TRIAL OF A GRUSON CHILLED IRON SHIELD AT BUCKAU.
An experiment was conducted on the ground of Messrs. Gruson, at Buckau, on October 22nd, 1883, against a chilled iron shield in connection with a supply of armour for Holland. Any results of experiments against chilled iron are important to us in England, as we have blocks were indeed once fired at at Shoeburyness, but many years ago, and in so crude and elementary a way that the value of the result obtained was very limited indeed.
The gun employed was a Krupp 30.5 cm . (12in.) piece, 25 calibres long, mounted on a Gruson carriage. It fired a steel projectile of Krupp's, 3.5 calibres long; empty or blind, weighing 445 kilogs. ( 981 lb .), the charge being 120 kilogs. $\left(264 \frac{1}{2} \mathrm{lb}\right.$.). The velocity was 445 metres 1460ft.), and the striking energy or vis viva 4490 metretons ( 14,498 foot-tons). The shield consisted of five pieces of chilled iron forming half a tower-Fig. 1. The rear or open part was supponnected-Fig. 1. The entire weight of the shield was 47.5 tons. The first round struck a spot 4 cm . to the right of the centre of the shield, and 90 cm . from the bottom-Figs. 3 and 4. The shot struck the plate in a normal direction at the point marked I on Fig 4, forming a crack $a$ running 125 cm to the left and 91 cm . to the right of the point of impact To the left of the point of impact a chipping off, or bruise of 30 to 40 cm . long and 3 cm . wide. Round the point of mpact a chipping or bruise of a maximum depth of 35 mm ., a horizontal breadth of 48 cm ., and a vertical breadth or length of 52 cm . The point of the shot itself was flattened out into a disc with a centre core which stuck to the shield. On the interior the crack $a$ was visible as a hair crack, running from a point 45 cm . from the left edge to about 22 cm . of the right edge-Fig. 2
fragment which was already detached from the rest of the shield, bodily moved it back, and to a certain
lodged and disarranged the entire structure.
odged and disarranged the entire structure.
The shield received three blows, having
The shield received three blows, having together a total vis viva or energy of 13,470 metre-tons (43,495 oot-tons), or 283.8 metre-tons ( 916 foot-tons) per ton of metal in the shield without the fragments of the shield being dislodged or the protection to the interior being lost. After the third round there were cracks ex-
tending entirely across the plate and through the whole thickness forming large fragments, but these fragment thickness forming large fragments, but these fragment remained in situ. The surface of the metal was chipped off round the points of impact, but in no case had any of piecesint of the shot entered. After the fourth shot the pieces might still have held in their places had the supporting structure stood better ; but as it was, the whole of of the detached fragment which it struck.

## THE CALCULATION OF CONTINUOUS GIRDERS By Max am Ende, M.I.C.E.

No. IV.
If continuous girders are used for the support of stationary loads, as would often be the case in buildings, the moments over the supports for the one position of the load is ascertained according to the previous example are sufficient for the determination of all other moments and shearing forces by an elementary graphical or algebraical process, which need not here be described. But in cases of bridges where certain positions of the moving load produce maximum positive and negative moments or shearing forces at given points, further applications of the formulæ are necessary for the purpose of determining the positions of the load which produce and determine those maxima Fixed points.-If we consider the girder, vol. lvi. p. 47
fixed pointsinevery intermediate span of a continuous girder. In one of these, $f$, an existing moment is not altered by any action upon any spans to the right of the span, while in the other,, , it is not lert. fied eni spars, meluding the two piers, have only me contrary flexure but only two point or is -point of cond spor fin por point in each end spans-can be fixed points in the sense of the above explanation
Points of influence are those points where a load P must be placed to have its greatest influence on the moments over the adjoining supports. In a previous part of this paper it was shown how, for a girder of uniform section, these points can be determined analytically. In the present case the only way is to calculate the moments $\mathbf{M}$ for a series of positions of the single load $P$, and to determine the points of influence by interpolation or by drawing the curves of influence. The results of this calculation are given in Fig. 15. The ordinates of the curves $\mathbf{M}_{1}, \mathbf{M}_{2}$, \&c., indicate the moments over the supports for the corresponding positions of $P$. The curves here shown are therefore the curves of influence of the load $\mathbf{P}$ upon the moments over the supports, and where they reach their highest points, viz., at points $i$, there are the points of influence for these moments. The position of the points of influence is like that of thefixed points, independent of the loading of the other spans. The calculation for the first span is the same as that for the fixed points. Substituting for $\Sigma \frac{m x \Delta x}{J}$ successively six values, according to the six assumed positions of the load, into the equation-

$$
\mathrm{M}_{1}=0.613 r \Sigma \frac{m x \Delta x}{\mathrm{~J}}
$$

$m$ being each time the positive moment at the successive points from the load $P$ for one of its positions, we obtain


## arusen ohilled iron shield.

-in which, however, the crack is shown as completed by subsequent firing. Other effects of a slight nature were visible.
The second round was fired with a steel projectile weighing 446.3 kilogs. ( 983.9 lb .). It struck a point on the centre vertical line of the shield 100 cm . over the first point of impact-II. in Figs. 3 and 4 -the axis of the shot having a striking angle of 51 deg. A long curved crack " $c$ " was found running up to within 50 cm . of the top edge of the shield, and 17 cm . of the left edgeFig. 4-also another crack $c$ running to the right in a sharper curve nearly to the plate edge. A vertical crack $d$ connected points of impact I. and II. together. It could not be traced beyond I. There were also four other hair cracks about 20 cm . long. A long chipping-off also was made of 70 mm . maximum depth, 48 cm . long, and 12 cm . width-Fig. 4. The entire bruise at the point of impact was about 55 cm . wide.
In- the interior, the crack $a$ was completed and opened to a width of about 1 mm . The cracks $c$ and $d$ were not visible in the interior. The horizontal plate was slightly moved back.
The third round had a projectile of 443.8 kilogs. $(978.4 \mathrm{lb}$.) in weight. This struck a point 135 cm . from the bottom, 71 cm . from the right edge-see III., Fig. 4. This point is 86 cm . from shot I and 90 cm . from shot II. Striking angle, 72 deg . Eight cracks were formed, radiating from the point of impact-Fig. 4-one marked $e$ united III. and I.; another, $f$, ran parallel to $b$ for a short distance. Crack $c$ opened about 7 mm . The chipping-off or bruise at the point of impact was about 50 mm . deep. Inside cracks connecting the $a$ and $b$ were developed in the manner shown in Fig. 2, below the point of impact III. A certain amount of general disturbance of parts also was effected.
The fourth round was with a shot weighing 444.6 kilogs. ( 980.2 lb ). The striking angle was about 75 deg . The point of impact was 65 cm . from the bottom edge and 84 cm . from I (vide Fig. 4). This projectile, striking a
to have no weight of its own, and if we act upon the first span from the left, either by means of a load or by raising or lowering the first support a distance $e$, then equation (20a) in the one case will be-

$$
y_{1} \mathbf{E}={ }^{l} \Sigma \frac{m x \Delta x}{\mathrm{~J}}+0.815 \mathrm{M}_{1}
$$

$l$ indicating that the direction of measurement according to Fig. 12 is from the left, and $m$ the positive moments at the distance $x$; and in the other case-
$\left(y_{1} \mp e\right) \mathrm{E}=0.815 \mathrm{M}_{1}$, or $y_{1} \mathrm{E}= \pm e \mathrm{E}+0.815 \mathrm{M}_{\text {, }}$
The constants in the equations (20b) . (20k) are all $=o$. Working out, we obtain the following results:-
$\mathbf{M}_{1}=0.613{ }^{l} \Sigma \frac{m x \Delta x}{J}$, or $\mathbf{M}_{1}=\mp 0.613 e \mathrm{E}$

$$
\begin{align*}
& \mathrm{M}_{2}=-0.588 \mathrm{M}_{1}  \tag{21}\\
& \mathrm{M}_{3}=+0.33 \mathrm{M}_{9} \\
& \mathrm{M}_{4}=-0.505 \mathrm{M}_{3} \\
& \mathrm{M}_{3}=+0.338 \mathrm{M}_{4} \\
& \mathrm{M}_{6}=-0.34 \mathrm{M}_{3} \\
& \mathrm{M}_{7}=-\frac{1}{2}\left(\mathrm{M}_{2}-\mathrm{M}_{3}\right) \\
& \mathrm{M}_{8}=-\frac{1}{2}\left(\mathrm{M}_{3}-\mathrm{M}_{4}\right)
\end{align*}
$$

the values for the ordinates which have been plotted. Drawing the curve by hand, we find approximately the point of influence in the first span for the moment $\mathrm{M}_{1}$ to be at $i^{\prime}$ Fig. 15. If the load P is placed here, not only $\mathrm{M}_{1}$ is a maximum, but $\mathbf{M}_{4}, \mathbf{M}_{s}, \mathbf{M}_{4}-\mathbf{M}_{5}$ and $\mathbf{M}_{8}$ are also maxima, and $M_{2}, M_{3}, M_{7}-M_{3}$, and $M_{7}$ are minima This follows from the equations (21) or from the diagram Fig. 14. The other positions of the load $\mathbf{P}$ in the first span also correspond to an increase of $\mathrm{M}_{1}$, and therefore its real maximum will occur when a load is distributed over the whole span and when its heaviest part lies at point $i_{1}^{\prime}$. The abscissa may be regarded as the curve of influence for the moment over the first support, which is always $=o$. The second span has two points of influ ence, one for $\mathbf{M}_{1}$ and the other for $\mathbf{M}_{9}$. For their calcu lation we put in equations (20b) and (20c), the values of $\Sigma \frac{m x \Delta x}{J}$ for a single load P , in analogy to the table, Fig. 12, vol. lvi., p. 479, taking for (20b) these values by measuring from the right, and for ( $20 c$ ) those by measuring from the left. Working out we find-

$$
\mathrm{M}_{1}=0.985 \frac{60}{85} \Sigma \frac{m x \Delta x}{\mathrm{~J}}-0.681 \mathrm{M}_{2}
$$

$$
\mathrm{M}_{2}=\frac{1}{2.734}\left(2.037^{l} \Sigma \frac{m x \Delta x}{\mathrm{~J}}-0.985 \frac{60}{85}\right.
$$

$$
\begin{equation*}
\left.{ }^{r} \Sigma \frac{m x \Delta x}{J}\right) \tag{22}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{M}_{3}=0.338 \mathrm{M}_{9} \\
& \mathrm{M}_{4}=-0.505 \mathrm{M}_{3} \\
& \mathrm{M}_{3}=0.338 \mathrm{M}_{4} \\
& \mathrm{M}_{6}=-0.34 \mathrm{M}_{3} \\
& \mathrm{M}_{7}=-\frac{1}{2}\left(\mathrm{M}_{2}-\mathrm{M}\right.
\end{aligned}
$$

$$
\begin{aligned}
& M_{7}=-\frac{1}{2}\left(M_{2}-M_{3}\right) \\
& M_{8}=-\frac{1}{2}\left(M_{5}-M_{4}\right)
\end{aligned}
$$

Substituting for each of the two sums successively values according to the assumed nine positions of the load $P$, we obtain the two curves of influence for $M_{1}$ and $M_{8}$ and determine approximately the points of influence $i_{1}$, and $i_{2}{ }^{1}$. Point $i_{8}{ }^{1}$ is the point of influence, not only for $\mathrm{M}_{\mathrm{s}}$,
but, so far as the load on the second span is concerned, also for the moments over all the supports to the right, also for the moments over all the supports to the right,
making them alternately minima and maxima, in accordmaking them alternately minima and maxima, in accordance with (22). The central span has also two points of
influence. Equations ( $20 d$ ) and ( $20 f$ ) will now contain the influence. Equations ( 20 d ) and ( 20 d
sums, and working out we have-

$$
\begin{aligned}
& \mathrm{M}_{1}=-0.34 \mathrm{M}_{2} \\
& \mathrm{M}_{2}=0.338 \mathrm{M}_{3}
\end{aligned}
$$

$\mathrm{M}_{3}=0.726{ }_{110}^{85}{ }^{8}{ }^{2} \frac{m x \Delta x}{\mathrm{~J}}-0.283^{l} \Sigma \frac{m x \Delta x}{\mathrm{~J}}$
$\left.\mathrm{M}_{4}=0.418^{l} \Sigma \frac{m x \Delta x}{\Sigma}-0.504 \mathrm{M}_{3}\right\}$ (23)
$\mathrm{M}_{s}=0.338 \mathrm{M}_{4}$
$\mathrm{M}_{6}=-0.34 \mathrm{M}_{s}$
$\mathrm{M}_{7}=-\frac{1}{\frac{1}{2}}\left(\mathrm{M}_{2}-\mathrm{M}_{3}\right)$
$\mathrm{M}_{8}=-\frac{1}{2}\left(\mathrm{M}_{5}-\mathrm{M}_{4}\right)$
Substituting for each of the two sums successively twelve values, we obtain the two curves $\mathrm{M}_{3}$ and $\mathrm{M}_{4}$, and the points of influence $i_{3}$ and $i_{3}{ }_{3}, i_{3}$ is the point of influence for $\mathrm{M}_{3}$ and for the moments over all the supports to the left, in the sense as explained for the
second span, and $i_{3}{ }^{1}$ is that for $\mathrm{M}_{4}$, and for the moments to the right. The calculation for the fourth

A by the loading of the outer spans is $\mathrm{M}_{\mathrm{A}} \frac{(l-x)}{l}+$ $\mathrm{M}_{\mathrm{B}} \frac{x}{l}$. This is a maximum if $\mathrm{M}_{\mathrm{A}}$ as well as $\mathrm{M}_{\mathrm{B}}$ are maxima, and a minimum if both are minima. The conditions on which this takes place are given above, and, therefore, this part of the sum may be considered determined. The other part, viz., the maximum moment from the load on the span itself depends on its positions, and to determine these we have to take some further steps. In all cases it is advisable not to solve equations (20) at all with regard to any given load, moving or iixed, but to derive from them directly the equations ( $21,22,23$ ), and to determine by means of these the fixed points and curves of influence for the supports, according to Figs. 14 and 15 . Having got these, it is quite easy to draw other curves of influence for any given points. This process is then no longer dependent upon the outer spans, We will describe Fit for point d, Fig. 16, at a distance of 69.5 ft from A . $\mathbf{M}_{B}$, we transfer the ordinates of the curves $M_{A}$ and $\mathrm{M}_{\mathrm{B}}$ to the ordinates over points A and B respectively, and
draw the closing lines $1_{a}-1_{b}, 2_{a}-2_{b}, 3_{a}-3$, \&c. draw the closing lines $1_{a}-1_{b}, 2_{a}-2_{b}, 3_{a}-3$, ${ }^{\text {\&cc. }}$
These lines intersect the corresponding ordinates in points $1_{a b} \ldots 4_{a b}, 5_{a b} \ldots$ through which a curve is drawn

and fifth spans is identical with that for the second and first, on account of the symmetry of the structure. From equations (21, 22, 23) now follows (1) that $M_{\text {, }}$ becomes a maximum if the moving load is distributed over spans $1,2,4$, with its heaviest parts arranged near the points of influence $i_{1}, i_{2}, i_{4} ;(2)$ that $\mathrm{M}_{\text {, and }} \mathrm{M}_{3}$ become maxima if the load is distributed over spans $2,3,5$, with its heaviest parts arranged near $i^{1}, i_{3}, i_{s}$,
or, still more to the purpose, if it is so distributed that its or, still more to the purpose, if it is so distributed that its
intensity is as nearly as possible in proportion to the intensity is as nearly as possible in proportion to the
ordinates of the curves of influence ; (3) that the maxima ${ }_{\text {of }} \mathbf{M}_{4}, M_{s}$, and $M_{6}$, are equal to those of $M_{3}, M_{2}$, and $M_{1}$. In continuous girders of an indefinite number of spans the negative moment over any support becomes a maximum if the first, third, fifth, \&c., spans to the right and left are loaded, and if the heaviest parts of the load are arranged in the spans to the right near points $i$, and in those to the left near points $i^{\prime}$. The positive moment between two supports becomes a maximum if the span itself, and among the other-outer-spans, the second,
fourth, sixth, \&c., spans to the right and left are loaded, fourth, sixth, \&c., spans to the right and left are loaded, and if, as before, the heaviest parts of the load are arranged in the spans to the right near point $i$, and in
those to the left near points $i$. In this case the moments over the adjoining supports from the loading of the outer spans are minima.
Moment at a given point.-It is convenient to consider the moment at a given point of the span A B-Fig. 16as the sum of the moments produced by the loads on the outer spans, and by the load on the span itself. We let A B represent the second span of the girder in example 5, because the fixed points and the curves of influence for the moments over the supports are already calculated; but speaking of the outer spans, we may also be allowed to consider it as belonging to a girder of an indefinite number of spans. The moment at a point at the distance $x$ from
indicating the negative moments for a moving load $P$ at the points where the load occurs. The curve terminates at $A$ and $B$. Next we draw the curves of the positive moments for a load $P(=1)$ in different positions between A and B . These curves are the triangles $\mathrm{A} \mathrm{P}_{1} \mathrm{~B}, \mathrm{AP}_{2} \mathrm{~B}$,
$\& \mathrm{c}$., the apices of which lie in a parabola, because mom. $=\mathrm{P} \frac{(l-x) x}{l}$. The sides A P and BP of these triangles intersect each corresponding closing line in two points, 1,$1 ; 2$, 2 ; \&c., which are points of contrary flexure. In Fig. 16 these points are connected by two curves, which may be called the curves of the points of contrary flexure. A pecu-
liarity in these curves is that, starting from A and B, liarity in these curves is that, starting from A and B , part termimate in the fixed points $f$ and $f^{1}$, and that no part of them lies in the space between these points. We
now draw an ordinate at point $d$, terminating at the parabola in point $\mathrm{P}_{d}$. The ordinate intersects the curve of the points of contrary flexure between 6 and 7 , and this signifies that a load P , lying at that point between $\mathrm{P}_{6}$ and $\mathrm{P}_{7}$, would produce no moment in point $d$; all loads $P_{7}$ to $P_{9}$ produce positive moments, and all loads $P_{6}$ to $P_{1}$ produce negative moments. These moments can be determined. We take, for example, $\mathrm{P}_{4}$. The line $\mathrm{P}_{4} \mathrm{~B}$ intersects the ordinate $d$ in point $4_{d}$; the vertical distance from $4_{d}$ upwards to the closing ling $4_{a}-4_{b}$ is the negative moment for $\mathrm{P}_{4}$ in point $d$. In the same way the vertical distance from $8_{d}$ downwards to $8_{a}-8_{b}$ is the positive moment for $\mathrm{P}_{8}$ in point $d$. If we plot these distances upon the verticals in which the loads act, measuring from the abscissa A B, we obtain the curve $\mathrm{M}_{d}$, which is the curve of influence for point $d$. For the distance at point $d$ itself, we have only to take the ordinate between $\mathrm{P}_{d}$ and the curve of negative moments A E B, The curve $\mathrm{M}_{2}$ reaches its highest point at $i_{d}$, and this is therefore its point of influence. Its lowest point is at $d$-i.e., the greatest positive moment at $d$ is produced if the load lies at that point. This is so
not only with regard to $d$, but also to any other point between A and B. In the same way any number of curves of influence can quickly be drawn. In Fig. 16 curves of also for a point $c$ between 1 and 2 for the two fixed points $f$ and $f^{1}$, and for a point $e$, where the positive moment is an absolute maximum. This point lies where the vertical distance between the parabola and the curve of negative moments A E B is greatest; it can easily be found by moving a diagram of the parabola vertically downwards till it is tangent to the curve. $E$ is the point of contact. It can be seen that the curves of influence for any point between A and $f$ and between B and $f^{1}$ have negative as well as positive branches, and that those for points between $f$ and $f^{1}$ have only positive branches. The use of these curves-for example, of the curve $\mathrm{M}_{l}$ - is to determine the greatest positive or negative moment at the point in question.
Maximum negative moment at point d.-Assuming that the loads P can be ascertained so as to correspond to the irregular load of a railway train-for example, when the cross girders of the bridge are at $1,2,3$, \&c.-then in order to get a maximum negative moment at $d$ we place the loads at points $1,2,3,4,5,6$-for example, $8,8,12,15,14$ and 10 tons respectively, the heaviest being near the point of influence $i_{d}$; and we remove all loads from points 7, 8 , and 9 because there they would produce positive moments, We may now use the curve $\mathrm{M}_{d}$ immediately, as fol to scale, $0 \cdot 7,2^{\circ} 4,4 \cdot 3,5^{\circ} \cdot 5^{\circ} 4,2 \cdot 8$; multiplying these figures with the corresponding loads, and adding, we have-
$0.7 \times 8+2.4 \times 8+4.3 \times 12 \ldots=268.5$ foot-tons,
the required maximum negative moment at point $d$. To this must be added the quantity $\mathrm{M}_{A}^{\prime} \frac{l-x}{l}+\mathrm{M}_{\mathrm{B}}^{\prime} \frac{x}{l}$ derived from the loading of the 1st, 3rd, 5th, \&c., spans to the right of B, and the 2nd, 4th, \&c., spans to the left of A, according to previous statements

Maximum positive moment at point d.-We remove all the loads from points 1 to 6 , and place the load on points 7,8 9 , with its heaviest part on 7 and 8 ; for example, 14,15 , and 12 tons, respectively. We measure the three ordinates $1.7,2.3$, and 0.4 , and we find the maximum positive moment at $d=1.7 \times 15+2.3 \times 14+0.4 \times 10=61.7$ foot-tons. To this must be added the quantity $\mathrm{M}_{\mathrm{A}}^{\prime} \frac{l-x}{l}+\mathrm{M}_{\mathrm{B}}^{\prime} \frac{x}{l}$ derived from the loading of the 2nd, 4th, 6th, \&c., spans to the right of B, and the 1st, 3rd, 5th, \&c.., spans to the left of A according to previous statements. If the load of the rail way train is applied to the main girders without the means of cross girders, it should extend from $A$ to the intersection of $\mathrm{M}_{\mathrm{d}}$ with AB , with its heaviest wheel at $i_{\mathrm{d}}$ for negative maxima, and from that intersection to B with its heaviest wheel at $d$ for positive maxima.
Shearing force at point d.-In a previous part of thi paper it was stated that the shearing force in any point of the span A B may be looked upon as the sum of the shear ing force $S$, produced by a load on $A B$ as a single girder $S$, and the shearing force produced by the difference between the moments over the adjoining supports. The latter the load on $\mathrm{A} B, \mathrm{M}_{\mathrm{B}}-\mathrm{M}_{\mathrm{A}}$, and that from the loads on the outer spans, $\mathrm{M}^{\prime}{ }_{\mathrm{B}}-\mathrm{M}^{\prime}{ }_{\Lambda}$, we have therefore :-
Shearing force $=S+\frac{1}{l}\left(M_{B}-M_{A}\right)+\frac{1}{l}\left(M_{B}^{\prime}{ }_{B}-M^{1} A\right)(24)$
Maximum negative shearing force at point d.-This would occur if in equation (24) each member could be a negative buted between $d$ and B , its heaviest part being at $d$ and gradually diminishing towards $B . \quad \frac{1}{l}\left(M^{\prime} B_{B}-M^{\prime}{ }_{A}\right)$ is a negative maximum, if $M^{1} \Lambda$ is a maximum and $M^{1}{ }_{B}$ and a minimum, i.e., if the 1st, 3rd, 5th, \&c., spans to the left of $A$ and the 2nd, 4th, 6th, \&c., spans to the right of $B$ are loaded in the manner already specified. $\frac{1}{l}\left(\mathrm{M}_{\mathrm{B}}-\mathrm{M}_{\mathrm{A}}\right)$, however, is positive for loads between $d$ and B , as can be seen from the position of the two curves in Fig. 16 ; if it ever could be $>S$ for any load between $d$ and $B$, then the load which makes S a negative maximum would not make the total shearing force a negative maximum. But $\frac{1}{l}\left(\mathrm{M}_{\mathrm{B}}-\mathrm{M}_{\mathrm{A}}\right)$ is always $<\mathrm{S}$; for even its greatest possible value would only $\mathrm{be}=\mathrm{S}$, that is, when the moment of inertia of the sections of the girder or its rigidity is $\infty$ between $d$ and B and between B and the next support usinging loads 13, 12, and 11 tons at points 1,8 , Maximum negative shearing force in $d=$
$15.5 \times 13+10 \times 12+25 \times 11$
$+\frac{8.7 \times 13+6.3 \times 12+1.7 \times 11}{85}+\frac{1}{85}\left(M^{1_{1}}-M^{\prime}{ }_{A}\right)$
$=\frac{-141.6+\left(M^{1_{B}}-M^{1}{ }_{A}\right)}{85}$
where $\mathrm{M}^{1}{ }^{1}$ and $\mathrm{M}^{1}{ }_{A}$ have to be ascertained as previously stated.

Maximum positive shearing force at point d.-The conditions are here reversed. The load must be distributed between A and $d$, with its heaviest part at $d ; \mathrm{M}^{1}{ }_{\mathrm{B}}$ must be a maximum and $\mathbf{M}^{1}{ }_{\mathbf{A}}$ a minimum ; $\mathbf{M}_{\mathbf{B}}-\mathrm{M}^{\mathrm{A}}$ is still $>0$ from $d$ to a point near $f$, where it is $=0$, after that it is $<0$. Assuming loads $8,8,9,12,13$ tons at points 1, 2, $4,7, d$, we have:-Max. pos. shear. force in $d=$
$5 \times 8+25 \times 8+35 \times 9+65 \times 12+69.5 \times 13+$
$-1.0 \times 8-1.15 \times 8+6.3 \times 9+10.0 \times 19+8.7 \times 13+$

$$
\frac{1}{85}\left(M_{B}^{1_{B}}-M_{A}{ }_{A}\right)=\frac{1511 \cdot 1+\left(M_{1}^{1}-M_{A}^{1}\right)}{85}
$$

As the effects of the loading of each outer span upon the moments $\mathrm{M}^{1}$ are already known from the calculation of moments in any point, all the requisite shearing forces can

Feb. 22, 1884.
THE ENGINEER.

