ELECTRICAL TRANSMISSION OF POWER. by Professor Oliver J. Lodge.

 No. VII.Behaviour of a compound wound dynamo driven by a battery, -Continuing the subject of the last article, we proceed to consider a compound wound motor driven by a storage or other battery. Compound wound motors can be arranged to run at a constant speed, and will therefore be frequently used.
Let E be the electro-motive force of the battery and R its Let e be the back
ρ its series resistane and ρ its series resistance, and let its shunt resistance be s, the shunt portion being attached to the termi-
nals of the machine the same as those to which the nals of the machine the s.
battery is attached, A B.

Let P be the power of the battery and p the useful power $\frac{p}{\mathrm{P}}=f$ being the efficiency.
Let C be the current supplied by the battery and C^{1} the current flowing round armature and series magnet (so that $\mathrm{C}-\mathrm{C}^{\prime}$ is the current round shunt magnet). Then, the electro-motive force between the terminals $A B$ is
and also $\quad e+\rho \mathrm{C}^{1}$
and also $\quad s\left(\mathrm{C}-\mathrm{C}^{1}\right)$.
The total power $\mathrm{P}=\mathrm{EC}$
and the useful power $p=e \mathrm{C}^{\text {t }}$

$$
\text { so the efficiency is } f=\frac{e \mathrm{C}^{1}}{\mathrm{EC}} \text {. }
$$

These are the fundamental formulæ from which all the rest follow.
For instance, these-

$$
\mathrm{C}^{1}=\mathrm{C}-\frac{\mathrm{E}-\mathrm{RC}}{}
$$

Back electro-motive force $e=\mathrm{E}-\mathrm{RC}-\rho\left(\mathrm{C}-\frac{\mathrm{E}-\mathrm{RC}}{s}\right)$ Useful power
$p=\left\{\mathrm{E}-\mathrm{RC}-\rho\left(\mathrm{C}-\frac{\mathrm{E}-\mathrm{RC}}{s}\right)\right\}\left\{\mathrm{C}-\frac{\mathrm{E}-\mathrm{RC}}{8}\right\}$
Waste power

$$
=\mathrm{RC}^{2}+\frac{(\mathrm{E}-\mathrm{RC})^{2}}{s}+\rho\left\{\mathrm{C}-\frac{\mathrm{E}-\mathrm{RC}}{s}\right\}^{2}
$$

Looking at the expression for p, or for waste, we observe that, for economy, it is necessary to keep R and ρ as smal as possible and s as large as possible, consistently with is the better, and the smaller the current with which one is enabled to work.
Problem 1.-With a given battery a certain power is required with a specitied efficiency ($\mathrm{E}, \mathrm{R}, p, f$ given). exist between the shunt and direct resistance of the wire exist between the
on the machine?

Answer to the first question-

$$
\mathrm{C}=\frac{p}{f \mathrm{E}} .
$$

Answor to the second question-
This may be expressed in two forms, either ρ in terms of s, or s in terms of ρ, viz, either,

$$
\begin{aligned}
\rho & =\frac{(\mathrm{E}-\mathrm{RC}) s}{(s+\mathrm{R}) \mathrm{C}-\mathrm{E}}-\frac{p s^{2}}{[(s+\mathrm{R}) \mathrm{C}-\mathrm{E}]^{2}} \\
\text { or, } \quad s & =\frac{2 \rho(\mathrm{E}-\mathrm{RC})}{\sqrt{(\mathrm{E}-\mathrm{RC})^{2}-4 p \rho}-(\mathrm{E}-\mathrm{RC})+2 \rho}
\end{aligned}
$$

The latter refuses to give a sensible value for
less than $\frac{\mathrm{E}}{\mathrm{C}}-p-\mathrm{R}$. This expression, therefore, fixes the upper limit of ρ, and it can only have this value if s be ∞. Remember, then, that in order to satisfy the given conditions ρ must be less than $\frac{\mathrm{EC}-p}{\mathrm{C}^{2}}-\mathrm{R}$.
Numerical example of Problem 1.-Given fifty boxes ($=100, R=2$), and aim at 5 -horse power, with efficiency 75 per cent. $\left(\begin{array}{l}p=3730 \\ \text { Then the current } \\ f=\frac{3}{4}\end{array}\right)$.
$=\frac{3730}{75}=50$ ampères.
The maximum value for ρ is $\frac{5000-3730}{2500}-2=3$.
Let the armature be 15 ohm, and the thick field magnet wire $\cdot 038 \mathrm{ohm}$; so that $\rho=\cdot 188$,
what must s be?
Answer-
180×188
$33 \cdot 9$
$s=\frac{180 \times \cdot 188}{\sqrt{8100-14920 \times 188}-90+18 \cdot 8}=\frac{33 \cdot 9}{\sqrt{5800}-71 \cdot 2}=6 \cdot 8$.
But suppose, through heating, \&c., ρ ran up to $\cdot 2$ ohm; what must s be?

$$
s=\frac{36}{71 \cdot 526-70}=23 \cdot 5 \text { ohms: }
$$

and as a big s is an advantage, it is safer to have $s=20$ or 30 ohms.
Problem 2.-With a given battery and machine (E R $\rho s p$
given), a certain power is desired. What attained?

Answer to the first question:-Writing b for $\frac{\rho s}{\rho+}$
$\mathrm{E}(s+b+2 \mathrm{R})-\sqrt{\mathrm{E}^{\mathrm{s}(s-b)^{2}-4 p s^{2}} \frac{(s+\mathrm{R})(b+\mathrm{R})}{s+\rho}}$ $2(s+\mathrm{R})(b+\mathrm{R})$
Answer to the second question-

$$
f={ }_{\mathrm{EC}}^{p}
$$

The shortest expression for C is got by writing k

$$
\text { for } \frac{(s+\mathrm{R})(s+\rho)}{\rho}-1
$$

then $\mathrm{C}=\frac{\left.\mathrm{E}(1+2 k)-\sqrt{\mathrm{E}^{2}-4}\right)}{2 k(s+\mathrm{R})} \frac{k(s+\mathrm{R})}{\text { i }}$ is the necessary current.
Numerical example-
Given $\mathrm{E}=100, \mathrm{R}=\cdot 2, \rho=\cdot 2, s=23 \cdot 5, p=3730 ;$ so that $k=\cdot 017$, the current is $\mathrm{C}=\frac{103 \cdot 4-\sqrt{10,000-6000}}{81}=\frac{40 \cdot 2}{81}=49 \cdot 7$ ampères, and the efficiency is $\frac{3730}{4970}=75$ per cent.
Second example.-Given $\mathrm{E}=100, \mathrm{R}=35, \rho=\cdot 15, s=$ $20, p=3730$,
so that $b=\cdot 1495$, or $k=\frac{1}{40}$, then
$\mathrm{C}=\frac{2085-\sqrt{3,940,000-3,000,000}}{20 \cdot 35}=\frac{1115^{\circ} 5}{20 \cdot 35}=54 \cdot 5$ ampères, and efficiency $=\frac{3730}{5450}=68 \cdot 3$ per cent.
The least possible value of E , which will suffice to give a specified power p with a given machine, is-
least $\mathrm{E}=2 \sqrt{p k(s+\mathrm{R})} . \quad$ Or as $k \bumpeq \frac{\mathrm{R}+\rho}{s}$ least $\mathrm{E} \bumpeq 2 \sqrt{p \frac{(\rho+\mathrm{R})(s+\mathrm{R})}{s}}=71 \cdot 8$ volts in above first case. If the cells fell to this electro-motive force, the maximum current would be required to do the work, namely, $\frac{\mathrm{E}(s+\mathrm{R}+b+\mathrm{R})}{2(s+\mathrm{R})(b+\mathrm{R})}$, or $\bumpeq \frac{\mathrm{E}}{2(\rho+\mathrm{R})}=125$ ampères, and the efficiency would be $\frac{3730}{12500}=30$ per cent.
Problem 3.-With a given battery and machine, the condition for maximum useful power is-
$\mathrm{C}=\begin{aligned} & \mathrm{E}(1+2 k), \\ & 2 k(s+\mathrm{R})\end{aligned}$
the maximum power is $\frac{\mathrm{E}^{2}}{4 k(s+\mathrm{R})}$,
and the efficiency is $\frac{1}{2(1+2 k)} \bumpeq \frac{s}{2(s+\rho+2 \mathrm{R})}$.
Problem 4.-Given a battery and a machine, what is the maximum efficiency at which they can be worked? What power can be got with this maximum efficiency? And what strength of current will give it?
Answer-The general expression for the efficiency is :-
$f=\left\{\left(1+\frac{\mathrm{R}}{s}\right)_{\mathrm{E}}^{\mathrm{C}}-\frac{1}{s}\right\}\left\{\left(1+\frac{\rho}{s}\right) \frac{\mathrm{E}}{\mathrm{C}}-\left(\mathrm{R}+\rho+\frac{\mathrm{R} \rho}{s}\right)\right\}$
This is a maximum when $\mathrm{C}=\mathrm{E} \sqrt{\frac{s+\rho}{(s+\mathrm{R})(\mathrm{R} s+\rho s+\mathrm{R} \rho)}}$

$$
\bumpeq \frac{\mathrm{E}}{\sqrt{s(\mathrm{R}+\rho)}}
$$

its maximum value being

$$
\mathrm{F}=1-2 \sqrt{\frac{\mathrm{R}+\rho}{s}+\left(\frac{\mathrm{R}+\rho}{s}\right)^{s}}+2 \frac{\mathrm{R}+\rho}{s}
$$

and the power thus most economically obtained is
$p=\mathrm{FEC}=\mathrm{E}^{2}\left(\frac{1}{\sqrt{\bar{s}(\mathrm{R}+\rho})}-\frac{2}{s}\left(1-\sqrt{\frac{\mathrm{R}+\rho}{s}}\right)\right)$

Table showing Maximum Efficiency, and Current and Power

				If $\mathrm{E}=100$.		If $\mathrm{E}=200$.		If $\mathrm{E}=125$.	
				c.	p.	c.	p.	c.	p.
		$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 40 \\ & \hline 60 \\ & 40 \\ & 100 \\ & \hline 05 \end{aligned}$		$\left\lvert\, \begin{aligned} & 35 \cdot 4 \\ & 37 \cdot 3 \\ & 33 \cdot 3 \\ & 35 \cdot 5 \\ & 25 \cdot 5 \\ & 16.7 \\ & 17.7 \\ & 11 \cdot 18 \end{aligned}\right.$	2683 2864 2483 2100 1366 1341 936	$\begin{aligned} & 70 \cdot 8 \\ & \hline 74.6 \\ & \hline 6.6 \\ & 51 \\ & 53 \cdot 6 \\ & 33 \cdot 4 \\ & 35 \cdot 4 \\ & 22 \cdot 36 \end{aligned}$		$\begin{aligned} & 44 \\ & 46 \end{aligned}$	$\begin{aligned} & 4024 \\ & \hline 4296 \\ & \hline 925 \\ & 31250 \end{aligned}$
								42	4000

Problem 5.-Required a certain power from a given machine.
What is the least number of cells that will give it?
Answer-
If e is the electro-motive force, and r the resistance of each cell, then the least number is

$$
\begin{aligned}
& \text { least } \mathrm{N}=\frac{(s+2 \rho) 2 p r s}{e^{2} s^{2}-2 p r^{2}(\rho+2 s)}\{1+ \\
& \quad \sqrt{\left.1+\frac{\rho\left[e^{-} s^{3}-4 p r^{2}(\rho+s)\right]}{p r^{2}(s+2 \rho)^{2}}\right\}}
\end{aligned}
$$

the efficiency will then, however, be less than 50 per cent.
Problem 6.--Required a certain power with a specified
efficiency from a given machine.
What is the right number of cells to give it?

Answer is contained in

$f s^{2}=\left\{(s+\mathrm{R}) \stackrel{p}{f \mathrm{E}^{2}-1}\right\} \begin{array}{r}\left\{(s+p) \frac{f \mathrm{E}^{2}}{p}-(\mathrm{R} s+\rho s+\mathrm{R} p)\right\} \\ \text { writing } \mathrm{R}=\mathrm{N} r \text { and } \mathrm{E}=\mathrm{N} e ;\end{array}$ but I have not worked it out friting $R=N$ general case, because it leads to an equation of the fourth degree, which is most easily solved numerically.

IRON AND STEEL WORKS, RESCHITZA, HUNGARY.
 No. I.

Those who remember the Cwm Afon Works of the Governor and Company of Copper Miners in England, before their dismemberment, where the finished engine was made from iron puddled from pig, that was smelted from ore raised on the spot, by means of coal also extracted from the territory, can form some idea of the completeness of resource existing in the domain of the
K. K. Kaiserliche Königliche- Priviligirte Oesterreichische Staats-Eisenbahn Gesellschaft, situated in the old province of Banát, at the extreme south of Hungary, and thrown open to the members of the Iron and Steel Institute after their meeting at Vienna. But, whereas the Welsh works covered only a single valley, the domain of the Franco-Austrian Association is as large as an average French department or English county, and is even larger than the Grand Duchy of Luxemburg. The company was formed in 1855 by the Crédit Lyonnais of France, who received from the Austrian Government, in exchange for funds that were greatly needed at the time, the Banát domain in Hungary, the Kladno collieries in Bohemia, and the concession of 1164 kiloms.- 723 miles-of railway. At the same period it acquired the railway, 45 kiloms.- 28 miles-long, between Vienna and Raab, together with large locomotive works at Vienna. The administrative council holds its sittings in Paris; but the general direction, under M. Leopold Bresson, is at Vienna, while the various collieries, iron mines, and works are placed in the charge of individual managers on the spot. The capital of the company is $400,000,000 \mathrm{f}$.$£ 16,000,000$-while the value of the domain amounts to $40,000,000 \mathrm{fl}-£ 3,200,000$. The number of persons employed is about 78,000 , not including the railway employés. It must certainly be conceded that the foreign company has energetically worked its acquired territory, thus giving an impetus to trade, in a manner that would scarcely have been accomplished without its assistance. By means of the more recently constructed branch fromTemesvar to Orsova and Verciorova, which there joins the Rouma nian State line, and their Bessemer rails of excellent quality, the company is fast carrying Western civilisation ne wlyormed principalities on the Danube that will enable them the sooner to develope their natural resources.
Means of communication.-The company's Banát domain, a geological map of which is given on Fig. 1, page 24, lies entirely in the comitat of Krasso in the South of Hungary. It extends from slightly above Bogsán on the north to Moldova on the Danube in the south. It is 91 kiloms.- $56 \frac{1}{2}$ miles-long from north to south, the greatest width being 46 kiloms.-281 $\frac{1}{2}$ miles. It is traversed from east to west by three rivers, the most important of which, the Berzava, is dammed at Franzdorf, so as to drive the blowing engines of the Bogsin blast furnaces, Its waters are also utilised for periodically floating down the timber obtained from the forest-clad hill-sides to the charcoal station near Reschitza, the works of which it supplies with water. The company has made 100 kiloms. 62 miles-of roads, in addition to maintaining another 150 kiloms., which serve for the transport of their products, Besides the Vienna and Raab Railway already mentioned, which is now extended to Neu Szöny, there is a network in Bohemia, put in direct communication with Vienna and with the Prussian system, and also the line connecting the Austrian and Hungarian capitals, formerly the Austrian State Railway, from which the company derives its title Eastwards their railway system is also extended to Szegedin and Temesvar, the second and third towns in importance of Hungary. At Temesvár the line divides, one portion going to Orsova, above mentioned, and the other to Bazías both on the Danube. In connection with this latter por tion, a branch line leads from Jasséiova to Anina-Steierdorf where there are the most valuable coal seams-of the lia formation-in the whole of Hungary, and also works that turn out 12,000 tons of an iron vieing with that of Low moor and Bowling. Samples of this iron are taken daily at each stage of the manufacture ; and it is no exaggeration to say that the puddle bars show a fracture equal to that of ordinary brands of finished iron. This mountain line is of the normal gauge, notwithstanding the long and sharp gradients, in some cases 1 in 50 with double curves of 60 klafter- $5 \frac{1}{2}$ chains-radius occurring at the same time. It passes Oravitza, where there are petroleum works, the central laboratory, and a collection of all the minerals found on the domain. The other branch leaves Voitek junction for the rich iron ore deposits at Moravitza, which will be described below.
From Bogsán a line having a gauge of only 95 centi-metres-not 2 ft . 8 in .-on account of the difficulties of construction, leads to the Reschitza district-see the geological map, Fig. 2, page 25-terminating at the Székŭl Colliery, the Domanch puts Reschitza also into communication with gauge lines to 92 lil 57 mile whilether tion, about 28 kiloms. - 17 miles - of surface and 126 kiloms. tion, about 28 kiloms- -17 miles-of surface and 126 kiloms. mines and collieries. The length of normal gauge railway mines and collieries. The length of normal gauge railway
now owned and worked by the company is $2118 \frac{1}{2}$ kiloms., now owned and wo
or over 1316 miles.
Forests and charcoal.-Agriculture is not in a very forward state ; but the iron plough has now entirely superseded the wooden instrument that was exclusively used before the advent of the company. The soil
in the valleys is especially suitable of cereals, maize being the chief crop. Hemp is grown
in places, the product being spun and woven in the Wallachian or Roumanian households. The vine is becoming more and more cultivated, a really good wine being proforests, the oak predominating up to the height of 500 metres above the sea level ; but beyond this line the beech, which vields charcoal, is in the ascendant. Contrary to what has happened in most districts where the iron production is happened in most districts where the iron production is as well as the manorial rights, and whose production of charcoal iron exceeds 15,000 tons a year production of measures to economise this important item of its fuel
flushes generally begin in March, when the logs, which have been laid on the banks of the river, are drawn along by the current for a distance of from 2 to 30 kilometres, accomplishing the greater distance in 6 hours. In this way, from 800 to 8000 steres- 1046 to 10,464 cubic yards-of timber are accumulated at the first station, 37 kilometres 23 miles-below the dam, constructed of wooden palisades the spaces between which can be increased or diminished at pleasure. The logs that are here arrested are led by a lateral canal to the first charcoal station, capable of stacking 4400 steres- 5755 cubic yards-of timber with twenty-six piles on fire at the same time. There is also a
and over again. Vent-holes are made for admitting air but they are carefully watched so as to admit only so much as will just support combustion. Unfortunately, in this primitive method all the gases pass off absolutely to waste. The pile, originally of the form shown at 1 , successively assumes that of 2 and 3, when the operation, which last from twelve to thirteen days, is finished. The absolut calorific power of the charcoal produced is on an average $6602 \cdot 8$; and the pyrometrical calorific power 4386 , the resistance to direct pressure being 25 kilogs. per square centimetre, or $355 \frac{1}{2} \mathrm{lb}$. per square inch. Analyses made by the chief chemist, Herr Anton Maderspach, show the following to be its mean composition :-Carbon, 79.98 hydrogen, 2.14 ; oxygen, 13.11 ; water, 2.92 ; ash, 1.85 From 4 to 5 cubic metres- 141 to $176 \frac{1}{2}$ cubic feet-are required to produce a ton of pig iron.

Minerals.-The boundaries of the company's domain have evidently been determined by the valuable basin, containing several deposits of coal, iron ore, and other minerals, constituted by the primitive rocks, and of com paratively recent geological formation. See Geological Plan, Fig. 1. The sedimentary series which enter into its composition are the Carboniferous, the Permian, the Jll the , all the important series except the Triassic. Of the eruptive rocks, sienite forms the western, and granite the eastern boundary of the basin. The sienite exerts a con siderable influence on the mineral value of the district because the metalliferous deposits are in direct relation to it. Wherever it has traversed the Jurassic and Cretaceous limestones it has transformed them, for a considerable thickness, into erystallile the and into a true marble; while the eruption of the porphyry has coked the coal in contact ith for a thickness rialf metre. It is in contact with the limestone and the sienite that are found the magnetic iron ore, and also the red and brown hematites which are worked up at Reschitza and Anina, as well as the copper, lead, and zinc ores, and those of gold and silver. The shap or the primary formation contain a highly manganiferous brown hematite, iron pyites, sul phate of antimony, and gatena. Large quantities of iron pyrites are worked at Moldova, where they are used for the manuacture of suphurc acid. Copper and siver were raised here by the Romans; and 18 tons of the forme metal were produced as late as 1854, but the mines are now no longer worked. Gold is worked to a small extent at Oravitza; and the silver found in conjunction with the lead and zinc smelted at Dognacska is sent to Moldova to be reduced.
The Carboniferous formation, which is here the most ancient of the sedimentary rocks, is met with chiefly in the valley of the Berzava, near Reschitza. The lower series of this formation consists of conglomerate and coarse-grained sandstone, which form the unproductive portion ; whil these strata, on account of the entre absence of the car boniferous limestone, are immediately overlain by the productive portion, consisting of fine-grained sandstone and argillaceous shales. While the outcrop is unworkable owing to its want of continuity, there are at Székul, near Reschitza, four workable seams, varying in thickness from fourmetres to half a metre, which supply the Reschitza works with a considerable portion of their fuel. There exist in the Permian group, at Reschitza and other points, concre tions of brown hematite, the working of which has not proved remunerative ; the fire-clay used at Reschitza and Anina is, however, obtained from this formation. Were the works dependent for their coal on the Carboniferous series alone, they would come badly off ; but, as if to make up for a deficiency in these measures, the lias coal of the Jura series is present to a large extent. The most valuable deposit of this nature in the whole of Hungary is that forming an elliptical outcrop between Anina and Steierdorf the measures having been thrown up by an eruption of the igneous rocks, and thus presenting themselves in the form of an inverted basin. The best of this coal is sold, chiefly to the Government, the inferior only being used at th Anina works. Lias coal is also present at Domán, in the neighbourhood of Reschitza, and contributes to the fuel supply of the iron and steel works.
Above the lias coal of the Jura formation occur the blackish argillaceous shales, very rich in bitumen, which yield on distillation 5 and sometimes 8 per cent, of raw mineral oil. Until recently this substance was treated at the Oravitza works for the production of petroleum and paraffin ; but now raw oil can be obtained from the wells in Roumania more cheaply than by working the shales, Between the lias coal and the bituminous shale there is a stratum about 34 metres thick of "blackband" or argilla ceous carbonate of iron, which contains sufficient carbon to support combustion during the process of roasting, when once the oven is fairly heated. The effect of the roasting is to raise the percentage of iron from 30 to 42 per cent. for a given weight of stone. The average composition of thes blackbands, which form a notable portion of the charge in the Anina blast furnaces, is as follows :- Carbonate of iron, 76 ; carbonate of lime, 1 ; carbon and bitumen, 6.5 silicate of alumina-insoluble in acids- 16.5
The Tertiary formation yields lignite at several points, but either not in sufficient quantity, or mixed with too many impurities to warrant its being worked. In the diluvium are found nodules of magnetic iron and also of a pure and rich oligist or oolitic iron ore, the weight of which varies from a few ounces to five tons. While at Tilfa Zapulai the ore is nearly exhausted, the rich Amelia mine, which is worked open-cast, contains about 50,000 tons of valuable mineral. . . . forests, the Reschitza works are, it has been seen, dependent for their fuel supply on the coal measures proper worked at Székul and the liascoal raised at Domán. Both these collieries shown on the general plan, Fig. 1, above, and plan of the shown on the general plan, Fig. 1, above, and plan of the
Reschitza district, Fig. 2, are near the Reschitza works, and Reschitza district, Fig. 2, are near the lines worked by locomotives. The rich coal from the former and the poor coal from the latter are mixed in about equal portions at the from the latter are mixed in about equal portions at the screening station, and washed when the amount of impurity
exceeds a certain proportion, so as to render them fit for
making coke. This is effected in three rows of Belgian ovens \quad ing is effected in more than one lift, the space left by retain their uniform with crossed hammers for highdays containing twenty each. the charge is drawn, or rather the extracted coal being afterwards gobbed with shale. portable and locomotive engine. The annual production the out which is of good coking quality is sent to
and holidays, and say "Glück auf on passic, whte "Gelobt make use of the early Christians salutation, children make use of the
"Gelobt sei Jesus Christus."

Fig. 2.-GEOLOGICAL PLAN AND SECTIONS OF RESCHITZA DISTRICT.

Almásy shaft .. Ventilation ! $\left.109 \cdot 2 \quad \begin{gathered}366 \cdot 9\end{gathered} \begin{gathered}\text { Serves also to take down } \\ \text { wood for timbering. }\end{gathered} \right\rvert\, \quad d$ Versuch shaft .. Exploration $170 \cdot 4 \quad 545 \cdot 5$ Serves also for winding.

Fig. 3.-VERTical section of szekul colliery.

FIg. 4. -VERTICAL SECTION OF DOMAN COLLIERY.
is about 15,000 tons of coke, with an absolute heat effect of 6268 calories or 24,871 English heat units, and of the following average composition:-Fixed carbon, 83.85 ; volatile substances, $1 \cdot 23$; water, 0.75 ; ash, $14 \cdot 17$.
As will be seen by the geological plan-Fig. 2-of the district round Reschitza, and the section EF, the coal measures crop out to the surface at Székul, to the east of
Reschitza. The four seams worked-shown by the section Reschitza. The four seams worked - shown by the section at Fig. 3-run north and south, and dip about 50 deg. towards the west. Their thickness is very variable, but averages respectively $0.8 \mathrm{~m} ., 1 \cdot 75 \mathrm{~m}$., 1.4 m , and 1.6 m , beginning from the surface. The measures are tolerably regular for 500 m ., but afterwards are much distorted. They are proved for a length of 1300 m . horizontally, and to a depth of 130 m . All the coal between the surface and the Dercsényi Adit, equal to a vertical height of about 152 m ., or 83 fathoms, has been worked out; and in 1871 the Alfred shaft was put down to raise the deep coal to the adit, by which it is run out to the day. This shaft is now 330 m. , or 180 fathoms deep ; and the levels are driven regularly 40 m .-nearly 22 fathoms-apart, the fifth height being now begun. The method of working pursued is that known in German as forrstenbau, that is to say, in reverse steps. Both the coal and the sandstone are mined by dynamite cartridges fired by electricity, great care being taken about the ventilation in the neighbourhood of a shot. There is a great deal of fire-damp, and Mueseler safety lamps, fed with mineral oil, are used. In the case of seams 2 m . thick and under, the whole thickness of coal is extracted at once, and the roof propped. The props are afterwards taken out, when the roof falls in, But with seams of over 2 m , thickness the work-
works at Reschitza, the cost of getting, raising, and transport being 60 kreutzers, or about 1s. a ton. About 700 hands

Fig. 5. DOMAN COLLIERY.
are employed at Székul, of which 300 are Roumanians,
and the rest Germans or Bohemians. The German miners

It will also be seen from the geological plan-Fig. 2already referred to, that the outcroppings of the lias measures form the ridge between the Domán and Berzava valleys. They enclose two workable seams of coal, averaging 1 m .9 and 1 m .3 in thickness, shown at sections AB and CD, Fig. 2, and also enlarged at Figs. 4 and 5 . These sections are both taken on a line running N.W. and S.E., but Fig. 4 is east, and Fig. 5 west of the shaft. The seams dip to the south, and run generally east and west, but with the eastern end inclining towards the south. They were worked by adits as early as 1819, the coal being then carted to Reschitza by a long winding road. The colliery is now worked principally by the Szécsén shaft in the centre of the deposit-shown at a in the plan, Fig. 2-and by the Franz Joszef adit, 2320 m . long. The coal is proved to a depth of 140 m . below the adit, and for over 1500 m . on either side of it. The levels are, as at Székul, 40 m . or 22 fathoms apart, and are driven right and left to cut the seams. When the coal is struck, a level is driven along it of sufficient sectional area to admit of the trams being drawn by horses. This is followed a few metres above by a return air-way put in connection with the upper heights of workings. The main rolley-way only is lined with masonry, the roof of the levels being generally supported by prop-wood, consisting of oak and beech, while birch and poplar serve for sprags at the working faces. In places where the thrust is considerable, iron frames, consisting of two old rails are employed for supporting the roof. Hitherto it has been possible to raise all the water encountered in water-cages during the night ; but a pumping engine is now being erected. Contrary to the usual
practice, the air current is drawn downwards through the sees bhat, franz Joszef adit, by a Guibal fan, 9 m .-nearly 30ft.-in diameter, and 2 m .-6t. 6 in .-wide, Thiven direct by a 100 -horse power
horizontal engine. The reason why this direction was horizontal engine. The reason why this direction was
adopted for the ventilation is that the cost of hauling the adopted for the ventilation is that the cost of hauling the
coal by horses along the adit for a distance of over 2 kilos. coal by horses along the adit for a distance of over 2 kilos.
was found to be too great ; and some small locomotives, the first of which was shown at the Paris Exhibition of 1878, were designed and constructed at Reschitza to do the 1878, were designed and constructed at Reschitza to do the
work instead, with a saving in haulage of 92 per cent. on work instead, with a saving in haulage of 92 per cent. on
the 53,000 tons extracted. By closing the mouth of the adit the 53,000 tons extracted. By closing the mouth of the adit
with double doors, and placing the fan in a kind of siding or with double doors, and placing the fan in a kind of siding or
off-shoot, the products of combustion from the locomotive off-shoot, the products of combustion from the locomotive
are drawn off at once instead of passing through the mine. are drawn off at once instead of passing through the mine.
As at Székul, there is also much fire-damp at Domán; and safety lamps are used. For underground surveying, and safety lamps are used. For underground surveying, Herr Przyborski, the assistant mining engineer, has adapted
a double convex lens to the Mueseler lamp, shown in front

Fig. 6.-UNDERGROUND SURVEYOR'S SAFETY LAMP.
nd side views at Fig. 6. By means of the joints and se trated rays of the lamp on to the miners' dial.
These two collieries are under the management of Herr Schmolik, mining engineer-in-chief.

