MITTHEILUNGEN

AUS DEM

MECHANISCH-TECHNISCHEN LABORATORIUM

DER

K. TECHNISCHEN HOCHSCHULE

MÜNCHEN

IN

VON

J. BAUSCHINGER

O. PROFESSOR DER TECHNISCHEN MECHANIK UND GRAPHISCHEN STATIK.

MÜNCHEN

THEODORACKERMANN KONIGLICHER HOF-BUCHHANDLER 1887.

Alluere empremenance a

- Förderreuther, Fr., Beschreibung der elektrischen Läutwerke auf den k. bayer. Staatsbahnlinien. Mit 1 lithogr. Tatel. gr. 8°. Preis 80 Pf. Frauenholz, W., Bau-Konstruktions-Lehre für In-scanienre Als Leitfaden zu seinen Vorträgen be-
- genieure. Als Leitfaden zu seinen Vorträgen be-arbeitet. Autographirt. 4º. I. Bd. : Steinkonstruktionen, 1875; II. Bd. : Holzkonstruktionen, 1876. Preis à M. 10.
- Lang, C., Ueder natürliche Ventilation und die Porosität von Baumaterialien. Mit I lithogr.
- konzentrierter Verkehrslast. gr. 8°. Mit 22 Holz-schnitten, 2 Tab. n. 2 lith. Taf. 1876. Preis M. I. 80 Pf. Asimont, G., Die Berechnung des Tragebalkens mit
- schnitten, Z'lab, u. Zhuh, Tai. 18/0. Freis M. I. 80 Fr.
 Bauer, Georg, Regeln für den Bau der Durchlässe, gr. 8°.
 1871. Preis 40 Pf.
 den Bau der Durchlässe." Mit 7 in den Text geden Bau der Durchlässe." Mit 7 in den Text gedruckten Figuren. gr. 8°. 1879. Preis 40 Pf.
 N. Bauernfeind, C. M., Ueber die Organisation der
 Studien und Prüfungen an den deutschen Bau. und
 Ingenieur-Schulen, gr. 8°. 1876. Preis 60 Pf.
 druckten kanien. gr. 8°. 1876. Preis 60 Pf.
- Strassenbau. Mit Mustrationen im Text. Auto-graphirt. 4º. 1875. Halbleinenband. Preis M. 9.---

J.X.47/1887

MITTHEILUNGEN

AUS DEM

MECHANISCH-TECHNISCHEN LABORATORIUM

DER

K. TECHNISCHEN HOCHSCHULE

IN

MÜNCHEN

VON

J. BAUSCHINGER

O. PROFESSOR DER TECHNISCHEN MECHANIK UND GRAPHISCHEN STATIK.

FÜNFZEHNTES HEFT, ENTHALTEND:

MITTHEILUNG XVII: ÜBER DAS VERHALTEN GUSSEISERNER UND SCHMIEDEISERNER SÄULEN IM FEUER UND BEI RASCHER ABKÜHLUNG. (2. VERSUCHSREIHE.) MIT 2 BLÄTTERN ABBILDUNGEN. MITTHEILUNG XVIII: ZERKNICKUNGSVERSUCHE. (1. REIHE.)

MIT 43 GRÖSSEREN TABELLEN UND 2 BLÄTTERN ABBILDUNGEN.

MÜNCHEN THEODORACKERMANN KÖNIGLICHER HOF-BUCHHÄNDLER 1887.

MACHU NAMATANI

1

1001 (2p.X.)

XVII.

Ueber das Verhalten gusseiserner und schmiedeiserner Säulen im Feuer und bei rascher Abkühlung.

(2. Versuchsreihe).

Gegen meine ersten Versuche über das Verhalten gusseiserner und schmiedeiserner Säulen im Feuer und bei rascher Abkühlung*) sind, soviel mir bekannt geworden ist, zwei Einwürfe erhoben worden. Der eine von Herrn Möller in seinem Vortrage am 21. October 1885 im Architekten- und Ingenieur-Verein zu Hamburg**), dahin gehend, dass ich Gusseisen und Schmiedeisen nicht mit demselben Maassstab gemessen, dass das Schmiedeisen bei meinen Versuchen zu hohe Kantenbeanspruchungen erhalten habe. — Ich habe beide Arten von Säulen unter derjenigen, natürlich für den kalten Zustand bemessenen, zulässigen Belastung geprüft, die sich aus der Formel

$$P = \gamma \beta_0 F \frac{1}{1 + \varkappa \frac{Fl^2}{\Theta}}$$

ergibt, welche, wenigstens bei uns in Deutschland, bisher allgemein der Berechnung der Dimensionen von Säulen, Stützen etc. zu Grunde gelegt wird. Für den Sicherheits-Coöfficienten γ habe ich bei beiden Materialien den gleichen Werth, ¹/₅, genommen (S. 4), sie also mit dem gleichen Maassstab gemessen. Die Coöfficienten β_0 und \varkappa sind nach der Natur der Materialien verschieden. Für $\beta_0 = 7000 at$ bei Gusseisen habe ich in meiner Abhandlung: "Versuche über die Elasticität und Festigkeit verschiedener Materialien"***) direkte Versuche zu Grunde gelegt; es wird dieser Werth auch kaum für zu niedrig gehalten werden. Bei

Bauschinger, Mittheilungen, XV.

Schmiedeisen habe ich $\beta_0 = 4000 \ at$, also $\gamma \beta_0 = 800 \ at$ gesetzt; Gerber nimmt dafür 1000 at an, also noch mehr als ich; dafür setzt Gerber bei Schmiedeisen $\varkappa = 0,0001$ während ich nur 0,00009, nach Laissle und Schübler, angenommen habe; trotzdem berechnet sich die zulässige Belastung schmiedeiserner Stützen nach Gerber höher als nach meinen Annahmen, bei den Säulen Nr. 8 (3. Versuch) und Nr. 7 (6. Versuch) auf 58,5 bezw. 54,8 statt 50 und 45 t, mit denen ich diese Säulen belastete. Letztere Zahlen ergeben unter Berücksichtigung der übrigens nur sehr geringen Biegungen, welche die Säulen in kaltem Zustande erlitten, 541 bezw. 477 at Maximalspannung, berechnet aus der Formel

$$\sigma_{mx} \!=\! \frac{P}{F} \Big(1 + \frac{f}{k} \Big) \!\!, \label{eq:smaller}$$

unter f den Biegungspfeil und unter k die Kernweite auf der entgegengesetzten (convexen) Seite verstanden. Diese Maximalspannungen reichen also noch nicht einmal bis zur Hälfte der Elasticitätsgrenze. Wenn aber freilich dann in Folge der einseitigen Erwärmung und der dadurch hervorgerufenen Durchbiegung bis 138 bezw. 110 mm (S. 8 und 11) jene Maximal- oder Kantenspannungen bis zu 2560 bezw. 2845 at anwachsen, dann würde auch bei kaltem Material die vollständige Durchbiegung erfolgen müssen, wie viel mehr also bei warmem, wenn auch auf der oberen (concaven) Seite die Temperatur der Rothgluht bei weitem noch nicht erreicht war.

Für die Gusseisensäulen habe ich, entsprechend den von mir angestellten Versuchen, $\varkappa = 0,00060$ gesetzt, anstatt, wie Laissle und Schübler angeben, 0,00025 und bin

^{*)} S. "Mittheilungen" Heft XII, auf welches ich mich hier immer beziehe, wenn ich blos eine Seitenzahl citire.

^{**)} Ich kenne diesen Vortrag nur aus dem Referat in Nr. 90
(S. 449 und 450) des "Wochenblattes für Baukunde" Jahrgang 1885.
***) "Civilingenieur" Bd. XXVIII. S. 561.

dadurch allerdings auf viel niedrigere zulässige Belastungen gekommen, als früher berechnet wurden. Aber die Erfahrung zeigt, dass bei Gusseisensäulen, welche liegend gegossen werden, wie dies bis jetzt immer noch fast ausschliesslich geschieht, auf eine centrische Lage der Höhlung fast niemals mit Sicherheit gerechnet werden darf, und nur für eine solche habe ich jenen niedrigeren Werth für z bestätigt gefunden. Bei den von mir auf ihr Verhalten im Feuer etc. untersuchten Gusseisen-Säulen, die grösstentheils ausgeschossene Exemplare waren, lag die Höhlung meistens sehr excentrisch,*) wie sich aus der, bei jeder angegebenen oft sehr ungleichen Wandstärke auf gegenüberliegenden Seiten ergibt, und desshalb durfte ich mit z gewiss nicht weiter heruntergehen, als ich unter gleichen Umständen früher gefunden hatte, und würde dringend rathen, diess für liegend gegossene Säulen auch in der Praxis zukünftig zu befolgen.

Aber die bisher in Bauten aufgestellten Gusseisensäulen sind, wenn überhaupt, mit dem kleinen Coëfficienten z berechnet und desshalb viel höher belastet, als die bei meinen Versuchen verwendeten. Daher hielt ich es für dringend geboten, neue Versuche mit solch' stärker belasteten Säulen anzustellen, die dann aber auch natürlich nicht dem Ausschusse entnommen werden durften, sondern, zwar liegend, aber sorgfältigst gegossen werden sollten. Herr Kustermann liess mir auf meine Bitte hin bereitwilligst zwei solche Säulen giessen, von denen die eine, grössere, Nr. 26 (Fig. 1 auf Blatt I), allerdings ziemlich genau centrisch war (2,66 cm Wandstärke an der beim Giessen unten liegenden, 2,90 cm an der oberen Seite), während die andere, Nr. 27 (Fig. 3 auf Blatt I), doch wieder ziemlich excentrisch ausfiel (2,20 und 2,86 cm

*) Diess habe ich gemeint, wenn ich auf S. 4 sagte, dass bei gusseisernen Säulen der Excentricität Rechnung getragen werden müsse. Centrisch eingespannt, nach ihren äusseren Dimensionen, wurden die Guss- und Schmiedeisensäulen mit gleicher Sorgfalt. Dabei ist alsdann bei Schmiedeisensäulen auf eine centrische Lage der Höhlung, d. h. auf eine, an je zwei gegenüberliegenden Stellen gleiche Wandstärke fast immer, bei Gusseisensäulen aber, die liegend gegossen sind, niemals mit Sicherheit zu rechnen. Desshalb und weil ich selber Versuche mit schmiedeisernen Stützen bis dahin noch nicht angestellt hatte, musste ich den von Laissle und Schübler berechneten und in alle gebräuchlichen Handbücher übergegangenen Werth für $\varkappa = 0,00009$ annehmen, selbst "geschafft" habe ich denselben nicht. Wenn überhaupt mit den Worten des schon citirten Referates (Wochenblatt 1885 S. 450): "Bei dem Schmiedeisen setzte man gute Bearbeitung und Centrirung der Last voraus und schaffte einen sehr kleinen Coëfficienten K" gesagt werden wollte, dass ich von vornherein darauf ausgegangen wäre, für Gusseisen möglichst günstige Resultate zu erzielen, so muss ich diese Ansicht entschieden zurückweisen. Ich habe mir bei dieser, wie bei allen meinen Arbeiten strengste Objektivität zur ersten Pflicht gemacht, und gerade, weil Herr Kustermann mir dies zutraute, ist er an mich gekommen. Denn auch ihm war es nur um Aufklärung der Sache zu thun. Sein grosses Geschäft erstreckt sich ebensowohl über Schmiedeisen als über Gusseisen. Wandstärke auf der unteren bezw. oberen Seite). Trotzdem wurde bei der Berechnung der zulässigen Belastung bei beiden Säulen der kleinere Werth von z, nämlich 0,00025, angenommen.

Der zweite Einwurf gegen meine früheren Versuche wurde, allerdings nur mir persönlich gegenüber und mündlich, von meinem verehrten Freunde, Herrn Direktor Gerber, gemacht. Er ist dahin gerichtet, dass die von mir geprüften beiden schmiedeisernen Säulen Nr. 7 und 8 (Fig. 3 und Fig. 9 auf Blatt II des XII. Heftes meiner "Mittheilungen"), welche aus Façoneisen zusammengesetzt waren, schlecht construirt, nämlich zu wenig durch Nieten (hier Schraubenbolzen) verbunden und zu mangelhaft oder, besser gesagt, gar nicht seitlich versteift gewesen seien. Dieser Vorwurf scheint durch den Umstand, dass bei beiden Säulen, nachdem die Durchbiegung eine, allerdings schon sehr bedeutende Grösse erhalten hatte, zunächst Schraubenbolzen abgescheert wurden und darauf erst die vollständige Durchbiegung unter Herabfallen des Hebels der Wage erfolgte, vollkommen begründet zu sein, während der 12. Versuch mit dem geschweissten Schmiedeisenrohr Nr. 10, das schon nach so kurzer Zeit zusammengebogen wurde, dagegen spricht. Doch war allerdings die Wandstärke dieses Rohres nur sehr klein, so dass es auf der dem Feuer zugekehrten Seite rasch durch die ganze Wanddicke hindurch bis zum Glühen erwärmt und dadurch so wenig tragfähig gemacht wurde. Die Entscheidung hierüber konnte natürlich wieder nur durch Versuche gewonnen werden, und ich ergriff daher mit Freuden das Anerbieten Gerber's, mir zur Vornahme solcher' schmiedeiserne Säulen, die gut construirt und namentlich gut seitlich versteift waren, in der Werkstätte der früheren süddeutschen Brückenbau-Aktiengesellschaft (jetzt der Maschinenbau-Aktiengesellschaft Nürnberg) zu Gustavsburg herstellen zu lassen. Ich erhielt zunächst vier solcher Säulen, Nr. 28^{a v. b} und Nr. 29^{a u. b}, je zwei von gleicher Gestalt und Grösse (Fig. 5 auf Blatt I und Fig. 1 auf Blatt II), ähnlich denjenigen, wie sie in der genannten Werkstätte für die neuen Lagerhäuser in Hamburg angefertigt werden, und dann noch eine fünfte, Nr. 30 (Fig. 4 auf Blatt II). Sie bildeten mit den oben genannten beiden Gusseisensäulen das Material für die neue Versuchsreihe.

Dieselbe wurde genau in derselben Weise und unter Benützung der gleichen Hülfsmittel, Messapparate etc. durchgeführt wie die erste. Nur der beim 19. bis 27. Versuch verwendete Rauchfang blieb wieder weg, um die Vorgänge während der Versuche besser übersehen zu können. Die Messapparate befanden sich auf der linken Seite der Maschine, auch der Ständer mit dem Ende C (Fig. 6 auf Blatt I des XII. Heftes der "Mittheilungen"), so dass die rechte Seite ganz frei und die das Feuer bedienenden und die Temperaturmessungen, sowie später das Löschen besorgenden Personen ganz ungehindert waren.

Der bei den früheren Versuchen zu Grunde gegangene eine der beiden Sandsteine, welche zwischen den Enden der Säulen und den, in Kugelgelenken beweglichen Druckplatten liegen, wurde durch einen neuen ersetzt, der nun, gleichwie der andere, während der neuen Versuche in Gebrauch blieb.

Die Druckplatten wurden nur anfangs, bei einer kleineren Belastung von 10 oder 20 Tonnen beweglich gelassen, damit sich die Probestücke und die vor ihnen liegenden Steine gehörig einrichten konnten, dann wurden die hinter den Platten befindlichen Stellschrauben angezogen und dadurch jene festgestellt; sie blieben so, bis die ganze, der Säule zukommende Belastung aufgebracht war und weiter während des ganzen Verlaufs des Versuches. Da auf eine solche Einspannung der Säulen in der Praxis wohl immer gerechnet werden darf und die geringere Zahl der zu Gebote stehenden Versuchsstücke Modificationen in der Einspannungsweise nicht erlaubte, so wurde sie durch alle Versuche hindurch beibehalten.

Jede der Säulen wurde nach ihren äusseren Dimensionen so sorgfältig als möglich centrisch eingespannt und diese Einspannung noch corrigirt, wenn sich bei Aufbringung einer kleineren oder grösseren Belastung eine grössere Ausbiegung zeigte. Ein Einschlagen der Säulen durch ihr Eigengewicht konnte direkt nicht bemerkt werden, doch gab sich die Wirkung des letzteren dadurch zu erkennen, dass die belasteten Säulen (im kalten Zustande) immer nach unten ausbogen, allerdings nur in sehr geringem Grade; wo diese Ausbiegung beträchtlicher war, wurde durch Höherlegen der Säule nachgeholfen. Doch betrug diese Verschiebung höchstens 2 mm.

Ich schliesse die nachfolgende Beschreibung der Versuche unmittelbar an die der ersten Versuchsreihe an und bediene mich der gleichen Bezeichnungen wie dort. Insbesondere bezeichnen v und h wieder die Durchbiegungen der Mitte der Säule in der vertikalen bezw. horizontalen Ebene und werden dieselben mit dem + Zeichen versehen, wenn sie vom Instrumente weg stattfinden, also nach unten, bezw. nach rechts. Die Messung von h wurde, besonders bei den schmiedeeisernen Säulen, durch das Auflegen des horizontalen Drahtes auf die Schlaudern bei grösseren Durchbiegungen nach unten bald unmöglich gemacht; doch war die Ausbiegung in horizontaler Ebene meist nur sehr gering und ohne Einfluss auf den Gang und das Resultat des Versuches; ich werde sie daher auch in der Regel ganz weglassen.

28. Versuch, am 7. April 1886.

Gusseisensäule Nr. 26 (Fig. 1 auf Blatt I), Gewicht 535 kg. Aeusserer Durchmesser in der Mitte 17,65 bis 17,85 cm, im Mittel 17,75 cm; Wandstärke ebendaselbst 2,66 bis 2,90 cm, im Mittel 2,78 cm; folglich innerer Durchmesser 12,19 cm; Länge 400,5 cm. Hiernach: Querschnitt in der Mitte $\mathbf{F} = 130,7$ qcm und Trägheitsmoment desselben $\Theta = 3789$ biqcm. Die zulässige Belastung berechnet sich also mit den oben erörterten Coëfficienten: $\gamma = \frac{1}{5}, \beta_0 = 7000$ und $\varkappa = 0,00025$ auf rund 77 Tonnen. (Mit $\varkappa = 0,0006$, wie bei der ersten Versuchsreihe angenommen, würde man nur 42,4 t als zulässige Belastung erhalten haben). Die Säule wurde, mit dem Kapitell nach vorn liegend, so eingespannt, dass die dünnere Wand oben lag.

Nach möglichst sorgfältiger Centrirung auf die bereits beschriebene Weise ergaben sich folgende Werthe der Durchbiegungen bei festgestellten Stellschrauben an den Druckplatten:

Belastung	• v	h
20 t	+0,60 mm	-0,20 mm
30,,	+ 0,75 ,,	0,20 ,,
40,,	+1,00 ,,	-0,30 ,,
50,,	÷1,10 "'	-0,35 ,,
60 ,,	+1,15 "	-0,45 ,,
70,,	+1,30 ,,	- 0,55 ,,
77 ,,	+1,35 "	- 0,60 ,,

Unter dieser letzteren Belastung wurde um 9 Uhr 59 Min. das Feuern begonnen. Schon eine 1/2 Min. darnach fängt die Libellenblase am Wagehebel an zu steigen und muss mit dem Reguliren vorgegangen werden; die Zeiger für die Ausbiegungen machen noch keine Bewegung. Dieselbe beginnt erst 21/2 Min. nach dem Anfang des Heizens, wo der Wagehebel schon sehr kräftig aufzusteigen strebt. Nach $5^{1/2}$ Minuten wird v = +4,25 mm (von dem Zustande bei der Belastung Null an gerechnet) und schwankt nun hin und her bis nach 71/4 Min. die Temperatur von 300° C. seitwärts in der Mitte der Säule erreicht wird. Dann wächst v rascher weiter und erreicht nach 15 Min., wo an jener Stelle die Temperatur 400° C. geworden ist, den Werth von + 15,65 mm. Die Regulirung an der Wage war während dieser Zeit leicht auszuführen. Nach 15³/4 Min., wo v noch auf + 17,65 mm gestiegen war, wird mit dem Spritzen begonnen. Dadurch vergrössert sich v rasch weiter im positiven Sinne und erreicht nach ca. 19 Minuten den grössten Werth + 33,95 mm. Auch h ist währenddem rasch gewachsen, jedoch nur bis -6,15 mm, wo alsdann der Wagen am hinteren Ende der Maschine wegen mangelhafter Lage und Befestigung der Schienen nach links gedrängt wird. Hierauf nimmt die

1*

4

Durchbiegung in vertikaler Ebene anfangs langsamer, dann rascher ab, bis sie nach $26^{1/2}$ Min., wo das Spritzen beendigt wird, nur noch +8,55 mm beträgt. Während des nun folgenden Erkaltens der Säule streckt sie sich noch mehr gerade; nach 39 Min. ist v unter der Belastung von 77 t nur noch +5,20 und unter der Belastung Null -2,33 mm (aufwärts gerichtet).

Nach Entfernung der Messapparate wird die Säule genau besichtigt; es kann keine Verletzung und keine merkliche Krümmung derselben gefunden werden. Der Wagen wird wieder in die richtige Lage gebracht, die Schiene unter demselben gut gerichtet und befestigt und die Säule wieder sorgfältig eingerichtet. Sie ergiebt bei angezogenen Stellschrauben folgende Durchbiegungen:

Belastung	v	h
20 t	+0,6 mm	-0,1 mm
40 ,,	+ 1,1 ,,	0,2 ',,
60 "	+1,35,,	0,45 ,,
77 ,,	+ 1,45 ,,	-0,55 ,,

Bei dieser letzteren Belastung wird um 2 Uhr 251/2 Min. das Heizen wieder begonnen und schon nach 3/4 Min. sucht der Wagehebel aufzusteigen; die Zeiger machen noch keine Bewegung. Nach 51/2 Min., wo v = +3.5 mm und h = -0.7 mm, brennt das Feuer in der hinteren (unteren) Hälfte sehr lebhaft, vorn schwächer. Nach 8 Min. ist v = +5,5 mm, h = -0,3 mm und seitwärts in der Mitte die Temperatur 300° C. erreicht. Der Zeiger für die vertikale Durchbiegung schwankt stark hin und her, das Feuer brennt der ganzen Länge der Säule nach gut und bleibt nun auch so, während der Wagehebel lebhaft aufzusteigen sucht. Während h sich nur wenig, um einige Millimeter ändert, wächst v rasch, erreicht nach 131/2 Min., wo an jener Stelle die Temperatur 400° C. geworden ist, den Werth von + 14 mm und schwankt unter fortdauerndem aber langsamem Steigen stark hin und her. Nach $19^{1/2}$ Min. ist v = +22,7 mm, h = + 0,8 mm und die Temperatur seitwärts in der Mitte 500 ° C. Nun nimmt v ab, und ist nach 291/2 Min., wo die Temperatur von 600° C. erreicht und die Säule in der Mitte schwarzwarm und oberhalb des Wulstes glühend geworden ist, nur noch +1,7 mm; h = -3,0 mm.

Nach $30^{1/2}$ Min. ist v = -0.8 und h = -3.6 mm und wird mit dem Spritzen begonnen. Während desselben biegt sich die Säule wieder nach abwärts und nach $35^{1/2}$ Minuten ist v = +18.7, h = -10.4 mm. Von da an wird v wieder kleiner, anfangs langsamer, dann rascher; nach ca. 39 Min. ist die Säule gerade geworden und biegt sich nun nach oben so rasch aus, dass nach ca. 41 Min. v = -24.3 mm geworden ist und aus Besorgniss, dass die Säule nach oben herausspringen möchte, welche Besorgniss sich aber beim weiteren Verlauf des Versuches als unbegründet erwies, der Lufthahn der hydraulischen Presse geöffnet und dadurch die Belastung erniedrigt und endlich ganz auf Null gebracht und das Spritzen beendigt wurde. Trotzdem stieg die Durchbiegung nach oben weiter und erreichte nach einer Stunde und $2^{1/2}$ Min., wo die Säule fast kalt geworden war, die Grösse von v = -43,5 mm. Die Kopf- und Fussplatten der Säule standen dabei unten um ca. 10 mm von den, vor den Steinen liegenden Gussplatten ab.

In diesem Zustande und bei unveränderter Einspannung wurde nun die Säule auf's Neue belastet, wobei die Durchbiegung anfangs geringer wurde, bei 40-50 t das Minimum von - 36,7 mm erreichte und dann wieder stieg, bei 77 t auf v = -40,4 mm. Dann wurde, um 4 Uhr 2 Min., das Heizen wieder begonnen. Nach 3/4 Min. fing der Wagehebel wieder an zu steigen und musste mit dem Reguliren vorgegangen werden. Die Ausbiegung nach oben geht anfangs sehr langsam, dann aber, bei lebhafter brennendem Feuer, rascher retour und sinkt nach 11 Min., wo seitwärts in der Mitte der Säule die Temperatur von 300° C. erreicht wurde, auf v = -28,3 mm / herunter. Unmittelbar vorher war ein Krach und Stoss gehört worden. Während der nächsten 20 Min. bleibt v fast constant auf jener Höhe stehen. Die Temperatur war an jener Stelle der Säule mittlerweile nach 15 Min. auf 400, nach 20 Min. (vom Anfang des Heizens an) auf 500 und nach 24 Min. auf 600° C. gestiegen. Nach 26 Min. beginnt das Glühen oberhalb des Wulstes, nach 31 Min. auch oberhalb der Mitte und sogleich darauf glüht der Schaft der Säule seiner ganzen Länge nach und nimmt v langsam wieder zu. Nach 33 Min., wo v = -31,8 mm geworden ist, wird mit dem Spritzen begonnen. Dabei wird der Strahl zwar meist neben der Säule vorbei in das Feuer gerichtet, aber derselbe wechselt sehr rasch; er ist bald breit, so dass er den ganzen Raum zwischen den Wänden der Heizkörbe ausfüllt, bald geschlossen, Vom Beginn des Spritzens an vermindert sich die Ausbiegung nach oben wieder, anfangs langsam, dann rasch, und sinkt nach $39^{1/2}$ Min. auf v = -16,7 mm herab. Das Feuer ist nun nahezu gelöscht. Bei fortdauerndem Spritzen bleibt nun v fast constant, nach 41 Min. wird ein Krach gehört, nach 43 Min. leises Knacken; nach 45 Min. wird nur noch das Feuer vollständig abgelöscht, ohne mit dem Strahl die Säule mehr zu berühren und nach 46 Min., wo v wieder auf - 24,1 mm gestiegen ist. das Spritzen ganz beendet. Während der ganzen Zeit des Spritzens konnte ganz gut verfolgt werden, wie jedesmal, wenn die Säule vom Wasserstrahl getroffen wurde, rasch nachgepumpt werden musste, um die Belastung an der Wage zu halten, und die Ausbiegung nach oben sich rasch vergrösserte.

Nach Beendigung des Spritzens, wo die Säule noch ziemlich warm, in der Mitte mehr als handwarm war, wuchs nun, während die Wage sich ganz ruhig verhielt, die Ausbiegung der Säule nach oben rasch fort. Es wurde

nach	471/2	Min.	v = -	-29,3 mm
1)	49	"	,, = -	33,5 ,,
"	$50^{1/2}$	"	,, = -	-36,7 ,,
33	52	3.9	,, = -	-40,0 ,,
27	54	,,	,,=-	-43,8 "
,,	56	- ,,	,,=-	-46,4 "
	58	"	,, = -	-48,5 "
	60	"	,,=-	-50,3 ,,
"	62	31	,,=-	-51,45 ,,

Von da an wurde die Säule, um sie rascher abzukühlen, zeitweise mit Wasser aus einer Giesskanne übergossen. Während des Uebergiessens musste allemal raschergepumpt werden, um die Belastung zu halten, die Durchbiegung aber blieb dabei fast constant, nahm aber immer wieder etwas zu, wenn das Uebergiessen unterbrochen wurde. Auf diese Weise wächst nach 1 Stunde und 17 Minuten, wo die Säule nur oben noch handwarm ist, v auf -54,9 mm, geht bei der nun vorgenommenen Entlastung der Säule zuerst auf -51,8 mm zurück, um bei vollständiger Entlastung wieder auf -57,5 mm zu steigen. Kopfund Bodenplatte der Säule stehen dabei unten wieder um ca. 10 mm von den Gussplatten vor den Steinen ab.

Die aus der Maschine genommene Säule zeigt nach sorgfältigster Untersuchung keine Verletzung irgend welcher Art; ihre Durchbiegung, bei der Lage während des Versuches nach oben gerichtet, beträgt auf die Länge des glatten Schaftes 22 mm.

Fig. 2 auf Blatt I zeigt die Gestalt der Säule nach der Probe.

29. Versuch, am 8. April 1886.

Gusseisensäule Nr. 27 (Fig. 3 auf Blatt I), Gewicht 424 kg. Aeusserer Durchmesser in der Mitte 15,4 bis 15,8, im Mittel 15,6 cm. Wandstärke 2,20 bis 2,86, im Mittel 2,53 cm; demnach innerer Durchmesser 10,54 cm, Querschnitt $\mathbf{F} = 103,9$ qcm und Trägheitsmoment desselben $\Theta = 2301$ biqcm. Die Länge beträgt 400,3 cm. Die zulässige Belastung berechnet sich demnach mit denselben Coëfficienten wie vorhin zu 52 Tonnen, während sie nach der Berechnungsweise bei der ersten Versuchsreihe nur 27,2 t betragen hätte. Die Säule ist, wie obige Zahlen zeigen, nicht blos ziemlich excentrisch, sondern auch sonst nicht gut gegossen, sie zeigt Gusslöcher und Kaltgussstellen. Nachdem sie mit der dünneren Wand wieder nach oben möglichst sorgfältig eingespannt worden war, ergab bei festgestellten Druckplatten die Belastung von 52t eine Durchbiegung in vertikaler Ebene von v = +0,70mm(also nach unten) und in horizontaler Ebene h = -0,1mm.

Um 10 Uhr wird das Heizen begonnen und eine halbe Minute darauf fängt der Hebel der Wage wieder an zu steigen. Der Zeiger für die vertikale Ausbiegung bleibt, abgesehen von kleinen Schwankungen, längere Zeit, während welcher das Feuer besonders in der Mitte zu lebhaftem Brennen gebracht wird, auf derselben Stelle stehen. Nach 11 Minuten wird in der Mitte der Säule, seitwärts. die Temperatur von 300° C. erreicht, der Zeiger für v schwankt stark hin und her und beginnt endlich im positiven Sinne von v etwas vorzugehen. Nach 18 Minuten ist v = +7,2 und h = -6,4 mm und die Temperatur an jener Stelle der Säule 400°C. Der Wagen am hinteren Ende der Maschine zeigt sich auf der rechten Seite etwas, um etwa 5 mm gehoben und mag dadurch die Abwärtsbiegung der Säule unter der Wirkung des Feuers verdeckt worden sein. Diese Hebung des Wagens wird im weiteren Verlauf des Versuches nicht merklich grösser. - Nach 21 Min. wird v = +7,7 mm und geht nun zurück. Nach 23 Min. ist v = +2,7 mm und die Temperatur seitwärts in der Mitte der Säule 500°C. Nach 26 Min. ist v == -1,8 mm und die Temperatur 600° C. geworden. Nach 27 Min. glüht die Säule zwischen dem oberen Wulst und der Mitte ringsum und wächst nun die Ausbiegung nach oben rasch an. Nach 33 Min. ist v = -19.8 mm; das Glühen erstreckt sich auf die ganze Länge des glatten Schaftes und wird mit dem Spritzen begonnen. Dabei nimmt v anfangs nur wenig ab, obwohl der Strahl gut ist und die Säule stark angespritzt wird. Nach 35 Min. ist v = -18.8 mm und muss an der Wage nachgepumpt werden, doch ist die Belastung leicht zu halten; hierauf ein Krach; der Strahl bleibt fortwährend gut geschlossen und wird damit die Säule stark angespritzt. Nach 36 Min. ist v noch -17,1 mm, aber nach 37 Min. -12,1 mm, das Feuer fast gelöscht; es muss stark nachgepumpt werden; nach 38 Min. ein neuer Krach, die Wage wird ruhiger. Nach 40 Min. erreicht v den Minimalwerth von -4,3 und wird nun wieder grösser: rascher, wenn der Strahl die Säule nicht trifft und weniger rasch, wenn er voll auf dieselbe gerichtet wird, wo dann an der Pumpe rascher gearbeitet werden muss. Nach 52 Min. ist v == -35.2 mm und das Feuer ganz gelöscht, so dass nach einer weiteren halben Minute das Spritzen beendigt wird. Trotzdem wächst v im negativen Sinne (nach aufwärts) fort, während die Wage fast ganz ruhig bleibt und die Säule allmählich erkaltet. Nach 53 Min. ist v = -36,1 mmund die Säule nur noch handwarm. Nach 60 Min. ist v = -38,6 und die Säule nahezu zur Ruhe gekommen. Sie wird nun entlastet, wodurch die Ausbiegung in vertikaler Ebene nach oben auf v = -45,6 mm steigt.

Die aus der Maschine genommene Säule zeigt nach sorgfältiger Untersuchung keinerlei Sprünge und sonstige Beschädigungen. Ihre Ausbiegung wird auf die Länge des glatten Schaftes zu 13 mm gemessen. Fig. 4 auf Blatt I zeigt die Gestalt der Säule nach der Probe.

Beide Gusseisensäulen haben also auch die, dem Coëfficienten z = 0,00025 entsprechende grössere Belastung (fast doppelt so gross als bei der ersten Versuchsreihe) sowohl im Feuer in Rothgluht als während des Anspritzens getragen, ohne zu brechen oder auch nur Sprünge zu erhalten. Die entstandene Krümmung von im Maximum 55 mm Pfeil (bei Säule Nr. 26) veranlasst eine Verkürzung von ca. 2 mm (im kalten Zustande), welche den Bestand der auf einer solchen Säule ruhènden Bautheile (Mauerwerk u. dergl.) wohl kaum gefährden dürfte.

Der Gang der Versuche war im Wesentlichen der gleiche wie bei den Gusseisensäulen in der ersten Versuchsreihe. Die energischere Durchbiegung nach oben darf wohl der grösseren Belastung zugeschrieben werden.

30. Versuch am 8. April 1886.

Schmiedeisensäule Nr. 29^a aus U- und Flacheisen (Fig. 1 auf Blatt II), die mit Nieten verbunden und durch Winkeleisen versteift sind. Gewicht 360 kg. Querschnittfläche, mit Weglassung der Nieten und Versteifungen, = 74,24 qcm; kleinstes Trägheitsmoment (bezüglich der zu den Stegen der U-Eisen parallelen, durch den Schwerpunkt gehenden Axe) Θ = 2816 biqcm; Länge = 584,3 cm. Damit und mit den Coëfficienten $\gamma = \frac{1}{5}$, $\beta_0 = 4000$ und $\varkappa = 0,00009$ berechnet sich die zulässige Belastung zu rund 33 t. Die Gerber'schen Coëfficienten $\gamma \beta_0 = 1000$ und $\varkappa = 0,0001$ würden 39 t ergeben. Die Säule wurde mit jener kleineren Belastung möglichst centrisch eingespannt und zwar so, dass die Stege der U-Eisen horizontal zu

liegen kamen :

Sie ergab im kalten Zustande fol-

gende, nur sehr geringfügige Ausbiegungen :

Belastung	v	h
t	mm	mm
0	0	0 bei losen
10	+0,25	+0,5 Stellschrauben
10	+0,35	+ 0,55 die Stellschrauben an-
- 0	+0,05	-0,15 gezogen
10	+0,2	+0,4
20	+0,3	+ 0,6
30	+0,35	+0,6
40	+0,35	+ 0,55
50	+0,35	+0,55
60	+0,35	+0,55
70	+0,3	+0,55
80	+0,3	+0,55
0	+0,15	
33	+0,3	+0,5

Um 5 Uhr 11 Min. wird mit dem Heizen begonnen; der Hebel der Wage sucht sofort aufzusteigen und muss daher mit dem Reguliren am Lufthahn der hydraulischen Presse angefangen werden. Auch die Zeiger der Messapparate setzen sich, bevor noch 1 Min. verflossen ist, in Bewegung. Nach 4 Min. wird die Wage ruhiger, v = +6,6 mm; v wird rasch grösser im Sinne der Durchbiegung nach unten. Nach 9 Min. ist v = +36.1 mmund die Temperatur seitwärts in der Mitte 300 °C. Nach 11 Min. v = +57.1 mm und die Temperatur 400° C.; nach 13 Min. v = + 76,1 mm und die Temperatur an jener Stelle 500°C. Dabei sucht der Hebel der Wage fortwährend aufzusteigen. Nach 14 Min. hat v den Maximalwerth von + 82,1 mm erreicht und wird nun kleiner; nach 15¹/₂ Min. ist die Temperatur in der Mitte 600 °C. und v = + 80.6 mm. Nach $16^{1/2}$ Min. gibt die Wage nach, es muss nachgepumpt werden; in der vorderen Hälfte und in der Mitte glühen die unteren Kanten der Säule, nach 181/2 Min. auch in der hinteren Hälfte. Nach 20 Minuten ist v nur noch + 32,1 mm; die Wage hält gut; es wird mit dem Spritzen begonnen. Dadurch gibt die Wage wieder stärker nach, es muss nachgepumpt werden, besonders wenn die Säule angespritzt wird; v wird rasch wieder grösser und erreicht nach 24 Min. den Maximalwerth von + 62,1 mm. Von da an nimmt nun die Durchbiegung nach unten unter fortwährendem Nachpumpen rasch ab; die Säule wird mehr und mehr gerade und biegt sich dann nach oben aus. Es ist nach

25	Min.	v ==	+ 60,1 mm
26	"	,, =	+ 58,1 ,,
271/	2 ,,	,, =	+ 43,6 "
29	,,	,, ==	+ 33,6 "
$30^{1/2}$	2 ,,	,, =	+ 14,1 ,,
31	• ,,	,, ==	+ 6,1 "
311/	2 ,,	,, =	- 4,4 ,,
32	,,	,, =	- 15,4 "
321/	2 ,7	,, =	— 30,9 "
33	"	,, =	- 40,4 "
34	32	" =	- 49,4 ,,

Die Wage wird nun ruhiger, aber die Ausbiegung nach oben wächst fort; nach 35 Min. ist v = -54,4 mm, nach 36 Min. v = -58,4 mm und nach 37 Min. wird bei v = -59,4 mm und ziemlich ruhiger Wage das Spritzen beendigt; v wächst langsam weiter, während die Wage sich mehr und mehr beruhigt; nach 46 Min. ist v = -71,0 mm und die Säule fast ganz kalt geworden. Die Unterkanten der Stirnflächen stehen vorn ca. 10, hinten 5 mm von den Gussplatten vor den Steinen ab. Bei der nun vorgenommenen Entlastung steigt die Ausbiegung nach oben auf -75,8 mm.