The results for the maximum negative and positive moments, and for the maximum negative and positive shearing forces, may
curves in a diagram.
Recapitulating the operations required for the calculation of a continuous girder, as explained in the previous
pages, we have:-(I.) An approxinaate determination of phe moments of inertia of the girder at the various points tated to begin with relatively to an assumed unit. (II. Making a sketch of the curves of moments according to Ftg. a single load. (III.) Making a sketch of the elastic line and its tangents at the supports, according to Fig. 13. (IV.) Statement of equations (20). Equations referring to loaded spans to have members $\Sigma \frac{m x \Delta x}{J}, m$ being themoment of a single load $\mathbf{P}$ at a given point. In the case of
irder with uniform section, $a(2 l-a)(l-a) \mathrm{P}$ and $a(l-a)$ girder with uniform section, $a(2 l-a)(l-a) \mathrm{P}$ and $a(l-a)$ $(l+a) \mathrm{P}$ to be put in place of ${ }^{r} \Sigma \frac{m x \Delta x}{J}$ and $\Sigma \frac{m x \Delta}{J}$ respectively. Likewise $l^{2}\left(2 \mathrm{M}_{1}+\mathrm{M}_{2}\right)$ and $l^{2}\left(\mathrm{M}_{1}+2 \mathrm{M}_{2}\right)$
to be put in place of the two members for negative moments into the same equations respectively-vide equations (17). (V.) Statement of equations (21, 22, 23). (VI.) (VII.) Calculation of the curves of influence for the moment over the supports, according to equations(21, 22, 23). (VIII.)
Drawing of diagrams analogous to Figs. 14 and 15. (IX.) Drawing of diagrams of each span separately, analogous Fig. 16 on an enlarged scale, or completing Fig. 14 if its scale
is large enough.-So far the knowledge of the moving or is large enough.-So far the knowledge of the moving or dead loadsisnot required.- (X.) Arrangement of the moving load-railway train-on each span separately, so as to be as much as possible in proportion to the ordinates of the
curves of influence in Fig. 14. These arrangements are required for the determination of the maximum moments over the piers and of the effects of the loading of the outer spans upon the other moments and upon the shearing
forces. The number of these arrangements is the same as he number of curves, the number of curves, viz., two in each iltermediate span of each arrangement upon each moment over a support ponding ordinate of the curve and adding the product together; record of results to be made in a table. (XII.)
Calculation of maxima of positive and negative moments and shearing forces from the load on the span itself without regard to the outer spans, the number of points depending upon the accuracy required. The curves
of influence, Fig.16, to be used as explained. (XIII.) Record of results, sub (XII.), on two diagrams, one for moments and one for shearing forces, by means of ordinates; supplementing these diagrams by results recorded in the table sub XI. according to the given rules. (XIV.) Revisal of the calculation of the dead load by utilising the results hitherto found, and fixing the unit sub I. (XV.) Calculation of moments over supports for dead load only, by means of the curves
of influence : elementary calculation- rraphical or alge-braical-of thementary calcuation-graphical or algemediate points, and completion of diagram sub XIII. (XVI.) Calculation of strains and sectional areas.

In the previous pages it was assumed that the change of form ar girder under the load could be regarded but this is only the case if the web is either solid or made of dense lattice. The majority of modern bridges are made of systems of bars arranged in triangles, and these systems are either simple or compound. The simple systems out there being more than three bars cut at a time. They then consist of necessary bars only, and are statically determined. The compound systems are those which cannot of necessary be cat through erary bary and they then consist determined. The continuous girder even of the simple intermediate superts may be class, inasmuch as the merary bars. Pupposessor Mohr's method of calculating the strains in these systems* excludes the use following principle:-If a system of elastic bars, the upon by forces from without, is in equilibrium, the sum of the products of the forces acting in the bars into their alterations of length must be nil. That is the principle of work. The method may be applied to single girders with supernumerary bars and to triangulated arches girders with supernumerary bars and to than three hinges, with or without supernumerary bars, as well as to continuous girders. A somewhat similar method established about the same time by Professor Fränkelt is based upon the theory of the instantaneous axis.

THE ENGINE MAKERS' SOCIETY
THe report of the Steam Engine Makers' Society, which is generally the earliest of the annual reports issued by the trades union organisations connected with the engineering branches of
industry, was sent out to the members last week, and, notindustry, was sent out to the members last week, and, not-
withstanding the fluctuations of trade during the past year, the secretary is able to report a successful working of the associa-
tion. The fact, however, is not disguised that the results have tion. The fact, however, is not disguised that the results have
not been so beneficial as the executive council anticipated or expected twelve months ago, but, all things considered, the financial position of the Society might be regarded as satis-
factory. At the end of 1882 the Society had a factory. At the end of 1882 the Society had a balance of
$£ 10,068$; during the past year the income had amounted to
$£ 9870$, and the expenditure on benefits and management had amounted to $£ 8797$, leaving a surplus of $£ 1072$, which increased amounted to $£ 879$, leaving a surplus of
the total balance in favour of the Society at the close of the
year to year to $£ 11,141$. The number of members had risen from 4591
last year to 4762 this year, showing an increase over deaths and exclusions of 171 . The expenditure for the past year had been
$£ 856$ in excess of that of 1882 , and there had been an increase in every benefit advance, except that of superannuation. The
payment of unemployed members showed an increase of $£ 404$ payment of unemployed members showed an increase of $£ 404$,
but the average working expenses showed a decrease, and Zoitschrift des Arch. u. Ing. Ver. 2 zu . Hannover, 1874. pp. 223, 509

amounted to only 6 s . $2 \frac{1}{d}$ d. per member, which was the lowest rate
the Society had ever had before. Turning to the question of trade in 1883, the following extracts from the report will be of interest as showing the view taken from the workmen's side. The report states:-" We must repeat that it has not realised what was
anticipated at the commencement. We were led to hope that employment would be plentiful, owing to the great depression
that had previously existed, and, as a consequence, it would find plenty of work to counterbalance the very low production in the period of stagnation in trade. This has not been the case, for although the year opened with good prospects, as time went on
confidence seemed to be wanting, and before the summer was over complaints began to be made that resulted in depression before its close. This decline has not been confined to our own country but has manifested itself in every commercial community on the face of the globe. . raue, it has not been a depression that has
brought about gigantic failures, but has shown itself in every country as being caused by one circumstance, and that was the inability of producers to dispose of their manufactures, or, in other words, over-production. This has shown itself in all our staple
industries, and scarcely a business can be mentioned but there he sires, It is anticipated by some that we may soon see a revival; but, whether this be so or not, we as workmen should hook a chro adopted to better our condition." After commenting on bad trade, the report goes on:-"To our minds this is not to be ately been made and the opposition shown to some improve ments that help to create work for the engineer ; and this is sure to be felt all the more when we take into consideration the many means that are adopted to dispense with the services of the
silled artisan. Last year we alluded to the telling effect tha labour-saving machinery was having on the requirements of firms to manipulate their work in place of hand labour. In of engines and machinery by introducing steel where iron wa or ial ; yet the risks of breakages or replacements are reduced to the lowest limits, and all with the one object of reducing cost,
which means loss to the workman. Whilst, however dispensing with labour is taking place, we see that a far greater percentage of work is being completed. To define a remedy for these grievances would be to solve a social problem that is occupying the attention of many people at present; but, as an imy a lactor, we believe the production would be best reduced gained for reduction in the hours of labour. fifty-four twelve years ago; and if we are combined and united n our opinions we can assist to further alleviate the struggles o apprecinte in all its beneficinl effects" appreciate in all its beneficial effects."

## THE WIGAN JUNCTION RAILWAY

THIs line of railway was recently inspected by Majorpanied by Mr. Charles Sacré, the engineer-in-chief of the Man
chester, Sheffield, and Lincolnshire Railway; Mr. Charles H Beloe, the engineer of the Wigan Junction Railway ; Mr Bradley, superintendent of the Manchester, Sheffield, and Lin colnshire Railway; Mr. Hamilton, who will take charge of the
traffic arrangements of the Wigan Junction Railway; Mr traffic arrangements of the Wigan Junction Railway; Mr .
Scatcherd, superintendent of the signalling department; Scatcherd, superintendent of the signalling department; Mr.
Stone, the contractor ; Mr. Lambert, his agent; Mr. Symons the resident engineer ; Mr. Edwards, the manager of the Rail way Signalling Company, and other officials. The inspector made a careful examination of the whole of the works, and
tested all the bridges under the railway with four of the heaviest goods locomotives, and expressed himself thoroughly satisfied with the manner in which the works have been opening of the line for passenger traffic will be received from the Board of Trade in a few days.
The new railway has been constructed by the Wigan Junction
Railway Company, of which Mr. Nathaniel Eekersley, M.P. for Wigan, is the chairman. The scheme was projected in the year 1873, and parliamentary powers for its construction were
obtained in the sessions 1874 and 1875. Its objects are to provide additional railway accommodation for Wigan and the neighbourhood, and especially to open out and develope the
southern section of the Wigan coalfield in the neighbourhood of Platt Bridge, Abram, Bickershaw, and West Leigh. Several very large collieries have been opened in the vicinity of the new line. Another object is to connect the town and district of Wigan with the Cheshire lines, and through them with the Midland, Manchester, Sheffield, and Lincolcolnshire, and Great Northern railway systems, Wigan being at present entirely unconnected with those important railways.
Last year an Act of Pariament was obtained authorising an extension of this railway to join the West Lancashire Railway near Preston, and a Bil 18 now before Pariliament for a branch
from the main line to the important towns of Leigh and Bedford. The main line commences by a junction with the Manchester and Liverpool Railway of the Cheshire Lines Committee near Glazebrook station, about six miles east of Warrington. culties were encountered in excavating for the railway, the Moss having to be removed to a considerable depth below the rail level to ensure a good foundation for the works, and very portion of the line free from water. The first station is at Culchoth, three and one-third miles from Glazebrook, where a convenient passenger station, goods yard, and sidings have been The next station is at Lowton, St. Mary's, five and one-third miles from Glazebrook, where similar passenger and goods accommodation istricts of Lowton Common, Golborne, \&c. The next station is at Plank-lane, nearly seven miles from Glazebrook, where a very important district. At this point a short line connects the Wigan Junction Railway with the Bickershaw Colliery Railway, and this places it in direct communication with the exten-
sive colleries of Messrs. Ackers, Whitley, and Co, the Abram Colliery Company, and the Biokershaw Colliery Company. A little further on is a junction, with the new collieries now
coming into operation belonging to the Wigan Junction Colliery Company. At Bickershaw lane, eight and one-third miles from Glazebrook, a small passenger station is provided for the accommodation of the rising township of Abram, and a connection is made with the important collieries belonging to the
Moss Hall Company, on land belonging to the trustees of the Moss Hall Company, on land belonging to the trustees of the
Duke of Bridgewater. At Strangeways, nine and a-quarter
vided, which will serve for the districts of Hindley, Strange
ways, and Platt Bridge. Two short lines connect the Wigan Junction Railway at this point with the main line of the I cashire Union Railway, and enable the traffic from the Wigal Coal and Iron Company, and from Messrs. Crompton and Shallcross's colliery, to be put upon the railway. At Lower Ince, en and three-quarter miles from Glazebrook, a passenge tation is provided for the town of Ince ; and at Wigan, eleven and a-quarter miles from Glazebrook, a commodious temporary passenger station, goods yard, and warehouse have been constructed in Darlington-street East. The permanent station wil works of which will shortly be commenced.
The works on the Wigan Junction Railway are of an exceed ingly heavy nature. The total length of line to its present niles, and on this length there are no less than forty bridges five railways, two canals, four colliery railways, ten public road nineteen occupation roads, and eight footpaths having to be carried over or under the railway, in addition to a large number of small streams, many of which have to be carried through cast railway by means of three cast iron syphon pipes, each 3 ft . 9 in in diameter. Owing to the subsidence of the ground by the colliery workings near Springs Branch, it has been found nece sary to construct a reservoir to receive the drainage from the railway, and pump the same into the Ince Brook by means engineering. The bridge under Springs Branch Railway is very heavy work, the length of one of the abutments being no ess than 212 ft , and thirty-seven girders are required to cari the Springs Branch Railway and the sidings in comectio therewith over the Wigan Junction Railway, and this had to be executed without interiering with the tramic. At ince a commodious engine shed, with the tank, dc., have been constructed
The parliamentary plans were prepared, and the Acts of Parunder the upervien of the late Mr R S. Norris, M. Inst CB ander the supervision of the late 1 .n. s. Norris, M. Inst. C.E his long connection with the London and North-Western Rail way in this neighbourhood was of great advantage to the
works. Mr. Norris's health failing, the company entrusted the preparation of the contract plans and the superintendence of the works to Mr. Charles H. Beloe, M. Inst. C.E., of Liverpool, Mr. Lincolnshire Bailway who owns a large interest in the wigan Junction Railway, acting as consulting engineer, and the works have been successfully carried out under the directions of those gentlemen by Messrs. . and R. Stone, contractors, of Newton agent, Mr. James Lambert The contract for the dillin arrangements, which are now of an exceedingly complicated haracter, in order to comply with the requirements of the
Board of Trade, was executed by the Railway Signal Company, of Fazakerley, near Liverpool, A considerable portion of the line was opened for mineral traffic on July 21st, 1879, and it is expected that the line will be opened for passenger and goods traffic throughout on March 1st. The line will be worked
entirely by the Manchester, Sheffield, and Lincolnshire Railway Company

## NEW RAILWAYS IN PRUSSIA

If Prussia has been somewhat tardy in giving to the construction of secondary railway lines that attentiou which the subject matter was taken ther countries, the energy with which the tory character. The following table shows the progress realised as indicated by the annual parliamentary votes for railway con-


In addition to these amounts large contributions were made by private persons under special circumstances, so that a total sum
of about $£ 8,000,000$ to $£ 8,500,000$ has been spent for the purpose indicated during a period of four years,
For the present session of the
$£ 2,900,000$ has been proposed; this amount representing a length of 490 miles, which, it will be seen, is in excess of any former annual project. Thelargest proportion of the new lines falls to the the Lastern provinces. Next in importance come the The follow -(1) Labian-Tilsit, 43 miles ; a continuation of the Königsberg Labian line decided upon in 1882. (2) Allenstein-Soldo-Illowo, 62 miles ; a junction will probably be effected at one point with
the Marienburg-Mlawka line. (3) Jablonowo-Soldau, 50 miles, completing an existing line. (4) Simersdorf, or Marienburg Tiegenhof, 13 miles, opening up a district rich in agriculture
(5) Posen-Wreschen is a continuation in an easterly direction of the Mark-Posen line. The starting point of the railway is not quite decided. Length, 30 miles. (6i) Lissa-Jarotschin, uniting of the Kreuzburg-Posen and Oels-Gnesen lines. The proconation of the line coming from Halle is thus
effecte. Length, 43 miles. (7) Lissa-Ostrowo, 59 miles, uniting Lissa with Ostrowo on the Posen-Kreuzburg line,
(8) Bentschen-Wollstein, 16 miles. (9) Bitterfeld-Stumsdorf, $12 \frac{1}{2}$ miles, placing a rich and fertile district in direct ent nection with the Berlin-Anhalt line. (10) Cönnern-Bernburg
Calbe, A.S. This line runs for 8 miles through Anhalt, and fo the remaining 7 miles through Prussian territory, the expens being divided. (11) Merseburg-Müchell, 10 miles, opening up
the Thuringian district called the Geiselthal St. Artem 35 mile uitin the Geiselthal. (12) Naumburg Sangerhausen-Erfurt line. (13) Dahlerau-Langerfeld, 7 miles long, completing the junction between the Lennep and Langer
feld-Rittershausen-Remscheid line. (14) Ründeroth-Derschla 9 miles; a continuation of the Siegburg-Ründeroth line now in zenheim-Simmern. 25 In addition to the above the financial help of the State is pro private enterprise. It will run along the west coast of Holstein rom Heide to Ribe, being a prolongation of the existing Hol
tein line. It will have a length of 82 miles, and will cos $\Varangle 725,000$ The scheme includes a bridge over the Eider at
Friedrichstadt, which will riedrichstadt, which will cost $£ 75,000$.
In giving these details
In giving these details the Deutsche Bauzeitung remarks that the employment thus given to Prussian engineers has tended to
make the general situation of the profession in Germany more make the general situation of the profession in Germany mor
SLIP WAY AND SHIP'S CRADLE, AYR HARBOUR


COLEMAN BRIDGE, SINGAPORE.
MR. T. CARGILL, M.I.C.E., ENGINEER


This bridge, which carries the principal thoroughfare of Singapore over the river, consists of one central and two side
spans. It was designed for the municipality of Singapore by Mr Thomas Cargill, M.I.C.E., and replaces an old worn-out wooden structure upon the same site. As frequently occurs, there was a difficulty in reconciling the level of the necessary headway for the navigation beneath with that of the road approaches above. In order to effect this to the best advantage, the lower flanges or soffit of the girders are curved, and the whole roadway of the ridge has a gentle rise from the springings to the crown, a hown in the general elevation in Fig. 1.
The main girders, which are continuous throughout the whole double-flanged pattern, with upper and lower plates, angle irons, and plate web-see Figs. 3 and 4. They are five in number, and spaced 9 ft . apart. At distances of 4 ft .6 in . apart from centres, tie-irons cross the main girders at right angles. The floor of the bridge consists of wrought iron plates, which are rivetted up to the tie-irons and the main girders, thus constituting a per ectly firm and unyielding platform. Diagonal bracing connects the main girders transversely, as shown in Figs. 3 and 4. A footpath projects outside the main girders on each side of the ridge, and is carried upon the tie-irons, which act as cantilever The nature of
The nature of the substratum is more favourable for the foundations than usually prevails in the Straits, At from 10 ft , to 12 ft . lent character. Rubble stone or brickwork will be used ex theelbody of the piers and abutments, and cut stone for the facework. The clear width of roadway inside kerbs is 36 ft . 6 in ., which is considerably in excess of that of any bridge hitherto built in Singapore. A cast iron parapet of ornamental design completes the structure.

COMPOUND ENGINE AND CENTRIFUGAL PUMP.
WE illustrate on page 148 a pound engine, lately erected by Messrs. Hathorn, Davey, and Co., of Leeds, for draining the Burnt Fen, comprising about 33,000 acres of land, lying about 12 ft . below the normal leve of the river Lark, into which the water is pumped.
The contract was for a pump capable of raising 100 tons per minute 13 ft . high; and the assumed discharges at varying heights were the following :- -9 ft . high, 121 tons per minute ;


10ft. high, 115 tons per minute; 11ft. high, 109 tons per minute ; 12 ft . high, 104 tons per minute ; 13 ft . high, 100 tons per minute ; 14 tt . high, 96 tons per minute ; 15 ft . high, 92 tons per minute ; 16 ft . high, 89 tons per minute.
The pump has, however, proved itself capable of exceeding the above quantities by nearly 50 per cent., and has given an efficiency of 64 per cent, under ordinary conditions of working. This is an excellent result, but Messrs. Hathorn, Davey, and Co. propose to make a further trial, and hope to reach 70 per cent. means of bevel gearing constructed geared to the engine by
almost noiselessly. The engine has cylinders 18 in , and 30 in diameter, by 3 ft . stroke, and is provided with a variable expansion valve working on the back of the high-pre
The remainder of the information which the engravings convey will be readily gathered from them without further description.
ing below.

AYR HARBOUR SLIP DOCK SHIP'S CRADLE.
In our issues of the 7th and 14th December we illustrated the improved hauling machinery for Ayr slip dock. We now give engravings showing the general arrangement and details of the
in a somewhat similar manner. The longitudinal arms are firmly braced to each other by two transverse arms or logs 20 in . and 18 in . square placed about $13 \frac{\mathrm{ft}}{} \mathrm{ft}$ apart, and firmly secured with malleable iron knees and brackets; they are, however, further strengthened with malleable iron rods fitted with pins to brackets bolted to the arms. These rods can be removed when a vessel has been blocked and the cradle required to be removed from underneath. The cross arms for supporting bilge blocks are made of malleable iron and rest upon the outer and centre longitudinal arms; they can be easily removed or turned round to any position as required; they are placed 18 ft apart, ropes, chains, \&c., attached for adjustment. The lone pulleys, arms and lengthening pieces rest upon cast iron saddles, the arms and-lengthening pieces rest upon cast iron saddles, the

ship's cradle as constructed by Messrs. J. Copeland and Co., Pulteney-street Engine Works, Glasgow. The engravings are sumciently clear to require little explanation. The main cradle arms, which are made of American oak; the latter are 18in. square. The centre arm is made up of two logs planed true and laid side by side, giving a breadth of 3 ft .; they are dowelled to each other with round turned timber dowels 4 in , diameter. The logs are further secured with $1 \frac{1}{4} \mathrm{in}$. bolts placed 2 ft . apart hori-
zontally and vertically; at the upper end the sword is secured
journals of which have been chilled, thus giving a true bearing surface for the spindles, and the hard skin of the iron is not broken. The rolling wheels have also been chilled on their outer surfaces.
We are rather surprised that slip dock builders do not make ine main cradle ride upon beds resting on the top of rollers required to hanl arings this journals ald be reduced by about 35 per cent., and the arrangement would not cost more.
The main cradle can be lengthened as required with ekes or
lengthening pieces, three of which have been supplied. The first
lengthening piece is made entirely of malleable iron to save head room, the other to are madein the form of sandwich beams. The cradle is fitted with hydraulic rams and piping connected to a set of two portable hydraulic pumps mounted on wheels. The rams are made of cast steel, and have been tested by hydraulic pressure to nearly four tons on the sceuare inch. The cradle with lengthening pieces has been designed
vessels 220 ft . long and 1200 tons dead weight.
Mr. Strain, the engineer to the Ayr. Harbour trustees, has been ably assisted in designing and superintending the works by
Mr. D. Davidson, C.E., Glasgow. We may add that amongst Mr. . D. Davidson, C.E., Glasgow. We may add that amongst
the., numerous slipways made by Messrs. Copeland and Co. is one they recently made and shipped to Queensland for the Brisbane Patent slip Company, Brisbane. This has a hydraulic purchase with a set of three powerful pumps, including the
necessary traction rods, \&c. The hydraulic cylinder was made in one piece, and fitted with a ram sin diameter having a stroke
of 15 ft ., and tested to a pressure of 40 cwt. per square inch.

## LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our correspondents.]
the wear and tear of plant
SIR, , Since you have opened the subject of the depreciation of
plant in your columns, may $I$ be allowed to offer a few ideas on plant in your columns, may I be allowed to offer a few ideas on
the subject? You complain that your correspondents on this subject last year came to no satisfactory conclusion, and I fancy the
truth is that there is no general conclusion to be come to as each truth is that there is no general conclusion to be come to, as each
case must be regarded on its own merits, secondary considerations introducing great intricacy in any rule intended to be perfectly
general.
But Alttle more clearness would be gained, perhaps, if some of
your more practical correspondents would define accurately the your more practical correspondents would define accurately the
terms, "working expenses," "repairs", "and "depreciation." terms, "working expenses," repairs," and depreciation. last paragraph of his letter to recognise the importance of these
considerations, but he does not draw the required boundary. For instance, suppose we have a factory engine; 1 suppose no one will hesitate to put down fuel and oil to working expenses; they have
to be supplied constantly - work is impossible without the to be supplied constantly - work is impossible without the one, and
probably so destructive to the machine without the other that it may practically be regarded as impossible. . Then perhaps a pres. sure gauge or a water gauge gets broken; the machine can go on working without them, but the irregularity will probably cause
damage to the boiler and shorten its life. The strap driving the damage to the boiler and shorten its life. The strap driving the
governor breaks ; and the machine can work in this case without goverror
apparent damage ; to itself, but the supply of steam is not economi-
cally rege The same might be said of the packing of stuffing-boxes. Then come in weightier considerations of large piecess, perhaps. Bearings.
crossheads, or their guides get worn and loos. The machine will crossheads, or their guides get worn and loose. The machine will
work, but is knocking itself to pieces. And so on, through many stages of required repair of defccts, somo or which affect directly expenses by diminishing the economy of working, until we arrive at a tago where no repaining thant can be done to mane the machine
atill work is repaid by the work it will subsequently do. This is the death of the machine.
It will readily be understood that the attempt to formulate all intricate for ordinary use. There is also no determination of the aw of depreciation proper, and besides this there is the difficulty of fixing exactly the value of the work turned out by the machine, and that of determining the exact effect of any given repairs on
the life of the machine. Generally a machine may be said to to yield- (1) net profits ; (2) current working expenses; ; (3) repair
fund ; (4) total renewal fund. Probably Nos, 2 and 3 of this cate gory are both increased by diminishing No. 3; but the variation is or great for different circumstancees that it is exceedingly cumber-
some to reduce this to formule at all, and practically impossible some to reduce this to formule at all, and practically impossible
unless the interdependence of these different items of expense are nown, which itself is different, perhaps, for different cases
Take now about the simplest imaginable case of the first pro-
blem you suggest. Let us imagine an iron railing of original yalue $Z$, and suppose that if a sum $P$ is spent every year original value , and suppose that it in a sum P is spent every year on paint-
ing, will
years, years; and suppose we have to compare the relative expense of keeping the fence up for ever on these two plans. Now, the yearly
fund which laid by at $100 r$ per cent. will yield a capital $V$ in $m$ years is $(1+r)^{m}-1$.
In the other case, we have the yearly expense P of painting, and a fund which has to yield V in $n$ years, or $\frac{\mathrm{V} r}{}$. The total on this plan to be laid by every year for maintaining tho fence is The first or sec