LIGHTHOUSE AT GALLEYHEAD, CO. CORK.
The accompanying engravings illustrate the most powerful ighthouse in the world-that at Galley Head, in the County Cork, Ireland. The light apparatus was designed and constructed by Messrs, Edmunson and Co., gas engineers, Capel-street, Dublin.
Briefly, the light may be said to proceed from four gas-burners, Briefly, the light may be said to proceed from four gas-burners, burned without chimney glasses or any interposing medium.
Each burner has an illuminating power of 1253 candles, as ascerEach burner has an illuminating power of 1253 candles, as ascertained by Sir James Douglass, of the Trinity House; the late
Mr. William Valentine, of the Royal College of Chemistry, South Kensington; and Mr. J. R. Wigham, of Messrs. Edmunson's firm. The great beam of light which is transmitted to the mariner from these fourburners is about 13 ft . high by 3 ft , wide. This beam reaches him every minute in the form of a group of four or five flashes. This is caused by the continual extinction and re-ignition of, the gas by clockwork machinery, so that about one-half the consumption of gas is
is exceedingly distinctive. sists in the superposing of the lights and lenses. Until Mr. Wigham devised this plan, only one central illuminant was used isted of three parts, viz., the great central annular lens, the sisted of three parts, viz., the great central annular lens, the
top prisms, and the bottom prisms. The light from these top and bottom prisms being but feeble,- practically about 20 per cent. of the whole-it occurred to Mr. Wigham that it would be better to use three of these central lenses superposed, with a light in the focus of each, thus securing an addition of light in the ratio of 240 to 100 . The three superposed lenses do not take up more space than the original dioptric apparatus, con-
sequently the same lantern will contain them; and as to the cost of consumption it is very trifling, for only one out of the three burners is used in clear weather, the other two being added when the weather becomes foggy. As there are only about sixty foggy nights in the year, this extra consumption contributes but to a small extent to the annual cost, while during these sixty nights, the benefits of having these three lights in place of one, but it will be remembered that there four lights at Galley Head, so that the effect is still greater. The lantern at Galley Head was made specially for this quadriform light, but, as we said above, any first-order light in the kingdom may be altered to triform without the necessity of altering the lantern. Why the lighthouse authorities should ng , more especially when Mr. Wigham's patent covers the use of oil, as well as gas, in this superposed arrangement.
We may now proceed to describe more in detail the installa-
tion at Galley Head. Galley Head is a precipitous cliff tion at Galley Head. Galley Head is a precipitous cliff, near the desigus of My. Joha S. Sloane, C.E., Engineer to the Com
missioners of Irish Lights. Mr. Wigam readh a paper before the British Association in Dublin in 1878, in which he described his system of burning gas. "It occurred to me," says Mr.
Wigham, "that if any plan could be devised by which the excess of carbon-the smoke-existing in rich gas flames could be turned to account as a means of increasing their illuminating power, a valuable desideratum would be obtained. I accordingly
made many experiments with that object, and came to the con made many experiments with that object, and came to the con-
clusion that I could find no better basis for my efforts to that clusion that I could find no better basis for my efforts to that
end than the ordinary well-known fish-tail jet. The fish-tail end than the ordinary well-known fish-tail jet. The fish-tanl
jet, it is hardly necessary to say, is bored diagonally on opposite jet, it is hardy necessary to say, is bored diagonaly on opposite
sides of a small internal cone. The streams of gas issuing fiom the orifices impinge against each other with considerable force, and the result is the thin sheet of flame with which we are so familiar. This flame possessing a large surface to which theoxygen of the air readily gains access, is in consequence rendered brilliant and comparativelysmokeless. But on closely examining the flame of a fish-tail burner it will be seen that towards the top, where the force of the stream of gas is nearly expended, it is thicker and inclined to be smoky. The larger the bore of the burner
the thicker the stream of gas, and-its pressure and quality the thicker the stream of gas, and-its pressure and quality being good-the greater the amount of unconsumed carbon.
When a number of fish-tails are arranged so that the upper When a number of fish-tails are arranged so that the upper
extremities of their flames touch each other, they run upbecause of the as che of give when thus united is smoky tails, bat the light they give consumption un ted is in beyond the mere multiple of their single flames, as may be seen in a moment by bringing two fish-tails together. ducing a large flame of highly illuminating power, and I

devised this form of burner-Fig. 2. I used in its construction double jets, by which a more effective combustion of gas is attained with less consumption for each jet than in the burners which I used in my earlier experiments. The principle of the
double jet is not new, but I believe that the present form of its double jet is not new, but I believe that the present form of its
application is entirely so. It is exceedingly simple and may be explained by this ordinary gas-burner.
only by the peculiar arrangement of numerous fis obtained not only by the peculiar arrangement of numerous fish-tail jets, but
by suspending over the flame which they unitedly by suspending over the flame which they unitedly produce an
oxidiser of talcorothermaterial, Fig. 1, by meansof whichacurrent of air is brought in contact with its most smoky part, rendering

it not only smokeless, but exceedingly white. The combustion is also assisted by a bottom cone for equalising the current of
air to the flame. The oxygen of the air is thus twice availed of, first, at the bottom of the flame, through the medium of the several fish-tail burners; and, secondly, at the top of it, where carbon found there. I may eat the large quantity of solid this are superior to any form of argand burner in this important particular, that they require no chimney glasses, the break-
ing and cleansing of which often cause much inconvenience in ing and cleansing of which otten cause much inconvenience in
lighthouse maintenance, to say nothing of their presenting an obstruction to the passage of the light of the flame to the dioptic apparatus. The Irish lighthouse burner is so constructed that a light-keeper can increase the power of the light by five
steps, according as the state of the weather may seem to require steps, according as the state of the weather may seem to require
it, from the burner used in clear weather consisting of 28 jets to the second, third, fourth, and fifth fog powers, consisting of 48, 68, 88 , and 108 jets respectively. The changes from one power to ano
curial joints.
"In the quadriform apparatus at Galley Head there aro thirty-two lenses arranged in four tiers, eight in each tier. Each

lens is of the size of the first-order lens, and one of these powerlens is of the size of the first-order lens, and one of these power| four buruers placed over each other. As the lenses touch eare |
| :--- |

other the lights blend at the distance of a few yards and form a great pillar of light about 13ft. high by 3 ft . wide, the illumimillion sper of which is calculated to be equal to nearly one be rememberm candles. The control of the light-keeper that only one-fourth of it is applied in clear weather, the other three portions being reserved for application as the weather thickens, This light is the largest in the world, and it ought to be a source of satisfaction to the Commissioners of Irish Lights to know that what they have done at Galley Head in furtherance of the attention is likely to be of much benefit to the sailor attention is likely to be of much benefit to the sailor. Indeed, since the completion of the Galley Head Lighthouse early in
1878 the Commissioners have received from the commanders of the great ocean steamers which pass Galley Head the most the great ocean steamers which pass Galley Head the
satisfactory testimonials as to its power and distinctiveness. Themethod adopted for extinguishing andre-igniting the gas for producing the flashes is exceedingly ingenious, being caused by motion produced from the clockwork on the valves, similar to the Cornish or bevelled valve, the bevel being underneath, but the surface of metal to metal is horizontal, truly turned. Thi bevel is formed to stop an instantaneous rush of gas; and the means of lighting is produced by a small pipe leading to one jet, which always has a small portion of light burning as required, and the moment the valve is opened, the small jet ignites the gas issuing from the sixty-eight jets, which gives
brilliant light, that must be seen to be appreciated, The other three burners are similarly worked. This lighthouse has two screens, which cut off the light east-northerly, and west by north-westerly. The flue to the chimney is inside the sector, and therefore does not obstruct the light. There are five retorts for production of gas, duce the gas for consumption. There are two gas-holders for storage. The gas is extracted from cannel coal. In the even of anything going wrong with the gas, there is a provision made by which the usual Trinity oil lamp can be applied in less than half-a-minute, but this has never yet been required in practice The joints to stop waste of gas are treated in a similar way to
a common chandelier, with this exception, that in . of mercury a common chandelier, with this exception, that 4 in . of me
answers the same purpose as the water in the chandelier.
We cannot better conclude this article than with the followin report sent in by Professor Tyndall, F.R.S., on the 9th May, 1879, to the Commissioners of Irish Lights :-
"Sir,-In compliance with the desire of the Commissioners of Irish Lights that I should visit and report upon the new lighthouse at Galley Head, I quitted London on the morning of 8th
May, joined the Princess Alexandra at Milford in the evening and reached Galley Head on the following day. At my request the Commissioners were good enough to invite Captain Cole their chief inspector; Mr. William Douglass, their engineer Captain Galwey, commander of the Princess Alexandra; and Mr. Wigham, inventor of the system of illumination special to Galley Head, to be present during the observations. I examined in the first place the quadriform dioptric apparatus employed for the concentration, direction, and multiplication of the light. I was also present during the rehearsal of the expe riments to be subsequently made afloat. The glass of the appa
ratus seemed singularly free from striæ and other mechanical defects, Looked at normally, moreover, it appeared very trans parent; but on looking at it obliguely, so as to cause the ligh reaching the eye to traverse considerable thicknesses of the glass, the colour was of a decided green. The influence of this colour may be of small practical moment; but, so far as it is operative its action is to withdraw from the beam a fraction of the parti cular rays which are most effectual in penetrating a hazy or foggy atmosphere. The light at Galley head has been named by Mr. Wigham 'the group-flazhing light,' the flashes being produced by a method perfectly novel in lighthouse illumination. The occultation of a fixed light, as first illus trated by Mr. Babbage, may be effected by causing opaque
screens to close at certain intervals automatically round the light; or the occultation may be produced, as at Wicklow Head, by the lowering at given intervals of a gas flame. The arrange
ment at Galley Head is totally different from either of these Here a flame of certain width, determined by of these made at Rockabill, and described in my report to the Board of Trade of 18th September, 1871,* sends forth a beam of such divergence as to cause it to occupy fifteen seconds in passing over the eye of the mariner. But instead of allowing it to pass continuously, as in the ordinary revolving light, a simple auto matic apparatus cuts up this broad beam into a series of flashes, sufficient in number to ensure that they can neve wholly escape the attention of the mariner, and in each of which a flame of great power is brought into play A burner of sixty-eight jets was found on the occasion abov referred to admirably suited to these ends. In ordinary
weather a single burner of this description placed, as in wevolving light, revolving light, at the common focus of eight annular lenses, in
employed at Galley Head. Four tiers of such lenses are erected, one above the other, each tier possessing its own burner. Hence the name of the apparatus. As the weather thickens, thes burners are ignited in succession, the power of the light, if the adjustments be correct, being sensibly doubled, trebled, and quadrupled, when the biform, triform, and quadriform arrange ments are respectively brought into play. At the usual sunse hour the single 68 -jet burner was ignited, and it continued burning up to $8.50 \mathrm{p} . \mathrm{m}$., when the experments began. Wo were then equidistant from Galley Head and the Old Head of Kinsale, being $12 \frac{1}{2}$ miles from both. The night was a dark one,
neither moon nor stars being visible; but though the upper neither moon nor stars being visible; but though the upper atmosphere was filled with heavy clouds, the lower air was clear
Commencing with a power of Commencing with a power of twelve burners, we ascended
through successive stages to a power of 108 burners, then fell to through successive stages to a power of 108 burners, then fell to
a power of twenty-eight burners- the automatic flashing of the a power of twenty-eight burners-the automatic flashing of the
light being continued throughout this entire series of experi ments. The 12 -jet burner yielded two bright flashes, the 28 -jet burner three brilliant flashes, the 48 -jet burner four strong flashes, the 68-jet burner five powerful flashes, while the 108 -jet burner produced seven flashes of still greater intensity. The flashes here enumerated were, in each particular case, of sensibly the same strength; but besides these gushes of full power, each series was heralded and ended by a flash of minor intensity With the larger burners, moreover, when the observer wa placed in the angular space between two successive beams, residual speck of light was observed winking in synchronism wher rise and fall of the flame within the apparatus. N by the effect here enabled us clearly to ralise of the principal advantages of the Galley Head Light. The speck accurately represented the aspect of a fixed light when enfeebled by distance or thickish weather. A great number of fishing boats were afloat on the night of the 9th, and had the speck been fixed, it could not have been distinguished from the lights of the boats. It would have formed one of a multitude of luminous points of approxi

GALLEY HEAD LIGHTHOUSE AND KEEPERS' D WELLINGS.

mately equal intensity. But, winking as it did, it immediately lifferentiated itself from its fellows, a confounding of the shor "In the next series of experiments-time 9,25 -the apparatu was employed as an ordinary revolving light, the flashing being suspended ; and instead of the beam from a single burner, the quadriform light was exhibited. The beam from the four 28 jet burners, which was strong, brilliant, and altogether satisfac tory, required six seconds to pass over the observer's eye. The beam from the four 68 -jet burners, which yielded a light much superior in intensity to that of the 28 -jet burners, had, a f the beam autside of the praratus is the diameter the burner inside is increased, that enables the 68-jet bean to be cut up into the five powerful flashes and the two minor flashes already alluded to. The augmented intensity of the beam from the larger burner is to be ascribed to the ncreased number of luminous layers from which the radiation comes. Supposing the radiation of any lens to emanate from a line of burners one deep, and parallel to the lens, the effect of augmenting the length of this line would simply be to increase the width of the beam outside the apparatus. There would be no increase of intensity. But if contemporaneously with the lengthening of the row of flames other rows were placed before and behind it, it is obvious that not the width of the beam virtually occurs when the larger burners are brought into action at Galley Head. Wishing to test still further the increase of intensity as the number of jets were augmented, arrangements had been made for stopping the apparatus, and sending the beam for a time in a fixed direction. During this interval it was proposed to run through the series of powers, from the 28 to the 108 -jet burner. The tide, however, had so far drifted us from axis of the beam, that before we recovered it the two first experiments were practically defeated. The opportunity of comparing the largest and smallest burners, which was my principal object in making the arrangement, did not therefore present itself. Evidence as to the augmentation of intensity with the augmenting magnitude of the burner was, however, furnished by the preceding experiments. On this point there
was no difference of opinion. Mr. William Douglass, who stood at my side, pronounced the increase of light in passing from the at my side, pronounced the increase of light in passing from the
28 to the 68 -jet burner to be considerable. My notes describe the fixed beam of the 68 -jet burner as an extremely fine and steady light; while, in relation to the distance, the beam from the 108 -jet burner is described as exceedingly powerful. Recurring to the group-flashing-time, 9.55 -and beginning with the single burner of 68 jets, we passed to the biform, triform, and quadriform in succession. The beams, as might be expected, augmented in intensity as the number of burners increased, the flash from the quadriform being very powerful. Rendering the beam again fixed, we steamed across it with the view of observing any variations in intensity which might exist at different parts of its transverse section. The observation, which was inclusion drawn from the latter, that the body of the beam is of clusion drawn from the latter, that the body of the beam is of its edges being rapid. Returning to the single 68 -jet flashing light, we steamed out until it dipped beneath the horizon. In the cloudy air above the lighthouse every pulse of the flame was distinctly visible, after the direct beam had disappeared. I cannot but think that these atmospheric thrills will prove of great importance to the mariner, even in atmospheres thick enough to render the light itself invisible. At fifteen minutes past midnight, the 68 -jet quadriform was again brought into action, we then being twenty-one miles from Galley Head. 0 visible ; but ascending to the top of the deck-house, the light
itself came into view, its white blaze striking the eye as if the lighthouse were close at hand. On ascending from the bridge the sudden emergence of these powerful flashes out of the dark-

ness of a starless and moonless night was in the highest degree impressive. My impression at the time was that, on the whole,

I had never seen a finer light. Wishing, however, to check my own judgment by that of an independent and experienced Douglass whether he knew of any light which, in point of power and distinctiveness combined, came up to that of Galley Head. His reply was that he knew of none. The programme of the night's experiments was carried out with accuracy and promptitude by Mr. Young, with the assistance of the light-keepers. I append the programme which summarises the night's observaions :-

Testimonies regarding the Galley Head light.-From a report presented to the Board of Trade on the 18th september, 1871,* quote the following brief paragraph:-'Should it be thought render it perfectly unmistakable, the "group-flashing gas light," as its inventor, Mr. Wigham, calls it, secures this end. I have not been called upon to offer any recommendation as to its adoption, and I would, therefore, merely refer to it as a light of unrivalled individuality, of great power, and, in Ireland at least, of moderate cost.' Appended to this paragraph is the following foot-note:- 'It might be tried in the next new lighthouse, and thus tested without any disturbance of existing lights.' The light at Galley Head, which was started at the beginning of last year is the outcome of this suggestion; and I have now to adduce additional evidence in justification of my recommendation to the Board of Trade, that the group-fashing light should experiments at Rockabill, in September, 1871, I was honoured by the company of Sir Leopold M'Clintock, who, in a letter addressed to Mr. Wigham, on the 18 th September, 1871 , thus expresses himself:- 'No better means could be devised for distinguishing a light from other lights than this plan of a group of flashes. The half-minute interval between the groups is quite sufficient, and yet not greater than can easily be estimated by the observer, without having recourse to a watch to measure the time; and the periods recurring within 45 seconds, that short time is sufficient to determine which light it is ; and both these are great practical advantages. I consider that the superior brilliancy of gas to oil, and its applicability both to revolving and fixed lights, is most satisfactorily established; and as regard the proposed change solely from the seaman's point of regard whatever to their comparative cost.' In September 1874 , the preliminary experimental arrangements, devised at Howth Baily to illustrate the construction and the power of the triform light, was inspected by Sir William Thomson. From a letter addressed to Mr. Wigham on the 12th October, 1874, I make the following extract:- I have much pleasure in report ing upon the experiments on the Howth Baily Lighthouse arrangements, which I witnessed from Salthill on the evening of the 21 st September, and from my yacht on the evening of the 22nd September. First: The great fog-power of 108 -jet burners showed an immense superiority of light over the ordinary light of the lighthouse. The quick transition from the ordinary light to the high power was very remarkable, and to see, at the lighthouse itself, the simple and thoroughly trust worthy apparatus by which this transition was made. Second: The triform light exhibited from the lower position in the neighbour hood of the chief tower was strikingly superior even to the great fog-power of 108 burners exhibited on the chief tower ; so much so that a heavy thunderstorm, which happily chanced to pass during our experiments between the Salthill Hotel and the lighthouse, completely eclipsed the light of the chief tower while the triform still shone conspicuously through it.' The two weighty authorities here cited based their conclusions upon
experiments made with apparatus temporarily erected at Howth experiments made with apparatus temporarily erected at Howth
Baily and Rockabill. I have now to refer to the testimony of seamen with regard to the merits of the light permanently from commanders on the Inman, White Star, and Cunard lines of steamers, all of which speak highly-of the light. Captain
Fulton considers it 'one of the best in the Channel, Fulton considers it 'one of the best in the Channel,
being both clear and unmistakeable.' The testimony of
Captain Watkins, who observed the light from a disCaptain Watkins, who observed the light from a distance of twenty miles, is to the same effect. Captain Leitch
describes it as 'the most marked and unmistakeable light' describes it as 'the most marked and unmistakeable light' he ever saw. Captain Laud calls it 'a splendid light,
easily distinguished by its marked character.' who had an opportunity of viewing the light in very hazy weather, pronounces it ' a most excellent light, which can be easily distinguished from every other light on the coast.' Captain Kennedy considers it 'one of the best and most power ful lights in the Channel.' Captain Gleadell affirms it to be most powerful, strongly-marked, and appropriate light, and o great service to shipping navigating that part of the Irish coast
it being so readily distinguished from any other in its vicinity. Captain M'Mickan, who observed the light at distances varyin from three to eighteen miles in showery weather, states that it could not possibly be mistaken for any other light which he had light can be increased in thick weather, and finally describes it as 'one of the most important, useful, and brilliant lights in St. George's Channel.'
To the foregoing strong testimonials I would venture to add of Trade, and of Mr. Hamiltone Marine Department, Board Navy, whose observations are specially important, because they refer to the performance of the light in foggy weather. Under date of 30th August, 1878, Mr. Gray writes as follows:- On that occasion we made a special visit, and the night was very
favourable for a test--that is to say, it was sufficiently thick to avourable for a test-that is to say, it was sufficiently thick to
render the ordinary light invisible from the place where e were stationed; and I can, from my own observation, confidence that as one light after another was added, the illuminating power was materially, and visibly, and invisible, the quadriform not only illuminated the fog, but ctually became visible.' The testimony of Mr. Hamilton, given on the same date, is to the same effect:- 'The night I saw the quadriform light tried against the ordinary light at Howth Baily was a very foggy one, and I distinctly remember how the power of the light to penetrate the fog was increased as the burners
in each tier were lighted. I remember, also, that while the fog in each tier were lighted. I remember, also, that while the fog at times entirely obscured the ordinary light, the quadriform was distinctly visible.'
the consensus of - No words of mine could add any force e remember the calamities which have forward. And when eighbourhood of lighthouses, through inability to see the ight, it surely behoves us not to throw away the chance tigating such calamities by the employment of a light capable of behaving in thick weather in the manner described by Sir indeed, of one circumstance which could legitimately interfere with the extension to other important points on the Irish coast of the system of gas illumination, and that is inordinate cost of production. Regarding this point ample data must be in exist-
ence, and the Board of Trade, which has hitherto shown a marked liberality towards Mr. Wigham, has here, I think, a right to demand the fullest and most distinct informathe use of gas ought obviously, when the accompaniments the use of gas ought obviously, when the expense
this illuminant is in question, to be carefully kept this illuminant is in question, to be carefully kept apart
from unnecessary ones. And here I am tempted to offer a remark which may be considered to lie beyond the strict limits of the present report. The cost of the lighthouse at Galle Head and of its adjuncts must have been very considerable. The quantity of land inclosed is large, a corresponding length of wall being needed to enclose it. The buildings are erected in the most substantial fashion, a finish being given to the doors, expense. I will not say that in the long run it may not prove wise economy to have incurred this outlay. But, with the exception of the gas-house and its appurtenances, it is not an Galley Head. Were oil instead of gas the illuminant employed, the expense of the buildings might have been substantiall with admirable freedom to any change in its mode of application which it may be thought desirable to make. The application for example, of the flashing apparatus at Galley Head would convert that light into an ordinary revolving light, surpassing any other in the world. Indeed, were the power of the burne reduced to forty-eight jets instead of sixty-eight, the light, with its full strength invoked, would still transcend all other revolv ing lights. Even the 28 -jet burner would furnish a beautiful
light. But the advantage of the present mode of illumination consists partly in the intensity and partly in the duration of the 8 -jet beam, whereby the flashes are rendeled so numerous an so powerful as to confer upon thelight the individuality universall broken into flashes, the 68 -jet beam ino the obvers that ittle more than half the jetort of which would be reve of to feed it if used as a continuous light. It may be added that the 48 -jet burner, with its four flashes, or the 28-jet burner, with its three flashes, would constitute a highly distinctive light; but should deprecate the economy which would reduce either in number or power the flashes now sent forth from Galle Head.
"Secretary Commissioners of Irish Lights."

THE ABYSSINIA.

LAST week we illustrated on page 10 the new steel boilers made and fitted on board the screw steamer Abyssinia by Messrs. ticulars are of interest. The Abyssinia was built and engine by Messr8. J. and G. Thomson in 1870 for the Cunard Com pany, and was for many years employed by them in the regular
mail service between Liverpool and New York. Her dimensions re-Length, 363 ft .; beam, 42 ft .; depth, 34 ft . Her machinery that time was a pair of inverted direct-acting surface-conlensing engines, diameter of cylinders 72 in , stroke 48 in . Steam was supplied by four rectangular boilers, having twenty-four fres, 432 ft . grate-bar, with 9698 ft . tube surface, working at
30 lb . pressure ; each boiler was 21 ft , wide, 11 ft . long, and 15 ft ligh ; there was one cylindrical superheater fixed on the top ot the four boilers 13 ft . in diameter and 6 ft . in length, fitted with the four boilers 13ft. in diameter and 6 ft . in length, fitted with
tubes about 12in. diameter.
These engines required
the indicated horse-power was 2070 horses. In the year 1881 the steamer was bought by Messrs, Guion and Co. for their Atlantic lesigned the new boilers and general arrancement. The new boilers, which at that time were much larger than any in use, were arranged for a working pressure of 110 lb . They are
16 ft .10 in . in diameter and 16 ft . in length ; they have sixteen fires, corrugated flues, 6774 ft . tube surface, 336 ft . grate, and have neither domes nor superheaters.

FIC.I
The old engines were thoroughly overhauled and repaired, and the necessary alterations made to receive the new high-pressure
cylinder with piston valves. The new cylinders are 31in. cylinder with piston valyes. The new cylinders are 31in.
diameter, fitted with Jones's patent piston. A new crank shaft propeller and propeller shaft were fitted on new bearings, and

FiG. 2
he whole of the alterations to the hull as well as machinery The space occupied by machinery in the old arrangement was 78 ft . in the length of the steamer, whereas the new only occupies 58 ft .; thus the cargo space was increased by the alteration

FIG 3
634 tons measurement, The effect of the change in speed and consumption is as follows:-Greatest day's run eastward 322
knots in $23 \frac{1}{2}$ hours, and consumption 60 tons per day; indil This steamer made eleven trips across the Atlantic in the

FORD. Hich FRESS.

watertight and therefore floatable, are placed side by side, to hull are added a bow piece and a stern piece, making together a hull 70 ft . long by 18 ft . beam. By means which we shall be readily united and disunited, and this can be done afloat, on the bow division are placed two boilers, and on the stern division 140 lb , pers, which are designed for a working pressure of by $2 \frac{1}{3} \mathrm{ft}$. stroler square inch, and have cylinders $10 \frac{1}{2} \mathrm{~min}$. in diameter by $2 \frac{1}{2} \mathrm{ft}$. stroke, which, by means of a crank on each side, drive are each made up on ant are each made up on a steel tube as a frame. The strain duc boat are taken by a system of light steel tie rods above, secured to tubular king posts; the effect of this system is at all times to throw a compression on the hull, thereby tending to keep the various sections together in close contact and free from alternating strains. Above the vessel, and completely covering it, is a wooden awning deck, which in an African climate is very necessary to protect the passengers and crew from the sun. The boilers are made with very capacious grates, and of course wood is the only fuel procurable, and will not always be the dryest and best adapted for making steam.
It is intended to ship this steamer, in her several sections, direct to the mouth of the Congo, where she will be put together afloat, which, it is contemplated, will not occupy more than steam, as for up the ance proceed, under her own steam, as far up the river as it is navigable; then be taken to
pieces for transport overland; and in this operation will be seen one great novelty in her design. After the machinery is semovel from the deck the hull will only draw 6 in . ; it then is brought into exceedingly shallow water and the operation of disconnecting afloat, will be secured four large light steel wheels baving very wide tires. This being done, the divisions are ready to be hauled out of the water and over land, and what was once a section of a boat now becomes the body of a wagon of ample capacity to convey the lighter portions of machinery and stores. On arrival at the next navigable part of the river, these wagons
so constructed are run into the water, the wheels are removed so constructed are run into the water, the wheels are removed In this way the journey can be continued, the steamer leeing In this way to pieces and put together as often as circumstances require.
At the preliminary trial on Saturday the vessel went through numerous mancuvres; the mean draft was 14 in . in working trim, and with a steam pressure of 100 lb . per square inch a speed of
nine and a-half to ten miles an hour was obtained-an excellent result, taking into consideration the proportion of length to beam and other peculiarities of the craft. Great steering power is of course necessary, and the most striking performance was the
marvellous facility with which the boat could pivot on a centre only a little within a point a few feet from the stern, which was very remarkable, and clearly rendered this type of steamer amabl well wedtar high up on all bride some 10ft above the water, giving a pila high up on a bridge
good view all round.
It would seem to us that this system of construction, namely that of uniting together a number of floating sections, so as to carrying capacity, opens up a new field, as the difficulty hithert experienced in the development of trade with Africa has been due in a great measure to practical difficulties in placing
vessels of light draft on the riverd.

ROYAL AGRICULTURAL SOCIETY OK

ENGLAND.

In funds, membership, and general prosperity, the Royal Agricultural Society is gradually assuming the position which it London under its auspices in 1879, when $£ 13,000$ were hope lessly sunk in the never-to-be-forgotten Kilburn mud, in which was also wrecked the finest collection of agricultural implement ever assembled. According to the half-yearly report of the the changes by death, withdrawal, or from other causes, there has been an increase during the past year of 394 members bringing the total up to the respectable figure of 8352 . of these, seventy-four are life governors, a title conferred on those who, on election, subscribe the sum of $£ 50$; seventy-four are annual governors who pay $£ 5$ each year ; 3115 are life members giving $£ 10$ to the funds of the Society; 5068 are annual sub giving $£ 10$ to the funds of the Society ; 5068 are annual sub scribers of $£ 1$ each; and the remaining twenty-one are honorary
members. Thanks, in great measure, to the conomy exercised members. Thanks, in great measure, to the economy exercised
in connection with the York meeting last July, and in other in connection with the York meeting last July, and in othe by the investment of $£ 6000$, and now stands at $£ 25,8804 \mathrm{~s}, 1 \mathrm{~d}$. new Three per Cents. In addition, a sum of nearly $£ 3000$ re mains in the hands of the bankers. Reverting to the York meeting, the Council pronounce the opinion that it was "one of the most successful" which the Society has held for several years, whether judged by the number and quality of exhibits or the attendance of the members and the public-an opinion which perhaps, it would not be easy to controvert, especially when it i backed up by the definite statement that the exhibition resulted in an addition of more than $£ 4500$ to the Society's funds, "The exhibition of implements," say the noblemen and gentle men who constitute the governing body, "was remarkable fo worthy of an award no less then whe silver medals out of the ten at their disposal having been allotted with the sanction of the stewards. The working dairy was also more completely organised than on some recent occasions, and attracted a large share of attention." Later on in the report it is intimate that a similarly constructed dairy is to form one of the chie features of this year's show at Shrewsbury, the implement department of which, it may here be mentioned, will be open to
the public on Saturday, July 12th, the live stock department the public on Saturday, July 12th, the live stock department opening on the following Monday. As already notified to the readers of The Engineer, in addition to the usual medals offere for new inventions, the Council have offered substantial prizes
for self-binding reapers and for separate sheaf-binders, the binding material to be other than wire. They also offer a prize for preserved in silos. Sir John Thorold has been elected as one of the Stewards of Implements at the country meetings, and Mr Jacob Wilson has been unanimously re-elected Steward General Arrangements for a term of three years. The authori ties of Preston and Chester are each anxious to secure th holding of the exhibition of 1885 in their vicinity, and so keenly does each town anticipate a favourable decision that local fund have already been raised to the extent of over $£ 1000 \mathrm{in}$ one case, and nearly that sum in the other. A committee has been appointed to report on these invitations,

RAILWAY MATTERS

 AT a recent meeting of the Executive Council of New SouthWales the appointment of the following gentemen as a Royal
Commission to inquire into and report uponthe stability of the
 THE engineers report that on Saturday morning last the distance
o be bored between the ends of the tunnel, being carried forward simultaneously from the Lanacassire and the Cheshirresides of of the
Mersey had been reduced to 61 yards, and that it was expected that a through passage underneath the Mersey would be establisheded in about a fortnight from the p
to be favourable for excavation.
The West India and Pacific Steamship Company, of Liverpool, dated the 14th ult,, stating that the negotiations which have for some time past been understood to be in progress between the
American company owning the Panama Railroad and M. de Lesseps's Panama Canal Company for the cession of the railiood to was to be handed over to the canal company on the 1st inst.
A colusiston occurred last week on the Grand Trunk Railway, at
a short distance east of Toronto, between a train which daily leaves
the city at 6.40 a short uistance east of Toronto, between a train which daily leaves
the city at 6.40 a.m., with a car attachedt to it for workmen belong.
ing to the bolt works, and a goods train. Twenty-seven workmen were killed, and from twenty to thirty. hurt. The seven workmen of the
goods train is accused of being responsible for the accident, and he goods train is accused of being responsible for the accident, and has
been arrested. It is alleged that he had started liis train without orders Several of those who were in
orbat they are not expected to recover.
The following are the rates paid on the New South Wales lines
Clerks, $£ 200$ to $£ 150$ per annum ; foreman, $£ 50 \mathrm{~s}$, to $£ 37 \mathrm{~s}$, per

 OprRations at the Mersey tunnel works during the past n a similar space of time. The distance advanced under the river
vas no less than forty-six yards lineal of these thirty-three were lone by Beaumont's boring machine and thirteen on the Liverpoo
side by means of lasting. The reports consequent on the latter
method of proceeding can be plaily heard by the me the lin nethod of proceeding can be plainly heard by the men working in
the opposite heading. The mean distance to be excavated is now under sixty yards, and it is estimated that the communication or
passage umder the Mersey will be effected in the course of next
neer. eek. The rock continues sound and uniform in character. TTh
uantity of water encountered does not increase, and no difi-
culty is experienced therefrom in any way. IN concluding a report on the derailment
In
Railway, Major-General O. OStreet station, on thich occurred on the Great Eastern certainy not the heneral high speed which. thits time principally " "It wased the
ncident; but it is robable that the damage which, when ngine was taken to the slopops, it was foumage to hhich, whenen the
the spring of its right-hand driving wheel-of which four of the lates were broken, and in consequunce of which and of the rum n the right side of the engine-contributed, together-as beforewith the stiffiness of the engine and the somewhat tight gavare a
the points, to cause the leading whieel to mount the second time." the points, to cause the leading wheel to mount the second time."
He adds: "To avoid a repetition of similar accidents at this and
He nstructed to passs through them ata speed not exceeding five miles an hour, and these courves shoutld be laid in as far as practicable
loose to gauge. It would also be advantageous to place puard rails where practicable in advance of the facing-points, as well as on the porves thiemselves., "This is aroother Mustration of the fact,
pointed out in the "Proceedings" Institution Civil Engineers-
$1882-3$, vol. iv.,-that an element in the cause of derailment on a curve. The resistanc
on the curves with rigid wheel base, or parallel axles, provides ufficient cause for most off these curve derailments, even withon ny centrifugal tendency assistance.
AN extraordinary and fatal accident occurred on the Wigan and
Pemberton Tramway on the 5th, resulting in the death of Mr. Th
W. Barker, solicitor, of Southport, the coroner for the West Derby division for the county of Lancaster.
which had justreached Pemberton, uncoupled his engine the tram,
yet round to the opposite end of the car for his his return orderney
leaving the carriage on one side of the triangle by which t Leaving the carriage on one side of the triangle by which the engine
is turned round. While proceeding with his evgine along the
third side which leads to the main line for Wigan he observed natched the child out of danger, but in doing so he was caught an by the engine and thrown down, The engine increased in in speed,
then
owing to the incline, and although he managed to get up to it, he
 mile a. very step one, the gradients varying from 1 in 40 to 1 the terror of the passers-byy Near the Hallal- Way House In In, about
1000 yards from the terminus, it overturned a horse and cart, the dashed down the Spring Bank, and smashed with great force int bot tramcar of the hiilh. was standing at the jus carction nearly at there were only five passengers, ,
of whom escaped except Mr. Barker, who had been seated at the urthest end of the carriage. He was caught just as he was
tepping off between the engine and the back part of the car, being tightly jammed in between the body of the velicle and the engine Dist interesting experiment is now being tried on the Metropolitan vhich are lighted by electricity direct. In carrying this out, Siemens dynamo and and Willans threce-calinider entergine are are
placed in a luggage van which is attached to the train. Stean
 on a total of twenty-eight Swan incandescent lamps of 20 -candde
power each, which
machinery was designe a very brilliant light to the lamps in the carriages, there are about thirty in the van which are always lighted when the others are. The object of
this is to ascertain the exact cost of working a sufficient number of this is to ascertain the exact cost of working a sufficient number o
lights for the longer trains, which are usually fitted with fift ordinary gas lamps. The experiment is being carried out for Lord.
S. Cecil, general manager of the District Railway, and Mr. J. S.
Forbes, Forbes, chairman of the London, Chatham, and Dover Railway Company. The first public trial of the light took place on Thursday
week, and the results were considered very satisfactory. It is
therefore intended to continue the experiment for some weeks, the therefore intended to continue the experiment for some weeks, the
train being all the time in regular work. In the event of the machinery proving effective and trustworthy, it is probable that a train so that steam can be supplied from the locomotive boiler. This arrangement, which has been proposed by Mr. W. F. Massey. of Twy ord, will necessarily prove cheaper, inasmuch as the small
boiler and the special attendant in the van will not be required. It
is anticinated is anticipated that the cost of lighting a
will be much less than that of oil lamps,

NOTES AND MEMORANDA.
The annual report of the Registrar-General for the year 1882
hows that the estimated population of New South Wales at the end of that year was 8177,4688 persons, the percentage of males
eeing 54.97 , and of females $45 \cdot 03$, These figures show an actual herease of $36,203 \mathrm{pe}$
As wood changes under the influence of the air, growing brow it has been employed, it is of great importance, both for the deale and for the consumer, to be able to ascertain whether a give the Chronique Industriclle says, a solution of sulphate of aniline or a mixture of one part sulphuric acid, three parts nitric acii a yellow colour upon the paper if it contains wood, the depth of
the yellow shade increasing as the proportion of wood increases.