Die nun aus der Prüfungsmaschine genommene Säule

zeigt keinerlei Verletzung, aber die immerhin ziemlich beträchtliche Verkrümmung, wie sie in Fig. 2 auf Blatt II dargestellt ist.

31. Versuch am 9. April 1886.

Schmiedeisensäule Nr. 29^b aus U- und Flacheisen von derselben Gestalt und beinahe den gleichen Dimensionen wie die vorige (Fig. 1 auf Blatt II), nur ist der Steg des einen der beiden U-Eisen 8 mm, statt nur 7,3 mm, dick. Sie wird so eingespannt, dass die Flacheisen horizontal

liegen: Mit 33 t belastet zeigt sie keine mess-

bare Ausbiegung, weder in der Vertikal- noch in der Horizontalebene.

Um 9 Uhr 22 Min. wird das Heizen begonnen, unmittelbar darauf sucht der Hebel der Wage aufzusteigen. Die Zeiger der Messinstrumente setzen sich erst nach 1 Minute in Bewegung, der für die vertikale Ausbiegung wieder im Sinne der Bewegung der Mitte nach unten. Nach 11 Minuten brennt das Feuer der ganzen Länge der Säule nach lebhaft, der Hebel der Wage sucht fortwährend stark aufzusteigen, vist schon = +38,7 mm geworden und in der Mitte unten die Temperatur von 300° C. erreicht. v wächst rasch weiter; nach 16 Min. ist es gleich + 69,6 mm und nach 16¹/₂ Min. die Temperatur in der Mitte unten 400°. Die Ausbiegung nach unten nimmt nun ab, die Wage wird ruhiger. Nach 19 Min. ist v = +52.4 mm und wird rasch geringer, die Temperatur 500° C. Es muss nun nachgepumpt werden, um die Belastung zu halten, wobei v rapid abnimmt; nach 20 Min. ist v nur noch +23,8 mm und zeigt der vordere Theil der Säule schon eine Krümmung nach aufwärts, die Wage wird wieder fest, ja der Hebel derselben fängt wieder an zu steigen, während v nach 22 Min. bis + 14,4 mm herab gegangen ist. Nun muss wieder nachgepumpt werden; nach 23 Min. ist unter fortwährendem Nachpumpen v = +11.4 mm geworden und die Temperatur von 600° C. erreicht. v geht nach 24 Min. auf + 6.4 mm herab und schwankt nun um ca. 6 mm herum während der nächsten 4 Minuten, in denen erst langsamer, dann immer lebhafter nachgepumpt werden muss. Mittlerweile hat nach 25 Min. das Glühen in der vorderen Hälfte und in der Mitte auf der dem Feuer zugekehrten Seite der Säule begonnen und sich nach 26 Min. auch über die hintere Hälfte verbreitet. Nach 28 Min. ist v = +6,9 mm und nach $28^{1/2}$ Min. wird mit dem Spritzen begonnen. Dadurch nimmt die Biegung nach unten wieder zu und muss rascher und lebhafter nachgepumpt werden, um die Belastung zu halten, namentlich wenn der Wasserstrahl die Säule trifft. Nach 31 Min. ist v = +19,7 mm und glüht die Säule auf ihrer unteren Seite noch der ganzen Länge nach. Nach 321/2 Min. hat v wieder einen Maximalwerth, +31,9 mm, erreicht und wird kleiner; die Mitte der Säule geht anfangs langsamer, dann rascher in die Höhe, wobei die Wage immer ruhiger und zuletzt ganz ruhig wird. Es ist

> nach $33^{1/2}$ Min. v = + 29,4 mm 35 ,=+25,7... 22 36 , = +23,422 22 , = + 9,9, 37 38 , = - 7.1 22 39 ,=-33,6... 2.2 40 " ,, = --58, 62.2 41 ,,=-66,1,, 22

Das Feuer ist nun gelöscht und wird nur noch zur Abkühlung der Säule auf diese gespritzt. Dadurch wird

n

ach	42	Min.	v = -70,5 mm
,,	$42^{1/2}$	"	,, = -69,4
27	43	* * * *	,,=-68,1,
	$43^{1/2}$	"	,.=-65,8,

Die Säule ist nun oben ganz kalt, unten noch handwarm und v wird wieder grösser, nach 44 Min. gleich — 66,4 mm, nach 45 Min. gleich — 68,9 mm; nach $45^{1/2}$ Min. wird bei v = — 68,5 mm das Spritzen beendigt. Die Ausbiegung wird nun wieder etwas grösser und der Hebel der Wage sucht etwas zu steigen, beides wohl in Folge der Abkühlung der Schlaudern, welche den Wagen am hinteren Ende der Maschine mit der hydraulischen Presse verbinden. Nach 50 Minuten ist v unter der Belastung von 33 t gleich — 70,2 mm und wächst durch das nun vorgenommene Entlasten auf — 71,15 mm. Die Unterkanten der Stirnflächen stehen vorn ca. 10, hinten 7 mm von den Platten vor den Steinen ab.

Die aus der Maschine genommene Säule zeigt ausser ihrer Krümmung keinerlei Verletzung. Ihre Gestalt ist in Fig. 3 auf Blatt II dargestellt.

32. Versuch, am 9. April 1886.

Schmiedeisensänle Nr. 28^{a} , aus Winkeleisen hergestellt und mittelst Winkel- und Flacheisen versteift (Fig. 5 auf Blatt I). Gewicht 402,5 kg. Aus den in der Figur angegebenen Dimensionen berechnet sich mit Weglassung der Nieten und Verstärkungen die Querschnittsfläche zu 74,36 qcm und das Trägheits-Moment für jede durch den Schwerpunkt gehende Axe zu 2771 bicqcm. Die Länge beträgt 584,0 cm. Hienach ist mit denselben Coëfficienten, wie bei den vorigen beiden Säulen, die zulässige Belastung rund 33 t, wie dort (die Gerber'schen Coëfficienten würden, ebenfalls wie dort, 39 t ergeben). Mit jener kleineren Belastung wird die Säule so eingespannt, dass die Schenkel

der Winkeleisen horizontal und vertikal liegen:

Nach sorgfältigem Einspannen und mehrmaligem

Richten ergeben sich bei festgestellten Druckplatten im kalten Zustande folgende Durchbiegungen:

Belastung	v	h
t de la comercia	mm	mm
0	0	0
10	0,0	+ 0,15
20	+0,25	+ 0,25
30	+ 0,45	+ 0,35
40	$+^{\circ}0,65$	+ 0,35
60	+1,0	+ 0,5
, 80	+ 1,5	+ 0,65
0	+ 0,1	- 0,1
33	+0,7	+ 0,25

Bei dieser letzteren Belastung wird nun um 2 Uhr 45 Min. das Feuer angezündet und sofort sucht wieder der Hebel der Wage aufzusteigen und muss das Regulieren begonnen werden. Wieder biegt sich die Säule zuerst langsam, dann rascher nach unten durch; die seitliche Biegung ist nur gering, namentlich wenn das Feuer zu beiden Seiten gleich stark brennt.

Nach 6 Min. ist v nur erst noch + 3,3 mm, aber schon nach 10 Min., wo in der Mitte die Temperatur von 300 °C. erreicht ist und das Feuer durchweg lebhaft brennt, ist v = +30.2 mm geworden. Nach 12 Min. wird v = +58,7 mm und die Temperatur in der Mitte der Säule 400 °C. Dieselbe steigt nach 14 Min. auf 500 °C unter fortwährend starkem Aufwärtsstreben des Wagehebels; die Ausbiegung nach unten erreicht zu derselben Zeit ihr Maximum, + 67,2 mm. Die Biegung wird nun geringer, wobei sich die Wage mehr und mehr beruhigt und endlich ganz ruhig wird. Nach 16 Min, ist v nur noch + 44,2 mm und die Temperatur in der Säulenmitte 600 °C. Gleich darauf beginnt das Glühen auf der unteren Seite in der vordern Hälfte und verbreitet sich unter fortwährender Abnahme der Biegung und unter Aufwärtsstreben des Wagehebels auch über die hintere Hälfte, namentlich auch auf einen daselbst befindlichen Verbindungswinkel. Nach 18 Min. ist v = +33,7 mm und schwankt um diesen Werth in der nächsten halben Minute hin und her, dann auf einmal wächst v wieder, nach 19 Min. ist es + 43,7 mm und dann läuft der Zeiger für die vertikale Durchbiegung so rasch fort, dass nicht mehr abgelesen werden kann. Gleichzeitig mit dem Wachsen von v gibt die Wage nach und fällt die Wagschale bald ganz herab; sie trägt nur noch ca. 20 t. Unter dieser Belastung wird nach 201/2 Min. mit dem Spritzen begonnen, wodurch die Wage wieder nachgibt und auch durch das angestrengteste Pumpen nicht mehr ins Gleichgewicht gebracht werden kann. Die Wagschale trägt nur noch 15 t. Nach 361/2 Min. wird das Spritzen beendigt. Die kalt gewordene Säule trägt dann noch 27 t, 28 t aber nicht mehr.

Ihre Gestalt nach der Probe zeigt die Fig. 6 auf Blatt I. Nieten wurden nicht abgescheert. Auch sonstige Brüche konnten nicht constatirt werden.

33. Versuch, am 10. April 1886.

Schmiedeisensäule Nr. 28^{b} von genau derselben Form und denselben Dimensionen wie die vorige (Fig. 5 auf Blatt I). Sie wird unter der Belastung von 33 t so eingespannt, dass die Schenkel der Winkeleisen unter einen Winkel von 45° gegen die horizontale und vertikale Ebene

geneigt sind: XX Nach sorgfältigem Richten zeigt

sie bei festgestellten Druckplatten im kalten Zustande folgende Ausbiegungen:

Belastung	V V	h
t	mm	mm
0	0	0
10	- 0,15	+0,05
20	- 0,15	+0,2
40	+0,4	+0,35
60	+0,45	+0,5
80	+3,75	+0,6
0	0,00	-0,2
33	+0,4	+0,05

Unter dieser letzteren Belastung wird um 9 Uhr 58 Min. das Heizen begonnen, und gleich darauf sucht der Wagehebel wieder zu steigen und muss am Lufthahn der hydraulischen Presse regulirt werden. Die Zeiger der Messinstrumente setzen sich erst nach 1 Minute in Bewegung. Diesmal ist auch die Ausbiegung in horizontaler Ebene beträchtlicher, doch übersteigt sie 11 mm nicht und bewegt sich die Mitte der Säule bald nach rechts, bald nach links, je nachdem das Feuer auf der rechten Seite oder auf der linken lebhafter brennt, hauptsächlich aber nach rechts, weil dort die Heizer stehen und das Feuer daselbst bequemer unterhalten können. Die Ausbiegung in vertikaler Ebene nach unten hin wird unter lebhaftem Aufwärtsstreben des Wagehebels nach

5	Min.	+ 7,5 mm
6	,,	+ 12,2 ,,
7	"	+ 20,5 "
8	22	+ 36,0 ,,
9	,,	+ 51,0 "
0	,,	+65,0,,

und damit wird in der Mitte der Säule, unten, die Temperatur 300° C. erreicht. Nach $11^{1/2}$ Min. wird bei v = +80,5 mm der Zeiger für die vertikale Durchbiegung etwas ruhiger, steigt aber unter Hin- und Herschwanken noch langsam fort. Nach $12^{3/4}$ Min. ist v = +85,0 und die Temperatur der unteren Seite der Säulenmitte 400° ; die Wage sucht immer noch sehr stark aufzusteigen. Nach $14^{1/2}$ Min. ist v = + 90,5 mm und die Temperatur 500° C. erreicht. Der Zeiger für die vertikale Durchbiegung bleibt nun fast stehen, die Wage wird ruhiger, aber nach 151/2 Minuten gibt die Wage plötzlich nach und fällt gleich darauf die Wagschale trotz angestrengten Nachpumpens ganz herunter; gleichzeitig wächst v wieder rascher auf + 95,0 mm nach 15, auf + 102,0 mm nach 15¹/₂, auf + 130,0 mm nach 16 Minuten, und dann läuft der Zeiger im Sinne der weiteren Durchbiegung nach unten so rasch fort, dass nicht mehr abgelesen werden kann. Zu derselben Zeit, nach 16 Min. ist in der Mitte der Säule erst die Temperatur von 600° C. erreicht, aber die Wagschale trägt nur noch 23 t, nach 16¹/₂ Min, wo die Säule in der vorderen Hälfte zu glühen beginnt, nur noch 21 t und nach 17 Min. nur noch 20 t. Nach 173/4 Min. wird das Spritzen begonnen, obwohl die Säule nur erst theilweise, noch nicht ihrer ganzen Länge nach glüht. In Folge davon sinkt die Wagschale wieder ganz herab und kann die Belastung nur durch sehr starkes Nachpumpen auf 19 t gehalten werden. Nach 19 Min. ein starker Krach, die Säule biegt sich in der Mitte ganz durch, die Wagschale fällt ganz herab, trägt nur noch ca. 4 t. Nach $20^{1/2}$ Min. ein neuer Krach und Ruck an der Säule, dieselbe ist zwischen den Druckplatten herabgefallen. Nach 30 Min. wird, nachdem das Feuer längst gelöscht ist, das Spritzen beendigt. Die Säule ist noch nicht ganz kalt, aber doch nur noch handwarm.

Die Gestalt der Säule nach dieser Probe zeigt Fig. 7 auf Blatt I. Auch bei ihr kamen Abscheerungen von Nieten oder sonstige Brüche nicht vor; doch müssen an den Stellen a und b die Nietlöcher stark gestaucht sein.

34. Versuch, am 21. April 1886.

Schmiedeisensäule Nr. 30 (Fig. 4 auf Blatt II), Gewicht 380 kg, ebenfalls aus Winkeleisen hergestellt, wie die beiden vorigen. Die Winkeleisen haben ein etwas schwächeres Profil, sind aber an mehr Stellen wie dort, an sieben statt dort nur an vieren, und nicht durch Flacheisen und Winkeleisen, sondern nur durch Flacheisen mit beigelegten Futtern, miteinander verbunden. Aus den in der Figur angegebenen Dimensionen berechnet sich mit Weglassung der Nieten und Versteifungen die Querschnittsfläche auf 60,00 gcm und das Trägheitsmoment für jede durch den Schwerpunkt gehende Axe zu 1398 bigem. Die Länge beträgt 580,0 cm. Die zulässige Belastung ist also, mit den Coëfficienten $\gamma = \frac{1}{5}$, $\beta_0 = 4000 at$ und $\varkappa = 0,00009$ berechnet, rund 21 Tonnen. (Die Gerber'schen Coëfficienten würden 24,5 Tonnen ergeben). Unter jener Belastung wird die Säule in der gleichen Lage wie die vorige, also so, dass die Schenkel der Winkeleisen 45° mit der Hori-Bauschinger, Mittheilungen, XV.

zontalen und Vertikalen bilden: X geprüft. Nach

F

sorgfältigster Einspannung und wiederholtem Richten ergaben sich bei festgestellten Druckplatten im kalten Zustande folgende Durchbiegungen :

Belastung	v	h
t	mm	mm
0	0	0
10	+0,25	+0,10
20	+0,65	+0,4
30	+0,7	+0,7
40	+0,75	+0,85
50	+- 1,3	+1,0
0	+0,3	+0,25
21	+0,95	+0,6

Bei dieser letzteren Belastung wird um 3 Uhr 29 Min. das Feuer angezündet; nach einer halben Minute sucht der Hebel der Wage aufzusteigen und wird mit dem Reguliren begonnen. Nach einer Minute setzt sich der Zeiger für die vertikale Durchbiegung in Bewegung, der für die horizontale erst nach 2 Minuten. Letzterer zeigt zuerst, während das Feuer auf der rechten Seite, wo die Heizer stehen, lebhafter brennt, eine Ausbiegung nach dieser Seite hin an, die nach 7 Min. das Maximum von 12,6 mm erreicht und dann, nach gleichmässigerer Vertheilung des Feuers auf beide Seiten, wieder zurückgeht. Die vertikale Ausbiegung nach unten nimmt sehr rasch zu. Sie ist nach 8 Min., wo in der Mitte, unten, die Temperatur von 300° C. erreicht ist, schon gleich +56,75 mm, nach 9 Minuten gleich +76,25 mm. Nach 91/2 Minuten ist die Temperatur an jener Stelle 400° C. geworden und nach 10 Min. v = + 85,95 mm, nach 11 Min. v = + 90,25 mm und die Temperatur 500°C. Um jenen Werth schwankt v einige Minuten lang stark hin und her und geht dann zurück, nach 15 Minaten auf + 84,75 mm; die Wage, welche bis jetzt fortwährend aufzusteigen suchte, wird ruhiger und gibt nach 16 Minuten nach: es muss nachgepumpt werden, wobei die Biegung immer noch geringer wird. Nach 17 Minuten, wo die Temperatur der Säule in der Mitte auf 600°C. gestiegen ist, geht die Biegung bis auf v = +69,0 mm zurück und dann wieder vorwärts im Sinne der nun wieder wachsenden Durchbiegung nach unten. Nach 18 Minuten ist v noch gleich + 87,25 mm, dann aber fängt der Zeiger für Messung dieser Durchbiegung, während die Säule zuerst in der vorderen, dann auch in der hinteren Hälfte auf der unteren Seite zu glühen beginnt, so rasch zu laufen an, dass nicht mehr abgelesen werden kann; die Säule biegt sich unter Sinken der Wage, die nur noch 9 Tonnen trägt, in der Mitte nach unten, in der hinteren Hälfte nach oben, also S-förmig durch. Trotzdem wird, um das Feuer zu löschen und die Säule abzukühlen, mit dem Spritzen begonnen. Dabei gibt die Wage noch stärker nach und muss kräftig gepumpt werden, um die 9 Tonnen Belastung zu halten. Die vordere Stirnfläche der Säule, die, wie jetzt deutlich zu sehen ist, nur stellenweise glüht, steht oben um ca. 20 mm von der Druckplatte ab, die hintere liegt an. Nach 23 Minuten wird ein starker Krach und nach 23¹/₂ Minuten ein zweiter solcher gehört, welche Krache wahrscheinlich von Verschiebungen in den Vernietungen herrühren, da sich diese, wie eine spätere Untersuchung zeigte, als äusserlich unverletzt erwiesen. Dabei trägt die Säule noch 9 Tonnen, aber nicht mehr, sie biegt sich unter dieser Belastung immer stärker durch. Nach 31 Minuten ist das Feuer gelöscht, es wird nur noch die Säule abgekühlt und nach 35 Minuten das Spritzen ganz beendigt; die Säule ist fast kalt geworden.

Bei allmählich wieder bis ca. 14t gesteigerter Belastung steigt die Säule in der Mitte in die Höhe und legt sich ihre vordere Stirnfläche fast vollständig wieder an die Druckplatte an; aber auch die schon stärker aufwärts gebogene hintere Hälfte biegt sich noch mehr aufwärts und drängt stark nach rechts hinüber, so dass der Wagen aus den Schienen gehoben wird.

Die Gestalt der deformirten Säule zeigt Fig. 5 auf Blatt II.

Aus den vorstehenden Versuchen mit Schmiedeisensäulen folgt, dass dieselben bei guter Construktion, als welche sich die in Fig. 1 auf Blatt II dargestellte erwiesen hat, dem Feuer und dem Anspritzen auch ziemlich gut widerstehen, wenn auch nicht ganz so, wie gusseiserne, dass aber Säulen von der Construktion wie Fig. 5 auf Blatt I oder Fig. 4 auf Blatt II entweder schon durch das Feuer allein, sicher aber beim Anspritzen unaufhaltsam unter der auf ihnen liegenden Last durchgebogen werden. Grundbedingung für eine, in dieser Hinsicht gute Construktion ist, wie mir aus den Versuchen Nr. 3 und 6 (in Heft XII) und Nr. 30—34 deutlich hervorzugehen scheint, dass die Bestandtheile solcher Säulen so durch Nieten verbunden werden, dass dieselben, in gehörig kleinen Entfernungen von einander stehend, Reihen bilden, welche durch die ganze Länge der Säule ununterbrochen fortlaufen. Für den Querschnitt dürfte die Kastenform der Kreuzform vorzuziehen sein.

Bestimmtere Regeln für die Construktion schmiedeiserner Säulen, die dem Feuer und dem Anspritzen möglichst gut widerstehen sollen, lassen sich aus dem Vorstehenden wohl nicht aufstellen. Dazu müssen die Versuche*) noch weiter fortgesetzt werden und erkläre ich mich gerne bereit dazu, wenn mir von den dabei Interessirten die nöthigen Mittel zu Gebot gestellt werden.

Am Schlusse komme ich noch der sehr angenehmen Verpflichtung nach, den Herren Kommerzienrath Kustermann und Direktor Gerber meinen Dank für ihre bereitwillige Unterstützung meiner Arbeiten auch hier öffentlich auszusprechen.

München, im April 1886.

*) Rechnungen, unter Zugrundelegung so unsicherer Annahmen angestellt, wie es Herr Möller in der neuesten Nummer (17) des "Centralblattes der Bauverwaltung" thut, haben wenig Werth.

XVIII.

Zerknickungs-Versuche.

(1. Reihe).

I. Abschnitt. Das Versuchsmaterial.

in addition marked and

Dass die Anstellung von neuen Zerknickungsversuchen mit besseren Hülfsmitteln, als sie Hodgkinson zu Gebote standen und mit Probestücken aus solchen Materialien und mit solchen Querschnitten, wie sie in der neueren Zeit verwendet werden, eine sehr dringende Forderung der Technik ist, wird in der Literatur allgemein anerkannt. Besonders fühlbar macht sich dieses Bedürfniss für Faconeisen (Walzeisen) aus Schweisseisen mit solchen Querschnittsformen, wie sie beim Brückenbau verwendet werden. Ich ging daher gerne auf die Anregung meines verehrten Freundes, des Direktors der süddeutschen Brückenbau-Aktiengesellschaft, H. Gerber, ein, nach dieser Richtung hin eine systematische Reihe von Zerknickungsversuchen durchzuführen, für welche er mir das nöthige Material in den gebräuchlichsten Querschnittsformen aus der Brückenbauwerkstätte in Gustavsburg bei Mainz zu Gebote stellte.

Die ausgewählten Querschnitte sind in den Figuren 1-12 auf Blatt III in natürlicher Grösse mit ihren Centralellipsen und Centralkernen dargestellt. Diese Figuren wurden, jede einzeln auf einem grösseren Zeichnungsblatte, durch direktes, möglichst genaues Umreissen des kleinsten (kürzesten) Stückes von jedem Profil, welches zur Ermittelung der Elasticitäts- und Quetschgrenze und der Druckfestigkeit gebraucht wurde, aufgezeichnet. Mittelst des Amsler'schen Momenten-Planimeters wurden dann der Flächeninhalt, der Schwerpunkt und die Trägheitsmomente der Profile in Bezug auf zwei durch den Schwerpunkt gehende und aufeinander senkrecht stehende, in den Figuren auf Blatt III mit XX und YY bezeichnete Axen bestimmt, wobei jedes Profil 6mal umfahren wurde. Daraus ergaben sich dann auf bekannte Weise die Halbaxen der Centralellipse und der Centralkern. Die Resultate dieser Messungen, sowie die Hauptdimensionen der Profile, soweit sie zu den folgenden Rechnungen nothwendig sind, finden sich auch in der Tabelle 1 in den Spalten 8 bis 17 angegeben, wobei für diejenigen Profile, welche nicht in Bezug auf beide Axen symmetrisch sind, die in der YY-Axe liegende Höhe in zwei Theilen, wie sie durch den Schwerpunkt gemacht werden, aufgeführt wurde.

Die Tabelle 1 enthält überhaupt das Verzeichniss sämmtlicher Probestücke. Die Bezeichnung derselben (Spalte 1) wurde so durchgeführt, dass jedem Profil eine Nummer gegeben wurde, diejenige, welche es im Geschäftsbuche des Laboratoriums für zu prüfende Materialien eben traf (Nr. 2688 bis 2699), während die einzelnen Stücke von gleichem Profil durch angehängte Buchstaben unterschieden wurden. Die kürzesten, schon oben erwähnten, erhielten dabei den Buchstaben a und die längeren, der Reihenfolge ihrer Länge nach, die Buchstaben b, c, d.... Diejenigen dieser Probestücke, bei denen diese Buchstaben einfach oder doppelt unterstrichen sind, bildeten ursprünglich ein einziges langes Stück, während die Stücke mit nicht unterstrichenen Buchstaben einzeln dem Laboratorium zukamen.

Die 2. Spalte gibt kurz die Form des Profils und dessen Lage bei der Prüfung auf Zerknickungsfestigkeit; die auch auf Blatt III so bezeichnete XX-Axe war immer horizontal, die YY-Axe vertikal. Die an diesen Axen angegebenen Vorzeichen beziehen sich auf die Vorzeichen der gemessenen Ausbiegungen, wie später näher angegeben werden wird.

Die 3. Spalte gibt den Namen oder die Firma des Fabrikanten, wie diese auf den, dem Laboratorium zugekommenen Stücken mit weisser Oelfarbe aufgetragen waren.

In der 4. Spalte stehen die Längen der Probestücke,

12

enthaltenen Längen werden im nächsten Abschnitt ihre Erklärung finden. In der 6. Columne finden sich die Gewichte der Probestücke und in der 7. die aus denselben und aus den Längen in der 4. Spalte berechneten Gewichte per laufenden Meter. Diese letzteren sollten für Stücke von gleichem Profil gleich gross sein, sind es aber aus leicht begreiflichen Gründen nicht, nicht einmal für solche Probestücke, die ursprünglich ein einziges langes Stück bildeten. Die in den Spalten 8 bis 17 eingetragenen, an den Stücken a ermittelten Zahlen (s. oben) gelten also zunächst nur für diese Stücke; für die anderen Stücke wurden sie, soweit es für die folgenden Untersuchungen nothwendig erschien, durch Reduktion jener Zahlen erhalten, indem man die Querschnittsflächen proportional den Gewichten des laufenden Meter und die Längendimensionen proportional den Quadratwurzeln dieser Gewichte annahm.

Zu den vorstehenden Probestücken kamen später aus weiter unten anzugebenden Gründen noch 5 andere, gleich lange, welche durch Theilung eines ca. 12 m langen Trägers mit dem deutschen Normalprofil Nr. 10 erhalten wurden. Die näheren Angaben betreffs derselben sind am Schlusse der Tabelle 1 beigefügt.

2. Abschnitt. Die Versuche.

Die mit a bezeichneten kurzen Stücke im Verzeichniss Tabelle 1 dienten, wie schon gesagt, zur Ermittelung der Elasticitäts- und Quetschgrenze, sowie der Druckfestigkeit. Die dabei benützte Vorrichtung ist die bekannte an der Werder'schen Prüfungsmaschine; als Messapparat wurde mein Spiegelapparat verwendet. Die Versuche boten ganz ausserordentliche Schwierigkeiten, hauptsächlich desshalb, weil bei den meist verhältnissmässig kurzen und breiten Stücken, bei den Ungleichmässigkeiten im Material, bei der Unmöglichkeit, die Schwerpunktsaxe der Stücke mathematisch genau in die Druckaxe zu bringen, und bei der ziemlich unvollkommenen Richtfähigkeit der beweglichen Druckplatte in ihrem Kugelgelenk eine gleichmässige Vertheilung des Druckes über die Querschnittsflächen sehr schwer zu erreichen war. Jede Abweichung davon hat aber grossen Einfluss auf den Elasticitätsmodul und die Elasticitätsgrenze, weniger allerdings auf die Quetschgrenze und Festigkeit. Eine befriedigende Versuchsreihe konnte oft erst durch sorgfältigstes Aufschleifen der Stirnflächen der Probestücke auf die Druckplatten, durch mehrmaliges Verschieben des Stückes zwischen den Druckplatten und besonders durch vielmaliges Richten der beweglichen Druckplatte erhalten werden. Trotzdem mislangen die Versuche bei den Stücken 2690a, 2691a, 2698a, 2698ª und 2699ª bezüglich der Bestimmung der Elasticitätsgrenze, wesshalb diese Stücke später durch andere ersetzt wurden, welche von längeren Stücken (26904. 2691^b, 2698^b, 2698^t, 2699^b) abgeschnitten worden, nachdem dieselben auf Zerknickungsfestigkeit geprüft, dabei aber nicht über die Elasticitätsgrenze hinaus beansprucht worden waren. Diese Ersatzstücke sind im Verzeichniss Tabelle 1 unmittelbar unter denen aufgeführt, von denen sie entnommen sind, ohne ihnen eine neue Bezeichnung hinzuzufügen. Das Gleiche gilt für zwei kurze Stücke, welche von den Probestücken 3028ª und 3028b mit dem deutschen Normalprofil Nr. 10 zu gleichen Zwecken abgeschnitten worden waren.

Für die Festsetzung der Elasticitäts- und der Quetschgrenze waren diejenigen Kriterien massgebend, die im XIII. Hefte dieser "Mittheilungen" angegeben worden sind. Bei Ueberschreitung der Druckfestigkeit tritt beim Schweissund Flusseisen bekanntlich keine Zerstörung des Materials ein, sondern es wird eine Maximalbelastung erreicht, die. oft schon bei ziemlich bedeutender Deformation des Probestückes, noch getragen wird, bei deren Ueberschreitung aber der Hebel der Wage herabfällt und auch durch fortgesetztes Pumpen nicht mehr gehoben werden kann. Diese Maximalbelastung bezeichne ich kurz als Druckfestigkeit. Die Deformationen sind durchweg Ausbiegungen, welche sich bei Stegen oder Rippen, die auf beiden Längsseiten durch Flanschen begrenzt sind, blasenförmig gestalten und dann in der Regel (so bei den Stücken 2690^a, 2690^d, 2691^b, 2694^a) auf der convexen Seite der Blase Längsrisse zeigen.

Da ich in früheren Mittheilungen, besonders im XIII. Hefte, schon häufig Beispiele solcher Messungsreihen mit dem Spiegelapparat gegeben habe, so glaube ich hier darauf verzichten zu dürfen und beschränke mich auf die Wiedergabe der Resultate in den Spalten 18-21 der Tabelle 1. Das Stück 2688ª war zu gross, um auch nur die Elasticitätsgrenze bestimmen zu können, und von den Stücken 2689ª und 2693ª konnte zwar noch die Quetschgrenze, nicht aber die Druckfestigkeit gefunden werden.

Die Zerknickungsversuche wurden mit der bekannten Vorrichtung der Werder'schen Materialprüfungs-Maschine angestellt, welche sich u. A. im XII. Hefte dieser "Mittheilungen" beschrieben und abgebildet findet. Durch Vorversuche stellte sich aber bald heraus, dass für die beabsichtigten Untersuchungen und für den Fall, dass die Enden der Versuchsstücke beweglich sein sollten, die Beweglichkeit der Druckplatten in ihren Kugelgelenken nicht genügend war. Auch wenn die Druckplatten so aufgehängt waren, dass sie sich sowohl um eine horizontale als auch um eine vertikale Axe ganz leicht drehen konnten, war die Reibung der Kugelabschnitte in ihren Kugelschalen so gross,

dass bei längeren Stücken mit kleinerem Querschnitt eine Bewegung der Druckplatten selbst bei beträchtlicher Biegung jener Stücke nicht constatirt werden konnte. Desshalb habe ich für den Fall, dass die Versuchsstücke freibewegliche Enden haben sollten, folgende Einrichtung getroffen:

An die abgehobelten Enden der Versuchsstücke wurden entsprechend grosse und 2 bis 3 cm dicke schmiedeiserne Platten A (Fig. 13 und 14 auf Blatt III) mit ihren gleichfalls abgehobelten Flächen angelegt, in welche auf den Aussenseiten Stahlbolzen mit konischen Spitzen geschraubt waren. Um die Axen dieser Bolzen in die Schwerpunktsaxen der Versuchsstücke bringen und darin erhalten zu können, wurden auf die Rückseiten der Platten Leisten a, b, c, d so aufgelöthet, dass das betreffende Profil zwischen sie passte und sein Schwerpunkt mit dem Mittelpunkte des Schraubenloches für den Bolzen B zusammenfiel. Zu dem Zwecke wurde eine Bause, welche von dem in natürlicher Grösse gezeichneten Profil abgenommen worden war (s. o.), auf die Platte gelegt und durch eine hinreichende Anzahl von Körnern die Lage der Leistchen markirt. Die Spitzen der Bolzen B legten sich in Körner mit grösserem Convergenzwinkel, als der ihrige; diese Körner waren entweder, bei beseitigten Druckplatten, in die Mitte der Kugelschalen, oder in die Mitte der festgestellten Druckplatten selbst oder endlich in Stahlköpfe C (Fig. 13) gebohrt, welche in die Mitten der festgestellten Druckplatten eingeschraubt waren.

Bei Berechnung der Versuche sind diese Platten A mit den Körnerspitzen B als zu dem Versuchsstück gehörig zu betrachten, dessen Länge dadurch vergrössert wird. Diese vergrösserte Länge ist in der 5. Spalte der Tabelle 1 für diejenigen Versuchsstücke angegeben, welche auf diese Weise geprüft wurden.

Die übrigen Probestücke wurden alle so eingespannt, dass sie mit ihren flachen Enden an den Vorderflächen der festgestellten Druckplatten satt anlagen. Andere Variationen bezüglich der Befestigung der Enden wurden vorläufig nicht berücksichtigt.

Bei diesen beiden Arten der Einspannung der Versuchsstücke konnte, wie Vorversuche zeigten, bei Messung der Ausbiegungen die Bewegung der Enden der Stücke vernachlässigt werden; sie war an sich sehr klein und zumal gegenüber den grossen Bewegungen der Mitte, welche zu messen waren. Desshalb konnte dem Apparat für die Messung der Ausbiegungen folgende, in Fig. 1 auf Blatt IV im Massstabe 1:10 abgebildete Einrichtung gegeben werden.

An den Schienen SS der Prüfungsmaschine ist der Rahmen R aus Holz festgeklemmt, welcher zwei Rollenfühlhebel F, F, trägt. Der eine derselben, F, für die Ausbiegungen in vertikaler Ebene bestimmt, besteht aus einem Hartgummiwälzchen w von 1,146 cm Durchmesser, das leicht und ohne todten Gang um eine Axe drehbar ist. die auf der Vorderseite einen Zeiger z trägt, dessen Länge das zehnfache des Halbmessers des Wälzchens ist. Am Ende dieses Zeigers befindet sich ein Nonius, der, zur Theilung des Kreises kk passend, mit dieser in einer Ebene liegt. Der ganze Kreis ist in 360 Theile getheilt, so dass die Entfernung zweier Theilstriche 1 mm beträgt. Ein feiner Faden, dessen eines Ende in ein, in der Mitte des Versuchsstückes angekittetes Häckchen eingehängt ist, schlingt sich mehrmals um das Wälzchen w und trägt an seinem anderen Ende ein Gewichtchen. Auf diese Weise kann also die Bewegung der Mitte des Probestückes in vertikaler Richtung bis auf 0,01 mm gemessen werden.

