EXPERIMENTS WITH A CORLISS ENGINE AT

CREUSOT．

（Continued from page 150. ．

We stated in our last impression that the French horse－ power is less than the English，and all the results obtained during the Creusot trials are qualified by this consideration． iplying it by 9863 ，while the English horse－power is reduced to French by multiplying it by 1.0139 ．That is to say， 1014 French horse－power are 1000 English，or 988－ horse power English are 1000 French．We must also call attention to an error，which corrects itself．Table I． is headed，＂Without condensation，without steam jacket．＂ This should read，＂With condensation，without steam jacket．＂As the vacuum is given，however，the mistake is of no importance．Again，in the indicated horse－power column，close to the end，will be found an omission of several figures，and the words＂Not accurately stated．＂ The figures in the original are so inconsistent with all the others that we omitted them，feeling certain that they are misprints．The indicated horse－power is given in Experi－ ment 21 as 347；in Experiment 22 as 344 ；while two powers are given for Experiment 23，namely， 261 and 184. The last figure here is obviously the only one which can be accurate．This will be seen in a moment if a compa－ rison is made with the other figures in the table．Thus， for example，the highest power elsewhere recorded is 197，attained in the ninth experiment．The brake horse－ power was 163 ；so that 34 －horse power was consumed by the engine，or 19.8 per cent．nearly．In Experiment 21 the brake horse－power is 134，or a little more than one－third of the stated indicated horse－power，which is absurd．In Experiment 12，which was the most economical，the indi－ cated horse－power was but 152 in round numbers，while the brake，or effective horse－power，was 123；the difference absorbed in engine friction，\＆c．，being 29 －horse power，or 12.5 per cent．A comparison of all the percentages of difference between the indicated and effective horse－power throughout the 23 experiments will be found very instruc－ tive．The effective horse－power is the return which a manufacturer gets for his money；and a very high econo－ mical result measured in terms of indicated horse－power may be anything but economical if expressed in terms of
We may now proceed to consider the results obtained
We morser by further experiments．Among these we may first select those made to ascertain the value of compression．Arrange－ ments were made for this purpose by which the exhaust－ valve closed when the piston had yet to make 7 per cent． of its stroke．The results are set forth in Table II．We may compare Experiment 53，Table IV．，with Experiment 68，Table II．，which closely corresponds in point of cut off and pressure．It will be seen that with compression a saving of 6 per cent．was secured．The consumption of steam being，without compression， $12 \cdot 20 \mathrm{lb}$ ．，and with it 11.47 lb ．
We may now compare the results obtained when steam was admitted to the jacket with those obtained when it was excluded．The best result obtained without the jacket with condensation was in Experiment 12，when the consumption of steam was 8.08 kilogs．，or $17 \cdot 62 \mathrm{lb}$ ．per I．H．P．per hour．The best run with steam in the jacket，given in Table III．，is No．26，when the consumption was 7.38 kilogs．， or 16.20 lb ．The jacket，therefore，saved about $1 \frac{1}{3} \mathrm{lb}$ ．of steam per horse－power per hour，or a little over one－twelfth． But it must not be forgotten that the pressure in the latter case was nearly double that in the former．The best run with the jacket in use，the pressure being 64 lb ．in the boiler，was No．33，when the consumption was 7.87 kilogs．， or a little over 17 lb ．，or，within a fraction，a similar result to that obtained in Experiment 12.
From Table IV．we learn what the value of the condenser is．The best economical result without condensation was obtained in run 51 ，when the consumption was 11 kilogs．，or $24^{\cdot 251 b}$ ．，the cut－off taking placeat very nearly quarterstroke the boiler pressure being 78 lb ．We can compare this with run No． 60 ，with steam in the jacket when the consump－ tion was $9 \cdot 62$ kilogs．，or $20^{\circ} 3 \mathrm{lb}$ ．nearly．The cut－off took place at as nearly as possible one－fifth of the stroke，and the pressure being 110 lb ．The indicated horse－power was 240 in this run，while in Experiment No． 51 it was but 180．It is not easy to say，therefore，how much of the effect was due to the influence of the jacket，and how much to the fact that a greater weight of steam was passed through the engine per minute．The total quantity of steam condensed in the jacket seems in all cases to have been small．Thus，in run 60 the total quantity was 28 kilogs．in 30 min ．，or 56 kilogs．，or 123.5 lb ．，per hour， or within a small fraction of 5 lb ．per indicated horse－ power per hour，which seems to be much too small to be of value．This is due no doubt to the fact that the ends of the cylinder are not jacketted，out seeing that the con－ sumption of steam is wholly measured by what takes place during the time the admission port is open，it is obvious that it is more important to prevent condensation taking place in the cylinder then than at any other time．If great condensation takes place during admission，the steam is wet during the whole stroke，and it is of the last im－ portance to keep it dry．This wet steam，it is true，raises the toe of the diagram，but it only does this because re－evaporation takes place in the cylinder，and thus all the steam condensed is re－evaporated twice，once in the boiler and once in the cylinder，although it only does useful work once．
（To be continued．）

MR．TOWERS＇FRICTION EXPERIMENTS

The results of Mr．Towers＇experiments have now been before the engineering public for some time．Have they led to any modification in practice？So far as we are aware to none whatever．For example，Mr．Towers has shown that the pressure on the top of a bearing where the
oil hole is almost invariably made，is so great that it seems to be practically impossible for the oil to remain just where it is most wanted．We cannot find，however，that many if any engineers supply oil at the sides of their bearings in

Table III．
With Condensation；with Jacket．

						Horse－power．		Consumption of steam，in kilogs．			Weight of water condensed in jacket，	
						Indi－	$\underset{\text { Effec－}}{\text { tive }}$	Total．	$\begin{aligned} & \text { Per } \\ & \text { I.H.P. } \end{aligned}$	$\begin{gathered} \mathrm{Per} \\ \text { E.H.P. } \end{gathered}$	Total， kilogs	Per kilog． of stearn used．
Boiler Pressure， 110 lb ．												
24	73							1330				
25	55	$7 \cdot 20$	0.067	69.0	61.5	$161 \cdot 7$	128.5	1103	7.45	$9 \cdot 37$ ，	measur＇d	
26	80	$7 \cdot 30$	0.067	69.5	$59 \cdot 9$	$157 \cdot 0$	124.8	1541	7.38	$9 \cdot 27$		0.029
27	39	7＇40	$0 \cdot 125$	68.0	$58 \cdot 1$	215.0	$177 \cdot 4$	1100	$7 \cdot 87$	$9 \cdot 53$	35	0.032

Boiler Pressure， 89 lb ．

| 28 | 94 | $5 \cdot 98$ | $0 \cdot 050$ | $69 \cdot 5$ | $59 \cdot 6$ | $114 \cdot 0$ | $85 \cdot 6$ | 1412 | $7 \cdot 90$ | $10 \cdot 53$ | 43 | $0 \cdot 030$ |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| 29 | 102 | $5 \cdot 86$ | $0 \cdot 055$ | $70 \cdot 0$ | $59 \cdot 6$ | $125 \cdot 5$ | $95 \cdot 5$ | 1657 | $7 \cdot 75$ | $10 \cdot 32$ | 52 | 0.031 |
| 30 | 40 | $5 \cdot 91$ | $0 \cdot 115$ | $69 \cdot 0$ | $59 \cdot 4$ | $178 \cdot 6$ | $143 \cdot 9$ | 897 | $7 \cdot 55$ | $9 \cdot 38$ | 11 | $0 \cdot 122$ |
| 31 | 40 | $5 \cdot 91$ | $0 \cdot 140$ | $68 \cdot 5$ | $60 \cdot 0$ | $195 \cdot 7$ | $160 \cdot 4$ | 1021 | $7 \cdot 83$ | $9 \cdot 56$ | 15 | 0.015 |

Boiler Pressure， 64 lb.

32	115	$4 \cdot 21$	$0 \cdot 060$	$70 \cdot 5$	$59 \cdot 9$	$93 \cdot 0$	$69 \cdot 8$	1457	$8 \cdot 27$	$11 \cdot 02$	37	$0 \cdot 025$
33	92	$4 \cdot 21$	$0 \cdot 090$	$69 \cdot 5$	$59 \cdot 6$	$119 \cdot 0$	$92 \cdot 2$	1439	$7 \cdot 87$	$10 \cdot 15$	-	$\cdot \cdot$
34	90	$4 \cdot 28$	$0 \cdot 155$	$69 \cdot 0$	$58 \cdot 8$	$151 \cdot 6$	$122 \cdot 7$	1765	$7 \cdot 76$	$9 \cdot 58$	32	$0 \cdot 018$
35	71	$4 \cdot 35$	$0 \cdot 200$	$68 \cdot 0$	$59 \cdot 1$	$177 \cdot 2$	$148 \cdot 0$	1655	$7 \cdot 90$	$9 \cdot 47$	25	$0 \cdot 015$
36	50	$4 \cdot 38$	$0 \cdot 250$	$67 \cdot 0$	$59 \cdot 0$	$196 \cdot 7$	$166 \cdot 2$	1357	$8 \cdot 30$	$9 \cdot 80$	22	$0 \cdot 016$

37	98	$3 \cdot 22$	0.050	$71 \cdot 0$	$60 \cdot 3$	$69 \cdot 8$	$47 \cdot 8$	955	$8 \cdot 63$	$12 \cdot 60$	25	0.026
38	63	$3 \cdot 63$	$0 \cdot 100$	$70 \cdot 0$	$57 \cdot 6$	$96 \cdot 8$	$73 \cdot 1$	841	$8 \cdot 27$	10.95	19	0.023
39	60	$3 \cdot 45$	$0 \cdot 143$	$71 \cdot 5$	$59 \cdot 7$	$121 \cdot 9$	$96 \cdot 2$	992	$8 \cdot 13$	$10 \cdot 31$	14	0.014
40	74	$3 \cdot 42$	$0 \cdot 220$	$70 \cdot 5$	$60 \cdot 1$	$158 \cdot 8$	$124 \cdot 5$	1603	$8 \cdot 46$	$10 \cdot 43$	$23 \cdot 5$	0.014
41	50	3．53	0．290	68.0	59.5	181.0	148.5	1327	$8 \cdot 80$	$10 \cdot 72$	16	0.012

42	73	$2 \cdot 25$	0．190	$70 \cdot 0$	$60 \cdot 7$	$112 \cdot 7$	84.5	1213	8.85	$11 \cdot 80$	19	0.016
43	80	$2 \cdot 32$	$0 \cdot 420$	$67 \cdot 5$	$61 \cdot 9$	164.2	$135 \cdot 4$	2166	$9 \cdot 88$	11.98	24	0.011
44	40	$2 \cdot 47$	0.580	66.0	$61 \cdot 1$	182.5	$155 \cdot 0$	1382	$11 \cdot 37$	$13 \cdot 36$	8.5	0.006
45	25	$2 \cdot 44$	$\left\{\begin{array}{c}\text { admission } \\ \text { during } \\ \text { the whole } \\ \text { stroke }\end{array}\right\}$	64.0	$60 \cdot 4$	$201 \cdot 3$	$177 \cdot 0$	1238	$14 \cdot 77$	$16 \cdot 80$	2.5	0．002

Table IV．
Without Condensation；without Jacket．

					Horse－power．		Consumption of steam，in kilogs．		
坛㓪					Indicated．	Effective．	Total．	$\underset{\substack{\text { Por } \\ \text { I．H．P．}}}{\substack{\text { chen }}}$	$\underset{\substack{\text { Per } \\ \text { E．H．P．}}}{\text { cremer }}$
Boiler Pressure， 110 lb ．									
$\begin{aligned} & 46 \\ & 47 \\ & 48 \end{aligned}$	$\begin{aligned} & 78 \\ & 55 \\ & 25 \end{aligned}$	6.77 7.04 7.17	$\begin{aligned} & 0 \cdot 130 \\ & 0 \cdot 170 \\ & 0 \cdot 200 \end{aligned}$	61.7 61.4 63.6	$\begin{aligned} & 149.5 \\ & 184 \cdot 0 \\ & 220^{\circ} 0 \end{aligned}$	$127 \cdot 0$ 161.9 196.7	$\begin{aligned} & 2466 \\ & 2024 \\ & 1059 \end{aligned}$	$\begin{aligned} & 12 \cdot 7 \\ & 12 \cdot 0 \\ & 11 \cdot 55 \end{aligned}$	$\begin{aligned} & 14 \cdot 94 \\ & 13: 63 \\ & 12 \cdot 91 \end{aligned}$
Boiler Pressure， 78 ll ．									
$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$	$\begin{aligned} & 66 \\ & 60 \\ & 60 \\ & 30 \end{aligned}$	5． 18 5.41 5.49 5.45 5.45	0.155 0.150 0.245 0.320	62.0 60.9 60.0 60.6	$123 \cdot 0$ $137 \cdot 8$ $180 \cdot 4$ $212 \cdot 0$	$104 \cdot 6$ $119 \cdot 9$ $161 \cdot 3$ $108 \cdot 0$	1670 1645 1987 1148	$12 \cdot 34$ 12.95 11.95 10.00 10.82	$14 \cdot 53$ 18.73 12.29 $11 \cdot 90$
Boiler Pressure， 50 lb ．									
$\begin{aligned} & 53 \\ & 54 \\ & 55 \end{aligned}$	$\begin{aligned} & 71 \\ & 70 \\ & 50 \end{aligned}$	3.57 3.60 3.60 3.55		$\begin{aligned} & 61 \cdot 4 \\ & 61 \cdot 1 \\ & 60 \cdot 9 \end{aligned}$	$\begin{aligned} & 109 \cdot 6 \\ & 199 \cdot 0 \\ & 175 \cdot 7 \end{aligned}$	95 138 138 160%	$\begin{aligned} & 15866 \\ & { }_{2117} 197 \\ & 1976 \end{aligned}$	$\begin{aligned} & 12 \cdot 20 \\ & 12.17 \\ & 13 \cdot 50 \end{aligned}$	$\begin{aligned} & 13 \cdot 93 \\ & 13 \cdot 60 \\ & 14 \cdot 83 \end{aligned}$
56	25	2.45	$\left\{\begin{array}{c} \text { the } \\ \text { whole } \\ \text { stroke } \end{array}\right\}$	$60 \cdot 6$	$147 \cdot 0$	$136 \cdot 6$	1282	$20 \cdot 95$	22．50

Table V ．
Without Condensation；with Jacket．

					Horse－power．		Consumption of steam，in kilogs．			Weight of water condensed in jacket．	
目亭					Indi－	Effec－ tive．	Total．	Per I．H．P．	E．Por	$\underset{\substack{\text { Total } \\ \text { kilogs．}}}{\text { chen }}$	$\begin{aligned} & \text { Per kiliog. } \\ & \text { of steam. } \\ & \text { used. } \end{aligned}$
Boiler Pressure， 110 lb ．											
$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 36 \\ & 30 \\ & 30 \end{aligned}$	6.90 $7 \cdot 30$ $7 \cdot 24$ $7 \cdot 28$	0.110 0.130 0.160 0.200	$60 \cdot 8$ 62.0 62.0 62.7	145.0 180.0 19.0 240.0	$122 \cdot 6$ $15 \cdot 7$ $173 \cdot 3$ $214 \cdot 5$	1973 1179 11157 1154	$\begin{array}{r} 10 \cdot 20 \\ 9.90 \\ 10 \cdot 00 \\ 9 \cdot 62 \end{array}$	$\begin{aligned} & 12 \cdot 07 \\ & 11.50 \\ & 11.36 \\ & 10 \cdot 74 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 67 \\ & 37 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.034 \\ & 0.031 \\ & 0.020 \end{aligned}$
Boiler Pressure， 78 lb．											
$\begin{aligned} & 61 \\ & 62 \\ & 63 \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \\ & 30 \end{aligned}$	$5 \cdot 41$ 5.33 5.48	0.165 0.235 0.300	$\begin{aligned} & 61 \cdot 1 \\ & 61 \cdot 6 \\ & 60 \cdot 5 \end{aligned}$	$139 \cdot 0$ 182.5 207%	$118 \cdot 8$ 163 $188 \cdot 5$	$\begin{aligned} & 1715 \\ & 1484 \\ & 1017 \end{aligned}$	$\begin{gathered} 10.58 \\ 9.75 \\ 9.72 \end{gathered}$	$\begin{aligned} & 12 \cdot 37 \\ & 10.88 \\ & 10 \cdot 80 \end{aligned}$	$\begin{aligned} & 29 \\ & 18 \\ & 13 \end{aligned}$	$\begin{aligned} & 0.017 \\ & 0.012 \\ & 0.013 \end{aligned}$
Boiler Pressure， 50 lb ．											
$\begin{aligned} & 64 \\ & 65 \\ & 66 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 3.64 \\ & 3.25 \end{aligned}$	$0 \cdot 230$ 0.340 0.580 during den	$\begin{aligned} & 60 \cdot 5 \\ & 60 \cdot 5 \\ & 60 \cdot 3 \end{aligned}$	$\begin{aligned} & 109 \cdot 5 \\ & 1+3.5 \\ & 170 \cdot 8 \end{aligned}$	$\begin{array}{r} 95 \cdot 8 \\ 127 \cdot 8 \\ 154 \cdot 5 \end{array}$	$\begin{aligned} & 1448 \\ & 1617 \\ & 2298 \end{aligned}$	$\begin{aligned} & 11 \cdot 32 \\ & 11 \cdot 28 \\ & 12 \cdot 86 \end{aligned}$	$\begin{aligned} & 12 \cdot 94 \\ & 12 \cdot 64 \\ & 14 \cdot 20 \end{aligned}$	$\begin{aligned} & 22 \\ & 18 \\ & 14 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.011 \\ & 0.007 \end{aligned}$
67	30	$2 \cdot 37$	$\left\{\begin{array}{c}\text { during } \\ \text { the } \\ \text { whole } \\ \text { stroke }\end{array}\right\}$	$61 \cdot 1$	149.5	$139 \cdot 0$	3096	$20 \cdot 70$	$22 \cdot 25$	4	0.0026

Table II．

					Horse－power．		Consumption of steam，in kilogs．			Weight of mater	
					$\xrightarrow{\text { Indif．}}$ coted．	${ }_{\text {Effoe }}^{\text {Hipo．}}$	Total．	${ }_{\text {I }}^{\text {Pear }}$ ．	${ }_{\text {E．Fer Pr }}^{\text {Pr }}$	$\underset{\substack{\text { Total } \\ \text { kilog．}}}{\text { cem }}$	
Boiler Presurc， 47 ll ．											
${ }_{70}^{69}$	85 85 80	3.70 $3: 72$ $5 \cdot 51$	（ $\begin{aligned} & 0.240 \\ & 0.355 \\ & 0.230\end{aligned}$	$\begin{aligned} & 60 \cdot 1 \\ & 59.7 \\ & 60.0 \end{aligned}$		$\begin{array}{r} 96 \cdot 2 \\ \begin{array}{l} 960^{2} \\ 155^{2} \end{array} \end{array}$	$\begin{gathered} 1789 \\ \begin{array}{c} 205 \\ 1362 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 11.47 \\ 11.45 \\ 9.48 \\ \hline \end{gathered}$	$\begin{aligned} & 13 \cdot 1 \\ & \text { an: } \\ & 10.8 \end{aligned}$	$\frac{1}{25}$	0.018

order to get over this difficulty. It appears to be
scarcely worth while to carry out a costly series of experiments if the lessons they teach are simply put by and ignored. There are, however, two sides to this as there are to every question, and it may be asked whether the
information supplied by Mr. Towers is of any practical value? It must be admitted that, in the present day, great deal is taught to engineers-and, indeed, to everybody else, from Board-school children up-which is of no
use whatever; and it may be argued that machinery will use whatever; and it may be argued that machinery will less wasteful of power, because Mr. Towers has shown that the hitherto received statements concerning the various coefficients of friction are all wrong. This is not our argument, be it understood; but it is an argument which
deserves some consideration, if for no other reason then because it seems experiments taken by practical machine makers. If it can be shown that bearings do not give any trouble now, and use very small quantities of oil, it may be asked, what
does it matter whether the coefficient of friction is 0 .01 $0^{\circ} 001$? It is a noteworthy fact that, although the Institution of Mechanical Engineers set these experiments on foot, its members seem to be quite content to place the results on record in their "Transactions," and do nothing more. Surely they are worth a better and fuller discussion than they have yet received
The most troublesome class of bearings with which the engineer has to do are those of marine engines. It seems to be quite impossible to work them cool without employing
quantities of cold water. The crack racers of the Atlantic -such, for example, as the Arizona or the Oregon-have spray pipes fitted over the crank pits; and from these a
deluge of water is distributed during the whole run. The water is never shut off, save for the moment when a man feels the bearings to ascertain if they are running cool There is besides a 2 in . hose always ready for action. Why should all this be necessary? It may be said that the great heat of the engine-room tends to make the bear ings hot. But the crank shaft stage in such ships as we away far up overhead. The boiler-rooms are shut of by the buikhead. We have felt chilly in the crank-room, as it may be called, of one of these great ships. Why is
it, again, that the bearings of heat? It may be taken as proved that if a locomotive is properly designed and properly worked there will be no
trouble from hot bearings; yet the loads per square inch of surface are very heavy indeed. Take, for example, a big end brass; the bearing will be 4in. long and 8 in . in diameter, the pressure on it with a 17 in . cylinder and
120 lb . pressure will be 27.240 lb . the bering 120 lb . pressure will be $27,240 \mathrm{lb}$.; the bearing surface will strain-33in., let us say. Thus the load per square inch will be 825 lb ., which is much more than is usually deemed safe. In small stationary engines, on the other h und, we constantly find that the bearings give a great deal of trouble.
Why is this? Have the experiments of Mr. Towers thrown Why is this? Have the experiments of Mr. Towers thrown any light on the subject, or helped us to the reason why
We think not, or rather, we should say, that engineers as a We think not, or rather, we should say, that engineers as a
body think not, for we still have hot bearings, Mr. Towers to the contrary notwithstanding. Our own explanation of hot bearings is that they are in nearly all cases due to some bending or pinching action. Heating can be set up
by a very minute cause, and once it is started it will by a very minute cause, and once it is started it will go
on. In one out of many cases, in fact, which have come on. In one out of many cases, in fact, which have come
under our knowledge, where a crank pin heated persistently, the evil was due entirely to the circumstance that the crankshaft was too weak, and bent and whipped under the
strain. It will constantly be found that crank shafts will strain. It will constantly be found that crank shafts wil
run quite cool, unless the bearings are so far screwed down that the crank shaft has very little play. In other words, absence of "knock" and heating go together. The
received explanation of this is that when the brasses are a loose fit the oil gets between the surfaces. This may be a partial explanation, but not a complete one,
because it leaves the fact unexplained that bearings will not invariably heat because they are screwed up. When hot bearings are normal to an engine, we believe-we had
almost said we know-that something is out of square almost said we know--that something is out of square
there is want of truth and accuracy. A slack brass is simply a crude expedient for obviating this difficulty. It permits the rubbing surfaces to play about and adjust themselves to each other. No properly-designed, properly-
lubricated bearing wants to run hot. If it heats, it is lubricated bearing wants to run hot. If it heats, it is
driven to it, so to speak, against its principles. One reason why a locomotive runs cool is that provision is made for a great deal of self-adjustment. This is necessary in a machine which runs over a comparatively uneven
and crooked surface. There is elasticity, and this serves a useful purpose. We too often find, however, in steam machinery that a partial and very mischievous elasticity is introduced by the employment of parts too small and light
for their work. James Watt and the early engineers could not have wot on at all if they had not made special pro nision for want of accuracy in workmanship. Thus the connecting rod was always connected to the beam end by one universal joint, and very often there was another at
the crank shaft end of the rod. The piston rod and the crank shaft end of the rod. The piston rod and
parallel motion, and the beam and the air pump rod, were parallel motion, and the beam and the air pump rod, were
all mutually accommodating. The result was that these old engines are running, many of them, to this day Returning once more to Mr. Towers' experiments, we ask
for information as to whether anyone is acting on the dis for information as to whether anyone is acting on the dis-coveries-for they are nothing else-and if so, with what
results? We confess the one who is the better in any respect of them. This ought not to be the case. Everyone says that they are of great value; is it wrong to ask of what value? Are they worth something to the community in a pecuniary sense ? if not, engineering th ful labours of a member of the profession should be thrown away. It reminds us of the work done by Government
Committees, who take evidence and pursue investigations extending over months, it may be years. Finally they report. But nothing comes of the report.

PRIVATE BILLS IN PARLIAMENT.

 The various private Bills now before Parliament have made rapid progress during the past week, and although March hashardly yet been entered upon, many of these measures will be before select Committees of one or the other House in the witnessed for many years, and always assuming that a sudden dissolution does not interrupt their career, the numerous schemes now under consideration are likely to receive more than usual care and consideration, and thus to be more satisfactory in the results. Recent occurrences suggest that before many more into the method of dealing with these measures, but at the least it may be expected that these Bills will in future bey have heretofore. The Committees for forming the
the haver work making their selections; and on Monday some of the Com-mittee-rooms will again be occupied by promoters, partisans,
and opponents. One of the first Bills to be taken in hand will be the Manchester Ship Canal Bill-still the biggest scheme of the session. A week ago it seemed probable that a real effort
would be made to bring about a joint Committee of the two Houses to settle this project once for all, and so avoid a double nquiry and two-fold expense. But when the Bilwas proposed posal in that direction was made, and the Bill passed the stage without comment. There was something mysterious in this collapse of the movement initiated a week ago, and inquiry oraces the cause very much, if not entirely, to Lord Redesdale, whose rigid adherence to forms and precedents are a terror to all who dream of new paths in regard to private legislation. Going back to the few cases of joint Committees on record, Lord Redesdale takes the view that such instances involved wid general interests quite different from the questions raised by
private scheme of this kind, however large it might be. Fron private scheme of this kind, however large it might be. From this quarter, therefore, no encouragement was to be obtained,
and that meant a good deal; but it is also true that the opponents of the Bill have shown no real desire to avoid the trouble and cost of a double investigation and contest, Under those circumstances, the promoters were not likely nust pass through an ordeal in each House commencing withe House dmittee in the course of the discusion of the dea of a joint Committee it has been pointed out that during bills inelving such issues as : (1) Railway scomes for the Metropolis; (2) Parliamentary Deposits ; (3) Railways; (4) Railways Transfer and Amalgamation; (5) Parliamentary
Agents; (6) The Stationery-oftice ; (7) The Channel Tunnel. None of these cases afforded a precedent, and apparently there was no sufficient ground for the creation or a preceder. The House, but that is a very different matter from a joint Comnittee of the two Houses. As to the prospects of the Bill, ppone deinite character their resistance- $-n e$ of the stronges pponents will continue their resistance-the Liverpool Corpo
for instance ; and it is worthy of notice that the autawities of the Bridgewater Navigation have again presented
(petition. During the enquiry last seesion something like a petition. During the enquiry last seasion something like a
mutual arrangement was arrived at between them and the in moters, very much to the advantage of the former, whose but the Bill having failed then, the understanding also lapsed. Therefore, the Bridgewater people must again act on selfdefence and put in an appearance, but an
The several tramway schemes for the metropolis have already aroused a good deal of controversy, and are likely to be prolific
of dispute and contention. The Metropolitan Board of Work re naturally much interested in these undertakings, and they, in conjunction with the various districts directly affected, hav in the past week come to a decision upon the schemes. They
resolved not to consent to the Crystal Palace, Anêrley, and Penge Hill CableTramway Bill; they agreeto the Highgate, Finchley, and promoters suje to politan Central Tramways (Holborn, Clerkenwell, and Islington) bill, and to the North Metropolitan Tramways (Nos 2 and Bills, and the North-West Metropolitan Tramways Bill. Since that decision the last-named Bill has, we understand, ceased to exist for this session. The Highgate and Finchley Bill is also understood to have dropped. On the other hand, they decided o assent to the introduction of the Peckham and East Dulwich Rye-lane until that thoroughfare had been widened-a very im ortant condition which might be more often stipulated fo -and certain necessary junctions provided for. The Board the promoters undertaking to omit tramways $3,4,5$, and 6 ane promoters undertaking to omit tramways s, 4,5 , and ${ }^{2}$.
extending froma point in the Clerkenwell-road, along Theobalds. ceeding along Gray's Inn-road to High Holborn. The Iondo Street Tramways (Extensions) Bill was likewise assented to in its main provisions. Among the general schemes the following have now safely passed their second reading, and ar ready for the Committee stage:- The Glasgow Water
Loch Katrine); the Liverpool Cathedral ; the Glasgow ramways; the Liverpool Improvement; the London Cen-
tral Subway ; the Columbian Market and Railways ; the Brentford and District Tramways ; the Eastern and Mid he Manchester Sheffeld and Larnsley Raiway and Dock Railway (additional powers); and several other Bills. The Parliament-street Inprovements Bill was to have come on for nonth. With respect to the Tower Bridge Bill, Mr. Ritchie, one of the members for the Tower Hamlets, has given notice composed of five members nominated by the House and four by the Committee of Selection.
Petitions against the numerous Railway Rates Bills continue Bills were to have been proposed for second reading on Monda ast, but they were not taken, and cannot now be taken until Wednesday next. It is now, however, exceedingly doubtful widespread agricultural and commercial opposition to them, a Committee of the House of Lords have drawn up an amendmen in a private Bill the policy of authorising the imposition
of charges on traffic, the principle of which has not hithert been sanctioned in a company's case, and that any general
revision of the classification and of rates and charges should be effected by a general measure promoted by a responsible
department of her Majesty's Government." This looks very
like the death-knell of these proposals, the case of the London, Chatham, and Dover Railway (Rates and Charges) Bill, and the East and West India Dock Company pettion to introduce a Bill, the Standing Orders with whic they may proceed; but they report that the Standing Order hould no proced, but they report that the standing Order Regent-circus, and City Subway petition.
The same Committee have also reported that in their opinion the Standing Orders should be dispensed with in the case of herties be permitted -and City Subway Petition, and that the amended plans and sections be deposited in the Private Bil Office and with the Clerk of the Peace for the county Middlesex, and that a clause be inserted in the Bill prohibiting the promoters from opening the roads at any of the points men six in the evening and six in the morning, and then only fors six in the evening and six in the morning, and then only for the
purpose of providing a temporary bridge or roadway for carrying the traffic during the construction of the subway.