Professor PoLoNs has been experimenting, upon the influence
of heat on the permanent magnetism of steel, and some of his esults are described in the Chronique Industrielle. He finds that the diminution of magnetic intensity, by the increase of tempera-
ture in the steel bar, has no rigid relation to the increase of electric ture in the steel bar, has no rigid relation to the increase of electric
resistance in the metal itself. Indeed, while the permanent of about 200 deg.- 328 deg. Fah.- and then less rapidly up to 300 deg. 508 deg.- becoming inappreciable at red heat, the electric conductibility
In a paper on patent for "Improvements in the Manufacture of
White Pigment", by T Griffths alcination of "sulphide of zinc pigment," and also in that of the
a pigment consisting of "a double precipitate of sulphate of barium,
trontium, or calcium, and sulphide of zinc," access of air is pre udicial to the colour of the product. He therefore proposes, no only to calcene the
furnaces," but also to first mix them with from 1 to 2 2
"t per cent. o "an ammoniacal salt that will not easily solatilisis sulphate of cthoride," in order that "an artificial atmosphere
may be maintained "round the material" during its calcination.
According to a suggestion for the "Decolorisation of Crude
Resin Oil," by G. Scliwarz, in the Seifensiel-Zeit., 23,271, the oil
 it has become fluid. It is then drawn off into a wooden vat, frequently stirred, and 10 lb . of concentrated sulphuric acid is next
added for every 100 lb . of oil. After being allowed to rest twelve oeighteen hours, the oil is drawn off and washed several time with hot water. When it is completely freed from acid it is dark
ellow, and almost inodorous. In order to obtain a bright roduct, the oil is now mixed with 50 per cent. of water, 10 pe ent. of soda ash, and 10 per cent. of slaked lime, and finally sub-
nitted to distillation.
Notwithstanding important differences of interpretation, the results of analyses of London waters obtained by Mr. Willian Crookes, Mr. Nilliam Oding, and Dr. C. Meymott Tidy, are
usually in fair accordance with those reported to the Registrar General. Thus the mean amount of organic carbon in 100,000 parts of the water furnished during the six months preceding October, by the five companies taking their supply exclusively from the Thame vas, according to their experiment, 116 part, , and according to the 007 of one part only. As regards, however, the discrepancy noticeable in the two sets of ressults for October, Messrs. Crookes,
Odling, and Tidy mention that their report was based their report was based on an collected on a different day; and that their determinations by the results of a wholly different process of examination. the other hand, the report made to the Registrar-General on the character of the Thames " waters supplied to the metropolis durin the month of October," was based on an examination of fit specimens only, all oollected on the same one day of the month
Further, the results, furnished by the combustion process applie o these five specimens were wholly unchecked by any different method of examination
The report of the United States Geological Survey has been ducts of the Union for 1882 at $219,766,004$ dols. The items in this account, which exceed one million dollars, are the following:Pig iron, spot value, $106,336,429$ dols; silver, coining value
$46,800,000$ dols. gold, coining value, $32,500,000$ dols.; coppe,
value at New York City, $131,603,809$ dols.; lead, value at Ne York City, 12,644,550 dols.; zinc, value at New York City, A table also appears in the report furnishing the values of some of the non-metallic products, which yield a total of $226,156,402$ dols,
The items in this table, which equal or exceed 100,000 dols. eacl The items in this table, which equal or exceed 100,000 dols. each,
are the following:- Bituminous coal, brown coal, lignite, and ntiracite, mined outside of Pennsylvania, 76,06 $23,704,698$ dols.; ; lime, $21,700,000$ dols.; building stone, $21,000,000$ dols.; salt, $4,320,140$ dols.; cement, $3,672,750$ dols.; \quad lime
tone for iron flux $2,310,600$ dols.; phosphate rock, $1,147,830$ dols Vew Jersey marls, 540,000 dols,; crude borax, 160,000 dols; chrome iron ore, value at Baltimore, 100,000 dols. With the
exception of the last named article all' these are spot values statement is also given which shows that fireclay, , kaolin, \&c.., were The grand total, therefore, of the various products is $453,912,400$
Accordivg to a paper on "The Constituents of Galician Petro leum," by B. Lachowicz, Ann. der Chen. 220, 188-206, a examination was made in order the campare the the petroeum wasus and for this purpose the
others from America and the presence or absence of the following series of hydrocarbons had to be determined, viz, the marsh gas, the ethylene, and the aromatic
series. From an oil of boiling point 30 deg. to 125 deg. there were separated, by distillation and treatment with strong nitric or sul
phuric acids, normal and isopentane, normal and isohexane, and phuric acids, normal and isopentane, normal and isohexane, an -b.p. 148 deg. -and decane - b.p. 152 deg. to 153 deg. An oil perties of the paraffines, a whole series of which form the principa constituents of the petroleum. The first six fractions obtained in the distillation on the large scale of the crude petroleum are not bromine vapour with evolution of heat, It is therefore most probable that the olefines do not exist in the petroleum, but are only formed during the fractional distillation from the higher paraffines. It has been shown that Caucasian petroleum contains no aromatic hydrocarbons, but that these are formed by passing fractionation of the petroleum of high boiling points such a form tion of aromatic hydrocarbons might take place, and therefore in order to ascertain the presence of this class of bodies in the petroleum, the author examined the lightest portions only. By frac tionation and nitrian meta-antrobenzene, uinitrotauenem.p. 71 deg. - and dinitroisoxylene-m.p. 176 deg.- were severally sositylene-m.p. 231 deg. to 232 deg. - so that Galician petroleum
mol contains a large series of aromatic hydrocarbons, From observa. tions of the high specific gravity and the percentage composition of a portion boiling between 97 deg., and 100 deg., it is almost certain that it consists of heptane with some hexalydrotoluene. In an
abstract of the paper the Journal of the Society of Chemical abstract of the paper the Journal of the Society of Chemical
Industry says the author was not able to prove the presence of

MISCELLANE

A practical treatise on "The Electric Light in Our Homes"
will be issued by Messrs. Warne and Co. in a few days. It is written by Mr. R. Hammond, of the Hammond Electric Light and THE number of houses built in London and the suburbs in 1882 was decrease in the growth of London,
number of empty houses in London.
THE difficulties which have hitherto attended the preparation of hea fibre seem to have been overcome. Dr. Forbes Watson
ecently gave an interesting lecture before the Society of Arts on dis shest of fibres, which he has worked so hard to introduce overcome the difficulties which attended the preparation of the THE engineers' estimate in connection with the proposed
Manchester Ship Canal undertaking has been lodged in the Private
Bill Office of the House of Commons, The grand total estimate is
. Bill Office of the House of Commons. The grand total estimate is
$66,904,186$ 12s. 2 d ., and is made up as follows:- For the nine onnecting lines of railway, $£ 4556,172$ 1s. 4 d .; for dock works at $£ 3,920,17111 \mathrm{~s}$. 7 d .; for estuary works, $£ 1,390,419$; and for new oads, £16,161 6s. 3 d
On the 3rd inst. Messrs. Earles' Shipbuilding and Engineering
Company, Limited, launched from their yard at Hull a fine ron screw steamer named the Chandos, built for Messrs: Hy. Briggs, Sons, and Co., of the same town. The dimensions of the
vessel are as follows:-Length, P.P., 275ft.; breadth, 3 ift.; depth, of hold, 20ft. She is built to the highest Liverpool class, and has water ballast in the after hold and engine room, and also a deep
ballast tank in the main hold. The engines are compound surfacecondensing of 150 nominal horse-power, also constructed by Earles' Company.
AN expensively illustrated report by Col. A. Ford to the
Secretary of State for Home Department, on the circumstaces Stending of state lor Hepartmer, which occurres attending an explosion of gunpowder which occurred at the
gunpowder factory of Messrs. John Hall and Son, at Furnace Lochfoyner, near Inverary, on the 29th September, 1883, has been published. The explosion took place in a drying house or
store which was destroyed, and one man and one horse were killed. Several people were injured. The peculiarity of these reports is that usually the cause of the explosion is untraceable
possible causes of explosion have to be reviewed at length
A NEw lock has been opened at the Grand Sluice, Boston. The of the sluice. The walls are chiefly concrete faced with blue Staffordshire bricks, and are 35 ftt . in height from foundation to
cope. There are three pairs of gates built of English oak, the Ther ones are fitted wint lar be Mraw doors for sluicing purposes. from the designs of Mr. J. E. Williams, M.I.C.E., and in addition to the new outfall cut and other improvements on the Witham,
costing about $£ 200,000$, will greatly benefit the drainage of a vast district of Lincolnshire
A Discosssion took place at the Dover Town Council meeting last week with reference to the course the Council slould pursue with
regard to the proposal by the Channel Tunnel Companies to apply statement of the Town Clerk that the companies had deposited with him notices of their intention to apply for a Bill; also plans which, although varying slightly in detail, are practically the same as those of last year. It being understood that the companies were deter-
mined to make a resolute effort to obtain a Bill in the next session, the Council decided to obtain the necessary powers of opposition to en would greatly interfere with property, drains, \&c., in some parts of the town.
A Discosssiov concerning the rate of wages in the chief towns of
North and South Germany has brought out some partieulars, which appear to have interested an American contemporary. The average appear to have interested an American contemporary. The average
weekly wages, the working day being 12 hours all through the turners, about 20 marks; gold and silver artificers, according to the class of work upon, which they are employed, from 12 to 30
marks; belt makers, worknen in foundries, 12 to 18 marks; lock marks; belt makers, workmen in foundries, 12 to 18 marks; lockfactories, from 17 to 31 marks; watchmakers and soap makers 18 marks; tanners, 15 to 18 marks; linen and calico weavers, from 15 marks; joiners and kindred trades, 15 marks; butchers, 12 to 20 marks; brewers, 21 to 31 marks; tailors, 6 to 15 marks; female

The water question at Southampton has been advanced a stage
by the decision of the Corvoration to adopt Deacon's wasteby the decision of the Corporation to adopt Deacon's waste-
detecting meter throughout the town. The Southampton Times detecting meter throughout the town. The Southampton Time
says this is what the deputation, which visited Liverpool and other places nearly two years ago, unanimously recommended. Four Tyler's. The effect has been to reduce the consumption of wate by 329,971 gallons per day, and to diminish by 103. 6d. per day the
cost of coal consumed at Manslridge. Nothing further was needed to show the desirability of permanently adopting such meter should be and system. Allowing a daily consumpton of 25 gallons per head of
the population, the quantity of water used would be reduced from the population, the quantity of water used wout repesents a saving of $£ 1000$ a year. That reduction meters, and without in any way lessening the quantity of wate
available, as the difference is now entirely wasted, and a great proportion of it owing to deffective mains. The course adopted is therefore, unquestionably the right one, and we have no doubt tha
the results will fully bear out the indications which the last meter hav
From statistics just compiled, it appears that at the of the present century New York had a population of less thai
60,000 . London at that time had a population of 864,000 . London has now a population of about $4,000,000$, while New York, withi enormous number of persons transact their business in New Yor and depend upon it for their incomes, their society, their amuse ment, and heir the suburban population of New York has not been catined tha nearly its true value. The influence of the metropolis upon the country within a radius of 20 or 25 miles is marked and peculiar There are 100 hamlets lying within an hour's reach of the city
hall, which derive their life from the metropolis. Brooklyn, Jerse hail, which derive their life from the metropolis. Brooklyn, Jersey
City, and Williamsburg largely live in the common centre. The stream of wealth flows nightly over into Long Island, State
Island, and Jersey, and pours its afluent waves sack and Passaic into Hudson. Its vital currents are felt north as Cornwall and Singsing, as far east as Babylon, as far south as the Raritan, as far west as Passaic. The enormous growt of the city, therefore, during the nineteenth century cannot fully
be realised. The imports have increased from E5, $, 600,000$ to 6 realised. The imports have increased from $£ 5,600,000$
$£ 76,000,000$. Nearly $6,000,000$ of immigrants have lande 1847, when the Board of Emigration was established. The cit
receives every year 800,000 cattle, $1,500,000$ sheep, and $2,000,00$ hogs; and the sum total of produce per annum which enters New
York reaches $£ 70,000,000$. Yet, the T ine remarks, as recently 1790 the first side-walk of the city was laid, the inhabitants befor that time having to pick their way over planks and bricks

LETTERS TO THE EDITOR.

We do not hold oursedves responsible for the opinions of our

water wheels.
Sul, - When we consider the time that has been spent and
hought expended on the steam engine, it does not surprise us to see the clumsy, wasteful, stand necessarily expensive engine used by present day. These facts bring hiome to our minds motor of the
which other sources of power, though being less attractive, seem
 expensively-worked coal-mine, which acts the part of a store-house
for the sum's antediluvian heat; and can it be possible that this is he most economical means of obtaining power in localities where
water, rational to conctude that, ,fact the means of converting the potential energy of water into effective work been studied to the same
extent, and by men on the same stamp as those to whom the steam
engine owes its success, we should have first engine owes its success, we should have first cost and the room
taken up by water engines far less than at present, and find manufacturers giving more thought to the position of their works, and
team would be used where a fall of water was not attainable. steam would be used where a fall of water was not attainable.
Certainl, tidal power does not seem to be a thing of the present
for England, where land is comparatively dear and coal or England, where land is comparatively dear and coal
cheap; but could not some of our valley be cheaply converted
into reservoirs of force, after the manner adopted by Mr. Thomp son for supplying Greenock with domestic water and mill power,
urning to account the water caught on the surrounding hills turning to account the water caught
which before ran wastefully to the esea? In some of our colonies, where coal is $£ 3$ and more per ton and
land cheap, the tidal energy might be utilised far more economi-
cally than coal. This might be done by talking cally than coal. This might be done by taking advantage of an
eetuary, or making a dam of sufficient size to hold the requisite
water, to be filled by the rising tide, and another small one with luice gates, for the wheel tail-water to discharge into whilst the fevel was below the whesel trace. By By thamatically whens nen the thide the the full
head of water might be utilisel, and the wheel be a fixturehead of water might be utilisee, and the wheel be a fixture at
grat considerationh The The wrier has seen the tidal rise tulisised
very simply, but rather wastefully, by supporting a wheel between very simply, but rather wastefully, by stipporting a wheel between
two barges bracedt ogether, carrying the whole plant of machinery,
being anchored fore and aft. The stream carried the floats round he machinery being arranged to allow the wheel to turn effec tively both ways to suit the current. Generally the machinery
to be driven cannot be conveniently arranged on a barge, and in
such cases the wheel's axle is supported on toots, with the tide between two piers, the power being transmitted by a above water level. In my opinion the most effective plan o
getting over the difitully of varying wheel heights would be to
connect the axle of the wheel by links to the centres of the firs mill shaft, in suchen a way that the wheel might rise and fall, it
mith and
mwn axde describing a circle around the first mill shaft, the axie t
 of the tide, additional gearing must be used to give the ma
ery continuous motion in the same direction. toorng at wieels finemselves, we find them to-day much
the same as they were fifty years agoo and with the exception of
turbines, come under the heads of "overshot," "breast," and "undershot." These terms have anything but a definite meaning, senerally y dapted terminology* is, (1) the "overshot" wheel, which
receives the water at a hilgh level, is moved simply by the weight
water, and is only applicable where a dreat water, and is only applicabbele where a a great fall is the weitainhte-
ussually small mountan strems. This wheel is by far the most
economical and efficient
 Tadldes or floats nearly fitting a sweep, in which they revolve, and
is thus prut in motion, partly ly the weinght of water lodged on and
between the floats, and partly by the pressure on the floats due to the velocity of the water. For these wheespls Morin gave a modulus
the mole of from ' 4 to 7 ; the reason of the great difference will be apparent
as we proceed. (3) The "undershot" wheel, that receives the
water pressure on simple water pressure on simple paddles or floats immersed in the eurrent,
and is acted on hy its force only. These wheels are used where
great volume and little fall is available, the modulus given by General Morin being from bill 25.3 . 31 able, the modulus given by
From the above it will be reaily seen that the kind of wheel
must depend entirely upon the fall of water obtainable, and the must depend entirely upon the fall of water obtainable, and the
size depend on the velocity and quantity of water; quantity of
water varying with the velocity for a given section of stream. This section can be obtained by the ordinary method of finding the with the plumb line. Suppose we divide the stream into six equal
parts, finding the deptla at each part, then their sum, divided by 6 parts, finding the depth at each part, then their sum, divided by
and multiplied by the breadth, will give the area. 'The velocity can be found by throwing a large floot, well immersed, into said
stream, and after it has acquired the velocity of the moving water, note the time it takes passing between two points of fixed
distance apart. It it it takes ten seconds to pass 5oft., then
the velocity of mid stram will be sft. per seond. Ihe
course is much impeded by weeds, stones, dce, half of this might
. course is much impeded by weeds, stones, \&c., half of this might
be taken, iving a mean velocity of 2fft. per second. When the
sides and bottom of the course are smooth and the friction com paratively little, Glynn gives the formula $\mathrm{S}-\sqrt{s-5}$ as the emean velocity of stream, $s=$ velocity of mid stream in feet per second.
Having ascertained then the velocity of stream area and fall, it
requires but requires but a simple calculation to determine the potential power
of the water, and this multipiped by the modulus for the various Wheels given above, would show the useful power that could be
obtained. Mr. Imray gives the formule for finding the horse power of a wheel as follows: - "Multiply the surface of float- in second, and divide the product by $3: 8000$, the पuotient expresses the
liore--power." From these two formule the size of wheel floats is
easily easily deduced if it be an undershot one: the pressure in pounds
per square foot on float boards at rest with the stream flowing at a given speed is nearly equal to the suquare of the velocity in
feet per second, and this pressure on the boards decreases the square of the velocity of the wheel more nearly approaches
the square of the velocity of the stream. To obtain the most
theful effect useful effect from the whiel, it will thus be seen that a certain
ratio, derived from practice, must be followed out; Mr. Imray's and otherse calculations, which a arree with Mr Smed Smean's practitee,
give the velocity of water to that of wheel as $3: 1$. Thus the circumference of of wheel, whatever the diameter, should move at the same speed, viz, one-third that of the water, and the only
way to effectively increase the power is to extend the surface of
the former the floats; a wide float is far more economical, even where the stream admits of a deeper, than a deep one, because it
presents itself to or enters and parts with the water more easily. presents itself to or enters and parts with the water more easily.
"Overshot" has become a technical term, conveying a meaning only known to those acquainted with the subject; there are not many, and, indeed, ought not to be any, overshot wheels, if we are
to understand the term in its literal sense. To get the theoretical amount of force out of the water is impossible, but the nearest approach seems to be with a bucket and endless chain, in such a
manner that the water is effective for its whole height, and all its manner that the water is effective for its whole height, and ail its
potential energy is thrown into the machine; but this kind of motor is seldom employed because of the liability to derangement.
The most effective wheel at present is the so-called overshot, The most effective wheel at present is the so-called overshot,
revolving towards the stream, with the water delivered on to it
"Water-wheels," by J. Imray.
about one-eighth its diameter from the top, thus saving the fall
on the horizontal part of the wheel, which would do little else on the horizontal part of the wheel, which would do little else
than increase its friction. Thus the diameters of all overshot wheels at present constructed should be about one-eighth greater
than the attainable fall; thus a 24 ft . fall would require a 27 ft . wheel. It is found that the buckets do not dash the water, and
retard the wheel if the water falls at a little higher velocity than retard the wheel if the water falls at a little higher velocity than
the wheel is revolving; but if the difference of the velocity of the water and wheel exceed a certain ratio, the water dashes into the buckets, causing them to be only partly filled; at the same time
the impetus siven by the dash to the whel is far less than the power lost by the buckets being partially emptied of the weight of water. The stream must be just fast enough to fill the buckets
when the wheel is moving under its maximum load, and the buckets must be so proportioned that they may retain the water in them till the last moment that its weight on the wheel is effective, and yet empty themselves as soon as it ceases to be so. Ventive, and
obtained ly making the width of stream flowing over the wheal aho is obtained by making the width of stream flowing over the wheel about
4in. narrower than the whieel itself; another method adopted by Fairbairn, and frequently used, is to make a false back to the bucket, such a mammer as to allow the air to escape to the interior of the wheel. The buckets, which play an important part in overshot theels, should be designed with the intention of allowing the water xperience led him to consider the best opening for a bucket to be a $5: 24: i . e .$, the contents of a bucket being 24 cubic feet, the area o
pening should be 5 square feet. In wheels using the water a few degrees above the horizontal centre he adopted the proportion of
3 . With these proportions he assumed the 1:3. With these proportions he assumed the depth of shroudings to be three times the width of the opening, or three times the dis.
tance of lip from back of bucket. Mr. Grier, an old authority tance of lip from back of bucket. Mr. Grier, an old authority,
gives the horse-power of overshot wheels in the following formulx $2 \frac{1}{2} \times$ height of fall in $\mathrm{ft} . \times \mathrm{quantity}$ of water in c . ft . flowing per min. $=$ H.P
Where the fall is not sufficient for an overshot wheel it may be found to be enough for a breast wheel, which follows in efficiency With these wheels, as they were constructed fifty years ago, it was found advantageous to deliver the water as high up a
possible, for thought they lost the impulse gained from the impetu possible, for though they lost the impulse gainet from the inpettus
of the stream lower down, yet the height through which the much more severe. Poncelet's' wheel, however, utilises the force considerably ; but it does not give so good a modulus as the high discharge.
nd Fairbairn have proved by experiment that the most effectual speed for a breast wheel to run is one-third the velocity of the water; but if the wheel fits the sweep tolerably well, as in Poncelet's wheel, a velocity as high as two-thirds can be obtained practically
with advantage. When this is the case, the impulse from exces with advantage. When this is the case, the impulse from excess
of stream velocity orer float velocity is much diminished, and the principal element of power is the load of water contained in the buckets. The largest breast wheel was erected many years ago fo Messrs. Strutt, of Belper, being 40ft. by 12ft. 6in. Mr. Grier als $\begin{aligned} & \text { gives the following formula for the horse-power of breast wheels:- } \\ & \text { Height of fall in ft. X quantity of waterinc. .t. flowingpermin. }\end{aligned}=$ H.I.

Undershot wheels are used where the fall of water is too small fo any of the more effective kind. The advantage of using a larg vertically than they otherwise would; indeed, some makers adopt the plan used on steamers, whose paddles, by means of an excentric
motion, enter and leave the water vertically. The velocity o wheel to that of stream in this der the out the proportion of $1: 3$. Mr., Smeaton, from his numerou "(1) That the virtual or effective head being the same, the effect will be nearly as the quantity of water expended. (2) That the eight of the virtual water expended being the same, the effect is nearly as the square
of its velocity. (4) The aperture being the same, the effect will be nearly as the cube of the velocity of the water." He also ascer
tained the ratio between the load a wheel would cary at the maximum of effect, and what would totally stop it, to be as $4: 3$ when this limit was exceeded, the whole worked irregular an intermittedly.
The results
the wesults of these experiments help one to understand the apparently similar conditions. W. P. AbELI, Wh. Schr.
Derby, December 31st Derby, December 31st.

ARITHMETICAL CHEMISTRY

Sir, -I have but just seen the review of my "Arithmetical obliged to your reviewer for calling my attention to nst. 1 a escaped my notice when looking over the proofs. I do not understand the remark: "On p. 23 we read of Thomas's analyses of
coals for the South Wales Basin, when they were placed in the vacuum of a Sprengel pump." I think your reviewer must have overlooked page ${ }^{\text {as }}$, as regards his remarks about the exercise from a paper, set by the Science and Art Department, as I do not give any answer, I fail
to see how it can be described as incorrect. C . . Woopy o see how it can be described as incorv
Birmingham and Midland Institute,

Birmingham, December 31s
[Mr. Woodward cuts the sentence on page 23 short. Let hin exist, as given in his book, at the date he mentions. We regret We saw page 93 , and maintain that " "fore the words" from coals, work Mr. Woodward refers to is also written by Schorlemmer, and the short title "Roscoe" for a book should be applied to one of two
books written by Roscoe. As regards the question by the Science books writen by Roscoe. As regards the question by the "cience
and Art Department, Mr. Wood ward says in a footnote, "Ther seems to be a mistake in the numbers given," but he.does not giv

the new patent act, 1883.

STr,-The pointing out of difficulties that beset inventors under the new Act in the columns of the last and former issues of TH月
ENGINERR, is of the greatest benefit to inventors, for it will dispel many delusions about the beneits of the new Patent Act, 1883 .
The official notice that no application which bears date prior to the 1st of January will be accepted by the Patent-office drew from and an assumption that a foreign applicant could file an application on the 1st of January where it was denied to a home inventor.
His wols done so-a description of his invention to a London agent who can make a declaration and application on the 1st of January in his but a London agent cannot do with an invention whose author out of the kingdom.
Now if that is so it would be the grossest injustice to home inventors that a foreign inventor should be able to do so ; and if it shoubble, so many inventions having been kept back-the home inventor would have to shelve his invention, whereas the foreign inventor beaten not by any of his faults but the laws of his country. Such, however, I cannot conceive to be possible, in which I am
confirmed by looking over the new Patent Act, 1883, and rules. No such preference is thereby given to applicant for inventions
communicated from abroad. Rule 27 does not communicated from abroad. Rule 27 does not say that it does.
The special form A1 for application communicated from abroad
requires the signature of the inventor and declaration as to true,
\&c., before a consul, \&c., and not of the agent but the inventor and if the signature is affixed on the 1st of January-the officia notice requires it-no agent could file an application on the 1st of
January. In my own case I could not reach London in time to do so, but got the application posted the same day-yesterday-and am conncident that if an application for the same invention was
yesterday accepted I have a good ground on which to upset the foreign patent for the same invention. C. L. H. Lamamers

Roseworth-terrace, Gosforth,
Neweastle-on-Tyne, January 2nd.
SIR ,-Will you permit us through your columns to call the
attention of those who, like ourselves, are owners of current patents granted under the old law, to the extraordinary action of enewal fees by the annual sums stated in the second schedule to thi ew Patent Act, 1883. We have seen a letter written within the pas that "on a patent dated in 1877 the renewal fee-due this year
f100-cannot be replaced by annual instalments." Now, referrin to the Act of Parliament, section 45, sub-section 3, it is provide that "in all other respects-including the amount and time the commencement of this Act, or on applications then pending substitution for such enactments as would have applied thereto write the term not been passed. Now in the case of which we the present year, 1884 , and reading the above, section 45, and the
 Legislature intended to provide that the patentee map either the Legisature intended to provide that the patentee may elther pay
before the expiration of this, his seventh year, one full sum of E100, or at his own option pay the annual feesprovided for seventh nnul fous yount to b total of $£ 120$ for the seven years, that the revenue would be at no loss but rather a gainer by the

Dublin, January 2nd.

SIr,--Under the old law declarations were not required to be
samped with the 2s. Gid. duty. According to notice from the stamped with the 2 s . 6d. duty. According to notice from the
Patent-office all declarations made before a commissioner to dminister oaths, \&c., must be stamped with the 2s. Gd. stamp, nd thus the applicant is taxed and put to the trouble of getting new law made stampec. 1 am not aware stam, and if it was right to accept declarations for patents unstamped on December
31st, 1883, why should they require a stamp January 1 st, 1884 when both are made under the Statutory Declarations Act, 1835? It saves agents and applicants much loss of time to be able to go
to a solicitor who is a commissioner to administer oaths, and this is to be preferred rather than to have to beg the favour from Justice of the Peace. Ifound a Justice of the Peace had a place
of business in a central position, and sent to inquire if he would take declarations, and he refused, saying he had received a message rom the Magistrates' Court not to take declarations but to send them there. This means that agents and applicants must go a mind loss of time, and pay fees into the Manistrates Court.
austices do not want to be troubled with the taking of declarations. Why should the Patent-office or the law try to compel applicants to ask a favour from them? It would be best not to equire the stamp, or to make it applicable to all declarations; or Justice of the Peace and let the other be free. That would give satisfaction to both parties, as one would get rid of a duty they do not desire and which the other would be glad to perform.
Manchester, January 7 th.

Rivet making machinery.
Sir, - Replying to your correspondent, "F. Y.", in last week's
EAGINERR, there were two rivet making machines just and her ENGiNERER, there were two rivet maning machines just as he
describes working at Palmer's Ironworks, Jarrow-on-Iyne, ten are probably working there; but as 1 thet ny pupplage there ten years since, Thave lost sight of them.
Enw1 J. WHTR,
have seen them in other rlaces as well.
Brass and Iron Works, Short-street, Lambeth, Jan, 3rd,

Intervational Fisherifes Exhibition.-The Commissioners appointed by her Majesty's Government have, upon the recom-
mendation of the International Juries, awarded a "diploma of honour" to Mr. Charles Lever, of Culcheth Hall, Bowdon, Cheshire, for special services rendered by him in connection with the lighting of the council chamber, lecture theatre, picture
gallery, and dining rooms of the Fisheries Exhibition at South Coun W
Coal Gas-Water Gas-Electric Light.-The illuminating folks have grown very quarrelsome; and at present there is a
triangular fight going on the with the water gas, the coal gas, and
the electric light to read in the gas journals the horrible tales of accidents, and of destruction to health, eyesight, and complexion resulting from the
use of either the rival gas or the electrical system of lighting. ase of either the rival gas or the electrical system of lighting
The prices, too, seem to bother them very much. The complaint
made against Edison by the cost too much, and second, that he charges too little for it. But if this complaint is true they ought to possess their souls in
patience, for he cannot be expected to stand it very long. The coal gas representatives having been beaten by water gas in cost,
attack it as extremely dangerous and the cause of most of the accidents by suffocation. This is "important if true," but it pretty tables of figures the other way, and between them a these lighting companies manage to leave us as much in the dar:
as ever. There is room for all of them, however, if the as ener. There is romate profits. It is, the charging of too high
content with moderate Prisces Theatre.-The new Prince's Theatre, for Mr. Edgar Bruce, now nearly completed in Coventry-street, Haymarket, in
its construction presents several important features that tend to make the structure fireproof. The proscenium wall, separating the
stage from the auditorium, rises from the righit up through the roof, and the proscenium opening is entirel closed by a hydraulic fireproof curtain, which, under the direction
of the architect, Mr. C. J. Plipps, F.S.A., has been constructed This curtain, which is th in the United Kingdom, the first wing recte measures 32 ft . Gin. by 2 2fft. Gin., and dis constructed of two screens of wrought iron plates $\frac{1}{\text { inin. thick, forming a double division with }}$
an air chamber between of Gin. The top portion of the curtain is framed or rivetted to double wrought iron girders secured to the heads of hydraulic rams, which are fitted with their cylinders o working the hyd proscenium opening. The supply of water of the building. With an expenditure of only eighty-four gallons
of water, the curtain, weighing about 7 t of water, the curtain, weighing about $7 \frac{1}{2}$ tons, can be raised or
lowered in fifty seconds. The movement for working the curtain is in the prompter's box, and the prompter, by simply moving wall a solid fireproof division entirely separating the stage from the auditorium. On the stage fire hydrants are fitted in connection
with the New River Company's mains with the New River Company's mains. In carrying out these
works the proprietor has incurred heavy expense, but has constructed as safe a building as can at present be devised.
160-QUARTERS BREWERYAT TADCASTER, NEAR YORK. messrs. scamell and colyer, westminster, engineers. (For description see page 32.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

In order to aroid trouble and confusion, we find it necessary to public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly divected by the
 answers received by us may be forvoarded to their destination.
No notice will be taken of communications which do not comply with these instructions.
$* W e ~ c a n n o t ~ u n d e r t a k ~$
must therefore request c to return drawings or manuscripts; we ** All letters intended for insertion in TRE ENEINEER, or conof the writior, not necessarilily for publiciction, but as a a proof of
of and
good faith. No notice vecatever will be taken of anonymous communication

Canada as a field for emigration.

 communication with anyone going out in a simillar way Emarant Exariserr.

The Exanger can be had, bubsoriptions.
at the ruwions rail

 Malit titues , Borneo Coylon, Jind

ADVERTISEMENTS.

MEETINGS NEXT WEEK,	
ry meeting. Adjourned.disocussion	
The Parkes Museum. - Thursday, Jan. 17th, at 8 p.m.: Lecture by Mr.	

