THE UTILISATION OF THE RHONE AT GENEVA.
In our issue of 15 th December, 1882, we sketched the history of the question of utilising the water power of the Rhone for the benefit of the town of Geneva. It will be remembered that the citizens, finding that on the one hand they were involved in a law-suit with the Canton Vaud for doing nothing, and on the other hand, that private specu-
M. Legler's first report proposed to divide the entire work to be done into three successive periods or stages. In the first period, A, the works would be commenced at the he Pont de la Me ane ane "Island" of Geneva. The first work would be to construct a movable eir- g-on the French system, cutting off the right hand of the two arms into which the Rhone is divided as it passes
the Island. The sill of this weir would be at level $p n$
$100 \mathrm{cb} . \mathrm{m}$. in summer, and that a total power of 1300 to 1400-horse power would be realised.
In period B the tail channel below the turbines would be dredged to a depth of -6.99 m ., and the whole bed of the Rhone, from thence to the junction of the Arve, would be brought to a uniform slope of $0 \cdot 108$ per cent. This would lower the water level at the exhaust side of the turbines, and thus increase the available fall, whilst at the same time a larger quantity of water would be directed

lators were proposing to do something without much consideration for their interests, insisted on their rulers taking the matter in their own hands ; and that M. Legler, an eminent hydraulic engineer, was instructed to prepare a report to be referred to a commission appointed to deal
-4.50 m ., or 4.50 m . below the Geneva datum, known as down the left-hand arm, and the turbines themselves would the Pierre a Niton. Both arms of the weir would then be be increased in number. This, it was calculated, would regulated by dredging, so that their beds, starting from give a gross power of 2600 to 2700 -horse power. the above level at the site of the weir, would fall from In period C the tail channel would be still further thence with a regular slope of 0.13 per cent. From the deepened to the level -9.70 m , and the river bed, thence

with the whole question. This report, with a note upon it by M. Achard, one of the members of the commission, was published in September last, and our previous article Matters have now advanced much further. The commission have come to a definite conclusion as to the steps to be taken, have invited tenders for the construction of the works, and have published a second report, in which these works are specified. On this we propose to say a few words.
lower end of the Isle a dyke r would be continued down the stream for some distance below the Pont de la Coulouvreniere, thus prolonging the actual separation between or southern shore, a turbine-house would be on the left in part, togethere, a turbine-house would be constructed some dredging would a weir ant the tail the dyke, and facilitate the getting away of the water. It was calculated that $50 \mathrm{cb} . \mathrm{m}$. per second would be available in winter,
to the junction of the Arve, dredged to a uniform fall of 0.0372 per cent. A further increase in the available fall would thus have been obtained. At the same time, the waters of the lake would have been kept back during the winter, when the supply is least, by stopping part at least of the turbines during each night, and thus enabling them to have a larger supply of water available during the day. been 7000 -horse power in winter and about the same in
summer, when, although the fall is much less, the supply of water could have been raised to $350 \mathrm{cb}, \mathrm{m}$, per second. This would, of course, entail a further enlargement of the roine house and the supply of additional urbie approved proposed method of carrying out the works, whine achard, the
in general, was, however, criticised by M. Achard, ngineer member of the commission, as follows:
(1) In period A there would be great liahility to miscalculation as to the supply of water, especially in wet seasons, such as those of 1877 or 1879 ; and it would be necessary, therefore, to give a very small slope to the sur-
face in the left-hand or commercial channel, and therefore face in the Jeft-band or commercial channel, and therefore to dredge the bed at the entra
the proposed level of $-4: 50 \mathrm{~m}$.
the proposed level of $-4: 50 \mathrm{~m}$.
(2) The right-hand or discharge channel has already a depth such that very little dredging would bring its bed ower than the level proposed above, thereby increasing its capacity.
(3) The inflow of the Arve necessarily banked up the water above so far as to render useless the great lowering
of the bed between the confluence and the turbine house, of the bed between the confluence and the turbine house,
proposed by M. Legler for period C. proposed by M. Legler for period C
M. Lealer, while declining to reco
M. Legler, while declining to recognise the first of these
points as important, admitted the justice of the other two; points as important, admitted the justice of the other two;
and in a supplementary report he proposed the following and in a supplementary report he proposed the following
modifications:- (a) The depth of the discharge channel to modifications:- - a inereased bye depth of the diarting from -5.50 instead of -4.50 m .-but the sill of the new weir to be still at the -4.50 m . level, so that it would have an abrupt fall of one metre below it. (b) To diminish by one metre the
depth to which the tail channel would be dredged in depth to which the tail channe wou before.
period C , the slope remaining as bef
period C, the slope remaining as before. a med to report again on this ameded scheme, M . Achard still insisted on the necessity of giving greater depth to the left or industrial channel, and of reducing
the slope of its bed. He showed that 6000 -horse power the slope of its bed. He showed that 6000 -horse power
was all that it could be hoped regularly to utilise, and that this would necessitate, a maximum supply for the left channel of 267 cm . per second, at the time when the
available fall is least. He therefore proposed to fix the level of the bed at the entrance to the left channel, at -4.90 m . instead of -4.50 m ., and the slope from them at 0.05 per cent. instead of 0.13 per cent., and showed
that these data, combined with those laid down by M . Legler for the right arm, would give much improved results, both as to amount of discharge and uni-
formity in the power available. At the same time they would enable a change to be made in the method proposed by M. Legler for regulating the level of the lake ; this
could be kept at its maximum $(-1.20 \mathrm{~m}$.) during the could be kept at its maximum (-1.20 m .) during the completely closed, and would escape altogether the condition most unfavourable for motive power, viz, where the level of the lake is near its minimum ($-1 \cdot 80 \mathrm{~m}$.), and yet the weir is not completely closed, allowing a part of the
water to escape down the right, or unprofitable branch of water to es
the river.
After a conference with M. Legler, the commission decided on adopting M. Achard's views, giving the bed of the left branch a level of -4.90 m . at the entrance, a slope of 0.10 per cent. along the Island, and 001 per cent.
from the lower end of the Island to the turbines. At from the lower erd of the Issand to the turbines. At
the same time the proper division of the work into periods the same time the proper division of the work into periods
was further discussed, and a new method sketched out which has since been elaborated. There will now be two periods only, of which the first is to be in two subdivisions, During the ime wo which require no consen from the Canton de Vau, or the wners of propery uponef the level during floods, require such consent for their uthorisation. The first will include the construction o the longitudinal dyke r, and the partial building of the turbition of the turbines in sufficient number to give about ool-horse power, the demolition of the fixed sill of the present weir at the entrance to the left channel the dreds ng of the tail channel below the turbines, the demolition of the present water wheels at La Coulouvrenière and Sans-Terre, the complete dredging of the river below the unction of the two channels to the section $c d$, and various other works rendered necessary by these. The channel between the Pont de la Machine and the Pont de a Coulouvrenière, the construction of the new movable weir g, the removal of the present hydraulic engines j and k, and of the sill of the present weir above the right channel, and the dred ing required above the Pont de la Machine. Finally, the second period will comprise the dredging from section $c d$ to the junction of the Arve, final form the removal of the hydraulic engines, \&c., o he right bank, and the dredging required in the right channel between the Pont de la Coulouvrenière and the junction of the two channels.
On the basis of this project the commission invited kenders for the first part of the work, viz, the conwere to be deposited by the 15 th of May. The specification supplied is of a very wide and general character, and beyond indicating the nature of the work, and certain conditions to be fulfilled, leaves nearly everything to the judgment of the contractor. American than the English way of getting work done at the same time the provisions are so general that we shal not attempt more than to give a sketch of the whole.
The work to be done inciudes (1) the turbines at the Coulouvrenière Bridge ; (2) shafting within the turbine houses and shafting or wire ropes outside to transmit the power from the turbines to the various manufactories , (3) sluices for discharge. The two latier may be made a separate contract if the Ministry wish. The left branch of the Rhone, which forms the channel of access to the
turbines, will be prolonged from the Island downwards by turbines, will be prolonged from the Island downwards by an earthen or masonry embankment; in any case, the
part between the end of La Halle and the Coulourrenière part between the end of La
Bridge is to be cut in stone.

The turbine house is to be built at the level of the Place des Volantines, and is either to be founded on land upon the Quai de la Poste, or, should the acquisition of the
land prove too costly, then be built in the river. The contractor is to give a design for each of these. The turbines must be so arranged as ultimately to transmit power in the simplest manner to the existing manufactories St. Jean to the works at Sans-Terre and to works which may be hereafter built at the junction of the Rhone and Arve. The turbines must be arranged with a view to Auture extension without stoppage of the existing works. There must be sluices for carrying off the excess of water during the first period when all the turbines are not in durng the first . Legler proposes to place these sluices in the operatuon. M. Legleral embankment, but the Ministry reserve the right of adopting another plan. The kind of turbine to be employed is left to the contractor; but he must give a full description of it, with advantages and disadvantages, and indicate the places where such are already at work. Each turbine must have a movable distributor, so as to regulate the supply of water according to the variations in level
The following works for transmitting the power must be separately considered:-(1) Force pumps worked direct by horizontal shaft ; (3) electric machines worked by a quickrunning horizontal shaft: (4) tele-dynamic or wire rope transmission to the various manufactories,
Several different projects may be presented both for turbines and transmissions, so as to utilise the available water power at its various levels, a table of which is given. The contract must include the supply and fixing of the turbines, transmitting apparatus, and sluices, with all necessary tools, appliances, \&c., for their working. The s d he coupl require oil above once in twenty-fourhey may be uncoupled without disturbing the shaft. A commission nominated by the Ministry will examine the tenders, plans, specifications, and projects-and will award three prizes of $£ 100, £ 60$, and $£ 40$ respectively
The sluices are to be ready four months after the acceptance of the tender, and when the buildings are ready for the contractor he must complete one-third of the turbines and transmitting apparatus within four months, two-third within seven months, and the whole within nine months, under penalties of $£ 1$ per day for the first fortnight, th for the second, and so on. All materials must be of the best materials and workmanship, and must not vary more than 5 per cent. from the weight estimated. When each third part of the work is completed it will be examined ment (1) The power given off at the turbine shaft, as neasured by the brake; (2) the volume of water expended as measured by gauging the discharge with a Woltmann current meter ;
above and below.
The contractor will be responsible for the working for two years after completion, and will have to replace any
lefective pieces. The turbines may be rejected entirely, defective pieces. The turbines may be rejected entirely,
if their efficiency falls below 62 per cent. The contracto is liable for all losses occasioned by accident, \&c., during the progress of the works.

MEASUREMENT OF WATER MECHANICALLY SUSPENDED IN STEAM.* by Pala mede Guzzi, C.e.
THE greatest difficulty which is encountered in determining the
coefficient of evaporation of a steam generator, or the weight of coefficient of evaporation of a steam generator, or the weight of vapour produced in a given time, is in measuring the water which,
it carries over from the Loiler by mechanical action. This problem,

which has acquired a greater importance since Hirn, Leloutre, and
Hallauer, by their overthrow of the old theories of the steam Hallauer, by their overthrow of the old theories of the steam engine, have opened the way to the true theory, is not yet com-
pletely solved. The only solution of real importance among the
$*$ Abridged from a communication to the Milan College of Engincers
and Architects, January 21st, 1877.
many which have been hitherto attempted, is the one suggested by
Hirn, and followed by the distinguished experimenters of the Industrial Society of Mulhouse, and others. Even this leaves some uncertainty, so that the Mechanical. Committee of that
society has recently renewed its offer of a reward for a better socity has recently renewed its offer of a reward for a better
method. Hirn's plan consists in measuring the total heat of a given weight of steam, and comparing it wh Begnault's formula. be found in dry saturated steam, as given by Regnaulds formula,
His apparatus consists simply of a coiled tube, surrounded by water But there is some indeterminate portion of the energy of the steam, which is so transformed as to be incapable of measurement. The vibrations generated by the flow of steam, in
the coil, and in the surrounding water and air, as well as the coil, and in the surrounding water and air, as well as
in the boiler itself, represent a transformation of heat into mechanical energy. A part is manifested in the form of
sound, and is lost, only a mall fration sound, and is lost; only a small fration of the remaining portion can reappear in a greater elevation of the temperature of
the water. Moreover, during the flow of steam and its condensa tion in the coil, recent experiments have shown that there is a conversion of thermal into electric energy. It is true that for thaut's experiments were made under similar conditions; but experimenting for purposes of a greater need of other means of devised an ap for purposes of comparison or contirmation. is have with the steam of which it is desired to measure the humidity, and which is protected, as much as possible, against radiation and
consequent internal condensation. Its can the vapour internal condensation. Its capacity, and the weight of mount of dissolved or suspended water. T This recipient, marked - in the eompanying diagram, is made of copper, in the form o cylinder with hemispherical ends. It has an upper valve b, an a hower valve c, which is fastened by the screw d to the bottom of recipiamber e. This chamber, which serves as the envelope of the are both of cast iron, and the cylindrical sheet iron wall h. h, The
The sides and top are protected by non-conducting materials enclosed in the external envelopes i, j, which are made of polished brass. The covering receives the pipe leading to the valve b, and contains the stop-cock k, as well as the stuffing.box l, through which passes the stem of the thermometer m. The double bottom f is put in
communication, by means of the receiving valve n, with the steamdome o; by means of the openings p with the chamber e amd when desired, with the interion of the recipient a. The valves and c are worked by means of the hand wheels s and the spindles q, which traverse the stuffing-boxes r. In order to diminish as
much as possible the transmission of heat from b and c to s, the much as possible the transmission of heat from b and c to s, the
spindles are made hollow and pierced with holes, so as to increase spin surface of contact with the steam of the envelope e, while the heat-conducting sections are diminished. In experimenting, the air is driven from e by opening k and $m ; k$ is then closed, and after some time b and c are opened. After the air is driven from a, b i closed. Atter some seconds, when the equilibrium of pressur
established, c and n are closed; the cover g is ifted, and the sindles q being withdrawn, the recipient a is removed to ives the weight of the mixture of water and andere, deducting the weight omarequal volume of dry saturate water dissolved in the steam. Care is needed in determinin the tare of the vessel a. To take account of the vapour which is will be well will be well to experiment with a generator from which no othe some time. Subtracting from the weight of a, thus filled with vapour, that of an equal volume of dry saturated vapour at the same temperature, we get the weight of the empty vessel, bu iternally bathed; this is the tare. The apparatus could also be applied to the determination of the density of dry saturate Fairbairn and Tait, ,t, and to find the values of r, in the formula o
Clausius, $\mathrm{A} \mathrm{P} u=\frac{r \mathrm{P}}{d \mathrm{P}}$, for comparison with those obtained by Regnault.

$\frac{\mathrm{T}}{\mathrm{dP}} \mathrm{T}$, for comparison with those obtained by

electric lighting in leeds.
In our last impression we published the specification issued by the Corporation of Leeds for electric lighting. The following supplemental particulars relating to the proposed lighting by electricity of portions of the municipal buildings at Leeds for the Corporation have just been issued
The attention of companies and persons who may intend submitting tenders for lighting by electricity the places mentioned in the particulars issued by the Electric Lighting Committee
of the Corporation of Leeds, and dated the 21st inst., is directed to the following supplemental particulars having reference to the poposed lighting:At a meeting of the committee, held at the Town Hall, Leeds,
this day, it was reported that in response to the invitation of the committee for suggestions as to probable improvements generally been received from companies and persons desirous of tendering suggesting for the consideration of the committee the desirability of the clause in the particulars issued on the 21 st inst., relating to the employment of a particular type of dynamo-machine beng
modified, when after the subject had been considered it was resolved:-" That, having regard to the suggestions now made, the committee conclude to modify the clause so as to allow companies and persons tendering to suggest for use such types of dynamomaccines as ith the maticular system af lighting emprised in the tender." It was also resolved that the following further alteration be made in the particulars viz: That the clause on page 10 reading, All wires must be carried to the various groups of lamps by means of wood mouldings, s , harmonise with the walls and mould,
ings of the ceilings, \&c., so as to over up and preserve the wires,"
be cancelled, and that in lieu thereof the foll pring eve stituted, viz. : " "The committee will, at their own cost, open in the walls and other places such receptacles as may be necessary to
receive interior wires, and that after the contractor has placed the wires in position, the committee will cover up and make good such
receptacles, and will also cover with wood mouldings such wires as as may be exposed or which may require protection." Also, that the clause on page 10 , reading : "Incandescent lamps-' Swan' or other approved lamps of not less than
used. The committee will however, reserve to themselves the the
right to accept or require to have employed any other description right to accept or require to have employed any other description
of incandescent lamp of the same candle-power in connnection with
on the proposed installation" be cancelled. and that in lieu thereof
the following clause be substituted, viz. "Incandescent lamps-
隹 'Swan'- or oth
must be used."

Large Injecoros.-The Age of Steel says: "The largest in-
jector ever made is running in the Cleveland Rolling Mill. The injector has a bin. suction pipe, and is feeding twenty boilers located in various parts of the mill, one battery of bilers being
60oft. away from the injector. The steamboat Pilgrim has, says the Mechanical Enginere, four double-tube Korting injectors, each
one capale of supplying 6000 gallons per hour, and the are
onelieved to be the largest ever made for actual use. Each injector
belo believed to be the largest ever made for actual use. Each injector
is 4 in. long, and has 3in. pipe connections. The injectors in the
in long a pipe, but the direct connection to the injector itself is only long a pipe, but the dircet conneede party."
2in. We have this from a reliable

RAILWAY MATTERS.

THE National Exhibition of Railway Appliances was opened in
Chicago on the 24 th inst. The largest engine exhibited is one made in Patterson, New Jersey, for the South Pacific Railroad. It
weighs 5 tons, and it 60 tht.
sets sets of cylinders, steam chests, cc.
Ir is reported that the railway administrations taking part in the Dresden Conference-that is to say, the Belgian State, the Dutch
State the Berlin and Hamburg and the Berlin, Hamburg, and
Cologne-have agreed upon the points raised, and that the new Cologne- have agreed upon the points raised,
tarifts will come into operation in a week or two.
WHEN, either from a depression of the track or from some other
cause it is found that a foundation on the New York Elevated cause it is found that a foundation on the New York Elevated
Railway has settled, a trestle work is immediately placed beside the column and the, track lifted two inchesen by the aid of of jacks. . In
this position it is allowed to remain for twenty-four hours, in order to test the strength of the false work, At the end of that
time the foundation is uncovered, and a new one laid if necessary. A EEW years ago a strong party favoured the purchase of the French railway system by the State; and a vast new system was
laid out which it was intended that the Government should construct; the method of working the new lines was left to be decided
in the future. The work on these new lines has been costly so far; a great deal has been begun and very little completed. It has been proposed that the new roads shall be parcelled out among the
six grat companies, by special contracts, and be constructed and
worked by six great compan.
worked by them.
Tre Attock Railway Bridge was, a Times message from Calcutta says, formaily opened on the Queen's birthday. A resolution
published in the Government Gazette states that the Governor-
General General desires to record his satisfaction at the masterly and
expeditious manner in which this important engineering work has
ben been brought to completion. Thanks are given to Mr. Molesworth,
the designer, and to all the offioes
 lenth, and the decision in favour of the broad gayge is deseribed at
THE Canadian Paciific Company has entered into arrangements
with certain Canadian railroads by whieh it secures uninterrupted communication with Montreal. This, the Colonies and Int India says, will be a great boon to the maritime provinces, from which
many thousands are flocking this spring to the North-West. many thousands are flocking this spring to the North-West. A
large subsidy will probably be granted to an Amerian company
to construct an "air line" connecting Montreal to Cape Breton Is construct Than in a few years the whole of this vast domeninion will
Istand
be a network of trunk be a network of trunk railways ; districts so wide apart as British
Columbia, Hudsons Bay and Newfoundland -now the remote
outposts of civilisation-will be brought within easy distance of outposts of
each other.
THe accidents which occurred in March on the United States
railways, as recorded by the Railroad Gazette, are classed as to railways, as recorded by the Reilrood Gazette, are classed as to
their nature and causes as follows : Collisions: Rear collisions, 36 ; their nature and causes as follows:- - Collisions: Rear colisions, 66 ;
butting collisions, 8 ; crosing collision, 3 ; total, 47 . Derail-
ments: Broken rails, 11 ; broken switch-rod, 1 ; broken bridge, 1 ;
 on track, 1 ; misplaced switch, 10 ; unexplained, 32 ; total, 84 . not causing derailment, $1 ;$ broken wheel not causing derailment,
$1 ;$ cars burned while running, 2 . Total, 142 . No less than nine oolisions resulted from the breaking of freight trains in two. The Oxted and Groomsbridge Railway, which has been
passed by the Examiners, is an extension from Croydon
to Dulwich, by which the Chatham and Dover Railway will to Dulwich, by which the Chatham and Dover Rail way will
take its traffic to Holborn Viaduct, Ludgate-hill, Moorgite street, King's-cross, and Victoria. The London, Chatham,
and Dover Company has hitherto been extluded from the
whole of the territory whole of the territory embraced by the counties of Surrey and Sussex, including. Eastbourne, Hastings, Newhaven, Brighton,
Shoreham, Worthing, and Bognor. The Company will by means
of the new line obtain a position at Tunbridge Wells the of the new line obtain a position at Tunbridge Wells, the
heart of that territory, and in addition seare access to Crye-
don, with its population of nearly 80,000 , and the rapidly-growing don, with its population of nearly 80,000 , and the rapidly-growing
suburban districts between Croydon and DDulwich. The new line
forms a new route from Lind forms a new route from Ludgate-hill and Holborn, Moorgate-street
and King's-cross, where none now exists exclusively belonging to the Company.
city railway for Paris, the construction of whis to she sheme of a been suggested by the success which has attended a like project at
Berlin. Preliminary steps have been taken Berlin. Yreilminary steps have been taken towards obtaining the
necessary powers from the French Legislature. According to the plans from the Lyons terminus to the Are de Triomphe, and the other from Montmartre to Montrouge. It is also proposed to construct
ten subsidiary lines, uniting at the new Post-office. According to ten subsidiary lines, uniting at the new Post-office. According to
the calculations of the commission which has been examining the project, ,the two main portions of the line wound be bomming the thed
within three years of the neessary powers being obtained. low sale of fares is projectes, and the scheme includes the utilisation of existing omniibus and tramway routes in corre-
spondence with the new railway system. spond
In a report to the Board of Trade on the explosion of the boiler
of a tank locomotive at Summerlee Ironworks Coatbridge, in
March last, Mr. J. Ramsay says :March last, Mr. J. Ramsay says :-The locomotive was made for
Messrs. the Summerlee Iron Company by Mr. Andrew Barclay, engineer, Kilmarnocok, , in Octomper, 1869 , and was, therefore,
upwards of thirteen years old. The inside of the barrel plating is reduced by corrosion to about lin. thick, and over the whole of phe surface of the plates that can be seen there is a great deal of
pitting but groving along the inner edge of a longitudinal seam
of the barel -in the vioinity of the fore left-hand whel locomotive-which has reduced the plate at that part to about I.in. mean thickness, is undoubtedly the cause of the explosion.
Grooved plates are not by any means as strong as thin sound plates of equal thickness, and even if they, were as strong they per square inch of cross-plate esection, which was about the stress on the grooved part of the plate when the steam pressure was at
1121b. per square inoh. It is, therefore, not surprising that the exilosion occurred. Mr. T. W. Traill adds: It is is evi.
boiler was worn out and the inspection inadequate.
THE constructive ironwork required in the extensions at the New-street railway station, Birmingham, which is to render it the
largest in the world, is being steadily executed by the Bridge and
Roofing Company, of Darlaston. In the new roof there will be
 curved to a rise of 20 ft . in the centre. The nuts and bolts needed
will weigh 700 tons.
enorme from are just now casting some of the enormous columns which will support this roof, and a f few days ago
I was present at a running out. The height of the column was
and 26ft., with a diameter of 1 ftt . 8 in. of 1 tin. metal, with a base plate wast.
square, the whole weighin, when fnished, some 4 tons. Already
the frm have may be cone made upwards of t wenty such, and their manufacture a pit-not horizontally. An unusual meth,
of the considering the sisk, is also adopted in adding the ornamentation of the pillars; it ocnsists in the moulding being struck up in the mould
by a strickler. Such are the preparations necessary for the found-
ing, that the casting boxes weigh with their chate of Ing, that the casting boxes weigh with their charge of sand 30
tons, and the oints are planed. Some of the colums which the
firm have yet to cast will be 29 ft . 6 in, high, 1 ft . 10 in. diameter

NOTES AND MEMORANDA.
Accordivg to the last annual report of her Majesty's Inspectors
Explosives laid before Parliament there were in Great Britain at the end of the year 18r1:- Factories, 86 , magraxit
at
stores, 2045 ; registered premises, 15,669 . Total, 18,117 . A MoNTHLY report is now being published on the illuminating
power of the Bolton gas. The illuminating power in standard sperm candles last month was 18.6 ; there were present 23.7
grains of sulphr in 100 cubic feet of gas, and
ammonia in the same measurement. No guain The American Iron and Steel Association reports that the
American manufacture of pig iron last year was $5,178,122$ tons, being an increase of of per cent. over that of the previous year.
steel manuene
she stel manufacture was $1,945,095$ tons, also showing a small increase.
The manufacture of rails was $1,688,794$ tons, showing a small
THE number of miles of streets which contain mains constantl charged, and upon which hyydrants for fire purposes oould at once
be fixed, in each district of the metropolis, is now as follows :
 "AT a recent meeting of the Meteorological Society a note on Wallis, Fh.M.S., wes read. It related particularly to condition Wallis, F.M.s., was read. It related particularly to condition
of atmosheric pressure while rain was falling uring 1882 . out
of a total of of 136 rainy days-which were available for his purpose on 54 per cent. the rain was acompanied by diminishing
pressure ;on 27 per cent. by increasing pressure; and on 19 per
cent by steady pessur nt. by steady pressure.
HE sulphate of copper prooess of rendering wood unin-
flammable is open to the objection that if the wood-splits
he damp enters by the oredse the damp eeters by the cracks and destroys it. A aplew
process consists in injecting the timber with water in which soap is dissolved with the atdition of a small proportion of
sulphuric acid. The soapy water forms in the substane of the wood a fatty acid, which impregnates all the fibres and thus pre vents, it is said, the damp from penetrating into the pores. The Port of London over sea trade for the week ending May 19 th
was :-Vessels entered in, 197 ; tonnage, 117,631 ; steaner
 cargo vessels cleared out, 105 ; tonnage, 60,809 ; number of carg
steamers cleared out, 73 ; tonnage, 45,352 ; total, British vessel cleared out, 74 ; tonnage, 45,821 , Fritish steaners sleared out, 55 ;
tonnage, 35,476 ; British sailers cleared out, 19; tonnage, 10,355 . Herr F. Schele, of Grund, has described some observationss
recently made in the course of mining work in the Hartz Mountains, on the distance through which sounds are transmitted in
rock. In a horizontal direction the firing of shots at the face of a cross-cut has been heard in a cross-cut driven toward it, the face o
which was 447 ft. distant from it. A level was driven at a depth of 538ft. below the surface, and happened to strike
187 ft distant in a horizontal direotion below a stamp mill dropping stamps weighing 3301 lb . The dropping of the stamps on the a direct line, the hypothenuse of a right-angled triangle, was sepa-
rated by 571 ft of
 cut into small pieces, is macerated for twelve hours with dilute mike of lime, the mass is then placed in a digester and satuatmospheres. Within the space of one or two hours the structure
of the straw or wood becomes so loosened that after the been washed out it only requires further treatment with an per cent. of aluminium sulphate under pressure to bre and the external appearance of cotton, and in this state after washin out the salts, it may be at once worked up for the finest sorts of
paper. The operation from beginning to end requires but 3 hours.
M. Boussingaulu has recently presented to the French Academy communication on the matter arrused or suspended in the air at great elevations. He has examined samples of the rain and snow
which fell on the Alps from 1859 to 1865, and has found nitric sample containing to to 06 mgss . per litre of water examined. The 0.3 mgs. of ammonia. He intends soon to compare the electrical
condition of the northern and southern hemispheres, which condiin the air and affeen the amount of nitrogen compounds presen of the Society of Chemical Industry, notes the fact that hailstorms may occur in very elevated mountain regions, he having experienced
one in the province of Riobamba at a height of 5900 metres above one in the pro
A Disparch from Greensburg, Pa., 3rd ult, says:-"The Lyons affair. The roar of the escaping gas is something terrific, and the amount of gas going to waste is enormous. It is estimated
$6,000,000$ cubic feet is daily wasted. The well is conceded by al the new wells of Nesseed in power the old Murraysville well and Eme new wells of Messrs. Bolton and Doubleday and Pugh and
Emerson, all thre put together. The new well is two and a-half Bolton and Doubleday imitan the Murraysville wells. Messrs. pond, have bought an, acre close by the new well, and will put Brunot and Haymakerps ofll. Twenty thousand dollars has been
Bowning some of the gas of Mesrs.
offered for the new well,"
The behaviour of thirteen inorganic and twelve organic bodie the natur the Annalen der Phuysik Many of the elements examined,
especially selenium, tellurium, cadmium, zine, magnesium, arsenic, and antimony, were capable of sublimation, while the very last mentioned scarcely at a red heat. On the other hand Demarcay found bismuth volatile at 292 deg., lead and tin a 360 deg, which Schueler explains by the presence of volatile
impurites. During the whole time of the distillation of a metal an escape of gas was observed. But on repeated evaporation this
phenomenon was imperceptible, or very slight.. Sodium, selenium, tellurium, cadmium, zinc, arsenic, and antimony evaporate so purification. Many unstable mixtures, such as tallow, wax, and resin, distil so easily in a vacuum that they may thus be separated
Sons kinds of white glass become, in the process of time, more most common tints are violet and green. The materials of ordinary glass are somewhat ferruginous and capable of tinging glass
with a deep green shade by the protoxide of iron. In order to remove the colouring, peroxide of manganese is added, which
changes the protoxide into a sesuqi-oxide, which gives a feeble
reddish-yellow tint. It is almost imposible to reddish-yellow tint. It is almost impossible to observe the proper manganese the glass has at first a violet shade, , if there is too
much protoxide of iron the glass will be greenish; if all the man much protoxide of iron the glass will be greenish; if all the manThe influence of light and air may gradually bring about a partial which increases with time. The Chronique Industrielle says a
shade which is due to an excess of manganese is observed in the
Pinacother shade whiccis iue to an excess of manganese is observed in the
Pinacothek, at Munich, where the upper windows of the pieture
gallery give a very marked violet light which produces a bad effect.

MISCELLANEA.

Mrssiss. J. E. AND S. Spencrr, of Queen-street-place, Cannonhibition recently held at the Crystal Palace, for their exhibit consist
ing of all kinds of tubes and fittings, varying from sin. to 15in.