## $\frac{\mathrm{V}^{m}}{(1+r)^{m}-1}$ is less or greater than $\mathrm{P}+\frac{\mathrm{V} r}{(1+r)^{n}-1}$,

or $\frac{1}{(1+r)^{m}-1}<>\frac{\mathrm{P}}{\mathrm{V}_{r}}+\frac{1}{(1+r)^{n}-1^{\prime}}$
or $\frac{1}{(1+r)^{m}-1} \frac{1}{(1+r)^{n}-1}<>\mathrm{P}^{\prime}$
$\mathrm{V} r^{\prime}$
Where $P$ is the annual cost of repair, and $V r$ is the interest-at
the usual rate at which the laid-by fund accumulates-on the prime cost V . Now suppose that really the fence only requires painting every
$q$ years, at an expense $P$. Then $P$ in the above problem is the annual fund equivalent to P Pevery $q$ years-that is to say, $P$ is the

$$
\text { or } \mathrm{P}=\frac{\mathrm{Pl} r}{(1+r) \mathrm{q}-1}
$$

Here is already one complication introduced. The problem of the most economical value of $q$ is another complication. This can only
be esved by knowing what the effect of certain values of $\mathrm{P}^{1}$ and $q$ upon the value of $n$ is, or perhaps the simple effect of $\mathrm{Pl}^{1}$ on $q-$
that is, what expense of repair will make the fence last how long wiat is, what expense of repair will make the fence last how long
without being repained angin? II the fence at the end of its life is
worth so much as old irgn, this value may be deducted from V . Another complication is one which you mentioned in your article
in your penultimate issue. Suppose the fence painted every four years, and that the last occasion counting so would occur two years before the fence became useless. It is obviously uneconomical to
put a coat of paint which will last four years on a fence which can put a coat of paint which will last four years on a fence which can
only hast two years. I merel instance this an showing the difficulty of drawing accurately the line of greatest economy oven in
the simplest case. If $q$ is very small compared with $n$, this last consideration maya. be neglocted.
With regard to your other
With regard to your other question as to the advisability of
keeping an extra machine to work during the time of repair of nny the others, I will simplify this casc also as much as possible. suppose V is the prime cost of a mnchine, and let $v$ be the value of
the work turned out by it in an unit of time of the worked turned out in time $t$. Let $t$ be the time taken up by the repair of each machine in the year, and let the unit of time be
a year, so that $t$ tis a small fraction. Then $\mathrm{N} t$ is the time taken up
always at work when not under repair. If $(\mathrm{N}+1) t=1$, one
machine suffices for replacing the rest when under repair, and there is always one repairing and the rest working. Geanerilly the
yield of N machines is then $\mathrm{N} v(1-t)$ in the year; whereas the yield of N machines is then $\mathrm{N} v(1-t)$ in the year; whereas the
yield of the $\mathrm{N}+1$ machines is $\mathrm{N} v$ a year. Let $E$ be this we must deduct the cost of repair and wages of men. Let Ebe the yearly expense of repair of a constantly employed
machine; then we will assume for simplicity that $\mathrm{N} t \mathrm{E}$ is the
yearly cost for the machine that only works for the time $\mathrm{N} t$ while machine; then we machine that orly works for the time $N t$ while
yearly cost for the
any machine is under repait. This expression is not strictly oorrect. any machine isunder repair. This expression is not strictly correct.
A first approximation to it, or expansion of the expression which represents the fund accurately, is-
$\frac{1-2 t+t^{2}+\mathrm{N} t^{2}}{}$ or $\frac{\mathrm{N}}{(1-t)^{2}+\mathrm{N} t^{2}}$;
but we may generally consider NTE to be near enough for practical of attendants. We will suppose this is $w$ yearly for each machine and therefore $\mathbb{N} w$ for $\mathbb{N}$ machines. This will be the same in the case of N+1 machines, for we may suppose the attendants of the
machine under repair to be transferred to the replacing machine On the other hand, if there are only N machines, the attendants of the machine under repair must still be paid, or they may be utilised for the repair of the machine or for some other work. This
is another complication, the circumstances of which may be dif. is another complication, the circumstances of which may be dif-
ferent in different cases; and we will therefore here consider the wages to be the same in each case. This will give, then, approxi-
mately for the net yield-not counting fund for total renewal--

For N machines, $\mathrm{N} v(1-t)-\mathrm{NE} \mathrm{N} w$
For $\mathrm{N}+1$ machines, $\mathrm{N} v-\mathrm{NE}-\mathrm{N} t \mathrm{E}-\mathrm{N} w$
To compare the value of these yields we must divide each by the respective prime cost, and compare the fraction so obtained. This
gives as a result that N machines are more or less economical than
$\mathrm{N}+1$, $\mathrm{N}+1$, according as

## $\frac{\mathrm{N} v(1-t)-\mathrm{NE}-\mathrm{N} v}{\mathrm{~N} v}$

is greater or less than

## $\mathrm{N} v-\mathrm{NE}-\mathrm{N} t \mathrm{E}-\mathrm{N} w$

(3),
or as $(\mathrm{N}+1) v(1-t)-(\mathrm{N}+1 \mathbf{N}+\mathrm{E}-(\mathrm{N}+1) w>$ or $\langle\mathrm{N} v-\mathrm{NE}$

The first expression (a) is the same as comparing the net yield of one machine-not counting wages-with the wages for a year of
one machine plus what is lost of the gross yield during time of repair. The second expression (b) is a comparison between the ne
yield-counting wages-of one machine and the loss-gross-of having $\mathrm{N}+1$ machines repaired diminished by the calculated yearly cost of repairing the replacing machine; so that this expre
holds when for $\mathrm{N} t \mathrm{E}$ we put its true value as before indicated. The above has not taken into account the sinking fund for the total renewal of the machines. Suppose $m$ years is the life of a make the approximate assumption that the life of the replacing machine is $\frac{m}{\mathrm{~N} t}$ years, the amount to be sunk yearly in the two cases are re
per cent.-

## $\overline{(1+r)^{m}-1}$ and $\overline{(1+r)^{m-1}}+\overline{(1+r)_{\mathrm{N} t}^{m}-1}$

$\underset{r}{\text { Dividing these by the respective prime cost, we get }}$
$(1+r)^{m}-1$ and $(\mathrm{N}+1)\left\{(1+r)^{m}-1\right\}^{+}(\mathrm{N}+1)\left\{(1+r)^{\frac{m}{\sqrt{t}}-1}\right\}$
A first approximation to these values on expansion gives
$\frac{1}{\frac{1}{m}}$ and $\frac{\mathrm{N}}{\mathrm{N}+1} \frac{1+t}{m}$,
which should be also deducted from the respective sides of (3). It
will be seen, however, that this does not make much difference in will be seen, however, tha.
the final result, as a rule.
In reckoning $t$ as a fraction of a year, the year must be considered Sundays are free, then the year has 313 days. If Saturday is a half-holiday, then the year has 287 days, dc.
I think this is enough to show that for even
cases general formule are of much too intricate aplest ordinary practical use; how much more in a factory where the interdepenall to be taken into account. If, however, the dato are at., have calculating the expenses in any given case, I think a chart, such as
I enclose, for reading off the approximate values of these compli ienclose, for reading off the approximate values of these compli cated expressions send your correspondent, "Long Established,",
shall be happy to
copy, with explanation, if he would like it. JoHN BLAKEsLEFY. apy, with explanation, if he would like it.
20pstone-road, Earl's Court, S.W.

## new patent-offiee rules

Srr,- Allow me to reply to "Puzzled Patentee," page 125, by
giving him and your readers the following official information:"A patentee who elects to pay the renewal fee of $\ell 50$ must, if he wish to prolong his patent beyond the seventh or eighth year, pay
the further renewal fee of floo in one sum. On the other hand, he may pay all renewal fees in yearly instalments, in which case he
will be allowed to pay several instalments in advance. But the will be allowed to pay several instalments in advance. But the
two modes of payment, that by the tho and \&100 fees and that by
annuities, cannot be combined. The schedule of fees in the At might have been mado more clear, but it reads, "Or in lieu of the
fees of $£ 50$ and $£ 100$ the following annual fees"一-then the annuities are stated. It does not say in lieu of cither but of both, and this is the interpretation the Patent-office have put upon it, as the
extract above shows. Even if the Act had allowed, as your correspondent assumes, the fees to be paid partly in annuities and partly in a lump sum, it is absurd to suppose that the required seven days' notice could in any way, as he terms it "cover
this blunder." If the office has decided that fees must either be paid in lump sums of $E 50$ and $\mathcal{E 1 0 0}$, or by annuities, and not by seven days' notice of payment is a puzzle which your corresponiring may explain, but which is beyond the comprehension of a
Manchester, February 18th.
PATENT AGENT.

## the rating of machinery

Sm, - Your article of last week on the new rating valuation in
the Hunslet Union at Leeds draws attention to a matter of much importance to engineers, and one likely to be followed by similar
agitation in other districts. The present diversity of practice is probably due to the fact that the assessments are in the hands of the local authorities, who do pretty much as they like in the absence of appeas the superior courts. By recent decisions in
such cases of appeal it appears to have been clearly laid down that
all machinery of a kind so permanent that it would not be provided all machinery of a kind so permanent that it would not be provided
by a tenant from year to year is rateable, and this without any regard to whether the machines are tenants' fixtures in the ordinary
sense, os between frecholder and occupier enforced, undoubtedly presses hardly on manufacturers who have, under the old system, paid rates only on the bare value of their premises, with only such undoubted fixtures as boilers included.
But it must beremembered that unlike imperial taxation, which is mposed on the whole country, the burden of local rates depends on nised, a ligh valluastron implies and a certain totais sum is to be of each occupier. It is different when, ns in the case of the London
ond value. But for poor-rates, the less one pays the more is left for
one's neighbours to pay; and it is they-namely, the community
tharge-rather than any official authority, who are interested in
requiring a fair and full valuation of manufactories. It is useless to characterise, as you do in your article, the fresh valuation as nonstrous because it so much exceeds the previous valuation on the old basis; and the question cannot be permanently settled, as
it seems to have been at Hunslet, by the local assessment committee consenting to return to the old plan; for the inhabitants of the district, who must pay more than their share if manufacturer pay less, may any of them appeal against the rate as bad on tha Uniformity of practice in the whole country is obviously desirable as manufacturers highly assessed in one district are handicappee
in their competition with those in other districts where an easie system prevails. It would be well if the manufacturers, while their grievance is fresh before them, would unite to take an appea
asse to the House of Lords; for it is very guestionable how far the are to the pouse orward in the now famous case of Laing $v$. th or their trades of the country; and, independently of any possible moditl cation of the rule then established, manufacturers would do wel to scan closely the valuation of their premises on the new basis The rental or rateable value of a factory does not depend merely on its cont. On the one hand, the deterioration by wear and tear nust be taken into account, as well as depreciation of value from
local causes ; and on the other, additions made since thelast valuation must be reckoned. In some articles of mine on the "Depreciation of Factories," which you did me the honour to publish in Octobe hist, some of the ind and there is much to be said on the subject from the ratepayer
point of view. London, February 18th.

WATER POWER.
Sir,-Having been almost exclusively occupied with the manu hearly twenty years, I may perhaps be permitted to say that while generally admitting the useful nature of the informatio contributed by Mr. Hett, I fear that if I said an hydraulic engine "the most suitable for a 200 ft . fall," this announcement would no be regarded by other makers as either a palatable or an impartia ne; and I statement if he ventures to do so. n account of first cost, to apply pipes of insufficient size, with th esult of finding the power, due to head, crippled thereby. For, pipes should be so large that the quantity of water consumed by the engine will not cause any difference or ony practical diminutio of pressure therein when the engine is running. If required to determine what power might be reasonably obtainable from an
existing pipes of any length, size, form, or condition inside, existing pipes of any length, size, form, or condition inside, therefrom, and also the head of pressure at command. Then, afte omputing the quantity of water used per minute at such hea
ressure, to give out the required power, I would fix, or request user to fix, a pressure gauge on said pipes, and withdraw by a sto tap this computed quantity of water per minute into a cask
mecsured vessel, and take note of the reduction of pressure thereby mecsured vessel, and take note of the reduction of pressure thereby
incurred. If the pressure at such rate of flow per minute was additional speed would be necessary to give out the required power, because the additional discharge thus produced would cause a
further loss of pressure. But if the reduction of pressure was further loss of pressure. But if the reduction of pressure wa
much greater than one-tenth, then the pipes would be clearly to small to give out such power with high efticiency. Formule suc reduction of flow in pipes by friction with an open and unrestricte outflow, will be applicable only to such turbines as admit of equally unrestricted passage; but a water-pressure engine confines or limita engine when running, and so makes the flow, or the quantity of water consumed, depend on the piston speed, or on the amotrom.
power required to be given off. power required to be given off
Leeds, February 18th.

## engineers in india

Sir,-The inaugural address of Mr. Arthur Rigg, of the Society of Engineers, and your editorial notice of it, will be read
with great interest by all engineers, and particularly by those in India serving under the Government. For the first time th thsion between the Civil Engineers of the Public Works and
the Government with the Royal Engineers has been noticed in public manner. Of course I am aware that much has been done "in Parliament by Mr. Carbutt, M.P., to induce Government to "improve the terms of their engagement," and to carry out their
oft-repeated promises of equality between the Royal and civil oft-repeated promises of equality between the Royal and civil
engineer. But, Sir, the object of this letter is not to air the grievances of the civil engineer so much as to express my surpris shat the first publio body to notice the unhappy state of thing
should be the Society of Engineers and not the Institution of Civil Engineers. I believe that the great majority of the public work engineers, both civil and military, belong to the latter institution
and it would be a great thing if the council of that body would use its influence to obtain a settlement of that much vexed ques tion. When, in 1870, certain imputations were indirectly made engineers to accept commissions from manufacturers, a very firm ficial result.
With regard to the education of civil engineers for India, the position of Coopers' Hill is rather that of an experiment, not a worked with them can have failed to recognise that they ar eminently well qualified for their work; but unless it can be shown
that Coopers' Hill is self-supporting, it is not likely that India will be called on to pay towards its support; and as, no doubt there will be in future a larger admission of natives of India as
engineers in the Public Works' Department, there will be fewe appointments open to the College. Indian Public Works. appointments open to the College
Westminster, February 19th.

NEW STEEL.

Sir.- We notice under the above heading a paragraph in the
Sheffield Daily Telcoraph of the 16th inst., quoted from THR ENGI Sheffeld Daily Telegraph, of the 16th inst., quoted from 1hr ENG covered something new in ferro-manganese steel. We do not see
that Messrs. Hadfield have found out anything new in this; they have, no doubt, found out something useful which they did no used ferrofore. There are several firms in this town whave used ferro-manganese with other mineral ores in quite as high a
percentage as Messrs. Hadfield and Co. state. We manufacture self-hardening tool steel, which contains between 7 and 20 pe
cent. of ferro-manganese infused with other ingredients, and after being forged into bars it is easily manipulated in the lathe, shape int circular cutters or any other tool required, and then heate
red hot and allowed to cool on the floor, when it becomes sel hardened. We send you a turning tool for inspection made fro our special self-hardening steel, which has been tested with most satissactory results against a well-known self-hardening steel,
which has been used in the engineering trades for many year forged, annealed a file made from the same steel, which has been heated as above and laid down to cool, and tang tempered in the manganese steel is not altogether new.
undling Works, Rockinghan
street, Sheffield, Feb, 20th.

RAILWAY MATTERS.
The number of passengers transported on all the railroads of the Raprid progress is being made with the Highgate Hill cable The total number of miles of railroad in the United States is
124,910 or seven times as many miles as the United Kingdom 124,910 or seve
Great Britain.
The Railway Committee of the Lower House of the Reichsrath Francis Joseph, Vorarlberg, and Rudolfsbahn State Railways.
The Bavarian establishment for the manufacture and impregna
tion of railway sleppers at Kirchseeon is able to produce 500,000 sleepers every year, this quantity being about one-tenth of the
total quantity used annually in the maintenance of the German

As the Scotch Pullman train which left St. Pancras at 10.35 a.m. was passing through Hellififild station a few days ago, at a speed of
about forty miles an hour, a heavy luggage bogey was swept by the about forty miles an hour, a heavy luggage bogey was swept by the
wind off the platform on to the line. The bogey was mashed to pieces; but the engine, fortunately, di
the train was brought to a standstill.
Two or three months ago the railway carriers serving the Mid
lands suddenly increased by from 30 to 90 per cent, the rates for lands suddenly increased by from 30 to 90 per cent. the rates for
the carriage of heavy ironfoundry work to Leeds, Middlesbrough,
and Sootland. Great dissatisfaction was expressed at this procedure, the matter being a most serious one to the large ironfounder
and ensineers. It is now announced that and engineers. It is now announced that the carrie
unconditionally removed these extra freightage rates.
The Board of Trade of Winnipeg have telegraphed the Dominion
overnment to confer with the Canadian Pacific Railway, under the new arrasements with that company, for the construction of 300 miles of the South-Western Railway during the next season. to the main line, and of course nothing could be done in the matter by them. The Canadian Pacificic directors, however,
to permit 100 miles of road to be built next summer.
Durivg the second half of last year the Midland Railway United Kingdom, although the total mileage worked by its engine was only twelve miles more than in the corresponding period. The
coaching receipts yielded $£ 30,248$, the merchandise $£ 3957$, and the mineral traffle $£ 121,481$ more than in the corresponding period This result is, to a large extent, due to the heavy business which
the company has of late years developed between the Derbyshire has increased the tonnage of coal which it brings into London by 2,184,000 tons.
THE Indian Government has published the reports of preliminary surveys of some new and important railway lires. She first of
these, 736 miles in length, is intended to connect Assam with the gea, and will run from Chittagong through Cachar to Dibrooghur,
with a branch to Gowhatty. It is estimated to cost $64,673,000$ rupees. A line is also projected from Mogal Seria, near Benares,
through Chota Nagpore and Orisen to Pooree with Gya. The lenth will be about 652 miles, and the cost about
$68,200,000$ rupees. This line will pass through extensive coal fields, and will afford a short route for pilgrim traffic between the The ship railway across the Mexican Isthmus of Tehuantepeo is
iow, the Globe says, being pressed forward. The survey of the now, the Globe says, being pressed forward. The survey of the
isthmus has been completed under the care of Mr. Van Brocklin, an American civil engineer. A route with even more moderate the works have been commenced. Mr. J. B. Eads, C.E., the the
builder of the steel bridge across the Mississippi at St. Louis, and whose improvement of the Mississippi narigation has opened up
New Orleans to ships of the deepest draught, is now in Lond the probability is that the ship railway will come under British control, financially and otherwis. Several gentlemen eminent in
and in commection with the shipping world are taking the subject up warmly, as this route will, it is claimed, shorten the sailing
distance between Europe and the North American Pacific coasts, inctuding, of course. the British possessions, by more than 8000
statute miles, and is 1200 on miles less than the Panama route. The
Pannma Canal Company has had to buy the Panama Railway.
Will it Will it have to buy another?
OrR Birmingham correspondent writes:- "The adoption by the
North Staftordshire Tramways Company of the Willinson type of tram way locomotive is regarded as an economical step. As yet,
however, no actual improvement in working expenses has been
 deliver the twenty engines ordered as rapidy as could be wished.
The report of the directors for the six months ending December
31st, which was adopted on the 9 th inst., states that at the end of the year only four had been received, and that these had not
yet been fairly got to work. Since then four others had been
delivered, and the remaining twelve might be expected at the rate
of four a month During the half. year the profits renched the of four a month. During the half-year the throfted reached the the
satisfactory amount of $£ 1709$, as ocomprex with
sfick for
mor the seven months preceding, and $£ 1271$ 'for the entire year 1882. The cost of
steam traction per mile -inclusive of all charges - was 11.0 d, , and
of of horse-power $6 \cdot 233$. The receipts per mile on the steam lines
wero 16.59 .2 and on the horse line, $6 \cdot 39 \mathrm{di}$. In Birmingham alone, omnibus and other companies are contemplating its use instead of
horseepower. Among them are the Birmingham Tramways and Omnibus Company. The question is, however, by no means yet
settled. Those adverse to the change point out that Manchester
has 125 miles of rails laid down; Liverpool, 67 Til miles ; London,
 ngham.' A Boxsp or Trade report has just been published on a very
curious aceident which happened on Christmas Day last near
Newton Abbott station, on the Great Western Railway. As traftic
was heavy, the ordine do was heavy, the ordinary down mail to Plymouth had been divided
into two parts on the night of the 24th. The first portion reached
Newton which consisted of a van and five coaches, was so be sent on to Rattery with two engines, as there are steep rising inclines for the
first thirten or fourten mileso f the railway at the south side of
Newton Abbott. ployed as a pillot was backed to the train, and was coupled on to
it by the porter whose duty it was to cunle wis cat by the porter whose duty it was to couple up the engines and
carriages at the station. After coupling up the pilot engine, the
porter went to the back part of the train to detach the last coach. Porter seond engine backed on the train just after the porter left.
Th 3.35 a.m. the gurd gave the signal for the train to start. Both engine-drivers sounded their steam whistles, and the train left. leading engine got out of the cutting at the south side of the
station, he thought that he was running faster than usual, and on
looking round he found that his engine had no train ottached to He stated that he could not hear or see anything of hished to it. he therefore assumed that he had left it at Newton Abbott station, and he at once applied the steam brake to stop his engine, but it
was still moving at a speed of about three miles an hour, when it
wns rill was run into by the pilot engine that was attached to the mail
train, which was running at a speed of twenty-five to thirty miles an hour. The two engines were a good deal damaged, and the two front wheels of the foremost engine were knocked off the rails.
Placing the pilot engine behind the train engine prevented the use
of the continuous brake with which the train was fitted. Placing the pilot engine behind the train engine prevent.
of the continuous brake with which the train was fitted.

## NOTES AND MEMORANDA.

Iv the Hotel Dieu, Paris, already provided with Gramme machines
and steam engine, the Administration of the Assistance Publique has decided to introduce experimentally the use of incandescent
lights in the halls inhabited by patients. The Hotel Dieu is the largest and the leading French hospital.
AN Oregon correspondent of the Scientific American says that,
in the Willamette Valley, in 1850, the magnetic needle showed variation of 20 deg. E., where now it is 21 deg. 10 min. E., thus 2 deg. a year. He has noticed greatest disturbance in vicinity o reeent volcanic upheavals, varying as much as 20 deg. in a mile and suggests that the thickness of the earth's c
natural heat of the earth may have some effect.
For waterproofing leather the following has been given in the Ind, Oil and Drug Jnl: :-"Twenty-four parts oleic acid, 18
ammonia soap, 24 water, 6 raw stearic acid, 3 tannin extract. The leic acid is first melted with the raw stearine, then the ammoni The ammonia soap is obtained by treating oleic acid with ammonia until the smell of the latter does not appear after a lengthy stirring. By adding to the whole mixture a solution of two parts copppras
in 6 parts of water a deep black colour is obtained, admirably dapted for dyeing shoe--leather,
Professon Thospson in a recent lecture stated that the west of the geographical pole. In 1657 the magnetic pole was due north, it having been eastward before that. Then it began to move westward until 1816 , when the maximum was reached. This
is now being steadily dminished, and in 1976 it will again point rue north. Professor Thompson says that the changes which have seen observed not only in the direction but in the strength of the
earth's magnetism, show that the same causes which originally magnetised the earth are still at work.
During the week ending January 19, 1884, in 30 cities of the United States, having an aggregate population of $7,028,900$, there $20 \cdot 4$ per 1000 , a diminution from the rate for the preceding weel which was 22.0 . For the North Atlantic cities the rate, as wiven n the Scientitic American says, was $20^{\circ} \cdot 2$; for the Eastern cities
21.1 ; for the Lake cities, $16^{2} \cdot 2$; for the River cities, $18^{\circ} 6$; and the Southerr cities, for the whites $21^{\circ} 4$, and for the coloured $35^{\circ} 7$ per 1000. Of all the deaths 33.1 per cent. were of children under
five years of age, the highest rates of this class being in the coloured population of the district of Columbia, where it was $62 \%$, and in Fnoured population of Atlin
From the statistical reports from the companies owning the States in 1883 , it appears that the quantity of Bessemer steel ingot produced in the United States last year was $1,654,627$ net tons, ons. This is a much smaller decrease than has been generall supposed. It was, however, the first decrease that has occurre
in the history of the Bessemer steel industry of this country production of Bessemer steel ingots in the Unitod States from 1874 to 1883, in net tons, has ranged from 191,933 to $1,654,627$ tons.
The quantity of Bessemer steel rails produced in 1883 by fourteen of the works aboverefred to-one of the companies not producing rails-was $1,253,925$ net tons, against $1,334,349$ net
produced in 1882 , showing a decrease of 80,424 tons.
In their report on the water supplied to London during January, say they have no hesitation in calling attention to the discordance
between their report, based upon analysis of 189 samples, Frankland's, hased on to the report to the Registrar-General, the mean amount of organic carbon in the Thames derived waters supplied during the month of
December, 1883 , or -246 part in 100,000 parts of the water, identical with the mean amount of organic carbon in the Thames derived waters supplied during the month of December, 1882 ; not-
withstanding that throughout December, 1882 , the river was in a quite exceptional state of turbidity and flood; whereas at no part time of year, while its condition during the latter part of the month was exceptionally good.
speaks of the water supplied during the month, while his seven samples are taken on one day of that month
AN improvement has recently been introduced into the Edison by the addition of a third main conductor it is stated that a saving
of $62 \downarrow$ per cent. in the amount of copper requisite for of $62 \frac{1}{\text { per cent. in the amount of copper requisite for the conductors }}$ is effected. The electro-motive force ordinarily used in the Edison system has been 110 volts. By placing two dynamos in series, and
running a conductor from each of the outside terminals and a third rumir from a point between the terminals, the electromomotive force
is inereased to 220 volts. The Edison lamp, however, are made to burn on a 110 -volt current, so that it it is necessary to burn two
lamps in each series. This would be inconvenient were it not fo hamps in each series. This would be inconvenien or wore off at once. By using the third wire, and putting alternate houses in circuit of laeen the first and second, and second and third wires, each set
of man be turned off independently, and the tension of the current in each house can be kept down to 110 volts, and still
secure the reduction in the quantity of copper in the mains, and secure
greatly diminish the cost of central station installations.
CosyErtivg intogross tons, the Enginecring and Mining Journa says, "the net tons of steel rails produced in our Bessemer stee
works in 1882 and 1883 , we have $1,191,383$ gross tons produced in
1880 and 1882 , and $1,119,576$ gross tons produced in 1883 . The freduresed given
for 1882 do not cover the total production of steel rails in the United States in that year, as there were 103,806 net tons of Bessemer rails rolled in iron rolling mills, chiefly from imported
steel blooms, and there were also 22,765 net tons of open-hearth steel booms, and there were also
steel rails rolled, making a total production in in 1882 of of $1,460,420$
net tons of steel rails. In 1883 we rolled very few tons of Bessemer steel rails in iron rolling mills, either from imported or domestic blooms, and we probably made fewer open-hearth steel rails in 1883
than in 1882; in the absence, as yet, of complete statistical returns, we estimate the total production from these two sources
at considerably less tons from these sources to the $1,253,925$ net tons of Bessemer steel rails ascertained to have been rolled in 1883 by our Bessemer
steel works, we have a probable total of $1,300,000$ net tons of steel rails rolled in the United States in 1883, or 160,920 tons less than in 1882.
Preparations are now being made upon an elaborate scale at of Prof. Rowland, for the exact determination of the value of the ohm. An American contemporary says: Two principal methods
will be employed. First, the resistance will be found by means of the mechanical equivalent of heat. The apparatus used by Prof. Rowland, in his well-known work on that subject, has been set up
for this purpose. It is proposed to heat a non-conducting fluid, such as alcololol or turpentine, by heat developed in a conductor whose extremities are kept at a known difference of potential.
The same temperature will then be reproduced under like circum. stances by mechanical means. The resistance of the conductor
will thus be determined directly from the work equivalent of the heat developed in the conductor. The second method to be used is that of Kirchoff, as modified by Rowland in his determination of
the ohm in 1876 ? most of the instruments will however be new the ohm in 1876; most of the instruments will, however, be new,
If time permits, the earth-inductor method of Weber will also be used. Fifty Planté cells charged by a small dynmmo machine will supply the electricity in the calorimetric method. For measurin
large currents, an electro-dynamometer has been constructed with the Helmholtz arrangement of two large coils and a single small
suspended coil.