THE ENGINEER.

JANUARY 11, 1884.
LaNds and public works in new south wales. We have more than once called attention to the manner colonies, and we shall never hesitate to point out, when we colonies, and we shall never hesitate to point out, when we
deem it necessary, abuses which affect our countrymen deem it necessary, abuses which affect our countrymen
abroad. In New South Wales just now there seems to be
a restless and aggressive spirit which is showing itself in several ways to the detriment of the community. The management of affairs does not appear to be in good hands,
or, if there be able managers, they are controlled and hindered by political influences of a mischievous kind Patronage is not well bestowed, for it is to a large extent in the hands of those who use it to their own advantage the number of public servants under such circumstance tends to increase, and is already out of all proportion to the population. It is not our present intention odiscuss the in-
fluences by which the power of mismanagement has been gained, although we may on another occasion investigate the economical fallacies by which the less intelligent majority in the colony is at present beguiled. Where manhood suffrage rules the State, it is a favourite demagogic art to promise materialadvantages, high wages, and the like, to he electors as the results of a certain policy, while private Jain and personal aggrandisement are the real ends in view. There are no fixed lines in which operations of this sor are carried on. In America, which is often held up as an in the muncipalities, where the taves have found the in the muncipalities, where the taxes have found thei party leaders. In New South Wales at present the party leaders. In New south Wales at present misappropriation of public lands and the diversion of railways
to benefit private persons appear to be the methods to benefit private persons appear to be the methods
adopted; and they are worse than the simple abstraction dopted ; and they are worse than the simple abstraction
of public money just referred to, because the latter is neasurable, and is limited to the amount stolen, while he future life of the colony is bound up in its land Which has in many cases an enormous potentia is a permanent and almost irremediable injury. The andilie o acilities for malpractice, and when under such advention circumstances, members of Pariament become, either themselves or by their relatives, land agents, while permanent officials appointed to safeguard the pubhic interests becom lind speculators, the result is not doubtful. Of the mil limost 1 lt he wich a almost all the good plots are appropriated, and are in the hands of a very small number of people. The jobbery to
which we have referred has taken place more or less in all which we have referred has taken place more or less in alic
the Australian colonies, and bodes ill for the future public peace of the inhabitants when the facts are realised. But it is not of agricultural land we would speak here, but o what more immediately interests our readers, the vas mineral territory, the coal and iron fields which are to mak All the south wales the fur workop of the Pacific Alr the best of these lands is alienated at prices and on being of the Stasly inadequate and disastrous to the well only the beginning But misappropriation of the land only the beginning of the evil. Having acquired the and, it then becomes necessary so to lay out the railways as to favour these private estates; and the scandal becomes glaring when for this purpose lines which have been projected by capable engmeers in sensible manner, namely, to serve best the public traffic and to allow of easy construction, are diverted to routes of a exactly opposite character affording the minimum of con enienc, cosly to construct, and expensive to work. W quote the following from a recent number of the Sydney Mail:- What public but an American ring-cursed public or an apathetic Australian public, would permit a number of its representatives to become the owners at a pepper-
corn value of vast tracts of its richest coal-lands-land corn value of vast tracts of its richest coal-lands land worth in themselves to any company a hundred times, aye a thousand times, the price paid to a supine public for them, and then, forsooth, also alow these men in their repre sentative capacity to complete their already most excellen bargains by delusory railway projects having for their real aim the development, simply and mainly, of those very ands and of their owners interests. syaney and her Parliament are in these days of quick communication to near us to allow these scmals to remain unnoticed ; and we are glad to see that public attention has already been called to them on the spot, and that some of the most flagrant cases have been arsted.
Much of the evil arises from the anomalous position the technical staff in the colony. The railways are under Government control, and engineers as able and trustworthy as any in England are in the public service. There is an engineer-in-chief for railways with the consijerable salary of $£ 1800$ per annum, under whom all trial surveys are mad and all new lines constructed. It would be thought reasonable that, having such an engineer, he would have the authority of his office, and that, in the usual way, ther would be from the lowest subordinate upwards a chain of responsibility devolving finally upon him. But there is another official, the Commissioner of Railways, with salary of $£ 1200$ per annum, who controls the "existing lines," and who has under him an engineer at £1000 per annum. Directly a new line is finished, it is turned ove to this gentleman, who at once proceeds to criticise and alter the work just passed by the engimeer-in-chief. And as at present there is a feud between the two departments, the proceedings are as might be expected under such system of an aggravating kind, and rather costly to the public. For instance, bridges and roofs which have been made in England, inspected and passed here by engineers of thehighest eminence, dulyaccepted by the engineer-in-chie and paid for by the colony, are reported against by the mino official, and pronounced unsafe. Unfortunately, the desire of the protectionist party to manufacture everything in the colony has found expression not in effective legislation to this end, which would be perfectly legitimate, though perlaps economically unwise, but in a the public service of the colony; and this feelingfits in well with the feud between the departments just referred to. To criticise adversely what has been imported seems just now to be popular and praiseworthy. So accordingly the engineer of existing ines, aided by subordinates who have for various reasons left the department of the engineer-in-chief, find it a congenial task to criticise and condemn what has been passed and accepted by the responsible authorities in the colony a well as in England,

Surely the better opinion in Australia will reject a policy so mean and ignoble. The public always suffers in which railway affa There the all There the eving from divided authority and corrupt ment han ar found expression. Mr. Speight one of the ment il l m in best rail ay in the Milly, and hassistant general manager of the Midland Railway, has just left England to take up the position Chie Commissioner of Railways-not, we hope, to occupy the anomalous with full outhority to put matters richt, We shall watch wis his progress with much interest, and appreciate fully any jobbery with which he will have to struggle. Some such heroic remedy seems wanting in the colony of New South Wales. We wish not to be misunderstood. The day is past when the mother country would attempt or desire to dictate to the colonies, whose contentment, if not always their prosperity is bound up in the self-government which has been so lavishly granted there. But the colonies ar not yet independent of home opinion, for the strong capital and lis the very life blood of the capital ; and good credit is the very ife-blood of the ated in London, and investors will be the less inclined to accept low interest if they think their money is to be accept low interest if they think their money is to be misapplied. The land whe warde rich and ncreasing a revenue is already alienated, and if the railways a aive, the imeorll fur we wite in pualk public interest, and also in that of engineers, who, as made the instruments of jobbery, nor subjected to insult if they do their duty
board of trade rules for the strength of marine BOLLERS.
It will be remembered that at the last session of the Institution of Naval Arehitects a paper was read by Mr. Mirton, one of the members, on The the Boar on Trade Rala Marine." In this paper it was stated that the Board of Trade Rules for Marine Boilers as then enforced, not only were not based upon sound principles, but that they were exceedingly oppressive in their action, compelling marine boilers in passenger steamers to be worked at pressures
much lower than experience had proved to be abundantly much lower than experience had proved to be abundantly
safe, and thus preventing steamship owners from taking safe, and thus preventing steamship
advantage of the greater economy of which higher pressures advantage of the greater economy of which higher pressures
would admit ; and it was further stated that the rules actually prohibited further improvements in marine engineering because the thickness of boiler plates they demanded for high pressures were altogether too great to admit of their being properly worked. It was
stated in the paper that hundreds of vessels not engaged in stated in the paper that hundreds of vessels not engaged in
trades requiring them to conform to the Board of Trade trades requiring them to conform to the Board of trade
Rules, havebeen rumning safely for years with boilers worked Rules, have been running safely for years with boilers worked
at pressuresfar beyond those which the Board of Trade Rules at pressuresfar beyond those which the Board of Trade Rules
would permit. The Presidentof the Institution took the mat Coucil haveben inco a fow having the Rules modified. One of the results of the pressure thus brought to bear upon the Board is seen in the issuing of a remarkable document of fifty-seven pages, foolscap size, containing the observations of Mr. T. W. Traill, the head of the Consulta tive Branch of the Marime Department of the Board of Trade upon the Board of Trade Rules and Lloyd's Rules for boilers, and also upon the paper read by Mr. Milton. This document bears date the 27 th June, 1883; but it appear: from the printer's marks at the foot of the first page that it was not printed until November. Apparently the Board required the long interval between these dates in order to make up their minds as to the advisability of allowing the document to see the light of day; and after careful perusal of its contents, we thimk that they were very ill-advised not to have indefinitely delayed its issue, as its dissemination amge to to ther what ever prestige the Board's Rules for boilers have up to the present enjoyed. It appears to us that the gravest charge against the Board's Rules in Mr. Milton's paper is that the Rules insist upon a less pressure being carried in all case than could safely be allowed, as proved by the fact that hundreds of vessels have been running for years with boilers worked at much higher pressures than would be allowed by the Board of Trade. Mr. Traill does not in count attempt to controvert the fact that the that the vessels carry high pressures, nor does he state As a matter of fact, boiler explosions and serious boile accidents have been very rare at sea; and when they have occurred they have been due to want of care in the management of the boiler, and not to deficiency of strength of structure in relation to the ordinary working pressure The omission of any reference to this point leads to the conclusion that the charge was well-grounded, and that the Rules as they now exist require to be very considerably docired. This is further shown most conclusively in the to 1872, when the Board first insist tice of the makers of marine boilers was to assume that the strength of double rivetted joints was equal to seven-tenths of that of the solid plates, however the joint were proportioned, while in some cases they actually pos--ifths of the strength for which weaked. The Board of Trade Rules, by pointing out the boilers stronger, but allow them to be worked at pressures increased proportion ately to their increased strength ; yet presumably the ori ginal comparatively weak boilers possessed sufficientstrength for their purpose, for it is not stated that they in any case proved themselves to be weak by bursting. It follows the that in these cases the Board's Rules, by the showing of
their chief surveyor，required the improved boilers to be worked at pressures of ouly three－fifths of those for which they would have been safe．Since 1872 ，the stringency of
the Rules has been slightly relaxed，but not nearly to so great an extent as indicated by the above figures．
The same fact in shown also in this document in the re－ ference to the boilers of the s．s．Ban Righ．The boiler in question hat worked satisfactorily for six years at a pres－
sure of 60 lb ．per square inch，and was then condemned by sure of 60 lb ．per square inch，and was then condemned by
the Board of Trade as being unfit to carry that pressure any longer．It was burst by hydraulic pressure after it had been taken out of the yessel，and the experiment showed that its strength was then as great as it was when the boiler was new，for it tore through a rivetted seam which had not suffered at all by corrosion during the six years
work．Its six years of work showed that this boiler with an ultimate strength of about four times the working pressure ultimate strength of about four times the working pressure
was perfectly safe；and the experiment proved also that the Was perfectly safe；and the experiment proved also that the
Board＇s action in this matter put the owners of this vessel Boards action in this matter put the ownels of them to re－ new the boilers，which not only were perfectly safe，but which were as strong when condemmed as they wee
they were originally passed by the Board＇s officials．
Although in this document the main point at issue has been lost sight of，yet the criticisms upon some of the
details of the Board＇s Rules have been replied to，and com－ details of the Board＇s Rules have been replied to，and com－ Lloyd＇s Register，and some curious remarks concerning the latter are made．It appears to us that the Board of Trade
and Lloyd＇s，in framing rules for boilers，should have very and Lloyd＇s，in framing rules for boilers，should have very
different objects in view．The Board of Trade is a Govern－ ment Department entrusted with certain functions for the purpose of seeing that due provision is made for safety of
the vessels and their equipment．Their surveyors have，so the vessels and their equipment．Their surveyors have，so
far as the boilers are concerned，only to declare that they are safe for a certain working pressure，and that the re－ quirements of a certain Act of Parliament in regard to the safety valves are carried out．The Board＇s Rules for
boilers should，therefore，be such as would permit of the reatest load consistent with safety being carried by the boilers，for the period for which they are passed，this period being never more than twelve months；and Government
officials are not called upon to take notice of points in the onstruction of the boilers，not at all affecting their strength efficiency forsuchalimited time，but which mightperhaps， rightly or wrongly，be considered to have some influence upon their ultimate durability－say，for instance，as to twelve years．Lloyd＇s surveyors，on the other hand，not only have to certify that the vessels they class，together with the machinery，are in sate and efficient condition，but they class the vessels for much longer periods than twelve months；so concerns them．Further，although Liloyd＇s at present only give one class to machinery，merely certifying to its safety ind efficiency，it wouldat any time be open to them to classify machinery in a similar way to that in which they class the hulls of vessels，taking cogmisance of many other points than mere safety，such，for instance，as design and proportion in－ and accessibility of parts－all very important points from shipowner＇s point of view，but points upon which a Government Department cammot posssibly have any ex－ ver，do contain very many instructions as to different pressures which are to be allowed upon boilers，according to the particular methods of constructing the circum－ ferential seams of the shell．Lloyd＇s Rules make no dif－ ference in the pressure allowed to be carried by the boilers on account of these seams，as their influence upon the on this point of Lloyd＇s Rule，Mr．Traill says ：＂The chie cause of the circumferential seams being entirely ignored in this rule，is that practically they are not subjected to a stess of any importance due to the steam pressure，but he utility of that knowledge is nil when we know from experience that cylindrical shells are frequently severely tially owing to one or more portions being either hotte or colder than the adjacent parts．So much is this the case，that there are very few marine boilers not fitted with apparatus for promoting uniform temperature that do not leak at the bottom，and it is a fact that quite as many fractured longitudinally．These circumferential straininge and crackings are not very dangerons，and do not cause ex plosions，but they involve detention，as well as considerable annoyance and expense to the shipowner in the form of re－ pairs．We have here Mr．Traills own statement that even
fracture of a circumferential seam would not result in an explosion，and would not be very dangerous．Then，we ask，why do the Board Rules attach so much importance to of any importance due to the steam pressure，＂why is the steam pressure made to depend so largely upon the way required to prevent these＂circume If any legislation crackings，＂it should take the form of a measure to preve ＂one or more portions being either hotter or colder than the adjacent pa
be superfluous．

The explanation given in the document for the elaborate serice of coeflicients to be used in determining the pressure to be allowed upon furnaces，according as the holes in the
longitudinal seams are drilled or punched，and as the seams longitudinal seams are driled or punched，and as the seams themselves are lapped or butted，and single or double
rivetted，is one which is worth repeating here．＂The object in allowing a higher pressure for drilled furnaces than for those punched was to encourage manufacturers to not only prolong the life of the boiler，and by that means not ony prolong the liod bork ing expenses and the risks incurred．Furnace tubes are
generally made of high－class plates，which，by reason of their ductility，are better suited to resist the unequal ex－ pansion and contraction due to the unequal temperature of
the variouspartsof the tubes；but when holes are punched in them，suchastheholesin the longitudinal seams，they harden
the plate in their vicinity，or at least destroy its ductility and producea strip of hard or unyielding platefrom one end of the
tube to the other，which in time cracks，usually from the tube to the other，which in time cracks，usualy from the
holes to the caulking edge，and causes leakage，corrosion， and repairs which are troublesome and costly
In the first place，we would remark that cracks in the seams of furnaces are by no means uncommon，but they
are always produced by the action of the fire upon the laps of the plate in the circumferential seams，and as the longi tudiaaly seams of the furmaces ben farine boilers are in－ variably placed beneath the line of fire－bars，such
do not occur in them．We would like to
strip of hard or unyielding plate from one end of the tube to the other＂is such a serious defect as to warrant a great reduction of the working pressure being made，why a join
made with double butt straps，involving a treble thicknes of plate along the whole length，should not be considered to be very much more cfficient than a welded joint；yet fur－
naces made with either of these joints are allowed to work with equal pressures Furthe if are anowed to work observed with any form of joint，it appears to us that the practical remedy is to stop the leakage，not to reduce the pressure

the royal fegineers and indil

Av unforeseen difficulty appears likely to trouble the authorities at the Horse Guards with reference to the de－ mands made by the Indian Government for officers of the Royal Engineers．Of course the arbitrary rules of the service，if enforced，suffice to overcome this for the pre－
sent；but it is very evident that，if that enforcement is long persisted in，it will end in making a distinguished regiment，instead of being，as it is at present，the coveted unpopular and least to be desired among our youthful aspirants for military employment．Hitherto，to receive a
commission in the Royal Engineers as the reward of attain－ mentsof a specially high character，and only to be secured by the hardest workers and men of exceptional capacity and ability，has been considered to be equivalent to being on the high road to a distinguished position，if but rarely to high military command．Hence that desire to be enrolled upon its lists which has secured for its relatively few predict that unless competitors；but it is not dimiculer mined upon，the right of selection between the Artillery and Engineers will lead most of those successful at the Woolwich examination to choose the former arm of the hitherto，the latter．
Until very recently it was never known to be neces－ sary to order engineer officers to India－the list of anxious volunteers at the Horse Gnards was always full prize to be courted．There were all sorts of good appointments to be secured in that country by officers who proved themselves of callbre，and their service were eagerly sought for for the Public Works Depart－
ment．But all this has changed．It was evidently unjust to the trained civil engineers sent out from Coopers Hill，or otherwise secured，always to pass them over in favour of military men．There was some show of justice in such a course as long as students at Woolwich could be said to have possessed the monopoly of high scientific training，but when that ceased to be the case the mere prestige of belonging to the military service could no longer weigh．From the cessation of this practice may be
said to date the commencement of the disinclination of officers of the Royal Engineers to serve in India．It is but just to them to say that it was not alone the pecumiary advantages which weighed with them in their desire for
civil employ．Every engineer desires practice in his civil employ．Every engineer desires practice in his pro－
fession，and in the Public Works Department of India this desire could be fully gratified．But when work is con fined，as it must by gratingost entirely to the routine duties of barrack and station charge，life in India become burdensome in the extreme．There is an entire want of interest in such duties，and the mind becomes weary for
want of the intellectual employment which from long want of the intellectual
habit has become a necessity
From the two causes above enumerated therefore has arisen that disinclination to Indian service among mintary engineers which has given rise to the difficult， Indian government．Instead of hundreds of men anxious to go out，large sums are now offered by officers whose turn it may be to serve to effect an exchange ；but even Only recently we havely succeeds in obtaining a substitute from the Viceroy＇s Government for twenty officers，and in order to fulfil it men have had to be placed under order for early departure who have been scarcely any time back it foreign service．Thus some officers whose misfortune it has become to take their turn on the roster will have twelve out of fifteen years of service in tropical stations and now that the prizes formerly attainable are closed to them，such conditions must soon end in depriving this eminent branch of the army of the attractions which have hitherto been so alluring，for few positions in the able as that of an engineer officer in the past．No blame whatever can be attached to the authorities for the individual causes of hardship to which the present difficultie have given rise．They have had no alternative but to that if they desire still to secure for the Royal Engi neers the services of the best men，these must
be accorded privileges which，if not widely exceptional still must exempt them from undue hardship．An engi neer officer in India but rarely has those duties con－
nected with subordinates which oecupy and interest other officers． In many cases they have nothing to
attend to but oftice routine and work possessing
little or no attractions of a scientific character．Taken
employment，their life in India becomes barren of all inducements to submit to it
of course we cannot recommend a recurrence to the practice we have often condemned of superseding civil offices in the scientific men．There may done fen oftices in the scientitic departments of the Indian public ervice．which it may be desirable to fill by officers of
military training，but these are so small in number as not to weigh in the general question．We understand that by recent arrangements the emoluments of engineer officer serving in India have been considerably reduced，ever hen they are confined to ordinary duty；and if we hav作解 correctly informed on this point，the difficulty arisin It ，have atready point號 of the duties of the Royal Engineers demands for that egiment the continuance as heretofore of the sel cices of the best men obtainable．What course
should be pursued we shall not now suggest．We can merely call attention to the position，for which it is
imperative a remedy should be found．Life in India， when active service is rare and work of interest absent has few attractions；and the pay of a military man no social life of late years，anything beyond a bare maintenance． e have even had under or qualified otficer of the Royal Engineers has been found willing to accept a civil appointment of ± 1200 a year nol oing－a－begging．We heartily desire to see esolved upon which shall stay the growing unpopularity one of our most distinguished services．
the electric light in houses．
The purveyors of the electric light have found a diffi－ culty where this was little expected．The British public
displayed a good deal of enthusiasm over the electric ligh exhibitions and elsewhere；but now that those who ar prepared to supply the light as a substitute for gas an
 amps，lamp holders，and wires，it is found that the cost of domestic installation is begiming to damp enthusiasm， houses after all so very much．To say the least the grapes are getting sour．To the uninitiated it may com strang，but nevertheless appears to be the fact that the＂wiring＂of a house worth，say， 1150 per year，cost f even unpretentious fittings， 1 mps，switches，chouk，the cost is generally enough to make private householder： think they will rub along with gas．The cost of wiring seems to be one of the most deterrent items．The price o lighting of seen reduced to a figure which will make the Gous thi a room cost little more than with gas；bu sked to pay to get the current to thelamps．In thedays whe the price of gas was 12 s ．per thousand cubic feet，as it was i 1825 ，and everyone was provided with oil lamps and orna－ mental candelabra，the same difficulty turned up，though， erhaps，it was more easily got over．The price of gas e chl ot quite so great a bar It has now for fittings wa ears been customary to fitupnew houses with gaspipes before hehouse is completed or during its construction；the charge being borne by the landlord just as it is for water pipe hese the tenant has，of course，to pay rent，but whole ent nobject the householders in any distric such as that，for instance，to be lighted by the Victoria Central Station，are already provided with their gas fittings many of which are of a costly character．These they d not care to put aside merely to adopt another，though a better，cleaner，and more healthy light．The mere viring，as it has been thought and spoken of，cost any pretence to tasteful design cost as much，or more，than ，intings of thiskin？ The answer by experienced electrical engineers is，＂We have＂ done it over and over again，and will not do it any more． ave had it done will not have the gas connections remover． The result has in almost all cases been electric light failure trouble after a year or so，because of the makeshit tmosphere and slight gas leakage have because the gas wire coverings at places．If householders would have the fittings taken down and propery converted into ectricel fittings，and would have the gas connections removed something satisfactory could be effected ；but even then the lectrical engineer is not satisfied，because he considers that ardly any of the gas fittings，whatever their design，are electric companies are in a diffiulty，and here again the hardly any good designs of electric lighting fittings yet to They feel that something special is required for the new light，and none are able to show exactly what pendants and brackets and so on；but most of them are charging a very high price，just as they are at present for of good design is more rapidly extending amongst pur－ ongst th nanufacturers，and hence a few people pay the high price
which the few artistic manufacturers demand，while the which the few artistic manufacturers demand，while the
many are waiting until the manufacturers generally recog－ ise the fact that many of the best designs could be mor heaply carried out than the tawdry things they are stil naking at a comparatively small profit．There is demand now for good appropriate，yet inexpensive，
designs for electric light pendants and brackets．The difficulty of getting these is really felt．The main difficulty，however，is with respect to the wiring．House－
holders object to pay for wiring a house，and especially
a house which is not their own. The landlord will not do
it. It has been proposed that the electric lighting comanies should do this and clace elric lighting comthis it is urged that this would increase the cost of lighting for supplying a thing the equivalent of which is not supplied by the gas companies. The gas companies stop The difficulty would not be so great if the electric light consumer would be satisfied to have the whole of the light in from one to three places in a room, as is the gas light,
which reduces the piping to a minimum; but he is not which reduces the piping to a minimum; but he is not.
As soon as he entertains the idea of using electricity, he wants the lights distributed so as to get the best possible effect, and the electrical engineer wants to do the same. can be fixed up in cupboards, cellars, and in every corner of the house quite easily where he could not safely have gaslight, and hence he no sooner thinks of adopting
the new light than he wants at least twice as many points f light as he has been accustomed to twice as many point. that to supply all these lights nothing is required but : few wires. All want to have the wires quite out of sight, nd it is this that runs up the cost. If the wires are run fied with these. We have only touched upon the multitude of small electric light people whe which is distressing the electric light people who are really doing com-
mercial domestic lighting, but perhaps enough has been said to call attention to the fact that the difficulties rens me in done. Conwhich they would go in lighting what has not hitherto bee lighted at all by gas. A compromise must be struck as to thited at all gy gas. A compromise must be struck as to
the use of gas fittings, and as to the mode of wiring. Dethe use of gas fittings, and as to the mode of wiring. De-
signers must be employed in devising suitable and not to costly fittings of all kinds. At present it is necessary to solder the wire connections, and those who have had most experience seem to be strongest in insisting upon the
necessity. More ready means of connection than this must be devised. Some of the electricians urge that this costs a good deal, as compared with gas pipes in lengths at about anly need to be smothered with white lead to to tight This may be easy, but surely electrical people are not long o go about complaining that a system of iron gas pipes can ,e put up in a house so much more readily and cheapl letail" are, as usual, turning out to be the difficulties They are, however, of the order of things which can he winked at by many, and we should like to see the
several chief questions concerned fully discussed. This question of willing appears to have assumed unwarrantable proportions, and so far as regards new houses it
hould present no difficulties at all. Unfortumately should present no difficulties at all. Unfortunately up to the present electricians have always been the last to see
how a trouble of this kind is to be got over. A few hours how a trouble of this kind is to be got over. A few hours
with a bell-hanger might prove useful to not a few of hem. Soldering is not necessary, but electricians as a body do not seem to know how to make a good co
without it. Engineers will be happy to teach them.

marine insurance.

 Thrre are several new methods of insurance of vessels pro-posed in the North of England, which may, when carried out,
alter considerably the bearings of the question. It has been usual hitherto to insure vessels against all risks in a large num-
ber of clubs or societies, and thus the risk has been ber of clubs or societies, and thus the risk has been spread over
a very large area. One of the proposals aims at decreasing the a very large area. One of the proposals aims at decreasing the
number of clubs by increasing the amount that they may insure upon each vessel; and the advocates of this claim that it will
secure a more complete supervision of the vessel in case of secure a more complete supervision of the vessel in case of
average repairs. Another club is proposed to insure one type
of vessel that is considered to be very safe. A third is about to of vessel that is considered to be very safe. A third is about to parts of the vessel's outfait that suffer more by weare and tear
than by actual loss ; and there are. several other proposals which are to be decided upon at the annual meeting of the old clubs at the beginning of next month. But
it is doubtful whether any of these will lessen the
gross cost of the insurance of the vessel, its cargo, and outfit. gross cost of the insurance of the vessel, its cargo, and outfit,
It is found that over a period of years the total loss of thats part of assurance cannot be much reduced. But there
there is a large outlay, and perhaps the largest, paid for the repairs of
vessels that are not entirely lost. It is known that the cost vessess that are not entirely lost. It is known that the cost of
this is excessive. At present it is not to the interest of the owner of the vessel to keep down this cost; when his vessel
is injured his interest lies in seeing that the repairs
are as complete and as speedy as possible; and it is evident that are as complete and as speedy as possible; and it is evident that supervision of the assurers must be limited to some extent.
Some abuses have grown up, and what is now aimed at is to lessen these or to eradicate, them as far as possible. But as
they have been of slow growth and have to some extent become incorporated with the system, the work is found to be very
difficult, and it is only after much experiment that the desired end can be attained. Meantime, the variation in the rates of premium or the calls that are paid is one of the most remarkable
features in the case, and it is becoming clear that before any Government interference can take place, there is need for an inquiry that would enable a better judgment to be formed as to the
cause of the fluctuations, and the conditions under which cause of the fluctuations, and the conditions under which

railway rates.

The opinions held upon the railway freightage question by the ironmasters and hardware manufacturers of south ta fordshire and East Worcestershire have been expressed with no
uncertain sound at a joint meeting in Wolverhampton of the Railway Rates Committee of the Wolverhampton Chamber of Commerce, and the Railway Rates Committee of the South Staffordshire Ironmasters' Association. It has been resolved to form an association embracing all the trades of the district,
whose object shall be to report to the Railway Commissioners the many cases of hardship to which the companies' policy gives rise ; to represent that the companies' interests would be best
served by assisting rather than "crushing" the traders and manufacturers of the district, and also to aid individual trade in dealing with cases of unequal and excessive charges. A
offer of co-operation from the Associated Operative Ironworkers has been accepted, and invitations have been sent for the co
operation of the Associations of Miners and Hardware Opera ives. The preliminary meeting of the Association is to be held in Birmingham on the 17 th inst, when representatives of diver trades are expected from most of the chief South Staffordshire
towns. The joint secretaries are the secretary of the South towns. The joint secretaries are the secretary of the South
Staffordshire Ironmasters' Association, and the secretary of the Wolverhampton Chamber of Commerce. A guarantee fund, t thich it is intended slaal reach some $£ 20,060$ or more, wasbegu hat energetic action was agregatho atter, wo wiml persuaded that no loss would be inflicted on the railway comdanies whose prosperity is inextricably involved with that of the istricts which they serve

LITERATURE.

Kinematics: a Treatise on the Modification of Motion, as affected by the Forms and Modes of Connection of the Moving Parts of John Wiley and Sons, New York; Tribbuer and Co., London 1883.

This is a very valuable book. Nothing has been published ince Willis's "Principles of Mechanism" which is more
likely to prove useful to those who have much to do with he design of gearing In matter, method, and illustratio will be found alike excellent. It is to be regretted however, that the author has selected a title calculated to mislead. Indeed, it is only by attaching very elastic value to the word "Kinematics" that it cal
be made to apply to the book at all. Mr. MacCord i ap made to apply to the book at all. Mr. Maccord is tating that "a word of explanation is due to he reader in view of the fact that the follow ng pages relate to but a smal number of the
vast array of devices included in the broad tern "mechanism." The book is really a treatise on gearing and nothing else, for only incidental reference is made to link work. "The endeavour has been made," says our author, " to treat the theory of the subject in a practical
manner for the benefit of the practical man. That is to manner for the benefit of the practical man. That is to say, the demonstrations are made as far as possible directly dependent upon the diagrams; and the latter, in most cale, are accompaied ly explations which it is hoper will enable any ordinarily expert draughtsman to lay out the movements with ease and accuracy." He has been very successful in his endeavour to attain a praiseworthy Questions connected with spur gearingare usually regarded under two different aspects. The "practical" man regards
the production of a good spur wheel and pinion as a comthe production of a good spur wheel and pinion as a com-
paratively easy matter; and the result is that not one pair of wheels out of fifty is nearly perfect. Much of thi mperfection is the result of ignorance. It is very nearl as easy to make a pattern right as wrong when the
draughtsman and the pattern-maker know how. As a rule, however, they do not know how, and all parties ar well satisfied if the wheels run without making a grea deal of noise and without cutting each other to pieces in a short time; and here we would specially warn those who
have to deal with gearing that a pair of ill-fitting wheels will never some other portions of machines. A bearing, for example bad to begin with, may by degrees be got into good condition; but wheels never improve, they get worse the longer they act on each other. There is, perhaps, one
partial exception to this-a worm wheel and screw, The partial exception to this-a worm wheel and screw. The into adjustment; but nothing of this kind can possibly take place between two wheels. The teeth will polish each other, and so far improvement will take place, but no further. The second point of view
is that of the mathematician. He knows that the pro blems which gearing present may for the mos part be solved, and he can also tell, which is perhaps more important, which problems cannot be solved. We hav possible to make teeth work perfectly on each other-that is to say, that no mathematically exact solution applies to such a case, let us say, as that presented by a spur flyimproprieties as well as impossibilities in gearing, such as present themselves when we attempt to drive pinions with very few teeth; but these are quite exceptional, and not only is it true that a very excellent form can be imparted to the teeth of any given pair of wheels, but that more forms than one may be employed.
Mr. MacCord's object is to combine the two plans referred to into one, and to show how it is possible to apply the practice. This has often been attempted before, but unfortunately the mathematician has too often made very simple matters appear repulsive. When the practical man, who wants information finds pages filled with formule and constant references to sines and tangents, he gives up in despair and goes back to the Mr. MacCord hashas as asoly all this, and even the most complex problems, such as those comnected with lobed wheel gearing, he has handled in sucl a way that it will be the engineer'sown fault if he failsto understand what our author has to say. As an example of our author's style we quote the following passage:- "Although practical ill effects of using wheels with incorrectly shaped teeth are so closely connected with the subject as to demand a brief notice. It is to be observed then the action of toothed gearing, especially at high speeds, are not necessarily identical in origin. It is true that the causes which produce noise will also produce vibration: but vibration may be produced by other causes, and may at least be imagined to occur without noise. To explain: suppose two wheels of perfect form and finish to absolutely uniform; then, whatever the amount of back-
practice this uniformity of power and resistance seldom o and often the the variations in speed cause the front short intervals. These blows cause a rattling noise, which worse the higher the speed, and is accompanied by vibrations due to the impact between the teeth. The sole cause of the noise evidently is the existence of backlash; but even were the teeth so perfect as to have no backash at all, these irregularities in the power and the ujurious, according to the to vibrations, more or They would, however, take place in quiet. But again, vibratory action may result from a totally different cause namely, incorrect forms of the teeth. To illustrate this one two engaging wheels whose teeth are, as befor of the driver be absolutely uniform, and the resistance such as to keep the acting outlines always in contact, so that there is none of the rattling above mentioned. The verage velocity ratio will be correct. If the driver ha for instance, 100 teeth and the follower 50 , each revolutio f the former will cause two revolutions of the latter; and ause oftieth of a revolution of the follower But uring this fractional motion the velocity ratio is not onst the flower being diven too rapidly during one part of the action, too slowly during the other part. Thus the action of each pair of teeth, though correct as whole, is faulty in detail, being made up of two counterbalancing errors. The speed of the driver is niform, but that of the follow consists of a series of pulsations, not necessarily audible at low speeds, though practically certain to become so at high nes, But even at moderate velocities this vibration act injuriously upon the whole mechanism, and in many case see that the perfection of work done by nachine may be impaired
Our author, in handling this part of his subject, has not given sufficient prominence to the question of "drop," re properly male aut to work then there will be interval, however small, during which the teeth are not in contact. If, on the other hand, the gear is imperfect, then one pair of teeth will go out of contact before another have come into contact, and the result is that the next tooth in driven of precedence on the driver, will fall on the too of the commonest defects in gearing, and does much to make it hoisy. Concerning another point of much importance our uthor is almost wholly silent, namely, the importance of keeping the pitch lines in their proper places. These lines nor lie apart ; but in practice it is difficult to find this rule complied with. We often see wheels pitched too deep in gear to begin with, because as wear takes place in the bearings they will get further apart. This is obviously
bad practice, because it is just the thing to spoil the wheels bad practice, because it is just the thing to spoil the wheels
at the outset. Again, the millwright who mounts the wheels is often sore bestead to find the pitch circle; in a large In all cases the pitch circle should be marked by the maker, either by punch dots or scoring
In this book will be found a good many things not dealt wis the other treatise of he kind, we may refer specially to the section on pin gearing. It is not generally
known that lantern pinions, such, for example, as are used in Dutch and American clocks, possess certain advantages over leaved pinions, and they can be produced so cheaply
and accurately that they deserve the attention of all interested in gearin
Finally, it will suffice to say that the book specially commends itself to those who have to do with such mechanism
as that employed in spinning and weaving, because in it are fully described forms of gearing concerning which next to nothing has hitherto been written; such, for example, as dissimilar lobed wheels, derived from similai ellipses, and interchangeable logarithmic spiraf multilobes. There is also in the book a good deal of useful, practical The volume is a large octavo, containing 335 pages, and 306 well executed engravings.

