much of it, it was thought, to be ex ploded excent by the tedious process of removing it in smal quantities to remote places, and the only feasible plan, it was said, which presented itself, was to sprinkle it over th by nature into its constituent elements, and simply serve as manure to the land. However, on Wednesday the nitro-glycerine was destroyed on Woolwich Marshes. It was mixed with sand to form a species of dynamite. It was distributed in the form of a gigantic cross and ignited, but it burned with difficulty, and about 25 lb . of the mixture exploded with great violence, fortunately injuring no ne. The event will cause more care than ever to be taken dealing with nitro-glycerine, and probably
Butwhat of destroying it by buronnmake Gun-cotton, r pyroxylin, is a similar body to nitro-glycerine, and the cotton or cellulose from which it has been made can be re-obtained by several simple chemical methods. Strong potash ley dissolves gun-cotton rapidly, especially if heated xalic eg. Cent., with formation of ammonia, nitrous acid, n amm, and other acids. The alkaline solution ret, bee ssed fariacal solution of siver, and has, itssic sulph ydrate especially if mixed with alcohol, reproduce he original harmless cotton, with formation of potassic nitrate and a little ammonia. Ferrous sulphate exerts a similar reducing action, likewise reproducing the original cotton-see the results arrived at by Bechamp. Gunthon placed in contact with sulphuric acid and metalle mercury gives off its nitrogen in the form of nitric oxide ;
and so it is likewise with nitro-glycerine. This body, when mixed with fuming hydriodi adi, decompses below 100 deg. Cent., yielding glycerine and pure nitric oxide, as was observed by Dr. Mis ethereal sohtion is decom posed by sulphuretted hydrogen gas wilh copious depo Then again, nitro-glycerine, when heated with aqueous Then again, nitro-glycerine, when heated with aqueous clycerine and nitrate of potassium, as has been shown by glycerine
Railton.
$\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{O}_{3}+3 \mathrm{~K} \mathrm{HO}=\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}+3 \mathrm{KNO}_{3}$. Foster whstated, on the authority of Prossor G. that Dr. Mills found nitro-glycerine, kept for a fortnight, no longer explosive when struck, but showed no signs of decomposition or chemical alteration. If it were so, all cause
for anxiety at the present time would be at an end. This tatement can hardly be correct, although it is made in Watt's "Dictionary of Chemistry." Nitro-glycerine was first used as a mining agent by Dr. A. Nobel, a Swedish engineer, in 1864. It solidifies at a temperature
probably as high as 8 deg. C,- 56 deg. F.-and the friction probably as high as 8 deg. C,- 56 deg. F.--and the friction of the frozen particles is very apt to give rise to explosion. A terrible story was told about aifeen or sixteen years ago, to break up a block of frozen nitro-glycerine with a hammer, when everything vanished. Nobel found that the danger of accidental explosion of nitro-glycerine may be obviated by mixing it with wood spirit,
which renders it non-explosive by percussion or by heat. When required for use, it may be recovered by adding water to the mixture, which reprecipitates the nitro mum violence at 262 deg . C.; at 187 deg . C. it merely gives off red fumes, and at 294 deg. C. a very slight explosion takes place. The blasting oils of commerce are usually mixtures of trinitro-glycerine with the mono and dinitro-derivatives. For the analysis of these products, F. Hess, who is of Dumas' combustion process, the mixture of the oil with cupric oxide being placed in a long combustion tube, and protected by a screen of tin-plate during the expulsion of the air in the tube by the stream of carbon dioxide, and the combustion regulated as far as possible so that the successive portions of the finely-divided blasting oil may be brought to the temperature required for combustion only by the action of radiant heat. A simpler, and at the
same time very exact method, is to treat the blasting oil with alcoholic potash, whereby it is exactly decomposed into glycerine and potassium nitrate, in which the nitrogen, method. According to Sauer and Ador, on the other hand, the amount of nitrogen obtained by the latter method is always too low. By Dumas method they obtained from dynamite cartridges $18: 35$ to $18 \cdot 52$ per cent, decomposition with alcoholic potash they obtained only 12:3, 12 5 , and $13-14$ per cent, of nitrogen.
gir lyon playfatr and sir augubtus frederick abel. Ir has rarely, if ever, fallen to our lot to have to announce in by the above heading. Her Majesty has been pleased to confer the honour of Knight Commandership of the Order of the Bath Playfair was born at Meerut, Beegal, ind 1819." He was educated
at St. Andrew's, at Edinburgb, and afterwards proceeded to Giessen, in Hesse Darmstadt, to study under Professor Liebig.
He also worked with Professor Bunsen for some time. In 1843

ApriL 13, 1883.
THE ENGINEER.
291

Manchester, and was, from 1853 till 1858, Government Inspector-
General of Schools and Museums of Science and Art. He was General of, Schools and Museums of Science and Art. He was
from 1858 till 1869, Professor of Chemistry in the University of Edinburgh, and was Special Commissioner in charge of the
departmente of juries at the Exhibition of 1851, after which he departmente of juries at the Exhibition of 1851, after which he
was created a C C.B. He has represented the Universities of was created a d. St. Andrew's since December, 1868. From
Edinubrgh and St
November, 1873, till February, 1874, he was Postmaster November, 1873, till February, 1874, he was Postmaster-
General, and was appointed Chairman of Ways and Means
in April, 1880, but retired from this post a few weeks Generat, and was appo retired from this post a few weeks
in April, 1880 , but
ago. ago. He has translated and published several works on
chemical subjects, and on public health and education. He
is a lucid speaker, he is full of knowledge of a practical kind, is a lucid speaker, he is full of knowledge of a practical kind,
and he has had abundant experience of certain affairs of administration. It was one of the curiosities of the appointments of 1880 that a man with these qualifications should have
been made Chairman of Committees, where those qualifications would be of least use or of no use. It is odd now that no post
woun of public utility can be found for such a man ; but at any rate may care to take. The Queen has signified her intention of conferring the hhonour of knighthood upon Pronessor Frederick Augustus Abel, C.B., F.R.S., in recognition of the valuable ser-
vices rendered by him to the War Department and other departments of the Government in his capacity of War Department chemist. He Has been for a long geries of years at the head
of the Royal Laboratory, Woolwich, and has recently published of the Royal Laboratory, Woolwich, and has recently published Major Noble on gunpowder. Science is certainly to be congratulated on these honours.
he great plains of the united states.
The Legislature of Washington sanctioned two years ago the appointment of a commission for the purpose of thacating
suitable localities for experimental artesian wells in the regions of the great plains. That area lies between the meridian of 102 embracing about 40,000 square miles. The Commission has returned and made a report expressive of regret that they
cannot encourage a confident hope of success as to the result of cannot encourage a confident hope of success as to the result of
experimental borings as contemplated by the Act of Congress experimental borings as contemplated by the Act of Congress
authorising the work. Traversing the great plains, the general authorising the work. Traversing the great plains, the general
aspect of the surface is found very similar to the prairie district of the Upper Mississippi Valley. It is utterly treeless every-
where, saving a few clumps of cotton wood and willows. Grasses of the most nutritious character for grazing, as well as other of the most nutritious character for grazing, as well as other
herbaceous plants, prevail, but vegetation barely covers the
surface. All attempts at boring in these arid reeions have, with surface. All attempts at boring in these arid regions have, with
one exception, been made by private enterprise. The exception is the boring made at Fort Lyon, in the State of Colorado, under the auspices of the general Government. Noteworthy among
the private borings are two, situated at Pueblo, in Colorado the private borings are two, situated at Pueblo, in Colorado
One of these, it has been stated, was of a bore 5 in in .in diameter
and that the work was done with a plunge drill. 1166 ft. , at the bottom of a deep series of clayey shales, a flow of water was obtained. It gave a discharge amounting to 4000
barrels in twenty-four hours, but it began soon to diminish, and has now nearly ceased. Two borings have been made near Cañon City, but proved failures. Two others, made at Denver, have
been wholly unsuccessful. The Commissioners give a detailed account of all the attempts made, but state that after a carefu examination of all the facts, it is their opinion that prospects of
obtaining a satisfactory supply of water by means of artesian obtaining a satisfactory supply of water by means of artesian
borings are not encouraging. Nevertheless the possibility it
shadowed out that some artesian boring may be successfully carried on in consequence of some local dips that are believed to ocsur in the western part of the district. It is likewise Arkansas River into the strata which underlie the south-wes part of the district.

asualties in mining.