MISCELLANEA
AT the Agricultural Exhibition at Natal on the 2nd and 3rd ult, portable engines was exlibited, and the only medal for imported achinery,was awarded for it.
THE death is announced of Count Theodore de Mouncel, the eminent electrician, on Saturday night last, at the age of sixty-
three. He was the son of a Brigadier-General, and married daughter of Montalivet, one of $M$. Thiers' intimate friends.
WHEN the lantern of the Peterborough Cathedral tower wa condemned defects, described by us, were observable in both
transepts. These have now developed, and the tearing away of
transepts from the nave are clearly visible from the triforium to transepts
the base.
MM. Chafliot ET Gratiot, of Paris, have constructed what
they term a "bi-radial" drilling machine. That is to saty the arm articulated in the middle, so that- the drill co say the arm ny point in the surface of the table, without shifting the latter.
The power is transmitted by means of hevel gear TH
THE new harbour at Trieste, opened in December last, has
occupied sixteen years in its construction. There is a breakwater about 1200 yards in length. The works were for the first two years ander the direction of M. Pontzen, a French engineer, since whic
time Herr Bōmches has been entrusted with the supervision. A CASE under the Employers Liability of some interest has been water works had one eye deestromped byed the bursting on a bobttle. He
ued his employer for 4300 damages ; but the sheriff found, on the evidence, that the bursting of a bottle during labelling was so rare that it was not incumbent on the employer to provide special pro-
tection, held to be liable.
The report of Mr. Rendell, M.L.C.E., as been made with regard
to the Milford Docks. He states that $£ 119,000$ will suffice to accomplish all needed in eighteen months, The result would
be : Dock space, 15 acres, of which 12 h acres will be 31ft. deep, and the residue 20ft. deep; quay space, 2035ft.; entrance
 soort. in length.
Cri Tuesday, the $19 t h$ inst,, an interesting trial of a large dry-air Co., Westminster Bridge-road. The macsine, which has been constructed on the patent of Mr. T. B. Lightfoot, is one of several now
being made for the Australian frozen meat trade, and is to be put to work on one of the vessels of Messrs. W. Howard Smith and noiselessness in working, there being none of the clatter and vibra tion common to many cold-air machines. Besides this it is exceedingly compact, notwithstanding that long strokes have been pro-
vided; while the arrangement is such that all parts can be easily got at even when the machine is in operation. A number of isitors were present at the
tion at the results obtained.
A FEW days ago a steam boiler exploded at the offlice of the Yar-
mouth Independent newspaper. The office was nearly wrecked, and one man much injured. The boiler was on the ground floor, wrecking the premises. The accident occurred on publication morning, but the paper was issued as usual in the course of the
 extremely independent and high.-flown notions, of its boiler as to
means of reaching upper stories, the upper stories of Y means of reaching upper stories, the upper stories of Yarmouth
readers are likely to hold their own views as to how far " pressure on space is here concerned. The Yarmouth Independent has no steam boilers as proved by experiment.
Tre fourteenth edition of the City of London Directory has just
been published by Messrs. W. and L. Collingridge, and contains a larger number of business names than any preceding volume. The changes have been more numerous than for some years, owing to the re-building of many oftices and warehouses, and the improve
ments in King William-street, Eastoheap, and Great Tower-street, consequent upon the completion of the Inner Circlo Railley.s. The
Commercial List contains 41,000 names. The Trades List contain 40,000 names, under 1914 heads. It contains a complete record concerning the Livery companies, their members, fees, charities,
and property, and has also the list of the names and addresses of the City. Public companies are given separately, and any are easily
found. The Directory is, as usual, well got up and reference to all parts made easy.
Messrs. Le Grand and Surolipp, of 100 , Bunhill-row,
have recently completed or have in progress several deep artesian bored tube wells. At one of the largest mineral water manufactories at Berners-street, Oxford-street, they have just
finished a fin. tube well, which is carried down to the chalk well, the probable depth of which will be between 200ft. and 300 ft, is in progress at Messrs. White and Sons' mineral water works,
near the Elephant and Castle, Camberwell. On the estate of large brick-making company at Pitsea, in Essex, Messrs. Le Grand
and Sutclift are sinking a shaft of sft diameter and Sutcliff are sinking a shaft of fit. diameter to a depth of
100ft., from the bottom of which a tube well will be made for a further 200ft. or 300ft. At Lichfifield a brewery company is havin reached about 150 ft. and is still being driven deeper. Messra. Truman, Hanbury, and Buxton have given instructions for an
additional tin. tube well to be sunk at their brewery at Burton-onTrent in consequence of the favourable result obtained from two drawing water from the new red marl which underlies the grave deposit of that place.
THE Bank of England has now been fitted up with the electriclight by the Electrieal Power Storage Company, the manufacturers of been nitted up without interfering with the convenience of the staff or the bank, $1 t$ was intended to take the motive-power from the
existing steam engine and boiler, manufactured by Messrs. Boulton Watt, and Co. over forty years ago, during those hours when the requied, but it was subequently foum and boilers specially to drive the dynamo machine. This is of the Victoria type constructed by the Anglo-American Brush Elec
tric Light Uorporation. Its electro-motive force in and it is capable of giving a current of 60 amperes. The dynamo in turn feed 150 incandescent lamps. The lamps are distributed throughout what is rather curiously known as the private drawing
office, through the till-office and the vaults. These latter, in Which are deposited the boxes with the customers securities, have
thirty-two lamps 20 -candle power, and the officials remarkel upon the first day's employment of the light, the purity of lation is fitted throughout with the Anderson patent magnetic safety out-out, which is regulated so as to break the circuit auto
matically when a certain fixed current is exceeded. High tensio Swan lamps are at present employed. The fittings have been
manufactured specially by the Electrical Power Storase many, and are attached to each gas standard in suchage manner
pas to permit the use of either electricity or moment without the one interfering with the other. The whole of
ment
the install the installation has been carried out under the personal supervision
of Mr. F. Thornton, the works
met with unanimous approval.

COMPOUND ENGINEAND CENTRIFUGAL DRAINAGE PUMP.
MESSRS. HATHORN, DAVEY, AND CO., LEEDS, ENGINEERS,

$\left.\begin{array}{l}\text { DIAM OF H.P.OYL IB' } \\ \text { DIAMOF L.P. GYL. } 30^{\circ}\end{array}\right\}$ B' $^{\circ} 0^{\prime \prime}$ STROKE
DIAM OF CENTRIFUGALPUMP $6^{\prime \prime} 6$ "DIAM

## FOREIGN AGENTS FOR THE SALE OF THE ENGINEER




## TO OORRESPONDENTS.

** In order to avoid trouble and confusion, ve find it necessary to inform correspondents that letters of inquiry addressed to to to
public, and intended for insertion in this column, must, in all public, and intended for insertion in this column, must, in all
cases, be decompanied by a
writer to himself, and bearing a envelope legibly, directed by the
1d. postage stamp, in order that writer to himself and bearing a 1 d. postage stamp, in order that
answers received by us may be forvarrded to their destination. No ontice will be taken of communications which do not comply
with these instructions ${ }^{\text {with these instructions. }}$ ${ }^{*}$ must therefore request correspondents to keep copies. * Alining questions, must be aceoppanied by the name and a dudress
of the writer, not necessarily for publication, but as a proof of of the writer, not necessarily for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous Toker. -If you will



## IRON FOR CHILL CASTINGS. (To the Editor of The Engineer.)

SrR,- Will some of your readers kindy give eme the best brands of iron
for mancing ploughhares
give them a good chill?

## LOCOMOTIVE PERFORMANCE (To the Editor of the Enginer.)




## Sprivg Making machines.


 sire? Salford, February 15th.

## THE "WORK TESTER," AND THE MANCHESTER PLATEWAY.






 Tur Exarngen can be had, by order, from onys ne








 $\because$ The charge for Advertiements of four tines and


 Advertisements cannot be inserted subject to this condition,



THE ENGINEER.
FEBRUARY 22, 1884.

## klectric lighting.

By degrees the various speculative companies which did so much to injure the reputation of electricity as an illu-
measurable distance of the time when electric lighting will
be placed on a proper commercial basis. The truth is, that be placed on a proper commercial basis. The truth is, that offer the world, although they believed themselves to be possessed of a great deal. They lacked knowledge of all kinds, save that acquired in the laboratory or the classroom. Concerning the cost of lighting they had no expe-
rience whatever. Of the conditions to be fulfilled in order rience whatever. Of the be satisfied they had only a vague
that the public might be conception; while the art of electric lighting was in such a condition that even at the Crystal Palace failures of all kinds constantly took place, notwithstanding a lavish
outlay by exhibitors. A rush was made by dozens of competitors, all desirous to light not only theatres and shops, but the entire metropolis. Notions the most crude were backed up by estimates too wild to deserve serious were backed up by estimates too wild to deserve serious where. Honest men did not know but thought they did. Dishonest men cared nothing whether they were ignorant
or not so long as the public held them to be learned. The speculator and the financier saw in such a combination their opportunity. The measure of success attained, such as it was, gave the world the most beautiful artificial light ever seen-a light, too, which was full of an infinity of glorious promise. Nothing that could be urged against
the light had much chance of a hearing, because no one could prove his case. Those who hadyocated the new light and those opposed to it were alike ignorant. The Stock Exchange and the City saw their way to a glorious harvest. Even tender consciences tried to make money. Who could tion raged. A few people made money, a great many lost it; and at the present moment it is probable that we are not much nearer the general adoption of electric lighting
The intrinsic worth howe
The intrinsic worth, however, of electricity as an illumiThe only point open to question is the meaning to b attached with propriety to the word success Our con viction is that electric lighting will extend, not rapidly but steadily, and that individuals first and then companies wil undertake the work of lighting houses, districts, and towns. There are only two things necessary now. First, trustworthiness in the light; and secondly, moderation in its cost. By trustworthiness we mean a certainty that the light will not go out. Experience acquired on this point
so far is not satisfactory. Unless where storage batteries are used, or the installation is such that machinery exists not only in duplicate but in triplicate, darkness takes the place of light now and then. A typical case was supplied Edison Company is in duplicate, but the engine of one set broke down and the dynamo of the other set. Of course there was no long delay, but a short period of darkness is nearly as bad as a long one. Thus, if a hotel or a church be
plunged in total darkness for even a minute or two the circumstance is likely to prove disastrous to the reputation circumstance is likely to prove disastrous to the reputation
of the light. Such things must be avoided, and we think it may be taken as certain that these events cannot be prevented without the use of storage batteries. The extrava-
gant notions entertained at one time concerning the efficiency of these batteries, and the magnitude of the part they were to play in the worlds economy, have long
since succumbed to the logic of facts. But none the less is it clear that the storage battery is capable of doing a great deal of excellent service. It is one thing to suppose that a storage battery will never wear
out and that it will return 98 per cent. of all the work done in charging it; that 2-horse power for a couple of hours can be carried in a box under one's arm, and so on ; it is quite another to know that by the use of hala a
ton or so of porous lead plates the electric lighting of a large building may be rendered proof against disaster. It is ample, at Eberle's Hotel in Westminster. In this way confidence may be placed in the incandescent laraps with which our rooms are lighted. Surely this is a grea advance. Safety such as this is worth paying a little for.
But it must not be forgotten that storace But it must not be forgotten that storage electric lighting can be reduced, its use must remain comparatively limited The conditions of cost are tolerably well understood. It is not in the engines, or the dynamos, or the lamps, that a great saving can be effected, although there is room for im-
provement here. In the conductors lies the principal item of cost, and the expense is incurred notso much in the purchase of the wire, as of the insulating material with which the wire is covered. Prof. Forbes knows what he is about in dealing
with electricity, and he recently stated that the cost of conductors for the supply of 100,000 incandescent lamps, if electricity was supplied from a single source, would be $£ 224,000$ per mile. A solid bar of copper 20in. square would be needed; if the bar were of less section, then it would become overheated. His reasoning is too close and
careful to permit us to doubt the general accuracy of this careful to permit us to doubt the general accuracy of this
statement ; but it contains nothing really alarming, though statement; but it contains nothing really alarming, though it leads to much which is very suggestive. In the first place
large numbers of lamps must not be worked from one centra station. But this is not all. The need for an enormous con ductor ceases as soon as we take it out of the ground and hang it up in the air. Let the conductor have ample opportunities of being cooled by radiation and the our leads brough within practical dimensions. But this obviously mean overhead wires. We do not know what is the precise sumport ne number or the wires that the houses to say that in parts of the City now the sky is darkened by overhead wires. If we turn to the streets it will be found that there
is scarcely space left for another wire. Whether the lines shall be overhead or underfoot, who can say? We can say however, that to enable electricity to compete with ga
Mr. Killingworth Hedges read a paper before the Insti tute of British Architects, on Monday, the 18th inst., on "Precautions to be Adopted on Introducing the Electric
Light into Houses." We give in another place an abstract
of Mr. Hedges' sensible paper. We would call particular attention here to one portion of it, namely, that dealing with fire risks. In order that these may be avoided, it is in "wiring" a building. In one district in the United States are sixty-one mills, all lighted by electricity. No fewer than fifteen fires have taken place in these mills, all due to the overheating of circuit wires. In almost al cases this was due to want of skill and caution on the part of those who wired the mills. Mr. Hedges insists on the electric lighting. There is competent men to carry out now that competition will set in sharply, and with the usual result, namely, that contracts will be let to the lowest tender. If this practice obtains, the results will be as bad as possible. That class of work known as "cheap and nasty" cannot be attempted with impunity in the case of the electric light. We agree with Mr Hemplos that the best guarantee of safety is the lation. In such hands it men lis tingerous that But we would supplement Mr. Hedges' remarks by asking How are measures to be taken to ensure the work being always safely done? What have insurance companies to say on this point?

## WHAT IS FRICTION

It is now just a century since Coulomb first investigated the laws of friction, and half a century since Morin made at Paris the series of experiments which has rendered his name immortal; and yet it would hardly be too much to beginning to arrive at a clear conception of what we mean by so familiar a term. In saying this we by no mean wish to insinuate the slightest disparar bent of the illustrious physicists we have named. The fault lies not with them but with us. They had no desire-in the cas of Gen. Morin, at least, we have his own authority for saying so-to impose their investigations on mankind as rue, beyond as well with, as absolutely and everywhere were tried. They claimed the limits within which they to have laid them aright but they men to come forward and complete the edifice. Until very recently, however, such workmen have been less than few, their contributions more than scanty, To the past eneration of engineers, immersed in the the past details of construction, and in the thousand-and-one eases of commercial manufacture it was much easie to take Morin's results as they stood, and work by them, han to merime the The same spirit of indiference hos crept into our texthe sa which ourtesy of motiong his no as if they were no igidly true and genemal than the theory of gravitation igidly true and gener. than the theory of gravitation self. Yet orequired he labous of a wolo generatio of astronoms to place Newhors its beyon lime reach comains in dispute to emains in dispute to the present day. I the sharpest con rast to this keen activity on the part of the votaries of itis is scarcely possible to overrate, has been allowed to sink back, after the light flashed on it by the experiments we back, after the light flashed on it by the experiments we
have referred to, into a hazy twilight, from which it is nly just beginning to emerge
To illustrate the present state of the case, let us begin with he treatment of friction, as it will be found in any stan-
 bably find a distinction drawn between statical friction, where the fwo suraces are initilly at rest, and dynamical shall find a statement of what are called the "Laws of shall find a statement of what are called the "Laws of
Friction" in something like the following terms:-(1) Friction" in something like the following terms:--(1)
Friction, whether statical or dynamical, varies directly as Friction, whether statical or dynamical, varies directly as the force which presses the two surfaces together ;
this force remaining the same, it is independent of tho this force remaining the same, it is independent of the
area in contact; (3) under the same conditions the value of dynamical friction is much less than that of statical friction, but it is constant at all velocitise. To the statefriction, but it is constant at all velocitise. To the state-
ment of these laws may be added, in more elaborate and ment of these laws may be added, in more elaborate and
theoretical treatises-such as Moseley's "Engineering and Architecture"-a few words as to the limiting cases in which the laws cease to be exact, as, for instance, where the pressure approaches that of abrasion ; and also of the state of things which prevails when the surfaces are fully ubricated with oil or grease, in which case Morin concludes that the friction, whatever the nature of the surfaces, approaches to a constant value at between 7 and 8 per cent. of the pressure. Then will follow tables, taken almost exclusively from Morin's results : (a) for plane surfaces at rest, sometimes dry, sometimes wet, sometimes lubricated; (b) for plane surfaces in motion, under similarly varied conditions; (c) for gudgeons or axles revolving upon their bearings, and more or less lubricated with ingredients of various descriptions. In collections of formule and rules, such as those of Molesworth and Rankine, these tables in an abridged form will be found to be the whole that is offered upon the subject. So deeply rooted is this "orthodox" docmechanics in which it isqanted hinted that the third law, as to dynamical friction, is by no means universally true ; or that the friction of dry and lubricated surfaces are not phenomena of the same character. Yet scepticism on these points has long existed, but it is only within the We are years that it has broken out into open rebellion. compilers of our text-books have not had the slightest glimmering. The first is that what is called friction in the case of dry surfaces, and what is called friction in the case of fully lubricated surfaces, are not analogous phenomena, but totally different in every respect, observing whatever, but an unfortunately chosen name, to bind them together. The second is that dynamical friction is constant for similar surfaces only within comparatively
either increases or diminishes, as the speed varies, in a
very unmistakeable manner. It is evident that these two very unmistakeabie maner. It is evident that these two facts completely overthrow the sweet simplicity of the
laws and tables of friction as they appear in our existing manuals.
It is worth while to dwell for a moment on the steps by which this change in our view of the question has been brought about. Aslong ago as 1852 the experimentsmade by
Poirée and Bochet on shoe brakes and on the wheels of Poiree and Bochet on shoe brakes and ond the the wheels of of friction diminished very much as the velocity increased. Between the limits of 900 ft . and 3600 ft . per minute the coefticient of friction in the case of wheels sliding on rails altogether contrary to the so-called law of dynamical friction, but it does not seem to have really awakened the sense of engineers to the question. There is nothing further chronicled until 1877, when Professor Kimbal presented to
the Royal Society a paper on the relations between friction the Royal Society a paper on the relations between friction
and velocity. At ordinary speeds he found that the friction between pieces of pine wood diminished rapidly as the between pieces of pine wood dimimished rapidly as the
speed increased. Again, with a wrought iron shaft lin. speed increased. Again, with a wrought iron shait a
diameter, rumning in a cast iron bearing and well oiled, an increase of velocity from 6 ft . to 100 ft . per minute caused the coefficient of friction to fall as low as three-tenths of its first value. The same result was found with lower pressures, the pressure having in the first case been
77 lb . per square inch. About the same time Professor B. H. Thurston was carrying out in America a number of experiments intended to test, under varying conditions of speed, temperature, pressure, \&c., the friction of well hubricated journals. These were subsequently
published in his well-known book, "Friction and published in his well-known book, "Friction and
Lubrication." As to velocity, his conclusion was that the coefficient of friction at first decreased with increase of velocity, but after a certain point increased, and that temperatures. On the whole he considers that, with well lubricated bearings, the friction increases with the velocity at all speeds exceeding 100 ft . per minute, and that the rate of increase is approximately as the fifth root of the speed. Thurston, another American, Mr. George Westinhore, Thurston, another American, Mr: George Westinghouse,
was carrying out, in conjunction with Captain Douglas was carrying out, in conjunction with Captain Douglas
Galton, the magnificent series of experiments on the brake question which have since become classical under the name of the "Galton-Westinghouse Experiments." These threw much light upon the question of friction as between metals -generally cast iron and steel-which were rubbing over me they how dien so friction as the speed increased. This result held throughout the whole range of the experiments, in which the speed varied from 400 ft . wo 3300 ft . per minute. Itshould beobserved, however, that, owing to the nature of the instruments used, hat during that time the coefficient of friction was found hat during that time the coemcient of irction continued odiminish. The ultimate valuesassumed by it underdifferent circumstances cannot, therefore, be exactly known; but
from the appearance of the curves, obtained by plotting from the appearance of the curves, obtained by plotting the resuts, it is clear that the values for high speeds
would still be much smaller than for low speeds. Prowould still be much smaller than for low speeds. Prothe result that the coefficient of friction was sensibly less $t$ high than at low pressures, and that between the wheels and the rails-where the pressure was, no doubt, far greater than that on the brake blocks-the friction was
not more than one-third of the amount found for the latter. This experiment is in accordance with Professor Thurston' results as to pressure, with ordinary velocities and loads; but the latter found that after a certain point a change took place, and further increase of pressure occasioned an
increase in the friction. These results varied greatly under various circumstances, and they applied to lubricated journals, which, as we have seen, are really in altogether ifferent circumstances from those of dry friction, as illusrated by the behaviour of brake blocks.
Mechanical Engineers took up the question. Their pe ress in determining it has certainly been of the slowest but they have lately issued a report which consolidates and dvances our knowledge of the question in a remarkable degree. The experiments, which were conducted with scertain the friction of journals under the beat possible ircumstane friction of journals under the best possib ournal running in what may be described as an oil bsolutely buried in not meant that that its lower surface was always in contact with fresh oil, the upper surface being that on which the pressure rested. The ble. In the first place it was found that the absolute riction, that is the actual tangential force per square inch of bearing required to resist the tendency of the brass to go round with the journal, was much smaller than had ever been suggested before, falling in many cases as low as Don of the pressure existing on the same area; secondly, all loads within ordinary working limits, and certainly it did not increase in direct proportion to the load, as writers on friction have always assumed. It only began to vary onsiderably when the pressure became excesgive, and the the friction rose very rapidly and the bearing heated and
seized. From this result it was naturally dedued the friction of bearings in such circumstances is rather liquid than solid friction. The theory of liquid friction is that it is independent of the pressure per unit of surface is directly a dependent upon the extent of surface, and increases the square of the velocity. In the case of nearly independent of the pressure, and it was also found to increase with the velocity, at least with speeds beyond 150 ft , per second. The question of its variation ccording to the surface in contact was not gone into. As regards other results, it appears that an increase in
temperature caused a very marked diminution in the
friction. For instance, with lard oil, the coefficient with
the temperature at 120 deg. Fah. was only one-third what it was at 60 deg. Fah. This is in accordance with previous results, but shows remarkably the advantage derived from keeping bearings warm, Again, it was dis the film of oil pressure was lighest, was very large; indeed, so great as to force the oil up through a small hole against a pressure of at least 200 lb . per square inch, this pressure being more than doul. Subsequent
lubrication were methods for introducing the lubricant, which are found to fail altorether with this experimental journal. The cause is attributed, and no doubt righly, to the absene of any shock or vibration in this case, such as goes on continually with a malway vehicle in motion Fair results were hor ever, obtained by using an oily pad, pressed lightly against ever, obtained dace of the journal. Although the supply of
the under-surface y felt greasy, ye this case the results approximated much more closely to the laws of solid friction. The coefficient was approximately constant at about 1 per cent. of the load, and no very definite variations of friction with the speed could be observed. The lubricating of the journal by means of side grooves fed from a syphon lubricator was also success ful, and gave somewhat the same results, as far as the the moment of friction is concemed, with those obtained by the oil bath ; but the absolute amount of the friction was about four times as great. Now it will be observed that these results are practically coincident establish the first of the two facts with which we started, viz., that the friction of thoroughly lubricated journals is a totally different phenomenon from what is commonly known as friction between dry surfaces. A complete reformation in the treatment of the subject by text-books and in th
necessity.

It will be observed that none of the investigators we have mentioned commit themselves to any theory as to the real nature of friction, whether solid or liquid ; they are content from them. It is, however, a well-known rule in the history of science, that the most fruitful progress in any department is made under the innence of some dermite hypotheses, which it is the object of experimenters to confirm or disprove. Any physicists, therefore, who
would put forward a good working hypothesis on the question of friction, or rather on the two questions of solid and liquid friction, would probably deserve well of the engineering profession and the world at large. There are plenty of problems, besides those we have indicated, which such a theory should embrace. For instance, we know of
a case some years ago where steel tubes were manufactured by pulling an annular ingot of steel, in the cold state througn an opening in a plate, much after the fashion wire-drawing on a large sade. In this process the finished tubes as they came out were generally perfectly cool,
result which probably few would have expected; on the other hand, one would occasionally appear which was sensibly warm, if not hot. But the cause of this was well known by the workmen engaged in the manufacture; could always be traced to the presence of a minute piece
of grit or other substance which had got into the hole, and had drawn a fine scratch upon the surface of the steel as it passed through. This is surely a remarkable fact. We do not at all say that it is impossible or even difficult of explanation, but we may at least commend it to the
attention of our readers : and it would not be hard to attention of our readers; and it would not be hard to answer then far beyond our present limits, but taken in conjunction with the experiments here described, they may at least justify us in
putting forward the question placed at the head of this article, viz, What is friction?