THE executive committee have decided, as soon as the necessary arrangements can be made, to open the fish market to the public
from an entrance in the Exhibition-rood, at a charge of 2 d. ,
between the hours of between the hours of eight and cleven in the morning and from
five to seven in the evening.
The Press Association learns that the Commissioners of Irish
Lighthouses have intimated to the Board of Trade their withLighalthouses have intimated the committee on illuminants for lighthouses, on the rejudicial ame from which Professor Tyndall recently retired
THE number of visitors to the Fisheries Exhibition on Saturday umber of persons who have visited it since the opening is 219,984 pwards of 21,000 catalogues have been already sold, and over
30,000 of the other ofticial publications, which, as well as the cata The steamer Britannic, of the White Star Line, which left Queenstown on Friday for New York, put back on Monday evening.
Her mails and some cabin passengers will be forwarded by the same ompanys steaser epura, wisenstown on Tuesday law was discovered in the crank shaft, and it was deemed dvisable to return to Liverpool for repairs.
THE Liverpool Chamber of Commerce met on Monday, when uestion read rom the erground wer-General, stating that the considerably developed, had been the subject of serious consider ion, and the Department was using its best endeavours to graduall ncrease the number. At the same time underground wires wer
as liable to disturbance from electrical causes as overground wirs. AN important question has arisen as to the sliding-scale in the hould submit to a reduction of $1 \nmid d$ d. per stint, which would leav wages at 2 s . 4id. per stint; but the men argue that the net aver-
age selling price of coal not having fallen to 6 s . 1 d . per ton-for ave bee riving since September. The question has been sub nitted to arbitration, but the arbitrators have been unable to agree. Alderman T. Avery, of Birmingham, was asked to act as
umpire, but has declined; and Mr. Alfred Young, barrister, will The secret of the Keely motor is out at last. The Americar
Register says that:-" "In an outburst of confidence Mr. Keely has siven the whole thing away in the following terse language
Molecular disintegration is the primary generator of vibratory henomena. Propulsory forces emanating from analytical actio upon compound fuid add vapour foundation evolve ethereal matter
distinctive from oxydised, hydrogenated and nitrogenated compounds.' How supremely simple it is, now that we know it strange that somebody should not have made this discovery year

A correspondent from Christchurch, N.Z., writes :-" Colonial or native industries are springing up everywhere, such as flax and
inseed, paper from native straw and flax, rope and string-fo inding -barbed wire, frozen meat, cheese and butter, not to men naterial to the years time we shall be quite self-supporting at the rate we are 0 sheen feeding-for carcases as well as wool are marketable now
-which in its turn will coll re dand for machinery.
On Friday last, before the Select Committee of the House of
Commons on the Manchester Ship Canal Bill, Mr. Daniel Adamson was recalled, and further cross-examined by Mr. Pope, Q.C. on behalf of all the petitioners. In answer to the question addressed to him, the witness said he had based his calculations
upon the supposition that the freight rates would be the same to Nanchester as to Liverpool. Should events prove that to be
fallacy, the calculations would be in error to the amount of the naccuracy in the assumption. This is an important point, for i hester gratuitously, the profit derivable from the canal will be .
A surver of the extensive landslip which recently occurred at
Warden, in the Isle of Sheppey, shows that fully three Warden, in the Isle of Sheppey, shows that fully three acres of
land have sunk from their natural level some 70ft. down. Had ould inevitably have formed part of the slipe or four years ago, it churchyard has been carried away, and is now located about half way down the cliff. Although each decade shows a greatly
diminished acreage in the Island of Sheppey, no attempt is made to onstruct works to resist the inroads of Vea; it is not worth it or nearly hemory the lane now abruptly cut of Beyond the church was a coastguard station, and some 10 or 1
acres of land, all of which have fallen a prey to the encroach acres of land, all of which have.fallen a prey to the encroach-
ments of the sea. A landslip of such magnitude as the present has m been recorded.
ON Saturday, the 26th May, the Cuhona, a fine steam and
sailing yacht, owned by Sir Andrew Barclay Walker, of Tiver anol was taken on her trial trip to Withernsea, where she attained sured mile, the engines indicating 450 indicated horse-power. The depth, 16 ft . 6 in.; tonnage, yacht measurement, 466 . This fine craft was built and engined by the tarles Shipbuilding and En superintendence of Mr. St. Clark Byrne, M.I.N.A., Liverpool he cabins and state-rooms are fitted up most superbly, with carved George and Peto, architects, London, design are are verssrs. Erness with Swan incandescent electric lamps.
AN American contemporary thus describes a piece of tunnel work a tunnel trouble in the St. Gothard:-" The phenomen it is reported from Virginia, Nevada, In Castle District, to open about five miles north of that city, is a tunnel that may be calle steep hill, It was run about four years ago into the side of 15ft., the tunnel cut into a soft, swelling clay, very difficult to manage. After timbering and striving against the queer, spongy
material until it had been penetrated some 25tt., the miners gave
up the fight as they found it up the fight, as they found it a losing game. Being left to its own
devices the showed that it resented the whole business, as its first move was to push out all the timbers and dump them down the hill. It did not
stop at that, but projected from the mouth of the stopper of clay the full size of the excavation. This a pith or horizontally some 8 ft t, as though to look about and see what had become of the miners, when it broke off and rolled down the slope.
In this way it has been going on until there are hundreds of tons In this way it has been going on until there are hundreds of tons of clay at the foot of the hill. At first it required only about a
week for a plug to come out and break off, then a month, and so
on, till now the masses are ejected but thre or four times a year;
yet the motion continues, and to-day the tunnel has the better of
the fight by about fft."

We illustrate above a small engine supplied to the Newfoundland Railway by Messrs. Wilson and Bromley, Westminsterhambers. The engine is used for laying rails, inspecting the ine, and drawing light trains. It has, we understand, given complete satisfaction. The following statement gives the princial particulars :-
Diameter of
Stroke, 12 in
Diameter of
Diameter of

Wair plain, 2 ft 6 in . Weight in workin

Working in prerksurg order, about 10 tons.
Two side tanks to contain each 100 gallons.
Steam dome on centre of boiler
Steam dome on centre of boiler
Bell in front of steam dome.
Safety valves
Safety valives-a pair of Wilson-Klotz duplex, 2 in , diameter, on top of
re-box, with funnel to top of cab. Gire-box, with funnel to top of cab.
Brake to each wheel, worked by a screw from the foot-plate, with all
the brake blocks on the same sides of the wheels. Brackets for head ights.
Cab of teak, American style, with Cab of teak, American style, with two sliding windows, one at each
side, and two windows in front and two in back, with a seat across the
engine. engine.
Chimney, spark arresting, American style.
Buffers, two, side, at each end, of wrought iro
Draw gear, American link coupling.
Two sand-boxes placed between fro. and second pair of wheels.
Boiler of mild steel, fire-box of ditto, tubes of iron. Wheels of cast iron, open spoked.

- Buffer beams of teak.

Axles of Bessemer steel, slide bars of ditto, with cast iron slide blocks. and with keys to tighten up.
Piston and rings of cast iron.
Piston and rings of cast iron.
Motion work of best wrought iron, thoroughly case-hardened.
Motion work of best wrought iron, thoroughly case-hardened.
One injector, one brass fed pump, ashhan.
All boiler and other mountings complete as usual in the best lo All boiler and other mountings complet,
tive engine work,
Regulator and steam pipes of cast fron,

SIR EDW ARD REED'S IRONCLAD SHIPS. The T'imes of Monday contains a long article descriptive of a
new type of man-of-war, for which Sir Edward Reed has obtained new type of man-of-war, for which Sir Edward Reed has obtained provisional protection. We have commented elsewhere on this invention. No drawings have, of course, been made public as yet, but we have prepared the accompanying sketches to aid our readers in forming an idea of the nature of Sir E. J. Reed's description taken from our daily contemporary; A A may be taken to represent the normal water-line, B B the immersed taken to represent the normal water-line, B B the immersed
load line. In no ship with an armour belt only has there

been protected depth sufficient to shelter effectually the engines and boilers, and, if there had been, the ordinary forms and proportions of ships would not have admitted of so great an
elevation of weight as would have been involved in lifting up the whole propelling steam machinery te within its protection. The question of stability has had to be carefully studied, therefore in combination with that of security, and those who are familiar with the course of ironclad construction, and even those who have acquainted themselves with it only through our columns, will know that Sir Edward Reed is a strenuous-we had almost said the only strenuous-advocate of such an amount and such
an extent of natural stability as will continue to sustain a ship afloat and in an approximately upright position, even after she has sustained very serious injury in action, both above and below water. machinery and the ship such as is nowhere else to be found It is easy enough, it is well known, to give abundant stability by mere increase of breadth; but increase of breadth, speaking generally, means increase of many undesirable qualities, and among them of resistance to propulsion, and consequently to loss of speed. This difficulty is overcome in the new type of ironclad by throwing the increase of breadth mainly above the water-line, where it affects the speed only after the ship has in action sustained injury below, and undergone increased immersionwhen a mere loss of some speed is a very small loss indeed, course a word, loss of existence altogether in battle From the ex, or, in breadth of the ship, placed, as we have said, above water, or from a somewhat lower point at the side, an armoured deck or reversed dome sweeps down and across the ship below water, cutting off all the steam machinery and magazines from under-water attack. The screw propeller shafts in some cases are, and in some cases are not, also comprised within the armoured hull; where they are not, they are driven by vertical engines, working down through stuffing boxes in the armoured bottom, the connecting rods being protected where necessary by vertical trunks or forward of it and abaft it, is constructed a light iron or steel hull,

of sufficient capacity to supply whatever additional buoyancy the armoured hull needs, and of such form as to be favourable for the speed required, however great. This light hull, which rises to the usual height of a ship above water at the ends, is subdivided into a very large number of cells or small compartments. Over the machinery and magazines extends from side to side, and usually much above water, a stout armoured deck, which may oe nearly a horizontal plane as usual, or may sweep dome-
like across the ship, forming a curved upper surface from which like across the ship, forming a curved upper surface from which turrets or barbette batteries may spring according to the arma ment the ship is to carry.
It will be seen from the above description that if we ignore all we may regard the new ironclad as a completely armoured hull, carrying all that is vital, surmounting an unarmoured cellular bottom, in which nothing delicate or explosive is carried, and which may undergo repeated torpedo attacks without any other loss than that of buoyancy, of which the upper armoured hull, from its form and proportions, has an ample reserve. Looking to the extreme violence of torpedo explosions at the point of contact, and to the rapidity of the dispersion of the explosive ever allowing the torpedo itself to come in contact with, or directly attack, the armoured bottom; the thin outer bottom acts, in fact, as an exterior and more or less distant defence for the true bottom of the ship, which is the armour-plated one As regards the upper part of the ship, it will be seen that an old idea of Sir Edward's, as embodied in the Devastation and other of his " breastwork" ships, has been still more effectively realised
in the new plan, because the whole width of the ship ahove water becomes an armoured breastwork, of greater breadth than the ship's water-line, instead of less, as in the breastwork type. As the light ends of the ship will ordinarily be carried up high above ironclad will not freatly differ in at the bow and stern, the new ships. We are glad to be able to add that while affording several increased elements of safety, some of them of the very first increased elements of safety, some of them of the very first
importance-viz., security against torpedoes and increased protected buoyancy and stability-the new plan tends to economy in ironclad construction and not to increased cost. It is true that it provides an armoured deck or dome under as well as above water, and this, of course, has to be paid for; but the deck armour is very much cheaper, weight for weight, than side armour-because of the great thickness and consequent expensiveness of the latter in manufacture-and the quantity of side In the designs which Sir preparation-for foreign Governments, unhappily, as some will think-this reduction of side armour is a marked feature, and the protection against torpedoes will certainly be secured at no increase of cost as compared with other armoured vessels. There are minor features in the system tending to steadiness in a seaway and to increase of speed, but these we must defer detailing until a future opportunity.

Provisional Orders for Electric Lightivg.-We underTrade, has made his report on the inquiry, held at Westminster on the 10th May, and that as regards the 'St. Giles' district, a provisional order has been granted to the Pilsen-Joel and General Electric Light Company, Limited, by arrangement with the local authorities. The area to be lighted will be the south side of New Oxford-street and High Holborn from the centre line thereof,
extending from Tottenham Court-road to Little Queen-street and the houses, premises, and buildings abutting thereon, and an area bounded on the north by the centre line of High Holborn from Little Queen-street to the boundary of the parish of St. Giles'-in-the Fields, on the east by the said parish boundary line, and on the
south by the houses on the north side of Lincoln's-inn-fields and south by the the the south side of Twyford's-buildings, and on th west by the houses on the west side of Little Queen-street. The Pilsen-Joel Company has already established a lighting station in that area, and has been for some time past successfully lighting large business establishments from that station. A special meet introduction of electric lighting into their district, was held on Wednesday afternoon to consider their further course of action Writing with reference to the opposition of the District Board and their refusal to appear at an inquiry officially instituted to con sider the applications by companies for provisional orders applying
to the Westminster district, the Board of Trade stated that they were extremely anxious to meet the views of the District Board, but the resolution of that Board placed them in great difficulty. The letter continued :- "That resolution appears directed not so much against the orders of the companies as against the policy adopted by Parliament in the Electric Lighting Act of last Session
The Board of Trade are perfectly ready to hear any objections The Board of Trade are perfectly ready to hear any objections o
the District Board on the ground either that there are no con sumers in the district who would wish to have the electric light if provided, or on the ground that the company are unable or unwilling to provide a proper supply or to submit to proper con-
ditions. If, however, the District Board of Works should absolutely refuse to give the Board of Trade assistance the Boul will not feel justified under the Act of last Session in declining to proceed with the orders simply because the District Board without further reason refuse their assent to them; and it will be their duty in that case to obtain such imformation as may be in their orders in the best manner they can and to lay them before Parlia ment." The Westminster District Board, after a warm debate on Wednesday, adopted the following resolution :- "That the Board of Trade be informed that this Board, on further consideration, do not see that the present requirements of the district justify
them in negotiating with the promoters of provisional orders for supplying electricity in certain portions of the district, and that they think no orders are necessary at the present time, and that the Parliamentary Committee be, therefore, instructed to oppose the obtaining of any provisional orders referred to in Major
Marindin's report, and further that the opinion of the parishioners Marindin's report, and further that the opinion of the parishioner
upon the subject be tested by a public meeting to be convened upon the subject be tested by a public meeting to be convened upon
the subject, when the question of availability of supplying electricity generally is more thoroughly tested,"

THEBROOKLYN SUSPENSIONBRIDGE. messis. John a. roebling and washington a. roebling, engineers.

The Great East River Bridge, uniting New York and Brooklyn, was opened on Thursday, the 24th of May. One hundred hours, which is not surprising. The people of New York and Brooklyn bear much the same relation to each other that those of Middlesex do to those of Surrey as far as London is concerned If all communication had had to be carried on by ferry until the
24 th of May, it may be imagined that considerable interest would e taken in the opening of a bridge across the Thames
We give this week some views of the bridge modified from Harper's Monthly Magazine. We need hardly say that the bridge is on the suspension principle, and it towers up oyer the iver, so as not to interfere with navigation. It is a double bridge, in the sense that it can be used for both road ard railway traffic, as shown by the cross section Fig. 1. The cars will be drawn across by an endess rope from the J. A. Roebling Com pany's Wire Works, Trenton, N.J. It is $1 \frac{1}{2}$ in. in diameter 1,700 ft. long, and weighs 19 tons. It is accompanied by duplicate rope of the same weight and strength, which o to be held in reserve for use when the first
ope wears out. The bridge has been thirteen years rope wears out. The bridge has been thirteen years
in building, and has cost about $£ 3,000,000$. The two towers are each 274 ft . high and $1595 \frac{1}{2} \mathrm{ft}$. apart. The length of the bridge between the anchorages of the cables is 3500 ft ., and between the termini 5989 ft . There are four cables, shown in section in Fig. 2, each having a solid section of nearly 145 square inches, and containing $1,732,086 \mathrm{lb}$. of wire, with an estimated strength of 75 tons to the equare inch, so that the trength. It is 88 ft , wide and 135 ft clear above the water in the centre of the span. The principal particulars are as follows:
Construction commenced January 2nd, 1870 ,
Sizzo of New York caisson, 1722t. by $102 f t$.
Size of Brooklyn caisson, 1688t. by 102ft.
Timber and iron in caisson, 5253 cubic yards.
Concrete in well holes,
Weimbers,
dec. 5669 cubic feet
Weifght of New York ciaison, , about 7000 tons.

Length of Brooklyn appan, 3 ,oft, 9 , total 1860 ft
Leogth of Now York approach, 1662 tat . 6 in
Totat length of ridige
Wiath of bridge, 85 .t.
Number of cables, 4.
Number of cabbes, ${ }^{\text {Diameter of }}$.
Diamoter of each cable, 158 in .
Frrst wire was run out May 29 th, 1877

Weight of wire, 1 2ft. per lib.

Total heifht of towers above high water, 2 z7st.
Clear height of bridge in centre of river span

Height of tow wrs above road way, $159 f$.

Size of anchorages at top, ,17fft. by 10 ifft.
Height of anchorages, sitt. front, 85ft. rear.
Weight of each anchor plate, 23 tons.
The stations at the ends of the bridge are to be elaborate structures of glass and iron. The one on the New York side is to be 260 ft . long and 59 ft . wide, with a platiorm on the bridge nd 7 oft. long. The cars will pass through the station, and are shifted from one track to the other on switches between the tation and end of the approach.
ftted with air locks, the New York to be put in in caissons, fitted with air locks, the New York tower being built up from Brooklyn Tower from the clay $45 \frac{1}{2}$ ft. below the surface. The Brooklyn caisson was got ready in May, 1870, and the work completed in March, 1871, a fire which necessitated flooding the caisson delaying operations for two months. The New York caisson was towed into place in October, 1871, and sunk in position in May, 1872. Engineer Roebling was the first victim of 1869. His son, Washington A. Roebling, has continued the work, although his personal presence has not been possible since he got caisson disease, from which he has not recovered. The "caisson disease" is the result of living under atmospheric pressure greatly above that to which the human system is normally adapted. The blood is driven in from the exterior and soft parts of the body to the central organs, especially the brain and spinal cord. On emerging into the open air, violent neuralgic pains and sometimes paralysis follow. Advanced consumption is, pressed air. Dr. Andrew, an sometimes remedied, by comCompany reported 110 cases of the "caisson disease," of which three were presently, and probably more finally, fatal. At 118 ft . above high-water mark each tower is divided into three sub-towers

by two avenues each $31 \frac{1}{2} \mathrm{ft}$. wide. These rise $120 \frac{1}{2} \mathrm{ft}$. further, saddle, Fig. 3, that supports the bridge cables resting upon them. In May, 1875 , the Brooklyn tower was finished, and in July, 1876, the New York tower. F The bridge floor is 118 ft . above high-water mark at the towers and 135ft. in the centre of span. It is shown as it appeared in course of construction by Fig. 4 and Fig. 5. Fig. 8 shows the expansion joint, as we may term it. The framework consists essentially of two systems of girders at right angles to each other. The pight trusses 33 in . deep, placed 7 ft . 6 in. apart, and to these are attached the four steel rope suspenders from the cables. Halfway between these principal floor beams are lighter ones, to give additional support to the planking. To unite these cross-beams cogether, and to give the proper amount of stiffness and strength to the floor, there are six parallel trusses extending along the
entire length of the bridge. The floor beams are further united entire length of the bridge. The floor beams are further united oogether by small longitudinal trusses extending from one to the or stays, form a longitudinal truss of 86 ft , in breadth be seen, thus, that this combination has immense strencth, weight, and stiffness, laterally, vertically, and in every direction. To relieve the cables in some measure of this enormous burden, and at the same time effectually prevent any vertical oscillations in the bridge floor, there
is a multitude of suspensory stays of steel wire ropes is a multitude of suspensory stays of steel wire ropes
diverging from the tops of the towers to points about 15 ft . apart diverging from the tops of the towers to points about 15 ft. apart along the bottom of four of the vertical trusses. These stays themselves capable of sustaining unaided that portion of of roadway and its load in position. At the towers the girderwork is firmly anchored down, and again confined against the lifting or pushing force of the wind by a system of under-stays lying in the plane of the floor, so that no conceivable cause can ever disturb its rigid fixity of position and form. At and near the centre of the span, however, where these stays do not act so efficiently against any tendency to distortion, and to still further drawn inward toward each other at the outside cables are curves. By this means each of them presents its their in the form of an arch against an oblique pressure from below and the opposite side, and resists more or less in the same way any force from the like directions. The two inner cables at the same time are drawn apart at the bottom of heir curves, thus approaching each its outside neighbour, and pairing with it, so as to combine their opposing arches against lateral forces from either direction. The weight of the
whole suspended structure 6740 tons, and the maximum weight with which the bridge is be crowded by freely moving passengers, wichiches band cars is estimated at 1380 tons, making a total weight borne by the
cables and stays of 8120 tons, in the proportion of 6920 tons by wise pull - in the tons by the stays. The stress - or lengthwise pull -in the cables due to the load becomes about 11,700
tons, and their ultimate strength is probably 49,200 tons. Fis. is a plan of the cable system. The anchorages of the cables are 930 ft . from the towers on each side of the river-huge constructions of masonry weighing 60,000 tons each and covering a surface
119 ft . by 132 ft . The cables are composed of 5282 wires each, 119 ft by $132 \mathrm{ft}$. The cables are composed of 5282 wires each,
as stated above. They are arranged in ropes, each containing as stated above. They are arranged in ropes, each containing 278 single wires, and nineteen of these ropes in each cable, so
that when bunched to that when bunched together the cable is nearly 16 in. in diameter.
These wires were carried back and forward between the anchor. ages and over the tower, each continuous wire having a length of almost exactly $1,000,000 \mathrm{ft}$., or nearly 200 miles, in length,
oges and passing from anchorage to anchorage, back and forth, 278 times. The turns of the wire at each extremity of the skein pass around a solid block of iron shaped externally like a horseshoe, with a groove in its periphery, in which the bend or bight of the skein lies as a skein of yarn is held on one's thumbs for winding. Each shoe or eye-piece was fixed-after the strand was
finished-between the ends of two anchor bars a passing through the three and so connecting the strand with the great anchor chain at either end. After a skein was fully laid in position-passing, of course, over the tops,of the towers -it was compressed to a cylindrical form at every point by large clamp tongs, and tightly bound with wire at intervals of about 15 in. throughout its length. The lengths of wire are united by the steel coupling. Fig. 7. The work of stringing the wires began in June, 1877, and was completed in October, 1878. Once a bunde broke from the anchorage, darted across the
tower, and fell into the river. The bridge is divided into five parallel avenues, the outer two each 19ft, wide being for paraiel avenues, the outer two, each 19ft. wide, being for
vehicles, and the central one, an elevated road $15 \frac{1}{2} \mathrm{ft}$. wide, for pedestrians. The other two avenues are for cars for passengers, There have been twenty persons killed on the works and over 100 cases of caisson disease occurred. The approaches on the New York side begin at Chatham-square, and on the Brooklyn side end at Sands and Washington-streets. It is the intention to permit foot passengers to cross free, to charge tolls to vehieles,
and to hold the passenger car franchise for the benefit of the and to hold the passenger car franchi.
bridge at a charge of five cents apiece.
The New York correspondent of the Times states that Mr. William C. Kingsley and Mr. Henry C. Murphy, of Brooklyn, were the original projectors of this bridge. Mr. Kingsley conceived the project as early as 1865 , selected the site, and hired an engineer to make a plan and estimates. Mr. Murphy was the president of the bridge trustees until last year, when he died, and Mr. Kingsley succeeded him. In 1867 the Bridge Company was chartered with $5,000,000$ dols. nominal capital, 500,000 dols. being subscribed by prominent people, who organised the
company and governed it until 1875 , when the bridge was made
a public work, and given in charge to the Board of Trustees and estimates, wherein the cost of the bridge proper was given
at $7,000,000$ dols and the approaches 3800,000 dols. He then thought the work could be completed in five years. Of this
the reported plan a board of the leading bridge engineers of the country made a critical examination, and unanimously approved
it. Congress passed an Act authorising the bridge in 1869, and
the the Secretary of War, in June of that year, gave it his approval begin. The War Department, howevere, required 5ft. additional elevation for the bridge over that originally planned, making the clearance under it 135 ft ,, and it was also widened from 80 ftt in
the first plan to 85 ft . This added about 8 per cent, to the estimated cost. Other changes, in the construction of the approaches, which are of massive masonry instead of light iron trusses, as originally projected, and the foundations of the
towers, which it was found could not be built on piles, as at first towers, which it was found could not be built on piles, as at first are magnificent viaducts, their supporting archways being constructed for utilisation as storehouses, 400,000 dols. being set apart for putting fronts and floors in the. Another
500,000 dols. has been devoted to carrying the eleyated railw over the bridge and providing stations. The bridge construction was a work of enormous difficulty and constant delays,
dissensions breaking out frequently, and the two cities being dissensions breaking out frequently, and the two cities being
often at loggerheads; but the projectors kept steadily on, and often at loggerheads; but the projec
ultimately surmounted every obstacle.

LETTERS TO THE EDITOR
 (We do not hold ouselves corresponsonsionts.)

Sir, -I shall be very much obliged if you wil
follows :French and English Battleships, of modern construction
and steel, which 1 calculate will be complete in 1885 .

	Armour inches	To advance 100th by Jan. 1, 1884.		Heaviest guns.	
mament,' ${ }^{\text {a }}$		Hull.	Engine.		
miral		${ }^{642}$	70	100.ton	
(aiman ormide..	${ }_{20}^{21 / 4}$	58.5	100 100		
Indomptable .. ${ }_{\text {In }}$ IR	20	${ }^{75}$	100		
Requible ${ }^{\text {re }}$.	${ }_{20}^{20}$	${ }_{8}^{8}$	100 100		
demiral Duperré	${ }_{16}^{22}$	${ }_{\text {C }}$	${ }_{\text {C }}$		
oudroyant..	$16 \cdot 5$	5	${ }^{98}$		
11. Vengeur :.	18	55	${ }_{5}^{50}$		
nant					
Fulminant	14				
rieux	19	88	100		
mpìte	${ }_{13}^{14}$	c			
doubtable	14	10	c		
Duguesc					
. Frieduasland ..	${ }_{9}^{10}$	${ }_{\text {84 }}^{8}$	$\stackrel{100}{\text { C }}$		
Building. Completion uncertain					
23. Magenta					
	18	${ }^{31} 7$	50	? 59	",
26. ${ }^{\text {25. }}$ N ${ }^{\text {N }}$ Charies Martel	1818				,
		19	=	${ }_{48}^{48}$,"	
8. Canönnières C̈uirassës		19	-	48 "	

Nineteen other seaworthy vessels may be added, making a grand
total of forty-five. By giving the progress in lotal of forty-five. By giving the progress in 100 ths, facts are
arrivel at, and no room left for controversy. The French up to January 1st, 1884. The English March 31st, 1884. Engines not ments, I fear, French, $0 ;$ English, 9 . \quad © stands for complete at present.
My vi
wenty-four fighting ships and two cruisers, as above, built and building. The others should never go into action. The com-
partments are so large that the sending them into battle is
wilfully to endanger men's lives, and the armour is so thin as only to caunese slaughter when struck by modern projectiles. The
cuns are all small-ours muzze-loaders-unequal to meet the as peace ships, remembering the Gessels therser Kurfeirives hand, Vanguard, soo. English ships and sixty-four French in his, "British Navy," vol. ., pp. 550-1, 572-6. Ministers are reported to have stated - Navy
debate, May 8th, 1883-"It was admitted that of late the French ad made great efforts to strengthen their Navy, but their expen-
 clads to our one by contract, They are building employ three iron- 23,000 dockyard men to our 18,000 . They also vote $2,977,610$ franes to com-
plete new shipa in three years instead of six. Our. Navy is of starved that we have no frigate squadron to exercise young
offecra and men, which they are also reported to advooate, and
Whioh is a great neceesity, Again) "We are especially strong in
frrst-class ironclads of the newest type." I can only find one such
-Collingwood-and five building, the plan of Inflexible and Co. having been abandoned, with citadel, armoured turrets, guns
mounted low, muzzle-loaders, \&e., \&co., to imitate the French, and adopt" barbette, breech-loaders, \&o. Again : "In general fight roreign Navies were, in their judgment, equal to Collingwood an the later improvements of the same type which are now building whether in respect of the speed, the armour, the protection, the
buoyancy, or the armament." "Speed" and "buoyancy" are buoyancy, or the armament." "Speed" and "buoyancy" are
proved after equipment. "Armour" " "protection:" The French carry thick armour from end to end; ours, alas ! only one-third the length and thus froil in protection, Theplan of the ocolinge- thood in Brassey, p. 471, shows lower ends even of the funnel exposed. As
to armament: Our guns are mostly muzzle-loaders ; all the French re breech-loaders. See above table from Brasessey; 38 -ton, 35 -ton

 Agamemnon and Co, 280 ft . " Construction:" The French and of ours marked , besides Leander class, have the fore-and-aft or making ships as unsinkable as possible the absolute necessit
fort the remaining ships in both Navies are traps to drown sailors
in battle, and should be altered or dynamited, and are not worthy to be considered in the strength of either Navy. This applies to unarmoured ships even more than armoured. I I agree
with Sir E . Reed, this should be thrashed out by a committee. I am much more convinced of the sad state of our Navy after the ready. The French estimates of 1884 ganter button is supposed to be
those of 1883 , and The whole vote is only $£ 15,000$ less, but $£ 1,115,000$ more than 1882 .
The shipbuiding programme is quite worked up to. It is mos the Navyle that France, to whom the Navy is as nothing, vote the Navy estimates more than a year betore our vote is talked of.
It it stated that I have given the French ships too heavy guns. My
figures are from Brassey, vol., i . I shall be delighted to find that
I he is proved to be mistaken. The worst feature on our side, i comparing French and English fleets, is, that when all armoure
ships building are complete, they will have twenty-seven moder fighting ships, really of newest type as to build, small compart ments, armament, armour, \&co., while of our twenty-four only six will be newest type-the others built on an abandoned system of
construction, large compartments; armament, lighter muzzle loading guns; armour, mostarments, ared armamenty one-third their muzzze length constructors, and the Frence syster "adopted." Nevertheless, the
statement for Ministers is, "We are espeially strong in frss-class Torquay, May 28th.

