GRAPHICS, OR THE ART OF MAKING CALCU LATIONS BY DRAWING LINES.

By Professor R. H. Smith.

No. II.

Instruments.-It is only with scrupulously exact drawing that the generally useful degree of accuracy can be obtaine in graphic calculations. It is, therefore, of the highest mportance that all the instruments used should be true The Scale is of the first importance. No better materia can be chosen for the seale than boxwood. Cardboard scales are not suffiziently exact for this class of work. The oval section, useful as it may be for ordinary working drawings of details of machinery and structures, is unsuitable for graphic calculation, because of the unsteadiness with which a scale of this form rests on the paper. Long lines have to be marked off, and measured with exactitude ; and as one cannot look fairly at both ends of a long line at once, one must be able to hold the scale firmly on the paper, secure against the slightest slipping, while one mocompanying sketch is therefore the best, offering as it does the fullest amount of frictional resistance to slipping Fic.i:
over the paper. The flat underside should be plain, with out markings of any sort. The two bevel edges may conveniently be divided in inches and in milimetres. It is important that the division should be decimal. Fig. 2 shows a small portion of the length of the scale used in the engineering classes of the Mason Science College. The numbering of the divisions proceeds in one direction only from left to right. For each edge there are different lines or numbers. The first series on the inch edge reads inches, or $\frac{1}{10}$, or $\frac{10}{100}$, or $\frac{100}{100}$ of an inch, or any submultiple of tenths of an inch. The second series is for reading to $\frac{1}{2}$ in., or $\frac{1}{20}$ ths, or $\frac{1}{200}$ ths, \&c. \&c., of an inch. The third is or $\frac{10}{5}$ th, or $\frac{10}{50}$ ths, or $\frac{1}{50}$ ths, \&c. \&ce., of an inch. The millimetre edge has two similar series of numberings, The minute division to half millimetres and to fiftiethinches is placed at both ends beyond the end line of the scale, and also on each side of the middle line of the scale, The length of the scale should not be less than 20 in . Long lines, such as frequently occur in the diagrams, ought not to be measured in sections. The scale should stretch the whole length of the line, otherwise inaccuracies will accumúlate, and much unnecessary loss of time will occur. A scale 30in. long is often useful.
T-squares are used in the same manner as in ordinary mechanical drawing. The straightness of the edge is of special importance.
Next to the scale the straight-edges and set-squares are of greatest importance. Two straight-edges-one about 18in. long, the other 3it. 6in. or 4 ll . The longer one cannot be dispensed with. Mahogany is If these re the edged ness of the edg in greally improved. Th is essuld that the straight-edges be kept ded trac should, therefore, degree The same remarks to the set squares thei edges must be kept accurately straight. The right-angl of the set-square should be exacty correct The accura of the 60 den 30 dor 45 dag is seldom of importance, but they should never be used to set these angles unless they are known to be correct. Three set-squares must be provided: One 60 deg., of 12 in . or 14 in . length of side; one 45 deg., of about 6 in . or 7 in . side and one 60 deg . of similar size. A large 45 deg., of 10 in , hogany edged with ebony are the best, but simple pear hogany edged with ebony are the best, but simple pear very well, if a number of round or oval holes be cut out of the central portion
In graphic calculation lines have constantly to be drawn accurately parallel to each other, and frequently at a considerable distance apart. Parallel rulers are very inaccurate in doing this work. The only accurate and convenient method is to slide a set-square along a straight-edgewhich may be an edge of another set-square, if this be of sufficient length. In performing the transfer of the direction across the paper . Tn moll as simple as possible. In nearly all cases it is possible to complete the transfer in one siometimes rather confusing to see in what way the first sometimes rather confusing to see in what way the purpose, and a beginner has frequent recourse to a tortuous policy of matere slidings of one set-square over policy of many successive slidings of one set-square over
the other. This is seldom necessary, even for the longest transfers. The long straight-edge should be laid on the paper always in the direction of the desired transfer, and as close as convenient to the positions of the line to be drawn and of the elready drewn line to which it is to be parallel. Then this last line is found to make with the straight-edge some angle lying between 0 deg . and 90 deg The set-square angle is now to be chosen which most closely approximates to this angle between the straight-edge and the line to be drawn, i.e., between the desired direction of transfer and the direction to be transferred. With the six set-square angles. The 60 deg. set-square gives 30 deg 60 deg., and 90 deg.; the 45 deg. set-square gives 45 deg and 90 deg. By laying the side of one set-square agains the straight-edge, and the side of the other set-square against the hypotenuse of the first set-square, there are obtained the two angles 15 deg. and 75 deg.; because 30 deg. +45 deg. $=75 \mathrm{deg}$., and $45 \mathrm{deg} .-30 \mathrm{deg}$. $=$ arrangements are shown in Fig. 3. Putting a set-square edge along the line to be transferred, we may thus place the straight-edge inclined to it by any of the six angles which angles increase by a difference of 15 deg. Thus the setting of the straight-edge need never deviate from
the exact desired direction of transfer across the paper by an angle of more than $7 \frac{1}{2}$ deg. at the most. This will throw the position of the line to be drawn further from or nearer to the straight-edge than that of the line to which it is to be drawn parallel. Since the sine of $7 \frac{1}{2}$ deg. is about $\frac{1}{8}$, the maximum amount by which it may be thus thrown to one side is about one-eighth the distance of transfer. The excess of the length of the edge of the set-square over that of the line to be drawn will generally cover this deviation of the straight-edge from the exact desired direction of transfer. If it does not do so the line of the edge of the set-square may be extended by laying another set-square against it. Sometimes the direction of the parallel lines nearly coincide with that of the transfer. In this case the straight-edge is simply laid along the given line ; then near the position of the desired parallel, a side of a set-square is laid against the straight-edge. Finally, a second set-square is laid against this first, and the first is slid along the second into the required position. In marking off lengths upon lines in the diagram, it is necessary, in order to secure exactitude, to prick them off with a needle point. An ordinary fine sewing needle, stuck in a small piece of wood to serve as handle, is a very much better instrument for this purpose than the prickers usually sold with mathematical instruments. If inter-
the curve. Take, for instance, the above given example of $\frac{1}{2}$ in. change of radius per lin. length of arc, and suppose this rate maintained uniform from point to point. Let the radius of curvature at point A be 12in.; let B C D E F be points in the curve whose distances from A measured along the arc are $\frac{1}{4}$ in., $\frac{1}{2}$ in., $\frac{3}{4} \mathrm{in}$., lin., and $\frac{1}{4} \mathrm{i}$. Call the radius of curvature ρ; for instance at $\mathrm{A}, \rho_{a}=12 \mathrm{in}$.; then $\rho_{b}=12 \frac{\mathrm{i}}{\mathrm{in}}$. ; $p_{c}=12 \frac{1}{4} \mathrm{in}, ; p_{d}=12 \frac{3}{2} \mathrm{in}, ; p_{e}=12 \frac{1}{2} \mathrm{in} . ; p_{f}=12 \frac{5}{\mathrm{i} n} \mathrm{in}$. \&c. . \&c. Let the point K be distant from A 24 in . measured along the arc. Here $\rho_{k}=\rho_{a}+\frac{q_{2}}{2}=12+12=24 \mathrm{in}=.2 \rho_{a}$
Take now on the curve points L M O P distant from K by arcs of 1 at distances apart double those between B C D, \&c. We then have $\rho_{t}=\rho_{k}+\frac{1}{2} \times \frac{1}{2}=24 \frac{1}{1} \mathrm{in},=2 \rho_{b} ; \rho_{m}=24 \frac{1}{2} \mathrm{in}$. $=$ $2 \rho_{o} ; \rho_{n}=24 \frac{3}{4} \mathrm{in} .=2 \rho_{a} ; \rho_{o}=25 \mathrm{in} .=2 \rho_{o} ;$ and $\rho_{p}=25_{5}^{1 i n}$ in.
$=2 \rho_{0}$ Thus this latter portion of the curve differs from the f. Thus this latter portion of the curve differs from therefore thin that it is drawn double size. It is clear, the same, "shat the different portions of the curve have all or scale; each portion is simply above, and difer only in size portion ; each portion is simply a repetition of any other curve-templates desigued on this principle. With a set of suitably graduated series of "rates of change of radius of curvature per unit length of "rates of change of radius of variety of curves may be fairly drawn, whether they be

sections of lines are pricked off with this needle point they \mid required to be drawn to a large or a small scale. Fo become much more sharply defined. The pencil points of the bows and compasses used should be filed flat, with rounded profile. This rounded profile is best obtained by filing one side of the pencil quite flat, and the other to rounded conical form. The flat must be perpendicular to the line between the two points of the compasses. If this is not attended to, and if the profile be not well rounded, the compasses or bows will draw circles of slightly different radii according as they lean to the paper on one side or the other. These instruments should have sharp points, and stiff inflexible legs. Two pencils are desirable, one for drawing lines, the other for marking and lettering the diagrams. The latter may be a No. 4 Faber's, and is given a round point. The former may best be a No. 5, and it point should be filed flat and broad, and kept always perfectly sharp.
In many of the more complex graphic calculations curve need to be drawn. A set of pear wood curves assist curves in this work. Of these, what are called "French generally applicable. A good curve for this kind of work possesses the same character that a "ship" curve ought to have, namely, the curvature should change gradually and continuously from point to point. It is surprising what variety of curves may be fairly drawn out with the help of only three or four wooden templates of this sort these have been skilfully shaped. The characteristic shape of any portion of a curve depends upon the rate at which its curvature varies from point to point. It may be very conveniently stated by specifying the change in the ength of the radius of curvature per unit length of arc Thus the rate of change of radius of curvature might be $\frac{1}{2} \mathrm{in}$. per lin. length of arc. If one curve be derived from another by diminishing the lengths of successive small arcs, all in the same ratio, and at the same time diminishing in the same ratio the radii of curvature of these successive small arcs, the two curves will differ simply in the second being drawn to a smaller scale than the first-they will have the same general shape. It would be very convenient if the radil of curvature were marked in figure at the different points of the edges of wooden template curves, A very useful description of curve is obtained by keeping the above rate of change of radius of curvature per unit length of arc uniform throughout the length of
rate of thanger madin. lengt of arc; template No. $2, \frac{1}{2} \mathrm{in}$. per lin. length of are; tem plate No. 3, ${ }_{3}^{3} \mathrm{in}$. per lin. length of arc ; template No. lin. per lin. length of arc; template No. 5, $1 \frac{1}{2} \mathrm{in}$. per lin. length of arc; template No. 6, 2in. per lin. length of arc template No. 7, $2 \frac{1}{2} \mathrm{in}$. per lin. length of arc; template No. 8, 3in. per lin. length of arc; template No. 9, $3 \frac{1}{2}$ in. per lin. length of arc; template No. 10, 4in. per lin length of arc, \&c.
Fig. 4 shows three examples of these curves accurately drawn. A scale of inches is divided off on the edge, and the radius of curvature figured at the chief points. Th scale should be marked on both sides for convenience in drawing two-sided symmetrical figures. To ensure perfect symmetry of the second side with the first, it is only necessary to plot off two points, and lay between them the reverse side of exactly the same portion of curve-templat as has been used between the corresponding two points of the first side.*
Curves are frequently drawn with the help of splines of lancewood. If these are well-made and in good con dition they answer the purpose very well, but if by warp ing or otherwise the spine has become irreguiarly bent then it is very difficult to bend it so as to draw fair curves, he local natural bend or twist in the rod always being reproduced to a greater or less extent in its artificially ben condition. It is difficult to preserve splines, even if made of the best wood and perfectly straight and regular at first,so as to avoid comparatively speedy injury by local bending. Thi is partly produced by the use of the spline, whereby, owing to the imperfect elasticity of the wood, severe permanent set is produced in special places. Carefully made splines of slightly hardened steel of small section would not be subject to this disadvantage, but it would be difficult to arden them as much as would be necessary to avoid permanent set arising through their continued use, without twisting and bending them in the hardening.

[^0]SAMPER'S PATENT PULLEY GRIPPER SYSTEM. The inventor of the "pulley gripper," an American, claims that up to the present year of grace the whole system of defective, and that he "was born to put it right." He has lately been exhibiting his invention applied in various ways to the the recent exhibitions at the Crystal Palace and at the Royal Aquarium; and as his syst the Fisheries Exhibition, we cive some notes upon it. The principal object of this invention is to increase the adhesion of the cords or belts employed for the
transmission of motion, avoiding or nullifying the tension transmission of motion, avoiding or guiding the cords or belts accurately. By the ordinary system the cords or belts embrace only half the circumference of the pulleys if these are of equal
size, and less than half of one of them if they are unequal ; but size, and less than half of one of them if they are unequal ; but
since the vibration of the belts while running causes them to lose their grip on a portion of the circumference embraced, it results that the adhesion is much less in practice than is expected, and in the majority of cases, being insufficient for the transmission of power, recourse has hitherto been had to two methods for
establishing the adhesion and for supplying the want of points of contact between the cords or belts and the pul-
leys. These two methods are:-(1) Keeping the belts very tight; or (2) producing this same tension by means of a loose

pulley called a belt tightener, which derives its name from it use. The imperfection of these two methods of producing adhesion originates many evils, such as the heating and destruc
tion of the intermediate shafts, of the bearings, and of the belts, loss of power, waste of fuel, stoppage of operations, and impossiSamper professes to remedy and prevent by means of his system. by above-mentioned methods hitherto employed for proto the shafts, but they are also subjected to a lateral strain, whilst the inventor claims that by his system rotary motion
alone is produced without deflecting the shafts. The patentee alone is produced without deflecting the shafts. The patentee
employs a loose pulley gripper, which is flanged, while the employs a loose pulley gripper, which is flanged, while the
intermediate pulleys are not. The pulley gripper is mounted on
one or two arms independent of the intermediate shafts, or else on arms which are fitted on to the shaft itself, but loose, and on arms which are fitted on to the shated between the collars. By one of these two general
only secure
methods this system can be applied in all existing cases. The methods this system can be applied in all existing cases. The
following side of the cord or belt is picked up by the pulley gripper, which is brought up close to the intermediate pulley,
touching it if desired, but not pressing against it, and is then moved along a circumference concentric with that of the pulley until it brings the following and leading sides. of the belt nearly in contact, and in this manner the cord or belt embraces
nearly the whole circumference of the pulley. The patentee nearly the whole circumference of the pulley. The patentee
has an idea, or appears to have, that this operation is executed without producing friction, "since the pulley gripper is loose, and the tension disappears in some cases, and is considerably reduced in others, because of the increase of adhesion." By these means the contact of the belt or cord with the driving pulley is increased from the ordinary average of 180 deg . to as much as 325 deg., thus causing the adhesion of the belt to the pulley to a point far beyond the centre of the shafts; and as the pulley gripper is always kept close against the intermediate pulley, it secures practically a steady adhesion of the belt sion being thus increased, the necessity for tension disapslack although the full motive force of the driving wheel is trans mitted; and as the pulley-gripper has flanges for guiding the following sides of the cords or belts, Mr. Samper directs them at will, turns all kinds of angles, renders unnecessary the employment of toothed gearing, and obtains many other very imporin his pamphlet, from which we take two illustrations. The first, which is the sixth figure in his pamphlet, shows an arrangement by which the power is communicated from a large pulley to a very small one, the pulleys being very close together. As the pulley a is the only one that requires adhesion, the pulley-gripper g is placed close to pulley a, and in order to move it on a cir-
cumference concentric with that of the pulley, the slot i is made cumference concentric with that of the pulley, the slot i is made of the pulley-gripper is raised or lowered as required to regulate selected shows a transmission in which, by means of two pulleys and one belt, he turns a right angle formed between two shafts on the same level. In the driven pulley a the pulley-gripper m is fixed, and in the driver x the pulley-gripper is regulating the tension of the belt. The shaft c makes the angle, and on to are two loose flanged pulleys, held by two collars screwed to the
shaft. The larger pulley d carries the leading side of the belt, and the smaller pulley f the following side of the belt. In this case it is advisable to shorten the belt if it stretches, so that the to form a new angle, which would retard the working of the pulley f. In another illustration the inventor shows a transmission of power from a horizontal to a vertical pulley as used in mills; but we have no space for other blocks, and can only refer our readers to his pampblet.

The cutting of the new channel across the bar of the Brisbane

AN AMERICAN PATENT CASE.

Those who believe that the American system of granting patents is perfect, because the precautions taken by all the officials ensure the granting of valid patents, will do well to take the eell known that a great demand has sprung up for barbed wire, that is fencing in the lines of which are fixed spikes or prickles, which serve to prevent animals from squeezing through or pressing against the fence. For several years past the manufacture of barbed fencing wire has been under the control, substantially, of a single concern, namely, the Washburn and Moen Manufacturing Company, of Worcester, Mass. They acquired an minent position in the trade, in its early days, by the exercise of superior skill and enterprise in producing machinery to article, by promptness in filling orders, and finally by conarticle, by promptness in filling orders, and finally by con-
tenting themselves with a very small margin of profit. This was the original basis of their trade; it has been steadily maintained, and upon it has arisen the gigantic bueiness now governed by a corporation. As soon as the barb fence business began to develope into large proportions, other makers became anxious to dip in and grasp a share. Thereupon Messrs. Washburn and Moen bought up all the principal patents relating to barb fences Patent-office, and obtained re-issues of then applied to the these patents, on which new and broad claims were allowed these patents, on which new and broad claims were allowed a wire or fence bar of any sort having a wire or fence bar of any sort having
barbs or points upon it. Other claims were for mechanism of any description for making any kind of barb fence.
With these claims and re-issues, some With these claims and re-issues, some
of which had been tried and sustained of which had been tried and sustained
by the courts, the manufacture was so guarded and surrounded by bristling patent points, that few makers have
cared or ventured to fight the Worcester cared or ventured to fight the Worcester
holders, but have preferred to pay them a small royalty as licensees.
Under several decisions of the Supreme Court of the United States in various cases, it has been laid down as
a new rule that the re-issue of an old a new rule that the re-issue of an old
patent so as to make it cover, by new claims, any new or broader ground than the original patent, is invalid. In view
of these decisions Messrs. Griesche and Fuchs refused to pay royalty to Washburn and Moen. Issue was joined, and we learn from the Scientific American
that on the 4 th inst., in the United that on the 4th inst., in the United States Circuit Court, St. Louis, Mo.,
Judge Treat decided the case, holdJudge Treat decided the case, hold-
ing, in effect, that the broad claims of the barb fence patents are invalid, both as respects the
article produced and the machinery for making the same. The article produced and the machinery for making the same. Then
magnitude of the barb fence business will be understood when we state that the estimate of the quantity of this fencing made
in 1882 was 80,000 tons, or 500,000 miles in length. The firms in 1882 was 80,000 tons, or 500,000 miles right to manufacture barbed wire are said to have made within the year in royalties from their licences and from extra profits in their own business, nearly $£ 1,000,000$. The royalty, though large in the aggregat mounts in the detail only to 8 s. 4 d . per 1000ft. of fencing.
Those who imagine that the overthrow of these patents is likely
to result in any material reduction in the price of barb fencing, as paid by consumers, are probably mistaken. The decision may pring about a greater division of the trade and its profits than now exists; but where the margin of profit is already low there is not much room for the lessening of prices to the general public.
STERN WHEEL STEAMER FOR THE RIVER MAGDALENA.
On page 491 we give an engraving of a stern-wheel steamer recently completed by Messrs. Yarrow and Co., of Poplar, for the
navigation of the river Magdalena, in the United States of navigation. of the river Magalena, is firm has already built Colombia. It is generally known this firm has already built a with very marked success. As a matter of fact, Messrs. Yarrow have obtained a speed of thirteen miles an hour in vessels 120 ft . in length by 24 ft . beam, having a draught of $12 \mathrm{in} . ;$ and a speed of fifteen miles an hour in vessels 130 ft . in length by 28 ft . beam on a draught of 15 in . Our engraving illustrates one of the largest of this type of vessel which Messrs. Yarrow the wheel, are 150 ft . in length by 31 ft . beam, with an estimated draught light of 15 in ., and it is confidently expected a speed of sixteen miles an hour and it is confidently expected a speed of sixteen miles an hour
will be obtained. The general design will be clearly seen from the illustration. There are three boilers of the return tubular type, adapted for a working pressure of 140 lb . per square inch, and of sufficient size and heating surface to give steam without a forced draught, they are placed on the main deck near the bow and the engines are quite aft, on the usual American plan, so This disposition of the machinery admits of a very light design of hull being made, the strain of these overhanging weights being taken by the system of diagonal ties. The engines are compound surface condensing, the high-pressure cylinder being 20 in diameter, and the low-pressure 33in. diameter, both having a stroke of 5 ft . The air pump, circulating pump, and feed pumps,
are worked by independent engines. The hull is throughout of steel, and is provided with three longitudinal bulkheads and five transverse bulkheads, subdividing the boat into twenty-fou compartments. The cargo is carried on and below the main
deck, and on the upper deck is the passenger accommodation In comparing the efficiency of stern wheel boats with side whee boats, we may remark that actual experience tends to show that with the same dimensions, displacement, and power, the stern whee gives a little better result in point of speed. They are, however, quite unsuitable for withstanding rough weather, but fornavigating smooth water only, where a shallow draught is an essential require-
ment, the stern wheel system undoubtedly offers many advantages.

AN OLD BRIDGE.-At the regular meeting of the Engineers
Club of Philadelphia on the evening of June 2nd Professor L. M Haupt exhibited a drawing of the Phcenixville Bridge, which was built by Mr. Moncure Robinson, C.E., honorary member of the
club, in 1836, for the Philadelphia and Reading Railroad, over the club, in 1836, for the Philadelphia and Reading Railroad, over the
River Schuylkill. It is an instructive and enduring monument of successful construction of cut-stone masonry. There are four
segmental arches 72 ft . clear span and $16 \frac{1}{2} \mathrm{ft}$. rise; radius of arch, $47 \frac{\mathrm{ft}}{} \mathrm{ft}$; voussoirs, 2 ft . 9 in. thick. One end abuts against a rocky bluff, while the other is supported by a heavy abutment with an
earthen filling. It is believed to be one of the lightest and
cheapest bridges of its kind in the United States, having cost but cheapest brid
48,000 dols.

HOW TO MANAGE WRECKED TRAINS. We publish the following article, which we extract from the National Car Builder, because it deals with a subject about which nothing, so far as we know, has been previously published in the English language. In this country engineers are not so much afflicted by derailments as they are in the United Ntates and ow colonies. But English engineers do not work exclusively at home, and those
who contemplate going abroad may find the information we give

who contem very useful.
 very useful.