THE NAVY.
ON December 2nd of last year the Earl of Northbrook rose in the House of Lords to move for returns respecting the ships
built and building for her Majesty's Navy during the last four built and building for her Majesty's Navy during the last four
years. It will be remembered that during Lord Northbrook' absence in Egypt much excitement was caused by comparisons
hat had been made between the state of our Navy and that of ther nations, and in consequence, shortly after his return from Egypt, the First Lord, in obedience to public opinion, made a
statement in the House of Lords, while Sir T. Brasey on the ame day explained in the House of Commons both what hat been done and what was intended to be done in making the Navy thoroughly efficient. Long debates followed in boil Nouses, and the returns moved for were agreed to. Lis pubished, and contains not only a statement of the ships laid naval expenditure from 1865-66 to 1883-84.
In the year 1880-81 there were built or building seven armoured vessels, of which one, the Colingwood, was a barbette
hip of 9150 tons displacement, 9500 -horse power, built of steel with an armament of four 43 -ton guns and six $89-\mathrm{cwt}$. guns on the upper deck ; three were partially-protected steam cruisers, sister ships, of steel, the Arethusa, the Leander, and the
Phaeton, each of 3750 tons and 5000 -borse power, with ten $89-\mathrm{cwt}$. guns. All these are set down as incomplete. The maining three were partially-protected sloops. There were
for the same year three gunboats and four special service vesels. For the next year, 1881-82, the number of armoured vessels were nine, of which three were steel barbette ships-the Rodney,
9700 tons and 9500 -horse, of steel, with four 64 -ton and six $89-\mathrm{cwt}$. guns. The other two-the Impérieuse and Warspite-
were each of 7390 tons and 8000 -horse, of steel, with four 18 -ton guns, and the same armament as the Rodney on the upper deck. The remainder of the armoured were one partiallyprotected steam cruiser-the Amphion-of the same material
and size as the Arethusa, but with no armament for turret or barbette; two partially-protected corvettes, the Calliope and Calypso, each of 2770 and soor-horse; and siree were partially are set down as incomplete, and in only one case is turret or barbette armament mentioned. The same year saw seven un-
armoured vessels complete, two gun vessels, three gunboate, and two vessels complete,
In 1882-83 we again find incomplete three steel barbette ships former of 10,000 tons each, the last of $9700:$ and each of 9500 -horse. The first was armed with two 100 -ton, and ten guns. The only other armoured ship for this year was a partially-protected sloop. Of the unarmoured vessels there
were three gun vessels and five special service vessels, two of the ormer class incomplete.
In 1883-84 we find only one steel barbette ship, the Anson,
 guns. Two protected ships of steel were the Mersey and Severn,
each of 3550 tons and 6000 -horse, with two 13 -ton and ten 89-cwt. guns. All these were incomplete. The unarmoured
were six in number - namely, two gun vessels, one torpedo cruiser-the Scout-two despatch, and one special service vessel. The last was the only one completed.
The estimate for last year, $1884-8$
The estimate for last year, 1884-85, was for three armoured plete. The date of the completion of all the heavier vessels is uncertain, and the earliest date given is January of next year, When one special service vessel is likely to be complete. Of the and 6000 -horse, with two 43 -ton and four 89 -cwt. guns, and the other two are classed as protected ships, the Forth and the
Thames, each of 3550 tons and 5700 -horse, with two 13 -ton and ten $89-\mathrm{cwt}$. guns. Of the six unarmoured, two were gun vessels, one a torpedo cr
apecial service.
With the estimates for the coming year we have recently dealt. We will only, therefore, remind our readers that there
are to be built in her Majesty's dockyards two armour-clad are to be built in her Majesty's dockyards two armour-clad
ships, one torpedo ram, one torpedo cruiser of the Scout class, aips, one torpedo ram, one torpedo cruiser of the Scout class,
and one new gun vessel; and by contract, two armour-clads, five belted cruisers, six Scouts, four new gunboats, and ten first-class torpedo boats-a total of thirty-two for the year. No probable ships, and with regard to the ironclads, two of them are not yet ordered, and of two the type is not decided.
diturew come to the statement which shows the total expenaggregate sum spent in that time is $\begin{aligned} & \text { is } \\ & £ 29,515,244 \text {; in the first }\end{aligned}$ ten years the yearly average was $£ 1,315,502$, for the last nine
$£ 1,817,802$. The lowest year of all is 1872.73 , when only £809,087 was spent on shipbuilding ; the highest is 1877-78, and next to that
epent respectively. In $1878-79$, the year after the great expenditure, the amount dropped to $£ 1,508,049$, and the next year again to $£ 1,388,607$. Since then the expenditure has continued
to rise, from $£ 1,426,349$ in $1880-81$ to $£ 1,930,090$ in $1883-1$ the largest amount in any year except the two before mentioned The total expenditure for the six years from 1875-76 to 1880-81 was $1881-82$ to $1883-84$ the total was $£ 5,379,604$, or a yearly average of $£ 1,793,201$.

Mr. W. H. Masser has been appointed mechanical and electric
ight engineer to the Queen.

THE TOWER SYSTEM OF ELECTRIC LIGHTING. We publish below a plan showing the manner in which the city of Elgin, Ill., is lighted by electricity, the lamps being placed at the top of lofty towers. The Electrical World says "the Van Depoele system is used, and the area illuminated is four square miles. It will be noticed that each tower is the centre of a circle, and that the circles are so arranged as to leave no portion of the area without light. The figures along the sides of the triangles composing the hexagon show the distances in feet from tower to tower. The height of each tower is also given. Mr. George S. Bowen, the president of the
local company, remarks : It need hardly be said that the light

in Elgin and the manner of its distribution find almost universal commendation, and yet the opposition to the tower system was at first bitter, and was found in the various electric light companies as well as outside of them. The success in Elgin has
almost entirely overcome the local prejudice, and the tower almost entirely overcome the local prejudice, and the tower
system stands pre-eminent as the one for city lighting. Elgin has seven towers, of which six are 125 ft . in height, and one 150 ft . On them is a total of twenty-nine lamps of 2000 candle-
power each. The city contracts with the Electric Light Compower each. The city contracts with the Electric Light Com-pany-which owns the entire plant, towers and all-for five
years, at 6800 dols. per year. Tower lighting has already been adopted by several cities, and promises to become even more popular."

APPARATUS FOR BLEACHING OR DYEING
YARNS AND GOODS IN VACUO.
Many attempts have been made to facilitate the penetration which they require to be treated, by carrying out the treatment in vacuo, i.e., in such apparatus as shall allow of the air being withdrawn-c. f. Ibid 249, 88. The apparatus shown in the annexed engraving-Austrian Pat. Jan. 15, 1884 -although not essentially different from those already in use, embodies, the

Journal of the Society of Chemical Industry says, some important improvements in detail. It consists of a drum A, the sides of which are constructed of stout netting, carried on a
vertical axis working through a stuffing-box, which is fitted in the bottom of the outer or containing vessel or kier B. The air can be exhausted from B by means of an air pump. A contains a central division P, also constructed of netting, into which is inserted the extremity of the tube R , after being twice bent at a right angle. \mathbf{P} is also in direct connection with the efflux tube E, E and R serving to convey the dye or bleach solutions to and from the reservoir C. The combination of the retary motion communicated to A, which contains the goods to be dyed or bleached, with the very thorough penetration and circulation of the liquids effected by means of the vacuum established in B , is found to be eminently favourable to the rapidity and evenness of the dye or bleach.

THE LEGG ROTARY POWER COAL DRILL. The Legg rotary power coal drill, which we illustrate by an consists of a small rotary engine, hung in an upright frame
with points at top and bottom to engage, by adjurtable sorews, with the roof and floor of the mine, supported by is dog or brace to stiffen and hold the frame rigid, as the auger-bit is "Attached the coal or other material
an a feed screw from 4 ft to 5 ft long upon a feed screw from 4 ft . to 5 ft . long in one end of this
screw is a square socket hole, into which is inserbed the square end of the auger-bit, two of which are used for convenience, one 3 ft . and the other 6 ft . long, boring a hole $1 \frac{3}{4} \mathrm{in}$. or 2 in . in dia meter, as may be required. When ready to operate the drill frame is set 3 ft . from the face of the coal, the short auger is inserted in the socket of the feed screw, with the bit end against the face of the coal. The feed nuts are closed upon the screw by means of a lever, the air is turned on-compressed air being the motive power used in mines-and the auger begins revolving at a rapid speed. In little more than a minute this auger is buried its full

length in the coal. Then the feed is slowed by turning off the air, and the feed nuts are opened off the screw by reversing the lever. The feed screw is pulled back through the open nut
with the hand, and the short auger removed from the coal, and the long or bft. auger is thrust through a hole in the large gear wheel into a hole already made, and the square end again inserted in the socket end of the screw, the feed nuts closed upon the screw, and the air turned on as before. In less than five minutes from the time the drill frame began to get in place
a hole 2 in . by 6 ft . is made in the coal, and the operator is engaged a hole 2 in . by 6 ft . is made in the coal, and the operator is engaged
in removing the drill to another point in the mine to be drilled Several of these drills, which are manufactured by the Lechner Manufacturing Company, of Columbus, Ohio, are in use at the Columbus and Hocking Coal and Iron Company's mines at Longstreth, Ohio, and in other mines throughout the country and are said to be giving the best of satisfaction. They are, o course, immediately available in those collieries where an air compressing plant already exists.

LOCKWOOD AND CARLISLE'S PISTON RINGS
ThE accompanying engraving illustrates a new form of piston spring patented by Messrs. Lockwood and Carlisle, Eagle
Foundry, Sheffield. The packing consists of two rings, with

slut to each. The springs are of round steel partly disposed in flat coils, which tend to enlarge the diameter of the rings, and the top and bottom of the piston head.

SCHNETZE'S FOUNDRY SAND MIXER.
THE accoompanying engravings illustrate a machine made by street, for mixing and pulverising foundry sand. The construction of the machine requires no explanation. An essential point obtained is the thorough disintegration of all clay particles contained in the sand which tend so much to blow and render the cast iron unsound if not finely crushed. Another point is the intimate mixing of the coal dust throughout the entire mass, By using sand thus prepared a much better skin is ensured. Disintegrating machines have been used in several instances
already for this purpose, but their construction was generally a horizontal one, and, besides requiring considerable power to drive them, there were found reasons against the extension of takes up but little space and cannot get blocked up, as there is but

one set of pins on one disc, and the damp sand, loam, \&c., is whirled outwards against an elastic ring and then falls to the ground. The steel pins can be replaced in a few minutes by any ordinary labourer when worn out, and beyond the wear of these pegs, here is nothing likely to cause a breawn or any cost in repairs. The machine requires from 1 to 2 -horse power, and is

capable of turning out in less than an hour sufficient sand to last a good size foundry the whole day. The machine is being argely used in Germany, and the greater attention which is doubt afford it an extensive field here.

TROTTER'S WIRE GAUGE.

THE accompanying engravings represent a new form of wire guge manufactured by Messrs, Walter T. Glover and Co, Man chester. The gauge comprises four separate scales. The long scale marked s.w.g. gives the diameter in the new Board of Trade standard wire gauge. This differs but very slightly from the old Birmingham wire gauge ; for instance, No. 12 b.w.g. has a diameter of 0.109 in , and in the s.w.g. it has a diameter of 0.104 in. Again, No. 16 b.w.g. is 0.065 , while on the s.w.g. it is 0.064 . The difference throughout the other numbers is only in holding, and is opened by pushing the eye at the end of the

slide. The wire or other article to be measured is placed between the jaws and nipped tight, the reading being taken on the scales. Very fine wires or soft materials should not be nip ped too tightly, otherwise the reading will be too low. The s.w.g observing the numbers of the graduations which coincide, the two numbers being identical. For instance, if a well-worn penny be nipped between the jaws, it will be found that the graduation between 16 and 20 -that is 18 -will be opposite the corresponding graduation; the thickness is therefore $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. A new penny will in the same way measure about $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. and with a slightly worn penny neither 16 nor 18 will coincide but it will be found that the half length graduation correspond ing to 17 on the slide, will be in more or less accurate correspondence with its fellow on the body, and the reading will be $16 \frac{1}{2}, 17$, or $17 \frac{1}{2}$, as the case may be. When 18 is opposite 18 , it will be noticed that the graduation 12 on the lower scale, is scale; but these numbers not being identical of these lines must be neglected:- if a No $8 \mathrm{~s} . \mathrm{w} \cdot \mathrm{g}$ of these lines must be neglected:-c.g., if a No. 8 s.w.g.-
standard wire gauge - wire be nipped, it will be seen that the inch scale reads $0 \cdot 160$, the millimetre scale a shade over 4-the exact size being 4.064 -whilst the scale of areas registers-020-this giving at the same time the current in amperes- 20 -that the wire will safely carry. The area multiplied by 4 gives 8 lb . per 100 ft ., and so on throughout the other calculations as to resistance, horse-power, \&c. As another example, put the 16 marks on the s.w.g. into coinci-
dence. Looking at the mils scale, we see that the arrow head is
just past the third division, and the wire is something more than just past the third division, and the wire is something more than
06 in, in diameter. To get the figure the vernier must be read, when it will be seen that the fourth mark coincides with a mark on the upper scale; hence the accurate reading is 064in.
Looking at the millimetre scale, we see that the arrow is past the 1 millimetre mark, and also past the half mark, hence the measurement is over 1.5 millimetres; but to get the measuredivision on the everier most nearly coinciding with a division on
the scale is the first ; hence the reading is 1.62 . If it had happened that thearrowhead had not passed the half mark on the upper scale, the reading would have been $1 \cdot 12$. If the area found by the gauge be multiplied by $12 \cdot 33$, the result is the length in
feet of purs copper wire having a resistance of one.tenth of an ohm $\left(\frac{\mathrm{ft} .}{0 \cdot 1 \mathrm{ohm}}\right)$. For practical purposes the multiplier may with greater facility be 12 ; with wire having a conductivity of 98 per cent. the constant would be correctly $12 \cdot 08$. If the area
be multiplied by 0.4 -more accurately 0.386 -the result is the weight in pounds of a length of 100 ft . $\left(\frac{\mathrm{lbs} .}{100 \mathrm{ft} .}\right)$. The area multiplied by 0.323 equals Sir William Thomson's very safe rule
of 0.5 amperes to the souare millimetre. The area multiplied by 0.0575 gives the horse-power lost per mile, with 1000 amperes in ohms per mile. Other co-efficients will readily suggest themselves to practical electricians.

THE SOCIETY OF ENGINEERS. american engineering enterprise. ON Tuesday, the 2nd inst., Mr. Arthur Rigk., C.E.E., read the
following paper on this subject. It was well illustrated by pho-tographs:- II known that the British Association for the Advance
In ment of Science paid a visit to Montreali in the autumn of 1848,
and many of its members took that opportunity for visiting places of interest in Canada and the United States, either for purposes of
study or pleasure, or gone so far as to say there is nothing to bo learned or ooserved in
that wide and boundless dominion, which, to our unceasing satisfation, is in the possession of the Anglo-Saxon race, and not under
the control of any foreign nation. To suppose that men of the most energetio race on earth could possibly develope the resources
of a new country, abounding with every potentility of a now country, abounding with every potentiality of wealth,
without doing anything a traveller from their ancestral home may not see and study with advantage, is to confess a want of
observation on the part of the visitor, an utter blindness, indced, that carries oontradiotion oconvincing and completete to any statement so absurd. Indece, so far is a contrary view the fact, that one
might petrify the whole country as it now stands, and then spend
the leng subjects of interest lif tindeed, without exhausting its boundless time or opportunity for sont, fyying visit can possibly give enough
time exhaustive study; so it
needs little or no apology in bringing ber needs hittle or no apology in bringing before my fellow
engineers some desultory remarks upon a fow of the many
interests which gather around the western continent; and also it seems wiser to deal generally witho some of these rather than
attempt too much attention only to a few. Such a course seems best calculated to bringtion both writet and hearer into thourse semison of
a rapid and somewhat imperfect series of disoonnected nhserve a rapid and somewhat imperfect series of disconnected observa-
tions, to awaken a wider range of interests, and very possibly serve as some help to those who maypursue thio e exrsions to foreign
after. Compared with the more familiar excurs
countries, those wery advantages of travelling in Canada and the United States are
 hardy suspected at home: the names of our best writers ar
familiar to the many, and are not restricted, as here, to th cultivated fow; and with these advantages thero prevails an all
abounding intelligenco $-a$ vast community of interests among al abounding intelligenco-. a vast community of interests among ail
classes of the people. This also tends to softer the asperitics
of those class distinctions which are quite as strong in America as here, and the necessity for intercourse during long journeys over vast stretches of desert country leads to tho formation
of new, pleasant acquaintances, and beomes a bond of sooial
anion union which the peculiar raiway arrangements do much to
facilitate. And none who have had even a short acquaint-
ance with courtesy and good nature of the born American, particu
larly of the West, for in that respect it stands in most larly of the west, for in that respect it stands in most
refreshing contrast to what we find in the manufacturing
districts of England, or in their own eastern cities, overrun, as they are, with -not always the best class-of immigrants from Europe,
Judging from the experiences of nourney which extended from
Montreal to Philhdelphin from Wasing Montreal to Philadelphia, from Washington to Wyoming, from
Montana to the Great Salt Talke, and thence vid Denver and
Leadville through Toronto and New York, past the eestern cities of Providenco, Booston, and Lowel1, and thus sthroughe every portion
of the Northern States and Eastern Canada, one would recommend no greater treat or pleasanter travel to an Englishman than
to go over the to go over the same ground, and mix with the delightrul society of
his fellow-countrymen across the sea. He may be sure of one
thing, that they will be only too pleased to give him a hearty welcome. They will be proud to reciprocanto his interest in the ther
affairs; and thero is nothing ho may over wish to soo for which
unbounded facilities will not be placed freely at his disposal. Even among the wild coowboys of the uncultivated West,
amidst the rremry grandeurs of the Yellowstone, or over tho barren
hills of Colorado, he will meet with as hearty a welcome, though sometimes accompanied by a rough courtesy, as any where else in
the world; and, curiously enough, the deepest interest of the people seems aroused, as they listen whilo their visitor tells some
news of "the old ountry," which is the affectionate term invariStcamboats, -Coming over the sea, familiar with the general
Enlish types of teamere, perhaps the frat things that strike a
visitor in approacling New river rta approaching New York are the enormous ferry boats and
river steamers, which ply without a moments cessation throughout
the year. shores, or dowe the river to health resorts an the impediate the
vicinity. Their peoulinr beam engines, and double tier of decks give a somewhat uncouth appearancee, judged be by eyes en accustomed
to the more symmetrical lines of our river steamers. But yet a little examination shows how admirably these vessels are suited
for their intended purposes; and some of them plying to Proveritable floating palaces, provided with dimensions. These engines have only a single cylinder, that of
the Rhode Tsiand being 90in. diamoter and $14 t$ t. stroke, driven
by 30 lb. steam pressure and male by 30 lb . steam prossure and making nineteen revolutions per
miniute. The Fall River steamer, the Pilgrim, has a cylinder miniute. The rail River steamer, the Pilgrim, has a cylinder
110 in. diameter, with 14ft. stroke.
and paddle shaft 26 in . No difficulty whadles are 41ft. diameter, rienced in tho management, starting, or reversing of these powerful ongines, and the cossels they control may bo soen threading
amongst the cowded shippins with the utmost facility; and even
in the dangerous Hell Gate passage now brillintly ill windel in the dangerous Hell Gate passage, now brilliantly yillumininated by
electrio light, they are stered with a skill as surprising as it is Railvays, - Immediately on landing the chances are that we
become yopuainted with the peouliar railway arrangements of

America. Long heavy cars open from end to end, and supported
by bogie carriages, have been often described. All are much overheated in winter by a stove in each car, with a range of hot-water
pipes througiout its length, and to judge from the draughts caused by opening the hinder door, to say nothing of the forward door, one only shudders at the reduction in temperature which would
occur by opening all the doors in an English carriage holding the same number of passengers when the thermometer is standing 20 deg. below zero. At the larger railway stations or depots we apon any one spot, but are allowed to move movecely over the e orarded
ulo
floors between the rails, and the loud bell, with which every loco. motive is provided, gives warning of its approach as it moves slowly through the crowded stations. on and these locomotives
there is a spark arrester, formerly constituting an enlargement of the chimney, but now generally constructed as a forward prolongation of the boiler. Nevertheless, fires are not unfrequently caused by sparks which escape notwithstanding all precautions, for the
draught is so vigorously maintained that showers of ashes pour in a draught is so vigorousy maintained that showers of ashes pour in in
continuous hail on the tops of the carriages, particularly when the train is slowly dragged up the steep gradients with which most American railways abound. Some of the eastern lines vie with arsangements. These maintain a high rate of speed for their pas-
arran senger tratio - a speed easily reckoned, as there are thirty-two spaces between the telegraph poles for every mile; and one unay quently in sixty-five seconds ; while higher unauthorised rates prevail at the indiscretion of reckless engine drivers. Accidents do used on all the trains, it prevents that secondary disaster of the carriages teleseoping, which unend at one peroniod to be the invariable
sequal to a collision. Acoidents are nlways pretty fully described in local newspapers, and though it may be somewhat reassuring to see trees being cut down and burnt, lest they
might fall upon the line during winter storms, yet it is not so pleasant to pass a gang of men setting fire to the defrris
of a wrecked train as the speediest method for removing of a wrecked train as the speediest method for removing
it cut of their way. Experiments upon different railway gauges
隹 upon a scale of the utmost magnitude. They range from 6 ft . to 2 ft, , but mostly approximate closely to our standard of 4 ft . 8 i in . So long as differences fulfilled a purposo of preventing tere rolung
stock of one company being used by another, a sufficient answer was given to those who desired and pointed out the advantages of
niformity. But now that great trunk lines unite all parts of the country, this question has assumed greater importance-an importance accentuated by the events of the Southern war twenty-five
years ago. Δt that period, owing to nearly all the railways possessing gauge allowed to the Northern hosts; and this fact shows what an enormous additional power is given to those who possess sensible railway facilities, and is denied to those who rely upon an imperfect
system. Some of the Western rail ways have been laid with a 3 ft . sauge for coonomical reasons only. At the present time a complete which follows down the western slopes of the Rocky Mountay Divide or watershed, including also the Rio Grande Railway from the Great Sail Lake to Denver, with many connecting branches.
Thus a traveller has ample opportunities for making any observaThus a traveller has ample opportunities for making any observa-
ticns he thinks fit upon narrow gauge passenger railways. These thos who decided their gauge to suppose that none antioipated the apid development which this new facility of communieation was lestined to promote. Throughout the eastern and central States a
tandard of $4 \mathrm{ft}, 8 \mathrm{zin}$. is being adopted by all main lines; for the break of gauge has beon found an evil of intolerable fion, some companies have already grappled with the diffi culty, while others are preparing to do so, and thousands of
miles lave been altered by stoppages of two and three days' duration. It has been wisely considered that those permanen
evils attendant upon existing confusion would far outweigh the cost and temporary delay attendant upon an alteration of the zauge. Moreover, the extreme rapidity and ease with which long
distances have been altered, and the small interference with traffio hows that there is no real difficulty in making the change, and oes great creait to the engineers who controlled what seemed so
troublesome an enterprise. It is easy to allege the impossible, which is too often a mere cloak to cover want of pluck or ignorance yet one can only reffect with absolute astonishment upon the
assertions of those engineers at home who would wish us beliove hat a similar change could not be made in India. For a totall nsufficient cause, that extensive country was originally saddle
with a gauge of 5 ft. Gins., too wide, as it has been proved for any necessities, and it is a misfortune that the home gauge was not adopted when railways were first inaugu
rated there. Even now, it would seem better to face
an inevitable problem of the future, to contemplate and copy the example of American engincers by preparing for an
ilteration all over the country to $4 f t$. 8 lin. at no distant period meanwhile constructing all now railways at the narrower gauge, which will always arise where a 5 ft . 6 in . and a metre gauge comes into continual contact. In Ceyton, at the prosent time, a dis-
cussion is progressing as to which of these two gauges should be either of the Indian or the standard English gauge were adopted o judge by American experience, and the conclusions of practical
nen. it would bo far better to make the Ceylon gauge 4 ft . 8 in or this would bo best and cheapest in the end. It is with pleasure
that we note how common sense has at last prevailed regarding the Suakim-Berber Railway, now to be made oft. Slinin. inntead
metre, as first proposed. Though it might suffice to san that 3ft. guage is obviously cheaper to construct than a wider one arguments reinforced by a statement that sharper curves car be constructed on narrower lines. But we all know that
in turning a complete circle the circumference of the outer Wheel travels further than the inner one, in the following pro-
portion:- Travel of outer wheel $=$ travel of inner wheel $+2 \pi \mathrm{G}$ where $G=$ gauge of rails. This objection ignores the evils of a
narrow base precluding the rapid passage of curves, and takes notice of the patent fact that no odifficulty is experienced in turning tram-cars round curves far sharper than anything ever seen on
narrow gauge railways. Even regarded by the test of ephemeral and satisfies those who would leave all future to take care or mite
120 miles from Donver to Pued tha the two gauger run side by
side, an on our Great Western Railway here. Therefore, this additional cous cought in all fairness to bo charged against a narrow gauge on the main line; and thus the imaginary reat economy coloculated upon by the original promoters mus
dwindle considerably. It is an attrattive and seemingly reasonable argument that when opening up a poor, extensive country,
light tramways should be more suitable than railways; but matter, and incoalculable is loss inflicted upon distriets ill-able to bear it, by regarding the inches betwoen rails as the only point at issuc. Indeod, it is beyond controversy that tho averagg dimen-
sions of human beings should settle those of railway carriages, just as in more practical times than the present they settled the size of carts and carriages, the widths of their wheels apart, and
the most convenient units of length. In these days, however, we are told to settle the gauge first and the carriages afterwards, an
this inversion of the natural process leads to an absurdity we
on the Rio Grande Railroad, where the Pullman cars are $8 f t .1$ iin.
wide, and the distance between rails only 35 t . With such wide, and the distance between rails only 3ft. With such a dis-
proportionately small base, the carriages rock considerably while passing over rougher portions of the road, or while slowly crawling round quick curver at the edges of precipitinus elevations. No
wonder if a feeling of insecurity should drive uway Wore
travellers, so damaging the prosperity of the line, and in some degree interfering with a complete enjoyment
some of the finest scenery to be found on either contin Bome of the advocates of narrow gauges have been untiring in their
But assurances that the break of gauge and its undoubted evils, which they are compelled to acknowledge, will vanish away when their system becomes universal; but let us see how these hopeful prog-
nostications are reanlised in practice, for all of hs will nostications are realised in practice, for ali of us will agree that a Quoting from an article of the Denver Tribune-Republican of October 6th, 1864, we read :- "Within the past half-dozen years a system of narrow gauge roads, extending from the Gulf of
Mexico to Lake Erie, has been gradually evolved out of numerous Iocal and fragmentary lines that have from time to time proved
themselves to be within reaching distance of each other It wis claimed two or three years ago that something startling would grow ont of this new feature in railroading. It was contended
that the narrow than the standard gauge, but that they could be operated at a smaller relative cost-that is, a given quantity of freight could be
transported a given distance for a smaller total cost. The diffioulty was the delay and expense of breaking bulk on through business. In order to partly obviate this, plans to puta narrow gauge track intoNew York, and to connect all Western narrow gauge branches with this tion when the panic threw many of the lines into th receivers. The announcement that the longest of these lines connecting Toledo and St. Louis, is to havo its track changed to the standard gauge by the receiver and bondholders, is full of significance. It is apparently a confession that narrow gauge roads
cannot compete suceessfully with the standard gauges on level ground, with the immense disadvantage against them that the
standa placed by up-hill fighting." In reading facts like these, and the ne oannot the first instanco to construct 3 fft. gauge lines, at any rate on level plains; for if it is now worth while to alter the gauge from 3 ft . pay, no further argument is required to prove that the standard gauge is the one that ought to have been adopted at first. rather than repeat such costly failures. Turning now from critidism to the pleasanter task of admiration, we can see from the and displayed on these walls, how splendid is that line of scenery traversed by the Rio Grande Railroad. These pietures convey but
very faint appreciation of the grandeur of those stupendous passes through the Rocky Mountains of Utah and Colorado. Passsplendour of American forest scenery, we gradually rise and enter into a succession of deep canons with rooky walls 3000 ft. high,
through the strange fantastic scenery of the Gree across dreary deserts, until at last on the Marshall Pass an the railway. In one of the photographs before us, the may be seen winding its sinuous course over the summits of many dangerous-looking precipices, and over wooden trestle bridges like by one form as shown by one of the photographs, As the train twists and turns to every
point of the oompass, it gains glimpses of lovely scenes down many
introdden volleys. untroden valleys, while the night gives passage through desert ton, until nestled in a quiet, secluded spot, the junction of Salida is reached. Here passengers or the rich mining districts of Leadville finest scenery which this region affords, the Grand Canon of the can ride and gain a full uninterrupted view of endless scenes of surpassing bearty. The sunlit aspect of such cliffs as the Currecante Needle are succeeded by deep
and gloomy valleys where its rays have never entered. The narrowed river accompanies our course with unceasing roar of its many
rapids; and so narrow does the passage becomeat times that in one place, as shown in a photograph, no foundation could be found for
one side of the railway bridge, and the engineers were reduced to the necossity of suaporting it by two girders thrown across the Royal Gorge, and then suspending the unsupported corners of hifforidge by a tie rod from above, and thus overcoming the
dificulty. For twelve miles there follow a succession of canons, where no exit would seem possible, until at last the train emerges able railway, justly considered by all ${ }^{\text {who }}$ have enjoyed the sight of it as one great scenic route of the world. It has sometimes been in some of their productions, shows them incapable of appre an opinion may once have seemed justifiable, it can no Ionger be maintained. No excuse is necessary for this digression ing paper. The following table gives interesting partioulars of all
gradients through the Grand Canon of the City to the great mining camp of Leadville; and it will be seen Pass thy range from 180 But a short branch siding from Hecla to Calumet, on the Rio Grande Railroad, surpasses this
of 406 ft . in the mile, or 1 in 13 :

Rio Grande Railroad Gradicnts from Canon City to
Leadville, Colorado.