DEATH OF MR. FISKEN.

We announce with much regret the death of the Rev Walliam Fisken, which took place very recently at Stamford
ham. Mr. Fisken was more than seventy. He was a native of Perthshire ; and alongside the study of theology, diligently pursued mechanics. In this latter science his brothers, Thoma ficient. Mr. Fisken will be remembered by posterity, as he well deserves to be, and especially by agriculturists, as having bee one of the two inventors of a steam plough, the other being his brother Thomas. Several years ago an important trial came of at Westminster upon the merits of the invention. The partie were Messs. Fisken and Messss. Fowler, Leeds, and the finding of the jury was that the Presbyterian minister at Stamfordham
and the schoolmaster at Stockton-upon-Tees were the origina discoverers. Mr. Fisken worked on the fly-rope system. A endess rope, running round the fiel or anstances, was put into motion direct by the fly-whee the engine, and this rope drove windlasses of an extremely ingenious type, by which the plough or other implement wa system, especially with tackle made by Messrs. Barford and Perkins, of Peterborough, but for some reason the system neve quite "took with farmers, and we believe that very few sets of Fisken's tackle are now at work. Personally, Mr. Fisken wa
much liked. He was an extremely penial, shrewd north countryman, and his absence from the genia, shre and trial grounds of the Royal Agricultural Society will be much missed
by many old friends and acquaintances. by many old friends and acquaintance

The South Wales Daily News announces that the chairmanship gate the question of the load-line for merchant ships has bee gate the question of the loa
accepted by Sir Edward Reed

ROPE DRIVING GEAR.

$T \mathrm{He}$ special adaptability of rope gearing for the transmission of power where continuous high speeds are required has for
many years past been fully appreciated in the large cotton mills of Lancashire, where a considerable proportion of the machinery is
now driven by this means. There are, however, one or two now driven by this means, There are, however, one or two
important considerations connected with rope gearing upon important considerations connected with rope gearing upon
which very largely depend its successful application to which it ber of cases in which rope gearing has been tried and has failed, ber it cannot be too emphatically asserted that as a first and most essential basis for its successful introduction, the mill in
which this system is to be used should either possess ample which this system is to be used should either possess ample
facilities for enabling rope-driving to be carried out on right principles, or it should be specially laid out and designed for the
transmission of power by this means. The first requisite is transmission of power by this means. The first requisite is
ample space for pulleys of sufficiently large diameter, with ample space for pulleys of sufficiently large diameter, with
shafting so arranged that the power may be transmitted in direct line from pulley to pulley ; that is, the ropes, whatever their number or nowever the porver may be distributed, must run as nearly as possible in straight parallel lines off the drum or driving pulley on to the second motion pulleys on the line
shaft. These are the primary requirements for success, There are of course numerous other details which contribute towards securing the best results, and it is to these we wish more particularly to refer. Where rope gearing has been a failure it is cularly to refer. Where rope gearing has been a failure it is
chiefly in old mills originally laid out to be driven by wheel gearing, but which has been replaced by the rope system of transoitting power under conditions so unfavourable that satis-
factory results were impossible, and after a short trial a return factory results were impossible, and after a short trial a return
to the old method has been the only alternative of such illdevised experiments. These failures of the rope system in old mills, a few years back, had a tendency to create an unfavourable impression, but where it has been properly applied under cotton districts surrounding Manchester show that the most satiscotton districts surrounding Manchester show that the most satisfactory resuits have been obtained, and with the erection of new
mills the system has been, and is rapidly extending. Wherever mills do not possess the proper facilities for applying rope gearing under right conditions, it may be stated at once that it is far better to adhere to the old system of wheel gearing. Various
devices are sometimes introduced to overcome the difficulties connected with the introduction of rope driving into old mills ; where the pulleys cannot be erected in line an intervening pulley is sometimes employed, but this causes an extra amount of
friction on the rope which enormously increases the wear and ear ; the ropes, in cases of absolute necessity, are allowed to divert from the straight line in transmitting the power from the do their work, this again is motion pulley, but although they will rope. Another equally serious objection in some old mills is that the diameter of the pulleys has to be so curtailed for want of space that it is impossible to get the high travelling speed which is an essential to the success of rope driving, whilst the small diameter of the pulleys has further an injurious effect upon the wear and tear of the rope. In a paper on rope gearing, read
before the Institution of Mechanical Engineers at Manchester in 1876, Mr. James Duril laid down certain facts as the result of the experience which, up to that time, had been gained on this
subject:-"The velocity of the periphery of the grooved fly-subject:- "The velocity of the periphery of the grooved flywheel and pulley is always arranged," says Mr . Duril, "to be
between 3000 ft . and 6000 ft . per minute." And he adds, "It is between 3000 ft . and 6000 ft . per minute." And he adds, "It is
very essential that the right proportion between the diameter of the ropes and the pulleys should be obtained ; if the diameter of the pulleys is too small, the rope, in continually bending over and on the size of the pulleys in great measure depends the life of the rope. As a general rule, the circumference of a pulley should not be less than thirty times that of the rope which works on it. In apportioning the distance between the driver and the driven shafts, great latitude may be allowed, but a distance of 20 ft , to 60 ft . may be taken as a fair space." These facts may be accepted with very little modification at the present time. We may, however, state with a little more precision, what is now
considered to be the best travelling speed over the periphery of the driving pulley. The invariable answer to inquiries upon this point is that an average of 4500 ft . per minute is the speed at which the best results can be obtained with rope driving; in
some cases 4000 ft . is found to give good results, whilst some some cases 4000 ft . is found to give good results, whilst some figures repsesent the minimum and the maximum speeds at which rope gearing when laid down under proper conditions is driven. In dealing with other conditions of rope gearing, the f special importance. When rope driving was first introduced hose made of flax were mostly in vogue. In Lancashire, how ver, a preference has of late sprung up for those constructed of cotton ; for inside work, this class of rope is said to give the best results, and in the mills of the above district cotton ropes are now generally in use. As to the diameter of the ropes, this
varies according to the special methods adopted by different makers, As illustrations, we may take two of the representative makers of rope gearing plant in Lancashire. Messrs. Hick, Hargreaves, and Co., of Bolton, have adopted a uniform rope of in . circumference, whilst Messrs. Buckley and Taylor, of Oldhowever, in all cases, a more than ample margin of safety. The power to be transmitted by the ropes is distributed in the case power per rope, and in the case of the larger diameter at from 40 to 50 -horse power per rope. In the 2 in. diameter of ropes the breaking strain may be estimated at about 10 tons, whilst nd transmitting 40 -horse power, would be only equal to 330 lb per rope, and a proportionate margin of safety would be secured with rope of smaller diameter. The right method of setting the ropes upon the pulleys is a matter with regard to which there
appears to be some misapprehension, and this is especially the case in some of the mills abroad, where engineers appear to be nder the impression that the best results are obtained where he ropes are fixed perfectly tight. Of course it is essential that one to the other, but over the tops of the pulleys there should be sufficient losene in the ropes to the pur a finly should between the two pulleys, so that the ropes have a slight lap over the top rim. As regards the comparative cost of rope and other systems of gearing, and the average life of a rope these are matters on which it is difficult to get any actually precise data. As compared with leather belting, it may, however be stated, as some indication of the great difference as regards the first outlay in this system and that of rope gearing, that in two mills laid out on exactly the same lines, where it had cost in the one about £1200 to put on the leather belting, the cost of the ropes on the other did not exceed $£ 150$. As to the life of a rope,
this is also a question upon which it is difficult to obtain precise this is also a question upon which it is difficult to obtain precise
information, but it is roughly estimated that with proper usage
this should not be less than about seven years ; whilst as regards the actual breakage of ropes, this would appear to be extremely small. We have met with very few instances of the sudden collapse of a rope, and the risk of these is reduced to a minimum by the fact that any defects in a rope, arising either from wear
or other causes, will show themselves long before the point of danger is reached. The proper construction of the pulleys another essential feature in the success of rope driving gear and we may add that the coluions arrived at by Mr. Duril on this point are No pulley should have a less diameter than 30 to 1 with that the rope, whilst for the large or driver pulley this may be in creased according to the results wished to be obtained, some of these pulleys having a diameter of as much as 35 ft . Where suf ficient diameter of pulley is not obtained two serious disadvan tages are the result-increased wear and tear on the ropes, and a travelling speed below that which is the most effective for thi system of gearing. The form of groove on the pulley is a
matter upon which various opinions appear to be held. Some

are of the V , others of the U -shape, with modificatioms between these two forms ; but this point is of so much importance that special system they have adopted. The general practice, however, is to give a sufficiently deep groove that the edges proever, is to give a sufficiently deep groove that the edges pro-
ject considerably above the top of the rope. The invariable arrangement of the grooves is in parallel lines round the face of the pulley, about 2 in . apart, according to the number of ropes that have to be driven, and frequently a pulley will carry on its face as many as forty separate grooves. With regard to the distance between the first and second motion pulleys, although it cannot be said that there is any particular rule so long as the rope will lead properly and carry its own weight, it is important
that the pulleys should not be too close together. Between the that the pulleys should not be too close together. Between the
two pulleys there should not be a less distancethan 30 ft., but some two pulleys there should not be a less distance than 30 ft ., but somehave the ropes travel a distance from pulley to pulley of 100 ft . We that it is sossible to get all the ropes to travel tope driving that it is impossible to get all the ropes to travel at one speed, and pointed out, may be readily nscertained by drawing a white mark across the ropes when they are stationary, and afterwards

observing the different positions of these white marks when the ropes have been put in motion. So far as the travelling speed is concerned, it would be an extremely difficult matter to secure exact uniformity in any set of ropes, as however carefully they but slight variations of speed are of little consequence. Where however, the difference of travelling speed becomes serious, it all probability be traced to some defect in the system, and the pulley, which, however slight, would necessarily be a continuing error. As to the twisting of the ropes, this would probably be produced by the same cause, or where they had not perfectly straight run from pulley to pulley. To sum up the special features of rope driving, where they are applicable, and where they are not, it may be stated that this system of transmitting power is altogether unfitted for driving heavy machine tools where variations of speed are required, and consequently, except for special purposes, it has not been largely adopted in
the shops of engineers, Where it can be best applied is in main
driving for mills and such works, where constant and regular high speeds are necessary, and to these it is chiefly applied at present. One great advantage in rope driving is the absence of
noise and the special facilities it affords for the distribution of power the special facilities it alrords for the distribution of power as required. Of course, as already stated, the system gives lines from pulley to pulley, however they may be split up on the ine shafts, but there is certainly more marginfor deviation. Where his is an absolute necessity it can be obtained with driving of belts, and this may be allowed as another point in the favou this may be set down as about one-fourth, as compared with belting. The safety of rope driving is another point which is secured by the large margin obtained in the strength of the ropes, whilst in the case of the failure of the rope the readiness and comparatively small cost with which it can be replaced with out any serious interruption of work is an advantage which users of power can appreciate.
Having given generally the main features of rope driving a few practical illustrations of the system, both as regards the construction of rope driving plant and its application on a large
scale will be of interest. In making our inquiries we visited several large works in Lancashire put down for manufacturing all descriptions of rope driving gear. Messrs. Hick, Hargreaves, and Co., of Bolton, have fitted
up mills with rope driving for up mills with rope driving for transmitting greater power
than probably any other firm in the world. Recently we than probably any other firm in the world. Recently we
noticed an exceptionally powerful pair of engines they had completed for a cotton mill in India. These engines transmitted by ropes on a fly-wheel 30 ft . diameter and 140 tons in weight. The power is transmitted by sixty ropes passing over one fly-wheel, which is 15 ft . wide acr the ropes in this instance carrying more than is the average
weight per rope in this country. This is probably the largest example of rope driving that has yet been applied, but whea we visited Messrs. Hick, Hargreaves and Co.'s works, they had in hand plant of a similar kind representing a total of nearly 20,000 -horse power, the whole of which was to be transmitte rope driving is being inerve to illustrate the extent to which engines are used, but the pulleys are all made on the system of groove which after careful and costly experiments has bee specially introduced, and the firm have pits in which they can
turn simultaneously four pulleys of 35 ft . diameter. Several very ingenious processes for the building up and turning of these wheels have been adopted, but into these we have not space to enter, and we will simply add two illustrations of rope gearing
laid down by the above firm in modern mills as fairly represen laid down by the above firm in modern mills as fairly representative of the most approved methods of applying this system for
the transmission of power. In these illustrations the gable end of each mill is shown, but excepting the main fly-wheels, no othe portions of the engine is indicated. Fig. 1 represents the arrangement of rope-gearing at Messrs. Mlingworth Bros, mills Bradford. The engine put down in this mill, which has been fully power. The fly-wheel, which is 30 ft . diameter, is built up on an improved plan, is grooved for twenty-seven ropes, and is driven the various line shafts as shown in the illustration. Fig 2 shows the arrangement of rope driving now being put down in a new mill which is being erected in the imme diate district. In this case, the pulley is 32 ft . diameter with thirty-four grooves, transmitting 1300 -horse power at 50 revolu tions per minute to the various line shafts as shown. We may improvements in their rope-driving plant, by constructing th pulleys of steel for extra high speed, but these are not as yet in use, and we may have to refer to them hereafter. In the im
portant cotton district of Oldham, Messrs. Buckley and Taylo portant cotton district of Oldham, Messrs. Buckley and Taylo are the leading makers of rope-driving plant. The average and this is generally transmitted by about thirty ropes. The above firm have an illustration of their rope driving plant at the Oldham Exhibition, where a pair of engines of 60 -horse powe with eight ropes running with a fy-wheel 14ft. diameter, at 7 shown ions per minute, drive the cotwright, Turner, and C 0 of Pendleton, near Manchester, are also makers of rope drivin plant, and their experience is that 4500 ft . to 5000 ft . per minute is the most effective speed. The grooves they adopt are of the V-shape. When visiting this works we saw a toothed wheel running
at the exceptional speed of 2700 ft , per minute, but this is a high at the exceptional speed of 2700 ft , per minute, but this is a high
speed for wheel gearing which can scarcely be maintained with speed for wheel gearing which can scarcely be maintained
safety, and it is being replaced by rope gearing. The transmis safety, and
sion of power by ropes will be through a fly-wheel 25 ft , diamete with eight grooves, and to a second motion pulley 8 ft . diameter with eight grooves, and to a second motion pulley 8 ft diameter,
the engines running at 70 revolutions per minute, and the eight the engines running at 70 revolutions per
ropes transmitting about 400 -horse power.
Apart from mill driving, rope gearing, as we have already said has not yet been very largely employed. For wood-cutting tool neering works it is also used for driving high speed foundry and neering works it is also used for driving high speed foundry and
other heavy cranes. Messrs. W. and J. Galloway and Sons, of Manchester, have used ropes at their branch works for driving the cranes lifting the boilers for a considerable time past, and at their Knott Mill Works the cranes lifting 20 tons are driven by ropes. Hemp and manilla ropes were at first employed, but recently cotton ropes have been introduced with very satisfac
tory results. Endless $\frac{3}{4}$ in. ropes are used, and these run at high speed over grooved pulleys transmitting the power a dis-
tance of about 100 yards. Messrs. W. Hulse and Co., of Manchester, are also introducing rope driving for certain purposes in the new works they are laying out, and although, as we stated rope gearing is not adapted for driving where varying speeds
are required, there are many purposes to which it might, with advantage, be applied both as an economical means of trans advantage, be applied both as an economical means of trans
mitting power and as adapting itself for this purpose under exceptional circum
would be possible

The Wirral and Birkenhead Agricultural Society, The next meeting of this Society will he held in tho permanent
show-yard on Wednesday, Thursday, and Friday, the 18th, 19th, and 20th of June.
Naval Engineer Appointhents.-The following appointments
have been made at the Admiralty:-Charles Francis Hulford have been made at the Admiralty :-Charles Francis Hulford, Ready ; Francis C. Alton, Chief Inspector of Machinery, to the Asia, additional, vice Ellis ; Richard Irwin, chief engineer, to the Myrmidon; Henry J. J. G. Moon, engineer, to the Duncan, fo
service in the Wildfire, vice Davis ; Robert W. Edwards, engineer, to the Indus, for service in the Albacore, vice Robins; Thomas Williams, engineer to the Indus, additional, vice Burner; George S. Cornish, engineer, to the Indus, additional, vice Willia
Edward Q. H. Denison, assistant engineer, to the Myrmidon.

THE STEEL FOR THE MONONGAHELA BRIDGE, Pittsburgh, PA.
Every heat of steel was tested and its quality determined before any more work was done to it. For the compression members and
pins the steel wwas required to stand the following tests on speci-
men bars square inch ; ultimate strength, 80,000 to $90,000 \mathrm{lb}$. per square inch ; elongation in 8 in .; minimum, 12 per cent.; reduction of area
at fracture, minimum, 20 per cent.; cold bending, 180 degrees around its own diameter without crack; cold punching of holes in
flat 3in. by sin. bars, 1 in in from the edge without crack or disten-
sion of metal. All specimens and finished at nearly the same heat, as it was observed that rods finished at a lower heat would give higher tension results than
samples of same steel finished at a higher heat. The Andrew
Kloman firm, in Pittsburgh, had contracted to procure the steel Kloman firm, in Pittsburgh, had contracted to procure the steel
and to furnish the steel shapes. The intention was to use Bessemer steel for the compression members; a large lot of
Bessemer steel was tested, but few samples were found to stand the desired tests. The difficulty seemed to consist in controlling strength. After a while the attempt was given up and openhearth steel was substituted. No trouble was then experienced in getting a uniform grade of steel of prescribed quality. The top
chord sections consist of four leaves, which were designed to be each a 20 in . steel plate with 4in. by 4 in . argles for plates. of that width could not be procure herefore, the chord sections were changed to 10 in , and 12 in . steel plates, with 4in. by $4 \mathrm{in}$. angles,
Notwithstanding the great care use ngles were by no means a uniform product. Accordingly as and in rolling were finished at a higher or lower heat, they would
have different degrees of hardness. Steel plates and angle finished at a lower heat had a smooth surface, and the noise of punching them resembled pistol shots, while plates finished at resistance to punching than in wrought iron.' The specification for rivetted steel work provided that the punched rivet holes, 3 in diameter, should in the assembled parts be enlarged to lin lin
diameter by reaming. The time for the delivery of the stee work growing short, the question was considered whether the
reaming of the holes could be avoided to hasten the completion of the work at the shops. Messrs. Kellogg and Maurice, of Athens,
Pa., had the contract for this part of the work
To that end the following experiments were made:-Ten speci-
nens were cut from the same steel plate fin, thick; one specimen was tested to ascertain the tensile strength of the steel specimen. The nine other specimens, all alike in form, were prepared for the purpose of ascertaining the effect of punching holes, of punching
and reaming, and of drilling. The tests were expected to show the amount of reaming required, and whether any annealing effects could be observed. The conclusion from the tests was that the could be observed. The conclusion from the tests was that the
injured steel- of the quality used in this instance-around the
punched hole was in part restored by annealing in contact with the phot rivet, the size of which was large in proportion with thickness of steel plates and angles as used in the chords. The reaming of smooth and straight was therefore dispensed with, and a reduction in the price for the finished work agreed upon. The steel pins are steel as for the compression members was used for them; they
were forged from solid steel billets and turned to size. No appre vere forged from solid steel billets and turned to size. No appre-
ciable difference in the hardness of the metal in the pins was o stand. For tension members and rivets the steel was required to stand the following tests on specimen bars 8 in . in diameter :--
Elastic limit, 45,000 to $50,000 \mathrm{lb}$. per square inch; ultimate
strength, 70,000 to $80,000 \mathrm{lb}$. per square inch; elongation in 8 in.; strength, 70,000 to $80,000 \mathrm{lb}$. per square inch; elongation in 8 in .;
minimum, 18 per cent.; reduction of area at fracture, minimum 30 per cent.; cold bending, to a loop 360 degrees around its own
diameter without crack ; cold punching in 3in. by gin. bars, of 1in. rivet holes, $\frac{1}{8} \mathrm{in}$. from the edge without crack or distension of
metal. Open-hearth steel of the above and uniform quality was
obtainel without trouble. obtained without trouble.
The eye bars were made by the Kloman process-that is, the
bars were rolled from billets between reversible and adjustable rolls in such a manner as to leave the ends thicker than the bar. The ends were then spread and forged to the proper shape of the
eye under a steam hammer. The heaviest steel bars for this bridge were 28 ft . 6 hin in. long centre to centre of eyes, and 113 in .
thick. All steel billets and all steel bars required very close inspection for faws, the detection of which was sometimes difticult. It has been stated that for the detection of flaws in
steel or iron, a magnetic needle had been used with success, though he manner of its use the writer has not heard stated. A device Where the solid metal sections to the work they have to do, flaws are a source of great danger, especially in attenuated steel structures. Flaws in wrought iron are more likely to happen in the direction of the fibre, but in steel
they can as well happen crosswise to the direction of the tension strain as any other way. Three steel bars 9 ft . long between strain as any other way. Three steel bars ${ }^{\text {centres of eyes, and 4in. by } 1 \frac{1}{1} \text { in. in section were tested to }}$
ascertain the effect, if any, of annealing the finished bars. The ascertain the effect, if a:
results were as follows :-

	Bar A.Annealed.		$\begin{gathered} \text { Bar B. } \\ \text { Not annealed. } \end{gathered}$		Bar C Not annealed.	
	Eye.	Eye.	Eye.	Eye.	Eye.	Eye.
Diameter of eye in inches.	9	9	9	9	10	
Least cross yection of eye	5\%\%		$5 \cdot 83$	72	6.83	
Excess of metat in in eye over			38.1	$20^{\circ} 5$	57.7	$33 \cdot 2$
Reduction of area in "̈ye ait						
Elongation of pin-iolo in	7.9	$3 \cdot 6$				
Averige section of of						
Averige section or in				,22		. 33
				197		$3^{3} 89^{\circ}$
Reduction at fracture, per						
cent. .i.		'87		5		-55
per cont.	10			3		
coongation for finin. near				2		
Elastic limit per square						
	${ }_{8}^{43,3,1}$	10 lb .		so lb,		40

All pin holes were 315 F . diameter. Pin hole in one eye of bar C
was bored in . out of centre line of bar, and accounts for its lower ultimate and elastic limit. A specimen from the same heat of
steel, of which the above bars were made, showed on a $\frac{\text { pin. }}{}$ round: steel, of which the above bars were made, showed on a 3 in . round:
Elastic limit, $46,389 \mathrm{lb}$. per square inch ; ultimate limit, $78,898 \mathrm{lb}$. per square inch; elongation in 8 in., 18 per cent.; reduction, 30.2 per
cent. The net section of the heads through the pin holes for all eye bars being at least 50 per cent, more than the bars, and the good effects from annealing being doubtful in the above tests, it
was not thought necessary to anneal the steel bars, For steel
rivets the above quality of tension steel proved very suitable. The rivets were tough and tenacious. It was, however, observed that
the manufactured rivet heads would easily break off with few *From a papor by G. Lindenthal, read at the annual meeting of the
blows, the fracture in each instance showing a fine granulated
appearance. Rivet heads, however, made by hand or rivetting machine were very tough, and could not be broken off, they had to be cut off. The cause for the brittle rivet heads was supposed to
be the upsetting by blows in dies, producing sharp corners under the rivet head and around the

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

THIs week the quarterly meetings have been held, but they have not resulted in much business. In Wolverhampton yesterdayLilleshall Iron Company, Shropshire, early announced that thei blast all-mine pigs, and 82 s . 6d. for cold blast ditto. This for ho blast all-mine pigs, and 82 s . 6 d . for cold blast ditto. This example
was quickly followed by the Staffordshire all-mine pig makers, who as quickly followed by the Staffordshire all-mine pig makers, who Yet at these low prices very few sales were made. It is eloquent
of the quiet state of the all-mine business that the Tame Iron Company, Bilston, has jus it has for some time kept on for this class of pig, and having sold
off its unused stocks of materials, has permanently retired from the manufacture. In common
The Barborough Field Company, of Bilston, finding that it i The middle and common class of pigs which are selling most, has the making of medium quality iron. Messrs. T. and I. Bradley and Sons are pressing forward the relining of their second furnace actual work on part-mine pigs
Native
Native part-mine pigs are quoted at 50 s . to 45 s , and common
 ther foreign brands held off the market, being unprepared to to give. There were some Northamptons that changed hands at
43 s ., but best sorts were firm at 45 s . Consumers of Derbyshire 43 s , but best sorts were firm at 45 s . Consumers of Derbyshires
offered to place orders at 42 s . and upwards, but without success, ince vendors would rarely accept less than 46 s . One make
indeed firmly refused anything under 46 s . 3 d , declaring that was sold forward for three months, and that in the present state of the market he cared for no more business.
Hematites changed hands in encouraging lots here and there, and ood sales, Barrow grey forge hematites wat they were making his figure was also the quotation for the Tredegar brand. As to Finiowever, orders might have been placed at 59 s. by old buyers upon the quarter on the basis of for best makes, $£ 82 \mathrm{~s}$. 6 d for the "list" heuses of Dudley, and $£ 710$ s. for the bars of the other "list" houses. them, stand nominally at 30s. per ton in advance of the be prices. In reality, however, they are to be had at about 20s. per
ton advance upon bars, boiler plates and sheets being abundant on Wednesday at $£ 810 \mathrm{~s}$. For superior plates $£ 9$ and occasionally E9 10s. was demanded.
Orders for sheets for
purposes, were by no the galvanisers, and for ordinary merchant prepared to accept. Specifications, too, in execution of old orders were still difficult to get in. The same remarks will apply, in
some degree, to merchant sections of iron, such as bars, hoops, \&c. At several of the works only a poor start has been made since the holidays. At some places scarcely anything has been done, whilst
at others the mills and forges have only very partially resumed. at others the mills and forges have only very partially resumed.
Galvanised sheets were $£ 7$ 5s. for singles at works, $£ 8$ to $£ 85$ upwards for doubles delivered at outports, and $£ 9$ to $£ 95 \mathrm{~s}$. for
trebles. The galvanisers themselves quoted $£ 13$ to $£ 1310$ s, for 22 gauge in bundles delivered in London or Liverpool, and wer up sheets were easy at £10 to £11 for singles and stamping sheets Excellent bars were pressed upon the market at $£ 7$. Equally
Exders lentiful were second-class qualities at $£ 615 \mathrm{~s}$. to $£ 610 \mathrm{~s}$.; common ment, and $£ 615 \mathrm{~s}$, to $£ 7$ for superior qualities for home consumpand $£ 67 \mathrm{~s} .6 \mathrm{~d}$
Tin-plate makers from East Worcestershire again reported a steady demand mainly on continental, colonial, and other shipping
account. They quoted 18s. to 19s. per box for cokes and 21 s . to 22 s .
At the quarterly meeting in Birmingham this afternoon the declarations made in Wolverhampton yesterday as regards crucial quotations were confirmed. There was a large meeting, but the
business results were unsatisfactory alike as to orders booked and the prices realised. The galvanised sheet-makers held their quarterly meeting, and it was reported that there was a consider-
able amount of business offering, but at low prices. No new rate were fixed. The wrought iron tube makers held their quarterly meeting, and it was reported that the demand was very quiet. It
was decided to make no alteration in present discounts. The Welsh tin-plate makers held their quarterly meeting, and it was agreed that the large decrease in stocks was a favourable augury.
On open 'Change Welsh cokes sold at 15s. 3d. per box-a drop on the quarter of 9 d . -and charcoal at 18 s , to 19 s . placed at very low figures. One or two at least of the Cannock jer ton, bringing forge sorts down to 5 s .6 d . and 6 s . at the pits, -quoted at 5 s . to 5 s . 6 d . per ton, short weight, on railway trucks. The list prices for house coal were given as:-DDeep seams, 11 s .
best, 10 s . best one way, 9 s . cobbles; shallow seams, 10 s . best, 9 s .
best one way, 8 s . cobbles. But in actual business there was a negotiable margin on these "list" rates of at least 1 s . per ton. South Staffordshire forge coal was 6 s . to 7 s . per ton; mill coal, 7 s ,
to 8 s .; and furnace, 9 s . to 10 s . In one or two exceptional instances 11s, was being got.
In giving the customary notice on Wednesday in Wolverhampton
to the mine owners of South Staffordshire that they would shortly be required to send in their returns of acreage occupied and tonnag of minerals raised for the half-year ending December 31st, 1883
the chairman of the Commission, Mr. Walter Williams, complaine the chairman of the Commission, Mr. Walter Williams, complained
of the omission of statutory declaration, and suggested that in such cases where the Assessment Committee had hitherto met the difficulty by doubling the assessments they should in future treble
them. He congratulated the Commission upon the success of the new Stow Heath engine, and upon the progress of levels, whose completion woud permo a conger be necessary, as now, to keep several engines at blast. Referring to labour disputes in the district, the chairman said he was sorry to find the opinion held among the men that trade was better. Unfortunately, the returns of the Commission were getting less and less every year.
The best mails of the week have b
Monte Video, and Rio Janeiro. India, too, is buying fairly well Australia is steady, and the Cape is showing a little enterprise in
miners.
In the engineering and constructive ironwork departments there are several good contracts on hand, which will afford work for, in
some instances, several months to come. The agricultural imple-
ment and machinery manufacturers also are steadily employed
whilst fencing wire and hurdles continue to be ordered in good lines, chiefly for the Australian colonies. Among current construc tive work is the erection of a new gas-holder and tank, and also two new purifiers at Bilston for the Bilston Gaslight and Coke
Company, who, during last year, sold more gas than in the year Company, who, during last year,
previous by five million cubie feet.
The galvanisers are seeking new orders in the roofing branch, the braziery department would be flatter
The somewhat unusual order now upon the market for wrought
iron casks and drums to an extent sufficient to meet the iron casks and drums to an extent sufficient to meet the require-
ments of the Admiralty for five years to come will not yield much profit, so keen is the competition for the contract
Manufacturers of wrought iron tubes describe bi Cut nails are in better demand for home. Iron safe and strong considerable magnitude.
An order for 7000 whistles for the Metropolitan Police Force, in Messrs. J. Hudson and Co., military, naval, and police ornament makers, of Birmingham.
The promoters of the scheme for supplying compressed air as a
ource of motive power in Birmingham have had the small lectur surce of motive power in Birmingham have had the small lecture
theatre placed at their disposal during the annual three day onversazione next week of the birmingham am enge wit compressed air. The compressed air will be conveyed
into the theatre by an iron pipe, where it will be mployed to drive machinery of an interesting character shown at next week's conversarsion by Mr. E. B. Marten, C.E. The machine is a strong steam boiler on glass legs. Steam at hig ormed wooden jets, and, owing to the friction of the partially co lensed steam against the wood, electrical effects are obtained, the The Institute of Mechanical Engineers will send to the conrer azzione their photographs and diagrams illustrating the invention James Watt. The photographs are those of models and
machines in the famous "garret" at Heathfield Hall, now tho residence of Mr. George Tangye, and are of intense interest. The powerful electro-magnet of the nstitute will be used by Mr. Wim. hussell to show the curious effect of a power
upon copper and silver when moved in the field
An extremely simple form of pueumatic patch of messages through short distances will be shown by Mr_{r} trated Rivers, of Bristol, and Mr. A. H. Hirons proposes to illus shown by gold when cooling from the melted state. Dr. Bjerknes' apparatus for illustrating attraction and repulsion produced by diaphragms in rapid vibration will also be exhibited.