On a few roads the wrecking department is as complete in all its ordinarily forms a part, while on too many roads the only faciliti for picking up wrecks are such jacks as can be spared from the machine shop, a pair of blocks and tackle, and a few pieces of tim ber picked up in a hurry, the rope of the tackle when wanted bein
usually unrove and carried off to take the place of a broken cran usuall Twenty years ago wrecking ton often depended upon cran strength combined with more or less stupidity, causing additiona injury to cars and engines, so that when they were replaced on the track the damage from this source often exceeded that of the de railment and plunge down the embankment. It is a curious fac
that broken rails and other causes of train accidents are too quently found near bridges or on embankments, and the resulting damage is from this circumstance very much greater than it otherwise would be. A collision of two freight engines in which the
damage ought to be limited to the front ends and cylinder heads,

will, in nine cases in ten, be supplemented by a roll down the bank,
which is highest just at the spot where the collision occurs, while at a distance of 500 ft , either way there is no bank at all. Broken rails, also, which throw trains off the track, are pretty sure to be in neaa turned into a serious and expensive accident by the engine runnin over the ties to the bridge, breaking through the bridge timbers and diving into a little stream which is not large enough to be o any practical use, but sufficiently large to make the job an ugly one
for the wreckers. A large wreck is attended with something akin or the wreckers. A large wreck is attended with something akin
to the excitement of war. There is the same hurry and confusion A big fire is built of whatever fuel comes handy; a crowd of halffrozen men gather round it if the weather is cold; ; no one knows how or when the next meal is to be obtained, all being on the alert
to make the best out of the worst possible means. One poor to make the best out of the worst possible means. One poor
fellow has injured himself by lifting, another has had a pick driven through his foot instead of into a tie, and another has been hurt, perhaps, by the recoil of a rope. A wrecking master must be
largely endowed with the qualities of a military commander. He pergelys endowed with the qualities of a military commander. He
must be cool and self-possessed, and take time enough to form a

definite plan before a move is made. He must receive suggestions, and never hitch on to an engine or car without knowing exactly
what he is to accomplish by it. If the wreck is a large one, the
president of the road company is usually present with a number of what he is aco achead company is usually present with a number of
president of the road
useless spectators. Instead of taking fifteen or twenty minutes to useless spectators. Instead of taking fifteen or thent an me would be if he is doing under other circumstances, the wrecking master, if he is a nervous and sensitive person, is apt to lose his head
because the president is looking at him, and the train dispatcher sending messages every fifteen minutes asking how soon the track will be clear. The result is, that in his trepidation he hitches on anywhere, jerking as many cars on the track as he jerks off, and it
finally turns out that between the original crash and the subsequent hauling and jerking, the cars are not worth picking up; and, quent hauling and jerking, the cars are not worth picking up; and, fire, and reducing them to ashes.
There should always be found on each division of a road two
derrick cars, each capable of lifting 20 tons. With these, and the derrick cars, each capable of lifting 20 tons. With these, and the rdinary tools of a wrecking car-jacks, 20 ft . levers, blocks and
tackle, plenty of extra rope and chain, \&cc.-a modern wreck of

the average sort can be handled with comparatively little difficulty. Passenger cars must, of course, be handled with much greater
care than freight cars, and it will now be shown what is conare than freight cars, and it will now be shown what is con-
sidered the best practice in dealing with wrecks of this class of cars. 1 a passenger car is represented as having left the track and gone down an embankment, where it lies on its side lengthwise
the track. Fig. 2 shows a section of the embankment and track, he track. Fig. 2 shows a section of the embankment and track,
an end view of car, and wrecking tackle in place. Two ropes $b b-$ Figs. 1, 2, and 3-are passed through the clear-story windows, as shown, and fastened to a plank f on the opposite side. b wo pairs the absence of trees or stumps to hitch to, an anchor, as shown, will be necessary. This anchor is made by cutting a trench long enough for the pushed beneath the rail, as shown. A chain or rope is
and a tie $j j$ pastened to the tie close to the rail, brought over the rail, and the
fast fastened to the tie close to the rail, brought over the rail, and the
block and tackle hitched to it. If the ground is soft, a plank block and tackle hitched to it. If the ground is soft, a plank
should be used in place of the rail for the reason that it presents
The tackle rope is then passed round an idlermore surface. The tackle rope in then passed round an idlerblock $h h$, and led to the engines, of which there is one at
each end of the car. Two timbers dd-Figs. 1,2 , and $3-$ are
placed as shown, and the engines are then started slowly. The car will then be pulled over on its bottom, as shown in Fig. 3,
where it is held by the engines until two more pairs of blocks and tackles can be rigged to be pulled by hand, to a rope a, passing
through the end side windows, and fastened to the plank e. The ropes $b b$ and tackles $g g$ may be removed and two derrick cars
placed one at each end of the passenger car. If the car is a
sleeper, a guy-rope from the top of the derrick will be necessary sleeper, a guy-rope from the top of the derrick will be necessary; if it is an ordinary light passenger coach or baggage car, the derrick
can be held in position by ice-tong clamps to the rails. The chain c of each derrick (Fig. 3) is fastened to the drawbars, and the weight of the car is then taken by the derricks, while the blocks and tackle hitched to the ropes a pull the car on the track between the two derrick cars. When the coach is resting squarely on the
rails, one end is hoisted by the derrick and blocked. the derrick rails, one end is hoisted by the derrick and blocked; the derrick
then picks up and places the truck on the track, and again takes then picks up and places the truck on the track, and again takes
the weight of the coach, while the blocking is removed to make room for the truck, which is then pushed under the coach into place. The other end is treated similarly, and the coach is ready to be removed. It may be laid down as a rule with passenger
coaches and engines, that the first move should be to place them right side up. Coaches frequently in running off get turned so that their length is at right angles with the track, as shown in Fig. 4. In such case the hitch would be made as before, through the clear-story windows, the tackles placed as shown, and two engines employed. The timbers a a a should be placed and the
car turned on its bottom. Fig. 5 shows the car in this position A hitch is then made to the draw-bar, as shown, while a rope b is attached to the other end to keep it in position. The coach can then be pulled around parallel with the track. If soap is applied to the timbers $a a a$ it will facilitate matters. When
parallel with the track the coach is to be placed on it, as shown parallel with the tra.
in Figs. 1, 2, and 3 .

Freight cars are more easily handled. A derrick will pick one derrick car, b the boom hitched to a freight car held in a vepe sling a, a, and being lifted from the track to one side to clear the track. In replacing it on the track, it is first turned on its bottom, preferably by means of two or three 20 ft . levers or derrick, when the derrick car would pick it up, and place it on its trucks on the
track. Fig. 7 shows an old-fashioned way of putting freight bodies on the track. A rope a is passed several times around the car, and the end fastened. It then passes around an idler-block b, and is hitched to the engine at c, which on starting up rolls the car oward the track.
Engines are more difficult to handle, especially the heavy Mogul
and Consolidation types, because the weight is concentrated on the small surface of the drivers, which plough up and sink into the ground at almost every move. It is, therefore, time well spent to have plenty of heavy plank at hand to keep the engine out of the mud. In Fig. 8 an engine is shown off the track and crosswise of
same, on its side and down an embankment, a combination of diffculties seldom met with. It would first be in order to place the timbers $e e$ to receive the engine when right side up and to keep her out of the ground. Three jacks, a, b, and c-sometimes a block

cut to the curve of the boiler is placed between the jacks and purpose, and the encine raised from the ground pits dug for the are passed over each end of the boiler, as shown, and fastened to the frame on the bottom side. Two pairs of blocks and tackle are rigged and two engines used. The derrick car D can also be used to advantage if the engine is near enough to the track, and if not, the quick work performed by these cars will frequently pay to run
two tracks out to the engine. Place a derrick car on each track and put the engine right side up by a direct lift with the two derricks, Guy ropes are then necessary from the top of the derrick to a good-sized tree or anchor, as the ice-tongue clamp will bring up the be jacked up so thats. Having the engine right side up, it should fire-box and cylinders and rollers $d d d$ beneath this blocking the the timbers $e e$, as shown in the lower half of Fig. 8. A rope g will retain the back end of the engine in position, while a hitch at the front end with blocks and tackle as shown, will bring the engine in Fig. 9 shows a bird's-eve view of the enginarallel with the track. the main track, which is cut and thrown to meet the chel with line is hitched to front end of engine, by means of which it is pulled up the main track. Fig. 10 is a section of Fig. 9 at the front end of the engine, showing the bank cut away. When an sary to cut large porm the embankent it is frequently necesto block up under the head of the engine when it does not lie parallel with the track, in old times, when an engine went through a bridge and down 70 ft . or 80 ft ., it was frequently left there, it being considered that the expense of raising and repairing Fig. 11 is a bird's equal her value.
supposed to have gone down 70ft. It would be necessary which is bring her as close to the foot of the embankment as possible, by means already explained. Two derrick cars FF are placed, as shown, on temporary tracks, the booms extending over. The
drivers, foot-board, cylinders and frames having been disconnected the two derricks will readily lift the boiler. When the length of supported by slings and well anchored, until the derrick chains can
be lowered and a second life made. When the engine in in win the difficulties are multiplied, although the derrick car affords a

solution of almost any imaginable wrock. It is not, of course,
necessary to suppose that the face of the embankment is perpendinecessary to suppose that the face of the embankment is perpendi-
cular, nor does this make any difference, as the derricks will as cular, nor does this make any difference, as the derricks will as readily drag the engine as lift it. We remember a case in which case several weeks elapsed before she was raised. The plan adopted

was to drag the engine several hundred feet up the ravine upon a long siding, a track beeng laid on this siding, and blocks and
tackle used to pull her up the long steep incline. Fig. 12 shows tackle used to pull her up the long steep incline. Fig. 12 shows
a peculiar accident in which a dead engine was pushed off the a peculiar accident in which a dead engine was pushed off the
end of a track, the bridge not being in place. In this case the back wheels did not leave the track, the front of the engine resting

$$
\begin{aligned}
& \text { FIC II } \\
& \hline
\end{aligned}
$$

on the ground. A rope a was hitched to the draw-bar of the footboard, and two engines to the other end of the rope. The engines kept a heavy but steady strain on the rope. A timber b was placed
as shown, to retain the engines in position while the excavation

for blocking and jacks was made. Two jacks were then placed, one under each end of the bunter beam, as shown, and the engine until the engine was level, with the back wheels was continued main track. Two heavy square timbers were then placed, resting
on the abutment and blocking. A freight car truck was then
lowered, carried to the front end of the engine, and raised by bocks and tackle, and placed under the front end on rails spiked the the heavy timbers, when the engine was readily pulled on to was short, she could have readily been jacked and blocked squarely up to a level of the track. Several years ago an engine went off the track down an embankment, and turned completely over, resting on her dome. Both driving axles were badly bent, and were gine was turned over, and replaced on the track Fig. 13 shows a carrying jack, which used to be a
tool in a wreck, although its usefulness is now superseded by the
FIG. 14

derrick car. It consists of a jack on rollers, which, by means of which ordinarily allows a be carried from end to end of the bed, placed under an engine or car, when the entire load can be carried 30in., and any distance by a succession of moves.
Fig. 14 shows different knots for fastening the ends of two ropes together. They are, with those in Figs. 15 and 16, shown as just tarted, in order that the course of the rope can be traced. They,

of course, only require to be drawn taut to complete the knot. Fig. 15 shows different modes of fastening ropes to the eye of a
block or other similar ring. The two in which a coupling pin is not used can be continued for several turns more, and have ends fastened by binding with twine to the main rope. Fig. 16 shows different hitches to posts or trees; they are all quickly made and
are reliable. are reliable.

The subject of wrecking is deserving of considerable study, as any one who has the superintendence of a big job will be pretty sure to discover. It might be supposed that the civil engineer of
a road would make a good wrecker, from his knowledge of the a road would make a good wrecker, from his knowledge of the
handling of heavy structures. But this is not so. In carrying on handling of heavy structures. But this is not so. In carrying on
his ordinary operations he has plenty of time at his disposal, with powerful derricks and other necessary appliances, but give him a small wreck with a flat car-load of timber, a few blocks and tackles and four or five jacks, and he would despair of accomplishing anything. The experienced and capable wrecking master, in handling mand, displays an amount of engineering talent that is none the less practical and effective because it has not been acquired by a regular course of technical education.

OONTRAOTS OPEN.

IRON SORTING OFFICE FOR THE SOUTH-EASTERN The South-Fastern Railway Compay The South-Eastern Railway Company wants tenders for the Wells. Trickwork in the footings and sleeper walls to be the best sound stocks and mortar, composed of one measure of the best fresh-burnt lias lime, of approved manufacture, and two measures longer than the openings, 1 ft . wide, and 7 ft . thick, and proper damp course of two courses of slates and cement on the top of all external walls. The framing to be formed with posts, cills, braces, window and door-cill and heads, and top and bottom
plates, $4 \frac{1}{2}$ in. by 3in., the posts being of the plates, $4 \frac{\mathrm{i}}{2} \mathrm{in}$. by 3in., the posts being of the distances apart
shown in the drawings. The floor joists to be 4.in.
 as shown, $5 \frac{1}{2} \mathrm{in}$. by $2 \frac{1}{2} \mathrm{in}$. and $2 \frac{1}{2} \mathrm{in}$. by $2 \frac{1}{2} \mathrm{in}$., secured by clips to the iron roof, with ridge, 9 in. by $1{ }_{l}^{12 i n ., \text { with fillets on each }}$
side. Curb for lantern, as shown. The whole of the timbers to be of the best Memel, free from sap, shakes, and large or loose knots.
Provide and fix a lantern light, as shown on detail and side lights being hung on centres, with proper pulleys and lines for opening and closing, the flooring to be 1 in. yin. yellow deal, rebated and filletted and properly trimmed to heartbstone.
Provide and fix in floor on brick foundation a York Provide and fix in floor on brick foundation a York stone slab 4 ft
by 3ft., and 3in. thick to take the stone. Build brick chimney breast and shaft, as shown on the drawings, and carry up flue, with 9 in, unglazed earthenware pipes and build half brick walls in

CONTRACTS OPEN-IRON SORTING OFFICE.

cement, as shown, to the w.c.'s in yard. The inside of the w.c. walls to be rendered in Portland cement-that against wood-
work to be lath rendered-and lined with 6 in. white work to ground, finished with a 1 tin. flush bend in cement. The inside of the walls and roof of buildings and outbuildings to be lined with $\frac{3}{i} \mathrm{in}$. matched and leaded boarding. The windows are to have fir solid frames, with oak cills, and 2 in . fixed sashes, upper part over transom hung on centres with proper fastenings, and
cords, and pulleys, 2 in. circular fixed sash, and 1 in. tongued lining in gable as shown. All windows to have moulded architraves 21 in . wide, and $1 \frac{1}{4} \mathrm{in}$. rounded window boards. Doors to have fir solid rebated frames, and 2 in . double moulded 4in. panel doors, each hung with a pair of 4 in . W. I. butts, and fastened with
a 7 in . mortise lock-plain ebony knob furniture-of Messrs. Tucker and Reeves's manufacture, and two 9 in , barrel bolts to each door in back lobby. Front entrance door to be six panel, double marginal, moulded, and bead flush, hung with No. 34 in . W. I. butts, and fastened with a 12 in . drawback lock and two 12in. iron barrel bolts. Doors to have moulded architraves similar to those described for
windows. The inner doors to entrance lobby to be 2 tin., double hung and swing lower panels double moulded, upper ones glazed with British plate glass, $\frac{1}{4}$ in. thick. Provide and fix Cartland's swing hinge to each door, price $£ 3$ 3s, each. Yard walls to have moulded coping as shown. W.C. doors to have lower panels bead flush and square, and upper panels filled in with rough plate glass,
tin. thick, each door having a 6 in. brass bolt and 6 in . loop handle. tin. thick, each door having a 6in. brass bolt and 6in. loop handle. to be paved with 3 in . tooled York stone, the w.c.'s $1 \frac{1}{4} \mathrm{in}$. seats, and in. risers on proper frames and bearers, with holes cut and dished, and beaded hand holes formed, Provide and fix $1 \nmid W$. and moulded barge boards and gables, as shown. Provide and fix dust-
bin, where shown, with batten top and flap, and door at bottom to slide in proper grooves. Provide and fix where shown by dotted lines, W. I. principals, $2 \frac{1}{2}$ in. by $2 \frac{1}{2}$ in. by $\frac{3}{8} \mathrm{in}$. iron, tee, and $\frac{3}{4} \mathrm{in}$. rods, with C. I. ornamental struts and supports to lantern, the whole to be of the best Staffordshire iron. The walls and roof to be covered with galvanised iron, No. 20 gauge, all to be the make of T.
Lysaght and Co. (Limited), Bristol, properly screwed up and caulked with red lead and tow where necessary, the ridges being covered with fron ridge-pieces, having 4 in . lap with 5 lb . lead flashings as required. Provide and fix a 4in. O.G.C.I., eaves gutter to the roofs with 3in. C.I. rain-water pipes, with proper heads, bands, to be covered with felt of the best quality, and in the walls the space between the iron and the matchboarding is to be fitted in with clean dry sawdust. All the sashes to be glazed with 21 oz . fiuted glass, properly sprigged, puttied, and back-puttied; the top of the lantern to be glazed with rough plate-glass tin. thick. All copal, and all the other wood and ironwork, except the galvanised fron, both internal and external, to be painted four oils, of a tint to approval. Provide and fix two galvanised iron cisterns, 6 ft . by 3 ft .6 in . by 2 ft .6 in ., over the w.c.'s in yard, one to supply w.c.'s and urinals, and the other the draw-or tap, and bring in water and copper ball cook to each cistern. Fit up each w.c. with Dalton's Staffordshire flushing rim pan, and syphon with Conolly waste-water preventer, and properly connect to drain. Fit up wrinal with lin. rubbed slate-black and divisions, and slate bottom, with channels and brass rim, and grate with sypbon under, prourinal as shown. Construct 6in, potteryware glazed tubular drains set and jointed in cement from the w.c.'s to the main
sewer, and connect to same 4 in . drain from the R.W.P.'s and the point marked 50 ft . of 6in. drain pipe, and laying from the point marked A on plan. Construct cesspools 14in. by
9in. by 12in. under each R.W.P. grating and under drawoff tap in yard in brickwork in cement, with York stone dished kerb and iron grating to be properly trapped and connected with the drain. Lay on water to each w.c. apparatus, draw-off tap, and urinal with $\frac{1}{2}$ in. pipe to the container of the waste
preventer, and from thence with
$1 \neq \mathrm{in}$. lead pipe to the apparatus preventer, and from thence with $\frac{1}{4} \mathrm{in}$. lead pipe to the apparatus,
\&c. Each $\frac{1}{2}$ in. branch pipe is to have a $\frac{1}{2}$ in. screw-down stopock placed where directed. Provide and fix a $\frac{1}{2} \mathrm{in}$. screw-down tap of Underharp manufacture in yard where shown on plan. Provide and fix a medium size hot air stove- 2 ft . 4 in . wide-with fender complete, to be obtained from M. Fleetham and Co., of Clifford-
street, Bond-street, W., to be properly connected with the brick flue. Tenders are to be delivered before twelve o'clock noon on
Tuesday, the 3rd prox., addressed to the Secretary, H.M. Office of Tuesday, the 3rd prox., addressed to the Secretary, H.M. Office of
Works, No. 12, Whitehall-place, London, S.W., and must be Works, No. 12, Whitehall-place, London, S.W., and must be
endorsed "tender for erection of iron building, Tunbridge Wells." -A. B. Mitford, secretary.

LETTERS TO THE EDITOR
 [We do not hold ourselves responsible for the opinions of our correspondents.] shear legs.

SrR,-If I may again address you on this subject I would
remark that in your last impression "N. D. Y." and "E. M. R." appear to me rather hard on "Foreman." They seem to have of shear legs, and deals with a lighter weight on much shorter poles than was under discussion. With three poles of the dimensions he gives, viz., 20ft. long and say $9 \mathrm{in} .\mathrm{diameter} \mathrm{as} \mathrm{an} \mathrm{average}$,and
14 tons suspended, the formula of Trautwine, as given by "E. M. R.," would show a factor of safety of 6 , which is perhaps sufficient in all theory; his rule of thumb "is also rather hasty in condemning said rule is not generally known. Seeing that only 10 per cent. of mankind know how to erect or use triangular shear legs, it would be very obliging to me and many more of your readers, no doubt, if he would enlighten us.
In my first communication on this subject I referred to an yard. These legs, two in number, were 74 ft . long, and were used in lifting weights up to 44 tons, which they did with safety. It would be rather startling to find the diameter of these poles per the rules of N. D. Y. Still, these legs were not built up, but "carefully plates, I may mention those referred to in "Anderson on Strength of Materials." The poles were 40 ft . long, 15 in . diameter at middle, and 8 in . diameter at ends; plates 185 in . thick. These poles were tested with a load of 36 tons when inclined 15ft. out of the perpendicular. This load they withstood without the slightest perhave been even 6.
In conclusion, I may state that the legs I am about to erect are for a temporary purpose, and I shall be guided by Trautwine's ormula; but the factor of safety will be taken at 5 .
Leith, June 27 th.
Leith, June 27th
AN IRISH-SCOTCH TUNNEL
SIR,-In drawing attention to a question which, though often
considered, will yet receive a more practical treatment and study at the hands of the engineering profession, I would refer to the
scheme or proposal of a tunnel between Scotland and Ireland. scheme or proposal of a tunnel between scotland and Ireland. will doubtless, ere long, obtain a share of practical as well as public attention. From being spoken of as a proposal for some years, the
question has thoroughly revived, and the interest in it also. question has thoroughly revived, and the interest in it also. In the first place I would draw attention to the routes proposed,
viz, proposed route, the most referred to-and the other, which, though of comparatively recent date and plan, has already received a considerable share of attention and interest amongst engineers, namely, the drilling of a tunnel through the basaltic rock which exists
continuously from the Giant's Causeway, County Antrim, to continuously from the Giant's Causeway, County Antrim, to
the far-famed Fingal's Cave, Isle of Staffa, West of Scotland. This seemingly gigantic work, extending 26 miles, is declared to be quite practicable

June 26th.

CHANNEL BALLOONING.

SIR,-Will your correspondent, "Icarus," explain a little more clearly than he did in his letter, published at page 480 of your impression or the 22nd inst., how the air over ine sea can re rarer vapour rising into it from the sea and expanding it"? SURACI,
London, June 25 th. London, June 25th.

Death of Dr. Spottiswoode.-We announce with great regret the death of Dr. Spottiswoode, President of the Royal Society.
Dr. Spottiswoode died of the supervening effects of Roman fever, in the 59th year of his age, on Wednesday. He had been ill ever since a recent visit to Rome, but until the day before his death his recovery was confidently anticipated. Dr. Spottiswoode was in all respects an eminent man of science, and it is impossible in a brief
space to do justice to his life and labours. For the moment it space to do justice to his life and labours. For the moment it
must suffice to state that he was born in London in January, must suffice to state that he was born in London in January,
1825 , and received the early portion of his education at Dr. Buckland's school at Laleham, whence he passed to Eton and Harrow. At Harrow he gained the Lyons Scholarship, and entered Balliol College, Oxford, in 1842. Graduating B.A. first class in mathematics in 1845, he gained various University distinctions, including
the University Mathematical Scholarships of 1846 and 1847. In 1857-8 Dr. Spottiswoode was Public Examiner in Mathematics at Oxford, and also acted during the first year of operation as an examiner under the Civil Service Commission, as also at the Society of Arts examinations, and those of the Middle Class Schools Corporation. He was a Fellow of the Astronomical, Geographical, Asiatic, and
Ethnological societies, and of the Society of Arts, and the Royal Society, of which he was appointed treasurer in 1871, and subse quently elected president. In 1871 he received the honorary degree of Doctor of Laws from the University of Edinburgh; in 1876 was Paris a Corresponding Member of the Avadish Association whe the authorities of Trinity College, Oxford, conferred upon him the honorary degree of LL.D. Dr. Spottiswoode was the author of work on the "Polarisation of Light," published in 1874 as a volume of the Nature Series; a volume of "Travels in Russia; and a mathematical book entitled "Meditationes Analyticæ;"
besides contributing various papers to the "Philosophical Transbesides contributing various papers to the Philosophical Trans publications.