As actuarial report on the condition of the Northumberlan and Durham Miners' Permanent Relief Fund is accompanied by series of tables, one of which gives some interesting details of the
extent of the casualties that occur in mining. The operations of the fund extend over the largest part of the counties o orthumberland and Durham, and it has 76,278 members a the present time. For the past five years the eaths have been
870 from accident, or put into a form that enables a more
acurate estimate to be formed, the proportion was 2.45 for every accurate estimate to be formed, the proportion was 2.45 for every
1000 members; for every 1000 in the previous five years the proportion was 1.97 , and in the two previous years the proportions
were $2 \cdot 98$ and 3.83 respectively. It would thus appear that in the earlier years of the fund's operations the deaths fron cecident were more in proportion even than now, that in the
middle periods they were least, and that the recent great calamities in the north have caused the death rate to go up
seriously. The non-fatal accidents of less than twenty-six weeks in duration are also many, varying in the quinquennial periods from 58 per cent. to 101 per cent. on the numbers of the death.
from accidents, and on this point a mass of figures is given in the report. But the general conclusion to be drawn is that there are
very great variations in the number and the proportions of the very great variations in the number and the proportions of the
mining accidents, both fatal and less serious. It is well that we mining accidents, both tatal and less serious. It is well that we add to the reports of the inspectors of mines, and thus to acquir still fuller idea of the extent of the mortality in mines, and
the accidents that result. But the experience of the minin funds is as yet too short to enable us to judge as of the average,
for in the periods brought before us in the largest fund there is for in the periods brought before us in the largest fund th
a very great variation that cannot as yet be accounted for
DIsCHarging torpedoes.
IT is well known that the problem how best to discharge White-
head torpedoes presents considerable difficulty, and many attempts head torpedoes presents considerable difficulty, and many attempts
have been made to devise satisfactory mechanism. It appears that Messrs. Yarrow have settled the question so far as torpedo
boats are concerned. Some interesting trials took place at Westminster on the afternoon of the 9th, in the presence of Admiral Sir Cooper Key, First Sea Lord, Rear-Admian
Brandreth, Controller of the Navy, Mr. George Rendel, and recently built for the English Government by Messrs. Yarrow and Co., in order to illustrate the new system of steam impulse
introduced by them. The gear is similar to that recently tested introduced by them. The gear is similar to that recently tested
at Portsmouth with great success, it being found very superior to at Portsmouth with great suceess, it being found very superior to
the plan previously adoppted. The arrangement consists in building two troughs inclined at an angle of 5 deg. in the bow of
the boat, which are provided with suitable guides for carrying the Whitehead torpedo. Aft of these troughs or guides are two long steel steam oy inders, 6 in. diameter and 7 tt, stroke, the piston-
estimated at about fifteen miles an hour. If, therefore, the
impulse is given when the boat is going twenty miles an hour, impulse is given when the boat is going twenty miles an hour,
the collective speed of the torpedo upon entering the water is clearly thirty-five miles an hour. The arrangement is exceedingly simple, and under the entire control of the steersman.
After the torpedo was fired several times the boat proceeded down the river with the Admiralty authorities, and the oppor tunity was taken to inspect the small launch driven by elecopport developed in accumulators manufactured by the Electriical
Power Storage Company, the construction of which was fully explained by Mr. Volckmar, after which the Admiralty authorities inspected the Brazilian ironclad being built by
Messrs. Samuda Brothers, returning to town in the torpedo boat.

LITERATURE.

[First Notice.]
Equilibrio Interno delle Pile Metalliche. By L. Alumsv. Rome. THis is an attempt to solve, with an approach to completeness, the problem of finding the stresses in the members of bridge piers built up of clusters of metal
columns braced together herizontally and diagonally. When the number of pieces in the structure is much greater When the number of pieces in the structure is much greater
than that absolutely required for stiffness, it is well known that the above problem is one of great complexity. that the above problem is one of great complexity.
Accordingly, the character of the book we have under notice is such as to require one to possess considerable courage before plunging into the thick of it, because here equations before plunging into tve thick of dit, becaase here eqbols, are
10in. long, and involving two dozen various symbols quite thick. The ordinary engineer would certainly run away in consternation, and give up bridge-building in despair, if he were to be convinced that a necessary preminary were the solution, or even the comprehension of ing on page 100 a space of 9 in . by 6 in . He would prefer to re-build the bridge every five years rather than undertake to understand and make use of these formule. If a bridge were designed according to them, and the manager of an insurance company were compelled to comprehend its insurance against failure, he would assuredly charge a double premium, simply out of revenge for the headache he had suffered from in the effort.
Such might be the sentiments of the ordinary engineer
with regard to this book. Nevertheless, it is well worthy of consideration whether it is not the absolute duty of those engineers in leading positions who undertake the design and erection of such important works as the Tay and Forth bridges to face every difficulty of previous investigation, whether that difficulty be theoretical or of such structures is worth infinitely more mental labour than is usually bestowed on it. After the design is complete, the construction and erection cost, say, $£ 100,000$ and the risk of failure or totally destructive accident worth even more than that. The memoir under review needs, as already said, some labour to study it, and must have needed still more to write it; but probaboy the author
would not refuse an honorarium of $£ 500$ for its producwould not refuse an honorarium of twork, $^{\text {ion as a piece of professional work, and another }}$ like sum would in all probability be accepted, no entirely without gratitude, for the trouble of apply ing its conclusions to the numerical calculation
the elements of design for one of the important structures referred to. If, then, these conclusions are structures referred to. 1, then, these conctically
theoretically correct, and moreover are of useful applicaion to such cases, it would evidently be a senseless policy to reject such assistance merely because itions. Repugnance shape of complicated mathematical equations.
to the employment of difficult mathematical investigation for important and expensive engineering works is not at all justified by the mere difficulty and tediousness of the process. The subsequent practical carrying out of the saving of expense and risk that is possible in this subse quent part of the work is immensely greater than the cost of the most careful imaginable preliminary theoretica investigation. There is one objection alone that can b analysis of the matter in all its fullest complexity and down to its minutest detail. This one valid objection i that the brain of even the best educated engineer is hardly powerful enough to seize in one comprehensive grasp al the manifold conditions that have a really importan influence on the solution of sight almost trivial considera tions not unfrequently wholly invalidates the conclusion arrived at by a complicated theoretical calculation, and makes the result deviate even further from the truth than what might bave been arrived at in a much simpler method. The more complicated the calculation the more ancertain does its correctness become- ho errors arising in this way that mathematical investigatio has been much discredited, and distrust in its utility rather widelyspread. We wish we could believe that these prejudice all arose in this way, because there would in that case be ing science, which would then become popular always in proportion to its own merits that most of this prejudic is the fact in ed education, or want of edu cation, and sheer inability to master any difficulty that not of the lightest kind.
Although Signor Allievis work is by no means a com
plete treatment of lattice bridge piers in which there is large degree of "redundancy," still we think it is the most serious attempt that has yet been made in that direction by
the simple analytic method. In a series of papers by Pro the simple analytic method. In a series of papers by Pro of Stresses in Redundant Structures," which appeared in The Engineer of 1880, the principles of these calculations were fully stated, as also the mode of carrying them out by graphic constructions. A comparison of the methods given there with the long series of equations contained in
Signor Allievi's book shows the superior simplicity, intelli-
gibility, and practical easiness of the graphic method of investigating strains over the algebraic. One specially noticeable point of superiority is more difficult and tedious culation is that it becomes no more difficuit and ledious
with increased variability of the sections and the loads at the various parts of the structure. Thus there is no temptation to take short cuts to a result by assuming hypothetical conditions a great deal simpler than the actual hypothetical condin the algebraic treatment such an immense reduction towards simplicity is effected by the assumption of simple and symmetrical data-such as uniform distribution of load, or uniform section-that the algebraist held out to him, and gives the solution of his problem upon da Throughout the first half of Allievi's memoir the section Throughout the first half of Allevis memoir the section of the vertical columns of the pier are supposed to be
uniform from top to bottom, the sections of all the horizontal bracing bars from top to bottom are supposed to be the same, and those of the inclined bracing bars are also taken as being all uniform and the same throughout the height of the pier. Now it is not unnatural to ask, What is the use of any refined investigation into the stresses if the structure is to be built according to such an extraordinarily unscientific design? No pier of great importan if it importance be so small that, say, the economy obtainable by having all the pieces of one pattern be a ruling consideration, this simply means that the calculation of the stresse is of comparatively little importance, and their accurate calculation absolutely useless. Why, then, waste time and brain tissue upon a minute investigation of such case? We find fifty-eight large double sized pages in the treatise under notice, every one crowded with equations symmetry of the conditions are charming the weigh per foot of height of the pier is uniform throughout the whole height, the side pressure of the wind is uniform from the base to the head, \&c. \&c. But, unfortunately, the practical applicability of the results is limited to those cases in which precise calculations are not needed and are of no value. No doubt the results are highly interesting. It is in itself interesting to know that by the solution of a large number of simultaneous equations. Signor Allievi gives numerical examples of the working out of most of his equations. These are constructed both for the case of the pieces meeting at a join being all pin-jointed, and also for the case of the vertical colums being coninuous from top to borom. In the latter case the columns are treated as continuous girder by the bend mo ma by the lengtheng of the horzor burs The for numerical example on page 23 are taken from the Viaduct Busseau by Nordling, the load on the top of the pier being 200,000 kilogrammes, and the section of one of th columns being 450 square centimetres. For this the ateral bulging deflections are calculated for each of the ix joints between top and base. The largest of these is ions that the 120 lum the thetically require to be treated ss cind in min jointed together. The horizontal bracing bars are $4 \frac{1}{3}$ etres apart, and it is therefore evident th very smail deflections are practically witcordingly we find that the results calculated by Allievi for this example taking the structure as pin-jointed, are almost identical with those found on the supposition that the column is stiff from top to bottom. Furthermore, it is well to note that the above small deflections are far within the limits of any possible accuracy of workmanship in a structure of at different points of the column founded on the supposition of perfect fit between the parts-and this is the only supposition that can be made for such calculation-1 much less than those the deflections thus calculated ar imperfect fitting, which from their nature it is impossible to know