NOTES FROM LANCASHIRE

(From our

Manchester.-The year has opened with anything but a cheerful iron market the feeling is somewhat despondent, and an unsatis-
factory feature is the fact that, although prices for outside brands of pig iron, such as Scotcir and sidalesbrongh, have now got from hand to mouth, have professedly been open to buy largely, they are apparently not yet satisfied that the ing trades there is also a tendency to slacken off. Some branches such as special tool making, are kept busy, and locomotive builders
have still a large weight of work in hand, but in the general branches of the engineering trade the weight of new orders coming the y is decreasing, and, as a rule, engineering firms commence this time last year. The rapidly lessening activity in the ship-
building trade is, no doubt, having a considerable effect, and for marine engineering work and heary tools connected with shipbuilding yards there are comparatively few orders being given out,
The cotton machine making trade, which, with the exception of one or two of the very large firms, has been only indifferent for some time past, is also being adversely affected by the present unsatisfactory condition of the cotton trade in Lancashire, and
many of the makers are very poorly supplied with work. In the有这, and The Manchester iron market on Tuesday was tolerably well attended, but the weight of actual business doing was extremely
small. Local and district makers of -pig iron are, as a rule, nominally holding to late rates, Lancashire being quoted at 45 s , and qualities delivered equal to Manchester, but at these and foundry were doing no business, as they were altogether undersold, old lots of Lincolnshire forge being offered at under 43s., whilst other brands in some cases could be bought at quite 2s. per ton under the price
asked for local iron. Middlesbrough iron is now being pushied in this market at very low figures, and g.m.b.s can be bought readily some cases open to take 1 s . under this figure. Sellers are also to take orders for long forward delivery at the minimum prices, but buyers are very chary about giving out orders.
In the finished iron trade prices are nominarly umehanged pending
the result of the quarterly meetings this week. There is , however very little being done, and with some of the makers getting. shor of work, the tendency of the market is towards weakness. The average prices for delivery into the Manchester district remain at
$£ 6$ to $£ 62 \mathrm{~s}$. 6 d . for bars, $£ 67 \mathrm{~s}$. 6 d . for hoops, and about $\& 715 \mathrm{~s}$. per ton for sheet.
One or two sales of hematite have been made at prices averaging
55 s . 6 d . to 56 s ., less $2 \frac{1}{2}$, for good foundry brands, delivered here. In the coal trade there is only a limited demand for all classe tending to restrict the requirements of the better classes of round coal for house-fire purposes, and the general slackness of trad meet with only a dull sale. The restriction of the output, as th any pressure of supplies upon the pits for the hol, and so far as quevent quoted
prices are concerned, there has not as yet been any material way. There is, however, a good deal of underselling, and the one best Wigan Arley at the pit mouth have had to come down to 10s. 6d., whilst generally, in house-fire coals, the tendency is to
ease down. Engine classes of fuel are moving off fairly well, at late rates. At the pit mouth the average prices are about as under:-Best coal, 10 s . to 10 s . 6 d .; seconds, 8 s . to 8 s . 6 d .; com
mon round coals, 6 s . to 7 s ; burgy, 4 s . 6 d , to 5 s .; good ordinary
slack, 3 s .6 d . to 4 s ., with some of the kest sorts fetching 4 s . 3d The shipping trade has been only quiet, with prices rather easier, Garston Docks, not averaging more than 8s. to 8s, 3d. per ton. On Friday last a meeting of the Manchester Geological Society by the Wigan Coal and Iron Company, for the purpose of inspeet
ing an improved ventilating fan which has been erected at the ing an improved ventilating fan which has been erected at the to 14y., with the arrangements introduced for the use of the electric light for working by in the shaft. A description of the
fan, which is an improved type of Guibal, designed by Mr. Cook here a few particulars of the system adopted for strippin
the shaft to the requisite width. This is effectel
the workmen on an iron grating suspended in the shaft,
and allowing the material, as it is removed, to fall to the
bottom bottom of the shaft. In a paper which was atterwards read by
Mr. Cookson, he said he could only compliment the officials on the Whaterfully complete arrangements they had made to carry out shaft. With regard to the electric light used in the shaft, he was told by the manager that they could hardly have done without requisite plant, yet it had greatly lessened the risk to life and limb of the persons engaged on the
saved loss of time and consequent loss of money. The lights in the shaft were three in number, of the Swan incandescent type, and of 50 -candle power each, the engine and dynamo being suffi-
ciently powerful to give ten lighto end of August, the enlargement of the shaft has been carried on continuously, and has now been completed for 170 yards. Hy. Brogmen has not at all affected this district where the here was of a very limited character.
The promoters of the Manchest
circulars soliciting support to enable again before Parliament with renewed vigour and increased conyear's fund was years fund was upwards of $£ 65,000$, and the estimated further
amount required for the second fund is $£ 35,000$, of which a large portion has been raised; but the committee confidently hope the total amount promised, and likely to be promised, may come to
such a sum as will obviate the neeessity of the whole amount of
end cription being called up.
Barrove.-The hematite piz iron trade still remains in a very
unsatisfactory condition, and the business in all departments seems to be allost at a standstill. No change of any importance has been notioced during the past week in the state of the market, and there are few signs of any sudden revival for the better taking
place. The exports for American, continental, and foreign purchases have lately decreased to an alarming extent, and the bus-
ness doing at the present moment is practically n ni. Makers still continue to restrict the output of metal in the hopes that the trocontinue to restrict the output of metal in the hopes that the pro-
luction will then more nearly represent the deliveries. Notwith. suction wiri then more neariy represent the deliveries. Notwith-
standing this, the stocks of metal now warehoused still increse
and are very heavy, although not so large as they were some and are very heavy, although not so large as they were some
months ago. The outlook for the present year is not very promismonths ago. The outlook for the present year is not very promis-
ing; but as no great expectations are formed concerning it, any
impren ing; but as no great expectations are formed concerning it, any
improvement will come out as a pleasant surprise. Prices are low
and generally unprofitable. No quotable change is noticeable this
and and generally y uprofitable. No quotable change is noticeable this
week, but they are a little easier than usual. Sales have been
effected this week at-No. effected this week at-No. 1 Bessemer, 47s. per ton net at works;
No. 2 , 46 s . 6 d. , and No. 3 , 46 s . per ton. Steel makers are ins very unsatisfactory condition, and little business of anyers arportance in a
is coming to hand. Large numbers of men in North is coming to hand. Large numbers of men in North Lancashire have seen thrown at last week' empices.. Shipbuind erss appear toek. ob on the
ave of a serious collapse. Iron ore is in but limited demand at last
eve eve of a serious collapse. Iron ore is in but limited demand at last
week's prices from 9 s . to 11s. per ton net at mines. Stocks are very heavy all round. Coal and coke steady.

THE SHEFFIELD DISTRICT.

The coalowners of Yorkshire and North Derbyshire have promptly replied to the new agitation for an advance of 10 per
cent. On the 7 th inst. a letter was reeeived from Mr. Benjanin Piekard, the seoretary to the Yorkshire Miners' Association, asking the coalowners' committee to arrange for a general meeting, with
view to hear a deputation on the question of the proposed advance, "and probably to try and arrange for a systematic regulation of wages in the future." The coalowners' committee, in
their reply, declined to receive the deputation, the grounds of their refusal being that the coal trade is at this moment in a more uncertain and generally worse condition than it was when they last
met and refused to concede any advance in wages, and that the year opens with such a depression in the iron trade, the shipyear opens wade, the cotton trade, and other large industries of the country, that it seemed to them to point rather to a reduction than
an advance. On the second point, as to a systematic regulation of an advance. On the second point, as to a systematic regulation of
wages in the future, the secretary, Mr. C. E. Rhodes, intimated his end the committe would hepared with a seneme to effect his end, the corther to discusss it." great pleasure in calling the arisen in regard to certain advances made at several collieries in North Leicestershire and South Derbyshire. It appears that the 0 per cent. there given is the 10 per cent. given in North Derbyshire and Yorkshire in 1882 , and that no advance whatever has paid in these districts, even with the advances recently made not quite equal to those paid in North Derbyshire and South YorkAt the annual meeting of the Yorkshire Miners' Association,
held at Barnsley on the 7 th inst., Mr. E. Cowey was reelected president, and Mr. M. Mamsden vice-president. Messrs. Cowey, sent the Yorkshire Miners' Association, and join a general deputa tion who will wait upon Mr. Gladstone in London on the 30th inst on the franchise question. Delegates were instructed to attend question. A resolution was passed in favour of asking for an advance of 10 per cent. at all the collieries in the South and West pits is to be taken before the end of the ensuing fortnight, respecting the 10 per cent. advance, as to the course which the
miners consider ought to be taken in the event of the owners refusing the advance.
Messrs. Craven Brothers, the carriage and wagon manufacturers of Darnall, are at present very busy on wagons, chiefly on account
of home railways. sets of wheels and axles, for the Caledonian Railway Company, and 100 sets of wheels, and axeles for the Glasgow and South,
Western Railway. They have also in hand 1000 wagons for the Great Northern Railway Company. Mr. S. J. Clay, of Long
Eston, has taken an order for 100 wagons for the Great North of Eston, has taken a
Scotland Railway.
con
Craven Brothers hyres Great southern Railway Company, Messrs unusual lrotherors have just and constantructed a palace and dining car oreral features of novelty and
interest. It is 56 fft . over the body, or 6oft. long over the byffers
 body are built solid, with the addition of steel-plates and angles to
the sides of the with Mansell's patent boss-wheels. The axle-boxes are Craven's becarings, by which the box can be seen from end to end. The
car has been specially constructed for a very hot climate, The car has been specially constructed for a very hot climate, and
one feature to thise end is a sun-blind from end to end, constructed
of wood ally protect the occupants from the sun. By means of a gauze
soreen, concealed in ornamental seroll work, the dust storms are excluded, and by another still more ingenious arrangement a supply of pure cold air is admitted into the car and the fumes and hot air
permitted to escape. The car is 2 ft . Bin. higher in the centre than any English carriage. There is every convenience in the form of sc. The large saloon is 24 ft . long by 9 ft . 4in. high, and is
sond 8c. The large saloon is 24 ft . long by 9 ft . 4in. high, and is
uphoistered and furnished on a most luxurious scale. By night
the seats are easily convertible into beds, and overhead, by a
sliding arrangement, another tier of beds is obtained, forming a
series of upper berth. The ar is the fist of the kind made in
this this country. It has been designed by Mr. T. F. Craven, acting
under instructions from Mr. James Livesey, C.E., the engiunder instructions from Mr. James Livesey, C.E., the engi-
neer to the company. It is intended for the use of the general
manager and ofticers. of the company, who, it may be added, are mainly from Yorkshire and Lancashire.
Sir John Brown, the founder of the Atlas Steel and Ironworks, Sheffield, usually presides at the annual social meeting of All Saints
 being close to the great works with which his name will ever be associated, and to other immense establishments, he invariably has something to say on the trade of the old year and the prospects of
the new. On the 7 th inst. Sir John reminded his hearers that last the new. On the 7 th inst, sir Jhn reminded his hearers that ast
year he did not predict for Sheffield a very prosperous state of business, and the result had justified what he then said. He hat
noticed with pain the restlessness among the artisans, and hat deplored their unreasonable expectations, which he cound onl
attribute to their desire for what was sometimes miscalle recereation." In regard to 1884 prospects seemed to him to b
still gloomy, and he began to fear that England had alm not quite, reached the summit of her prosperity. Our trad was being nibbled at right and left by our neighbours o
the Continent and elsewhere, and we had so many com peigain look for ansed mo meterial our customers that we must no
arity such as we had enjoyed
for the last thirty or forty years. II therefore beved botlo for the last thirty or forty years. It therefore behoved both men
and masters to pull together to conserve the trade we had, and if pos and masters to pull together to conserve the trade we had, and if pos-
sible recover some of that which had gone. Two things were improve the Newcastle and the North thousands of tons of steel plates, to the less per ton than Sheffield could supply them at. The Siemens Martin plates, which originated in shefield, and succeeded the
Bessemer process, were now being suprlied to Earle's Shipbuild ing Company-of which he was the chairman-by German firms,
though the carriage was less from Sheffield to Hull than from Germany to Hull.
The Hadfield Steel Foundry Company, Attercliffe, the well known manufacturers of crucible cast steel castings, has adopted
the Lumley system of lighting its works by electricity, and
find it

THE NORTH OF ENGLAND.
THE quarterly meeting of the Cleveland iron trade was held at Middlessrough on Tuesday last. There was a large attencance
but the tone of the market was far from cheerful. Makers as rule are by no means well off for orders and manifest considerable anxiety to sell. The official returns show that stocks increase Considerably last month, and prices naturally continue to fall.
Consumers are, therefore, more than ever inclined to hold off.
Very for immediate delivery. The usual quotation for No. 3 G.M.B. was 35s. 9d. per ton, but few buyers were disposed to give more
than 35s. 6d. The stock of No. 4 forge iron is now very great. It is freely offered at 34s. per ton, but few buyers are found even at that low figure.
Holders

Holders of warrants quote 36s. per ton, but the best offers are There was no reduction of the stock of Cleveland pig iron in
Connal's Middlesbrough store last week. The quantity held on Monday was 62,060 tons
The manufactured iron trade is still in a depressed condition Orders are being rapidly worked off, and fresh specifications are not easily procured. Competition is as keen as ever, and prices back their orders in the hope of doing better shortly sham keep are $£ 515 \mathrm{~s}$. per ton, shipbuilding angles $£ 55 \mathrm{~s}$. to $£ 510 \mathrm{~s}$., and common bars $£ 57 \mathrm{~s}$. 6 d . to $£ 512 \mathrm{~s}$. 6 d . per ton, all free on rails a
maker's
Puddled bars are e3 7s. 6 d . per ton net at works.
It is satisfactory to
whilst all else is so dull, export from the Tees continue good. The shipments for last month
were: Pig iron, 68,418 tons, manufactured iron and steel, 29,654 tons. The total exports during last year were heavier than in any year in the history of the trade, amounting, as they did,
to a total of $1,350,194$ tons, of which 992,815 tons were pig iron, and 357,379 tons were finished iron and steel.
The Cleveland iren
The Cleveland ironmasters' returns for December, containing a statement of the make for the year 1883 and the stocks at the close of hematite, spiegel and basic iron, and 161,9996 tons of Cleveland iron were made in December. The number of furnaces at work was 117, or one less than at the end of November. The iron in
stock and stores amounted to 253,105 tons, or an increase of 32,817 tons since November 30th. The make of iron of all kinds during the year was $2,760,740$ tons, or an increase of 72,090 tons over 1882 year. The stocks on December 31st were 13,074 tons less than a the end of 1882.
Upleatht 100 miners were paid off at Messrs. Pease and Partners Upleatham Mines, New Marske, on Saturday last, owing to slack The Maryport Hematite Iron Company and the Solway Hematite furnaces and paid off of its waryport, has damped down it men. An offer was made by the employers to keep a portion of
the works going if the men would accept a reduction of 10 per cent. the works going if the men would accept a reductio
This they refused to do, and all were discharged.
n-Tyne and the North srss. Andrew Leslie and Co., of Hebburn-on-Tyne, and the North-Eastern Marine Engineering Company
Limited of Wallsend, are about to amalgamate. The new com pany will take over the shipbuilding yard at Hebburn, which is
some 42 acres in extent, together with the engine works, which are directly opposite, and the two phaces will be worked as one con ern. It is understood that the capital will be $£ 650,000$ in $£ 10$
hares, and that 32,000 shares will be offered for public subscription. Mr. A. Leslie will be chairman of the new company. The workmen employed at Messrs. Short and Co.s sunderlonphild demanded by the employers owing to the scarcity of orders.
Helpers will be reduced $\frac{1 d}{}$ in the shilling per man, labourers and timeplaters 6 d . per day, and rivetters' ${ }^{\text {percentage not yet fixed }}$ timeplaters 6d. per day, and rivetters' perce
The new rates will remain in force until Aril.
The strike at the Bowesfeld Ironworks
The strike at the Bowesfield Ironworks, Stockton, still continues It is not countenanced by the Ironworkers' Union, as it has taken
place in defiance of the rules of the Board of Arbitration. There is no probability of the employers giving way.

NOTES FROM SCOTLAND.

THE works and markets are only now assuming their normal position after the molidays, and there is consequently less than usual to report this week with reference to the iron and coal trades.
In the warrant market business has been exceedingly flat--the quoIn the warrant market business has been exceedingly flat- the quo-
tations lower than any figures quoted for a long time. The great ncrease of stocks at Middlesbrough have had a depressing , with disputes in the steel trades, have likewise operated unfavourably. The number of furnaces in blast has been reduced to ninetyour, but most of these will be relighted after undergoing necessary
cepairs.
 the quotations in the afternoon being 42 s . 10 d . to 42 s . 10 L d d. cash,
and 43 s . to 42 s . 11 td d. one month. The market was flat on Monday
 onemonth. OnTuesday thequotations in the forenoon were 42 s . 7 d .
to 42 s .6 fad. and 42 s . 8 d . cash, and in the afternoon 42 s . 71d. to 42s. 9 d . cash, and 42 ss . 10d. to 42 s . 11 d . one month. On Wednes-
day the quotations were 42 s . 8d. cash. To-day-Thursday-the day the que
market was firmer, and business was done up to thes. 4 dd . cash.
Mr. died this forenoon after a brief illness.
The demand for makers' iron has been quiet, and the quotations, which are as fillows, do not show much alteration; - 4 Gartsherrie,
f.o.b., at Glaggow, per ton, No. 1, 50s. 6d.; No. 3. 48s. 6d.; ColtLess, 55s. and 50s. 6d.; Langloan, 54s. and 50s. 6d.; Summerlee

 Kinneil, at Bo'ness, 46s. 6d. and 45s. 6d.; Glengarnock, at
Ardrossan, 51 s . 6d. and 45 s .6 d .; Eglinton, 45s. 3d. and 43 s .; The manufactured iron and steel trades are just now passing
thro through a some what critical ordeal, vizi,s that of reducing wages.
Such a reduction, it must be admitted by any unprejudiced person, Such a reduction, it must be admitted by any unprejudiced person,
is an absolute necessity, and it has also become necessary that the is an absolute necessity, and it has also beome necessary that the
strictest economy should be practised in all departments. Some papers of the West of Scotland to the effect that there were to be rreat strikes in the iron and steel branches. These rumours were
ounded on the fact that reductions of wages had been intimated, nd that the workmen had prononged their New Year's holiday
eeyond Monday morning, when they ought to have resid beyond Monday morning, when they ought to have resumed.
But while the idleness of the men was explainable in this way here can be no doubt that much dissatisfaction exists, as is Tron and Steel When high wages are broken. The members of the
Isreement hition of Scotland ask that the agreement hitherto in force, by which wages are regulated by
the awards in the North of England, should be abandoned,
俍 and that they shall be paid in future by the Scotch market selling
price of finished iron, and they claim that the dispute be settled by a conference to be made up of one employer and one repre-
sentative of the men from each ward. There are difficulties in connection with such a proposal, but it can hardly be believed that
at a time when the trade is slackening, those interested will be so at a time when the trae is slackening, bhase interect of no compromise.
ill-advised as to render matters worse by policy of wages in the shipbuilding and engineering departments is only what was to be expected.
The shipments of iron and steel manufactures from the Clyde in
the past week, exclusive of pig iron, are valued at close on $£ 70,000$, Business in the coal trade is again almost fully resumed, although Fair shipments were despatched from Glasgow in the circumstances, while 4530 tons were sent from Ayr, 2222 from Troon, 980
from Leith, while at Grangemouth the quantity shipped was very mall. During the past year the exports of coals at Burntisland
aggregated 749,784 tons, as compared with 665,214 in 1882 , an aggregated 749,784 tons, as co
increase in 1883 of 84,570 tons.
A reduction of 3d. per ton in the price of coals has been inti-
mated by the colliery owners of Fife and Clackmanna is reported that the continental markets are at present completely stocked. This reduction applies only to foreign shipments, there The Clydesdale Ironworks, at Holytown asting which is estimated to weigh about 250 tons, for the anvil or a 12 -ton steam hammer which is to be used in hammering casting ooccupied about thirty-one hours
The total export of gunpowder from the Clyde in 1883 has been
$1,250,300 \mathrm{lb}$., against $1,445,874 \mathrm{lb}$. in the preceding year.

WALES AND ADJOINING COUNTIES.

From our ove Correspondent.)

Large consignments of rails have been sent off during the week New trade, however, is dilatory in coming to hand, and no improvement can yet be chronicled. Even the rejected rail trade is slow. Shere
o steel works. I fear it is only dictated by hope. In the best
In years of Mr. Fothergill's career they did well, but it is questionable
f any steel works could be constructed there that would compete uccessfully with such as Cyfarthfa, Tredegar, and Dowlais. The Brogdens' failure has been another blow, but not a severe one, to
Aberdare, and some new industry is badly wanted there, even if
 Coalowners are exidently impressed with the view that the present is an admirable time to get rid of their collieries. To the ong list of late I have another to add; the Messss. Pyman,
Wilson, and Co., of Cardift, have become proprietors of the
and Ffaldan Colliery, Garw Valley. The price for which it sold has
not been stated, but large extensions are intended. The Windsor Slipways, Dry Dock, and Engineering Company
has been registered at Cardiff with a capital of $£ 180,000$. The chief promoters are Cardiff coalowners and shippers. There is no difficulty in launching new enterprises of this sort, but it may be
open to doubt whether this will not be overdone. The Bute and Treherbert Company is doing excellent work, and naturally
prompts to rivalry and opposition.
There is no falling off in the prosperity of the coal trade, and it is but common justice to the railway and dock authorities to state
that they now appear to have grappled the immense traffic thrown pon them and are going along successfully. It was noteworthy last week that the tips were oftener waiting for coal than ships for
their turn at the tips. Prices are very firm both for steam and
house qualities of coant, and there is little eubt but that colliers will son again participate in the prosperous condition of the trade. Only soon again participate
in two quarters are there any notable difficultien a mongrgt colliers,
one at Caerphilly the other in the 0 gmore one at Caerphilly the other in the Ogmore Valley. Both appear now
to be coming to an end. No, 3 Rhondda, the supplies of which are looked upon with increasing interest as their area lessens, is booke
freely at 10 s . 6 d . This coal is expected shortly to be won Messrs. Crawshay at Pontypridd, and its advent into the Merthyr V alley is regarded with interest.
I regret hearing that some kind of disaster has happened to the
viacuct on the Newport, Pontypridd, and Caerphilly Railway at
Treforest Treforest, which is likely to postpone the opening.
A Chamber of Commerce has been opened at
and
A Chamber of Commerce has
improvements.
A pit rope breakage at one of the Plymouth collieries has occurred near Merthyr, causing the death of two men.
I am glad ot b oble to report favourably of the shipbuilding
trade at Cardiff, Chepstow, and Bristol. At the last-named place trade at Cardiff, Chepstow, and Bristol. At the last-named place
a new iron barque was successfully launched on Saturday at the yards of Messrs. Hill and Sons. The Institution of Mechanical Engineers, which पuaters in 1884 Iast year they were at Leeds. There seems to be no end of hope ful incident for Cardiff. A new line of steamers from Cana
France is being established, having Cardiff as a port of call,

THE PATENT JOURNAL.
Some

Applications for Letters Patent.

 $*$ When patents have been "communicated, thename and address of the communicating party are
printed in italics. printed in talics.

 . Developing a System of Trading, J. Denis, Lond
. Metal Roof, \&c , H. W. Frampton, Winchester.
f. Fiyina Engine, J. K. Smythies, Great Bentley. 8. Flyina Engine, J. K. Smythies, Great Bentley.
9. Atotocraphio Cameras, F. W. Hart, London.
IndiA-ruber \&e., to Boot Soles, W. 9. Atraching Indi-RUBBER \&c., to Boot Soles, W.
Smartt, Buekhurst Hill.
0. Electric Lamps, W. Eebenham, London.
 12. Attaching Leather to Boot Soles, de.,
Buckhurst Hill.
13. Eletro-magets, W. Leffler, London. 1. ELECTRO-MAGNETs, W. Leffler, London.
14. Coiv Separator, J. Ansted, Gravesen

1. Locks, J. A. Walter, Rainham, 15. Locks, J. A. Walter, Rainham.
2. Extractivg AMmonia, dce., from Coal GAs, J.
Hanson, Bingley. 17. KNEADING, \&cc., Machinery, P. Pfleiderer, Londo
3. MUsical Intromer, M. A. Wier, Norwood.
4. MUsical INstrumen, M. A. Wier, Norwood.
5. MUsical Instrument, M. A. Wier, Norwood.

 Chaster, London.
6. Vesers for conting Liquids, J. B. Spence and J. E. Chaster, London.
7. GALVANIC BATTERIES, J. B. Spence and J. E
Chast Chaster, London.
8. ALara, \&C.. Apparatus, J. Howard, London.
9. Fastenios for Dress, dc., J. C. Jefferys, London
10. Bread, dce, S. Birley, London. 6. BREAD, do., SUBirley, London.
11. FIREROOF BuLDING, E. L. Garbett, London
12. SEATNG for VALES, Phillips, London.
13. AlUMINIUM, J. G. Willans, London. . Aluminium, J. G. Willans, London. J. G. Willans,
14. Lionting, J. S. Fairfax, London.
15. Boxes, E. M. Knight, London.
16. VENTILATING, H. S. Simester, Lond
 CASTORS for FURNITURE. E. Pfeiffer, London.
VENTLATING, W. Jennings, London.
Looms for WEAVING, T. H. Blamires, Huddersfield.
ORGAN PEDALS, J. Rushton, London. Organ Pedals, J. Rushton, London.
Organ Pedas, Rushton, London.
Organ Pedals, J. Rushton, London. Continvous Brakes, E. Hawke, London.
Block SigNaLuse W. .E. Langdon, Derby.
Furnaces, R Paulson, London Furnaces, R. Paulson, London.
Torpedes, R. Paulson, London.
REGISTERING GAMES PLAYED at B Registering Games Playkd at. Brllineds, \&c., E.
C. T. Roper, Okehampton, and C. D. Davies, London.
Calculating Machives, S, Tate London

 Perambulators, J. Robson, London.
BEvEraks, A. Armstrong, London.
BLEACHING RAGs, \&c., A. C. Henderson.- (L. de

 Pedals for Velocipedes, W. A. Pick, London.
GARTERS, R. Hookham, London.
Butron Fistevrs, R. Hookham, London.
Lawn Tensis, Ec., PoLes, J. S. Pinder, Dulwi Lawn TENNIS, \&c., Poles, J. S. Pinder, Dulwic
Trocycles, w. B. and M. Nation, West Ham.
Mechanism for Toy Figures, G. Cole, London.
 Sliding Window SAshes, J. D. Tucker, Bromley.
Suplying Arr to Furnaes, R. Hepburn, London
Combining Door Knockers with Govas, dc., R. H

 and and J. W. Andrew, Hove.
17. LaND and WATER, E. H. Hollins, London.
18. CONSTRUCTINO STEAM BOLLERS, J. Brown, 99. Constructing Steam Boilers, J. Brown, London,
19. Constructiva and Fixive the Heads of Rails,
G. F. . Meakin, Kingston-on-Thames.䠔:

 Weatherino Paraper, J. Robson, London,
Mechanial Toy Boart, G. Cole, London.

 Statr-rod Fasteners,
Cricking Apparatus,
P. Hobes, London.
Patthews, London. Pevcils, J. Hickisson, London. Postage Stamps c., J. Hickisson, London. Tavener, Basingstoke.
OUTWAR Foom and Internal Construction, dc. Sea-going Ships, W. Harvey, London.
Hydraviro Lifts, A. Clark, London. Fastening Cravats to the Shirt Front, C. W. and
F. E. Davis, and W. H. K. Jackoson, London.
SMoke and Fume Condensers, W, E. Gedge, S. Smoke and Fume Condensers, W. E. Gedge.-
E. M. Adderman, Tuscon, U.S.)
Trowivg on or off Belts of Sewing Machines, de., R. J. Johns, London,
STrectura, Dryng, Woven Fabrics, W. E.
Gedge.- (A. Delharpe, France.)
 King, Dayton, U.S.)
V ENTLATORs, J. S. Sweet, London.
WATERPROoring FABres, J. S. Sweet, London.
 RIVETS, J. Whitley, Leeds.
Materais for Bundig Shis, Jo. Whitley, Leeds,
Woooden PAvement, J. McG. Croft, London. STEAM ExGINES, T. Craddock, London.
BALANEE for Tricclens, \&ce, J. Shaw, Coventry.
PINs, C. R. Cundell, Weston. PINS, C. C. Cunidell, Weston,
SKates, C. Corneby, London. Amaloamating Golv, \&c., B. C. Molloy, London.
Domestie Stoves, H, Thompson, London. SAVING LIFE at SEA, W. Balch, Greenwich.
WTER HEATING APPARATUS, M. Brophy, London
SEATING for V Seatings for Valves, dec., M. M. Brophy, London
Pulas for Electric Bels, C . Stionth, London.
Producing Reresentations of Enamel Work, H. Johnson. (W. H. Guilleband, Paris.)
PAPER, J. H. Johnson. (J. A. Meyrneis, Pari
CULTIVATING Oysters, A. P. Price, London. Cultivating Oysters, A. P. Price, London.
CEment, \&C., R. Stone, Londone
Hammerless Drop-Down Guns, J. Pinder, Dulwich, GIVING ALARM, \&L. SIGNALS, G. Nobes, London.
Boikrs, . Watson, St. Albans. Slide Valves for Steam Engines, R. Cook, London
Comautators for Continuous Current Dynamo Letric Machines, L. Hidvevghy, London. Disam
 Rallway Chatrs, G. J. Harcourt, Clifton.
Broycle Safert ATracharsi, W. Bevan, London
Fountain Pens, J. S. Letts, London. Fountain Pexs, J. S. Letts, London.
Window Fasteners, F. Lea, London.
SkL-clooing Cock, G. W. Foster, Lond RELF-CLosing Cock, G. W. Foster, London.
RIVET-HODERS, G. Foster, London.
LEVER Locks, C. Whittle, London LEVER LOCRS, C. Whittie, London.
GEAR for Drvivi V ELocIEDES, S. Rey
CASTor BowLs, de., J. Parry, Birmingham. Locking Device, W. C. Batten, Aston.
KNITE-HANDEs,
CARVING Foriss, A. J. Jones, Moseley. Moseley. Farving Forks, A. J. Jones, Moseley.
Frushivg Apparatus, W, Baraclough, Edgbaston
Producing Vapour Gass ,. Marcus, Birmingham.
 Metallic, Spoons, D. R. Price, Birmingham.
Flushing Apparatus, W. Baraclough, Edgbaston
 TrICYCLES, dece, S. Martin, Handsworthich
NAIIS, D. Higgs, Halesowen.

 H. G. Pifford, New York, U.S.)
Boor and SHoe, J. Gerard, London.
Artiriclal Leaves and Flowers, E. G. Brewer Artificial Leaves and Flowers, E. G. Brewer
(J. T. Noboom, Paris.)
Turnivg Oven Musicleaves, R. Padbury, London
Taps, E. Grewer. (A. Berges, Pariz.)
Thewer SELF-LOCKING Apprasatus for RAILWA Signal,
H. L. M. Goodridge and T. R. Davies, London.
Economining the Use of Gas, S. Müller, London.