Mit einen ganz gleichen Apparat hätte auch die Ausbiegung in horizontaler Ebene gemessen werden können. Da aber das Laboratorium z. Z. nur ein Exemplar desselben besitzt, so wurde einer der Fühlhebel dafür genommen, welche zur Messung der Durchbiegungen bei Biegungsversuchen gebraucht werden. Derselbe besteht aus einer Hartgummiwalze w, von 5,73 cm Durchmesser, die leicht und ohne todten Gang um eine Axe drehbar ist, welche einen gut ausbalancirten Zeiger z, mit Nonius an seinem Ende trägt. Dieser Nonius passt zu der Theilung des Bogens k, k, mit welcher er in einer Ebene liegt, und deren Theilstriche gleichfalls in Entfernungen von 1 mm von einander stehen. Die Länge des Zeigers ist zehnmal so gross als der Halbmesser der Hartgummiwalze w. Ein Faden, dessen eines Ende wieder in ein, in der Mitte des Versuchsstückes angekittetes Häckchen eingehängt ist, schlägt sich mehrmals um die Rolle w, und trägt an seinem anderen Ende ein spannendes Gewicht. Die Bewegungen der Mitte des Probestückes in horizontalem Sinne werden also in zehnfacher Grösse, in 0,01 mm, an der Theilung k, k, abgelesen. Da diese letztere nur 30 cm lang ist, so können mit ihr, weil der Zeiger anfangs in die Mitte eingestellt werden muss, nur Bewegungen von höchstens 15 mm gemessen werden, was sich durchweg als ausreichend gezeigt hat, da die Versuchsstücke, auch anderer Gründe halber, u. A. schon wegen der grösseren Sicherheit der bei den Versuchen Beschäftigten, so eingelegt wurden, dass die grössere Ausbiegung in der vertikalen Ebene erfolgen musste.

Die Bewegungen der Zeiger wurden aus grösserer Entfernung mittelst der beiden Fernrohre abgelesen, welche zu meinem Spiegelapparat gehören und die auf einem Tischchen am hinter Ende der Maschine standen.

Wegen der endlichen Länge der Fäden 1 und 1,

von ihrer Befestigungstelle an dem Versuchsstück bis zur ihrer Berührungsstelle mit den Hartgummi-Wälzchen w und w₁ bringt eine Bewegung des Probestückes in vertikaler Richtung auch eine kleine Drehung des Zeigers z_1 und eine Bewegung der Mitte in horizontaler Richtung auch eine kleine Drehung des Zeigers z hervor. Die dadurch bedingten Correkturen der Ablesungen der Zeiger z und z_1 können auf folgende Weise gefunden werden (vgl. die schematische Figur 2 auf Blatt IV).

Wenn die Befestigungsstelle A des Fadens 1 am Versuchsstück in vertikaler Richtung und in einem Sinne (abwärts), der bei den Messungen als positiv bezeichnet wird, um eine Strecke AA' = y und in horizontaler Richtung und in einem Sinne (nach rechts hin, vom Beobachter am hinteren Ende der Maschine aus gesehen), der ebenfalls als der positive bezeichnet werden soll um AA'' = x fortgeführt wird, so bildet der Faden 1 am Ende der letzteren Bewegung mit seiner ursprünglich vertikalen Richtung den Winkel φ , bestimmt durch die Gleichung :

$$\operatorname{tg} \varphi = \frac{x}{1 + y - r \operatorname{tg} \frac{\varphi}{2}}$$

mit r den Radius des Wälzchens w bezeichnet. Ersetzt man hierin tg φ mittelst des bekannten Ausdruckes durch die tg des halben Winkels und formt um, so erhält man für tg $\frac{\varphi}{\varphi}$ die quadratische Gleichung

$$tg^2 \frac{\varphi}{2} - 2 \frac{1+y}{2r-x} tg \frac{\varphi}{2} = -\frac{x}{2r-x}$$

von deren beiden Lösungen nur der eine Werth

$$\operatorname{tg} \frac{\varphi}{2} = \frac{1+y}{2r-x} - \sqrt{\left(\frac{1+y}{2r-x}\right)^2 - \frac{x}{2r-x}}$$

brauchbar ist. Schreibt man denselben so:

$$\operatorname{tg} \frac{\varphi}{2} = \frac{1+y}{2r-x} \left(1 - \sqrt{1 - \frac{x (2r-x)}{(1+y)^2}} \right)$$

und bleibt in der Entwickelung der Quadratwurzel, der bedeutenden Grösse von 1 gegenüber den Werthen r, x und y halber, bei dem 3. Gliede stehen, so folgt

$$\operatorname{tg} \frac{\varphi}{2} = \frac{1}{2} \frac{x}{1+y} + \frac{1}{8} \frac{x^2 (2r-x)}{(1+y)^3}.$$

Da der Winkel φ nur klein ist, so kann man tg $\frac{\varphi}{2}$ durch $\frac{\varphi}{2} + \frac{1}{3} \left(\frac{\varphi}{2}\right)^{3}$ ersetzen. Löst man die dadurch entstehende cubische Gleichung

$$\left(\frac{\varphi}{2}\right)^{3} + 3\frac{\varphi}{2} - \left(\frac{3}{2}\frac{x}{1+y} + \frac{3}{8}\frac{x^{2}(2r-x)}{(1+y)^{3}}\right) = 0$$

auf, so ergibt sich, wenn zur Abkürzung

$$\begin{split} \xi &= -\left(\frac{3}{2}\frac{x}{1-y} + \frac{3}{8}\frac{x^{2}(2r-x)}{(1+y)^{3}}\right),\\ \mu &= \sqrt[3]{-\frac{\xi}{2} + \sqrt{1+(\frac{\xi}{2})^{2}}}, \nu = \sqrt[3]{-\frac{\xi}{2} - \sqrt{1+(\frac{\xi}{2})^{2}}}\\ \text{gesetzt wird:} \end{split}$$

 $\frac{\varphi}{2} = \mu + \nu.$

Vernachlässigt man in den Entwickelungen von μ und ν die höheren Potenzen von $\frac{\xi}{2}$ als die dritte, so ergibt sich

$$\mu = 1 - \frac{1}{3} \left(\frac{\xi}{2}\right) + \frac{1}{18} \left(\frac{\xi}{2}\right)^2 + \frac{4}{81} \left(\frac{\xi}{2}\right)^3$$
$$= -1 - \frac{1}{3} \left(\frac{\xi}{2}\right) - \frac{1}{18} \left(\frac{\xi}{2}\right)^2 + \frac{4}{81} \left(\frac{\xi}{2}\right)$$

und folglich

v

$$\frac{\varphi}{2} = \mu + \nu = -\frac{2}{3} \left(\frac{\xi}{2}\right) + \frac{8}{81} \left(\frac{\xi}{2}\right)^3$$

und mit Einsetzung des Werthes für \$:

$$\frac{\varphi}{2} = \frac{1}{2} \frac{x}{1+y} + \frac{1}{8} \frac{x^2(2r-x)}{(1+y)^3} - \frac{8}{81} \left(\frac{3}{4} \frac{x}{1+y} + \frac{3}{16} \frac{x^2(2r-x)}{(1+y)^3}\right)^3$$

oder, wenn man wieder die höheren als die dritten Dimensionen von $\frac{x}{1+y}$ und $\frac{2r-x}{1+y}$ vernachlässigt,

$$\varphi = \frac{x}{l+y} \left(1 + \frac{1}{6} \frac{x (3r-2x)}{(l+y)^2} \right)$$

Die Fadenlänge von A' bis B beträgt l + y, die von A" über B' nach B ist:

$$\frac{\mathrm{x}}{\sin\varphi} - \mathrm{r} \operatorname{tg} \frac{\varphi}{2} + \mathrm{r} \varphi$$

Letztere ist also um

$$\frac{\mathbf{x}}{\sin\varphi} - \mathbf{r} \, \mathrm{tg} \, \frac{\varphi}{2} + \mathbf{r} \, \varphi - (\mathbf{l} + \mathbf{y})$$

grösser als jene, und folglich ist die Correktur von y:

$$\Delta \mathbf{y} = -\frac{\mathbf{x}}{\sin \varphi} + \mathbf{r} \operatorname{tg} \frac{\varphi}{2} - \mathbf{r} \varphi + (\mathbf{l} + \mathbf{y}).$$

Ersetzt man hierin $\sin \varphi$ durch $\varphi - \frac{1}{6} \varphi^3$ und $tg \frac{\varphi}{2}$ und φ durch ihre obigen Werthe, so ergibt sich mit hinreichender Näherung

$$\Delta \mathbf{y} = -\frac{1}{2} \frac{\mathbf{x}^2}{\mathbf{l} + \mathbf{y}}.$$

Auf ganz gleiche Weise erhält man für den Winkel φ_1 , den der Faden l_1 nach der Bewegung seines Befestigungspunktes A_1 zuerst um + x in horizontaler und dann um + y in vertikaler Richtung mit seiner ursprünglich horizontalen Richtung macht:

$$g \varphi_i = \frac{y}{(l_i - x) + r_i \operatorname{tg} \frac{\varphi_i}{2}}$$

mit r₁ den Halbmesser des Wälzchens w₁ bezeichnend. Daraus folgt auf gleichem Wege wie oben:

$$\begin{split} \mathrm{tg}\,\frac{\varphi_{1}}{2} &= -\frac{l_{1}-x}{2\mathrm{r}_{1}+y} \left(1-\sqrt{1+\frac{y\,(2\mathrm{r}_{1}+y)}{(l_{1}-x)^{2}}}\right)\\ \mathrm{d} & \mathrm{tg}\,\frac{\varphi_{1}}{2} &= \frac{1}{2}\,\frac{y}{l_{1}-x} - \frac{1}{8}\,\frac{y^{2}\,(2\mathrm{r}_{1}+y)}{(l_{1}-x)^{3}}\\ \varphi_{1} &= \frac{y}{l_{1}-x} \left(1-\frac{1}{6}\,\frac{y\,(3\mathrm{r}_{1}+2y)}{(l_{1}-x)^{2}}\right)\!. \end{split}$$

un

Die Fadenlänge von A_1' über B_1 bis B_1' ist $l_1 - x + r_1 \varphi$ und die von A₁" bis B₁

$$\frac{y}{\sin \varphi_1} + r_1 \operatorname{tg} \frac{\varphi_1}{2}.$$

Letztere ist um

oder

$$\frac{y}{\sin \varphi_1} + r_1 \operatorname{tg} \frac{\varphi_1}{2} - (l_1 - x)$$

grösser als jene und desshalb ist die Correktur von x:

X

 $-r_1\varphi$

$$\Delta \mathbf{x} = \frac{\mathbf{y}}{\sin \varphi_1} + \mathbf{r}_1 \operatorname{tg} \frac{\varphi_1}{2} - (\mathbf{l}_1 - \mathbf{x}) - \mathbf{r}_1 \varphi$$
$$\Delta \mathbf{x} = + \frac{1}{2} \frac{\mathbf{y}^2}{\mathbf{l}_1 - \mathbf{x}}.$$

Die Fädeu waren so gespannt, dass in ihren vertikalen, bezw. horizontalen Anfangsstellungen ihre Verlängerungen durch den Schwerpunkt des mittleren Querschnittes hindurch gingen. Fig. 1ª auf Blatt IV zeigt die Befestigungsweise der Häckchen für die Profile 2698 und 2699. Dabei waren für das erstere dieser Profile die Fadenlängen von den Häckchen bis zu den Berührungsstellen mit den Hartgummi-Wälzchen 1=430 u. l1=510 mm. Bei den I, L und T Eisen waren die Häkchen mit ihren Platten direkt an die betreffenden Stege und Flanschen gekittet und können hiernach die Fadenlängen 1 u. 1, leicht aus jenen ermittelt werden. Es finden sich für

Profil-Nr.	l=	$l_1 = 1$	
2688	425	420 mm	
2689	426	467 ,,	
2690	427	483 "	
2691	427	495 ,,	
2692	427	495 ,,	
2693	450	440 ",	
2694	441	473 ,,	
2695	441	507 "	
2696	410	540 ,,	
2697	423	540 "	
2698	430	510 "	
2699	430	512 "	

Da die Versuchsstücke bei der Probe horizontal lagen und sich in Folge ihres Eigengewichtes nicht unbedeutend durchgeschlagen haben würden, so musste jenes möglichst ausgeglichen werden. Zu diesem Zwecke wurde nahe an der Mitte dicht neben den Messapparaten eine Kette K (Fig. 1 auf Blatt IV) unten um das Stück gelegt, deren Enden an ein Seil befestigt waren, das sich oben über das Rad D legte und an seinem Ende eine Wagschale W mit Gewichten trug. Die Achse des Rades D hing zwischen Laschen, die von einem Bolzen getragen wurden, der auf einen, auf der Gallerie des Beobachtungssaales aufruhenden Balken BB gelegt war. Dadurch wurde die Länge des Seiles vom Probestück bis zur Rolle so gross (ca. 3, 5 m), dass die verhältnissmässig sehr kleine seitliche Ausbiegung des ersteren die vertikale Richtung des Seiles nur sehr wenig änderte und umgekehrt auch von der Seilspannung nur unmerklich beeinflusst wurde. Die Durchbiegung in vertikaler Ebene fand unter der constant bleibenden Wirkung des Gegengewichtes statt. Als solches wurde, natürlich nach Ausbalançirung des Seil- und Kettengewichtes und unter Einrechnung des Gewichtes der Wag-

 $\frac{5}{8}$ von dem Eigengewichte des Probestückes geschale, nommen, entsprechend der Auflagerreaktion am mittleren Stützpunkte eines auf 3 gleich weit von einander entfernten Stützen liegenden, gleichmässig belasteten Trägers. Dadurch blieben in der That, soweit es die Controlen mit Lineal und Libelle zeigen konnten, die Versuchsstücke merklich gerade.

Dieselben wurden immer so eingelegt, dass die kleine Axe der Centralellipse des Querschnittes in die Vertikalebene kam, also die Axe XX der Profile auf Blatt III horizontal, die Axe YY vertikal war (vgl. Spalte 2 der Tabelle 1). Durch provisorische Unterlagen an den Enden wurden in dem Falle, wo die Enden mit Spitzen armirt waren, diese Spitzen in die entsprechenden Körner eingerichtet, in dem anderen Fall die Schwerpunkte der flachen Enden mit den Mittelpunkten der Druckplatten zusammenfallend gemacht. Alsdann wurde das Probestück mit einer Belastung, welche höchstens gleich war einem der ersten Intervalle, in denen nachher die Belastungen gesteigert wurden, eingespannt, wobei in dem Falle von flachen Enden die Druckplatten beweglich gelassen wurden. Das Versuchsstück wurde alsdann an den Enden gegen Verschiebungen in der Höhe sowohl als nach den Seiten fixirt und dann, nachdem gegebenen Falles die Druckplatten durch Anziehen ihrer Stellschrauben festgestellt worden waren, die Belastung wieder aufgehoben. Nun wurde die Anfangsstellung der Zeiger der Messapparate abgelesen und hierauf das erste Intervall der Belastung aufgegeben. Nachdem es erreicht war, wurden die provisorischen Unterlagen an den Enden entfernt und 2 Minuten nach Aufgabe der Belastung der neue Stand der Zeiger abgelesen. So wurde, ohne weiter auf die Belastung Null zurückzugehen, von Intervall zu Intervall fortgeschritten und der Stand der Zeiger jedesmal abgelesen, wobei von einer Ablesung zur anderen immer 2 Minuten gewartet wurden, während unmittelbar nach jeder Ablesung ein neues Belastungsintervall zugelegt wurde.

Die Resultate dieser Messungen sind in den Tabellen 2-38 niedergelegt. Die 1. Spalten dieser Tabellen enthalten die Belastungen im Ganzen, die 2. Spalten die pro gem der Querschnitte in kg, die 3. die Durchbiegungen y der Mitte in vertikaler, die 4. die Ausbiegungen x der Mitte in horizontaler Ebene und die 5. den Biegungspfeil $f = \sqrt{x^2 + y^2}$, welcher, da y meist bedeutend grösser als x ist, håufig auch nach der Näherungsformel

$$f = y + \frac{1}{2} \frac{x^2}{y}$$

berechnet werden kann. Jene Durch- und Ausbiegungen sind mit + bezeichnet, wenn sie nach abwärts, bezw. nach rechts (vom Beobachter am hinteren Ende der Maschine aus gesehen) stattfanden und bereits die oben berechneten Correkturen wegen der endlichen Länge der Fäden daran angebracht.

Anfangs, bei kleinen Belastungen, stellten sich die Zeiger sofort nach erreichter Belastung auf bestimmte Stellen ein, die sie während des noch übrigen Restes der zwei Minuten unverändert beibehielten oder bei stattgehabten kleinen Erschütterungen nach einigen Schwankungen wieder einnahmen. Später wurde dann und zwar verhältnissmässig schon bald und in der Regel zuerst bei der Durchbiegung in vertikaler Ebene, als der grösseren, der Einfluss der Zeit bemerklich, indem der betr. Zeiger nach dem Einspielen der Libelle am Wagbalken und indem dieser horizontal gehalten wurde, noch langsam weiter ging, oder, wie wir es nennen wollen, nachgab. Dieses Nachgeben wurde bei höheren Belastungen merklicher, erstreckte sich dann auch über die zwei Minuten zwischen zwei Ablesungen hinaus, wurde aber bei längerem Warten unter gleichbleibender Belastung schwächer und schwächer, bis endlich die Zeiger wieder ganz zur Ruhe kamen. Aber bei einer bestimmten Grenze der Belastung kamen die Zeiger nicht mehr zur Ruhe, sondern schritten, anfangs noch langsam, dann aber immer rascher und rascher fort, so dass nicht mehr abgelesen werden konnte; fast gleichzeitig fiel die Wagschale der Prüfungsmaschine herab und konnte das Probestück unter einer weit kleineren Belastung als jene mehr und mehr durchgebogen werden. Bei denjenigen Stücken, welche mit flachen Enden zwischen festen Druckplatten lagen, machte sich dieser Moment auch noch dadurch bemerkbar, dass sie plötzlich sozusagen umschnappten, indem die Enden, welche bis dahin satt an den Druckplatten liegen geblieben waren, sich mit einmal im Sinne der Biegung von denselben ablösten und nur noch mit einer, meist ziemlich stark eingedrückten Kante mit ihnen in Berührung blieben. Dabei wurde in der Regel, nicht immer, zugleich ein mehr oder weniger starker eigenthümlicher Ton, ein Knacken vernehmbar. Die Maximalbelastung also, mit welcher die Zerknickungsfestigkeit des Probestückes überschritten wird, lässt sich sowohl an den Messinstrumenten für die Biegung als auch an der Wage der Prüfungsmaschine ganz scharf beobachten; wir wollen sie die Zerknickungsbelastung nennen. Ein Bruch tritt dabei nicht ein, oder doch nur an solchen Stücken, die aus ganz schlechtem, spröden

Material bestehen oder gerade in der Mitte Fehlerstellen haben. Ich habe ihn unter 37 Fällen nur 3mal beobachtet, an Stücken mit T förmigem Querschnitt, deren Bruchstellen schlechtes grobkrystallinisches Material oder starke Anbrüche zeigten. (Die Stücke 2697^{b, c und e}, vgl. Tabelle 16, 17 und 19). In allen anderen Fällen fand eine Zerstörung des Zusammenhanges nicht statt, ja, wenn die Biegung nach Ueberschreitung der Zerknickungsfestigkeit nicht sehr weit getrieben wurde, kaum eine merkliche Deformation des Querschnittes in der Mitte. Die Zerknickungsbelastung ist am Ende jeder der in den Tabellen 2-38 enthaltenen Messungsreihen angegeben und auch in die Spalten 22-25 der Tabelle 1 eingetragen, zugleich mit der durch einen Pfeil angegebenen Richtung der Durchbiegung, wobei ein kleiner Querstrich durch den Pfeil bedeutet, dass ein wirklicher Bruch stattgefunden hat. Da, wo nach Aufgabe des letzten Belastungs-Intervalles die Zeiger sofort anfingen, rascher fortzuschreiten und die Libelle des Wagehebels nicht mehr zum Einspielen kam, wurde nur ein Theil, in der Regel die Hälfte des Intervalles der letzten Belastung, bei welcher noch abgelesen wurde, zugerechnet, um die Zerknickungsbelastung zu erhalten.

Der Beginn von schwachem und der Eintritt von stärkerem und starkem Nachgeben der Zeiger (vgl. oben) ist an den Zahlen der 3. und 4. Spalte mehrerer der Tabellen 2—38 dadurch angegeben, dass bei den mit punktirten Linien unterstrichenen Zahlen das erste schwache Nachgeben bemerklich wurde, bei den mit einfachen zusammenhängenden Linien unterstrichenen stärkeres und bei den mit Doppellinien unterstrichenen sehr starkes Nachgeben anfing.

Nachdem die Zerknickungsbelastung überschritten und das Probestück plötzlich stark durchgebogen worden war, wurde bei Stücken mit flachen Enden in der Regel sogleich, in den meisten anderen aber erst nach noch weiter getriebener Biegung die Wagschale der Prüfungsmaschine so weit entlastet, dass die Libelle am Hebel wieder zum Einspielen kam: es wurde die Spannung, unter welcher das Probestück in seiner abgeänderten Gestalt im Gleichgewicht gehalten wurde, abgewogen. Während dann diese Spannung von selbst constant blieb oder durch ganz geringes Nachpumpen constant erhalten werden konnte (nur in zwei Fällen, bei den Probestücken 2688° und 2690° ging sie merklich unter Vergrösserung der Biegung zurück), wurde die Gestalt des Probestückes in folgender Weise bestimmt:

Auf einer Seite der Probestücke war in ihrer ursprünglich geraden Gestalt eine gerade Linie gezogen worden, und zwar bei allen, mit Ausnahme der Stücke von τ förmigem Querschnitt, in der Höhe der Schwerpunktsaxe, bei diesen entlang der Flanschenkante. Diese Linie wurde in 10 gleiche Theile getheilt und als Schwerpunktsaxe genommen. Nach erfolgter Durchbiegung und Abwiegung der Spannung wurde dann die Entfernung der Theilungsund Endpunkte derselben von der durch die Oberfläche der Schienen SS (Fig. 1 Blatt IV) der Maschine bestimmten Horizontalebene durch ein Schubmaass entweder direkt, oder an Stellen, wo mit diesem nicht beizukommen war, mit Zuhülfenahme eines Parallelreissers, gemessen (vgl. die Figur 20 für das Probestück 2689° auf Blatt IV). Dadurch erhielt man die Pfeile der Theilungspunkte von der Verbindungslinie der Endpunkte aus und zwar, der Theilung des Schubmasses mit Nonius entsprechend, bis auf 0,1 mm genau, die Länge der Verbindungslinie der Endpunkte selbst wurde in vielen, nicht in allen Versuchen mittelst eines Bandmaasses gemessen.

Die Resultate einiger dieser Messungen, welche übrigens nicht an allen Probestücken angestellt wurden, sind in den Figuren 17-22 auf Blatt IV enthalten; in denselben sind die gebogenen Schwerpunktsaxen im Massstabe 1:10 so gezeichnet, dass die eingemessenen Punkte durch gerade Linien verbunden wurden, deren Längen als unverändert gleich dem 10. Theile der ursprünglich geraden Schwerpunktsaxe angenommen worden sind. Bei den Probestücken, welche Spitzen an die Enden gefügt hatten, sind die letzten Verbindungslinien beiderseits um die entsprechenden Stücke verlängert worden. Die Verbindungslinie der Endpunkte dieser Verlängerungen ist also die Kraftlinie. In diese wurde beiderseits die Kraft eingeschrieben, mit der das Stück gespannt gehalten wurde, und von ihr aus sind die in die Figuren in Centimetern eingeschriebenen Pfeile gerechnet, indem zu den, auf oben beschriebene Weise gemessenen noch die Vergrösserungen hinzugefügt wurden, welche sich durch Anfügung der Spitzen ergibt und zwar wurden diese Vergrösserungen nicht durch Abmessungen aus den Figuren, die zu diesem Zwecke zu klein waren, bestimmt, sondern durch Rechnung aus den ähnlichen Dreiecken, die sich an den Enden ergeben. - Bei den Stücken mit flachen Enden sind beiderseits senkrecht auf die letzten Verbindungslinien die Höhendimensionen der Endquerschnitte hinzugefügt. Die eingeschriebenen Pfeile sind von der Sehne der Schwerpunktsaxe aus gerechnet. Die Kraftlinie würde bei diesen Stücken durch die, auf der convexen Seite liegenden Randpunkte der Endquerschnitte gehen, wenn diese Ränder nicht eingedrückt würden, was immer der Fall ist; in Folge dessen rückt die Kraftlinie etwas nach der concaven Seite hin; da aber der Betrag dieser Verlegung nicht gemessen werden kann, so wurde die spannende Kraft einfach in die Verbindungslinie jener Randpunkte eingetragen.

Nachdem die oben beschriebenen Messungen an den Bauschinger, Mittheilungen, XV. unter Spannung stehendem Probestücke beendigt waren, wurde dasselbe entlastet und auf gleiche Weise das bleibend deformirte Stück ausgemessen. Ich begnüge mich damit, von diesen Messungen nur den mittleren oder grössten Pfeil anzugeben. Sein Ende ist in den betr. Figuren auf Blatt IV durch einen umringelten Punkt⊙ bezeichnet und seine Grösse in Klammern neben die des Pfeiles des gespannten Stückes gesetzt; er ist von derselben Linie aus gerechnet, wie dieser. — An den Enden, bis mehr oder weniger weit gegen die Mitte hin, waren die entlasteten Stücke gerade.

3. Abschnitt. Theorie.

Wenn ein Körper mit vollständig gerader Schwerpunkts-Axe aus vollkommen homogenem Material besteht und genau centrisch, d. h. in seiner Schwerpunkts-Axe belastet wird, so ist kein Grund vorhanden, warum er eher nach einer Seite hin als nach einer anderen ausbiegen sollte, er bleibt gerade, wenn nicht zufällige äussere Einwirkungen eine Ausbiegung nach einer Seite hin begünstigen. Aber jene Bedingungen sind in Wirklichkeit niemals erfüllt. Desshalb tritt bei jedem, auf Zerknickung beanspruchten Körper schon gleich anfangs, d. h. schon bei der kleinsten Belastung eine Biegung ein, wie man stets beobachten kann, wenn nur die Messinstrumente, die man anwendet, empfindlich genug sind. Bei den im 1. Abschnitt beschriebenen Probestücken aus Faconeisen reichten die im vorigen Abschnitte beschriebenen Messinstrumente schon aus, um die gleich anfangs eintretende Biegung zu constatiren, wie sämmtliche Tabellen 2 bis 38 zeigen. Bei starken Gusseisensäulen müssen feinere Hülfsmittel, die ich bei anderer Gelegenheit früher beschrieben habe, (vgl. "Maschine zum Prüfen der Festigkeit der Materialien von L. Werder und Instrumente zum Messen der Gestaltsveränderung der Probekörper von J. Bauschinger" München in Commission bei Th. Riedel) angewendet werden. - Diese anfängliche Biegung schreitet bei wachsender Belastung manchmal in demselben Sinne und in nahezu derselben Ebene fort, aber in manchen Fällen nimmt sie auch wieder ab und dann wieder zu, oder sie wendet sich in eine andere Ebene oder ganz auf die entgegengesetzte Seite, bis nach genügendem Anwachsen der Belastung die Biegungsebene und der Biegungssinn ganz oder nahezu constant bleiben und nur noch die Grösse der Biegung mit der Belastung wächst. (Vgl. hiefür die Tabellen 2, 3, 4, 11, 17, 18, 19, 20, 21, 24, 27, 28, 29, 30, 33, 34, 35, 36 und 38). Diese scheinbar anomalen Bewegungen lassen sich durch Ungleichmässigkeiten im Materiale genügend erklären.

So lange dabei die Belastung die Grenze P_0 , die Zerknickungsbelastung, nicht erreicht hat, ist das Gleichge-

BIBLIOTEKA

wicht des gebogenen Stabes stabil; wenn die Biegung durch äussere Umstände vergrössert oder verkleinert wird, so kehrt sie sehr nahezu wieder in ihre vorige Grösse zurück, wenn jene Umstände zu wirken aufhören, selbst dann, wenn die Biegung durch dieselben auf die entgegengesetzte Seite gebracht worden war. Bei den 3 Versuchen. deren Resultate in den Tabellen 39, 41 und 42 niedergelegt sind, und von denen weiter unten ausführlicher die Rede sein wird, wurden bei Belastungen P von ungefähr $\frac{1}{4}, \frac{2}{4}$ und $\frac{3}{4}$ der Zerknickungsbelastung von dem in der Mitte angebrachten Gewichte (12,3 kg) zur Aufhebung des Eigengewichtes (s. ob. S. 15) 5 kg abgenommen und wieder zugelegt und dann neue 5 kg zugelegt und wieder abgenommen, ohne dass das Versuchsstück aufhörte, wieder nahezu die gleiche Biegung anzunehmen, wenn die Störung beseitigt war, obwohl die zugelegten 5 kg eine, allerdings nur kleine, Biegung nach der entgegengesetzten Seite bewirkt hatten.

Wir nehmen, den obigen Auseinandersetzungen gemäss an, dass der Probestab schon ursprünglich eine kleine, unbekannte Biegung habe, dass seine (halbe) Schwerpunkts-Axe OB₀ sei (Fig. 3 auf Blatt IV) mit dem Pfeil g₀ und dass er so eingespannt wurde, dass die Druckaxe die kleine und unbekannte Excentricität c₀ bekam. Die Belastung P bringe dann die Schwerpunktsaxe in die Gestalt OB mit dem Pfeil g und der Excentricität c. Denken wir uns dann die Mitte des Stabes fest eingespannt und dahin den Anfangspunkt eines rechtwinkeligen Coordinatensystems gelegt, dessen X-Axe Tangente an die gebogene Schwerpunktsaxe ist, dann gelten für einen Querschnitt, dessen Schwerpunkt die Coordinaten x, y hat, unter Voraussetzung einer nur geringen Biegung mit hinlänglicher Genauigkeit die beiden Gleichungen:

$$\sigma = \frac{P}{F} + \frac{P(c + g - y)z}{\Theta}, \qquad 1$$

$$\frac{1}{r} = \frac{1}{r_0} + \frac{P(c+g-y)}{\Theta \epsilon}.$$
 2)

In denselben bezeichnet F den Flächeninhalt des Querschnittes und Θ dessen Trägheitsmoment in Bezug auf eine, durch seinen Schwerpunkt gehende, auf der Biegungsebene senkrechte Axe, z die Entfernung desjenigen Elementes, in dem die Normal-Spannung σ herrscht, von jener Axe, nach der Seite hin positiv gezählt, nach welcher von der X-Axe aus die positiven y liegen; r_0 ist der ursprüngliche, r der durch die Belastung P hervorgebrachte Krümmungsradius der Schwerpunktsaxe an der betrachteten Stelle, ϵ der Elasticitäts-Modul des Materials.

Nach Gleichung 1) wird σ für jeden Querschnitt am grössten in der grössten Entfernung z = e von der Schwer-

punktsaxe auf der concaven Seite und diese Maximalspannung wird in dem Querschnitt am grössten, für welchen y = o ist, also bei O. Bezeichnen wir diesen Werth der Spannung mit max. σ , so wird

max.
$$\sigma = \frac{P}{F} + \frac{P(c+g)}{\Theta}e$$

Bezeichnet b_0 die in der Biegungsebene liegende (also immer kleinere) Halbaxe der Centralellipse, so ist bekanntlich $b_0^2 F = \Theta$, und da $\frac{{b_0}^2}{e} = k$, der Kernweite auf der convexen Seite ist, so wird

max.
$$\sigma = \frac{P}{F} \left(1 + \frac{c+g}{k} \right).$$
 3)

Vernachlässigen wir hierin vorläufig die Excentricität c gegen g und nehmen wir an, dass letzteres gleich dem gemessenen Biegungspfeil f wäre, vernachlässigen wir also auch die ursprüngliche Biegung g_0 , so wird

$$\max. \sigma = \frac{P}{F} \left(1 + \frac{f}{k} \right).$$
⁽⁴⁾

Die Werthe von $\frac{P}{F}$ sind in den Tabellen 2—38 in die Spalte 2 eingetragen; diejenigen des Biegungspfeiles stehen in der Spalte 5. Die Kernweite k erhält man, wenn man die Werthe von x und y mit ihren Vorzeichen, also positive y nach abwärts, positive x nach rechts, in die Figuren des Blattes III einträgt und auf dem Radiusrektor des Punktes (x, y) die Entfernung des Mittelpunktes von der Grenze des Kernes abgreift. Einfacher und genauer erhält man bei den einfachen, fast durchweg geradlinig begrenzten Gestalten des Kernes in den geprüften Profilen die Werthe $\frac{f}{k}$ auf folgende Weise (Fig. 4 auf Blatt IV):

Die Gleichung der geraden Grenzlinie des Kernes, welche von dem Punkte m mit den Coordinaten x = + m, y = o zu dem Punkte n mit den Coordinaten <math>x = o, y = + ngeht, ist

$$\frac{\mathbf{x}}{\mathbf{m}} + \frac{\mathbf{y}}{\mathbf{n}} = 1,$$

und die Gleichung des Radiusvektors des Punktes (a, b) ist bx - ay = 0.

Der Durchschnittspunkt K beider Geraden hat also die Coordinaten

$$x = \frac{a m n}{a n + b m}$$
 und $y = \frac{b m n}{a n + b m}$

Die Kernweite k ist folglich

$$k = \frac{m n}{a n + b m} \sqrt{a^2 + b^2},$$

oder, da nach der jetzigen Bezeichnung

ausailer Boa

so ist

$$\frac{f}{k} = \frac{a}{m} + \frac{b}{n},$$

 $f = \sqrt{a^2 + b^2},$

oder, mit den Bezeichnungen in den Spalten 3 und 4 der Tabellen

$$\frac{f}{k} = \frac{y}{n} + \frac{x}{m}.$$

Die Werthe von m und n sind in den Spalten 15, 16 und 17 der Tabelle 1 enthalten; m ist für alle geprüften Profile beiderseits der Y-Axe gleich gross, daher nur ein Werth angegeben; und da für positive x das positive m und für negative x das negative m zu nehmen ist, so ist $\frac{x}{m}$ immer positiv. Für die I Querschnitte ist n beiderseits der X-Axe ebenfalls gleich gross (bei dem Profil 2688, wo diess wegen seiner Unregelmässigkeit nicht der Fall ist, wurde es so angenommen, da die Lage des Profiles bei den Versuchen nicht constatirt wurde), und daher nur ein Werth in die Columne 16 und 17 eingetragen; aus denselben Gründen wie vorhin ist dabei $\frac{y}{n}$ stes positiv. Für die anderen Querschnitte ist n zu beiden Seiten der X-Axe verschieden und wurden die positiven, mit n bezeichneten Kernweiten (die nach unten hin gemessenen) in die 16. und die negativen, mit n' bezeichneten, nach oben hin gemessenen in die 17. Columne eingetragen. Jene sind für positive, diese für negative y zu rechnen, so dass $\frac{y}{n}$ oder $\frac{y}{n'}$ doch wieder nur positiv ist. Der Werth von $\frac{f}{k}$ ist also nur positiv, wie es sein muss.

Die auf diese Art berechneten Werthe von $\frac{f}{k}$ sind für die, in den Tabellen 2-25 enthaltenen Versuche an Probestücken mit Spitzen an den Enden in die Spalte 6 jener Tabellen eingetragen und der hieraus berechnete Werth von max o in die Spalte 7. Für die Zerknickungsbelastung in den Spalten 1 und 2 derselben Tabellen wurde unter Zugrundelegung des letztbeobachteten Werthes für f, also des letzten Werthes für $\frac{f}{k}$ in Spalte 6, max. o berechnet und in die Spalte 26 der Tabelle 1 eingetragen; es ist dies also diejenige Maximalspannung im mittleren Querschnitt, die nicht mehr getragen wurde, unter der sich das Stück unaufhaltsam durchbog. Man sieht, diese ist in den verschiedenen Fällen sehr verschieden: von 333 at bei Lab.-Nr. 2699ª bis 8433 at bei Lab.-Nr. 2690b. Es scheint also, als ob die Zerknickungsfestigkeit einmal schon bei einer Maximalspannung weit unter der Elasticitätsgrenze überschritten, während ein andermal eine Maximalspannung weit über der Druckfestigkeit ertragen werden könnte, bevor die Zerknickungsfestigkeit erreicht wird. Aber dies scheint auch nur so, wie eine einfache Ueberlegung zeigt: Die hohen Zahlen für die Maximalspannung kommen

offenbar davon her, dass die Formel 4) (S. 18), welche unter der Voraussetzung vollkommener Elasticität abgeleitet wurde, nach Ueberschreitung der Elasticitäts- und noch viel mehr nach Ueberschreitung der Quetschgrenze ihre Gültigkeit verliert. Die Maximalspannungen auf der concaven Seite nehmen über jenen Grenzen langsamer zu als die Verkürzungen, das Stück drückt sich also auf dieser Seite mehr zusammen, die Neutralaxe rückt von der Schwerpunktsaxe weiter weg, gegen die convexe Seite zu, die Krümmung und der Krümmungspfeil müssen grösser werden und desshalb gibt die Formel 4) einen zu grossen Werth. - Die kleinen Werthe von max. o aber erklären sich, wenn man in den Tabellen 2-25 den Gang der Werthe von P und von max. σ oder besser noch von P und f (1. und 5. Spalte) näher betrachtet. Es geschieht dies am besten mit Hülfe einer graphischen Darstellung, indem man P als Abscisse und f als Ordinate aufträgt. In den Figuren 7-11 auf Blatt IV ist dies für die oben hervorgehobenen extremen Fälle und für noch einige andere geschehen. Man sieht, die Verbindungslinie der Endpunkte der Ordinaten, die Curve der f. nähert sich in allen Fällen derjenigen Ordinate, deren Abscisse die Zerknickungsbelastung Po ist, asymptotisch. Wenn also für eine Belastung, die noch etwas kleiner als die letztere ist, ein Biegungspfeil abgelesen wurde, der mit der Formel 4) einen noch unter der Elasticitätsgrenze liegenden also richtigen Werth für max. o ergibt, so muss nach Aufgeben der Zerknickungsbelastung f wachsen und zwar so rasch, dass die Maximalspannung schnell die Elasticitäts-, Quetschund Festigkeitsgrenze überschreitet.