Between stations.	$\begin{aligned} & \text { Average } \\ & \text { grudo por } \\ & \text { mile. } \end{aligned}$	Maximum grade per mile.	$\begin{gathered} \text { Maximum } \\ \text { ratio. } \end{gathered}$
Canon City	$\underset{\substack{\text { feet. } \\ 9.8}}{ }$	$\begin{aligned} & \text { foot, } \\ & 18 \end{aligned}$	${ }^{\text {lin }}$, ${ }^{293}$
$\underset{\substack{\text { Parkdale } \\ \text { Texas Creck }}}{\text {. }}$. . . .	${ }^{43.7}$	${ }_{78}^{789}$	70.5
Howards \%	39.8	${ }_{78} 9$	7
	${ }_{59}^{39 \cdot 15}$	7399	$70 \cdot 5$
${ }_{\text {Branito }}^{\text {Granta }}$..	${ }_{70}$	${ }_{789} 8$	$8{ }^{70 \cdot 5}$
Malta	768	750	70.4
${ }_{\substack{\text { Eilcrss.. } \\ \text { Brants }}}^{\text {.. }}$	$\xrightarrow{115 \cdot 9}$	${ }^{1250} 0$	
	(12788	1320 1250	$40 \cdot 0$ 42.8
	112.8	${ }_{\text {12500 }}^{1250}$	+ 42.3
Leadville	1450	$150{ }^{\circ}$	${ }_{35} \cdot 2$
Over Marshall Pass	211		
Hecla to Calumet siding		$\left\{\begin{array}{l} 3000 \\ 4000 \\ 400 \end{array}\right.$	

The rapidity with which work is completed, both on Canadian and American railways, has often excited comment and surprise, and notice may be found in the now cantilever bridge over thet deep gorge which receives the waters of Niagara. This bridge carries a double rail way track, and connects the opposite shores of Canada
and the States. It was made by the Cond and the States. It was made by the Central Bridge Works
Buffalo, and is 910 ft . long, was commenced on April 15th, 1883 , Buffalo, and is 910 ft. long, was commenced on April 15th, 1883,
and finished on December 1st in the same year, thus occupying only
230 days in construction. 30 days in construction.
(To be continucd.)

RAILWAY MATTERS.

Orpers have been issued to stop the work on the Thansi and
Manickpore Railway. About 40,000 men have been dismissed. It is beinickpere thal wayis is owing to the neeenssit.
to the pushing on of the frontier railways.
A miNING and luncheon saloon, with smoking room and ladies? and gentlemen's lavatories, is now attached to the 6.15 p.m. train,
King's-cross to Manchester-Sheffield route-and to the 11 a.m. King trai
uheels.
For the Rangoon Steam Tramways, worked by Messrs. Merry-
weather's motors, experiments have been made with weather smotors, experiments have been made with Rangoon earth burn this fuel has been sent to Burmah. It is anticipated that a very large saving in cost of fuel will be made
THE Scarborough and Whitby new line of railway was informally opened on Saturday, when a special passenger train was run the
whole length. The line will be fully completed for traffic in about three months, and the North-Eastern Railway Company has agree mod to work
favourable terms.
IN concluding his report on the collision that occurred on the
17th January, at Fleur-de-Lis yard, near Pengam station, on the Brecon and Merthy Railway, Colonel Rich says: "- "It is most the passengers who travel on the Brecon and Merthyr Railway that the signals and points at all the stations and junctions should be interlocked.
Mr. W. G. Bagnall, Castle Engine Works, Stafford, has obtained a considerable contract from Government for portable railway
plant and small locomotives for the Soudan. This railway, it is
understood will be used railway to be laid down by Messrs. Lucas and Aird, conveying the order has to be completed within a limited time, it is intended to at once enlarge Mr. Bagnall's works.
IN concluding his report on the collision which occurred on the
1st January, near Penistone, caused by the breaking of a wagon axle from Rotherham and Sheffield, Major F. A. Marindin says:This accident furnishes a warning against the practice of placing passenger lines between running go there are four lines
done where
arranged, , it is clear that the undesiable risk, of accicient, from the
fouling a passenger line by a wagon leaving a goods line alongside of it, is twice as great as in cases whero the two passenger lines
are at one side,
The railway carriages for the new line which have been ordered
in the Birmingham district are of the ordinary English third class type, to hold fifty passengers each, and mounted on four wheels. Double roofs are provided, and the carriageses are painted
white. Railway supply firms read with interest that a portion of the plant and several locos., used in the construction of the Hull and Barnsley Railway, have within the last few days been removed
from Barnsley to Hull en route for the Soudan. This will necessarily mean the replacing of this plant with new work
The effect upon the market of this activity in Government buying will, it is the belief of some traders hereabouts, be to improve the
general demand for constructive ironwork and metalliferous manufactures. Such an outcome has been noted on previous occasions
of special heavy ordering by the authorities. People who ling had contracts to place, and who have been standing off the market, have at such times determined to dolay no longer, lest manuface
turers' books should bo filled up with special works, to general
buyers' manifest disadyantage
buyers' manifest disadvantage.
The city of Guatemala has recently been placed in direct com.
munication with the port of San Jose on the Paoifio Coast by the opening of a new line of railway. The total length of line is hheavy gracientes, deep outtings, ,seven high trestle bridges, and
considerable trouble with made ground on the Lake of Amatitlan were the ehief engineering difficulties to be conquered. Between
Esquintla and Palin, a distance of nineteen miles, the road rises within a fow fect of 5000 . The entire rolling and Guatemala in from the United States, as was also a small portion of the steel
rails used, but the greater part of the latter was imported from England. The engines consume wood almost exclusively, coa grades. The line from Esquantlal has been built in a little lesess
grece A branch line from Amatitlan to Antiqua, the oldir capital, is pro-
 Guatemala with Santo Tomas on the Gulf of Honduras, a distance
of 160 miles, is being actively pushed forward. This line is being ted by a forced national subscription.
The usefulness of re-railing gafety guards at bridges was illus
trated on the 10 th nult, when, the Riviload Gaucte says, " se as express train on the New York, Ontario, and Western Railway was approaching the celebrated Lyon Brook viaduct at a speed of 30
milises per hour, on a down grade of 655 ta per milil, the tire on the
leading wheel of the engine truck broke, and the truck was derailed only about soft. from a Latimer bridge safety guard,
with which guard the entire road was equipped in 1×82 The
truck was immediately replaced upon the theck safety guard, and the broken wheel wan the thack on strd in proping the line
by the continuous guard rails until the train sto nop by the continuous gard rails until the train stopped, which was
not until it had passed nearly over the bridge. No damage was done to either bridge or train beyond the breaking of the tire.
The viaduct is ono of the largest and highest in the country, 800ft.
long and 165 tht. high, and all the conditions were present absence of a safety guard-for one of the worst disasters on record.
The wisdom of employing a cast iron watchman which neither eats nor sleeps nor walks up to the pay car was perhaps never more
convineingly demonstrated." We shall not enforce the use of proper guard rails on our viaducts until a train with a prince or
two in it leaves the rails and goes over a bridge, or runs into and cripples the ties and struts of a lattice girder, with results.
Is connection with the rail way loans sought by New South Wales,
it may be mentioned that in that Colony the total experditure for railway construotion has been t19,188,464, of which the sum of 16,905,014 was expended for lines opened for traffic. At the close
of 1883,1320 miles of line were open for traffic and 597 miles w were in the course of construction. The rolling stock consisted of 296
locomotives, 695 coaching, and 6386 goods, vehicles. The value of the railway materials, in the conveyance of which 121 vessels were
employed, amounted to $£ 275,149$, and the freight and insurance to employed, amounter and
$£ 18,94$, making a total of $£ 2944,133$. During the year 116,286
trains, of which 64,088 were passener and 52,188 goods trains, were trains, of which 64,088 were passenger and 52,198 goods trains, were
run, at a distance of $5,937,261$ miles. The earnings amounted to
$£ 1,931,464$, and the working cent. of the earnings. $10,272,037$ passengers travelled, of whom
$3,398,169$ were first-class and $6,87,868$ were econd-class. Included in these figeres are 14,972 season ticket honders, representing
the hern
$3,640,612$ journeys. The proportion percentage of these classes is or first-class passengers $17 \cdot 89$, seond-class 46.67 , and for seasonand 816,918 tons of general goods. There was an increase of
397,746 in the number of frrst-class passengers, of 675,102 second397,766 in the number of first-class passengers, of 675.102 second-
class, and 214,876 in tho journys made by
The earnings per mile open were $£ 1484$, the expenticket holders. the net earnings were 2579 . The earnings per train mile were
7807 , the expenses 4766, and the net aernings $30 \cdot 46$. The net
earnings were $£ 753,676$, vielding $4 \cdot 48$ per cent. to the capital earnings were 2753,676 , yielding
invested on lines open for traffic.

NOTES AND MEMORANDA.
$\underset{\text { feet. }}{\text { The }}$
In greater London last week 3456 births and 1948 deaths were
registered, equal to annual rates of 347 and 19.6 per 1000 of the population.
The stanniferous, or tin-bearing area in New South Wales, is estimated at 51 million acres, or 8500 square miles. Up to the
present most of the tin has been obtained from the New England
Disher District.
In London last week 2709 births and 1569 deaths were registered. Dhe annual death-rate per 1000 from all causes was 20.0 last week.
During the first eight weeks of the current quarter the death-rate
averaged 21.9 per 100 . averaged $21 \cdot 9$ per 1000 , against $24 \cdot 3$, the mean of the rates in the
corresponding period of the five years $1880-84$. The deaths registered during the week ending February 28, in
28 great towns of England and Wales, correspond to an annual rate of 21.4 per 4400 or their aggregate population, which is esti
mated at $8,906,446$ persons in the middle of this year. The six healthiest places were Portsmouth, Huddersfield, Huli, Halifax In answer to a question in the House on the 2nd inst., referring
to the 110 -ton guns, Mr. Brand said: "Three 110-ton guns have been ordered. January, and the third in April, 1886. The price per gun is
£19,50; the weight of the projectile is 18001 b ; the charge is
9000 , 1 , 900 lb . of cocoa powder; the muzzle velocity is 2020 ft . per second
the maximum powder pressure is 17 tons per square inch. It must be understood that the velocity and pressure are only estimated
although they are based on the experience gained with the Italia guns.
BLast furnace returns published in the United States show that
there are now only 235 blist furnaces of all kinds in in list in the there are now only 236 blast furnaces of all kinds in blast in the
States, as compared with 363 in 1875 . This includes 68 charcoal,
俍 States, as compared with 363 in 1875 . This incluces 68 charcoal
86 anthracite, and 82 bituminous. There are 435 out of blast as
compared with 328 in 1875 , and of these 159 are charcoal compared with 328 in 1875 , and of these 159 are charcoal, 13
anthracite, and 141 bituminous furnaces. The weekly capacity of the furnaces on the 1 st January was 66,747 tons $(2000 \mathrm{Ib}$), while
the capacity in 1883 and 1884 was respectively 106,184 and 83,125 tons. The tendency is
furnaces in particular.
AT a recent meeting of the Edinburgh Royal Society, Professor pointed out that the present mode of treating the conditions of liquid in presence of its vapour were not rigorous, inasmuch as
the pressure is undoubtedly different in the two parts, while in the the pressure is undoubtedly different in the two parts, while in the
surface layer between them there is a complex form of stress. If attention be confined to the isothermals of the interior parts of a With this proviso the isothermals under the critical point consist of two parts separated by an asymptote-one belonging to the
liquid, the other to the vapour. This accords with the fact that iiquids can be subjected to hydrostatic tension, and that Aitken Neatsroor oil will not soften leather under all circumstances; neither is castor oil any better. Oil is not necessary to the pliabi-
lity of leather-the leather of the ox, goat, calf, and kid. The Scientific American remarks that it is necessary that the leathe
be kept moist; but oil need not be the moistening means, But in be kept moist; but oil need not be the moistening means, But in
order that oil may soften the leather, its way should be prepared by a thorough wetting of the leather by water. Much less oil io
required if the leather is well saturated with water. The phil sophy is obvious; water is repellent to the oil, and prevents i
somated with water. The phile from passing entirely through the leather, holding the oil in the
substance of the leather. The use of water for softening belts in factories is not inconvenient if advantage is taken of a holiday. A night the belts may be brushed clean and thoroughly wetted; then in the morning use the oil. A much smaller quantity
to render the belt pliable than when no water is used.
A PAPRE, entitled "A Suggestion for the Improvement of
Radiation Thermometers," was read at the last meeting of tho Meteorological society by Mr. W. T. Stanley, F.R. Met. Soc. The author suggests that the radiation thermometer should indicate the amount of heat radiated by the sun upon a metal ball of a cer-
tain size, this being an object easy of uniform reproduction by tain size, this being an object easy of uniform reproduction by
mechanical means. For experiment he made three hollow copper balls, which were cast with ordinary filed cores, and were of dif ter of 1 - 4 in ., with similar necks for the insertion of thermometeri The surfaces were oxidised by heating to resemble the oxidation
produced by the atmosphere. In each of these balls a similar thermometer was inserted, closed in round the neck just sufficient to keep it steady by cotton thread soaked in parafine. The thre sunshine and placed at 2in. above a piece of black-board, appeared
to register under similar conditions exactly alike. The experi ments for three summer months gave from 6 deg. to 11 deg. THe following on
The following on tempering is from the Age of Stecl:- "When tempering cold chisels, or any other steel articles, heat to a very
dull red and rub with a piece of hard soan, then finish heating, ne oxygen of the atmosphere from uniting with the preel forming rust or black oxide of iron. The article will need no
polishing to enable the colours to be seen. This will be appreciated when tempering taps, dies, or various complex forms not easy to poish. Never upset a coid chisel; it is sure deatht to the steel.
If you have a broken chisel to sharpen, draw out and cut off, never upset. It will cripple the fibres just as the straw is crippled when
driven endwise. Make chisel
 through which the blow passes has more chance to absorb the force
of the blow. The harder the metal to be worked, the quicker the blow should be transmitted. Cast iron works much better with a short steel chisel and light hammer than if the blow was struck upon a very long chisel with a heavy wooden mallet. In one case
the blow is delivered all at once, in the other it takes time, and much of
For making soluble glass, the following ingredients are heated
in a reverberatory furnase until fusion becomes quieted: 630 lb In a reverberatory furnace until fusion becomes quieted : 630 lb .
white sand, 3301 lb . potash of 78 des. This will produce 840 lb . of little soluble, even in hot water. To dissolve it the broken frat ments are introduced into an iron digester charged with a sufficient quantity of water at a high pressure to make a solution marking
33 deg. to 35 deg. Baume. Distilled or rain water should be used. This solution contains silica and potash combined together in the
proportion of 70 to 30 . Silicate of soda is made with 180 sand, 100 parts carbonate of soda (091), and is to be melted in the same manner as indicated previously. Soluble glass may also be
prepared by the following method: A mixture of sand with a solution of caustic potash or soda is introduced into an iron boiler,
under five or six atmospheres of pressure, and heated for a few hours. The iron boiler contains an agitator, which is occasionaly
operated during the melting. The liquid is allowed to cool until
it clear by settling; it is is then concentrated ufter it has it been allowed to of 1.25 , or it may be evaporated to dotyness in an iron kettle. The
metal is not affected by alkaline liquors. This glass is soluble in metal is not affected yalkaline liquors. This glass is soluble in
boiling water; cold water dissolves but little of it. The solution
is decomposed by all acils, even by carbonic aid. Soluble is decomposed by aul acids, even by carbonio acid. Soluble glass
is apparently coagulated by the addition of an alkaline salt. mixed with powdered matters upon which alkalies have no e
becomes sticky and agglutinative, a sort of mineral glue.

Royal MISCELLANEA.
The Royal Agricultural Society's Show next year will be held at Proressor Bonser will resign his post as secretary of the
British Association after the Aberdeen meeting. Professor Bonney, it is said, feels compelled to take this step mainly on
account of the inroads which the work of the Association makes apon his time.
UNDERGROUND urinals and water--losets have been constructed around the base of the Duke of Wellington's statue, on the
western front of the Royal Exchange, wholly beneath the street estement, and excavated in the mass of solid concrete which surounded the foundations of the base of the statue,
AT a meeting of the Edinburgh Royal Society last month, Mr.
Thomas Stevenson, president, delivered an address, in which he discussed the erection of training-walls at the mouth of the Mersey. He strongly condemned such a procedure, asserting that
the inevitable result would be the silting up of the approaches to the inevita
Liverpool.
THE history of the iron trade, as far as statistics relating to
puantity produced, imported, and exported, and prices from 1830 tuantity prounced, imported, and exporten, and prices from 1800
to 184 , may be called history, is well and clearly shown by the edition just issued of Fossich's coloured chart, showing these facts
graphically, and containing a chronology of the events affecting past fifty-four year
THE copper-producing country in New South Wales covers an
area equal to about $4,296,320$ acres; but there are enormous tracts of country the exploration of which will increase the area. Some of the lodes at present in work are very large. The most important copper mine in the Colony at the present time is the Great Cobar
Mine, and it also is the most distant from the seaboard, being 497 miles west of Sydney
Accock has been fxed in Bishopsgate-street on the twenty-four and the figures around are placed as heretofore, but indicate the minutes ouly, which are marked from five to osixty. The figures of She hours are shown on a sunk dial under the upper dial, and the
next hour figure appears instantaneously upon the minute hand completing its circuit of 60 minutes. Thus the solitary hand The trial the thew ther Dolphe
ThE trial trip of the new steam trawler Dolphin, recently
Thenched by Mr. W. . Thompson, Dundee, took place on Saturay, 21 st February. The Dolphin has been built and engined by . Mompson for the Lowestoft Steam Carrying and Fishing
ompany, Lowestoft, and is a screw steamer of the following imensions: Length, 100 ft .; breadth, 20ft.; depth, 10ft.; and has ompound engines $17 \mathrm{in}$. and $34 \mathrm{in}$. by 24 in. stroke, 100 lb b. pressure,
which during the trial developed 300 indicated horse-power at a which during the trial
nean speed of 11 knots.
THE annual report of State Engineer Sweet, of New York, states Liat the canals carried 654,588 tons of freight less in 1884 than in
1883. Mr. Sweet suggests a radical change in the Erie Canal, to make it a ship cana, from Buffalo to Mroy with a continuous hannel 100 ft . wide and 18 ft . deep. He advise ed millions of dollars. Like Former incumbents of the office, Mr. Sweet thinks that the Adirondack survey and topographical survey of the State should be placed
in charge of his department, instead of being under independent commissions.
Writive to the Scientific American on straightening old grate known, judging from the tons of old grate bars to be seen at the is new. The bars, if not actually burned conld be made as good heating the twisted portion to a very dull red, just enough to dmit of its being shifted, bring a very gradual pressure on the ther end with your hip, shifting the bar along so as not to take or four inches out of oun bacce. A very little beyond the right heat
vill cause them to break like old chece? will cause them to break like old cheese.
On Monday Messrs. Raylton. Dixon and Co. Launched the
Transition, built for Messrs. I. M. Linnard and Sons, to carry 2350 tons dend, weight, and of the following dimensions:--Length, 267 ft . ballast throughout. Her name indicates a transition from the use of iron plates to that of steel, made entirely in the Cleveland district, the angles and beams being from the works of Messr8.
Dorman, Long, and Co., and plates made by Messrs. Bolckow, Dorman, Long, and Co., and plates made by Messrs. Bolckow, but already the makers have contracted for many thousands of Tons, and have their order books full for months to come. The Transition also refers to the use of triple expansion engines, having
a steam pressure of 160 lb. per square inch, which is utilised in dhree cylinders, working direct on to three cranks, and thus giving
great steadiness of motion as well as great economy in coal congreat stea
sumption.
Os Friday last the double twin screw passenger steamer Snow drop lett the Seacombe stage to take her trial trip on the mea
sured mile off Waterloo. She is 130 ft . Long, 35ft. beam, and
Git. Gft. Gin. draught. She is the second of two sister vessels built to
the order of the Wallasey Local Board by Messrs. Wm. Allsuy and Sons, Preston, from the designs and under the superintendence built of steel throughout and to the highest class of Lloyd's. They is main long, and provision is made for smokers in a roomy saloon at the
after end of the boat, and a large cabin is also fitted up for their
use below the mnin dectro use beow the main deck. The deck above the saloons affords
a goo promenade. The machinery consists of two complete pairs of compound surface condensing engines, having cylinders
18in working at a pressure of 100 l . Each par of drive tw propellers, one at each end of the vessel. On her trial trip a speed
of $12 \downarrow$ miles per hour was attained, and the vessel proved to be very readily handled. Like her sister ship Crocus, she will be
fitted with the electric light by the Manchester Edison Company Iv the report on the London Water Supply by Mr. William
Crookes, F.R.S., Dr. William Oding, and Dr. Meymott Tidy, for the month, in respect to the quallness of the matter present, as being good, and as not differing appreciably from that taken note of in the preceding months. In their report
for January they say, "There being some amount of discrepancy for January they say, "There being some amount of discrepancy
between this statement and that made in the report to the
Registrar-General, Registrane eneral,
verify the results of our daily full analy ses of month, each analysis performed in duplicate. Our results, thus obtained agree closely with those of last month, and manifest the continued
excellence in quality of the water. Thus, the mean quantity organic matter in the water supplied by the Thames quantity of
during the during the month of December was found to be $0 \cdot 151$ part, and the
maximum quantity in any one sample 0.179 part, in 100,000 the of the water; while the mean quantity in the Thames-derived
water water supplied during the past month was 0.137 part, and the
maximum in any one sample 0.182 part, 100,000 parts of the water. This maximum quantity of 0.182 part of organic carbon
would correspond to woutd correspond to a little over three-tenths of a grain of organic
matter per gallon." We must remind our readers that these
report rand not like those of the report to the Registrar-General on an a ard not like those of the report to the Registrar-General on a
sample of the water of each company taken once or twice a month.

HYDRAULIC MACHINERY-PORTOF BUENOS AYRES.
messrs. abbot and co., gateshead.on-tyne, engineers.

facilities of the port of Buenos Ayres under the direction of the better than quote the specification from which they were made. Riachuelo Commission. Some of the new machinery there Boilers.-Two Lancashire, 6 ft . diameter by 20ft. 3in. long, erected we illustrate. It has been construeted by Messrs. John $\quad 2 \mathrm{ft}$. 4 in . tubes, fitted with, four Galloway tubes and two steel Abbot and Co., of Cannon-street London, and Gateshead-on- expansion rings in each tube, and having complete set of mount
the pumps are placed vertically against the side of the engine
foundations, and are worked from the crank pins. The engines foundations, and are worked from the crank pins. The engines are also so arranged that one side can be thrown out of use at
any time, while the other can be worked so as to develope

ings of most modern construc. tion. Boilers were proved by water to 160 lb . pressure, and
arranged to work at 80 lb . pres sure per square inch.
Engines. - Pair of horizontal compound surfacing-condensing engines, capable of delivering 208 gallons of water per minute at a pressure of 700 lb . per square inch when running at The high-pressure cylinder is $20 \frac{1}{2}$. diameter, and low-pres sure cylinder 28 tin, diameter and 24 in . stroke ; arranged with variable expansion gear to cut off at any point between oneeighth and half the stroke, and provided with separate valves for shutting off the condenser if required, and exhaust direct into the air. The force pumps are placed at back of the cylinders, connected direct with the piston rod, and are of the double MOVABLE JIGGER HOIST.

Tyne. Some time ago the Riachuelo Commission was appointed to carry out improvements at the port of Buenos Ayres, which have been ably executed by their engineer, Mr. Luis Huergo. vessels, and consists of engines, boilers, and machinery for providing the water under pressure, fixed and portable cranes,
and piston, with gun-metal lined pumps fitted with gun-metal ram of suction, with gun-metal lined pumps fitted with a special form of suction. Suction and delivery clack valves arranged for
ready access. The engine is arranged to work its own air and circulating pumps for condenser; lift pump, for delivering water from the river about 70ft. away to the large tank placed above the boiler-house for supplying the force pumps with

PLAN OF JIGGER HOIST.
power to work the air, circulating, lift, and force pumps, as well as its own force pump. The force pumps are made doubleacting, with gun-metal rams 3 多in. diameter, and pistons 5 in . The wher, having the pump barrel also lined with gun-metal with gun-mo the air, circulating, lift, and feed pumps are lined extra large surface allowance for wear The condenser is made circular, fitted with brass tubes and Muntz metal tube plates, and having all the requisite pipes, valves, \&c., of the most modern and complete description. The engine was provided with all the most modern and complete fittinge, valves, governors, \&c Self-contained hydraulic crane.-Quay crane: One doublepower to lift 10 and 4 tons respectively through a height of placed vertically between the cheeks of pillar, and revolve with the pillar in strong pyramid-shaped iron pedestal securely fixed to quay with strong holding-down bolts, the two powers being got by having two rams, the one working in the other, so that when the light load has to be lifted the large ram is locked and the pressure acts on the small ram only, whereas when the heavy load has to be lifted the pressure is allowed to act on the large ram, and it carries the small ram with it. The turning rams are placed inside the pedestal at the base of the crane, and work horizontally. A raised platform and valve-house is also provided, placed on the quay at the side of the pedestal, so that the attendant has full view of the load from any point, and can
also see into the hold of the veesel which is being loaded or unalso see into the hold of the vessel which is being loaded or un-
loaded. For these cranes see page 103 ant. oaded. For these cranes see page 103 ante.
Portable crancs. - Seven 30 .
cranes having 60 ft . lift and a radius of jibs of hydraulic quay travel on wheels on rails spaced 10 ft , apart, and arched to allow fully loaded trucks on ordinary 4 ft . $8 \frac{1}{\mathrm{i}} \mathrm{in}$. gauge to pass underneath
PORT OF BUENOS AYRES-PUMPING ENGINES FOR THE HYDRAULIC MACHINERY.

The crane was arranged with cast iron counterbalance to ensure the stability of the crane down to the rails; the cranes are also provided with telescopic pipes to allow for the adjustment of
the crane to suit the vessel's hatchway. These cranes are designed to deliver 80 tons per hour. The attendant is placed a full view all round as well as into the hold of the vessel These cranes, like the rest of the machinery, are designed with great care, so as to give ample strength and wear, and are fitted with all the modern improvements and appliances to ensure perfection in working.
Portable jiggers.-Four 15 cwt . portable hydraulic jiggers to lift through 50 ft . arranged for use on quay, and can be run to
any position connected with the pipes running along the quay, any position connected with the pipes running along worked from man on deck of vessel, the lifting chain being carried over pulley on vessel's yardarm, the
latter acting the purpose of a crane jib. The goods are thus lifted on to the deck, or can be swung round and landed on to the quay. The pipes leading from the main to the jiggers are made with union joints, so that the jigger can be moved
forward, backward, or twisted round to suit the requirements of forward, backward, or twisted round to suit the requirements of the case. Pipes, \&c.-The main line of pressure and exhaust pipes run
for about 1100 yards along the quay, and are provided with branches and valves at intervals of 30 ft . for connecting portable eranes and jiggers, and are so arranged that the water used at boiler-house, and is used over and over again for an indefinite number of times, so that when the tank and pipes are once charged, there is no more water required except what little may be wasted through any slight lsakage that may arise at the
glands of lifting and turning rams. These were tested to 2500 lb , before leaving the works.
The roofings of the buildings were also made by J. Abbot
and Co., of their usual light strong form, giving quite an elegant appearance to the interior of the building The whon elegant work was designed and carried out and delivered on board in Thames within the short space of five months, showing con-
siderable despatch and efficiency. The work has now been siderable despatch and effrieiency. The work has now been
fixed and started, and everything has gone together in a manner fixed and started, and everything has
highly satisfactory to all concerned.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
SIR,-The recent correspondence int. having tended at one correspondenco in the columns of your journal notually acquainted with the frats, as to the genninenense of the解 a view of enlightening myself on the interesting matter. The publication of Mr. Wood's letters in the number for February 6th puts aside the doubts which I might have previously
entertained, but my attention was arrested by a few words in the entertained, but my attention was arrested by a few words in the
number for November 28th, 1879, under the heading, "Links in the History of the Locomotive.
In the course of an account in the above-mentioned number, which is stated to be taken from a very soarce pamphlet published
at the time, the writer, after commenting on the death of Mr. at the time, the writer, after commenting on the death of hr.
Huskisson, proceeds thus:- "The gear of an engine can be respecting the gear which was fitted originally to the Rocket, for presuming the writer of the pamphlet article to have been really
acquainted with the gear of the engines which took part in the opening of the Liverpool and Manchester Railway, and that the statement was correct, it would lead one to infer that the gear
then in use was such as to allow of being reversed while in motion and it was difficult to reconcile this idea with the statement conand $n d$ in The Engineer for September 17 th, 1880 , in which it is
asserted that the excentrics of the Rocket were driven by snugs asserted that the excentrics of the Rooket were driven by snugs
"just as the engines are actuated in the penny boats," for by this "just as the engines are actuated in the penny boats," for by this
method an engine cannot be properly reversed until it has actually stopped, and the excentrics take up their new position

Not being satisfied after reading these statements, and thinking
there might be some truth in the original assertion, I made an inspection of the Rocket one bright morning last week, and was somewhat surprised to find that the excentrics are not driven by simple snugs, but that the arrangement is similar to the gear
which Pambour illustrates in his work on the locomotive, published in 1836, in describing one of the most approved engines of
the time, such apparently as were then in use on the Liverpool the time, such apparently as were then in use on the Liverpool
and Manchester Railway; that is, the two excentrics are fixed permanently to a socket with a space between them, the excentrics
having plates permanently fixed to the outside of each and concentric with the axle, the whole forming one piece but loose on the axle. These two plates have apertures in which the projection on
the right or the left hand driver may be caused to enter acoording as the built-up arrangement is moved transversely on the driving axle, to the right or to the left, for forward or backward motion.
Pambour, in his work above mentioned, does not describe the details of the mechanism for effecting this transverse motion, and leaves it to the reader's imagination, but simply states that it may
by accomplished by means of a lever placed within the reach of the engineman.
Kensington, and send it herewith. actual arrant now in the Rocket at as can be seen from a superficial inspection, and it will be seen that in this case the transverse motion is effected by a foot lever
underneath the foot-plate, and which is close to the fire-box on underneath the foot-plate, and which is close to the fire-box on
the left of the engine. There is a catch on the vertical rod of this through which it passes, would maintain the excentrics in one position-viz, to the right-but nothing is apparent by which to move or retain them in the opposite position to the left, and one
might almost infer that motion in the latter direction was effected by a spring, but some part may be missing. The excentric straps
are hinged to their rods to admit of the transverse displacement but as regards the foot lover, it has the appearanoe of a very rough
contrivance. It is evident that such an arrangement of gear would
admit of reversing the engine without first bringing it to a stand admit of reversing the engine without first bringing it to a stand-
still; indeed, it is difficult to see any advantage of this over, the simple snugs and loose excentrics unless this were possible. The Sanspariel, which stands in the same museum, has simple loose excentrics, driven by snugs.
Considering the very
and within reach of the general public respecting the details of the Rocket, and the great interest which is attached to the original construction of this celebrated engine, it seemed to me worth while, on account of the apparent contradiction of statement eferred to at the commencement of this letter, to raise the ques-
tion as to whether the gear with which the engine is now fitted is that originally designed for the Rocket when she won the prize at Rainhill, or whether it may be regarded as an improvement adapted at a subsequent period.
Knowing that I am not alone as taking an interest in the pre-
cision of historical detail, it occurred to me that someone who cision of historical detail, it occurred to me that someone who actually knew the engine when she competed for the prize may
be able to clear up this matter, and thus contribute additional information on an interesting topic, to which you have devoted both time and trouble in your columns with a view to arrive a 35, Kingggate-road, Quex-road, N.W., Feb. 26th.

continuous brakes.

