THE LAWS OF MOTION

By Prof. R. H. Smpth.

There is a difficulty in understanding Newton's Third Law of Motion. That is clear. So many people have
said that there is a difficulty that one cannot refuse to said that there is a difficulty that one cannot refuse to
believe them. I never had any difficulty in this matter, and, therefore, it seems unlikely that I should be able to give others any help in getting out of it. I have had
many difficulties regarding the fundamental principles of mechanics, but why this particular point should be a stumbling block is not plain. I feel sure that it must arise, perhaps wholly, certainly chiefly, through misunderstanding as to the meanings intended to be conveyed
by the words used. We know that "actio" and "re-actio" are ambiguous terms, because very different meanings have been given to them by eminent authorities, who, knowing
familiarly the various translations that have been given, have each adopted that which seems to thim most useful in building up a rational system of mechanics. We know also that there is an unfortunately persistent tendency to consider
words only to the neglect of the facts of which these words are no more than more or less imperfect symbols. If more trouble were taken to understand and to teach the fundamental facts of dynamics, and less time and labour were spent in quarrelling about the most appro-
priate words in which to describe those facts, there would priate words in which to describe those facts, there would
be no discussion heard of as to Newton's third law. Of course, accuracy of language is highly desirable and important, more especially in scientific matters; but accuracy
of observation and of knowledge is infinitely long as students are taught mechanics only by words-by lectures and books-there is much excuse for confusion regarding Newton's third law when different teachers give whose mind is afflicted with such confusion of words may read Professor Lodge's capital clearly-expressed article in your issue of 20th March with great satisfaction, and may
clearly understand it and yet he may shortly fall back into confusion, simply through forgetting that Professor Lodge uses the word "resistance" in a more restricted sense than the common one. Professor Lodge protests its use to external forces that oppose motion. It does not appear clearly whether they must oppose motion or change
of motion, and if it is change of motion that is to be opposed by the resistance, further definition is required as to whether it is positive or negative change of motion that is to be opposed, and then, again, we must be told which
is the positive and which the negative change. If a cannon ball were suspended by a wire a few hundred
feet long and a horizontal push applied to it, he would prohibit us from saying that the ball offered any resistance rather than resists the push; it receives and absorbs the momentum delivered by the force, and neither reflects it nor transmits it onwards to some other mass in front. Many people will disagree with him as to the propriety of his use of
the word. If the push were delivered to the ball stick, say 5 ft . long, the reaction the ball offers in virtue of its inertia now becomes-according to Professor Lodge's
definition-a resistance to the motion of the stick; but somehow he will not allow us to consider it a resistance the ball as divided in two halves choose to consider diametral plane, he will presumably allow as to call the the hinder half. Why, then, is the inertia of the hinder the hinder half. Why, then, is the inertia of the hinder
half, or of the whole, not also to be called a "resistance?" But it is of comparatively little importance what words are used if the fact intended to be conveyed be clearly
understood; and surely no one could fail to understand so clear an explanation as that in the article referred to
described by very various sets of phrases ; but improper described by very various sets of phrases; but improper
or unusual use of words is to be avoided, because it leads to mistaken understanding of them. Thus it has been
shown that there has been confusion between "motion" shown that there has been confusion between "motion"
and "change of motion ;" by the former was meant previously existing motion, and by the latter newly-arising
motion, and yet they were not distinguished the motion, and yet they were not distinguished the one from
the other. In Newton's Latin, and even in many English the other. In Newton's Latin, and even in many English
and French statements of Newton's laws, no word distinction is made between them, with the result of mis"fpprehension on the part of the unwary. The word of new motion. Is it really the cause? I would be more inclined to say that the cause of a locomotive dragging its
tender after it is the fact that the draw-pin has been tender after it is the fact that the draw-pin has been
previously coupled up, and that the steam valve has been opened. The force through the draw-pin is not the
cause of the locomotive dragging the tender after it, the force is the dragging itself, not the cause of it "Cause" is a metaphysical entity. It might be better to whether that be possible or causes in physical science, but examine carefully will find that from the beginning to the end of mechanical science not once is any use made of the are two observed physical facts that invariably indicate the existence of forces, and which, indeed, are the only
indications of their existence. Firstly, when one mass applies force to another-either by actual contact or by kind-that second mass gains new motion in the or othe of the force unless that new motion be counterbalanced
by a by a simultaneous gain of contrary new motion by the
forces applied by other masses. Secondly, when force forces applied by other masses. Secondly, when force
is acting through a mass, that mass is deformed or strained the., extended, compressed, twisted, bent, \&c. Whatever the material may be, strain of one kind or other is the
invariable accompaniment of force action. The strain is usariably partly elastic and partly inelastic. In sotids it is
not not a continually increasing strain; in fluids it is so so long
as the force exists in the mass. There is also a proportion, as the force exists in the mass. There is also a proportion,
constant or variable, between the magnitudes of the force constant or variable, between the magnitudes of the force
and of the strain-or rate of increase of strain in fluids.