RATLWAY MATTERS
The Canadian Pacific Railway land sales for May were considerably more than for some
THE Queensland Government have called for tenders for the
onstruction of the first fiften-mile section of the railway from Brisbane to the Logan.
Large quantities of timber are being sent by rail to Quebec vic the Canadian Pacific Railway, and it is considered likely that a
considerable portion of the trade will hereafter follow this route. A coNTRAOT for the building of nineteen locomotives for the
Canada Intercolonial Railroad has been secured by the Canadian Canada Intercolonial Railroad has been secured by the Canadian
Locomotive and Engine Company of Kingston. This is the largest Locomotive and Engine Company of
order yet secured by this company.
A REGULAR service for the Canadian Pacific Railway is now distance of 1095 miles, and by the close of the season the roa will be in operation on a continuous length of 1400 miles.
THE German Government has offered to buy the lines of the fol owing six companies, in order to complete the state Railway system:-Upper Silesia, Berlin and Hamburg, Kiel and Altona,
Oder-right bank--Breslau and Friburg, and Posen and Kreuzburg. IN Switzerland in 1881 the average distance run per locomotive
was 16,039; on the German railroads it was 17,185 ; and on the Austro-Hungarian roads 16,010 miles. In this country by the last census it was 22,355 miles. Here, therefore, 100 locomotives do as
much work as 131 in Germany, 139 in Switzerland, and 140 in much work as
Austro-Hungary.
ON the Hamburg tramways a number of cars with flangeles Wheels, much like omnibuses, and with turning gear, are working
To run on the lines, these cars are fitted with a shaft in front of To run on the lines, these cars are fitted with a shat in front of
the front wheels, this shaft carrying on a lever a disc wheel which
the driver can lower into the tramrail roove as he requires or the driver can lower into the tramrail groove as he requires, or
aise it when it is necessary to get out of the way of obstructions Taise it when it it necessary to get out of the way of obstructions.
The arrangement works well, saves a lot of trouble, and the cars
ForTr-Four towns of the German Empire have already con-
structed tramway lines, which they work themselves, or of which thucted tramway lines, which they work themselves, or or whic
they have conceded the working. The largest net of tramway lines
-124 miles-is at Berlin. The number of travellers conveyed
 65 miles of tramway; Cologne, 27 ; Munich, 24 ; Hanover, 19;
Nüremberg, 19 ; Breslau, 16; Leipzig, 11. Diftering from Belgium
and France, no general law has yet been made in Germany as to and France
tram ways.
Consul Bertholv, of Breslau, had a free pass given him as a
director of the Breslau, Schweidnitz, and Freiburg Railroad. He director of the Breslau, Schweidnitz, and Freiburg Railroad. He
used it to secure free transportation for a part of the baggage of
his wife and daughter when going to Marienbad. For this he was his wife and daughter when going to Marienbad. For this he was
arrested and tried by a criminal court, charged with illegally obtaining a serviee worth 1.38 dols. He was found guilty and
sentenced to imprisonment for one week. He appealed, but in the higher court his sentence was confirmed. What, says the Railroad
Gazette, if this were thus in America? A Dirg'or line is projected between Brussels and Maintz, which
would put London within thirteen hours of the last-named town and twelve hours of Frankfort-on-the-Main. Goods would also be conveyed direct from Antwerp and Ostend, with a great saving of
mileage. The Belgian Government wishes to get all the railways
into its the necessary outiay. The promoters of the company, therefore,
ffer to make the line, to be afterwards bought or worked by the State, if the Government will bring in a Bill giving them the concession, and provided always
make that portion on its territory.
OUR Birmingham correspondent writes that in the widespread
movement for lower railway freights the Midlands continue to take a not unimportant part. The latest in this connection is from Dudley. The chain makers have found out an anomaly
under which higher rates have to be paid for chains that are under which higher rates have to be paid for chains that are
undamageable than for those that are damageable and more undamateable The usual list of anomalies in the carriage o iron forms another subject of oomplaint. These grievances were
ventilated at the beginning of the week by the Dudley Chamber of Commerce. This body is now in communication with the At the hands of the Railway Commission.
THE recently issued half-yearly statement of working expenses
of the Stockton and Darlington Steam Tramways Company states of the stockton and Darington nteam Tramways Company states
 have been in use over eighteen months:-Average wages per week
for 27 weeks on six engines, $£ 10$ 10. 11.11 d. ; average
 preparing coke (per mile), ${ }^{266 \text {. }}$ Average number of miles run -
$1850 \cdot 85$. Average cost per mile per engine, $2.86+26=3 \cdot 12 \mathrm{~d}$. A FLemish statistician has been investigating the death-rate among railway employes is 21 per cent. greater than among an equal number of the general population, though while at the age
of 25 the railwaynan stands a better chance than hiss fellow.
This greater liability to death is presumably largely becouse of dangeraus oocuapation, thoutgh the samesumbly largely because of
dailway man has the greater number of days of sichowess. that the
Being sick oftener he is in greater danger of daysth. In Germany the
same general percentages are found, to frighten one from taki the same general percentages are found, to frighten one from taking up
railway as a business.
The Railway Reviev says, more complete gures in Germany show that the train-man is siek some 40 per cent. more than other rail
per cent. above the average.
An official inspection by Major General Hutcoinson was made Stafordshire and Birmingham District Steam Tramway Company's
line a a section about seven miles in length extending from Hands the only alteration required being the remer points. The scheme was designed by Meessrs. . Llopd and Kincaird, was undertaken by the City of London Contract Corporation and Car Company, Lounghborough, and and the contraten for the the supply twenty engines of Wilkinson's patent, each of abou
The Mersey Railway Company, now constructing the tunne railway between Liverpool and Birkenhead, says in a circular offer-
ing for subscription the balance of the share capital, that the
works are so far advanced that the directors are now able with consfidence to look forward to the completion of the entire undertaking at a comparatively early date. The following railways will use the
line:-The London and North-W estern, the Great Northern, the Lancashire the Great Wessire, the Manchester, Sheffield, and Lincoln availed themselves of the resolution passed on the 6th instant by per cent. per annum during the constreution of railway works, to
introduce a clause for that object in the Bill now before Parliament introduce a clause for that object in the Bill now before Parliamen from the date of payment of each instalment

NOTES AND MEMORANDA.
THE organic impurities in the water supplied by the Lambeti Water Company during the month of May were greater than by Company's water as 1 , the impurity of the Lambeth Company' water was exactly 4
CoLONEL HAYWOOD's report on the incandescent lamps on the $1 \begin{aligned} & \text { times that of the ordinary gas lighting of the Viaduct, and a } \\ & \text { tit }\end{aligned}$ he same cost. The observations extend over twelve months uring which the total number of failures from defects in ma lighting.
The produce of labour has been divided between capital and labour as follows in the countries named:- Assuming the pro
duce of labour to be 100 in Great Britain, 56 parts go to the labourer, 21 to capital, and 23 to the Government. In France
47 parts go to labour, 63 to capital, and 17 to the Government
In 7 parts go to la
n the United Sta
of the Governm
According to the Milling World, sackcloth or canyas can be made as impervious to moisture as leather, by steeping it in a
decoction of 1 lb. of oak bark with 14 lb. of boiling water. This quantity is sufficient for eight yards of stuff. The cloth has to soak wenty-our hours, when it is taken out, passed through running
water, and hung up to dry. The flax and hemp fibres, in absorbing the tannin, are at the same time better fitted to resist wear.
THE amount of powder fired away in the bombardment o $39,900 \mathrm{lb}$., and the Superb, $22,897 \cdot 75 \mathrm{lb}$. The 3198 projectiles fired from the larger guns of the whole fleet, incluced 233 Palliser
2246
common,
261 shrapnel, 154 segment, and 175 empty shells ighest ighest average number of shots per gun, viz.,
nininible the lowest, viz, 122°. The average number of slots per

IT is stated that there are 3985 paper mills in the world pro ucing yearly 959,000 tons of paper made from all kinds of sub. stances, including rags, straw, and alfa. About one-half the
quantity is printed upon; and of those 476,000 tons, about onsume in official business about $100,0,0$ commerce, 120,000 tons ; industry, 90,000 tons ; and private correspondence another 90,000 tons. The pa
192,000 hands, including women and children.
IN a paper recently read before the Chemical Society on
Evaporation in Vacuo," Professor McLeod describes a useful valve for preventing the loss of a vacuum which occurs when using Körting's pump if the water pressure be suddenly
diminished. The stream of water passes down a narrow ube into an elongated bulb, from the bottom of which it issues by T-piece. In this bulb floats a piece of glass tube filled with air end of this float is ground, so that if the water stream stops the foat rises and
thus preserved.
Profrssor RAMSAY recently described and exhibited a new gas burner for heating combustion tubes. The burner consists of a
Bunsen burner, on the top of which fits a brass T -piece. The to of the T is about 6 in. long and lin. in diameter ; it has a longidass which are in it on the top; the ends are closed by phect they sumport she the By a simple arrangement any third of the slit can be closed o pened. A series of these tubes can be connected together by eated. The tube is covered by a length of asbestos cardboard ools quickly, so that seven combustions can be performed in a

The largest gas main in the world is being laid through West inster. 1ts ciameter is ift., and more than twenty-three miles of he great gasworks at Beckton, by Woolwich, the wen laid from been begun ten years ago; but the Gas Company only began a nonth or two ago the work of continuing one of the lines of the great main from Horseferry-rood, We ettminster, right thros ough the
heart of London, to Goswell-road, St. Luke's, where is the chief district station of the company. The section of main being laid vill be $3 \frac{1}{2}$ miles long, which wil make the length of the entire xperimental data on the flow of gases through a large long pipe ought to be obtainable from this
THE chemical now mostly used in intensifying gelatine plates is cyanide of potassium. The main difficulty of such intensification late, if exposed much to the light, would fade out, and spoil the negative. The intensifier given below, says the Scientific American,
has been found to work well, and at the same time possesses the has been found to work well, and at the same time possesses the
quality of being absolutely stable. A stock solution of sulphate of uavily of beeng absilutely stable. A stok solution of sulphate
iron is made as follows :--Sulphate of iron, 15 grains ; citric acid Water, 1 ounce ; nitrate of silver, 10 grains ; acetic acid, 10 minims. To intensify, take enough of the iron solution to cover the plate, and add thereto from six to ten drops of the silver solution, flood
the plate, and the intensification will proceed in a clear, gradual,
 AT a recent meeting of the Chemical Society Mr. V. H. Veley read paper ,on The hathate has measured the rate the whith evolved by heating pure ammonium nitrate at a constant temperature. He has arrived at the following conclusions :-
Chat the rate of decomposition into nitrous oxide That the rate of decomposition into nitrous oxide and water is
dependent not only on the mass of the salt but on the proportion endered alkaline, the rate gradually increases as the proportion o
ree acid increases ; a period of maximum velocity is then reached corresponding to the greatest proportion of free acid ; the rate
then slowly decreases with the decrease of free acid. An excess ammonia completely stops the reaction even when the temperature is raised 50 deg. or 60 deg, above the normal tempera-
ture of decomposition. If the reaction of the salt be rendered acid at starting the rate of decomposition gradually decreases as the
acid decreases. After heating the salt for thirteen to sixteen hours he rate of change becomes practically constant.
AT a meeting of the Chemical Society on the 21st inst. Pro-
fessor MMLeod read a paper on "Evaporation in Vacuo." The rinary method of evaporation in vacuo over sulphurio acid is
very slow. The author was led to try some experiments on the evaporation of water at tow temperatures by some remarks of
Professor Mallet-Chem. Neves xlvi, 62,73 , \&o.-and the method
 of apparatus the author used a Körting's jet pump to produce the
racuum ; the water was evaporated in a glass dish with ground top which pressed a red india-rubber ring against a brass ring soldered vessel consper disting of a truncated cone within a cylinder. The tube
ven and glass funnele, the mouth of whion touchese the inside of the dish. The dish is surrounded by a water-bath at 50 deg. The tempera-
ture of the water in the dish was found to be 26 deg.; 50 c.o. of water can be evaporate
described by the author.

MISCELLANEA
THE Postal Telegraph Company of America has contracted for he laying of new Transatlantic cables, which are to be immediately The Melbourne Harbour Trust has recently decided to purchase nother steam dredger
raising silt from the bay
THE Teesside Iron and Engineering Company is about to commence
ion shipbuilding on the Tees. The company has a site, formerly olling mills, which abuts on the Tee
The Chinese have determined to construct their new telegraph ines themselves. An imperial decreee sets forth that the lines are
obeconstructed with Chinese capital and under Chinese supervision. THE number of visitors to the Fisheries Exhibition last week was
 Under the presidency of Mr. Jabez Church, M.I.C.E., a visit was paid on Wednesday by members of the Society of Engineers to
the works of the Great Western Railway Comp We shall refer more fully to the visit in another impression. THE Commissioners on Accidents in Mines Commission have been
ngaged during the past fortnight in continuing at the Woolwich Arsenal, where apparatus has been put up for the purpose under
the superintendence of Sir Frederic Abel and his assistant, Dr. the superintendence of Sir Frederic Abel and his assistant, Dr.
Kellner, their experiments with a large collection of nearly 200 safety lamps.
AT the recent meeting of the Gas Institute it was stated as the esult of hatf a year's machine stoking work in one gasworks, that
every twent-four hours 2000 additional feet of gas were made per mouthpiece" employed; the wages paid were lesss, and the yield
gas per ton of coal was more. It was stated that (in anothe of gas per ton of coal was more. It was stated that jin another
lace 9 d . per ton of coal carbonised was saved.
Les Mondes states that a discovery has been made in Germany,
which is at present kept a profound secret, but which promises to evolutionise the present systems of constructing ordnance. The in a spiral direction, whereby the strength of the steel is immensely increased, the whole being coated externally with some waterproof

A sMALL screw steamer, the Tigre, launched on the 12th inst. y Messrs. Cochran and Co., Birkenhead, was tried on the 23 rd
inst. Her dimensions are 5 ift. 8 in. length, 11 ft. 6 in. beam, and t. 1lin. depth. The engines are single high-pressure inverted, 80 lb . She was tried in the Mersey, and against as strong wind

The Russian fieet in the Black Sea, which at present possesses only the two ironclads, the Admiral Popoff and the Novgoron, is
to be strengthened by the addition of three powerful ironclads provided with three barbette turrets, protected by 18in. of ompound armour, each mounting two long 12in. breech-loading loaders will be mounted in the casements. The hull will be
constructed of iron and steel the constructed of iron and steel.
ON the 26th inst.t the screw steamer Devon, built to the order of si follows: -Length, 220ft.; breadth, 31ft. 6in.; depth, $14 \mathrm{ft}$. . 6in.; having cylinders 26 in. and 50 in . diameter by 36 in , stroke; she is itted for quick despatch of cargo, and has water ballast in both olads. Bota hull and engines have been inspected during compleTHERR is satisfaction throughout the Wolverhampton district that f electricity are proceeding satisfactorily. On Monday the F xamply of the House of Commons, who had before him the Electric Lighting and Provisional Orders
rdile (No. 3), confirmed the provisional
that Brom wich, Aston, Dudley, Saltley, Wolverhampton, BalsallH Heath, kedditch, and Walsall. The Examiner consented to the Bill being
reported to the House
Ths Manchester Corporation have decided to undertake an important scheme of drainage, and are now asking for tenders for
the work. This will consist of the construction of an intercepting sewer for the drainage of the Cheetham-bill district, which will divert the drainage from the Broughton district and carry away The scheme will involve considerable the and we wnd Brook. also, special difficulties in some portions of the excavations, owing to the pe
through.
ON the 21 st inst. Messrs. Raylton Dixon and Co. launched a by them for the Steamship Company's Insulinde, of Amsterdam. Her dimensions are:-Length
and 25 ft , passenger and mail service between Amsterdam and the Dutch irst-class passenger steamer. Here engines are to indicate 1200 -
orsse power, and will be fitted by Messrs, R and horse power, and will be fitted by Messrs. R. and W. Hawthorn, A BANQUET was given on the 21 st inst. by the Paris
Society of Electricians. M. de Lesseps delivered a speech in the course of which he announced his intention of a strochucing the electric light on the Suez Canal. He referred to the necessity existing for a second canal, and stated that he had just had a very
satisfactory interview with Lord Lyons, adding that the British pany. The agitation which had been going on with regard to the Canal question was consequently factitious. The cost of the con-
truction of a second canal would, M. de Lesseps added, amount truction of a
The following shows the Port of London oversea trade for the week ended June 16th, 1883:- Number of vessels entered in, 280 ;
number of steamers entered in, 137 . Number of vessels entered out, $123 ;$ number of steamers entered oot, ${ }^{\text {n }}$, No. Number of cargo
vessels cleared out, 131 ; number of cargo steamers cleared out, 89 . Tonnage of evsels entered in, 174,398; tonnage of steamers entered in, 97,865 . Tonnage of vessels entered out, 75,519 ; tonnage of
steamers entered out, 55,609 . Tonnage of vessels cleared out, 79,120 ; tonnage of steamers cleared out, $57,150$. Total number of British vessels cleared out, 103; British tonnage cleared out,
63,055 . Number of British steamers cleared out, 70 ; tonnage of British steamers cleared out, 43,681 . Number of British sailers A casg of some importance to the iron trade has recently been
decided. In June last year, Messrs. Latta and Castel bought 1000 tons of pig iron from the Maryport Hematite Iron Company. They obtained the "scrip" for it-the warrants, that is. They did not
apply for the iron till December, though it had been paid for, and in that month the Iron Company went into liquidation. The
trustees would not deliver it, and application was made at the London Bankruptoy Court for an order for the delivery. The
decision has j just been come to, and it is of very great timportance
to the trade were given the iron was not made, therefore the iron could not be the property of the purchaser of the serip, and the application wa
dismissed. It is a decision, the Newcastle Daily Chromicle remark that may have considerable effect, and it will be henceforth needful that the buyers of iron warrants should buy warrants of iron actually made-not to be made-and iron that is in the hands of
the storers, and is described or pointed out in some way so that the warrants are warrants for the dor poiiverery of of iron some known and ident ithat thed
by the purchaser and seller.

W ORSSAM'S GAS ENGINE.

By the accompaning engravings we illustrate a new and simple gas engine made by Messrs. S. Worssam and Co. Its operation is as follows:-Supposing the pump and power pistons to the combustible mixture to have just taken place, they both move outwards together, the power piston communicating motion to the crank shaft. The pump piston at the same time draws in gas and air, the gas valve having been opened by its cam, and continues to do so for one half of its stroke or thereabouts, at which point the gas valve is closed. During the remainder of the pump's stroke air only is drawn in. When the power piston passes the exhaust port the gases in that cylinder escape, and immediately the crank has passed the centre their exhaustion is assisted by a stream of air delivered from the pump, which is now put in core. soon as the power piston has passed and closed the exhaust port in its in or backward stroke, compression commences, the contents of the pump being forced into the passages and the space between the motive power piston, and exploded or ignited at the commencement of the succeeding out
or acting stroke. The ignition is effected by a jet in the annula valve constantly fed with gas and relighted from a permanent jet after each explosion or ignition. In our engravings Fig. 1 is a sectional plan; Figs. 4 and 5 are end views partly in section Fig. 6 is a section showing the igniting arrangement. A is the power cylinder in which the explosion of the mixed gas and air is effected; B is the pump cylinder ; C a port, one extremity o which is commanded by the valves D E respectively for admission of air and gas to the engine. The air valve D is opened by air pressure when a partial vacuum is formed above it by the action of the pump piston F; thus it is caused to rise against the E is E is actuated in its driving shaft, so as to be either fast or loose thereon, and is in turn controlled by the governor acting through a bell-crank lever as shown in Fig. 1.
The cam shaft is driven from the crank shaft as shown. J is the slide valve which partially rotates around the piston-rod on
the fixed bush K and controls the admission to the motive powe cylinder A of the mixtur of air and gas previously drawn in past the valves D and E . This slide J is held against its seating by the spring L and cover plate M. The engine is shown at about half stroke, the piston N being impelled outwards by the expansive force of the air and gas mixture previously exploded on the termination of the instroke. During the course of the outward stroke the piston F draws air and gas into the pump cylinder B through the passage C, the air previously passing hrough an air vare R , chnamber P , pipe Q, and valve D , and the gas through pipe R, annular passage S, perforations T, and past to mix together. On the return instroke the piston F forces the air and gas mixture then in the pump cylinder back through the passage C, thence through the ports of the partially rotating slide J and seating U into the motive power cylinder A, where it is compressed by the action of the piston N into the space V left between the end of the motive power cylinder A and the piston N when at the end of its instroke. When the engine is in this position the explosive mixture of air and gas in the motive power cylinder A is ignited by a travelling gas burner W-Fig. 5supplied from a metallic pipe fixed to or embedded within the slide and having a flexible connexion X with any convenient gas J to and ignited at the stationary light Y once for every revolution of the crank. In Fig. 5 the travelling gas burner W is shown in the position for ignition by the stationary light Y. The gas at the travelling gas burner W having been ignited, the burner is then carried by the slide to the port Z in its seating, and ignition of the compressed mixture of air and gas in the motive power cylinder takes place, the force resulting therefrom driving the two pistons F and N outwards as before explained. The products of combustion escape through the exhaust passage V^{1} when this is uncovered by the piston N. After the explosion has been effected and the light of the travelling burner W thereby axto oscillation and relighted at the stationary light Y and so on next oscillation and relighted at the stationary light Y, and so on
continuously. Should the governor run too fast the cam G is continuously. Should the governor run loo fast the cam G is
thrown out of gear with the bell-crank lever H, by the arrangement shown in Fig. 1, consequently the valve E is not then actuated, and no gas is admitted until the cam G is once more thrown into gear by the governor balls falling.

PRESSURE GAUGE TESTING APPARATUS
THe use of standard pressure gauges and pumps for testing and adjusting other gauges and dividing the dials exactly has several inconveniences. Pumps are difficult to keep in good order and to start, if they have been for some time out of use. The standard spring gauges employed for controlling others may become incorrect,
and often indicate different pressures when two of them are placed beside each other on the same pipe. Mercurial gauges are certainly the most accurate instruments for measuring pressures, but cannot be used for high pressures on account of their very great height. They have become already inconvenient for the present medium pressures, without taking into account that the friction of the mercury, which increases with the pressure,
necessitates a calculation in order to obtain the correct indications, These inconveniences have led Mr. Ruchholz to design the testing apparatus represented by the illustration with the view to remedy them. One person is sufficient to work it at any time, while the space occupied is small, and the employment of a standard pressure gauge for the purpose of comparison is avoided, the dead weights acting through the medium of a suitable liquid, such as pure glycerine. The apparatus consists of a base which contains a pipe that connects the two uprights which rise from it, and are also hollow. A is a cylinder bored true internally and receiving a steel piston groun.
receive the gauge to be tested.

The piston carries a tray, on which weights can be placed, and is so proportioned that a pressure of one atmosphere per square inch is given by the piston itself, while each weight represents an additional atmosphere. When used the apparatus is placed upon
a firm table, and adjusted by the set screws in its feet till the a firm table, and adjusted by the set screws in its feet till the
cylinder occupies a perfectly vertical position, which is indicated by the spirit level fixed upon the middle of the base plate. After taking the piston out, glycerine is poured into the cylinder till the liquid fiows out of the upper end of the cock, which is left open, when the gauge to be tested is screwed on, and a further certain quantity of glycerine is poured into the cylinder. The apparatus
having been thus filled, the piston, which must be kept perfectly clean, is inserted into the cylinder. The pointer of the gauge must then indicate one atmosphere, and maintain its position while the piston is lightly rotated, this rotation being necessary in order to annul the slight friction of the glycerine against the inclosing sur-
faces. The weights are then gently placed upon the tray, and the latter is each time rotated in order to obtain the exact position of the pointer.
If the piston should come in contact with the bottom of the cylinder after a certain time, or before the desired pressure is obtained, the cock B is closed in order to keep the gauge at the
pressure prevailing at the time. The weights and piston are then pressure prevailing at the time. The wicights out so that a further sufficient supply of glycerine can be poured into the cylinder. When this is done, the piston is re-inserted, and the same number of weights placed on the tray as when the cock was closed. The latter is then opened, and further weights may be placed on the piston. In this way very high pressures can be obtained. Wradually removed and the piston withdrawn, and when the pointer has arrived at zero the cock is closed and the gauge unscrewed. The glycerine is finally draw
off by means of a small tap placed at one end of the base plate.