The following are the conditions of the next competition for the Volta Prize of the Paris Academy of Science :-The prize of
$50,000 \mathrm{~F}$. E 2000 -founded by the decree of the 11th June, 1882 , 50,000 - - 22000 -founded by the decree of the
for the discovery or inven which shall render electricity
ele economicaly applicable to one of the following applications:-
Heat, light, chemical action, mechanical force, the transmission of messages, or the treatment of sick persons, will be awarded in
December, 1887 The competition will remin open until the the 30th June
compete.
Caloutta International Exhibition. - Communications recently received from the Vice-President of the Executive Com-
mittee at Calcutta--the Hon. Colonel S. T. Trevor, R.E., joint secretary, Government of Bengal Public Works Department-are adjacent to the India Museum will be completed by July or August.
ad and A large space on the Maidan, facing the museum, has been enclosed, and will be devoted specially to machinery in motion, agricultural
implements, \&c. Gas and water will be available throughout the implements, \&c. Gas and water will be available throughout the
building. The arrangements in regard to lighting are now under consideration. It is proposed that, for this purpose, the electric
light should be employed. A deep reservoir, covering an area of nearly 90,000 square feet, will serve for exhibiting specimens of native boats, and for displaying diving apparatus, life-saving
apparatus, including boats and steam launch machinery. The extibition of Oriental jewellery will surpass any previous display of the kind. In addition to the splendid collection lately ysown
at the Jeypore Exhibition there will be contributions from the Indian prinoes and nobles, who have all been asked to co-operate.
The regaiia of each potentate is to be shown separately. The Public Works Department of the Government of India has comprovinces requesting them to obtain from the railway authorities under their control special rates for the carriage of goods intended
for the exhibition. The interest shown in the undertaking by the for the exhibition. The interest shown in the undertaking by the
foreign consuls, and the number of applications for space received frem all parts, ensure the complete success of the exhibition as an
from priority will be given in accordance with the dates of the applicaprions received through the official agent, 4, Westminster-chambers,
Victoria-street, London.
ENGINES OF THE LONDON AND NORTH-WESTERN RAILWAY COMPANY'S STEAMSHIP VIOLET.

only limited in area, taking in but a a mall portion of Western Europe,
but even figures of interest to general readers are omitted from the chart
to know what

THE LONDON AND NORTH-WESTERN RAILWAY COMPANY'S STEAMSHIP VIOLET. messrs. Latrd bros., birkenhead, engineers (For description see paje 292.)

the circumstance, and forthwith he becomes in their eyes a firstrate astrologer, who is to be consulted in season and out of
season about lost spoons, lost babies, stray dogs, and evil omens. season about oost spoons, lost babies, stray dogg, and evil omens. upon them. A story is told about an Astronomer Royal who was so often pestered to exercisiso his astrological powers, that he
resolved to e tive resolved to give a lesson to a woman whose teapot had been
stolen, and who required the exercise of his oceult wts that same. It runs somewhat to this ffiect:" "My good wooman, In will do my best. Youe have a front door to your bouse, I see.",
"Yes, sir." 'eplied she, curtseying. "In front of it is a path "Yes, sir)" Teppied she, curtseying. "In . front of it is a path
through the front garden," he added, making this shot with some dioubt in his own mind. "That's true, too," was the reply. "When you leave the gate you can turn either to the right or to the left," said he. "Perfectly true, that's quite eright," responded
the woman, whose faith in his wondertul powers was rising to the woman, whose
summer heat, to borrow a m meteorologicical expression. Ho then field on the right, divy deeply at a certain indicated spot near corner formed by the hedge, and she would find her teapot, A feve days later he saw the woman climbing Greenwich Hill, and
tail lashed himelt int on state of morll elevation to lectura her
 on her creduity. "Well, my good woman, did you find your
teapot?" «O, siir, I dug where you told me and found the That Astronomer Royal could no more lose his fame than Mr That Astronomer Royan coudid no more cose
Scotts department can at the present day.

A BIG DAM.

The following account of the Villar Reservoir dam on the River Lozoya, by Mr. E. J. Theodore Manby, M. Inst. C.E., is from the "Proceedings" of the Institution of Civil Engineers :The Isabel II. Canal, which conveys to Madrid the waters of the where the required level was established by a dam 92 ft . high A supplementary dam, 16 ft . high, was subsequently built a prolonged up to that point; but the combined capacities of these of the capital, and it was decided in 1869 to construct a large torage reservoir at Villar, about fourteen miles above Navarejos, capable of holding 20 million cubic metres- 4400 million gallons The construction of this dam began in June, 1870, and ended in 1878. The dam is curved in plan to a radius of 440 ft ., the
convexity being, of course, on the up-stream side. The total length of the dam at the top, measured along this curve, is fft. 3in. 8 ft . 3in. lower than the remainder, thus providing an outlet for
the overflow of the reservoir. The overflowing water is