Mit der Zerknickungsbelastung wird also jedenfalls die Grenze der Druckfestigkeit auf der concaven Seite erreicht, aber die Art und Weise, wie die Maximalspannungen bis dahin zunehmen, ist bei Stücken von verschiedener Länge und verschiedenen Profilen, ja, wie die Ausführungen am Anfang dieses Abschnittes erwarten lassen, selbst bei Stücken von gleichem Material, gleicher Länge und gleichem Profil sehr verschieden: Ich habe einen I Träger vom deutschen Normalprofil Nr. 10 (Lab.-Nr. 3028) und einer Länge von 12 m in 5 gleich lange Stücke a, b, c, d, e (in der Ordnung bezeichnet, wie sie im ganzen Stück aufeinander folgten) zerschneiden lassen und dieselben auf die gleiche Weise, wie im 2. Abschnitt beschrieben, Zernickungsversuchen zwischen Spitzen unterworfen. Dabei wurde die Ausbiegung nicht blos in der Mitte des ganzen Stückes sondern auf die gleiche Weise auch in der Mitte der vorderen Hälfte desselben gemessen. Die Hauptresultate dieser Versuche sind am Schlusse der Tabelle 1 aufgeführt und die einzelnen Versuchsreihen in den Tabellen 39-43 mitgetheilt. Aus letzterem sind die Curven der Biegunpspfeile f in den Figuren 12-16 auf

3*

Blatt IV gezeichnet. Man sieht, die Gestalten dieser Curven, welche sich alle asymptotisch der Ordinate der Zerknickungsbelastung nähern, sind sehr verschieden, und die Maximalbelastung, welche nicht mehr getragen wurde, berechnet aus der Zerknickungsbelastung mit dem zuletzt abgelesenen Biegungspfeil (Spalte 26 in Tab. 1) schwankt von 891 bis 2334 at, also von weit unter der Elasticitätsgrenze bis etwas über dieselbe. Diese letztere und die Quetschgrenze etc. wurden an kurzen, 8 cm langen Stücken bestimmt, die von dem im ganzen Träger aussen gelegenen Ende des Stückes a und von dem an c gelegenen Ende des Stückes d abgeschnitten worden, nachdem mit jenen Stücken die Zerknickungsversuche beendigt waren, bei denen sie nur eine Belastung von höchstens 400 at erfahren hatten (Spalten 18-21 in Tab. 1).

Es folgt hieraus der wichtige Satz, dass die nach Formel 4) (S. 18) berechnete Maximalspannung, die bei einer gewissen Belastung P stattfindet, ganz ungeignet ist, um auf den Sicherheitsgrad, der dabei vorhanden ist, schliessen zu können, und dass folglich jene Formel zur Dimensionen-Bestimmung nicht angewendet werden kann.*)

In der That, wollte man die Elasticitätsgrenze des Materials als zulässige Maximalspannung festsetzen, so würde man bei den hier geprüften Stücken mit Spitzen an den Enden (vgl. Spalte 27, 28 und 29 in Tabelle 1) im höchsten Falle eine 2,1 fache Sicherheit erhalten (Probestück 2697^b), in vielen Fällen aber nur eine einfache, d. h. keine; ja in dem extremsten, oben schon genannten Fall (26994) würde eine zulässige Maximal-Spannung von ungefähr $\frac{1}{4}$ der Elasticitätsgrenze (333 at) doch nur eine einfache Sicherheit geben, d. h. das Stück würde dabei eben zerknickt werden.

Die Abhängigkeit der Gestalt der gebogenen Schwerpunktsaxe, also des Biegungspfeiles von der Belastung P ergibt sich theoretisch aus der Gleichung 2). Für die Behandlung dieser Gleichung nehmen wir an: 1) dass die Schwerpunktsaxe OB (Fig. 3 auf Blatt IV) unter der Belastung P die Form der Sinuscurve annehme, wie sie es bekanntlich thut, wenn sie aus dem ursprünglich geraden Zustande durch die excentrisch liegende Kraft P gebogen wird; und 2) dass die ursprüngliche Gestalt OB, der Schwerpunktsaxe ebenfalls die der Sinuscurve sei, dass also die Gleichungen jener Axen seien:

$$y = g\left(1 - \cos\frac{x}{1}\pi\right), \qquad 5)$$
$$y_0 = g_0\left(1 - \cos\frac{x}{1}\pi\right), \qquad 6)$$

wo 1 mit hinreichender Genauigkeit als die Stablänge genommen werden darf und als grösster Werth von $x = \frac{1}{2}$ l zu nehmen ist.

Für flache Curven, wie sie nur vorkommen dürfen, darf

$$\frac{1}{r} = \frac{d^2 y}{d x^2} \text{ und } \frac{1}{r_0} = \frac{d^2 y_0}{d x^2}$$

gesetzt werden. Aus obigen Gleichungen folgt aber

$$\frac{d^2 y}{d x^2} = \frac{\pi^2}{l^2} g \cos \frac{x}{l} \pi \text{ und } \frac{d^2 y_0}{d x^2} = \frac{\pi^2}{l^2} g_0 \cos \frac{x}{l} \pi$$

und dies in die Gleichung 2) eingesetzt erhält man

$$g - g_0 \cos \frac{x}{1} \pi = \frac{P(c + g - y)T}{\Theta \epsilon \pi^2}$$

welche Gleichung für den Coordinatenanfangspunkt O die Beziehung

$$-g_{0} = \frac{P(c+g)l^{2}}{\Theta \circ \pi^{2}}$$

 $g = \frac{g_0 + c \lambda}{1 - \lambda}$

ergibt; setzt man hierin, der Kürze wegen

g

$$\frac{\mathrm{P}\,\mathrm{l}^2}{\Theta\,\varepsilon\,\pi^2} = \lambda, \tag{7}$$

8)

so folgt

Anfangs, für kleine Belastungen P, also für kleine Werthe von \, ist die Biegung g hauptsächlich von den Werthen g, und c, also von unbekannten und, was c anbelangt, auch wohl veränderlichen Werthen abhängig, und können bei Probestücken von gleicher Länge und gleichen Querschnitten je nach ihrer Einspannung die Werthe für g einen sehr verschiedenen Gang nehmen; aber in dem Maasse, als P wächst und damit λ sich der Grenze 1 nähert, in dem Maasse nimmt g immer rascher und rascher zu und nähert sich dem Werthe Unendlich, oder die "Curve der g" nähert sich asymptotisch der Ordinate, welche dem aus $\lambda = 1$ folgenden Werthe

als Abscisse zugehört.*)

wo

*) Zu einem ähnlichen Resultat gelangt man, wenn man voraussetzt, dass ursprünglich nur die Excentricität c und keine Biegung vorhanden sei. Die Gleichung 2) wird dann

$$\frac{\mathrm{d}^{2}\,\mathrm{y}}{\mathrm{d}\,\mathrm{x}^{2}} = \frac{\mathrm{P}}{\varepsilon\,\Theta}\,(\mathrm{c} + \mathrm{g} - \mathrm{y})$$

und ihr vollständiges Integral $c + g - y = u \sin t x + u' \cos t x$,

$$t = \sqrt{\frac{P}{\epsilon \Theta}}$$

und die Constanten u und u' aus den Bedingungen zu bestimmen sind : Für

und für $x = o \frac{d y}{d x} = -u t \cos t x + u' t \sin t x = 0$, also u = o. Demnach ist $c + g - y = (c + g) \cos t x$ oder $\mathbf{y} = (\mathbf{c} + \mathbf{g}) \left(1 - \cos \mathbf{f} \mathbf{x} \right)$

^{*)} Diesen Satz, zu dem ich auf rein experimentellem Wege gelangt bin, stellt Zimmermann an die Spitze seiner geistreichen Durchführungen: "Ueber den Sicherheitsgrad der Bauconstructionen, insbesondere der auf Knickung beanspruchten Körper" (Centralblatt der Bauverwaltung 1886 Nr. 23-25), bei denen er jedoch von anderen Gesichtspunkten ausgeht, als es hier geschehen ist.

Diess stimmt vollständig überein mit dem, was oben aus den Versuchen gefolgert wurde; die Zerknickungsbelastung ist also nichts Anderes, als der obige Werth P, aus der alten Euler'sehen Formel, der hier aber in anderer Weise abgeleitet wurde und in einem anderen Lichte erscheint. Bisher wurde jener Werth P. als "der kleinste Werth betrachtet, bei dem irgend eine, noch so kleine Biegung überhaupt bestehen kann, als diejenige Kraft, bei der der Stab zwar nicht zerknickt werden muss, aber doch bei der geringsten Zufälligkeit zerknickt werden kann."*) Aber es ist schwer einzusehen, warum ein Stab, der unter Belastungen, welche unter jener Grenze liegen, gerade geblieben ist, nun plötzlich nach Ueberschreitung der Grenze sich biegen und dass diese Biegung dann auch sogleich so rasch fortschreiten soll, dass der Bruch oder die völlige Durchbiegung erfolgt. - Nach obiger Ableitung ist Po der Grenzwerth der Belastung, bei welchem die schon von vornherein vorhandenen und allmählich wachsende Biegung unendlich gross, also die Zerknickungsfestigkeit überwunden wird.

Die aus Formel 9) berechneten Werthe für P_0 sind, für die Probestücke mit Spitzen an den Enden in Spalte 30 der Tabelle 1 eingetragen. Man sieht, sie stimmen für längere Probestücke ziemlich gut mit den in Spalte 23 enthaltenen beobachteten Werthen der Zerknickungsbelastung überein; aber für kürzere Stücke übersteigt das berechnete P_0 oft weit das beobachtete. Die Erklärung dafür gibt die Spalte 31, welche den Quotienten aus der berechneten Belastung P_0 dividirt durch den Querschnitt, also die Spannung unter der Voraussetzung, dass die Biegung Null sei, oder die mittlere Spannung β_m enthält. In fast allen Fällen, wo das berechnete P_0 bedeutend grösser ist als das in Spalte 23 enthaltene beobachtete, da liegt der Werth von β_m und also noch mehr der von

die Gleichung der gebogenen Schwerpunktsaxe. Aus derselben folgt, da

für
$$x = \frac{1}{2}$$
 $y = g$ werden muss,
 $g = (c + g) \left(1 - \cos t \frac{1}{2}\right),$
 $g = c \frac{1 - \cos t \frac{1}{2}}{\cos t \frac{1}{2}},$

oder

oder, da g der gemessene, früher mit f bezeichnete Biegungspfeil ist:

$$f = c \frac{1 - \cos t \frac{1}{2}}{\cos t \frac{1}{2}}$$

Auch hier ist für kleine Werthe von P, also f, f wesentlich von c abhängig, also zufällig und veränderlich, und nähert sich dem Werthe Unendlich, wenn sich $f \frac{1}{2}$ dem Werthe $\frac{\pi}{2}$ oder P dem Werthe $\frac{\pi^2 \Theta \epsilon}{l^2}$ nähert.

*) Grashof, Theorie der Elasticität und Festigkeit, S. 165.

max. σ über, oft weit über der Elasticitäts- und sogar über der Quetsch- und Festigkeitsgrenze, also über jener Grenze, innerhalb deren die obigen Entwickelungen und Formeln Gültigkeit haben.

Es folgt daraus, dass der aus der Eulerschen Formel 9) berechnete Werth von P₀ nur insoweit als Zerknickungsbelastung genommen werden darf, als die sich daraus ergebende mittlere Spannung $\beta_m = \frac{P_0}{F}$ eine gewisse Grenze, vielleicht die Elasticitätsgrenze, nicht überschreitet.

Um die Annahme, oder das in der Note auf Seite 20 theoretisch gefolgerte Resultat, dass die gebogene Schwerpunktsaxe die Sinus-Curve sei, auch durch den Versuch zu prüfen, habe ich bei den 5 Stücken mit dem deutschen Normalprofil Nr. 10 Lab.-Nr. 3028^{a-e} die Ausbiegung nicht blos in der Mitte, sondern auch in der Mitte der vorderen Hälfte gemessen, und zwar durch zwei ganz gleiche und gleich angebrachte Rollenfühlhebel. Die Resultate sind in den Spalten 3', 4', 5' der Tabellen 39-43 augeführt, die den Spalten 3, 4, 5 derselben, sowie der früheren Tabellen entsprechen.

Die gemessene Ausbiegung f' an der bezeichneten Stelle ist, wenn y' und y'₀ die schliessliche und anfängliche Ordinate dortselbst und g und g_0 wie früher den schliesslichen und anfänglichen Biegungspfeil in der Mitte bezeichnen, wie leicht zu sehen

$$\begin{split} f' &= (g - y') - (g_0 - y'_0) \\ &= (g - g_0) - (y' - y'_0), \end{split}$$

oder nach Gleichung 5 und 6 für $x = \frac{1}{4}l$

$$f' = (g - g_0) - \left(g \left(1 - \cos \frac{1}{4} \pi\right) - g_0 \left(1 - \cos \frac{1}{4} \pi\right)\right),$$

= $(g - g_0) \cos \frac{1}{4} \pi$,

oder, da g — g_0 die in der Mitte des Probestückes gemessene Ausbiegung f ist (Spalte 5),

$$f' = f \cos \frac{1}{4} \pi = 0,707 f.$$

Dies trifft, wie man sich leicht überzeugt, bei den Werthen der Tabellen 39 und 41-43 sehr nahe zu; nur in Tabelle 40 ist die Abweichung eine grössere; hier sind aber auch die Anfangswerthe von f' sogar grösser als die von f; das Stück hatte eine sehr unregelmässige Biegung angenommen; die vordere Hälfte war bei weitem mehr ausgebogen als die hintere.

Die in Formel 8) berechnete Ausbiegung g in der Mitte ist nicht die gemessene, in den Tabellen 2 bis 43 mit f bezeichnete, sondern es ist

$$\mathbf{f} = \mathbf{g} - \mathbf{g}_0 = \frac{\mathbf{g}_0 + \mathbf{c}\,\lambda}{1 - \lambda} - \mathbf{g}_0 = (\mathbf{c} + \mathbf{g}_0)\frac{\lambda}{1 - \lambda}.$$

Da bei den Versuchen für aufeinander folgende Werthe von P oder λ der Pfeil f gemessen wurde, so kann

$$c + g_0 = f \frac{1 - \lambda}{\lambda}$$
 10)

daraus gefunden werden. Diese Rechnung ist für die Stücke mit Spitzen an den Enden durchgeführt worden, wenn auch nicht für alle beobachtete Werthe von P oder λ und f; die Resultate sind in den Spalten 8 und 9 der Tabellen 2-25 und 39-43 enthalten. Man sieht zunächst, dass die Werthe von $c + g_0$ fast durchweg nur so klein sind, wie sie, trotz sorgfältigen Einspannens, wohl vorkommen können; ferner, dass überall da, wo der Euler'sche Werth für Po gut mit den beobachteten stimmt (2688°, 2690° und d, 2691° und d, 2697°, 2699° und d und 3028^{a-e}), die Excentricität $c + g_0$ nur klein ist, mit einer einzigen Ausnahme (2698'), wo sie nicht unter 4 mm herab und fast bis 9 mm hinauf geht. Doch ist hiebei zu berücksichtigen, dass dieses Stück schon wiederholt geprüft worden war. In den Fällen, wo das Euler'sche Po kleiner als das beobachtete ist (2694 d und f, 2695^{d} , $2697^{\circ \text{ und } d}$), ist $c + g_{o}$ entweder durchweg sehr klein oder anfangs grösser und wird dann bei zunehmender Belastung kleiner. Endlich in all' den Fällen, wo das Euler'sche Po grösser als das beobachtete ist (2690°, 2691^b, 2693^d, 2694^b, 2695^{b und c}, 2697^b, 2698^{b und c}, 2699^b), hat $c + g_0$ grosse Werthe, namentlich gegen den Schluss hin.

Statt des nur angenäherten Werthes in Formel 4) für max. σ erhält man den richtigen in Formel 3), wenn man in letzterer für g setzt $f + g_0$ und für $c + g_0$ alsdann den in Gleichung 10) gefundenen Werth. So wird

max.
$$\sigma = \frac{P}{F} \left(1 + \frac{f}{k} \cdot \frac{1}{\lambda} \right)$$

und ist also aus den Spalten 6 und 8 der Tabellen 2—25 und 39—43 leicht zu erhalten. Die so berechneten Werthe sind in die Spalte 10 jener Tabellen eingetragen. An den obigen Auseinandersetzungen (S. 19 und 20) wird durch diese Correktion von max. σ nichts Wesentliches geändert.

Weit compliciter noch, als bei den bisher besprochenen Stücken mit Spitzen an den Enden, sind, wie vorauszusehen und wie die Tabellen 26-38 zeigen, die Vorgänge bei der Biegung solcher Stücke, die mit flachen Enden an festen Druckplatten liegen. Hier kommt zu den Schwierigkeiten, die einer genauen centrischen Einspannung entgegenstehen, noch die hinzu, eine völlige gleichmässige Vertheilung des Druckes über die Endflächen, also eine völlig gleichmässige Anlage derselben an den Druckplatten zu erzielen. Und vorausgesetzt, dass eine solche ganz oder nahezu erreicht wäre, so würde die Bedingung, dass die End- und Druckflächen normal zur

Schwerpunktsaxe stehen müssen, so lange erstere satt an letzteren anliegen, eine complicirtere Biegung der Schwerpunktsaxe erfordern, als die einfach bogenförmige bei den Stücken mit Spitzen an den Enden. Sie würde, bei völliger Unverrückbarkeit der Druckplatten oder der Endflächen an denselben, so wie Fig. 5 auf Blatt IV oder, bei einiger Nachgiebigkeit jener, wie in Fig. 6 auf Blatt IV ausfallen müssen. Im ersteren Falle muss die Mitte, deren Bewegung bei den Versuchen gemessen wurde, schon von Anfang an eine beträchtlichere Ausbiegung zeigen (wie etwa bei den Stücken 2689° und d, 2694° und e, 2698 d und e in den Tabellen 26, 27, 31, 32, 37 und 38), im zweiten Fall dagegen muss die Ausbiegung der Mitte anfangs Null oder doch nur sehr klein sein (wie bei den Stücken 2692^{b, c und d}, 2696^{b, c und d} und 2698^{bb} in den Tabellen 28, 29, 30, 33, 34, 35, 36). Aber am Schlusse, bei Ueberwindung der Zerknickungsfestigkeit ist, wie die Versuche zeigen, die Biegung allemal eine einfach bogenförmige, wenigstens der Hauptsache nach, wobei sich die Endflächen von den Druckplatten ablösen und nur noch mit dem Rande auf der convexen Seite dieselben berühren, an welcher Stelle dann der ganze Druck concentrirt ist. Diese Biegung bereitet sich aber, wie gleichfalls die Versuchsreihen zeigen, schon längere Zeit vor der Ueberschreitung der Knickgrenze vor, indem sie sich mit den obigen, ursprünglichen combinirt, und da sie eine Neigung der Tangente an die Enden der Schwerpunktsaxe gegen die Normale zu den Druckflächen zur Folge hat, so wird dadurch eine Verschiebung der Resultante der Druckkräfte auf den Endflächen aus der Schwerpunktsaxe des Probestückes heraus gegen die convexe Seite hin hervorgebracht, und damit jene Hin- und Herbewegungen der Mitte, oder jenes Wachsen und Abnehmen und sogar Wenden des Biegungspfeiles nach der entgegengesetzten Seite, wie es die Tabellen 26-38 so häufig zeigen.

Aus dem Allem dürfte folgen, dass eine theoretische Verfolgung des Vorganges bei den Stücken mit flachen Enden an festen Druckplatten so gut wie unmöglich ist. Wir sind hier also auf die rein empirischen Formeln angewiesen, welche im nächsten Abschnitt behandelt werden sollen, und von denen uns, wie wir sehen werden, die gebräuchlichste, die Schwarz'sche Formel, gerade in diesem Falle glücklicherweise nicht im Stiche lässt.

4. Abschnitt. Die praktischen Knickungsformeln.

Unter den sogen. praktischen Knickungsformeln hat bisher die Schwarz'sche, nachdem sie von Laissle und Schübler so zu sagen wieder an's Tageslicht gezogen worden war, die meiste Anwendung gefunden. In derselben

$$P_{0} = \beta_{0} F \frac{1}{1+\kappa} \frac{F}{\alpha}$$

bedeutet β, die Druckfestigkeit kurzer Stücke, die nicht gebogen werden (Spalte 21 in Tabelle 1), und z einen constanten Coëfficienten, der von Laissle und Schübler für Schmiedeisen zu 0,00009 angegeben wird. Die übrigen Buchstaben haben die gleiche Bedeutung, wie bisher. Berechnet man aus dem durch Beobachtung gefundenen P., der Zerknickungsbelastung (Spalte 23 und 25 in Tab. 1), das z der Schwarz'schen Formel, so findet man dafür die in Spalte 32 und 33 der Tab. 1 enthaltenen Werthe. (Für die Profile 2688, 2689 und 2693, für welche β_0 nicht bestimmt werden konnte, wurde der mittlere Werth $\beta_0 =$ 4500 at angenommen). Man sieht, diese Werthe schwanken zwischen 0,000122 und 0,000614 bei den Stücken mit Spitzen an den Enden und zwischen 0,000033 und 0,000416 bei den Stücken mit flachen Enden. Da der Werth von z von dem Werthe β_0 abhängt, der immerhin etwas unsicher zu bestimmen ist, so wurden die Werthe von z auch noch für den constant angenommenen mittleren Werth $\beta_0 =$ 4500 at berechnet und in die Spalten 34 und 35 der Tabelle 1 eingetragen. Auch hier schwanken diese Werthe von 0,000090 bis 0,000614 bei den Stücken mit Spitzen und zwischen 0,000041 und 0.000311 bei den Stücken mit flachen Enden. Für Probestücke von gleichem Profil aber verschiedener Länge ist zwar die Uebereinstimmung etwas besser, aber auch nicht durchweg befriedigend (siehe Profile 2694 und 2695).

Berechnet man für die Probestücke mit Spitzen an den Enden (23 an der Zahl mit Weglassung des 2693⁴ und der fünf mit dem deutschen Normalprofil Nr. 10) die Werthe von β_0 und \varkappa in der Schwarz'schen Formel mittelst der Methode der kleinsten Quadrate, so findet man $\beta_0 = 2270 \ at$ und $\varkappa = 0,000058$,

Werthe, die von den bisher üblichen weit abweichen, obwohl der von β_0 , als zwischen der Elasticitäts- und Quetschgrenze gelegen, gerade nichts Unwahrscheinliches hat, wenn man β_0 , wie es geschehen kann, als Maximalkantenspannung auffasst. Die mit jenen Werthen von β_0 und z rückberechneten Werthe der Zerknickungsbelastung P_0 sind in die Spalte 36 der Tab. 1 eingetragen. Die Uebereinstimmung derselben mit den beobachteten Werthen von P_0 lässt in manchen Fällen viel zu wünschen übrig, ist aber im Ganzen doch nicht gerade schlecht.

Wenn in gleicher Weise für die 12 Probestücke mit flachen Enden (das 2689° aus leichtbegreifflichen, aus Tabelle 26 ersichtlichen Gründen weggelassen) die Werthe von β_0 und \varkappa in der Schwarz'schen Formel mittelst der Methode der kleinsten Quadrate berechnet werden, so findet man

$\beta_0 = 3100 \ at \ und \ \varkappa = 0,000029,$

letzteres also genau halb so gross, als bei den Stücken mit Spitzen an den Enden, übereinstimmend mit der bisherigen Annahme. Die rückberechneten Werthe von P_o in Spalte 3 der Tabelle 1 stimmen, mit einer einzigen Ausnahme (2698^e) recht gut mit den beobachteten. Bei jener Ausnahme ist, wie die Versuchsreihe in Tabelle 38 zeigt, die Einspannung offenbar von vornherein sehr mangelhaft gewesen. Lässt man sie deshalb bei der Berechnung von β_o und \varkappa weg, so finden sich

 $\beta_0 = 3150$ at und $\varkappa = 0,000027$,

Werthe, welche von den obigen doch nur sehr wenig abweichen.

Die Grundform der Schwarz'schen Formel stimmt mit der für die Maximalkantenspannung (Formel 4) S. 18) überein, und ist ja jene auch aus dieser abgeleitet oder auf sie zurückgeführt worden. Aber die dabei gemachten Annahmen sind zum Theil so willkürlicher Natur, dass von der Bedeutung der Formel 4) nicht mehr viel übrig blieb. Daraus erklärt sich, dass die Schwarz'sche Formel, wenigstens bei den Stücken, welche mit flachen Enden an festen Druckplatten liegen, in recht gute Uebereinstimmung mit den Versuchsresultaten gebracht werden konnte, während die Formel 4) als ganz und gar untauglich für den praktischen Zweck der Dimensionenbestimmung erkannt werden musste. Für Stücke mit Spitzen an den Enden verdient jedoch wie gezeigt die, hier theoretisch ableitbare Euler'sche Formel den Vorzug.

In neuerer Zeit hat Lang¹) mit Zugrundelegung der Formel 4) eine neue Formel für die Knickungsfestigkeit abgeleitet:

$$\max. \sigma = \frac{P}{F} \left(1 + \alpha \frac{P}{\varepsilon F} \cdot \frac{l^2}{k^2} \right)$$

wo α ein constanter Coëfficient sein soll und die übrigen Buchstaben dieselbe Bedeutung haben, wie bisher. Wenn nun schon nach dieser Art der Entwickelung eine geringe Uebereinstimmung der neuen Formel mit meinen Versuchsresultaten zu erwarten ist, so wird diese Erwartung noch verstärkt durch die Annahme, welche Lang im Laufe seiner Entwickelung macht, dass der Biegungspfeil f innerhalb der Elasticitätsgrenze proportional mit der Belastung P wachse, eine Annahme, welche, wie ein Blick auf die Figuren 7—16 auf Blatt IV und die obigen Erörterungen zeigen (S. 19), bei weitem nicht zutrifft. In der That, wenn man α aus meinen Versuchen berechnet, was nach

$$\alpha = \left(\frac{\max \sigma}{\left(\frac{P}{F}\right)} - 1\right) \frac{\varepsilon}{\beta} \cdot \left(\frac{k}{I}\right)^2 = \frac{f}{k} \frac{\varepsilon}{\beta} \left(\frac{k}{I}\right)^2$$

mittelst der Spalten 6 und 2 der Tabellen 2-25 und der Angaben für 1 und k in der Tabelle 1 leicht geschehen

¹) Rig. Ind. Zeitg. 1883 Nr. 23 und 1884 Nr. 22.

kann, und wenn man dabei, wie Lang es will, immer unterhalb der Elasticitätsgrenze bleibt, so findet man für α sehr verschiedene Werthe sowohl bei einem und demselben Probestück, je nachdem P oder β grösser oder kleiner ist, als auch bei verschiedenen Probestücken. So erhält man z. B. bei dem Probestück 2690^b, dem die Figur 7 zugehört, für

30 t

0.0005

 $\begin{array}{rrrr} P = & 10 & & 20 \\ \alpha = & 0,0116 & & 0,0035 \end{array}$

und bei dem Probestück 2694^d (Fig. 9) für

P = 7 11 14 ta = 0,0102 0,0138 0,0169.

Für die beiden gleich langen Stücke 2038^{a und b} vom deutschen Normalprofil Nr. 10 wird für

 $P = 3.6 t \alpha = 0.0721$ bezw. 0.0194.

Die Uebereinstimmung wird nicht besser, wenn man statt des Werthes $\frac{f}{k}$ den corrigirten $\frac{f}{k} \cdot \frac{1}{\lambda}$ setzt. Obige Zahlen für α werden dann: bei 2690^b und für

	P = 10	20	30 t
	$\alpha = 0,1339$	0,0200	0,0018
bei 2694	4 [™] und für		
	P = 7	11	14 t
	$\alpha = 0,0203$	0,0174	0,0167
und für	$2038^{a \text{ nnd } b} \alpha = 0,0$	868 bezw.	0,0234.

München, im September 1886.

Tabellen.

Bauschinger, Mittheilungen, XV.

1

*

26

Tabelle 1. Verzeichniss

								1			12 40 1-2		2					
1	2	3	4	ā	6	7	8.	9	10	11	12	13	14				15	16 17
* 00			Lä	nge	Gewi	icht	(Querschnitt	S-	Träg	heits-	Halbi	n. der		ř		Dime	nsionen d.
Inu IN-	Profil und Lage	Debuikant	flachen	angef.		1	D			der	A ve	entral	-Ellipse		12		Cent	ralkernes
sich ab.	desselben	raumant	Enden	Spitz.	lm Ganzen	pro lanf m	Breite	Höhe	Grösse	VV	VV	XX	YY YY		T.		m	Ordinaten
leze			1	li	7.	7	I AA	11 1 1	Ľ		11	a _o	bo				Ab	n n'
<u> </u>		1	cm	<u> </u>	ĸg	kg	cm	cm	qcm	bigem	bigcm	cm	cm			-	cm	cm cm
									1		1.4						1.16	
0000																		1
2688a		Burbacher	22,0	-	10,67	48,50	25,20	13,86	63,55	575,6	6789	10,33	3,01				8,48	1,31
	÷V		194						No com								~	
															1			
<u>-</u>	37	"	392,1	405,5	190,95	48,70	-		63,80			10,35	3,01				8,50	1,31
	talasten Najminasik. Ali	10 910.0				1.1			1					,				
96900	LI	Cald	12.00		0.709	20.00	1- 40		00.10						1		100	THE R
20094	X	schmidt	12,90		2,983	20,00	15,66	7,32	26,40	63,59	957,4	6,02	1,55				4,63	0,66
	+ţ																	
c	11	• • •	131,2	-	- 26,45	20,16			26,61			6,04	$1,55_{5}$					
1.										1							1	
d	"	13	253,4	-	48,25	19,04			25,07			5,87	1,52					The Cont
													-					
	. ! .															*	146	a sign of
2690a		Nöther	11,95	-	1,648	13.79	12,40	7,20	18,40	37,99	438,0	4,87	1,435				3,83	0,57
3	+İy																1.08	1.50
b	,,		78,0	89,0	11,82	15,12			20.17			5.09	1.505				4.00	0.59
												-,	-,				1,00	0,00
0			140.0	151.0	10.10	12.65			10.99			1.05	1 49				0.01	0.57
-	. "	. 13	110,0	401,0	10,10	10,00	1.1		10,44			4,00	1,40		ł.		3,81	0,57
			000.0		00 70				10.00	1								
<u>a</u>	***	"	209,6	223,0	28,98	13,64			18,22			4,85	1,43		1		3,81	0,57
					1,001	10,00			10,20									
9601.		Stumm	7 09		0.6745	9 59	0.02	1.02	11.90	17.91	104 7	9 0 9	1.94				201	0.00
20014	+X	Stamm	•,02		0,0140	0,92	9,95	4,92	11,20	11,51	104,7	0,04	1,24		1		2,94	0,62
	+y		1.1- 1		1. 00										÷			
<u>b</u>	12	"	140,1	196,1	12.22	8,42			11,16			3,80	1,23				2,93	0,62
		a trans	1,01		0,000	0,01			11,10	-							1	
			250.0	970.0	20.07	0.00			11.90			0.00	1.24		-			0.00
<u>c</u>	"	"	299,0	270,0	22,27	8,60			11,38			3,83	1,245				2,95	0,62
													÷		1			
d .	"	, ,,	454,0	465,0	40,30	8,88			11,76			3,90	1,26				3,00	0,63
	1											-						
2692a	+X	Krämer	7,90		0,7275	9,21	9,89	4,80	12,28	18.68	176,0	3,775	1,23				2,90	.0,63
	+y																	
b	12	12	42,0		3,86	9,19			12,27			3,77	1,23				1.83	Server 1
-															1			
e			82.9		7.68	9.96			12.34			3.78	1.93				112	1.016.2
-	**	,,	52,0		1,00	0,20			12,01			0,10	1,20				-	
			197 5		10.47	0.05			1.0.10			0.75	1.00				1.351	T. Carles
d	13	17	157,5	_	12,41	9,07			12,10			5,10	1,22					
			-	38.5													1.5	1 Martin

*) Die einfach, bezw. doppelt unterstrichenen Buchstaben bezeichnen Probestücke, die aus ein und demselben längeren Stücke abgeschnitten

der Probestücke.

i	15	16 17	18	19	20	21	22	23	24	25 1	26	.)7	1 90	-2()							-	
	Dime	nsionen d.		ŝ			Zerk	nickuno	shel	asto	· H .	Baid	Election	29 itäta	30	31	32	33	34	30	36 Pad. Se	37 hwarz
	Cent	ralkernes	Elastici-	itäl	sch-	keit	v de	r Stück	e m	it it	ant bei ieg	Gre	nze für	die	θε 1 ²)000	(AC	x der	Schw	arz's	chen	Forme	t für
	cis.	Ordinaten	täts- Modul	ret	ren	ruc	Spitz.	a.d.End.	flach	. End.	-K ng.	Max	imSpar	ing.:	.π ²	H H	$\beta_0 = 2$	1. Sp.	$\beta_0 = 4$	500 at	200	00 6
	nu	n n'	Mouui	Glas	20	D	chb	Betrag	chb.	Be-	pan pan Jur	Р	f	h-	0 = = = = = = = = = = = = = = = = = = =	m	u. f. S	tücke	u. f. S	tücke	- 22	= 31 0,00
	em em	cm cm	at	at	at	at	Dur Ric	t	Rich	trag #	NSat	+		Gra	w h	02	mit	flach.	mit	flach.	10	0
					1					6	ui	l	mm		t	at	oprez.	End.	oprea.	End.	1 I	t
	1																	Millio	ontel			
	0 10	1 21																		1		
	0,40	1,01	Ser Ser Ser	1	1000			al here					19									
								1							No. 19							
	0 = 0	1.91			1.6							. West	Last all									
	8,50	1,51					+	70,5			2514	63	6,34	1,1	69	1080	169		169		70,5	
					12: 1			1														
		0.00	110.10000	1.100	0-0-00	1391	1.1.1	1			1	1. 1.										
	4,63	0,66	1.840000	1480	2500	-													1			
			10.08		here is						1.1.1.1.1.1.1							100		100		-
			17. 200		1.20		1	11.20	1	70	11228							100		100		68
	1				1	1																
	1.18	The Fit		1.2	144.5					10	1 19 22		1	ent								
						1.			Î	40								53		53		43
	1.16	1 minist		-	1						12.0.2	1. 19	in al i	mie	1.1							
	2 92	0.57	2:094000		2790	4500		1					1.000		1111							
	0,00	0,01	2 024000		2120	1000																
						1.				177.54												
	4,00	0,59				-	¥	61			8433	37	0,50	1,7	94,5	4680	133		138		38	
	115				196.0				1.3	Trank!	122	1	1.88	1.18								
	3,81	0,57	1	100	1	1	4	30,25		1.24	3384	24	2.11	1.2	33	1810	150		153		95	
		- leugs	the states		140	144		S.M.E			TRUET			-,-	00	1010	100		100		20	
	2.81	0.57					1	17.95			9406	16	5.97	11	15	0.00	150	1	1.5.1		10-	
	0,01	0,01	2.260000	1870	0 2800	4400) Y	11,20			2400	10	0,21	1,1	15	820	152		194		16,5	
	1	100000	-	1	148.13				1 - 6	1.11	61.8	1.1.1	an in	145								
	201	0.62	<u>.</u>		2480	4650	,		-	1.5												
	2,01	0,02			-100	1000	1	1	1.1	1.1							1 1		1		-	
		0.00				112																
	2,93	0,62	2.270000	158	0.9800	1900	1	10,65			2684	9,5	4,76	1,1	14,0	1250	225		230		13	
			2 210000	100	2000	11200	1			1912	Dia Co	122	1631	2.41	1						1	
						1						1										
	2,95	0,62		-			1	4,1		1.25	517	4,1	8	1	4,7	410	240		245		7	
	-	1.000	1	15	100.00		1-10	19.77.k		1	Star 1		1.1.1		n (alu)			-			14	
	3,00	0,63	1				1	1,3		1	402	1,3	00	1	1,6	140	285		290		3	
			-																			
	2.90	0.63	-	179	0 2690	4900						1		1338.0					6 .		. 3	
	2,00	10,00		1.0		1000	1								19.28							
	1		-		The f		1			100			1	Wit !!!								
								1	1	40,5				1				416		311		37
	1				04					1.	-											
					-		-	-	+	35			-					160		129		34
							1			-									1			
	-93	aller dismissi	AND AND	4.1	1724			and the	1	28,5			1000	2	Things	1		85		72		27,5
				13	1				1													
	1.5	DA'E			121.5	14 1			1 30	1.8-	1 3.800		1.8. 4. 6	ANE O								1

wurden; die nicht unterstrichenen Buchstaben bezeichnen Stücke, die einzeln dem Laboratorium übergeben worden waren.