COAL WINDING IN DEEP SHAFTS.* By Mr. Arthur H. Stokes, F.G.S., H. M. Inspector of Mines. THE question of raising coal in deep shafts is slowly, but surely, demanding more and more attention from the mining and mechare coal lying nearest the surface, leaving future generations to solve the problem of deep minitg. Avery year shallow depths from the surface, is becoming less, and our lying at shallow depths from the surface, is becoming less, and our
resources, for supplying the current and increasing demand, lie at increasingly greater depths; hence many new sinkings have been carried down much deeper than those of earlier date ; and, looking
forward beyond immediate wants, the total area of unworked and forward beyond immediate wants, the total area of unworked and
unproved coal in the United Kingdom is no doubt very large, but much of it will be found at depths greater than any as yet reached. Some writers have quoted 4000 ft . a a the limit of accessible depth, beyond which the increase of temperature and other difficutities
will prevent the mineral being worked; other authorities have estimated it up to 7000 ft . In the year 1866, a Royal Commission the report placed the maximum depth at 4000 ft ., a limit which has been adopted by many scientific gentlemen. The deepest mine in England is Rosebridge, 2418 ft, , i.e., 806 yards deep; this has been at work for some years, yielaing a fair quantity of coal. The Coepast coal mine in the world, the author believes, is one near
nharle The author has been down this shaft, which is 2724 ft. . i.e., 908 yards deep- 830 metres. The coal is raised by an iron wire flat
fope, 7in. broad, and composed of eight strands, its weight being 9 tons 11 cwt. 979700 kilogrammes. The Simon Lambert shaft in Belgium is $34899 t$. , i.e., , 1163 yards deep, but this, the author is
informed, is only an exploration shaft, and not worked, being partly informed, is only an exploration shart, anft the winding is slow, and the quantity of coal raised about 260 tons per day. There is another deep shaft near Charleroi, the Sacrs Mad Mame Colliery, at Dampreney, which is 2498 ft ., i.e.,., 833 yards deep, where the coal
is raised from bottom to top in fifty-seven seconds.
This is about is raised from bottom to top in fifty-seven seconds. This is about
the same speed as that run at Rosebridge. It may be inferred from these facts that the depth of 4000 ft . is not too great an assumption of the ultimate limit of coal working, and considering the great area of unworked coal lying between the average or the greatest
depth of our present shafts, and the contemplated depth of 4000 ft ., there is little neecessity, at least for some time to come, of entering faing in ine lift whioh coll oould be worked. It is probable that the limitit of depth will not rest or be governed by the mechanical appliances used in raising the coal, but by temper
of the superincumbent strata.
of the superincumbent strata.
England holds the proud position of being the first coal and iron England holds the proud position of being the first coal and iron
producing country in the world. Her resources and engineers are equal to the task of maintaining this position, and it is probable equal to the task of maintaining this position, and ivis probait
that nature's laws, and not any lack of enginering skill, will limit
the depth of her available resources. It ocourred to the author the depth of her available resources. It occurred to the author
some time ago that in winding coal from our present deep shafts some time ago that in winding coal from our present deep shafts
there must be a great amount of power wasted in the ordinary mode of winding. The object invariably is to leave the bottom steam is put on the engine, and oeverything is strained to the the
utmost to get up the ascending velocity ; the descending to utmost to get up the ascending velocity; the descending cage at
the same time exerting its minimum amount of force to assist in obtaining such velocity; and then, when nearing the bottom, another great waste of power is employed in stopping the machinery.
From this it is clear that whatever balance is used must exert its maximum power at the start, and, if possible, assist in stopping the velocity when nearing the top. The author has seen in Belgium the drum set direct over the top of the shaft, but he does not
venture to give an opinion upon this appliance. There is also used in Belgium a balance rope connected to the bottom of each cage, and it is this application of a balance that he thinks will become more generally adopted. It is is simple, and apparently effective. During the time the calculations were being made by the author
for this naper, the above description of balance was sucessfully for this paper, the above description of balance was successfully
applied at one of the deep pits near Nottingham, and therefore its applied at one of the deep pits near Nottingham, and therefore lits
successful application has been practically testec. A very similar kind of balance has been used for many years in the old hydraulic hoists at blast furnaoes, a chain enenerally being used in place of a rope, also in shafts of small depths in South Wales, but the author
believes it has only lately been introduced in winding coal from deep shafts. In bringing this paper before the members of this Institute, the author trusts the great amount of detail given in
the calculations will not be thought excessive. The formule and calculations might have been given in far less compass, but bearing in mind that there are students, as well as members, composing the Institute, he has endeavoured to make the calculations so plain
that the youngest student may thoroughly understand them, and easily carry out the calculations for any depth of shaft. In caloulating the power required, strength of ropes, machinery, \&o., for raising coal from great depths, some data must be had to start
from, and this is the amount or weight of coals required to be raised per day. Considering the large expenditure necessary for
plant and sinking operations, also that for eaoh shaft, or pair plant and sinking operations, also that for eaoh haatt, or pair or
shafts, the produce of large areas of coal will have to be brought up, the weight cannot be fixed at less than 1000 tons per day from ing hours, then $\frac{1000}{8}=125$ tons per hour. This is not too large quantity to be expected from a shaft of three or four hundred yards deep, in fact the quantity is being raised from a few shats in
district. At Rosebridge, before mentioned as the deepest coal pit in England, 806 yards deep, this distanoe is run in about 55 seconds, econds ; that is 806 yards travelled in 55 seconds, or $\frac{806}{55}=14 \cdot 6$ yards, or say 44ft. per seoond. This is a great speed for winding
coal, but the author does not see why even this speed oould not be coal, but the author does not see why even over 30 miles per hour. Thus supposing a depth of 4000 oft. to wind from, $\frac{4000}{45}=89$ seconds in travelling the distance, say 90 seconds, or 1.50 minutes ; and allowing 10 seconds for changing, $90+10=$
100 seconds from landing to landing of alternating cages, and taking 100 seconds for each journey, $\frac{60 \times 60}{100}=36$ journeys in one hour; showing that to draw 1000 tons from a depth of 4000 ft . in 8 hours, 125 tons must be drawn on the average per hour, and $\frac{125}{36}=3.47$ tons for each cage lood. With these data for a starting point, and
to cover slight stoppages in the winding, taking 4 tons as the weight of coal drawn, there are still other items besides coal to be con sidered, viz, tubs and cage. These weights may be stated thus: coal, 4 tons; 6 tubs, 1 ton 10 owt.; steel cage, 2 tons 10 o
total, 8 tons. Then $8 \times 20 \times 112=17,9201 \mathrm{lb}$. working load. Having arrived at the working load, attention may be now
directed to the rope. It will be seen by comparing the breaking strains on the cards of various makers, that for equal sizes of ropes equal breaking strains are given, or nearly so, but the working loads
are very differently stated, some makers taking as low as one-sixth of the breaking strain for the working load, and others giving onetenth as the working load. In selecting a winding rope, two very Ioad of the coal, tubs, and cage, but also the weight of the length of rope equal to the depth of the shaft, or in other words, the
working load at the pulley wheel when the loaded cage is being
lifted weight of the rope is a serious addition to the working load when - Read before the Chesterfield and Derbyshire Institute of Mining, Civil,
winding from great deptbs. Another important consideration
should be what will be the strength or working load of tha rope a few days before being taken off, or when worn out? because it is very important that the working load of the rope should not be
exceeded at any time; hence, then, to cover this loss in strength by wear and tear, some makers give one-tenth the breaking strain as the working load, and when it is remembered that the same rope which winds its 500 tons per day regularly also
daily lowers and raises a proportionate number of men and boys, daily lowers and rases a large margin for safety; theretore the author takes the working load as one-tenth the breaking strain. There are other reasons why a high rate of working load in proportion to the breaking strain should be adopted, viz., the extra weight put upon the winding rope by friction of the cage and the guides, friction of puley wheels, resistance of the air, and
chief of all, the energy exerted in imparting velocity to the load, or power to overcome the vis inertia. In shafts raising a heavy load at a great speed, this last is a serious addition to the strain o tension upon the rope, and may be approximately expressed by the formula, $\frac{\mathrm{W} \times \mathrm{V}^{2}}{2} \quad \mathrm{~W}=$ The load in pounds; $\mathrm{V}=$ increase in the velocity in a second; $g=32 \cdot 2$ gravity. For a working load of from a state of rest to a velocity of 30 ft . per second $17,920 \times 32$ $=250,435 \mathrm{lb}$. work expended in oreating velocity. The above only represents the work expended in creating velocity, or work xpended in ine the load ${ }^{2}$ stone falling to the ground strikes it, is wholly distinct and ifferent from that with which it presses upon the ground when a rest. In coal winding the work expended in creating velocity is an ver varying strain upon the rope, whereas the toain expended in
weight. Although the acumulated work is again elieving the strain upon the rope when nearing the surface, yet
is the greatest strain that has to be considered. To obtain a approximate idea of what would be the strain upon the rope when raising the load from the bottom, to the above calculation must be added the power expended in raising the load, and for this purpos it is necessary to find the distance through which the centre o sravity wour to a uniformly aceelerated velocity of 30 ft . during the first second, and basing the calculation upon the first second, in is easily seen from the above remarks that the load would hav been raised 15 fft. Hence $17,920 \times 15=268,800$ foot-pounds, and
$268,800+250,435=519,235$. This will approximately represent $\frac{59,235}{15}=15 \frac{1}{\frac{1}{2}}$ tons nearly. And calling this $15 \frac{1}{2}$ tons the average Ension of the rope during the first second, it is found that this
 and working them at a high standard of safety, allowing a good margin for such strans as can only be approximhe of when order
and which perhaps in some cases are never thought on ing a new rope. Upon reference to the wire rope makers' cards, the breaking strain of an iron wire rope 3 3in. circumference is given as 22 tons, but in these calculations consideration; hence then circumference $2 \times .07958=$ area, that is $3.50^{2} \times \cdot 07958=9748$ area of cross section, or one square inch norking load. To simplify this matter, the working load of a charcoal iron wire rope may be taken as equal to 5000 lb . per square inch of cross sectional area, and this will hold good for any size of
winding rope. Taking another example to test this rule, viz.:-a winding rope. Taking another example
rope of 2 square inches of cross sectional area. Then $2 \times 5000=$
10, $10,000 \mathrm{lb}$. working load. And $\frac{10,000}{2 \mathrm{sq} . \text { in. }} \times 10=$ breaking strain, say
44 tons 12 cwt . Hence $\sqrt{\frac{2.07958}{\cdot 07}}=$ incumferenoe. Now by the rule above stated it is found that a rope 5 in. in circumference has a breaking strain of 44 tons 12 cwt., and upon reference to the
manufacturer's card this is-save the cwts.- the exact breaking manufacturers card this is-save the owts.- It we exact be tedious,
strain given for a 5in. cir. iron wire rope. It would and only a repetition of the above methods, to work out the working load for ordinary steel ropes, but it will be found to be equal has lately been introduced, for coal winding purposes, a steel wire
called "Plough Steel," whioh is professed to be of extraordinary strength and tenacity with very small sectional area. The Plough
steel ropes appear so thin when hanging in a shaft that one feels steel roper appear so
almost afraid they would part by their own hanging weight. They have been so lately introduced, and so little tested for coal winding, that the author cannot even venture to express an opinion either as to their safety or eoonomy.
Having defined the mode
Having defined the mode of arriving at the working load of ropes, are the data so obtained :-Working load: Charcoal iron wire $=5000 \mathrm{lb}$. per square inch of cross sectional area ; best steel wire $=8000 \mathrm{Ob}$ per square inh of of orss sectional area; Plough stee $=12,000 \mathrm{ib}$. per square inch of cross sectional area.
(1) $\frac{\text { Working load }}{5000}=$ square inch sectional area of charooal iron wire rope neoessary to carry such working load,
Then, for a working load at the cap or cage end of the rope equal to $17,920 \mathrm{lb}$., as previously stated, $\frac{17,920}{5000}=3.584$ square inches
nal area of ohacoal iron wire rope.
(2) And $\sqrt{{ }^{3} \cdot \mathbf{5 8 9} 958}=6.71 \mathrm{in}$. circumference of rope.

Thus a rope of 6.71 in . circumference has to be employed to carry a working load of 8 tons; but there is yet to be caloulated must be of sufficient size to carry both its own weight and the vorking load. From the manufaaturers' cards it appears that whether iron or steel; hence another simple rule may be formed, viz, From makers' cards, 3 inin. circumference rope, or 9748 square
nch area,,$=10$ lb. per fathom. Say 1 square inch sectional area
whence- (3) $\frac{\text { Weight per fathom }}{\text { Feet }}=\frac{10}{6}=1 \cdot 67 \mathrm{lb}$. per foot per square Feet per fatho
noh of cross sectional area of rope.
Thus, then, $3.584 \times 1.67 \times 4000=23,941 \mathrm{lb}$. Hence it is shown that the weight of the rope is greater than the working load; for a
charcoal irgn wire rope, of uniform thickness tbroughout, and charcoal iron wire rope, of uniform thickness tbroughout, and
400oft. in length, simply suspended in the shaft, without any weight attached, will not safely carry its own weight as a working weight as a safe working load in a depth of 4000ft., and exceeds it by $23,941-17,920=6021 \mathrm{lb}$., or nearly 2 tons 14 ewt. The length
of a rope of uniform cross sectional area, at which the weight of the rope is equal to its working load, may be taken as follows :Plough stel, 7185 ft .; ordinary best steel, 479 ft , ; charcoal iro
3000ft. The rule for ascertaining this may be expressed thus-

(4) $\quad \frac{\mathrm{W}}{w}=$ length in feet.

$\mathrm{W}=$ working load per square inch of cross sectional area-one-
tenth breaking strain; $w=$ weight per foot of the rope. The above figures will be sufficient to show that it would be only a waste of time to calculate the size of an iron wire taper rope
raise a load of 8 tons from a depth of 4000 ft . The working load raise a load of 8 tons from a depth of
of iron wire ropes, in comparison with the weight per fathom, is of iron wire ropes, in comparison with the weight per fathom, is
such as to preclude their use for winding direct from great depths. Ordinary best steel ropes.-Attention must now be turned to
steel ropes. It will be seen (by 1) that the working load of steel steel ropes. It will be seen (by 1 that the working load of steel
ropes, in comparison with the weight per fathom, is about 60 per
cent. greater than iron wire. 1 Tal
8 tons, or $17,920 \mathrm{lb}$. then (by 1)-
$17,920=2 \cdot 24$ square inches cross sectional area of steel wire rope ; $8000=\sqrt{\frac{2.24}{\cdot 07958}}=5 \%$ 3in. circumference of rope.
From the above it is seen that a working load of 8 tons requires steel rope having a circumference of $5 \cdot 3 \mathrm{Bin}$; but the weight of by (3), $2.24 \times 1 \times 1.67 \times 4000=14.9631$. l ., or nearly 6 tons 14 cot .
Hence the weight of the rope is nearly equal to the working load. Cence the weight of the rope is nearly equal to the worring load. will onfy raise a working load from the bottom of the shaft equal o $17,920-14,963=2957 \mathrm{lb}$, or about 1 ton 6 cwt . Having now nown that the weight of a charcool iron wire rope, of 4000 ft . deep
and constant sectional area, exceeds the working load of such a ope at the puiley wheel, and also that a steel wire rope, of conant sectional area, and of too tht. length, will only admit of ton 6 owt. being suspended to the end of it, without exceeding lated the size of a taoft., and also carry its own weight, without xceeding the working load, having a strength at any two point what has been previously stated, it will be seen that such strength would be in proportion to the cross sectional area at any point First, to ascertain the cross sectional area of a rope at the cap, of age end, of sufficient size to carry a working load equal to the veight of the coal, cage, and thes ope, taking that as due solely to the weight of such rope. In the first case the weight is constan from bottom to top, but in the latter it is constantly increasing with the length of the rope in short, the taper of a rope is solely for the purpose of carrying its own weight. A form
lating the size of taper ropes is given as follows:-*

$$
y=\frac{f}{m} \int \frac{\mathrm{~A}}{a} \frac{d x}{x}
$$

Integrating the above equation between the limits A and a we (5) $\quad y=\frac{f}{m}$ hyp. $\log \cdot \frac{\mathrm{A}}{a}$

Let $x=$ area of section at any point $; f=$ strain in lbs. per square inch of sectional area produced be the safe working load; $m=$ from lower end. Let A and a be any two sections at a distance y part. For convenience of calculation, the above formula is here aarried out fully in common logarithms, and applied to the case nder consideration. The starting point in this calcud
Then by (1) $\frac{17920}{8000}=2 \cdot 24$ square inches area,
and $f=8000 \mathrm{lb}$
$m=\frac{1 \cdot 67}{12}=\cdot 13916$, say 14 lb .
$\mathrm{F}=4000=$ length of rope in feet.
$y=48,000$ = length of rope in inch
onal area of rope at the connection to the cage.
$434294419=$ the constant used for converting hyperbolio
og. into common logarithms.
Hence $\quad y=\frac{8000}{14} \times$ hyp. $\log . \frac{\mathrm{A}}{a}$
$\frac{y}{12}=\mathrm{F}=\frac{\cdot 148000 \quad a}{12 \times \cdot 14 \times 4342944819} \times \log \cdot \frac{\mathrm{A}}{a}$
$=\frac{.72961472959}{} \times \log \cdot \frac{a}{a}$
$=10964.68 \times \log \cdot \frac{\mathrm{A}}{a}$
$=10964 \cdot 68(\log . \mathrm{A}-\log \cdot a)$.
and $\quad \frac{\mathrm{F}}{10964 \cdot 68}=\log . \mathrm{A}-\log . a$.
By transposing log. $\mathrm{A}=\frac{\mathrm{F}}{10964^{\prime} 68}+\log \cdot a$,
$\begin{aligned} \log . \mathrm{A} & =\frac{4000}{10964668}+\log .2 \cdot 24 . \\ & =3.36407+3502480 .\end{aligned}$
$\begin{aligned} & =364807+\cdot \\ = & .7150550 \\ = & \log .511887 .\end{aligned}$
Hence $\mathrm{A}=5$
pulley wheel,
and $\quad \sqrt{\frac{5 \cdot 1887}{07958}}=8.07 \mathrm{in}$. circumference of rope.
The conclusion arrived at from the above calculations is, that to
aise a working load of 8 tons from a depth of 4000 t.
 the lower end, 8.07 in. circumference at the pulley wheel. Having now determined the size of the taper rope, alt to the weight of such a rope. This at first sight may appear a
difficult matter to be calculated, seeing that every foot varies in difticult matter to be calculate, seeing that en whe the is considered that the taper of that due solely to the weight of such rope, then the calculation becomes easy, because the rope has been increased in cross sectional area in proportion to carry its own weight, and each square inch
sectional area is equal to 8000 lb . working load. Hence,
(6 A $=$ oross sectional area at pulley wheel; $a=$ cross sectional square inch of cross sectional area.

The weight of the rope may be
(7) $\mathrm{W}=$ weight of rope; $\mathrm{A}=$ cross sectional area of rope at wheel; $8000=1$ lbs. working load per square inch, cross sectional $\begin{aligned} & \text { area } \mathrm{L}_{\mathrm{L}}=\text { working load suspended from } \\ & \text { Then } \mathrm{W}=(5000 \mathrm{~L} . \\ &=(5.1887 \times 8000)-8 \text { tons. } \\ &=(203)\end{aligned}$
$=41887 \times 8000$
$=41509-17920$
$=2559-120$
$=23589 \mathrm{lb}$., or 10 tons 10 owt .
(To be continued.)

SWAN BREWERY, WALHAM GREEN. WE commence this week the publication of a series of engravings
illustrating a remarkably fine new brewery, the property of Messrs. Stanseld and Co We reserve our desitio this brewery until next week.

Naval Enginerr Appointrients.- The following appointments
 additional, for service in the Crocodile; Richard C. Williy and
Josiah P. Thomas, engineers, to the Malabar; Robint Bacomb, engineer, to the Asia, additional, for service
George Harding, engiueer, to the Asia, additional
Thomas H. Harrup, engineer, to the Excellent, for vervioe in thi
Kite vice Harding; and James Armstrong and Kasistant engineers, to the Malabar.

Colliery Guardian, July 13th, 1

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

*In order to avoid trouble and confusion, we find it necessary to pubbic, and intended for inserters of in thisuiry column, must, in all all
cases, be accompanied by to the cases, be accompanied by a large envelope legibly directed by the
woriter to himself, and bearing a 1d. postage stamp, in order that woriter to himself, and bearing a 1 d. postaye stamp, in order that
answers received by us may be forwarded th their destination.
No ontice voill be taken of communications which do not comply ${ }^{\text {with these instructions. }}$

* We cannot undertake to return drawings or manuscripts; we

 ${ }^{*}$ must therefore request correspondents to keep copies. Ald laters intendeed for insertion in The Resanker, or con-of the questions, must be coccompanied by the name and address, of the writer, not necessariliy for pubbication, ,unt a a a proof of
good faith. No notice whatever will be taken of anonymous communications.

> STAR MAPS. (To the Editor of The B

marine governor.

 Cloth cases for binding The Exarngrr Volume, price 22. 6 d.

 DEATHS.

THE ENGINEER.

JUNE 29, 1883.

the elephant boller.

Not long since a brief correspondence on the relative merits of Lancashire and elephant boilers was published in our pages. We think it is to be regretted that the
subject was not more fully discussed. We had written it will be remembered, in favourable terms of the elephant boiler, and one of our readers, holding that we were mis-
taken, said so His letter elicited one reply taken, said so. His letter elicited one reply, and the
matter dropped. We propose now to re-open the whole question, because we believe that the elephant boiler has so much to recommend it in various ways that, were its virtues only understood, it would enjoy more popularity
here than it now does; and we may point out that on the here than it now does; and we may point out that on the
Continent it is still the most popular boiler in use. Modified in Yarious yays-soquetimes with one, sometimes with
two, or even three, small cylinders-or "bouileurs," as they are called in France-sometimes set on an angle, now and then fitted with small tubes, modified in design in many ways, the elephant loiler is still, above and beyond all others, the typical French boiler; and in Germany and
Austria it is hardly less freely adopted. In a word, it holds abroad the place taken in this country by the Lancashire boiler. This is in itself a great point in favour of the type, and the fact that it is so extensively employed by men who are supposed to know what is and is not good
for them, entitles it to full consideration or them, entitles it to full consideration.
Almost the most important thing about a boiler is its economy. We may assume for the moment that safety is pro-
vided as a matter of course. If the elephant boiler is not vided as a matter of course. If the elephant boiler is not as
economical as the Lancashire boiler, then it has no claim on economical as the Lancashire boiler, then it has no claim on
steam users. No advantage which steam users. No advantage which it may possess can
compensate for the absence of economy. On this point, however, there is no room for discussion. It has never, so far as we are aware, been disputed that the elephant boiler when properly made, and properly set to work, is quite as
economical as the Lancashire boiler. If it was not econoeconomical as the Lancashire boiler. If it was not econo-
mical, French engineers, at all events, would not use it. mical, French engineers, at all events, would not use it.
There are not wanting, moreover, engineers and steam There are not wanting, moreover, engineers and steam
users who maintain that it is on the whole a more econo mical boiler than the Lancashire, and we believe that they have truth on their side; and this because the heating than those of the Cornish or combustion of cornsh or Lancashire boiler, and the because the length can be more perfectly accomplished be made what we beadth, and depth of the furnace ma Lancashire whil we please, while the furnaces of the in every direction this beisly much restricted for room in every direction. This being the case, coal cannot be former. It is of advantage in the latter boiler as in the are burned in, of course, true that all kinds of coal and fue matter, and it is well now and then in beoping that with trouble is incurre when the coal is not just what it ought Lancashire boilers necessary, however, necessary, however, to press this point. If it is conceded
that the elephant boiler is not less economical than its rival, no more need be demanded.
We have alluded to the question of safety, and it is in this respect that the elephant boiler far excels its rival. It is by boiler is more the boiler insurance companies know it only too well. A system has grown up in the management of their affairs ne cause the collapse takes place. A half-drunken stom what at any moment take $£ 60$ or $£ 70$ out of the pockets of an insurance company by letting his boiler get short of water. he insurence for the expenditure incurred in this way undertaking, or the premiums would undergo a great reduction. If our readers will reflect for a minute they alled upon to replance companies are seldom or neve premiums must be increased. Inspection properly carried out is a complete preventive of disastrous explosions of boiler shells, and, indeed, of those caused by collapsed flues; but no amount of inspection, however rigorous or exacting, will prevent furnace crowns from coming down. The collapse may be small or large It may mean a mere flattening of the shell for a length may mean the more or les tube without fracture or explosion. In any case the insurance companies have to pay for the repairs, and we have only to refer to their books to learn that such coll apses or failures are constantly occurring. Nothing at all is said about them. The flue is heated and jacked out, ing to the extent of the put in, or even a new flue, acsordby week from of the mischief, and this goes on week insurance companies keep their own counsel; certain cases of failure are mentioned in general terms, and the engineer of any one insurance company is careful to publish all that he can learn concerning the bursting of all boilers either not insured at all, or insured by a rival company; but concerning these failures of Cornish and Lancashire flues little is heard. They are taken as a matter of course-events in
the ordinary run of business, about which comment unnecessary It may be argued in justification of this that inspection can do nothing. In the first place, it can do nothing, as against a drunken fireman, and in the about by causes little if at all understood, and which ar unaffected by inspection. It is not neeessary that a boile should be short of water in order that the flue may come down. We met with an instance not long since in which the flue collapsed upwards just beyond the bridge, the to remaining quite cylindrical. Long ago the engineer of a that the Lancashire boiler was the most expensive to kee in repair that was to be found on land -Rastrick boiler excepted-and we can very well believe this.
On the other hand, the elephant boiler is never afflicted with collapses, and if properly made its plates will not crack, nor will it give any trouble whatever. It will go
for years without repairs of any the years internally-fired boiler the neglect of a few minutes
there may leave the crown plates bare, an elephant boiler migh be run for an hour or more without being fed, and would ake no harm. If boiler insurance companies had only lephant boilers to deal with, they would quickly realise ooiler and its prototypes, we shoplanted the Lancashire explosions that insurance would not be much in favour The principal objection urged against the elephant boiler is, we may say, that it takes up a great deal of oom, but this will not occupy much mon prom that, the elepant boiler say in conclusion that it is not easy to understand why in this country it has never had a fair trial, In almost all
the cases those who have had them once baye retained them,

There are, of course, exceptions, and it would be advisable, we think, that the reasons for which they have been superseded should be made public. In the matter of cheapness itconomy of working, the elephant from disastrous explosions, but from minor failures, it is immeasurably its superior. What, then, remains to be urged against it?

the hull and lincoln railway.