directed down the valley, and kept from falling on the foot of the dam by a guide-wall 60ft. long, running radially to the iron bridge, consisting of twelve spans of 16 ft , runs acros he outlet, carrying a roadway which continues along the op of the higher portion of the dam. It was necessary to provide a crossing for horses and foot passengers over the dam, to replace the Villar bridge drowned by the reservoir. The maximum height of the dam in the centre of the valley, from the bed of the river to the highest level the water can attain, i.e.,
the level of the overflow, is 162 ft . lin. The higher portion of the level of the overflow, is 162 ft . 1 in . The higher portion of the dam rises to 8 ft . 3in. above this level, and is provided with parapets. The figure of the cross section of theide can be very face is vertical from the line of the highest water level to a point 84 ft . 3in. below, whilst the outer or down-stream face batters at an irregular rate down to the same level. The thicknesses down to this level run as follows :- At and above over
flow level, 14 ft . 9 in .; at 10 ft . below overflow level, 16 ft . 5 in .; a 0 ft . below overflow level, 19 ft .4 in .; at 30 ft . below overflow evel, 24 ft . 3 in .; at 40 ft . below overflow level, 30 ft . 2 in .; at 50 ft , below overflow level, 36 ft . 9 in.; at 60 ft . below overflow level, 44 ft . $8 \mathrm{in} . ;$ at 70 ft . below overflow level, 52 ft . 10 in .; at 80 ft . below overflow level, 61 ft . 4 in .; at 84 ft . $3 \frac{1}{2} \mathrm{in}$. below overflow inside face batters 1 in 3.57 and the outside face continues with a uniform batter of 1 in $1 \cdot 163$, till they respectively strike the rock in the bed of the river. Two galleries run through the dam at a depth of 143 ft . below overflow level. Each of these has a clear inlet area of 19 square feet divided into two compart-
ments, closed by sluices governed from a central tower built on to the inner face up to the level of the roadway. These sluices are worked by hydraulic power derived from a spring found higher than the dam. The strain on each sluice rod with a full higher than the dam.
Besides these two galleries, four tunnels have been driven flood waters, and avoid, if possible, the higher overflow coming int use. Two of these issue from the same level as the galleries, a third one from a point 50 ft . higher, and a fourth from a point
77 ft . higher. The whole dam is built of hydraulic rubble masonry, except the lower part of the tower and the top course of the dam, which are of ashlar. The total cost of the reservoir, including the bridge and the tunnels, was $£ 80,556$. The
materials were supplied by contractors, and cost $£ 42,000$. The materials were supplied by contractors, and cost $£ 42,000$. The
construction was executed by day labour, and cost $£ 38,566$. The construction was executed by day labour, and cost $£ 38,566$. The zontal line 162 ft . 1 in . below is 1275 square yards, and may be considered as a fairly light one. The Furens dam, which is of about the same height- 164 ft .-only measures about 1200
square yards in area, but the Gileppe dam, if carried up to the
height of 164 ft --which emergency was contemplated and provided for by its designers-would present an area of 2130 square yards. The type calculated in Krantza
164 ft . has about 1330 square yards area
The Villar dam is slightly narrower at the base than the Furens dam, and much narrower than the Gileppe dam, or Krantz's
type. Its thickness at 162 ft . below overflow is about 154 ft . The Furens dam measures 159 ft . at the corresponding depth, according to the plate in Krantz's work, and the Gileppe 216 ft . The
Krantz type, for a height of 164 ft ., gives 185 ft . as the proper thickness at base. Fig. 1 represents the comparative outline of the sections of the Gileppe, Furens, and Villar dam. Krantz's
type is figured in dotted lines. The outline of the Furens dam has been taken from Krantz's work. (For full account of this of Gileppe dam has been plotted from the dimensions given in notice printed in these "Minutes," vol. xlviii., p. 312. The Villar dam was designed and constructed by Mr. José Morer, chief engineer to the Spanish Government.

THE TREVITHICK MEMORIAL.
Thg following copy of the minutes of the meeting of the Trevi-
hick Memoria, held at the Institution of Civil Engineers on Shiok Memoria, held at the Institution of Civi Engineers on

 C.E., Joseph Tomlinson, C.E.; Major John Davis, F.S.A. Major-
General Sir Andrew Clarke, R.E., was requested, and kindly conGeneral Sir Andrew Clar
The hon. secretary read the communication he had received
from Mr. Husband, the hon, secretary of the Cornish sub-committee is to the views of that committee, embodied in the following reso ution:- "While we entirely approve of the suggestion of raising pinion that the great aim should be to raise such a fund as would lead to the establishment of scholarships for the assistance of the education of young men of talent with a view to qualify them to
take good positions in their professions as mining or engineers, the take good positions in their professions as mining or engineers, the
fund so raised to be designated the Trevithick Memorial Fund nept is is believed that if such a fund is established it would be discussion, the following resolution was proposed by Mr. Henry Chapman and seconded by Mr. Percy G. Westmacott, and carried: "It was resolved to raise a fund for the erection of a statue to the
memory of Richard Trevithick, and further to provide a fund for the establishment of scholarships bearing his name, such scholarships to aid in the technical education-of young men to qualify hon. secretary was instructed to write to Mr. Husband, informing him that the committee substantially agree with the proposals o esolution.
The following further business was then proceeded with: -Mr . Henry Chapman proposed and Mr. William Adams seconded, that
Mr. James Brunlees, President of the Institution of Civil Engineers, Mr. Percy G. R. Westmacott, President of the Institution Cornish Sub-committee, be the trustees for the Trevithick
Memorial Fund; carried. Proposed by Mr. J. Tomlinson, and seconded by Mr. Edward Alfred Cowper, that the bank for the fund be the Imperial Bank, Victoria-street branch; carried. Pro
posed by Henry Ohapman, and seconded by Major John Davis that employers of labour be requested to allow penny subscriptions
from their workmen; carried. Proposed by Mr. Hyde Clarke, and seconded by Mr. Joseph Tomlinson, that the thanks of the meeting be given to the Council of the Institution of Civil Engineers
for the use of their room for the meeting; carried unanimously. Proposed by Mr. Chapman, and seconded by Major John Davis,
hat a vote of thanks be given to Major-General Sir Andrew Clarke for his conduct in the chair.
Tre following gentlemen were appointed as executive committee to meet to carry out the views of the general committee, approve forms
\&c.:-Major-General Sir Andrew Clarke, R.E., Sir Frederick J. Bramwell, F.R.S., Messrs. William Adams, O.E., Hyde Clarke,
Alfred Edward Cowper, C.E. William Husband, C.E., Joseph
Tomlinson, C.E., Percy G. R. Westmacott, C.E., Trueman H. Wood, B.A., Henry Chapman, C.E., hon. treasurer, and Majo Tohn Davis, F.S.A., hon. secretary, three to form a quorum.
The hon. secretary was requested to send to the hon. secretary of the Cornish Committee the minutes of the meeting.

FREEBOARD.

THE following instructions to surveyors of ships have been issued
by the Marine Department of the Board of Trade:1. -The I cases the froeeboard assigned to ships as shown by the load-line disc is sufficient.
2.-They are also advised that in many cases the freeboar
assigned is insufficient. 3.- In insumient
nly in which the freeboard the efforts of the staff on those case decided to adopt the following plan.
4.- They intend to obtain and record in an Alphabetical List of Ships the freeboard assigned in each case by the owner's load-line,
the freeboard assigned in any case by the Committee of the Society of Lloyd's Register of British and Foreign Shipping, and the freeboard which would be given by the Board of Irade tables. They will commence with steamships.
5.-They are therefore prepared to receive from owners any
information they may desire to forward to the Marine in the case of any ship, with a view to enable the Department to indicate how far the load-line as marked by the owners is or is no in such a position as would meet the views of the Department and its advisers.
6.-Forms
6.-Forms in which this information can be inserted may be
obtained, free of any charge, at any Board of Trade Office, Custom obtained, free of any charge, at any Board of Trade Office, C
House, or Mercantile Marine Office in the United Kingdom,
7.-On consulting the above lists, which will contain in paralle
columns the three freeboards, viz, the owner's freeboard, the free board of Lloyd's Register Committee, and the freeboard accordin to the Board of Trade tables; the surveyors will know how to act any probability that their ships will be detained for overloading by the Board of Trade surveyor.
Board of Trewners whose own load-ines are in accordance with the Board of Trade tables will know that their ships will not be interfored with by the Board of Trade stan on account of overloading, long as the ships are so loaded as, when in salt water, not to be immersed beyond the centre of the load-line disc.
9.-The freeboard, as determined by the Board of Trade rules, will be-(1) The freeboard for summer; (2) The freeboard fo winter; (3) The freeboard for Atlantic voyages in winter. as a matter of course, include the freeboard for voyages in summer
weather all over the world, and the winter freeboard will be the freeboard for voyages in winter weather all over the world, excep in the North Atlantic.
shipowners in their ports and districts, and distribute the forms shipowners in their ports and districts, and distribute the form
referred to herein,
THOMASRRR, Secretary.
THOMAS GRAY, Assistant Secretary,