 FAsTENING BUSKs to Conserts, H. J. Haddan.-(
nrichsen and Co., Hamburg.).
CoFFE-PoTs, E. Boyes, London.
SELF-ACTING CALENDAR, D. Gestetner and S. Levy, Measuring Avales, H. Watkin, Waltham Abbey ADhesive Staxp, ©c., S. Pulzer, London.
Pouor, S. Pulzer, London. Facing Surfaces, W. Schonheydor, London.
Sustending the Corrosive Action of Acids, do
Urquhart, London Urquhart, London. A. K. Huntington, London,
TuNastic ACID, dc.,
OPEIING and CLOING Doors of HANSOM CARS, Treative Locrap Zinc, A. K. Huntington and J

 d J. P. Hogan, London.
Propelivo Boass, J. Bramall, London.
Valves, Cocks, and Tafs, J. R. McNeil, London Oil Lamps, E. S. Copeman, London.
Envelope Cementivg, R. Fenner, London,
ELECTRICAL Relays, J. A. Lund, London. Elegtrical Relays, J. A. Lund, London.
SETTING Clocks, J. A. Lund, London,
overs for Culivary Utensils, T. and H. H croft, Wolverhampton.
20. MILK-CAN8, E. Goddard, London.
21. FASTEER for Boorse, dC., R. Treleaven, London.
22. FURNACES, R. Morris, Doncaster, and J. Wood,

300. Cou
Winco
309. WIN
311. TEM
311. RE
incobank.
WINDMLLS, A Taylor, Bradford.
TEMPEES for WEANIVG, J. Parkinson, Bradford.
REGUATING, dC., SHUTLE-BoxEs, J. Poole,
radford.
12. Grate-bars for Furnaces, J. Stephenson and W.
Topham, Dudley Hill Shams and Boors, W. England, Great Malvern.
DyNamo-electric Machines, S. Williams, Newort.
Polley Blocks, R. Priest, Cradley Heath,
Coal Scuotrles, J. A. de Macedo, Leeds. FUzerboxes, G. J. Harcourt, Clifton.
Lowering de., Shirs' Boass, . Nelson, Belfast.
Photocraphio CAMERAS, S. D. McKellen, Man. chester.
WHII Sockers, dc., C. Peters, Birmingham.
RoLlers for WAsHING Woot, H. Allison, Bradford RoLlers for WASHING WooL, H. Allison, Bradford.
PICKING ArM forLoors, R. Marchant, Huddersfield.
RAILWAY SIGNALS, I. C. Schofield, Halifax. . Schofield,
 rashay facing Points, T. E. de Tomanzie
Sromilow, Liverpool.
Tatr-carper Rods, G. J. Harcourt, Clifton, STARR-CARPET RoDS, G. J. Harcourt, Clifton,
FINGE Board for VIoorIs, W. Buchanan, Glasgo
FASTENING, dc., Boots, G. Lindsey, Brighton. ouarton, Nero Zealand.) o. Needham, London. Uarbella, W. Cheesman, London.
TURNSCREW, W. Cheesman, London.
Stew Pan, W. Cheesman, London. AY FIGURE STAND, W. Cheesman, London.
oweriva, \&ce., Boats, R. Eyles, London. Lowering, \&e., Boats, R. Eyles, London.
Strel Wire, ©c., C. M. Pielsticker.-(Dr. F. C. G.
Iiller; Germany.)
 Prestrving Shirs' Botroms, E. Pearce, Southsea
Boats, W. H. Denham, Southsea.
REGULATING the HEIGHT of DESES and SEATS, W. Regulating the Heigit of Desks and Seats, W
. St. Ruth, Liverpol.
AdJusting Looking-glasses, \&c., W. F. Alloock,
Sash Fasteners, W. F. Allcock, Birmingham.
Tramcirs, te., C. L. H. Lammers, Gosforth. CLEANSING, Tramway Roads, C. Norton, London.
Tobacco-pIPEs, J. Kerry, Hove. VALVE GEERE, J. McCammonon, Belfast.
VELocIPEDES, J. McCummon, Belfast. INLAYING Wood, H. Forrester, Milton.
KINS, H. Knowles, Woodville.
OvENS, H. Knowles, Woodville. SToNE-BREAKING MMChiNES, S. Mason, Leicester.
FAN or VENTILATOR, F. L. Jeyes, London.
 Guiding Vessers, M. Gill, Huddersfield.
Fuex Econouser, T. Nicholon, Hoole.
CLotHes PEG, Chips, Southea.
Motive-fower, J. Hoprocks, Southport.
 H. Hall and S. Gee, Leeds.
Metallic Besprads, J. Jefferies, Birmingham.
Edarva Machines, S. Gibson, Hebden Bridge. EDGING MACHINES, S. Gibson, Hebden Bridge.
RAIIsc and LowERIIG WINDows and SASHEs, J
Ackroyd, Sowerby Bridge. Stretching Trousers and Garments, G. Wil
nd A. Baxter, Leeds.
Smoking Pipeg, J. . Falsh, Hipperholme. SMoking Pipse, J. F. Walsh, Hipperholme.
BRAKE, W. Hough, Headingley.
SpREADING, \&., FABRES, E. Outram, Greetland.
TURNING-OFF, dC., GAS, G. Foster, Halifax.
 . Lamps and Reflectors, H. Salsbury, London. Chicago, U.S.)
4. APouIsing Crean, F. H. Stevenson, Forest-gate
. CHIN Hoolder for VIolin F. Upton, London. 375. CHIN Holdere for volin F. Upton, London.
37. Extracing Simple Bottie Stoprers, A. Long
botom, Drifield.

Pen
 stall, and W. S. STaw, Woiverhampton. . . S. Shaw,
CEREMC PLATES, I. B. and E. S. Shaw, Tunstall, Elastic Printing Surfaces, I. B. and E. S. Shaw, Tunstall, and W. S. Shaw, Wolverhampton.
T. ATIFICAL MARLE, \&C., I. B. and E. S. Shaw
Tunstall, and W. S. Shaw, Wolverhampton.

$$
\begin{aligned}
& \text { DOOR SPRINGS, S. Coombs, London. } \\
& \text { SLEEEE BoARDS, H. Healey, Croydon. } \\
& \text { BEER TAPS, E. S. Norcombe, Birmingh: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SpADES, \&C., T. Parkes, Bilston. } \\
& \text { ELEETRIC LAMPS, S. H. Emmens and R. Barlow } \\
& \text { ondon. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LAMP-SHADES and REFLECTORS, R. Barlow, London } \\
& \text { LaMPDER for ELECTRIC LAMPY, R. Barlow, London } \\
& \text { ELEETRODES, S. Emmens and R. Barlow, London }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Holder for Electric Lamps, R. Barlow, London } \\
& \text { ELETRROES, S. Emmens and R. Barlow, London } \\
& \text { Cornice Pole Bracker, F. Gaunt, Birmingham. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Combing Mactives, J. O. Walker, Shipley. } \\
& \text { Food for Young CATLE, R. Jordan.- (H. Lederrey, } \\
& \text { Vaud, Sveitzerland.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { STORING CHEMCALS, \&c., G. Macdougald, Dundee } \\
& \text { EYELET STUD, W, Edridge, Birmingham. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Manchester. } \\
& \text { 2. Substrute for Fog Stgals, c. Bailey, Newton }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Heath. } \\
& \text { 423: CARDING EnarnEs, W. H. Oates, C. J. H. and T. B. } \\
& \text { Schofield, Oldham. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Schofield, Oldham. } \\
& \text { 424. FLYERS for SpINNING, J. Heginbottom, Oldham. } \\
& \text { 425. BREAKDOWN HAMMERLESS GUNS, F. Beesley }
\end{aligned}
$$

$$
\begin{aligned}
& \text { London. } \\
& \text { Coverivgs for Umbrellas, C. Bromhall, Moston. } \\
& \text { SECURING Buckles, C. McDougall, Manchester. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { inson, Motram. } \\
& \text { FAsTENNGS for Hoseshoe PADs, \&c., R. Lewty } \\
& \text { anchester. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { anchester. } \\
& \text { SECURING Labes, \&c., J. Jackson, Manchester. } \\
& \text { CANS, H. Talbot and G, Glossop Shefiel. } \\
& \text { ScIssors and SEARAR, Al. J. Hobson, Sheffield. } \\
& \text { KNIEE HoLDERS, J. Appleby, Birmingham. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. Looms for Weaving, C. Catlow, Burnley } \\
& \text { 7. Ventianting Sewer, P. M. Walker, Halifax. } \\
& \text { SHEDDING APPARATUS for Looms, F. Leeming, } \\
& \text { Bradford. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bradford. } \\
& \text { 9. CARDNG Fibres, A. Orrah, Huddersfild, } \\
& \text { O. FASTENINGS for Traveling Trunks, dc., }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Richardson, Grimsby. } \\
& \text { SHELLING PEAS, R. Owen, Boston } \\
& \text { CUTTING or MINCING MEA. G. He }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SHELLING PEAS, R. Owen, Boston. } \\
& \text { CVTIING or MINCNG MEAT, G. Herbert, London. } \\
& \text { VVLVES, J. Day, Bath. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { VALVES, J. Day, Bath. } \\
& \text { REvERSBLE WRITTBADS, W. Owston, Pontefract. } \\
& \text { ELECTRIC ARC LAMPS, J. H. Greenhill, Belfast. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ELETRIC ARC LAMPR, J. H. Greenhill, Belfast. } \\
& \text { ELETRIC ARC LAMPR, J. H. Greenhill, Belfast. } \\
& \text { VELLCPEDES, C. Hartand B. Barton, Birminghan }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Havestrg Machives, A. C. Baml } \\
& \text { Corsers, W. Pretty, jun. Ipswich. } \\
& \text { GAS ENGIEES, R. Skene, London. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { eel, Gosiorth } \\
& \text { HEATING WATER, M. Steel, Gosforth. } \\
& \text { ScARTS, P. Everitt, London. } \\
& \text { Roomennd Suos } \\
& \text { Honiol Nont }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. Telephonic Apparatus, S. Vyle, London. } \\
& \text { 5. Steam Pumping Engines, S. G. Browne and w. } \\
& \text { Boby, London. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PENS, ,ce., A. B. Cruickshank, London, } \\
& \text { SwIMING APpLINNCE, W. P. Winsor, Lond } \\
& \text { Note-pedals of PIANOFORTES, J. Shaw, Le }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Swimming AppiLANCES, W. P. Winsor, London. } \\
& \text { Note-pEDALS of PIANoFORTES, J. Shaw, Leeds. } \\
& \text { OPENIN, \&c., WINDows, E. and J. M. Verity and } \\
& \text { Banks, Leeds. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Banks, Leed.s. } \\
& \text { Sox Locomotive, \&c., G. Gole, London. } \\
& \text { STAR-ROD HoLDERS, A. W. Child and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bedlington, Bilbao.) } \\
& \text { HouDING, LocIFER MATCHEs, E. Edwards.-(P. } \\
& \text { uaux, Belgium.) }
\end{aligned}
$$

 Permanent Way, W. Colam \& R. Phillips, London.Carding Engines, \&c., G. Bernhardt, Radeliffe.
Boolers, Ec, W. H. Mirfin, Manchester. Boners,
REELS for YARNS, ©C., G Bernhardt, Radcliffe.
SADDLEs for BICCLES, W. Woolley, Birmingham.
Joint for SEwAGE PIPES, J. Parsons, Netherfield
SAVING SHIPs at SEA, T. Bridge, Eastbourno.
OvEN Soles, d., R. Wallace, Blackburn.
SEIF-ACTING RETORTS, B. P. Walkcr, Birmingham,

$$
\begin{aligned}
& \text { Oven Soles, de., R. Wallace, Blackburn. } \\
& \text { SELF-ACTING RETORTS, B., Walker, Birmingham, } \\
& \text { d J. A. B. Bennett, King' Heath. } \\
& \text { RuLING PAPER, J. Shaw, Holley. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TRATING FIBRES, \&C., J. Hlingworth, Batloy. } \\
& \text { JoINT for PIPES, H. H. Harrison, Liverpool. } \\
& \text { HIIGES, W. Wikes Blow }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HINGEs, W. Wilkes, Bloxwich. } \\
& \text { VELIOCIEDES, W. Parnall, Bristol. } \\
& \text { ENGINES and BoILERS, Wilkinson, Kempston. } \\
& \text { CoUPLING VEHICLES, E. Richmond, Leicestor. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ENGINES and BoILERS, W. Wikinson, Kempston. } \\
& \text { Couplinv VEHCLES, E. Richmond, Leicestor. } \\
& \text { TEMPLES for Looms, J. Cook, Eccles. } \\
& \text { FruITT-DRESSING Machines, J. G. Hopkinson, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Aarrogate. } \\
& \text { RANGELERE, W. Baird, Dubiin. } \\
& \text { CoMBING Woot, F, T. Pollard, Leeds. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SpINLEs, de., T. Ashworth, Davyhulmo. } \\
& \text { MINLEs for SpININ, T. Grintht, Bury. } \\
& \text { PRopULIN of Bots, E. Chrimes, Lower } \\
& \text { roughton, and R. Cooke, Manchester. }
\end{aligned}
$$

 531. Wutler, Whal Cerhampton. H. Ron wiek, Nowcastlo-

 544. Valves or Stoppers, H. Forman Chellaston.
545. SWirivg Appratus, A. H. Wallis, London.
546. WIcks for LAMPs or Stoves, C. Barton, Brandon. 546. Wieks for LLamps or Stoves, C. Barton, Brandon
547. VELocipexes, J. J. Speed, Waitham Cross.
548. HIGH-PRESSURE WATER METERS W. K4. High-pressure Water Meters, W. Cox, Horfield
549. Continvous SIoht for RiFles, ©c., E. C. Worman,
Canterbury. Canterbury.
550. Life-sAving Apparatus, L. A. Groth.-(0. Hirt,
Kartsbod.).
651. Extracting Metals, L. A. Groth.-(R. Grëtzel, Hanorer.)
52. Extracting Biphosphates, L. A. Groth.-(R. and
 554. BLOCKING TUNNELS, ©c., R. Roper, Lowisham.
555. Boors and SBoss, J. Bridgc, Northampton.
656. WINDow Fastenince, W. Fairweather.-(A. Kasi-
557. Insulated Wires, A. Millar, Crosshill.
58. Pinorote Actions. J. Semple, Glasgo

 65. Steam generatons, G. Hardingham, London.
66e. Breconelondsa GUs, J. Bullough, Accrington,
and G. P. Appleyard, Halifax. Motess for Spinnino Friers, J. S. Cooke and A Hardwick, Liversedge.
68. LAWN TENNs, , SC., SHozs, A. F. Gravos, Dublin.
SAD and other Locks, H. P
 Kingston-ores Thames Working Trains by Ropes, S. Pitt, Sutton.
Life-shino Raft, O. G. Lambart Southen
 Ironing Machiense, W. Whieldion, London.
Wood Staning, do., M. Williame, Wigan Drying Oilis, M. Williams, Wigan. Wigan.
Artiricial Human Figures, A. and G. B. Childs, London. Regrtacles for CoLours, C. Davis, London.
. Sewing Machines, J. Heggan, Dromore. 882. SEWING HACHINES, J. Heggan, Dromore.
and PVERTER FurNaces, Banhes, Iyons, France.) B. Mills.-(P. David
and and P. Manhes, Lyons, France.)
584. CAPsTANs, \&, Baxter, London.
585. Governors, H. B. Howse, Lon 885. Governors, H. B. Howse, London.
586. Smetino Funvee, . Bramall, Oughtibridge.
587. AxLe BeAringe, A. M. Clark.-(A. E. McConnel and J. R. Balfour, Nee orleans.)
S88. CLEANING, dec. the Ftrees of Plants, A. M. Clark.
$-(P$. Cohn, Mexico.) -(P. Cohn, Mexico.)
Clark.-(C. Vuillard, St. Claude, FIPECe.)
(A. Preprarive Firrovs Materials, A. M. Clark.1. Matevany, Gnesdovo, Russia.)
Bracer Hivar, , M. M. Clark.-(J. McGrath, U.S.)
STopers or Bortes C. H. Ryder, London.
Paper Fert, A. Davidson, Wimbledon.
 Cadde-bars, T. . Mortin, Woking.
Comunichtowand Electric Lighting in Trains,
J. Mortin, Woking. T. J. Mortin, Woking.
Recibterivo Fars, T. J. Mortin, Woking.
REEEPTACLES for PERIodicals, A. Slade, Lon Receptacles for Periodicals, A, Slade, London.
Centritugal Pulverising Machinery, H. J.
Gaddan.-(P. Freygang, Leipzig.)
Dung-catcher, H. Haddan.
 Envelopes, J. J. Aston, London.
Propelino Steamsips, J. J. Aston, London.
Treatina Sulvildes and Oxides of Metal, F. nowles, Isle of Wight.
RIILWAY Couplings, A. Clark. - (T. Jones, U.S.)
SPRINA BEDTEAD, A. Phillips, Birmingham.
MACHINE GUNS, H. S. Maxim, London. Spriva Bedstead, A. Phillip, Birming
MAchore GuNs, H. . Maxim, London.
Verocipedes, B. Carr, Walthamstow.

4th January, 1884.
.

 , Nombind

 72. STEAM
Birall
Birmingh
674. Corry
Walsall
(74. Corrugatting Plates of Iron, J. H. McCarthy,
Walsall. Walsall.
EyELeting Machines, C. H. Guest, London
FIIHing, H. L. Hunter, Lewisham,
WAshing, \&c., CoAL, C. E. Hall, Sheffield.
 Higi-pressure Injector, J. Dewrance, London.
Revolving Motion, (cc., W. Jones, Manchester.
SELF-Acting Henid Kniting Machines, H. alters and J. Saxon, Reddish.
SEwIN MA CHINES, M. Brodersen, Hamburg.
Enoines, T. MeCarter and T. Cooper, Londond EvaINEs, T. McCarter and T.Cooper, Londonderry.
VELocredes, C. W. Wasbrough, Bristol, and J. S.
W. Stroud, Knowle. W. Stroud, Knowle.
RAILWYY KEYY, R. D. Sanders, Norwood.
MIXING TEA, A. Carson, Stirling. T. Looms, B., C. W., and F. Ratcliff, and J. Batley,
Upper Wortley.
s. Propelling Man through WAter, F. Healey,
Croydon.

 hent.)
Finishiva Articles of Hosierx, E. Edwards.-
Bevernage-Standring, Ghent.)
 Donkin, jun., London.
GAME of WAR, D. C. B. Griffith, Brighton.
ORNAMENTING LEATHER, T. Bayley, Nottin
 MEARORING, \&ce., Apparatus, J. Muller, Londo
WINDow SAst FAsteners, G. Bisley, London.
WAsHINo Appabatus, F. Hazeldine, London.

$$
\text { 5th January, } 1884
$$

Indicators for Gas, de., S. M. Thomas, Bristol.
GLAZING Roors, de., T. W. Helliwell, Brighouse
Whekt, J. Binns, Rawdon. Whezl, J. Biuns, Rawdon.
CARDING Wool, C., W. H. Kellett, Cleckheaton.
INk and PENcL ERASER, E. Behar, Leeds.
Voltac BATERIEs, W. P. Thompson.
(E. E. SLotriva Machines, J. Harper, jun., Aberdeen.
RAIsing, dc., Apparatus, W. Hunter, Plumpton. Propelling Cycles, J. A. Stephan, Fernville.
SEcuring Bundes of Lettre, de., wirrout
 Direct Gas Furnace, R. Hanson, Chesterfield, Selp-lubricating Carriage Bearinas, J. Coxon,
tesbead. tesbead.
White Led, J. Kay, Bury.
Floating Flushing Valye, F. Floating Flushing Valye, F. Alford, Gloucester,
Bicycle Springe, H. D. Taylor, Hepworth.
KNife-cleaning Machines, T. Shepherd and J. D.
 Bath or Lavatory Cocks, dC., H. and W.
fe, Halifax.
WRNACE Fire-grates, J. Wright, Wimshill.
Wood-paving, W. J. Wheeler, Richmond. FURNACE Fire-Grates, J. Wright, Wimshi
Wood-pavine, W. J. Wheeler, Richmond.
Trovces, , Lee, Tottenham.
BLENDING TEA, J. G. Douglas, Dublin.
 LL-COCK HYDRANTS, S. B. Wilkins, Edinburgh
MERA J. Marwood, Doncaster.
MERVEYING, M. Gill, Huddersfield. CAMERA for SURVEYING, M. Gill, Huddersfield.
GALVANIC BATEERIES, H. Blackwell, Manchester.
ELETRIC ARC LAMPE, J, Matthews and T. Vann, irmingham.
SpINNING Corton, W. H. Rhodes, Longsight.
GARMENT HoLDER, T. Bradford, Sandymount. GARMENT Holder, T. Bradford, Sandymou
Shoes for Hores, R. Longdon, Doansgate
FIIE-LIGHER, G. A. Biddis, Newbury.
 lade, Bristol, and W. A. Slade, London.
Fish Hooks, W. Guise, Redditch.
Prevering IIcrustation of Boiliers, G. Hes,
loucester, and T. Morgan, Oldland. Oucoster, and T. Morgan, Oldland.
DoorNG AWA with Writing, \&c., on Lines, A.
nell, East Finchley.
 Quelining Waves at Sea, J. Sansom, Glasgow.
Jack Bars, J. Carver, Nottingham, and J. Roe, propulsion of Brcycles, dc., L. A. Groth.-(F.
hek and R. Perl, Vienna.)
SEvrino Broom Hand.es, B. Pearson, Sheffield. SEcurino Broom Handes, B. Pearson, Sheffield.
Sprovo MTreses, J. Westgarth, Elmside.
Mulves for Spinining, R. C. Haworth and R. Ryles,

 Dinkelmeir, Bararia)
DYNAMO-EEECRIC MACHINEs, T. Parker and P. B
woll, Wolverhampton.
RAZor STrors, G. W. Edwards, Wolverhampton.
SpLINT LINKs for Chains, J. Phillips, Willenhall,
773. Knire with Rocking Shaft, C. F. Herzog, Paris.
774. Porirying Gas, G. D. Malam, Bingley 775. Inhaling Apparatus, G. Stoker, London.
76i. Cuting Paper Webs into Shets, H. Grafton,
London.
777. Ptanoforte actions, D. M. Davis, London. London.
77. PIANororte Actions, D. M. Davis, London.
78. Hosiery Dresses, T. Walker, Leicester.
79. Brooct and FLowEr HoLDr, H. J. Davis, London.
80. REGISTERING, dce., APpARATVs, W. Rowan, Ventnor
 king Pipes, H. Bandmacher, M. Friedlander,
B. Macaulay, Glasgow. and J. B. Macaulay, Glasgow. 784. SHAPING, ©c., CLAY, C. H. Murray, London.
785. INFANTS FEEDNG Boottes, W. S. Simpson and J. AWL GEAR, R. Porter, Lowestoft.
EAMENT of Bloop, W. G. Strype, Wicklow.
NALING on Board SHIP, H. H. Dott, London
STING PoNToon Bridars, S. Lampard, Londo
STE WATER PREVENTERS, G. Homewood, Cuck 91. Drinking Vessels, C. Wrench and B. Le
Birmingham.
92. Carriage Handles, R. E. Thacker, Walsall. 2. Carrage HandLes, R. E. Thacker, Walsall.
3. Firs Hooks, J. Willis, Redditckh
4. LAMp Brackers, W. Whiston, Birmingham.
5. Ferd of Scribeling, de., Engines, H. Marsde Huddersfield.
796. Lasps, C. . Ilingworth, Clayton-le.Moors.
797. Controlining nuN-AWAY Horses, ©ce., R. Winde Farningham.
793 PERAMbuLATor, de., Wheels, W. Brassington
Lower Broughton. WINDOW FAsTENERS, E. H. Harling, London.
West Brom Batinces, T. B. Salter and J. Hughe West Bromwich. Bromwich.
802. SSarf Ring, W. West, Birmingham.
803 SUbstitute for Vent Pecs of Beer B 4. Bomford, Fladbury. Corn, \&c., E. G. C. Bomfor Fladbury.
Extracting Minerals from Mines, T. Lishman
West Hartlepool. West Hartlepool.
6. ELEctric SAFETY Lamps, T. Coad, London.
7. Date CaLEDARs, A. W. Doery, London.
8. Printing PAPER HANGINCs, W., G. Wilkins, D 809. Heating Water, T. Fletcher, Warrington.
810. Packinges for Glands, C Moseley and B. Blund tone, Ardwick.
FELT HATs,
Horseshors, W. W. H. Carmont, Hyde. nt, Manchester.
ompson, Halifax. Looms for Weavina, Cowan, Liverpool.
Lighting Fire, J. Cowing
Chain Links, H. Rongier, London.

 Harvesting Machinery, J. Ha
7th January, 1884,
822. Chingey Cowl, \&c., A. C. Smith, London.
823. Two-whekled Carriage, J. Powell, Cornwall.
824. Mashina Potatoes, T. Rimmer. Bickerstafe.
 Doherty, Liverpool.)
Castors, W, C. Jones, Chester.
Locks and Bouts, W. C. Jones, 827. Looks and Bolis, W. C. Jones, Chester.
828. Weiohina by Electricity, G. C. Bro
Ma Manchesior.
S29. WEAVNG, Wire, J. H. Cairns, Armagh.
830. Spriva AppARATUs, D. W. Petrie, Liverpool. 0. Spring Apparatus, D, W. Petrie, Liverpool.
H. E.sistic Pressing and Feeding Rolers, S.
Hazeland, Cornwall. Hazeland, Cornwall.
2. Rotary Encinss, S. S, Hazeland, Cornwall.
3. DriLing Machines, S. S. Hazeland, Cornwall DriLING MACHINEs, S. S. Hazeland, Cornwal
RowLocks, S. . Hazeland, Cornwall.
PAINTING MACHINEs, S. S. Hazeland. Cornwall Panting Macinses, S. S. Hazeland, Cornwall.
Boots, \&c., S. S. Hazeland, Cunwall,
WATER-closers, J. G. Strong and Sons, Dublin. TARP VALEES, I. Barrsley, Sheffield.
TLECTRIC MoTors, S. P. Thompson, Bristol.
oLDING MACHIEERY, J, H. Buxton, M. Smith Folding Machinery, J, H. Buxton, M.
d. Draithwaite, Manchester.
ORDNANE, J. P. Bayly, Londo.
TruNK, Boxes, ©c., W. S. Icely, London.
ORTHOPTICs, J. Garrud, London. PUNCHING, ©C, MACBINE, J. Tushaw, London.
SpINING FRMMEs, H. Roberts, Mytholmes.
STITCHING MACHINE, R. Livesey, Nottingham.
BICYCLE, F. N. Dyer, Macclesfield. SAFETY SADDLE-BAR, M. and J. Cooper, York.
BUTTON FASENER, H. Andrews, Birmingham CRON BEDSTEAD, J. Hi. Cairns, ATmagh.
CIGARETEES, T. V. Riordan, Cork.
DIsIFETANT, A. J. Shilton, Birmingham.
Droo TIPS for Boors, T. Payne, Bristol. Driving Gear, R. Nicholls, Landport.
Makivg Short Memorava, R. Parry, Hoole.
Drive Bets ,. Moxon, heffiel.
Link Driving Belts, J. Moxon, Sheffield. GLAZING GLABS SLTEUCTURES, F. Matthews, Slough
PREEENTING IRREGULARIT in the FLow of GAB,
Bradbear, Birmingham. Bradbear, Birmingham.
Pianororte Actions, G. Sliding, de., Bracket, M. H. King, Beckenham.
Compensatina Watcies, J. Richardson, London
 Pves, London.
PENCLI, , W. Wunt, Scarborough.
CANDLESTICKS, H. King, London.
SHIPBUIDIN, A. N. Cochrane, London.
FIrEESEAPEE, W. Davison, London.
Bows for VIoLINs, \&c., A. W. Adams, Penrith. Metallic Boor Protecrons, S. Hall, Rodley.
TAG, D. W. Fessey, London,
STTTINARY STEM Boilens, T.Calverley, Burnley.
SpINNING, dc., MACHINERY, B. Dobson and W. Caley, Bradford, CABLES, \&c., C. Anderson, Leeds.
Nursery Crairs , A. C. Robinson, Manchester. Nursery Chairs, A. C. Robinson,
Stgal Lamps, H. Defries, London.
Preserving Milk, E. Loeflund, St Exeserving Milk, E. Loeflund, Stuttgart.
Charlton, and BectaNical Drawiva, Garczinsky, London. E. Cory S1. GLAZING CoNsERVATORIES, T. Shelley, Birmingham,
C. REMOVINO SUEREFLOUS GGoL LEAF from Book
Cover, Covers, E. Straker, London.
Mappon Ling Casks, H. J. Haddan-(J. B. Kuttendreier,
Munich.) Registering Apparatus, J. Maskelyne, London.
Locking Railway Switches, H. Williams, Mount orida.
$V_{\text {ALEES }}$
WIRINO
Valves, E. Pocock, London.
Warming, \&c., ApARTMENTS,
TIPS Reere, HEELS of Boots, G. Chambers, London.
 Ambler, and J. C. Marshall, Sowerby Bridge

1. Sprisc Loop Fastever, G. Knightley, London.
2. Chronooraphi Watches, W. R. Lake.-(F. Fitt, Sicitzerland.) Tuss and Washers, C. Brigg, Bradford.
. FEATHERINO PADDLE-WhEELS, A. M. Clarl Feratherino Padde-wheels, A. M. Clark.- (C. L
Peteren, Boston,
Obraining Tin, W. Beatson, Rotherham.
 Venthentina Waterproor Con
Aro Lamps, J. Brockie, London
Cibterns, F. C. Biddiscombe, M Cro Lamps. J. Brockie, London.
Crstens, F. . Biddiscombe, Man
Locking Device for Nuts of Fisi Lockin
P. Car
PumpI

ABSTRAOTS OF SPECIFIOATIONS.

1854. Bregen- Loontiso Firenarus, W. Garther, Lon

 hammor Thi barteris ger

 magnots by which the types are moved.

 dirrecting tho water tomands the e ontron A number
longitud
anal and radial

 2120. Ret

 of whel
apring.
ond

 sr oxide, or carbonate of lead, which will act apon upon
or when
the oxide, and dissolve a film of the same, with which it becomes chemically combined, and forms a smooth
surface adapted to protect the iron from rust.

 the purpose of inserting the needles into the fabric
alternately from opposite sides, and of drawing them
and the thread through the fabric, of driving mechan. alternately from opposite sides, and of drawing them
and the thread through the fabric, of driving mechan-
ism ism arranged upon the carriages or imparting motion
to them, and roversing gear, also on the carriages, for
automatically reversing the driving mechanism to automatically reversing the driving mechanism to
terminate the outward movement of the carriages and
2340. Selp-LEvelling Ships' SLeepping Berthe, H. H.
Lake, London.- 8 .h May, 1883.-(A communication
from W. T. Milligan, Boston, U.S. . 8d.
The object is to enable the berths to be hung nearer
the side wall of the state-room than hitherto, and it the side wall of the state-room than hitherto, and it
consists of a berth, the longitudinal axis of which
is adapted to move laterally with respect to the walls of the state room as the berth swings, but in an oppo-
site direction to that in which the berth swings: also site direction to thation of a swinging berth with a
in the combination
governor, which controls the movements of the berth; governor, which a bapted to swing upon a t ransverse axis
and provided with two sets of springs placed one set
and and provided wi the axis, and so arranged that a weight
on each side of tending to contract one set will also tond to contract
tend
he other set alaso in a berth hung by flexible sup-
ports over suitable lateral pivota and provided with nechanism to adjust the head and foot.
 pulaton of reaters for jacquards, and it relates to the
general construction thereof. The pointers and
The punching levers are connected by cords ond pulteys,
and the pointers are adjusted by means of hollow rods
and levers and bars. 2358. Secondary
 which are soaked in a boiling saturated solution of of
acetate or intrate, or infused ohloride of leand the
absorbed salt being reduced by chemical or electrical abotrod salt being reduced byb chomide of or ead, thetrical
ction. Or a mixture of about equal parts by weight netion, ora mixture of about equal parts by weight
of poodered acron and minum, which amant
quantity of shellac is added, is subjected to hydraulic
 ceumulators independent of the state of the the anodros, accue eletroros prepared as stated are used as ases, the
thathode the anode being of amalgamated zinc.

 a scroll, one long arm of which can , eadjusted on the the
bood of the machine set screws and the other long
arm of which receives the saddle.
 This relades. to the construction of the grap skips
nd to the mechanism for working the same.

 This relates to an apparatus for shaping and narrow. ing the necks of knitted under-shirts, so that the neck
is ower in front than bhind, and is in a suitable
state for the subsequent attachment of an elastic ribbed
and collar.
2367.

 two or more rows separated by a line of perforations
adapted to ob folded and secured by ties at the oflds.
2370. APPARATUS For the MANUACTURE, MEASUR.

 sross-bar is carried neross the machine, the lengtt of
sway of which roll or bar determines the length of
sheet.

 phree or more mould receiving openings provided in its
perimpery, operates to receive the mould to be sanded,
and hold such moulds in such a relat on to each other
and

 coniunction with the said sanding machine, to auto
matioction hold the mothe molds in phace in tho moold
receiving openings, made in the periphery of said

 ${ }_{2}$ arms.