27

4*

*

A Latte

Tabelle 1.

	,												
1	2	3	4	ō	6	7	8	9	10	11	12	13	14
0.5	and the second s		Län	ge	Gewi	cht	(Querschnitts		Trägh	neits-	Halbm	. der
Nr.	Profil und Lage		zwische	n den						moment	bezügl.	Central-	Ellipse
ichn	linelline	Fabrikant	Enden	angel. Spitz	im	pro	Breite	Höhe	Grösse	der 1	axe:	XX	Axen: VV
Lal	desselben		l	l,	Ganzen	lauf. m	XX	YY	F	XX	YY	a	b
Be	A Lots A Lot A		cm	cm	kg	kg	cm	cm	qcm	bigcm	bigcm	cm .	cm
	1 1				4								
26939	+Y-	Burbacher	14.83		4 897	33.02	20.96	6.98 ± 2.96	44.20	374.8	3053	8.29	2,905
20000		Hütte	11,00		2,001	00,01	-0,00	0,00 1 2,00	11,10	011,0	0000	0,20	2,000
	+\y			100								0.01	0.01
d	"	"	177,15	190,55	58,80	33,19	205	1-1 1 1 1 1	44,4			8,31	2,91
								A.T.	1.1.2.				
	1 1												
2694a	+X	Völklinger	9,97	-	1,606	16,11	14,48	4,19+1,89	21,45	41,2	670,6	5,59	1,385
1	+iy	Hutte								•	100		
h			80.05	93.4	12.87	16.09			21.43			5,59	1,385
-	"				,-				,				
					07 00					The second		0	1.00
c	,,	"	160,0	-	25,82	16,14			21,49			9,99	1,385
												-	
d			230,1	243,5	37,22	16,18	6 - 1		21,54	1		5,60	1,39
-		and shine 1				1.			signa	-	Steels -	rélien	1
			9145		10.99	15 65			20.84			5 59	1 36-
e	*1	,,	514,0	-	49,22	19,09			20,01	-		0,04	1,005
1	P8 P81 781 1	1902 B.10	NE VOS		1. Sala							The May	LUNER
f	73	13	315,1	328,5	49,62	15,75			20,97			5,52	1,37
		101.18	anti an		la la secore	1	1 de si		12 - 51			Cinite .	(and
96050	Dil .v	Phönix	8 30		1.0265	12.37	7.70	3 32+1 96	16.47	26.91	140.6	2.92	1.28
20504		THOMA	0,00		1,0105	12,01	.,	0,02 1,00	10,11	20,01	110,0	-,	-,
	+17	12			1 11.95		142.1					1	-
			50.0	09.4	6 15	19.90			16.38			9 49	1 98
10	,,,	,, -	50,0	05,4	6,10	12,50			10,50			4,94	1,20
		Stene	1				1.1		10885			100-90	
(277	12	84,5	97,9	10,39	12,30	1	1.	16,38			2,92	1,28
	ALL AND AND A	and a set	11 1 10	1401	1 iste		1 inter		1.16	1		SKI	
i			144 2	155 2	17 90	12.41		00	16.52	1961 1991	072 1	2.92	1,28
-	" "	"	111,2	100,2	11,00	12,11							
		1.2. 2. 2.	1.18	100	in the second		1.1.1					and a	
0000		DL	10.00		1 090	14.10	11.77	907159	10.00	66.0	199.0	9.52	1.87-
26968	+X-	Phonix	12,98	-	1,008	14,10	11,00	2,01+0,84	15,00	00,8	122,0	2,00	1,015
	+117	145 241	No. 1 C	827 C	101808		181					- CORRELL	
	4 19			1					10.00			0 50	1.07
- 1	,,	"	107,4	-	15,14	14,10	1		18,92	THE T	12 1	2,925	1,87
	*				1.1.8.18								
12	e		149,5		21,47	14,37		,	19,28			2,545	1,89
-	- 166 "	1				Page 1					1		
			201 0		91.00	14.90			10.90		1	954-	1.89
	1 ,	"	221,8	-	51,90	14,38			19,29		1.5	2,045	1,00
2697	a+X	Phönix	8,00) - (0,302	3,77	5,70	0,72+2,10	5,15	2,71	12,19	1,54	0,725
13.1.						10000						1	
	+ y		30.1	415	114	3.70			5.18			1.54	0,725
	31	"	00,1	11,0	1,11	0,10							-
	The second second by	a free of a starting the	and a start of the	a strong	I Intelligentiet	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	appleiture of	e president i	- annorba	1	1	and is we

.

(Fortsetzung.)

15	16	17	18	19	20	21	22	93	94	95	NC	:07	90		20	91	90	00		.15 1	0/1	
Din	ensio	nen d.	10	in in	20		Zerk	nickuno	shel	20 asto	· E .	Z1 Raid	Elestic	29 itäte	50	31	32	33 Sahn	34	30 ahon	36 Po d. Sel	37 hwarz.
Ce	ntralk	ernes	Elastici-	ität Ize	sch.	·k- keit	de	er Stück	te m	it.	ant bei	Gre	nze für	die	θε 1 ² 000	6 0 C	~ uei	Forme	l für	chen	Forme	at in 1
cis.	Ord	inaten	täts-	stic	nets)ruc tigl	Spitz.	a.d.End.	flach.	End.	K	Max	imSpan	nng.:	$= \pi^2$ 2'00	- - - - - - - - - - - - - - 	$\beta_0 = 2$	1. Sp.	$3_0 = 43$	500 at	000	000
Abs	n	n'	Modul	Glas	20	D	chb chtg	Betrag	chb htg	Be-	lax pan Jur	Р	f	sh-	Po=	E E	u. I. c	mit	1. 1. 5 mit	mit	= 0,0	= 3 = 0,0
cm	cm	cm	at	at	at	at	Dun Rie	t	Dur Ric	t	at at	t	mm	Sid	t w	at	Spitz.	flach. End.	Spitz.	flach. End.	200	200 ×
1.				10 M														Millio	ontel	1	1	
	1 1		-											-						1		
6,5) 1,2	2 2,83	2.240000	1190	2150	-																
					1									4								
6.6	0 1,2	2 2,83					1	61			1687	51	0.46	1.2	204	4820	614		614		83	
											100.		-,	-,-					011			
				1.		1	3-	122			The second			-								
4,3	1 0,4	6 1,01;	2.070000	1330	2240	3900																
			a charles				1.36			0.03	1				- TON CONTRA	1			is a		-	
4.3	2 0.4	6 1.01	5				1	40			2839	25	0.80	1.6	93	4340	240		310	1	88 5	
1,0		-,-,-	1.000		-		1		1.8	2100	2000	-0	0,00	1,0	00	1010	240		510		50,0	
				12	1			1	1	10								0.0		0.0		10
1.3		1815			181			1112	Y	40	46.01		100.7	1 miles				62		00		48
		C 1 00	Lineson					10.00		1.1.1			- 10		10.5							
4,3	3 0,4	6 1,02			1		+	11,10			2794	13	5,40	1,4	13,7	640	122		145		17,6	
					-											-					1.	
		in with							Y	29,5	5		1 martin	12				33		41		25,5
											-											
4,2	8 0,4	6 1,00)		-		+	9,75	5		2358	8	10,31	1,2	7,5	360	128		151		11	
			1.		1																	
2,2	2 0,4	19 0,88	3 2.03000	0 173	0 267	0 5350	C															
		1			100				172		1 100.00			18404-								
	1																	1				
2,2	22 0,4	19 0,8	3		1820	1.	+	42		1.61	3418	26	0,48	1,6	132	8060	443	1.	308		32,5	
		-																				
2,2	22 0,4	49 0,8	3		Real		4	40			4041	25	0,58	3 1,6	55	3360	204	1	144		28	
		1											1.									
2.	22 0,	49 0,8	3		1.5.1		1	30		10	3491	22	1,62	2 1,4	22	1330	13:	5	101		20	
					- Pales		1	1	1		1 1 1 1 1 1											
							1	1.3												1		
1,	09 1,	70 0,6	0 2.05000	0 174	0 263	0 390	0										1					
										1	1						1					
								-													-	
									1	55,	5							99	1	161	1	54
	1			-			1					1		1000	Indep	1	12		111			
					-				X	52						1.2		71		107		50,5
		Sel P					19 0			1.4.	64.0	1 .	8 8 7 1 1	1. 1.48								
							-		2	47								44	Ł	61		43
		C1 +1	111	14.2	- 60.		QD-C	1665	4		1.17.1		b. Mais	0 00 2								
0	09 0	720.0	5 2:06000	00 175	50 860	0 559	30					-										
0	00 0	150,2	2 00000	50116	0000	0000		Die	31	12	1940	1	210	n Luis							1 - 12	
	00		E	1	15	1	+	10			520	8 9 5	0.2	1 -)	1 21	600	0 18	1	9(10	
0	83 0	730,2	G	1	-		Y	18		1	050	0 0,6	0,5	1 2,	51	000	10					1
		1														1		Ļ	1	-	1	1
- 4	1	1	1	- 1																		

29

.

Tabelle 1.

.

.

1	2	3	4	5	6	7	8	9	10	11	12	13	14
aó			Län	ige	Gewie	eht	Q	uerschnitts		Trägl	neits-	Halbm	. der
1.	Profil und Lage		zwische	en den	CI C					moment	bezugl.	Central-	Ellipse
-N-	110m and Lage	Fabrikant	Finden	angel.	im	pro	Breite	Höhe	Grösse	uer 1	ixe.	XX	YY
zei	desselben		I	Spitz.	Ganzen	lauf. m	XX	YY	F	XX	YY	a	bo
Be			cm	cm	kg	kg	cm	cm	qcm	bigem	bigem	cm	cm.
F													
			22.0		0.50	0.77			5 15			1.54	0.7%
2697 c	23	Phonix	66,3	11,1	2,90	5,11			5,15			1,04	0,125
					1.1.1.1								
d	"	,,	106,3	117,7	4,00	3,76			5,14	1		1,54	0,725
							2					No. Con	
A			153.1	164.5	5,60	3,66			5,00			1,52	0,715
	"	"											
1144			11.05		1.010	10.90	0.95	0 10 1 0 00	12 51	26.04	102.8	976	1.655
2698a		Kramer	11,95		1,2185	10,20	9,00	2,40+2,92	10,01	50,01	102,0	2,10	1,000
	+ [Y	11 12			1992		G					10.5.80	
aa	,,	1,	.12,65	-	1,3065	10,33			13,68	1			
=		1.1.1				-							
h			179.9	190.9	18.50	10.28			13,61			2,77	1,66
-	"	23	11,93	100,0	1,220	10,23		10.00	13,55				
		10-12-161-1	1 - 1 -	12 1 1	10 57	10.95	-107 51		12 70			9 775	1.665
bb	**	"	179,5	_	18,97	10,55	1		15,10			2,115	1,005
in the						C. US							
с		33	271,2	282,2	28,14	10,38			13,74	1.		2,78	1,67
					1.2		1					0.000	
a			271.3		27.17	10,01	1.		13,27			2,74	1,64
u		"							1				
	and a start start	1 12	1000	1.	11.00	10.10		113 005	19 77	A DIGH		278	1.67
e	11	,,	403,0		41,90	10,40			15,11		-	2,105	1,01
						1.							1.00
f	· · · · ·	2.5	405.1	416,1	42,90	10,59	53		14,01	1		2,81	1,085
=	1		12,50	1	1,3145	10,52	1		15,95				
96000		Krämer	11.90	- 1	0,806	6,77	9,74	2,46+2,77	9,08	19,74	61,3	2,60	1,475
20000	Y In			1	1 - 1		1.5				-		
	+Y.		1000	107.0	19.70	6.80			9 12			2.605	1.48
b	33	11	9,90	151,5	0.677	6,78			9,09		1		
			0,00				-	*				0.50	1 47
с	,,	,,	271,0	282,0	18,25	6,74			9,04:	5		2,995	1,41
		24676			The second			1-11-10-00		1.000			
đ			453,4	464,4	30,49	6,73			9,03			2,595	1,47
a	1	17											
		Qtumm	940 5	954 3	19.75	8 21	9.99	5.01	10.58	14.2	171	4,02	1,16
3028a		Statim	240,5	204,0	0,655	8,21	9,97	5,01	10,58	,-	0.00		
	+[9]	-	.,				0.00	- 01	10 -0	110	171	102	1 16
b		"	240,5	254,3	19,75	8,21	9,98	0,01	10,98	14,2	111	4,02	1,10
						136	-	Sec. 16		1		-	1.2
0			240,6	254,4	19,70	8,19	9,95	5,00	10,55	14,2	171	4,03	1,16
-					-			1 mes	Indiana.		in a	an ner	
		- Postale	240.6	254.4	19.72	8 20	10.00	5.00	10,56	14,2	171	4,02	1,16
0		"	7,9	3 -	0,650	8,20	9,97	5,01	10,56				
	101		0.00	0-10	10.70	0.16	0.00	1.00	10.55	14.9	171	4.03	1.16
("	240,5	204,3	19,70	0,18	5,50	4,00	10,00	11,2	111	1,00	1,10

(Schluss.) 0,83 0,73 0,25 0,83 0,73 0,25 0,82 0,72 0,25 1,54 1,07 0,91 26 1,55 1,07 0,91 1.810000 1770 25 1,56 1,08 0,92 1,57 1,09 0,92 2·020000 1510 24 1,385 0,88 0,785 -- 26 1,39 0,89 0,79 2·090000 1320 25

1,38 0,88 0,78

1,38 0,88 0,78

3,24 0,54

3,24 0,54

3,26 0,54

3,24 0,54

0,54

3,25

30

.

18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
	its.	÷	Et	Zerk	nickung	sbel	astg.	in mit.	Beid.	Elastici	itäts.		() 1	der	Schw	varz's	chen	Po d. Sch	warz.
Elastici-	cità	tsel	cke.	de Spitz e	r Stück	e m	it	van g.be	Gren	nze für	die	2 0000	F12	F	orme	l für) at)29
Modul	asti Gre	Gre	Dru		Dotnoo	i si	Be-	xk unng urch	Maxi	mSpan	ing.:	= = =		$f_{0} = 2$	L. Sp. F	50 = 45 1. f. St	b00 <i>at</i> tücke	0000	3100 0000
	E		fe	urch	Detrag	icht	trag	Ma Spa Du	Р	f	ich-	P.0	er E	mit	mit	mit	mit	10	0
at	at	at	at	PD	t	DG	t	at	t	mm	0 C	t	at 8	Spitz.	End.	Spitz.	End.	8 t	02 ×
	-			1										1	Millio	ontel			
	12			ŧ	10,75			2772	8,5	0,43	1,3	8,9	1730	146	222	103		7	
	1. A.		-									1440	15	0.01					
				+	4,95	1		1612	4,95	00	1	3.9	760	180		139		4.6	
						12		310											
				ŧ	2,35	10		750	2.35	00	1	2,0	400	204	-	162	3	2.8	
1.1.1								150				0.0-				101	1	2,0	
	-	2660	4850																
				-			5										1 1 1		
_	-	2620	4850			1446													
			12000			1		- 520	6					1		-			
	1				14.1	GSIS		0171	10	0.05		10.5			Ent				
1.810000	1770	2500	4400) T	14,1			2401	13	8,05	1,1	19,5	1430	265	1.14	253	112	17,5	
	-		-																
	1. 7		-			¥	31	1000							91		85		32
								a.e.	1	1.15									
				1	7,1	108		953	7,1	8	1	8,9	650	281	HER	270		11,8	
	1 - 1	1.16	121	1				12	1						110				
	15-					+	20,2						1.1.1		7 5		72		23
				-							1.25								
		ar		Wie.		ł	9						1.2		105		101		16
	-								1	i de		1.01-	1415						
		1		+	>3,8			>1344	3,8	8	1	4,1	290	266	-111(8)	262	. 34	7	
2.02000	0 151() 244(1 456	0								10-						1.	
	-	2640	0 380	0	4.4			1				1	-	1				100	
						100					1.5	1	1.88				1474		
1				1	8,2	4		2343	6.5	6,02	1,3	9,9	1090	162		224	-	10	1
2.09000	0 1320	0 253	0 320	0 '					10.0			20			1 22			1	
Sec.				1	51	134		760	51	m	1	49	540	141	000	190	20	65	
-				1	0,1			.00	0,1		1	1,0	010	111		100		0,0	
6.0					17	õ		225	1 75		1	10	900	171		999		2	
				T	1,1	0			1,10		1	1,0	200	111	1	444			
		-	+	1	9.0	dig		099	0.0		1	19	100		1 24.00				
2.00000	0 227	0 303	0 459	0 4	5,9	1993		200-	2 0,9	8	1	4,0	400	1		1			
				1.	1.0		-												-
				1	4,0			893	4.0	00	1	4,3	400)					
			1-2			100		111				- 11-			500		15		
		1	1-	+	3,9			1325	2 3,9	8	1	4,3	400	233	TU	225)	6,5	5
-						10		1		. Eost	1 . 7 .	Q. (9	124						
101500	0.910	0.202	0 400	+	4,0	15		136	9 4,03	õ œ	1	4,3	400)	105		1949		1
1.91500	0218	0 503	409						- 7-										
				ł	3,9)		158	2 3,9	00	1	4.3	400)				-	1.

1 = 392, 1 cm;	$l_1 = 405,5 \ cm;$	$F = 63.8 \ qcm;$	$a_0 = 10,35 \ cm;$	$b_0 = 3,01 \ cm; \ m = 8,50 \ c$	m; n = 1,31 cm;
	λ],	² 1 (]	1)2	$\pi^2 \Theta \varepsilon$	

			$\frac{n}{P} = \frac{n}{\varepsilon \Theta \pi}$	$e^{2} = \frac{1}{\varepsilon F \pi^{2}}$	$\left(\frac{A_1}{b_0}\right) = 0,$	00001441; P _o :	$=\frac{n+1}{l_1^2}=$	= 69 t.	4649.	Versuch.
1	2	3	4	5	6	7	8	9	10	Long All Ma
Belas	stung	Ausbieg	ung in de	er Mitte		max. $\sigma =$				140
Im	kg	In der	in der	Pfeil	fy,x	P(1, f)	1	$c + g_o$	$\max \sigma =$	1.00
P	$\mathbf{P} \cdot \mathbf{F} = \mathbf{G}$	vertLo.	погLu. v	f	$\bar{k} = \bar{n} + \bar{m}$	$\overline{F}(1+\overline{k})$	~		$\frac{1}{12}\left(1+\frac{1}{12},\frac{1}{2}\right)$	
t	at	mm	mm	mm		at		mm	EL K A/	
							1			
0	0	0	0	0	0	0	0	0	0	624 87 U
2	31	- 0,23	+0,02	0,23	0,018	31				
4	63	0,26	-0,02	0,26	0,020	64		1111		112882
6	94	- 0,26	-0,02	0,26	0,020	96				
8	125	- 0,21	-0,02	0,21	0,016	127				
10	157	- 0,09	- 0,04	0,10	0,007	158	0,144	0,59	164	
12	188	+ 0,03	0,05	0,06	0,003	188				
14	219	+ 0,15	- 0,06	0,16	0,012	221	1-1-3			
16	251	+ 0,28	-0,07	0,29	0,022	256			1.1.1.1	
18	282	+ 0,41	-0,08	0,42	0,032	290				
20	314	+ 0,55	-0,08	0,56	0,043	327	0,288	1,39	361	a managers
22	345	+ 0,71	- 0,09	0,72	0,055	364				
24	376	+- 0,87	-0,11	0,88	0,067	400		1. 10. 11		
26	408	+ 1,03	- 0,115	1,04	0,080	440				
28	439	+ 1,20	-0,12	1,21	0,093	479	0.400		505	
30	470	+ 1,39	-0,13	1,40	0,108	520	0,432	1,84	587	
32	502	+ 1,57	0,14	1,58	0,123	264				
34	533	+ 1,77	-0,15	1,78	0,137	606				
36	564	+ 1,98	- 0,16	1,99	0,153	650				
38	596	+ 2,21	-0,16	2,22	0,171	698	0.550	1 =0	000	
40	627	+ 2,41	-0,16	2,42	0,186	734	0,576	1,78	829	
42	608	+ 2,00	-0,16	2,65	0,204	(92				
44	090	+ 2,90	-0,17	2,90	0,225	044				
40	759	+ 0,14	-0,17	0,14 2 20	0,242	047			nononan's -	
45	192	+ 0,00	-0,18	0,00 2,61	0,200	1009	0.790	1.40	1085	
59	10 4 815	+ 3,01	- 0,17	3,01	0,218	1057	0,720	1,40	1000	
54	846	+ 112	-0,19	4 13	0,291	1114				
56	878	+ 4.41	0,20	4.41	0.330	1174		warman and	and the second of	
59	010	1 1 77	0.23	4.78	0.367	1949			Contraction of the	
60	941	+ 5.93	-0.20	5.94	0,403	1390	0.865	0.89	1378	
61	956	+ 5.53	-0.27	5.54	0.425	1369	0,000	0,02	1010	
62	972	+ 5.92	- 0.28	5.93	0.455	1415				
63	988	+ 6.33	0.28	6.34	0.486	1466		*		
64	1003	+ 6.79	-0.31	6.80	0.522	1526				
65	1019	+7.38	-0.32	7.39	0.567	1596		12 1- 12		
66	1035	+ 8.11	-0.33	8.12	0.623	1680		D. DEDALLO	TERMOORDUR	
67	1050	+ 9.01	-0.36	9.02	0.692	1776				
68	1066	+10.10	- 0.40	10.11	0.776	1892				
69	1082	+11.71	- 0.43	11.72	0.899	2054				
70	1097	+14.92	- 0.50	14,92	1,145	2353	1,009	0,13		
		+ 16.62	-0.59	16.61	1.975	2494	-,	1.1		
70.5	1105	rasch durch	gebogen un	ter Sinken	der Wage.	TOI			No. 14 March 19	
10,0	1100	"				and the second		Constant /	The monte sure	

Tabelle 3.

Probestück: I Eisen, Lab. Nr. 2690[°] mit Spitzen an den Enden.

 $l = 78,0 \text{ cm}; l_1 = 89,0 \text{ cm}; F = 20,17 \text{ qcm}; a_0 = 5,09 \text{ cm}; b_0 = 1,50_5 \text{ cm}; m = 4,00 \text{ cm}; n = 0,59 \text{ cm};$

$$\frac{\lambda}{P} = \frac{1}{\epsilon F \pi^2} \left(\frac{l_1}{b_2} \right)^2 = 0,000008783; \ P_0 = \frac{\pi^2 \Theta \epsilon}{l_2^2} = 94,5 t.$$

4631. Versuch.

succession in the second se	NAMES OF A DESCRIPTION								in the second second	
1 Dela	2	3	4	ō	6	7	8	9	10	1
Belas	stung	Ausbieg	ung in der	r Mitte	-	max. $\sigma =$		gaingside	$\max, \sigma =$	a else
Ganzen	pro acm	Vert -Eh	Hor Eh	Pfeil	f y, x	P(, f)	11 , 12	$c + g_o$	$P_{(1, f1)}$	aut
P	$P:F=\beta$	V CIU. LU.	X	f	k = n + m	$\overline{F}(1+\overline{k})$	٨	TOPI TA	$\overline{F}(1+\overline{k}\lambda)$	1 ISA TAS
t	at	mm	mm	mm		at		mm	at	1.1
			-							
0	0	0	0	0	0	0	0	-	0	- 0
• 2	100	+ 0,04	-0,05	0,06	0,008	101	0,017	3,47	147	
4	199	- 0,36	-0,26	0,45	0,067	211	ir GO		0 -1 013	8
6	299	- 0,39	-0,29	0,48	0,073	320	0,052	8,75	719	8
8	398	- 0,38	-0,29	$0,\!48$	0,071	425			0	1 6 7
10	498	- 0,35	-0,29	0,45	0,066	529	0,087	4,72	876	
12	597	- 0,34		0,43	0,065	635			0	. 8
14	697	-0,31	-0,25	0,40	0,060	738	0 12		u net	1.1.1.1
16	796	- 0,28	-0,22	0,36	0,053	838	12 82		0. 020	
18	896	- 0,25	- 0,20	0,30	0,047	938	0 . 1 22		U-F TRUE	0
20	995	- 0,21	- 0,17	0,27	0,040	1035	0,176	1,26	1220	10
_ 22	1095	- 0,17	- 0,11	0,20	0,032	1130	a 100.	0	11- 2016	27
24	1194	- 0,1	3 - 0,06	0,14	0,023	1221	0 38	1	0	19.19
26	1294	- 0,10	0,00	0,10	0,017	1315	0 1.700	1 178	15-1 115	1 32
28	1393	- 0,07	+0,04	0,08	0,013	1411	0 00	1	10-1-1 1000	1 44
. 30	1493	- 0,0	3 + 0,11	0,11	0,008	1504	0,263	0,31	1538	53
32	1592	- 0,0	1 + 0,19	0,19	0,005	1600	10 - 10		10.41 0.98	31.
34	1692	+ 0,0	1 + 0,29	0,29	0,007	1703	10 81	1-1-21	0.4 100	12
36	1791	+ 0,02	2 + 0,43	0,43	0,011	1811	11 10	1 - I (b)	11 080	85
38	1891	+ 0,10	0+0.54	0,56	0,040	1967	1.5 1.10	1	IC + 1 A BULLE	EL CE
40	1990	+ 0,40	0 + 0,61	0,66	0,083	2155	0,351	1,22	2461	1,02
42	2090	+ 0,7	9 + 0,61	1,00	0,147	2397	5 46	1-100	14 kall	182
44	2189	+ 1,2	b + 0,06	1,26	0,213	2655	4.1	1- 10	11.44 1.0021	1 45.
46	2289	+ 1,9	7 - 0,81*)	2,13	0,354	3099	0.1 00	0-19	12 + 1 (1991)	82
48	2388	+ 2,1	1 - 0,52	2,17	0,371	3273	12 05	1-101	11-1- 9181	1 20
50	2488	+ 2,5	-0,39	2,58	0,442	3587	0,439	2,58	4993	.82
52	2587	+ 3,1	9 - 0,23	3,20	0,547	4001	11 1 17	1-1-20	1420 + 4201	1 115
54	2687	+ 4,9	2 + 0,22	4,92	0,839	4940	P. 2 1 2 3	1-11	11: + , 18881	1. 12
50	2736	+ 5,3	3 + 0,28	5,34	0,910	5225	Sec. 38	Propaga	1041 8601	85
56	2786	+ 5,8	(+0,35	5,88	1,004	5583	1.8 1 1.6	1-10		195
57	2836	+ 6,3	1 + 0,37	6,32	1,078	5892	a.0" 1," 20	1-10	1048 14 8661	30
58	2886	+ 7,2	1 + 0,47	7,23	1,234	6446	all the man	the states of	Hing and	30.35
59	2935	+ 8,4	2 + 0,54	8,44	1,440	7161	0.707	0.05	19001	1.
. 60	2985	+10,4	0 + 0,64	10,42	1,779	8294	0,527	9,35	13061	
61	3035	eben erre	Spitzen 7	mm tief in	die Körner e	Fallen der Waag ingebohrt.	5-		and and	
			1	1	1	1			1.1.1.1.1.1.1.1	

*) Der vordere Kreuzkopf verschiebt sich seitlich. Bauschinger, Mittheilungen, XV.

Probestück: I Eisen, Lab.-Nr. 2690° mit Spitzen an den Enden.

 $l = 140,0 \text{ cm}; \ l_1 = 151,0 \text{ cm}; \ F = 18,22 \text{ qcm}; \ a = 4,85 \text{ cm}; \ b_0 = 1,43 \text{ cm}; \ m = 3,81 \text{ cm}; \ n = 0,57 \text{ cm};$

$$\frac{\lambda}{P} = \frac{1}{\epsilon F \pi^2} \left(\frac{l_1}{b_0} \right)^2 = 0,00003100; \ P_0 = \frac{\pi^2 \Theta \epsilon}{l_1^2} = 33 t.$$

4630. Versuch.

-										
1	2	3	4	5.	6	7	8	9	10 .	
Belas	stung	Ausbieg	ung in de	r Mitte	Se Ruit	max. $\sigma =$		a contration of	$\max \sigma =$	R.L. P.L.
im	kg	in der	in der	Pfeil	fvx	P(f)		$c \pm \alpha$	P(f1)	
Ganzen	pro qcm	VertEb.	HorEb.	f	$\frac{1}{k} = \frac{1}{n} + \frac{1}{m}$	$\frac{1}{\overline{w}}\left(1+\frac{1}{\overline{v}}\right)$	λ	01 80	$\frac{1}{F}(1+\frac{1}{F})$	
Р	$P:F=\beta$	У	X	1	K II III	L K		5	L K K /	
t	at	mm	mm	mm		at	inv in	mm	at	
					1 N					
0 -	0	0	0	. 0	0	0	0		0	
1	55	- 0.045	-0.02	0.05	0,009	55	12 2		144-1 SUB	
2	110	-0.03	-0.05	0.06	0.007	111	0			
2 9	165	0,02	0,00	0,00	0,007	166				
5	100		-0,09	0,09	0,007	100				
4	. 220	-0,02	-0,13	0,13	0,007	221				
5	275	-0,02	-0,16	0,16	0,008	277	0,155	0,87	289	
6	330	-0,01	0,18	0,18	0,007	332				
7	385	-0.01	-0.21	0.21	0.007	387				
8	440	0.00	-0.23	0.23	0.006	442				
0	405	1 0.02	0.24	0.94	0,000	500			_ series	
9	490	+0,02	-0,24	0,24	0,010	500	0.010	0 50		
10	549	+0,03	-0,26	0,26	0,012	000	0,310	0,58	570	
11	604	+0,06	-0,30	0,31	0,019	615	·			
12	659	+0,28*)	-0,33	0,43	0,057	696			Contraction and the second	
13	714	+0.37	-0.35	0,51	0,074	767		0.10.01	1	
14	769	+0.46	-0.39	0.60	0.091	838		0-1-50,0	A SHIEL	
15	894	1 0 58	0.41	0.70	0.113	016	0.465	0.80	1094	
10	024	+0,50	-0,41	0,10	0,115	910	0,405	0,00	1024	
10	819	+0,70	-0,40	0,85	0,135	997				
17	934	+0,85	-0,48	0,98	0,162	1085		No - NEL MAR	Part - Black	
18	989	+1,00	-0,51	1,12	0,188	1173		Wi 4-20,9		
19	1044	+1,16	-0,53	1,28	0,217	1270		14-4-15130	Tel light	
20	1099	+134	-0.58	1.46	0.250	1374	0.620	0.89	1542	
91	1154	1 1 50	0.59	1.61	0.278	1475	0,020	0,00	1011	
99	1200	T 1,50	-0,00	1,01	0,210	1500			auto i	
22	1209	+ 1,00	-0,05	1,80	0,508	1982				
23	1264	+1,82	-0,66	1,93	. 0,336	1688				
24 .	1319	+1,99	-0,70	2,11	0,367	1803		a second and a second	The second of	
25	1374	+2,20	-0,73	2,32	0,405	1931	0,775	0,67	2092	
26	1429	+2,46	-0.77	2,58	0.452	2075		0 11.8	11805-	
27	1484	+ 2.74	-0.82	2.86	0.503	2230		114 481	14 12802 .	
28	1538	1 3 19	0.87	2.94	0,570	9414		0 38.8	1.1.1.1 50150	
20	1500	+ 0,12	-0,01	0,41	0,010	0005			The survey of the	
49	1095	+ 5,70	-0,93	5,82	0,073	2005	0.000		0.000	
30	1648	+5,75	-1,02	5,84	1,036	3355	0,930	0,44	3483	
30,25	1662	eben erreid	eht, dann	plötzliches	Durchbiegen	und Fallen der		17.4.12.2		
		Waages	chale.		I BALL	Ube 1	8. 18	初十国标题	2420 0195	
	L'EFOUR	10 min (13)			Leven	187.1.2 34	01 1 20	0		
					Entra der	un amiemaduur	and subsection in	hi hisintu	Caulter Clables	
					- nalovepine	prepared bin no a	and many 5 and	anus ann	· · · · ·	
					0 - 12.28% P					
	1				1. 19,6221					
	State (in the second				1.	
	11114									
						1111				
						-		14		
	2-30-2-									

*) Vorher die Unterlagskeile herausgenommen, die fest eingeklemmt waren.

Probestück: I Eisen, Lab.-Nr. 26904 mit Spitzen an den Enden.

$1 = 209,6 \text{ cm}; 1_1 = 223,0 \text{ cm}$; $F = 18,22 \ qcm$; $a_0 = 4,85 \ cm$;	b. == 1,43 cm; m =	$= 3,81 \ cm; \ n = 0,57 \ cm;$
--	---	--------------------	---------------------------------

G

	01		$\frac{\lambda}{P} = -$	$\frac{1}{\varepsilon \mathrm{F} \pi^2} \left(\frac{\mathrm{I_1}}{\mathrm{b_0}} \right)$	$)^2 = 0,00006$	761; $P_0 = \frac{\pi^2 0}{l_1}$	$\frac{9}{2}$ = 15 t		4641.	Versuch.
1	2	3 Anabion	4	5	6	7	8	9	10	
Belas	tung	in der	in der	r Mitte	- 11	max. $\sigma =$			max. a ==	
anzen	pro acm	VertEb.	HorEb	Pfeil	f_y x	P(1, f)		$c + g_0$	P(1, f1)	
P	$P:F=\beta$	y	X	f	k n m	$\overline{F}(1+\overline{k})$	~		$\overline{F}(1+\overline{k}\overline{\lambda})$	
t	at	mm	mm	mm		at		mm	• at	
0	0	0	0	0	0	0	0		Normal Street	. 00
1	55	+ 0.01	10.03	0.02	0 002	0	0		0	a all
2	110	+0.09	± 0.03	0,00	0,005	00	19		W ale adde	10. 124
3	165	+0.17	+0.03	0,05	0,017	112	0.909	0.00	100	1.000
4	220	+ 0.34*)	+0.02	0.34	0,050	170	0,205	0,66	188	1. 19.00
5	275	+0.45	+0.02	0.45	0,001	200			11	10. Q.L.
6	330	+0.56	+0.025	0,56	0,080	291	0.406	0.00	110	1
7	385	10,00	+ 0.04	0,00	0,099	000 (01	0,400	0,82	410	E. 19.8.
8	440	+ 0,00	+0.01	0,00	0,120	451		10 J.R.M	1.	1.1.1.1
9	495	10,00	+ 0.06	0,80	0,142	505	0.000	0.57	001	1.
10	- 549	+1.03	+0.05	1.03	0,190	011	0,008	0,97	621	1, 110
11	604	+ 1 245	+ 0.04	1.05	0,182	048 797				6.0,8
12	659	+155	+0.04	1.55	0,220	101	0.011	0.90	001	
13	714	+ 1 99	+0.04	1 99	0,215	064	0,011	0,50	881	10.11
14	769	+ 2.64	+0.04	2.64	0,550	1196				
15	824	+3.67	+0.05	3.67	0.645	1255	1.014			1. 1. 1. 1.
15.5	851	$+ \frac{1}{4} \frac{34}{34}$	+0.04	4 34	0,040	1500	1,014			1. V. K.
16	879	+5.27	+0.03	5.27	0.925	1601				1
16.5	906	+6.53	+0.02	6.53	1 147	1031				10.24
17	934	+ 8.77	-0.01	8.77	1.539	9871	1 140			1 and
17 25	948	Durchbieg	en unter Fa	llen der W	aagschale. Na	chdem das Stück	1,140			1.0.00
11,20	010	noch w Fig. 17	eiter durch , Blatt IV d	gebogen, v largestellte	vird bei $4,5 t$. Gestalt dessell	Belastung die in ben ausgemessen.		*)*	2 - 14	1. 201

and the second of		
	Tabelle S.	