Srr,-Last week reference was made in your columns to a new or improved vacuum brake introduced on the Midland Railway on brake has been sent to me from Derby, and is herewith enclosed for the information of your readers:-
Midland Rallway: The automatio Vacuev brake with Ball Valve,
-This brake can bo applide throughout the train by the diver from his
Engise-diveis instructions: Before engine, or the guard from his van. Engine-drivers instructions: Before
starting from any station seo that your gauge indicates at least 18in. of
vacuum, and that not less than this amount is maintained during the vocuum, and that not less than this amount is maintained during the
journey and while standing at stations. To apply the brakes, open the
air valve on the engine. To release the brakes, close the air valve and
 plpes connected, put on the small ejector, and keep it on to maintain a
constant vacuum durigg the journey. The large ejector may be used to
ralse a vacuum mapidly, or when the brakes require to bo taken off again raise a vacuum napidly, or when the brakes require to be taken off again
quickly; but in etther case it must bo closed angain gradually. Guards
instructons: To noply the brake, ift up the over of the valve. This
admits air throunhout the train pipe, and is to be only employed in cases
 $=\mathrm{F}=\mathrm{F}=\mathrm{z}=$ hunting purposes- the engine having left the train-first seo the hose
coupling ano ond of the train is off the stopp-ply and then pull the
and Dorb, February 12thi, 1885.
It is satisfactory to find that at last the Midland Railway Com-
pany has become aware of the dancerous character of the "t two pany has become aware of the dangerous character of the tivo minute " brake; but it is to be deplored that when making a
change something better than the new appliance has not been adopted. On and since the 16th inst. I have ridden upon several action, compared with air pressure. It is also very inconvenient, that when an engine is changed, or shunting performed, the brake
goes on, and has to be released by hand on each vehicle. Diffigoes on, and has to beceleased by hand one ine reasing the brake. For nstance, on the 20 th inst. the 10.35 a . m. train from Leicester to
in
ind a-half minutes at Barrow, as the brake would not come off. The piston rod packing is now now and in good order ; yet some leakage takes place. What, then, may be expected in the course of a year
or two? Loicester, February 24th.

Clement E. Stbetton.
BLAKE'S IMPROVED VERTICAĹ BOILER.
Sir,--Permit me to call your attention to a letter in your issue of my recent improvement in the construction of my well-known boilers, and the perspective sketch given of the internal part of my
boiler. In Messrs. Turner's letter they say :- "This "-meaning ny improvement-"can hardly, however, be considered a novelty as we have had exactly the same thing before the public since 1882, see engraving of which we enclose herewith." It is a pity you did
not publish the engraving Messrs. Turner sent you: if you had it not publish the engraving Messrs. Turner sent you; if you had it
would have been seen that the allegation in their letter is not true. The internal part of my boiler is different to Messrs. Turner's, and
I have no hesitation in saying an improvement and superior. The I have no hesitation in saying an improvement and superior. The
boilers now sold by Messrs. Turner are exactly similar to the boiler patented by me in 1878, and continued to be made down to 1881 . mprovement, and have since 1881 to the present time continued to make my improved boilers.
Britannia Works, Newton Heath,

Manchester, March 2nd.
THE WATER SUPPLY FOR THE SUAKIM-BERBER ROUTE.
Sir,- At a time when British manufactures are more depressed than at any period in the memory of the present generation, and
when the Home-office is besieged by deputations of the unemployed, it seems a curious fact that the Government should have selected an American firm as the favoured recipients of their orders for the pumpell known English firms who have made steam pumps their study for many years, and who would, but for the American proteotive engines. It will naturally be supposod that these firms have been asked by the Government whether they could supply the required machinery before the orders were sent out of the country. I am in their line of manufacture-nor have they been consulted in any way whatever. The announcement in the public papers is the
first intimation they have received that their special work was then being taken out of their hands.
endering, and had engineers had been given the opportunity o either of price, quality, or time to comply with the Government requirements, they would have no reason to complain; but as the matter stands it appears a singular neglect of an opportunity to
benefit the home industrial classes. AN ENGLISH ENGINEFR. Lonefit the home industrial classes.
Larch 4th.
SIR,-The fact that questions respecting an order given by the English Government to an American firm for pumps for the above contract have been asked by several members in the House of interest and importance for several reasons. In the first place it is well known that we have had for many years a depression
of altogether unprecedented severity in our iron, coal, and other of altogether unprecedented severity in our iron, coal, and other
kindred trades, and this depression, as is equally well known, still exists. In the second place, the public is painfully are in a state of enforced idleness and their families starving In the third place, ironworks, collieries, engineering, and other similar industrial establishments throughout the country are, for the most part, only partially employed, and in too many instances are entirely stopped, whilst employers of labour find themselves
subject to diminished incomes and with the burthen of and increasing taxation to bear
In the face of a!! this, and considering the notable fact that our
ports are open to the free importation of machinery from the
United States, whilst English machinery exported to that country is subject there to a heavy prohibitive duty, we would venture to ask, Is it fair to English machinists, much less is it a patriotic act, for the English Government to give an order to a foreign country
for machinery required for the use of the British Army ? In for machinery required for the use of the British Army? In
answer to the question put by Mr. Carbutt in the House, it was stated that the contractors for the water line-one of whom is an American-having had great experience with American pumping engines, preferred that the six required for the first fifty miles hould be bought in New York. In reply to this most unsatisfactory reason, we beg to state, as a simple matter of fact, that a
practical experiment was carried out at Aldershot, with the sanction of the Government, last year, for the purpose of testing the practicability of the scheme submitted to them by the present contractors, and that the pumps used in that experiment were manufactured in London; and further, that it was in consequence of nment gave the order for
S, Owens And Co, Whitefriars Eng

March 5th.

the friction of slide valves.

Sir,-Permit me to explain a method of ascertaining and consists of a small piston H, fixed on the end of the valve-rod, which works in the cylinder I, full of oil, also attached to the
valve-rod. A smaller cylinder A is connected by larger cylinder I, in which works a piston K kept down by a spiral spring similar to a steam engine indicator. The end of the piston-
rod is attached to a parallel motion carrying the pencil B, which

travels up and down as the pressure of oil in the cylinder varies, is traced on the moving valve spindle. Thus a pressure diagram is traced on the moving paper, which is wound on to the roller O
off E , and over the surface of D , the motion of C being obtained
by a string coiled round a grooved pulley G, the other end of by a string coiled round a grooved pulley G, the other end of
which is attached to any convenient fixed point, so that on the instroke of the valve the roller C revolves in the direction of the ment, which winds up the string again on the out-stroke, the
paper remaining stationary. The out-stroke of the rod will be made by the direct contact of the piston against the cover. At M the valve spindle is continued through the guide bracket, thence to
the joint of the excentric rod. the joint of the excentric rod.
This indicator can also be
piston of a double-cylinder engine by inserting it in a piston-rod instead of a valve-rod ; then cover over the exhaust port, and admit steam on both sides of the piston, with the valve-rod
disconnected, the crank driving the piston, the engine being worked by one cylinder only. The diagrams thus obtained will In the same way the friction on glands only can be obtained by merely allowing the rods to work alone.
The action of this indicator will unavoidably slightly alter the disribution of steam due to the variations in thelength of the valve-rod, but if in practical experiments this is found to be too large for
efficient working, the large piston must be enlarged and the smaller one diminished. A similar arrangement to this might be used to take diagrams of the tractive power of a locomotive by arranging it between the engine and coaches.
Brighton, February 21st.
SIB,-I notice in your impression of the 27 th inst, what appears to ine to be a very novel slide valve, in which the inventor overcomes the difficulty of getting a slide to move over an exhaust port the valve which is not so stubborn. In these days of high piston speeds and large ports engineers will welcome any simple and practicable contrivance by which the necessity of dealing with such
enormous strains as we have in the link motions of most marine engines may be escaped.
I do mater
Ido not, however, clearly understand the modus opcrandi of the
second arrangement you refer to. It seems to me that if the second arrangement you refer to. It seems to me that if the
fulcrum pin be removed the valve would be "all adrift." Will the valve wear evenly? Perhaps Mr. Peck could enlighten us on these points,
Westminster, March 2nd.
$\mathrm{Sir},-\mathrm{In}$ answer to letter signed "Veritas," re balanced slide valves, I beg leave to state that the late J. Armstrong did not
take the balanced valves out of the Iron Duke Great Western broad gauge engine. They were taken out many years before that gentlemas became loco. superintendent. The balanced valves of tried them in the Majestic steamer at Stockton fifty years ago. Bristol, March 5th.
Ex-Locosotive.
Sir, - Will you kindly allow me to correct an error in my last letter. The pencil ought to be fixed in one of the collars on valve spindle, so as to record variations in length of its stroke under
different pressures ; not on eye-piece, which would always have the travel of the excentric rod.
the travel of t
March 3rd.
COMPOUND IRON-AND-STEEL ARMOUR PLATES AND STEEL armour plates.
Sir, - The diagrams in The Encineer of the 27 th of February,
of the plates after the trials at Spezin, clearly show what might of the plates after the trials at Spexia, clearly show what might
be expected from the percussive force of the shot from a 100 -ton ge expected from the percussive force of the shiot from a 100 -ton Cammell and Rrown's, Figs, 1, 2, 4, and 5 , show that a complete
breaking up of these has taken place. It was not so in the
Schneider steel plates, as shown in Figs. 3,6 , and 7 , as the conical shots passed clear through them, the cone part of the shot appaand forcing or wedging the displaced metal into the other parts of the plate. In accordance with the displacement of the metal into the plate itself in the passage of the shot, which, in these trials, strength of the material of which they are made proved. In the case of these trials the steel plate clearly shows the greatest case of hese trials the steel phate cleary such being the case, it
strength to withstand such terrific force
naturally occurs to one's mind why it should be so; why should naturally occurs to one's mind why it should be so; why should
plates of the same size and thickness, and of comparatively the same material, give on trial such different results. sent time, when the nations of Europe are increasing their armaments, may not be out of place. I shall first open the question of
the composite iron and steel plates and their manufacture, and
show why they will not stand the same amount of force as steel show why they will not stand the same amount of force as steel
plates, or what goes by that name. My first practical experiments plates for the embrasures of the fortifications at that shot-proof built by me for the Government. All classes of plates were put to trial-best Lowmoor iron, ordinary wrought iron, puddled steel,
and what was at that time called homogeneous iron, or what I and what was at that time called homogeneous iron, or what I
should now call mild steel of the finest quality. The result
of many trials by the Wr passed clear through the iron plates; through the puddled steel plates with fracture; but not through the homoge Lowmoor plate. The mild steel or homogeneous iron was therefore adopted to shield the embrasures. It is, no doubt, metal of
this description that is employed by Schneider in the manufacture of his plates, being made in pots or crucibles in charges from 60 lb . to 100 lb ., each workman pouring his charge into a dam until the required mass is collected for the cast, the mass never being allowed to get cool until it is shaped through the rolls. This is the usual way adopted in German works for large masses, con
sequently the molecules of the metal do not get their crystalline or prismatic shape until the mass is cooled at its finish. The strength of the mass will depend on the fineness of the atoms, and also on their close impact on each other. The construction of composite iron and steel plate is entirely different from a mild
steel or homogeneous plate, and I cannot compare it in regard to its strength better than to a sound piece of English regard to deal backing, the oak representing the steel face, and the deal the wrought iron back of the plate.
I had an opportunity some time
I had an opportunity some time since, at the Atlas Works, of
noting the way armour plates are manufactured. In the first place, it takes about two tons of pig iron to manufacture a ton o
finished iron plate, therefore one ton of iron is oxidised in the furnace per ton of finished plate in the many heatings undergo. My experience in heating masses of iron is the deterioration of the metallic strength by oxidisation, and to build up an
iron plate of many tons weight it has to undergo many welding and coolings ; and I have found in practice the larger the mass built up, the larger the crystal
become, and therefore weaker.
The way in which these large masses of wrought iron are built
up may be stated briefly. The puddler prepares his ball in the usual way, partly from refined plate metal, and partly pig. The ball is then shingled and rolled into a slab. These slabs are
sheared, piled, and rolled three times, the slabs increasing in every time, until a pile is built up large enough to form slabs 2 in . to 3 in . thick. These are then piled on each other, tier crossing
tier, until the mass is large enough for the required plate, which is brought up to a welding heat in a furnace, and passed througl the rolls. Ileave the question of the quality of the plate to the
practical man, as I am sure he will understand what it will be in practical man, as 1 ams sure he wil understand what it will be in
masses of many tons weight each after the firing it has passed through; but my experience is-oxidisation takes place, or what the men call burnt iron. I should also question whether anything like the extreme of 25 tons tensile strain, with about a third elongation, has ever been produced in these large masses. About
20 or 21 tons per square inch will be nearer it, as I have found from experience.
To strengthen this weak mass of iron, I believe Mr. Wilson, of
Messrs. Cammell, invented a process for facing the wrought iron plate with steel. This is effected by heating the wrought iron plate so welding heat again, and by making the furnace into a wrought iron plate of the necessary thickness, which combines in setting; when set it is rolled through the mills for the required
thickness. The question is whether the stel does ing itself thoroughly on the face of the wrought iron plate ; looking at the drawing of the plate, Fig. 2, experimented on at these trials,
the face of steel appears to have left the iron plate bacling, the face of steel appears to have left the iron plate backing,
showing imperfect adhesion. Another question also arises in my mind-the unequal contraction and expansion of the two metals; it may not be of much importance, perhaps, in a plate, but in
many of them fitted together and forming long lengths, ns on the many of them fitted together and forming long lengths, as on the
side of a ship, it would be of great importance. It cannot be to side of a ship, it would be of great importance. It cannot be t
the advantage of the Government to have a composite plate o fancy construction to protect our ships or to make our guns of; ; extends to about 45 tons on the square inch on to another body whose extreme strength does not exceed 25 tons on the square
inch tensile, more especially as the iron, the weakest, will cost a inch tensile, more especially as the iron, the weakest, will cost at
least four times as much to make as the finest homogeneous iron, centage of carbon added to it to make. The latter may have any per hard face is required this can be done by casting one side on It appears to it as steel is tempered.
with steel at a greater cost, with at least 50 per cent plates faced with steel at a greater cost, with at least 50 per cent. less strength
than homogeneous iron or mild steel. The means of producing arge masses are now not confined to one firm; but the question of uniformity of quality, that is, the uniformity of purity and fineness of the atoms, is not insured by the present two modes in operation for the production of the metal.
Those who make ingots, say, for 100 -ton guns, have to employ in stating that no two charges of the metal will be no hesitation in purity or in fineness of its atoms. To insure a uniformity of strength and fineness, the metal should all be refined and manipulated in one charge and in one apparatus. I believe the largest furnaces or converters in work have not more than 15 tons
capacity. Furnaces will be constructed to manipulate masses just capacity. Furnaces will be constructed to manipulate masses just
the same as machinery is produced to handle them. Why should we go on making plates of combined wrought iron and steel in the showed their superiority? If we could not produce them of one metal, and of equalquality to our competitors, it would be a different natter; but 1 am sure what others can produce, either in steel or iron, we can, and the sooner for our credit we are at it the
better.
SAMuEL R. SMryth, C.E.

Smyth's Caloric Association, 12 and 13, Barbican, E.C., March 3rd.

eloating breakwaters

Sir,- The question of numerous harbours of refuge is such a with an inquiry after inexpensive methods, and thus with propositions for floating breakwaters-that the proposition to place ones at
Eastbourne bas aroused much public interest. It is satisfactory Eastbourne has aroused much public interest. It is satisfactory
and valuable that a floating breakwater should thus be given an and valuable that a floating breakwater should thus be given an
opportunity of proving that shelter can be supplied in this econowhole class of floating breakwaters were to be discredited through
the possible or partial failure of one particular form of floating
breakwater. breakwater.
From sev From several quarters I have had communications, and have way breakwater is either going to be put down at Eastbourne, or that that experiment is so similar that the Greenway breakwater must be content to stand or fall by the

Not only in the name of fair play and myself, but, I venture to trust you will find space for the following description pointing ou the peculiarities distinctive of these two forms of floating break

1. The breakwater, Fig. 1, proposed at Eastbourne has no theory except the general hope that the sea may be quieted by being broke The Greenway breakwater, Fig. 2, has a simple, well-known,
natural law as its basis, viz., that counter currents will nullify natural law as its basis, viz., that counter currents will nullif one another.
2. Messrs. 2. Messrs. Carey and Latham's adaptation of Mr. Leeds' plan only cleaves the water slightly below the surface.
The Greenway breakwater turns a column of wa
water 10 ft . or 15 ft .
3. Mr. Leeds' plan partly opposes the sea, and is therefore in
danger of being carried away. langer of being carried away.
The Greenway breakwater
4. They use the expression-apparently borrowed from me, for is in none of Mr. Leeds' earlier descriptions of his plan-
"dividing the waves ;" but their form of breakwater is divide the water, not the line of the wave, for they divide it horizontally by a wedge that lies on the wa
The Greenway break
breaking up their line and turning portions and divides waves, 5. They estimate the cost of their breakwater at $£ 18$ a foot. The Greenway breakwater is tendered for at $£ 6$ a foot.
difficult of placing, necessitating calm weather and the use of divers. The Greenway breakwater mooring is simple, depending chiefly inexpensive, and gives no more trouble in putting down than an ordinary anchor.
5. Theirs, in fact, represents a beach (1), and a wall (2), steadied
a flooring (3), and anchored by chains over rollers to a beam (4) oy a firder, fixed at the bottom of the sea.
The Greenway breakwater is briefly a series of prisms with arved sides and three heavy anchors.
T. The Greenway breakwater turning the sea against itself, anid
The the more perfectly as the storm rages the fastest, is a novel and
6. Their floating structure has no provision for relief.

The Greenway breakwater, being sloped at the back, receives
support and relief to the front mooring from the natural action of
 scientifically designed harbour as the Greenway break water should
be made to stand or fall by the suceess or failure of one which
does not claim to be based on the same principles, but in a comdoes not claim to be based on the same principles, but in a com-
paratively complicated form.
E. C. GREENWAY THOMAS. March 2nd.

RAILWAY SIGNALS,

SIR,-I was much interested in the report of Major F. A.
Marindin on a collision which occurred on the 17 th December 1884, near West Croydon Station, on the London, Brighton, and South Coast Railway, in which he urges the desirability of dis at night, which is often felt. Sir, I can agree with him in his remarks on the above subject, as I think it is quite time something ought to be done in the matter, as I have to run over sections in
which there are signal posts, with the distant and home signals which there are signal posts, with the distant and home signals
and one post ; and I hope that his remarks will not be slighted and one post ; and I hope that his remarks will not be slighted
this time, as I think they were at the time when he made his report on the fatal accident on the Great Northern Railway at Hhis accident, he says the lesson to be learned from this fatal collision is, that the whole system of fog signalling in use generally
throughout the kingdom is a very weak point in rail throughout the kingdom is a very weak point in railway working,
and that the rule for working under the present system, weak it is, required improvement. Even when fog signalmen are at their post, and are known by the drivers to be there, it must be remembered that in very thick fogs the flag-man and his lamp are frequently invisible, and that, therefore, a driver does
not get any positive intimation when a signal is of such as it is when the signal lamp or arm is itself visible, but only a negative may possibly have failed to explode, although upon the rail and intended to do so. The rule enjoining caution when running in a fog should be rigidly enforced. The risk, appreciable at all times
during fogs, becomes the greater when the fog is a sudden one, for in such a case there must be, under the present system, an interval
of time when the signals are not protected by any fog signalmen. It is to be hoped that as a result of this collision a further trial
and may be given to inventions for the improvement of fog signalling.
Sir, sa I have seen an invention tried and worked suceessfully on
one of the engines on the Haydock Colliery Railway, belonging to sir, as the engines on the Haydock Colliery Railway,
one of thard Evans and Co., Earlstown, gives a true and
Richat on the engine when he is passing a signal at danger,
distant or home signal. I think that if something of
protected in case of fogs ooming sudden in the night time as well ass
day. Ithink it would also be be a reat navin in in life and rolling Cay, I I think it would also be a great saving in lifo and rolling
stock. Ihope that this sill meet the eves. of the pateentees of tho stock. Ihope that this will meet the eyes of the patentees of tho
biove invention, and that they will sive us a full deseription of it. Express Driver,
London and North-Western Railway.
Liverpool, March 3rd.

preventing incrustation in boilers

SIR,-We note in your issue of 27 th ult. a sketch and descrip by Mr. William Brown, of Stockton-on-Tees, to meet the eme gencies of a very troublesome case. In the case referred to there was fortunately no lack of fuel at command, and it was found possible to construct a purifier which was practically a separate boiler uel at hand, the case would have been extremely troublesome It may therefore be of interest to your readers to know of a remedy in those cases where spare fuel is not available. We wish to direct attention to a boiler cleaner, requiring no heating, and which hasnow firms in the United States, and has been found to meet those cases where fuel is an item for calculation, and simplicity of working is shaped skimming pan, 7 in . deep, and extending nearly to the shell in width, and is placed at the back end of the boiler, with its open side towards the front, the rear sides being partly above the sur-
face of the water. A flow pipe connecting with the rear of the pan, and passing through the boiler shell, is connected with a settling chamber. A return pipe is connected with the settling chamber. A blow-off pipe is also provided.
As it is a well-known fact by all practical engineers that the action of heat, and that the to the top when first subjected to the ear at the surface, caused by the heat being strongest in front, hence the practicability of this self-acting invention. When
steam is generated a constant and steady circulation is produced steam is generated a constant and steady circulation is produced
from the front of the boiler to the pan, where the heavier sediment will be held, the lighter matter passing up with the current o the settling chamber, whete, having left a $1 \ddagger \mathrm{in}$. pipe, and enterively still cylinder, the water spreads out chamber, the pure water returning to the boiler through the return pipe, the circulation continuing so long as there is any pressure in
the boiler. To clean out the pan and the settling chamber or cylinder, the colow-off is opened as often as may be necessary, tested at 200 lb . pressure to the square inch, and is from 36 in . in length by 18 in . are attached close to the shell of the boiler, on the bouter. Valves in case of a pipe leaking it can be immediately shut off, all impurities from the water; old scales will drop entirely off, the cause being removed. They will preserve a boiler, also the engine, by preventing, more or less, grit working over with the steam;
saving of fuel, making steam easier, and lessening danger of explo-
sion by positively preventing a boiler from ion by positively preventing a boiler from foaming. They are We shall be pleased to give any further information to any of
vour readers who are troubled with bad water or scale in their
y. boilers.

Wool Exchange-buildings, Coleman-street, E.C.,

March 4th.

NEWTON'S THIRD LAW,
SIR,-I have read with interest and some amusement the in-
genious solution of the action and reaction difficulty submitted to at right angles to the strain, the whole difficulty is got over. But It seems almost a pity to disturb Mr. Muir's simple, child-like
faith, but I venture, notwithstanding, to ask him what is the faith, but I venture, notwithstanding, to ask him what is the
solution of the difficulty presented by a crane lifting a weight?
The resistance of the weight to be lifted is equal, according to Newton, to the strain applied to lift it; and this we know apart
from Newton, because the pull is the same at both ends of the rope kindly explain where the right-angled sliding action comes in here
London, March 3rd.

cleopatra's needle.

SIR, - My attention having been called to a notice in the issue of
your valuable journal of the 23 rd January last, under the heading your valuable journal of the 23 ra January last, under the heading for the preservation of Cleopatra's Needle, I beg to inform you
that it was Browning's Permanent Preservative Solution, mavu factured by my company, that was, six years ago, so successfully used in the preservation of the obelisk; and you will observe, on
kind perusal of the slip enclosed herewith, that this preservative was used in preference to any other. I should feel much obliged if you would kindly have these facts mentioned in your issue.
Indestructible Paint Company, War. LEWIs PrATT, 27, Cannon-street, London,

March 4th.
Works of considerable magnitude are being proposed to increase
the supply of water to New York, and contracts have already been the supply of water to New York, and contracts have already been
awarded for a new aqueduct which will cost from two to two and ahalf million sterling.
Glasgow Evgineers' Assoclatron.- At the ninth meeting of
the Glasgow Engineers' Association Mr, John Eaglesham, C.E. Ayr read a paper upon an "Engineering Mission to Brazil." In the spring of 1884 the aumor was commissioned by the directors of steam shipping company in Bahia to proceed to that country to
report upon the construction of a slipway and other accommodation for the repair of their fleet of steamers. Describing in the first place to a considerable extent the customs and manners of the features of the scheme proposed. Of all the Brazilian ports Bahi is the only one at which iron ships can be repaired, with the
exception of Rio Janiero, which has a fine graving dock cut out of the solid rock. At one time there was a slipway at Colonia, but been removed, it is now abandoned. The present method of beaching the steamers at Bahia is as follows:-At low water the
vessels, which for the river navigation are flat bottomed, and have only a draught of 5 ft , to 7 ft ., are floated at high water above a series of logs placed at right angles on bearing logs, and forming top of the log is about 2 ft . above low water, and the workmen then make the necessary repairs until the water floods them out. The
difference between high and low-water O.S.T. was ascertained to be difference between high and low-water O.S.T. was ascertained to be
9 ft. Sin. Although the largest of the company's steamers is
only about 800 tons, it was decided to bnild the alipway only about 800 tons, it was decided to build the slipway large enough
to accommodate a vessel of 2000 tons. The construction recommended was principally of timber, and the wood best suited for this other native woods, were shown. Thic cost of the wood at Bahia
in the rough varies from 1s. to 1 s . Sd. per cubic foot. Labour is dear.

drawings illustrative of the p
system of the town of Patith.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

* All letters intended for insertion in The Enginger, or containing questions, must be accompanied by the name and address

of the writer, not necessarily for publication, but as a proof of | good faith. |
| :---: |
| communications. |
| |

me cannot undertake to return drawings or ma
must therefore request correspondents to keep copies
${ }^{*}$ In In order to avoid trouble and confusion, we find it necessary inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column must, in all cases, be accompanied by a. larye envelope legibly directed by the woriter to himself, and bearing a 1 d. postage stamp, in order that
answers received by us may be forvarded to their destination. E. B.-There is no book of the kind published.

COMPRESSED PAPER.
o the Editor of The Eanginer.
Sr, -Can some of your numerous corrospondents 1 let me know the
ddircosses of the princtipal makers of articles in compressed paper, such ${ }^{4 s}$ rullway wheelh, dsent Bolfast, Februnry 2 th.

THE RATCHET BRACE,
To the Bditor of The Bnginer)

THE ENGINEER.

MAROH 6, 1885.
WE mayer matintenance and subways. engineering work that we cease, or fail to see, where the
barbarism lies. This is notably the case in London street
or road making. If houses were built with doors that wer day with each night with spikes and had to be op ould probably come to the conclusion that though custom should be revered, and locks and bolts would be more costly than nails, the first cost would in the end be the smallest both in nails and doors, to say nothing of convenience and time saved. Failing to act upon such a conclusion would not however, be one whit less inconsistent with our claims considered common-sense folks, than the way or roads. Many of these streets are made in a most costl way. They are dug out with great labour to a depth over a foot, the bottom sited and leveled, Thi is carefully floated with cement mortar, and thus a botton is made capable of lasting all time. Upon this is built compound floor of wood blocks, asphalte, and other things, making up what is the best roadway modern road engineering has devised for towns where cost is not the firs t a first cost of a roadway is made on the large scal London these roads are usually completed, and perhaps all the paraphernalia of construction removed, and even a week may have passed, when the water or the gas people come long with a new line of pipes, and they or the Postal Authorities with a new line of wires for telegraph purposes, proceed with picks, crowbars, heavy sledge hammers and bi teel wedges to cut and smash the whole of this fine work to pieces so as to dig a trench for their pipes or wires in pipes. To take up this sort of road is a work requiring plenty of brute force. To do it for laying 3in. pipes suc as those used by the Telegraph Department, which are placed at a small depth, and afterwards make good again costs from 13s. to 15 s . per yard; and this expenditure is repeated every time a pipe has to be laid or renewed. How
often this has to be done is too well known by those who freuent such thoroughfaresasFleet-streetand theStrand; and it does not need much calculation to show that this expend ture soon exceeds the cost of a subway, which could be made to take all these pipes and wires. As a mer question of cost of putting in and maintaining pipes and wires the gain would be very great, but the gain
to London would be immeasurably greater than this when the loss involved in the frequent stoppage of im portant traffic is taken into account; and a further very serious loss also takes place. Once a new roadway, such a the kind above referred to, is taken up, although it is sup posed to be afterwards made good-and the best is done make it so-it is never the same as it was before being broken into. The whole fabric is more or less shaken Between the part remade and the original there is alway some irregularity of level; the road does not wear level, and it wears quickly; holes are formed, and what was an expensively but really well-made and fine road begins to want repair much sooner than would otherwise be neces ary. The heavy work of breaking into and cutting out bed of six or seven inches of concrete disturbs a large par of the whole, the continuity is gone, and the cost of needed; and though no design for a satisfactory subway, with a covering that at the same time would not in any wy detract from the character of the surface for horse footing, has yet been made, there should be not the least difficulty in this. The removable covering need not extend the whole length of the subway, but even if this were thought best, there is no reason why a plate covering at the level of the concrete should not be made. Upon this the wood blocks could rest, and there would be no difficulty in making this part of the wood covering easily removable and at the same time fix it so that as a road surface it hould be as good as the other part of the road. Time and money would be saved in every part of the operation of laying pipes, repairs could be made when wanted, and interruption to venicular traffic now extending over day and weeks would be reduced to hours and days. The enormous growth of London street trattic makes something
of this kind daily more necessary, and it is becoming imperative.

the teaching of dynamics.