These are the two great physical facts from the observa-
tion of which we know all that we do know about forces. It is infinitely more instructive and necessary for a true understanding of mechanics to bring these two facts into juxtaposition than to dispute about the formal definition of force or any other term we may have to use. Bring the which consists in the loss of - The transference of mote mass and the simultaneous gain of an equal amount of momentum on the part of another mass, is invariably accompanied by strain of one or other kind in the mass through which the transference takes place; and the magnitude of the strain bears a definite proportion, constant or variable, to the rate at which the transference the measure of the force; in fact, the force is the transference of momentum, with due regard being taken of the rapidity with which the transference is effected. The force can also be measured by measuring the strain and multiplying by a physical constant called a modulus of elas ticity. A force is a thing that has only a temporary existence; it exists no longer after the transference nent existence as energy has; but while it lasts it has quite as absolute and real an existence as has energy. Any view of mechanics that leaves out of account the strain that is the invariable accompaniment of force or stress is so problems that it may I believe, be described almost accurately as mere logic chopping, mere compilation of mathematical formule consistent among themselves.
To illustrate this last, consider how mass and force are commonly measured theoretically. The force is to be measured, so we are told, by the rate at which it produces
momentum. mow to measure mass, because mass is one of the factors in momentum on which the measurement of force is made dependent. How is mass to be measured? The answer we get is- "the unit mass is that in which unit velocity
will be generated in unit time by unit force." The circula argument is so delicious that it would be a pity to dislodge it from its honoured place in our text-books. The futility of this sort of sturl is not lessened by saying that the unit mass is that of the standard pound kept in the Tower of London, because we are still left with no other means of
comparing other masses with this standard unit than that comparing other masses with this standard unit than that
of measuring and comparing the effects upon them of equa of measuring and comparing the effects upon them of equal
forces in generating velocity. I was once told that this is forces in generating velocity, I was once told all masses in falling freely towards the earth have their velocitie accelerated at the same rate g. What does this really
prove? Simply that the attractive force is proportional to prove? Simply that the attractive force is proportional to the mass if the general law-is true that forces generate
velocities at rates inversely proportional to the masses to which they ere inversed proportional either that, or that if the attractive force is proportional to the mass, then the law must be true that at least gravitation forces generate velocities at rates inversely proportionate to the
masses acted on. If the law of gravitation be assumed masses acted on. If the law of gravitation be assumed
Newton's observation would prove the general law connecting force and acceleration of momentum so far at least as gravity forces are concerned; or if the latter be assumed, it cannof gravtation is proved by this observation. But aniversal practice prove both , what we realty do in measure masses by balancing against each other the gravitation forces acting on them at the same, or nearly the same, positions on the earth's surface. With masses thus measured we investigate the effects of other forces, and find, from accumulation of experimental evidence, that the law of motion is generally true. We then independently vibrating pendulums, and with their help find that the the distance from thravity on the same mass varies with nature are not proved by isolated sets of experiments. To explain or rationally describe certan phenomena discovere when we find the assume a general law. But it is only makes consistent with each other from a logical point of view, very diverse and complex experimental results, and when we find moreover that no known facts contradic our ass
proved.