AFTER an investigation lasting nearly four weeks, involving the evidence of an unusually large number proportion of speeches from counsel, the Bill for the Hull and Lincoln Railway has been thrown out by a Com mittee of the House of Commons. The project is impor tant, as the proposed line, continuing northward the recently made joint line of the Great Northern and Great Eastern companies to Lincoln, fills one of the few gaps still remaining on the map of England where a main route is evidently wanted. Although no reasons for rejection were given by the Committee, there is little doubt from the course taken by the inquiry that the success or failure of the Bill depended on the engineering evidence ; and in this respect some account of it may be interesting to our readers. There was the usual opposition from other rail way companies. The North-Eastern saw no reason why Hull should want a direct line south when such ample provision existed for traffic north and west, and south also its counstward route. The Great Northern Company by no send and by numerous witnesses demonstrated tha than vid person could desire to get to London otherwis and quick trais thirty miles. The Manchester, Sheffield, and Lincolnshire Railway Company considered that it had such a vested interest in the port of Grimsby and in the New Holland erry, that the construction of a bridge which would give direct communication and other advantages to the riva port of Hull ought not to be permitted.
All this opposition would probably have been of little avail, for Partiamentary Committees have of late years new railway appeared to be for the public advantage,
when the landowners and inhabitants of a district have desired it, and where no hindrance to other undertakings has been shown. It is on this last plea, however, that the Bill for the Hull and Lincoln Railway has been defeated, the case against the promoters being that the navigation of the Humber would be seriously impeded by a bridge. It was to escape opposition on this account, and to avoid also what, under ordinary systems of bridge construction, are undoubted difficulties, that a tunnel was proposed in previous schemes. The uncertainties and greater risks of a tunnel, however, led to its rejection
by a Committee of the House of Lords, and the design oy a Committee of the House of Lords, and the design the Forth Bridge, and its authorisation by Parliament,
decided its author, Mr. Fowler, who is also the ecided its author, Mr. Fowler, who is also the engineer for bridge similar to that over the Forth, but on scheme on a bridge similar to that over the Forth, but on a smaller and easier scale, one large span of 600 ft . being proposed instead
of the two spans of 1700 ft . in the larger bridge, the relaof the two spans of 1700 ft . in the larger bridge, the relaests of the Humber took the Then the navigating inte0 which ${ }^{2}$ to which sea-going ships, exceeding even 500 tons, regu-
larly trade, had a right to be heard; but the city of York and the town of Leeds, though zealously stimulated by the opposing railways, had interests too remote, and could hardly make out a case deserving serious attention. The Marine Department of the Board of Trade, in performance of its usual functions where tidal waters are con cerned, investigated the scheme, and, as in addition to numerous openings of 200 ft , one of 600 ft , with a clear headway of 90 ft ., was to be provided in mid channel, engaging to keep the channel clear by dredging should the brid arise, and even to provide a tug steamer should point the prove a hindrance to navigation. On this latter pilots, captains, and others, who had had a life-long experience of the river. The complaint as to deficient headway could not be seriously maintained, for it was shown that 93 per cent. of the vessels coing to Goole could pass below the bridge at any time without alteration and the remainder by striking their top-gallant masts But what evidently influenced the Committee was the evidence put forward by the Humber Conservators as to the likelihood of the sand-banks shifting their position to leaving the 600ft. span to bridge a shallow, and therefore useless, channel. Mr. Fowler asserted, and produced trustworthy witnesses to prove by a long history of the past, that there had always been deep water at the site chosen or the bridge; but the Committee were apparently contradictory evidence, and decided against the bridge.
Even if the allegations of the opposition were true, it would hardly be creditable to the scientific talent of the e deemed impracticable. The blance of advantages and drawbacks is, however, so obviously in favour of a bridge that it cannot much longer be forbidden. It is not the only case in this country where important works are hin-
dered and delayed by apprehensions insufficient, if duly dered and delayed by apprehensions insufficient, if duly weighed, to justify the effects they produce.
bRighton beach.
The "masterly inactivity" which seems now to characterise the operations designed for the protection
the foreshore at Hove, appears to us to represan wisest course which for the present could posssibly have
been pursued. We for a long time urged that Mr. been pursued. We for a long time urged th
Ellice-Clarke's new system of groynes should a prolonged trial before it was conclud
they had failed in their they had failed in their object; and occasion of our penultimate visit we were
forced to state that that object did not appear
check the inroads of the sea, we yet qualified our then expressed view by regretting that the length of trial the
groynes had undergone had been so short. Whether a groynes had undergone hace the Hove authorities to stay their hands or not we do not know ; but it is certain that since we last wrote on the subject nothing whatever has been done beyond making good to a certain extent the
breaches in the esplanade caused by the sea during the prevalence of the severe south-westerly gales early in the spring of this year. We are pleased that such a course
has been followed, because it has enabled ourselves, as well as the engineers consulted, to ascertain the action of the groynes under those varying conditions, without experience to be done in cases of such extreme difficulty as that with which the Hove Commissioners and their engineer have so long struggled. It has been our view from firs
to last that Mr. Ellice-Clarke's experiments at Hov must furnish a most useful lesson to the profession
all the world over. The protection of foreshores is undoubtedly an operation in which all previous ex-
perience is constantly falsified. We deal, in fact, with perience is constantly fable an element to be able to determine that a course of procedure which has success-
fully resisted encroachment in past cases shall have similar results in new experiences; but the further we enlarg these last, the more likely we are to arrive at a sound
basis for future operations. Hence, we say, we feel bxtremely pleased that we have been enabled by the cessation of work at Hove for a time to lay before
our readers the effects of the groynes erected there during a season of almost total freedom from those south-westerl gales which before proved so inimical to their efficient working.
In our last article on this subject, which appeared in our issue of February 23 rd last, we stated that the trending groynes had, contrary to what was hoped and expected by
their designer, accumulated beach to their leeward, and that on their windward faces, i.e, those exposed to the
prevailing currents and most severe winds and seas, they prevailing currents and most severe winds and seas, they
were almost completely denuded of shingle, the result being that the tie-balks inserted had had their functions reversed and were acting as struts. We may here remark that we
have been courteously invited by Mr. Ellice-Clark-who, have been courteously invited by Mr. Ellice-Clark-who,
we believe, on several points considers our conclusions erroneously based - to a personal discussion. We have abstained from availing ourselves of that courtesy because
it seems to us that, whether those conclusions of ours it seems to us that, whether those conclusions of ours
prove to be right or wrong, it will be more instructive if we criticise these works for our- readers from
altogether an independent standpoint; an advantage we hold we should not possess if we were perhaps insensibly induced to adopt the lines of argument upon which the
engineer has based his theory and founded his practice. engineer has based his theory and founded his practice. valuing, Mr. Ellice-Clarke's proffered information, we
hold it better to risk even the possibility of error than to abandon the course we have hitherto pursued in our to abandon the course we have hitherto pursued in our
notices of these works. We accordingly made our recent inspection, as on previous occasions, wholly unaccompanied, and unbiassed by any information save such as we could obtain for ourselves on the spot. It was observable that
the cessation of the sea's action from the south-west had brought about quite a changed condition of affairs from subject With emarked upon when last writing on this stbject. With the exception of two groyne interval
those to the west at which the first inroads by the sea became apparent-the inequality of shingle accumulation before seen had nearly wholly disappeared, and all along the line of the sea face, with the exception of the locality showed no signs of scouring or of undue height on either side of the groynes. Such a result we had anticipated
would probably follow due allowance being made for the balancing of seasonal influences; and it was in the hope of such influences previously named exceptional spot carefully borne in mind -we should now say, were it not for possible after results, that the engineer to the Hove Commissioners had success-
fully met the difficulty on which his advice was sought. But, unfortunately, all experience with work of this
nature forbids us to finally adopt so sanguine a conclusion. nature forbids us to finally adopt so sanguine a conclusion. of attack from the south-west. Will that beach which we have named as now accumulated have acquired so defined
a lodgment that it will not again be displaced? Should it be that it has done so, there will be no need for the construction of the sea-wall as to the necessity of which all of
those interested seemed but lately to be agreed, and the those interested seemed but lately to be agreed, and the
interval of
guieto non movere will have served to save the interval of quieta non movere will have served to save the
Hove Commissioners a very large outlay. Further experience is, however, as we have pointed out, still needed
to determine if we may congratulate the ratepayers on the avoidance of such expenditure.
Leaving this section of the beach, we can now revert to of hopeful results such as we have above described. At these points, in spite of there having been no erosive action due
to seas driven in from a south-westerly direction, there still remains the wholly unbalanced accumulation of shingle on the leeward side of the groynes, and the waves make a
clean and unchecked wash up to the foot of the slopes of the lower walk. That these have not appreciably suffered since our previous visit is doubtless due to the compara-
tive calmness of the sea during the lately prevailing direction of the winds, and a very different tale will
have to be told should a change in the latter again send in heavy breakers. But it seems to us that, apart
from consis consideration, there is another factor in the Theation of the first importance. We have been told that
to mischief which has occurred
in the Move beach was the minsetting of the current the Move beach was the insetting of the current up
Laipel due to changed conditions brought about by the
conder tion of defensive works further westward along the $\begin{aligned} & \text { and we hold that the continuance of that mischiee } \\ & \text { and }\end{aligned}$ circumstance of total freedom from south
westerly seas conclusively demonstrates that the cause
assigned was the we be correct in this assumption, that from both causes combined, viz., the changed direction of the current and wave action from the south-west, no period of rest at this works hrotected point is ently be recessity; but, should he hone we have expressed as to the much larger proportion of the shore line be eventually fulfilled, the expenditure required will be trifling in comparison with tainty. Already the esplanade at what we may term the danger-point, has protection for a short length by a sea wall of comparatively inexpensive character, and it seems hat, from the results attamed by it, that an extension of prove erected of course considerably break the direct force of the sea, and were the effect of the wash along their windward faces guarded against by substantial walling, not necessarily of great height or thickness, all that is desired may possibly
be secured. Mr. Ellice-Clarke may in that case claim success, which, if it is not entire, will at all events justify considerable congratulation. But no accumulations o beach,, we fear, can ever be expected at this dange point. have formed some hopeful anticipations, that we abando the unfarourable opinions we formerly expressed as to groynes being constructed at a greater degree of diverg.
from the right angle with the shore line than 15 deg.
the marine, mechanical, and metal trades EXHIBITION
ON the fifth of next month there will be opened at the
Agricultural Hall, Islington, an exhibition devoted to Agricultural Hall, Islington, an exhibition devoted to the engineering and metal trades, which promises to be one of the most
sucessful ever held in this country. It has been apparently organised by Mr. Samson Barnett in a manner whron wive represented - mining, metallurgicall, hydraulic, pheumatic, marine, electrical, sanitary, civil, military, and railway-while, machinery for treating raw produce has ever been brought together in England. That there was an opening for such
an exhibition as this is clearly shown by the promptness with which Mr. Barnett's invitation to firms to exhibit has been answered, and the result will be seen next week in a hall
crowded to overllowing by exhibits, contributed by the best firms in the trades represented, amongst whom we may mention the names of Messrs. Sir Joseph Whitworth and Co., Greenwood and Batley, John Fowler and Co., the Leeds Forge Company, Fox dall and Gent, Smith and Coventry, the Bowling Iron Company, Weardale Iron Company, Landore-siemens steel Company, \& Some 500 exhibitors in all will send goods for display, and
the only part of the hall which will not be quite full will be one of the galleries. For several months this space had been reserved for an electric railway, but at the last moment it was found impossible to get this ready for work in time, and the scheme having
fallen through too late, it was decided to reserve the space for the use of the carpenters, sign writers, \&c. The gallery at the west end of the hall will be fitted up as a lounge for smoking and reading, and adjoining this lounge a room is to be provided for
the representatives of the press. Amongst the 500 exhibits ther will be many remarkable for their size and novelty, those of the Leeds Forge Company, Messrs. Sir Joseph Whitworth and Co., and Messrs. John Fowler being particularly noteworthy. The Leed
Forge Company will show a fine cuilection of corrugated flues Forge Company will show a dine cullection of corrugated fues
and plates, their chief exhibit being a single front marine boiler, one of eight being constructed for the Royal Mail Steamshi screw steamer Moselle, fitted with two mild steel Fox's paten being rolled at one heat in the patent mill of the same company. the upholstering being ier is to be fill known Leeds firm, and is to belighted with incandescentlamps from a storage battery, and by the new table incandescent lamp of the Duplex Electric Company,
Messrs. Sir Joseph Whitworth and Co. will show, amongst a large collection of machines, guns, plates, \&c., all made of fluid compressed steel, a hollow propeller shaft 55 ft . long, 184 in entire weight being $15 \frac{1}{2}$ t tons, also a double throw crank shaft 26 fft. long, 18 in. diameter, 24 in . throw, and weighing 12 tons 12 cwt . stroke, and weighing 5 tons 4 cwt .; a cylinder liner for a marine engine, with the internal flange which has recently been introduced which enables the liner to be bolted through at the end,
this liner weighs 65 cwt , and has a diameter of 7 ft . Another this liner weighs 65 cwt ,, and has a diameter of 7 ft . Another
interesting exhibit by the same firm is a 14 in , air vessel to contain the compressed air for the propulsion of the Whitehead Corped. Wese vessels are used by the English and other Governments, and are tested to a pressure of 1500 lb , per
square inch. The length of the vessel is 5 ft . 6 in ., thickness sing, and weight 207 lb . Amongst machine tool makera
Messrs. Kendal and Gent, of Manchester, are making a fair show their exhibits including Brown's patent screwing machine for screwing bolts and tapping nuts from $\frac{1}{2}$ in. to 2 in. diameter, with
all appliances for re-cutting the dies.
This machine is capable all appliances for re-cutting the dies. This machine is capable of producing a complete treat watic motion for instantaneously releasing the dies at any given point. An improved planing long by 2 ft . 6 in. wide and 2 ft . high, and is made self-acting in hrranged for giving a great range of feed; the table is traverse upon flat slides with an automatic lubricating arrangement. surfacing, and screw-cutting lathe, 10in. centres, speciaily adapted for heavy cutting in wrought iron and steel; a patent wheelcutting machine specially adapted for cutting spur, bevel, and change wheels; improved cutter--⿰亻aking machine specially
adapted for making milling cutters with either parallel, conical, or curved section of face, and fitted with Scott's patent dividing arrangement for giving any number of divisions to the cutter : and an improved radial drilling machine for drilling holes up to 6in. diameter and 14in. deep, and to admit objects up to 3 ft. 6 in. in height on base plate. In another class of exhibits Messrs,
Frank Pearn and Co. are showing several of their patent pumps, including a vertical direct-acting ballast pump, with 9in. pump, 9 in. steam cylinder, and 13 ini. stroke; a horizontal direct-acting pump, with 10 in . diameter pump, 14in. steam cylinder, and $24 \mathrm{in}$.
stroke, and a double-ram "Manchester" pumping engine, witt
ams tin. diameter, steam cylinders 7 tin. diameter, and stroke Messrs of one-man and two-man power, and vertical boilers by xhibit rolling stock. Not the least remarkable exhibit will be that of Mr. Linfield, who will show a screw sailing machine, which he has called "Shadow," and which is commonly known to the public test machine to reduce to practice the possibility of utilising the test machine to reduce to practice the posssibiity of utilising the
atmosphere as a roadway at high speed. The result of the test has not yet been made public. For the present we shall only add that every one can take an interest in the exhibition, from the youngest engineering student of King's or University Colleges -and they are amongst the exhibitors- to the oldest engineer the country. It will be remembered that Mr. Barnells exhibition of last year gave satisfaction to exhibitors and the public,
and we see no reason to doubt that this will be equally successful
continuous brakes and compulsory legislation.
On the 22nd inst. Earl De La Warr, in the House of Lords returned to the charge by putting a question to her Majesty's tion of efficient brakes, and if so, wheteal in the manner described in the circular of the Board of Trade of August, 1877. It will be remembered the circulan referred to is that conaining the famous conditions of the Board of Trade, with which, in hieir opiaion, continuous brakes should comply. Lord De La Warr pointed out from the Board of Trace hadens how nsatisactory was particularly the London and North-Western and the Great Northern-had regarded the recommendations; and further proceeded somewhat unkindly to quote the reply which the Presienutation. Mr. Chamberlain had then said, "If the companie set their backs against the wall, and will defy public opinion, nd absolutely refuse to be guided by the recommendations to the Board of Trade, there will be no alternative but for the Government to lay a statement of the whole case before Pariia turther powers as may be necessary," As Earl De La Warr said, the evil was admitted, the remedy was known and ecmowledged but six years had elapsed since the 1877 circular, yet nothing had been done, and under these circumstances his lordship, not unnaturally, wished to know what were the intentions of the possibl duri tord sudeley repine as with the brake question, but the experience gained since th circular of 1877 was written only confirms the Board of trade in the necessity for the condutions which were then set forth being the necessity for uniformity is also made apparent every day adopta brake complying with the onditiot thought it advisabe circular. If the noble earl were to introduce a Bill for the purpose of making it compulsory upon companies to adopt a brake complying with those conditions, the
Board of Trade would trong expression of opinion, and of confident conviction in the justice of the position taken up by the Board, which ever nnprejuaceed mould only be showing ordinary sense if those companies who have made the blunder of trying to satisfy the requirements by a bad brake should at once take the hint, and proceed to make the change which otherwise they will most certainly be forced into doing before very long.

old and New anaine shamer.

The wonderful performances of Atlantic steamers, compara there is some danger that the efficiency of Atlantic steamers not quite so new will be overlooked. There are not wanting certain heretical individuals who maintain that the Alaska and othe developed by their engines, and not to the inherent virtues of their model. The opinion is strengthened by some recen Saturday, June 2nd, and both left Queenstown at 9.30 on the Sunday morning. The Alask arrived at New York at 10 a.m., and the Britanic at 8 p.m. the following Sunday, the mean time being about-Alaska. 7 days 5 hours, and the Britannic 7 days 15 hours. Considering $10,500 \mathrm{P}$ a $10,500-\mathrm{H} . \mathrm{P}$., and to the Britannic than to the Alaska. If the Britannic had the same have 7500 , or 3000 more than she has. These passages give for the Alaska a speed of 16.1 knots , and for the Britannic 15.2 knota. According to Mr. Froude, increasing the Britannic's power by $18^{\prime} 6$ thras would increase her speed sy 5 hors, ors, one day shorte than thots, equal to a passage of of days thers, is very small doubt that she would be little short of that speed. By increasing her power onella, when the bilers of the Bitanio ing two or three years hence, they could be made more than match in speed for any steamers now running, by giving then the moderate power of 6000 horses, which their strength of con struction would certainly well stand, as in the matter of mode these vessels are apparently unequalled by those of any othe line. Again, the Servia left New York at 1 p.m. on June 13 th, and the Britannic left New York at 2p.m. on June 14th. Th Servia arrived at Queenstown al $41 . \mathrm{m}$. on June 21 st, an the Britannic arrived at Queenstown 11.0 a a.m. on june 2 nc Britanni's mean time was 7 davs 17 hours. In other words, a ship of 7390 tons and 10,000 -H.P. only gained 45 minutes on The Britannic was built by Messrs. Harland and Woolf, and engined by Messrs. Maudslay, Sons, and Field.

LITERATURE.

A Manual of Marine Engineering, comprising the Designing, Construction, and Working of Marine Machinery. By A. E.
SEstox. Octavo, pp. 437. London: Charles Griffin and Co. O_{N} the whole this is a very satisfactory work; one, indeed, in which we find theory and practice much better combined than is usually the case. It is difficult to say whether it does or does not come up to the ideas - so in

BROWN'S RADIAL VALVE GEAR.

(For description see page 498.)

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND
OTHER DISTRICTS,

> (From our oun Correspondent.)