*) Vorher die Unterlagskeile herausgenommen, die festgeklemmt waren.

Probestück: I Eisen, Lab.-Nr. 2691ª mit Spitzen an den Enden.

 $l = 454,0 \text{ cm}; \ l_1 = 465,0 \text{ cm}; \ F = 11,76 \text{ qcm}; \ a_0 = 3,90 \text{ cm}; \ b_0 = 1,26 \text{ cm}; \ m = 3,00 \text{ cm}; \ n = 0,63 \text{ cm};$

$$\frac{\lambda}{P} = \frac{1}{\epsilon F \pi^2} \left(\frac{l_1}{b_1} \right)^2 = 0,0005867; \ P_0 = \frac{\pi^2 \Theta \epsilon}{L^2} = 1,6 \ t.$$

1	2	3	4	ō	6	7	8	9	10	1
Belas	stung	Ausbieg	ung in de	r Mitte		$\max, \sigma =$			max. $\sigma =$	
im	kg	in der Vert Eh	in der Hor Eb	Pfeil	fy, x	$P_{(1,f)}$	2	$c + g_0$	P(1 + f 1)	
P	$P:F = \beta$	y 010120. y	X	f	k = n + m	$\overline{F}(1+\overline{k})$	~		F(k)	
t	at	mm	mm	mm	70.62	at		mm	at	
						lister the trail		a series		
0	0	0	0	0	0	0	0	-	0	
0,25	21	- 0,04	- 0,005	0,04	0,006	21	0,147	0,23	22	- 11
0,5	43	— 0,26	+0,01	0,26	0,041	45	0,293	0,63	49	1. 1. 1.
0,75	64	- 0,83	0,00	0,83	0,132	72	0,440	1,06	83	
1,0	85	- 1,95	-0,12	1,95	0,314	111	0,587	1,38	129	
1,25	106	-16,24	-1,34	16,30	2,623	384	0,734	5,91	484	
1,3	111	Durchbiege	n.		and a			-	The state of the s	6.0
		-					1			

5*

Tabelle 6.	
Probestück: I Eisen, LabNr. 2691° mit Spitzen an den Enden.	
$l = 145,1 \text{ cm}; l_1 = 156,1 \text{ cm}; F = 11,16 \text{ qcm}; a_0 = 3,80 \text{ cm}; b_0 = 1,23 \text{ cm}; m = 2,93 $	$\mathbf{n} = 0.62 \ cm;$
$(1)^{2}$	

$\frac{\kappa}{P} = \frac{1}{\varepsilon F \pi^2} \left(\frac{l_1}{b_0} \right) = 0,00007311; P_0 = \frac{\pi + 6 \varepsilon}{l_1^2} = 14,0 t. $ 4629. Versuch.											
1	2	3	4	õ	6	7	8	9	10	K - MERCLE	
Belas	stung	Ausbieg	ung in de	er Mitte		max 5=			max o ==		
im	kg	in der	in der	Pfeil	f v x	P(f)		c + o	P(., f1)		
Ganzen	pro qcm	VertEb.	HorEb.	f	$k = \frac{1}{n} + \frac{1}{m}$	$\overline{\mathbf{F}}\left(1+\frac{1}{k}\right)$	λ	0 1 50	$\overline{F}\left(1+\overline{k}\right)$		
P	$P: F = \beta$	у	X	12. 1		1	15		- · · · · · · · · ·		
t	at	mm	mm	mm	1207 A.M. 189	at		mm	at		
0	0	0	0	0	0	0	0		0		
0,5	45	- 0,04	+0,03	0,05	0,007	45					
1,0	90	- 0,16	-0,05	0,17	0,028	92	0,073	2,15	124		
1,5	134	- 0,215	-0,01	0,22	0,035	139			N + 66		
2,0	179	- 0,32	- 0,01	0,32	0,052	188	0,146	1,87	243		
2,5	224	- 0,41	- 0,01	0,41	0,066	238	1.11. 200		0 + 001 +		
3,0	269	- 0,51	-0,02	0,51	0,083	291	60 1 20		Q + 1 + 022	1.000	
3,5	314	- 0,615	-0,03	0,62	0,100	345	02/21/01		10 ÷ 1 = 165 5		
4,0	358	- 0,72	- 0,035	0,72	0,117	400	0,292	1,75	501		
4,5	403	- 0,85	$-0,04_{5}$	0,85	0,139	459 -	0 10		0 4 086		
5,0	448	- 1,01	- 0,05	1,01	0,165	521	0. 170		ロートーの読を		
5,5	493	- 1,19	- 0,06	1,19	0,194	588	0.0		0 + 104		
6,0	538	- 1,37	-0,07	1,37	0,223	659	0,439	1,75	811		
6,5	582	- 1,60	-0.08	1,60	0,261	734	11 . 14)		14 \$00		
7,0	627	- 1,87	-0,09	1,87	0,305	818			1 + 160		
7,5	672	- 2,21	-0,10	2,21	0,360	914			14 417		
8,0	717	- 2,60	-0,11	2,60	0,423	1020	0,585	1,85	1235		
8,5	762	- 3,11	0,14	3,11	0,507 -	1148	12.0 1561	0-0.00	8440488		
9,0	806	- 3.79	-0.18	3,79	0,617	1304	12 10	1.	T-1 168		
9.5	851	4.75	-0.22	4.76	0.772	1509	4.0 80	1 + 15	819 1 + 3		
9.75	873	- 5.36	-0.24	5.37	0.873	1634	M 1.30	0 + 1 180		6.81-	
10.0	896	- 6.17	-0.27	6.18	1.004	1795	0.731	2.27	2125	1. 11.	
10.25	918	- 7.30	-0.32	7.31	1,188	2008		dan, inkinia	inanti Sebu		
10.5	941	- 9.45	0.41	9.46	1.538	2387		ALL INDIANT C			
10.6	951	- 11.11	-0.47	11.13	1.808	2670	0.775	3.23	3170		
10.65	956	Durchhieger	n und Falle	n der Waa	gschale.		-,	- 1			
10,00	000		a come a como		0.0000000000000000000000000000000000000						

Tabelle 12.

Probestück: U Eisen, Lab.-Nr. 2694^t mit Spitzen an den Enden. 3285 cm: F = 20.97 acm: a = 5.52 cm: b = 1.37 cm: m = 4.28

	Probestück	: U Eisen,	LabNr.	2694 ^r mit	Spitzen a	an den Enden.		
$= 315,1 cm; l_1 =$	328,5 cm;]	F = 20,97	$qcm; a_0 =$	=5,52 cm;	$b_0 = 1,37$	cm; m = 4,28	$cm; n = \begin{cases} 0,46 \\ 1,00 \\ cm; \end{cases}$	
	λ	$1 (l_1)$	$\int_{-\infty}^{2}$		$\pi^2 \Theta \epsilon$		(1.00	

$\overline{P} = \frac{1}{\varepsilon F \pi^2} \left(\frac{1}{b_0} \right) = 0,0001389; P_0 = \frac{1}{l_1^2} = 7,5 t. $ 4644. Versuel												
1	2	3	4	õ	6	7	8	9	10			
Belas	stung	Ausbieg	ung in de	r Mitte	Dung Linnan	max a-			max a=			
im	kg	in der	in der	Pfeil	fvx	P(f)	2 4 2 9	e L e	P(f1)	2.		
Ganzen	pro qcm	VertEb.	HorEb.	f	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$	$\frac{1}{11}(1+\frac{1}{12})$	λ	CT SO	$\frac{1}{1}\left(1+\frac{1}{1}\right)$			
Р	$P: F = \beta$	у	X	1	K II III	F (K/	61 - 3 -	1	L / K /			
t	at	mm	mm	mm	T TRM	at	nic ash i	mm	at	theimst		
0	0	0	0	0	0	0	0	Eb. Hora	0	Gausson		
1	48	+ 0,40	+0.02	0,40	0,087	52	-	2	1 1 - 1 -	1 9		
2	95	+ 1,10	0,00	1,10	0,239	107	0,278	2,86	176			
3	143	+ 1,95	-0.02	1,95	0,424	203						
4	191	+ 2,97	- 0,05	2,97	0,647	315	0,556	2,37	412	0.		
5	238	+ 4,17	- 0,09	4,17	0,909	454	0,0 (e0))			uzou (
6	286	+ 5,64	-0,15	5,64	1,230	637	0,833	1,13	707	G.O		
7	334	+7,59	0,20	7,59	1,655	887	8.0 1 00		- 20	01.0		
8	382	+10,30	0,25	10,30	2,245	1239	11 81		1 68	1.0		
9	429	+14,54	-0,28	14,54	3,168	1787	34 16,1	1 1. 2.0	106 1	1,26		
9,5	453	+18,70	- 0,30	18,70	4,072	2298			till fumer	1.5		
9.75	465	Die Ausbie	gung schrei	tet weiter	und weiter for	t; endlich fällt d	lie Waagsch	ale.				

Probestück: I Eisen	, LabNr. 2691°	mit Spitzen an	den Enden.
---------------------	----------------	----------------	------------

 $l = 259,0 \ cm; \ l_1 = 270,0 \ cm; \ F = 11,38 \ qcm; \ a_0 = 3,83 \ cm; \ b_0 = 1,245 \ cm; \ m = 2,95 \ cm; \ n = 0,62 \ cm;$

	$\frac{\lambda}{P} = \frac{1}{\epsilon F \pi^2} \left(\frac{l_1}{b_0} \right)^2 = 0,0002094; P_0 = \frac{\pi^2 \Theta \epsilon}{l_1^2} = 4,7 t. $ 4628. Versuch.										
1 Dolog	2	3 Aushieou	4 Ing in der	5 Mitte	6	7	8	9	10	beatest	
im	kg	in der	in der	Pfeil	fvx	$\max_{\sigma \in P} \sigma = \int_{\sigma} \sigma f$	in 12	c + c	$\max_{\sigma \in \mathcal{F}} \sigma = \frac{1}{1}$		
Ganzen	pro qcm P · F — 3	VertEb.	HorEb.	f	$k = \frac{s}{n} + \frac{z}{m}$	$\overline{F}\left(1+\overline{k}\right)$	y	C T 60	$\overline{F}\left(1+\overline{k}\overline{\lambda}\right)$		
t t	at	mm	mm	mm	- 10	at		mm	at		
0	0	0	0	0	0	0	0		0		
0.95	22	-0.16	-0.07	0.18	0.028	99	0	1	0		
0,20	44	-0.21	-0.04	0.21	0,025	45	0.105	1.79	58		
0,5	66	-0.28	-0.03	0.28	0.046	68	0,100	-,	00		
1.0	88	-0,34	-0,02	0,34	0.056	92	0,209	1.33	111		
• 1.25	110	-0,41	-0,01	0,41	0,066	118					
1.5	132	-0,48	0,00	0,48	0,077	142		1	1		
1.75	154	- 0,53	+0,02	0,53	0,086	167	to the	1 100			
2.0	176	- 0,56	+0,03	0,56	0,091	191	0,419	0,78	213	1	
2,25	198	- 0,62	+0,04	0,62	0,101	218	10 1.00	12 20	a -to Trees	i ce	
2,5	220	- 0,695	+0,05	0,70	0,114	245	LUG IN	1.4. 185	10-1 805	1	
2,75	242	- 0,77	+0,055	0,77	0,126	272	10.000	10.00 100	A DOMES	1	
3,0	264	- 0,86	+0,06	0,86	0,141	300	0,628	0,51	332		
3,25	286	- 0,98	+0,07	0,98	0,160	332	101 1148	10 51	1 - 1 m		
3,5	308	- 1,17	+ 0,08	1,17	0,192	367	10 34		104 . 4101	1.00	
3,75	330	1,59	+0,08	1,59	0,259	415		1			
4,0	352	-2,69	+0,06	2,69	0,436	505	0,838	0,52	535		
4,1	360	eben errei	icht, dann I	Durchbiegen	unter Fallen	der Waagschale					
								1		and the second second	

Tabelle 10.

Probestück: U Eisen, Lab.-Nr. 2694^b mit Spitzen an den Enden.

 $1 = 80,05 \text{ cm}; \ l_1 = 93,4 \text{ cm}; \ F = 21,43 \text{ qcm}; \ a_0 = 5,59 \text{ cm}; \ b_0 = 1,385 \text{ cm}; \ m = 4,32 \text{ cm}; \ n = \begin{cases} 0,46\\1,015 \text{ cm}; \end{cases}$

$\overline{\mathbf{P}} = \frac{1}{\varepsilon \mathbf{F} \pi^2} \left(\frac{1}{b_0} \right) = 0,00001010, \ \mathbf{I}_0 = \frac{1}{l_1^2} = 0.0001010$
--

4646. Versuch.

			and the second second second second	and the second se		the second states of the second states and the second states	0	0	10	
1	2	3	4	5	6	7	8	9	10	
Belas	stung	Ausbieg	ung in der	: Mitte	Dillate P. a	max. $\sigma =$			max. $\sigma =$	
im	kg	in der	in der	Pfeil	f v, x	P(., f)		$c + g_o$	P(1, f1)	
Ganzen	pro qcm	VertEb.	HorEb.	f	$\overline{k} = \frac{b}{n} + \frac{b}{m}$	$\overline{F}(1+\overline{k})$	V		$\overline{F}(1+\overline{k}\lambda)$	
Р	$P: F = \beta$	У	X			-	and solo a	444.444	at	
t	at	mm	mm	mm		at	1	110110		
	The second					0	0		0	Terreture.
• 0	0	0	0	, 0	0	0	0		0	
4	187	+0,20	+0,01	0,20	0,043	194	110		1310	
8	373	+0,31	-0,05	0,31	0,068	397	0,086	3,30	667	200
12	560	+0,41	- 0,08	0,42	0,091	611	0 200	1-1-1-1	14	1 4
16	747	+0,53	-0,12	0,54	0,118	835	0,172	2,60	1258	1 25
20	933	+0,63	-0,14	0,64	0,140	1063		1	0.4. 310	1: 80.
24	1120	$+0,74_{5}$	-0,165	0,76	0,166	1306	0,258	2,18	1841	i in
28	1307	+0.89	- 0,195	0,91	: 0,199	1567	1		h	
32	1493	+ 1,08	-0,23	1,10	0,240	1852	0,344	2,10	2534	
36	1680	+1,53	-0,27	1,55	0,339	2248		0-17	TAL TRIE	
38	1773	+1,99	- 0,28	2,01	0,439	2550	1 1 25	1	1.000	1
39	1820	+2,37	- 0,28	2,39	0,521	2768	0,419	3,31	4082	02
40	1867	Durchbieg	en unter Sir	nken der V	Vaagschale.	1000		h-1 FB	1	1

			Tau	ene y.					
	Probestück	: U Eisen,	LabNr.	2693ª mit	Spitzen	an den	Enden.		
Sem · 1	- 190 55.	F = 44.4	$acm. a_{\circ} =$	8.31 cm;	$b_0 = 2.91$	cm; m :	$= 6,60 \ cm;$	n = /	1,22 cm

die Waagschale; Platten an den Enden stark verbogen; Spitzen tief eingedrückt. — Bleibend keine merkliche Biegung.

Tabelle 13.

Probestück: U Eisen, Lab.-Nr. 2695^b mit Spitzen an den Enden.

 $l = 50,0 \text{ cm}; \ l_1 = 63,4 \text{ cm}; \ \mathbf{F} = 16,38 \text{ qcm}; \ \mathbf{a}_0 = 2,92 \text{ cm}; \ \mathbf{b}_0 = 1,28 \text{ cm}; \ \mathbf{m} = 2,22 \text{ cm}; \ \mathbf{n} = \begin{cases} 0,49\\0,83 \text{ cm}; \end{cases}$

$$\frac{\lambda}{P} = \frac{1}{\epsilon F \pi^2} \left(\frac{l_1}{b_0}\right)^2 = 0,000007591; \ P_0 = \frac{\pi^2 \Theta \epsilon}{l_1^2} = 132 \ t.$$

4648. Versuch.

1	2	3	4	õ	6	7	8	9	10	States .
Belas	stung	Ausbieg	ung in de	r Mitte		max a-			max c-	
im	kg	in der	in der	Pfeil	f v x	P(f)		c + c	P (f1)	
Ganzen	pro qcm	VertEb.	HorEb.	f	$\frac{1}{k} = \frac{3}{n} + \frac{3}{m}$	$\frac{1}{\overline{F}}\left(1+\frac{1}{\overline{F}}\right)$	λ	0 1 80	$\overline{\mathbf{F}}\left(1+\frac{1}{k}\right)$	
Р	$P: F = \beta$	У	X	-	K II III	T (K)			TARA	1. 1. 2. 2. 4
t	at -	mm	mm	mm	4/1	at	10 . 10	mm	at	0
0	0	0	0	0	0	0	0		0	
5	305	+0,14	- 0,06	0,15	0,032	315	0,038	3,80	562	
10	611	+0,23	- 0,09	0,25	. 0,051	644	0,076	3,04	1022	
15	916	+0,29	- 0,09	0,30	0,063	974				
20	1221	+0,37	-0,12	0,39	0,080	1319	0,152	2,17	1862	
25	1526	+0,43	- 0,16	0,46	0,095	1670				
30	1832	+0,52	-0,23	0,57	0,116	2044	0,228	1,93	2764	
35	2137	+0,71	-0,28	0,77	0,158	2475			The second	
38	2320	$+ \overline{0,96}$	-0,33	1,02	0,211	2809				
40	2442	+1,23	-0,37	1,29	0,268	3095	0,304	2,95	4596	
41	2503	+1,53	-0,42	1,58	0,331	3332				
42 .	2564	Durchbieger	u unter Sin	ken der W	aagschale.		1 1 1 1 1 1			

i

1

Tabelle 11.

Probestück: U Eisen, Lab.-Nr. 2694ª mit Spitzen an den Enden.

anfangs langsame, dann raschere Durchbiegung unter Sinken der Waagschale. 17,75 824

G

17,5

812

Tabelle 14.

2754

2,391

Probestück: U Eisen, Lab.-Nr. 2695° mit Spitzen an den Enden.

 $l = 84,5 \ cm; \ l_1 = 97,9 \ cm; \ F = 16,38 \ qcm; \ a_0 = 2,92 \ cm; \ b_0 = 1,28 \ cm; \ m = 2,22 \ cm; \ n = \begin{cases} 0,49\\0,83 \ cm; \end{cases}$

V 1	$\left(1_{1} \right)$	0.00001000.	D	π° Θε	EE /
$\overline{P} = \overline{\epsilon F \pi^2}$	b	= 0,00001809;	$P_0 =$	1.2	= 00 <i>t</i> .

4647. Versuch.

1	2	3	4	5	6	7	8	9	10	144
Belas	stung	Ausbieg	ung in de	r Mitte	alerte -	max. $\sigma =$		i i centi	$\max \sigma =$	
im	kg	in der	in der	Pfeil	f v x	P(, f)		$c \pm \sigma$	P(., f1)	
Ganzen	pro qcm	VertEb.	HorEb.	f	$\overline{k} = \frac{b}{n} + \frac{b}{m}$	$\overline{F}(1+\overline{k})$	λ	0 1 80	$\overline{F}\left(1+\overline{F}\right)$	
Р	$P: F = \beta$	у	X		K II III	L (K/	1 1 M	1. 19	LINKA	
t	at	mm	mm	mm	phylicity (at		mm	at	
0	0	0	0	0	0	0	0		0	
4	244	+0,04		0,07	0,011	246				
8	488	+0,14	- 0,18	0,23	0,037	505	0,145	1,36	612	
12	733	+0,23	-0,23	0,32	0,057	775				
16	977	$+0,30_{5}$	$-0,24_{5}$	0,39	0,073	1048	0,289	0,96	1224	
20	1221	+0,39	-0,27	0,47	0,092	1333				
24	1465	+- 0,48	0,28	0,56	0,111	1627	0,434	0,73	1839	
28	1709	+ 0,565	-0,28	0,63	0,128	1928				
32	1954	+0,71	0,29	0,77	0,158	2262	0,579	0,56	2488	
36	2198	+ 0,97	- 0,29	1,01	0,211	2662				
38	2320	+1,25	- 0,28	1,28	0,268	2941				
40	2442	+2,20	-0,27	2,22	0,461	3567	0,724	0,85	3997	
22	"	+3,14	- 0,31	3,16	0,655	4041				
	1000	Durchbieg	ing in verti	ikaler Eben	e wächst imm	ner rascher und	rascher, ei	ndlich sinkt		

die Waagschale und knickt das Stück unter schwachem Krach durch.

Probestück: U Eisen, Lab.-Nr. 2695ª mit Spitzen an den Enden.

$= 144,2 \ cm; \ l_1 = 155,3$	2 cm; F = 16,52 qcm	; $a_0 = 2,92 \ cm$; $b_0 = 1,28 \ cm$; $m =$	$=2,22 \ cm; \ n = \begin{cases} 0,49\\0,83 \ cm; \end{cases}$
	$\frac{\lambda}{\mathbf{P}} = \frac{1}{\mathbf{a} \mathbf{F} \pi^2} \left(\frac{\mathbf{l}_1}{\mathbf{b}_0} \right)^2 =$	= 0,00004508; $P_0 = \frac{\pi^2 \Theta \varepsilon}{l_1^2} = 22 t.$	4632. Versuch.

			T.							
1	2	3	4	Ġ	6	7	8	9	10	
Belas	stung	Ausbieg	ung in de	er Mitte	1 1 1 L	max. $\sigma =$	19 12	State 1	max, $\sigma =$	1
im	kg	in der	in der	Pfeil	f y, x	P(, f)	-	$c + g_0$	P(1, f1)	
Ganzen	pro qcm	VertEb.	HorEb.	f	$\overline{k} = \frac{-}{n} + \frac{-}{m}$	$\overline{F}(1+\overline{k})$	~	1.00	$\overline{F}(1+\overline{k}\overline{\lambda})$	
r t	$\mathbf{P}:\mathbf{F}=\mathbf{p}$	y y	X	112.122		at		mm	at	
<i>u</i>		110110	110110	Tierre				1		
0	0	0	0	0	0 -	0	0		0	
1	61	+0.01	0.005	0.01	0,002	61	13 20		1 1 1	
2	121	+0.065	-0.04	0.08	0,015	123	10 00	1- 80.0	+ 661	
3	182	+0.14	-0.08	0.16	0,033	185	1 1 1 1 1 1 1 1 1	1-4-160	+ 12681 4	
4	242	+0.20	0.12	0.23	0.046	253	1. 1. 200	0 3±.1		
5	303	+0.26	-0.17	0.31	0.061	321	0.225	1.68	385	
6	363	+ 0.31	0.19	0.32	0.072	389	1			
7	494	± 0.36	- 0,10	0.41	0.082	459	3 220	1-21668		8.
8	484	+ 0,30	0.21	0.44	0,090	527	.6 - 190	0-,10.8		
9	545	± 0.43	- 0,21	0.48	0.098	598		1- 168		
10	605	+ 0,19	0.93	0,10	0,000	670	0.451	0.64	749	
11	666	+ 0,40	- 0,25	0,55	0.118	745	0,101	0,01		
19	796	+0.50	- 0,25	0,50	0.131	899	0 10			
13	787	+ 0,05	- 0,25	0,04	0.144	000	0 00,) - RI m		
14	847	+0,00	-0,20	0,77	0,158	080	1. 00.	1 10.1	+ 1 500	
15	009	+0,12	-0,20	0.94	0,158	1065	0.676	0.40	1140	
16	060	+ 0,19	-0,21	0,04	0,115	1000	0,010	0,10	1140	
17	1090	+0,875	- 0,27	0,92	0,191	1195			4 035 1	
19	1029	+0,97	- 0,28	1,02	0,211	1240	108 100		412 418	
10	1090	+1,07	- 0,29	1,11	0,241	1303		1. 50	- 491 - 0011	
19	1100	+1,11	- 0,295	1,21	0,292	1439	0.001	0.15	1500	
20	1211	+1,29	- 0,30	1,33	0,277	1946	0,901	0,15	1982	
21	1271	+1,43	- 0,30	1,46	0,305	1658	A (, , , , , , , , , , , , , , , , , ,			
22	1332	+1,59	- 0,30	1,62	0,337	1739			, may C. 18 == 1	
20	1392	+1,78	0,30	1,80	0,376	1915				
24	1403	+2,00	- 0,30	2,02	0,421	2064	- 1.9.			
20	1913	+2,28	- 0,29	2,30	0,478	2236			All the second	
20	1074	+2,62	-0,28	2,64	0,547	2435	12 val T	ah eenne	1. De Sonne	
27	1634	+3,03	-0,28	3,04	0,630	2663	10 1 200	ni Tab	ni ve	
28	1695	+3,59	-0,27	3,60	0,745	2957	. 33	Eb. Hor	ano one Ven	
29	1755	+4,46	- 0,28	4,47	0,923	3374			Pullimin and	
30	1816	werden ebe	n erreicht,	dann läuft	der Zeiger plö	itzlich fort; die	100 - 100	117 1. 14	166 100	

.

1816 werden eben erreicht, dann läuft der Zeiger plötzlich fort; die Waagschale fällt herab und das Stück knickt plötzlich ein. Spitzen 5 mm tief in die Körner eingebohrt; Gestalt nach weiterer Durchbiegung bei 6,85 t Belastung in Fig. 18 auf Blatt IV abgebildet.

Tabelle 16.

Probestück: T Eisen, Lab.-Nr. 2697^b mit Spitzen an den Enden.

 $1 = 30,1 \text{ cm}; \ l_1 = 41,5 \text{ cm}; \ \mathbf{F} = 5,18 \text{ qcm}; \ \mathbf{a}_0 = 1,54 \text{ cm}; \ \mathbf{b}_0 = 0,725 \text{ cm}; \ \mathbf{m} = 0,83 \text{ cm}; \ \mathbf{n} = \begin{cases} 0,73\\0,25 \text{ cm}; \end{cases}$

	$\frac{\hbar}{P} = \frac{1}{\epsilon F \pi^2} \left(\frac{l_1}{b_0} \right) = 0,00003204; \ P_0 = \frac{\pi^2 \Theta \epsilon}{l_1^2} = 31 \ t. $ 4640. Versuch										
1	2	. 3	4	5	6	7	8	9	1010.	vorsuon.	
Belas	stung	Ausbieg	ung in de	r Mitte		max -			mar		
im	kg	in der	in der	Pfeil	fvx	P(f)		c + c	P/f1		
Ganzen	pro qcm	VertEb.	HorEb.	f	$\frac{1}{k} = \frac{j}{n} + \frac{k}{m}$	$\frac{1}{\overline{F}}\left(1+\frac{1}{\overline{F}}\right)$	λ	UT SO	$\frac{1}{E}(1+\frac{1}{E}\frac{1}{2})$		
Р	$P: F = \beta$	у	X		n n m	I K	19		L K KA		
t	at	mm	mm	mm		at		mm	at		
0	0	0	0	0	0	0	0	-	0		
1	193	+0,01	-0,03	0,03	0,005	194	1				
2	386	+0,01	- 0,06	0,06	0,008	389					
3	579	+0,03	0,13	0,13	0,020	590	0,096	1,22	699		
4	772	+0,03	-0,16	0,16	0,023	789					
5	965	+0,04	-0,19	0,19	0,028	991					
6	1158	+0,05	-0,215	0,22	0,033	1196	0,192	0,93	1357		
7	1351	+-0,06	-0,24	0,25	0,037	1401					
8	1544	+0,07	$-0,26_{5}$	0,27	0,041	1608					
9	1737	$+0,08_{5}$	$-0,28_{5}$	0,30	0,045	1815	0,288	0,74	2008		
10	1931	+0,10	-0,30	0,32	0,050	2028					
11	2124	+0,12	-0,32	0,34	0,055	2241				1	
12	2317	+0,15	-0,34	0,37	0,061	2458	0,384	0,59	2684		
13	2510	+0,19	0,35	0,40	0,068	2681					
14	2703	+0,25	-0,37	0,45	0,079	2916					
15	2896	+0,34	0,39	0,52	0,094	3167	0,481	0,56	3460		
16	3089	+0,48	-0,43	0,65	0,118	3453					
17	3282	+0,77	-0,52	0,93	0,168	3833					
18	3475	+1,84	-0,97	2,08	0,369	4747	0,577	1,53	5700	a same	
"	"	+2,70	- 1,31	3,00	0,528	5308					

22

22

Zeiger laufen immer rascher fort, dann Bruch mit starkem Schlag nach unten, ausserhalb der Mitte an einer Stelle mit grossem Fehler (Anbruch).

Tabelle 19.

Probestück: T Eisen, Lab.-Nr. 2697° mit Spitzen an den Enden.

 $l = 153,1 \ cm; \ l_{1} = 164,5 \ cm; \ F = 5,00 \ qcm; \ a_{0} = 1,52 \ cm; \ b_{0} = 0,715 \ cm; \ m = 0,82 \ cm; \ n = \begin{cases} 0,72\\0,25 \ cm; \end{cases}$

1	1	11		0 0005000	T	1 0 5		0.0	ς.
D =	- F -2	1) =	0,0005363;	Po	 12	=;	z, 0)

4637 Vorsuch

							2001.	versuen.		
1	2	3	4	5	6	7	8.	9	10	
Belas	stung	Ausbieg	ung in de	r Mitte		max. $\sigma =$			max. $\sigma =$	had a
im	kg	in der	in der	Pfeil	f v, x	P(., f)		$c + g_{o}$	P(., f1)	
Ganzen	pro qcm	VertEb.	HorEb.	f	$\overline{k} = \frac{b}{n} + \frac{b}{m}$	$\overline{F}(1+\overline{k})$	7	- 1 80	$\overline{F}(1+\overline{k}\overline{\lambda})$	
Р	$P: F = \beta$	у	X							
t	at	mm	mm	mm		at		mm	at	
0	0	0	0	0	0	0	0	-	0	
0,2	40	+0,03	0,01	0,03	0,005	40				in the second
0.4	80	+0,17	-0,01	0,17	0,024	82	0,214	0,62	89	
0.6	120	+0,35	0,02	0,35	0,051	126				1
0,8	160	+0,33	-0,02	0,33	0,048	167	0,429	0,44	178	Indian Charles
1,0	200	+0,44	-0,03	0,44	0,065	213	1			1 1 1 1 1 1 1
1,2	240	+0,66	- 0,03	0,66	0,096	.263	0,643	0,37	265	
1,4	280	$+ \overline{0,93}$	-0,04	0,93	0,134	317				
1,6	320	+1,26	-0,04	1,26	0,180	378	0,858	0,21	387	
1,8	360	+ 1,70	-0,04	1,70	0,241	446				
2,0	400	+2,37	-0.04	2,37	0,334	534				
2,1	420	+2,81	-0,04	2,81	0,395	586			Lul Cart	
2,2	440	+3,39	- 0,04	3,39	0,476	649				
2,3	460	+4,26	-0,03	4,26	0,596	733				
0.05	170	Durabhiege	n und Brug	h nahezu i	n der Mitte na	ch unten · Brucht	läche zeigt e	einen grosse	n alten Anbruch.	

2,35 | 470 Durchbiege 6 Bauschinger, Mittheilungen, XV.

(1 1

10,75

.)

Tabelle 17.

Probestück: T Eisen, Lab.-Nr. 2697° mit Spitzen an den Enden.

 $1 = 66,3 \text{ cm}; \ l_1 = 77,7 \text{ cm}; \ F = 5,15 \text{ qcm}; \ a_0 = 1,54 \text{ cm}; \ b_0 = 0,72 \text{ s cm}; \ m = 0,83 \text{ cm}; \ n = \begin{cases} 0,73 \\ 0.25 \text{ cm}; \end{cases}$

werden erreicht, dann läuft der Zeiger für y rasch fort, und der Bruch erfolgt nach unten in der Mitte. Krystallinischer aber gesunder Bruch im Steg. 2063

Tabelle 24.

Probestück: L Eisen, Lab.-Nr. 2699° mit Spitzen an den Enden.

 $1 = 271,0 \text{ cm}; \ l_1 = 282,0 \text{ cm}; \ F = 9,045 \text{ qcm}; \ a_0 = 2,595 \text{ cm}; \ b_0 = 1,47 \text{ cm}; \ m = 1,38 \text{ cm}; \ n = \begin{cases} 0,88\\0,78 \text{ cm}; \end{cases}$

$$\frac{\lambda}{\mathbf{P}} = \frac{1}{\varepsilon \mathbf{F} \pi^2} \left(\frac{\mathbf{l}_t}{\mathbf{b}_0}\right)^2 = 0,0002061; \ \mathbf{P}_0 = \frac{\pi^2 \Theta \varepsilon}{\mathbf{l}_t^2} = 4,9 \ t.$$
4625. Versuch.

3 4625. Versuch.

3 biegung in der Mitte

Belas im Ganzen P t	stung kg pro qcm P: F = β at	Ausbieg in der VertEb. y mm	ung in de in der HorEb. X mm	r Mitte Pfeil f mm	$\frac{f}{k} = \frac{y}{n} + \frac{x}{m}$	$\max_{\substack{P\\\overline{F}}\left(1+\frac{f}{k}\right)}$	λ	$c + g_o$ mm	$\max_{\mathbf{\sigma}} \mathbf{\sigma} = \frac{P}{\mathbf{F}} \left(1 + \frac{\mathbf{f}}{\mathbf{k}} \frac{1}{\lambda} \right)^{2}$	
0 7	0	0	0	0	0	0	0		0	1 BR
0.5	55	-0.13	+0.05	0,14	0,017	56	0,103	1,22	63	
1	111	0,19	+0.09	0,21	0,024	113	0,206	0,81	124	
1,5	- 166	- 0,26	+0,11	0,28	0,033	171	1			
2	221	-0,33	+0,12	0,35	0,042	230	0,412	0,50	243	
2,5	276	- 0,39	+0,12	0,41	0,050	290				
3	332	- 0,47	+0.12	0,48	0,060	352	0,618	0,30	364	0,5
3,5	387	- 0,56	+0,10	0,57	0,072	415				
4	442	- 0,76	+0,05	0,76	0,097	485	0,824	0,16	493	1.1.1
4,5	498	-1,01	- 0,01	1,01	0,129	562	14- 1 BD			
5	553	-2,72	-0,12	2,72	0,349	746				1 Starte 1
5,1	564	Durchbiege	n unter Fa	llen der W	aagschale.					

		Tab	elle 18.					
Probestück:	T Eisen.	LabNr.	2697ª mit	Spitzen	an	den	Enden.	

 $l = 106,3 \ cm; \ l_1 = 117,7 \ cm; \ F = 5,14 \ qcm; \ a_0 = 1,54 \ cm; \ b_0 = 0,725 \ cm; \ m = 0,83 \ cm; \ n = \begin{cases} 0,73\\ 0,25 \ cm; \end{cases}$

	$\overline{\mathbf{P}} = \frac{1}{\varepsilon \mathbf{F} \pi^2} \left(\frac{1}{\mathbf{b}_0} \right) = 0,0002598; \ \mathbf{P}_0 = \frac{1}{\mathbf{l}_1^2} = 3,9 \ t. $ 4638. Versuch.										
1	2	3	4	5	6	7	8	9	10		
Belas	stung	Ausbieg	ung in de	r Mitte		max. $\sigma =$			max. a ==		
im	kg	in der	in der	Pfeil	f y x	P(1, f)		c + g'	P(., f1)		
Ganzen	pro qcm	VertEb.	HorEo.	f	$\bar{k} = n + \bar{m}$	$\overline{F}(1+\overline{k})$	٨		$\overline{F}\left(1+\overline{k}\lambda\right)$		
Р +	$\mathbf{F}:\mathbf{F}=\mathbf{p}$	y mm	л 111111,	mm		at		mm	at		
l			mint								
0	0	0	0	0	0	0	0.		0		
0,25	49	+0,05	+0,01	0,05	0,008	49					
0,5	97	+0,13	0,00	0,13	0,018	98	0,130	0,87	110		
0,75	146	+0,25	0,03	0,25	0,038	151					
1,0	195	+0,35	-0,03	0,35	0,052	205	0,260	1,00	221		
1,25	243	+0,44	-0,055	0,44	0,067	258	19-2 11 1 1				
1,5	292	+0,51	- 0;09	0,52	0,081	315	W. hel				
1,75	340	+0,34	-0,07	0,35	0,055	359	No. 18 18 -		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
2.0	389	+0,26	-0,07	0,27	0,044	405	0,520	0,25	419		
2.25	438	+0,37	-0,07	0,38	0,059	464					
2.5	486	+0.52	-0,08	0,53	0,081	524					
2.75	535	+0.69	0,08	0,69	0,105	591					
3.0	584	+0.87	-0,075	0,87	0,128	658	0,779	0,25	681		
3.25 -	632	+ 1.05	- 0,07	1,05	0,152	728					
3.5	681	+ 1.27	- 0,07	1,27	0,182	804		1			
3.75	730	$+\overline{1.51}$	- 0,06	1,51	0,215	887				1	
4.0	778	+1.83	0.06	1,83	0.258	979					
4 25	827	+2.26	- 0.06	2,26	0.317	1089					
4.5	875	+2.84	- 0.04	2.84	0.394	1218	1				
1.0	805	212	0.04	3 12	0.484	1999					
4,6	014	+ 0,10	-0,04	2 15	0,454	1200					
4,7	914	+ 0,40	-0,04	2,40	0,478	1301	1. 10 C				
4,8	934	+3.92	-0,05	5,92	0,543	1441					
4,9	. 953	+ 4,88	-0,04	4,88	0,674	1596				1000	
4,95	963	Durchbiege	en unter Su	nken der W	aagschale. Ge	estalt bei 1,3 t B	elastung in	Fig. 19, Bla	att IV abgebildet	to service .	