We have on more than one occasion called attention to the want of uniformity of definition which is to be me with in text-books of Dynamics, and to the inconvenience which result when the author having in one place given certain definition, in another draws a deduction which must be erroneous if the definition be right. We have not the least hesitation in returning to this subject, becaus it is one which the rising generation or engineers has reat deal to do with. The modern student is often different from his predecessor in that he is of a mor inquiring disposition, and less disposed to take on trust what is told him. The young engineer who now-a-day accepts as true any statement that he finds in a boo simply because it is in a book, is rapidly becoming a rar avis, and it is well that it should be so; but the studen has considerable difficulty in making himself heard, and however much he may find himself oppressed by the con tradictions and inconsistencies manifested by his teachers, he is unable to enter any solid and useful protest. It is, then, in the interest of the student that we write. It is
for his sake that we point out that defects exist in only for his sake that we point out that defects exist in only too much of the scientific instruction of the present day which ought to be eliminated, and would be eliminated if
the teaching of sound truth was not too often regarded as the teaching of sound truth was not too often regarded as a secondary consideration. In what follows we do not profess to supply improved definitions. Our object is, in one course, be entirely beyond the space at our disposal and he legitimate character of an article like this even to attempt to cover a wide range of ground ; we must, thereore, content ourselves with touching on a very few pro minent facts, and we shall try to be as precise as possible There is the greater stimulus to precision in that we Very recently we had something to say concerning Newton's third law, and we have been assumed to say that w
disputed the truth of that law, which assumption is the direct contrary of the faith that is in us. We hold that that its conrd law is absolutely right; bignored
At the base of the whole science of dynamics lie Force and Motion. The precise meaning to be attached to these words is all-important; because as they are made to mean one thing or another, the explanations given of dynamical phenomena are or are not true. Teachers of dynamics, to do them justice, have recognised this for years, and we find, accordingly, that they all give definitions of Force and Motion. They explain, that is to say, what they anderstand the words to mean. Magnus, for winsan University College, ten years ago defined Force in his "Elementary Mechanics"-a class-book used in University College-as whatever produces or tends to produce motion." Professor Julius Wiesbach, in his great book, "A Manual of the Mechanics of Engineering," defines Force as "the cause of the motion, or of the change in the motion of material bodies; every change of motion, e.g., every change of velocity, must be regarded as the effect of
force." This was written in 1877. Clerk - Maxwell, was wis "Theory of Heat":-"Force is whatever changes or tends to change the motion of a body by altering either its direction or its magnitude; and a force acting on a body is measured by the momentum it pronces in its own direction in unit of time." Clausius, "On the Mechanical Theory of Heat," says on the first page, "Every force tends to give motion to the body on which it acts ; but it may be prevented from coing so by other opposing forces, so that equilibrium results and the body remains at rest. In this case the force performs no work; bat as soon as the body moves under the influence of the force, work is performed." This was written in 1879. Professor Tait, apparently overwhelmed by the dificulties involved in the conception of force thus defined, cuts the Gordian knot by asserting that there is no such thing as force. We quote from his "Treatise on Heat," published last year, page 15 :-"Thus it appears that Force is a mere name ; but that the product of a Force into the displacement of its point of application has an objective existence. Even those who are so metaphysical as not to see that the product of a mere name into a displacement can have objective existence may perhaps see that the quotient of a horsepower by a velocity is not likely to be more than a, mere name," and again further down in the same page he says Force is the rate at which an agent does work per unit of ength." The last authority we shall quote is a book to which we have already alluded, namely, "An Elementary Treatise on Dynamics, by Professor Wiliamson and Mr. Tarleton, of Trinity College, Dublin. These gentlemen do not give special definition of Force, but content themselves with Newton's first law of motion: "A body continues in its state of rest, or of straight uniform motion, except in 80 far as it is compelled to alter that state by impressed orce. We might go on to cite text-book after text-book but no good purpose would be served. It is enough that we have here three distinct definitions of the meaning of the word Force:-(1) Force is that which produces or ends to produce motion ; (2) Force is that which changes or tends to change the motion of a body ; and (3) Force is the rate at which an agent does work.
Now, the student with brains will
Now, the student wilh brains will ask, and naturally ask, do all these teachers mean the same thing by the word Force? We have often been asked the question. It will heir head while sctool of writers, with Newlon at force head, has no hesitation wateve asserting that force is the cause of motion, Clerk-Maxwell does not assert anything of the kind. Maxwell was an eminently cautious writer, which is more than can be said of all his compeers; and we beg to call the attention of our studen caders the very carerul way in which he refuses to say hat force motion, but does not cause it. The difference is very marked-so marked that if Maxwell is right, then others -Clausius, for example-are apparently or really wrong. No doubt Maxwell had excellent reasons for refusing to say that force was the cause of motion; is the student to assume that Clausius, writing on the same subject, Heat had equally good reasons for asserting that it was? Putting ourselves in the place of the student, we ask for him,
Do Clausius and Maxwell mean the same thing? If they do, why did Maxwell limit his definition by the precise use of the word "change" in the way that he did Turning to Tait's definition, he asks again, does Tait mean the same thing as Clausius? or the same thing as Maxwell or something entirely different? He will say further that he has always regarded force as an efrort, and he can point to dozens of authorities who regard it in th same sense. But Professor Tait speaks of it as a
rate." How can a rate be an effort? How can mere name be a rate? It forms no part of our purpos to answer the student on these points. Our object is if his teachers we assert that is hat these the him in doubt. Either he ought to be told all mean three classes of defmition exist, and that they exist, and same thing, or he ought to be told that they modern dyo not mean the same thing. The vice of the book well is thex rules, and proporion which iopositions, with a magnificent absolutism never hints that existence of ail other teachers, and versal the facceptance. The student is kept in total ignorance of ject than the one nothing of the one he chances to be taught. He knows nition existance that a wide diversity of den Where, for example, the student what we have just told him? To what volume will he turn for the answer to the questions we have put in his name?
As a further illustration of the troubles through which the student is compelled to pass, we may cite a review of
Professor Williams and Mr. Tarleton's book which appeared last week in Nature. We have no intention of
criticising that review. We have every reason to believe that it was written by one in every way competent to deal with the subject. We quote the following passage from
the review. The writer, referring to Professor Jameson's proposition, "A "celeration varies with pressure," says:-
"Here we see at a glance the effects of want of system Pressure, force, and effort are used as completely synony mous and interchangeable terms. Now, the first term has a perfectly definite meaning in science--introduced without definition or warning by our authors in Sec. 290 of the
book, to the utter bewilderment of the reader fresh fron book, to the utter bewilderment of the reader fresh from
p. 30 -and it means something differing from force in p. 30 -and it means something differing from force in
exactly the same way as a linear inch differs from a cubic exactly the same way as a linear inch differs from a cubic
inch. As to the effort exerted in throwing a stone, we inch. As to the effort exerted in throwing a stone, we
imagine that, if employed at all in scientific language, it would signify properly the work done, not the force applied; the two things differing as a square foot does
from a linear foot. Of course, our authors do not require from a linear foot. Of course, our authors do not require
to be told this; but why muddle the student by giving him slipshod information which he must unlearn, if he is ever to make progress
What is the studen
What is the student who chances to come across the foregoing passage to make of it? If he turns to the paragraph 290 referred to, he will find in it not one word about
pressure. It deals with the Equation of Energy. Is this, the pressure. It deals with the Equation of Energy. Is this, the
student may ask, the same thing as pressure? We extract following passage from the same review. It shows admirably page (31) we find:- -'If a uniform pressure $[$ [force] of 3 lb
weight]
produce a velocity
[speed] of 10 ft . [weight] produce a velocity [speed] of 10ft. [per second]
in the first second, find the weight [mass] of the body acted on.' The insertions are ours, made with the view of showing how the question ought to be stated unless there
The student will ask what is the diffe.
docity and speed; he turns to his die dinerence between elocity and speed; ;he turns to his dictionary and he finds
"Velocity, speed, quickness of motion," and "Speed, quick "Velocity, speed, quickness of motion," and "Speed, quick'speed' being used instead of 'velocity'? Do the words mean something in dynamics that they do not mean in
every-day life? Where am I to find what they do mean every-day life
in dynamics ?"
Once more we repeat that we shall not in any way attempt here to answer these questions. Any careful
student who will refer to more authors than one will find that the teaching of dynamics involves the setting before them of a series of puzzles or conundrums. If he would only stick to one author or one teacher, ask no questions,
and absorb what he is taught all might be well; but the moment he leaves this safe road, begins to compare authors, to ask questions, to speculate for himself on the face to face with riddles, for the answers to which he hunts in vain. The text-book of dynamics most wanted at the present moment is one constructed on the plan of giving quotations from the various authors whose books are
recognised in the various colleges and schools wherever youth is taught, and reconciling their apparent inconsistencies when hey are-as is often the case-only
apparent, not real; and when this is not the case, setting apparent, not real; and when this is not the case, setting
before the student clear definitions of the meaning which each author intends to convey, and the nature of the evidence for or against him. The truth is that in all that concerus Matter, Motion, Time, space, and their mutual
relations, it is quite impossible to entirely exclude the relations, it is quite impossibe to entirely exclucie the
metaphysical element. Metaphysics have been defined as ing says to another who does not understand him." We are very far from agreeing with this, but we fear that not a few text-books contain statements which are not fully understood by those who make them, and are therefore
not intelligible to those who read them. Clear thinking makes clear writing ; and if those who write text-books would learn that ordinary words used in the dictionary saved to the student. If the ordinary dictiouary sense will not answer, then a special dictionary of Dynamical Terms ought to be prepared, accepted, and used by every writer on Dynamics.
IT can scarcely be deemed creditable in the present advanced state of engineering and mechanical knowledge
that we should as yet be left to the difficulties and danger that we should as yet be left to the difficulties and danger
which arise from an accident such as very recently took place on board the Peninsular and Oriental Com-
pany's steamship Poonah. A broken shaft is, taking pany's steamship Poonah. A broken shaft is, taking
the percentage of cases, so relatively rare an occurrence that shipowners seem to be content to run the risk of it
rather than incur the cost at which it might be obviated. We say "might be " advisedly, because there is not as yet so far as we are aware, any practicable method devised to
guard against such a contingency.) But had a different result followed in the case of the Poonah; had her commander, Captain Parfitt, been less of a seaman than he has proved himself to be, England might at this crisis in the
military history of the country have had to regret the loss military history of the country have had to regret the loss of many valuable soldiers. There is, therefore, a con-
sideration far more important than that of mere economy to be given to this question-one which cannot be in the least balanced by the insurance which covers a monetary
loss only. Of course we everything-every improvement that may be proposedmust have a money basis. Shipowners will not run ships
the cost of constructing which is such as to preclude a paying return; and in these days of hard times for the shipping interest every item of outlay has to be closely scrutinised, and those to whom consideration of this subject may recommend itself must have their thoughts constantly given to thisprimary difficulty. Yet it seems to us that were
the occurrences of shaft breaking referred to their primary cause, that comparative immunity from them might be The transmission of power is be held to be proich much pace in this journal has been devoted; but its transmission between the prime mover and the screw of a
teamship has to be made under conditions wholly
different to those which exist on land. In the latter instances we have always a fixed and immovable base apon which to act, while in a steamship-build her as movement of a ship, is constantly varying. Unless the screw shaft, which is, under our present practice, fixed as rigidly in a straight line as possible, can be made possess such a modicum of elasticity as shall enable it t accommodate itself to the change of line to which its base is constantly being subjected, accidents such as we now
treat of must be of not infrequent occurrence. At presen screw shaft has, in fuct, largely to resist in its bearing the tendency of the ship to buckle, so to speak, under varying strains; and there can be little doubt but that it is to this resistance thrown upon it that not only are such accidents to shafts frequently cue, but that we may ind in it, to a great extent, the cause why, even with the best devised machinery, there is so great a loss between me powe eveloped by the engines and that usefully employed content to regard the difficulty as insuperable, that, give the possibility of overcoming it, it can only be by means o
such complicated contrivances as will by themselves be more fruitful cause of breakdowns than is the present ruly simple arrangement. But we cannot shut our ey the fact that scarcely any improvement has been introuced with regard to steamship machinery to which an compound engine was introduced cavilling was freely used upon the grounds we have stated, and much of it ppeared almost unanswerable. There did seem to be liability to derangement which might more than counresult has been that, despite such feared disadvantages, not a ship now goes to sea without compound engines. If here were such she could not possibly compete successfully under modern conditions of trade
Any objection, therefore, which may be based upon such pprehension should not be permitted to operate conclu vely against the adoption or any plan which some bene divide itself under two heads, the one being provision for Iternative use, which, in the case of accident, should be vailable ; the second the adoption of means which shal We have had suggested to us as being so far practicable as o be worthy of attention that all shafts should be dupli ated in situ-that is to say, that the solid driving shaf should rotate within a hollow one of the necessary dia-
meter, the latter being that to be held in reserve for meter, the latter being that to be held in reserve fo
use in case of failure of the solid shaft. Now wo have ourselves seen in practice such a hollow shaft mployed in the case of the duplicated De Bay proyere, and during the many thousand miles traversed by the agency of that screw in several different slips
the section of hollow shafting never caused the least trouble. It is true that this section was short, being conined to some 12 ft . or 14 ft ., but it was that neares to the screw itself, and consequently placed under several sections would have to be attached in such a hollow seaft would be of so much greater diameter than are used with solid shafting that there would be little to be appre with soid shafting that there wound be litte to be appre hose junctions. An objection may possibly be taken as to heincreased tunnel space such duplicate shaft would necesbut this, we contend, would not in practice prove to be so treat as to constitute a fatal objection. A more serious difficulty would probably be found in the fact that the hollow shaft would form a covering which would detract rom the accessibility of the solid shafts in case of
 kind being at once substituted.
'Passing from such a suggestion for an alternative shaft, e may remark upon another scheme propounded for giving to a solid shaft the amount of elasticity we have
before referred to as being, in our opinion, the desideraand y which it has been thought possible to aford this mea beds in which they might have the faculty of a certain beds in which they might have the faculty of a certain of true alignment without throwing the stress caused of true alignment without throwing the stress caused by its doing so upon the shaft. Another was that
some elastic packing should be placed between the sectional joint flanges which would admit of degree of variation from a true line at points divided only degree of variation from a true ine at points divided only The great obstacle to be overcome here would doubtless he great obstacle to be overcome here would doubtless
be the strain which would be thrown upon the coupling se the strain which would be thrown upon the coupling
bolts, which must necessarily be of the increased length bolts, which must necessarily be of the increased length
due to the thickness of the packing, as also that it would due to the thickness of the packing, as also that it would
be incompatible with the safety of such bolts to afford be incompatible with the safety of such bolts to afford
them even the slight play required to enable that packing nem even the slight play required to enable that packing
to compress and re-extend. It seems to us possible, how ver, that the use of a V-notched coupling might be mad o supersede the use of bolts, or such a coupling as that used in Winans cigar ship. With such there would ways be a capacity for play sufficient to allow of the action of the elastic packing, while always maintaining a bearing face for the transmission of the power either when going ahead or astern. In the French Navy a universal joint
is invariably used somewhere in thelengthof the screw shaft. We do not pretend to write dogmatically on this subject We only name such suggestions as we have heard discusse in the hope that the subject may receive that further consideration which we desire for it, and which all will ad mit to be greatly wanted. No well-found steamer, as we know, puts to sea without at least one spare section of screw shaft-
ng ; but this can seldom be made available for making good disaster when a vessel cannot be docked. All the ingenious contrivances which engineers can apply at sea to aid in
taking the strain off a damaged shaft are at the best but makeshifts, and rarely succeed in carrying a vessel through heavy weather, The true remedy to be sought will be
found in first constructive principles, and it is to be hoped in every interest that an efficient application of
secure the required end may soon be discovered.

THE Yorkshire coal industry.
is on the eve of another great strik
Yorkshire is on the eve of another great strike in the coal field. Ever since November, 1888 , when the miners oblaine
an advance of 10 per cent. on their wages, the owners of various grew into something like action last summer, though extreme measures were overruled by more moderate counsels, It has vere more and mer, during hie last seek a return of the 10 pe cent. The Union officials evidently expected this movement for they have repeatedly warned their constituents of its coming
advising them to be united and prepared for the struggle. January it was stated in The Enarserr that the South York hire Coalowners' Insurance Association had been formed as kvent of prietors should unite to help the brethren affected. In the matter of a pit being set down by the action of the men, the further stated that the first subject to which the Association would address itself would probably be the reduction of wages
to the extent of 10 per cent. Since then affairs have rapidly rogressed. The Association has become an accomplished fact, and is regarded as the most powerful confederation ehire
formed in the South Yorksliire coal trade. In West Yorkshire there is an equally strong Association, having its headquarters Their committees have had working together in this movemen held in the most hrivate manner possible. It these have bee of the conlowners to keep their intentions very quiet until the esolution formally declaring the necessity of the proposed reduc tion, requesting the colliery proprietors to explain the situation oo their men, and in the event of the men resisting the demand, to give the requisite notices to carry it into effect. Some member of the Absociation proved a leaky vessel, disclosed what was
doing, and put the miners on their guard. Of course the employes were naturally anxious to have as brief a period of publication of their counsels has already disturbed the mining districts to a degree which, to say the least, is embarrassing.
Probably there were more men " playing" "ast Monday than probably there were more men "playing last Monday than on different colliery villages, assembled in knots, talking over the
situation by themselves, It is not likely that they will feel situation by themselves, It is not likely that they will feel
encouraged to labour hard to pile up stock to enable the coalowners the tide over a month' enforced ideness. On the other
hand, they must live, and they cannot get the means to live unless they bring the coal to bank. Nine years ago a strike, colliers in wages alone $\ell 400,000$. To this had to be added the loss of capitalists in keeping pits in good working order, in paying
oyalties, and in lost trade a large portion of which went to the North, and has never yet been recovered. At that time 30,000 men were out of employment. If the present dispute should will be on a a still greater scale. Last year nearly $20,000,000$ tons
of coal were raised in Yorkshire alone, and it is estimated that fully 60,000 men, women, and boys were engaged in bringing it to the surface and getting it into the railway trucks. Of that
number fully three-fourths will be affected by the present novement. Indeed, a considerable number of coalowners who are not in the A8sociation have intimated their intention of
joining the confederated employers in demanding a reduction, which, it is purposed, shall take effect as near as possible to
the end of March. Already the Union officials are taking action. A conference has been held at Barnsley, to which representatives were invited from any pitstead throughout the stronger than at any time since the memorable struggle of nine
years ago. Mr. Benjamin Pickard, their principal leader, aspires o be the miners' representative in next session of Parliament, and he would scarcely counsel a surrender as he was on the
point of asking his constituents to lead him on to St. Stephens, The outlook is decidedly gloomy, with scarcely a rift in the clouds. Mr. Pickard has suggrested a sliding scale, and the coal-
owners have replied that they would consider any scheme he submitted in writing. There the matter ends for the present; and as for arbitration, its apostles are singularly silent during the crisis which may precipitate distress and disaster on
thousands of innocent wives and children, as well as disorganise great industry, and cause an army of men and boys to stand idly in the market-place.
the penistone rallway accident.
Major F. A. Marisdin's report to the Board of Trade on the on the Manchester, Sheffeld Barnsley Junction, near Penistone, Year's Day, is unusually interesting reading. It will be remembered that a special down excursion train, from Rotherham and Sheffield to Liverpool and Southport, was struck by an empty coal wagon, forming part of a mineral train from Ardwick, which hast in trone metals of the up-line and run on to the down-ine were killed and forty-seven others injured, many of hem seriously. The Inspector reports that the line was in goon and there was nothing in the state of the per account for the fracture of the wagon-axle, except that the ground was frozen, and in such a condition that any wenk axic
was likely to be severely tried. He therefore holds that the accident was beyond the power of any servant of the company to avert, and frees those in charge of the trains of the slightest (1) Whether the wagon whiches broke down was originally of
such a pattern and construction that it was property run upon the line; (2) whether at the time of the accident it was in good repair; (3) whether the regulations as to the ex instance; and (4) whether the flaws which were found in the
amination axle which gave way were of such a nature that they ought to
have been detected. The wagon, it will be remembered, be longed to the Shireoaks Colliery Company, and the Inspector,
having seen the specification, finds there was nothing unusual in it, and that the dimensions were practically the usual dimen overhauled only about five months before the accident. It was examined at Dunford Bridge on December 24th, 1884, and is
 which was of iron, gave way at a point 29 in , inside the boss of
one wheel, and $20 \frac{1}{2}$ in. inside the other, at which point it was
4 lin. in diameter. The metal was to all appearances of indif. 4 in. in diameter. The metal was to all appearances of indif-
ferent quality, and when analysed it disclosed a large excess of ferent quality, and when analysed it disclosed a large excess of
phosphorus in its composition, which will account for its being phosphorus in its composition, which will account for its being
very brittle. Major Marindin reminds railway companies that very brittle. Major Marindin reminds railway companies that
no less than 141 axles of goods wagons broke in the year 1883 ,
and, seeing how terrible might be the consequences of a very no ess than
and, seeing how terrible might be the consequences of a very
common accident to such wagons, he urges that too common accident to such wagons, he urges that too great care
cannot be taken to insure that all wagon stock is built of such materials and dimensions as are fit for running at high speed, and that such stock should not at any time be allowed to deteriorate, or get into a bad running condition. With this object he expresses the opinion that it is highly desirable that
all wagons commencing to run upon any line should either be the property of the railway company, or should be carefully be used to secure that ali the materiels of which the structed are of good quality, and he recommends a aystematic and periodical inspection of all descriptions of wagon stock, including a rigid examination of all axles after they have run
for a specific time, and he adds the practical suggestion that wagons should bear a label showing that they have been passed for running by some railway company, and to be legibly marked with the day when they were last thoroughly overhauled,
These regulations, he points out, can only be enforced by legisla, they are common to all railway companies they for unlese effectual. Major Marindin points out in conclusion, that this accident furnishes a waruing against the practice of placing
passenger lines between running goods roads, which is sometimes pase where there are four lines of railways. With lines thus arranged, he says, the line, by a wagon leaving a from the alongside of it, is twice as great as in cases where two passenger lines are at one side and the two goods lines at the other. It
might have been useful if the inspector had sugetel probable life of a railway axle. So great is the suggested the defective axle, it might surely be possible to state attending a number of miles, after attaining which an axie maximum supposed to have terminated its carcer ; for although many
might be perfectly sound when thus comula might be perfectly sound when thus compulsorily retired, the eye-would amply justify the rule being rigidly observed.
architectural and building trades exhibition. ing, decorative, and house art, and sanitary and ornamental manufactures, is being held in the Floral Hall, Covent-garden under the auspices of the Society of Architects. The exhibition
is not too large, and just large enough. One can look round the whole, gain some facts and hints, and perhaps make some pur-
chases, and come away without being tired, and at the same time feeling that the exhibition has not been seen. There is a time deal that is of interest to architects and builders and to others concerned with the design, construction, sanitary arrangement
and decoration of houses; but there is no one thing in particula to which we can refer. Altogether about 100 exhibitors have inventions, and it may bo said generally that the collection is a satisfactorily representative one. Some of the metal work, the hammered iron and the brass especially, affords evidence of the
advance which has been made of late years in the employment of these materials after a long period of neglect in this country the artistic possibilities of the smith's and the founder's craft the centre part of which is formed with a spider web. On and after effect in unsuitable material is tor evident. A straining for the ventilation of buildings and sanitary appliances form another important division of the exhibits. Several stands present good examples of mosaic work, of the ornamental appli
cation of brick and stone, of glass applied to decorative purpose and the exclusion of light, of wall papers free from all dele terious matter, and of woodwork for floors and interior fittings.
One annoying feature is the nuisance caused by electric bells, which ring with irritating frequency in all directions, Locks boits, and bars of varied design fill other stalls. There are a
few machines, notably a new treadle circular saw, intended for (inse in builders', pattern-making, and joiners'-shops, and to whic open until to-morrow night at 10 p.m.

water supply in the soudas.

Some not unnatural indignation has been manifested by Berber route with water is being furnished by American maker The first statement made on the subject was to the effect that fift milesof pipes and twenty engines, costing altogether 750,000 dols.,
or $£ 150,000$, had been contracted for by Messra. Workington and As was to be expected, the Government were challenged in
he House, and it was then explained that the Govenel the House, and it was then explained that the Government had
nothing to do with the matter. It had all been settled by the ucas and Aird, who ate unnaturally been assumed that Messr vere the contractors referred to, but this is a mistake. The ruth is, that the contract has been let to a Dr. Tweedale, an American, whose address is the Langham Hotel. He has
ordered the necessary pumps from his countrymen, Messr Workington, but the pipes are being made - the larger part, at
least-by Messrs. Russell and Messra, Spence, the well-known tube least-by Messrs. Russell and Messra, Spence, the well-known tube makers. So far, matters are not quite so bad as they were thougha
to be; but we should like to know why the contract has been le o an American at all, and why a single penny of the money paic
by the British taxpayer should be sent out of the country The great advantage that Great Britain posessesses over other
The ount nations in carrying on warfare is that she has nothing to pay to the money spent on ironclads is virtually taken out of one of John Bulls pockets to put into another. But warfare will ployed to enrich different aspect in British of other countrie while our own artisans lack bread. Here is a legitimate
brievance for Mr. Swift.
from the strand to oxford-street
But a limited number of our readers probably ever thread the
naze of streets which lie between St. Martins.in.the-Fields maze of streets which lie between St. Martin's-in-the-Fields eastward towards oxford-street, and they are therefore probably he Board of Works towards the accomplishment of that great Charing-cross and the great northernmost thoroughfare. But the work is being pushed on with an activity which bids fair to oon bring about the fulfilment of this object. At the poin sury-street the required alteration is now appronching comple tion so far as demolition is cencerned, and ope seww erection a
least indicates the line which will be followed there. Few
Londoners probably know much of that unsavoury localityLondoners probably know much of that unsavoury localitydirection towards Gerrard-street, Soho. Some undoubtedly will have visited it as affording a curious and painful instance itizens, and to such-if they argin revisit it change, indicative of the active progress we have referred to will be apparent. The wretched cellars--until of late crowded by repairers of, and dealers in, cast-off boots and shoes-are now tenantless, and the windows, formerly crowded by the
unkempt heads of the poorest classes, have been removed from their frames preparatory to the removal of the entire eastern
side of the street. Similar progress has also been made in side of the street. Similar progress has also been made in
Great St. Andrew-street, which runs parallel for some distance with Dudley-street, and one side of which-the West-will be removed for a great part of its length. The work of pulling full reconstruction will probably not be long before it is under taken.

pailway rates and charges

The Sheffield Chamber of Commerce has decided to petition gainst the Bills of the three railway companies win affecter and London and North-Western. This step has been taken in order to obtain a locus standi before the committee havin charge of the proposed measures. It is contended that the Bills of the three companies named not only adversely affect the oly enlarged, e made, but also that power is taken to charge an unknown sui or terminals, which, in the case of the heavy goods manufac ined in Sheffield, might convert a profit into a loss, The
feeling in the iron and steel districts of Yorkshire and Derby sire is adverse to the proposal, which is tersely stated as an ttempt to prop up dividends with new powers. While iron绪 igher, and still higher? Our railroads are privileged monopolié They stand as substitutes for our ancient highways and canals The companies have the exclusive right to their use, and for thil privilege, in which they are State-protected, they are expected
in return, to exist for the public benefit quite as much as fo n return, to exist for the public benefit quite as much as fo
dividend-making purposes. Such powers as are now sought by dividend-making purposes. Such powers as are now sought by
the railway interest, which is undeniably powerful in Parliaent, would, it is contended, operate most prejudicially agains rries particints, molly. The borouh gainst traders and merchants genera. The borough an Bills come on for second reading, that their progress may b effectually stopped at that stage, if possible.

He faral hccident at shoeburyness

A BoARD of officers, under the presidency of Sir Charle tances of the fatal accident which occurred at Shoeburyness o February 26th last. As reported in the daily papers, an experi
mental percussion fuse, designed by the late superintendent of mental percussion fuse, designed by the late superintendent of
the Royal Laboratory-Colonel F. Lyon, R.A. -was fixed in the base of the shell, and was being covered with a lead disc, when the shell exploded, killing or wounding mortally the super tendent of the School of Gunnery, Colonel Fox-Strangway as w Allen and Underwood. Theseant-Major Daykin, and Gumner died in the course of a few hours, Major Bally, R.A., was also wounded; as well as Mr. Lowe, assistant manager of the Royal
Laboratory; Mr. Rance, artificer: and Gunner Webb. There no occasion here to recapitulate the exceedingly painful circunstances of this accident. It is only noticed to observe that it is
under investigation, and cannot with advantage be discussed now. Colonel Lyon, Colonel Fox-Strangways, and Captain loss must be felt in every way far beyond the range of their lepartments.

LITERATURE.

Electrolysis: Practical information on Nickeling, Coppering,
Gilding, Silvering, the Refining of Metals, and the Treatiment of Minerals by means of Lilectricity. By Hiprolyte Fontanse," 1885 .
A translation for English readers of this work, by writer who has been even more successful in the practical will no doubt the dynamo machime than ans pen, the original work will be well received in this country by many electricians who, with its author, have recognise the fact that it is by no means certain that the most direction of electric lighting. Of this last contribution by M. Fontaine to electrical literature, we may say that the first and second parts will be of interest to the student and o the tyro who need to become acquainted with the practical work laws which constitute a secure basis fo specialist in electro-plating, using this term in its widest signification; whilst the fourth part, which treats of the refining of copper and lead, and of the extraction of metals rom their ores by means of the electric current supplied by dynamo machines, will be most acceptable to those electricity, which are for the most part prospective, and which may be of very great commercial importance. We must confess that our own interest centres mainly in the fourth part of the work, for the operations therein described are of interest not only from a metallurgical point of view, but also from the fact that they of necessity nvolve new applications of steam and other machinery pon an extended scale
Rapidly glancing over Part 1 of the work, which includes chapters nder We headings of Preliminary Notions, Laws of Electrolysis, Work absorbed in Electrolysis, and various tables, we atice, amongst a great deal of information that tion to the practical (B.A.) units and the absolute (C.G.S.) uion to the practical giving definitions of the B. A. units of resist
unt ance, current, potential difference, quantity and capacity the author gives the Dyne and the Erg as the units of

force and of work, and after observing that these very
ninute units may advantageously be superseded in minute units may advantageously be superseded in
practice by the kilogramme and the kilogrammetre, defines practice by the kilogramme and the kilogrammetre, demes watt is the practical (B. A.) unit of power or rate of work .e., work divided by time ; and the corresponding unit o work is not the (C.G.S.) erg, but a value ten million time s great, which was irst proposed, under the name of th Joulad, by Mr. Desmond FitzGerald, and subsequently nder the name of the Joule, by the late Sis W. slemens. The joule is, in fact, the volt-ampère-second, or the watt
second : its value is rather more than one-tenth of second: its value is rather more than one-tenth of
kilogrammetre, viz., 1 kilogrammetre , or $101 \cdot 926$ gramme
metres-taking g at 9.811 . It is true that M. Fontaine subsequently gives, under the heading "Electrical Work, the following rule, viz:- "The quantity of energy contained in a current is equal in kilogrammetres to the pro duct of amperres into volts, divided by g;" and he points out that,for practical purposes, the value of g may be takenat 10 . But here the omission of time in seconds as a factor in the value for energy leads to a confusion between power or rate of work and energy, or work, which is the his, o maintain, most incorrect to say that the work developed by a dynamo machine supplying a current of 10 amperes inder a potential difference of 750 volts is $750 \times 10=$

50 kilogrammetres, or 10 -horse power ; it is impossible to determine the work unless the time is given, although we know that the ratio of work in kilogrammetres to time in seconds is equal to 750, a ratio which corresponds to 10-horse power (French.) In Chapter III., on the "work rought into sufticient prominence as in two out of the hree expressions:
a) work expended in decomposition-

I E kilogrammetres per second

b) work absorbed in heating the conductor-
$\frac{I^{2} \mathrm{R}}{q}$ kilogrammetres per second;

and (c) total work- $\quad \underset{\mathrm{E}}{\mathrm{I}+\mathrm{R} \mathrm{I}^{9}}$ kilogrammetres.