In view of the circumstance that the midsummer quarterly meetings are fixed to come off a fortnight hence-in Wolver-
hampton on July 11th, and in Birmingham on July 12 th-
the probailities the probabilities are this week being canvassed as to the
course which the marked bar makers will take as to prices. If, as seems most likely, the existing quotations should be re-
declared, Earl Dudley's list for the new quarter will stand as

 Bars rolled by the other list houses, if. no official alteration
should ocour, will be re-edeclared at \&7 10s. for ordinary quality,
£9 for best, and $£ 10$ for double best; with sheets and plates in proportion.
The nearer approach of the quarterly gatherings acts as a check
this week to the giving out of new contracts of much value. But numerous smaller orders for manufacture iron continue to b placed. The mills and forges generally have more work in hand
than for a couple of months past. Sheets hold the best position.
Still hoops, barss, strips, and other merchant sections are gradually Still hoops, bars, strip,
showing more activity.
It is not easy to obtain advanced prices, but sheet makers are
strong on the basis of $£ 885$ s. for doubles, and $£ 95 \mathrm{~s}$. for lattens. Galvanisers are asking rather more money than three weeks ago,
and the representatives of the Birkenhead Galvanising Company
 On We
On Wednesday two additional mills were started at the Regent
Ironworks, Biston, of Mr. George Onions.
The market anticipates with much interest the declaration on Saturdar by the accountants to the Iron Trade Wages Board of the average selling price of bars during the three months ended
May last. There is some expectation that the average will be a reduction on last quarter.
Messrs. T. and I. Bradiey
two blast furnaces at Darlaston Green, which were formerly part of the plant of the now defunct Darlaston STeel and Iron Com-
pany, have this week blown in their No. 1 furnace. The pig pany, have this week blown in their No. 1 furnace. The pig
produced is intended to compete with the Northampton pigs,
which have an extensive sale in this district and which are particularly appreciated for bar making and for foundry purposes.
Samples shown on'Change this week were favourably received, and the price should win for the new pig a good hold upon the market, mines cannot command the 655 . quoted by makers $.62 \mathrm{~s}, 6 \mathrm{~d}$, a a buyers will give. Part mines are 50.s. to 45s., and cinder pips, 40s.,
to $388,9 \mathrm{~d}$, and a little less Wiltshire pigs of the "Westbury,
 some other distant makes as much as 48 s . 9 d . is quoted, but with-
out sales. Hematites, 60 s . to 62 s .6 d and 65 s . nominal Contracts for 29,000 tons of gas ooal have this week been let by
the Walsall Corporation. In every case the price was an advance on a y ear ago. Pottery mine from North Staffordshire has just been advanced by some vendors 1s. per ton, making it about 15 s . per ton on vendors' premises.
The Nor
week on Saturdary Both colliers' strike will conclude its seventh weekly payment to the unionist hands of 10 s . per man and 1s. per
child, the non-unionists are receiving some help, but the majority of them are getting into a pitiable condition.
The South Staffordshire miners
continue contributions to the north. For, it is urged, if these men go in at a reduction, the men of the south will not be in so favour-
able a position as they would otherwise be when the new system wages payment is discussed in a few weeks' time by the Concilia-
tion Board in the South $\$$ Sta Contracts for roofing work, much of it to
vanised, are coming forward with rather more freedom, and the yards of some leading firms exhibit increased activity. Certain of
the orders recently booked mean a full couple of months' work ahead.
For ta
For tanks, galvanised, a good demand is being expressed on
home and foreign account. Ireland is an especially good customer to one or two firms incount. ithis district, and sompecially good customer
totacturers have
determined to strengthen the hold which they have upon Irish buyers by prominentty showing at the ensuing Cork Exhibition. decided to to give cotioe for the the 6 . 6 . listley price upon all district have have
common hammered Mr. C. C. Hoan
con hamme
chester district, hase been relegated to So South Staftordshire, in the
place of Mr. J. A. Jones, who will leave about September for
India
India, The report of the U.S. Consul-General in London to the De-
in the Birmingham exports to the United States on the year of
fortnight back, and they do not result in much actual business. In
the finished iron trade sheets continue in good demand, and maker are now asking $£ 8$ to $£ 82 \mathrm{~s} .6 \mathrm{~d}$. per ton delivered equal to Manchester as their minimum price. Hoops, however, still meet with
only a poor inquiry at $£ 6$. 10 s . to $£ 6$ 11ss., and it it is very dificult to get orders for bars at $£ 6$ s. per ton delivered into the Manchester shire and the principal local houses are firmly holding. One or twa cal brands could be bought for less, and dealers would in, many cas
prices; b
to have Reports as to the condition of the engineerin The direction of decreasing activity in some branches.
The members of the "Joule Club" last week paid wisid works of Mr. Charles Chapman, artesian well engineer, Salford Where they had an opportunity of inspecting his system, of obtain the boring of artesian wells. In the application of Mr. Chapman' system it is advisable to excavate an ordinary well about 6 ft . in internal diameter in which to place the pumps, and his system
to place the pipes below the well bottom a sufficient depth down from pressing upon the upper surface of the water that come through the bore-hole, and instead to allow the pressure, from whatever cause or source, to press the water up the bore-hole from
the great reservoir into which the bottom of the bore-hole has pene-
The coal trade continues very quiet, with the pits either working short time or putting into stook; and although nominally there in
no material alteration in the quoted rates, the tendency of prices of far as all classes of rown coal are concerned, is in the favou to keep customers together temporary concessions have to be made whist to effect clearances of stock special prices are quoted. I,
the Manchester district a reduction of 10 d. per ton on the delivered rates for house coar is being made with the close of the month, bu this at present is the only actually announced reduction. Common
sorts of slack are still plentiful, but the best sorts are now getting rather scarce, and are stiffening in price; the Manchester colliery proprietors are now advancing their quotations for July 5 d , pe con. At the pit mouth the average prices are about as under:
Best coal, 9 s ; seoconds, 7 s s. to 7 s . 6 d .; common 5 s . 6 d . to 6 s , burgy, 4s. 6d. to 5.s.; best
sorts from 2s. 6d. upwards
The usual gas coal contracts are now being given out, and so far season's prices, with colliery proprietors not tendering at all freely The shipning treademonth's supplies.
averaging 7s. 3d. to 7s. 6d. for steam coal, and 8s. 6d. per prices for seconds house coal delivered at the high level, Liverpool, or the Garston Dooks.
Barrove.
Barrovo. - The hematite pig iron trade has experienced little change during the past week. Notwithstanding that there is some
inquiry from home and continental users, it is evident the spirit o the trade is weak. The exports of pig' iron have increased, but there is little increase of the traffic on local railways. There has however, been a reduction in stocks, and it is expected that there
will be a further reduction during the coming season. The present will be a further reduction during the coming season. The presen gloomy, and makers are contemplating a reduction of the output There is still the cheering fact that makers of steel are consumin larger quantities of iron. The rail trade still continues very brisk,
and merchant qualities are also in considerable output. There i every appearance of a continued improvement in these department
Pig iron still quoted at 49s. There is an increased vigour to be seen in the local shipyards, and when the new orders which have lately been
booked are laid, an increased briskness will be imparted to the busine which is fast becoming the chief industry of this district. Iron ore has seen little change, a very quiet tone prevailing. Prices remain of coal and coke still continues steady.

THE SHEFFIELD DISTRICT

IN my last letter the tonnage of coal sent by rail to the metroThorncliffer the quantity. The weight should have been 19,955 tons.
The steam coal trade continues fairly active. Fully an average
business is doing with Hull, particularly in the case of collieriege business is doing with Hull, particularly in the case of collieries in
the Mexborough and Worth districts, which enioy some advantag in the item of railway rates. The business doing with Goole has also increased of late. House coal, though quiet as usual this
season, is is sufficient demand to keep the pits going about four season, is in sufficient demand to keep the pits going about four
days a week on an average, and five days are the rule in some quarters. Thas been little ehange in the iron markets since last report. If anything, prices are firmer, more business having be The file trade is far from animated. Though the file smiths have abandoned their opposithon and resumed work the reduction of 10 per cent., the grinders have not yet intimated their acceptance
the reduced terms, and the strike can therefore scarcely be considered settled. A very brisk business is reported in saws, edge
tools, and similar goods, but the silver and plated trades continue very quiet. The leading steel manufacturers, both in crucible an Bessemer, are well omployed, but generally steel is only in languid
demand. Rails are very flat, but tires, axles, and other descriptions of railway material-inoluding wagons-are fairly

A dispute in the engineering trade at Sunderland has given rise to some apprehension here. The Sunderland engineers have struck for an advance of wages and the restriction of apprentices,
the latter a very old grievance. As the first sign of storm
. the atter a very old grievance., As the first sign of storm
weather in engineering departments is usually shown in the North it is possible we may hear of a general agitation in the engineering trades. Our foreign trade in this important branch has rapidly
developed of late years, but any serious advance in prices would developed of late years, but any serious advance in prices would The cutlery manufacturers, wit
relieved of all pressure, and general quietness prevails reineved of an pressure, and general quietness prevails, A steady
demand for high-class Sheffield cutlery always rules in Amerioa,
where Rodgers and Harrison Brothers and Howson have where Rodgers and Harrison Brothers and Howson have a dis-
tinctive reputation; but common goods are cut very low and the tinctive reputation; but common goods are cut very low and now
profits are unpleasantly small. American orders for razors are now pearly worked off, and the razor makers are thas anything but
naimated. Depression in the razor trade is a novelty Sheffield has not experienced for some years. Jowitt, of the Scotia Steelworks
The Master-Cutler-Mr. A. A. -who returned from the United States last week, found affair across the water somewaal
season and the there was a fair volume of trade, it was not so brisk twelve months ago, and probably would not improve much until
the tariff laws were definitely settled. Mr. Jowitt was surprised the tariff laws were definitely settled. Mr. Jowitt was surprised to find the progress free-trade principles had made in the states power a sweeping measure in the tariff laws was inevi
able. He anticinates, however, a heavy fall in business, both
with the with the United States and with Canada. In Canada a duty o
 free, the new duty is practically inoperative on railway materia
On cast steel at $£ 50$ and $£ 60$ a ton it is not appreciably felt.

Mr. B. Samuelson, M.P., chairman of the Royal Commission
on Techical Instruction, accompanied by Mr. Swire Small Keighley), one of the Commissioners, visited Sheffield on riday,
instruction, and took the evidence of the thaster-Cutler and ther coading townspeople. Mr. Samuelson, atter examining pinion of himself and his colleague that the specimens of machine rawings were superior to any they had seen in this country or on ers of the Commission and be embodied in their report to Parliament.
At the annual meeting of the Ebbw Vale Steel, Iron, and Coal
Company, Limited, held at Manchester, on the 27th, the chairman eocined to prophecy as to the future. The prospects of the com-
 chairman mentioned as a proof of the low price of rails that the quotation was $£ 57 \mathrm{~s}$. 6 . per ton in the beginning of 1882 , and it
ell to $£ 415 \mathrm{~s}$. in the end of the year, while he had been told that ransactions. had taken place that day at $£ 412 \mathrm{~s}$. 6 d . This i lmost as low as the famous $£ 4$ 9s. 6d. quotation of the Dronfield Company a few years ago.

THE NORTH OF ENGLAND

 (From our own Corresspondent.)THE Cleveland pig iron trade has been somewhat firmer in tone during the past week, and a fair amount of business has been
done. At the market held at Middlesbrough on Tuesslay there vere numerous inquiries for deferred delivery; but neither maker prices. Producers expect to do better shortly, and merchants who prave very little iron to dispose of are ont inclined to anticipate
hevents. The leading smelters hold firmly to their price viz. 40 s. per ton for No. 3 g.m.b. prompt delivery, whilst makers outside he combination and the majority of the merchants ask 39s. 6 d . 39s. 3d., but have only small lots to dispose of.
The associated makers held another meeting on Monday last this math after the end o his month, but without increased restriction.
ers are to be
The stock of Cleveland pig iron in Messrs. Connal's Middles-
brough store was on Monday last 75,507 tons, equivalent to a reduction of 130 tons during
The shipments of pig iron from the Tees continue at a satis7,718 tons, against 51,855 tons in the corresponding period of June, 1882 , and 70,483 tons to the 25 th of last month.
There is nothing new to report with respect to the finished iron nills continue busy, however, as the shipyards are working full time, and need abundant supplies. Prices are the same as ast
 ree on trucks at makers' works less $2 \frac{1}{2}$ per ent. discount.
Messrs. Sir W. G. Armstrong, Mitchell, and Co., of Elswiek, are Messrs. Sir W. G. Armstrong, Mitchell, and Co., of Elswiok, are
naking rapid progress with their new shipbuilding yard. The Imperial Ironworks at South Bank, near Midddesbrough, are to be offered for sale by auction on the 10th prox. at the Royal Exills capable of turning out collectively about 500 tons of finished iron per week, and a forge,
of puddled bars per week,
The operatives employed at the engineering works on the Wear numbering upwards of 1400 , came out on strike on the 21st inst dor week, and demanded that the number of apprentices should be imited to two for every five journeymen in busy times, and tw any fresh apprentices until this py ask the employers not the master are willing to concede the advance of wages, but refuse to limit the
number of apprentices as requested. They offer, however, only to bind as apprentices boys under sixteen, and to require them to serve until twenty-one years of age. The men refuse to accept this offer in the action they have taken. Most of the men are unionists, bu everal non-union men are also on strike.
Messrs. Bolckow, Vaughan, and Co.'s Eston Steel Works werelaid
ideoon Monday last, owing to a dispute with the boiler firemen numbering aboutixty These men have been accustomed to work Sundays, receiving for it double pay. The firm have now decided to
start the works on Mondays at a later hour than heretof do aw works on Mondays at a later hour than heretofore, and so unless compensated for the loss of what they consider was a privi lege. Consequently they were all paid off on Monday, and fresh
hands were engaged. The works are now in full operation without Some very remarkable speeches were made at a miners' demon-
stration held last week in the grounds of Stanhope Castle, kindly ent for the purpose by Mr. Henry Fell Pease. Messrs. Thomas Burt Joseph Toyn, secretary of the Ironstone Miners' Union, substan "ially agreed in adopting, and eloquently advocating, a somewhat
new "platform." This induded the laudation of trades' unions when, and only when, intelligently administered, the deprecation o strikes at all times and under almost all circumstances, the advocacy
of joint arbitration boards; the promotion of increased endeavours to obtain parliamentary power, and to secure a better representation of labour in Parliament; and finally the extirpation
from our land laws of every trace of the feudalism which they consider lies at the root of most of the social and political dis advantages with which they are burdened. The blue ribbon portion of the miners present wore the badge.

NOTES FROM SCOTLAND

Up till the close of last week the Glasgow warrant market had alteration in the tone of business occurred on Monday, when numerous transactions took place at figures advancing from 46s. 11d. to 47 s. 2d. per ton cash. The market was againg quieter
on Tuesday, although feeling continued considerably more cheerful on Tuesday, although feeling continued considerably more cheerful
than it was last week. This was due largely to the good shipnents, but rumours with reference to a rather firmer state of things report that native iron had advanced as much as 8s. per ton. The increase in the stocks in the warrant storese has also been ment in the home trade. Whatever slackness prevails in the demand for makers' iron, is the result of the low rates of on the part of Scotch manufacturers.
Business was done in the warrant market on Friday at 47s. $0 \frac{1}{2}$ d. tions being 46 s . 11 d . cash, 1 nd 47 s . 1 d . tions being 46s. 11d. cash, and 47s. Id. one month. The markel
was firm on Monday, with transations in the forenoon at 47s. 1d.
to 47 s . 2 d . cash, and 47 s . 3 d , to 4 s s. 4 d , one noon prices being a shade easier. Tuesday's market was quiet, with
business at 47 s . $0 \frac{1 \mathrm{~d}}{\mathrm{~d}}$ to 46 s . 1 L t d . cash, and 47 s . 2 d d. to 47 s . 2 d .
 To-day-Thursday - the market was very quiet
47s. 1d. cash and 48. 3d. to 47 s . 2d. one month.
The quotations of makers' iron, which have varied but slightly, are
as follow:-Gartsherrie, f.o.b. at Glasgow, per ton, No. 1 , 57 s .; No. 3 ,

53s.; Coltness, No. 1, 59s. $6 \mathrm{~d} . ;$ No. 3, 53s., 6d
Langloan, 59s. 6d. and $53 \mathrm{~s} .6 \mathrm{~d} . ;$ Summerlee, 57
 and 50 s . 6 d. ; Calder, 58 s and 50 s .; Carnbroe, 54 s .6 d. and
 Carron, at Grangemouth, 48s. 6d. (specially
elected, 54s. 6d.) and 47s.; Kinneil, at Bo'ness,
 The activity in the malleable iron department has continued so long, and the pressure on the manufacturers is so great, that in the case of small orders which require to be filled at
once, an advance of about 2 s . 6 d . per ton has to be paid. These prices do not, however, affect the mportance that are being entered upon. The past week's shipments of iron manufactures from ostly locomotives and sur-crushing plant; $£ 3206$ sewing machines; $£ 3570$ steel manufactures; and $£ 26,000$ iron goods, excluding the value of the week's exports of pig iron.
The condition of the coal trade
every respect very promising. For the time of the year the household demand is very good, and the inquiry for the works and factories is very extensive. The shipping trade is also very brisk,
both on the east and west coasts. During the 2000 at Bo'ness, and large quantities at Leith and Burnt Island. Among the orders despatched from Glasgow was 1135 tons to Demerara, 3500 to Montreal, 360 to Gothenburg, 380 to Bordeaux 1000 to San Francisco, 2130 for steamers use, and 5032 tons sent coastwise. The orders now in
course of execution are comparatively heavy Main coals are selling f.o.b, at 6 s , to 6 s , 6 d . per Mon; ell, 6s. 9 d . to 7 s .6 d ; splint, 7 s . to 7 s .6 d . and steam at 8 s . to 9 s .
The coalmasters of the Slamannan district
have held a meeting at which the wages question have held a meeting at which the wages question
was considered. A few weeks ago it was thought they would be obliged to reduce the miners wages, but at this meeting they found that the position of the local trade in its relation to that of other districts was such that they could agre not to disturb the present rates of pay.
A sectional strike has occurred at the Lassodi Oollieries, near Dunfermline, because the em ployers have introduced a system of measurin the ooals produced, which does not pay the men for dross. It is expected that the dispute wil Woon be amicably settled.
the colliery owners and miners of Fife and Clackmannan has been compromised. The men have been asking an advance of 6 d . a day, and they were on the eve of giving two weeks notice o their intention to strike when-as I indicated last
week that they were likely to do-the masters met the men half way; and if trade is satisfactory
they are, it is said, almost certain to get the full they are, it is said, almost certain to get the ful
amount of their demand in the month of August.

WALES \& ADJOINING COUNTIES (From our own Correspondent.)
The steam coal export continues to increase steadily at all the ports, and if a slight falling
away is to be noticed at the port of Swansea, it has been caused solely by the temporary closing
of the North Dock for repairs and Newport show an increase, and the activity on the lines of rail is practically evidenced by a steady improvement in revenue. The returns
of the Taff Vale Railway last week, for instance show an increase of $£ 2000$ over the correspondin week last year. The official report of the Taff Vale Railway for last year showed that over 7 millions and a-hal the or coal and coke went down the lin in the course of a year. The estimate is that this
will be considerably exceeded, and will certainly be over 8 millions for 1883. The total tonnage o the Taff last year was $8 \frac{1}{2}$ millions. The weekly now maintain an average of 150,000 tons, and, as a consequence, shipping is looking up, and no less hand at Chepstow, on the Tyne, and the Clyde. The yard at Chepstow continues very busy, and its repute well maintained. I hear that on the Tyne a perceptible advance in price has taken place for Cardiff steamers, consequent upon demand and Quotations for first and secondary qualities of steam coal are not only maintained, but advancing,
and this week best coal is fully 9d., and in some places 1s. per ton over
screened seconds are 11s.
There is less discussion now about the Barry much as they can attend to. Still, interest in the fate of the Bill has not abated, and a stout fight is expected to begin in the House of Lords' Com-mittee-room on Wednesday next. I visited Barry ing opinion that docks can easily be constructed there, and from certain winds the shelter of the island, which is about a mile in length, would be tolerably good; but the wisdom of leaving the old channels of traffic, which have been in use for
half a century, and carving out new ones, when the coal output is passing its highest point, and one of the first coal valleys-that of Aberdarebegins to show signs of exhaustion, is open to question.
High-class scientific opinion points to the mouth but this probably awaits the development of the lower measures of the Monmouthshire coalfieldthe future field when the Rhondda is worked
out.
Newport, Mon., continues to show proportion-
ately quite as much coal prosperity as Cardiff. The exports last week amounted to 33,000 tons. The N New Newport Extension Bill was a loss efforts. The Risca and Cardiff Bill is also to be brought on again.
The patent fuel
Swansea it is fast attaining Cardiff is slack. At tions. The average dispatch is now over 10,000 tons weekly at that port.
There is not much vigour to report upon in con
nection with the iron and steel trades. In the
Swansea district steel rails have dropped a little in quotations, and it is as much as can be done to maintain them in ort quarters. This may be prices hardening, especially as such close attention is paid to quality. The prices of Welsh bar always stood well up to a certain time as long as
its character was retained, and it was only when quality deteriorated that prices sunk and the trade after more carefully
The Mountain Ash strike, consequent upon dispute as to which doctor should be appointed to the collieries, has been amicably settled and
Thos, Burt, M.P., is to address the Rhondda colliers this summer, and Sir H. H. Vivian is also invited to attend.
Tin plates are firm at last week's quotations. The trade is everywhere exhibiting improvement the new ventures, principally floated by Cardiff Gilfach Colliery, Rhymney Valley, is to be re started, and sinkng operations are contemplate at the Bargoed valley, where a fine seam Mynyddyslwyn extends to Gellygaer.
I regret to announce the death of Malziel. He came to Cardiff from Newcastle-on-Tyne, and was the first registered shareholder of the firs line of steamers that ran from Cardiff. He wa connected with every great movement in the coa great strike.
An explosion occurred this week in one of the Rhymney Iron Company's collieries. Two men were killed and several injured.

THE PATENT JOURNAL.

Condensed from the Journal of

$* *$ It has come to our notice that some applicants of the
Patent-ofice Sales Department, for Patent Specifcations,
Patent-ofice Sales Department, for Patent Specifcations,
have caused much unnecessary trouble and annoyance, Pave caused much unnecessary trouble and annoyance,
both to themselves and to the Patent-office officials, by
iving the number of the page of THE wich the Speciffcation they require is referred to, instead of giving the proper number of the specifcation. The
mistake has been made by looking at THE ENGINER Index, and giving the numbers there found, which only
refer to the pages, in place of turning to those pages and refer to the pages, in place of turning to
finding the numbers of the Specification.

Applications for Letters Patent.

 *When patents have been "communicated," thename and address of the communicating party are name and address
printed in italics.

19th June, 1883.
3021. Stopprrivg Botrles, J. Phillips, Walworth.
3022. Soldering Irons, J, O. Fry Nottingher 3022. Soldering Irons, J. O. Fry, Nottingham.
3023. Apparatus for MAking Wheed, W. Brierley, (Messieurs Deflasieux Bros., Paris.)
3024. Drviding Rails, \&c., into Seotions, H. Britten, 3024. Dividing Rails, \&c., into Sections, H. Britten,
Sheffield.
3025. Spring for Locks, E. Edwards.-(L. Bourrié, S25. Sprina
Lyons, France. Ons, France.)
CARBoN PLATES, R. Applegarth, London.
HULLS of SHIPs, H. J. F. Russell.-(M. M Havana.)
3028. SEWNG Machinery, A. G. Brookes.-(R. White-
hill, Nen York, V. .) hill, New York, U.S.)
3029. Coupunv, \&e.) Suafting, A. G. Brookes.-
(R. Whitehill, New York, U.S.) 3030. Apparatus for Propelinga Ships, J. Robinson,
Lon Londonderry.
3031. ProDuoving Lioht by Electricrity, W. P. Thompson. - (R. J. Shehy, Nero York, U.S.)
032. Distributing Sand, C.D. 3033. Preparinc Water-TIGHT Fabrics, E. A. Brydges.
-(. O. Spielhagen, Berlin). -(T, O, Spielhagen, Berlin.)
 H035. Gear Cuting Machines, H. J. Allison.-
H. B. Bberhardt, Newark, U.S.).
3036. Boors and SHoEs, H. J. Morgan, Frome. 3036. Boors and SHoEs, H. J. Morgan, Frome.
3037. SAFETY LaMPs, H. Haddan. (J, Weig, Dortmund.)
3038. ANNEALING Iron CAstings, W. R. Lake.-(B. 3038. Ansealing Iron Castings, W. R. Lake. - (B.
Jenkins and A. Larv, Melbourne, and W. Price, Carl ton, Australia.)
3039. FAN WHEEL, W. Schmolz, San Francisco. 3040. Looms, J. Almond, Blackburn.
3041. Gas Evarnes, T. Russom,
3041. GAs Enaines, T. Russom, Leeds.
3042. Brekch-Lading CANNON, \&cc., S. Pitt.-(R.S.
Ripley, St. Etienne)
3043. Locks, do., W. R. Lake. - (Messieurs Mayer
Langfelder, and Hammerschlag, Vienna)

Langelder, and Hammerschlag, Viemna.)
3044. BEDRTEADS, R. B. Evered, London.
3045. PRESERVING ANIMAT LIVES
R. de Bretagne, Paris.)
3046. Lathes, A. M. Clark.-(H. M. Potter, U.S.) 20th June, 1883.
3047. Reenderisa Durable Lawn Tennis dc., Balls
Slazenger and Sons, Manchester. 304. SToppers for BotTLEs, J. Jackson, London.
3049. BREEGH-LOADING SMALL FIRE-ARMs, T. Per London.
3050. Rotary Fans, H. Aland, London,
3051. Suryeyors Plotting SCAles, R. Cragg, 3052. Hoprper Dredoerrs, A. Bown \&W. Simons, Renfrew.
3053. MAEING ANTIEEPTIC FLUIDS, B, Nickels, London. 303. Making Antiseptic Fluids, B, Nickels, London
3054. Roundibouts, \&c., E. G. Brewer.-(S. J. Migno and J. B. Franchelli, Paris.).
3055. PRMANENT WAy, W. P. Thompson.-(L. Harty,
sen., and L. Harty,
sen., and L. Harty, jun., Brussels.).
3056. Tobacco-PIPEE, E. Ward, Liverpool.
3057. SPRING BEDs,
3057. Spring Beds, dC., F. Ellisdon, Liverpool.
3058. Prekerving Fruir, dc, W. H. Thew, Waterloo.
3059. Tronivg M 3059. Ironing Machine, R. Mindt, Berlin.
3060. Feeding Apparatus for Thrashing Machines, R R. Holben and S. Wilkerson, Cambridge.
3061. CRICKET Bats, A. J. Altman
3062. Propucing White Liatt, C. D. Abel.-(c. Cla
mond, Paris.)
3063. FLY-WHEEL, H. Blank, Berlin.
3063. Fly-weekl, H. Blank, Berlin.
3064. LATCHE, \&C., J. D. Sprague, Upper Norwood.
3065. PLAIN Metallic Tires, T. Fox, Sheffeld.
3066. GAs-motor Enoinks, C. H. Andrew, Stockport.
3067. Tricycles, W. Jackson, London.
308. HEatisg,
Chicago, Illinois., FeED-wATER, W. Baragwanath,
3069. UoNVERTING Reitprocatory into. Rotar
Motion in Exploorve, \&c., Engines, H. G. Wil-
liams, East Greonwich Hiams, East Greenwich.
3070. Gas Moror, đc., Enginss, J. Fielding, Gloucester.
3071. HEATTD AIR MoTors, L. 'P. Martin, Vienna, and
F. W. Gilles, Cologne.