SIR,-Although I should prefer not to break through the regula your last number, that there shall be no more letters on this vexed subject, yet I am sure the usual justice of your paper will permit
me a short space to defend myself against what I consider a gros attack, not only against myself-1 do not care about that - but "Fair Play" challenges the dates, \&o., on whe bich VIIolet made
quick passages. Idid not give then, as Ido not see that they hel the matter at all ; but as he seems to thinks they are of such im-
portance, I give them here, and hope they will be of use. "Ooth
July, 1880. Trial by Messrs. Laird and Captain Moodie of the Board of Trade. Time from Admiralty pier to Poilbeg Light-
adverse tide 3 hours five minutes ; distance, $65 \frac{1}{2}$ miles."
Captain Moodie calcolated that on this trial Violet would have made the
passage in two hours fifty-five minutes had she had the tide with tried with the mail, Admiral Dent, of the London and North-Western Company, wishing to see what each of them was
able to do. Mr. Watson, then managing director of the City of Dublin Company, had the mail boat which was to run that after race, and did everything to ensure success as far as the mail was concerned. The two vessels started side by side at the breakwater light and ran for one hour, at the expiration of which Violet pullec
up three miles ahead of the Ulster, and it took the latter ten minutes real hard driving to catch her up again. The Violet only
had her ordinary crew and firemen; the Ulster had eight extra firemen, and we may therefore suppose she was run at her best
although beaten so ignominiously. This was in 1880 , and about the same time the Lily and Violet were run full speed every trip to
see what sort of passages they would make. Night after night they were in before the mail, until at length Mr. Watson sent a com
plaint to the railway company that the mail boats were hustled in the bay by Lily and Violet. To satisfy the City of Dublin Company, the express boats were ordered to keep their regular time,
and not to be in before it; and to ensure this being done, Lily and Violet's furnaces were bricked up and their pressure considerably reduce until ther these conditions they have been running ever
since on on the recent trials, when they were restored to their regular trim; and they soon asserted their speed
again after that was done On the night of the 26th March last after the bricks had been taken out, the Violet left the North
Wall twenty minutes after the mail left Kingstown, and although
隹 handicapped by four miles, passed the mail ing the bhay, and although in
first. This evidently is the beating "Fair Play " alludes to, it it occurred on the Monday which he speaks of. Only last Tuessay
week the Violet without the least extra pressure more than she usually works with, made the passage in three hours twenty-eight minutes, and
returning to Dublin at 2,15 next morning, made the Baily Light in three hours eight minutes from the brealwater, but met with a
dense fog in Dublin Bay which obliged her to run dead slow to the
Surely these facts speak for themselves. I could go on for hours
Siting writing down her fast passages day after day. I shall not again
trouble your columns on this subjecet, as I fail to tind any who take
interest in it except to interest in it, exceet to ron down the Lily and Violet, which will Dublin, May 26th.

the problem of flight

SIR, -After abandoning the use of captive devices as not suited o determine the conditions of flight, I at once set about continuing the investigation by using a mechanism which should be free.
In addition to the unsuitableness of captive devices, the further reason that experiments with a free apparatus would teach lessons valuable to the operator in artificial tlight seemed conclusic, one made with more care by skilled workmen, using the best proThe first experim the purpose
time the first experiment lasted about four months, during which time the device was made over repeatedly, the whole aim merging
into an effort to preserve equilibrium. The device was fastened to the tops of trees and high posts, so as to have a free movement of consisted of. or spread oftent of the tether. As finally made, it
weighed, with the of $39 f t$.by 6 ft . in width, and weighed, with the operator, about 350 lb . It required more
patience and endurance than I ever expect to bestow upon the matter again, to obtain any mastery over the mechanism in a brisk
breeze, but I repeatedly stod against the breeze at the extremity
of the tether as long as five minutes at a time, and at all points
within the boundaries of its action for a few seconds or minutes, as the wind would blow steadily, or as \bar{I} could succeed in keeping the device properly balanced. It, would stand at the extremity of the
rope against the wind better than in any rope against the wind better than in any other situation, as the cordult which issued in from this experiment was the proof it gave
resul that the weight of a man, together with a nucleus and surface sufficient to support him in air, did not carry the mechanism beyond
the limits of flight, It was neither too exhibit phenomena comparable to those of a soaring bird, while incidentally it taught the operator valuable lessons in regard to the nanageme the mechanism, was foreseen
delicacy of thteresting exhibition of the device was the astonishing on its good behaviour. It deemed thase short intervals when it was to pass in which a person could lift himself over the fence by the of the operator, would instantly change the motion of the floating device. It would dart upwards, or sideways, or downwards, upon motion of the operator so slight as to seem no more than a mere act of than the more favourable change its place. I gathered a fund of experience from these tedious, yet interesting trials, enough to warrant me in construct ing a more careful contrivance with which I expected to obtain a ceed in an absolutely free manner, and was engaged in discovering n expert in the management of bamboo, when I was unexpectedly
called away by the demands of business, and now have elapsed, find myself unable to command the time for its nvestigation by determining the maximum conditions of flight with a free device, i.e, the relations which the weight of the whole device, the shape, extent, and inclination of the surface and the
rate of motion should bear to each other, so as to be translated through still air with the greatest possible velocity. Such a device
would, as I understand it, be a maximum device, one which would With such knowled results.
vhich will translate him throuvt man to construct a mechanism will reduce to insignificance the feats of the most perfect hird which ever existed. I do not expect man to excel a humming bird in weaving himself in and out of a gooseberry bush, nor a swallow
in going up and down a house chimney on wings, but for all the in going up and down a house chimney on wings, but for all the
purposes of air navigation which are valuable to a man, I expect im to obtain complete mastery. I expect him to outdo the birds The reason that opin has not been produced by the requirements of flight alone. Their bt other elements of necessity have determined the quality of seir mechanism than the one of translation through air. To advancing surface should be a sharp edge, and no obstructing portion should be presented anywhere upon the under surface
which could deflect the air from a free course to the rear edge. No whrd is thus made. The front edges of their wings are blunt in every instance observed. The beak, head, and feet all offer fight, and hence cause retardation or friction, a loss of power Which is not returned by the expanding air at the rear edge of the
urface. For the purposes of artificial flight all this will surface. For the purposes of artificial flight all this will be
voided. The wing surface will be made for nir navigation or that alone. A man need not use his wings to steal a fish from a fish-hawk in mid air, nor go through those astonishing feats of
ofty tumbling displayed by a man-of-war bird for amusement usement. arth, and will use his wing surfaces when he wishes to travel the I do not look upon the various devices employed by myself in dis investigation as having resulted in any definite lesson of value xxcepting the last-in some measure-mainly incidental. The hanner than any artificially produced contrivance and after discovery of a theory which accounted for all the movehents of those birds upon known mechanical methods I considered entirely feasible. That the scientific world should be in such total norance of the performances of soaring birds seems to me little after the manner of a humming bird, while the whole family of the soaring kind exhibiting methods which might be imitated with ease, have received no attention, positively seems to lack the
I. LANCASTRR,
ordinary promptings of common sense. Chicago, Illinois, May 15̈th.
ordinary prompting of commo

Sir, -Mr . Lancaster's letter, in your impression of May 18th, has brought to bear in his endeavour to account for the fact of certain birds sailing directly against the wind without any motion of their wings, nevertheless does not impress me as being a satiss understood his latest experiment, the description of his apparatu being somewhat difficult to comprehend in the absence of dia he iron rod have an idea he may have mistaken the vibration force, since he does not appear to have had any instrument to partial success of hite thrust. I can more readily believe in the ever unknown, perhaps accidental, circumstances may be attributed least to speak of the actual fact without liability to error. The results of trials of moving air on flat surfaces at Penn's Works, to By the way, is not the dich what migh been expected By the way, is not the direct action at 15 per cent. $=0.53$ a
error? Should it not be 0.33 ? When however further on, that the vertical force may be something, while th horizontal force may be nothing, I am not able to follow him. appears to me that when the horizontal force of the current becomes
0 , the vertical force will Ir
Thave the most implicit faith in Mr. Lancaster's deseription of That they can and do sail in has so long and carefully observed using muscular energy is not open to doubt; and all other move ments, including the circular and constantly rising one are easil to be conceived upon the same hypothesis. To account for this
singular anomaly is a much more difficult matter, and however singular anomaly is a much more difficult matter, and however cleverly manipulated may have been Mr. Lancaster's experiments,
and however insufficiently he will pardon my saying I maynk he have harstly more descriptions the fringe of the subject. I for one shall be glad to learn he is continuing his experiments, and still more to know he meets with
a success he has so well merited. Will Mr. Lancaster permit me to suggest an experiment? Let us assume the direction of wind to 50 ft . high. Let a line pass from the top of one to the S , each about that line let there be suspended by a cord 25 ft . long the effigy of the bird to be experimented upon. The bird will be 25 ft . from the ground, and the poles wili be too far off to cause any deflection of
the wind. Then from the tail of the bird a fine silken cord could be carried far to the rear, and, passing over a pulley on a pole 2 25tt
bigh, could be fixed to any apparatus for measuring the forward thrust. A similar cord might be carried to a very thin pole far in advance of the bird, and so serve equally to indicate the tendency
of the effigy to move to the rear. Now, as to the most important of ature of the effigy. It shourd be of the eexact sizese shpare, ant
weight of the bird it represents; indeed, the skin of the bird itself,
stuffed to its living weight, would be the best of all models; but stuffed to its living weight, would be the best of all models; but
failing that, I do not think it would he difficult to have one constructed of artificial materials. By two or three steel wires passed
through the body of the bird and across the wings these latter could be adjusted to various positions until they fulfilled the conhe position. By such an apparatus I believe it would be quit possible for the first part of the inquiry to be successfully pursued and the discovery made as to what divergence of the currents o
air by the wings has the effect of urging the body of the bird air by the
forward.
It suggests itself to me that the wings of the bird may very likely sides of an angle, of which the apex is the hind part of the body of the bird. If that be the case, there would be two currents of air coming into collision at the apex, the result of which would be a it forward with a foree hardly expected
A very important circumstance not to be lost sight of is the smoothness of feathers in one direction only. Passing the finge along a feather from the root to the tip, it will be easily under-
stood how little resistance a current of air will meet from friction In that direction; but pass the finger from tip to root, and it will be found there is every impediment to a current of air through frictional resistance. Depend upon it, nature has not supplied this feature without some perfect purpose. Its application to the abov
theory is self-evident.
W. DAVEX BENNETT. theory is self-evident.
45 , Stockwell Park-road, May 26th.

The STRength of shear legs,
SIR, - In answer to "Reader's" " query, I think the simplest mode
of dealing with the strain would be graphically
 be The weight, 20 tons, would be 10 tons on each leg. Let
AB represent by any con.
venient scale 10 tons. Draw venient seale 10 tons. Draw
AC parallel to guy rope or
holdfast, if there is one or
of 87 , as actually obtained, then $\frac{\frac{1}{2}+1 \frac{1}{4}}{4}=\frac{1}{2}$ in. per hour nearly \times $50=25$ in. at $\frac{1}{d}$ d. per foot $=$ per hour $\frac{1}{2} d$. Add to this the cost of gas for 1 -horse power gas engine at per hour 11., making the total
cost of 50 lamps of 100 -candle power each 112 d . To this must be added interest on plant and expenses which on account of the smallness of the current required would be small in proportion. The same amount of illumination by gas would require at least 2500 cubio feet of gas, which at 3s. 2 d . per 1000 , the pric
y the Gaslight and Coke Company, would cost 7s. 11 d . by the Gaslight and Coke Company, would cost 7 s. 1 . 1 d .
As I said in my last, I shall be happy to have these experiment As said in my

John Ronald Shearer, A.C.A
One of the Varley Patents Proprietary.
10, Basinghall-street, London, E.C
[Mr. Shearer does not state at what rate the Carré carbon burned and in the absence of this statement the ex
veys no information of any value.-ED. E.]
double v. triple expansion engines,
SIr,--There were two steamers built by Messrs. T. and W. Smith from one model, and in all respects identical exceett the propelling machinery. The first was finished in October, 1881, and the second
in March, 1882 . The first ship has two cylinders, $23 i \mathrm{in}$, and 46 in. iofteter, with 33 in . stroke, and a boiler 12 ft . 9 in . diameter an Oft. 6in. long, having 1649 square feet of heating surface, and a
working pressure of 100 bb . The second ship has my three
 10ft. long, having 1292 square feet of heating surface, and a worknonth old, I have taken an extract from the log-books of each showing the number of hours under steam, the distances run measured on the charts, and, when practicable, checked by th tables of distances. An acount of bunker coal has also bee
taken from the owner's books; the result being as follows :-

> | Two-cylinder engine. | $\begin{array}{l}\text { Three-cylin- } \\ \text { der engine. }\end{array}$ |
| :--- | :--- |

From Oct. 18,
1881, to
From Mar.
1882 , to
From Mar. 11,
1882, to 1881, to
Dec. 17, 1882.
Dec. 17, 10
1882.
Dec. 1882 , to 1882.

Hours steamed

Knots steamed
Bunker coal supplied for ail
purposes, tons
Mean speed, knots per hour
Mean consumption, tons per
Mean c
day
Percentage of time steamed

4,237	3,061	3,365
32,964	23,754	26,545
$1537 \cdot 25$	$1121 \cdot 25$	$1014 \cdot 75$
$7 \cdot 77$	$7 \cdot 76$	$7 \cdot 89$
$8 \cdot 66$	$8 \cdot 78$	$7 \cdot 23$
41	46	47

The second column for the two-cylinder engine is given in order o show the comparison with the three-cylinder engine during the
same period of the year. Allowing the speeds to be equal, the saving in coal is 17.6 per cent. for the same time of year, and as in each case the coal consumed by the donkey boiler in mooring the
vessels and discharging cargoes, \&c., is included. If, therefore, vessels and discharging cargoes, \&c., is included. If, therefore,
say 025 tons per day for this is taken of each, the saving would say 025 tons per day for this it aken of each, the saving would
then be $18^{\circ} 1$ per cent. I wish to state that the engineers of these

vessels were not aware that the log-books were to be examined for any such purpose as that named above, and the coals supplied to each steamer were of the quality usually supplied. In fact, I wish
it to be clearly understood that the vessels were not run for any competitive trial, but in the usual way of business, and practically in the same trades.
one-half for each engine.
one-half for each engine.
The above result fully confirms a sound practical comparative
test which happened in the following manner :- The two steamer test which happened in the following manner:-The two steamers were loaded and bunkered from the same coller oporto. The threecylinder ship was one hour the soonest to Dover, and four and a-
half hours the soonest to Oporto bar, showing that the threehalf hours the soonest to Oporto bar, showing that the threecylinder ship is not the slower of the two. From Oporto the
latter vessel went to Pomaran and loaded home; the other went to Bilbao and loaded home-the respective distanoes are about as 3030 to 2596 , and the coal consumed was as 100 to 105 , sho
saving of coal of 18 per cent., irrespective of extra speed,

I have the permission of the owners of the yacht Isa, and the ceamers Claremont, Albertina, and Milicent, to state that thes 25, Queen-street, Newcastle, May 26th.
hiardet's spring and double acting windlass. SIR,-Referring to Mr. R. Lindsay's letter in your issue of the 18th instant, it may be well to know I have no pawls to click on my windlass ; the only noise is that of the chain are aft, under the control of one man, who is sufficient to work it. Referring to the first accident to H.M.S. Defence, the Daily Telegraph of the 11 th April, 1883, reported a second accident to
that ship, viz., "A telegram from Liverpool, dated yesterday, that ship, viz, " "A telegram from Liverpool, dated yesterday,
tates that her Majesty's ship Defence parted from her moorings tates that her Majesty's ship Defence parted from her mooring
n the Mersey, and drifted down the river, but afterwards got to in the Mersey, and drifted down the river, but afterwards got and Challenger alongside. She was, subsequently docked at Birken hadenger alongside. with loss of both anchors."
Thus we have two serious accidents happening to this ship very quickly after each other. Whose windlass or capstan is fitted to
her?
J. EvELYN LIARDET,

SIR,-Sometime, about a couple of years, ago, here in Jumalpore saw a 5 ft . steel tire burst asunder in the lathe. The wheels had not been long put in the lathe, which was standing at the time
One half of the tire flew a considerable distance, and would have killed had it struck anyone. The other balf struck the slide rest, and sent it spinning off the lathe, partly broken. No doubt the bursting of the tire was due to over shrinking. In addition to the slide rest being struck, I was very much struck in another sense,
at the whole idea, theory, and practice of tire shrinking. Had the tire stood until it was turned up and the wheels been finished an sent on the road, the result would probably have been death and destruction, as it has been in many cases before. Can we no Shrinking on tires in the usual way is not a safe method, however much may otherwise be said in its favour.
What I would like to suggest is the desirability of our Government having a railway department, with a standing council, committee of experts, to examine and test prociculy would agree in saying that a little public money applied in this manner would be at least as well spent as if it were blown awn in gunpowder. I think as a general rule locomotive wheels ought
to be turned in their journals ; that is to say, instead of having to be turned in their journals; that is to say, instead of having them hung between centres, there ought to be a couple of plummer
blocks to receive the journals, the same way as cylinders for paper mills are turned. The construction of wheel lathes could thereby be much simplified, and the wheels would be sure to be dead true with their journals. Of course in the case of the journals having to be turned up, that would have to be done in centres, but this is
not often required.
Jumalpore, Bengal, May 1st.
[We fear that they have still something to learn in Jumalpore. In this country tires are bored and wheels turned to so nice a fit water, and yet they hold perfectly tight. A burst tire from initial
strain is a thing practically unknown in this country - FD ,

LEGAL INTELLIGENCE,

QUEEN'S BENCH DIVISION.
(Before Mr. Baron Huddleston, without a jury.) NORDENFELDT v. GARDNER.
THIS was an action, which for the Norlenfeldeged infringement of the plaintiff's patent for the Norlenfeldt gun, and his
Lordship was occupied for ten days hearing the case. The present
Mr. Baron HuDDLEsToN said that the defendant had raised
Miting was or the three points :-(1) That the plaintiff's specification was bad;
(2) that there was want of novelty in the invention ; and (3) that there had been no infringement of it. It was said that the specification was bad as not distinguishing what was old from what was
new ; but what the plaintiff really claimed was a combination of new; but what the plaintiff really claimed was a combination of
various things, and this combination was new. The objection various things, and this combination was new. The objection
therefore failed. Then it was said by the defendant that the provisional specification did not describe accurately the plaintiff's invention ; but he-Mr. Baron Huddleston-thought that from it an ordinarily skilled workmen could make the gun, and that the
objection to the specification failed. He also thought that the objection to the specification failed. He also thought that the
objection upon the ground of novelty must also fail. Then came the question of infringement, and he was satisfied that the plaintiff had made out that there had been an infringement. There would therefore be judgment for the plaintiff, and for an injunction to restrain further infringement against the company and also against
Captain Gardner, and with costs against both the defendants. His LorDshir, after some discussion, certified that the valid of the patent had come in question, and that the plaintiff had
proved its validity. He also stayed execution to enable tho defendant to appeal.
Mr. Bousfieds said that the defendants were now supplying the
British Government with four or five guns a week; and the British Government with four or five guns a week; and the
Government had also set up a plant at Enfield to make the guns themselves.
His LORDSHIP ordered that the work done for the Government might go on pending the appeal, the proceeds to be paid to a printed from day to day, he said that but for them the case would have lasted as long again, and then there would have been another Court complaining of the length of the trial. There had been an agreement that the parties should pay the cost of the notes
between them, and therefore he should make no order as to these notes.
Judgment for the plaintiff.

The Institution of Civil Engineers.-Mr. Brunlees held the annual President's conversazione of the Institution of Civil-Engi-
neers in the South Kensington Museum on Wednesday evening. a perfect success.
Chesterfield and Derbyshire Institute of Mining, Civil,
and Meghanioal Enginerrs.-The annual general meeting will this year be held in Nottingham, on Thursday, 7th June. The election of officers for the year 1883-4 will be determined. New
members elected by ballot will be announced. The general report of the Council, and their finance report, with abstract of the accounts of the past year, will be presented for approval. The following proposed addition to the rules, at end of Article 5, Section viii., recommended by the Council, and of which notice was given at the
April meeting, will be submitted, viz.:-"Except that, members of any class, elected in January in any year, and thereupon paying entrance fee and subscription, shall not be required to pay any further subscription until the 26th of March in the year following; but they shall not be entitled to "Transactions" of a date prior to that of their completion of membership." The following papers will be
open for discussion:-Mr. Sydney F. Walker's paper "On the
Electric Electric Light and Transmission of Power by Electricity.". (a) Mr. T. G. Lees' paper "A On a Self-acting Arrangement for Unload ing and Loading Colliery Cages (Fisher's patent)." The following papers will be read or taken as read:- "The Koepe System of
Winding at the Bestwood Collieries," by Robert Wilson, Assoc. M. Inst. C.E.; communicated by Mr. Howard Allport, "Buckett's Caloric Engine," by Mr. John Oliver:

THE BROOKLYNSUSPENSIONBRIDGE.
messrs, JOHN A. roebling and washington a. roebling, engineers,
(For description see page 417.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addressed to the
 wases, be accompaniea by a large envelope legibly directed by the
wnitervers heceived, and bearing a 1 ad, opstage stamp in order that
ans may be forvoarded to their destination. answers received by us may be forvarded to their destination.
No onotice vill be taken of communications which do not comply vith these instructions.
$*$
$W e$
Weannot $u n d e r t$
must therefore underuestake to rorveturpon drawints to coeeng or mapis.
* All letters intended for insertion in THE ENG
** All letters intended for insertion in Trस Repaiver or containing questions, must be accompanied by the name and address
of the uriter, not necessarily for publication, but an a proof of
good faith. No notice whatever will be taken of anonymous communications.
 Atipn.-The statement as made in our impression of the 27th ult. is the
correct one The other statement was not made sy us, but by MI. T. Adams,

WHEEL MOULDING MACHINESS.
(To the Editor of The Ensineer.)
$\mathrm{StR},-\mathrm{We}$ beg to inquire through your columns for the addreess and
circulars of makers of wheel moulding machines, nand shall feel obliged
by replies. by replios.
Manchesert, May 29th.
hydraulic rams for raising sea-water.
 Dher valve eftere each low tide, when worked by the tide?
Dor
D. R. D. THE ENaINERR can be had, buBsorder, from any

MEETING NEXT WEEK.

THE ENGINEER.

JUNE 1, 1883.

hhe laws of magnetism

Professor Hughes' paper, read on the 24th of May before the Society of Telegraph Engineers, is a re-
markable contribution to the literature of molecula physics. The text of the paper will be found in another place, and we commend it for attentive perusal to our
readers. Its interest is by no means confined to tricians; on the contrary, it contains much that concerns metallurgists and even chemists, to say nothing of the large class who find in the study of molecular physics an
attraction ever growing in intensity. The paper illustrates attraction ever growing in intensity. The paper illustrates
very clearly how little we really understand of what goes on around us; and it is a direct blow to those compilers of text-books who persistently employ the dogmatic "we
know" instead of the tentative "we think." We can name several works, for example, in which Ampère's theory of magnetism is put furward as a theory scarcely, if at all, open to question. We may add that those who had really studied the subject knew that Ampère's views,
as well a. those of Coulomb and Poisson, were entirely inadequate to explain many phenomena; ; but, nevertheless, exam titions have been passed, and well passed, in
science by men who accepted Ampère's views as quite science by men who accepted Ampère's views as quite
sound, and who had taken in a great deal of equally
dogmatic and equally erroneous teaching as perfectly accurate. Professor Hughes has framed a consistent theory
and he has devised means of practically illustrating it and this theory is not only so elegant, but so consistent with itself and with the various phenomena of magnetism, wholly true. We hold, however, that the title of the paper has been injudiciously selected. Professor Hughes is as far as any of his predecessors from explaining what is the cause of magnetism. He explains what is the cause of certain
thing.
The
The deductions to be drawn from Mr. Hughes's state ments are extremely remarkable and suggestive; but before very briefly the them th will we well Professor Hughes has propounded. According to him every bar or piece of magnetic metal, such as iron, steel, and nickel, is
built up of molecules, which must in no way be confounded with the chemical and rhy must in no way be conforand from being identical-the atom of Professor Tyndall, for example, being a very different thing from the atom
according to Dalton. Now each of these molecules is a magnet, having, to use popular phraseology, a north and a south pole; and it is always, and under all circum-
stances, a magnet, and one whose magnetism cannot be stances, a magnet, and one whose magnetism cannot be
taken away. Why it is a magnet no one knows. taken away. Why it is a magnet no one knows. Mag-
netism is as much inherent in iron as weight is. It is just as certain that a molecule is magnetic as that a plate of iron one foot square and one inch thick weighs
40 lb . Its magnetism is as inseparable from it as its weight. Why this should be the case Professor Hughes does not attempt to tell us. The origin of the phenomenon is as inscrutable as the origin of gravitation. So long as the metal is left to itself, the molecules move among them-
selves, rotating apparently on themselves trary poles to each other, and so producing what Professor tray poles to each other, and so producing what Professor
Hughes terms a closed circuit of magnetic force. Under these conditions no external magnetism is apparent, but magnetism is there nevertheless. It is latent. If now we poles to each other, or in any way to break the closed circuit, external magnetism at once becomes apparent. Professor Hughes illustrated this by a very beautiful experiment. Fine iron filings may be taken to represent molecules, although of course on a gigantic scale. He put a quantity of such filings into a test tube, and passed the
tube over the pole of a magnet. magnet, with a north and south pole, and the whole test tube was competent to play the part of an ordinary magnet; polarities neutralised each other as far as external influence was concerned, and the test tube and its contents were no longer a magnet. He went on to show that it was only necessary to secure the filings in position by pouring in some melted resin, and motion among the molecules being preventer, the test tube remained magnetic even when shaken. We have here a direct and most satisfactory explanation of the reason why steel is persistently magnetic and soft iron is not. In the latter the molecules retain their mobility; in the harder steel they are unable to however, close the circuit. Even the softest iron will, exposed to the intluence magnetism if it be not shaken or it is only necessary to tap it with a mallet and the internal movement at once takes place and external magnetism disappears.
it is prested to the minds eye. A of sand. It is nothing but an aggregation of tiny a rains capable of moving among themselves with great ease.
They are, as it were, suspended in a jelly-like fluid, to use Professor Hughes's words, which retains them in proximity. We seem, as we read his paper, to have lifted a corner of he vell which hides the mysteries of the universe from us. A bar of iron is no longer a bar of iron, and
nothing more - it is a world of molecules bound and tied together by something external to themselves. The mnipresent ether? Who can say? A flood of light i let in on us, and the whole of the phenomena of so-called crystallisation, which appear when a metal dies of fatigue, are explained. In a mass so mobile as iron nothing is under continued, ever-varying strains, Professor Trese long since enunciated the theory of Professor Tresca He showed that nothing theory of the flow of solids continued steady heavy pressure to force a punch through a thick mass of iron, and he proved by sections subse quietly fly made and brought up by an acid, that the meta what we might expect of a bar built up of numerous hard particles agglomerated in a jelly-like fluid. A rough imitafings with pitch and moulding the whole inco ap iron We can do with such a stick much that can be done with an iron bar. It can be made to "flow" slowly under pressure, or it can be broken with a sharp conchoidal fracture by sudden violence. It can be drilled, and hammered into by heating the broken ends and bringing them together. Have we here an explanation of the theory of welding? In the welding of the pitch bar sure that in welding a real bar the molecules operat between themselves? Is it not more likely that union is obtained between the parts of the jelly-like fluid. We are treading here on the borders of that unseen world which exists everywhere around us-a world whose wonders dwarf into utter insignificance all that we can see ; and it is impossible to do more than speculate concerning
it. But that the ether has a positive existence, and that to it all tha he ether has a positive existence, a becomes more and more anticle of faith with those who know most. Professor Lodge has shown in a series of lectures recently given, that to the shearing of the ether, a continuous, all-pervading, imponderable fluid, may be due all the
phenomena of electricity. Professor Hughes's discoveries
nd theories seem to render the existence of an ether abso out inherent in mass of free moleulecind nerly all the phenomena peculiar to a fluid can be reproduced Ther emains however, the overwhelming diffulty of that matter per se can exert any foce attractive or repul sive. If it can, then it is certain that the law of conserva tion of energy must be materially modified.
We are glad that Professor Hughes proposes to extend hortant part His skill as an experimenter; his caution as a framer of theories; his inventive resources as an experimenter; and the breadth of hi iews as a man of science, eminently fit him for his self mposed task ; and it is possible that ere many month have elapsed he will be able to give us something mor han a suggestion concerning the cause of many puzzling metallurgical phenomena. As for example, the brittleness of steel in frost; the cause of tempering; the reason why oi acts to strengthen steel quenched in it; and the prolonged cracking of steel armour-plates after shot has struck them. There is plenty of room for inquiry and discovery. Pro essor Hughes is rapidly placing himself in the front rank as an inquirer and a discoverer.

TORPEDO PROOF SHIPS

History repeats itself. In the famous "Orfeus C. Kerr Papers," published during the last American Civil War we have an account of the Mackerel Fleet, which consisted of gunboats plated inside. "What's the use," said the there ain't no men to be hurt ; plate 'em inside where the ne and itll be some use," We do not know whethe sir E. J. Reed has read the "Orfeus C. Kerr Papers" or not; but he has carried out the idea, and has secured provisional protection for an ironclad ship plated inside instead o out. Sir E J. Reed and his patent agent pre sumably alone know what the contents of the provisional specification are. But either one or other of them has of the ironclad of the future sory full description indeed of the ironclad of the future ; so full a description, in fact, that if anyone thought proper to race for the seal he might even now forstali sir Ed ward and secure a patent Edwan lid no file indeed, not a litlee curious a clad ships re hirdy tion, because it iy tremely Reed because in extremely unlke that sir Ldward them in fur ath the them in four months to be enabled to modify a provi-
sional with advantage. However, this is Sir Edward Reed's affair, not ours; and we would not have referred to the circumstances at all but that they seem to denote that after all Sir Edward has not immense faith in his own be measured by a ten-pound note, but not by three or four such sums.
There is no difficulty whatever in gathering from the Times an accurate idea of what Sir Edward's war ship of the future will be. In another place will be found cross conscios of such a ship elaborated out of our own internal will be seen that Sir Ey the description in the ormes. arm's length, and to do this he virtually turns his ship inside out, We have the double bottom of the modern ironclad but the space between the two skins will be much wider than it is now, and the inside skin will be armour-plated. The idea in its simplified form is shown decks first sketch. We have here two armour-plate ouns, with a space between them in which guns can be trable water This structure must be able to support itself in buoy of a light seaworthy it is carried, so to speak, on top by torpedoes, but the flat raft-like portion will float it will be seen, however, that this scheme includes all possible disadvantages, with few or no good
points. Fig. 2 shows us a different structure, $\begin{aligned} & \text { We }\end{aligned}$ have an ironclad ship fixed in what may be termed a caisson or floating dock, and even if this last be filled with water, the former will float and carry both. It is well known that what may be a very stable ship when properly oaded, may become mak and astable to the last degree when she contains much water. To maintain the stability of his ship sir Edward heed fits her with great projections or sponsons, which under ordinary circumstances nen or may sponsons when she has sunk a little will main tain her stability and her buoyancy. In a word, Sir Edward Reed tales her buoyancy. In a word, si inside of an enlarged hull, as may be gathered from our insetch.
Sir Edward Reed has the reputation of knowing mor bout ironclads than any other man save Mr. Barnaby, nd Constructor, and hr. White, of sir W. Armstrong bout ironclads is probably not worth liowing It his resson that Sir Edy Ded's prowl g mount of attention which would not be conceded to mateur if he had potented the some sche. So has to be thought po in designing a modern irnclad th is almost impossible to say whether Sir Edward Ped' deas are feasible or not in the full sense of the word. In he first place we have weight to deal with; and so far as can be seen, the weight of armour required will be enormously augmented. In the existing ironclad we have an armoured citadel, and the crew live forward and aft of the citadel in comparatively light structures, the destruction of which is a matter of no importance. We gather that the upper works of Sir Edward Reed's ship will in all respects resemble the existing man-of-war. We are to have an armour-clad citadel and "light superstructure ; below all this will come the "armour-plated dome", or inner
hull. This will take the place of the armour which would therwise extend below the water-line some six or seven feet. Presumably it will be made to taper away in thick-
ness as it approaches the keel, but we suppose that it will
nowhere be less than four inches thick. Thinner plates nowhere be less than four inches thick. Thinner plates could not be trusted to deal with a torpedo ; but the weight of this plating must be very great indeed, and it is easy
to see that not a few structural difficulties will have to be to see that not a few structural difficulties will have to be
overcome in securing it to the inner ribs and fixing outer ribs in turn to it. It is even open to question whether an armour plate "dome," as the Times calls it, is needed at all; for with a wide space between the outer and inner
skin, it would seem as though the torpedo conld skin, it would seem as though the torpedo could not get
close enough while unexploded to do much harm to the close enough while unexploded to do much harm to the
inside of the ship. Sir Edward proposes that in some cases the crank shafts shall be outside, or rather under the armoured inverted dome, the piston-rods working through
stuffing boxes in the latter. We venture to assert that stufting boxes in the latter. We venture
this idea will never be carried into practice.
The question which most prominently suggests itself at present is, Cannot the same result be obtained more easily in another way? Assuming for the moment that it cannot, we may go on to consider what the condition of the ship
would be after a torpedo had exploded below her. That she would at once take a very large quantity of water into her cellular bottom is certain-how would this affect the steering and speed? Furthermore, it would appear that the accommodation provided on board a ship of really
very large external dimensions must be small. The space between the inner and outer skins would be too small to be utilised for carrying coals, men, or provisions; and large. We have further to consider the whole problem of steadiness in a sea way, and first cost. between the filing of a provisional specification for an improved ironclad and the construction of such a ship. Sir Edward has, however, by making his views public,
courted criticism, and it is to be hoped that he will receive it. For ourselves, we are not slow to admit that the scheme seems to have a great deal to recommend it ; but
disappointment must not be felt if a ship built Edward Reed's plan does not turn out quite like any other man-of-war.

the carbonic acid in the atmosphere.