It is to be observed that in France, as well as by writers of the old school of electricians in this country-who derived much of their knowledge from the stuay of such symbol I is almost invariably used for current; the pleonasm, intensity of current, signifying precisely the same thing as current, having been formerly employed in ieu of the simpler expression. In this chapter an imis formulated as follows. "Inpariot, Mr. J. Those substances which, in becoming free, absorb the smallest quantity of intrinsic energy are liberated at the electrodes. employed by M. E. Marchese for the practical determina tion solutions, and of the true resistance opposed to the current by such solutions.
Chapter IV. contains, besides a number of table derived from the labours of Mathiessen, many that are less W.W which mention is made of such compoundsassilicium bronze, phosphorous bronze, silicated brass, antimonial copper, alu phosphorous bronze, siicated brass, anone, arsenial copper \&c. Here we find also tables giving the specific resistance of various solutions- -i.e., the resistance in ohms of 1 cubic centimetre of the solution in question-a table of the chemical and electro-chemical equivalents of the element and of some compound bodies; tables giving the heat din the formations of the more import cyandes, chlorides, bromides, iodides, and sulphides; table specifying the energy in kilogrammetres and in horse power hours-energy which is inaccurately designated a various metallic solutions, and also to deposit 1 kilogrammetre of the metal, and a table on "the limits of electrolysis," constituting a résumé of certain experiments by M. Berthelot.
Chapter V. commences the second part of the work which treats of the various sources of electricity. We
notice that the author claims for M. Becquerel the first invention of a battery on the type of the Daniell "coninvention of a battery on the type of the Daniel solution of zinc nitrate, and copper in a solution of copper nitrate the solutions being separated by a diaphragm of gold cell the old. We observe also in the description of this cell the old error as to hydrogen being deposited on the
negative element and oxidised at the expense of the oxygen contained in the copper salt. This mistake appears a work wherein the "law of Sprague" is brought into prominence; for surely the author must be aware that the intrinsic energy of equiva-
lents of copper and sulphuric acid radical is less than that of equivalents of hydrogen and the same radical, and that therefore water cannot be resolved into its elements in presence of the compound $\mathrm{Cu} \mathrm{SO}_{4}$. The economic shortcomings of thermo-electric batteries are conirmed by an observation at the close of this chapter, where, again, the omission of the words per second would render the statement puzzling or unintelligible to many readers. "The heat supplied by a cubic metre of gas would develope a maximum of 5 kilogrammetres through the intermediary of a Clamond thermo battery; whilst the same quantity of
gas would produce over 75 kilogrammetres in the improved Otto motors.
Chapter VI. is devoted to a description of some of the principal dynamo macinines; whilst chapter VII. gives some useful information in relation to the total energy,

THE STOCKPORT GAS ENGINE.

electrical efficiency, and mechanical efficiency, of the various sources of electricity under different conditions.
As we have stated, the third part of the work treats of electro-plating or galvanoplastics It constitutes a most valuable contribution to the technical literature of this subject. More especially does this statement apply to the ong chapter (VIII) on the electro-deposition of niekel in which the extended experience of M Pérille of Paris, in which the extended experience of M. Pérille, of Paris, is wlaced a number of recipes and data from other sources, is placed at the disposal of the practical worker. Amongst great deal of matter that is admirably set forth, the ollowing-page 144-is one of the few passages in which
we can find any necessity for adverse criticism.
Electronoly was exclusively carried out by means of batteries, electroplaters, accustomed to baths of low resistance, always conected the elements in series, and were unable to obtain yellow, instead of having, as at present, the whiteness of
silver. Experience shows that a good dynamo machine for nickeling should have an electro-motive force susceptible of being varied from 1 to 8 volts."
Here the context appears to show that the writer meant to say that the elements were connected, not in series, but in multiple arc. This no doubt is but a lapsus ; but the eading of the paragraph-though M. Fontaine is by no means the only electrical writer employing the expression electro-motive force of a current "- constitutes a solecism hich should not be allowed to pass without notice. No oubt the author, and also his practical readers, understand very well what he means by this expression; but this does ot alter the fact that its unscientific character would be shown by the impossibility of their defining its meaning The current is the quantity of electricity which passes a section of the circuit at any point in a given time ; it is acting in the circuit to the resistance of the latter ; in relation to other currents it can have absolutely but two
points of difference, magnitude, and-as Mr. J. T. Sprague has shown-density. Current is the same in the shortest portion of a-total-circuit as in the whole length of the circuit; and it is impossible therefore to sasign any definite value as "its electro-motive force." It is the definite value as its electro-motive force." It is the density of the current-the quantity of electricity passing time-which affects the character of a metallic deposit and electro-motive force may be varied in any degree without influencing the result if the density be constant We must now pass to the fourth portion of the work, which the authorlimited than is usmal Here Chapter XIII. treats of the refining of copper and of lead by the current from a dynamo machine. In this comparatively new branch of industry, which may be said to be due to the practical recognition of the fact that "when the electro-chemical action at the anode is the converse of that taking place at the cathode, an almost unlimited
quantity of metal may be dissolved and deposited by the expenditure of a given quantity of electrical energy," a single dynamo machine often precipitates over 10 kilogs. -22 lb . - of copper per hour. It may be well to exemplify the fact above stated. Let us suppose that a current of 1400 ampères is passing through an electrolytic tank in which the anode and the cathode are both of lead, and the electrolyte a suitable solution of the same metal. Nearly 12 lb . of lead will then be dissolved at the anode and deposited at the cathode per hour. If we now connect another electrolytic tank, similar to the former, in series with it, the resistance of the circuit may be nearly doubled. But if we then connect another series of will be reduced to its original value. Assuming that the which is which is not strictly correct, but is practically nearly so if the compative circulation of the electrolyte force "be reduced now the circulation of the electrolyte-the current wne energy expended wiss also remain constant. But as the cells in series, the quantity of lead deposited will (aouble) cells in series, the quantity of lead deposited will be double, i.e., 24 lb . nearly. Calling I current in amperes, n and R resistance in ohms, the expression for weight of lead deposited per hour-applicable under the assumption lead deposited per

$$
\mathrm{P} b=\frac{\mathrm{I} n}{117}=\frac{\mathrm{E} n}{\mathrm{R} \times 117} \mathrm{lb} . \text { per hour }
$$

On the other hand, as M . Fontaine points out, the practical importance of the principle we have enunciated must not be overrated. "The force-energy-expended is, in effect, only one of the economic elements of the question, and wen a head of water can be rendered available it is often the least important. The size of the installations and the quantity of metal under treatment may be effective causes of failure in a manufactory; for the interest of the capital engaged may become equal to, or even greater than, the gross profit realised by the operation itself. When a quantity of copper is refined by means of a given motive power, and it is wished to double production without increasing the motive power, it becomes necessary to augment fourfold the quantity of metal under treatment which augments in very great measure the first cost of starting the manufacture. The capital sunk then becomes considerable when taken in relation to the annual amoun of business.
"The electrolytic refining of copper," says M. Fontaine, "has been carried into effect during the last ten years by the Norddeutsche Affinerie, at Hamburg; by MM. (Eschger and Mesdach, at Biache ; by M. Hilarion Roux, at Mar Mans; at the the M And, by the firm of Lyon-Allemand, at Paris; by M. André, at Frankfort, \&c.; and in England by Elking ton-who originated the process-and
The electrolytic process of refining.
The electrolytic process of refining lead, due to M ing Company, of New York. It is stated thetal Refin ing Company, of New York. It is stated that whilst the present treatment of base bullion in the dry way cost Of. per ton, the cost of treatment by the Keith proces would not exceed 10 ., allowing a profit of $20 f$. per ton The electrolytic bath in this case is a solution of sulphat of lead in acetate of soda. In this solution gold, silver and antimony remain undissolved at the anode ; iron and zinc remain permanently dissolved; whilst lead, with The last choportion of bismuth, is deposited at the cathode. devoted to the electrolytic treatment of ores. Very little has as yet been accomplished practically in this direction has as yet been accomplished practically in this direction enough was done the advent of the dynamo machine nough was done by MM. C. and E. Bequerel and a few must be in this direction a vast field almost unexplored which, in the near future, may become productive.

THE STOCKPORT GAS ENGINE.

THE engine illustrated above and on page 192 is made under the patents of Mr. C. H. Andrews, of Stockport. It contains several eatures of notable interest. Fig. 1 is a perspective view; Fig. 2 s a side elevation; Fig. 3 a plan; and Fig. 4 an end elevation, all partly in section; Fig. 5 is a detached view of the governor and excentrics and the valve which regulates the supply of gas to Be engine; Fig. 6 is a sectional elevation through the line plan view of the valve cover of the valve cover; and Fig. working cylinder: and Fig 9 is a plan view of the slide valve and Fig. 10 is a diagram of cycle of operations of the pistons in the power and charging cylinders. We may describe these by eference to the inventor's patent specification, a is the working and b the charging cylinder, with pistons a^{1} and b^{1} respec tively shown cast in one piece with the web or frame c; to the crank shaft d is secured the crank d^{n}, which is connected by the od d^{2} to the piston a^{1} in the working cylinder.
The admission of gas to the engine is controlled by a valve c shown, composed of two cones on one spindle and regulated by the governor-see Fig. 5 ; the gas passes through the valve c along the pipe e^{1}, through the gas bags c^{2}, past the conical regu until the diaphragm is depressed-in the manner hereinafter explained-and the the chamber e^{4} and pipe e^{1} passes through the valve e^{6} into the pipe f; this pipe f intercepts or passes through the air supply pipe g and the gas passes through perforations in the pipe f and mixes with the air in the pipe g at this point as shown at Fig. 3; during the out-stroke of the piston b^{1} a charge of gas and air is drawn through the passage f^{2} and port h^{1} in the slide valve h, and so through the passage i into the compressing cylinder b, and when the charge has been compressed during the in-stroke of the piston b^{1} it is driven from the cylinder b through the passage i and port h^{2} in the slide valve h through the passage ${ }^{1}$ into the pipe or reservoir j. The pipe j conducts the compressed charge to a combustion chamber a^{2} attached to and passes from the passage i^{i} down a small pipe j^{1} into a chamber above trom the passage the diaphragm c^{5} and ${ }^{\circ}$. a fresh supply of gas as previously described. The slide valve h

controls the admission through the port h^{1} and discharge through the port h^{2} of gas and air to and from the cylinder b; the valve h has a cover h^{3}, and is connected by a rod h^{4} and lever h^{5} to a short shaft h^{6} connected to a slotted lever h^{7}; a bowl k^{6} on the
strap of the excentric k^{2} takes into the slot in the lever h^{7}, and so operates the slide valve h as the crank shaft d revolves. The dmission of the charge of gas and air to the combustion cover l and is traversed by a l^{1} connected to an excentrio k^{2} on the crank shaft d
The operation is as follows:-During the outstroke of the piston b^{1} a charge of gas and air is drawn from the point where they mix through the passage f^{2}, port h^{1} and passage i into the charging cylinder b; on the return or in-stroke of the piston b the slide valve h will have moved sufficiently to close the port h^{1} and open the port h^{2} and the charge is driven or forced through
a^{2} has compressed the charge into the combustion chamber a^{2} and begins its reverse or out-stroke in the position shown in
Figs. 1 and 2 the slide valve k will have moved in the righthand direction, and as the valve continues its traverse the flame in the pocket n ignites and explodes the mixture under pressure in the small chamber l^{1} a moment in advance of uncovering the passage a^{4} leading into the combustion chamber a^{2}; this preimicary explosion in the chamber l and pocket n instantly ber a^{2}.
The result of the explosion of the main charge is to propel the working piston a^{1} outward until the edge of the exhaust opening a^{3} is uncovered, when the products of combustion, being in a state of considerable tension, will rapidly escape during the to about atmospheric pressure and, before the openings a^{3} are

Charging Cylinder \mathbf{b}.

Retativeaction within
Power Cylunder a.

ig. 10

the passage i, port h^{2}, and passage i^{1} into the pipe or reservoir j The explosive charge is conducted through the pipe j and through the combustion chamber a^{2} of the working cylinder he piston b^{1} of slide valve k in the following manner:- When end of its in-stroke, the piston a^{1} in the working cylinder a will be about in-stroke, the piston a^{1} in the working cylinder a will exhaust openings a^{3}; at this time the ports h^{3} and k^{4} in the slide valve k will be over the small chamber l^{l} in the valve cover l, thus opening a communication between the passage j^{2} leading from the reservoir j and the passage a^{4} leading to the combustion chamber a^{2}; the charge under pressure rushes from the and through the port $k^{\frac{1}{4}}$ and passage a^{4} into the combustion chamber a^{2}; the charge drives before it through the exhaust openings a^{3} any non-explosive vapour that may be contained both in the chamber a^{2} and cylinder a; the piston a^{1} on its return or in-stroke drives the charge before it from the cylinder a into the combustion chamber a^{2} and compresses it ready for explosion, while at the same time the piston b^{1} is drawing a fresh charge of gas and air into the cylinder b. During the instroke of the piston a^{1} the pocket n in the slide valve comes over the passage reives andy of rap suply po reaching the master light m where the , in in the poeket n is ignited. The master light m is kept constantly burning in the chimney m^{1} in a division of or near the combustion chamber a^{2}; an opening m^{2} in the valve cover l admits a current of air which causes the gas in the pocket n to be ignited. When the piston
again covered by the piston a^{1} on its inward stroke the remaining products of the previous explosion will have been expelled through the openings a^{3} by the next charge of gas and air admitted to the combustion chamber a^{2} through the valve k as aready described. A small portion of the effective stroke of remaining products of combustion by the inrush of a fresh charge of explosive mixture.
When the slide valve k again moves in the left-hand direction, the waste gases in the ignition pocket n escape through the opening m^{2} in the valve cover l previous to the pocket n receiving a fresh supply of gas which is ignited at the master light m as already described, and as the slide valve k moves in the right-hand direction the flame in the pocket n again causes a preliminary
explosion in the chamber l^{1}, and so in this manner explodes the explosion in the chamber l^{1}, and so in this manner explodes the
main charge in the combustion chamber a^{2} at the commencement of each effective stroke of the engine. The engine as described is well made, and works remarkably well with about 30 cubic feet of gas per indicated horse-power per hour, but since our engravings were prepared some improvements have been made in the engine, which we shall describe at a future time, by which the consumption of gas has been very much reduced.

Launch, Astoria.-On Saturday afternoon Messrs. Robert Thompson and Sons, Sunderland, launched the Astoria, an iron sailing barque, built to the order of Messrs. Peter Iredale and Son, breadth, 38 ft .; and 21 ft . 9 in . depth of hold.

STANDARDS OF LENGTH AND THEIR SUBDIVISION.*
By George M. Bond, Hartford, Conn.
(Continued from page 143.)":
Arter having thus briefly considered the subject of the evolucontinue in order to be worthy of being called a standard, we will now attempt to show some of the methods adopted for comparing these yard or metre bars, and explain some of the principles upon which the accuracy of the comparison depends. We have already partly described the way in which the end metre is compared or
transferred to a line measure by the reflection of a fine point of platinum, without actually touching the ends of the standard bar. We may now notice how two standard end measure bars may be compared, using a method by which the differences, if any, are
greatly magnified, and are thus very readily determined. A most greatly magninied, and are thus very readily determined. A most made by Joseph Saxton for comparison of end measure bars and for which, in recognition of its value to science, he was, in 1837 awarded the John Scott Legacy Medal, his invention being the reflector comparator. It depends upon the magnified distance of
the path of a reflected ray of light, caused by the rotation of a the path of a reflected ray of light, caused by the rotation of a
mirror placed vertically, and delicately pivotted, the spindle of the
in length of a standard end measure bar. By calculating the length of the relative lever arms we can easily determine the
magnifying capacity of such an instrument of precision. For magnifying capacity of such an instrument of precision. For
instance, supposing the drum on the spindle to which the rotating mirror is attached is \ddagger in. in diameter, and that the length of the radius of the large circular scale is 20 ft ., we have, using the double angle in this relation, the distance moved by the sliding bar touching the standard, as compared with the arc passed over
by the reflected ray at the distance of 20 ft . from the mirror, and
 to 3840 , hence a motion, or variation of one.thousandth of an inch at the point of contact, would be 3.84 in, at the scale. By placing a metallic bar in a closed tube, the ends merely projecting through
this tube, and filling the tube with ice water, his tube, and filling the tube with ice water, and then with water
of a known higher temperature, and comparing the lengths of the same bar under these varying conditions, the amount of expansion for each degree can be determined; this will give us what is called the coefficient of expansion, to which reference has already been made.
Washingtonarator in use by the United States Coast Survey at is one designed by Mr. Saxton while in charge of the construction of standard balances, weights, and measures of length, to be presented to the different States, to insure uniformity throughout the
country. A short description of this comparator may be quoted
ful in the use of the means " for the end sought," in the comparison and investigation of standards of length, is that known as the
Rogers-Bond universal comparator, which was constructed from plans proposed by Professor Rogers by the Pratt and Whitney Company, of Hartford, Conn., for their use in practically establishing standard gauge dimensions. A duplicate comparator of this form was also made by them for Professor Rogers for his professional work at Cambridge, and for the transfers and comparisons
of standards used by the Pratt and Whitney Company as the basis of standards used by the Pratt and whitney Company as the basis
of these standard sizes. The comparator at Cambridge is also used by Professor Rogers in determining the coefficients of expansion of the various materials used in the construction of standard yard and metre bars, and also for obtaining the relation between the length
of the imperial yard and the "metre des archives." The solution of the imperial yard and the "metre des archives," The solution
of this latter interesting and difficult problem is fully given in a memoir by Professor Rogers, presented May 9th, 1883, before the American Academy of Arts and Sciences, entitled "Studies in Metrology", and to which reference may be had. The special features of the universal comparator are, as its name implies, the variety of the methods employed and the range of work that can
be done in comparing standards ; each independent method when carefully carried out, producing similar results which serve to check or prove the comparisons. It includes a method for investigating the subdivisions of the standard by comparing each part of
the total length with a constant or invakiable zuantity or distance.

mirror being connected with a sliding bar by a fine watch fusee
chain wound around the barrel of the mirror spindle. At the end chain wound around the barrel of the mirror spindle. At the end
of the sliding bar, to which this chain is attached, contact is made with the end of the standard to be compared, the other end of the
standard being firmly abutted a gainst an immovable stop. By first standard being firmly abutted against an immovable stop. By first
placing the standard bar in position, care being taken to have the bar supported, as you will remember, at the neutral points, and exactly in line, so that the centres of the opposite ends of the standard aro against the contact surfaces of both the stationary and the sliding stops-and which, by the way, is one of the most
difficult features of the experiment $-a$ ray of light is brought to eacuit features of the experiment-a ray of light is brought to
bear upon the mirror, and the reflection of a circular scale is observed through a small telescope, mounted just above this
from a paper read by Professor W. A. Rogers before the American Acodemy of Arts and Sciences, April 14th, 1880, "On the Present
State of the Question of Standards of Length," and from which State of the Question of Standards of Length, and from which, Also, much that is of interest in regard to our subject matter for subject further, the paper entire, and the references oontained at the end will be of very great assistance. "Tho Saxton comparator consists of a brass bed-plate, having V -shaped ways running the entire length. A slide carrying a microsoope slides freely over these ways, A series of brass posts form a part of this bed,
through which pass steel serews through which pass steel screws, having conical ends, which have
been tempered and polished. There are stops for the yard and for its subdivision into feet, and of one foot into inches. There

divided arc. This circular scale may be placed at any convenient distance from the mirror, say 15 ft t. or 20 ftt . It is evident that a very slight motion of the sliding bar G-in the figure shown upon
the screen-Fig. 1-will cause a ray of light, reflected from the mirror M, to which its motion is imparted through the small chain mirror M, to which its motion is imparted through the small chain and drum, to move with a much greater velocity at the distance of to the angle of reflection, a motion of the mirror thiough an arc of deg. would cause a motion of the reflected ray of 10 deg., as we may readily understand by taking the geometrical proof in illusration. A polished surface is placed so that the light strikes it squarely, or, in other words, at no angle whatever; it will evi-
dently be reflected directly back to its source. Now, suppose it is rotated into such a position as indicated in the accompanying figure-Fig. $1 a$-which is just 45 deg. as compared with its original position, the light still coming from the same direction; it now rit an an angle of ight is always rellected at hew path will be again 45 which it strikes a polished surface, its as you will see, it is twice 45 deg , with respect to its incident path, and is thus reflected at an angle of 90 deg. We can readily see how extremely delicate or sensitive to the
slightest change of position this reflected ray becomes. As light slightest change of position this reffected ray becomes. As hight may be said to have no weight, and consequently no momentum or
inertia, it will quickly and certainly indicate the slightest change

* A leoture delivered beforo the Franklin Institute, February 21st, 1884.
are also stops for the metre and for its subdivision into decimetres and of one decimetre into centimetres. The end stops for the yard and for the metre were, many years ago, set to correspond
with bronze No. 11, at 58 deg, nearly for the yard, and with the iron metre at 68 deg. nearly. nearly for the standards which have been distribnted since $185 \dot{6}$ have been transferred from these distances at the temperatures at which they are standard. The therefore, stops attached to the bed of the Saxton comparator which corre sponds to the length of bronze No. 11, at 58 deg . nearly, and the
meter may be defined to be the distance meter may be defined to be the distance between two steel stops of
the Saxton comparator which corresponds to the the Saxtre comparator which corresponds to the length of the
iron metre corrected for the difference between its length at 32 deg. and at 68 deg. nearly. Recent comparisons indicate that these temperatures should be diminished, by a trifling amount, for the present distances between the stops both for the yard and for the metre."
Engra
Engravings representing the Saxton yard dividing comparator and aiso the saxton refleoting comparator here shown, were
obtained through the kindness of Professor J. E. Hilgard, Chief U.S. Coast Survey, by whom every facility was afforded me for examining the methods of comparison. The courtesy of Mr. Blair, assistant in charge, has aided me greatly in thus being able to Sustrate the instruments now in use at the office of the Coas Anoth

Fig. 2
By the aid of the diagram of the plan and elevation of this form of comparator, the aim being to exhibit principles rather than a picture of the instrument, we may be able to describe in a few
words the main features of its construction--Fig. 2 . A heavy cast iron base A is mounted upon stone capped briek piers, giving permanent foundation to the apparatus. Upon this base, and reaching from end to end, are two heavy steel tubes, B and $\mathrm{C}, 3$ in in diameter, ground perfectly straight, and being "true" when placed in the centres of a lathe, the object being to get a straight
line motion of the microscope plate D, which slides freely on these true cylinders.
Flexure of
supports at the these cylindrical guides is provided for by leve supports at the neutral points n and n^{1}. Fitted closely to thes gudes, and outside of the range of motion of the microscope plate
D, are two stops, E and F , one at each end, as shown in the figure. These stops are arranged to be adjusted at any desired position along the guides, and are securely held by clamping on the
under side by the handles G and H . These stops are each provided with a pair of electro-magnets, I and J, the poles of which do come in contact with the armature seen at either end of the microscope plate. Contact is made at K and L, which are hardened steel surfaces, tempered and polished, and placed as nearly as possible in the centre of the plate and of the stops.
The magnets are intended to overcome the unequal
The magnets are intended to overcome the unequal pressure due to ordinary contact, a rack and pinion being used to move the plates. The magnets are used to lock the microscope plate at each
end of its traverse between the stops. The use made of thi sliding microscope plate and the stops we shall see presently Beyond the main base just described, and supported also on brick piers, is an auxiliary cast iron frame N , which is provided with
lateral and vertical motion within limits of zero and 8 in, and 10 in . respectively, for rough or approximate adjustment, and upon the top of this frame are two carriages O and O^{1}, which slide from end to end, a distance of about 40 in . Upon these sliding carriages are placed tables T and T, provided with means for minute adjustment, for motion lengthwise, sidewise, and for levelling, thus
permitting the adjustment of a standard yard bar quickly permitting the adjustment of a standard yard bar quickly, and
without the necessity of its being touched with the hands afte being placed upon the table until the work of comparison is com pleted.
Before describing the operations necessary for a series of comparisons, it may be well to explain the peculiar fitness, for purposes
of this kind, of the microscopes M and M^{1} used in this connection. The tubes are 12 in . long and 11 in diameter, the eye-piece micrometers m_{1} and m_{2} were made by Joseph Zentmayer, of this city whose skill as an optician is too well-known to require further proof of their excellence. The objectives were made by the late
Mr. R. B. Tolles, of Boston, and are each fitted with his illuminat Mr. R. B. Tolles, of Boston, and are each fitted with his illuminat ing prism. In order to use a microscope upon lines ruled on
polished surfaces, or on any opaque material, some means for poisied surfaces, or on any opaque material, some means fo
obtaining sufficient light must be employed to see them distinctly without the use of reflectors, which are often a source of error in standard work. In no other form of objective does this require ment seem better fulfilled than in that invented and made by Mr . Tolles. The objectives are each fitted with a prism of perfectly
clear glass, placed just above the lower lens, and one end of th prism passes through the side of the objective. The inner of the this prism is bevelled-Fig. 3-forming such an angle of the end surface to the axis of the prism that light is refracted perpendicularly upon the surface of the bar, lines less than sobos of an inch In width being easily seen and separated with a lin. objective It may be said to "carry its own lantern," and with light so
thrown, just where it is most needed, the bottom of the cut or furrow of a line cut by a diamond edge, as fine as that just stated sodve of an inch-as well as the edges of the furrow, can readily
be seen. This method of illumination has proved to be invaluable in the work of comparing line measure standards to be invaluable the case of bars having the lines ruled on polished especially surfaces at the bottom of wells sunk one-half the depth of the bar, these well being not over 2 in , in diam
of the bar now before yon
The first operation in the use of this form of comparator is to level the main base A, then sliding the microscopic plate D from end to end of the steel tubular guides, having the microscope adjusted so as to be in focus upon the surface of mercury held in a due to flexure of the guides is determined, and may curvature sated for by counter-weights at the neutral points of support n and n^{1}. In order to test this sight line path of the mieroscope plate horizontally, the method of the stops is employed, or another method, which is that of tracing a fine line the entire length of a standard bar upon its upper surface, and reversing the bar, tracing
another line very near the first and at an equal distance apart at

 method has been used by Professor Rogers with marked success. bar, on each side of the centre line of motion of the microscope plate, using one microscope, and comparing this fixed length with between the stops. Should the path be a curved one, the dis on one side than on the other in proportion to the amount of curvature existing. The length of the standard being the chords
of circles of different radii, but by comparison with the stops, seems really to be different in length at each position, caused by the different distance, through a larger arc passed over by the lengths of the radii may be very accurately determined. By they may be, by being compared with a constant quantity, compared also with each other
Another method for co
place two microscopes one on each of two microscope plates upon the guides, at a distace determined by the length of one of the
standards, and by replacing this one by a second, the coincidence of the rese in the ther variation, showing their relation. The microscopes may be placed horizontally in this
same fixed relation, using the method invented by Lane, and which has been used in the office of the U.S. Coast Survey at made by the Ballou Manufacturing Corm of comparator-Fig. 4 for Professor Anthony, of Cornell University of Hartford, Conn., instrument is mounted upon a single heavy base. Though not having the range of motion of the adjustable support for standard
bars shown in front, as is possible with the original comparator, possesses all of the conveniences for rapid adjustment and accuracy of movement. The right line motion of all moving parts longi-
tudinally is governed by heavy cylindrical guides, and the same method of the
a standard bar.
There are five independent methods for comparing standards of
length by the use of this form of comparator, but we will not dwel longer upon this part of the subject, but pass to the subdivision of standards of length, which is effected by the use of this same
process-the microscope plate sliding between fixed stops-and principles of science, that "things equal to the same thing ar equal to each other," or, that the relation of different lengths each to a constant distance, establishes their relation to each other.
This is accomplished in the following way: A yard, for instance,
is to be subdivided into three equal is to be subdivided into three equal parts, or into three separate by setting the stops so that the microscope plate may move very nearly the distance represented by the first one of the three parts, by readings of the eye-piece micrometer carefully taken at each lines by which these three parts are defined, we obtain the length by sliding or moving the bared along under constant quantity; the microscone until th second part is in place, the same operation is again performed, and so for the third, thus determining the relation for each with thi arbitrary or temporary standard; then by adding the differences between these separate parts and the constant length, and taking
the mean or average of these differences, from which we subtract in order that it shall be exactly one-third the total length, or, as in case of a yard bar, giving us exactly 12in., or a standard foot equal parts, establishing a standard inch, and further to eighths, To illustrate this method, and to make plain the reason why these corrections so obtained are used, we can suppose a case of simply
dividing a rod or a string in two parts. Now we know that for whatever amount one part is longer than the other, one half of this amount belongs to the shorter co make it exactly one-balf the
whole length of the rod or string; hence we have one-half the sum of the difference, and subtracting each difference from this hal sum, would, in one case, give us a minus correction for the longer
part, and a plus correction to be applied to the shorter part, and a plus correction to be applied to the shorter.
the eye-piece micrometer, and having the subdivision of a standard equal parts, to determine, would be after this form
-
 The column under L being readings taken at the left or initial the difference between the readings taken at each end of this sub-
division of the whole length. The column under correction shows the amount in divisions of the micrometer needed to make eac dded as a check upon the accu
clumn of corrections, as when the foot is work in case of a long or an inch into sixtecenths or thirty-seconds. We have thus
traced, briefly, the development of the standards of length from some of their rudest units to that of the present British Imperial
yard and its copies, and the metre, and shown how the yard has
in one way at least been subdivided within a limit of about one hundred thousandth of an inch, it remains now to show in what way these accurate subdivisions may be successfully applied to every-
day use for work requiring such nicety, and in our next lecture it day use for work requiring such nicety, and in our ne
is hoped that our effonts may not prove unsuccessful.

(To be continued.)