21st June, 1888.
3072. Apparatus to be Used in Casting Iron, T. and
J. Robinson, Widnes.
3073. Abstractiva Heat from Stoves,

Edinburgh.
3074. DyNAMO-ELECTRIC MACHINEs, M. Deprez, Paris.
3075. Loosts, W. H. Tristram and H. Brereton, Bolton
3075. Looss, W. H. Tristram and H. Brepeton, Bolton,
3076. FANOY WBAING, W. H. Tristram and J. White-
3077. SCoRFs, T . Clegg, Hampton Court.
3077, TANKs for Melting GLass, E. Brooke, Hudders-
field.
3079. GAs-Motor Engines, F. W. Crossley, Manchester.
3080. Telephones, A. W. Rose, London.
3081. Ventilating

Sewer-trat, | 1. Ventilating Sewer-trafe J. Moyes, Renfrew. |
| :--- |
| Wabhing Machine, A. I. Denny.-(F. Yahnel, | Zittaun.) H. Darby, Denb

85. HyDRocap mos. Hypdocarbon Heating Stoves, C. Butler, Birmingham,
86. Rallway Chatrs, J. Hoplkinson, Rowsley.
87. Mechanical Retorts, J. Lyle, London. 3087. Mechanioal Retorts, J. Lyle, London.
88. Producing Colourng Matres from Paeno
H. J. Haddan. H. J. Haddan. - (The Leipziger Anilin-fabrik, Leipzig.)
Brin Pking Ammonacal Pronuots, L. Q. and A. Brin, Paris.
89. Porkable Fokl, L. J. Cayé, Montreuil, France.
O991. Ropes Used for HAULING, \&c., PowER, F. W. Walker, Leeds.
90. Machises for Finishing Mouldings, W. R. Lake.
 son. - (. B. Boivin and M. M. D. Loiseeau, Paris.)
Be9. Friction GEARIN, W. E. Ayrton, and J. Perry, London. CoLouring Matrers, F. Wirth.-(Messrs.
Bo95. RED Halle and Co., Biebrich, Germany.)
91. Prearng Food for INFANTs. ,kc., H. J. Haddan.
-(W. Horlick, Wasing $-($ Wr. Horlick, Washingtom, U.S.)
22 nd June, 1883.
92. Gas Motor Enaines, J. Doughill, Manchester.
93. OIL Burners, J. C. Morrison, Wost Ham, and R Smith, Bromley. Smith, Bromley.
309.. BuIDING Ve
94. INCANDESCE
95. Incandescerst Electric Lamps, R. Harrison
Newcastle.
96. Porter Pumps, \&c., M. Cleary, Dublin.
97. TLEPRHNE, S. Coxeter and H, Nehmer, London.

Budapest.) (W) L. Hughor. Budapest.)
8104. Cniorine, H. A. Dufrené.-(La Socièté Anonyme
A. de Produits Chimiques, Paris.)
B105. STRAM GENERATOR, ©C., H. Haddan.-(J. M 3106. Preambulators, C. Thompson, London.
3107. Multiple Cylinder Enolnes, H. J. Haddan. -
 3109. Pavements, de., where it is Required to Accommodate Telggraph Wires, \&c., E. Banner, London
3110. Aparatu for Raising and Lowering, H. Reic hardt, London.
3111. SEPARATING ORTHo-ToLutdine from Para-tolut 311. Separating Ortho-toluidine from Para-tolut
dine , W. Weiler, Cologne.
3112. Controlining the Flow of Liquids, J. Pumphrey Birmingham.
3113. WHELED
3113. Wherled Carriages, J. Harrison, Birmingham
3114. Mariners' Compass, W. Lake. - (B, Bisson 3114. Mariners' Compass, W. Lake.- (B. Bisson, Paris.)
3115. DYNAMO-ELEETRIT MACHINEs, G. Forbes, London
3116. ArRANGINE CTIC 311. Arrangeng Crrcutrs, S. Pitt.-(C. E. Scribner,
Chicago, U.S.) 3117. ExhaUst Fans, \&c., G. M. Capell, Passenham. 23rd June, 1883.
Bury. Motions for Drawing Frames, J. Macqueen,
3119. Screw Propellers, F. Boshardt.-(A. Zednicit,
3119. Screw Propellers, F. Boshardt.-(A. Zednicèl),
Hohenmanth, Austria.),
3120. TAREETs, R. Morris, London. 3121. SAdDLE Bar, J. Passmore and E. C. Cole, Exeter
3122. Apparatus for Driving Engines, C. F. Pollak, London.
3123. Electrical Apparatus, w. Hochhausen, N.Y.
3124. Bottle-Filling MAchines, C. A. Day.-(B. Lloyd, and C.C. Joly, Philadelphia, U.S.
3125. SPADES, J. Sidaway, Halesowen.
and Breakina Contact, D. Salomons, Tunbridge Wells,
3127. Preparing a Compound from Vegetable Mate RiAls, E. C. T. Blake, Brixton.
3128. Pressure Gavaes, D. Salomons, Tunbridge Wells. 3129. KILNs, E. Edwards. -(J. Beumier, Jemappes.).
3130. RINGS, \&C., of RING-SpINNING MACHINEs,
 ing on INTERMEDATE SLTTERY-OFFICE without cal
3132. MINERS' SAFETY LAMMP, J. Wehifler, Vienna. mann, Fisleben, Germany.). Hudson, London.
3133. Coupling PIPEs, J. C. Hudin

25th June, 1883.

3134. Cooling Liquids, F. T. Bond, Gloucester.
3135. Gas Engines, P. Neil, London.
3136. Gas Engings, P. Neil, London.
3137. LACING GLovks, \&c. A. C. Mather, Liverpool,
3138. STEAM Bollers, G. C. and J. H. Fraser, Bromley.
 bridgo.
3139. Cleansing Boors and Shozs, J. H. B. Wiggles
worth, Batley, York. worth, Batloy, York.
3140. ELEvitor STop, F. P. Canfield, Boston, U.S.
3141. RoLLING MILLS, W. H. Elis, Leeds. Manchester.
I44. Maunting, \&c., Spindles of Textile Machinery, 3. Marsh, Ashton-under-Lyne.
3142. SADDLE CLoTHs, H. H. Lake.-(G. Hattemann and
C. Wackerove, Vienna.) 3146. FLusHirge Appratus, M. Syer, J. Gilmore, and
W. R. Clark, London. Cases, R. Morris, Blacksheath. Re-filling Cartridge
Cafing 3148. GRANVLATING LIQUVD OILs, \&c., A. M. Clark.-
(L. Roth, Brooklyn, U.S.)

Inventions Protected for Six Months on
Deposit of Complete Specifications. 3000. Elegrrici Aro Lamps, S. Pitt, Sutton.-A com-
munication from N. H. Edgerton, Philadel

 Boston,
A GER-OUTTING MACHINES, H. J. Allison, Zondon
A communication from E. and H. E. Moarlatid Nowar. FAN W. HERLS, W. Schmolz, San Francieor U.S.19th June, 1883 .
350. Rotary Fans, H. Aland, London.-20ts Jive
1883 .
059. Ironing Machine, R. Mindt, Berlin.- 20 Lh .
1883. Preparing Food for Infants, H. J. Hed
3o96. Pror London.-A. communication ington,
111. SEPARATING ORTHO-TOLViDine from P1
DINE, J. Wieler, Cologne.-22nd June, $188 \mathrm{~m}^{2}$

Patents on which the Stamp Duty of 250
has been paid. 2466. Regulating Flo
1879. Making 1880 .
2479. Making Furniture, J. Reilly, Manchüter.-I
Jume. 1880.
2482. Heativg, do., Wire, J. Sykes, Hudderitald. 2486. Furmaces for Melting Metals, C. Cair, Breeth wick, - 19 th June, 1880 .
2742. Machines for Making CAsks, G. D. Zetry, Mary lebone.- 5 th July, 1880 ,
2513. Mining Machines, B
2522. IroN, © c .., Vessels, H. Smith, Gla
June, 1880 .

June, 1880.
2452. Evarorating Solutions in Cosinot eith
S. Pitt, Sutton. 22 nd June, 1880 .

2499. InJECTO.
June, 1880.
2569, MAKINO

June, 1880 .
2569, MAKING
23rd June, 188
27S6. CRan,
23rd June, 188
278. Cranks
th July, 1880 .
2876. TEXTLE
2876. TEXTILE
July, 1880 .

Junc 1880. W. Burgess, New York, U. June, 1880 .
2500. UNITING Paper in Lengths, I. J. and
Edwards, London.-21st June, 1880. Edwards, London,-21st June, 1880 .
2539. OPERATING SIGNALs, あcc., H. Johnsum, Buctet.
22nd June, 1880. 22nd June, 1880 .
224. DAMPING BISours, \&c., C. Harvey, Prestort
22nd June, 1880.
 2661. Pressing Yarn on Beams, A. Hitchin, Bumloy.
2523. Purt June, 1880. Isifing Liquor, W. R. Lake, London.- ${ }^{29 n d}$ 23. Purifying Liquor, W. R. Lake, Lone
June. 1880.
53. Feking Apparatus for Threshing Machin
J. W. Fison, Wicken, and C. Lack, Cottenham.-22 J. W. Fison, Wicken, and C. Lack, Cottenham.-22nd
June, 1880 . Wier, Glasgow.-25th June, 1880. OO2. RENDERNGG CAsEE of CARTRiDGRS AvatLable for
Repeated Use, R. Morris, Blackheath.-26th June,
 July, 1880. . Cl .
2558 . Combs of Horn, \&c., F. H. F. Engel, Hamburg. -23rd June, 1880. W. S. Smith, Barking, and W. o. 2705. Engines for Pumpine Water under Pressure,
A. B. Brown, Edinburgh.-2nd July, 1880.

Patents on which the Stamp Duty of $\mathcal{L} 100$
has been paid. 2547. Fleshing Machines, T. W. and W. K. Appleyard,
Leeds. -20 th June, 1876. Leeds. - 20th June, 1876. bledon.- 21 st June, 1876 .
2607. MACHINERY for Boring Rock, J. Vivian, White-
haven. $-24 t h$ Jine 1876 . 2684. MiLl Furnaces for Making Iron, J. Tibbs, Tip-ton.- 28 th June, 1876.
2653. Mankiva Woriva Drawings, H. and T. C.
Batchelor, Cardiff.-27th June, 1876.

Notices of Intention to Proceed with (Last day for flling opposition, $13 t h \mathrm{July}, 1883$.) 78. Brushes, C. Jack, London.-12th February, 1883 .
59. NDELBLE INK. H. A. Dufrené, Paris.-A commu. ${ }^{\text {nication }}$ from 16 February, 1883 .
 64. MAKING, \&ce., of Whitr Lead, J. C. Martin, Rich-mond.-16th February, 1883 . Littlebourne.-17th February, 1883. win, London.- 17 th February, 1883 . 17th February, 1883.
896. Probucrive PrINTING Blocks, J. Meihe, London.

- A communication from J. Aligeyer and Carl
 London.-19th February, 1883,
W00. WATER Hexte, W. Carrington, Openshaw, and
W. H. Bowers, Gorton.-19th February, 1883. W. H. Bowers, Gorton.-19th February, 1883.

904. WAsTE-PREVENTINo CITEREs, B. C. Cross, Leeds.

- 19 th February 1883. 906. Looms for Weaving, J. Williams and H. Barnes,
 and P. Jeserich, Berlin.-20th February, 1883.

177. Bredi-LoAF Cotrer, D. M. Ford, Bristol.-20th February, 1883.
178. PriNTING Trlegaph, H. J. Allison, London.-A
com. from S. D. Field. - 20th February, 1883. com. from S. D. Field.-20th February, 1883.
179. RAILWAY, , \&c., WHELS, W. Eyre, Sheffield.-20th Feorwary, 1883.
STEAM, BoILERs, J. Hall, Manchester.-20th Febru-
ary 1883 . 942. Treating Metaluio Ores, J. H. Johnson, London.
A communication from A. D. Ancel and J. M. A.
Thiollier.- 20 th February, 1883. Thiollier.-20th February, 1883. L. Lake, London.-A
com. froskvivo Matress. W. Reath.-20th February, 1883. 950. K NITTITNG MAchisks, W. Morgan. Brown, London

- A communication from G. A. Leighton and S. C Forsaith.-21st February, 1883.

56. BAsEs for Coourivg Matrers, E. G. Brewer
London.-A communication from Chemische Fabri Brewer
Fabrik aut Actien.- 21 Ist February, 1883.
57. Woriva Rallway Sionals, H. O. Tiehar, Ca
diff- $22 n d$ February, 1883. diff.-22nd February, 1883. Rennie, London-- 88 . February, 1883.
58. CARTRIDGEs, T. Nordenfelt, Loncian -206π Fir

59. SAsh FAsteners, T. J. Mullings, London.- -20 th
February, 1883 .
60. Construcrion of Blocks, W. Lee and D. F. Beale,
Maidstone,- $20 t h$ Febrrary
 943. Drying Animal, de., Sobstancess, W. R. Lake,
Iondon.-Com from L. Maiche, - $29 t h$ Fetruary, 1883 ,
61. Making Ink, A. A. Nebit, London. $-21 s t$ Febru. ary. 1883.
62. WiNDow Fasteners, T. H. Collins, Winchester.22nd Findow Fastervery. 1883 .
77 . Weiching Machine,
February, 1883. Hor Water, H. and C. F. Longden,
63. HEating by Hor
Sheffield. -23 . sheffield. - 23 rd February, 1883 . and C. F. Longden,
64. Frixive BLADS of SCREW Propelers, E. P.
Timmins and J. Rose, Cardiff.-24th February, 1883. OO6. WARPING, \&.c., YARN, W. MeGee and T. Watson,
Paisley.-24th February, 1883. Paisley.-24th February, 1883,
65. SUPUPLYNG SENBITV, PLATEs, J. H. Hare and H.
J. Dale, London.-24th February, 1883. J. Dale, London.-24th Februarry, 1883. Hare and Hi.
66. SDDLEs of Brycles, đo., J. A. Lamplugh, Bir-

 February, 1883.
67. FUR NiruRE Repositories, W. Shepherd, London.
-26 th February, 1883. - 26 th February, 1883 .
68. Producing Desions on Textile Fabrics, C. D,
Abel, London.- A communication from La Societé
 1063. Watering Roadways, \&c., W. Smethurst, Brynn,
T. T. Crook, Bolton.-27th February, 1883.
69. Transforming Naphthaline-di-sulphonic Acids 1069. TRANSFORMING NAPHTHALINE-DI-8ULPHONIC AcIDS
into AMIDO-NAPHTHALINE-DI-suLPHoNIO ACIDS, J. C.
Mewburn, London.-A communication from L. Freund. -27 th February, 1883 .
O7. PLATIC COMPOUND, W. Smith, London.- 27 th February, 1883.
Fe. RAsisig Liquids, J. H. Kidd, Wrexham.-28th
February, 1883 . February, 1883 . Tobsco Prpes, O. Ber, Poland.-28th February, 118. Rotary Engings, T. A. Hearson, Blackheath. -1 st
March, 1888 ,
70. APARATUS for Giving Alarms, A. M. Gibson, 138. APparatus for Giving Alarms, A. M. Gibson,
Ravenstone. -2 nd March, 1838 . March, 1883 , H. . Newton, London.-A communi-
71. Burrovs, H. M.
cation from A. Mader.- 5 th March 1883 . cation from A. Mader.- 5 th March, 1883.
72. RUNNER of UMBEELAS, J. Imray, London,-A
com. from J. B. Wilson.-6th March, 1883 . 1194. Cop RExARIINING SprisDLEE, A. J. Jouth, London.-
A communication from W. T. Cogeshall and J. E. 1206. PUMP for Drawivg Beer, T. Woollerton,
Leicester. $-6 t h$ March, 1883 . 125. Shutleb-box Operating Mgehanism, J. Brown-
lee, Glasgow- 8 th March, 1883. 1288. GUN CARRIAGEs, W. R. Lake, London.-A com-
munication from H. Gruson- - 10 h harch, 1883.
73. PRODUCING CoAL Gas, H. Eewton, London.1339. Prodvoing CoAL Gas, H. E. Newton, London.-
A com. from A. Klionne. 13 th March, 1883. Parsons, Bristol, and M. F. Purcell, Dublin. $14 t h$
March, 1883. 1413. Ring Sprinning Frames, A. M. Clark, London.-
A com. from J. J. Bourcart., - 16 th March, 1883 . A com. from J. J. Bourcart, - 16 th, March, 1883 .
74. RING. SpINNING FRMEs, A. M. Mark, London.
A com. from J. J. Bourcart.- $24 t h$ March, 1883 . A com. from J. J. Bourcart.- 24 th March, 1883 .
75. Compound for ExTINGUISHNO FIEs, C. D. Abel,
London.A communication from E. F. Neveu.27th March, 1883 .
76. ELETRO MAGEET, A. M. Clark, London.-A
com. from List

 May, 1883 .
77. R RoLlisg Ingors, D. Evans, Blaenavon.- 24 th
May. 1883. 2612. ChEcing Gamgs of Cards, G. F. Howard, Lon-
don. $-25 t h$ May, 1883 .
78. Windivg, de., YARN, J. Boyd, Shettleston,-16th 2619. Winding, むc., Yarn, J. Boyd, Shettleston.-16th
Ma5. 1888 Cooking Apparatus, S. Leoni, London.-
29th May, 1883. 2680. ExTractivg Fat from Bones, \&c., C. D. Ekman,
London- ${ }^{20 t h ~ M a y, ~ 1883 . ~}$ munication from G. O. Smith. - 31st May, 1883 . 272J. CUTTING Corns, H. W. Sharpin, Bedford. $-1 s t$
June, 1888.
79. RALLWAY CAR Cusp 288. Railwar Car Couplers, H. J. Haddan, London
A.com. from N. P. Cowell. 8th June, 1883.
80. STEAM Bouers, W. R. Lake, 2952. STEAM Boilers, W. R. Lake, London.-A com
munication from A. H. Crockford. 13 th J une, 1883
81. ELETTRIC ARC Lime and

 7. 7. Hancock, wolverhampton.2

 6224. Sininsing Franks for Jotr, ac., A. Frier, Dun.
dee. $-30 t h$ December, 1882.
 6234. FURNACES for Mkiting Glass, w. B. Fitch

DyNAMO Divano- LLEctric Machise, F. J. Cheesbrough
 3. -1 Ett Jonuary 11883 .

 8. Svervoing - Rat January, 1883.

 60. Counting Revolutions of Whbels, G. D. Kittoe

 ${ }^{\text {J. January, }} 1883$.
Jannary, 1883 .
 156. Controulisa, de., Electric Current, w. M.
Morder

 ${ }^{210} \mathbf{M o r y}$ Kor Sigurisa Rails on their Crairs, H. B

 337.h January, 1883. GLVERR 8 SLIT, H. J. Haddan, London.- 20 th
 40. Eligertio Gengrators, W. M. Mordey, Putney.-
24th

226. C Cebriuary, 1888.
 February, 1883 .
1014. TRA $\mathbf{W A Y S}$,
ary, 1883.
084. MAKivg PAPED

 March, 1883. B. W. Davis, London.- 22 nd March,
1858, VALVEs, 1560. ípusonextre Pours, J. E. Hodgkin, London.-
2ith March, 1883 . 1661. Morlerrs for Wrigaing Machiniss, H. Clegg,

 1031. SEw Privg FABRICs, J. H. Johnson, London. -17 th
 27th 4 Llsourerer Compass, W. R. Lake, London.-
2058 .

List of Speciflications published during the
$\left\lvert\, \begin{aligned} & \text { High Holborn, to Mr. H. Reador Lack, her Majesty's } \\ & \text { Patent-ofroce, Southampton-building gs, Chancery-lane, } \\ & \text { London. }\end{aligned}\right.$

ABSTRAOTS OF SPEOIFIOATIONS.
 Prepared by ourselves expresesly for The Exansker at the ofice of Her Majesty's Commissioners of Patents.

 The estand ii providede with loose pulleys to reeeive
the driving wheels, so that the latter may be caused to revorve byacauating that riving mechansism, whiline the
velocipede remains stationary. The axis of one of velocipede remains stationary. The axis, of one of of
the supporting rollers actuates suitable distance
the
4775. Ferding Papre to Paintirg Machings, đe., . Hoyer, Liverpool. 7 thi October, $1882 .-$ (Provisional
protection not allowed.)

 the morements of the sheeess of paper on the feed
table; Thirdly in an improved side wiper on the feed able; Fourthy, in in improvements in the lifting suc fon chamber; ;ifthly, in mechanism for raising the
cear table; Sixixthly, in a blowing and under suction chambers in connection with the rear table. Other

A siman not harosesedo.) $2 d$ haped motallic piece is secured nside the pooket, and allows the chain to pass freely,
sut stops tho watco, which can oly be removed by
pulling the guard or chain tin pulling the guard or chain in a certain direction.

tion not allowed.) 2d. he back under the arm pith over the shoulder, alagain unton. The other brace passes in the opposite direc 5058 Buture to no miner Datons.

This consists in the construction and use of bathing apparatus consists of an open cage through which

5070. Reprigerating Machings, J. K. Kiloourn, This consing -24th october, 1882. 6 d. use an expander. According the tube is formed wita sight in in ming which over the tube and screws into the opening, and bears
firmy on the flange, after which heat 18 applied to sweat the whole thoroughly together. The invention
furtt further relates to so constructing cocks that the plug
may be forced to its seat so as to prevent leakage. 5079. Morive Power Aparatus, W. H. Avis, Pole
gate, Susex: $-24 t h$
October, 1882. - (Not procel gaith.)
whis.
red be driven, and provided with buckets to receive a con stant stream of shot, water, or other substance
which is raised above the wheels by a chain or bucke

 that any bits of rags or other matter may come under
the action of the licker-in and be broken up before
 a serres of metal bands are placed, one end being
fastened to a rod, and the other hanging loose and
help
 the fibre being taken off in lumps. The material falle
on to a roller with bent elastic teeth, and delitrered on
 brush.
5087. VeroorpgDRs R. C. Flether, , near Preston.- 25 th
October, 1882.- (Tot Proceded vith.) This rellates, Firrt, to imperovements in the double in what is known as balance gear, and ratchet gear,
and seoconly, to an improvement in velocipede lamp
lat
510
 The relates to instruments for flidicating when a
certain temperature has been attained or exceeded and consists in the the combination of a thermometor
with with an electrical alarm, whose circuit is hormally
open, and is closed by the indices in the thermomete
com,
 and a movable etrmithal wire or index is in electrical
connection with the fixed wire and adjustable in the
thermometer tube

 TTh obiject is to provide means for disinfecting or
rendering innocouous sewer and other gases and
vapours Yapours, and it consists in applying to the manhole
frames a perorated recoptale containing charoalo or
other suitable disisinfectant.
Pipes are arranged
 tacle, and the idisinfect
issunn from the sower.

 mann, , Germany,) - (Not proceeded with.) 2. .
This constss in the une of a band secured to drum, capable of being attached to a part of a building, and
used for the escape of persons from such building or

 This relates to self-acting mechanism for regulating
the drag
thread is being wo warp bobbin or oreel whether the hread theng, ound upon the small part or thick
part of the epool, the object being to fill the spool hard
with
 operated by the "Heart motion" of the machine, and
one and rests on the warp bobbin, its weight thereon
bein

 5125. Door Cricks or Govervors, A. J. Boult, Lon-
don. -27 the
October, 1882.
18 (communication from The Elitiott Pneumatic Door Check Company, Boston,
$V . S$.
bd The object is to shut or close a door, and at the same time prevent the slamming thereof, and aloo to retain
the ooor open when desired. work in a collinder and is acted upon by a aprrng tend-
ing to force it in one direction, the end of the ing to fore it in one direction, the end of the piston-
rod being connected by means of links to the door to be opened and closed, while the cylinder is fixed to the
door frame. When the door is closing the air behind the piston acts as a eushion and prevents slamming,
suititabe valves being provided to allow the air to

 5133. Travkluring Truxk, D. Vinall, Brighton., 27 hih

 This consists in the introduction of an inflated air-
 depressed or raised at will so as to o keep it alwways in a
horizontal position when travelling on an incline. 5137. Velvers or Ververkens, D. J. C. Crossley, Hebden
Bridge, and
B. Cooper, Manchester. $-28 t h$ October, The object is to obtain a fast pile, an improved face, and soter eltoth than hitiserto, An on ordinary faom
with eight shafts giving twenty-four pioks in the
 Thiste. onsidsts in forming "plaques" of mill-board,
tamped to the required form and coloured in imita.
 communication from ${ }^{\text {(Not }}$ Jroceded woith.) W . Krepps, Nevo York.) ${ }^{-}$. This relates to improvements in door fasteners
having a pair of hooked catches which open to receive

 This relates to a bell mounted on a frame, the ham. mer being acted upon by a spring so as to cause it to
strike the bell a atter it has been forced back by a pawl.