As important paper on this subject, written by E. H. Cook,
has recently appeared in the Philosophlical Magazine polar diameter of the earth as 7899 miles, the equatorial diameter as $79255^{\circ} 5$ miles, and the height of the homogeneous atmospher at $26,214 \mathrm{ft}$.- nearly five miles -the cubical content of the homogeneous atmosphere is found to be $591,647,337$ cubic miles, or in
round numbers $592,000,000$ cubic miles. If the average amount round numbers $592,000,000$ cubic miles. If the average amount
of carbonic acid in the atmosphere be taken as 4 vols. in 10,000 , the total amount of carbonic acid is 236,800 cubic miles, and the total weight 4287 billions of pounds, or $1,913,685,908,480,000$
kilos. These numbers differ considerably frem Dumas and Boussingault, and from that given in Roscoe and Dumas and Boussingault, and from that given in Roscoe and
Schorlemmer's "Chemistry." The first of these is nearly 40 per
cent., and the second about 33 per cent too high cent., and the second about 33 per cent. too high. Recent
investigations, however, show that the proportion of carbonic acid in the atmosphere is not so high as 4 vols. in 10,00 . Fitt-
bogen and Hasselbarth found 3.4 vols. in 10,000 , Farsky $3 \cdot 4$ vols, bogen and Hasselbarth found 3.4 vols. in 10,000 , Farsky 3.4 vols.,
and Reiset 2.942 rols., ;and if the mean of these be taken,
the the total weight of the carbonic acid in the atmosphere is nearly
1545 billions of kilogrammes. The average amount of coal raised annually in the world during the last three years is about carbon, 10 per cent. of which is thrown away with the ash, acid, which gives a daily production of $1,800,000$ tons, or nearic
$1,800,000,000$ kilos. Assuming that one-third more is produced by the combustion of wood, peat, oil, \&c., the total daily produc-
tion by combustion is $2,400,000,000$ kilos. The present ropulation by combustion is $2,400,000,000$ kilos. The present popula-
tion of the world is about $1,500,000,000$, and each individual produces on an average a kilogramme of carbonic acid in twenty-
four hours. Assuming that twice as produced by the respiration of the lower animals as by mand
the acid is per day. The amount produced by the decay of animai and vegetable matter may be taken as equal to that produced by the respiration of man, and the amount sent into the air from
subterranean sources may be fairly assumed to be five times as subterranean sources may be fairly assumed to be five times as
great as the total amount derived from all the other sources together. This gives about $40,000,000,000$ kilos. per day. Adding
all these quantities together it is found that the total amount of carbonic acid daily added to the atmosphere is at least
$50,000,000,000$ kilos sating influence were at work the proportion of carbonic acid carbonic acid from the air are ears. The causes which remove carbonic acid from the air are fixation of carbon by plants,
removal of the acid by zoophytes and absorption of the acid by remoral of the acid by zoophytes, and absorption of the acid by
inorganic chemical action. In the first case alone is oxygen returned to the atmosphere, in the other two cases the carbonic
acid is absorbed as a whole. The total surface of the globe is, according to Saunders, 57,600 , 000 lana miles. Of this $8,200,000$ square miles are in Arctic and Antarctic regions, thus leaving $49,400,000$ square miles on which vegetation might flourish. A considerable portion of this area is, however, occupied by barren mountains, cities, and rivers.
Estimating the total area of leaf-surface as 50 per cent. of the area of plant-bearing land, it follows that $24,700,000$ square miles, or $63,973,000,000,000$ square metres of leaf-surface, are
engaged in the work of removing carbonic acid. Since square metre of leaf-surface decomposes about 1 litre of earboch acid per hour, it follows that $63,973,000,000,000$ litres of the gas are decomposed every hour. Taking into account the fact that
sunlight, on the average, lasts only ten hours per day, sunlight, on the average, lasts only ten hours per day, and allow-
ing 25 per cent. for diminution of the action during winter, the average amount of carbonic acid decomposed per day is A considerable portion of the carbon thus removed is 900,000 kilos. A considerable portion of the carbon thus removed is, however
returned to the air when the leaves decospose in and allowance must also be made for the fact that some plants give off carbonic acid in the dark. On this point, however, there is
no data on which to base any calculation, and the evolution of carbonic acid by the nocturnal respiration of plants may be much greater than is usually supposed. From the numbers given it
would appear that the vegetable life of the globe is of itself sunficient to maintain the purity of the atmosphere.
The removal of carbonic The removal of carbonic acid from sea water by low forms o animal life takes place on a gigantic scale, but the carbonic acid thus removed exists in the sea and not in the atmosphere, and a volcanic eruptions. In all probability the influence of this action is felt only after many years, and the inf. thee of this action
concerned, it cannot be compared to plant life in point of activity
Large quantities of carbonic acid are removed by inorganic chemi Large quantities of carbonic acid are removed by inorganic chemi
cal changes, as, for example, in the conversion of orthoclase int cal changes, ass, for example, in the conversion of orthoclase into
kaolin-Sterry Hunt, Amer. Jour. Sc., May, 1880-but any estimate of the rate of this action is impossible. These calculations ir are more powerful than those which add the gas to the air Its proportion, must, therefore, be gradually decreasing, but there are no trustworthy data on which to base any calculations on this point. As to the source of the enormous quantities of carbonic acid already fixed in the form of limestone, we have no know-
ledge. Either at one time the atmosphere surrounding the earth nust have been much richer in carbonic acid than it is at present r, as Sterry Hunt supposes, there must be a universal atmo sphere similar to our own, from which the
fixed in the earth's crust has been derived.
electric highting on board the cunard steamship
This fine vessel, which has just been handed over to the Cunard Company by her builders, Messrs. J. and G. Thom-
son, is lighted throughout by electricity on the incandescent son, is lighted throughout by electricity on the incandescent
system. The installation, which comprises over 600 lamps, is the largest yet fitted up on board ship, and in the work advantage has been taken of the most recent improvements in electri
lighting. Messrs. Siemens Brothers and Co., have execute this important work, Swan lamps and Siemens' dynamos being
used. The current is produced by four dynamos, each driven by a separate steam engine. The two large machines, which run at the rate of 650 revolutions per minute, are driven by means of rope gearing from a pair or shanks horizontal engines, regulated
wound, each magnet coil being wound with thick and thin wire, so arranged that any number of lamps in the circuit can be turned on or off without in any way affecting the brilliancy of
the remainder. In addition to these there are two smaller dynamos, each driven by a vertical Tangye steam engine. The machines are mounted on a cradle above the driving axle of the engine, and motion transmitted through paper pulleys, which rest on the fly-wheels of the engine, the necessary friction being
maintained partly by the weight of the dynamo and cradle and maintained partly by the weight of the dynamo and cradle and
partly by serewed clamps. The smaller machines are wound like the larger pair. The lamps, which are Swan's new are each provided with a safety bridge to automatically lower the current should the supply become so great as to endanger the
safety of the lamps or leads. In addition to these, safety bridges arcuit automatically to cut out any group of lamps should the currents from any cause of the leading w. As indicating the extent of the raminications of the leading wires, it may be stated that two miles and a-hal fact that the steel hull of the boat itself is utilised as the return cuarth. The salver is istated pendants hanging from the roof, as well beautinumber of quadrant bracket lamps fixed to the pillars. The music room overhead is fitted with fourteen lamps enclosed-a while the ladies can recline in their instanation-in opal globe of eight lamps. Every state-room is fitted with a handsome ilver pendant lamp, the light from which can be turned on or
off at the will of the passenger, The engine-room and stoke off at the will of the passenger, The engine-room and stoke-
hole are illuminated by thirty lamps, some being portable to ole are illuminated by thirty lamps, some being portable to ship has been left to the mercy of the oil lamp, but, passage companions, batt-rooms, lavatories, galleys, butchers', bakers'
barbers' shops, sculleries, hospitals, chart room, all the officers barbers' shops, sculleries, hospitals, chart room, all the officers
rooms, all the engineers' rooms, wheel-house, smoke-room, engineers' mess, are alike bathed in a flood of light. The whole installation, which, as already stated, is the largest yet atiempted at sea, consists of over 600 lamps, the beautiful pendants, quad-
rants, and brackets being designed by Mr. Raworth, of Man hester, the marine agent for Messrs. Siemens Bros, the residen lectricians being Mr. Holmes and Mr. Dorman
the north-eastern coast line.
There seems some probability that there will be a speedy com letion now, almost entirely, of the coast line from Hull to country from Scarborough to West Hartlepool. Out of this the line from Scarborough to Whitby is now in course of construc tion, and that from Whitby to Saltburn is completed, and may be early opened, but the Tees is the obstacle to the making of the remaining link, and from the reply recently given by the
directors of the North-Eastern Railway to the Hartlepool Chamber of Commerce, it seems there is no probability of that link being forged by the company. Otherwise there would have
been from Hull to Berwick a magnificent coast run, which would have materially lessened the time between the coast towns It is fair to acknowledge that that time has been much Scarborou late, and that by the line now under construction journey of Whitby and Saltburn. But there is the obstacle that the river Tees interposes to the junction of the North Yorkshire lines with those of Durham, and it is much to be desired that that obstacle could be removed as well for the quicker service
of the passenger traffic as for the cheaper transit of the mineral traffic from Yorkshire to the many smelting furnaces in Durham The latter county supplies, too, the whole of the coal and coke
for the mines, furnaces, and works of Cleveland and though the or the mines, furnaces, and works of Cleveland ; and though the
additional bridge across the Tees, now brought into use, has additional bridge across the Tees, now brought into use, has
added to the traffic facilities, yet there is a need with the growth of the industries-such as that of salt-in South Durham for the provision not only of additional facilities, but of crossings of trafic. All the ironstone from Cleveland which passes up the district to that point of crossing might, in many cases, cross with greater readiness, and with saving of time and change, lower the one point of the crossing of the river Tees. As we have said there seems to be no present intention to increase the facilities in
the North at that place, but it may be hoped that the question will be kept in view, and that in some early future there may be a commencement of the construction of what will be soon the
the rhondda and swansea bay railway.
The preamble of the Rhondda and Swansea Bay Railway Committee of the House of Commons entrusted with its consideration Not only is this short extension line of great commercial import-
ance, but it marks a new development of engineering science. The great fealure the ine is a subaqueous tunnel under the estuar of the river Neath. A great portion of this tunnel is to be
constructed on the pneumatio system, so long employed for
bridge cylinders and other similar works, but hitherto confined to such operations; but there appears no practical reason why it
should not be applied to this useful object. Some portion of the work will be constructed under the navigable river by the ordinary process, so as not in any way to interfere with the
navigation. It is not to be supposed that this Bill was without a severe contest and the hostile opinion of several very minent engineers, but Mr. Yockney, the engineer to the company the method of construction, are to be congratulated in havin entrusted to them the construction of a work which, successfully
carried out, will mark a new sphere of usefulness for the profession.

LITERATURE.

The Explosive Act, 1875, and Orders in Council, 1883: Their Prejudical Effect on Mining and Quarrying, and the Encourage
ment they give to Penians. Blundell, Garlick-hill, E.C. THis pamphlet first describes briefly the occasion and cir cumstances of the Acts passed in 1869 and 1875, and points out that owing to the value of Nobel's invention not being bing treated This very fact, however, caused its qualities to be dis cussed and statements on high authority to be made as to its safety. Sir F. Abel and Colonel Majendie, the chiefs of the two Government Departments which are concerne with explosives, have given strong opinions in favour of
the use of dynamite when well madie. It seems idle to add anything to the simple fact that these two high official uthorities who have so much responsibility have th spoken. Their interest must be to recommend the safest kinds of explosives. The pamphlet then goes on to com
plain that the recent Orders in Council compel every quarryman to depend on the recommendation of police presumably in many cases in subordinate positions, for th power to use dynamite. The obstruction thus caused to egitimate business and the uselessness of the Orders a restrictions to malicious persons is pointed out. Finally,
the outrageous character of the recent Order to guard all the outrageous character of the recent Order to guard all
magazines day and night is spoken of with a calculation that 36,000 men will be required to carry it out. On thi Enginerer, of May 18th, in which many of the point Enoinerr, of May 18th, in which many of the points
noticed in this pamphlet are discussed. It is well, hownoticed in this pamphlet are discussed. It is well, how-
ever, to notice any features which are presented in another aspect.
The inconvenience to the quarrymen is, we think, exaggerated; because it is by no means necessary that every
man that uses dynamite should have a certificate. What necessary is that any of it left over after use should b returned into a certificated store, or, if under 10 lb ., kept
by a certificated private person. This we believe can be arranged, and ought to be managed in most places without serious difficulty. As pointed out by us, it is not the restriction af actual use in mines, but the injury to trade
that we apprehend to be the chief evil of the Orders in Council.
With regard to the prevention of outrages, those who wish to commit them undoubtedly mean to break the law escape is possible. How do the Orders in Council stand as to this? Clearly it is very difficult for any one to avoid observation who is employing explosives in a legitimate pen way in ordinary blasting, but a conspirator would no ive agent until the time for its use had arrived. This would surely be an easy thing to do ; in some respects rather more easy in the case of dynamite than powder, asit is a strongel explosive bulk for bulk, and nny charge required therefore occupies less space; and although powder does not call for a licence, a man who means to use it for a wrong purpose is ikely to wish to conceal it. The memorandum directin more likely to be beneficial than the Orders in Council. fo though it is very probable that conspirators would make their own explosives, the purchase of ingredients might possibly attract suspicion. Altogether, we agree with he conclusion of the pamphlet that Fenians may well dvice of her Privy Councillors, been ind in the issue of Orders which cannot possibly harm them, ind to fere with their miserable proceedings, but must he country, and harass citizens." The order to guard all magazines and stores is read ky the writer of the pamphlet to mean what we pointed out, namely, that a watch is actually to be kept
day and night in all such buildings. The writer's calculson that 36,000 men will we believe, an over-estimate, because most of the building given by him as registered premises are shops. There is no question, however, that the matter is sufficiently serious to call for a vigorous protest. Indeed, we do not contemplate the Order being obeyed by any one until the whole都

Electric Light: Its Production and Vse. By J. W. Urêuhart,
Electrician. Edited by F. C. Webb, M.I.C.E., M.S T.E.
Second Edition. Crosby Lockwood and Co. 1883. The world is becoming excessively lenient in these latter days. Adverse criticism is reserved for the unsuccessful,
This has been a successful book, and hence his has been a successful book, and hence, we think book, seeing it has reached two editions, It is be a good a misnomer to style Mr. Urquhart the author of this book he is, however, an admirable compiler, while the angulari-
ties which must arise from this kind ties which must arise from this kind of authorship have been
vell rounded off by Mr. F. C. Wehb. The book is buil well rounded off by Mr. F. C. Webb. The book is built rom materials obtained from contemporary literature, the sources not always being acknowledged ; and from the price merely descriptive, with hion of opinion which no doubt will vary with each edition.
Various batteries, both primary and secondary, are
escribed and illustrated, but the most important part of
the book is that devoted to the description of the more modern electric light apparatus. Here the reader will find fairly accurate illustrated descriptions of most of the ynamos which have been prominently before the public. undreds of people who, from business or other motives, wish to know something about these various machines, Men whose lives have have been spent in work in other directions are now called upon to learn something about ectrical apparatus. They come to the subject ignorant scholastic electricity, and only wish to know generally how the machines go, and in what respect the one differ rom the other. Mr. Urquhart has shown a great aptitude for editorship by the way he has selected his matterin what has been given, and in what has been left out. Theoretical investigations are relegated elsewhere, they have no place here, where the information is confined to hard facts. We notice, too, that although the tendency i qual to place too much faith in the newer machines, qualifying sentence is now and then inserted, such as "It claimed that, \&c." The ordinary reader should par icularly notice such sentences, and not allow himself to be arried away by a flattering statement. Frequently the only rep." The results slaimed as being obtained from many of he newer machines have never been corroborated by in ependent testimony. Indeed, when tested out of th ands of the promoters of companies, many machine pectuses The treatment of electric lamps is as pro s that of the machines An attempt is made to notice every lamp of repute, but in some cases the descrip tion is of an old form of lamp, and not of the latest ritzgerald Sc. The investigation of Hopk Institute, re used and acknowledged. From the standpoint whence we have viewed this book we hardly like to make a suggesion, because we think the work has been well done; ye we hold it would be better for English readers, at any rate, to have one system of measurements throughout As it is, we have a delightful admixture of carcels and standard candles, of pounds sterling and francs, of cubic metres and cubic feet, and so on. The book is well printed.

MR. JAY GOULD'S STEAM YACHT ATALANTA The iron steam yacht built at Philadelphia for Mr. Jay
Gould, of New York, by William Cramp and Sons, may fairly claim, superiority of model over every other pleasure craft in the
United States, and she is certainly the strongest vessel of her size ever built in any country, this having been the principal object
aimed at in her construction. Up to the present time the largest yacht enrolled in the American fleet is Mr. Bennett's Namouna ;
but Mr. Gould's yacht is longer and deeper, with the same beam and has less draught. There is not, howevere, any great difference Mr. Gould is pronounced by competent judges far The new yacht of to the Namouna, and as likely to prove a far better sea-boat. Her rise, although not quite as much as Mr. Bennett's yacht, and the
ends are fined down forward and aft to the extreme of sharpness, giving her a very easy entrance and a long and peculiarly handsome
run. She has a slow and easy turn to the bilges, and the plating, carried uniform to the top of the bulwarks, which are keel rises forward in a graceful curve to the forefoot, the continuing stem running up with a good deal of rake to the extreme point
met by the bulwarks, which are run clear forward in harmony with peculiarly rakish appearance and adds materially to her over a measurement. She has searcely any sheer, her long, straight rail ine of her counter. Her overhang aft is considerable, quite as
much as if not more than that of the Name much handsomer stern, at least to an American eye, than the square stern of Mr. Bennett's yacht, which was copied from the
style at present fashionable in Great Britain. It is conneded also,
that in the elliptical stern there is greater strength, and that it is that in the elliptical stern there is greater strength, and that it is both ends, may be judged by the following figures, giving her exact dimensions: From knight-head to taffrail she is 220 ft . 3 in. ;
upon deck her length is 225 ft .; on water line, 213 ft . 3 ini; extrem upon deck her length is 2225 ft ; ; on water line, 213 ft . 3 in. ; extreme
beam, $26 \mathrm{ft} .4 \mathrm{in} . ;$ moulded depth amidships, $16 \mathrm{ft} . ;$ load line draught, 13 ft . The upper deck of the new yacht, which, by the
way, is to be called the Atalanta, is flush, and for its whole length is unbroken save by a narrow house that extends for 80 ft t. of its
space amidships, by a steam capstan windlass forward, by the necessary companion ways and skylights to give access and light to the quarters below, and by four handsome ventilator tops to supply
air to the engine and fire-rooms. She will have two sets of boatdavits on each side. Upon the port side, and just forward of the main mast, will be hung a steam launch, 32 ft . long; abaft
her-in fact, well on the quarter-on the same side, is to be hung
the dingy, or working boat, 18 ft . long. On the starboard side the dingy, or working boat, 18 ft . long. On the starboard side,
abreast of the steam launch, is a six-oared cutter, 32 ft . long, and States pattern, 38 ft . long, which will row five oars, and which Mr.
Gould will use for his gig. Mr. Cramp boasts considerably of the superior excellence and finish of these boats, which he challenges
New York to equal. They are built of seasoned cedar, fitted with mahogany trimmings and nickel-plated throughout. The gig is a with her faultless model, will, make her very speedy. The launch is to be supplied with an engine of the newest and most approved for the purchase of a good-sized sailing yacht. The Atalanta is to sails. She will have a squaresail yard on the foremast, and a short
bowsprit and jibboom. The furnaces of her two boilers will discharge into one smoke-stack, and she will carry her colours upon a
staff at taffrail. The bridge will cross the house previously men-
tioned, which may be entered either from the inside of the house araft it, the outside. Along the combings of this house, which is ellipti-cally-shaped at the forward part, is to be run an ornamental weather promenade for Mr. Gould's guests. It will make a space the bridge and pilot-house being sufficiently elevated to permit the officer of the deck and helmsman an uninterrupted view over
the heads of the promenaders. This house is partly of ion, being built solidly into and forming an integral part of the iron deck, so that such a thing as carrying it away by a sea will be an impossi-
bility. The keel of the Atalanta was laid upon the 10th of last
December. It is of the best hammered iron, 8in. in depth and 2in. thick. At the forefoot and stem it is increased in thickness to $2 \frac{1}{2 i n}$,
the other dimensions remaining the same. The stern post is
heavier, being 4in. by 8in., and the cudder post is the some
dimension. The frames are all of the best quality of angle iron,
3inin. by 3in., and extend in one piece from the keel to the top of 3 in. by 3in., and extend in one piece from the keel to the top of
the rail, the portion above the stringers being of ourselighter, and nat above the plank-sheer forming the bulwark stane sonsed mach
frame closer than is customary in vessels intended simply for pleasure
cruising, and are as close as if the boat were intended for the cruising, and are as close as if the boat were intended for the
heaviest work of the thlantic trade. Along each bilge is a keelson strake, very heavy, as are also the stringers above, and th
onotudinal strength of the boat is still further enhanced by tw bulkheads which extend fore and aft, one on each side, from one nd of the enclosed boiler and engine space to the other, and from
he skin of ship to the upper deck. Across from one bilge strake She skin of ship to the upper deck. Across from one bilge strake
to the other and upon each frame are the floors, of $\frac{1}{2}$ in. iron and of varying depth, being amidships full 30in. The stern frame is est of the frame, are placed fan-shaped to form the ellipse
nd as close together at the bottom as possible. Then a ver and as close together at the bottom as possible. Then a very
heavy solid rolled iron keelson is run along under the shaft iterally, this boat, for a space of 15 ft . or 20 ft . forward of the stern post, is a solid mass of iron, and Mr. Cramp feels confident
that he will be able to turn the sew up to and even above 100 evolutions without the least fear of weakening her after construe tion. Forward and aft of the engine and boiler space are heavy
transverse bulkheads, joined together, as has been stated, by two other longitudinal bulkheads, thus forming an oblong space entirely
isolated from the rest of the interior of the yacht, and into which as these four bulkheads extend from skin to deck, no water, except
from the top, can possibly enter, within which no fire is possible from the top, can possibly enter, within which no fire is possible,
as there is nothing combustible there, and into which no fire from he outside can penetrate. Besides these bulkheads there is a
heavy oollision bulkhead forward and a lighter one in the afte hold. The interior of the yacht is therefore separated into seven
water-tight compartments. The one at each side, abreast of the engine and boiler space and between the longitudinal buikhead an
he skin, will be utilised for coal bunkers, and an additional supply of coal will be carried forward under the saloon deck, the whole capacity of the bunkers being 170 tons. Abaft of the engine space
and below the lower deck will be the water tanks, capable of containing a liberal supply of this necessary article, which can at any donkey engine, making from the water of the ocean fresh water, perfectly pure and admirable for cooking or bathing purposes, and
which, if allowed to stand a month in the iron tanks to obtain the
 deck is placed high enough to give ample space in the lower hold proper for the stowage of all luggage and stores. The deck beams
are of bulb iron of the very best quality, and are 6 in. in depth. The skin or plating is 7 of of an inch in thickness, with the sheer
strakes double that or line the plates are lapped at the edges, the rivet heads on the out-
side being countersunk., Above the water-line the plates are lai flush and banded upon the inside, the rivet heads countersunk on
the outside, making a surface perfectly smooth. The neat manner the outside, making a surface perfecty smoth. The neat manne
in which this work has been done deserves especial mention. So scarce any caulking was necessary, although, of course, each seam
sas has been thoroughly and perfectly caulked. The plating continues
right to the top of rail, no break for plank sheer being visible which, of course, , ives her a bold high side out of the water, and
as the bulwarks are higher than ordinary, this increases he apparent size, and when, as is proposed, a heavy solid mahogany
rail jis put upon this, the effect will be very fine. Her decks, both upper and lower, are to be laid-in fact, this part of the work is
finished-with inn sheet iron, but upon this, on the upper deck,
 and the iron buter-ways and stanchions shileer be hire toden from view on the
inside by a light sheeting of the same wood, laid in panels to inside
enhance
On t
On the lower deck there is something to be attempted that has
not been tried before, and that is the inlaying of all linds of wood in designs pleasing to the eye, so that when upon an ocean voyage the carpets perforee are removed and snugly stowed away
below, there may still remain something more beautiful than the ordinary pine deck. This and all the other joiner and upholstery cessful in his fittings of the cabins of the steam yachts Corsair and Stranger two years ago, and it is perhaps a betrayal of his confi-
dence to have otd this much of his designs, for he intends that
the internal fittings of this vessel shall be unique and original the internal fittings of this vessel shall be unique and original
throughout, and will not let his plans be known for fear some Cramp," said he, "t to lock me and my workmen below while this
cobin is fitting and to allow no one to enter. I don't know that will allow Mr. Cramp himself or the owner of the boat to come in
until I have it all complete. I intend it to be a genuine surprise antil Thave it all complete. I intend it to be a genuine surprise.
As to style," he oontinued laughing, "call it the Ammerican coin an expression to designate it." However, as to this lower
deck there will be used maple, butternut, cedar, California lourdecy cimore, and has been said, of iron, sheathed with mahogany ine. It begins about 255 ft . abaft the foremast and extends aft Its forward a point about the same distance abaft the mainmast. elaborately for use as a social hatll or smoking-room. The steam this is to be used as a kitchen, the ralley stove pipe coming up and entering the smoke stack, thus disposing of all the kitchen odours which, from the position of the cooking apparatus on Mr. Bennett's
yacht, has been found very objectionable, It will communicate wacht, has been ound very objectionable. It will communicate
with the lower deck by y companion-way, and a passage along the
port side will lead to the steward's port side will lead to the stewards pantry, the position of which
will be shown hereafter. Abaft this is the engine-room, and in the extreme afterpart of this house is to be the room for the
captain of the yacht, whero will be kept the chronometers, charts, and natical instruments. The social hall will be entered by doors at either side in the after part of it, and immediately under the
bridge, which will thus form a portico to them sheltering the entrances to this apartment in rainy weather. From the after
part of the social hall a broad staircase of mahogany leads below and terminates in a large vestibule, in the centre of which is to be an elegant cabinet armoury, which will be supplied with every
description of the most approved pattern of small arms-rifles,
pistos to the main saloon, and on each side of the vestibule another door, teward's pantry, both of which wil also open in to the main saloon The owner's room is an apartment 131 ft . long and 91 ft . wide. At
its forward end a recess is built towards the middle of the ship 45 ft . be entirely out of sight on entering the room, whose whole extent thus seft clear. This room will be finished entirinely in mahogogayy and
will be furnished with all that art can suggest in the way of beaut will be furnished with all that art can suggest in the way of beauty
or convenience. Opening out of it abaft will be a large toilet and bath room. U. Upon the port of side of the stairway leading to the the
vestibule is the steward's pantry, of the same length as the owner. room, but not quite so wide, with a door at its after end opening into the passage-way above mentioned, by which direct communica-
tion may be had wwitt the kitconen. The main saloon is a grand
apartmen lighted by a large skylight of mahogany and plate glass, and further ventilated by four air ports on each side. In this apa
ment there will be two massive sideboards, a silver locker, a cabiin
library, and a piano
made double, so that it can be separated and made into two, thus
enabling two dining tables to be spread one on either side, so as to nabling two dining tables bo of opests when occasion requiras All the fittings of this splendid banquet hall are to be of white oak, laborately carved and polished, and the
be completely sereened by artistic designs.
From this main saloon a long and sufficiently broad passage-way
eads forward to the after part of the collision bulkhend aating in mato companion way, leading to the upper deok On each side of this passage-way are, first two large rooms, these four being intended for ladies' boudoirs, and so arranged that either suite
of rooms can be made one apartment. The two starboard rooms of rooms can be made one apartment. The two sta the room re to be upholstered in pure white, and the two on the port side
n blue. Forward of these, on each side of the passage, are two othe nd smar sta se the the first on the starboard side the pink and the forward one in maroon. On the port side the first is
to be in olive green, and the forward one in orange. These four re independent rooms, so arranged that on an emergency they ca ccommodate two gentlemen with sleeping quarters; a a lounge upo
he side ingeniously concealing a m marble bath-tub below it, thus serving as a couch, a lounge, or a bath-tub at will. These eight
are the only guests' rooms, but Mr. Smith says that he will provide omfortabl stests e intends to do it is one of the state secrets which he declines to Way Forward of these rooms, on each side of the passage Way, is a large toilet and bath-room for genera, use six servants
of the colision bulkhead are the quarter for the
hat are to be carried and entrance to their apartments is fro nother mahocannc companion-way leading from the upper deck.
This is fitted in black walnut and cedar, with comfortable berth convenient mess table, and, in fact, in a style that will compare orders that nothing was to be omitted which could in any way add to the comfort and convenience of his people. Abaft the engine ice-room, for it is of great size, and will contain enough of fresh
provisions for a passage to Europe. Abaft this is a large mes coom or steerage, opening into which on enther side are rooms fo the chief and petty officers. On the starboard side is the room engine-rom He He are rooms for the first and second assistan engineers, first and second mates, the four quartermasters, and
four oilers. Aceess to these rooms is from the deck by anothe companion-way, and a similar one leads down abaft the after bulkhead to the quarters of the crew. This aft-castle, as it may b neat berth and locker being provided for each one of the crew, the seamen being on one side and the fireman and coal passers on the other. The whole ship's company to be provided for are as somows
-1 captain, 2 mates, 4 quartermasters, 2 boatswains, 18 seamen, chief engineer, 2 assistant engineers, 3 oilers, 6 firemen, 3 coal-
passers, 1 steward, 3 cooks, and 6 servants, in all, 52 men. Although the Atalanta will depend for her propelling power entirely upon her engine, she will still be able to spread considerable canvas, the lengin
of her spars being as follows :-The foremast is 7 fft . 6 in foretopmast, $38 \mathrm{ft}$. . mainmast, 61 fft . 6 in.; maintopmast, 38 fft ,
mizenmast, 57 ft . bin.; mizen-topmast, 32ft. 6in.; and the fore square sail--yard, 49 ft . The extreme, length of the bowsprit is
24 ftt of which $18 f t$. is outside of the cap. She will be rigged with the best charcoal wire, three shrouds to a side, and her sails will be made from canvas
manufactured expressly for her. She will be propelled by a compound inverted direct-acting surface-condensing engine, with two cylinders, one of 30in, and one of 6inin in diameter, with 30in.
stroke of piston. The engine is fitted with the steam-reversing gear patented by the Cramps, by means of which it can be immediately reversed from full speed ahead to full speed astern. It
will have an independent circulating pump, and the pumping and fire apparatus is as ample as in the largest passenger
steamers, She has also patent steam steering apparatus and a steamers. She has also patent steam steering apparatas, and a
steam capstan windlass. To supply all this power she has two
cylindrical steel boiless, on which she is to be allowed to carry cylindricial steel boilers, on which she is to be allowed to carry
12 In of steam to the square inch. They are 11ft. by 1oft.,
and have each 1200t. of grate surface. Her nominal horse-power is 1000, but she can work up to much more than that. The
 dent and screwed to the hhub. Steaming at the top of her speed, hours; but for ordinary steaming she will only require half that amount, and for an ocean passage she could be run with still
less. She will therefore fuel. Her smoke-stack will be double, and will extend 19 ft . 3in. above the drum. The space between the inner and outer shells
will be 2in, and the diameter of the outer shell will be fft. 2iv.
Win
 tricity, and probably by the Edison patent, although that has not
yet been fully determined upon, and each state-room will be fur yet been fully determined upon, and each state-room will be fur-
nished with electric bells communicating with the steward's pantry, tilating fan attached to the engine, and conneocted by pipes with all
the rooms, the air in them will be kept constantly fresh. Her
cost will be about 250,000 dols.- The U.S. Nautical Gazette. $\bar{\Longrightarrow}$
The Patekts por Inventions Bilu. Mri. Chamberlain, in reply to a deputation on Monday, stated nhat when the Patents
for Invention Bill came before the G Grand Committee on Trade dail would be thoroughly sifted, and the Government themselves to the majority of the committee. They must,
howerer keep separate what they oonsidered matters of detail and questions of principle. Among the questions of principle, he at once said, was the examination for novelty, such as had been
frequently suggested.
He was not at all which obtained in Germany and A merica wasa asatisfactory system. In America not only was an immense number of inventions allowed to pass which were not properly subjeets for patents, but good
inventions were prevented from being patented by reason of this preliminary examination. The Cormmissioners had to delegate
 deoisions of these Assistant Commisesioners were very frequently appealed against, and the result was that a patent was a darer
thing than in England. As to the question of fees, he could not aimit that they were bound to assert as a principlet that the fees should in no case cover more than the expenses of the office It
was provided in the
ill that thereafter the fees might be diminished at the instanco of the Board of trade by meanh of a mere
Parilimentary resolution. As to the metho of of the payment of Cral payments
 years would have to be paid The poorer clasese of inventors
who, under the Bill, would get a for y years patent for 44 , would not be able to pay $£ 11$, or perhaps even $£ 5$ per annum. Dealing with the proposed duration of a patent, he said the feeling of the
House of Commons was adverse to extending it. Lastly, there
 by the great departments of the State, especially Army and and pubiid interest. He suggested to the deputation that they
should day their views on this subject before the Admiralty and the should lay their views on thissesbeet before the Admimalty and the
War-oftice, The deputation then withdrew