## boller insurance

Ir boilers continue to explode it is not for lack of moden or competent imspection. In return for very boilerst payments any and evompetent men who will tel him whether they are or are not safe, and if not safe how they can be made so. The reports sent in by inspectors to companies papers ought to be. They leave practically nothing to be always 10 is a question, however, whene to consider an aspect of boiler insurance which does not receive quite as much attention as it deserves.
It is very much to be desired that boiler insurance companies should be perfectly independent. If they are not, There is much cy cannot fail to be warped and strained absolute independence is possessed by any of the nug like companies whose officers now pronounce on the condition of boilers; and this fact may go far to limit the usefulness of the system. When boiler insurance and inspection were first started many years ago under Fairbairn's auspices there was no competition; but for a considerable period competition has been severely felt by the boiler insurance companies which now exist in considerable numbers. These districts, poach on each other's preserves; and when two companies compete for a given boiler or bollers, risks are fre quently taken which neither company would dream of accepting were it not for the other. In such an article as this it is obviously impossible for us to give the names of particular companies; and we may add that what we have to say applies to all boiler insurance, assurance, and inspection companies alike. We single out none. What is true
of one is, so far as we can ascertain, true of all. This
point being, as we hope, made quite clear, we may go on to insured; and that factors of safety of as little as one and a-half to one are accepted as sufficient. We do happens nevertheless, and it happens in this way :-A proposal for insurance is made to a given company. The report. The reply of the boiler owner is that he is sorry to find that the boiler cannot be insured by the company nsured by anther con which be domes Then the irst report is reconsidered, certain potches are perhaps put on the boiler here and there, the safety valve load is reduced a pound or two, and the boiler is accepted for a yempay in. It must , is done rather than let the ral cannot at this moment be insured somewhere. It mast not be forgotten that this system is entirely opposed to the wish of the encineers and inspectors of the companies They have really no choice in the matter Apparentl free agents, they are virtually bound to do that which wil please the directors and bring in business
It may be said that boiler insurance cannot be so bad thing as we would make out, because so few insured boilers explode. Now it so happens that we are not trying o make out that boiler insurance is bad-on the contrary, e believe it to be very good; but we cannot approve the abuses of the system which are undoubtedly creepin be able to place all things desirable that wety an insured boiler, not because it is insured, but because it is properly inspected. If, however, risks are the order to secure busimess, confidence in the efficienc panies will be mine We have no hesitation in wing th here are low the be inared. It ay be tha wol the insurance companies, and that the losses by any exploons that take place will fall on them; but this is a ver nadequate statement of the facts. The influence of team boiler is by no means limited an explosion may do vast amount of mischief which no insurance company cal repay. With insurance standing alone, we have, of course
 nuch more han the promise to pay a certain sum if boiler will not explode, and it is, in a sense, a deed of ndemnity for the boiler-owner. It is quite well under ood that when steam user has it is respectable company he is clear of responsibility. $N$ ary could be empamenled wid would conture whos insured boiler exploded. The responsibility would all be insurance companies owe a duty to the public, which insurance companies owe a duty to the public, which
is that the guarantee which they supply shall be really rustworthy. So inspection they mightdo as they pleased, insurance without inspection they might do as they pleased, . But ippection being combined with insurance, the whole aspect of affairs is altered; and nothing mor bjectionable can well be conceived than the ayteo granting guarantees concerning really unsafe, because ulound, boilers. We have heard of cases in which inspector were told not to inspect properly, that is rigorously, lest a
given battery of boilers could not be accepted. Such an vent is we have no doubt purely exceptional; but it is no exceptional that boilers in very bad condition indeed are
assumed to be safe for a year. Indeed, some companies multitude oins The will by nen boiler for an indefinite period, but they will take one for It is a noteworthy fact that none of the companies have ever put forward any statistics to prove that the practice
of insurance has decreased the number of boiler explosions There are not wanting the number of boiler explosion system never yet prevented an explosion. We need no the other subjects over which boiler companies quarrel is the propriety of forater all. Into such a dispute we annot enter, hor has this article anything to do with such questions. It is intended to maintain that boiler insurance mones should come to some undertang either among hemselves or otherwise, that they will not by accepting insurances on defective boilers, give substantial guarantee I safety when they ought not to se givend if boiler anies is above all gorsuit of business, they will cause to repent it sooner or later. Need we add that the steam user who insists on working his boilers after he has been warned that they are unsafe, can by no mean shift his responsibility on to the shoulders of a weak-kneed issurance company. At least, right thinking men will hol dd he cannot. The majority of steam users are, we may di, far too exacting and expect far too much for the panies to be as independent as it is imperative that the hould be. Indeed, the sume now paid for so small that they can scarcely pay for adequate inspection, say nothing of risks.

## canals and railways.

IN our impression for the 25th of January we referred at of those to whe of the points which are occupymg the attentio ance, and gave some reasons for looking upon canals as a mean of cheap transport of heavy goods Among many railway engiocrs, canals in this cor this opinion is based upon the statiot of canal navigation as at present carried on. These statistics are appealed to as showing that even in districts served by canals, price and plenty of freight, even of competing railway gets its transport, such as timber, although the canal is not in the hands
of the railway company. It is also noted that the price thus
obtained for this freight by the railway company is as great as pete with any canal. Two leading explanations of this ar given. One is that canal-carried material often has to be loaded
and unloaded four times instead of twice, because the canal does and unloaded four times instead of twice, because the canal doe not run into the receiving places of the goods or into the place of destination. Canals canot or are not run into works and freight on a canal is rendered of no avail because of the cost of frequently breaking bulk. Another explanation is that the time occupied in canal transport places the
traffic in the hands of the railway companies. Not simply because rapid transport is generally to the advantage of freighters put because merchants in some commodities are onabled to do
with a smaller stock than would be necessary if these commodities were canal borne. For instance, a coal merchant can tele graph to a coliery for a few truck loads of coal of a particula many cases if this coal had to be sent by canal he would if in demand for the coal were occasional, have to keep would, if the demand for the coal were occasional, have to keep a stock which there is a continual sale. These objections, it will b seen, may both be met by the advocate compaies may in firs case, canals in the hands of private companies may, in man
of those districts where low rates are really essential construct branch canals, which would save very much of the
breaking of bulk. Moreover, the loading and unloading of barges would soon become a mere mechanical operation once the demand for machinery for the purpose really arose. In the second case, the question of time, there is no doubt that mueh
remains to be done to improve the speed on canals ; but whether remains to be done to improve the speed on canals; but whether
the custom of merchant traders makes it often necessary that minerals, timber, \&c., should be wanted in a hurry as means of reducing the necessary stock keeping, we cannot say whether he can best afford to keep a larer stock and Ray ates, or pay high rates and keep no stock. The subject is which may be very usefully discussed considering the ame of attention which is being paid to the high rates charged by rail way companies, None of these objections, it will be observed, obtain with canals from sea to sea, such as that which is required swould enable ships to pass farther inland Low tributing centres than they can at present get by the chief rive estuaries. As showing the interest which attaches to the question it may be noted that the South Staffordshire Rail way and Cana Wolverhampton has been selected as its home. Mr. Alfred Hickman, who is the head of the largest pig ironmaking firm in South Staffordshire has been appointed che rommaking firm in mittee consisting of influential mafacturers and merchantes and upon which Mr. Richard Tangye, of the Soho Work has consented to serve. A guaranteo fund of $£ 1300$ ha aiready been subscribed in case the subscripti
for Parliamentary, legal, and other purposes.

## climbina tricycles

Many visitors to the Stanley Exhibition of bicycles and tri have been very much struck with the multiplicity of forms mu devices there shown, and many will doubtless have been sorely puzzled in their minds as to the special advantages possessed by
ach different type. Certainly there appeared to be enoult ariation to perplex anyone not thoroughly acquainted with the practical working of cycles on the road; and the ordinary out-
sider wishing for information must have been fairly bewildered. The cycle trade is one which has been developed with great The cycle e trade is one which has been developed with great
rapidity within the last ten years, and like all new industries the part of those engaged in it. We cannot help thinking, that instead of striving after new forms involving considerable complication and weight, it would have been better and mor profitable if manufacturers had moderated their aspirations an med at greater simplicity of design ; for it must be remembered nowledge, while the machines themselves giteot mechanical hard usage, and considerable wear and tear in travelling over th ordinary roads in this country. We refer, of course, more
especially to tricycles, which in one form or another are fas especialy to tricycles, which in one form or another are fast
taking the place of bicycles, and which promise to assume an mportant position in everyday locomotion. Hitherto one of the difficulty experienced in climbing hills, a very slight ascent being sufficient to tax the powers of the rider to such an extent as to wheel his machine along by hand until more fayourable ground reached. To obviate this inconvenience many makers have introduced some arrangement of gearing, speeds of two power giving the necessary variation for travelling up hill and on the
level. We noticed, however, one machine at the exhibitio which seemed to give all that could be desired without any gearing or chains at all. This was a direct-action tricycle shown pressure from the foot is made to bear directly upon the main axle, and so transmitted without loss to the driving wheels on each side, the position of the rider being arranged so that just
sufficient load is allowed to fall on the back wheel as to obtain sufficient load is allowed to fall on the back wheel as to obtain
certainty in steerage. The weight of this machine is much less han when gearing is used, and the friction is also considerably mooth rond, pull of 1 lb readily moved it while with on a leve the seat 4 lb . was sufficient. On this tricycle wny ordinary hill it is stated, be ascended with great ease, and as a proof of its power it was exhibited at the Stanley show climbing over piece of wood 8in. high, without any momentum whatever. We been erected, and that no difficulty is experienced in ascending them on one of these machines.
the maprovement of the tyne.
A statement has been issued of the quantities of dredging performed in the Tyne, since the commencement of opera-
tions in that river in the year 1838, and down to the end of the past year. Six dredgers seem to have been emraised 118,000 tons ; No. 1 dredger has been at work, with the oxception of a slight recess, from 1843 , and has raised 4,758,000 the of material. No. 2, since 1855, has raised $7,843,000$ tons. Fhe raising 619,000 tons. Noxt in order of date is No. 3 , which ear raised work in 11,609,000 tons; No. 4 , in a similar period, has
nised $15,358,000$ tons ; No. 5 , from 1863 with raised $15,358,000$ tons; No. 5 , from 1863 , with an interval of
over three years' reest raised to the end of last year $13,476,000$
vas in the year 1866 , when a total tonnage of material $5,273,000$ was raised. Since that time there have been consider-
able fluctuations. In 1881 the quantity raised was $1,745,000$ tone nd last year it had risen to $3,336,000$ tons. In all there has been raised since the commencement of the dredging operations on $0,950,000$ tons of material, a vast work for any great public when it is known that concurrently there have been rreat wor hhen it is known that concurs that have altered the character the Tyne as a navigable river. Coble Dene dock is expected to pened this year--and it is possible that the permanent works be ing completed, there may be the greater attention paid to dredging Work that must be to some extent necessary in the Tyne at al times, As it is, under the chairmanship of the late Sir Joseph Cowen, and of Mr. Stevenson, M.P., there have been river work nd river dredging on the Tyne for twoscore years that have nade it remarkable in the history of river engineering, and that ave been justified by an cer. Ths increase in the volume the great trades on the stream. Hat increase must be expectc the great work that ave ne bo conktim, the actures in the future may be still greater than in the past-

## LITERATURE.

Iodern American Locomotives, their Design, Construction, and
Management. A Practical Work for Practical Men. By Management. A Practical Work for Practical Men, By
Enory Edwards, M.E. Henry Carey, Bird, and Co.; Philadelphia ; Sampson Low, Marston, Searle, and Rivington delphia; : Sam
London. 1883
Lecent Locomotives: Illustrations with Descriptions and Speci tives. Reprinted from the Railroad Gazette. New York Office
1883.
The late Mr. Charles Beyer is reported to have said that "anything would do for a locomotive." His attention had just been called to some strange type of engine, which he was given to understand performed very well. Mr. Beyer knew as much about locomotives as most engineers : and we fancy that there are few men of experience in railway get along in an extraordinary way, when they appa rently ought not to get along at all. When they appa of one case in which an engine had ninety flues plugged out of 240 , and it did not seem to make the least differ ence. We find that in almost every civilised country there is what may be termed indigenous types of locon but the work they have to perform is the same, and is don overcoming a tractive resistance, while the engine has ho hilly the the wite good qualities of a locomotive is not to be found in its power of hauling heavy loads at a great speed, but in power of doing this at a low price. The merits of the tions; and these, to a certain extent, govern all that the locomotive superintendent can do in the way of designing What we have said is powerfully exemplified by American tive practice, which is so fundamentally different from English, that, if we are right, it would seem that Americans must be wrong, and vice versa. The truth seems to be, however, that both parties are right, at least so far as Mr. Emory Edward's dook in an engine is concerned pages, illustrated by seventy-eight engravings, and by reading it anyone previously knowing something of stea and the steam engine can form a very good idea of the
natural history-if we may use the phrase-of the natural history-otive may use the phrase-of the
American locomotive. With the practical part of the work we have little fault to find, but we cannot say thi of the introduction, which deals with the science of stean engineering. We suppose that the number of men who
have any accurate idea of what steam is have any accurate idea of what steam is must be very
small. It is, at all events, certain that those who writ lucidly and with precision on the subject are rar with. The truth that such extremely vague ideas are inculcated by so-called science teachers, that it is almost impossible that second-hand information can be accurate For example, the word "force" is continually being used by teachers of science, who msist on laying down certai definitions of it, concerning which theyare not agreed amon themselves; but to the greater number of men who hav to use the word, force invariably implies the idea of a push
or effort. We speak of a piston being forced from one er, and we assume at once that the steam pushes it, and so on. Mr. Edwards naturally tells us first of all that "The very foundation of science is the faculty of calling things by their righ names, for by such method only can one be underdefin and answered accordingly:" and a little further on he delmes force as "any action that can be measured by weight and we This definition has at least the merit of novely as some are really not disposed to say that it is not as goo ame others, but itis certainly not in accord with ordinary mechanical power or work produced by forces in motion Is it? What, we would ask, can be Mr. Edwards' idea o "force in motion?" Has anyone any accurate ide what such words mean, or even what they are intended to convey? We suppose that Mr. Edwards had in his mind when he wrote them, a push moving; as, for example, he would speak of the moving force of a locomotive shunt ing a train. It is probable that it has never crossed Mr Edwards' mind that a force is entirely incapable of producing motion. However, we do not think that his deminthem by without further comment,
We may remark here incident
We liquefaction in steam cylinders, Mr. Edwards gives credit
to Professor Tyndall for making ten years ago, thereby ignoring his compatriot, Mr. Isherwood, who nearly twenty years ago explained, in one of
the most masterly treatises on the
engine ever written, namely, the "Introduction" to the Engineering," nearly all that is fathered upon Professor Tyndall.
A good part of this book is entertaining reading. There is a great deal which is open to criticism, but much of it is notive ruming. What is said about the chapter on locofiremen is very true and very amusingly told. But if Mr. Edwards is accurate, locomotive engine driving is entrusted in the United States tovery incompetent men. For example, why should it be necessary to write such a passage as the fol-lowing:--" A difficult thing for an inexperienced man to control in running a locomotive at night, when the condiSlipping adion are bad, is enough to those who feel it in the vibration of the engine; but the novice has not this sensitiveness to slipping vibration developed, and he must depend on his eyesight or his hearing to detect it." Why should aninexperienced man be permitted todrivean engine? We can scarcely realise in this country the conditions under which a locomotive superintendent would be reduced to such extremities that he had to entrust engines to drivers who could not tell whether an engine was slipping or not, unless they could get a sight of the coupling rods or a peep initiated of the chimney. The merest tyro who ever stood on a foot-plate has only to feel an engine slip once Never again, night or day, can he fail to perceive the
vibration to which Mr. Edwards refers, It seems, how ever, that in the Western States, "Men are taken from all occupations, no preliminary training being deemed neces sary before putting a man on an engine as fireman. The driver has to break him in as well as he can. Happy must be a life on the foot-plate in the West. The kid glove and gold watchchain business is, we fancy, rather out of place just thereabouts. Given a heavy train, a stormy night, and a fireman-save the mark!-fresh from tending cows or "doing chores," and the "engineer"-to give him his western rank-will be placed in a position to thoroughly enjoy a run of a hundred miles or so. Mr. Edwards tellis us of one driver who did not know he had a hot crank pin until a drop of molten Babbit metal hit him in the eye An episode such as this would perhaps be the one thing lacking, without which our westem friend would not be truly happy. Mr. Edwards is full of latent fun, which bubbles up to the top now and then; as, for example when he tells us, referring to the Babbit metal affair, "A" experienced engineer, watching the rods, would hav解斯 the condition of affairs before Babbit was thrown. The sententious way in which this piece of gratuitous careful to tell his readers that they are not to be mis led by his anecdote into supposing that Babbit metal purposely employed, like the safety-plug in a metal give warning of approaching danger. The trained drive does not need hot Babbit metal in his eye to tell him that a bearing is coming to grief.
We opened Mr. Edwards' book with a faint hope that English engineers thow very little, and Amering whic English engineers know very littue, and American eng repairs of American locomotives. In this country w can tell precisely what is the expense of keeping an engin is prized in the does not seem that knowledge of this kin is prized in the States. No doubt on a few roads prope books are kept; but their contents are not public property
Now, as we have said at the outset, the cost of mainten ance is the great test of the value of a locomotive engine and on this Mr. Edwards throws no light whatever
Mr. Edwards has a good deal to say about high-spee American trains, and there is no doubt that on some of the best roads near New York very high speeds indeed aro maintained, although we may excased if we refuse to credit the story that a velocity of nimety-thre miles an hour has been maintained for a few miles. But , and what the like they will have. The people in Philadelphia are Yorks in a hurry to get to New York, and the New distance is 90 mi in 90 minutes. It is said that it has been done once or ; and the engineering world will watch with interes learn from Mr. Edwards that engines of the English pat tern are to be used
Mr. Edwards' book might be improved. It would be better without the science. The practical part would be better if it had been written by a man well experienced in He isorive work, which Mr. Edwards apparently is not haye no doubt that the book will prove amusing and even useful to many people
Yet we cannot help feeling surprised that so big a book The
The reprint from the Railroad Gazette is a very different containing that by Mr. Edwards. It is a fine volume admirably printed and beautifully executed. In a brief preface we are told that they have appeared at various times in the Railroad Gazette during the past twelve years The preface is, in a manner, an apology. We are told that "a complete treatise, with engravings specially prepared for it, would be a much more valuable book than this," This is by no means a foregone conclusion, everything depending on the way in which the treatise was written As it is, the volume before us is a treatise, because proper descriptions of all the engines illustrated are given ; and it must be remill that a hint accompanied by a goo drawing will suffice to make things quite clear to the experienced railway engineer. We can very heartily
recommend this book to those who take an interest in locomotive practice, for some of the best English locomotives are illustrated, as well as the most modern American engines. Certain of the engravings are very suggestiv and interesting; one in particular we may mention,
showing the results of an accident on the Chicago and
"North-Western Railroad. The engraving is entitled, "They met by chance: The usual way." Our readers must be left to learn from the book itself what the meeting was like, and what " they" did when they met-something, we can assert, which no one would have anticipated, but truth is stranger than fiction in the railway world.

## SECONDARY BATTERIES.

The Consolidated Electric Light Company has now completed the secondary battery which has for some time engaged the attention of its officers, and their regular manufacture and use for electric lighting stations have been fairly entered upon. Amongst other places to which the batteries have been sent anc put into work is Colchester, where the company has for some time had an installation at work, chiefly employing incandescent lamps. The battery consists of lead electrodes, anode anc cathode being of the same character. They are constructed of narrow ribbons of lead, each element being made from lonk
lengths of the ribbon about or nearly 0.20 in . width, rolled tolengths of the ribbon about or nearly $0 \cdot 20 \mathrm{in}$. width, rolled toby the annexed diagram, Fig. 1, the greater part of the ribbon being very thin and flat, but intermediate thicker ribbons are alse employed, as in Fig. 2, this thicker ribbon being corrugated ae

shown, and affording passage room for the circulation of the electrolyte. From four to eight coils of the plain ribbons are ogether tightly, and pressed into the nearly rectangular forn shown. The bar for suspending the coil plate so made in the cells is soldered to the coil. The object of this construction is of course to obtain large lead surface, and of course a much arger surface is so obtained than could be practically obtained rom plain lead plates in the same compass. A battery thu mademay be seen at the offices of the company, 110, Cannon-street. A very ingenious device for cutting the battery out of circuit when charged as much as is thought desirable is used by the company. In a cell is an element which has a determined lower ment is placed a gas-tight chamber in which is aver this elediaphragm being of very flexible material placed in the cover of the box of cells. When charging has proceeded as long as is desirable, or proceeds too fast, hydrogen is evolved, and this collecting in the chamber referred to, acts upon the diaphragm, and by means of a rod connected thereto, switches the current which is supplied to an electro-magnet and by which circuit is made through the medium of mercury contacts. The object of his is to save the battery from destruction by overcharging or charging by too large a current.

## PRIVATE BILL LEGISLATION.

On Tuesday the Standing Orders Committee, presided over by Sir John Mowbray, met for the first time to consider the with the Standing Orders. They had no difficulty in complied with the non-compliance in the Aldershot, Farnhy in dispensing ield Railway; the Edinburgh Northern Tramways; Folkestone Sandgate, and Hythe Tramways ; Mersey Railway ; Metropolitan District Railway; and Scarborough and Whitby Railways. The London, Chatham, and Dover (Further Powers) Bill was allowed to pass on condition that the plans and sections were deposited with the Clerk of the Peace of the county of Middlesex. The consideration of the London, Reigate, and Brighton Bill was deferred till next week. About seventy miles of railway have been surveyed, and there are upwards of 14,000 properties separately described, and there are only six allegations of non-comphance sustained. This justifies the observation of the examine that the referencing was "wonderfully accurate," and the promoters are sanguine of having the Standing Orders dispensed with.
The examiner held that the requirements of the Orders had been complied with in the following cases which came before to the Bills subsequent to with the Standing Orders applicable which they have respectively commenced:-Ballyclare, Ligoniel and Belfast Junction Railway Bill (H.L.); Belfast Centra Railway-Steam Vessels and Traffic Arrangement-Bill (H.L.) Belfast Central Railway-Western Extension-Bill (H.L.) Belfast, Strandtown, and High Holywood Railway Bill (H.L.)'; Buenos Ayres, and Eusenaila Port Railway Company Bill (H.L. Ouse-Lower-Improvement Bill (H.L.) ; North-Eastern Rail way Bill ; East London Railway Bill; Barrnull and Kilwinning Railway Bill; Taff Vale Railway Bill; Great Northern Railway Bill; London, Tilbury, and southend Railway Bill; Clevelan Extension Mineral Railway Bill; Manchester, Sheffield, and Lincolnshire Railway-Chester to Connal's Quay-Bill; Man--Bill; Severn Bridge and Forest of Dean Central Railway Bill.

Deoline in Trade.-The Board of Trade returns in regard to steel rails, steel, hardware, and cutlery, show that in January last there was a very serious falling off. Steel rails have fallen from £415,103 in January, 1883, to $£ 213,202$; unwrought steel from
$£ 117,069$ to $£ 98,641$, hardware and cutlery from $£ 341,982$ to $£ 17,069$ to $£ 98,641$, hardware and cutlery from $£ 341,982$ to
$£ 283,446$. The United States, which took a value in steel rails of $£ 33,661$ in January, 1883, only took $£ 10,062$ last month. In January, 1882, the value of steel rails sent to the States was M125,883. Mexico has fallen from $£ 25,732$ to $£ 1119$, the Argentine Republic from $£ 46,963$ to $£ 21,195$, British Possessions in South Africa from $£ 32,964$ to $£ 6136$, British East Indies from $£ 91,417$ to
$£ 51,253$, and Australasia from $£ 66,325$ to $£ 46,376$. Italy and British North America are altogether blank; in January of 1883 they took $£ 33,566$ and $£ 33,465$ respectively. Egypt, which had nothing in January, 1883, received a value of e9781 last month. In steel-unwrought-the decline in the United States trade accounts for the total falling off. In hardware and outlery the

NEW INSTRUMENTS FOR MEASURING ELECTRIC CURRENTS AND ELECTRO-MOTIVE FORCE.

By Messrs. R. E. Crompton and Gisbert Kapp.* (N consequence of the rapid development of that part of electrical science which may be termed "heavy electrical engineering," celiable measuring instruments specially suitable for the large
surrents employed in lighting and transmission of energy have jecome an absolute necessity. As. usual, demand has stimulated

supply, and many ingenious and useful instruments have been nvented, the manufacture of which forms at the present day an
important industry. Mr. Shoolbred, in a paper which he recently read before this Society, gave a full and interesting account of the labours of our predecessors in this field. To-day we add to the list
then given a class of instruments invented by us, examples of then given a class of instruments invented by us, examples of
which are now before you on the table. We have preferred to call


CROSS SECTION


PLAN WITH DIAL REMOVED

absolutely constant current, its use is almost entirely restricted to laboratory work and to the calibration of other instruments. For practical ready use, instruments employing the mechanical or magnetic effect of the current are alone suitable. We weigh, so to speak, the current against the force of a magnet, of a spring, or of gravity. The measurement will be exact if the thing agains Wance the current itself retains it are used as a balancing force, this condition of constancy in our weights and measures is not always fully maintained, and to make + According to recent experiments mado by Dr. Hammerl, the density
of current in a copper voltameter should be half an ampere per square inch of surface.
them current and potential indicators in preference to meters, considering that the latter term, or rather termination, ought to of electric lighting, we believe, will soon bring into extensive use. The principal aim in the design of these indicators has been to obtain instruments which will not alter their calibration in conse then it will be possible to divide the scale of each instrument directly into amperes or volts, as the case may be, and thus avoid the use of a coefficient of calibration by which the deflection has to * Pered. * Paper read before the Society of Telegraph Engineers, 14th February,
matters worse, there is no visible sign by which a change, should
it have occurred, can be readily detected. A spring may have been overstrained or a steel magnet may have become weakened without showing the least alteration in outward appearance. To overcome this difficulty, the obvious remedy is not to use springs
or steel magnets at all, but to substitute for these some other or steel magnets at all, but to substitute for these some other
force which should be either absolutely constant, such as the force of gravity, or at least should vary only within narrow limits, and this in accordance with a definite law. This latter condition can be fulfilled by the employment of electro-magnets.
To imitate with an electro-magnet as nearly as possible a permanent magnet, so that the former can be used to replace the latter, it is necessary that the magnetism in the iron core should remain
constant. This could, of course, be done by exciting the electromagnet with a constant courrent from a separate source. (In a
recent note to the Paris Academy of Science, M. E. Ducretet described a galvanometer with steel magnet, which is surrounded by an exciting coil. When recalibration appears necessary, a known standard current from large Daniell cells is sent through this coil during a certain time, and thus the magnet is brought
back to its original degree of saturation. M. Ducretet also mentions the use of a soft iron bar instead of a steel magnet, in which case the current from the Daniell cells must be kept on during the time an observation is taken.) But such a system would appear o be too complicated for ready use. Moreover, some sort of indiexciting current has the normal strength. The plan we adopt is to excite the electro-magnet by the whole
or a part of the current which is to be measured. Since this current varies, the power exciting the core of the electro-magnet
each angle of deflection corresponds one definite strength of The for needle in its zero position, that is, in line with the poles $\mathrm{SN} N$, is due partly to the magnetism of the core, which is nearly constant, and partly to the magnetic influence of the coils $e e$ themselves, which s, of course, simply proportional to the current. The total mag.
netic force acting on the needle is, therefore, represented by the sum of these two forces, and consequently not nearly so constant as might be desired in order to get a good imitation of a tangent galvanometer with a permanent magnet. In the diagram, Fig. 2, the curve O A B represents the magnetic moment of the iron core, the straight line ODE that of the exciting coils per se, and the
dotted line O F M the sum of the two, obtained by adding for every current O C the respective ordinates C D and C A.
The rise of this curve shows that the force which tends to bring the needle back to its zero position increases with the current, though at a slower ratio than the deflecting force of the current.
It follows from this, that for large currents the increment in the angle of deflection is comparatively small, and the divisions on the scale whereon the current is to be read off would come too near together to allow accurate readings to be taken. In other words, the range of accurate reading in an instrument so constructed would only be limited. But it is very easy to eliminate the magnetic effect of the colls of the electro-magnet on the needpe, by the force remains which belongs to the soft iron core proper. One way of doing this is by surrounding the needle with a coil, the
plane of which is at right angles to the line S N, and coupling this
equality which holds good for all currents, then we shall have an
almost perfect imitation of a tangent galvanometer with peralmost perfect imitation of a tangent galvanometer with poroverbalance the exciting coils by setting the deflecting coil at a greater angle than necessary for the mere elimination of the
former, and thus attain that an increase of current results in ormer, and thus attain that an increase of current results in a
light weakening of the field in which the needle swings, thus slight weakening of the field in which the needle swings, thus
allowing the increment of the angle of deflection to be comparatively large even for large currents. In this way it is possible to obtain a more evenly-divided scale than in the case when the deflection follows the law of tangents as in an ordinary tangent galvanometer. This principle of overbalancing the exciting coils is shown on diagram, Fig. 2. The straight line O G represents the magnetic effect on the needle of that component of the deflecting
force which is parallel, but in sense opposed to SN ; as mentioned above, the magnetic effect of the exciting coils is represented by the straight line OE. The combined effect of these two forces on the needle is represented by the line OK, the ordinates of which must be deducted from those of the curve OAB, in order to
obtain the total directing force due to each current. This is shown by the curve OPQ shown in a thick, full line. This curve shows how the directing force or strength of field in which the needle swings decreases with an increasing current. That this does actually take place can easily be proved by experiment.
Fig. 4 shows two curves; the one drawn in a full line is obtained by plotting the deflection in degrees of the needle of a potential
indicator as abscisse, and the corresponding electro-motive forces measured simultaneously on a standard instrument as ordinates the dotted line shows what this curve would be with an ordinary tingent galvanometer.