A according to this invention the rail is passed between
paralel urnaces,
deflect in space being left tor the rail to deffect in and is operated upon by hammering or pres-
surre on booth faces at the same time.
ghfected
ris. sure on both faces at the same time. This may be
effected either by means of a steam hammer or by
rollers and revolving discs.
 The object is to thoroughly wash fabrics when in the rope state or form, by causing each piece to cushion on
an opposite pieco while being squeezed in a wet state notweon rollers, and thereby kneading and cleansing
beah other while being acted upon by the water. The nvention further relates to machinery for effecting
this object.
 The materiation is made with both sidese alike, and has
 ase to make as strong selvage, the motion of the hauttios
as
such that one is thro ther ne fine is its trown a efore the other

 bending
describe
the wire.
5157.
 Thith relates to means for preventing the breakage Thist which ocours on account of it beeng stickekage

 top the rotation of the bobbin.

 shut of rom the
From the ondensers the gases pass to an apparatus
for separating the tar, and consisisg of ajaceltud

 plates,
5160

 opearation ated well as bing worked or or ext
cumforentally by another rolling operation.
 The will
rroo, such lining beeng gabout tin from the the walvanist the
 the roof In the space emoteremoring channels are thiciming by transerase pasesgee

 on ruiluay and partly on suthalto trucks on ponbilic

 Thit sondistses in biilididng the silde of furnaces with

 button- holo or eyelot, and then baik arain when the
pull of the article tonds to torce the troe end of of the arme towards the base plate. Modifications are
5175. Bogsrys, . Treecalale, Acerington.-31st october, TTho biobeto
 rugated either loongtudinally or transversaly.
517o. Cossracurow

This relatese to forming bands so that the ends may

 chand arentand mandidittoon
hydrosulp purric acidid gas.

The improvements relato, Fitrst, to the preseser foot;

 5184. Apanartis for Meagrivg axd Rgaigrzang This riahtese to arranind it the divinin part of an olastio bolt ever that of tis ariven part the eaid olastlo balt being applliod to

be sauruly fixed witans wherobeb the pendulum mas
 trom piaco toplace.
S188. Stove

 5188. Sesymo Maninves M. H. Parran, Lecal.-28th

samu
5187

 ceeded veith, 22 .
The design consists o

 Thisin ratese tooneortand novel fatures in comblined

 5194. Fastrenirges

5106. Mustre ctupran soin

 static and speafio. heat transmitted to the bi.sulphide
of tarbon through the medium of steam generated

operating machind
5190. Conumyn

 5202. Masupa ctrurs or Tonse, de., G. Litlle, Oldham Thn tuboontor orfasing throigh the frrst pair of rolls

 The fumes whith harase evoved foom thio refition under

 reverbertory areh is about two

Thead oject it to produco a steady Hight without befor it enters into combustion with the gas, aleo an Improved modo of regulating the supply of gas.

 Tho Inventor claims in a rotention derice for

 5208. Macmingry por the Masurfacture op Mouti
 Consistrst partr rolatas totho overfow; anothor part

 or and offecting a avining therof.

 5210
 Thith riad to the arrangement of the davits.
5211. Trawl Nets, \&o., G. Read, Deal. -1 st November,

 Sheto of woven fabrle, woven simultanoousis) ours ond button-hole or holes.
5212. Screw Proprllers, W. Tate, Sunderland. -1 st
Novemer, 188. 6d.
The inventor claims in a screw propeller of metal,
such as cast steel, securing removable blades to the
boss by means of recesses therein, into which the toots of the blades are stepped; ; in conjunction with
rms cast with the boss, and to which such blades are bolted, and preferably, further secured by shoulders. 214. Apparatus for Generating and Burning
Petroleva Vapours,
H. Slooboda, Berlin. $1 s i$ November, 1882 .- (Not proceeded voith.) $2 d$.
This relates to the general construction of petroleum vapour stoves.
5215. Method of Movlding for Casting Metals, E.
Peyton and C. Burley, Birmingham.-1st November, This relates to the method of moulding for casting metals by 5216. Manuracture of Shirt-pronts, J. W. Frost,
London.-1st November, 1882.-(Not proceded with.) The object is to enable the front of a shirt to be
readily reversed when soiled. 5218. Proprluing Boats, \&c., J. Y. Johnson, London

- 1 st November, 1882 , (A (communication from Ho
Martin and F. Segondy, Cette, France.)-(Not proThe means for propelling consists of two pumps
placed at the hinder part of the boat or other vessel
below the water-line, in which pumps either liquid or air is employed.

5219. Refrioerating or Cooling Rooms, \&e., J. Y
Johnson, London.-1st November, 1882.- A commu

Paris) from J. B. J. Mignon and S. H. Rouart This relates to the general construction of the appa 5220. Safety Valves, D. Cockburn, Glasgovo.-18 This relates to safety valves having a top plate,
against which the steam acts so as to facilitate the ising of the valve when steam is blown off. The seat is formed with an inclined surface A projectin
upwards all round, and the underside of the top plate

5220

the seat. Hollows are provided round the feathers escape of steam. When slightest steam raises the valve in the slightest degree the steam escaping is directed up
the annular incline of the seat, and strikes the flat the annula
plate of th
to act upon

5221. $\substack{\text { PUR } \\ \text { and } \\ \text { an }}$

Purifiers for Coal Gas, in Connection with
and W. . . Walker, Lilleshall,
T is relates to centre valves and the princin
object is to provide meane for working either the usual plenishing) or all of the purifiers with which it is con nected as may be desired. The valve is provided with
an additional part capable of being moved inde pendently of the main movable part, so as to eithe
allow of the valve being used to work the purifiers in the ordinary way, or to allow the purifiers ordinaril.
out of action to be put into action. The invention further consists in forming the apparatus by castin
with spaces between or in parts, afterwards conneeted
up by up by wrought metal or equivalent means; also in
forming the top flange of the syphon box of the centr
valve so that it constitutes a support for the pipes the purifiers; and also in joining the pipes which lead
from the purifiers to the centre valve by elastic or from the purifiers to the centre valve by elastic or
yielding junctions. 5222 . Apparatus
 This relates to "cap frames,", and consists in the
omployment of fixed and greatly reduced spindles, nd of wharles revolving in a stationary position on the top of the roller rail of the frame. The wharlee
are fitted with metal tubes having one or more flat longitudinal surfaces, which work
secured in the bottom part of heads of
for the purpose of driving the same.
5224. Placing Fog Signals upon, and Removing

The detonating fog signals are secured to an chain passing over toothed wheels, and actuat the signal-box in such amm the signal-box in such a manner as to c to be brought in position on the rails.

Chester. -2nd
The hub bearing revolves between a fixed and as
adjustable collar upon the axle, the latter criwlng
on to an extension of the axle, which has also an
oxterior screw thread. A slot is formed in the exten-
on to an extension of the axle, which has also an
oxterior screm thread. A slot in formed in thi exten-
sion, and a number of slots in the collar, and vhen
the sion, and a number of slots in the collar, and vabua
the latter is ajjusted a recessed cottar is yasod
through the slots, and a nut on the collar is
up to the cottar, and a spring placed behir up to the cottar, and a spring placed behin
vents the nut working back The invention
relates to the provention of rattling in door loel
fittings, and consists in forming the handle
tapering or coned where it fits the latch, fittings, and consists in forming the handle
tapering or coned where it fitt the latch,
formed to receive it. On the inner end of the
is a metal sleeve also coned, and which can be is a metal sleeve also coned, and which on o
up so that the parts act as if made in o
Spring pistons are used to prevent the rat
doors and windows. A further improvement
in interposing elastic material between th
springs or between the parts of shackles, or in interposing elastic material betwee
springs or between the parts of shackles,
and scroll irons or similar connections.
5228. Closing or Stoppering Botries, \&c., J. Aing
Darlington.-2nd November, 1882.-(Not procied

Toith.) $2 d$.
This consists in the use of sheet indin. .rithour
moulded to the desired form to close the mouth of the
bottle, in place of corks or other stoppers. bottle, in place of corks other stoppers.
5227. Governors for STEAM or other Exown 2 Brovett and H. Lindley, Salford. -2 nd Nortider

5228. Valves, \&c., for Steas, Water, Gas, or
other Fluid under Pressure, G. Furness and J. Robertshave, Manchester.-2nd November, 1882 . 6 d .
Ret This relates to valves which are lifted from their seat by a screw spindle. The valve is made separate from
the spindle and has a recess to receive white metal, vilcanite fibre, or other suitable packing. The spindle The case is in two parts, connected together so as to ermit ready access to the valve and seating. The ange, so as to allow of wear by grinding or filing the 5229. Treatment of Leather for the Soles and
Heels of Boom and Shoes, de., T. Gare, Stock-port.- $2 n d$ November, 1882 . $6 d$.
To render leather waterproof and more durable it is nnd two parts aum, dissolved in in spirits of petroleum,
nenzoline, or bisulphite of carbon, to which is added benzoline, or bisulphite of carbon, to which is added small quantity, of gutta-percha or caoutchoue dis-
solved in boiled oil. Metal tips are made thickest at
he parts which usually wear away quickest. Buttons The parts which usually wear away quickest. Buttons are secured to boots by means of a wire link of U -form,
with loops at the end through which a cord is passed. 5231. Apparatus for Usk in Schools to Facilitate He Formation of Words AND Numbers, J.
Wetter, New Wandsworth. -2 Ind November, 1882 . ceeded with.) $2 d$.
This relates to the of movable characters in
combination with boards provided with grooves to combination
receive them.
5232 . Breat
232. Breaking, Scutching, and Separating Flax,
Himmp, \&ce., J. Shinn, Philadelphia.- -2 nd Novenber, Feed rollers and a bed are arranged above the centre he bed cylinder when striking them cause the stalks to bend
under the bed, so that the fracture of the "bone" will be bent more than a right angle, and cause the fibres "shives" an endless slatted and travelling apron is nsed in combination with a roller having wings for
rushing the tow off the apron, and a dividing partition or separating the tow from the shives. 5234. BIoYcles AND Tricycles, G. Singer, Coventry,
and W. R. Davies, Abergavenny.-2nd November
1882.-(Not proceded vith.) $2 d$. 1882. - (Not proceeded vith.) 2d.
This reates, Frirst, to transmitting power to veloci-
pedes with a rotary pedal shaft, so as to obviate and compensate for the constantly decreasing leverage a
certain points of revolution of the pedal shaft. The
heels over which the driving chain runs are oval, the wheels over which the driving chain runs are oval, the
greater diameters beeng placed at right anklos to each iner, and the two throws on the pedal shaft are nearly
in line with the greater diameter of chain wheel; Secondly, to an arrangement of driving crank so as to
diminish the distance through which the feet travel
without reducing the throw of the crank, and it consists in the use of an excentric fixed to each throw of
and revolving with the crank; two rods carry the pedal, and each have a slot fitting over one of the
excentrics: and Thirdly, to steering mechanism,
whereby the vibration of the machine is prevented from being transmitted to the arm of the rider.
5236. STopping or Borrues or Vessels, A. M. Davis,
Westminster.-2nd November, 1882.- (Not proceded
vith.) groove is formed in the neck of the bottle and
eceives an elastic ring. The stopper has a thread to it a corresponding thread in the necck, and when screwed home a projection is
washer and form a tight joint.
5237. MUSICAL INSTRUMENTS, A. Banger, Worcester.-
2nd November 1882 - (Not proceded The instrument has a central sound board, with a
set of wires on each side, the whole being inserted in set of wires on each side, the whole being inserted in
suitable case, so that the wires an be acted upon by
studs mounted on a roller capable of being turned. studs mounted on a roller capable of being turned,
whereby the wires will be more or less tightened, and
the key of the instrument changed as required. The he key of the instrument changed as required. The
nstrument is played like a harp through openings in the case.
238. Apparatus for Use in connection with
Lamps or other Burkrs for Ilumminative and
Hzativa Purposes, A. H. Robinsom, Dublin,- 2 did

LAMPS OR OTHER BORNERS FOR MLLOMINATING AND
HEATING PORPosEs, A. H. Robinson, Dublin. $-2 n d$
November. 1882.-(Not proceded voith.) $2 d$. The object is to increase the illuminating power of chimney. so as to fit close, but having side ovenings
capable of being regulated. Modifications are described. 5239. Furnaces, ice., A. J. Boult, London.- $-2 n d$ No-
vember, 1882-- (A communication from W. P. A.

This relataes to the use of one or several chambems
n which fuel is deprived of gases before passing to the
curnace, the object being to prevent smoke and pan
coal. The chamber is separated from the furnuce by partition, from an opening in the bottom of which an
nctlined grate is urangeo so that the fuel can pand

240. Facilitating the 8topping and Startic Miohinery, W. R. Lake, Lomdon. $-2 \operatorname{lig}$ Nooct

1882. - (A communication from chusetts.
one object of the inveation ts to
1883. Wicks of Railway Carriage Roof Lamps, \&
H. Defries, London.-3rd November, 1882. $4 d$.
 wick of the exact length of the wick holder, and shaped both top and bottom to the required form, so that
it sisimaterla which
ind To facilitatet the introduction of the ewick itits stiffened
by means of a combination of paraffine, wax, and colza or rape oil.
1884. VALVE AppARATUS For Suppliva Batrs, de.,
With WATRR, W. D . Scott-Monerieft Fulham, and
T. Dootds, Westoourne Park.- - -ridd November, 1882 . did.
This relastes to valve apparatus for supplying baths
with water of different temperaturus, and available for admixing other liquidids, and consists in the combinavalve, so as to form a continnous throw away into nind from which they may be led to where required hhrough the indopenaent valves. The throughway,
with branches to admit and allow the escape of the different liquids separately or mixed, may be formed of a length of pipe with elbows at intervals acting au 5252. Dismiluation or Coas, dec., G. R. Hislop, The invention comprises, First, a novel arrangement retorts employed respectively for the distililation of the coal or other carbonaccous matters to obtain illumi the treatment of the coke resultining from the distillation to obtain ammonia and an additional production illuminating gasees from the heating gasess and ammonia or other gasoous products ressulting from such treat.

meut ; Thirdly, meane for treating incandescent coke soparaond ou primary retorts for the production on ing air and superheating steam used in connection with primary and seoconary retorts; and Fifthly, the | productas from retorts. The horizontal flues for effect. |
| :--- |
| ng the distill $n t i o n$ | in combination, with the vertical retorts located in front and below, to reecive the residual coke for treat.

nent by steam, and with furnaces, air heating flues and combunstion chambers sn whaces air ghe aeation hot
5253. Tor Locomorive Exarixs, W. H. Hall, Becken. Thisis relates to an in mproved automatic whistling toy ongine consisting or a body having within it a bellows
operated $b y$ means of springs, and by a string or olastio wound upon the main axle and combined with 5255. A_{P}

The objects are, First, to enabil eliquids to be drawn
 through an outlot at a constant velocity independent of the eifght of the 1 iquid above; and Thirdy, to coor
the liquids in the supply cisterns. The 1 llquids are placed in air-tight cisterns, and a tube provided to
admit air as the liqquid is drawn off, the end of such tubo being arranged so that the liquid drawn off will tho vessel into which it is being decanted.
 This consists. First, in the employment of pins or to cut up the flow of the cooling medium, and ceave
freos p parts to mpiningo against the surfaces of such
colls ceilis and secondy, in the arrangement or the con
necting pipes and cocks for conveying the cooling medias, , or the purpose of making the ice of mint bo
reversed for
 ing.off pump.

This rolatos to means for removing mud and sand banks, and consists in the e use of a rotary drag or
dredgg having to thed discs or cutters arranged on an
and by a tug or other means ; and behind it is suspended a fionting prough to throw off the water and heavie
particles of mud and sand removed by the drag 5258 .
 Noverber, 1882 . (Not proceeded with.) id. 2 . Wo. - bol locks, and, secondy, to forming handies of locks ss
that ono part and bo ronerd without necessitating
the renewil of the whole handle. 5259. WINDow Fastrysrs, A. B. Crisp, Stamford Hill. tuthe object is to provent the locking lever of window uch lever boing sacuitional t
hasp, an 3 outer hooked end will fom being opened until

 through which cold water is caused to circulate. To
provent stoppages in the asconsion pipes the retorto aro made fat, and the orowns protectec against texting above them.
5236. Apiratus for Closing Doors and Windows,
R. Chapman, Patricroft, and J. Hibbert, Mancheeter, T his relates to the combination of a spindle, double am, and one or more lopes tappets with two horizontaa
levers connected by springs and shains to the tappets. 5267. Couphrises for Raitwar Veriours, W. Wrigh This relates to the employment of a draw-bar having head with bevelled edges in combination with
lotted plate having ears or head is twisted to enter the slot in the plate and when past the plate.
 STANocss, W. H. Then, Liverpool. 4 th Novenber
1882 . (Parliy a communication from
P. Forbes In preserving meats it is preferred to heat them to point not exceeding, say 200 deg. Fah,, and then
expose them to intense cold, by any of the methods for creating intense cold.
5270. Rowisg Boans, A. J. Boult, London.-4th
November, 1882. . 4 communication fronn W. A. The ottig, Berlin.) 10d.
he boot, and at the same time to so brace weitht or 271 the twisting is entirely obviated.

Wetter, Neve Wandsworth - 4 Hth Hovenber, 1882 . J .
A communication
proceeded voith $2 d$.
A rule io moumnted on a part of parallel rollers fixed an a horizontal shaft, one of these rollers being
adapted to impart trotry motion to a toothec ring, the motion of which is indicated on a dial by means of
 rule in a a direction perpendicular to its edge is accu-
rately recorded on the dial. 5273. Bekech-Loadina Smat-Rarms, A. Henry, Bdin-
 5275. Mulssoonss, W. R. Lake, London. - 4 tht Novem-
ber, 1882.-(A communication from P. Verat, Paris.)

The chief characteristic is the conformation of the distributing or feeding grooves, which are made of deepar near the ey
5283. Transluonst Platrs on Shergs for vge as
 This consists in the combination of perforated metal
 5282. Comporxd Marive Strear Exidinse J. McFar This relates st compound marine engines designed Tor working with stanm of high intial pressure and
with stages of expansion, and the object 1 to to combine three cylinders with two cranks so as to obtain better equalisation of the strain thereon. The drawing A, B, and C, the piston wrodts of which are connected to
5282]

two cranks on the ehaft D. The highb-pressure eylinder ine with and above the low-pressure eclinder C, the two pistons being on the same rod connected to one to an intermediante cylinder B , which is pliceed over and its piston-rod connected to the other crank. From
cylinder \mathbf{B} the steam passes into the low-pressure cylinder C.
5327. Valves por Stran or ortre Exarrys, F. Gill,
South Shiedds.-8th Novenber, 1882. $6 d$.
 them ports Dand viland oxhuust ports Ea and E1T at ve is shown in such a position
cylinder is opposit tho stoam
nd through it it with the

w

SELEOTED AMERIOAN PATENTS, 278078 278,078. Hoismiva Poulev, Charles F. Batt, Schuyll. claim,- (1) The ocmbination of the chain wheol,
 Into said ratchet, and to which power may bo applied, substantially as as deseribed (2) The combination of a
chasin pulley of of hoisting tacklo and ratcheot wheol chain pulley, of a histing tacklo and ratchet wheel
geacred to tho pullo, with a nail garing into said
ratchet, and a driving wheel or pulley B, operating

278078

said snail, substantially as set forth. (3) The combination of a differential hoisting pulley having a
ratehet wheel between its chain grooves, with a sail gearing into said ratchet, substantially as doscribod.
(4) The combination of a difforential hoisting pulley
. having a ratchet wheel secured thereto, and a driving wheol or pulley haring a snail secured thereto and
gearing into said ratehet wheel. 278,256. Gas Exarnx, Lewis H. Nash, Brooklyn.Claim. - 11 ($)$ That m mprovement in the method of
 slon in large volume, and simultaneously therowith admutting a single stream of gas in large volume
directly within the flowing volume of air, so that the lattor will surround and carry the volume of gas with it into the cylinder in a singlo enveloped strata, sub.
stantially as deseribed, for the purpose specifed. (2) That improvement in the method of operating a gas ongine which consistst in admitting into the cylinder a single stream of air under compression ilt inge
volume, and simultaneously therewith admiting in single stream of large volume the gaseous fuel mixed
with a whth a quantity of air less than that requrred eevereed and carried by the air charged as a distinct volume,
 with separate ports for the separate admission therein
of air under compression and gasoous fuel, the issuing

orifice of each gas port terminating within each ai port, so as to bo surrounded by a flowing volume of
dir, in combination with suitable valves for controliting the admisision of the air and gas volumes, scibstantially
as described, for the purpose specified.
(4) The com
 structed, with tho ports $\mathrm{A} A$, for tho admerssing therein
of air under compression, and with ports B B , for the ad miswsion of gaseous fuel, each in singhlo volumes, the
latter ports being separate and distinct, and having terminal tubes OC , projecting within the air ports a
or near the
and or near
with a
for the valve or val valves, substantially as described for the purpose speciined. () The
kas engine, of the power cylinder, having separate
 in separato single volumes,
said gas ports arranged to project withinsion the aires or orts

 terminal tubes, and a suitable valvo or valages sub
stantially as
deceribed, for the purpose specified. (6)

 nocted with said terminal tubes at thuir outlet orif ces navalve or valueg, and the piston, all constructed
adapted for operation, substantially as set forth.

Claim.-(1) In a ball governor, a bent spring Q, in combination with two levers, each having three arms
e, d, e, the balls P on the lower arms of said levers

the pulley R, which engages with the inner arms d of
said lovers, and the valve rod movable up and down with said, pulley, substantradly movaso sot fortho (2) In
combination with an adjustable governor bail and its

 which it terminates, in conise the rod it theop, h said plate, the hub R, held against the under side of
 its upper end slooved on said rod i and the screw k,
which holds said arm and pin together, substantially as set forth.
278.390. Drain and Revurniva Stran Trap, James
H. Blesing, Albany, N. Y.- Filed April bilh, 1883 . Claim-(1) The combination of an automatic return trap and an automathic drain trap in ono apparatus
wheroby the apparatumay bused either of feeding
the water of condensation into the bootiver the water of condensation into the boiler or dis.
charging it into a suitable recoptacle, substantially as

described. (2) An automatic steam trap provided with a valve conneeted to the deilivery from the trap and pipe connected to said return pipe from the steam trap to tho boo ilor, and delitirering to a a sower or water
receptacle, substantially as deseribed. 278,453. PLovor CLEvis, Andree Patton, New
Orleans, La, -Filed July 24th, 1882. Sorefons. The rear of the hook or ero is inclined and
grooved to retain a horizontal position on the beam

clevig, which may be swung upward and adjusted in
notches therein. The pivot bolts are rivetted over

CONTENTS.

The Enginerr, June 29th, 1883.
page
 SAIFPR's PATTENT PULLEX Grippre. (Illustrated.) ${ }^{485}$

 Shear to the Edtor-

KOLWA MATRERS

 The Roval Show at York. Coal Wingiva in Drep Shartis. " (Hlusträtedi)

PARABRAPBS (Illist

New Mode of Prep
Neath of Sir E . Sabid
Naval Engineor App

[^0]: * The equation representing the above kind of curve is-

 Radius of curvature ρ
 where $e^{c_{2}}$ is the radius at the point where the curve has its maximum height above the axes of x (c_{2}, therefore, morely showing the position in
 which the curve lies on the paper), and c_{1} depending on the "shape," as
 defined above.