TRACTION ENGINE WITH ELASTIC WHEELS.
MESSRS. J. AND H. McLAREN, HUNSLET, LEEDS, ENGINEERS,

In this journal we have persistently afvo cated the use of spring-fitted traction engines, A great many attempts have been made at these times to mount engines on springs, but these have always failed because it was diff modate itself to the action of gearing. But very successful spring-fitted chain gear engines wer made as much as twenty-five years ago. The most promising scheme for spur-geared engine consists in putting the elastic medium into o on the wheel. The late Mr. Thomson did thi with india-rubber tires, and Mr. Bridges Adam. suggested putting a ring of india-rubber between the felloes of the wheel and the tire, and this plan was carried out in certain "steam sappers"
by Messrs. Aveling and Porter; but india-rubbe is very expensive, and the tendency which it always displays to ane the tendency which out. In the engine which we illustrate above Messrs. McLaren have made a new departure, and produced, in our opinion, the best solution we have met with of the entire difficulty. The engravings go far to explain themselves. It wil be seen that the ordinary spokes are replaced by steel plates 8 in . wide by $\frac{1}{2} \mathrm{in}$. thick. They are inside of the tire by a clamp and two nuts and bolts. In an experimental wheel made on this system the spokes were in continuous pairs that is, each loop, as we may call it, was in a single piece, as in Fig. 1-but they broke at the point A, and to obviate this they are cut in two, as in the sketch, Fig. 2, and the result has been quite satisfactory. Several of these engines are work, and one has run over 2000 miles without the slightest evidence of wear. The and bent for crucible cast steel, specially rolled On Friday we watched the performance engines-the property of Messrs. Bagge and Co, of one of these a trip from Newbury to the new railway works at Tothill, on the ine from Didcot to Southampton now being carried outby Messrs. Falkner and Tancred, contractors. The distance from Newbury to a skew bridge being built across the line is four miles, and the road is very hilly. The gross load taken-two wagon loads of bricks-was about 24 tons, but this is much less than the engine

can take. The trip was made in one and a-half hours, much delay being incurred in waiting for horses to pass and taking in water. No attempt was made to run more quickly than usual The spring wheels, while not posse-sing too much elasticity, give great softness of movement. There is none of that jarring experienced with the ordinary type of engine. A poker may be

laid across the tender and will not be shaken off, and the engine is spared an immense number of strains and jars. Nothing can be more satisfactory than the performance of these wheels. It the springs stand? Experience alone can settle this definitely, but we have no doubt on the point. The question is one for the steel maker, however. There is no undue strain put on the metal, and if the steel is of the right kind it will stand. If it is bad it will crack. It must be understood that no twisting strains are brought on the spokes, for the motion is communicated to the wheel by a long arm keyed on the main shaft and pins. The dimensions of the engine are as follows:-The steamjacketted cylinder is 9 in . diameter by 12 in . stroke, and is fitted with a phosphor-bronze slide valve and piston rings; the piston-
rod, slide spindle, and other rods are of mild steel. All the working gear is of Yorkshire iron thoroughly casehardened. The crank shaft is bent out of a bar 4in. diameter, and turned down at the ends to 3 3in ; the second motion shaft is $4 \frac{4}{4} \mathrm{in}$. diameter of mild steel ; the main axle is $5 \frac{1}{2} \mathrm{in}$. diameter, also of steel; the gearing throughout is Hadfield's cast steel. The engine is fitted with two speeds for the road, viz., ratio of slow speed, $27 \cdot 4$ crank shaft revolutions to 1 of road wheels ; ratio of fast speed, $12 \cdot 4$ revolutions to 1 of road wheels. The
driving road wheels are 6 ft . 3 in. diameter by 16 in with hard steel diagonal cross plates 31 in. by $3_{\text {in }}$., with 23 in with hard steel diagonal cross plates $3 \frac{1}{2}$ in. by $\frac{3}{4} \mathrm{in}$, with $2 \frac{3}{4} \mathrm{in}$.
spaces between the cross plates. The front wheels are 3 ft . 9 in . diameter by 10 in . wide, fitted with extra long chilled bushes The axle ends are casehardened. The front end of the engine is carried on a front turning bracket fitted with two of Timmis's springs; the steering is done by worm and chain steerage worked from the foot-plate. The boller has 152 square feet of heating surface, viz., fire-box, 38 square feet; tubes and front tube
plate, 114 square feet; grate area, 66 square feet. The from centre to The engine is fitted with a very powerful brake on the second motion shaft, a winding drum and steel rope for hauling heavy loads out of awkward places, and differential gear on the main axle for turning sharp corners, both pump and injector fo boiler feeding, a water lifter for filling the tank, and a spring draw hook for pulling the wagons

THE CAUSE OF EVIDENT MAGNETISM IN IRON
STEEL, AND OTHER MAGNETIC METALS.* By Professor D. E. Hughes, F.r.S.
THE extreme sensitiveness of the induction balance to all mole paper on this subject to the Royal Society 1 and in the paper on this subject to the Royal society; and in the case of iron
and steel it is most remarkable, as the addition or subtraction of万णुणन th part, or the addition of the smallest iron filing to an already large balanced mass of iron, is at once rendered eviden and measurable. Possessing such an invaluable instrument of research, I was desirous of investigating the molecular construction
of iron and steel; but at once I met with a difficulty, viz., that magnetism itself completely changed the character of any piece of iron under investigation. Consequently, finding no help or explanation of the effects produced from any accepted theories of magnetism, I was forced to investigate, by means of the induction balance, the whole question of magnetism as existing in the interio case-such as neutrality and polarity.
In a recent paper to the Royal Society upon the theory of mag
netism, +I described the use of, and demonstrations obtained by netism, \ddagger I described the use of, and demonstrations obtained by the induction balance. In this paper I propose to confine myself
to demonstrations that can be repeated without it, and whose to demonstrations that can be repeated without it, and whos
effects can be observed by the aid of ordinary magnetic direction needles. That magnetism is of a molecular nature has long been accepted; for it is evident that, no matter how much we divide a magnet, we still have its two poles in each separate portion consequently we can easily imagine this division carried so far that
we should at last arrive at the molecule itself, possessing its two distinctive poles; consequently all theories of magnetism attempt some explanation of the cause of this molecular polarity, and the reason for apparent neutrality in a mass of iron.
Coulomb and Poisson assume that each molecule is a sphere containing two distinct magnet fluids, which in the state of from each other at opposite sides; and, in order to explain why these fluids are kept apart as in a permanent magnet, they had to assume again that each molecule contained a peculiar coerciv force, whose functions were to prevent any change or mixing o evidence to prove the truth of this assumption; and as regard coercive force, we have direct experimental proof opposing thi view, as we know that molecular rigidity or hardness, as in tempered steel, and molecular freedom or softness, as in soft iron, fulfil all the conditions of this assumed coercive force.
supposes elementary currents flowing around each molecule that in the neutral state these molecules are arranged haphazar in all directions, but that magnetisation consists in arranging them symmetrically. The objections to Ampere's theory are numerous,
(1) We have no knowledge or electric currents continually flowing without of any elementary energy. (2) If we admit the assumption of electric currents around each molecule, the molecule itself would then be electromagnetic, and the question still remains, what is polarity? Have the supposed electric currents separated the two assumed magnetic electric currents themselves magnetic, independent of the iron molecule? In order to produce the supposed heterogeneous * Paper read before the Society of Telegraph Engineers and of Electri ans.
\dagger "On an Induction Current Balance, and Experimental Researche $\stackrel{\text { Page }}{\ddagger} \stackrel{56 .}{ }{ }^{56}$. Proceedings" Royal Society, May 10th, 1888,
arrangement of neutrality, Ampère's currents would have either to change their position upon the molecule, and have no fixed axis
of rotation, or else the molecule, with its currents and polarities, would rotate, and thus be acting in accordance with the theory of De la Rive. (3) This theory does not explain why-as in the case
of soft iron--polarity should disappear whenever the exciting cause is removed, as in the case of transient magnetisation. It would thus require a coercive force in iron to case exactly one-half of
the molecules to instantly reverse their direction, in order to pass from apparent external polarity to that of neutrality.
facilitating or discharging its magnetism, as proved by Mattenci facilitating or discharging its magnetism, as proved by Matteucci,
1847 , in addition to the discovery by Page, 1837, of a molecular movement taking place in iron during its magnetisation, producing
audible sounds, and the discovery by Dr. Joule, 1842 , of the elongation of iron when magnetised, led De la Rive, in his remarkable "Treatise on Electricity," 1853 , to give his theoretical views upon
magnetism in the following remarkable words: "The whole of the magnetic molecular phenomena that we have been studying lead
us to believe that the magnetisation of a body is due to a particular arrangement of its molecules, originally endowed with magnetic virtue, but which in the natural state are so arranged
that the magnetism of the body that they constitute is not apparent. Magnetism would therefore consist in disturbing this
state of equilibrium, or in giving to the particles an arrangement that makes manifest the property with which they are endowed, and not in developing it in them. The coercitive force should be Wiedermann, in 1861, gives the theory in which he admits t fluids of Poisson, or the elementary currents of Ampere, as the
cause of polarity of the molecule, but believes that the molecules are turned in a general direction in the case of polarity, and that in neutrality, like Ampere
are turned in all directions.
ism," 1881, page 75, gives the following résumé of Weber's theory "Weber's theory differs from Poisson's in assuming that the molecules of the iron are always magnets, even before the applica-
tion of the magnetising force, but that in ordinary iron the magnetic axes of the molecules are turned indifferently in every properties." And again, page 429 , Maxwell says he agrees with
Weber's views, and that neutrality, axes of its molecules placed indifferently in all directions, and that the act of magnetisation consists in turning all the molecules so
that their axes are either rendered all parallel to one direction, or at least deflected in tbat direction. I have quoted these severa theories which admit of the inherent polarity of the molecule, and
in that respect they entirely agree with my own; but the induction in that respect they entirely agree with my own; but the induction
balance at once shows that they are erroneous in the most important part, for my researches have proved that neutrality is perfectly symmetrical, that there is no case of neutrality where the axes of the molecules are turned indifferently in all directions, and that we cannot obtain perfect neutrality except
molecules form a complete closed circuit of attraction.
I believe that a true theory of magnetism should admit of complete demonstration, that it should present no anomalies, and that all the known effects should at once be explained by it. From entirely based upon experimental results, and these have led me t he following conclusions:-(1) That each molecule of a piece on magnet, having its two poles and distribution of magnetic polarity exactly the same as its total evident magnetism when noticed
upon a steel bar-magnet. (2) That each molecule, or its polarity, an be rotated in elther as upon its and electricity or by physical forces such anerent polarity or magnetism of each molecule is a constan quantity like gravity; that it can neither be augmente
destroyed. (4) That when we have external neutrality, apparent magnetism, the molecules, or their polarities, arrange patb, and thus form a complete closed circuit of attraction. (5) That when magnetism becomes evident, the molecules or their
polarities have all rotated symmetrically in a given direction, producing a north pole if rotated in that direction as regards the arrangement, but one whose circles of attraction are not completed except through an external armature joining both poles. (6) That we have permanent magnetism when the molecular rigidity, as in
tempered steel, retains them in a given direction, and transient magnetism whe
as in soft iron.
Experimental evidences.- In the above theory the coercive force
of Poisson is replaced by molecular rigidity and freedom; and as of Poisson is replaced by molecular rigidity and freedom; and as apparent destruction atrating the mefore derious parts of the thown, cite a few experiments to prove that molecular rigidity fulfils all
the requirements of an assumed coercive force. The influence of vibrations, torsion, or stress of any kind upon a magnetised steel or iron rod may be seen by striking with a wooden mallet rods of
hard and soft steel, also hard and soft iron previously magnetised to a known degree. The tempered steel, owing to its molecular
rigidity, will lose but 5 per cent., the soft steel 60 per cent., hard
iron 50 per cent., and soft Swedish iron 99 per cent. of its iron 50 per cent., and soft Swedish iron 99 per cent, of its
magnetism, the amount of loss depending not so much upon
whether the metal be steel or iron, as upon its degree of har whether the metal be steard stas and and its degore of har magnetise it to the same force than iron, it is possible to imagine quently no magnetism could be manifested from a given inducing cause, while a perfectly soft iron would give the maximum effect, error suppose that soft Swedish iron could not retain its magnetism, and that its natural state would be zero or neutrality. The extreme freedom of motion of its molecules allowing them at once to follow the comparatively feeble directing force of the eartro
magnetism. We can demonstrate this by feebly magnetising a rod of soft iron held vertically, so that its north pole is at the lower portion. Upon removing the inducing magnet, or electro-magnetic
coil, we find that the rod retains a powerful north polarity ; but if magnetised in a contrary sense, then we have only traces of succeed in this experiment, as in all others where soft iron is
mentioned, we should use the best Swedish charcoal iron, mentioned, we should use the best swedish charcoal iron, rods of steel or iron will lose far less magnetism when vibrated in their poles are contrary to those of the earth's field, and also that they poles are contrary to those of the eare maximum magnetism from a a given exceiting
they whe when held vertically as described, and the molecules allowed
cause cause when held vertically as described, and the molecules allowed
greater freedom of motion to obey the directing influence by
vibrations, vibrations, torsion, stress, or blows upon the iron. Any
influence that would tend to give greater freedom of motion, influence that would tend to give greater, gives a far higher
such as heat or mechanical trepidations,
magnetic force to the iron than could be obtained without these aids. In order to render visible the effects or motion of any length or we may take two glass tubes, or ordinary phials, of any length or
diameter, say ten centimetres in length by two centimetres in diameter, say ten centimetres in length by two centimetres in
diameter. If we now put iron filings in these tubes, leaving about one-third vacant, so as to allow complete freedom in the filings
when shaken, we find that each tube, when magnetised, retains an equal amount of residual magnetism, and that this all disappears upon slightly shaking the tube. We are thus imitating the effects
of vibration. But in in one of these tubes we pour melted resinof vibration. But if in one of these tubes we pour melted resin-
in fact, any slightly viscous liquid, such as petroleum, suffices-we
then render these filings more rigid, and then we can no longer
produce by shaking the disappearance of its residual magnetism. In pouring in petroleum we have apparently been introducing a
strong coercitive force; but we know that it can only have the mechanical effect of rendering the iron filings less free to turn, and so comparatively rigid. If we desire to see the effect of torsion,
we have only to shake the filings so that when the tube is held horizontally the vacant space is above, and rotate it slightly, but
without shaking, about a horizontal axis. Its remaining magnetism without shaking, about a horizontal axis. Its remaining magnetism
instantly disappears upon rotation, although we evidently have not changed the longitudinal position of its particles. A similar effect takes place upon a sol its remaining magnetism, we find that, upon giving a slight torsion to this wire, its remaining magnetism instantly disappears
a similar effect to that in the rotating tube of iron filings. But if the iron is rendered more rigid by hammering, or steel rendered hard and rigid by tempering, torsions or vibrations have but little Thus we have no longer need of an assumed mysterious coercive
force to account for the retention of magnetism; for once knowing the mechanical qualities of iron and steel, and their degree of tive magnetic powers.
Rotation of inherent polarised molecules.-Torsion, as well as
mechanical vibrations, has, as we have seen, a powerful influence in aiding the molecules to overcome their inertia, and thus aid may thus polarise strongly a flat soft iron rod by simply bending

magnetic force obtained we shall notice that the force is strictly

steel we should obtain only traces of polarisation, whilst with The bar of iron or steel, being held in the earth's magnetic field, of infinite size compared with the bar, and infinitely homogeneous,
cannot deflect or weaken its surrounding field. Its lower portion being north, apparently strengthens it by its reaction, whilst its shown, "the two poles of each molecule are equal and opposite be zero." We have a far greater induced polarity in iron or stee
when the iron is in thin bars or small wires, and this we shoul expect, as the external molecules rotate directly under the influenc of the earth's magnetism, whilst those forming the interior of tually
bar either rotate feebly, or, as in the case of very thick bars, actuall act as an armature, preventing, by their influence, free rotation of the n a bar of iecules. Thus, as is is is evident that its polarity must be inherent. have some remarkably pure soft Swedish iron wire, one millimetr vertically in the earth's magnetic field, I measured in the inducmagnetic atmosphere which it displaced. The inherent polarity of
this wire, simply rendered evident by the earth's magnetism, was

15,600 times greater than the column it displaced. We cannot, greater force in another body of similar displacement or size, the enormously greater magnetic power observed in iron than the same column of air which it displaces must be due to the inherent polarity of its molecules. Amongst numerous bars of iron upon
which I have experimented, one of ordinary hoop iron, 2 centisoftened, possesses sufficient molecular rigidity to be apparently uninfluenced by earth's magnetism. When this rod is rendered
neutral, we have but feeble polarity-mere traces when it is held neutral, we have but feeble polarity-mere traces when it is held
vertically under the earth's magnetic influence; but if weapply a few several thous had the power of deflecting or concentrating the earth's magnetism upon itself, it should not require the mechanical aid to molecular
rotation given to it by these torsionsor vibrations. Thus we are forced to conclude at least the existence of the inherent polarity of the molecules; and, if we admit this, we must also, as a necessary con
sequence, admit the rotation of these molecules, else we cannot sequence, admit the rotation of these molecules, else we cannot
explain why mechanical vibrations allowing freedom of motion

should always produce the polarity in accordance with the directing apparently destructive of magnetism; consequently in this case Poisson's two fluids and Ampère's parallel currents should, accord ing to their theory, be mixed or heterogenous, whilst according to
the views I am sustaining, the polarised molecules should obey, as compass needles, any magnetic directing cause whenever sufficien
molecular freedom of motion allows free rotation. The inheren polarity of iron may again be observed by drawing a flat rod of soft
iron over one or both poles of a permanent magnet. This rod will then be powerf the magnet, being sufficiently powerful to strongly separated from thed direction needle. A few slight torsions or
deffect a suspender
vibrations will then completely discharge it. Now, suppose this operation repeated successively many thousand times, if there was
no inherent polarity we should have gradually drawn all the polarity out of the magnet, and discharged it into the atmosphere. Nothing of the kind takes place. The molecules of the iron are
simply rotated each time, and the only energy in work expended or lost comes from the arm of the experimenter, and the energy
required would be strictly in accordance with the molecular free required would be strictly in accordance with the molecular free
dom, or softness and hardness of the iron and steel: thus, whilst
soft iron could be easily polarised and discharged by mechanical * "On the MMoecular Rigidity of Tempered Steel," by Professor D. E.
Hughes, F.R.S.- "Proceedings " Institution of Mechanical Engineers,
pages $72-79$, January, 1883.
torsions, hard-tempered steel would require a far greater amount.
Dr. Warren de la Rue, F.R.S., kindly aided me in this part of the research by passing a curent stom wis well-known chloride 42.8 microfarad capacity, charged by 3360 cells, was used. We passed this enormous electric charge longitudinally through the wires, and observations were made as to whether any change result being that these wires gave exactly the same magnetic similar in nature and degree, consequently this enormous electric force had not changed or destroyed the original inherent polarity. If the molecules possess inherent polarity and rotate upon their axes, similar to a series of compass neesles having a slight degree
of frictional rigidity, then, upon passing one pole of a magnet of frictional rigidity, then, upon passing one pole of a magnet
above them, they would turn symmetrically in one direction, and drawing the same pole of the magnet in the contrary direction would rotate them, and they would then remain symmetrically in the opposite direction. A precisely similar effect takes place in a
soft iron rod, placed east and west a few inches above a direction needle. Upon drawing the south pole of a powerful natural mest, the north polarities of the molecules successively turn in the direction of west, following the attraction of the south pole, as magnetised with its north pole west, as indicated by the direction needle below any portion of this rod. Upon passing the same
south pole of the natural magnet in a contrary direction the mole cules all rotate, their north poles still turning successively to the south pole of the permanent magnet untll its arrival at the end
from which the first magnetisation commenced. The rod has now entirely changed its polarity and its north pole is east.
The phenomenon is well known in the ordinary magnetisation of rods, where care is taken to draw the magnet always in a simi-
lar direction, or the poles would be reversed at each to-and-fro drawing. To account for this, on Coulomb-Poisson's theory, it
would be requisite that, first, all the fluids be separated with their north fluids symmetrically in one direction, but on drawing back the magnet these fluids would have to mix together, the north fluid passing through its south fluid to be finally opposite to its
previous position, its coercive force doing the double work of allowing both fluids to mix and pass through each other, and finally keeping them entirely apart. Ampere's theory would require tha from a haphazard arrangement the molecules should become sym upon its reversed direction one half of the electric elementary currents should successively revolve in a contrary direction to
arrive at neutrality before, finally, the other half followed the direction of the first half, and now all these currents would be revolving in the opposite direction to that upon the first mag altogether upon assumption, are extremely complicated and impro bable. We might suppose, from the theory which I am advocating hat upon the rotation of the molecules there would be some dis furbance or mechanical trepidation; and such is found to be the Joule and De la Rive, in the molecular sound produced in iron upon its magnetisation. Reis's first telephone was founded upon
these sounds, and Du Moncel has made numerous researches upon this subject. In the last of my experiments cited the sounds microphone these trepidations at once become audible. That molecules of iron and other metals rotate with time, whose
period becomes shortened by mechanical vibrations, is well passage from a fibrous condition, as in iron wires, to a high degree spring as the regulator of speed of my printing telegraph instrument, and although this spring was so regulated by means of a
frictional brake, or "Frein," as not to surpass its limits of elasticity, these springs were constantly breaking after a few days'
use, and, as a matter of urgent necessity, I made special researches into the cause of this breaking aiter a ew days constant vibratory
action. I found at the point of rupture a high state of crstallisation. Fibrous iron would thus become thoroughly crystallised and constant one during twe number of vibrations for an instrument in could roughly estimate the life of iron in the form of one of these springs at one million vibrations. Copper crystallised in one hour, and all metals and alloys were inferior to steel, except aluminium some fifty millions of vibrations. I finally resolved this problem
sy spreading the amount of vibrating work over a spiral spring containing three metres of steel rod wound into the same space as previously held by the straight rod of thirty centimetres; by this Evidently the molecules of these fibrous springs must have rotated under the vibrations, in order to produce crystals. The same stant trepidations, large crystals being always found at the point of fracture. Again, if we rapidly magnetise and de-
magnetise an iron rod, we have the production of evident heat, due to the constant motion of its molecules. Maxwell describes an experiment of Beetz, in which an exceedingly
small filament of iron was deposited by electrotype, under the influence of a strong magnetic field, in order to arrive at the
inherent polarity of comparatively few molecules, and, as its magnetic force was very great, he regards the experiment as conclusive. My own experiments show that we have far less external magnetic force from a solid bar than from a thin tube or flat bar of the same surface exposed to a limited exciting cause.
We know that magnetism does not penetrate to a very great depth, We know that magnetism does not penetrate to a very great depth,
and we also know that, if to a thin steel permanent magnet we place another piece unmagnetised, or, better still, a rod of soft iron evidence of polarity is greatly reduced; consequently the externa rotation, nor of the total inherent polarity of its mass. We may of an opposite nature, as will be seen later; and thus the internal
molecules of a magnet often act more or less as an external molecules of a magnet often act more or less as an external
armature in closing its circle of attractions. I have stated my
belief that belief that the molecule itself possesses its inherent polarity, which,
like gravity, is an endowed quality for which we have no more like gravity, is an endowed quality for which we have no more
reason to suspect the cause to be elementary electric currents than that elementary currents should be the cause of gravity, chemical
affinity, or cohesion and its polar power of crystallisation, most o which are affected by an electric current. We have a certain analogy between electric currents and magnetism, but not so great as the
analogy between the magnetic polarity of a molecule and its other endowed qualities. Magnetism, like chemical affinity, cohesion, and crystallisation, has its critical points. Faraday discovered thatat red be as instantly restored at red heat, the critical point varying in iron steel, \&c., and being the lowest in nickel. This would be
difficult to explain upon Amperee's theory, as we should have t admit the instant destruction or cessation of the elementary currents to be again restored at a few degrees less temperature.
It would be equally difficult to explain under my view, if it did by the molecules of various endowed qualities, of which chemsistry and all our means of research can only teach us their critical a greater affinity for oxygen than gold. We know that it is so we know that the molecules of all matter are endowed with certain qualities having certain critical points, and I can see no reason
for separating their magnetic inherent polarity from their numerous
ther qualities.
Neutrality. -The apparatus needed for researches upon eviden external polarity requires no very great skill or thought, but
simply an apparatus to measure correctly the force of the evident
repulsion or atrraction; in the case of neutrality, however, the
external polarity
disappears, special apparatus, together with the utmost carcure and retection
in in
its
uspe.