I have tried to insist that the same physical fact may be explained in many different sets of phrases, all equally word language. I do not simply mean that one to common letters one likes as the alsebraic symbols, but that formula or equationswhich havedistinct mathematical meaningsmay be merely different modes of describing more or less com pletely one and the same fact. Thus, interpreting the "actio
and "re-actio" of the third law in his own way, Professo Lodge has pointed out that all the so-called three laws are realle one and the same law; two of them are simply
different modes of stating the same fact, and the other is only a special case. If he had taken "actio," according to the Thomson-and-Tait interpretation as meaning "wor mode of expressing the same general faw simply auld stil be a purely logical or mathematical deduction from, or algebraic transformation of, the second. There i It can be viewed in various aspects-as the conserva tion of momentum; as the equality of time rates are exchanging momentum, i.e., equality of acting force so far $2 s$ me The fact is that velocity, momentum, and kinetic energy are merely different aspects in which the one physical fact of Motion may be viewed, and give three corresponding mathematical modes of measuring motion. Velocity takes

* In gravity or other kind of "attraction" the strain oxists in the
:her or other medium intervening botween the attracting masses.
account of quantitative speed and of direction, but not of account mass besides these latter, and kinetic energy takes into account all these except direction. If I liked I might measure the motion by the product of the mass by the cube or the fourth power of the velocity. I do not do so because I know of no utility in that mode of measurement; but no doubt, if I took the trouble, I could find out a series of propositions with regard to these measures of motion that might form new and interesting mathematical puzzles for the Cambridge students. In the same way "force" and work done" are merely two different measures, that is, wo different modes of mathematically describing the same physical thing, namely, transference of motion. In the peed and directio elements taken into aco, the motion transferred, and also the time rate at which the transference takes place. In the "work" measure the speed of, and mass affected by, the motion transferred are taken into account, and also the distance moved through during the transf
The two great facts that have to be clearly comprehended and grasped, so that they may never be lost sight of, are, natter, it will be found simply to have passed into some other mass, and to be still existent there in undiminished quantity-undiminished so long as the motion is measured with reference to the same "field" or set of axes; secondly, that during the passage of motion from one mass to another, the mass through which it is passing is strained in a manner dependent on the character of the motion that is thus flowing through it, and to an extent that has a definite relation to the rate of flow, wh
A force is an action between two bodies ; and the one mass cannot give up its motion to the other without that ther taking it from the first any more than money can be given by one man to another without the first losing it. o stated the equality of action and reaction is a mere ferred is measured with remember that the morentransnother mass or set of masses, independent of the masses between which the exchange takes place. The physical act, that is not a truism, but, on the contrary, requires hysical proof, is that the action and reaction between the two masses, or the exchange of motion that takes with regard to amount or direction, the sum of their notions measured relatively to this independent "field."
A reform is much needed in our book and lecture-room diagrams. There we habitually represent "external forces " by means of arrows. There is nothing absolutely incorrect in this. The arrows represent the action on machine or structure dealt with of the rest of the universe external" to this special structure. But the arrows are ecidly ghostly; they do not suggest to the xistence of the other "external" masses through which lone these forces can act, in consequence of whose existence alone can the forces have any real existence. Our and a force opposing each other. Such an idea, although ommon, is absolutely incorrect. Two masses only can oppose each other with mutually reacting forces.
Mason College, Birmingham.
R. H. S.

THE INSTITUTION OF NAVAL ARCHITECTS. He annual meeting of the Institution of Naval Archiects commenced at noon on Wednesday in the Hall of the Society of Arts, John-street, Adelphi, with the
president, the Earl of Ravensworth, in the chair. The attendance was not large. After some preliminary busiFrom this we the Council was read.