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS.
(From our own Correspondent.)
THE quarterly meetings of the iron trade this week have been entres. The amount of business resulting has not at present been of great importance. Still, the course of prices having been ascer of new work will be placed. Among the customers for manufacAt the Wolverhampton meeting on Wednesday the all-min pig-makers, influenced mainly by the action of the Lilleshall Iro Company, Shropshire, determined to re-declare last quarter's
prices of 85s. for cold-blast pigs, and 65s. for hot-blast. For bes grey pigs a few hot-blast makers are getting 67s. 6d. The demand is dull, and stocks are increasing on makers' hands. One Stafford-
hire firm is known to have a stock of some 6000 tons, notwith shire firm is known to have a stock of some 6000 tons, notwith
standing that production has of late been curtailed. The Lilleshall standing that production has of late been curtailed. The Lilleshall
Company is turning out some 1100 tons a week from three hotblast and two cold-blast furnaces. Part-mine pigs were tame at 50 s . to 45 s ., and common pigs
were 40 s . to 38 s . 9 ., less $2 \frac{1}{2}$ per cent. Forty-five shillings was the quotation for the Willingsworth brand. Recent extensive sales of pigs produced in other districts made against a large business being
done by the vendors of these descriptions at this week's gatherings Still prices were pretty firm. Lincolnshire and Derbyshire sorts were quoted 50 s ., though 48 s . 9 d . was nearer the actual selling announced 62 s . 6d. to 65s., according to brand. Ulverstone 65 s, whilst Thorncliffe-South Yorkshire pigs were firm at 60 65s., whils
delivered.
The ma
The marked iron houses on Wednesday announced no alteration on the quarter. Bars, consequently, were re-declared at $£ 82 \mathrm{~s} .6 \mathrm{~d}$
for the Round Oak brand, and $£ 7$ 10s. for those of the other firms Sheets and plates rolled by the same makers were $£ 9$ per ton The demand was not reported as brisk, whether on home or foreign as to the future
Makers of medium and common finished iron resisted all ttempts by merchants or other buyers to reduce prices below the
level of the last fortnight or so. They declared that there was absolutely no room for making any concessions, and there can be no question that they spoke the plain truth. Bars of medium quality
were $£ 7$ to $£ 610$ s., and common bars ranged from $£ 610$ s, to $£ 6$. Hoop and strip makers reported a fair demand, in much part on for hoops,
works. Gas nd nail strip was a minimum of $£ 67 \mathrm{~s}$. 6 d . to $£ 65 \mathrm{~s}$,
Makers of sheets for galvanising and working up purposes said that orders still hang fire, particularly from the galvanisers Singles were $£ 715 \mathrm{~s}$. upwards; doubles, $£ 85 \mathrm{~s}$, to $£ 87 \mathrm{~s}$. 6 d . and on
and lattens, $£ 95 \mathrm{~s}$. to $£ 910 \mathrm{~s}$, nominal. Galvanised sheets were weak. The Birkenhead Galvanising Company officially quoted
their sheets of 22 to $24 \mathrm{w} . \mathrm{g}$. at $£ 13$ 5s. to $£ 137 \mathrm{~s}$, 6 d , foob. Liverpool, and reported themselves with plenty to do.
At Birmingham this-Thursday-afternoon the prices declared tion was made. The coalmasters determined to call the men' delegates together next Thursday to consider the question of wages and prices. The Welsh tin-plate makers met, and fixed Welsh
ander at
as. per box in Liverpool, and charcoals, 20s, The cokes at 16s. per box in Liverpool, and charcoals, $20 \mathrm{~s}^{\text {, }}$, The duction. They refused to quote prices.
Ironstone was quiet, though there had been some recent good
ales. Agents for Northampton sorts quoted them $5 \mathrm{~s}, 9 \mathrm{~d}$, to 6 s delivered into this district. For North Staffordshire purple ore 17 s . was asked. Coal was without change on the basis of 11s. per
ton for the Earl of Dudley's blast furnace descriptions. Inferior furnace coal was to be had at 9 s .6 d . Good mill and forge coal was 8 s ., and common forge 7s. to 6 s .6 d . Cokes were quoted 24 s .
for best foundry Durham sorts, and 15 s , 9 d . to 16 s . for those of The post of assi
The post of assistant inspector of mines for South Staffordshire has been given by the Home Secretary to Mr. W. H. Pickering assistant manager of Rainford colliery, St. Helens, Lancashire. Mr. Pickering obtained a manager's certificate in June, 1881. All the coal districts ongland and wales were, it is claimed, first three days of this week in Birmingham to receive reports on the result of the national ballot on restriction of output suggested by the Leeds Conference in December, and to determine whether
restriction should be enforced or not. The proceedings were conducted in private. ducted in private.
The export trad
and this year, as at this time with some spirit. Australia promises well if manufacturers will only bide their time, and not flood the place with goods before they are needed. Prices are still much against makers, but there
is a tendency towards strength by a disposition to restrict make on is a tendency towards strength by a disposition to
the part of firms in one or two leading branches.
Wolverhampton has been fairly successful in tendering for the Admiralty work just distributed. A half-year's supply of black
ironmongery and boats' ironwork is amongst the business most recently secured.
The Birmingham Chamber of Commerce are agitating for legis-
ation on deeds of partnership similar in its nature to the Bills of Exchange Act.
The meeting of the Railway and Canal Traders' Association to
be held in London on the 17th inst. will be of considerable imbe held in London on the 17th inst. will be of considerable imand deputations will attend representing the Chambers of merce of Birmingham and other towns hereabouts. It will be his session with railway companies.
The engineering work undertaken by the waterworks depart-
nent of the Wolverhampton Corporation at their Cosford station men now nearly completed. The engine expenses during the last
financial year have ben $£ 2700$. The total working expenses for he year have been f9519, and the to made a net profit of $£ 1563$.

NOTES FROM LANCASHIRE.
(From our own Correspondent.) Manchester--Business generally in the iron market has been
so largely held in abeyance pending the result of the quarterly
meetings this week, that very little opportunity has been afforded of fairly testing the actual condition of trade. What change there is every indication that pig iron makers, who for several weeks past have found it impossible to secure orders on the basis of their present quoted rates, will have to meet buyers with some con-
cession, whilst in finished iron merchants have been so freely underselling the makers as to induce the expectation that prices At the Manchester market on or manufactured iron were very few, and both buyers and sellers seemed to be holding back until after the Thursday's Birmingham meeting. For pig iron quotations were little more than nominal,
Lancashire makers were asking 47 s . 6 d . to 48 s ., less $2 \frac{1}{2}$ for forge and foundry qualities delivered equal to Manchester, pending any ings.

 Patent-offi
London.

ABSTRAOTS OF SPEOIFIOATIONS.