 aid of the most powerful instrument of research ever brought to
bear tupo the the molecular construction of iron, as indeed of all metals. It neglects all forces which od onot prodinue a change in the interior of a magnet or piece of ir iron, observing only its peculia structure and the chango which takes place during magnetisation or apparent neutrality. The induction balance is affeeted by
throe distintt arrangements of m molecular structure in inon and

 proof of the elongation of iron by ry.z.r. of its lenth when maay
netised
proves

 tion. In Fig. 1, at A, we have noturality by the mutual at atraction
of eacl pair of molecules, being the shortest path in which they ternal we have the case wire or rod apparently neutral, althourgh a lower series of ming are rotated in the oppositit direction to the upper series, ${ }^{\text {sioing to }}$
the rod opposite and equal polarities. Ato we have the molecoules
 evident polarity induced by the earth's directive influence when a
soft i inon rod is soft iron rod is held in the magnetio meridian. $\Lambda t, E$ we have a
longitudinal neutrality produced in the same rod when placed magnetio west, the polarity in the latter case being transversal. and 1 have not yet found a single case in well-annealed soft iron
 can only study neutrality with perfectiy soft Swedish iron. Hard iron and stoll retain previous magnetisations, and an apparent
external neutrality
would in most one magnetism upon another of equal external force in the opposite direction, as shown at B, Fig. 1. Perfectly soft iron we can
easily free, by vibrations, from the slightest trace of previous magnetism, and study the neutrality produced under varying con-
ditions. If we take a flat bar of soft iron, of 30 or more centimetres in length, and hold it vertically-giving while thus held a wooden mallet, in order to allow its molecules to rotate with perfect
freedom-we find its lower end to be of strong north polarity, and freedom-we find its lower end to be of strong north polarity, and
its upper end south. On reversing the rod and repeating the vibrations, we find that its lower end has precisely a similar north polarity, now magnetise this rod to produce a strong south pole at its lower earth's magnetism, by slightly tapping the upper extremity with a
small wooden mallet. If we observe this rod by means of a direction needle at all parts, and successively during its gradual passage haphazard arrangement, but a gradual and perfectly symmetrical rotation from one direction to that of the opposite polarity. If
this rod is placed east and west, having first, say, a north polarity this rod is placed east and west, having first, say, a north polarity zero, and as gradually reverse the polarity by simply inclining the
rod so as to be slightly influenced by earth's magnetism; and at no portion of this passage from one polarity to neutrality, and to that
of the opposite name, will there be found a break of continuity opposite rotation or or haphazard arrangement. If we we rotate
this rod slowly, horizontally or vertically, taking observations at each few, degrees of rotation of an entire revolution,
at
we find still the same gradual symmetrical change of polarity,
and that its symmetry is as complete at neutrality as and that its symmetry is as complete at neutrality as in
evident polarity. In all these cases there is no complete neutrality he longitudinal polarity simply becoming transversal when the rod H being neutral longitudinally, but polarised transversely. If, in place of the rod, we take a small square soft iron plate and allow netism, then we invariably find the polarity in the direction of the magnetic dip, no matter in what position it may be held, and a sphere of soft iron could only be polarised in a similar direction.
Thus we can never obtain complete external neutrality whilst the molecules have freedom and do not form an internal closed circle of mutual attractions; and whatever theory we may adopt as to
the cause of polarity in the molecule, such as Coulomb's, rrangement in perfectly external causes except the influence of the earth: consequently these theories are wrong in one of their most essential parts. We and steel, producing complete neutrality mutual attraction in iron is not destroyed by some stronger external directing influence Oersted discovered that an external magnetic needle places itself perpendicular to an electric current; and we should expect tha and could rotate, a similar effect would take place in the interio of the wire to that observed by Oersted. Wiedermann first
remarked this effect, and it has been known as circular magnetist This circle, however, consists really in each as circular magnetism itself perpendicular to the current, simply obeying Oersted's law, and thus forming a complete circle in which the mutual attractions of the molecules forming that circle are satisfied, as shown at C ,
Fig. 1. This wire becomes completely neutral, any previous sym metrical arrangement of polarity rotating to form its complete circle of attractions, and we can thus form in hard iron and stee evident proof that this neutrality consists of a closed chain, or circle, as by torsion we can partially deflect them on either side
thus from a perfect externally neutral wire, producing either polarity by simple mechanical angular displacement of the mole placed east and west, it will retain this polarity until freed by through this magnetised wire, we can notice the gradual rotation o commence with a whe corrent, gradually incular neutrality. can rotate them as slowly as may bedesired. Thereisnosuddentreal or haphazard moment of neutrality; the movements to perfect zero areaccomplished withperfect symmetry throughout. We can produce a more perfect and shorter circle of attractions by the superposition iron in a given direction with a strong magnetic a directing power, and magnetise the iron in antly trary direction, we may reduce it to zero by the superposition of an exterior magnetism upon one of a contrary name existing at a
greater depth; and if we continue this operation, gradually or more distinct symmetrical arrangements; and as their mutual attractions are satisfied in a shorter circle than in that produced by electricity, it is extremely difficult to destroy this formation
when once produced. The induction balance affords also some reasons for believing that the molecules not only form a
closed circle of attractions-as at B-but that they react upon each other, so as to close a circle of attractions as a
double molecule -as shown at A. The experimental evidence, double molecule-as shown at A. The experimental evidence,
however, is not sufficient to dwell on this point, as the neutrality
obtained by superposition is somewhat similar in its external effects
We can produce a perfectly symmetrical closed circle of attraction of the nature of the neutrality of C, Fig. 3, by forming a stee wire into a closed circle, 10 centimetres in diameter, if this wire is
well joined at its extremities by twisting and soldering. We can on one pole of a strong permanent magnet; and, to avit consequent poles at the part last touching the magnet, we shoul
have a graduating wedge of wood, so that whilst revolving may be gradually removed to greater distance. This wire wi will contain no consequent points or external magnetism ; Its neutrality is similar to C, Fig. 3; for if we cut this wire nagnetised by this method to saturation, and having retainedhich it will indefinitely-its circle of attractions complete
have already shown that soft iron, when its molecules are allowed perfect freedom by vibration, invariably takes the polarity of the external directing influence, such as that of the earth, and
t does so even with greater freedom under the influence of heat. ranufacturers of electro-magnets for telegraphic instruments ar very careful to choose the softest iron and thoroughly anneal it
but very few recognise the importance as regards the position o the iron whilst annealing it under the earth's directing influence 1684, remarked that steel or iron was magnetised when heated to
redness, and placed in the magnetic meridian. I have slightly varied this experiment by heating to redness three similar steel
bars, two of which had been previously magnetised to saturation and placed separately with contrary polarity as regards each other ound to beve neutral and similar cooling, these three bars were of this most rigid material, cast steel, had become free at red heat the same force on each; consequently the previous magnetisation of two of these bars had neither augmented nor weakened the onditions by far the greatest force, Sits inherent polarity being
reater than cearing upon the question of neutrality, but thoy all coxperim thents ymmetrical arrangement of neutrality.
Superposed magnetism.-Knowing that
Superposed magnetism. - Knowing that by torsion we can rotate
or diminish magnetism, I was anxious to obtain by its complete rotation from I worth polarity to neutrality, and from polarity by a slight right or left torsion. I have succeeded in doing one polarity given whilst the rod is under a right elastic torsion, with another of the opposite polarity given under a left elastic tor-
sion, the neutral point then being reached when the rod is free from torsion. The rod should be very strongly magnetised under it
first or right-hand torsion, so that its interio molentes or, in other words, magnetised to saturation; the second magneti-
sation in the contrary sense and torsion should be feebler, so as only to magnetise the surface, or not more than one-half its depth polar balance of force, producing, when the rod is free fromple the neutrality as shown at B, Fig. 1. The apparatus needed is simply a good compound horseshoe permanent magnet, fifteen
centimetres long, having centimetres long, having six or more plates, giving it, a total
thickness of at least three centimetres. We need a sufficiently powerful magnet, as I find that I obtain a more equal drawing it lengthwise over a single pole in a drip of irection by
that pole, as shown in Fig. 2, we can then that pole, as shown in Fig. 2; we can then obtain saturation by
repeated drawings, keeping the same molecular symmetry in each repeated drawings, keeping the same molecular symmetry in each
experiment. In order to apply a slight elastic torsion when magnetising rods or wires the ends at right angles, as shown in the following diagram, by which means we can apply an elastic twist or torsion whilst draw-
ing the rod over the pole of the permanent magnet. We can thus superpose several and opposite symmetrical structures,
producing a polar north or south as desired, of that possible under a single or even double magnetisation, so that both polarities have the same external force, the rod will be at perfect external neutrality when free from torsion. from a magnetic directive needle, we find it perfectly neutral when violentrepulsion or attraction, according to the direction of the torsio experime rod, the iron rod or strips of hoopiron which I use for this the needle, to turn it instandy 90 den ithecentime from The external neutrality that we can now produce at will its zero lute, as it crosses the line of two contrary polarities, being similar
to the zero of my electric sonometer, whose zero is obtained by to the zero of my electric sonometer, whose zero is obtained by the
crossing of two opposing electric forces. This rod of iron retains it peculiar powers of reversal in a remarkable degree, a condition quite magnent to that of ordinary magnetisation, for the same rod, when evident magnetism by a few elastic torsions, as I have already shown but whenit is magnetised under the double torsion with its superposed magnetis, it is but slightly reduced by variations or numerous
torsions, and I have found it impossible to render this rod again ree from its double polar effects, except by strongly remagnetismagnetism then becomes a single directive force, and we can then by a few vibrations or torsions reduce the rod to its ordinary
condition. The effects of superposed magnetism and its double magnetic influence of coils, or in very soft iron simply by directive influence of the earth's magnetism, reversing the rod placed magnetic west showing distinctly the double polar effects obtain the maximum effects on thin strips of iron from $\frac{1}{4}$ to $\frac{1}{2}$ effect, being masked by the comparatively neutral state of thes interior, the exterior molecules then reacting upon those of the
interior, allowing them to complete in the interior their circle interior, allowing them to complete in the interior their circle of
attractions. I was anxious to obtain wires which would preserve his structure against the destructive influence of torsion an out the comparatively long and tedious process of preparation.
Soft iron soon loses the structure, or becomes enfeebled, under the change of polarity, as described later in the magnetic cells. Hard hat weserves its structure, but its molecular rigidity is so grea sion. I have found, however, that fine cast drill steel, untempered
of the kind employed by watchmalers is of the kind employed by watchmakers, is most suitable : these ar
generally sold in straight lengths of 30 centimetres. Wires one mill retre in diameter should be used, and when it is desired to in formed into a single rod or bunch. The wire as sold is too rigid to give its maximum of molecular rotation effect. We must therefor
give it two entire turns or twists to the right, and strongl We must again repeat this operation in the contrary direction, after restoring the wire to its previous position, giving now
two entire turns to the left and magnetising it on the south pole. On restoring the wire to its original place, it wil The power of these wires, if properly prepared, is most remark
able, being able to reverse their polarity under torsion, as if they
were completely saturated; and they preserve this power indef.
nitely if not touched by a magnet. It would be extremely diff
cult to explain the action of the rotative effects obtained in the wires under any other theory than that which I have advanced; and the absolute external neutrality that we obtain in them whe perfectly symmetrical. I was anxious trom their structure, to bo this paper, some mechanical movement produced by molecul alternately by a polarised armature put in motion by the doubl polarised rod I have already described, but whose position, a
3 centimetres distance from the axis of the armature, remain zontal light steel bar suspended by its central axle; the bells ar thin wine glasses, giving a clear musical tone loud enough by the force with which they are struck, to be clearly hear
t some distance. The armature does not strike thes alternately by a pendulous movement, as we may easily
strike only one continuously, the friction and inertia the armature causing its movements to be perfectly dead-be hen not driven by some external force, and it is kept in its zer put the sluggish obrmature in rapid motion entren and is sufficien times per second, and with a power sufficient to produce tones lou
thit nough to be clearly heard in all parts of the hall of the Society
As this is the first direct transformation of molecular motion int nechanical movement, I am happy to show it on this occasion
There is nothing remarkable in the bells themselves, as the evidently could be rung if the armature was surrounded by a coil, marvel by slight elastic torsions from a asingle wire, one millimetre in
diameter, sufficient force from mere molecular rotation to entirel diameter, sufficient force from mere
During these researches I have remarked a peculiar property through any degree of arc to oits maximum, or saturation, but that
thione
hilst it requires a comparatively strong force to overcom its rigidity or resistance to rotation, it has a small field o trembling, vibrating, or rotating through a small degree with permanently on either side. This property is so marked and general that we can observe it without any special iron or appa
ratus. Let us take a flat rod of ordinary hoop iron, 30 or more
centimetres in give freedom to its molecules by torsions, vibrations, or better still, by a few blows with a wooden mallet upon its upper
extremity, we find, as is well known, that its lower portion i strongly north and its upper south. If we reverse this rod we now
find it neutral at both extremities. We might here suppose that
the earth's directing transversely, which in reality it has done, but only to the limit of riginal position, its previous strong polarity reappears at both ex remities; thus the central point of its free motion is inclined to th rod, giving by its free motion great symmetrical inclination and
polarity in one direction, but when reversed theinclination is reduce to zero. In Fig. 3, D shows the bar of iron when strongly polarised by to have rotated its elastic centre of action. C shows the same ba
with its molecules at zero, or transversal, the directing force with its molecules at zero, or transversal, the directing force
earth being insufficient without the aid of mechanical vibration to allew them to change. The dotted lines of D suppose the mole
cule to be in the centre of its free motion, whilst at C the molecule by being at the extreme end of its free motion. If, now, we hold the free rod vertically, as at C, giving neutrality, and give a few
slight blows with a wooden mallet to its upper extremity give just the amount of freedom required for it to produce eviden polarity, and we then have equal polarity, no matter which end o
the bar is below, the centre of its free rotation here being perfect, an the rod perfectly neutral longitudinally when held east and west If, on the other hand, we have given too much freedom by repeated
blows of the mallet, its centre of free motion becomes inclined with the molecules, and we arrive at its first condition, except tha
it is now neutral at D and polarised at C. From this it will be see that we can adjust this centre of action, by vibrations or blows, to any point within the external directing influence. We can perceiv
this effect of free rotation in a limited space in all and steel, being far greater in soft Swedish iron than in hard iron or steel. A similar phenomen held vertically in the direction of earth's magnetism. It then gives greater polarity than if magnetised east or west, and if magnemagnetised, or, if the rod is perfectly soft, it becomes neutral freedom, and the rotation of its centre of action, can be demonstrated in a variety of ways. One remarkable example
of it consists in the telephone. All those who are thoroughly measurable with electro-magnetism, and know that it requires one-fifteenth of a the surprised that the telephone could follow the slightest change of I believe the free rotation I have spoken of through a limited range explains its remarkable sensitiveness and rapidity of action sounding telephones can never repeat all the delicacy of timbre that is easily done with those only requiring a force comprised in found, has a distinct critical value for each class of iron, and I of steel and iron, in which I have upon the of this very praption as a guide to the quality of the iron itself. The elastic rotationas mechanical elasticity. In perfectly soft iron we have feeble mechanical elasticity, whilst in tempered steel we have that molecular elasticity. In tempered steel the molecules are tremely rigid, and in soft iron its molecular elasticity is at its maximum. Its free motion differs entirely from that given it
by torsion or stress. We may assume that a molecule is surrounded by continuous ether, more of the nature of a jelly than of that of a gas; in such a medium a molecule might freely vibrate limit would involve a much greater expenditure of force. The discovery of this comparatively free rotation of molecules, by
means of which, as I have shown, we can-without in any degree disturbing the external mechanical elasticity of the masshas led me into a series of researches which have only in-
directly any relation with the theory of magnetism. I was extremely desirous, however, of finding an experimental evidence which in itself should demonstrate all portions of the theory, Let us take a square soft iron rod, five millimetres in diameter y thirty or more centimetres in length, and force the molecules, by aid of blows from a wooden mallet, as previously described, vill-as already shown-have polarity at both ends when held If now we turn the rod to its first position, in which it shows drawing the north pole of a sufficiently powerful permanent magnet from its upper to its lower extremity, we find that this
rod, instead of having south polarity at its lower portion, as we rod, instead of having south polarity at its lower portion, as we
fullest free powers of magnetisation now appear in the position
where it was previously neutral. Thus, by magnetisation, we where completely rotated its free path of action, and find that we can rotate this path as desired to any direction by the apppication
of a sufficient directing power. If we take a rod as described,
with its polarities evident when held vertically, and its neutrality lith its polarities evidends are reversed in the same magnetic field, we find that its polarity is equal at both ends, and that it is in
every way symmetrical with a perfect magnet. If we gradually every way symmetrical take observations of its condition through
reverse the ends and tal each degree of arc passed over, we find an equal symmetrical
diminution of evident external polarity until we arrive at
neutrality, when it has no external trace of inherent polarity, but neutraitity, when it has no external trace of inherent polarity, but its former position. Thus the rod has passed through all the changes from polarity to neutrality, and from neutraity to polarity, and
these changes have taken place with complete symmetry, The lhits of this paper do not allow me to speak of the numerous
theoretical evidences as shown by the use of my induction balance
beliove, however, hat I have cited already experimental bevie I believe, howerer, that I have cited already experimental evidencee ue to molecular freedom or rigidity; that imb, Poisson, Ampère polarity we have a fact admitted by Coulomb, Poisson, Ampere
De la Rive, Weber, Du Monel, Wiedermann, and Maxwell , and that we eave also experimental evidence of molecular rotation and
of the symetrical character of polarity and neutrality. The
oxperiments which experiments which I have brought forward in this paper, in
tion to those mentioned in my paper read before the Royal Society whion to those mentioned in my paper read before thery of magnetism
will , hope, justify me in having advanced a theory of melieve in every portion allows at least experimental
which will, hope, justiry me in havin
which I believe in every port
evidences of its probable truth.

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS.
 Hiom piles,
blooms, \& 10
Bars made Bars made by Messrs. John Bagnall and Sons, were quoted:-
lin, to 6in, flat and from

 Girder, angle, tee, rivet, and similar iron for constructive purposes is in active consumption in this district, and a fair tonnage is
being sent to other parts of the kingdom. Prices of reliable angles and rivet iron will be gathered from the foregoing lists.
Hoops keen in steady demand for the United Stat.
export markets, and also for home cooperage purposes ; $£ 610 \mathrm{~s}$. to
L6 12s. Tun-plate makers reporta steady but not great business with Australia, Canada, the United States, Germany, and one or two
other European markets. They do not regard without much
onter interest the circumstance that a petition is now circulating among
iron trade circles in the United States to ask the next Congress to place the duty on tin-plates at 2ı 2 c. per 1 bb , instead of 1c. as pro.
vided in the new tarift, and $1 \cdot 1 \mathrm{c}$. as fixed by Treasury rulings, and now in force.
Makers con
Makers considered themselves very fortunate when the recent
proposal to largely yincrease the duty broke down. Such a duty as
is now proposal to argely increase the duty broke down. Such a duty as
is now sugested would be sufficient to ensure tin-plate manufac
ture in the States. ture in the States.
Foundry pigs are founders, and pir-makers benerally are anticipating by ing local demand, since June generally brings an improvement. $\begin{aligned} & \text { Best } \\ & \text { hematites are nominal at } 62 \mathrm{~s} \text {. } 6 \mathrm{~d} . \text { to } 65 \mathrm{~s} \text {., while less favourite }\end{aligned}$ brands are selling at 60 s . Other prices are unchanged. A few days ago three blast furnaces, known as the Deepfield's fur naces, together with $100-$ hors power blast enines, bowng cylinder
and blast service, two hot-air ovens, cinder frames, and othe requirements for the manufacture of pig iron, were publicly
offered for sale in Birmingham, but the attendance was small, and no bid was made.
Current prices
Current prices of coal are :-Best deep coal, 10 s ; deep one way,
9 s , deep cobbles, 8 s ; deep rough deack, 5 ss . 6 d ; fine slack, 3 s . 6 d . on coal and 6 d . on slack. In the shallow seams prices of the best
 again, prices of second-rate firms are less by 1 s . and
tively. The casting of fly-wheels for ironworks use mainly is a fairly
active branch of the heayy foundries in South Stafordshire. Few
finer pieces of work of this class have been executed hereabouts than a wheel of over 70 tons which has just been run by Messrs.
Taylor and Farrey, of the Summit Foundry, West Brom wich, for Durham. Hardly less noteworthy was the wheel cast some weeks back by Messrs, TTurley, at Deepfields, for Messers. Isacac Jenks an
Sons, of the Minerva Iron and Steel Works. Wolverhampton. In the present condition of the steel market the Corporation Birmingham are expecting to obtain 1000 tons of Bessemer tram-
way rails which they require upon terms that will confirm them in the wisdom of the policy of themselves constructing the tramways
 to be of steel, but iron is to be the material of the bolts, nuts, and tie rods. The points, some 120 in number, are to be of cast steel,
4 cwt. apiece, ten of them with movable tongues. Good work is to be put into the crossings, of which there are sixty. They are to be
planed out of solid rails, cold, and will be supplied by the Corpora-
tion planed
tion
The
portion
The Corporation of Walsall desire to pump the sewage on the别 they have determined to erect a turbine in the river Tame, will be purohased from Ireland at a cost of some some $£ 200$ or $£ \mathrm{E} 300$; but the most expensive part of the scheme is the laying in of the
foundations. The bed of the river course, both above and below the weir, is to be shedded with crickwork., The total cost is
officially estimated at about $£ 700$, but some members of the Council who believe that the employment of steam would be much
more servicable, estimate that the expenditure will be considermore serviceable, estimate that the expenditure will be consider-
ably in excess of $£ 700$. The Sewerage Committee, however, lay
reat stress upon the econon
Tompared with steam power.
The Walsall Corporation
now stean roller at a cost of $£ 500$.
Thire coming to an end of the colliers' strike in North Staffordshire coming to an end at present. The strike hands profess to be
as determined as ever, and the unionists are receiving 10. each and 1s. per child per week as strike pay.

NOTES FROM LANCASHIRE.

(From our oun Corverpondent.)

Manchester.--The resumption of business after the holidays has
ot developed any increased animation in the iron trade of this not developed any increased animation in the iron trade of this
district. All through, the market ontinues in a depresed condi-
tion, and low prices do not stimulate buying beyond absolute rion, and 1ow prices ao not stimulaterered makers are getting
requirements. So far as pig ion is concerned make
anxious for orders. At the local furnaces old contracts are rapidly running out, and as there have been very few new orders coming
in recently to replace these, stocks are accumulating. Finished iron makers appear to be in a better ppsition than the pig iron
makers. Although the amount of actual new business offering in manufactured iron is only small, there are comparatively few of the local forges that are not kept going, and some of the principal
makers are fairly busy. The result is that whist pig iron shows a
decidedly weakening tendency, finished iron is generally being held firmly for late rates
A very quiet tone characterised the Manchester iron market on Tuosday. In pig iron very few transactions were reported, and
sellers were open to book orders at lower prices than those ruling last week. Nominally quotations for Lancashire pig iron remain
on the basis of 45 s . for forge and 46 s . for foundry less $2 \downarrow$, delivered equal to Manehester; but makers finding that these prices do not
bring forward business, are now open to entertain offers from bring forward business, are now open to entertain offers from
buyers. District brands, so far as any actual competition for business is concerned, are still represented solely by Lincolnshire
nakes, which continue the lowest priee iron in the market. In makes, which continue the lowest priee iron yn the market. Per
this iron there has during the week been a giving way of 6d. per
ton on forge qualities, No. 4 being now quoted at 44s. 4d. less $2 \frac{1}{3}$ delivered here, and on this basis moderate sales have been made
but if the reports I hear can be relied upon this figure does not but if the reports I hear can be relied upon this figure does not
represent the lowest price some sellers are prepared to take to
secure business. Foundry qualities remain at 4 s . 10d. 1ess 2 t , with a small business doing.
In the finished iron trade there is no material change. Although in one or two cases makers report orders coming forward more
freely, business generally is dull. The leading manufacturers show no disposition to yield in price, and $£ 6$ 5s. remains the basis
for good local bars delivered into the Manchester district.
Buyers do not pay this price very readily, and in some cases decline to
place out orders, except at a lower figure, but it is only from one or two of the local makers that bars can be bought for less. For
hoops quotations average $£ 612.6 .6$. for delivery equal to Man-
chester or Liverpool, with sellers here and there at $£ 610$ s. per ton. chester or Liverpool, with sellers here and there at $£ 610 \mathrm{~s}$. per ton
The engineering trades generally continue fairly busy. The indications of a decrease in the quantity of new business noticeable prior to the holidays do not seem to have developed into any
serious falling off in trade. I hear of fairly good inquiries in the market, and except that prices have to be cut very fine to secure
new orders, the prospects as to continuing activity in trade are not unsatisfactory,
There is certainly no prezent prospect of any falling off in the
activity which characterises the locomotive building trade of this district. I hear of one large firm turning out fourteen locomotive per month, with plenty of work in hand for some time to come, to some of which I have referred in previous not speces. Messrs
Nasmy Nasmyth, Wilson and Co., of Patricroft, amongst recent new work,
have received orders from the United States for a number of loco motives, which are to be constructed strictly on the American priders, witing upon two bogies. They have also in hand the construction of several specially dssigned locomotives for tramway
work abroad. These engines are more powerfully constructed than work abroad. These engines are more powerfully constructed than
is usual with tramway locomotives in this country, and weigh about ten tons each. They are made with 10 in. cylinders, and are fittee
with condensing apparatus, so as to avoid any nuisance from the exhaust steam in passing through the streets. All the valve gear
is fixed outside the cylinders, so that it may be readily accessible is fixed outside the cylinders, so that it may be readily accessible
when required, and the engines are cased in throughout down to the level of the line, all the moving parts being thus concealed, and
the ends are rounded to enable the engines, which are of metre gauge, to turn within the space of an ordinary tram car.
The application of hydraulic power to the heavy class of machine tools is being developed in various directions, as its
advantages over the ordinary gearing recommend it for different advantages over the ordinary gearing recommend en for
classes of work, A description has already been given of the recent
introduction of this method of driving at the works of Sir Whitworth and Co., for powerful slotting and boring machinery and Messrs. Nasmyth, Wilson, and Co., have now in hand a shear-
ing machine for cutting steel ingots 20 in , by Gin. which will ing machine for cutting steel ingots 20 in . by 6 in., which will
probably be the most powerful probably be the most powerful machine of the find yet constructed a pair of hydraulic pumping engines, which are being specially
made for the Calcutta International Exhibition, and are designed to work in India are constructed with the multiple pumps patented by Messrs. Nasmyth, Wiison, and Co. Ellowing the reent Gas, Electric, and Engineering, Exhibition in the St. James's Hall, Manchester, a building trades' exhibition, laid out on precisely the same lines as the one in London, is to be
held during the ensuing autumn, and the Mayor of Manchester Alderman Hopkinson- has consented to preside at the opening
proceedings. I understand the applications for ste proceedings. I understand the applica
ensure a successful exhibition being held.
An interesting subject for mining engineers is promised at the
meeting of the Manchester Geological Society next Tuesday, when Messrs. Fleuss, Duff, and Co., of London, will exhibit in working order their breathing apparatus and lamp for penetrating noxious
and inflammebe gases, as used in the re-opening of the Seaham recomment d by the secre districts. A general discussion is also to take place on the use of breathing apparatus for exploring mines after explosions.
During the week a miners' conference
the coal-producing districts of the country, has been sitting in Manchester, and on Wednesday the question of restricting the out. put was under discussion. A letter had been addressed from the the Mining Association of Great Britain, asking that a meeting might be convened for discussing the desirabiity of arrangin, some means of regulating the output and production ounale to
but the council of the association replied that they were unable to accede to the request. This refusal of the masters to combine with
the men in restricting the output of coal was received with the men in restricting the output of coal was received with any-
thing but satisfaction passed regretting the action of the Mineeowners Msocociation, werpe
cially as "the latent power of production constantly at the dis posal of the owners has resulted, and is now ressulting, in com-
merche mercial loss and insufficient wages for workmen, and that over
production being, in the opinion of the meeting, the bane of the coal trade, which, unless some steps were taken to prevent the
same, ruinous competition would continue, profits would remain same, ruinous competition would continue, profits would remain
stationary, and wages in a low condition, the conference therefore deided to "recommend all miners in the to United King iom to
deestrict the restrict the output of coal, the ean
district in the best possible way."

In the coal trade business generally is quiet, and many of the
pits are not working more than four dass pits are not working more than four days a week, The demand
both for house fire and manufacturing classes of fuel is only very stoppages for the holidays, has prevented any great pressure of
supplies upon the market, With the exception of a little giving way
in a few cases on the extreme list rates for some classes of round coals, pricess are fairly steady, and the month clocses without any
material alteration in the actual selling rates. At the pit mouth
 common, 3s. to 3s, s d. per ton.
Shipping continues quiet, with Lancashire steam coal delivered 5. 6d. per ton. Barrow.-There is no change to note in the hematite pig iron
trade of this district. A general quietness reigns, and there does not sem any immediate prospect of a revival. Trade is much
duller than was anticipated at this time of the yenr Continental and American account. The output of the furnaces is the part of smelters to reduce it. Stocks are accumulating, but a very large proportion of the metal produced is being used by steel
makers. Prices have declined slightly; No. 1, 51s. 6d., No. 2 , 50 s .6 d, No. $3,49 \mathrm{~s} .6 \mathrm{~d}$. Steel makers are experiencing a mueh
better time of it than iron smelters, as they hold orders which will keep them going for the remainder of the season, Certainly some of the orders are not what might be considered very remunerative. So long as the activity is maintained in the steel-making depart ments it will be so much the better for the iron trade. Pig iron has suffered a slight reduction. Tin-plates are in fair request,
Steen is quoted at \&4 15s. to \&5 per ton at works. The engineering. ironfounding, and other industries are quiet but steady.

THE SHEFFIELD DISTRICT.

Dr. Webster, the United States Consul, in his report of the year ending September 30th, 1882 -the American commercial year always closes on this date-gives some interesting information in
regard to the effect of American competition on Sheffield trades Dr. Webster states that the year has been a prosperous one in the having been greater than that of any year since 1874 . The reat aring been greater than that of any year since 1874 . The great
bulk of the Sheffield trade with the United States is in the three great industries of Bessemer rails, steel, and cutlery. The aggre-
gate amount of the three for 1882 is $5,268,594 \cdot 58$ dols., against $949,154 \cdot 96$ dols. for all other exports. The greatest amount in was in 1874, being $2,146,555 \cdot 56$ dols. The amount for 1882 is
. 2,011,720:80 dols. During the years 1876 to 1878 inclusive this
trade was entirely suspended, and it was then considered probable that from that time America would be able to supply their own demand. But the figures show that the export of rails for 1882
nearly equals 1874 , the year of largest export of this material, and as
 I the year 1874, the quantity taken in 1882 must be at least
double that of 1874 . This very large demand for Sheffield rails, ates the to the immense production of American mills, indicates tho present vast expansion of railway building in the United
States. Turning to steel, affairs are different. In 1873 the value of steel exported to America was $3,267,87966$ dols., against
$, 959,782$ dols. in $1882-$ a large decrease. The price of steel is almost the same now as in 1873, and the conclusion Dr.
Webster draws is that in fine steels, which have hitherto been supposed to be procurable in Sheffield only, the United quality with the best makers in the world. This implies a rapidly ndication in this direction as regards cutlery. The amount in value of cutlery of all kinds exported to the United States in 1873 the year of greatest trade-was 188 , showing a difference in favour of the United states of 94,992 dols. Dr. Webster adds:- As there has
been no increase in our demand for Sheffield cutlery during the last ten years, notwithstanding our great growth in population,
and wealth, and consequently ability to purchase the best of the world's products, it seems certain that our cutlery manufacture
must have greatly extended and improved in quality. It is evident that home makers are more largely supplying the home market. Still the fact remains that our country calls for Sheffield cutlery to
the amount of more than $1,000,000$ dols. annually. Now, unless the amound of more than 1,
the demands of the American people upon our own manufactures the so great that they cannot be supplied, as is the case with
are
are in Sheffield cutlery that a large portion of American buyers prefer and will have.
In the file trade there is no change. The men are still on strike, and there seems no chance of their getting re-employed on the old
terms. In fact, a leading file manufacturer told me this week that it was the best thing that could happen for him to have his men "out." During the languid season he had been making more files lated; and he is now supplying his customers from the shelves and can con
tional one.
At Barnsley a meeting of the miners' representatives has resolvtion on carrying out the policy of restriction of output. This when restriction was possible, that it is hard to see why it should again be passed now that the warm weather is daily restricting the What is really aimed at is not restriction of quantity so much as an increase of pay for what is raised. It will take the colliers all
their time to keep the 10 per cent. they got last year.

THE NORTH OF ENGLAND

THe Cleveland pig iron trade has been exceedingly dull during
the past week. Very few sales have been effected thour the past week. Very few sales have been effected, though mer chant shave been pressing iron on the market at . Maker ton less
than the rates which have ruled for two months. Makers are not At the market held at Middlesbrough on Tuesday the tone was a little more cheerful, as exports during the last few days have been excellent; and it is now thought likely chants offered No. 3 g g.m.b. at 39s. 6 d . per ton for prompt and some of them were firm at 40 s. per ton. But little business wa done even at the lower figure, consumers' price being for the most part only 39s. 3d. per ton.
There are no transactions to report in warrants, though some
holders are now anxious to sell. The price is nominally 39 s .6 d .
The stock of Cleveland pig iron in Messrs. Connal's Middles brough store has declined only 109 tons during the past week.
The May exports from the Tees up to Monday night were ollows:-Pig iron, 76,851 tons ; manufactured iron and steel, tons of tigs. In in were shipped.
new feature to report in connection with the finished iron trade. The mills are working, steadily under the restriction orders are scarce, and market values less than before. Ship
plates are quoted at $£ 6$ 2s. 6 d . to $£ 67 \mathrm{~s}$. 6 d ; angles, 5512 s . 6 d . to to specifation, all free on trucks at maker's works, less $2 \frac{2}{2}$ per
to

The whole of the plant at the Ferryhill Colliery
was sold by auction on the 23rd ult., and brought good prices; merchants and colliery owners from all parts of the country being present. This
colliery has been ilde for some years, owing to colliery has been ilde for some years, owing to
the slacknees of trade A meeting of repre
of Commerce and Shipowners' Societies of the ports of Middlesbrough, Stockton, Whitby, and to take into consideration "Lloyd's" proposition committee, As at per of minstituted, the com mittee consists of forty-one representatives from all the ports in the United Kingdom. The numbe is to be increased to fifty, and it is proposed to
allot the above ports collectively two representatives instead of one as at present. The delegate discussed the matter very fully, and decided to inform Lloyd's committee that they consider the
importance of the district now entitles it to three importance of the district now entitles it to three
representatives-that is, two additional. The men employed by the North-Eastern Railway Company at their Gateshead Works have
applied for an advance of wages. The manager after taking time to ascertain the rates paid at similar works in the district, says he would not be
justified in recommending that the advances should be given. The men are extremely dissatisfied, asserting that they are paid less than the current rates at neighbouring works. They The strike at the Eston Steel Works of
Messrs. Bolckow, Vaughan, and Company,
still continues. There has been some talk still continues. There has been some talk
of submitting the question to arbitration, but to be as determined as ever not to go to work at the reduced rates, and a good many of the best
workmen have left the district to find work elseThe North-Eastern Steel Works at Middlesof basic pig iron has already been made for them by Messrs. B. Samuelson and Co., and Messrs. Stevenson, Jaques, and Co. are meditating enter-
ing into the same special trade. But, ing into the same special trade. But, unfortu-
nately, the prices for steel rails are so low, that they can only be made at a loss, even by the basic process. Whether the directors of the new company will make a start, and so help to run down remain idle latter course would be very tantalising to the shareholders, but perhaps might prove the wisest in the long run.
The mill men employed by Messrs. Dorman,
Long, and Co., of Middlesbrough, are still working on Mondays, notwithstanding the restriction
arrangement agreed to by the Board of Arbitraarrangement agreed to by the Board of Arbitra-,
tion and adopted both by the Iron Manufacturers' and the Ironworkers' Associations. The puddlers The price paid by the firm to their millmen for the concession is said to be an extra $\frac{1}{2}$ d. per ton
above country price on all tonnage rates. The result is considered by many a considerable blow much as it appears much less able to enforce its decrees than was previously supposed.