Tabelle 25.

Probestück: L Eisen, Lab.-Nr. 2699ª mit Spitzen an den Enden.

 $1 = 453,4 \text{ cm}; \ l_1 = 464,4; \ F = 9,03 \text{ qcm}; \ a_0 = 2,595 \text{ cm}; \ b_0 = 1,47 \text{ cm}; \ m = 1,38 \text{ cm}; \ n = \begin{cases} 0,88\\0,78 \text{ cm}; \end{cases}$

$$\frac{\lambda}{\mathbf{P}} = \frac{1}{\varepsilon \operatorname{F} \pi^2} \left(\frac{\mathbf{l}_1}{\mathbf{b}_0} \right)^2 = 0,0005611; \ \mathbf{P}_0 = \frac{\pi^2 \Theta \varepsilon}{\mathbf{l}_1^2} = 1,8 t.$$

	$\overline{\mathbf{P}} = \frac{1}{\varepsilon \mathrm{F} \pi^2} \left(\frac{1}{b_0} \right) = 0,0005611; \ \mathbf{P}_0 = \frac{1}{ \mathbf{l}_1 ^2} = 1,8 t. $ 4626. Versuch.											
1	2	3	4	5	6	. 7	8	. 9	10	1 5 5 5 5		
Belas	stung	Ausbieg	ung in de	r Mitte		max a=			max a-			
im	kg	in der	in der	Pfeil	f v x	P(f, f)		$c \perp \sigma$	P(f1)			
Ganzen	pro qcm	VertEb.	Hor. Eb.	f	$\overline{k} = \frac{b}{n} + \frac{b}{m}$	$\overline{F}(1+\overline{k})$	λ	- 1 50	$\overline{F}\left(1+\overline{k}\overline{\lambda}\right)$			
Р	$P: F = \beta$	У	X									
t	at	mm	mm	mm		at		mm	at			
0	0	0	0 `	0	0	0	0	-	0			
0,25	28	-0,01	+0,05	0,05	0,001	28	0,140	0,31	28			
0,5	55	-0,04	+0,21	0,21	0,005	55	0,280	0,21	56	1		
0,75	83	0,99	+0,37	1,06	0,127	97				2.61		
1	111	-3,11	+0,49	3,15	0,399	155	0,560	2,48	190			
.1,1	122	-3,25	+0,53	3,29	0,417	173						
1,2	133	- 3,41	+0.57	3,46	0,437	191						
1,3	144	- 3,63	+0,63	3,68	0,465	209				Sec.		
1,4	155	3,88	+0,68	3,94	0,498	232						
1,5	166	- 4,24	+0,76	4,30	0,544	255	0,840	0,82	273			
1,6	177	-4,71	+0,84	4,78	0,604	283						
1,7	188	-5,61	+0,97	5,69	0,719	323	0,952	0,29	330			
1.75	194	Durchbiege	n.		in the second							

. 4

Probestück: ∟ Eisen, Lab.-Nr. 2698^b mit Spitzen an den Enden.

TIOOODUU	in Lawong a	1000, 111, 2000 mi	to oproson un don Lindor	Le la
				(1 07
1 - 170.0 and 1 - 100.0 and	· F _ 1261 a	am: 9 - 977 am:	h = 1.66 and m = 1.5	5 am : n _ 1,01 am.
$1 = 119,9 \text{ cm}, 1_1 = 190,9 \text{ cm}$, r = 10,01 q	$c_{110}, a_0 - 2, c_0 c_{110},$	$0_0 - 1,00 \text{ cm}, \text{ m} = 1,0$	$5 cm, \Pi = \{0, 0, 1, cm, \}$
				[0,91
1	1 /1 \2		-20.	
A	1 (11)	0 0000 1000 7	10 0 8	

λ	1 ($ l_1\rangle^2$	0.0000.1092.	D	$\pi^2 \Theta \varepsilon$ 10 5 /
$\bar{P} =$	ε F π ²	b.	= 0,00004925;	$P_0 =$	$-1,^2 = 19,5 t.$

4623. Versuch.

	-						1 0	0		
1	2	3	4	O	6	1	8	9	10	
Belas	stung	Ausbieg	ung in de	r Mitte		max $\sigma =$	1. 2. 2. 1	1.4. 10.3	max a=	
im	kg	in der	in der	Pfeil	fvx	P(f)		c + c	P/ f1)	
Ganzen	pro qcm	VertEb.	HorEb.	f	$\frac{1}{12} = \frac{1}{12} + \frac{1}{12}$	$\frac{1}{F}(1+\frac{1}{F})$	λ	0 1 50	$\frac{1}{1} \left(1 + \frac{1}{1} \right)$	
Р	$P: F = \beta$	У	X	1	K II III	L K			L V KV	
t	at	mm	mm	mm		at		mm	at	
			~							
0	0	0	0	0	- 0	0	0	_	0	
0,5	37	- 0,10	-0,08	0,13	0,011	37	0,025	5,04	53	
1	73	- 0,46	-0,11	0,47	0,051	77	0,049	9,12	149	
1,5	110	— 0,57	-0,14	0,59	0,063	117	and the second			
2	147	— 0,66	-0,16	0,68	0,073	157	0,098	6,25	256	
2,5	184	- 0,71	- 0,18	0,73	0,078	198			The second second	
3	220	- 0,78	-0,18	0,80	0,086	239	14700			
3,5	257	- 0.86	-0.18	0,88	0,094	281	0.1.201		134 4 81 10	
4	294	- 0.94	-0.19	0.96	0,103	324	0.197	3.92	448	
4.5	331	-1.02	-0.18	1.04	0.112	368			1400	
5	367	1.10	-0.17	1.11	0.121	411			-1.	
5.5	404	- 117	-0.16	1 18	0.129	456				
6	441	1.94	0.15	1.95	0.126	500	0.905	2.01	612	
65	178	1 29	0.13	1 22	0,145	547	0,200	0,01	010	
7	514	- 1,04	- 0,10	1,00	0,140	500				
	514	- 1,00	-0,12	1,59	0,152	092				
1,0	500	- 1,44	- 0,12	1,40	0,158	638				
8	588	- 1,50	-0,12	1,50	0,165	685	0,394	2,31	834	1.5
8,5	625	- 1,55	-0,12	1,55	0,170	730				
9	661	- 1,62	-0,13	1,62	0,178	778	Star Days		1-1-1-1-1-1	
9,5	698	- 1,88	0,18	1,89	0,207	842	1. 1. 11.		and there are	
10	735	- 2,59	0,40	2,62	0,285	944	0,492	2,71	1160 .	
10,5	771	- 4,37	- 0,79	4,44	0,480	1141	10012		are the	
10,75	790	- 4,86	0,79	4,92	0,534	1212				
11	808	- 5,45	-0,78	5,51	0.599	1291	in the			
11,25	827	- 5,85	-0.77	5,90	0,643	1358				
11.5	845	- 6.04	-0.78	6.09	0,664	1405				
11.75	863	- 6.28	-0.79	6.33	0.690	1458	1			
12	882	- 6.55	-0.79	6,60	0,320	1517	0.590	4.58	1959	
12.95	900	- 6.84	0.70	6.80	0,759	1577	0,000	7,00	1990	
19.5	019	7 16	0.70	7.00	0,152	1011			and the second	
12,0	0.97	- 1,10	-0,19	7.50	0,780	1034				
12,10	951	$-\frac{100}{0000}$	-0,76	1,99	0,830	1715			In the street of the	
13	900	- 8,01	-0,75	8,05	0,890	1805			and the second second	
13,25	974	- 8,52	-0,72	8,55	0,936	1885	1			
13,5	992	- 9,18	-0,69	9,21	1,002	1986				
13,75	1010	-10,15	0,62	10,17	1,115	2136				
14	1029	-12,43	-0,44	12,44	1,366	2434	0.689	5,61	3069	
14.1	1036	Durchbiegu	ng unter Fa	allen der V	Vaagschale.					
11,1	1000	and a start of the	- d uniter 1	and a dear of	Boonton		1 1 1 1 1 1 1			200

Tabelle 21.

Probestück: L Eisen, Lab.-Nr. 2698° mit Spitzen an den Enden.

$l = 271, 2 cm; l_1 = 282, 2 cm;$	$F = 13,74 \ qcm; \ a_0 = 2,78 \ cm; \ b_0 = 2,78 $	$b_0 = 1,67 \text{ cm}; m = 1,56 \text{ cm}; n = 10000000000000000000000000000000000$	cm
-----------------------------------	--	---	----

			λ	1 (].	12	$\pi^2 \Theta$	9 6		(0,01	
			$\bar{P} =$	$\frac{1}{\varepsilon \mathrm{F} \pi^2} \left(\frac{1}{\mathrm{b}} \right)$	$\left(\frac{1}{10}\right) = 0,0001$	053; $P_0 = \frac{1}{l_1^2}$	= 8,9 i		4622.	Versuch.
1	2	3	4	õ	6	7	8	. 9	10	
Belas	stung	Ausbieg	ung in de	r Mitte		max. $\sigma =$		AMARICA	max g=	
im	kg	in der	in der	Pfeil	fy, x	P(, f)		$c + g_{o}$	P(., f1)	
Ganzen	pro qcm	VertEb.	HorED.	f	$\bar{k} = n + m$	$\overline{F}(1+\overline{k})$	~	1.00	$\overline{F}(1+\overline{k}\overline{\lambda})$	
P	$P:F=\beta$	y	X	000.000		at		02022	at	
l		11111	110110	110110		uv		110110	1	
0	0	0	0	0	0	0	0		0	
0,5	36	-0,06	+0,02	0,06	0,007	36	0,053	1,06	41	
1	73	-0,01	+0,04	0.04	0,001	73	0,105	0,34	73	
1,5	109	+0,04	+0,01	0,04	0,005	110	0,158	0,21	112	
2	146	+0,11	-0,01	0,11	0,011	147	0,210	0,41	153	
2.5	182	+0,17	-0,03	0,17	0,018	185		and the d		
3	218	+0.21	0.07	0,22	0,024	223	0,316	0,48	234	
35	255	+0.24	-0.11	0.26	0.029	262				
4	291	+0.20	-0.16	0.26	0.029	299	0.421	0.36	311	
45	328	+0.6	-0.22	0.17	0.020	334		-100		
5	364	-0.31	-0.32	0.44	0.034	376	0.526	0.44	388	
5.5	400	-147	-0.56	1.57	0.160	464	0,010	0,11	000	
6	127	_ 3.79	-0.47	3 75	0.404	614	0.632	219	716	
6.95	155	1 37	0.45	4 39	0,101	671	0,001	2,10	110	
0,20	400	5 11	0,40	5.12	0,555	725				
0,0	410	- 0,11	-0,40	6.05	0,555	019				
6,75	491	-0,05	-0,35	0,00	0,000	615	0 797	0.70	1001	
7	509	- 1,76	-0,18	1.10	0,843	938	0,737	2,79	1091	1.315
7,1	517	Durchbiege	en unter Fa	llen der W	aagschale.	12		1 1 1 1 1 2 1		

Tabelle 22.

Probestück: L Eisen, Lab.-Nr. 2698^r mit Spitzen an den Enden.

 $1 = 405,1 \text{ cm}; \ l_1 = 416,1 \text{ cm}; \ F = 14,01 \text{ qcm}; \ a_0 = 2,81 \text{ cm}; \ b_0 = 1,685 \text{ cm}; \ m = 1,57 \text{ cm}; \ n = \begin{cases} 1,09\\0,92 \text{ cm}; \end{cases}$

$$\frac{\lambda}{P} = \frac{1}{\varepsilon F \pi^2} \left(\frac{l_1}{b_0} \right)^2 = 0,0002205; P_0 = \frac{\pi^2 \Theta \varepsilon}{l_1^2} = 4,1 t.$$

4621. Versuch.

1	2	3	4	5	6	7	8	9	10	
Belas	stung	Ausbieg	ung in de	er Mitte		max. $\sigma =$	1		max, $\sigma =$	
im	kg	in der	in der	Pfeil	f y x	P(., f)		$c + g_{o}$	P(., f 1)	at the set
Ganzen	pro qcm	VertEb.	HorEb.	f	$\overline{k} = \frac{s}{n} + \frac{s}{m}$	$\overline{F}(1+\overline{k})$	λ	~ 1 80	$\overline{F}\left(1+\overline{k}\overline{\lambda}\right)$	
Р	$P: F = \beta$	У	X							
t	at	mm	mm	mm		at		mm	at	
0	0	0	0	0	0	0	0	-	0	
0,5	36	+ 0,34	-1,05	1,10	0,098	39	0,110	8,90	68	
1	71	+ 0,98	-1,12	1,49	0,161	82	0,220	5,28	123	
1,5	107	+ 1,85	-1,23	2,22	0,248	133				
2	143	+ 2,98	-1,43	3,30	0,364	194	0,441	4,18	261	1. 381
2,5	178	+ 3,96	-1,84	4,37	0,480	263	11. 44.0	- 123		the -
3	214	$+ \overline{8,12}$	2,26	8,43	0,889	404	0,661	4,32	501	
3,1	221	+ 9,40	-2,35	9,69	1,012	444			-to series	
3,2	, 228	+10,98	-2,47	11,25	1,164	493		10 1	442 194651	
3,3	236	+12,91	-2,61	13,13	1,350	555		1 (<u>1</u>	A LARKI	
3,4	243	+15,34	-2,75	15,58	1,571	624		and a subject of		14.1
3,5	250	+18,76	-2,87	18,98	1,904	726	0,772	5,61	866	
3,6	257	+23,47	- 3,24	23,70	2,359	862			1 Carlos and	
3,7	264	+30,51	-3,75	30,74	3,038	1066				
3,8	271	+40,06	- 4,49	40,31	3,961	1344 -	0,838	7,79	1551	
0	0	+ 0,38	-1,10	-						

Bei nochmaliger Belastung biegt sich das Stück schon bei 3,0 t unter Herabfallen der Waagschale durch.

(1 00

Probestück: ∟ Eisen, Lab.-Nr. 2699^b mit Spitzen an den Enden.

 $1 = 186.9 \text{ cm}; 1_1 = 197.9 \text{ cm}; F = 9.125 \text{ gcm}; a_0 = 2.605 \text{ cm}; b_0 = 1.48 \text{ cm}; m = 1.39 \text{ cm}; n = 10.89 \text{ cm}; n = 1$

1	- 100,5 0	$n_0, 1_1 - 1_0$	JI, J Cho, 1	0,125	$q_{cm}, a_0 - 2,$	$005 cm, 0_0 - 1$,10 <i>cm</i> , m	- 1,00 0	$(0, 1) = (0,79)^{\circ}$	110,
			$\frac{\lambda}{D} =$	$\frac{1}{2 E - 2} \left(\frac{l_1}{L} \right)$	$)^2 = 0,00009$	927; $P_0 = \frac{\pi^2}{1}$	$\frac{\Theta}{2} \approx = 9,9$	t.	1691	Vonauch
			Г	εrπ \U ₀ ,					4024.	versuch.
1	2 .	3	4	ē	6	7	8	9	10	racing and
Belas	stung	Ausbieg	ung in de	er Mitte	E LINES	max. σ ==			max. $\sigma =$	EV.O.M
Im	kg	In der	in der	Pfeil	f y x	$P_{(1, f)}$		$c + g_0$	$P_{(1, f1)}$	- dal
P	$\mathbf{P} \cdot \mathbf{F} = \mathbf{B}$	vertED.	TOL-ED.	f	k = n + m	$\overline{F}(1+\overline{k})$	~		$\overline{F}(1+\overline{k}\overline{\lambda})$	Constrained
t	at at	mm	mm	mm	1.44	at '		mm	at	
0	0	0	0	0	0	0	0		0	
0.5	55	- 0.26	+0.07	0.27	0,033	57				
1	110	- 0,71	+0.08	0,71	0,090	120	0.099	6,45	210	
1,5	164	- 0,96	+0.07	0,96	0,122	183				
2	219	- 1,24	+0,06	1,24	0,157	252	0,199	5,00	391	
2,5	274	-1,52	+0,06	1,52	0,192	325	10 1000		5.1	
3	329	- 1,82	+0.07	1,82	0,230	405	0,298	4,30	582	
3,5	384	- 2,19	+0.08	2,19	0,279	491	1. 1.1			
4	438	- 2,58	+0.10	2,58	0,327	581	0,397	3.92	799	
4,5	493	- 3,03	+0.13	3,03	0,384	682	La les			
õ	548	- 3,58	+0,18	3,58	0,454	796	0,496	3,62	1049	
5,5	603	- 4,23	+0,20	4,23	0,542	929	1 1 1 241 7			
6	658	- 5,15	+0,25	5,16	0,652	1087	0,596	3,50	1377	
6,5	712	- 6,01	+0,31	6,02	0,761	1254				
7	767	- 7,24	+0,37	7,25	0,917	1470	0,695	3,18	1779	
7,5	822	- 9,06	+0,46	9,07	1,147	1765				
7,75	849	$-10,\overline{44}$	+0,53	10,45	1,322	1972		- 10 7		
8	877	- 12,66	+0,63	12,68	1,603	2282	0,794	3,29	2647	
8,2	900	Durchbiegen	n unter Fal	len der Wa	agschale.					

Tabelle 26.

Probestück: I Eisen, Lab.-Nr. 2689° mit flachen Enden zwischen festen Platten. l = 131.2 cm; F = 26.6 acm; $a_0 = 6.04$ cm; $b_0 = 1.555$ cm. 4636. Versuch.

				,, _	ie Jeur	,0 -,-	- cm, ~0	-,			
1	2	3	4	5							
Belas	stung	Ausbieg	ung in de	er Mitte							
Im	kg	in der	in der	Pfeil							
Ganzen	pro qcm	vertEb.	HorEb.	f							
1 +	$\mathbf{r} = \mathbf{p}$	y	X	410.000	1-11.						- Diminicite
U	ui	110110	mm	mm						1. 1. 1	4
0	0	0	0	0							
5	188	+0,94	-0,13	0,95	10-27-12						
10	376	+1,49	0,12	1,49							
15	564	+1,53	-0,08	1,53		1.1.1					
20	752	+1.57	0,10	1,57	A STORES						
25	940	+1,59	-0,12	1,59	101						
30	1128	+1,60	-0,13	1,60	1 12						
35 .	1316	+1,61	0,14	1,61	Star 11 Sta						
40	1504	+1,61	-0,13	1,61	1020						
45	1692	+1,61	-0,13	1,62	ton in the						
50	1880	1,62	-0,12	1,62							•
55	2068	+1,62	-0,10	1,62						100-0	oben
60	2256	+1,63	- 0,07	1,63							
65	2444	+1,75	-0.03	1,76	zwischen 65	u. 70 t zerb	richt die v	ordere Dru	ckplatte;		es wird weiter
					gepumpt.						
	0/100					1 1		04.11			
70	2632		-		Die halbe	e vordere I	ia knickt d)ruckplatte	stark gen	eigt, ein Ze	Schlag nach	n oben durch. ss hier die Be-
			1	1.	weglichke	eit der Platt	te schon vo	orhanden w	ar. Gestalt	bei 8,1 t I	Belastung siehe
			and the second s		in Fig 2) anf Blatt	IV.				

4660. Versuch.	Enden zwischen festen Platten. 77 cm: b. = 1.23 cm.	1 CHP, 30 - 1,20 CHP.																S förmige Biegung.							Zeiger für y läuft rasch fort; dann plötzliche Durchbiegung nach oben, aber lautlos.						tore and success to an an and	Annual Annual Annual
le 28.	t flachen	(n 0m (5 r Mitte	Pfeil	f	mm	0	0.00	20'0	0,03	0,09	0.90	0.23	0,25	0,27	0,28	0,27	0,12	1,62	2,19	3,07	4,73	5,18	5,59	1						Harpets	-
Tabel	2692 ^b mi	aunh . = (= 1	4 mg in der	in der Hor Fh	X	uuu	0	0 00	+ 0,02	- 0,02	0,08	0.15	- 0.17	-0,19	-0,21	-0,22	-0,21	+0.03	+0,04	+ 0,04	+0,06	+0,13	+ 0,16	+0.17	1	100.						ALC: NO.
	, LabNr.	(allo	3 Ausbiegu	in der Vert Eh	y united and	mm	0	0000	0,00	+ 0,02	0,00 +	+ 0,00	+ 0.16	+0,16	+ 0,17	+ 0,17	+ 0,17	-0,12	-1,62	-2,19	- 3,07	- 4,73	-5,18	- 5,59							- 11 M	1
	t: I Eisen	0(7E T	2 tung	leg mo acm	$P: F = \beta$	at	0	0	070	2020	978	1630	1956	2282	2608	2771	2934	3097		.,	3178	3260	33	52	3301					in the se		-
	Probestück		1 Belast	im	P	t	0	0	4 0	00	12	01	24	28	32	34	36	38	38	32	39	40	"	11	40,5			 - Martin				1
4635. Versuch.	Unden zwischen festen Platten.	CH6, 00 - 1,02 CH6.													-				Unter starkem Nachgeben abgelesen;	die Biegung nach oben wächst fort, erst langsamer. dann rascher, und	dann schlägt das Stück unter stark. Schlog ulstalich noch ohen durch	the man made many indiginal Spilling				•						
le 27.	flachen E	du 0 - 0,0	5 Mitte	Pfeil	f	mm	0	0	1,42	2,12	2,36	2,41	2.48	2,47	2,28	2,00	1,49	0,63	3,17 (ANY O	1.
Tabel	2689 ^a mit	40,4 yene,	4 mg in der	in der	X	uuu		0 00	- 0,66	- 0,70	02.0	- 0,09	- 0.67	-0,66	- 0,65	- 0,62	-0,61	-0,63	- 0,70												X 30 6 1	1
	, LabNr.	E CIIV, E =	3 Ausbiegu	in der	Net	mm.	-	0 1	+ 1,26	+2,01	+ 2,26	10.2 +	+ 2.39	+ 2.37	+ 2,19	+1,905	+1,36	+ 0,06	-3,09				- Martin									-
	r: I Eisen	1 = 400;	2 tung	kg	$P: F = \beta$	at		0	601	317	476	000	952	1111	1270	1429	1587	1746	1825						SIL	- 10						1
	Probestüel		1 Belas	im	Р	t	0	0.	4 (00	12	01	24	28	32	36	40	44	46											-		

4658. Versuch.	Enden zwischen festen Platten.	$75 \ cm; \ b_0 = 1,22 \ cm.$																														•	Nachdem 28.5 <i>t</i> erreicht und gehalten.	läuft der Zeiger für y plötzlich	das Stück biegt sich mit starkem Schlag nach unten durch.	
le 30.	t flachen	; $a_0 = 3$,	5 Millio	Pfeil	uuu	0	0.40	0,36	0,15	20'0	0,27	0,42	0520	0.54	0.56	0.56	0.56	0,55	0,55	0,55	0,55	76,0	0.58	0,59	0,60	0,60	0,00	0.60	0.61	0.67	0.92	1.84	-			
Tabel	2692ª mi	= 12,10 qcm	4	in der HorEb.	mm		- 0.02	- 0,03	+ 0,01	+ 0.05	+ 0,10	+ 0,14	1 0 18	+ 0.20	+ 0.22	+ 0.23	+0.25	+ 0,28	+0,32	+ 0,35	+0,38	+ 0,41	+ 0,44	+0,46	+ 0,48	+ 0,50	+ 0,015	+ 0.54	+ 0.54	+ 0.56	+ 0.58	+ 0,85	.			Contract of the second
	n, LabNr	5 cm; F =	3 Anobiou	in der VertEb.	y mm	0	- 0.40	- 0,36	-0,15	+ 0,06	+ 0.25	+ 0,40 + 0.46	T 050	000 +	+ 0.51	+ 0,51	+ 0.50	+ 0,47	+ 0,44	+0,42	+0,40	+0,39	$+0,37_5$	+0,37	+0,36	+ 0.325	+ 0,23 + 0.97	+ 0.27	+ 0,28	+ 0.37	+ 0.71	+ 1.63	-		Should .	
	k: I Eise	l = 137, l	2 tuno	pro qcm	$F: F = \beta$ at	0	83	165	248	331	413	430 679	661	744	826	606	992	1074	1157	1240	1322	1405	1488	1570	1653	1736	1001	1983	2066	2149	2231	2314	2355	Date on the local		
	Probestüc		1 Rala	im Ganzen D	t t	0	1	63	60	4 1	0.0	0 1	00	6	10	11	12	13	14	15	16	17	18	19	20	12	93	24	25	26	27	28	28.5			
4659. Versuch.	Enden zwischen festen Platten.	$78 \text{ cm}; \text{ b}_0 = 1,23 \text{ cm}.$											the state of the state of the state of the state of the											Kreuzkopf vorn hat sich gehoben, um ca. 1 cm an der Vorderkante;	desshalb die Messung unbrehbar.	zeiger für y lauft durch; die Waage sinkt; plötzlich biegt sich das Stück	mit dumpfen Krach nach unten durch. in der hinteren Hälfte mehr.	1		, , , , , , , , , , , , , , , , , , ,					Part Sol when there that and	
le 29.	t flachen	$a_0 = 3, 7$	5 c Mitte	Pfeil f	mm	0	0,02	0,03	0,05	0.35	0.32	0,32	0,32.	0,32	0,32	0,32	0,32	0,32	0,33	0,35	0,38	0,46	0,62	1,08		1.										
Tabel	. 2692° mi	12,34 qcm;	ung in der	in der HorEb.	uun	0	+ 0,01	+ 0,01	+ 0,01	- 0,06	- 0.03	- 0,02	-0,02	-0,02	-0,01	-0,01	-0,015	+ 0,04	+ 0,05	+ 0,10	+ 0,16	+0,25	+ 0,39	+0,73	ill dans	-				Shiend						Lan Inter
	n, LabNr	<i>cm</i> ; F =	3 Ausbieg	in der VertEb. v	uuu	0	+0,02	+0.03	G0,0 +	- 0.34	-0.32	- 0,32	-0,32	-0,32	-0,32	0,32	-0,315	$-0,31_{5}$	- 0,325	0,34	- 0,30	- 0,38	- 0,48	- 0,80	- Tel	1								•		
	k: I Eisel	l = 82,9	2 stung	$\begin{array}{c} kg \\ pro \ qcm \\ P: F = 3 \end{array}$	at	0	162	0	201	486	648	810	972	1134	1297	1459	1621	1783	1945	2101	6972	2431	2093	6612	9996	0007										
	Probestüc		Belas	im Ganzen P	t	0	57	0 0	1 4	9	0 00	10	12	14	16	18	20	22	24	07	00	50	32	40	35	00										

																																							4	9
4634. Versuch.	Enden zwischen festen Platten.	$DZ \ cm$; $D_0 = 1,305 \ cm$. Brettdicke $2,5 \ cm$.													•	LAST DATE TRACK TRACK MUSICAR	ALL AND DESCRIPTION REPORTED AND ADDRESS	" a ding a " " from the 2 and block graves	the providence of the providence of the second seco	mather was shire added and hade																		werden eben erreicht; aber der Zeiger	und rascher, die Waagschale sinkt, endlich dumpfer Krach und Durch- knioken nach unten	THILDRAN TANKE MANAGE
lle 32.	it flachen	; $a_0 = D$, enommen;	5 r Mitte	Pfeil	uuu	0		0,17	0,83	1,26	1,66	2,03	2,40	2,62	2,81	2,99	3,12	3,28	3,45	3,57	3,75	3,91	4,10	4,30	4,52	4,72	4,97	5,21	5,48	22.9	6,08	6,45	6,89	7,39	8,23	8,98	10,47	1		
Tabel	2694° m	20,84 qcm icht wegge	4 ng in de	in der HorEb. x	uuu	0		+ 0,02	+ 0,11	+0.33	+0,34	+ 0,43	+0,53	+ 0,58	+ 0,61	+0,64	+0,66	+ 0,69	+ 0,72	+0,74	+ 0,78	+ 0,81	+0,84	+0,85	+ 0,87	+0,89	+0,92	+0.93	+0,94	+0.94	+0.95	+0,96	+ 0,97	+0.97	+0.97	+0,98	+0.96	1	anna. m	Actual in the
	, LabNr.	<i>cm</i> ; F = 2 rlagskeile n	3 Ausbiegu	in der VertEb.	mm	0	- 0,12	+ 0,17	+ 0,82	+ 1,22	+ 1,62	+ 1,98	+ 2,34	+ 2,56	+ 2,74	+ 2,92	+ 3,05	+ 3,21	+ 3,37	+ 3,49	+ 3,67	+ 3,83	+ 4,01	+ 4,21	+ 4,43	+ 4.63	+ 4,88	+ 5,12	+ 5,40	+ 5,69	+ 6,01	+ 6,38	+ 6,82	+ 7,33	+ 8,18	+ 8,93	+10,43	1	Mr. da.	-
	c: U Eisen	= 314.5 (Unte	2 Supg	$\frac{kg}{\text{pro }qcm}$	at	0		48	96	144	192	240	288	336	384	432	480	528	. 929	624	672	720	768	816	864	912	096	1008	1056	1104	1152	1200	1248	1296	1344	1368	1392	1416	T loss	-
	Probestücl		Belast	im Ganzen P	t	0		1	67	3	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	28,5	29	29,5	- No. Anima	-
4633. Versuch.	Enden zwischen festen Platten.	59 cm; $b_0 = 1,385$ cm.							- Maile sour conte	alanda area interior and alanda	thet proversion / Jap mur div wreat	- down plant house atom to the week of the									Die Stirnflächen liegen noch satt an,	aber die Zeiger laufen fort, endlich	fällt d. Waagschale plotziich berab; das Stück knickt mit dumpfen	Krach nach unten durch, unter	Ablösen der Stirnflächen von den Drucknlatten und erhält mit ein-	mal die in Fig. 21, Blatt IV dar-	gestellte Biegung, wobei es eine Belastung von 11.2 t trägt.	0												
le 31.	flachen .	$a_0 = \tilde{D}, \tilde{D}$	5 Mitte	Pfeil f	mm	0	1,01	1,49	1,58	1.70	1,86	2,02	2,22	2,51	2,81	3,56	4,30	4,83	5,66	679	9.48	01	W.U.V.	- Shik	0165		. 6'61	11 20	. 65.0	078			- Juhar	1	hose .	yinna .	1		Receipter 1	· 222 ·
Tabel	2694° mit	21,49 qcm;	4 ng in der	in der HorEb. x	uuu	0	-0,15	-0,00	+0,09	+ 0,27	+0,44	+ 0.59	+0,81	+1,04	+ 1,13	+ 1,21	+1.27	+1,30	+1,34	1 1 41	+ 1.43	0717	. 10.00	10.11 -			- mart	- 0000	NUS	1000-	1. 20 (La - 1)	-	- AUNA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 A 01	Rent of	1	AND SUM	and a	No. Lott
	, LabNr.	cm; F = .	3 Ausbiegt	in der VertEb. v	mm	0	+1,00	+1,49	+1,58	+1,68	+1,80	+1,93	+ 2,07	+2,29	+ 2,57	+3,35	$+ \frac{4}{11}$	+4,65	+5,47	1 6 64	+ 9.37		11.14 ·····			000	10.01 M	1111-1-1	10,01	SPUS -	8.1			A Law Contract	10 04	Service :		141 A	in daily.	-
	n	0		200	-												-		-			-			-	-		-	-			-		-						
	x: U Eise	l = 160	2 tung	$\frac{kg}{P:F} =$	at	0	186	372	558	744	931	1117	1303	1489	1675	1861	1954	2001	2047	PhU6	2140	0				1 830.		. 113 .												