The needle of the potential indicator is mounted at the lower end of a steel axle, to the upper end of which is fastened a light
aluminium pointer, whereby the deflection of the needle can be read aluminium pointer, whereby the deflection of the needle can be read
off on a scale divided directly into volts. The scale is placed within a circular dial plate with glass cover, giving sufficient room for the pointer to swing all round, and the needle is placed within a central tube fitting it closely, which acts as a damper and so makes the
instrument almost dead beat. Tube and dial are in one casting. The electro-magnet is of horseshoe form fastened to a central tubular stand, which also serves to support the two deflecting coils, one on either side of it. The tube within which the magnetic needle swings is inserted into the stand, which is bored out to the external
diameter of the tube. The electro-magnet and deflecting coils are diameter of the tube. The electro-magnet and deflecting coils are wound with from 50 to 100 ohms of fine insulated copper wire, and
an additional resistance coil of from 450 to 900 ohms of German silver is added, which can, however, be short circuited by depressing a key when the instrument has to be used for reading low electromotive forces. In this case the indication of the pointer must be
divided by ten. If a current be sent throug divided by ten. If a current be sent through the instrument the wrong way, the needle turns through an angle of 180 deg ., and thus
brings the pointer to the side of the dial opposite to where the brings the pointer to the side of the dial opposite to where the
scale is. In this position no reading can be taken, and to facilitate the sending of the current in the right direction a commutator is added, and the same is so coupled up that when the pointer stands over the scale the handle on the commutator points
to the positive terminal screw. There is a limit of electromotive force below which the indicator fails to give reliable
readings. For instance, an instrument wound with 100 ohms of copper wire and 900 ohms of German silver can be used for electromotive forces varying between 300 and 3 volts, but would not be reliable for measuring less than 3 volts.
For very exact measurement
For very exact measurements the instrument should be placed
north and south, in the same position in which it north and south, in the same position in which it was cali-
brated. Two different patterns of current indicators brated.
the table; one with double needles suspended on a point in the way compass magnets are suspended, the other with one lozenge-shaped needle mounted on an axle and pivotted on jewels, in every way similar to the needle of the potential indicator first described. For measurements of currents from 10 amperres upwards, there is no need to employ a complete coil as the deflecting agent; one
half coil, or one strip passing close under the needle gives sufficient half coil, or one strip passing close under the needle gives sufficient
deflecting force, and thus the construction of the instrument is rendered extremely simple. The current, after entering at one of the flat electrodes, splits in two parts, each part passing round the winding of an electro-magnet of horseshoe form, the similar poles of both magnets pointing towards each other and towards
the needle. After traversing the winding, the current unites the needle. After traversing the winding, the current unites
again, and passes through a metal strip close under the needle, and again, and passes through a metal strip close under the needle, and
finally out of the instrument by the other electrode, which lies close under that at which the current entered, but is insulated from it by a sheet of fibre. The metal strip is set at an angle, to balance exciting coils. The effect preferred, the magnetic influence of the exciting coils. The effect of this overbalancing is shown in Fig. 5, where the full curve represents the current as a function of the
deflection-obtained by comparison with a standard instrumentand the dotted curve shows what that relation between deflection and current would be if the law of tangents held good for these instruments. It will be seen that, about the middle of the scale, the dotted line coincides nearly with the full line, whilst at the extreme end of the scale the dotted line is higher. From this follows, that if we compare our indicator from which this curve
was taken with any form of tangent instrument showing an equal was taken with any form of tangent instrument showing an equal
angle of deflection at the medium reading, it will be seen that the needle of our indicator will be deflected to a greater angle at high readings than that of the tangent galvanometer. Consequently, the divisions on the scale will be widest apart in our instruments,
which greatly facilitates high readings.

## HER MAJESTY'S SHIP EDINBURGH.

 The sister ships Colossus and Edinburgh have so far been distinguished by the remarkably successful trials of their engines tinguisned by the remarkably successful trials of their engines,
those of the former manufactured by Messrs. Maudslay, Sons, and
Field, Field, and ilustrated by us last week, and the latter by Messrs.
Humphrys and Tennant, of Deptford. Perhaps in no other ships has the power developed during the six hours of continuous full. power steaming been so largely in excess of the contract. The
first trial of tho engines of the Edinburgh occurred as far back as the 18 th of September, when the result of the run gave a total figures relating to the Colossus will be found in our last impression. Great as this excess was the contractors were not satisfied. The Times says they yelt assured in their own minde that the engines were capable of developing still more, especially as there was abundance of
steam and to spare. They also felt convinced that a serious mistake steam and to spare. They also felt convinced that a serious mistake
had been made in the case of the Edinburgh, as regards the consumphad been made in the case of the Edinburgh, as sergards the consump.
tion of fuel, the calculations showing that upward so 3 lb of coal had been used per unit of horse-power developed. Such an expenditure of
fuel was in direct contradiction to the experience derived from the machinery by the same manufacturers in the Alexandra,
Téméraire, Dreadnought, and the Indian troopships. RepresentaTeméraire, Dreadnought, and the Indian troopships. Representaa
tions to this effect having been made to the Admiralty, their
lordshins lordships authorised a second full-power trialbeing made, although
perfectly willing to accept the engines from the contractors on the strength of the previous test.
The second trial was made on the 6th inst, and although the
contractors laboured under the serious disadvantage of there being contractors laboured under the serious disadvantage of there being
no wind, necessitating the free use of the last to seoure a draught
fo for the furnaces, with a consequent additionai expencture of steam,
the result was a practical realisation of their expectations, both a the result was a practical realisation of their expectations, both as
regards increased force power and the eoonomical consumption of
coal. The Edinturghleft Spithead atnineo ococockunder the command of Captain Colomb, among the other officers present being Mr. P. Watts and Mr. Bannister, representing the Constructive and
Engineering Departments of the Admiralty; Mr. Corner, of the
Dockyard Dockyard Factory; Chief Engineer Holloway, of the Steam Reserve; and Mr. Bowwell, chief engineer of the ship. Mr. Robert H. H . engines. On leaving the anchorage the Edinburgh steamed out-
side the Warner, and then, to avoid ns many turnings and dom side the Warrer, and then, to avoid as many turnings and goings-
about as possible, made a long reach to Portland in search of wind. the breeze in both the outward and tained at full speed according to Admiralty regulations for six hours, but in order that tho test might be precisely the same for the Edinburgh as for the Colossus, the averages were taken of the
cesults of the last five hours. In the Colossus trial, however the resurs oor were taken after a mishap with the steering gear, which
five hours
cuased no improvement in the fires. The averages for the Edincaused no improvem
burgh are as follows

| $\begin{gathered} \text { Boiler } \\ \text { por } \\ \text { prose. } \\ \text { suro. } \end{gathered}$ | Revolutions. |  | Mean pressures. |  |  |  | $\begin{aligned} & \text { ndi. } \\ & \text { citod } \\ & \text { H.P. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Star. | Port. | Starbonrd. |  | Port. |  |  |
| lb. |  |  | High. |  | High. |  |  |
| ${ }_{6}^{61.0}$ | ${ }_{9}^{90 \cdot 1}$ | ${ }_{01}^{90}$ |  | ${ }^{10 \cdot 6}$ | $36 \cdot 2$ 38.5 | 11.20 | 7402.73 |
| 61.5 | 90.9 | ${ }_{90}{ }^{2}$ | ${ }_{38 \cdot 1}$ | ${ }_{10.9}$ | ${ }_{37}{ }^{38}$ | 11.7 | ${ }_{7601} 800$ |
| $60 \cdot 75$ | 90.0 | $880 \cdot 3$ | ${ }_{36}^{36.1}$ | ${ }^{10.45}$ | ${ }^{35} \cdot 7$ | ${ }^{10 \cdot 9}$ | ${ }_{7191183}$ |
| ${ }_{81}^{61} 81.25$ | ${ }^{90.9} 9$ | ${ }_{89}^{90.0}$ | ${ }_{38 \cdot 5}^{38 \cdot 1}$ | $10 \cdot 7$ 10.6 | (ers | 110.9 <br> 11.0 <br>  <br>  | ${ }_{7}^{741190}$ |
| ${ }_{62} 975$ | ${ }_{91} 9$ | ${ }_{90} 9$ | ${ }_{38.2}$ | 10.9 | ${ }_{36.1}^{36}$ | 11.4 | ${ }^{7607} 77$ |
| $\underset{\substack{61.5 \\ 62.25}}{ }$ | ${ }_{\text {91. }}^{98}$ | 89.8 90.5 | ${ }_{88.6}^{37}$ | 10.4 |  | 11.0 <br> 11.4 <br> 1 | ${ }_{7}^{73346 \cdot 92}$ |
| 63.0 | ${ }_{89} 80$ | ${ }_{90}{ }^{90} 5$ | 80.4 | ${ }_{11} 135$ | ${ }_{38.1}^{38}$ | ${ }_{11} 11.3$ | ${ }_{7759} 7698$ |
|  |  |  |  |  |  |  |  |

The vacuum remained steady at 227 . 2 . Win. Whe the exception of
one unfortunate half-hour-the fourth in the series-the colleotive horse-power is remarkable. The falling-off in the particular instance, which affected the total mean of the trial, was due to an
change of watch in the stokeholds occurring simultaneously with the going about of the ship. On the other hand, the results were steadily rising when the trial ceased, and had time permitted
nonotherhour's additionan steaming would havestill further added to the triumphs of the day. As they stand, however, the data gave a
total of 1458.55 horses in excess of the stipulated power. When total of $1458^{\circ 55}$ horses in excess of the stipulated power. When
 17.2 knots, whinh
expected to realise.

THE ELECTRIC LIGHTING OF PRIVATE HOUSES. A PAPER was read at the ordinary meeting of the Royal Institute
of British Architects on the "Electric Lighting of Houses and the Procautions to be Adopted on its Introduction," by Mr. Killing. worth Hedges, O.E. The steady increase of electric lighting for
house purposes was shown by the number of installations which have recently been made by the occupants of houses both in town and country. In large cities a temporary oheck had been experi-
enced with the general supply of eleotricity as contemplated by
the Act of 1882 . This was partly because the compnnies who the Act of 1882 . This was partly because the companies who
obtained provisional orders were of too speculative a character, and also because the stringent regulations of the Board of Trade
prevented the introduction of capital. The electrical currants which would be employed for lighting a dwelling are far more powerful than those now used for telephones and for clecertic bells;
and, unless some precautions were taken to insure their being properly regulated, they might causse great risk from fire. Mr.
Hedges pointed out how this risk might be occasioned Hedges pointed out how this risk might be occasioned, and suggested
that the rules of the Fire Risk Committee should be strictly adhered that especially those which advised that all work should be bunder
the supervision of a competent electricin. Many fires had been caused by the electric light, which is used largely in America for
mill lighting, the official report showing that all these were either ue to neglect of precautions for safety or by not having the work trio lighting-such as interest, \&co.- caused it to be much dearer spread over when used orer a short period; but if these charges were
hours, electricity was relatively much
dheaper. In a country house the oheapor. In a country house the expense would not te morer than
for gas. Even if it was dearer; for Mr. Hedges recommended the introduction of the electria light on acconnt of the ultimate saving in the renewal of decorations, and preservation of works of art. rank, independent of its cost, as one of the greatest sanitary in
provements of the age. The paper was followed by a discussion.

## TENDERS.

NOTTINGHAM OHURCH CEMETERY.
TEsDERs for retaining walls in buttress and aroade work for intermural interments in vaulto and cat.
Jackson, C.E. and Architect, Nottingham.

## Lyuam and Kidd, Nottingham bradey nud darker, Nottingham Moats Bros., Bovttinghham .. .. <br>  <br>  <br> 8. and J. Cargsil, Notting Forster and Bary Archititects estimato

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM,
OTHER DISTRICTS.

## (From our oven Correspondent.)

On'Change in Birmingham this-Thursday-afternoon, and yester-
day in Wolverhampton, ironmasters manifested considerable day in Wolverhampton, ironmasters manifested considerable
ndisposition to have it become known what are the prices whiel In actual business they are at the present time accepting. All, however, protested that they would accept nothing less than
"ppring rates," and that trather than depart from this policy they
were Were prepared to continue to refuse many of the inquuries which
reach them, particularly from middlemen who do an export business.
Specific
Specifcations in completion of orders some time ago booked were
till eagerly sought by the finished iron makers, and it is not possible to keep all the mills and forges on five days a week. Here and there inquiries for sheets were reported a little better, the demand of the Australian, South American, and Canadian markets, together with some European houses, being fairly satisfactory
Makers of common sheets accepted $£ 8$ for doubles and $£ 9$ to $£ 95 \mathrm{~s}$. for treble gauges, whilst best-thin-sheets were $£ 10$ to $£ 11$ per ton selling better than boiler plates at from $£ 7$ 7s. 6d. to $£ 710 \mathrm{~s}$, and
and upwards at works. Boiler plates were $£ 810$ s. to $£ 9$ and $£ 910 \mathrm{~s}$.
Best bars are still quoted at $£ 710 \mathrm{~s}$. for B.B.H. "Mitre," and similar makes, with $£ 82 \mathrm{~s}$. 6d. nominally for Round Oak iron. The business doing in these quality irons is limited, and the orders
arriving are chiefly on colonial and foreign account. The largest demand runs on medium bars, which most of the leading houses are now themselves producing at about $£ 615 \mathrm{~s}$. to $£ 610 \mathrm{~s}$. per ton, Common bars are moving off pretty freely at $£ 65 \mathrm{ss}$. to $£ 6$.
Hoops, strips, and the like are being rolled with though the New Zealand, South America, Italy, Spain, and other of the con $£ 67 \mathrm{~s}, 6 \mathrm{~d}$ to $£ 610 \mathrm{~s}$, tas strip, $£ 62 \mathrm{~s}$, 6 d , and on; and nail strip E6 5s. For best qualities of hoops higher prices are asked, such as $£ 8$.
Cons Consumers of pigs reported this afternoon that vendors of part-
mine sorts would not give way beyond a level at which they could see a certain pront; and vendors on their part reported that ther
was no room for any departure from the rates which they now demand. The all for pig iron this week bublks most largely for
foundry sorts, which consequently are a shade firmer in price than foundry sorts, which consequently are a shade firmer in price than
forge iron. Northampton pigs are about 44 s ., and Derbyshire 46s. easy. Lincolnshires are 47 s .6 d . upwards, delivered; native
part-mi. all-mines are 62 s . 6 d . down to 60 s ., and hematites 57 s . 6 d . to 59 s .
and Some of the agents for foreign
without booking mueh business.
The galvanised sheet makers are not this week able to report any substantial improvement, and at several works some of the vats
remain empty. $\quad$ A fall of 10 s. per ton is to be noted in New South remain empty. A fall of 10s. per ton is o be noted io New South
Wales. No great importance is, however, attached to the decline, given as about $£ 13$ per ton for sheets of 24 gauge, delivered
Liverpo Liverpool.
This-Thursday-afternoon the annuul meeting of the Wagess
Board was held in Birmingham. The report was adopted. Mr. Benjamin Hingley, chairman, said it would be a good thing if both worse, masters would wages. The Ironmasters Association also held their annual meet ing to-day, and Mr. Hingley was re-elected chairman for three years.
Prominent among the bridge building contracts which are under execution at date is a large bridge for Manilla Creek, Sydney, New structure is being built on the lattice principle, and when erected it will present quite an imposing appearance. The makers have
also secured contracts for other bridges on the same principle, likewise for the New South Wales Government.
Engineers and ironfounders who supply the needs of the mills hammers, anvils, and other castings share in the current quietude the close of last year manufacturers were doing a fair amount of
The late activity in the cable and anchor trades is not being fully maintained. The new year has not so far brought out any large
quantity of business. Nevertheless, some of the South Staffordof the yards ar Orders for crane chains and the best descriptions of rigging chains
are arriving steadily, as also for colliery chains. In all the branches are arriving steadily, as also for colliery chains.
lowness of present prices is much complained of.
Two massive chains of special manuufacture have just left the
works of Messrs. Jones and Dloyd at Cradley, near Dudley for use on the large floating bridge connecting Portsmouth and Gosport. Each chain is of the length of 640 yards, and consists of nearly
5000 links. The diameter of the iron is $1+$ tfin., and the weigh of each chain 21 tons. They were tested with a tensile stress o
40 tons or 20 per cent. over Admiralty test, tho actual breaking strength being proved to be 70 tons. Each chain was loaded upon
a carriage weighing 11 tons, the load for road transit being 32 tons and requiring twenty-four powerful horses to convey it to the canal
basin.
Martin's patent anchors are just now being sent away for use at
private shipbuilding yards from the works at Tipton of Messrs. J. private shipbuilding yards from the works at npty
Wright and Co., and the same firm have lately executed and ard still receviving orders for Berryman's patent hey er for boilers. The adopting this appliance, and so too are important engineering firms
in South Staffordshire
Pipe founders hereabouts are interested in the demand by the mumicipality of East London for about 400 tons of cast iron pipes
of 5in. and 7 in. diameter, to be used in connection with the East London-South Africa-Waterworks, together with special pipes the local authorities of Ince, near Wignn, for 336 tons of 15 jin , 12in., and 9 in . cast iron pipes and other castings for sewage con-
veyance. More satisfaction would, however, be occasioned by the enquiries if better prices than those which are now alone obtainable could be got. On all hands pipe founders speak with anything but
gratification of the severe competition which now exists. The foreign demand for safes is good, and one firm in this dis
trict has over 200 safes ordered, for supply within the next three months.
The railway rolling stock works are nearly all busy, and a large wamber of the orders are for iron framework for carriane and
wagon builders abroad. A contract for 1400 wagons for tho Western
Railwy of Raiwn Marshalls, and Co., Limited, of the Britannia Works, Bir-
Brown, Mas mingham. The whole of the frames are of wrought iron. Half
the number are covered goods wazons, and in these the framework is of angle and tee iron of Staffordshire make. The firm is also executing another contract for South America for 230 covered goods
wagons, the frames of which are likewise of iron. In their riage department they have three other contracts on at present for carriages with iron frames for shipment. This pattern of frame is
becoming almost universally adopted for all foreign orders, and becoming almost universally adopted for all foreign orders, and
appars to be more suitable for hot climates than timber. appears to be more suitable for hot climates than timber; National
The quarterly report of the Nut and Bolt Makers
Amalgamated Association does not draw a bright picture of the Amalgamated Association does not draw a bright picture of the
present state of trade. It states that the members of the Working.
ton branch have been present state of trade. It states that the members of the Working.
ton branch have been idle for nearly the whole of the past quarter
from the want of orders. Sheffield, Middlesbrough, and the
Northe
completed the erection of its powerful working plant, and
is raising about 2000 tons of coal and slack weekly. During the past year a pair of 30 in. cylinder hauling engines have been pur
chased and erected on the surface to work the underground haulage; and a third engine, formerly used for pumping, has been 8000 yards of steel rope. The new electric system of signalling has been successfully adopted throughout the workings.
So fully satisfied are the Gas Committee of the Birmingham
Corporation that the heavy expenditure which they have already corporation that the heavy expenditure which they have already
incurred in the erection of new plant at their gasworks has been a wise outlay, that they have recently authorised further extension works, and of mains in connection with Adderley-street works, the otal cost being about $£ 15,000$.
The sale of
The sale of gas by the Birmingham Corporation during the pas ear was an increase upon the previous year of $6 \frac{1}{2}$ per cent. The ne
rofits of the year amount to 255,389 , which the committee propos to appropriate here : To the improvement rate, £25,000; to reserve fund, £5000; to the sinking fund for paying off loans and
nnuities, $£ 25,389$. The income of the department by the sale of yas during the year was $£ 336,274$, and by the sale of residual pro-
lucts $£ 125,113$. The committe propose to reduee the price of gas acem the end of the present quarter.
Colliery owners in North Staffordsi
of trade depression to promote that regularity the present time hands which suffered so rude a shook ever since the heavy deman or their labour in 1875. . Mr. W. Y. Craig, M.P., has determine to close portions of his Podmore Hall Collieries, and to require
that the colliers for whom work can be found shall labour all the orking days and send up nothing but clean coal-both upon pai clude to wholly close the pits. The men on their part are allowed
to leave without giving notice if they are dissatisfied with the
The shadow is being preferred to the substance at the Lycett tomed to subscribe 20 per cent. of the men's contributions to the Permanent Relief Fund of the colliery. They now offer to sub-
cribe 50 per cent., and to make the sick allowance 9 s . rather than 8. per week, and medical attendance. The conditions, are that Act. The men decline the offer, and the employers have left the nen are themselves also now withholding their subscriptions.

## NOTES FROM LANCASHIRE

## (From our own Correspondent.)

Manchester.-Business all through the iron trade of this district mprovement. Pig iron makers, however, are busy with the orders
imper they have on their books, and there is no giving way in prices, but working off their deliveries on account of the contracts given out a although prices are undoubtedly low, they offer little or no induce ment for speculative transactions, as there is no present indication hat they are at all likely to advance. Finished iron makers ar only one or two of the leading makers who have orders on their although generally they are kept going, the new business given out is so small that prospects for the future are anything but encouraging, and there is a tendency towards weakness in prices.
There was only a very dull market at Manchester on Tuesday loing to actually test values. For pig iron there was scarcely an iquiry. Lancashire makers are doing only a very limited business 44 s . 6d. to 45 s ., less 2 h per cent. for forge and foundry qualities delivered equal to Manchester, and they still decline to entertai
deliveries beyond the end of June. In district brands a few small ales during the past week are reported on the basis of 44 s . 6 d . to 8., less $2 \frac{1}{2}$ per cent. for forge and foundry Lincolnshire delivere ore, ands, the business doing here can scarcely be said to be of a satis
brands
thetory character. In Scotch iron there is still a good deal factory character. In Scotch iron there is still a good deal of
underselling, with iron offering at 6 d . to 9 d . per ton under makers underselling, with iron offering at 6 d . to 9 d . per ton under makern arket t prices quite as low as any that have beon ruling recently
In hematites a slight improvement is reported, and in some cases rather better prices have been obtained during the past week; but
business is still anything but good, and foundry brands can be
bought at as low as 56 gs. to 56 s . 6d., less $2 \downarrow$ per cent. delivered qual to Manchester.
The finished iron trade continues very quiet. Most of the makers have specifications in hand to keep them pretty well
mployed, but they are getting very few new orders, and in some dasses of iron very low prices are being taken. Common plates,
owing to the falling off in the demand for shipbuilding purposes, at as low as $£ 512 \mathrm{~s}$. 6 d . to $£ 515 \mathrm{~s}$. per ton; hoops are also to be got or good ordinary local and North Staffordshire bars makers are That taking considerably under this figure for inferior brands The engineering trades of this district continue fairly employed ing forward, moderately good orders are being got in some branches, and prospects for the future are, perraps, not quite so discouraging teady, and the returns for the past month issued by the Trade Union Societies do not show any material increase in the number of Society of Engineers has at present on its books about 3 $\frac{1}{2}$ per cent. of the members in receipt of out-of-work support. This represents
also about the average for the Manchester and Salford districts, which are generally a pretty fair index of the state of employmen hroughout the kingdom generally. This is a slight increase, but
the number of members actually out of work is less in proportion as compared with this time last year. Many of the large engineer-
ng centres in Lancashire have, however, been injuriously affected by the recent strike in the cotton trade, and reports from a con-
siderable number of the districts return trade as only dull. In the report of the Steam Engine Makers' Society it is stated that none
of the branch returns could be said to be more cheerful than last or the branch returns could be said to be more cheerful than las
month as to the prospects of a revival in trade; but, on the othe the present number of out-of-work members is only a little over
$1 \frac{1}{2}$ per cent. In the Manchester and Solford districts trade is
returned as rather flat; but from some of the Lancashire districts returned as rather flat; but from some of the Lancashire districts more hopeful tone is expressed, owing to rumours that considera further attempt to reduce wages in the Barrow district, which various branches of the iron shipbuilding districts report a seriou state of affairs brought about by the employers giving notice of anticipated the men would accept in full
We hear of several new works being started in the neighbourhood
Manchester; ; one as a steel works, and another for the man Manchester; one as a stee works, and another for the manu
facture of steel cables, but at present there does not seem to be
anything definitely known. Mr. West, who has recently resigned hi
position as chief engineer to the Manchester Corporation Gasworks,
has taken a large works at Newton Heath, formerly known as the

Albion Ironworks, where the company, which has recently carried
on its operations at Maidstone, Kent, will now extend its manufacture of Mr. West's patent charging and withdrawing machinery for retorts in connection with gasworks, which has already been works in the provinces.
few exceptions, the collieriess continues very quiet, and, with very few exceptions, the collieries throughout Lancashire are not working output, supplies are in excess of the demand, and stocks, which are accumulating, are forced upon the market at very low figures. The
better classes of round coal for house fire purposes move off very better classes of round coal for house fire purposes move off very
slowly, owing to the mildness of the season, but for common round coals there is only a moderate inquiry for general trade purposes,
with the prospect that requirements will rather decrease than increase. Engine classes of fuel are moving off pretty freely, and as there is only a small quantity of round coal being screened, slack is getting scarce, with a tendency to stiffen in price. At the pit
mouth prices ayerage about $9 \mathrm{~s}, 6 \mathrm{~d}$. to 10 s . for best coal; $7 \mathrm{~s}, 6 \mathrm{~d}$. to 8 s . for seconds $; 6 \mathrm{~s}$, to 6 s . 6 d . for common; $4 \mathrm{~s}, 6 \mathrm{~d}$. to 5 s . for burgy ordinary qualities ; but in round coals there is a good deal of under selling, and for special sales very low figures are quoted.
In the shipping trade there are more inquiries stirring, but the actual business doing is still very small, and low prices are quoted,
good Lancashire steam coal being offered at Liverpool and Garston at about 7 s . 6 d . per ton,
For coke the
For coke there is a moderate demand at about late rates.
A pretty fair index of the state of the coal trade is afforded by the result of the operations of one of the largest companies in during the past year. The total quantity of coal raised by the company at its various collieries amounted to $1,091,000$ tons, but prices have ruled so low that out of this large output it is only able to pay a dividend of 21 per cent.
Barrow.-So far as $I$ can see, the slight improvement in the hematite pig iron trade, which I reported as having taken place The aspect of the future is much brighter. Business transactions have increased to a considerable extent, and all round a greater
confidence seems to be placed in makers. The orders to hand thi week on home account are extensive. The foreign trade also shows an appreciable change, and good enquiries are to hand from German
and Russian consumers. The stocks of metal now warehoused at makers' are much lighter than they have been for some time past and now that the output has seen such a great reduction, stocks an upward tendency. net at works, prompt delivery, for No. 1 samples ; No. 2 is selling
at 4 ss . per ton ; and No. $3,47 \mathrm{~s}$.; while No. 3 forge is in demand at
46 s . 6d. there is rather a better tone in the steel per trade netl round. Orde that as yet, however, are rather scarce, but makers have one or two
good contracts on hand. The demand for rails, which are quoted at $£ 410$ s, to $£ 5$ per ton, is rather slight. The merchant depart ment is much brisker, and the men are pretty steadily employed have been booked. Iron ore is in, if anything, a little better request. Prices are very low, being from 9 s . 6 d . to
net at mines. Heavy banks of ore are held at mines.