NOTES FROM SCOTLAND,

 pondent.) during the glasgow pig iron market has been quiet have ruled low, the lowest point yet touched since the beginning of the year having, indeed, beenreached. But although prices are far from satisfactory, the business done is on an extensive scale The shipments for the past week have been very good, and there is a prospect of large quantities of iron being sent abroad in the course of the next
two months. Private advices from the States are anything but cheering. Still, the iron despatched thither during the we improvement, and it is believed that fair orders
will be forthcoming for delivery in July. There is an increase of 2 s . 6d. in the freights for pig iron been some talk of a work which has been idle for a number of years being started, so that the pro-
duction of pig iron would in this way be still further increased. The considerable additions weeks will not add to the stock if the shipments should be maintained at about their present
dimensions. Just now the consumption, home and foreign together, carries off the current protinues to exhibit a slight reduction Business was done in the warrant market on
Friday at 46 s .91 d , to $46 \mathrm{~s}, 8 \mathrm{~d}$ arsh Friday at 46 s .91 d d. to 46 s . 8 d . cash. On Monday
previous transactions were effected from 46 s . 7 d d previous transactions were effected from 46 s . $7 \frac{1}{\mathrm{~d}} \mathrm{~d}$.
to 46 s . 10 d . cash, also 46 s . $9 \frac{1}{2} \mathrm{~d}$. to 47 s . one month, to 46 s . 8 d . cash, and 47 s . to 46 s . 11 d were 46 s . 10d.
 46s.
Wednesday between 46 s . 7 d . and and 46 s . 9 d e cash, on
and 46 s . 11d. and 46 s . 10 d . one month Thursday-transactions occurred at 46 s , 8 d to 46 s . $6 \frac{1}{2} \mathrm{~d}$. cash, and 46 s . $8 \frac{1}{2} \mathrm{~d}$. one month.
The prices of makers' iron are 6d. to 1s. lower, as follows:-Gartsherrie, f.o.b. at Glasgow, per
ton, No. 1, 58s., No. 3, 54s.; Coltness, 62s. and and
54s. 6d.; Langloan, 62s. 6d.. and 54s. 6d.; Sum-

 4s. 6 d .; Govan, at Broomielaw, 48 s , and 46 s . and.;
Shotts at Leith, 62 s and 56 s , Carron, at Grange-
mouth, 50 s . - specially selected, 57 s s. 6 d . - and 48 s .;
 48s. and 46s.; Dalmellington, 49s. 6 d. and
48 s . 6 d . The imports of Middlesbrough pig iron at
Grangemouth to date amount to 101,938 tons, showing an increase of 9999 tons over the quantity received in the same period of last year.
There 'is a marked feeling of dulness in the demand for general iron manufactures, although
arranged. Prices are very moderate, and it is
only with the exercise of a rigid economy that they are maintained at the paying point, The coal trade in the West of Scotland confactorily in a comparative sense. House coal is in better demand than is usual at this time of the steam coal at Glasgow, at firmer prices. The shipments of coals from the last-mentioned port in the course of the week include 1900 tons for Montreal, 1520 tons for Cronstadt, 800 tons for
Gothenburg, 670 tons for Nantes, and 470 tons or Venice. The week's despatch of coals from Grangemouth was close upon 6000 tons, while ver 5000 tons were sent away from Bo'ness. The colliers of Fife are not satisfied with the nerease of 6 d employers to their request for an ncrease of 6 d . per day on their wages. At a
meeting of the men's Executive Board, Dunfermline a few days ago, Mr. Weir, the secretary, was instructed to write to Mr. Connell,
the secretary of the Coalmasters' Association, pressing upon them "to at once reconsider thei realised for all classes of coal are such as to warrant the payment of wages at least 6 d . per day higher than the present rates." It was also resolved that in the event of the coalmasters
refusing to reconsider their decision, the Was Committee should meet at Dunfermline on the 9th June to determine what further action should be taken in order to enforce the advance sought. A threatened dispute in the engineering trade the masters conceding the demand of the men of a rise of wages, and the rest offering to com promise the matter

WALES \& ADJOINING COUNTIES (From our own Correspondent.)
IT is satisfactory to learn that the preamble of
the "Rhondda Valley and the Swansea Bay Railway" Bill has been declared proven. The same success has also been gained by the Taff other things the construction of a short line with the authorised new line of the Great Western and Rhymney to Cyfarthfa. The delay of the joint
railway company in carrying out its new line has railway company in carrying out its new line has
in all probability been due to this movement on the part of the Taff. Now the sooner both lines transfer their schemes from paper to sod the
Extreme pressure continues to characterise the coal trade, and both house and steam coal are in in two quarters of the house coal district notice has been given of an advance of price. It is not
expected to be more than 3d, per ton, but this i acceptable. If the steam coal prices could also more satisfactory. advance, speculation is rife about it. In previous cases house coals have advanced after an upward this case it may not precede an issed whether in that quarter.
The French coal trade is not in a flourishing condition, but this is more than atoned for in the Malta, and Port Said figuring well. Over 160,000 ons of coal left Cardiff last week, and the busi ness at other ports was proportionately good
Swansea showed a a good deal of animation in patent fuel as well as coal, 7188 tons of the latter The death of Mr
announced. His taking of this of Clace waven, fortunate hit for himself, having realised a large sum by the undertaking. He was the first railway contractor in Greece, and an important under-
taking of his was the construction of the Bridge at Cairo. Local strikes are threatened. At Plymouth the contention between the men and employers
continues. At Ynysfeis, Rhondda Valley, 600 men are expected to come out on strike this week. threatened at the collieries of Nixon and Co, Mountain Ash. Here the colliers are divided in heir selection of a doctor, over 1000 supporting o by the majority at a he resolution now come if their selection be not adopted
Still another item of importance from the
Rhondda district. The colliers are desir Rhondda district. The colliers are desirous of proposition has been carried to invite Mrer, and laugh, or Messrs. Burt and Broadhurst to attend There is not much change to be seen this week in the iron and steel trades. Prospects are fair, bat there is no marked animation. The most busy, and some दegree of imprevem moderately given in one or two places by the better state of the tin-plate trade. One of the American organs, plate, so as to bring the a restrictive tariff on tinduce up to a higher standard than it in now proin the same journal the English trade is charged with sending all their inferior plates to America. As
regards Wales, there is a strong belief held regards Wales, there is a strong belief held here
that the Princinality is that the Principality is able to produce better that the superior plates could, but it is admitted prices given are scarcely those for the best pro-
ducts. The pressure ducts. The pressure to force prices down has been so persistent that I am not surprised at a cry about
quality.
The difficulty at Garnant Colliery, Carmarthen, has been amicably settled.
The Dowlais tin-plate
at a meeting in Swansea this wers remain out, and to continue relief, the impression being that Dowlais succeeded in getting the reduction taken The Rhymney Iron Company intend sinking wo pits shortly into the Brithdir seam. The Nantyglo and Blaina Comp decided at a late meeting to pay off their 10 per cent. deben Great animation prevails at Cardiff. Two new steamship companies were started there this week, and a new Exchange is being floated to cost
£30,000. The Welsh Liverpool was never so
prosperous.

THE PATENT JOURNAL.

onacusadrom che Journal of the commisisionera

 $\stackrel{\because}{\text { Pat has ome to our notiut that somene applicarts of the }}$

\therefore Applications for Tetters Patent.
 $22 n d$ Mov, 1883.

 and T. Crabb, Chelmsford.
2540. CAMP OvENs, \&e., J. Millington, near Wolverhampton.
2541. Knitring Machinery, H. J. Haddan.-(W. W. 2542. Pencil Casis, H. J. Haddan.-(J. Knapp, U.S)
2543. INAANDESGENT ELEGTRIC LAMPs, B. Keeling and J. D. Mucklow, London.
244. MANUFAACORE of GAs, S. Pitt.-(E. J. Jerzman ovski, New York.)

2519. SADDLE Bars, S. Davis, London.
2549, TANNic BLack, W. G. Gard and T. H. Cobley Dunstable.
2550. Microphones or Telephones, P. Jensen.-(L. M. Bi icsson, Slockholm)
2551. FisHIN REELS, D. Slater, Newark-upon-Trent.
2552. SZING MACHNES, J. Dugdale, Blackburn
2553. DYNAMO-ELECRIC MACHINES, EC., T. 2552. SIZING MACHINES, J. Dugdale, Blackburn
2553. DYNAMO-ELEOTRIC MACHINES, \&C., T. T. Vernon,
Uttoxeter. 554. SprinNing Cotton, \&c., G. A. Helliwell and J. H.
Waller, Todmorden, Waller, Todmorden,
255. HoLDING HATs, A. Pyke, London.
255. Rivetring Shoe-vace Studs, H. (IV. C. Bray, Newton, U.S.)
557. BARED WIRE. H. H. ake - (P. Miles, Brooklyn 258. Weighing Machines, W. P. Thompson.-(J.
Stevens, Neenah, $J . S$. .)
259. Feeding Bottles, A. Horne and J. Mancor, Liverpoil. Covers for Barges, H. Roscoe and W. H. Dugdale, Liverpool.
2561. Opratig Gas Enaines, L. H. Nash, Brooklyn Nero York.) - Opkning Doors by Electricity, G. F. Redfern

- Gautier, Cannes.)
(ab4. Balling HEADS of Gill Boxes, P. Smith, jun., 8. Ambling Heand J. Lund of Gile Boxhley. P. Smith, jun.
S 565. Feedisg Apparatus for Cading Enoines, E.
Edwards. - A. Cremer-Pirnay et Cie., Belgium.)

566. Sulphate of Lime, ©c., J. H. Johnson.-(P. G. Journet, Paris.
567. PRESERVIN
568. Preservis.) Food, \&c., J. H. Johnson.-(Liautand
and Co., Nice, France.) 23rd May, 1883.
569. Extracting Parafyine from Mineral Oit, \&e.,
J. Siddeley, Liverpool.
J. Siddeley, Liverpool.

London.
Chenlle, B. J. B. Mills. - (J. Baverey, France.)
Steam Genkrators, G. G. Rhodes, Liversedge.
7. Porous or Sporoy P. G. Rheres, F. T. Williams and
J. C. Howell, Llannelly.
4. Converting Reciprocating into Rotary Motion,

Indicatisg Movements of Trains, E. C. War
6. Constructivg Flooringes, đc., J. Garlick, Bir-
7. Celluloid, de., Basks for Dental Purposes,
G. Hammersley.- (F. J. . G. Hammersley.- (F. J. Lynam, Chili.) Porposes and Electrio Liritiva, W. Stroudley, Brighton,
and E. J. Houghton, Peckham.
250. Expediting the Loading of Rifles, S. Pitt,
 258. STo
London.
2582. MAN
Bath.
2582. Manufacture of Fuller's Earth, C. R. Dames,
Bath.
25s3. Merchant Bar Rolling Mills, G. Hardingham.
2584. ST. J. Roberts, Reading, U.S.)

Stelton, New Jersey.)
2585. Spring MATtREsses, w. Beck.-(J. Soisson, Paris.)
24th May, 1883.
2586. Corsers, J. T. Hellier, Glasgow.
2587. Sofa-bEDSTEADS, C. A. Barber.-(R. W. Taylor,

2592. TElEPHoNic ApPARATVS, G. E. Gouraud, London 2593. STLEAM BoLIERR, J. Withinshaw, Birminghand.
2594. PAPER FAATENERS and FILE, W. J. Brewe

London.
2595. HAunga Engnerins, D. Greig, A. Greig, and R. H. 2599. GENERATING Steam, H. Tipping, Greenwich.
2597. Embrotiderina Machines, W. E. Gedge.2598. WRENCRES, H. W. Atwater, Orange, U.S.
2599. Botre Stoppers, W. W. Macvay and R. Sykes 2600. Tramways, A. H. Rowan, Westminster.
2601. FIre-Proor Soreen for Theatres, \&c., A. Clark,
London. London.
2602. Construoting Ships, T. H. Ball, Chicago, U.S. 25th May, 1883.
2603. Ladies' Necklets, J. Mason and T. Hambleton,
Macclefield.
2604. Doubling or Twining YARNs, \&c., W. H. Jones,
Middleton
2605. Crionographs, W. H. Douglas, Stourbridge.
2606. ObtanNing ARtificial Lioht and Heat, J. s. Muir LLondong.
2607. SPI
Oldham
So. ME
Sheffiel
hiloks for Rubber Tirrs, T. Fox
2610. Saddles, O. Lehmann.-(IV. Weissge, London.

Howard, London.
Newman, Ryde.
2614. Torppo Boats, W. R. Lake.-(W. Sims, U.S.)
2615. SECURING CANDLES in CANDLESTICKs, W. R. Lake.

619. Wroth May, 1883.
620. Money Boxes, de., E. A. Jahncke and H. W. 2621. ExTLACTING. SUlphurous AciDs from the FUMEs
of FORNACES, E. A. Brydges. - (E. Hanisch and Dr.
 2623. MANUFActure of AIr Gas, G. Macaulay-Cruik-
shank.-(R.. Dixon, Dydney.).
2624. Watches, W. H. Spence.-(A. Droz et Fils, st.
 and P. Graham, Stockton-on-Tees.
2627. SAFETY STIRRUP BARS, R.W. Hunt, Scarborough
2628. Broycles, ©co., J. Ilix, London. 262. Brovcles, \&o., J. Ilix, London.
Bradfower. Looms, S. C. Lister and J. Reixach, Bradford.
2630. REckplacles for Prepparing Cattle Food, J. W.
Butler, Blackheath. Butler, Blackheath. Preparing Catile Food, J. W.
2631. Reverberatory Smeliting Furnaces, H. J.
Haddan.- (R. P. Wilson.
 263. Proprellerr, N. D. Slaractail, Liverpool.
2634. Apparatus for Frilining, PLEATING, \&c., O. McC.

$$
28 t h \text { May, } 1883 .
$$

2638. Screws, H. J. G. Halström, Köping, Sweden.
2639. Automatic Continvos Brakr, L. A. Groth.
2640. SHoEMA KERS' LASTS and SHozs, A. Stürmer
Elberfeld, Germany 2641. CLeransing and Bleaching Cotron, \&c., J. Imray 2642. BiLL FILES, C. H. Brampton, Birmingham. 264. Fastrving Davice, H. J. Haddan.- (H. Brunner, 2645. Centrifugal CrFam Separators, I Hattersley
London. 2646. Breech-loading Rifles, \&c., W. Field, Bir 2647. Food for Infants and Invalidy, W. R. Barker 2643. MANUFACTURE of HyDRATE of Strontia, \&c
 J. Illingworth, Batley.
H. H. Lake.-(J. Parks, U.S.)

Inventions Protected for Six Months on
Deposit of Complete Specifications 2544. Manvescruriva Gas, S. Pitt, Sutton.-A com.
munication from E, J. Jerzmanowski, New York,
U S. U S.-22nd May, 1883.
255. DENTITRY, S. Pitt, Sutton-A communication
from C. M. Richmond, New York, U.S.- $22 n d$ May, 2546. Ha нмоскя, C. E. Hiester, Harrisburg, Pennsyl 2556. RIVETTING or SEETHING SHoE-LACE STUDS, \&c.,
H. Lake, Southampton-buildings, London. H chusetts, U.S.- 22 nd May, 1883 .
2583. Merchant Bar Roluing Mils, G. G. M. Hardingham, Fleet-street, London.-A communication
from J. J. Roberts, Reading, Pennsylvania, U.S.-
23rd 2600. OObANinina Abtipicial Light and Heat, J. S 616. CorsET, W. R. Lake. Southampton-buildings,
London. London. - A communication

Patents on which the Stamp Duty of 250 has been paid.

 2111. Screw Propeller, W. H. Daniels, London.-24th May, 1880 . May, Fire Lisel
Migers, \&c., H. C. Hill, London. $-21 s$ 2101. Preventiva Incrustation in Boilers, E.
Arnaud, J. Moulet, and E. Ginoyer, Newcastle-upon. Tyne. -24 th May, 1880. .
2106. Ruviva PAPER, H. J. Haddan, London. $-24 t h$
May, 1880 . 2185. Machines for Crushing, \&c., G. E. Sherwin, Birmingham. - $28 t h$ May, 1880 . Lake, London, $-31 s t$
2217. SBAPING MACHINEs, W. R. Lak
May
 $-31 s t$ May, 1880 .
261. Volutr
June Springe, T. Brown, Newburn. - 3 rd 2300. Workivg Railway Signals, G. K. Winter, Chis-
wick.-12th June, 1880. 2117. STopping Bottles, D. Rylands, Stairfoot.-24th 2195. Looms for Weaving, W. Morgan-Brown, London. 2122. Hydravild Steerivg Apparatus, A. Lafargue,
London. -5 th May, 1880. 2164. VELOCIPEDEs, C. R. Garrard, Uxbridge. -27 th
May, 1880 . ${ }^{2168 .}$,Grain Weighing Apparatus, W. R. Lake,
 May, 1880.
2307. FLoor Clote, C. F. Leake, Staines.-8th June,
1880 . 427. Convertisg Old Rails into Blllets, \&c., W. R.
Lake, London. $-15 t h$ June, 1880.

Patents on which the Stamp Duty of $\mathbf{~ L a s ~ b e e n ~ p a i d . ~}$
hat 2556. Direct-activa STEAM POMPs, dc, T. Parker and
P. A. Weston, Coalbrookdale.-20th june, 1876 , P. A. Weston, Coalbrookdale. - 20 th June, 1876 .
2193. Bortuss for AERATED LIQUIDs, H. Codd, London.
$-24 t h$ May, 2322. Сомbing WooL, J. H. Johnson, London.-2nd June, 1876.
2685. P ORIFYina SUGAR, \&c., J. Duncan and B. E. R.
Newlands, London. 2183. Evaporating Liquids and GEnERating STEAM,
C. Roeckner, Newcastle-upon-Tye. C. Roeckner, Newcastlo-upon-Tyne. - 24th May, 1876 ,
2199. CuRITve the BRIMs of HATs, T. Lees, Stockport.

- 25 th May 2268. CoLovr Pristina, \&c., W. Brookes, London.-
30th May, 1876.

Notices of Intention to Proceed with (Last day for Ming opposition, 15 th June, 1883.) 5938. Firgrroor Boxss, đc., W. R. Lake, London.-
Com. from M. Merrill \& J. Nolan. - 12 Lh December, 1882 . 330. Groynes for Raising Forkshores, A. Dowson,
London. -20 th Janary 33L. Coupuling dac, RALLWAY Trucks, J. Darling,
Glasgow. 20 th January, 1883. 333. Foot Mats, E. P. Alexander, London.-A com
munication from C. Cheswright. - 20th January, 1883 348. Voltaic Batteries, R. H. Courtenay, London.-
20th JJanuary, 1883.
349. Telephonic Apparatus, C. A. Teske, Wandsworth.

359. Fastenivas for STAY Busks, \&c., F. R. Baker,
Birmingham. -22 nd January 1883 . 361. ELECTRIO LAMPs, H. H. Lake, London.-A communication from H. R. Boissier.- 22 d January, 1883 ,
367. REmovIIG VEGETABLE IMPURITIES from Woos,
J. Haddan, London.-A communication from G . Fernau and Co. - 23 Gd January 1883.
369. GAS BURER APPARATUS, G. S. Grimston, Brockley,
 23rd January, 1883.
373. Indication the Names of Stations in Rainway
Carriages, H. B. Palmer, London.-23rd January, 1883.
378. Spring Motor Apparatus, W. R. Lake, London.
-Com. from G. Stites, R. Steee, S. Austin, J. Van
 463. AxLE-Boxes, F. Wirth, Frankfort-on-the-Main.-
A communication from Messrs. Diek and Kirschten 488. SURFACE CONDENSERS, H. Guy, Isle of Wight.78. Sawing, \&u., Stone, P. Gay, Paris.-2nd February, 610. Gas Lighting Apparatus, F. A. L. de Gruyter,
Amsterdam.- 5 , 647. Plater Privting Presss, H. Luetke, Berlin.-6th Feebruary, 1883 .
700. RALTAY CHATR, J. Lindley, Walkley.-8th Febru ary, 1883 .
54. LAND
ary, 1883 . W. H. Bailey, London.- 10 th Febru-
. 55. Preparing Cotton Seed, F. S. Fish, U.S.-Com.
from T. Taylor.-10th February, 1883 . as. Textrue Vegerable Fibars, J. Imray, London.12th February, 1883.
77. BREAD. H. H. Lake, London.-A communication
from T. Montérichard. -12 th February, 1883 . from T. Montérichard. - 12 th February, 1883 . London.
820. DREssing TexTLE FABRICs, W. R. Lake, Lond 911. AIR, \&ic., Morooss, G. M. Capell, Northampton.-
19th February, 188s. 1883. Maize Starch, J. M. Harley, Paisley.-2nd
March 1883 . 1437. Ventilating Fans, E. P. Alexander, London.-
Com. from L. G. Fisher, jun.-19th March, 1883. Com. from L. G. Fisher, jun.-1 18 . HLANIED INDIA-RUBBER, A. H. Huth, London 1942. STopprer for
17 the
April, 1883 . 2052. METALLIC Roofing, \&c., R. Hudson, Gildersome.
2088. CARPrils 1888 . April, 1883 .
2142. CUTrisg and Mincing Apparatus,
H. Davidson, Lendon.- 27 th A April, 1883,
2146. WEIGHING MAcHINEs, C. H. Bartlett, Bristol.-
27th April, 1883.
 LLeds. - 20th April, 1883.
2177. Boor PRoTECING PLATEs, J. Borrett, London.-
30th April, 1883.
(Last day for fling opposition, 19th June, 1883. Ko. Kitting Machinery, W. Morgan-Brown, Lon
don.-Com. from H. Martini. -11 th January, 1883 . 366. Brackiets for Gloves, A. Watson, London.- $23 r$ 381. Wiruary, for for
fax.-23rd January, 1883. \&C., G. F. Smeeton, Hali386. HATs, G. Atherton, Stockport.-A communication from G. Yule.-2 2th January, 1883 .
393. PHoTOMETER, A. J. Beer, Canterbury.-24th Janu ary, 1883 .
396. Polpring CorFer Berries, W. Walker, London.-
A communication from Messrs. A. Irmaos.-24th January, 1883,
B99. IMPRMEABLE CoAting for Waterprooring, L. A
Groth, London.-A communication from N. Belle Groth, London-A communication from N. Belle-
froid.-24th January, 1883. Amsterdam. - 25th January, 1883 .
410. SMokING PIPE, R. C. Christian, Dublin.- 25 th January, 1883.
41. Hammers, Firth, Frankfort-on-the-Main.-
A communication from G. Speckhart and H. Wied
 18.25th January, 1883. RALWAY CHARs, W. Hopkins and C. Turner 428. FURNACE BARS, C. J. Chubb, Clifton,- 26 th January, 1883 .
433. AIr Extactivg Apparatus, T. Rowan, London. 437. Tube Scrapers, W. S. Turner, Walworth.-26th January, 1883 .
44. ScRW SWAara Macrines, F. J. Cheesbrough,
Liverpool. -A communication from S. A. Davis and R. Blake.-27th January, 1883 ,
44. SCREW SWEDGNQ MAMFINs, F. J. Cheesbrough
Liverpool. -A communication from S. A. Davis and R. Blake.-27th January, 1883.
454. CIrcurrs, \&c., for ELEorrio Indrators, W. P.
Thompson, Liverpool. - A communication from Thompson, Liverpool.-A communication from R.
Hewett, jun. and C . L. Clarke.
47e Jonuary, 1883 . 29th January, 1883. Skatrs, E. K. Dutton, Manchester.- A communi cation from J. Sieper.- 00 th January, 1883 .
49, Are and GAs Moorors G. W. Weatherhogg, Wands-
worth -30 th 533. KNiTrING MACHINEs, H. B. Barlow, Manchester.-
 Wingtield, Sheffield.-31st January, 1883.
565. MeTaluI Bedsteads, H. Ferrer, Baisall Heath
-1 Ist February, 1883.
 ary, 1883 .
596. PRESEREREGULATORS for GAs, J. Imray, London
-Com. from H. Giroud. $-3 r d$ February, 1883.
 J. C. Cooper.-6th February, 1883 .
77. GRINDING, CoRN, do., H. H. Lake, London.-Com,
from H. Rounds and R. Noye. - 12 th February, 1883 . from H. Rounds and R. Noye. - 12 th February, 1883 .
794. SHEEP SHEARINe MACHIER, W. R. La ke, London.
Com. from C. Carpentier.-13th February, 1883.
 sheer.-16th February, 1883.
92. Formirc CosTINvous PIPEs, C. A. Day, London Bond, R. Brown, R. D. Radeliff, and C. Detrick.-
20th February, 1883. 925. Butron FAsTENINGs, J. Imray, London.-A com
munication from A. McKevit.- 20 th February, 1883.

 1000. ORANK SFAFTs, A. Jack and H. MacColl, Liver pool.-24th February, 1883.
1116. GAs EvarNES, R. Steel and H. W. Whitehead,
Leeds.-1st March, 1883 . 1295. Ignitimg Inflammable Gases, A. R. Molison
Swansea. $-12 t h$ March, 1883 , 1501. Driviva Tran-ocrs by GAs, R. M. Marchant and
T. Wrigley, London.-22nd March, 1883. 1687. RAILWAY Coupurnas, S. Roberts, Tunbridge
Wells.-4th April, 1883.

 Lond Cleaningo Filiters, J. E. Hodgkin and E. Perrett,
Londe April, 1888. .
2087. Membranks, C. D. Abel, London.-A communication from F. Breyer.- $24 t h$ April, 1883 . Marchant, London.-26th April, 1883 , London.-26th
2126. FILTERING WATER, F. H. Atkins, Lond April, 1883 .
2152. ELECTRIC Lasprs, L. G. B. Arrighi, London. $-28 t h$ 2156. Measuring. Instruments, W. E. Ayrton and J.
Perry, London.- $28 t h$ Aril, 1883. Perry, London.-28th April, 1883.
2175. STEAM BoLERS, S. Pitt, Sutton.-A communica-
tion from L. Schutte.- $30 t h$ April, 1883. tion from L. Schutte.-30th April, 1883 .
2544. GAs, S. Pitt, Sutton.-A communication from E J. Jerzmanowski.-22nd May, 1883 .
2545. Dzvirsmry, s. Pitt, Sutton.-A communication from C. M. Richmond. $-222 n$ May, 1883 .
2546. HAMMocks, C. E. Hiester, Harrisburg, U.S.-
22nd May, 1883. 246. Hammocks,
26nd May, 1883.
261. OpERATING G
U.S. - 22nd May, 1883 . don. -25 th May, 1883 .

Patents Sealed.