5()			
4656. Versuch.	Enden zwischen festen Platten.	$b_{45} cm; b_0 = 1,89 cm.$		werden erreicht, aber die Zeiger laufen rasch fort; die Waagschale sinkt; Apparate abgenommen und weiter gepumpt; ein plötzliches Umschnappen findet nicht statt, nur ein rasches Durchbigen nach un ten und nach rechts.
lle 34.	it flachen	$a_0 = 2, E$	r Mitte Pfeil f	$\begin{array}{c} 0 \\ 0,77 \\ 0,65 \\ 0,70 \\ 0,75 \\ 0,93 \\ 1,11 \\ 1,50 \\ 3,02 \\ \end{array}$
Tabe	2696° m	19,28 gcm	4 ung in der HorEb. <i>x</i> <i>mm</i>	$\begin{array}{c} 0 \\ + 0,04 \\ + 0,22 \\ + 0,40 \\ + 0,51 \\ + 0,60 \\ + 1,36 \\ + 2,99 \\ - \end{array}$
	m, LabN1) cm; F ==	3 Ausbieg in der VertEb. y mm	$\begin{array}{c} 0 \\ -0.77 \\ -0.63 \\ -0.63 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.63 \\ -0.$
	ik: T Eise	l = 149.5	$\begin{array}{c} 2 \\ \text{stung} \\ kg \\ \text{pro } qcm \\ \text{P} \colon \text{F} = \beta \\ at \end{array}$	0 259 519 778 1037 1297 1815 2075 2334 2697 2697
	Probestüe		$\begin{array}{c} 1\\ \text{Bela}\\ \text{im}\\ \text{Ganzen}\\ P\\ t\end{array}$	10 5 0 10 5 0
4657. Versuch.	Enden zwischen festen Platten.	$025 \ cm; \ b_0 = 1, 81 \ cm.$		Zeiger für y läuft schnell fort; nach einiger Zeit fällt die Waagschale. Der Kreuzkopf vorn und die ganze Reihe der Sättel vor ihm stark gehoben.
le 33.	it flachen	; $a_0 = 2, t$	5 r Mitte f mm	$\begin{array}{c} 0 \\ 0,48 \\ 0,70 \\ 0,56 \\ 0,56 \\ 0,52 \\ 0,52 \\ 0,53 \\ 0,53 \\ 0,52 \\ 0,53 \\ 0,68 \\ 1,24 \\ 2,07 \\ 2,07 \\ 2,07 \\ 2,07 \\ 2,07 \\ 0,52 $
Tabel	. 2696° m	18,92 gcm	4 ung in der in der HorEb. x mm	$\begin{array}{c} 0 \\ - & 0,05 \\ - & 0,03 \\ - & 0,00 \\ + & 0,01 \\ + & 0,01 \\ + & 0,00 \\ $
	n, LabNr	cm; F' ==	3 Ausbieg in der VertEb. <i>y</i> <i>mm</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	k: T Eiser	1 = 107, 4	$\begin{array}{c} 2 \\ \operatorname{tung} \\ kg \\ \operatorname{pro} qcm \\ \mathrm{P}: \mathrm{F} = \beta \\ at \end{array}$	$\begin{array}{c} 0\\ 265\\ 529\\ 794\\ 1059\\ 1323\\ 1588\\ 1588\\ 1588\\ 1588\\ 2217\\ 2858\\ 2858\\ 2911\\ 2937\\ 2884\\ 2937\\$
	Probestüc		$\begin{array}{c} 1 \\ \text{Belas} \\ \text{im} \\ \text{Ganzen} \\ P \\ t \end{array}$	$\begin{array}{c} & 0 \\ 15 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $

4654. Versuch.	Enden zwischen festen Platten.	$7_5 \ cm; \ b_0 = 1,665 \ cm.$		in the second			the second	and a state weather weather the state of the															Eine halbe Minute darnach Durch-	schlagen mit kleinem Krach! Ohne	wener unterzubeigen wird auge- wogen und die Biegung gemessen.								Event a such	Source Mathematic Science Libertree	Constant Protocol
le 36.	flachen	$a_0 = 2,7$	5 Mitte	Pfeil	f	mm	0	0,17	0,21	0,56	0,00	0.69	0,69	0,73	0,79	0,84	0;00	26'0	1,01	1,20	9.94	3.84	5.58												
Tabell	. 2698 ^{bb} mit	13,70 qcm;	nng in der	in der	HorEb.	uuu	0	-0,11		- 0,02	+ 0,04	+ 0.27	+ 0,41	+0.52	+0,62	+ 0,70	+ 0,77	+0,84	+0,87	+ 0,88	+ 0,04	1 0,02	+ 0.42							100 AS		4		Mar Hants	Strengt .
	I, LabNI	cm; F =	3 Anshieo	in der	VertEb.	mm	0	-0,13	+0,20	+0,56	1 0,00	+ 0,00	+ 0,55	+0,51	+0,49	+0,47	+0,47	$+0,47_5$	+0,51	+ 0.82	+ 1,00	1 3 79	+ 5.56												
	x: L Eisen	l = 179, 5	timor	lig	pro qem	at .	0	146	292	438	190	876	1022	1168	1314	1460	1606	1752	1898	2044	2190	6022	"	"									Contraction of the second	No. 1	
	Probestücl		1 Relas	im	Ganzen	t	0	2	4	9	x x	19	14	16	18	20	22	24	26	28	00 31	10		"							ansi .			and the	
4655. Versuch.	inden zwischen festen Platten.	$t_5 cm; b_0 = 1,89 cm.$																									No Walnut walking work fort and	lich fällt die Waagschale; Mess-	flächen liegen noch satt an den	Druckplatten; dann plocznenes Durchschlagen nach seitwärts und	unten, wooel die Surmachen sich an den Druckplatten abheben und diese selbst auf der einen Seite	etwas locker werden.			
e 35.	flachen E	$a_0 = 2,54$	5 Mitta	Dfail	f	mm	0	0,60	1,00	1,10	1,11	1,01	77.0	0,89	0,93	1,03	1,22	1,55	2,10	3,01	muss der	2.23		3,65	4,17	4,89	0,00	r at'a	· · · · · · · ·		in the second				1.35.0
Tabell	2696ª mit	9,29 qcm;	4 nor in dar	in der	HorEb.	mm	0	- 0,07	0,00	+ 0,09	+ 0,12	+ 0,22 + 0.30	+ 0,38	+0,48	+0.59	+ 0,75	+0,99	+1,39	+1,97	+ 2.89	ht mehr; es	+ 1.53	gepumpt.	+3,49	+4,00	+ 4,70	10,0 +	+ 0,02		2101 - 1010	The state		Start Strat	Acres - mile	Nova a
	LabNr.	cm; F = 1	3 Auchiaon	in der	VertEb.	y mm	0	+ 0,60	+1,00	+1,10	+1,10	+ 0,99	+ 0,80	+ 0,75	+ 0,72	+- 0,71	+ 0,71	+0,69	+0,72	+0,85	ben zieht nic	+ 1.62	dann weiter	+ 1,08	+ 1,17	+1,36	0,1+	+ 3,11	in the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in general			New Set	
	: T Eisen,	l = 221, 8	2	fig	pro qcm	at at	0	156	311	467	622	178	1089	1244	1400	1555	1711	1866	2022	2177	Pumpenkoll	AULIKASIC		2229	2281	2333	2350	2436		1. H 8				121121	
	estück		1 Balact	im	nzen	t	0	3	9	6	12	15	21	24	27	30	33	36	39	42				43	44	45	40	47							

	-																																				
4652. Versuch.	Enden zwischen festen Platten.	$785 \ em; \ b_0 = 1,67 \ em.$								total and the line of the second	A STATE OF	anythe district property where append															werden nicht mehr, aber nahezu	erreicht, dann schlägt das Stück plötzlich durch; die Stirnflächen	liegen nicht mehr an den Druck- vlatten an.	Partonova texas					The mire by an 1, Gills and	Advalser Stotgethett aver on 1 galacett	doma vant
le 38.	it flachen	; $a_0 = 2$,	5	Pfail	f	mm	0	2,60	4,94	4,89	5,53	6,36	7,22	8,10	3,12	11 38	12.51	13,80	15,27	16,89	17,85	18,87	20,11	21,58	23,18	25,30	-										
Tabel	2698° mi	.3,77 gcm	4	in der	HorEb.	uuu	0	- 0,31	- 0,43	-0,23	- 0,09	+ 0,03	+ 0,11	+ 0,22	07.0 +	+ 0.31 + 0.40	+ 0.37	+0,33	+0,24	+ 0,11	+0,06	-0,03	-0,16	- 0,28	0,39	- 0,52		9	A Link		RUG EP	IN yet.	,		19.91 81	Southow .	dela/In
	1, LabNr.	<i>cm</i> ; F = 1	3.1	Ausolegu in der	VertEb.	mm	0	+ 2,58	+ 4,94	+ 4,88	+ 5,53	+ 6,36	+ 7,22	+ 8,10	+ 3,12	+ 10,12 + 11,37	+ 12.50	+13,80	+ 15,27	+16,89	+ 17,85	+ 18,87	+ 20,10	+ 21,57	+ 23,16	+ 25,29		0			In Noll	ande als	A USURA		- 1 in	an True of	-
	c: L Eiser	l = 403,0	2	kg	$P \cdot F = 3$	at	0	37	73	109	146	182	218	255	167	364	400	437	473	509	527	546	564	582	009	618	655	- 0		- 11-	FLINAN		stiller -		1. 1.16	ALLE RICH	
	Probestück		Dolog	im	Ganzen	t	0	0,5	1	1,5	2	2,5		3,5	# *	5,50	5.5.	9	6,5	2	7,25	2,5	7,75	8	8,25	8,5 x 75	6	0		. 2	1010200	ini	HUH .			Fuctions	_
4653. Versuch.	Enden zwischen festen Platten.	$74 \ cm; \ b_0 = 1,64 \ cm.$	deringer (project: Arseigned	Fing and hit wild wild be down instead	a support of the state of the s	and and the property and we open	The fair of Waterships and						· · · · · · · · · · · · · · · · · · ·												· · · · · · · · · · · · · · · · · · ·								Der Zeiger für y geht bei derselben Belastung allmählich immer rascher	weiter u.endlich schlägtsich d.Stück	durch; ohne weiter durchzubiegen	wird abgewogen und bei 9, <i>t</i> Be- lastung die in Fig. 22 auf Blatt IV	dargestellte biegung gemessen.
le 37. 4653. Versuch.	t flachen Enden zwischen festen Platten.	; $a_0 = 2,74 cm$; $b_0 = 1,64 cm$.	.5 Mitte	Pfeil	f	mm	0	1,33	2,04	2,43	2,79	2,99	3,16	3,10 2.04	9.04 9.04	0,0± 3.15	3,35	3,59	3,89	4,24	4,70	5 ,26	5,99	7,04	7,80	8,65	10,44	10,84	11,38	11,89	12,10	13,74	16,38 Der Zeiger für y geht bei derselben . Belastung allmählichimmerrascher	weiter u.endlich schlägtsich d.Stück	durch; ohne weiter durchzuliegen	wird abgewogen und bei bit be- lastung die in Fig. 22 auf Blatt IV	dargestellte blegung gemessen.
Tabelle 37. 4653. Versuch.	. 2698ª mit flachen Enden zwischen festen Platten.	13,27 qcm; $a_0 = 2,74$ cm; $b_0 = 1,64$ cm.	4 55	in der Pfeil	x f	nam man	0 0		0,00 2,04 ·	+0,09 2,43	+0,17 2,79	+0.24 2,99	+ 0,32 3,16	+0.40 3.10		+ 0.67 3.15	+0.72 3.35	+ 0.74 3,59	+0.76 3,89	+ 0,78 4,24	+0,80 4,70	+0,80 5,26	+0.78 5,99	+0.75 7,04	+ 0,71 7,80	+0.66 $8,65+0.57$ 9.99	+0.54 10,44	+0.51 10,84	+0.44 11,38	+ 0,42 11,89	+ 0,30 12,10	+ 0.21 13.74	-0,08 16,38 Der Zeiger für y geht bei derselben . Belastungallmählichimmerrascher	weiter u. endlich schlägt sich d. Stück	durch; ohne weiter durchzubiegen	wird abgewogen und bei 5, t be- lastung die in Fig. 22 auf Blatt IV	dargestellte biegung gemessen.
Tabelle 37. 4653. Versuch.	1, LabNr. 2698ª mit flachen Enden zwischen festen Platten.	$cm; F = 13,27 \ qcm; a_0 = 2,74 \ cm; b_0 = 1,64 \ cm.$	3 4 5 Aushiaanna in dan Mitta	in der in der Pfeil	Veru-Eur. HorEur. f	mm mm	0 0 0	+ 1,33 $-$ 0,07 1,33	$+$ 2,04 0,00 2,04 \cdot	+ 2,43 $+$ 0,09 2,43	+ 2,78 $+$ 0,17 2,79	+ 2,98 $+$ 0,24 2,99	+ 3,14 + 0,32 3,16	+ $3,01$ $+$ $0,40$ $3,10$ $+$ 9.00 $+$ 0.59 $ 9.01$	L 908 1 0.69 2.01	+ 3.08 $+$ 0.67 3.15	+ 3,27 $+$ 0,72 3,35	+ 3,51 $+$ 0,74 3,59	+ 3,81 $+$ 0,76 3,89	+ 4,17 + 0,78 4,24	+4,63+0,80 4,70	+ 5,20 $+$ 0,80 5,26	+ 5,94 $+$ 0,78 5,99	+ $7,00$ $+$ $0,75$ $7,04$	+ 7,77 + 0,71 7,80	+ 8,02 $+$ 0,66 8,65 $+$ 9.97 $+$ 0.57 9.99	+10.43 + 0.54 10.44	+10,83 $+0,51$ $10,84$	+11.37 $+0.44$ 11.38	+11,88 + 0,42 + 11,89	+ 12, 10 + 0,30 + 12,10	+13.(4 + 0.21 - 13.(4 + 0.21 - 13.(4 + 0.21 + 0.2	+ 10,38 0,08 16,38 Der Zeiger für y geht bei derselben . Belastungallmählichimmerrascher	weiter u.endlich schlägtsich d.Stück	durch; ohne weiter durchzubiegen	wird abgewogen und bet 9, 6 Be- lastung die in Fig. 22 auf Blatt IV	argestellte blegung gemessen.
Tabelle 37. 4653. Versuch.	c: L Eisen, LabNr. 2698ª mit flachen Enden zwischen festen Platten.	$1 = 271, 3 \ cm; \ F = 13, 27 \ qcm; \ a_0 = 2, 74 \ cm; \ b_0 = 1, 64 \ cm.$	2 3 4 5	kg in der in der Pfeil	P: F= 3 V eru-Eu IDT. Eu F	at min min min	0 0 0 0	75 + 1,33 - 0,07 1,33	151 + 2,04 0,00 2,04	126 + 2,43 + 0,09 2,43	301 + 2,78 + 0,17 - 2,79	377 + 2,98 + 0,24 + 2,99	452 + 3,14 + 0,32 3,16	528 + 301 + 0.40 3.10		754 + 3.08 + 0.67 = 3.15	829 + 3,27 + 0,72 3,35	904 + $3,51$ + $0,74$ $3,59$	980 + 3,81 + 0,76 3,89	1055 + 4,17 + 0,78 4,24	1130 $+ 4,63 + 0,80 + 4,70$	1206 + 5,20 + 0,80 5,26	1281 + 5.94 + 0.78 5.99	1356 + 7,00 + 0,75 7,04	1394 + $7,77$ + $0,71$ 7,80	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1476 + 10,43 + 0,54 = 10,44	$1484 + 10,83 + 0,51 \\ 10,84 $	1491 + 11.37 + 0.44 11.38	1498 + 11,88 + 0,42 11,89	1001 + 12,10 + 0,50 + 12,10	1014 + 10, (4 + 0, 21 + 13) (4 + 0, 21 + 13) (4 + 13) (1022 + 10.38 - 0.08 = 16.38 Der Zeiger für y geht bei derselben Belastung allmählich immer rascher	weiteru.endlichschlägtsich d.Stück	durch; ohne weiter durchzubiegen	wurd abgewogen und bei Bit Be- lastung die in Fig. 22 auf Blatt IV	argestellte blegung gemessen.

Tabelle 39.

Probestück: I Eisen, Lab.-Nr. 3028ª mit Spitzen an den Enden.

 $l = 240,5 \ cm; \ l_1 = 254,3 \ cm; \ F = 10,58 \ qcm; \ a_0 = 4,02 \ cm; \ b_0 = 1,16 \ cm; \ m = 3,26 \ cm; \ n = 0,54 \ cm;$

$$\frac{\lambda}{P} = \frac{1}{\varepsilon F \pi^2} \left(\frac{l_1}{b_0} \right)^2 = 0,0002304; \ P_0 = \frac{\pi^2 \Theta \varepsilon}{l_1^2} = 4.3 t.$$

4817. Versuch.

		Carl and the local data and the local data		and the second se	and the second	Contraction of the local division of the loc	and the local division of the local division	the second se	the second se			
1	2	3'	4'	5'	3	4 .	5	6	7	8	9	10
Bela	stung	Ausbiegu der vo	ng in der rderen Hä	Mitte älfte	Ausbiegu	ng in der	Mitte	colraf.	max. $\sigma =$	nov Jež		max. $\sigma =$
im Ganzen	kg	in der Vert-Eb	in der Hor-Eb	Pfeil	in der Vert-Eb.	in der Hor-Eb	Pfeil	$\frac{f}{k} = \frac{y}{n} + \frac{x}{m}$	$\frac{P}{F}\left(1+\frac{f}{k}\right)$	λ	$c + g_0$	$\frac{P}{F}\left(1+\frac{f}{F}\frac{1}{2}\right)$
P	$P:F=\beta$	V' 10.	X'	f	V OI U. LIU.	X	f	a n m	L	1		L KV
t	at	mm	mm	mm	mm	mm	mm	2. 2. 1	at	1	mm	at
	0 -	0	0	0	0	0	0	0	0			
0	0	1 0.00	0.00	0.02	1 0.02	0	0	0	0	0	-	0
0,2	19	+ 0,02	0,00	0,02	+ 0,02	-0,01	0,02	0,004	19	0.000		
0,4	38	+ 0,08	0,00	0,08	+ 0,12	- 0,01	0,12	0,022	39	0,092	1,18	47
0,6	57	+ 0,18	+0,01	0,18	+ 0,23	-0,02	0,23	0,043	59	1.00		
0,8	76	+ 0,29	+0,01	0,29	+ 0,36	-0,02	0,36	0,067	80	0,148	1,59	103
1,0	95	+ 0,40	+0,03	0,40	+ 0,52	-0,01	0,52	0,096	103			
"	23	+ 0,99	+0,06	0,99	+ 1,31	- 0,01	1,31	0,243		Von der $5 kg$ a	n Gewich bgenomm	nte in der Mitte ien.
"	,,	+ 0,44	+.0,06	0,44	+ 0,54	+0,01	0,54	0,100	104	Jene 5 k	g-wieder	zugelegt.
"	"	- 0,16	+0,05	0,17	- 0,26	+0,01	0,26	0,048	-	Zu dem 5 kg z	Gewich ugelegt.	te in der Mitte
,,	,,	+ 0,39	+0,06	0,39	+ 0,50	-0,01	0,50	0,093	103	Jene 5 k	g wieder	abgenommen.
1,2	113	+ 0,52	+0,06	0,52	+ 0,60	- 0,01	0,60	0,111	125	0.276	1.57	158
1,4	132	+ 0,665	+0,06	0,67	+ 0,87	-0,01	0,87	0,161	153			
1,6	151	+ 0,84	+0,08	0,84	+ 1,08	0,00	1,08	0,200	181	0.369	1.82	232
1,8	170	+ 1.05	+0,10	1,05	+ 1,38	-0,01	1,38	0,255	213	-,	-,0-	
2,0	189	+ 1,30	+0,10	1,30	+ 1,71	-0,03	1,71	0,317	249	0.461	2.00	317
2,2	208	+ 1.62	+0,11	1,62	+ 2,09	-0.03	2,09	0,388	288	0,202	-,00	
2,4	227	+ 1.99	+0,12	1,99	+ 2,61	-0.04	2,61	0,484	337	0.553	2.11	425
2,6	246	+ 2.46	+0.14	2,46	+ 3,25	-0.06	3,25	0.604	395	0,000	-,	110
2.8	265	+ 3.10	+0.16	3,10	+ 4.07	-0.06	4.07	0.756	464	0.645	2.94	574
3.0	284	+ 3.99	+0.18	3.99	+ 5,26	-0.10	5.26	0.977	561	0,010	4,41	011
3.2	302	+ 5.31	+0.21	5,31	+ 6,94	-0.14	6.94	1.289	691	0.737	2.48	830
3.4	321	+ 7.45	+0.27	7.45	+ 9.76	-0.19	9.76	1.813	903	0,101	2,10	000
3.6	340	+11.09	+0.34	11.10	+14.64	-0.29	14.64	2,720	1265	0.829	3.02	1455
3.8	359		-		+27.77	-0.50	27.77	5,158	2210	0,020	0,04	1100
3.8		+21.06	+0.65	21.07	+27.87	-0.51	27.87	5,177	2217			
4.0	378	nicht errei	cht; Durcht	biegen ur	ter Fallen	der Waagse	hale.			-		

Tabelle 40.

Probestück: I Eisen, Lab.-Nr. 3028^b mit Spitzen an den Enden.

 $1 = 240,5 \ cm; \ l_1 = 254,3 \ cm; \ F = 10,58 \ qcm; \ a_0 = 4,02 \ cm; \ b_0 = 1,16 \ cm; \ m = 3,24 \ cm; \ n = 0,54 \ cm;$ $\frac{\lambda}{P}$

$$= \frac{1}{\varepsilon \operatorname{F} \pi^{2}} \left(\frac{l_{1}}{b_{0}} \right)^{2} = 0,0002304; \ \operatorname{P}_{0} = \frac{\pi^{2} \Theta \varepsilon}{l_{1}^{2}} = 4,3 \ t.$$

2	3'	4'	5'	3	4	5	6	7	8	9	10
stung	Ausbiegu	ing in der	Mitte	Ausbiegu	ing in der	Mitte	and a state		in guilds	12	
	der vo	orderen Ha	älfte			Ma Stari	fr	max. $\sigma = f$	the trail		$\max \sigma =$
kg	in der	in der	Pfeil	In der	in der	Pfeil	$\frac{1}{1_{1}} = \frac{y}{1_{1}} + \frac{x}{1_{1}}$	$\frac{1}{12}\left(1+\frac{1}{12}\right)$	λ	$c + g_0$	$\frac{\Gamma}{R}(1+\frac{1}{L})$
$\mathbf{P} \cdot \mathbf{F} = \mathbf{R}$	vertED.	HorED.	f'	vertED.	HOL. FO.	f	K n m	F. (K)	1.035-24	10 100	F. (KA)
at	mm	mm	mm	mm	mm	mm		at		mm	at
											Constant Street of Street
0	0	0	0	0	0	0	0	0	0		0
19	0,00	0,00	0,00	+0,02	0,00	0,02	0,004	19	No.		1.1.1
38	0,00	0,00	0,00	+0,01	0,00	0,01	0,002	38	0,092	0,99	39
57	-0.02	+0,01	0,02	+0,01	+0,01	0,01	0,002	57	52.0		
76	-0.04	+0,01	0,04	-0,01	+0,01	0,01	0,002	76	0,184	0,04	77
95	0,10	+0,01	0,10	-0,05	+0,01	0,05	0,009	95	n. e		
113	-0.12	+0,01	0,12	-0,05	+0,01	0,05	0,009	114	0,276	0,13	116
132	-0.19	+0.02	0,19	-0.12	+0.02	0,12	0.022	135			
151	-0.25	+0.03	0,25	-0,19	+0,03	0,19	0,035	156	0,369	0,17	165
170	0,31	+0.03	0,31	-0,24	+0.03	0,24	0,044	177	Saz-b	-	
189	-0,38	+0,03	0,38	-0,34	+0,03	0,34	0,063	200	0,461	0,39	214
208	-0.45	+0.03	0,45	-0.42	+0,04	0,42	0,079	224	1.88.0	1	
227	-0,59	+0,04	0,59	-0,58	+0,03	0.58	0,108	252	0,553	0,46	271
246	-0,71	+0,03	0,71	-0.73	+0.03	0.73	0,136	279	5,007.0	1. 8	
265	-0.87	+0.04	0.87	-0.96	+0.03	0,96	0.179	311	0,645	0.52	337
284	-1,12	+0.04	1,12	-1.25	+0.02	1.25	0,232	349		-	
302	-1,50	+0.04	1.50	-1.74	0.00	1.74	0,322	400	0.737	0.62	434
321	-2.08	-0.02	2,08	-2.51	-0.02	2.51	0,466	470	1.22		E ES
340	-3.18	-0.06	3.18	-3.94	-0.05	3.94	0.731	588	0.829	0.81	640
359	-5.76	-0.24	5.76	- 7.31	-0.15	7.31	1.359	847	0,010	0,01	
378	werden eber	n noch erreid	cht unter	fortwährend	l rascher Ve	rgrösser-	2,000		01.3		
	$\begin{vmatrix} 2 \\ stung \\ kg \\ pro qcm \\ P: F = \beta \\ at \\ 0 \\ 19 \\ 38 \\ 57 \\ 76 \\ 95 \\ 113 \\ 132 \\ 151 \\ 170 \\ 189 \\ 208 \\ 227 \\ 246 \\ 265 \\ 284 \\ 302 \\ 321 \\ 340 \\ 359 \\ 378 \\ \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	23'4'5'34stung der vorderen Hälfte in der P: F=3Ausbiegung in der Mitte der vorderen Hälfte in der Y'Ausbiegung in der in der Y'Ausbiegung in der in der Y'Ausbiegung in der in der Y' $pro qcm$ P: F=3Vert. Eb. Y'Hor. Eb. Y'Pfeil f'In der Vert. Eb. YHor. Eb. Y 0 00000190,000,000,00+ 0,020,00380,000,000,00+ 0,010,0057- 0,02+ 0,010,02+ 0,01+ 0,0176- 0,04+ 0,010,04- 0,01+ 0,0195- 0,10+ 0,010,12- 0,05+ 0,01113- 0,12+ 0,010,12- 0,05+ 0,01132- 0,19+ 0,020,19- 0,12+ 0,02151- 0,25+ 0,030,31- 0,24+ 0,03170- 0,31+ 0,030,31- 0,24+ 0,03189- 0,38+ 0,030,45- 0,42+ 0,04227- 0,59+ 0,040,59- 0,58+ 0,03246- 0,71+ 0,030,71- 0,73+ 0,03265- 0,87+ 0,041,12- 1,25+ 0,02302- 1,50+ 0,041,50- 1,740,00321- 2,08- 0,022,08- 2,51- 0,02340- 3,18- 0,063,18 <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

werden eben noch erreicht unter fortwährend rascher Vergrösser-ung der Durchbiegung; dann sinkt die Waagschale.

ŵ,

Tabelle 41.

Probestück: I Eisen, Lab.-Nr. 3028° mit Spitzen an den Enden.

 $l = 240,6 \ cm; \ l_1 = 254,4 \ cm; \ F = 10,55 \ qcm; \ a_0 = 4,03 \ cm; \ b_0 = 1,16 \ cm; \ m = 3,26 \ cm; \ n = 0,54 \ cm;$

$$\frac{\lambda}{P} = \frac{1}{\varepsilon F \pi^2} \left(\frac{l_1}{b_0} \right)^2 = 0,0002304; \ P_0 = \frac{\pi^2 \Theta \varepsilon}{l_1^2} = 4,3 t.$$

4819. Versuch.

1	2	3'	4'	5'	3	4	5	6	7	8	9	10
Belas	stung	Ausbiegu der vo	ng in der rderen Hä	Mitte älfte	Ausbiegu	ing in der	Mitte	adama ing manga	max. σ ==	istaniku Istaniku		max. $\sigma = $
im	kg	in der	in der	Pfeil	in der	in der	Pfeil	f = y + x	$\frac{P}{I}\left(1+\frac{f}{I}\right)$	1	$c + g_0$	P(1, f1)
Ganzen	pro qcm	VertEb.	Hor. Eb.	f'	VertEb.	HorEb.	f	k n m	F(k)	~	A MOR	$\overline{F}(1+\overline{k}\overline{\lambda})$
P t	$P: F = \beta$	y.	X	422.422	y ·	X	000000	Line with	at	i inter	1.13	at
	ui	110110	11110	110110	110110	mm	11110	1		1	mm	
0	0	0	0	0	0	0	0	0	0	. 0	- 1	0
0,2	19	+0,01	+0,02	0,02	+ 0,02	+0,01	0,02	0,004	19	111.0.7	1 11	2.0
0,4	38	+0,03	+0,04	0,05	+ 0,03	+0,03	0,04	0,006	38	0,092	0.39	40
0,6	57	+0,04	+0,04	0,06	+ 0,07	+0,05	0,09	0,013	58	30,0 -	1d	all all
0,8	76	+0,07	+0,07	0,10	+ 0,16	+ 0,06	0,17	0,032	78	0,184	0,75	89
1,0	95	+0,14	+0,07	0,16	+ 0,25	+0,06	0,26	0,047	99	dia ()		ALC: N
1,2	114	+0,19	+0,08	0,21	+ 0,35	$+0,07^{\circ}$	0,36	0,067	121	0,276	0,94	. 141
1,4	133	+0,27	+0,11	0,29	+ 0,47	+0,08	0,48	0,073	142	F).0-1		La Alta
1,6	152	+0,35	+0,13	0,37	+ 0,58	+0,09	0,59	0,110	168	0,369	1,01	197
1,8	171	+0,47	+0,13	0,49	+ 0,75	+0,08	0,75	0,141	195	10.9	1.04	
2,0	190	+0,60	+0,15	0,62	+ 0,94	+0,10	0,95	0,177	223	0,461	1,11	262
1,	23	+1;49	+0,20	1,51	+ 2,10	+0,12	2,10	0,393	_	Von der	n Gewich	nte in der Mitte
		1000		0.79	1 1 00	1010	1.07	0.000	000	ə kg a	bgenomm	ien.
"	17	+ 0,69	± 0.19	0,72	T 1,00	+0,12	1,07	0,200	228	Jene 5 k	g wieder	zugelegt.
"	"	-0,21	+ 0,18	0,28	- 0,14	+ 0,15	0,19	0,030		5 kg z	Gewicht ugelegt	e in der Mitte
17	,,	+0,58	+0,19	0,61	+ 0,85	+0,15	0,86	0,162	220	Jene $5k$	g wieder	abgenommen.
2,2	209	+0,75	+0,19	0,77	+ 1,09	+0,14	1,10	0,206	252			
2,4	228	+0,98	+0,19	1,00	+ 1,42	+ 0,14	1,43	0,266	288	0,553	1,16	337
2,6	246	+1,24	+0,20	1,26	+ 1,79	+0,14	1,80	0,336	328	18:0-1		
2,8	265	+1,61	+0,22	1,63	+ 2,30	+0,12	2,30	0,430	379	0,645	1,27	441
3,0	284	+2,10	+0,24	2,11	+ 2,98	+0,11	2,98	0,555	441	10.17		
3,2	303	+2,79	+0,25	2,80	+ 3,94	+0,11	3,94	. 0,732	525	0,737	1,41	604
3,4	322	+3,88	+0,27	3,89	+ 5,41	+0.09	5,41	1,005	646	0414		
3,6	341	+5,77	+0,34	5,78	+ 7,93	+0,07	7,93	1,465	840	0,829	1,64	948
3,8	360	+9,94	+0,48	9,95	+13,45	0,00	13,45	2,491	1256	- Bak t	000	1 0.0
4,0	379	nicht erreid	cht; Durchb	iegen un	ter Fallen	der Waagsc	hale.	AND THE REAL		23.45-1		

Probestück: I Eisen, Lab.-Nr. 3028ª mit Spitzen an den Enden.

 $l = 240,6 \text{ cm}; \ l_1 = 254,4 \text{ cm}; \ F = 10,56 \text{ qcm}; \ a_0 = 4,02 \text{ cm}; \ b_0 = 1,16 \text{ cm}; \ m = 3,24 \text{ cm}; \ n = 0,54 \text{ cm};$

t.

$$\frac{\lambda}{P} = \frac{1}{\epsilon F \pi^2} \left(\frac{l_1}{b_0} \right)^2 = 0,0002304; P_0 = \frac{\pi^2 \Theta \epsilon}{l_1^2} = 4.3$$

4822. Versuch.

- Second to	1							(0)×* 2 3 9				
1	2	3'	4'	5'	3	4	5	6	7	8	9	10
Bela	stung	Ausbiegt der vo	ng in der orderen Hä	Mitte älfte	Ausbiegu	ing in der	· Mitte	iden A still	max. $\sigma =$	nebiogu	4	max. $\sigma =$
im	kg	in der	in der	Pfeil	in der	in der	Pfeil	$\frac{f}{y} = \frac{y}{z} + \frac{x}{z}$	$\frac{P}{T}\left(1+\frac{1}{T}\right)$	λ	$c + g_0$	$\frac{P}{=}(1+\frac{f}{1})$
Ganzen	pro qcm	VertEb.	HorEb.	f'	VertEb.	HorEb.	f	k n m	F'\ ' k/	J.J.S. Ava	A ROD	F.(' k X)
r t	$\mathbf{r} \cdot \mathbf{r} = \mathbf{p}$	ymm	mm	mm	y	nm	mm	7	at	3	mm	at
						1		The second	1	1	1	
0	0	0	0	0	0	0	0	0	0	0	-	0
0,2	19	+0,01	0,00	0,01	+ 0,02	0,00	0,02	0,004	19	in a s		
0,4	38	+0,01	0,00	0,01	+ 0,03	+0,05	0,06	0,007	38	0,092	0,59	40
0,6	57	+0,02	0,00	0,02	+ 0,06	+0,08	0,10	0,014	58	1004	1	
0,8	76	+0,03	+0,01	0,03	+ 0,10	+0,09	0,13	0,022	77	0,184	0,57	85
1,0	95	+0,05	+0,01	0,05	+ 0,14	+0,11	0,18	0,029	97 .	1104		1 1 1
1,2	114	+0,08	+0,01	0,08	+ 0,22	+0,12	0,25	0,045	118	0,276	0,65	132
1,4	133	+0,11	+0,01	0,11	+ 0,26	+0,13	0,29	0,052	140	70.0 4	- 18	
1,6	152	+0,16	+0,01	0,16	+ 0,35	+0,14	0,38	0,069	161	0,369	0,65	180
1,8	170	+0,22	+0,01	0,22	+ 0,45	+0,14	0,47	0,087	184		17	
2,0	189	+0,30	+0,01	0,30	+ 0,57	+0,15	0,59	0,111	210.	0,461	0,69	234
2,2	208	+0,39	+0,02	0,39	+ 0,70	+0,16	0,72	0,135	236			
2,4	227	+0,52	+0,02	0,52	+ 0,87	+0,17	0,89	0,166	264	0,553	0,72	295
2,6	246	+0,66	+0,02	0,66	+ 1,07	+0,18	1,09	0,204	296			
2,8	265	+0,84	+0,02	0,84	+ 1,32	+0,18	1,33	0,228	325	0,645	0,73	358
3,0	284	+1,12	+0,02	1,12	+ 1,68	+0,20	1,69	0,317	373			
"	» ·	+2,68	+ 0,10	2,68	+ 3,78	+0,23	3,79	0,707		Von der 5 kg a	n Gewich bgenomm	te in der Mitte en.
12	22	+1,27	+0,09	1,27	+ 1,88	+0,19	1,89	0,358	385	Jene $5k$	g wieder	zugelegt.
23	23	-0,38	+0,08	0,39	- 0,32	+0,14	0,35	0,063		Zu dem 5 kg zu	Gewicht igelegt.	e in der Mitte
, , ,	"	+ 1,06	+0,09	1,06	+ 1,60	+0,18	1,61	0,302	369	Jene 5 k	g wieder	abgenommen,
3,2	303	+1,33	+0,09	1,33	+ 1,98	+0,20	1,99	0,372	416	0,737	0,71	455
3,4	322	+1,80	+0,09	1,80	+ 2,60	+0,21	2,61	0,488	479		11 68	
3,6	341	+2,65	+ 0,11	2,65	+ 3,79	+0,25	3,80	0,710	583	0,829	0,78	633
3,8	360	+4,37	+ 0,24	4,37	+ 6,12	+0,30	6,13	1,142	771		0.0	
4,0	379	+9,88	+0,55	9,88	+13,52	+0,53	13,54	2,520	1333	tiones and	in. 07	
4,1	389	nicht erreich	nt, dann Dur	chbiegen	; 4,0 t werde	en hierauf w	ieder ge-			1- 1: 1	12	

nicht erreicht, dann Durchbiegen; 4,0 t werden hierauf wieder getragen und dabei die Biegungscurve abgenommen; dann sofort entlastet, zeigt sich das Stück wieder vollkommen gerade.

Tabelle 43.

Probestück: I Eisen, Lab.-Nr. 3028° mit Spitzen an den Enden.

 $l = 240.5 \text{ cm}; \ l_1 = 254.3 \text{ cm}; \ F = 10.55 \text{ qcm}; \ a_0 = 4.03 \text{ cm}; \ b_0 = 1.16 \text{ cm}; \ m = 3.25 \text{ cm}; \ n = 0.54 \text{ cm};$

$$\frac{\lambda}{P} = \frac{1}{\varepsilon F \pi^2} \left(\frac{l_i}{b_0} \right)^2 = 0,0002304; \ P_0 = \frac{\pi^2 \Theta \varepsilon}{l_1^2} = 4,3 t.$$

4823. Versuch.

1	2	3'	4'	5'	3	4	5	6	7	8	9	10
Bela	stung	ing Ausbiegu der vo		Mitte	Ausbiegu	ng in der	Mitte		max. $\sigma =$	1		max a —
im Ganzen	kg pro gem	in der VertEb.	in der HorEb.	Pfeil	in der VertEb.	in der HorEb.	Pfeil	$\frac{f}{k} = \frac{y}{n} + \frac{x}{m}$	$\frac{P}{F}\left(1+\frac{f}{k}\right)$	λ	$c + g_{\circ}$	$\frac{P}{F}\left(1+\frac{f}{k}\frac{1}{\lambda}\right)$
Р	$P:F=\beta$	y'	X'	1	У	X	1					at
t	at .	mm	mm	mm	mm	mm	mm		at		mm	ui
0	0	0	0	0	0	0	0	0	0	0	_	. 0
0,2	19	0,00	0,00	0,00	0,00	0,00	0,00	0,000	19		10 1	
0,4	38	+ 0,02	0,00	0,02	+ 0,04	0,00	0,04	0,008	38	0.092	0.39	40
0,6	57	+ 0,07	+0,01	0,07	+.0,11	+0,02	0,11	0,021	58			
0,8	76	+ 0,14	+0,01	0,14	+ 0,20	+0,03	0,20	0,038	78	0,184	0,88	91
1,0	95	+ 0,22	+0,01	0,22	+ 0,34	+0,05	0,34	0,065	100	1.1		
1,2	114	+ 0,30	+0,01	0,30	+ 0,46	+0,05	0,46	0,087	124	0,276	1,20	150
1,4	133	+ 0,41	+0,02	0,41	+ 0,60	+0,08	0,61	0,114	147			
1,6	152	+ 0,53	+0,02	0,53	+ 0,79	+0,09	0,80	0,151	175	0,369	1.37	214
1,8	171	+ 0,70	+0,03	0,70	+ 1,00	+0,10	1,00	0,188	203			
2,0	190	+ 0,91	+0,04	0,91	+ 1,25	+0,06	1,25	0,234	234	0,461	1,46	286
2,2	209	千 1,15	+0,05	1,15	+ 1,57	+0,06	1,57	0,293	270			
2,4	228	+ 1,45	+0,06	1,45	+ 1,96	+0,04	1,96	0,364	310	0,553	1,58	378
2,6	246	+ 1,85	+0,07	. 1,85	+ 2,47	+0,06	2,47	0,459	358	1		
2,8	265	+ 2,30	+0,09	2,30	+ 3,08	+0,04	3,08	0,571	415	0,645	1,69	499
3,0	284	+ 2,92	+0,11	2,92	+ 3,88	+0,03	3,88	0,720	489	1. 1		-
3,2	303	+ 3,82	+0,13	3,82	+ 5,08	+0,03	5,08	0,942	589	0,737	1,81	690
3,4	322	+ 5,17	+0,16	5,17	+ 6,86	-0,01	6,86	1,270	730			
3,6	341	+7,47	+0,21	. 7,47	+ 9,92	-0.04	9,92	1,838	967	0,829	2,05	1096
3,8	360	+12,90	+0,34	12,90	+17,14	+0,14	17,14	3,178	1503			
4,0	379	nicht errei	cht; Durchh	biegen.								

der technischen Hochschule München.

MITTHEILUNGEN AUS DEM MECHANISCH-TECHNISCHEN LABORATORIUM der technischen Hochschule München.

EFT XV.

BLATT

EFTXV.

MITTHEILUNGEN AUS DEM MECHANISCH TECHNISCHEN LABORATORIUM der technischen Hochschule München.