THE PHYSICAL SOCIETY
 and O. Chadwick were elected members of the Society.
Mr. I, C. McConnel presented two notes on "The Use of Nicol's
Prism." The first note related to the error in measuring arotation Prism." The first note related to the error in measuring a rotation not being parallel to the emergent light. After pointing out that
this error was to a first aproximat mean of the readings in the two opposite positions of the Nicol, the author proceeded to push the calculation to a second approximation so as to get a measure of the residual error. This is given by the quation- $\frac{\theta+\theta_{1}}{2}-\psi=$ const. $+24 r^{2} \sin . \psi \cos . \psi$
where θ and $180+\theta$ are the two readings of the circle, ψ the angle
between the plane of polarisation and a fixed plane, and r the angle between the axis of rotation and the incident light. This equation is practically correct for a flat-ended as well as an ordinary Nocl. The residual error cannot amount to 1^{\prime} in a rotation of
60 deg. if r is less than 2 deg. The optical properties of the Nicol
tend to neutralise the tend to neutralise the geometrical error due to the rotat
place about one axis and being measured about another.

The second note dealt with a new method of obtaining the zero
ading of a Nicol circle, This is often defined as the reading when eplane of polarisation is parallel to the axis of rotation of the quale of a spectrometer. A Nicol is fixed on the table, the light table is then rotated through 180 deg., the light quenched, and the reading taken again. The mean of the two readings gives the
result required. It was described how the error due to the wan of symmetry of the Nicol might be found and eliminated
Mr. H. G. Madan exhibited and describe "S Mr. H. G. Madan exhibited and described "Some New Form
of Polarising Prisms." The first of these is by M. Bertrand, and 1884. The prism consists of a parallelopiped of dense flint glass
18is of refractive index $1 \cdot 658$, the same as that of Iceland spar for the ordinary ray. The glass prism is cut like the spar of a Nicol's halves by an organic cement of refractive power slightly greater the spar at an angle of 76 deg , 44^{\prime}. The ordinary ray passe through without change, but the extraordinary ray is totally M. Bertrard's first surface. The prism gives a field of 40 deg M. Bertrard's prism has the great advantage of requiring only
very small quantity of Ieeland spar, a substance that is becomin very scarce and expensive. The other prisms shown were, a similar one by M. Bertrand described in the same paper, a double 1885, and a modification of the latter by Mr. Madan, described in Vature for February 19th.
Mr. Lewis Wriaht point
Bertrand's prism, that it was very doubtful whether a glass could be obtained of so high a density as to possess a refractive index 1.658 , and at the same time be colourless and unaffected by the was by no means new.
Professor W. E. Ayrton read a paper by himself and Professor J. Perry on "The most Economical Potential Difference to pointing out the importance of experiments being made on the live of incandescentlamps in addition to experimentson efficiency. Refer cian for January 31st, they showed that if p be the price of a lamp in pounds, n the number of hours per year that it burns, $f(v)$ the
life of the lamp in hours, and $\theta(v)$ the number of candles equivalent ite of the lamp in hours, and $\theta(v)$ the number of candles equivalent
to the lamp, $f(v)$ and $\theta(v)$ being expressed as a function of the potential difference in volts,
year per candle, as far as the renewal of lamps is concerned. Also H stands for the cost of an electric horse-power per year for the
number of hours electric force is employed, and $\phi(v)$ the number of watts per candle, $\frac{\mathrm{H}}{76} \times \phi(v)$ stands for the cost per year per candle as far as the production of power is concerned. The sum of these two represents the total cost per candle per year, and the
value of v that makes this a minimum may be found either raphically or analytically. Solving the problem graphically for the 108 volt Edison lamps used at the Finsbury Technical College, where n may be taken as 560 , and $H=£ 5$, they find that the
minimum value of the total cost is given by $v=106$. The curve connecting total yearly cost per candle with v they found to be
very flat at this point, showing that the lamps may be burnt with a potential difference varying as much as 4 volts with only 5 per cent. addition to the annual cost. It is found that with certain types of incandescent lamps, the candle-power of the lamp varies
as the potential difference minus a constant. The authors also find that, in rough photometric experiments, No. 8 sperm candles mat that, in rough photometric exper.
Mr. Macfarlane Gray gave an account of a most extended investigation upon the second law of thermodynamics. From gases, the author comes to the conclusion that the law is no gases, the author comes to the conclusion that the law is no
true. The experimental results used are chiefly those of Regnault, The experimental results used are chiefly those of Re
hich, however, Mr. Gray has applied some corrections.

TENDER.

For extension of concrete sea-wall and promenade-602 yardsBray, Co. Wicklow. Engineer: Mr. P. F. Comber, C.E., 37, College-
green, Dublin. Quantities taken out by Mr. P. F. Comber, C.E.

John Best, Leith, .. . Brand and Son, Glasgow W. C. Gaut, , allymena W. J. Doherty Dublin. Robert Mcelp,
 Robert McAlpin Robert Simpson B. Brady, Bray

The tender of Mr. McAlpine, who is the contractor for the first .

Opening of the Bessbrook Tramway.-The laying of the rails of the Newry and Bessbrook tramway is now completed, and on Thursday last the first wagon on the permanent way passed over
the line. The line is laid with double rails, of ordinary section, placed side by side, the outer rail being fin. lower than the inner. The inner rails, with flanged wheels in the ordinary way, are the while the outer and lower rails accommodate the unflanged wheels of the goods wagons, the high rails inside acting as a flange to keep
the wagons from going off the line. The contract for the electrical arrangements is in the hands of Dr. Edward Hopkinson, the dynamo-machines have been manufactured by Messrs. Mather and
Platt, and the Ashbury Carriage Company, Manchester, is constructing the electrical locomotives.
River Pollution. - Pres
River Pollution. - Professor Robinson, C.E., delivered an
address at the Parkes Museum on the 26 Gth February. Mr. Michael, Q.C., presided, and amongst those present were many
well-known sanitarians. The lecturer pointed out the various attempts at legislation which had been made in the direction of
amending the Rivers Pollution Prevention Act of 1876, and of forming Conservancy or County Boards. He was strongly opposed
to the introduction of the standards proposed by the Rivers Pollution Commissioners, as not being sufticiently elastic. He pointed returns which were obtained last year by the Duke of Northumberland as evidence of this; and he maintained that the cause of
this failure was due to the fact that the enforcement of the Act this failure was due to the fact that the enforcement of the Act
was left in the hands of local authorities, who were often the was lett in the hands of local authorities, who were often
offenders themselves. A long discussion followed the lecture. meeting held on Thursday, February 19th, Mr. W. P. Adams read a paper on "Aerial Navigation," in which he dealt at length with
the various projects which had from time to time been brought out. After reviewing the very earliest instances in which the subments of Mongolfier and other inventors with balloons of various kinds. Mr. Blackman's project for aerial navigation was then
described in detail, although Mr. Adams regretted that this idea had never been really carried out, as he stated that it seemed to be thoroughly practicable. He then gave an account of electrical apparatus for propulsion in air, which, in his opinion, is the mode
most likely to be adopted; describing the electro-motor which M. Krebs had constructed for Captain Reynard's balloon experiments, and giving details of its weight and efticiency. Mr. Adams then
referred to the future of aerial navigation, and its probably more extended use for both military and civil purposes. The paper was
followed by a discussion. At a general meeting held on Tuesday, followed by a discassion. At a general meeting held on Tuesday,
February 24th, Mr. Duncan read a paper on "Recent Marine Engineering,
built and launched on the Clyde during the last twelve months.

AMERICAN NOTES.

(From our oven Corresp

NEW York, February 20th. The construction of two new trunk lines from the interior to the ew months. One will be an extension of the Lehigh Valley from Buffalo to Chicago, which can be accomplished by the construction
of forty miles of road, and by using two lines already built. This of forty miles of road, and by using two lines already built.
will give the Lehigh Valley the desired outlet to Ohicago and the North-west, for which it has been seeking. The line is a good one, but little in debt, and is under excellent mankgement. The second projected line will be a southern trunk line, and extend by
water connection from New York City to Baltimore and Norfolk, and by railroad from Portsmouth to Weldon, North Carolina, and Georgia, to the point where it will connect with southern lines, with trans-Mississippi connections. The loan has just been completed for the construction of a twenty-two mile road in North amount of northern capital has been invested, in view of the prospective railroad construction, in mineral, timber, and agricultural
ands, and steps are being taken to introduce immigration on large scale. The manufacturing and commercial interests are anxiously awaiting the revival of railway enterprise, which will bring a demand for iron and steel that will engage the partiallytrade, and in commercial circles there is but little encouragement rade, and in commercial circles with a capital of $10,000,000$ dols. under the laws of New York, for the construction of steamships, which are to have a speed of eighteen knots per hour, to ply
between some point on Long Island and a British port. A Bill has been introduced into the House of Representatives to authorise
the registration of certain steamships as vessels of the United States, which is in the interest of this particular company
The Congressional Committee has advised that the port of departure in the United States will be
that in Great Britain, Milford Haven.
The gain in distance by the proposed route, as stated to the com-
mittee, is about 170 miles at the English end of the route, nittee, is about 170 miles at the English end of the route, avoiding Channel; and 118 miles at the other end, avoiding risks incident to the coasts of Long Island and New Jersey. From twenty to thirty
hours in time will be saved. Ten days and three hours are now hours in time wisport the mails from London to New York. The required to transport the mails from London to New York. The proposed new line will be able
York in six days and three hours.
A vigorous effort is being made in Congress to suspend the silver coinage, but it is doubtful whether it will pass.
Commercial failures are still numerous, and last year's average The intricate affairs of the Reading Company make an early senting the opposing interests, are endeavouring to harmonise, in
order to avoid the threatened foreclosure, and will in time, no doubt, accomplish their purposes, but only through concession
which will be tardily accepted.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS

THE military necessities continue to occupy a foremost position in which this week exist that those necessities may possibly have to which this week exist that those necessities may possibly have to
be largely extended if affairs with Russia should come to an ronmasters and other manufacturers here to the position which the Government just now occupy in the consuming market.
Additional contracts have, since last report, been placed here on previous contracts have been trebled. Engineers and pipemaker Love read with much gratification the assurances vouchsafed by
Lartington that "all the materials connected with the supply of water on the Suakim-Berber Railway route would be
supplied by English contractors, with the exception of two special pumping engines now in existence at New York." These engines water into a drinkable condition
Surprise had been aroused by the information from New York and Philadelphia that H. R. Worthington, of New York, had contracted to supply the Government with twenty engines for pumping
water, and some fear was beginning to manifest itself lest the American pipe founders should also be successful in their efforts t duce pipes to bear any desirable pressure has long been shown by the fact that this district has supplied large quantities of such goods for the Russian oil-pipe lines. It is understood that the Soudan pipes are to bear a pressure of 2000 lb . to the square inch.
They are of 3 in ., 3 jin., 4 in , and 42 in . sizes. Considerable addiThe work accepted by Messrs. Tangyes, of the Cornwal Works, contradicts the American canard. This firm have
received orders on account of the Berber Railway and other received orders on account of the Berber Railway and other
Soudanese requirements, aggregating twenty-four of their wellknown type of "Special" steam pumps. Some of them have been
supplied from stock, and others have yet to be despatched. They of from had ordered pressure pumps, which will apply a pressure of from two to three tons, for pipe testing purposes. Other order
which the have received on the same account have include seven vertical boilers, numerous sets of pulley blocks, a large
lenth of chain lifting tackle, portable cranes, fitted with large
broad wheels for broad wheels for easy road travelling; screw jacks, forges, smiths Messrs. Tangye have lately booked in their machine tool depart ment, may be mentioned a good contract for wheel lathes and
other machine tools for workshops in connection with the Buenos Ayres Railway.
The condition of the iron trade proper has not improved upon by reason of the Government work. This benefits mainly the makers of tube strip, chiefly of large sizes, of tank plates, and os
sheets; and the strip makers in particular will doubtless receive sheets; and the strip makers in particular will doubtless receive
other good orders as the work for the expedition is turned out at the manufactories.
The laying down
The laying down recently of improved machinery by the Pelsall
Coal and Iron Company to allow of the manufacture of strip iron of a width which was not previously produced in South Staffordshire is proving very convenient. The company is rolling much of
the strip-some of it 15 in . wide-which is being used up by the ube makers in their Soudan contracts.
The production of sheets
The production of sheets at date is in excess of requirements,
notwithstanding that the outturn is being kept down by the run notwithstanding that the outturn is being kept down by the run-
ning of the mills only part time. It is impossible, therefore, to
get up prices ; indeed, they are rather still declining, Singles are abundant at $£ 610 \mathrm{~s}$. to $£ 615 \mathrm{~s}$. at works according to quality.
It is illustrative of the competition of the North of England It is illustrative of the competition of the North of England
that brokers hereabouts are buying sheets from the Middlesbrough mills at $£ 615 \mathrm{~s}$. delivered in the Thames, and tank plates at also The demand for molvanised prects in ered than a
does not increase, although colonial and South American orders are fairly maintained. The inquiry for marked bars is very slow,
and such works as those of John Bradley and Co. and other eminent makers are doing but little. If the mills are to be kept
on briskly, about $£ 610 \mathrm{~s}$, must be accepted for bars. At the
 34 per cent., delivered in the Thames. Hoops, the same purchasers
are ocoasionally getting at less than $E 6$ t 10 , delivered in London, though makeris) generally ask a a bettor pricec:
 or slabs, and $E 5$ 15s. for tin bars, but vendors were open to some Mueering.
Meesrs: Rollingoon and Sons have just tatartod a astel rolling and
steel making
beliowe that
 going of in 500 ton lots, but sellers complain of the low prices Which they have to aceept. Derbyshire pigs were to-day to be had
t 40 s. 9 d.
delivered to consumers' wors, but superior brad

 o 60 s , but as hematites were to be had d at leses the
only rarerly that the figures named wal wh
Min inealsa are not selling briskly.
 sas ookes, 10 s . all delivered. Hematite iron oreses are quoted 19 a

In yiew of the large businessw which is done in black and remarks which have just been laid before the workpeople of the
Swan Garden Iron works, Wolverhampton, by Mr. J. Lyyaght, who is hao proprietor of this onoern, and also of the great Bristol
Galvanising Works, are of interest. Mr. Lysaght has recently returned fom thisit which hate the the manufacturing iron there, but found that, although thero is a
superabundance of good ironstone, oonl, and limestone plaeed most favourably, the oq question of of wangese will , not not permitit production of fnished iron or many yearrs to come. Referring to the great
extent to whioh galvanised iron is used throughout the whole of roflected in the brightness of her productions, and literally oovered tho land with the industry of erer men.
Mesesra, Morewood and Co., Woodford Iren grorks, Soho. Their export contracts aro at tho moment principally for India, South

 tho Argentine Republic indulude larrg sheds, bome of which will be
3ooft. long. Roofng work is in hand for Russin and the comphny has recentiy doespateched two roofs, each, of sott. span, to Hong Kongs. Their home oontracts inolude construutive work for various
parte of the United King
Kim.
Ormamental prinipals panaf of the nited Kingom. Ornamental prineipal.
juat now being expresesed by tho Great Indian Peninsula Railway Company, and by the neeesesitios for additional ironwork of the companies.
Although
Grifitithaug and not directly under order for the Soudan, yet Measra, and A dmirandy contracts for camp kettles and general tin tilate and
japanned waree.
The Council
of
The Council of the Midand Countien Trades and Labour Asso ointion has suggested a conferenco between ropresentative colliery prevention of further wages disturbances in the South Stafford such o conterenoo if any mof thers havere, however, deolined to hold Trade Wages Board are elected to it.
Acoording to
 shirge, which ho believers is the finestat and most maceosibible felford

Traders here learn with astitifation that Sir Berhhard Samuel.

 town's meotings at Birmingham, Wolverhampton, and Kidder
minter, along with tho local authorities of Walsoil, Dudley, and
and

This week a national conferenco of miners is taking phace in Bir.
minham. The preident-AIr. T. Burt, M.P. in . his addreas,
 Messras. Parkes and Roas, engineers, Tipton, have ame ironwork
in hand for the vind ucts for the Suakim.Berber Railway. Meesrs. J. Wright and Co., TTipton, aro manufatouring a crano obshin
weighing two tons, and to carry a load of 150 tons, for a Sheffield
 fitt. wider
Tenders have just been sought from the Earl of Dudley's Round
 hoo work should fon to this lordship, the hileepers would be rolled Sull Bridgo Fronworks, Hoxley, have purchased the Capponfield
Works, Biston, of the Chillington Iron Company, which wereoffered
 mainly carried on. There are three sheet mills and one hoop mill.

NOTES FROM LANCASHIRE.

Manchester.-There is still no material change to report in the condition of the iron trade in this district, and any prospect of
improvement seems to be as distant as ever. The weight of engi-
 extremely low fifurase, , with delivereies in some cone casese extending over
the whole of the year. The prices at which business in the open
 ing pig iron makers decline to quote for orders on such a basis, and
ontent themselves with occasional special sales on which they can get something near their list rates. Between finished iron
makers and merchants there is a struggle going on with regard to a further reduction in priees which struggle dealers are ondeavogring to force on, and although many of the manufacturers deolare that
they have already got to the lowest possible point, and that they
would prefer to stop their worke would prefer to stop their works rather than take any lower prices,
he tendency of prices is undoubtedly in the direction of a the tendency of prices
further downward move.
There was again only a very slow business doing in the Man-
chester iron market on Tuesday. Quoted prices were nominally unchanged from last week, but on the bases of quoted rates there are ery few transactions. Lancashire pig iron makers still quote
41s. for forge and 41 s . Gd. for foundry, less
2 \downarrow, delivered equal to Manchester, with 6d. under these figures taken where offers to
made ; but even at this concession they are practically out of the
market so far as the Manchester delivery is concerned, as there are
district brands which can be district brands which can be got at quite 1s, per ton less, and
where sales, which are very few, are being made by local makers, where sales, which are every few, are being made by iocal matherr,
they are hiefly to oustomers in the more immediate neighburhood of the works, and where there is a very considerable
advantage in the delivered rates. Some of the leading makers of district brands are holding to 40 s. 6 d . for forge and 41 s . 6d. for
foundry, less 22 L , as their minimum for delivery into the Manfoundry, less $2 \frac{1}{2}$, as their minimum for delizery into the Man-
chester district, but 39s. 6 d . to $40 \mathrm{sas}$. , less 2 L , are figures which
would be readily taken in some cases. North-country iron would be readiy taken in some cases. Nordh-conrogh can be
rather easier, and good foundry brands of Middlesho
bought for delivery over the year, equal to Manchester, at 42s. 10d. per ton net cashi,
For hematit
For hematites there has been some little inquiry, but no transactions of any importance in this district are reported, and prices
remain nominally at about 52 s . 6 d . to 53 s , less $2 \downarrow$, for good foundry In mands delivered here.
In manufactured iron there has been very little doing., There with the objem merohants at considerably under makers prices, with the object of testing to what extent makers who are very short,
of work are prepared to give way. In a good many cases, however, a strong disposition is shown to hold to to 10s. for good qualities of bars as the basis of quoted rates for delivery into this district,
but both in Lancashire and North Staffordshire bars buyers have but both in Lancashire and North Staftordshire bars buyers have,
during the past week, been able to place orders at $\& 5$ 78, di., with hoops to be got at $£ \mathrm{Et} 1$
per ton delivered here
The engineering trades continue in much the same condition last reported, and so far as employment is ococerred, it keeps
about steady, the number of men out of work, though not decreasing, showing no material increase.
Messrs. Ashbury and Co., of Manchester, had deal of activity, and Nessrs. Ashoury and co., ones for the new Hull and Barnsley line,
for the whole of the coaches and these have to be completed by the end of June. In wagon
building, however, there is very little new work giving out, and building, however, there is very little new
this branch of the trado 1s getting very slack
Messrs. Collier and Co., of Manchester, have recently constructailding work in the Australian colonies, in which one or two new arrangements have been introduced. In these machines,
which have been in several cases made with six, and in others which have been in several cases made with six, and in others
with twelve drills, the bed is provided with T slots, two bottom carriages and transverse slides, so as to enable the plate, after being
fixed on the slides, to be moved either longitudinally or trans versely without unsetting the plate. This enables the machine to also the heads of the drills, are adjustable independently, and this nitches odd pitches to be drivilled and to get regular or irregular pitcown out of gear separately without stopping the or machine or They have also sent out to the colonies a number of other
cools, amongst them a specially arranged spring - making machine, which combines all the oporations in the one tool ;
doublo-ended rivet, bolt, and spike heading machine
an which the heading rain is worked in double bearings from
the connecting-rods; a cold iron saw driven by worm gear ith saw 3ft. Gin. diameter, for taking in work up to 12 in. square
he self-acting foed motion is obtained with serow and nut througl sentro of the bed, and coupled up to the traversing carriage
cotuated from the worm shaft by bevel gear, worm and worm actuated from the worm shaft by bevel gear, worm and worm
wheel; and a plate edge or side planing machine, in whioh the
prineipal novelty is that the girder ends are open, so that the machine will admit plates of any lengtb
An interesting paper on explosions in coal mines was read before he mombers of the Manchester Geological society, at their meet ing on Tuesday, by Mr. J. S. Burrows, of the Atherton Collieries. continued use of the Davy lamp, of which thousands were still hey were absolutuly unsafo in an explosive current of gas and air ravelling at a speed of 8 ft . per second. In spite, however, of the better lamps which were now oblan in ens was arraid we mus of any shot whatever, either in the coal, or for blowing roof vere out of the mine, except the shot lighters and furnacemen ny. The great points which must be looked to for the prevention explosions in the future were:-Good management and disoi
pline, ample ventilating power, Iarge airways and judicious dis. ribution of the air in the workings ; the best possible lamp as little powder an posible et bo used, and no shots to be fired on any and careful attention to first weights and dust. During the dis? assion which followed the reading of the paper, Mr. T. S. Martin, ance had been attached to the publication in the newspapers of ittle credit given to improved management and better appliance in the mines as the means which had contributed to the essene umber of explosions in late years. "ins" not imsolf attaol ing explosions, and in his opinion the giving out of gas was much nore affected by the "weighing" of the roof.
The coal trade remains in
The coal trade remains in much the same depressed condition as prices with the are in very poor demand, and with stocks accumulating sales are generally there is an easier tone in prices. Λ^{t} the pit mouth best ooa does not average more than about 8 s . 6d. to 9 s . per ton;
seoonds, 7 s , to 7 s . $6 \mathrm{~d} . ;$ cominon round coal, $5 \mathrm{~s} .6 \mathrm{~d} . ;$ and burgy boout 48. 6 d . to 5 si . per ton. A good deal of slack is being thrown trades, and notwithstanding the lessened production of this olass of fuel it is in some cases becoming rather a drug; for best sorts
3s. 9d. to 4 s . is still being got, but common sorts are offered at The shipping trade has been extremely quiet, and steam coal
delivered at the high-level, Liverpool, or the Garston Docks can be ot at 6 s . 9 d . to 7 s . per ton.
Barrov.-There is still a very quiet tone in the hematite pis iron trade, and business during the past few days has been very
slow. The demand for pig iron of hematite quality is fairly main. ained on home a acount, there being a large consumption by akers of steel; but the inquiry from the Continent, the Colonies,
nd from general foreign consumers remains inactive in referene to both Bessemer and forge qualities. There is not much prospeot of improvement in the trade, and the only hope seems to be that
apring orders will be booked to such an extent as will give a better tone to trade generally; but of this inquiries at present do not give
much hope. There is no doubt that the present make of iron can e maintained even with the present demand, but stocks remain work in the hands of makers, while anything but pressing; and the state of semi-activity, is not such as will justify makers in in
creasing their output. Prices are easy at 44s. 6d., No. Bessemer; $44 \mathrm{~s} .$, No. $2 ; 43 \mathrm{s}$. . $6 \mathrm{~d} .$, No. 3 , net, at works
prompt der
 there is every week more and more prospect that the special stee trade, that represented in the production of mild and hard qualities
of bars, suitable for almost every class of manufacture, is making progress. At present it represents about half the output of the
works in this district, so that while the rail trade has to extent fallen away, owing to scarcity of demand on the one hamd and the greatly increased facility of production on the other,
another branch of industry has sprung up, and seems capable of
more than maintaining the place occupied by an ow inactive branch more than maintaining the place occupied by a now inactive branch
of the steel trade. Prices of iron and steel are unchanged. Iron ore is dull. Coal quiet. Shipping inactive. strengthening of the Leven and Kent Viaducts on the Furness
Railway.

THE SHEFFIELD DISTRICT.
WHAT I anticipated last week has come to pass. The coal
owners of South and West Yorkshire, meeting at Sheffield, have passed the following resolution:-" That this meeting is convinced prices obtainable for cool, render in absolutely necessary that the 10 per cent. advance in wages given to the colliers in November,
1882 , be taken off. It is therefore agreed that each colliery 1882 , be taken off. It is therefore agreed that each colliery owner
shall inform the colliers in his employ of this necessity, and endeavour to obtain such reduction, and, in the event of the colliers not acceding thereto, shall give notice to his men to
terminate their engagements on the nearest pay day to March 31st next, and close his pits, if necessary, to enforce the same.". On
the following Monday the Counci, of the Associantion Monday the Council of the Yorkshire Miners was a large attendance, over one hhundred delegates beerg
present. A resolution was unanimously passed to the effect that the Council was of opinion that the demand for a
reduction of 10 per cent. "should be resisted by all and reaction of 10 per cent. should be resisted by all and
every legal means, and that each and every colliery of workthe matter except by and with the full consent of the Yorkshire Miners' Association and the county generally." It was further agreed to hola a conterence representing the whole Yorkshire coal-
field on the 9 th inst., at Rotherham, to discuss the wase question, Each colliery and pitstead is requested to appoint delegates to
attend the conference. If the men, in general conference, maintain the position taken up by the Council at Barnsley, nothing can prevent a great strike at the end of March or beginning of April,
as the coalowners, it is clear, will not recede from their position. There is at last a prospect of a settlement at Denaby Main, where the prolonged dispute has caused serious suffering. The owners resume work on the coaling prices offercd to the men in the
notices served upon them in December. Large coal, hand-filled will be paid for at the rate of 18 . 6d. per ton, and or slack, shovel-filed, \&d. per ton to all-day wage men. Formerly, the
men were paid a uniform price of 1s. 4dd. for coal and slack. The day men and others are offered work at the old rate of wages. reduction being made in the district, a similar reduction will be
made at Denaby made at Denaby. The company promises that ample police
protection will bo provided for those who return to work. protection whit bo if thridect retur to work they do not expect that
The matices will be served upon them respecting the 10 per cent. reduc. tion, as the Denaby Company are not members of the Coalowners
Insurance Society and they believe full work will be carried on Insurance Society, and they believe full work will be carried ou
even if the men at the other collieries come out on strike, There has been a good deal ot work recently in the district now in the event of prolonged idleness in the conlfield. The
principal stocks of coal are in the wagons. Miles of coal-laden trucks may be eeen in the sidings by the most careless observer.
The first effect of a strike or look-out would be to move these acoumulated masses of fuel, turning dead weight into cashi.
notice a local paper states that " whether the men come out or not trade will certainly be disturbed, and the fancy prices of two years reat advance in value. Prices must go up somewhat, but supplie will be drawn very freely from Lancashire and Derbyshire when
the accumulations are exhausted. Not a few competent judges incline to the opinion that neither the coalowners nor the general public will greatly benefit by the reduction of wages when it is
btained. Those who will gain most, it is urged, are those who need it least-the gas and railiway companies and other large oon
sumers. At present the very finest of the ocal, at 6s. per ton, which ins surely low enough. has just built at its works at 'Gorton a saloon luncheon and dining car, which made its first journey to London on Monday, It is run
ointly with the Great Northerr Company who owns the line from
Retfor Retford. The car is larger than any previously built by any other
company. It is 60 oft in length, is carried on two six-wheeled bogie crueks, and consists of dining room and smoking room, which
are connected by a corridor ; a retiring room for ladies and a lavatory for gentlemen; with kitchen, pantry, a space for refrigerator and general stores. These are made fire-proof ty the use of asbestos
in the lining of the wallis, The car is built of teak, oak and
Bessemer steel bars forming the fre Bessemer steel bars forming the frame; and the bogie trucks are of steel and iron. The internal arrangements are more than compor
able-they are simply luxurious. The seats and backs are
apholstered in Utrechit velvet, the woodwork is of English lard oak, skilfully carved and " milled." Suspended from the roofs, which are prettily decorated, are several handsome lamps which
afford abundant light; electric communication is provided from ach table, the car is warmed throughout with hot air pipes, and
mple arrangements are made for ventilation and dust prevention The car is attached to the 11 a.m. express from Manchester, which liaves Sheffield at $12.5 \mathrm{p} . \mathrm{m}$. , and makes only one stoppage at
Crantham in the run of 157 miles from Sheffield to Kings S Oros, Itavelled in the car from Sheffield, and returned in it at 6.15 from King's Crass the same evening, Nothing could exceed the
smoothness of the rumning and the comfort of the whole arrange-
mente. The severe " S " curve at Retford was rounded at a good speed without any perceptible inctease of oscillation. The dining arrangements, which are in the hands of Mr. Meyer, of King's Cros oon for business. If the enterprise of the company is appreciated by the public, other cars will probably follow.