List of Letters Patent which passed the Great Seal on the
25 th May, 1883.) 5624. Obtaising Elastic Force, J. Graddon, Forest
Hill - 27 th November, 1882. 651. Composition for Whooping Covar, P. F. Vander-
steenstraaten, London. $-28 t h$ November, 1882 . s656. STEAM BoIler, H. Matheson, Barnes.-28th No5657. Heel Paring Machines, F. Cutlan, Leicester.28th November, 1882 .
5662 . Rasringe, \&c., Carrage Windows, E. Clennett,
West Hartlepoi West Hartlepool.-28th November, 1882 .
5669. Mensurisg, \&c., Eleotric CURRENTS, J. Blyth,
 Glasgow,-29th November, 1882 . Wells, London.-29th
5674 G. GLAzING PAPER, \&c., S.
November, 1882 . Nove. Ships of WAR, J. D. Barker, Somerset.-29th November, 1882 . Mone Apparatus, H. T. Davis,
5683. Rkegiving
Newington. $-29 t h$ November 1882 , 5707. WHEEES for PEEAMBULTORS, J, Simpson and S .
T. Fawcett, Leeds. $-30 t h$ November, 1882 . G. Rallway Sleepers, J. C. Bunten and A. Russell, Glasgow,- 1 st December, 1882 .
5749. MANFACURE of CHANI, \&
don ., W. E. Gedge, Lon-don.-2nd December, 1882 . G. W. Bayley, Walsall.576. TReating Substances Containing Animal and
Vegetable Matter, W. C. Clennell, London.-4th
 5805. Wheels for Ratlway Purposes, W. R. Lake, London. -5 th December, 1882 .
S. Lake, London.-6th December, 1882.
867.
ORDNANCE, A. M. Clark, London.- $8 t h$ December, 1882. Purps for Condensisg, T. F. Stenson, Hands-
worth. -11 th December, 1882. 5935. AUvomatic M USical 1 Nsirruments, W. R. Lake,
London. $-12 h$ December, 1882 . 1882. 1090. Leacrives, \&e., F. W. Hemming, London.- 20 th
December, 1882. 15th Janonate of Strontia, D. Urquhart, London.146. YARNS for WEaving FABrics, G. Eaton, Man-
chester.898. Condensing Aparatis in Steam Shipz, J. Tweedy, Walker- - 9 th February, 1883 . Findlay, Lon-
1201. Rope Traction Tramwass, C. F. don.-6th March, 1883 . ton, Manchester.-9th March, 1883. Lehmann, London. - 13 th March, 1883 .
1363. MANFACORE of CEMENT, \&c., J. Imray, London.
(List of Letters

List of Letters Patent which passed the Great Seal on the
$29 t h$ May, 1883.) 5698. Dreing Aniinse CoLours, L. Heppenstall, jun.,
Milnsbridge. -30 th November, 1882 70s. PAPER PULP, \&c., P. Jensen, London.-30th No-
vember, 1882 . 5712. Dredgiva Apparatus, G. E. Vaughan, London. -3 Moth November, 1882. W. C. Horne, old Chariton.-
30th Novivember PAPER, 1882 , 30th November, 1882 .
572 . TuBe STOPERS, D. J. Morgan, Cardiff,-1st De-
cember, 1882 . cember, 1882. Coal, \&c., E. Warre and T. W. Salmon,
5726. WINNING
Eton. $-18 t$ December, 1882 . Eton. 18 December, 1882 .
5731. Aorrovss for PIANoFORTE, T. C. Dauncey, Stroud.
-1st December, 1882 . -1 st December, 1882
1882.
5757. Insulated Electric Conduotors, E. T. Truman,
London.-2nd December, 1882 . London.-2nd December, 1882 .
5759. SMALL FIRE-ARMS, T. Gilbert, London,-2nd De-
cember, 1888 . cember, 1882.
186. . FLUDD GLUE, L. A. Groth, London.- 5 th December,
188. . 1882.
5787. Extracting Oil from Fish, \&c., L. A. Groth,
London. -5 th December, 1832 , London.- - th December, 1832.
788. PrEparivg Extact from Fish, \&c., L. A. Groth, London.-5th December, 1882,
5812. Firters, H. Rawlings, London.-6th December,
1882. 823. Glose HoLDers for Lamps, T. Carpenter, Bir-mingham.-6th December, 1882.
che VENTLIAATING BuIDINEs, T. H. Thompson, Man-
 Frankfort-on-the-Main. Tlith December, 1882.
5940. TRICYOLEs, W . H . Thackerer and J. T. Green,
Nottingham.-13th Decenber S941. SRRFAOCNG MACHINE, C. Pieper, Berlin.-13th
December, 1882 . December, 1882. .
608. OPRN
December, 18so December, 1882. EAE FABRICs, \&c., C. D. Abel, London.
6095. CuTIIN PPLE
$-21 s t$ December, 1882 . C098. SEWING MACHINES, B. J. B. Mills, London.-21s
December, 1882 . 100. Covitivativg Land, D. Greig, Leeds, and G.
Greig, Edinburgh. - 21 st December, 1882 .
110. CUSHIONs for Per ins 6110. Coshions for Pexanent WAx, W. P. Thompson,
Liveool. $218 t$ December, 1888 .
6144. WATER HEAEERS, \&C., I. S. McDougall, Chadder ton. - 23 rd December, 1882 .
6198. Covers of CARDNG Enaines, W. Hurst, Roch-
dale. - 28 th December, 1882. dale. - 28th December, 1882.
70. ORANK SHATI, G. Allibon and T. Turton, Liver
pool. - th January, 1883 . 188. VALVEs and VALV GEAR, J. Aimers and J. Tin
line, Galashiels. 1 12th January, 1883 . 574. TRICYoLEs, A. Burdess, Coventry. -2 nd February,
1883.
1883. ${ }^{\text {SteEring }}$ Gear to VElocipedes, A. Burdess,
Coventry. 2 2nd March, 1883, 1154. Ssoknekless SToves, R. E. Cox, London.-3rd
March, 1883. March, 1883 .
1262. ADJsting Axles to Bearinge J. A. A. Buch
holz, London.- 8 th March, 1883 . holz, London.-8th March, 1883 .
1304. HorsesBoes, H. E. Haddan, London. $-12 t h$
March, 1883.
1331. Mechanism for Converting Motion, S. Pitt,
Sutton. 1 13th March, 1883 .
1338, Buton Hole Ferdina Mechanigms for Skwing Sutton- 13 th March, 1883 .
1338. BuTron Howe Fexing Mechanisms for Skwing
Michises, A. W. L. Reddie, London.-13th March, 1883.
1371. Comarators, S. Z. de Ferranti and V. s.
Szezepanowski, London.-14th March, 1883. Szezepanowski, London.-14th March, 1883 . 16 . March,
1407. TrEATING OREs, T. Bowen, London. 16 . 1407. Treating Ores, T. Bowen, London.-16th March,
1815. Lidying Out Lines Around Curves, A. Haman, 1509. Iron and STEEL, T. Griffiths, Abergavenny.-22nd 1564. Disishergarating Machines, w. R. Lake, London 1618. PNEUMATMC SGeNALS for Railways, E. M. Chase,
U.S. -30 th March, 1883 .

*** Specifications will be forwarded by post from the postage. Sums exceeding 18, must be remitted by
Post-ofice order, made payable at the Post-otice, 5 ,
High Holborn, to Mr. H. Reader Lack, her Majesty' Patent-offi
London.
bton-buildings

ABSTRAOTS OF SPEOIFIOATIONS.

 Feape by ourselve exprealy for Tirs Ravirzz at Spencer, Radcliffe Bridge. - 5 th August, 1882 . $6 d$.
The object is to effect the rotation dwell and revers
of the rotating hooks, and to effect the removal of the of the rotating hooks, and to effect the removal of the
hanks from the hooks. A double internal spur wheel,
with spur segments with spur segments on each side concentric with the
axis, is employed, and the internal and external seg. Writh spur segments on each side concentric with the
axis, is employed, and the internal and external seg.
ments alternately gear with pinions on the hook's ments alternately gear with pinions on the hook
spindes, which are thereby caused to rotate in oppo-
site directions to twist and untwist the hanks. The hooks are caused to dwell after each movement by
means of curved surfaces, which prevent the rotation
of the pinions. The hank is removed from the hooks by fingers attached to a travelling apron.
4539. Manufacture of Iron, W. Clarke, Birming The object is to treat iron while in the puddling its quality, and increase its bulk. For this purpose mixture, consisting of 31 b . Tafna ore, 31 lb . of iron
pyrites, 4 oz. of wood sawdust, and 8 oz, bay or rough
salt, is added during the puddling. salt, is added during the pudding.
4631. Crank for Biovcles, \&c., F. F. Ginarrd,
Primrose Hill,-29th September, 1882 . 6 d. Primrose Hul.-29th consists of an extending lever crank. The
ordinary crank is shortened, and a lever fixed by a bearing to its upper end, while the a uper fixed by a
lever is extended and receives the pedal lever is extended and receives the pedal, The lower
part of the ever is a segment of a circle, which runs
freely in a slot or between rollers, the slot being held freely in a slot or between rollers, the slo
by a projection from the end of the fork.
4841. Ornamental Pile Fabrics, T. F. Firth and F.
Farrand, Heckmondzoike.-20th September, 1882.-
(Not proceeded with. ${ }^{2 d .}$
heated roller, with any desired pattern engraved
ereon, is pressed on to the pile fabric, and the parts thereon, is pressed on to the pile fabric, and the parts
not pressed down are afterwards cut. off. The
depressed parts are then caused to rise again by the 4649. Ornamental Frillinas, C. Jackson, Notting-ham.- 30 the September, 1888 . 8d.
The machinery for producing frillings with scolloped
or other edges. A brass roller is mounted in bearings, and heated by gas, and above it is a presser roller, the two being forced together by set screws, springs, and
nuts. Behind the brass roller is a pair of langed gas-
heated rollers, and in front of it are bearings connected heated rellererd and in front of it are pair of flangenged gas
by a plate sliding in a grooved bed, and carringected by a plate sliding in a grooved bed, and carrying two
double excentric shatts, each of which alternately operates a frame sliding in bearings, and carrying a
pair of blades, each frame being knuckle-butt jointed. The shafts revolve in opposite directions, and beneath
them are guides, each carrying stud or truck them are guides, each carrying a
traversed by a grooved pattern roller.
 September, 1882. -- (Not proceeded with.) $2 d$.
This consists in burning pieces of magnesium in
closed globe filled with oxygen. 4662. Coupling and Uncouplisg Ratiway Car-
RIAGES, \&Co, J. Richardsom and C Gremeond RIAGES, dc., J. Richardson and C. Greenvood, Harro-
gate.-30th September, 1882 .-(Not proceeded voith.) This relates to the use of a pivotted hook with an
inclined surface, which, coming in contact with an eye on the next vehicle, raises the hook until its nose
passes such eye, when the hook drops therein. Side passes such eye, when the hook drops therein.
levers serve to remove the hook for uncoupling. 4666. Looms for Wraving Carpets, Velvers, Plush,
đc., J. B. Alliott, Nottingham. - (A communication
from J. Wade, New York.- (Not proceded 2oith.) $2 d$. from J. Wade, Neio York.- - (Not proceeded doith.) 22 .
This relates, First, to an improved wire
whereby control is obtained over the wires from the whereby control is obtained over the wires from the
point of withdrawing them from the fabric to the
re-insertion into the open shed or wire box; Secondly, re-insertion into the open shed or wire box; Secondly,
to driving looms by friction gearing; Thirdly, to an
improved roller for taking up the woven fabric. 4672. PEas FuEL, G. Wilson, Kent.- 2 nd October, 1882.
-(Not proceeded with.) $2 d$. The peat is dried in an oven, where it is subjected eat charcoal, to which a solution of silicate of soda, alum, glue, or other glutinous body is added, and the
whole formed into spherical balls in a suitable press. 4673. Coupling for Railway Vehioles, R. Stone,
Bristol. $-2 n d$ October, 1882.6 . At one end of the vehicle A is a coupling hook A^{1}
hinged to the draw bar $B 1$ Below the hinge O is a
plate C pivotted to the draw bar $B 1$, and capable of
 end wall of the vehicle A as either to bend against the
underside of, and bring to a horizontal position, the
coupling hook A^{1}, according as the lever E^{1} is moved inwards or outwards. To the vehicle Ber as also to one
end of each vehicle opposite to that at which the coupling hook is carried, is attached a a cosshead or claw D
hinged at D1 to the draw bar ${ }^{2}$. On the suffieiently hinged at DI to the draw bar B^{2}. On the sufficiently
close approach of the vehicle one towards another,
the coupling hook Al, being in the position shown, the outward end ook the crosshead or cosaw D enters the the
recess I formed in the split flap or tappet M hinged to
the recess formed in the split flap or tappet M hinged to
the couling hook A1, and the vehicles remain
uncoupled. To connect the vehicles the lever E is actuapted to cause connect the vehte to raicles the lhe leverer E is
Al to a horizontal position, and on the sufficiently
Al close approach of the vehicles, the crosshead or claw D
is moved upward on the hinge D1 by contact of its
outer end with the hook A, over the end of which the
said outer end of the crosshead D passes, and guided
in the split flapor tappet M, engages with the coupling in the spin To disconneet the vehicles the plate C is
hook A.
moved back to the position shown, and the vehicles moved back to the position shown, and the vehicles
are made to momentarily approach each other, still

more nearly to counteract the tension of the coupling.
The hook A^{\prime} then becomes free from engagement with the crosshead D1, and depends downwards from the
hinge O . The lever E is actuated from the side of the
vehice. 4675. Keyless or STem - windisa Watches, T
Waller, Coventry.-2nd October, 1882.-(Not pro aller, Coventry.-2nd October, 1882. -(Not pro
eded with.) $2 d$.
nall piece of steel is attached inside the case to the winding stem and acts as a lever upon the moving By drawing out the winding button the hands are
moved in either direction, and upon releasing it the button returns to its normal position.
4677. Railway Brakes, J. Bickle, Fitzroy-square.-
2nd October, 1882.-(Not proceeded 2oith.) $2 d$. This relates to a brake block which acts partly on a
portion of the periphery of the wheel and partly upon
the rail 4681. Doubinga or Twisting Yarns, E. Dyson, near
Hudderafield,-2nd October, 1882 .-(Not proceded This relates to improvements in doubling or twist
ing machines for facilitating "piecing up" when the ing machines for facilitating "piecing up" when the
cops are empty, and it consists in the use of two or
more creels in mules and arranging them so that the 4682. Looms for Weaving, J. H. Pickles, Burnley.The object is, First, to put into cloth the same number of picks per inch throughout all its length,
and it consists in the use of mechanism for causin all the weft threads to be beaten up equally by the
slay, by causing the cloth to slacken when the loom is stopped. This also relates to the taking-up mechanism,
and to means for preventing the oil for lubricating the 4685. Lathes for Turnisa Shafts, W. Allan
Sunderland.- 2 nd
October, $1882 .-$ (Not proceeded Two headstock desired positions on a bed, and betwe be locked in any the mechanism to revolve the shaft to be turned. Two
or more tool slides are mounted upon the bed or more tool slides are mounted upon the bed, so tha
both ends of the shaft can be operated upon simultaneously.
4697 . M Mking Gas, A. Wilson, Staffordshire.-3rd
October, 1882, 10 , This relates to gas producors in which a central
tuvere is used in conjunction with a solid hearth, and wivere whis used the inventor combines mechanism for
iutomatically removing ashes and other incombustibr
automation residue from the apparatus. According to one arrange-
ment scews are arranged above the hearth, which has ment screws are arranged above the hearth, which has
an extension with an inclined side, so as to form a
chamber which is charged with water, in which the screws are submerged. Into the water a plate dips form a trap, so that while the ashes are forced up an over the inclined side of the chamber, escape of gas or
vapour from the producer is prevented by the water.
To more effectual diffuse blast of steam and air the 4698. Trioyoles, H. C. Bull, Nero York.-3rd Octo ber, $1882.10 d$. and seat-supporting device, and provided with differ
ential driving gear, consisting of reducing gear and
disc connecting clutch. Also to an efficient brake disc connecting clutch. Also to an efficient brake
devilec consisting of two discs, and an efficient steering
device. 4700. Stoves, Fireplaces, And Kitchen Ranges, \mathcal{S}
Sturm, Cologne.-3rd October, 1882 .-(Not proceeded
with.) $2 d$. This consists in the use of gratings in the flues of
stoves, to., in place of the usual dampers, the objoct
being to prevent loss of heat through excessive draught.

O2. Bedsteads, Spring Mattresses, Bolsters,
ANd
Pilows, G. Lowry, Salford,--3rd October, 1882. - (Not proceeded with.) $2 d$.
This consists in introducing suitable springs between This consists in introducing suitable springs between 4704. Metallic Framess for Furniture, \&c., B. J.
La Mothe, M.D., Nero York.- 3 3rd October, 1882.' 6 . La, Mothe, M.D., New York.--3rd October, 1882 . Gd
The frames are made of tubes and bars of metal jointed at the places where they fold. One feature
relates to a hinge formed with straps, one of which passes into the tubular rail, and is rivetted. The rail rests upon the leg when the parts are open. A second
feature is a s sping bottom for beds, and which is also 4709. Conoentrating Sulphuric Acid, A. J. Boult,
London.-3rd October, 1882.- (A communication vith.) 2d. Gridley, Brooklyn, U.S.)-(Not proceeded trated in cast iron vessels in such a manner that the iron is not acted upon by the acid. The invention is
based upon the fact that sulphuric acid of 66 deg Beaumé at 60 deg. Fah, has little or no action on cast 4710. Railway Wagon or Carriage Coupling, W.
Johnson, Liverpool. $-3 r d$ October, 1882.-(Not proceeded with.) $2 d$.
The coupling has or more joints with a stop
reventing the links rotating beyond 180 deg. The carriages are coupled by throwing back one coupling,
so that it stands up against the wagon, and on coming in contact with another wagon it will be caused to
fall on to and engage with its coupling. A bar over
the buffer serves to knock up the link for uncoupling. 4711. TricroLess, W. Briscall, Liverpool. - 3rd October,
1882. - (Not proceded woith.)
2d. This relates to velocipedes with one large wheel in
front and the other wheels in the rear, the object being to enable them to be easily ridden round corners, and to
so form the same that the equilibrium of the rider will so form the same that the equilibrium of the rider wil
not be disturbed in passing over uneven ground. The
axie of the hind wheels is jointed to the backbone, so

$T_{\text {Thiti }}^{6 \text { relates }}$ to ondleses chanins of bucketes, and con.
 This teg is is ototed vortioully when its ahatt paseed
 Coanterverphtst seaured to rop
balanco the leg in any poostiton
4715. Sroves axv Firizplaces, J. Bateman, Hollorn. Mixeed gases ond air if is admitted to a hamber in the

 shuttio and the pither ruhich hatatatese the same, and it consiststin the tue of f ,

 consists in the we of of clampe, by means of which tho
farbic sis rimpeod on wires. 472. Doon Loors on Lirron Cigexs, W. 4 Barlow,

houses apparatus is mar use in bewers, the objech sewers connecting being to allow the
hatter to enter the latter, but matter to enter the latter, bute prevent it re-entering the branch sewers. A hinged lid or door works over
one end of a box which is fitted on to the end of the
branch sewer, such lid being balanced by a suitable branch
breight.
4730. Chiming Clocks, W. R. Lake, London.-4th
October, $1882 .-(A$ communication from J. Lindauer,
Nez Yorke)

Nevo York) $6 d$. communication from J . Lindauer,
his consists party in combining the chimes and hour-striking mechayism with one and the same main
pring and train of wheels, thereby constructing the
clock movement with two instead of three main ciock movement with two inste.
4733. Process for the Integal Extraction of
H. Beck, London. - 4th October, 1882., (A Communica-
tion from C. Violette and A. Buisine, Lille) The fatty bodies are placed in a digester with a. .
buit-
ble proportion of ammonia, and heated directly by a able proportion of ammonia, and heated directly by a
furnace flame so as to raise the temperature progrees-
sively and maintain the pressure during several hours between 5 and 7 atmospheres. The ammoniacal saponification being effected, the whole is forced into
a boiler heated by a superheated steam coil and by the
waste heat from the furnace, such boiler communicating waste heat from the furnace, such boiler communicating
by a neck with a coil of a condensing column. The
dissoclation of the soon as it arrives in the boiler, and is completed by
raising the temperature to 180 der raising the trmperature to 180 deg. C. The ammonia.
cal liquid from the condensing coil can be again used. 4734. Furnaces por Consemina Smoke, F. Brovon,
Luton - 5 th 0 october, 1882. $4 d$. This relates to improvements on patent No. 2635, A.D.
1883, and consists in shaping the frie bars of the fur-
nace so that they have an incline upwards end, and are made unusually deep. The furnace is
provided with a hanging bridge,

 teeond obatung of tho or
4737. Fountann Pex-Holders, F. F. Benvenuti,
Sioansea.- 5 Oth October, 1882. 4d. In order to admit air to the upper part of the ink-
holder of fountain pen-holders, a hole is formed near holder of fountain pen-holders, a hole is formed near
the end of the case, and over it fits a valve secured to
ne end of a lever pivotted near the middle of its one end of a lever pivotted near the viddle of its
length, and its other end terminating near the lower
end of the case, so that when the pen is in use the end of the case, so that when the pen is in use the
fingers will rest on the lover, and so force the valve from its seat over the hole, and thereby allow air
to enter. A spring tends to keep the valve to its seat. 4739. VENTILATORS, A. Gendebien, Brussels.- 5 bth Octo-
ber, 1882.-(Not proceded vith.)
2d. This relates, First, to the arrangement of outlets
onsisting in a reciving surface and an outlet consisting in a receiving surface and an outlet;
Secondly, to a particular form of the outlet or gills,
which are tangential to the air inlet galleries ; and which are tangential to the air inlet galleries, and
Thirdly, to a ppecial disposition of twin ventilators
suppressing the axis, the arms, and the inside pallets, 4741. Bicycles AND Trioycless, H. Sutclifie, Halifax.
-5th October, 1882.- (Not proceeded 2oith.)
$2 d$. This relates to the construction of an automatic
varying crank in which the treadle is connected to a clip acting on a s spring on the crank arm, so as to com-
press the same when pressure is applied to the treadle press the same when pressure is applied to the treadle,
and thus lengthen the crank during the propelling part of its sweep.
4742. Hows, IV. Edwards, Wolverhampton.-5th October, 1882. 6d.
The blade and The blade and eye are formed without any welding
rivetting from one piece of sheet metal, and there is ar flivetting from ore phece of sheet metal, and there
down tho blade rib runing from the eye partly
down the 4744. Converti
4744. Convertina Cast Iron into Sterl or Sterly
Iron, J. Bond and H. J. Whiteley, near Darlington.
-5th October, 1882. 4d. A is an oven or furnace which may be constructed in bers B with covers C thereon. Openings D and flues E for distributing the flames and heated gases are
arranged as most convenient. The castings to be con-

verted into steel or steely iron are placed into the
tubes, after which the upper ends are sealed by cover C. The fire is then ignited, the heat of which is regu-
lated, so as to keep the tubes at a suitable temperature for a certain length of time, by which means the
castings are converted into steel or steely iron. 4745. Grain Driers, A. M. Clark, London.- -5 th
October, $1882,-(A$ communication from H, G. October, 1882,-(A communication from H., G. B.
and C. . Cutler and B. T. Thompson, Mass., U.S.)
6d. This relates to grain drier in which the grain is
passed through a revolving cylinder heated by steam passed through a revolving cylinder heated by steam
pipes. The cylinder is of wood, and is inclined, its
lower head being double and having a central partition lower head being double and having a central partition
and radial partition plates to form four chambers on each side of the plate. The partition plate receives
the ends of pipes extending through the cylinder, and
the back plate recives the back plate receives the ends of pipes surrounding
the former and connected to the upper head. The
steam enters by the first the former and connected to the upper head. The
steam enters by the first pipe, and returns with the
water of condensation by the second pipe.
 This refers to Niépce'sprocess of engraving, in which
a metallic plate is coated with a thin film of bitumen and it consists in the use of a fatty or waxy image
which is transferred to the surface of the bitumenised metal so as to protect the film of bitumen from light,
and aliso soften such fim, so that the unaltered parts
can be removed with fre 4748
$1082 .-(A$ communication from Mermany. - Eth October,
many.) This consists in fitting tops with metal plates pro 4750. Buard arranged so as to play a tune.
 ceeded vith.) 2 d.
This conisiss in making the busts and stands in two parts, so that when separated the body can be ereversed
and introduced into the stand, and thereby occupy less space.
4751.
51. Obtaining Tanning Material from the
asphodel Plant, W. R. Lake, London.-6ith octo-
Oer ber, 1882. -(A communication from A. Badoil and H The asphodel is washed to free it from earth and
then grated or crushed, and the pulp so obtained pressed. The juice is subjected to a a complete fer-
mentation to extract the alcohol, and the pressed pulp mentation to extract the alcohol, and the pressed pulp
is dried and reduced to powder, when it can be used
for leather-dressing purposes is dried and reduced to poww
for leather-dressing purposes.
4757. Mixing Water with Gas or Steam, B. de Pass,
London. -6 th October, $1882 .-(A$ communication from E. Körting, Germany.)
The object is to effect the of the mixture of water with gas porsible intimacy consists in imparting a revolving motion to the jet of
water, causing the a contrifugal force resulting there-
from to tear it into drops, and in using an almost from to tear it into drops, and in using an almose
cylindriacal mixing nozzle, the sides of which are
perforated with pergorated wid a number of holes drilled at an acute
ange to the diretion of the flow of the jet of water.
The or steam enters the nozzle through these holes, and in the form of fine jets strikes the water
jet. The revolving motion of the wrer
duce duced by slanting surfaces inserted in the water nozzle
and in the water pipe. and in the water pipe.
4758 . Obtaining Amend
 The object is to fix the ammonia in gases from blast means of an acid in the form of a gas or vapour, and
subsequently thus ormed. It is preferred to use sulphuric acid fo
this purpose. 4759. Measuring Water, \&c., W. and C. W. B. A cylinder with phiston has inlet, ports at each end,
to which two pipes are connected, and communicate
at top and bottom with the inlet and outlet pipe, and
so arranged as to contain four seatings for two equi-
librium valves, one such in each pipe. The valves move by a falling weight on an arm arranged to be
mipped
4780. Hoists for Mills, Warehouses, de. S. Jones, This consists. - in the use (in a single hoist) of one
(in adie rope for raising, lowering, and braking purposes, and
for a double hoist two ropes only are required. The throwing of the winding mechanism into gear also tightens the driving belt, and thus enables it to have
a firmer grip. The levers of the brake and hoisting
gear gear are connected by pins and slots, so that the action
of pulling the gear in motion alos throws the brake
out of gear. The gear is put into action by excentric or cam motion, whereby the driving wheel is thrown orward against tho maing forward tightens the belt and, ensures a
firmer grip. The moment the actuating handle or frmer grip. The moment the actuating handle or
rope is released, the gear automatically throws itself
put of out of gear, and brings the brake into action. The
fulcrum of the brake is adjustable so that the brake can be altered and wear taken up.
4768. Double-barrel Small-Arms, D. Bentley and
W. Baker, jun., near Bir-mingham.-6th October. The object is to disocharge both barrels by one trigger, and it consists in giving motion to a slide by
the tumbler of the lock, so that the trigger is put in connection with the sear of the right-hand lock when
the right-hand lock is at full cook, and with the sear
of the lefther of the left-hand lock when the right and wind lock is not not
at full cock. The invention further relates to improve at
ments in in drop-down double barrel guns having internal hammers, which are cooked by the raising of
the breech ends of the barrels for loading, and it con sists in suitable means wheroby the shutting and cocked, communicates the required tension to the
main spring for the discharge of the gun, main spring for the discharge of the gun.
4769. Treatment of Carbonaceous Minerals for
Oil, Gas, Ammonia, \&c., A. Neilson and A. Cun-

similar carbonaceous materials for obtaining oil, gas
ammonia, and other usedul ammonia, and other useful products by fusing the
residues after the volatile matters have been graduall driven off. The apparatus employed consists of upper
vertical retorts combined with lower chambers vertical retorts combined with lower chambers or
cupolas, and with blast tuyeres and accessory parts for
fusing and withdrawing the earthy metallic residues. 4770. Apparatus for Cooling and Refrigerating
Liquids, c. Pieper, Berlin. -7 th October, 1882. - (A
 A.D. 1878, and No. 2010, A.D. 1880, in which ice or cold
is produced by evaporating water under pressure very
greatly reduced by the use of a compound or duplicate exhausting pump in combination with appliances for
absorbing the vapour by means of sulphuric actd, and for reconcentrating the acid after having become
diluted. The apparatus for reconcentrating the acid
Tole consists of a cylindrical vessel with a conical cover al
ined with lead having at the lower coils of pipe. The pressure in the vessel acton on both
sides of the lead lining. Each coil is conneeted to a
stes steam pipe, and to a condensed water pipe. From the
top of the vessel a pipe leads to an annular casing
within which is a suction pump, such casing acting as within which is a suction pump, wuch casing a acting as
a condenser, for which purpose a water jet is provided.
Under the vessel is a receptacle to receive the concen-
tred rated aeid.
4774. Bolikr por Gereratina Steam, H. C. Bull,
Brooklyn, V.S. $6 d$. The boiler consists of three cylindrical vessels, the
central one filled with a nest of tubes extending
俍 between a top and bottom plate, and being divided
into two portions, the under one being water filled and a steam generator, and the upper one being steam
filled and a superheater. This vessel is placee over a gas combustion chamber, and is surmounted by an
uptake communicating with the chimney. The vessels on either side of the central one are similar, each
having a dome top and an interior conical shell bottom extending upwards and opening out through the side,
where a charging door is provided, branches also being where a charging door is provided, branches also being provided leading to the gas combustion chamber of
central vessel. Each conical shell is set over a closed
furnace provided with fire bars and a cleaning door. frrace provided with fire bars and a cleaning door
The side vessels contain water, and are connected at a branch from top of central vesse.
4779. Obtainina Synorronous Movements, \boldsymbol{F}. Wolt ${ }^{\text {Copen }}$ Trom P. la Cour, Denmark.) 6d. fork permanently vibrating or oscillating buch as au autunation
olectric intermittent action, and thereby transmittin an intermittent or undulating current, and of a wheel
subject to oscillation or vibration under the influence of the said current.
4788. Machines for Treating Hides, Skins, or
Leather, W. . Lake, London.-7th october, 1882 . (A com munication from C. Holmes, Boston, U.S.) A head is arranged to be reciprocated by a crank and connecting rod, which is extended and its motion
utilised to alternately lift and depress the tools, the
carriers of which are hinged to the head and connected carriers of which are hinged to the head and connected
to rods passing through the connecting rod, and pro
vided with stops nately brought as it oscillates, thereby lifting the
tools. Springs hold the tools for their work. The tools may also be lifted clear of the work whe
desired. 4908. Filling and Corking or Stoppering Bottles, This relates to improvements on the "Macdonel bottling machine," in which a stationary and rotary
portion are so arranged in relation to each other that as the latter revolves, cams are caused to actuate th the bottles automatioally. The stationary part carries the movabie stand for the bottles, a mouthpiece
through which the liquid and cork are introduced,
and which carries the valves to regulate the admissio of liquid and egress of air, and a movable plunger t
force the cork into the bottle, and also force the
or autom
bottles.

SELEOTED AMERIOAN PATENTS

70 276,781. Ixcidesce Window, Friedrich Bredehorst,
Bremen, Gernuany-Filed May 24 th [276761]

diagonally to each other, and having their deflecting
faces upward. 276,781. Wind Gavoe for Tarashing and Clean-
ina Machines, Joseph B. Cutry, Laverence, Kans.Filed December 21st, 1882.
Claim, -The blast-regulating attachment for fan
blowers or thrashers, which consists essentially of the
governor $g h i k c l$, pivotted levers e, boards b, valves governor g i k c , pivotted levers e, boards , valves
d, pivotted or hung to operate in the wind passages of
the blower, said valves being connected directly to

the said levers, and the latter being connected
directly to the sliding sleeve of the governor, bevelled gear wheels m, pulley o, and belt n, adapted to drive
the blower, essentially as shown and described. 277,055. Thrashing Machine, Solomon E. Oviatt,
Willoughby, Ohio-Filed May 1st, 1882. Claim.- (1) In a thrashing machine in in combination
with the carrier G, the supplementary carrier N1 with the carrier G, the supplementary carrier $N 1$,
inclined grain floor K immediately below said
 substantially as described, and for the purpose
specified. (2) In a machine for thrashing grain, the

combination of the carrier G , supplementary carrier N 1 , inclined grain floor and sieves swept by said supple-
mentary carrier, and extension tail-board and siove,
constructed and arranged to constructed and arranged to operate in
described, and for the purpose specified.

CONTENTS.
The Enaineer, June 1st, 1883.
ation of the Rhone at page

Altway Maters and memoranda
Misgellanea

mind (Illustrated.)
English and French Navies.
The Irish Mail Contract
Problem of Flight
The Strencti of Shear
Lege
Electric Lighting $\underset{\text { Double } v \text {. Triple Expansion Engines }}{\square}$
Wiarders and Tires
Wherterind iding Machinies
Hydaulic Rams for Res
Hydradic Rams for Raising Sëa-watez

Ellectric Lighing on Board the Aurani
The North-Eabtgrn Coast Line
The Rhondda and Swanse Bay Baiuway
Literature-
The Explosives Act
The Electric Light.

THE IRON, COAL, AND GENERAL TRADES OF BIR
MINGHMM, WOLVERHMPTON,
Notes from Lancashire
Notes from Shepeiels
Notes from the North of Engaland

 (1llustrated.)
PARAGRAPES
Large Injectors ${ }^{\text {Provisional Orders for Elecric L̈ighting }}$ "̈
The In
The Institution of Civill Engineers
Chesterfield and Derbyshire Institute of Mining Civil, and Mechanical Engineer
The Patents for Inventions Bill
About one-third of the ozokerite that comes
About one-third of the ozokerite that comes thirds into ceresine.
South Kensington Muserum.-Visitors during
the week ending May 26th. Tuesday, and Saturday tree from $10 \mathrm{a} . \mathrm{m}$. to 10 p.m., Museum, 13,861 ; mercantile marine, Indian section, and other collections, 4497. On
Wednesday, Thursday, and Friday, admission 6d., from 10 a.m. to 6 p.m., Museum, 2030; mercantile marine, Indian section, and other oollections, 1257. Total, 21,645 . Average of corre-
sponding week in former years, 16.633 . Total sponding week in former years, 16.633. Total
from the opening of the Museum, $22,055,937$,