 2379. Loons, G. H. Hodgson, Bradforl.-10th May, The object is, First, to tonstruct sheding motions
in sroch a manner that the motion is positive, and the the
card or lang cylinder capabile of regulation by hand,
 liability of sliding picket tappet motions break ing
and arrange tho same that the sididing tappete can be
removed out of action when required : Thirall, to

 2382

 The inventors claim, First, the process and appa-
ratus for calcing ores
revolving calcininer connected mitallo maxtures a mand a

 circulation of the atidulated liquor or solution, in ordor
to bring all partices of the solution into contact with
zinc immersed therein. 2383.

 and also of the needles.

 board with counters or pieces similar to to those use
n the
gime of drew 2386 .
 Whiness 1 Oth Ma, 1 ,
This consist in digesting the unroasted ores (reduced
 certain menstrau. Thit eliquar is is hen nearly neutra.
lised with lime or carbonate of
 when it is allowed to cool.

 combustion, also to arrangements for drawing off and
purifing these gass also to the geparation of the
soluble and condensibje matter from these gases.

 ing and punching mprotemements in mes. machines for shear-, in which rotating
disc cutters are employed.

 tating vessel provided with electrolytite precipritatiph
plates. taining iron balls sis connected to the negative pole
a generator, and has a hollow perforated shaft insu
anted from it and connected

 adjusted as desis
difterent persons.
2393. Rotary Exarnes, A. Boyd, Bromley-by-Borr.
11th Mayy, 18ss.- (Not proceded wielh.) 2l. The objects are an improved mode of forming an
mounting an oblique disc ; a mode of balancing o
 and lankage of steam diminished, ;improved methods
of and means for packing cortain portions of the
apparat apparatus, and improved modes of orrranging and
workint the

Thith.). $\frac{2 d .}{2 d}$ the arrangement for bringing the lead
into position for use.
2397. Measuriva Tape, H. LL. Symonds, London. $-11 t$ the
May, 1883 .-(Not proceded vith.) 2.4 .

At one end of the tape is attached a link or loop
thrugh which the measuring tape is passed, o as
form through winch oreo measun a acertain disistance, on said
tape a bar or stop is fixed, and limits the contraction of the noose.
2399. Chamber or Store-roon for Stowina Ensilag
 This relates to the general construction of the silo
2405. Cosstruction of Steam Bollers, H. Lanc This relan-es to arrayging the tubes so that each tub is free to expand independently, and the expansion of
each and all the tubes may yary indefinitely without causing leaks.
2408. TUNSEI,
This relates to a combination eoverting of thre tumnels each suited to a single line of traffic, such
tunnels being connected together near the centre thinnes biemg connected together near thine centre of
华解 in of opposite directions to the branch or auxiliary punnels.
 May, 1883 . - (Not proceded dith.) $2 d$.
This relates oneans for cooling and breaking-up
2409. Mulvivo Machives, H. H. Lake, London.- 11 t

Three carriages are provided, two of which are

 the article which is to be cut.
2410. Apparatus foo Trextiva Wood for Season-
B. Byethe, Bordeaux. - 12th May, 1883. Gd.
This relates to the arrangement of the ovens and to
the injecting apparatus

Thisrmany. reles partly to the separation of the old
someric monosulpho acid of the Beta-napthol of

 2412. Cosstrvecrov or S Surs-or-wAR, E. J. Recel, This relates to the piacing of the magazines, boilers,
and the steamm-contaning and other more or less
doli dolicate portions of the propolling machinery, or any
of the same higher up in the shin that then have
hitherto been placed, and protecting them from
ind beneath by means of an armoured dock or inner
bottom of thick plating, or of other material suitable for their protection, in oombination with a lightly con-
structed external hull or bottom.

 This relates to the combinati
gausing apparatus for spacing.
 This. relates to several improvements upon patent
Vo. 967 , dated February 22 nd, 1883.

 This relates
2419. Machive for Filunga, Corking, and Syrupivg This relates partly to the employment of a slotted
tube controled by the movement of the plug of the stop cook, which addits the supply of the liguid to to
the filing machine, for the purpose of delivering the
iquid win quuid well into the botlte eneck, in such a manner as as
to run down the sides of the botle, and also to keep
he passage for the return of the surplus gas and air the enassang for the return of the surplus gas and air
tre from froth. 2420. Apraratus for Luarting Fires, G. W. von
Nacrocki, Berlin.-12lh May, $1883 .-(4$ communi-

This consists mainly of a reservoir, which contains
 cast on to the under part of the grate.
2421. FoumTaII PENs, J. Morton, London.-12th May,
 reservoir to the nib, is made of the same diameter to
near the bottom and a short distance above the ink rear the bottom; and a ahort distance above the ink
opening, a small hole is made to admit air to the duct.

Thiseims. dalases. to a pocket pump for sampling liquids,
onnisting of two tubes, one sliding within the other.

The ereagent is produced by complete saturation of 2427. Manvpacture of Suanr, dce., J. Görz, Betin, The inventor claiis the process of extracting sugar
rom syrup, molasses, or other saccharine liquid, from syrup, molasses, or other saccharine iquid,
which process consist in heating the same, ,apsing
electric currents therethrough, and allowing the said electric currente
liquid to settle.

This relates to the utilisation of picric acid and vessols, or contaniorsing in shem separately in mannertridges acids sre kept apart for transit or storage, and can be
iberated and combined at or in the place where the
explosive force of the compound is to be utilised 2429. Rock Drills And Stands therkfor, A. M from, T. W. Wterliny. Neor York.) sd sommunication
This consists in novel arrangements of parts where by a series of hammers are made to revolve in concert
about a common centre, and each of said hammers is brought successively in line with the drill or drill hold ing spindle of the machine by the mechanism which
revolves the series of hammers, and which, acting in concert with other devices causes each hammer to
deliver its blow upon the drill or driul holding spindle
that is or may be made to continuuously revolve.

 cycle, in which the rider occupies a saddle or seat
phaced within the circumference of the wheel and
below the centre or axial line thereof.

This refers to apparatus for maintaining a constant, or an approximately constant, pressure of gas or other
fuud by he une of floats within a casing having inlet
and outlet paseages.
 This relates ot several improve
construction of carding engines.

The pipes are made with sealloped ends consisting of any number of scallops or projections of any suit,
abbe shape, so sto torm obod in such a manner as
to prevent any deffection or irregularity at the joints.
 Relates to " motor indicator"" in which mechanical
effect is produced on completing the motor circuit
vhilst effect is produced on completing the motor circuit,
whilst on braekking contact indued ourrentre
obtained which ing ane utilised in circuits containing rranslating devicics. The rotating armature in is ormed
tf a number of electro-mathets, having their poles of a number of electro-magnets, having their poles
niternatela aranged The field mannets conist of a
number of electro-magnets, having alternatist poles.
not Between the " motor indicator", and the generator
fhich supplies it with carrent, shunt conductor
forming the consumption circuit is joined to the posi Iorming the consumption circuit 1s joind to the posi.
tive and nogative wires of the motor circuit. The commutators are suitably arranged to make and breal
their respective circuits at the necossary intervals.

This consists in the transformation of phosphatio
slags into a fine opwder, in which the protoxides o slags int a anne powerer,
iron and writed int int prosquid oxide
and combinations of sesqui by reducing the slags tosquimps, roasting the lumps in
oxdisising fime, and then exposing the same to the
hetion of steam or water.

 The motorsa rare caused to rotate a pair of drums or
disce which revolve in in proximity but in opposite

2439. Machinery for Rubing, Dresingo, Finish
INo, AND SETING UP TYPEs, G. S. Eaton, Brooklym,
 2440. appanatus por Reproducing at a Distanoz Eleberricrimy, A. T. Collier, Wadebridge.- $-15 t h$ May, The inventor claims, First, the means whereby per-
fect synchronism of the pendulums is obtained in both transmitter and receiver; secondly, the means of pro ducing the raised characters or designs on paper or
other materio employed, Thirrly, the anparatus for
reproducing at a distance the facsimile of writing characters or any design by electricity.
2441. Machinery for tar Maxuracture of Lace,
dc., F. B. A. Busche, Westyhalia. $-15 t h$ May, 18s3.

This. relates more particularly to the beaters or
mechanism employed in lace and braid making machines, for pushing the crossings or interlacements
of the threads towards the braiding point, and to the mode of driving or actuating such mechanism, and
governing its action by a jacquard machine or equivalent pattern mechanism.
 15 May May 1833. - (Not proceeded with.) ${ }^{2 d}$ d.
block of iron or steel is attached to the wire drawer's bench hollowed out out receive two or mire
wheels fixed in position to suit the size of the wire
 receivers upon its surface ribs corrosponding with the
cuts upon the wheel
 This consists in the combination with the cock that
contros the gas supply of a clock provided with hands
suitably constructed controis the gas supply of a clock p provided with hands
suitably constructed and ajusted, and of inter ediate
mechanism in connection with the the gas eock, and adapted to be acted on by the hands of the clock at
given times for the purpose of turning the cock full on
or partim or partially off, as the case may bo.

This consists of a cylindrical vessel to contain the
milk, in combination with a piston-like cover fotting milk, in combination with a piston-like cover fitting
therein, said cover being provided with a tent for the 2448. Elecrric Lhert Buoys, E. C. G. Thomas, London. The buogs have two of their sides vertical and con-
cave, and in the approximately semicircular hollows so formed are placed water-wheels having their axes
vertienl. The motion of the wheels is communicated to an electric generator contained in the buoy, the
current from which is delivered to secondary batteries and thence to n.
2452. Autromatic Covplisa por Rainway Trucks,
dc., G. F. Belling, Litlle Ifjord. $-16 t h$ May, 188s. The object is to avoid having to get between the
carriages to couple and uncouple them, and it consists
 short movable pin is suspended and passes through a
sot in the flat piece. The back part of the bar is
rised or en
 downwards forming an inclined planer To the eflat
piece at the back of the slot a movahle double shacle

 thb coupling. A handle
the pin for uncoupling.
2453. Apraratus for Obtaninge Motive-power to
Compress Ais axd Store tir sit

 air pump or wanneeted with ar reservoir from whitiche om-
presed a air in automatically suple by clock work
mechan 2450. Exaines for Carding Fibrous Matrrials,
 forming a scrow nut in a pit titted to swivel in the
bracket carrying the bearing for the rolle, and similar swivel screw nut is fitted in the bracket of the clearer, one nut having a right-handed and the other a
left -handed thread with which coresponding thread on a rod enga
suitable means
2451. Caturpres, St. J. V. Day, Glasgon.- 16 th May, May
1883.- (A communication fiom A. Nimmo, Rhode

The object is to facilitate the measurement of
diameter, circumference, area,

 axis upon which the legs pivot. The distance from the
axis to the outer pointsisio in the same proportion to
and elongations as the circumference of a circle to the diamoter. The fractional parts of the circumference of
a circle myy be mankecd along the elongations, or the
latter man be of a lensth to measure off any frictional part of the circumference of a circle at the outer
 The copper or other negative electrode is placed in
a cell containing nitrate of soda or potash in combination with a sulphate, such as that of apspper, tho zind The porous cell many be mande of brown paper between
an outer and inner layer of parchment paper The zinc electrode is enveloped by panvas, which is covered on the outside by woven zinc on which any copper
that may penetrate by osmose is deposited.
 This consists in addings sufficient caustic alkaline
lye to refined or crude cottonseed oil or other oil lon taining colouring matters to produce saponification,
and in separating the soap formed by the further
addition of caustic alkali. 2457. Loonss, A. J. Boult, London. -16 th May, 1883.
G (A oommunication from M. Baitus, France.)
Ed.

 wheels immovable after the shuttles are changed, an
to release the same at the moment when they hav again to start their movement,
spring balances the movable boxes.
2459. Dossssic Fire-ascare, 7 . Hale, Claylon. - 16 h

The force of wind and running water is caused to
perate compressers which compress air into accumu-
lators wherein it is stored, and whence it may be taken 2463. Breech-Loading Ordnance, H. J. Smith and (Not proceeded vith.) ${ }_{2 d}$. A circular or rifled bore is cut through the metal
with its axis at right angles to the longitudinal bore, and in it a hollow cylinder can traverse this transverse
bore. A solid metal plug is carried at one end of the sliding breech berrel by trunnions fitting slots in the
barrel. The breech barrel has a traversing motion and a partial rotation imparted to it,

 2469. Separation and Utilisation of the alkali
Used in the Extraction of Crude Carbonic Acid

Used in the Extraction of Crude Carbolic Acid
wrom Cal Tar OIL, J. Lane, Elland, and D. V.
Steuart, Manchester.-17th. May, 1883.-(Void.) $2 d$. Steuart, Manchester.- 17 the May, 1883 . H (Void.). 2 d .
This consists in the use of sulphureted hydrogen
nd lime, for the separation and recovery of the alkali and lime, for the separation and recovery of the alkali
used in the extraction of crude carbolic acid from coal tar oils.
472. Extinguishiva Fires, \&c., G. W. von. Naro-
rockk, Berlin. -1 thi May, 1883. - (A communication
from C. from $C . J$. Mönch, Germany.) $6 d$.
This consists in the use of compressed carbonic acid, which is stored in a wrought iron vessel, and con-
veyed to places where fires are likely to occur by
means of pipes, having weak parts, which will burst means of pipes, having weak parts, which will burst to escape into the rooms.

Boult, London. -17 thecrrical May, 1883 . - (A commumunication
from J. G. Sanderson, Nein Yor,
rom J. G. Sanderson, Nero York, U.S.) $4 d$.
in insulating compound is made from melted An insulating compound is made from melted
asphatt, into which is mixed a non-conducting metallic
xide and sulphur, both previously reduced to a fine oxide and sulphur, both previously reduced to a fine
powwer. The compound may be applied directly to
the conductors or cast into blocks for future use.
2476. Construction of Wheels for Railways Tramways, de., R. C. Mansell, Highgate. 17 th
May, 1883. 6d. This consists, First, in forming projections on the
neer face of tire-retaining rings to enter recesses in the tires, so as to prevent the bodies of wheels turning
within the tires; Secondly, in making ribs on the tires to enter passages or grooves on the circumference
of the bodies, to prevent the latter turning in the ires; and Thirdly, in making the sand projections
nd recesses by moulding and the
2477. Machines for Uniting Knit Fabrics, J. h.

Johnson, London.-17th May, 1883 .- (A communica-
tion from W. Pearson and J. W. Hepvorth, Pennsyl. his relates to machines for uniting
dges of knit or other looped fabrics technically called looping frames," and it consists, First, in the arrange-
ment of the needle, which operates in conjunction with the looper so as to reciprocate from the base or butt
end of the needles upon which the pieces of fabric to be united are impaled toward their point; and
Secondly, in the needle operating, as described, in
combination with tension mechanism and the looper. 2478. STA Ps on Corsert, F. H. F. Engel, Hanburg.-
17ih May, 1883.-((communication from E. and G. Lerch and J. Meyer Germuny.) $6 d$.
This consists in enclosing the busks
vided with a covering flap of metal provided with a
pring fastening, and which allow the busks to
eadily removed and replaced.
2480. Wheel Gear for Workina Sight Bars for
GUNs, ©c., C. H. Murray, Nexcastle-upon-Tyme. The gear for actuating sight bars consists of a rack
on the bar and a pinion engaging therewith, a wheel ast on the axis of the pinion, another fixed wheel engaging with both the ofther wheels and cappable of
being moved around their axis. Elevating gear and sear are also described.
481. Manufacture of Compounds as Substitutes
for Ivory, Horn, Coral, Malachite, Vuloante,
 This consists First, in treating with ammonia gas or
arbonate of ammonia, in the state of vapour, fibre
hat has been converted into nitro-cellulose by sub that has been converted into nitro-cellulose by sub-
jection to the action of sulphuric and nitric a cilds;
Secondly, treating nitro-cellulose-after it has been Sectondy, theating nitro-cellulose-and anter it it has acids, been
deprived of free acid-by steeping it in a strong solution of alumina sulphate, washing and drying;
Thirdy, treating nitro-caltulose that hass been derpived
of free acid, and dried by adding to it a solvent, such of free acid, and dried by adding to it a solvent, such
as napthaline, together with zinc chloride and zinc
xide; and Fourthly the combined process of pro oxide; and Fourthly, the combined process of pro-
lucing uninflammable nitro-cellulose with ammonia gas or carbonate of ammonia in the state of vapour,
then steeping the fibre in a strong solution of alumina sulphate washing and in a strong solution of alumina
ond the dried product a minterwards adding
mixt of napthaline, zinc hloride, and zinc oxid
2486. Treatment of Indigo foe Use in Dyeing and
Printing, W. Brookes, London.- 17 ht May, 1883 .(A communication from T. Hollidey, France.). 4d.
Artificial alizarine, alphaor beta napthols, resorcine, or other bodies formed by heating sulpho compounds
with caustic potash or caustic soda, for the purpose of introducing the hydroxyl from the melt produced by
such heating, are precipitated by the use of sulphurous such heating, are precipitated by the use of sulphurous
cid, added to the solution of the melt, until it shows
n acid reaction. The resulting magnia is filtered, and an acid reaction. The resulting magnia is filtered, and
the filtrate further saturated with sulphurous acid
and employed in dissolving and dyeing with indigo and employed in dissolving and dyeing with indigo, with iron or zinc, the converted matters being mixed
with indigo, suffiecient lime being added to hold the
indto verted impure hydro-sulphite is used in dyeing with indigo, by adding it to an indigo vat, thereby keeping 2487. Oil Cans for the Use of Bicyclists and Tri-
cyolists, L. A. Walters, London, and J. Bradbury, This relatese to the combination in one article of two
or more oil holders, a match box, a wick holder for a or more oil holders, a match box, a wick holder for
pare wick, and a pricker for raising a lamp wick. 2489. Electric Current Meters, W. Murray and
H. M. Caper, London.-18th May, 1883.- (Not proA metal disc or other suitable device is made by aid
an electro or permanent magnet to revolve and 2490. Looms for W.
490. Looms For Weavisg, W. Tristram and W.
Westhead, Bolton.-18th May, 1883 . 6d.
This relates to the method of constructing the
picking bowl with its attendant connections The picking bowl with its methondant connnections. the
picking shaft has a square hole through which passes
bolt with a bolt with a square part to fit the hole. which passes
On the bolt
placed a bush on which a conical picking bowl is placed a bush on which a conical picking bowl
revolves. The bush has a groove opposite the oil hole
in the picking bowl so as to ensure perfect lubrication 2492. Gas Motor Engines, G. G. Picking and W. This relates to engines in which the explosive mix-
ure is in a state of compresion before itition, and ture is in a state of compression before ignition, and
the object is to increase the certainty oo firing the
mixture in the cylinder by the thorough cleansing of the firing chamber or cylinder each stroke an
previous to the introduction of the next charge o previous to the introduction of the next charge o
explosive mixture, this object being attained by
passing through the cylinder or frimg chamber
charge of pure ar previous the the next oxplosive charg
being introduced pliso to

end of the cylinder, the refuse of combustion escaping
at or near the middle of the cylinder. A pump supplies at or near the middle of the cylinder. A pump supplies
the mixture to the cylinder and makes two revolutions 2497. Covers for Protecting the Bindings of
Books, S. S. Tuckerman, Kinver, Slaford. -18 th May, 1883. $6 d$.
sheet of paper is folded so as to form a kind envelope, one of which is placed on each flap or side of
the book, so that the flaps of the envelopes overlap
the back of the book, and are secured together by gumming.
2499 . In

Electrical Wiand, Wechantal Protection for
E. Phillipg, London.-18th
The wire is frst covered with cotton and is then boiled in a bath of ozokerit or parafin. It is then
passed through a machine and receives a covering of
strip lead coated with ozokerit. The lapped edges of stsip lead coated with ozokerit. The lapped edges
the lead are further covered with cotton or tape, an the whole is passed through a bath of melted ozokerit
and finally covered with copper wires which may serv as the return.
2505. Hors
2505. Horseshoes, T. Allen, Bradford.-19th May,
1883. 6d.

The object is to prevent horses slipping, and it con-
sists in fitting a tip of steel to the toe part of the sho and inserting a strip of of india-rubber in an annula
and and grove in, and can yield under pressure springs placed
inside the heel acting upon them to force them out ward.
2508.
508. Garters and Shoes or other Coverings for
The Foor, C.M. A. de Gaubean du Mont, Paris.-
19th May, 1883 . 6d.

THE Foot, C. M. A. de Gauban du Mont, Paris.-
$19+h$ May, $1883.6 d$.
At about the instep a gusset of deer-skin, call-skin did, or other flexible and supple skin or india-rubber shat there is no internal projection. Each side the of the so
the boot has a longitudinal slit the whole length of the
leg, and is provided with a lace, by pulling the upper
ends of which the openings ends of which the openings are at once closed.
2509. BALANCED SLIDE VALVES OF STEAM AND OTHE (NaINEs, J. W. W. Hall, London.-19th May, $1883 .-1$
(Noceded with.) 2.1 . The valve has a working face on the back, and
works against an abutment plate, at the back of which works against an abutment plate, at the back of which
is fixed a shallow ring fitting steam-tight into a
cylinder fixed on the valve chest cover. The abutmet cylinder ixed one the vats cherking face corresponding to
plate has recesses in its
and opposite the steam ports of the cylinder face. At and opposite the steam ports of the cylinder face. At
the back of the abutment plate and corresponding to
the the recesses are fixed shallow rings or cylinders within
the larger one, and in them fit corresponding pistons abutting against the steam
lead steam into these cylinders,
2512. Stoppers or Valves
AERATED LIquUDs,
\&CO., A

Hope.-19th May, 1883. Gd. Banes, Cape of Good
making them pear-shaped, the small end terminating in a flange weath a groove above it, into which in position seats itself against a shoulder in the ne of the bottle. A notch or groove is formed in the
narrow part of the stopper and extends above the washer, which until pressure is applied closes this
groove, but which when open allows gas to escape
An instrument An instrument is described for ascertaining the size of
stopper required for bottles, and consists of a rod with sopso or spheres of increasing diameter formed on it,
and which when inserted in the neck of the bottle at once indicates the diameter thereo
2514. Apparatus for Making Stekl by the Bessemer
Process, A. Davy, Sheffield.-19th May, 1883, $6 d$. The object is to enable castt ironfounders and others
to make steel and steel castings without the costly plant now in use, and it consistsessentially in employ pipes constructed and adapted to discharge air into the metal by suitable blowing apparatus, so as
decarbonise the metal in the portable vessel. 2515. Carriage-wheel Tires, H. R. Toonsend, London. The object is to prevent metal tires from skidding and slipping when crossing tram rails or other sur-
faces, and it consists in milling, grooving, or indenting
the surfaces of the tires. the surfaces of the tires.
2516. Carriage or other Door Look, J. Holden,
Sovindon.-19th May, 1883 . $4 d$, This consists in substituting for the ordinary tongue
or bolt a disc of metal, the periphery of which j, formed so that when the disc is revolved on its axis it
chyages with or disengages from the standing pillar or
holdfast, and by a spring is maintaincd in the desired position.
2520.
2520. Combined Coupling and Buffing Apparatus
for Connecting Tramicars
 of two end portions with eyes and female screws, and take into the end female screws. The central portion
has a depending weighted lever, by which it is has a depending weighted lever, by which it is
operated. In the middle of the central portion is an buffer plate, behind which is a rubber pad or a spring, next to which is another metal plate, one bearing
against the draw-bar of the car and the other against a projecting part of a universal connecting link on the 2525. Water Slide Gasaliers or Gas Chandeliers,
W. Soutter, jun., and T. Edkirs, Birmingham. -21 st May, 1883.- (Not proceceded vith.) 2 d.
The object is toprovide means for ascertaing when
the water in the water slide of gasaliers requires he water in the water slide of gasaliers requires nected with the water space so as to indicate the level
of water in the latter. 2527. Apparatus for the Amalgamation of Gold
and Silver yrom their Ores, E. D. Chester, Suri-biton.- 21 st May, 1883. -(Not mrocected veith.) $2 d$.
The apparatus may be placed at the discharge of a attery box or at the end of table cered with amala copper covered or plated cylinder, having a coating to revolve at a slow speed in the same direction as the current of water carrying tailing, from which it takes
up any runaway mercury. 2529. O
2529. Operating Gear for Ships' Davits, i. Mc
Collin, Limehouse.-21st May, 18s3, The davits are operated by two screw jacks arranged
for moving them inward and outward as required, each davit working on a hinge put at its lower end.
The jacks work in stationary bearings fixed to the deck The jacks work in stationary bearings fixed to the deck,
and the screw of each at its upper end is connected by
a suitable joint to the inner side of the correspading a suitable joint to the inner side of the corresponding
davit. The two jacks are geared together to ensure
simultaneous action in working, a crank handle being proviced for each.
2555. Apparatus for Holding Hats, A. Pyke, Lon-
don. $-22 n d$ May, 1883. $6 d$. This relates to apparatus for enabling hats to be
suspended under chairs; and it consists of a tube, uspended by arms from a base-p pate or bar, and con-
taining rods, pressed outwards by a spring between taining rods, pressed outwards by a sprin,
them, so as to bear on the inside of the hat.
2565. Feeding Apparatus for Carding Engines,
đc., $E_{\text {. }}$ Eduards, London. - $22 n d$ May, 1883 .- A

having a number of hooks, in the shape of cow horns
on its circumference. These hooks take the fibrous material from an endless travelling band below, and carry it to a movable regulating comb, moving in an
elliptical path, to lay the fibres parallel. A second
movable comb is arranged above, and also travels in an elliptical path, so as to remove surplus wool from
the hook cylinder to the carding engine. 2566. Manufacture of Sulphate of lime or
Plaster of Paris, J J. H. Johnsom, Londone Plaster or Paris, J. H. Johnson, London.-22nd
May, 1883.- (A communication from P. G. Journet,

This relates to improvements in the manufacture of sulphate of lime, or plaster of Paris, consisting in
treating lime with a solution of sulphuric acid so as
to wholly or partially convert the lime into sulphate. 2567. Apparatus For Preserving Articles or
Food, dec., J. I. Johnion, London. - 22nd May,
Isss,

This relates to a process of preserving alimentary
substances, by the employment of a mixture of sulshurous acid and nitrogen, acting in special apparatus
phe 2589. Advertising Machinves, J. and R. J. Foot,
London.-23rd May, 1883.-(Not proceded with.) This consists of a frame containing a drum caused
To revolve by gearing actuated by a spring, and to
ond 2573. Manufacture of Porous or Spongy Plates, Applicable For .Use in Secondary Batteries,
de. F. T. Williams and J. C. Hovell, Llanelly.-
23.l.
The electrodes are made by inserting a suitably
haped perforated mould into a mass of molten lead shaped perforated mould into a mass on assume the
which has been allowed to cool slowly and a sllowed
crystalline state, any excess of metal being allowed to crystalline state, any excess of metal being allowed to
drain through the mould. The edges and other
portions suitable mould by hydraulic pressure. Birmina 2625. Portable Fonges, W. Aldday, jun., Birming
ham.-26ih May, 1883 . 6 .d.
The object is to construct portable forres so that they may be folded up into a small space when not in use,
nnd it consists in hinging the legs to the case of the
and orge, which is made shallower than usual, and haa
ides and ends hinged to it, which when raised and fixed in position give the case the necessary depth. 2641. Cleansing and Bleaching Cotron, Flax, \&ce.,
J. Imray, London.- $88 t h$ May, 1883.- (A communi-

This consists in cleansing and bleaching cotton or other vegetable fibre by subjecting to steaming or ho
air the material previously impregnated with alkaline substances, in com
hypochlorite baths
2881. Fire Grates, H. H. Leigh, London.- 9 tht June,
1883.-(A communication from Societe des foyer Economiques Gowet et Cie., Paris.) bid.
This consists in forming the bars in the shape of an anchor, air spaces being directed upwards through the
head, while the bottoms rest on a bar which can be caused to reciprocate by gearing and so rock thi
anchor-shaped bars and break up the fuel. The parti-
tions surrounding the grate are curved and perforated 2939.
1888.

In each 6 compartment a spring is arranged so as t pecure the pan or case of colour therein; while the long
partition in the box is cut away at the centre of each
compartment to enable the cake or pan to be removed compartment to
when required
3446. Manufacture of Marquetry Parquet for
Flooring, do., G. Horourd, London.-13th July

The objectit is to make marquetry praquet in the
natural colour of the wood with a durkenod pattern natural colour of the wood with a darkened pattern
therein from a single lamina (or series of lamine) of
wood, and it consists in cutting the pattern from the amina of wood, and then darkening it and replacing in its original positio
3658. Treathent of Fats for the Manupacture o
Soaf, J. Imray, London. $-26 t h$ July, 1883. - (A com munication from I. A. F. Bang and J. de Custro,
Paris.) 2 d.
The fatty matter, after being treated in the usual The fatty matter, after being treated in the usua
way for separation of the glycerine, is poured into
vessel lined with vessel lined with lead, and while still hot it is heated
with sulphưous acid applied e ither in solution with
water or blown through the materinl, to which water is adde
 A mixture of gas or inflammable vapour and atmo spheric air or ox ygen is fired in the presence of vapou
or steam arising from hot water in the firing chamber the expansion arising from the combustion combined
with the steam pressure supplying the propelling
force acting piston or pistons
 Yor.)- (Complete.) $6 d$.
By this invention waste can be cleaned and separate from foreign matter and used to manufacture goods,
employing the finer grades of material. The tibrous employing the finer grades of material. The fibrous
material is subjected to the action of a picker roller material is subjected to the action of a picker roller
provided with a stop or stops, whereby the fibre is
separated from foreign matter and carried by a current separated from foreign matter and carried by a curren
of air into a blow-room, in which the rear end of the of air into a blow-room, in which the rear end of the
machine opens, while the coarser elements are arrested
and descend to the floor or a suitable receptacle below
4211. Machine.
4211. Manuficturing Mestal Tubes, G. h. Fo

The essential feature consists in heating, coiling, entire tube is completed at one operation, the strip
being heated, fed to the mandril, coiled about the latter, with its edges overlapping, and ham
compressed to effect the welding of the joint
4237. Construction of Toothed aND Prongei 1883.-(A communication from A. Holden, New Sout This consists in the use of a perforated cleancr plat cleaning them, an clastic connection being provided
between the plate and tho implement, so as to return 4298. Telephonic Apparatus, E. George, F.
Pocock, J. S. Muir, and J. S. Muir, jun., London.The diaphragm is replaced by a plate attached to
wires stretched tight across a frame, so placed that th wires stretched tight across a frame, so placed that the
sound waves impinge directly on to the plate. The
plate consists of two discs, between which granular
carbon is confined

SELEOTED AMERICAN PATENTS
289,958. Motor for Sewing Machinss, \&c., Alex
ander L. Bevens, Flushing, N. Y.- Filed October 11th,
Cleim. - (1) An open motor wheel composed of the
rings b, c with cycloidal curved fans a between them,
in combination with a case surrounding the wheel,
and having a free passage between it and the wheo
for the water, and a jet tubo possing through the
outer part of the caso and beng in the line of a
tangent to the wheel, substantially as specifled

 and a frictional comnection to the shatt, subbetantialiy

nearly the same speed as the issuing jet of water, as
set forth. (4) In combination with an open wheel having cycloidal curved fans, a nozzle for an issuing
jet of water, a shaft for the wheel, and a frictional connection, substantially as set forth, whereby the
motor may be allowed to run at a nearly uniform
speed, and the speed of the sewing machine or other speed, and the speed of the sewing machine or other 289,966. Mechanism for Firing Ordnance by
Eleotriorty, Amedde Bouilly, Saumur, France.-
Claim.- The combination, with a piece of ordnance
weighted at the breech to automatically swing on it weighted at the breech to automatically swing on its
trunnions, and a suitable source of electricity, of a
tube containing mercury which is in constant con-
289.966
 evations corresponding to the various angles of iring, said contact points being adapted to be
mmersed successively as the gun swings on its
runnions, as described.

CONTENTS.

The Engineer, January 11th, 1884 . page
 The Abyssinla.....
LE STANLEY
Royal Agriculural Society
Royal Agricultural
Ralway Maters.
Notes and Mexorand

Padde-whel anmblance stramer. (IIus.)
Lectric Lighting in Brixton. (Illustrated.)
IUY-QURETER BREWERY
IUNGARAN EXHIBTION,
ETTERS TO
Letters To the E
Water Wheels
Arithmetical Chemistry

Publich Lands and Public Works in New
South Waies
Board of Trade Rules for the Strength of
Marine Bolebs
Royal Engineers and India
The Electric Lrgit in Houses
Marine Insuranoe
Railway Rutes
Railway Rates
Motiotics; a Treatise on the Modification of
Death of Mr. Fisken (ilustrated.)
Rope-driving Gear.
(ill
Triple-screw Steamer. (Illustrated.) 59
Steel for the Monongahela Bridge, pitisburgh
The Iron, Coal, and GEnEral Trades of Bir-
minghak, Wolyer Notes from Lancashire
otes from Sieytirit
Notes from theyfield oe England
Notes from Wales and Adjoining Counties

ARAGRAPHS-
Electrical Engineering
International Fisheries Exhibition
Prince's Theatre
Coal Gas, Water Gas, Ëlectric C Ligh
Naval Engineer Appointments
The Wirral and Birkenhead Agricuitural Society
How Time-tables are Made $\quad . . \quad$..
Epps's Cocoa.-Grateful and Comfortin -"By a thorough knowledge of the natural laws nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epps ha provided our breakfast tables with a delicately flavoured beverage which may save us many heavy
doctors' bills. It is by the judicious use of such rticles of diet that a constitution may be graduall dency to disease. Hundreds of subtle maladies are foating around us ready to attack wherever there is a weak point. We may escape many a fatal shaft
by keeping ourselves well fortified with pure blood nd a properly nouxished frame,- -Civil Servic Gazette,-Made simply with boiling water or milk
Sold only in Packets, labelled-"JAMEs EpPs and
Co., Homeeopathic Chemists, London,"-[ADVI,