2615. Presrivantion of Mmk, B, Sieher), Germany.-

 3215. SEAT SHifrtrs for Carriage, W. H. Roberts,
Somerset.- 7 th Juy, 1882. - (Provisional protection

 of the different apparatus for treating grain in a build-
ing spread over alare are
in several stories.
 Gd. .
Thae objects are, First, to produce figured cloths so
that the design is shown more elearly than bitherto on both the front and back, by so manipulating the warps
that the same coloured threads shall work with a line over them corresponding and same colourred weft
threans an well op the back as on the front, and
Sheoondy, to prevent what is known as "specking or
 working on the esack.
3479. Exprose

 chamber of a toy gun, and, on coming in contact with
ahmal quantity on
barrel, is is ignited.

shortan the length of the blades. Also the position
 the friction, and this boss may be otherwise formed, in some cases a glopular form being adopted.
 Lection not allovede.)
t traction engine is provided with two drums, the

 prove apparatus.
 end wor. The fuel
bhich water flows.
bhe

 or backwards movement in the one or the other definite
position, so that the needie at one time pierces the silit position, so that the needile at one time pierces thesiit
of the button hole and at another time percres side-
ways from the slit int the material to be seres.

 is drained out of the steam pipe; ; steam will then flow
and drive out the drained water into the hole F and
(3832]

 Fiig. 1 and also in Fig. 2 . The cock is then shut. The
stam in the float will begin to condense. where.
upon the water will rise through the passage F, and
und

 The surplus water runs awas from the cistern by the
pipe H. The holes 1 I are for the emission of air.

 catch on its underside engaging with a corresponding
catcon on the base ppate.
3848. STrend Exanse, 3 . Beck, Shefileld. -12 th Auput,

 single crank of a shaft, having a pinion to transmit
motion to the main gearing actuating the twhel or
barrel
 cylinders are formed with parallel slides, to which
block aro fitto and connected to oon end the
piston-rod fin such a manner that the connecting rods piston-rod in such a manner that the connoecting rods
vibrate over and along the sides of the cylinders.

 part is made to project and cover the collar of the
serew C and in the cavity F formed a steo spring
washer S , is introduced to maintain a close contact of
 attached. A1 is the back or or hixed heard, and carries at
similar steel gripping jaw J corresponding to that

3849

on A, while the lower portion of head is extended
backward the full length of the baseoplotete s, securing
a firm attachment, and forming a box in which the
 jw, and is formed with a solld collar; strow threade
aro formed or fixed internall extending from the
front of the said collar to near the hinder end of bot,
rhe tot

${ }^{-12 t h t}$ A. August, $1882 .-(A)$ communication from C

This relates to machines for dressing separatitiatest from thachineshar ond and strang grain and grain is
fed through an inclined hopper fitted with a spiked roller
 such board being attached to and reciprocated by the
ridale. A fan causes a current of air to act on the
 regulating t tailbtionars po to the ring dile, upe throung hown which
the blast from a seond fan is caused to pass.

 above or below the door, and is titted with a roller or
projection, which, when the bar is shifted one way
hears bears againt and closes and door, whereas when the
ban is shifted in the opposite direction the door is free
to open.

consists in so forming the neck of the bottle and
shaping the stopper, that when the latter is forced down
hat
 by a shoulder formed in the necek of the bottle, and a
clear passageleft for the liquid.

 partition separating the entrance and exit openings,
and through widc an opening is formed. The valve
spindle carries an excentric valve working in contact spind de carries an excentric valve working in contact
with the partition, so that by turning the spindete the
opening through the partition is covered or uncovered opening thartughon, so that bartition turning covered or uncovered
as desired.

 is known as wrought iron, and it consists in subjecting
molton action iron the the atotion of currets of heated
carbonic oxide gas and air, by forcing such eases
air through and amongst the mass side by side in thin
streams, when the carbonic oxide is in in exeess. The
apparatus employed consist of thr
 subjeted to the antion of the eqaseous agents, and in
the third the find
as required.

 seaured at the top of the pleat, and such know enters
the hole in the steel, and whin allowing e entran
amount of vertical play, prevents the steel working

 or chemically treated before they are finally spun.
The ooilers, pots, or cans, containing the slivers preThe coilers, pots, or cans, containing the slivers pro-
Tared by corring or raving machines aro perforate,
and with their slivers are placed in boilers, and the
and
 bleaching, or dyeing the same The liquidid is run off
when the fibres are thoroughy impregate, and
steam or gas admitted to complete the operation.
 This relates to breech-1, oding fire-rms with a hook
on the underside of the barrels engaging with a pin in
 movement of the barrels about the pin or axis. To
automaticaly place tho ocks in ithe cocked position,
by opening the gun lugs cover the ends of the pin, by opening the gun lugs cover the ends of the pin,
round whith hto barels turn The look cavities are
fitted to receive silides, the fore end of each of which fitted to reecive sildes, the fore end of each of which
projects an far as the contro of the pin, and atooth on
it is is received into a arecess on the inner side of the lug it is reeived into a recess on the inner side of the lug
on that tide of the gun. The rear ond of the silides
form hooks engagig within procections upon the
 In oroedede tor removev. " burrs", cotton fibre, and other
vegetable matter from the wool used to make felt hate the bodies for the hats are taken in the cone stage
when formed, and hardened before they are felted, and are steeped for two hours in 2 bath consisting of 120
parts water to 1 part vitriol. The invention further ponsists in felting or planking hat bodies with or with-
out sulphuric acid in the water in the ordinary manier, out sulphuricicaici in the water in the ordinary manner,
and then finishing the operation with boiry water
which odda and borax have been dissolved. 3884. Boors AND Shozs, W. Morgan-Brown, London.
$-15 t h$ August, $1882 .-(A$ communication from H.

 (ad.) commurnication from G. W. Miltimore, Chicago.)
This relates to wheels built up of separate parts, and

 plites are placed on each side of the inner ends of the
spokes and secured in position by bolts.

Oie jav of the spanner is made shorter than the
other, and is formed with a serrated edge to grip the nut, the object being to enable the spanner to grip and
turn the nut when moved in open direction, but which
Will the turn the nut when moved
win turn on the nut when
back again for a fresh grip.

 connected with a steam boiler, so that the steam
pressure will cause oil to be delivered to a conduit pipe connecting the lubricator with one of the steam
cylinders of alocomotite, stomen pipe oonneeting the
said conduit pipe with the boiler. An upper chamber
 flow near the top, having a discharge nozzale and a
valve for regulatigg the pressure on the oil and water,
 in lubricators with a transparent cup or reservoir,
having a dotachable nozzle, adapted to be secured in a arving a detachable nozzle, adapted
socket in the part to be lubricated.
 Rouaix, Paris.- (Not proceded outh.) $2 d$.
This relates to cameras in which the sensitising and developing of the plate are carried on in the camera
itself. The back of the camera has a hinged door, and lso a flat slide fitting below the top of the camera,
Below the slide is a groove to enable a separate ground
 so as to bring it over a vessel containing a silver
sensitising solution. The back shutter is then closed, and the long hativing been proveriously corerere, all lisht
as excluded. The vessel is then raised, and the plate mmersed. 4 similar developed the picture to be

In a suitable casing is fitted a piston, consisting of a
body and a flexible cincture forming the packing, and which is the contact portion of the piston against the
casing or cylinder. Phe flexible cincture is inled with
cithen

 This oonsist in manuffacturing basic fire-proof
materials, by first dead burning and slagging the
 other combinations thereof free from silicicicacid, then
mixing this fundamental mass, after comminution, with hydrocarbons that are freof from water and ivecos
when heated and with alkali carbonates free from
water: and lastly pressing or stamping the water ; and lastly, pressi.
into the required forms.

 bark and beef stearine
 This riletes to a puxuzede or toty, the object being to
remove one or more rings from a wire frame. 3895 Ciarss And ClaARbTrrs, S. IV. Wood, Cornwall, This rielates to the preparation of heoeto or leaves made from the stems and refuse leaves of tobacco, to
be used for overing, and, if desired, for filling cigars
and eigarettes.