## THE SHEFFIELD DISTRICT.

## (From our ovo Correspondent.)

ThE Yorkshire Miners' Association havenot yet abandoned the idea way. They have put before the employers a code of rules, which they say,
accept, and work by in the future." The scheme referred to is is pre
f to a joint committee of coalowners and workmen, as per the November 26 th, 1883 ." The first condition runs thus :-" "That the present rate of wages, with 10 per cent. added, be the minimum
rate of wages." The very insertion of this clause seems to point to the insincerity of the desire to have a sliding seale in operation, as
it is well any such proposal. Mr. O. E. Rhodes, the secretary to the coalowners, in replying to Mr. Pickard, promises to lay the scheme
before the coalowners at an early date. It is impossible to travel any distance in the colliery districts
withoun seeing how depressed the condition of the coal trade is. whithout seeing how depressed the condition of the coal trade is
Wagons laden with cool still bock up the sidings, and stocks con tinue to accumulate at the pits, while one company offers a large
discount to dealers to clear off several thousand tons of accuunula-
tions. tions. Ihear of another company offering hards to London mer
chants at 6s, per ton on wagons. Deducting 9d. per wagon, this
 our national cellars at such a ruinous sacrifice? An advance of 1 s . a ton on certain qualities of house coal was made at Lond
Monday , but there has beon no corresponding firmess here.
ner In the iron trade the low prices already noted continue in force with no indications of an upward tendency in quotations. There
is ome activity in contract work as well as in specialities of cer-
tain works in is some activity in ocntract work
tain works in the neighburhood
My anticipation that the new Dore and Chinley Railway would
meet with the tacit approval of the Midland Company was justi meet with the tacit approval of the Midland Company was justi-
fied by last Friday's metang of the shareholders at Derby. The
chairman of the company, in moving that the Midland give its chairman of the company, in moving that the Midland give its
consent to the passing of the Bill was presed to say if the line
was "a promoters' line which would afterwards be acquired by the Midland. He declined to commit himsolf to any statement in
 land had twice attempted to get through, the district, and now the
effort was being made by an independent company. It is probable, effort was seing made by an independent company. It is probable,
I hear, that the promoters will so far vary their plans as to come caso the line would be of much morew importance to Sheffiold than
ns at present projected. Baslow is the favourite recreation ground of the Sheffield people, who reach it by a twelve-mile ride over the
hills. An extensive and well-appointed hydropathic establishment has recently been erected overlooking Chatsworth Park and House,
and Baslow is certain, with railway facilities, to develope into place Ao some consland Iron Company reports that it is fairly busy in
The departments; the Rotherham Forge and Rolling Mills are also
all dom well employed; Messrs. Steel, Peech, and Tozer, at the Ickles
Works, find their special departments in steel prospering, and will soon be in a position to largely increase the output. being also in good demand; the steel trade generally keeps very dull. A slightit improvement is reported in several markest; but
the general condition of both the crucible and Bessemer industries is not at all encouraging.

THE NORTH OF ENGLAND.
(From our oun Correspondent.)
The Cleveland pig iron trade continues in a dull and listless ondition; but prices continue fairly stealy and unaffected by the
varintions of the Glasgow market. At the, market hheld at
Aremer Middlesbrough on Tuesday last there were merchants willing to
sell small quantities of No. 3g.m.m. at 36 . 9 d . per ton for prompt
delivery, but makers would not accept less than 37 s . Some buyers sell small quantities of No. 3 g.m.b. at at 36 s . 9 d . per ton for prompt
delivery, but makers would not aceept less than 37 s . Some buyers
gave that price for forward delivery. Prices of forge iron have
stiffened again during the last few days, and on Tuesday quotation
ranged from 34s. 9d. to 35s. per ton. The compact for blowing out eighteen blast furnaces is now complete, and it is expected that the
restrictive

## week.

Warrants are nominally 37 s . per ton. The stock of Cleveland pig iron in Messrs. Connal and Co.'s Middlesbrough store declined
801 tons during the week ending Monday last. Their stock at
to Glasgow was, on Monday, 593,196 tons,
3000 since the ebeginning of the month.
Shipments are going on at a very satisfactory rate. The quantity of pig iron sent away to the 18 th inst. was 42,107 tons , being February last year, corresponding periods being taken.
Great slackness prevails in the finished iron trade. Orders and
specifications are scarcer than ever, and several mills are now idle specifications are escarcer than ever, and several mills are now inde
or working intermittently. Prices remain about the same as

 It is reported that the Rosedale ironstone mines have been taken
on lease for twenty-one years by a large iron company, and that
arrangements are being made to open the mines at once. They arrangements are being made to
have been closed for several years.
have been in full operation since the termination of the strike Curned out last week 4310 tons of rails. This is a larger quantity
turn than was ever before made in one week.
Messrs. Sadler and Coo, Limited, of
of concluded an arrangement whereby their chemical business will bo ammalgamated with that of Messrs. Forbes and Abbot, of the
Ammonia and Acid Works, Old Ford, Bow, and the Tar Works East Gieenwich; also with, that of the Sussex Chemiacal Works
Company, Limited, whose works are at East Greenwich Shoreham. Limited, whose works are at East Greenwich and
Stoposed to increase the capital to $£ 500,000$ by issuing 12,500 new shares at $£ 20$ each
Owing to the restriction of Owing to the restriction of output at the blast furnaces large
numbers of workmen are being discharged at the collieries stone mines. Messrs. Bolckow, Vaughan, and Co Co three of their collieries, two at Crook and one at West Auckland the same firm will also pay off a considerable number of men at
their Eston mines. Notice has also been given to about seventy miners at
No settlement has yet been arrived at with regard to the blast farnacemen's wages, but the men have now asked to have the
matters in dispute submitted to arbitration. The two main points for consideration are, first, the 5 per cent. reduction of which the
masters have given notice; and second, the extra pay for Sundays masters have given notice; and second, the extra pay for Sundays
of which the men gave notice. If the employers will agree to arbitration, the men will accept the sliding scale for eighteen Months. The blast furnacemen employed by Messrs. Bolckow,
Vaughan, and Coo, at Witton Park, have agreed to a 5 per cent.
reduction on receiving an intimation that the whole of the furnaces reduction on receiving an intimation that
would be blown out if they did not do so.
The workmen employed by Messrs. Raylton Dixon and Co., 10 per cent. reduction from the 25 th inst., the arrangement to hold good till July 1 st, when a month's notice from either side must be
given if any change is desired. Nothing definite has been settled given if any change in asired. Nonims ask a reduction of 12 to
at the other shipyards where the masters and 15 per cent.
Several of
mills are seriously considering the deading plate, angle, and baility of closing their works for an indefinite period. They have mostly done well during o meet all their engears, and a await events. At present prices of shipbuilding iron the loss by manufacturing is at least double
the loss which would acerue by standing. Were there any diate prospect of a revival they would not mind continuing to proof light, the course will have the further advantage from their standpoint of Yorcing down to a lower level both materials and labour, which aro
now maintained at a somewhat artificial level by means of combinow ma
nation.

## NOTES FROM SCOTLAND

## (From our oirn Corrcsadent.)

ThrRe has been rather more firmness in the warrant market this better feeling has been imparted by an improvement in the past week in the amount of the exports of Scotch pig inon, together
with the belief that a fairly good foreign business will be done in ing the inquiries they are receiving both from the Continent and the Unted States. There are ninety furnaces in blast as compared with 111 at the same date last yea
At a meeting of ironmasters held in Clasgow on Wednesday, a committee was appointed with fult powers to investigate the truth
of the allegations that have recently been made as to the introduction into Messrs. Connal's stores of pig iron in the manufacture of which a considerable proportion of cinder has been used.
 The market was steady on Monday at 42s. 7 sd d. cash and 42s. 9 d .
one month, there being hardly any variation in the quotations on
 Thurstay-business
recocring to 4 . 4 .
The market values


 Carron, at Grangerouth, 49s.-specially selected, 56. 6d. - and
477. 6d.; Kinneil, at Bo ness, 46s. and 45s. 6d.; Glengarnock, at
Ari Ardirosan, 52 s . 6d. and 46ss. $6 \mathrm{~d} . ;$. Eglinton, 46 s . 9 d . and 43 s . 6 d .;
Dalmellington, 49. 6 d and 46 s .6 d .
The hematite trade is a shade firmer, and the quotations about ore are just now taking place from abroad, owing in some degree
to former interruptions to shipping, resulting from the tempestree to former interruptions to shipping, resulting from the tempestuous
wenther at sea. At the same time the demand for foreign iron ore has of recent times been steadily on the increase.
In the malleable iron department there is little change to note. The inquiry is very quiet, and the orders in hand are in many
cases being rapidly worked off. There is a good business doing in cases being rapidy worked off. There is a good business doing in
the foundry trade, especially in general founding, and the consumption both of Scotch and Cleveland pigs in the foundries is
large, the employment of English iron being, indeed, on the incerase. The week's shipments of iron manufactures from
Glasgow embraced $£ 30,100$ worth of machinery, $£ 6680$ sewing Glasgow embraced
machines, 199000 ron, manufactures, there being scarcely any
steel goods exported. In a few weeks hence, however, it may be steel goods exported. will be a renewal on a fair scale of the exports of stel, as their interruption is due to the strike, which is now at
an end. The coal trade in most districts is quiet, not to say depressed. In only dross being in estra demand, because owing to the smaller
output it is more difficult than usual to obtain. The prices of housenold coals have now been reduced by 1s. per ton, following in
this respect the course already adopted in the case of shipping
qualities. The week's shipments at Glassow included 2350 tons to
Lisbon, 1200 to Bordeaux, 1500 to Odessa; smaller quantities to a variety of places, 4830 tons sent coastwise, and 1545 tons for the use of steamers. At Ayr 77 tens of coals were stupped, 4198 at In the Gras minin quiet, and storing is largely resorted to at a number of the
The miners in Lanarkshire have so far accepted quietiy second reduction of Gd. a day in their wages. Several meetings have been held in the Hamilotuistrict, bul alt the men have pro osed to do is to Mimit the output, a proceeding to which they have
, limited, have stopped their ironworks at
Fauldhouse, and 150 men have been thrown idle there in conse-
The coalmasters of Fife and Clackmannan have intimated that ifteen days after the 18th February the wages of all miners will At the same time the price of coals to the workmen will be
reduced to 4 s . 2 d . per ton at the pithead.

WALES AND ADJOINING COUNTIES.
ALL the pilots of Cardiff, with one solitary exception, have voted fact that this Bill prejudices the interests of the Rhondda and Swansea Bay Railway. A great expenditure is going on to estapromoters of the Barry scheme seek for powers to strike in midway line, injuring Swansea the same as Cardifft.
litan
If it were permissible for anyone to cut a canal, form a line of rail, or construct dooks by simple ar',
ordinary land holders, and trust to one's own ability or enterprise in carrying out the venture, just as in any retail or wholesale
business, well and good, capitalists must run their own risks; but so long as the State governs for the good of the many, and underpoint of Swansea Bay and Rhondda Paiway, mentioned in my last of the large outlay of the Marquis of Bute,
will carry weight with the committee of the House. The general meeting of the shareholders of the Swansea Bay and Rhondda Railway was held this weck, the Earl of Jersey presiding, and the
progress of the line was commented upon with satifiaction. The earl announced the fact that the Cwmavon Railway had been
taken, and that in four or five months this would be yielding a

The subject of the Fleuss life-saving apparatus and the need of stations in the colliery districts has been the subject of some dis-
cussionof late. Mr. Mahon, the colliers'representative hasadvocated it in a published letter to the coalowners, but direct action,
understand, will be brought to bear on the matter by the Asso ciated Coalowners at their next meeting
It is remarkable that explorers neglect even the simplest
expedients. At one of the Gethin explosions a collier traversed the whole of the working while the pit was full of gas, and his safe guard was his cap saturated with cold tea, and held to his I have little encouraging news concerning the iron and steel
trades. There is a dulness in the market, and low prices are not successfu or tempting to business. The outhook, with orders being The position of ,alagers the present juncture is, to
 panies are constantly disappointed with nil returns; on the
other, tardy buyers, are hanging back even in small pur chases, expecting a further fall. This, however, may be
said, that the buyer is more anxious to have good material old iron of the cold blast kind, such as Anthony Hills, note that good figures, and does not remain long waiting for purchasers. So too in tin-plate. The best makers are well sold, though cheap
brands are still enquired for, and orders in some cases have been booked for 14s. 6d. coke plate.
There is no comple
There is no complaint about the coal trade. The activity at the
Welsh ports is undiminished, and the leand having good areas of the best four feet or No. 3 Rhondda, literally command the position. There never was a better time for the
 has increased the briskness. In addition the new contracts are
being placed, foreign railways and the like, and for these small as well as large cool in in demand.
and
The Mountain Ash colliers of Messrs. Nixon have agreed to join the Rhondda Miners' Association. only been at the the sacrifice of the offtial weigher. An influential colliery company called the Wenallt Merthyr has
been formed to work an area of 1000 acres of coal near Neath.
Cardiff and Swansea canitalists Cardiff and Swansea capitalists are amongst the prominent moveri
The returns of the Forest of Dean iron ore trade show a falling
隹 off, and in those of coal also. The reason assigned is trade dis putes, operating thus injuriously both against master and man.

The Late Willan Brookes.-We regret to record the death place on the 14th inst. Mr. Brown patent warn in whondon in
September, 1817, and was in due time articled to the late Mr. John Moore, of Lincoln's-inn-fields, who enjoyed a large practice as an architect about half a century ago. On leaving Mr. Moore he
entered the service of Messrs. Yoole-afterwards Poole and Carp-mael-where he learned the business of a patent agent. About
1850 he started on his own account, a lucrative practice. Inheriting a strong taste for mechanics from his father, who was an excellent amateur workman, Mr. Brookes became practically familiar in early life with machinery and
mechanism, thus laying the foundation for the sound and accurate knowledge of such subjects which he displayed in after life.

Thoroughly conscientious and scrupuloussly honourable in his deal| ings, |
| :---: |
| loss. |
| l. |

Directer Electricians Dirbctory.-The second issue of this the frrst. has been published, and is a marked improvement upon
the well arranged, and the information given under the different directory headings seems to be complete. The different interests and industries are separated and placed under
headings which readily suggest thembelves to one seeking information, and the two practical articles, the one on "Electric Conductors," and the other on and with "Tables for Corrections of
Measurements in Horse-powers and Watts, \&c.,", will be found to contain much that makes the practical application of figures of
high value. The list of dynamo machines contains much that has never been published before, and is unique in the completeness of
the particel that arre made. The Directory containg the following:- Obituary
that and notices, electrical conductors, tables for correcting measurements
 relating to incandescent lamps, list of applications for provisional
orders, companies registered in 1883 , telegraph tariffs to all parts orders, companies registered in 1883, telegraph tariffs to all parts
of the world, the British cable fleet list of local authorities and
their chief authorities in London telegraphs, officicrs on the staff; ; railways of the United Kingdom
and their officials, a directory of the professions and their, officials, a directory of the professions and trades con-
nected with electricity and its applications ; postal information and calendar.

## THE PATENT JOURNAL. Condensed from the Journal of the






## Applications for Letters Patent

 When patents have been "communicated." thename and address of the communicating party are printed in italics.

12th February, 1884
3109. Feed Valve for Steam Bollers, P. C. Noble














 J. Jackson, Noweastle-under.Lymed
3134. SPRRINO Burvers, de., W. Towell and E. Playle











 1155. Detingher for Staercmino Boots, \&ce, A. J. Boult










 and J. D. Gibbs, Londol.
3174. Tiswisa HIDEs, A. Myall.-(F. Chailly, Parie.)

## 13th February, 1884.


Anocrs, Frannect.)


Harborne.
3183. .rvions Corfek-Por, J. Morris, Ashton-upon.
Mersoy.

 3188. LDirncarons, E. Morgan, Wolverhampton.
3180. Hosk for AIM BRRKss, J. H. Johnson. - (F. A.
 319. Expandina Writiva Cabiskr, A. Pateo, Ryde.
3192. Comailiation Cocks or Valves, J. G. Connoll,


 3198. Monas's Rimied KNivr BohRD, J. Morgan,
Bristol. 3109. Valves for Requating Fluid Pressures, de.,
J. Hopwood, Horwich.
der






3

| 3 |
| :--- |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |

122


${ }^{324}$
3
3
3
3
3
3





## 14th Fecruary, 1884.


 Roy. Thn.
3232. FAstervo Door Ksons, dce., J. Anniss, Waterloo,
near L Lverpool





 Willonhall.
3263. Lhohtino Railway Carriage Roor Lasps, J, Brown, Warrington.
B2ct Locomortve Travy Bramley. ${ }^{\text {B65. Closts, de., W. Ji Young, Greenck }}$




327



32
32
32
wike.
Thorp, Whitefeld.







J. Mackie, London.
3296. DRyNa, dec., Peat, S. D. Cox, Now Charlton.
3.



$\begin{aligned} & 3800 \\ & \text { 3301 } \\ & 3302 \\ & 3302\end{aligned}$

 3305. Poushing Pottras' WARE, A. and W. Purvis,
30.



3311. Preprarina Tea, G. Rittinghaus.-(W. Henschen
and Cor,
3312. Dabmany.

London.
3314. CRickrt Boors and Shorss

 London.
337. BRochrss, J. G. Rollason, Birmingham
 3319. Strear Exaines and BoLers, w. R. Lake.-(E.
 m32. Reuth.



## 15th February, 1884.

3325. Removiso the WATER of Coxpessen Stenm,
D. Halpin, London, and J. Greeffam, Salford.



 3332. Reoostcrina the Nomber of Passengerns and
 3334. Faciutrativo Wartiva, J. Holding, Salford,
33s5. Bao for Holuiso Woot, St. J. V. Day. $-(P$.

Svan, Caleutta.)
3386. Deck Skats, J. Linkletor and W. P. Mears TTnemouth.
33y. Mots for Spissiva Fibres, J. S. Cooke and $A$.
Hardwicke, Iversedre.
 Morss.
333. Trocos, T. B. Howard, Coventry.
3340. Muoxkrs and M. MaNETIC CLorths, dc., G. Carron,
 334. Pooker Gavor for Chickit Bars, A. J. Altman,
London. 343. Bana for Holdisa Wool, St. J. V. Day. - (P. S.
sisan
Culeutta $)$










 W3arwick, CTuTs, E. T. Lucock, Stourport.


 Brley, Lowisham ©c. S. Walkor and T. L. Loach,
3368. Dolurss, J. Battes, Bradford









 Philadel phia, U.E.).
3888. LEATMER, G. Pearco and A. Fox, London.

$$
\begin{aligned}
& 16 \text { th Ferucury, } 1884 . \\
& \hline 1
\end{aligned}
$$












field
15. Currisa, de., Wood, J. Rowley, East Dulwich.
1.

 Apruvino Prkssure to Prissina Rollers, S



 Mivasy, J. Cheetham, oldham, and W. Butterworth
Bradord.



 3433. Trenativo \$ncocharine Solutioss, J. H. Johnson.



 3442. LADIEs' CostuMEs, H. Grate, London. 3443. Wnovorit Iron or Sterl Drunss, A. B. Perkins, 344. Ard Passags in Reoenerator Furnaces, c .
Hunt, Birmingham. 445. Filunina Lunicicators, A. Budenberg.-(W. Noll,
 3448. Formina Mouths of Bottres, dc., A. Barham,

Wood Perry, Indiana, U.S.) Cossons, L. Apploton, 3452. Distiluisa Liquids, H. H. Lake.-(P. A. Mallet

345. Disinyectiva apparatus, T. Bradford, Man

GLaziso Bans, J. Fraser, Arbroath.
SUPLITINO FUELL to FUNACEs, T. Henderson
Corpool.
Corpoiva Screw PropreLre BLades, A. Dumbell,

 Carlyle, Brimingham.









Glioucester. Pres for Makixa Briceks, Tluss, \&ce., T. Whit-
taker, Accrington.
 3483. Cuytivo Pure Fabrics, H. H. Lakc.-(F. Colcom.
 . HEMTHEDVLATNG AppARATUS, H. H. Lake.- $($ J.




 G. Pim Battersea.
GAs E. Exalrss, E. Cobham and J. Gillespie,
 497. VELOCIFEDES, C

 3501. CAstiva Ivoots of Stresh, J. D. Ellis, near Castiva Inoots of Stekl, J. D. Ellis, near
otherimm
orpes-air Braziers or Stoves, F. C. Hardy, Swempriso, de., Sour Liquids, \&c., E. W
 London.
3506. ©ARRRIDors, W. Hebler, Fluntern.
3007. Surs and FLoATING Pikrs, dc., A. S. Hamand,


## \section*{81 3511 3 <br> <br> | 8511. |
| :--- |
| 3512 |
| 3513. |
| 350. |
| 3515 |
| 3515 |
| 3516 |
| 351. |
| 351 |

}


 , London. ers, Norwood
\&ce, W . John Atki
Poppe
N.
M.
F.
F. $P$
P 2 on.
Wondon.
Wadhurst.
Barcelona


## ABSTRAOTS OF SPEOIFIOATIONS.

1069. Transformino Naphthaline - di - Sulphonic
Actins isto Ampo-Naphthaine - Di - Sulphonic
 don.-7th February, 1883 .-(A communication from This consists in transforming the two naphthaline-
di-sulphonic acids into the mono-nitrated substitution products, which, being submitted to reduction, give
the corrosponding amido-naphthaline-di-sulphonic the corrosponding amido - naphthaline - di- sulphonis
neids. By combining these with phenols, oxy-phenols,
their ethers, homologues, their ethers, homologues, and sulpho-conjugates,
yellow, dyes, are obtained, and with naphthols, their
ethers, homolocues and sulpho-conjugates, and with ethers, homologues and sulpho-conjugates, and
di-oxy-naphthaline, ponceau dyes are obtained. 2715. Wedag-sinped B

This relates to a wedge-shaped balloon which will foremost. A heating apparatus is provided in the car
of tho balloon for regulating the carrying capacity of
the the balloon.
757. Mouldna in Dry of Green SAnd of all
Mktals on them Alloys, de., $S$. $B$. Scanor and $J$. Hill, Leeds, and J. Butler, Bradford.--4th June,
1883 , 6 , This relates essentially to building up the mould in
sectional blocks, each bearing part of the pattern. 2778. Macinemiy for Testing Strexoth of Mate-
rials and Structures, and Gavoes, Weighisa RIALS AND STructures, AND GAvaes, Weighisa
MACOUNES, DYNAMOMETERS, AND PIpe Jorvts USED
THEREWITH, \&C., A. H. Emery, Nevo York, U.S.Sth June, 1883 , 28. $2 d$. The machine is constructed with coupled load beams
adapted for use respectively and interchangeably as
the bed and platform of the scale, according to whether a strain of tension or compression is to be produced.
The beams are connceted adjustably to one end of a pair of scrows to which the straining apparatus is
applied, and aro supported on a movable bod sliding on a foundation and provided woth springs, which prossure can be put on the springs. A doublo-acting
hydraulio press is employed in connection with spect2851. FLowr to produce heavy strains.