THE NORTH OF ENGLAND.
AT the Cleveland iron market held at Middlesbrough on Tuesday last, a firmer tone was noticeable than for some time past. Cold.
sumers hewed a disposition to buy for forward delivery but ellers
were very wary, and sold only small lots for prompt deivery. No. 3 g.m.b. could not be had from merchants at less than 34s. 3d per ton; that is $1 \frac{1}{2 d}$. more than they were accepting at the close of
last week. Makers quoted 34s. 6d. to 35s. per ton, and only two or three firms would accept the former figure. The demand for forge
iron is somewhat quieter, the price being 33 s . 3d. to 33s. 6d. per on. The improved feeling in the trade is due in great measure to
the increased shipments. Some few sales of warrants have been effected at 34s. per ton.
The stock of Clever Middlesbrough store was on Monday last 50,962 tons, being a reduc-
tion of 20 tons for the week. The decrease during the month just
ended was 607 tons. At Glasgow their holding is 587,176 tons, or ended was 607 tons. At Glasgow their holding is 587,176 tons, or
7808 tons more than at the end of January. Shipments of pig iron from the Tees improved considerably during
the latter part of February. They reached a total of 63,456 tons for the month, or about 3000 tons in excess of what was shipped in
January; Scotland took about the same as in January, viz., 30,180 January; Scotland took about the same as in January, viz., 30,130
tons ; France took 7445 tons, Holland 5945 tons, Spain and Portugal 3505 tons, Germany 3160 tons, and Wales 2440 tons.
Manufactured iron and steel shipments are also improved. The

There is no improvement in the finished iron
trade, and prices remain the same as quoted last week. Steel manufacturers are now fully employed on orders for plates and rails.
Messrs. Armstrong, Mitchell, and booked an order for two steel steamers, which will be built at their Low Walker yard. Messrs. Swan and Hunter, of Wallsend, have entered shipbuilders on the Tyne Tees. Nost of the show in full operation and two or three launches have been made during the last few days. At
Messrs. Raylton Dixon and Co.'s yard at Middlesbrough there are about 1300 men employed. This firm launched a steamer on Monday last, Messrs. Bolckow, Vaughan, and Co.'s directors recommend that the dividend for the year ending
December 31st, 1884, shall be at the rate of $2 \downarrow$ per cent. per annum. They also propose to write off
$£ 40,000$ from capital account to provide depreciation.
Rapid progress is being made with the Scarborough and Whitby Railway. The rails are laid
throughout the entire distance. The erection of stations, signals, and telegraphs is being pushed forward, and it is expected that the line will be

NOTES FROM SCOTLAND
(From our oun Correqpondent)
THE iron market has shown much more than the usual activity this week, and a large specula-
tive business is understood to have been done. tive business is understood to have been done. improvement in the steel trade and also as to
some further orders for ships, including an Admiralty contract placed on the Clyde, and these have tended to give more life to the market. So far it does not appear that the inquiry for
Scotch pigs has improved. There are ninetyScotch pigs has improved. There are ninety-
three furnaces in blast as compared with ninetyeven at the same date last year. The shipments in the past week were 8575 tons against 6689 in the preceding week, and 7974 in the correspond-
ing week of 1884 . There is still a considerable norease in the stock of pig iron in Messrs. Conbeing upwards of 900 tons.
Business was done in the warrant market on
riday at 41s. 8d. cash. Monday's market was nimated with transactions from 41s. 812d. to 41 s . 10 d. d. cash. On Tuesday forenoon the quota-
ions advanced to 41 s . 11d., but in the afternoon here were sellers at 41 s . 10 d d . cash. Business was done on Wednesday at 41s. 8 d. to 418. 6 d . down to 41 s . $4 \frac{\mathrm{~h}}{\mathrm{~d} ., \text {, but the market ultimately }}$ losed with sellers at 41s. 6 d .
The current values of
The current values of makers' iron are :-
Gartsherrie, f.o.b. at Glasgow, per ton, No. 1 , Las.; No. 3, 46s.9 9d.; Coltness, 55s and 50s. 6d.;
ang 46an, 54 s .6 d. and $51 \mathrm{~s} . ;$ Summerlee, 51 s .6 d . nd 46 s . 6d.; Calder, 52s. and $46 \mathrm{~s} .6 \mathrm{~d} . ;$ Carnbroe,
48 s .6 d and $46 \mathrm{~s} . ;$ Clyde, 47 s , and $43 \mathrm{~s} . ;$ Monkland 2 s .6 d . and $40 \mathrm{~s} .6 \mathrm{~d} . ;$ Quarter, 42 s . 3d. and 40 s .; Grangemouth (specially selected), 52 s .6 d . and
47 s ; Kinneil, at Bo'ness, 44 s . 6 d . and 43 s . 6 d tlengarnook, 48s. 6d. and 43s.; Eglinton, 43s, 3d. and 40s.; Dalmellington, 47 s . and 43 s . 6d. very much improved in the past week or two. It has been quite apparent for some time that excellent quality and remarkable cheapness of mild steel was giving it a strong meeting was held, at which most of the larger ncrease the price of steel angles and plates by 5 s. a ton, bringing the quotation up to $£ 7$. The steel
works in the neighbourhood of the Clyde are quite busy, the bulk of their orders at present hipbuilding trade is quiet, a growing proportion of the vessels under construction are of steel. The placing of six torpedo boats for the Admiralty with Messrs. J. and G. Thomson, of Olydebank, will still further improve the steel trade, as it is
understood that the plates, \&c., will be manufactured by a Lanarkshire firm having close relations with the builders. have just received an order to supply 3000 tons o It is understood that the contract was arranged through Messrs. Aitken, Lilburn, and Co., shipowners, Glasgow, by whom the pipes will be conveyed to the colony. The same pipemaking
firm have also booked an order for 1700 tons of pipes for Kirkcaldy.
Messrs. Ker, Bolto
Messrs. Ker, Bolton, and Co., of Glasgow, are iron pillars, roofing materials, framing sheets \&c for workshops, and engine and car sheds required by the Singapore Tramways Company.
In the past week there was dispatched from Glasgow locomotives to the valua of $£ 18,150$, two
worth $£ 5950$, going to Calcutta, and four, $£ 12,200$ to New South Wales ; £5500 machinery, most o which went to India, $£ 3200$ sewing machines,
$£ 762$ steel goods, and $£ 24,680$ iron manufactures of different kinds.
There has been a fairly satisfactory business in coals. The shipping trade at some of the ports
is large, but at others somewhat backward at the moment. In the past week the coals despatched from Glasgow harbour aggregated fully 23,000 Tons, while 7471 tons were cleared at Ayr, 3112 a 13 tons at Groencangemouth, 518 at Irvine, and a good demand for bunker coal for steam vessels. The coal shipping trade in Fifeshire is spoken of as in a very backward state, and the quantity despatched in the past month is fully 6000 tons ating at the side of the Firthof of Forth, the coal trade is likevise quieter than its wont, but a fair business is slackening in some directions, whilst in in others
purposes. William Baird and Co. have made n
Messrs. in the Kilsyth district.
During the past month 13,985 tons of new
shipping were launched on the Clyde, agains
28,730 tons in February, 1884. For the two monens the output has been 24,745 tons, com-
pared with 35,380 in the corresponding period of pared with 3,030 in the corresponding period o
last year. Messrs. J. and G. Thomson, of lyde-
banks. to build for the Admiralty six torpedo boats, of the same class as the Scout, which they have now under construction. No rewer than twenty-seven irms, ten of whom were on the Clyde, sent in
offers for either one, three, or the whole of these vessels. These vessels will be entirely of steel,
225 ft . in length, 36 ft . in breadth, and 1600 tons displacement, and they wrill each carry fifteen guns- our bin. guns on vavasseur carriages, and
eight Nordenfelt machine guns, Several order ight Nordenfelt machine guns. Several order
for merchant vessels have also been placed within the last few days with Clyde builders.

WALES \& ADJOINING COUNTIES (From our oon Correspondent.)
THE coal trade is slack in all parts of the disrict. Cardiff sent away last week 123,723 ton tons coastwise. Swansen maintained ith 17,000 and there is a promise of a good week, havin connage in for nearly 30,000 tons, as represented by forty steamers and forty-nine sailing vessels.
House of orders is experienced in the Mo great scarcity valleys. Even brienced in the Monmouthshir Anthracite coal is also in little request, and the arders for best 4ft, are the only prominent ones In the Neath district things are very quiet, and
coalowners are actually getting supplies from the Swansea valley, finding it better at present to Swapsea vale their own workings ide.
kide
olliery, Swanse Tyla Coch, in the Rhondda Valley, which was lately started by Mr. Evans, is " on stop," but suppose only temporarily. It was understood
that a capital of $£ 10,000$ would be required to float it successfully, and the delay in completing this has led to the stoppage. Eventually this struck there, and the Aberghorki is well pronounced. A competent engineer declares the 6 ft .
seam to be of splendid quality in this colliery seam to be of splendid quality in this colliery.
I am glad to hear that the Hafod and Coedcae litigation is about ending.
A meeting of the Rhondda colliers has been held this week, principally to formulate a scheme
for support at the miners A chief feature is to get the oollier properly is quiet, as it is at present, colliers are active in discussing social movements, and hence we have
had no end of agitation here and there about had no end of agitation here and there about laws for employers and employed alike," as wel At Plymouth Comiery and works new arrangements were made this week with the doctor by
which the colliers were considerably benefitted. It is a pity that no one starts a good buildin society in these quiet times, by which each collie plaint having been made with regard to timber at Nixon's collieries, it has been satisfactorily shown to have no groundwork of fact. I can anmm personally that at Merthyr Vale Inere is always an enormous stock, and the company generally hold
500 tons there and in the Aberdare Valley. meeting of the Sliding Scale Committee has been held, and the result is that the colliers will have to submit to a reduction of $2 \frac{1}{2}$ per cent. from
March 1st, as justified by the sales of the last four month
off in price.
There has been a rood deal of feeling introduced into the Cardiff pilotage board lately; the majority have opposed an application of the Barry Dock pilots to have two representatives o me board, and now it is believed that
men will have an independent board.
There is very little doing in steel rails at present. Most of the works are going on very
slowly, the most conspicuous features in several of them being stocking and carrying out improve ments. We are to have a share, it seems, in the will leave shortly and some consignments of rails Topaz, I hear, has just arrived at the Alexandra Dock to load 200 tons of rails, the first instalment for Suakim. Independent of this, the export the principal being a few hundred tons to Stockholm and Rotterdam
The tin-plate trade continues in a very gratify ing state, 1700 tons have just been shipped a Swansea for Baltimore and Philadelphia, and further shipment in the course of a few days further shipment in the course of a few days
Buyers in some cases are trying to force down prices, and are holding orders back in consequence of the makers' refusal, but there is plenty of legitimate business being done, and in some noticeable cases more is wanted than can be
accomplished. In addition to ordinary coke and accomplished. In addition to ordinary coke and
charcoal plates there is inquiry for special plates roofing, \&c. Prices are stiff, and there is a con fident opinion that an advance is certain in the course of the next few weeks, April prices will, it is most likely, be "raised.
Iron ore is dull. Iron ore is dull. Patent fuel is in good demand, in excess of requirement, and prices in consequence
are low again.
I see by the Forest of Dean's returns that the I see by the Forest of Dean's Last year nearl 800,000 tons were worked as compared with 13,443 tons. In iron ore there 1s, as may be exworked, in 1882 78,494 tons, in 188363,270 tons, and last year only 55,677 . This is a great decline since the palmy days of the Crawshays, say 1856, when the get was 109,263 tons.
Mr. Harpur, the surveyor
Mr. Harpur, the surveyor and engineer at
Merthyr, is retiring. A good deal of local feeling has been aroused as to the safety of the Torpantau
Reservoir, to which I called attention, and a full disoussion has taken place.
—
Naval Engineer Appointyent.-Thomas A. Morris,
Volage,

THE PATENT JOURNAL.

Co
*
Fa
ha
bo
gi
the
gi
mi
me
re
fin

* It has come to our notice that some applicants of the
Patent-oflce Sales Department, for Patent Specifications atent-oftce Sales Department, for Patent specilcations,
have caused much unnecessary trouble and annoyance,
ooth to themselves and to the Patent-aftice ofticials, by iving the number of the page of The Enarserr at which givig the proper number of the Specification. The
mistake has been mode by looking at THE ENGINER
Index, and giving the numbers there found, which only eicr lo the pages, in place of turning fo those pages and
nding the number of the pecifliation.

Applications for Letters Patent.

 * When patents have been "communicated," thename and address of the communicating party are
printed in italics. 24th February, 1885.
2463. Secondary Batteries, c. S. S. Bradley, London.
2464. Appliance for Violins, dc., S. Williams, Bir-
mingham.
2465. KEMEDV for Asthma, むc., J. Girdwood, Belfast.
466. BURNISHING, Ashton-under-Lyne.
2467. Warp Lace Cubtain Machines, E. v. Smith, 2468. Honse Ptpe Couplinas, J. Gresham, Manchester.
2469. Folding SEATs and TABles, J. M. Ualton and W. Eglin, Glaggow.
2470. SEALED PAN capable of Removino Nioht Soll
without Emittina any Smele, H. Abbot, Wolver-
hampton.
472. VERTical Boilers, T. T. Crook, London. HYDROQEN, J. W. Kyyaston, Liverpool.
2474. WABHUNG, \&C., SKINS from Potatoks, J, Nuttall Rochdale.
2475. Drawing and Etching with a Pointed InstruMENT throug
Norwood. 2476. Construction of Chafy-cutters, de., J. W.
Heaps, Halifax.
477. Repkaters for Submarine Cables, M. G. Farmer, London.
478. Obtainina Solid Caustic Soda from Fused
Caustic Soda, W. Weldon.-(Messieurs
A. R. Pechiney et Compagnie, France.)
2479. REEERING GEAR for STEMM, \&e., Enoines, J. H. Northcott, London.
2480. Outting or shearing Closed Envelopes, J. H Planitino the Edges of Metallic Plates, R. H 1. Planine the Edges of Metallic Plates, R. H
Alleyne and O. Scriven, London. Pajor, London. L Livts, dc., J. S. Stevens and C. Major, London. Shipg' Riding Liehts, W. Harvie, Glasgow.
INTERAL Stoppers for Bottes, R. Taylor and Scott, Liverpool.
Pistons for BTEAM Enaines, A. H. Reed.-(T, Barber, United States.)
son, BLLANGD SLIDE VALVE, A. H. Reed.-(A. Jack-
son, United States.) son, United States.)
488. Alarum Suitable for Street Doors, G. F. Andrews, London.
489. Oondenbing Apparatus, G. Love, jun., London. B. Crompton, London.
2491. AUTMATIC STop and Lock for Pawl Mechanibs, J. E. Williams, Glasgow.
492. WAste WATER PREVEnter, F. Humpherson, $\xrightarrow{\text { London. }}$ \qquad Company, Austria. . J. Haddan.-(L. Mand and and Bodiss, G. C. Marks, London.
2495. METLLLIC BEDBTEDES, W. H. Davis, London.
2496. Lowa and SHort Focus CAMERA, London.
2497. Rails of Pianoforte Actions, J. Herrburger 2498, Finishing Plush, Velvet, tcc. C. Coget, London.
299. Administering Injections, J. C. Mewburn. $-(M$. Lovys, France.)
2500. UsE of ARTIIIILIL FUEL, J. Barnett, London,
25DIA-RUBEER PADS for Horseshoes, T. S. Price,
ndon.
TRICYCLE, F. W. Jones, London.
Coal-scortce, W. L. Byers, London.
DRAW-OFF VALVE, B. Wikerson, London.
BalL, CAsTors, H, Jeynes, London. Ball Castors, H. Jeynes, London.
ATaching Butrons to Boots, dc., C. A. Day.O. Ely, United States.)
Skaling Doors, dce., against Escape of Air and GAs, A. A. Common,
2508. WATER-CLosEt
Common, London.
preventing Explosions, in stram Bollers, C. Hargreaves, London.
Prefing and Deiverina Tickets, de., W. R Time-pirces, W. R. Lake. (H. W. Hayden, U.S.
GLoves J. F. O. Weston, London.
STEAM ENGINEs, H. Cutting, London. 515. Hoor Fastenina for Boat's Davits, dc., P. Bath, London.
2516. GRINDisa Mils.) W. R. Lake.-(A. Zipser,
Aus, 2517. Carriage for a Machine Gun, J. G. Accles, Lis. Ben.
Joske, Londens.
and Medionnal Preparations, P 2519. Combined Bedgtead and Batr, M. Brown,
London. 25th February, 1885.

1. Purching Machines, 2. Harvesting and Strasby, R. Edwards, J. Grantham. 43. Solitaires and Studs, 24. Silos for Preserving West Virginia, U.S. 25. Intermediate Drivi Wheels, J. Dean, Liverpo 26. Sewing the Liningos i Liverpool. 7. Gas Lamps, S. Brown 28. Spring Lock, A. D. M 29. Cooking and Heating Manchester. 30. Regulating Supply Budenberg.- (Schädfer and 31. Valve Gear for Ste Manchester.- 11 th December 33. Coke, J. A. Yeadon, I 34. Making Fabrics, むe., Halifax. 35. Bedsteads, dc., W. H 36. Carriage Door Hin 37. Removing Incrubtat Flather, Southport.	

2546. Oandlestick and Match Container, H. King,
London

Ean. Chatr, J. A. Matthews, Gloucester.
Square Polymeshed Rotary Screen, de.,
rogory, Lincoln.
Pillitrens for Castings for Machingery, F. T.
O. Hyarenio Dvist, A $\circ \mathrm{H}$, and Cinder Box, \&c, B.
Dove, London. 5i. Conecting Himes, H. C. Lory, London.
5. Sherp-shanks, C. Burgon and C. G. Hallas, 2553. Treating Sugar-cane, H. J. Chapin, London.
2554. Oroans, M. L. Lodge, London. 55. Transmitring, de., Electrical Signals, J. C.
Mowburn.-(M. Deprez and B. Abdank-Abakanooica,
France.) France.
556. Drying Textile Fabrics, \&ce., J. C. Mewburn.
(Pieron and F. Dehaitre, France.) and C. N. Blumberg. - (M. Redier, France.)
255. Trobsers, M. King. London.
2559. Tomacco-PIPEs, A. F. Link.-(E. and A. Haberer, Germany.) of Landisg Nets, A. T. Allcock, London.
2560. Joorstr of Dumping Wagons, H. J. Haddan. (W. J. March,
 2566. Ventilating Cowls, J. White, London.
2567. Weiving Wire Gauze or Cloth, W. Begg, 2568. PYRometer, J. Frew, London.
2569. VENTILATING CowLs for SuIPs, \&c., J. Campbell, 2570. Actuating the Dampers of Steam Boiler Fur-
naces, J. Auld, Glasgow. KALEs, Combined Composing, Distributisa, and Jubti-
FYING MAchives, P. Jensen. FYING Machines, P. Jensen. - (A. Lagerman, Swede
257. ELECTIC METER, J. E. G. Gordon, London. 257. MOcks and KEYs, K. Newell, London.
Standfield ENGINE for a Bhield and Fort, de., J. Standfield, London.
2575. ELecric Maiss employed in District Liahtiona,
J. E. H. Gordon, London. Lamps for Liohting and Hratina, J. Simmonds, Arbed Fexceg Wire, O. W. Malet.-(F. B. W.
, Neve Zealand.) DistiLavo Ammoln from Lisuids, H. Simon.-
Dilisen Germany.)
79. Conveyors for Flour Mills, M. W. Clark,
London. London.
2580. Proding Azo Colours on Fibre, T. Holliday,
London. alldren's Chairs, J. Crook and C. W. Raffoty, ape for Coverina Conductors, G. F. Rogers,
on.
ubricatina Commutators, \&c., D. L. Salomode, London.
London.coating, \&c., Leaves of Plants, J. Brown,
85. Ticket Feed and Indicator, F. Mackinlay, London.
H. Avtomatic Electric Switch and Cut-out, H.
H.
Sunynghame, O. E. Woodhouse, and F. L. Wson, London.
ELETRTIM Mans, J. E. H. Gordon, London.
REMOVINO INCRUSTATION from Bollers, W. A. Barlow. - (J. S. Meyer, Germany.)
2589. SEwING Michives, G. F. Redfern, London.-(C.
F. Perenot and L. Schor, France.) F. Perenot and L. Schor, France.)
S90. PrLL-Boxes, 2591. Naluma M Achives, C. F. Gardnor.-(J. W:
Brooks, truste of the McKay Metallic Fastening Asso-
ciation,
 2594. PReventina the Overturniva of Liquida, A. M. Clark.-(G. Trouve, France.) - 8 th May, 1884 ,
2595. HyDravic VALvs, C. Davy, London.
2596. DIstributina Electricity, J. E. H. London. 26th February, 1885.
2598. Shearisg, de., Fabrics, E. Martin, J. W. John-
son, and E. Bamford, Halifax. son, and E. Bamford, Halifax. Martin, J. W. John-
259. Skcurina Spoos in Shutcke, J. W. Gledhill
and C. Roberts, Halifax. and C. Roberts, Halifax.
2600. CombinED ARITMETIAL Frame and Black.
Board, T. Rushworth, Lewisham. BoARD, T. Rushworth, Lewisham.
2601. VLVEs and Cocks, R. F. C. Tonge. Manchester.
2602. TAIING-UP Motross, R. Ingham and H. Livesey,
Halifax. 2603. Shearisg, tec., Woven Fabrics, w. P. Thomp-
son. 2604. Mouldiva SAND, G. Oulton, Liverpool.
260. VELocrpede BEARINos, T. Hill and the Howo
Machine Company, Glasgow, Machine Company, Glasgow,
260. SEwING MACHNE NEEDLE BARs, R. Lockhart and
the Howe Machine Company, Glasgow.
2607. Cyouss, T. Hill and the Howe Machine Com-
 2610. GLAND or STurying-box, T. R. Summerson,
Hauhton-le.Skerne. 2611. Bexaning for Shafting, Axles, de., G. Weston,
Sheffield. 2. Loose Studs for Fixing the Laths of Bedstrade,
. W. Tiptaft, Birmingham.
3. BANDAGE WINDER for Surgical, de., Purposes, Onoves, Birmingham.
Ornamentina or Illuminatino Mirrors, E. rjeant, Birminghamo.
Lrumb Trangsarent Enamel, w. E. Hart, jun., Presses, \&c., J. T. Moore, Crewe.
SEATs, W. Eglin, Glasgow,
Combination Stair Rod, F. W. We Woves Wine Matrreses Fance, w. H. MeNoight, Dublin. Von.
Chiocks for Lathes, O. Owen, London.
Miners' Safety Lamps, J. C. Jefferson,
 Aplyyisg Pedals to Pianofortes, h. T. Wed
London. London. Levers for Organs, de., H. T. Wed-
Lendan. pring Hingess for Doors, J. S. Stevens and C. G. Cocks or VAlves, A. Eiloart, London.
Tobacco PIFEs, D. Schwab, London.
CUTTING FRAMES for Boxes,
262. Tobacco Pipes, D. Schwab, London.
629. Cotting Frames for Boxes, dce., F. Myors,
London. London.
2630. Lockivg Apparatus for Railways, dc., J.
Steven, Glasgow; Wiokgt-krpina Gloves, R. G.
263. Crickerers
Barlow and R. Pilling, London.

2639. Spring Terminal for Eleotrio Wires, B. Pell,
 London.
$F_{\text {res }}$
Pase
 2644. WATER FILTER, C. Price and H. Cleave, London.

27th February, 1885.
2648. Crasps, W. Hayhurst, Burnley.

 2652. Minkrs' Safety Lasps, J. McKinless, Man
 2654. APPARATOB for Stretchiva Woven Fabrics,
 2666. CAsting Strezt, T, Gilmour, Glasgow. Davies Hyde and Lirps, T., stanloy and A. H. 2658. Cicoker BATs, W. H. Cleave, Birmingham.
2659. Constructrox of Box or CAsk, G. Blackman and 260. Frme Linarrwns, P. and F. MoNamee, Dublin. way Vematus for Couplina or Uncouplina Rall. 2662. Previntino the Fonamation of Scale in Boures

 2665. Dininisishina the Stipperiness Produckd by 2666. Comprysativo Vailvi for Govininixa the Passion

2068. APpRARTVB E. Kauffman, Lotion. Daldanic Batteries, \&c., W. Defrioe
 2674. OnxAcrextration of Boots and Srove, c.
 2676. Bnercol-Londina Fink-Ams, L. A. Groth--(J. 2677. Hypravioio Enainss for Onans Blowina, Hi (A. M. Clark.

 2681. Ditrgutive tho Parszsog of Gis in Atwospherio
Ain, D.J. Blakikey, London.
 268s. Tounss or Flues for Steam Boileras, J. A. Hop
 2b86. Thip Valve Gear for Stran Enorives, r
 2688. TYPkE Writike, E. W. Brackelsberg, London.

$$
\text { 28th Felruary, } 1885 .
$$

2689. Stimrup Bars for Ladies' Saddles, F. V. Nicholles 2Le0. LMon. Movisa Decived Virsow, S. Mason and C. R.
Huxley, London. 269. Fastresino Kxon to Spindle, C. Billington and
 2693. Omitainina PRo

Rowan, Glagow. Bu
 2096. Voutrilio Bitrtiers, A. Clark, H. Ponman, and

 2090. Prepaning Sexsitive Paper, dec., L. Warnerke,

2703. Brycuss, F. W. Jones, London
 2707. sterana Vkssels, E. C. H. Samscho, London.

 2712. GAs Exainses. J. Atkinson, London, Daring, London.
2714. ROAD Burrack

 2716. Frutivo CABKs, dechy. with Lieunds, H. Wood
 2ita. RALLWAY Brownluixa Apparatus, H. J. Conolly 2720. G. As, W. \&. \&. oliver. London.

2726. Pocker TEETH CLENEEER, LJ. H. Mantin, London
2727. WATOHEs, do., L. Weill and H. Harburg. $-(H, G$.
 2722. Streiso Matricrs, E. Wright, London.

 273i. WAifzrprooftya Artipotil Leather, r. B

 2739. Disivpectavis J. O. Stevenson, London.
2740. DRAWERS, E. C. Bourne, London.

 2nd March, 1885.
2743. Fireld Cooking Apparatus, A. L. Lineff and \boldsymbol{W} 2744. Compressina Ensilacer, T. Pearson, Glaggow.
 2748. DRyING GRIIN, J. Death, jun., Cheshunt.

 2754. CARBON BLACK, J. W. Davies, London.
 Hasler, London. Haworth, Londol 275s. Skcuara Hand ess to Brushes and Brooss, B . 2759. REaviativa the Manyrr of Exposune in Pro-

 2793. CLortu-cutriva Michinks, W. Beecroft, London

 276\%, Intinon Watra Wastr Praventer Cistren, E. 4 2768. STopreses for Borruse, , Walton, London.
2769. UTrumsso the Powki of WAvEs, A. J. Boult.-
 2771. Sidrrisa the Txerti of SAws, J. R. Cast, London duatrielle des Proeddes Raoul Pictet, Prannec.) 2773. Screwed Boizs and Nuth, J. Imray.

SELEOTED AMERIOAN PATENTS. (From the United States' Patent oplce oplicial Gasette.) 310,751. Tgleppoove, Henry E. Waite, Neco York Claim,-(1) The combination. in a telephone, of
 for connecting the diaphracm and armanture and meatin. tinlly as at forth. (2) The combination, in a tole
thone
 an armature adapted to vibrato beforo tho coll, and a

bar or rod pasing through the magnet and con
necting the diaphragme and armatura, describd. (3) A magneto tolephono consisting of a suitablo casao containing a hollow bar magnot havin
 armature, and a bar or rod of non-mngnetio materinh
connoeting tho dappragm and spring armature, sub-
stantinly 310,762 Dvuno
Nevark, N.J.-Filed A, Machine, Edivard Weston Claim- () Thio eombinatoo of an electric circuit,

therein, and a derived field circuit dynamo machin

magnetic intensity yy momentary or temporary varia
tions of the transians ding dices is provented as and
tis ton the purposes spocifiod. ((2) The chemberintion of
fin electric circuit, electric arc lamps or similar trans-
and lating dovices included sincly orps in serimes therein, field magnets of such degree of sluggishnesss relatively to tha number and charracter of the lamps or other
devicos that variations in the action of such devices have time to subside before any reaction upon the
magnetic intensity of the field takes place, such as would increase such variation, substantially as de

Claim.-(1) The combination, with the smoke-box
nd the smoke stack, of the two exhaust nozzles pliceed
 he emoker stick, and and receiving conde surrounded by
he uper
tozzle, through which cone pases the steam

ubstantially as hereinbefore set forth. (2) The comination of the smoke-box, the smoke stack, the two bove the other and contrally below tho smoko stack nd two recolving cones commumeating to the the
nterior of tho smoke.box and surroundod, the one by to upper and the other by the lower oxhaust nozzle orth.
 Claim.-(1) The combination, with a supporting rame, of a movablo boillor support or cradlo and one or moro nutomatically reciprocating caulking tools,
substantially as doesribed. (2) A caulking machine
 movablo and adjuatabbo cradio B B, provided with lamp D or its equivalent and one or moro reciproat
ing eanulking tools, substantinlly as deseribed.
(3) The ombination of a movablo eupport for a boliler and ono
or more rociprocating caulking tools moving through

round surfaced bearings, and prosed against the
boiler by a apring K . (4) In a caulking machine, tho
隹 combination of an adjustable oradlo B B, and cham
D , one or more reciprocating caulking tools, and one or more hammers operating by gravity, (5) The reciprocating caulking tool G, in combinantion with
tho round surfaced boarings 1 I and spring K, substan thilly as desorribed. (6) The oombination of the sustant nble part B B , , having the surfaco F and champ D, sub
stantilly 310 858 310,856. Anvstanle Cuntivaton Siovel, M. 1 . 1 .
 ave, and contrally perforated, of a cylindrical stand dard m, and a bolt securng tho shank roversibly to the
centro of tho said blado, substantilly as deseribed,

wheroby a plough blade hung to present any side or
corner forward may be turned around the standard to any angle with the line of travel, for the purpose
oot forth. (2) The combination, with the many sot forth, (2), Tho combination, with the many
odgod blate of tho bevelled serrated whool
nive pivotted theroon, the shank F, seared to the whee
G, and provided with a tandard sooket, and the
puttons H and I , having serrated ed ges and slots L ,

 magnot, the circuit opening and closing dovicos, and
driving mechanism therefor, said members being con structed and organised for joint operation substantitilly
na deacribed and shown. (2) In a loom, the combina-
and ton of tho two plcker sthifts locatod at opposito stider
thereof, the electro-magnots, the source of eleotrio supply' connocted with said magneto, the circuit con.
trolling devices, and operating mechanism for sidid
devices, subtanatiolly such an deacribed and showin

 shuttle to and fro and the impact of the shuttle applied do return the pickers to their outer position, substan.

stantinuly as doosibed. (4) In a loom, the combinas.
tion of the two picker staffs, each provided with an armature, the eleotro-magnets, the source or soureos
of electrio supply conneceted with satd mangots, tho Iectrodes G Gan H, the circuit controlling wheels
ind J, and the shaft upon which shid wheels aro nounted, said parta being constructed and arranged 311,113. STEMM TRap, Wizliam A. Forketh, Neio Claim, - (1) In a steam trap, the cano A, having elosed
ond D and removable head G, nitd removablo headd
 integrilly therowith, valve seat connoeted with saidd
pose 1 , comprossion block or valve K . pivottod to o

onderod capablo of being withdrawn from the caso by
 rap, the cano A, having closed end D and removable
eid $(G$, a vilve seat connected to sidd removablo hoadd heva valvo pivetally connected to said seat, and a foat
connected with said valve, substantally as and for tho conneoted with said
purposese set forth.

CONTENTS.

Tue Esainser, March 6th, 1885. PAOR

 trated.)

IMPRovED VERTICAL Bölikr

Prevastuso Ivorvgitat
Newtons Thid Law
CEwTON Thing inw

Yorksime ConL Ispostri
Tume Phxitroke Acidest
ARchirectural Asd Bulldiso Exhitios
Water Suply is the Soudan
Fhos the sitaxd to Oxpond-stinem

 TaE Paysioal Socistr.

 AISTRACTS or Patent Ambricañ specipications. 19\% ARLaraphs-
Glasgow Engineers' Association
Launch of tho Astoria
Opering of the Beabsionk Tramwin
Xaval Engineer Appointments