 the stove into compartmenta, each ooneeneterat bin-
ternal valves with a fue through which the cold blast to be heated is admitted. so as to regulate and produce
to uniform temperature of blast during the whole time a unitorm temperature of blast during the whole time
that the blast is howing secondy in o ooneoting
each compartment ty internal valves with a fue leand ing to the hartmentey, so thent the whele of the contained
ing the last can be discharged through either compartmen
for the eurpose of carrying off the deposit from con
 without fat horizontal surfaces, The combustion
chamber is framed os that it divides the regenerator 3898. Lows \& Holli
3898. Loons, S. Hollinrake, Burnly. -15 th August, The object is to dispens with the leather strap for
comnoeting the pioking stick and
picker, and onnecting the pioking stick and pirker, and ure
instaod a metal chan
which composed of rings or links instiad achange their position so as to present fresh
whints of contach. 3900. Suoks-consumisg Gratrs, W. J. Henry, Lon
don. $-15 t h$ August 1882. 6 . The back of the grate ocnsists of a grating, behind suitable material, which can be readily brought too products of combustion passing through the same are 3901. Foustain Pexs, J. Nadal, London. -15 th This relates to improvements on patent No. 2451,
A.p. 1 R88, the object being First, po overcome tho
friction which prevents the writing rod fin stylographic, pens from working with facility; and Secondly
to avoid the neeessity for unserewing the cap to allo air to pass into the pen before using, and screwing the cap down again when the pen is not in use so as to
provent the escape of ink. The valve rod is formed
 jects, so that ink entee
vented from escaping.
 from J. H. . Lidgerwood, Morristoon, U.S.- (Not proThis relates to hoisting apparatus in which the
 revolve round the same, the object being to provide
means for emsuring good ricitional contact between the drum and the shaft when they are to rotate
together, and for readily connecting and disconnecting ogether, and for readily connectiting ane
the same when the apparatus is in use
3903. Carriage AxLes, W. R. Loke, London. 15 th
August, 1882.- (A communicationfron IV. J. Varley,

Then Jerrey, U.S. the combination with a carriage axle of andjasstable sleeve, secured thereon by means independent of the nut employed to keep the axle-
box and hub upon the axle. The sleeve is proviled with grooves and passages for holding lubricating
material, bistributing it to the wearing gurfaces, such grooves being covered by an adjustable band through
a hole in which they are filled.
 This consists in taking an ordinary cigar, and by
pressure causing the middle thereof to assume pressure causing the midale theroof to assume a a
trian Iular form, Ieaving the mouth end pointed and
the lighting round as ussual.
 August, 1882.88
The object is, First, to poduce by the complete combustion of coal, combustible gas of greater purity and
strength than hitherto; and Secondly, to provide suitable apparatus for the production and application of
such pas. The specification is divided into ten to such gas.
all reating to the arricantem ent and do onstruction of the
and apparatus employed. The producers have a movable
bottom and water jacket, and the poke boles are prod with steam jets.
3909. ConssRuctron of Roads, tco., W. P. Thompson,
 This relates to the construction of roads of burnt
clay, broken into fragments and spread out into layers of suitable thickness, the clay being preferably burnt
by means of
 This relates to the production of a substitute for
starch from Tarranon shale, or what is called by som geologists paste rock, which lies between the upper and
lower Silurian formation.
 This relates on imporvementst, on patent No. 478, cross or star form, and inserting a combustible acid in
the centre where all the branheses meet, each branch
he have entro where all the branches meet, eechi
having and
arainst the against the wad.
16ith August, 18s8. 4d. The inventor constructs the oven with the furnace at
the back, which furnace communicates with the flues located in the centre of the oven, the heat therefrom
being communicated to the side flues by occasional being communicated to the side flues by
openings in sile walls of the furnace flues.
3915. Firs Escapss, tce. J. Kennedy, Strabane, The object is the arrangement of the escape ladders
in such an manner that carriages may be mounted
 amanner that the pipes are supported, and the direc-
tion of the jets of water is under better control.
 mews-gill prep ering boen

 standard, a folding leg frame, and certain details of
various devices, whereby provision is made for adjusting the leaves to accommodate books of different sizes,
and holding them in different positions, tu. 3919. Corfiss, , J., and R. Turmer, Rochdale- -16 th

 dust
apparaneo to a thin material, suchathar linen or or coton
or other substances combined therewith, and the manturacturo and unce oom a solidid filhing towthe the embossed
portions of a fabric, to render it permanent and waterproot.
proot
3022.

vacklo arrangementa, attached at one end to the bearrein, the bight of this and runing the other to the driving an eye on the check rein, so that the pull of the driver
On the driving rein will also bo papplied to the cheock
rein, whose tension will thus be incresed and relaxed
 3923 . Smoke - onsuming Furnaces, T. Flether,
 chimney, an open screenwork of firebrick or other fire.
resisting material is erected. 3925. Pontoons or Atr

having V -shaped to links forming diago onal bed bottom, between the springs at each end of the said mattress,
witth or without straight links
3927. Ropg Trumwavs, H. H. M. Smith, London.-
16th Augus, $1882 .-(A$ communication from A. s.

 addjustable upons a curved or inclinned carrficad or or mumporos,
so as to be suited for carrying the rope or cable along straight portions or around curved portions of the
tubo.
3028. STEPs or LadDERs, C. A. Jones, GlowcesterThis relates st improd. iments in steps or ladders,
 3929. HEativa Baxts, Hi, Darby, London.-16th
August, 1882.-(Not proceceded arith.)
$2 d$. The object is to arrange the gas-heating apparatus so
 The object is to render the action of the syphon from the beginining to the ending of the discharye tho samen,
and further, the discharge of the water is effected with.
out noise out noise.
3931.

 or arle-boxes; ; Secondly, in rendering the anvin itsoss
to traverse backwards and forwards beneath the "tup" of the hammer.
3932. Frrerroor Lieut Compound, W, Astrop and This consists in the use of an alkaline silicate and fire-resisting compound.
3933. SAFETY APparatos for Roluiva Mills, ,
 dued by the pasenge of a hard body, and relates partly 3934. Risa Spinning and Doviliva Macoinervy,
 usually used for spinning and which are fixed into
the ring rail. Other modifications are described.

 This consists of a very narrow plate or blade spring,
the lower end or shank of which is fastened by means of small screws or pins to the heel of the boot or orhoe 3937. Cossrructron or Mgrexs, J. T. Dann, Brizton.
-17 Ath August, $1882 .-(A$ communication from A.

This consists in tinio construction and use or employ ment of two cylinders so combined together that each
cylinder has six apertures or ports one at on, ona at
the boottom, and four at half height, two of the latter communicating with the top and bottom aperture of
the other cylinder, and the two others serving one inlet, and the other as outlet.

 A series of discs or loose
rims thates having flanges or
there are employed, in which are prooves

provided with toose tappet, ald of such dises being
phaced on the tappet hant and bound bodily together
by bolts which ppass through the whole series.

 3945.
 Thith.) $2 d$ id io to afford facility for concentrating the
the obje this then action of thestack drying fat or exhauster employed
upon any desired part or parts of the stack or rick.
 It it proposed to form an improver out of the ordi-
nary bust or flap, which will have its centre near or at the waist, and being part of the papier mache or
other material of which the bust is made.
3948. Loons For Weaving, c. Catlov, Burnley. - 17 th This revates to inproved combination of mechanism
 mechanism, and which is applicable tolooms generally.
To improvec combinatious of mechanism for holding To improver dombinations of mechanism for holding
the cloth orollor or colth beam, and to an improved
construction of reed dents 3952 .
 heated chamber, a comparatively large cooking o
warming chamber, and an envelope without openin warming chamber, and an onvelope wrythout openging
for ecsape of the products of combustion, except as set
forth
 richs, London. 18 th August, 1882. - (A communica
tion from G. W. Stwvinga, Groningen, Netherlands.) The turr is separated into small portions, an exposed to the rain or orherwise, to remove tannic
aeco oolouring matters or orther maters soluble and
removable thereby removabie thereby. It is then dried and torn apart,
and the various descriptions of matter are separated by sieves, The fine dust is is treated with tar, resin, and
coal d cantor admet, antur formed into bricks. The leafy, powde disisfoctant. The smaler elastic piecas may be be
employed a a packing or filling, and the larger elastic
pieces pieces, after treatment witht, sulph mate of irger en, are
adapted as a litter material for horses.
 from the Certaldo Marrbe Company, Paris.). $4 d$ d.
This relates partly to the preparation of artifcia stone or marble, by submitting nativive gypum or sul
phate of lime to a dehydrating indurating treatment.