This consists in applying to flour mills or machinery blowing or exhausting apparatus for the purpose of
avoiding explosion from tho collection of dust in the
stive room, by leading the dust to the furnaces. 3054. Roundabouts or Carousals, E. G. Brever,
London.-20th June, 188s. - ( 4 communication from This rolates to a game in which independent tracks or plattormss turn freely round a centrpal axis, and are
actuated by a system of pawls and ratchet whoels. 3065. Manufacture or Plain and Ornamental
Metallic Filloes or Tires, T. Fox, Shefield.20th June, 1888 . 6 d.
This consists, First, in forming crescont-shaped
ires by rolling a bar with tapered edges and then by shaping tools curving up the edges; and, Secondly, in
turning the edges of the tiro inwards so as to cause
them to hold the rubber tire in position without the hem to hold the rubber tire in position without the thin motallic covoring
This relates tose, to the uso, for controlling the omission
of the exhaust gases from the working cylinder, of a supplomentary piston and cylinder: also to a gas engine with three working cylinders and threc
charging pumps, so connected that neither pump sup-
plies the working oylinder of which it forms a part. plies the working eylinder of which it forms a part.
Throe supplementary cylinders and pistons are pro
vided for the emission of the exhnust gases, and the pumps-which are annular-may be used as air-motor engines or to compress air for starting purposes. A
governor is described, in which a dead weight acts in governor is described, in which a dead weignt acts in
combination with contrifogal balls, the gravitating
and centrifugal. forces balancing each other at tho normal speed of the governor.
3082 . Wasuruso Machines, A. I. Denny, Gemmany,Germany.) 8 8.
$\Delta$ trough with $a$ curved bottom is supported in a frame and provided at opposito ends or sides with
boards or covers hinged thereto to keep the washin liquid within the some.. Curved ledges are fastenced
at two sides, and to them washing pegs of hard wood at two sides, and to them washing pegs of hard wood
are secured. A curved swinging frame actuated by a
handli is provided with washing pegs similar to thoso in the trough, and the clothes are placed between the
two sets of pegs. two sets of pegs.
3098. Out Bursers, J. C. Morrison, West Ham, and
R. Suith, Bromey.-22nd June, 188s,-(Not proThe burner has two or more cylindrical wicks fitted serve to raise. Tond lower wheels round the wick wick, to which nir is dis-
tributed by means of spiral picces attached to the outer 3100. Incandescernt Electric Lamps, $R$. Harrison,
Neiccastle-on-Tyme.-22nd Junc, 1883. $6 d$. Neccastle-on-Tyne--22nd June, 1883. 6d
The neck of the globe is formed so as to admit of
he use of L-shaped pieces. having limbs within the clobe, to which the ends of the filament are connected,
the external conductors being connected to the other the external conductors being connect
3102. Telephones, S. J. Coxeter and H. Nehmer,
London. - 22nd June, 188s.- (Not proceded oith.) 2d. The vibrations are caused by the movements of tho
walls of one or more tubes effected by electro-magnets.
 E. Geisenberger and La Socicte Anonyme de Produits
Chimiques, Faris.) (Not proceded vith.) 2 .
This relates, First, to the manufacture of a metallic
or alkaline chloride by the employment of any suitor alkaline chloride by the employment of any suit-
able substance, such as hydrohloric acid; and,
Secondy, to decomposing the chloride thus formed by
electricity. 3112. Controlling and Regulitiva the Flow of
Aerated Liquid Beyerages, \&c., J. Pumphrey, Birmingham.-22nd June, 1883.-(Not proceded
vith.) $2 d$.
 portion of the iquaid being arawn of




 engine takes place
3120. Targets for Rifle Practice, r. Morris, Black
heath.-23rd June,

Theo objeot is to onhile rifo practico to bo carriod on

 adinta hio bulls seo.








 forenco of tho ring is providided with ventiating holeses
through which the duat
given of by the thread car


This relates to oloctromampotic apparatus for con.
 spondenco and ton means of connecting any station
without difurbing tho thome tione conplected


 heating or cooling is made to circulate from a reser
yoir placed at a lower level wy means of a syphon
arrungement of tubes anmisement tubos.

Thao employment of a serices of fixed disce or plates, ither perforated or smaller in dit the gas to pass them,
3146. Flusingo Apparatus and Waste-not Valves and W. R.Clark, London, - 25 ,h June, 18s3, Gd.
This relators, First, to a valve consisting of a seating
in the mouth of the flush supply pipe, normally closed by a flexible disc spring-pressed from a dome, such
dome and the disc being air-tight at the edges to form pipo from a bellows operated by the pull, so that when
air is exhausted from the chamber the disc leaves its The and the wedely expends the chamber pip vacuum disappears, and the dise is forced to its seat
again. An ater flushing device is applied to the again. An aftor flushing dovice is applied to tho
flushing pipe when adapted to water-closets, and con-
gists of a chamber with enough water to fill the chamber, which has a small
 This consists in arranging a small pipe to pass from the locomotive to the rear vehicle of a train, where it
communicates with the train pipe of the brakes, while at the locomotive end it communicates w
or vacuum gauge or tell-tale indicator.
 Fabrics on Matrrials for Packina Goods, ©c.,
D. C. Miller, Larkhall, N.B.-26th Juale, 1883.- (Not The object is to provide a material flexible in ono
direction and more or less stiff in a direction obligue or at right angles thereto, and it consists in introduc-
ing within the weft space of any ordinary warp a stiff material, such as laths of wood, pasteboard, or similiu 8154. Cookiso Rasors, J. MeI. Shan, Glasgore.-26th
June, 1883. This sclates to cooking ranges which are convertible
from a closed to an open cooking range, the main rom a closed to an open cooking range, the flas to
obect boing to enable a sufficiontl| long open fluo to
be drawn out over or towards the firo when the range is to act as an open
such flue telescopic.
3155. Consthuction of Velocipedes and Apparatus
 ering with the speed of the machine
S156. Laws Teswis Nets, (ce., R. S. Moss, Manchastor
-26th June, 1883.-(Not proceded rith,) $2 t$. This relates to improved means for distonding the with the greatest nicoty. The net rope is acted upon
by a cam fastened to each pole, nnd which anllows the
rope to be pulled through in one direction, but locks it when released. 3158. Valve Apparatus yor Reoulatisg Fluid
Prossure, C. D. Abel, London. $-26 t h$ June, 188s.-

This relates to a pressure regulating valve fitted in
passage, through which steam or compressed fluid
passage, through which steam or compressed fluid
passes, and on the stem of which valve is a piston o
equal area, working in a cylindrical cavity, into whicl a little of the fluid in a cylindrical cavity, into which
From this cavity there is an to leak by a small hole.
Fine passage, covered Ty a valve, the there is an escape passage, covered
of of rest ren a flexible
diaphralme, strained dowwards by an adjustable spring, the space under the diaphragm communicating
with the pipe that is supplied with the fluld. When
the pressure in the pipe is excessive, the diaphragm is pressed up, thereby opening the escape valve, and
allowing the fluid in the sace under the piston of the
reglating valve to regulating valve to cscape; the pressure on that piston
being then groater downwards than upwards, the
piston desconds, and closes, more or less, the reguanting valvo to which it is attache
 A metal or orther projection is soldered on to the top
and bottom sockets, and a screw is passed through
 3188.
 The movement of the rudder to port or starboard











 ndo mens for heoting the nall

The object is to totilitise the recoil of the fre-nrmm to


 Two porious eolls, the tower portions of which ard

 3184. Appantus ron Exumtria Aprzitemmant




 3188.
3188. Mastracturx or prep Fanues, D. Marcon


















 3194. Loovs Pon Wraviso. W. Snith and J. Wriotey





 3195. Rollers for Wringisg and Manolino Ma-
chines, $W$. Lockrood, Sheffeld.- $-27 t h$ Junc, 1883 . The objoct is to produce rollers impervious to wet,
and that will not rot or lose their shape, and it consists in forming them of an axle round bar steel, trued
by "reeling" and cut to tho required length. The body of the roller consists of cement cast upon a core,
and may be provided or not with an outside metallic
or earthenware jacket or shell. 3196. Apparatus fon tie Manufacture or Luciners,
F. H. F. Enpel, Hainbury.-27th June, 1883.-(A This relates to apparatus for dipping mateh splints
socured into frames into the ifnition composition,
instead of applying the same thereto by hand as hitherto,
3197. Fing-anss, w. R. Lake, London.-27th June, 1888.- ( 4 communication from J. H. Brown, New
York.)

York.) $\begin{aligned} & \text { od. } \\ & \text { Thio flr provided with a hammer with a }\end{aligned}$
onvex branst and a brocch-block with a cam-like rear


 An ejector is combined with the sidididg brooch biock
and and anfety catch provided The marrel is formed












 At tholower parto of the boiler is tho furnaco with






 3205. Appranutus yon Bumurn Mancraso, R. Bate


 Thince, chassist in constructing shipe' berths so as to
old up when pot tin use.




























Tis ritaesto anew methiod of foding tho ngx to
alternate bars being caused to advance and recede in
rotation.
3217. Machines for Hauling in Ropes and Fishing
Nets, J. Harper, Jun., Aberdeen.- $28 t h$ June, 1883 . Three grooved pulleys are arranged in a triangle, and
the rope of the net passes over and under them. Ench pulley is cast with a toothed wheel at the back, wath the other two genrs a pinion, and is itself in gear with
 This relates to the application of an incandescent 3220. Permanent Way of Railways, B. Siraine and
M. H. B. Alltecht, Leeds.-29th June, 1883.-(Not Tho object is to prevent the shocks caused by the rond it consists in substituting for such joints of raints a bevel
adis.
joint formed by properly shaping the onds of the rails 3222. Hooks or peas for Hanoing on Supporting The hook. or peg is formed with a $T$ or other pro-
fection at its rear and a flat sole in front, the projection being caused to slide in a corresponding groove
formed in the wood or other material to which the
hook is to be attached.
3223. Dynamo-electric, Maqneto-electric, And
Stmiar Machines, L. F. Lamkin, London.- $29 t h$ This relates to controlling the electro-motive force
y moving the brushes. One brush is fixed and the by moving the brushes. One brush is fixed and the
other movable either automatically or by hand. 3224. Pinnororte Action, J. J. Robinson, London.The object is to simplify and increase the efficiency
of pianoforto nctions. The stickers are operated by overs from the tail end of the keys, and each towardd
its uppor end receives through it an adjustable set-of pin, screwed for the required adjustment into at-oro
ongation forming a tail to the lower part of the ammer butt.
3225. Water-waste Preventers, B. Raitt, Brixtom
-20th June, 1883 .
bd. An oscillating vessel is supported in a cistern, and closed end, but a narrow opening is made through the lower sidde near the end, inside the vessel. Acast.
ing fits tightly round the ond of the pipe, and has an anding with that in the latter and or the oscillating vessel and turns round the pipe. A
second pipo forms the other support for the vessel, and 3226. an overifow pipe
applicabing to Gear withi Continuous Motion C. J. Lemaire and A. E. Poly, Paris.)-(Not pro-
ceeded voith.) $2 d$.

The driving gear consists of a shaft mounted in $n$ notion by an arrangement of hand lover or pedal, and the fy-wheol by the intorvention of rollers transforms
it into continuous circular motion.
3229. Manuracture or Chtomates or Soda, ©c., ,
P. Potter and W. H. Higin, Bolton,-29ih June This consists in the manufacture of pure or nearly by first neutralising the latter to precipitate the silica ind alumima, separating the latter, concentrating the solution with soparation of foreign salta, adding the
requisite amount of acid, filtering out the crystals, and
concentrating the solution at a low heat in an oxiconcentraming the
dising atmosphere
3230. Concentration on Purification of Commer.
cial Sutipitatic Aoid. W. J. Mentics, St, Helens, The inventor claims, First, the concentration or purification of commercial sulphuric acid by treating
it with nitric acid or other oxidising agent, so as to ully oxidise the arsenic and fron salta, and then pro-
ipitating the latter by boiling in an fron vessel, the cititing the latter by boiling in an iron vessel, the strength than 58 Beaume; and Secondly, in combina
tion with the above, continuing the boinng and con-
densing the fumes as pure hydrated sulphuric acid. 3233. Elecrmic Arc Lamps, C. Wiest, Zurich.-29th The carbons are fod together by contact rollers
perated by a vertical spindle provlded with right and fft-handed scrow threads and driven by a small motor A rosistance equal to that of the are is aut
hunted into the circuit should the arc fail.
3235. Dressing ror Preventing and Destroyinc
Magaots AND Parasites on Sheer, de., $C$.

Hutchins, Snitterjicld-soth Unc, 1889, The dressing consists of one pint of paraffine oil, to
which two ounces of quicklime and a quartor of a pint 3236. Puleevs and Wheels, T. Smith, Brockley.The rim is made in two parts and connected to the boss by arms, the boss being also made in two parts,
ach consisting of a solid segment, projecting piecos,
and seats for similar proijecting pieces upon the other and seats for similar projecting pieces upon the other
part. The arms preferably consist of a bar having its
outer end splitit and separated both in the direction of he plane of the wheel or pulley, and in a direction 3237. "Lock up" Liquor, Scent, and other Simithar
Cruet Framp or Stands, $R$, Murtal The bottles are arranged poce a revolving baso placed
vor a stationary base, and abovo them a notched or ccessed hood is arranged on a central pillar. By turning the base plate so as to bring the bottles under be removed, and the frame is then socured by lock and
key in this position. 3238. Cartridgess, H. E. Neveton, London, -20th June,
1888.- (A communuation fom La Societe Anonyme Thynamite Nobel, Sviterland.) 4d.
The object is to produce a watertight cartridge in
hich the explosive is in a pulverulent or granulated condition. The explosive is compressed in a cylinder
of paper, and the ends protected with discs of paper,
the whole being then plunged into a bath composed of









3240. Making a kind or Fibrous Ligneous Cellu-
Lose sutible for Papr-maing, dco, $A$. M.

Clark, London. 29 29th June, 1883.- $A$ communication
from $R$. Blitz, Paris.) $4 d$
Wood id Wood is reduced to small pieces and treated from spheres, with hydrosulphite of soda, caustic soda, and
rancidiate of ammonia dissolved in hydrochloric acid. 3242. Tulle or Lace Machines, C. D. Abel, London.

- -30th June, 1883 .- (A communication from $E$. The object, is to enabie by the combine action of
the "fine bars": and the "stamp bars" of tulle or
the lace machines "stop," "one," "two," to be performed
at will in the same motion, by means of mechanical 3243. Buns and devices, 3243. Blexaching Kiers, R. H. Ainsworth, Hallivell. The object is to enable a circulation of hot bleach quor to be kept up in the kier without disturbing
he material being treated, and it consists in the arrangement of a vertical pipe and a steam pipe, so as
to cause the liquor to be taken from the bottom and 3244 for Ratomatic Electric Signalling Apparatus
H. J. Haddan, Lomdon. - - 0 oth June

This relates to a pedal-contact apparatus, adapted to
4d
tomatically announce the approach of trains. 3245. Milistones, J. Wetter, Nevo Wandsworth.-30th E. Cayla, Algeria.)-(Not proceded with.) $2 d$. To reduce the heat and friction in millstones, the
principal groves, which are tangential to the central pening, are made narrow and deep near the opening,
nd gradually wider and shallower umference. The principal intermediate grooves may be radial, and are made of such length as to leave a
certain space between their inner ends and the main
3246. Obtaining Salts of Ammonia from Combus-

Tible Gases,, . Adio, Glasgoo.This relates to improvements on patent No. 4758,
A.D. 1882 and consists in directly converting the mmonia contained in combustible gases into sulphate of ammonia and recovering the same by a continuous
process consisting in, First, charging the e gases with
sulphurous acid gas to fix the ammonia; Secondly, submitting the gases to the action of a scrubber to
dissolve the sulphite formed: and, Thirdly, in oxidising the solution
forcing air into it.
3247. Cooking Ranoes and Ovens, J. Carrick, Glas

The firegrate is fitted to face sideways and the heat of the firo directed into an enclosed space, wheroin
cooking operations may be conducted. An encased oven has a sole plate, which extends into or forms the bottom of the firegrate. The oven may be portable
and adapted to be inserted in the ordinary grate.

This relates to machines in which drawing-of ane combs, the obbect being to provideo means for re-
thing and readily roleasing the roller stands when e leaters or rollers requirg attention.
3249. Pads yor Horse, Cart, Pick, and other
Saddes, Collars, dce., J. A. Morgan, London.30th June, 1883.- (Not proceeded with.) 2 d .
The objects are to provent chafing and securo a true and ease and comfort to both horse and rider, and
it consists in the uso of a hollow pad capable of being Inflated with air.
3251. Drilling or Perforatino Rocks, \&c., t. R. This relates to the mechanism for obtaining a rapid o-and from movement for percussive action of the drill
or other implement, and to imparting to such teol a or other implement, and to imparting to such tool
movement of rotation round its axis and effecting it advance in a line with its axis. A spiral drum or cam is mounted on a shaft, and actis on a pin or stud fixed
to the piston-rod, through which the drill passes. The
drum or cam in driven by bevel or ot drum or cam is driven by bevel or other goaring. The
drill rod has a screw thiread, and a ratchet or clutch devico with pawls imparts to it the rotary movement and effects $t$
3252. Purification of Sewage Waters, de.,
Bock, Germany. -30 th June, 1883. Ad. This consista in the purification of wasto waters by
the addition of fibrous matorial or of fibriferous mud in combination with iron compounds and magnesia sals besides milk of lime, for the purpose of precipi-
sating the fouling particles and fermenting seds in compact form, and directly to render the soparated sub stances subtable for manuring purposes. These chari-
tying substancos can bo used repatediy, so that the mud from one precipitation is used for a second pro-
cipitation. Sulphurous acid is introduced into the coptaation. solution to olimimatate tho lime in in solotion and to
lorm antiseptic and disinfectant bisulphite of lime.
 A bar of mild steel, of a sectional form corresponding outwards, is slit or divided longitudinally in the
manner described in patent No. 5215, A.D. 1881, and mannor doscribod in patent No. 5215, A.D. 18s1, and
by a machine operating by means of a punch and
bolster the nails are cut from the divided bar. The main feature of the prosent invention consists in pro-
ducing the bevel for the point by squezaing the edgo
of the bar before the nail ts cut from it where the point of the nail will come. Arom it, at the place
to bear on the edge fought
3255. Apparatus For Exhavstiva, Forcing, And
PUMTING GAs, AIR, AND other Fluids, W. $B$. Thre or other suitable number of silides or vanes aro placed at an angle or tangentially to the spindle or
barrel, and are actuated by slippers. Relief ports are
provided in the cylinder and are in communication with the usual ingress and egress ports, and arranged so as
fluid.
3257.
3257. Boilers on Vessels employed in the Treat ment of Fibrove Materlals for tie Manurac
Tue or Paper Pulp, ce., I. S. McDougall, Mam
chester.- $00 t h$ June, 1883 , 4 . This consists in connecting lead linings to boilers or
ther vessels by means of bolts passing through holes other vessels by means of bolts passing through holes
in the lining and the sholl of the boiler, and provided
with nuta 3258. Production or Desions uron Rollers on
Surfaces for Printing, de., J. J. Sachs, London. The surfaco on which the design is to be produced is cleaned, and then exposed to the action of a sand
blast, after which the design is engraved thereon or
transforred thereto transforred thereto, and bitten into the surface under
a vacuum or a partial vacuum. 3261. Coupling yor Shats and Steam or Water
Pips, J. Jamieson, York.-2nd July, 1883.-(Not This reclates to a spherical coupling for shafts and steam or water pipes, and consists in making the ends
of the shaft epherical and with a ball-and-socket joint
in the centre. 3262. Apparatus for Opening and Closing Valves

This rentes to heating apparatus made in sections,
and consists in operating the valves to shut off an of and consists in operating the valves to shut off any of
the sections by means of a hand wheel arranged in
front of the boiler.
 The composition consists of a combination of the
muriate of barytes and mucilaginous or gummy vege-
table matter, either with or without admixture of gelatinous animal matter
3264. Machinery For Combina Wool, W. Terry and
J. Scott, near Bradford.- $2 n d$ July, 1883. (Not proThis relates to machines in which the material is fed to the circular comb in tufts by means of nipping
jaws inside the circle, and according to one arrangement the jaws are mounted on a fulcrum towards the centre of the circle, and a rising or falling motion im-
parted thereto by means of a cam and lever.
 York.) $6 d$.
Thisl relates to improvements on patent No. 3226, A.D. 1880 , and it consists of a knife-edged bar, over
which the fur is stretched and fed, a current of air being delivered on the part over the edge of the bar,
oscillating guard combs, having auxiliary guard
plates, being arranged above the comb, and set so plates, being arranged above the comb, and set so as
to retain and protect the shorter wool. Iaterally
adjustable edge protectors are arranged above the guard plate
3267. Self-rining Endorsing Stamps, G. H. Cooke,
London- $-2 n d$ July, 1883.-(Not proceded with.)

This relates to the mode of pivotting the movable
die plate in the frame to allow the moveable type bands to be adjusted through the central opening in the die plate in a more simple
is pivoted on a cranked axle.
3268. Reservorr Penholder, L. B. Bertram, London. This consists in the use of a central air tube attached to a screw cap fitted over the end of the barrel or ink
reservoir, and by turning which a valve at the end of the air tube is opened or closed so as
flow of ink to or cut it off from the pen.
3269. Machine for Foldina Broadoloth, de., $H$,
J. Haddan, Kensington. $-2 n d$ July, 1883.- (A con munucation from . Tath am, Nee York.) $6 d$.
The object is to ford and roll the fabric in one opera tion, and it consists in providing the folder with a
and
greater number of turning edges for action upon on greater number of turning edges for action upon one
side of the fold line of the web than upon the other
side having the gre
the package.

SELEOTED AMERIOAN PATENTS 291,065. Gas Moron, Hiram S. Maxim, Paris, Claim.-(1) An air or gas engine comprising, in
combination, the following instrumentalities, to wit: a working cylindor and moans for oxploding therein
charges of gas and air, a piston impelled by explosions, a vacuum chandelior brought into com-
muncation with the working cylinder by the movemuntcation with the working cylinder by the move-
ment of the piston, a valvo for admitting air into the cylinder when connected with tho vacuous chamber,
and means for introducing exploive chargos into
the cylinder, these parts boing constructed and combined for co-operative action in substantially the
manner set forth. manner set forth. (2) In a gas engine, the combina-
tion, with the working cylinder and piston, of a
vacuum cylinder of greater capecty, vacuum cylinder of greater capacity, a piston working
therein, and an intermediate receas or chamber with therein, and an intermediato rocos ought into com-
which the working cylinder is brought
munication by the withdrawal of its piston, whereby at the end of each stroke the gases are withdrawn
from the working cylinder, in the manner deacribed (3) The combination, with the working cylinder of a gas engine, of a pump for introducing explosive
charges into said cylinder, menans for positively raising charges into said cylimder, moans or posituvely raising
the piston of the pump and then disengaging it, and
a spring for forcing it downward, all as set forth. (4) The combination in a gas ongine, of the working
and vacuum cylinders connected in the manner

doscribed, the piston working in said cylinders, and
the intermedinte chambers of communication at and round the ends of said cylinders, as described. (5)
The combination, with the working and vacuum cylinders and pistons contained therein, of inter-
mediate chambers of communication at or round the onds of the cylinderas, the working cylinder being
perforated in substantially the manner described, whereby communication is establishned between the the partial withdrawal of the pistons, as and for the
purpose set forth. (6) The combination, with th purpose set forth. (6) The combination, with the
Working and vacuum cylinders and pistons contained
therein. of chambers or vacuous spaces located theroin, of chambers or vacuous spaces located
around the ends of and betwcen said cylinders, and
exhaust connected with the snid chambers, as and for exhaust connected with the said chambers, as and for
the purposes set forth. (7) The combination, in a gas
engine, of a working cylinder and piston and a vacuum cylinder and piston, an automatica air check
valve opening into the working cylinder, and an exhaust valve opening outward, theso parts being
combined in substantially the manner described.
(8) The comble
gas ongine, of a pump for introduchng oharges of a air
 tored when the rave is open, as and for the purumes
sot forth. $(9)$ The combination, with the workin cylinder, of the pump $F$, the perforated valve $M$, with
air and gas inlet valves, and means for controlling the same, as and for the purpose specified. (10) The com-
bination, with the pump F , piston-rod $f$, and plate G bination, with the pump F, piston-rod f/ and plate G
of spring $s$ and cam $\mathrm{G1}$, all as set forth. (11) The com-
bination, with the working cylinder of the chambere bination, with the working cylinder of the chambered piston, the flame chimney, a bell-crank lever con-
nected with the piston, and an excentric for operating the bell-crank lever, all as set forth. ( 121 The The com.
bination, of the bell-crank lever $h$, bination, of the bell-crank lever $h$, rod $h$, excentric
$i$, piston $I$, containing a chamber at its inner end, and i, piston I, containing a chamber at its inger end, and
the flame chimney $J$, these parts being constructed and arranged in such a manner that the piston
thrusts the flame directly into the interior of the working or explosion cylinder, in the manne
described. (13) The combination, with the working cylinder of an induction valve L, perforated valve $M$
pump F , and valves connecting therewith, and
oxh xhaust valve, the parts being constructed in th
manner specified 291,515. Rotary Harrow, Jullius Hugo Hoof
Quincy, Dak,-Filed August 16 th, 1883 . jounted the therein drive wheels and suin which are mounted gear wheels, in combina
tion with a vertically-sliding cross beam, vertical

## 291515 <br>  <br> 



 ctaim. The combination, subtantially as heroin



rovolving armature, of a friction disc mounted
thereon, a yoke surrounding the dise, means for adusting the initial pressure of the yoke upon the
adjuse
dise, and a magnet in the main circuit for varying tho friction in accordance with the varying strength
the current in said circuit.

CONTENTS.
The Enginekr, February 22nd, $1884 . \quad$ paoe


THE ENOINE MKkRS Society
NEW RALIWAYS IN Prubia


TMERS WRAR AND TEAR OF Plant
NEW PATENT-ortice RULES
New Patentorfieg Rules
Rativa or Machisery
Water Power isö
Enolngers in india
A New Stezl.
Raliway Maters:

Leadina articles-
Elictric Lioutivg
What
Wrat 19 Friction
Boaler Insurance
Cavais an Ralo
Canals and Railways
Climbing Locomotives

 Crompton-Kaprs Cunhest and Potential indi-
cators. (muastrated.) CATORS. (Illustrated.
H.M.s. Edreverar.. TELDERS
TME Irow,

Notrs pros Lancasmime
Notes from Shervield
Notes from the North of Enoland
Notss from Scotlasd
Notss yrom Walus
The Pateat Journa $\qquad$

Paranapis
Decline in Trade .in ..
The late William Brookes..
The Electrician's Directory

| 152 |
| :--- |
| 155 |
| 155 |

Naval Enginekr Appointarents.-The follow ing appointments have been made at
ralty:-Thomas A. Morris, engineer, to the
Coquette, vice Mackney; Charles A. Moore,
assistant engineer, to the Swiftsure, vice Spuld
ing; and Edward Gallary, assistant engineer,
additional, to the Swifterre additional, to the Swiftsure.