 pump, on its up stroke draws from the supply in the
usual way trough a suction pipe and valve the other pump, which may be a piston working in a cylinder, is
connected with the boiler by by pipe provided with a
valve at the proper water level 3983. Musical Instruventr krown As Mgoranicat
Orgutistre, R. Whalley, Liverpool. $-18 t h$ Aufusi The Tirst part of the improvements is in that part the instrument, where the air passes through the per-
forated strips of paper into the wind boxg it furthe consists in making an opening at the bottom of each
of the four mmall bellow, for the purpose of gaining

 sor pies.
sates or punn ing nal
3986 .

 frames, or receptacaes, and hinged or pivotted conneet-
ing cross arms, wher by said trays are held in position
both when slosed and extended combination of such extensible receptacoles with othe
articles articies or supports; Thirdyly, in certain specia
articles provided with morable or extensible compart.
ments. 3968. Hosierx Knitiva Machises, W. Harrison The object is to knit two or more stockings or
articles, by malking articles, by making two or more machines work at on
operation by one person turning a crank or wheel.
 This relates to improve
struction of the machine.
3973. Crurns, W. McCausland, Belfast, -1 1 th Argur This consists in the use of improved tubular beaters or dashers, whereby a constand supply of air is fur
nished
churning. the milk or cream during the operation of

This consists, First, in the manufacture of ammonia for the purpose of increasing the amount of ammonnia
given oft on distillation ; Secondly, the use of lime or tion of shale oils, freed more or less from sulphur
Thirdly, the use of caustic lime,
Ilaked with a solution similar carbonaceous substances, for the purpose of increasing the amount of ammonia given ouffocuring
destructive oistillation, and of improving the oily pro-
duet of dithe 3979. Drivino M
 The object is the construction of meothanism forming Veys motion from the crank axle oto both the driving
wheols, and also permits of the differential motion of

This relates to the arrangement of a rooking lever, suidig block, and air chamber, operating in conj j
with a vertical stoam cylinder and piston-rod.
 This relates to the omplioyment of o hot idders. ocodtain.
ing thin moulded sheets of the chalk or marking

roller, such parts being so arranged that the distanc
between them is greater at the point of entry of the grain than at the point of,
adaustment of the mill.
3986. Apparatus for Connecting and Disoonsect
ina
Rallway or
 This reestaeading. Improvements on patent No. 3684 , dated 20th September, 187
3987 . Uruspasion
 Altrincham.-19th August, 1882.-(Not proceede
vith.)
$2 d$. The prin nipal object is to utilise galvanisers' flux
gas iron, and sawdust manure in the obtainment of useful products and bye-products.

 being connected to two bars. The opposite endo
these bars are articulated to the shank of a toothe these bars are artictulated to the shank of a toothee
sotor, , oommunicating through a pinion to a needle
the
 This relates to to that class of rotary engines in
which radial pistons or vanes slide to and fro in slote formed in a drum mounted excentrically in a cylinde or casing.
3997 . M.

This consists partly in the production from the solid or crystalised cumidine of diazo-cumole or the sulpho
acid of diazo- cumole and the use of these substances
for the 3998. Luspes, \&co., G. B. Lloyd, Burmingham.-21s
 outlet or aperture upon the lamp.
3999. Recovzry or Cavsic Soda or Potash Em
E.

 arsenic is extracted from copper precipitates, by mean
of a solution of caustic soda or potash. 4002. Kitchen Ranass, R. W. Crabt

This relast, 1882 . od.
This relates, first, to an arrangement of auxiliary kitchen ranges Socondly, to an arrangement of friee
box or furnace; Thirdly, to the arrangement of ash pan or ash receiver, comprisisin two twagementent of ase ove
he other, slididing in a suitable frame. Other improve nents are describe

 4007. Centriveani Machives for Dryiso Salt, de.

 intersect each other obliquely, siecondly, wind sail)
or wing arrageraupon the eantrifyal apparatus for
the purpose of removing the dried salt.
4008. Apparatus for Indrating the Postrion or
SUNEEN ShIPs, de., W. Rake, London,
 This consists of a buey having a aropeatta
and secured to the vessel or other object.

 4011. ForNacss, J. and T. Robinson, Widnes.-22nd This consists in a novel construction whereby the drantages of a melting or smelting and a reefining or
educing furnace are obtained in combination. 4016. Prsson Lubricators, H. J. Haddan, Eensington-
$-222 n d$ August, 1882. \rightarrow (communication from J. Thlisecher, cologone)-(Not proceated with.) $4 d$. structing a piston of two circular metallic discos cold-
ing between them a number of layers of cork, india ubber, pasteboard, or other more or less' elastic With such a piston, a mechanism for the regulation
 againt the thisting or or, which is prospovided oon its
periphery with one or more notches into which the peripher
link fall
the
4020. Roller Milis por Grisdisa Flour, de., T.
A. Adamon, Belfatt- $-22 n d$ August, $1882 .-$ (Noi This coededistsinh havi. hang one or more smooth rollors
working in combination with a futed roller or rollers, working in combination with or more smooth roller 4021. Exhavstrig Arr from Hav or orier STacks, The object is sthe oconstruction of portable apparatus
hat can be applied to stacks, and the air exhausted that can be applied to otacks, and the air ex enaustod
from the interro of the stack tor the purposo of dry
ng the material when it has been stacked insuufiing the ma
ciently dry.
4026 . SkA
O2B. Skates, c. G. Beddoe, London.-22nd August,
This consists chiefly in the employment of means of
cuasing the side claws for the sole to doscend so as cursing the sida claws or the sole tho doscend so as to fective attachment to the boot.

This receded with th the use of pumps in loosening soil which histo bo drodged, and t the rapsing in oo othisening oosened
oill ; also to details in construction of the pumps loyed. Manufacture of Mats, J. Maddin, London. $-~$
O30. This rolates to improvements in the manufacture of nats made from coir yarn in combination with manilla, emp, or other simiar maternals

This const, 18sts.2. 6 esentially in the combination in a

the pricker plate passing through the perforations in

SELEOTED AMERIOAN PATENTS.

claim,-Th combination, with a tube, cylinder, or ather hamber cylinders or or siminar to thambersh prostiod of of exploding or eduction valves and exploding gapertures, ,the com munication betw oxploding chambers being established through the

and piston and means for utilising or applying the
 aid valve, exploding chammbers containing induction and eduction vaves, and means for ingititing the gas
in said chambers altornately, as set forth.
 Claim-In a seondary battery, the combination of
apoitive neloctrode, the ative ative partof of which is finely
divided metal deposited thereon by electro-deposition,

273855

and a negative electrode the active part of which is a
spongy metalilic compound deposited thereon by spongy metalic eompound deposited thereon by
eloetro-deposition, either ond or bost olectrod
contained in a

CONTENTS.

The Exginerr, April 13th, 1883.
What Nitro-alycgring is
PAOE
.$\quad 279$
TREL FIRE-Boxks $\because \ddot{0}$

THE Probiber or Flloit
The Nortyampron Accident
Belain Mail Rods

The SUMAIT LEvel TUNWEL of the BETTWS ANi.
 DYadisa Arilions

Str Lyon Playpatr and Sir augustus
ARtrsian Wells vooi the Grear Pliains or thi

Litreaturg-
Equilibrio
Interno delle

The Iron, Coni, and Ger ieral Trades of Bri
Norzs from Lancashiri

 (ㅍlustrated.)
Matlock Bath Bater Supply
The Chief Cities of Europe
Trial Trip of the s.s. Malk
Lubrication
Calcutta Intional
Internationaibition.:

South Krnsington Moskev.- - Visitors during the week ending April 7th, $1883:=$ On Monday,
Tuesday, and Saturday, free from 10 a.m. to 10 p.m., Museum, 10,281 ; mercantile marine, Indian section, and other collections, 3802 . On ba., from 10 a.m. to 6 p.m., Museum, 1984;
mercantile marine, Indin. collections, 305 . Total, 16,372 . Average of corre-
sponding week in former years, 15,491 Total
sponding week in former years, 15,491, Total
from the opening of the Museum, $21,876,746$.