From this we learn that the financial condition of the Institution continues to be satisfactory. In spite of an increased expenditure, chiefly under the head of printing, was $£ 19911$. the balance in hand at the eyear preceding, while during the same period the Library Fund was increased by the sum of $£ 10618 \mathrm{~s}$. 8d.-a result chiefly due to the large number of new members and associates who joined the Institution in the year 1884. The satisfacfactory amount realised under the head "sales of volume, thens of the Institution is steadily growing in the appreciation of the outside public, the larger portion of this item having been obtained from non-members. In consequence of the heavy increase in the item of printing and engraving, the Council has made new arrangements with regard to the publication of the "Transactions," which future the "Transactions" will be published in about two months after the annual meetings, instead of four months, as has latterly been the practice, or seven months, as was formerly the case. This comparatively rapid publication will render unnecessary the issue of an edition of the papers, as read at the meetings, to all members and assoonates. This issue constituted, in fact, a first edition expense of about $£ 100$, which will in future be saved In order to expedite the production of the "Transactions," ew rules have been framed for the correction of reports of iscussions, copies of which will be forwarded to each peaker, together with the report of his remarks. Memers are earnestly invited to co-operate with the Counci "Transactions" by a strict compliance with the new rules The rules for the admission of Members and Associates have been under the consideration of a committee of the Council specially appointed. The old rules were found to be somewhat dificult in application, and have never been put fully into operation. The committee appointed on
the 4th of April last to consider the method of electing Members and Associates recommend the following alterations in the rules :-" (a) In the second clause of Rule 38,
after the words 'marine engineer,' to introduce the words, 'conversant with naval architecture'-see Rule 2; (b) At the end of Rule 39 and of Rule 40 to omit the words 'by ballot,' and to substitute the words, 'the voting to be
by ballot, should a ballot be demanded.' The Comby ballot, should a ballot be demanded.' The Comfrom greater strictness being exercised in respect of the 'statements' of claim submitted by applicants for membership, which should, in the Committee's opinion, always comprise words to the effect that those members who sign the statement are satisfied that the candidate is -as the case may be-either a competent naval architect or a marine engineer, qualified by his conversance with naval architecture to become a member. The Committee have suggested the adoption of a simplifie
The names of the new. Council having be
the President addressed the meeting at soen announced, the President addressed the meeting at some length. He maritime affairs. One of the curious features of the present depression was the suddenness with which Thus on the Mersey the tonnage of ships launched in 1884 was 45,000 , while in 1883 it was 43,000 ; hence on the was 45,000 , while in 1883 it was 43,000 ; hence on the
Mersey there was a slight increase. On the Clyde in Mersey there was a slight increase. On the Clyde in 1883 the tonnage was 417,000 , while in 1884 it was only 299,000 . In the North-Eastern ports the decrease was fully 30,000 tons. The total drop amounted to no less than 500,000 tons, and taking this as being worth $£ 15$ a ton, the sum withdrawn from the labour market was not less than
seven and a-half millions sterling. It was not wonderful that great distress prevailed. As for the material of ships, steel was making rapid progress; no less than 131,000 tons of steel shipping had been built last year on the Clyde, 10,564 tons on the Tyne, and 22,340 tons elsewhere. The triple expansion engine was coming
into favour at a rate which promised to oust all into favour a a rate which promised to oust all othese engines and forty-three were being built these engines and forty-three were being built. A
saving was claimed of 20 to 25 per cent. for these saving was claimed of 20 to 25 per cent. for these
engines in fuel, a matter of vital importance, sceing the point to which freights had fallen. The Government had chartered steamers at 7s. 6d. per ton per month. Not so long ago they had paid as much as 25 s . per ton per month for similar service. He attributed bad
trade to the unsettled condition of politics, to wars, and trade to the unsettled condition of politics, to wars, and
rumours of wars. One good feature was that the country rumours of wars. One good feature was that the country had at last become alive to the condition of the Navy, and An Admiralty Commission had been appointed to consider the whole question of shipbuilding by private contract, and the system of repairs and refitting being carried out in
our dockyards; and it was to be hoped that the result would be a large accession of work to private dockyards. He would like to see this inquiry extended even to dealing with the constitution of the Board of Admiralty itself. It was most essential that the Admiralty should supply its own guns, and not depend on the War-office for them. It was essential, however, that proper specifications should be prepared for the guidance of private shipbuilders, who ought to be secured so much regular work that they could keep up a staff of men trained to the Admiralty system of doing things. The protests of the nation had induced the Government to ask for more money for the Navy than had ever at one time before been asked for the building of ships, namely, $£ 3,000,000$, to be spent in five years. For this it was proposed to build four ironclads, five steel cruisers
with steel armour belts 10 in , thick, two torpedo rams of the Polyphemus class, ts 10 in . thick, two torpedo rams of class torpedo boats. With the exception of two of the ironclads-one to be built at Portsmouth, the other at Pembroke-and the two Polyphemuses, all were to be built by private contract. Tenders had already been received for some of them, but not all. It was time to
consider whether the Admiralty was to be the sole arbiconsider whether the Admiralty was to be the sole arbitrator as to what was and was not to be built; and he hoped that, before any new ships were put in hand, a competent committee would be called in to report on the
Admiralty designs. After all, the guns lay at the bottom of the wholequestion, and it was the delay and uncertainty about guns that caused delay and uncertainty about ships. Not long since he saw the Conqueror, a splendid new ship, and he asked why she was not put in commission. He was guns on board, but that the breech screws for the guns had not yet been furnished, and until they were the ship was useless. This was a disgraceful bit of management. It was wanteen months to make a 110 -ton gun, half as long as it could be shown that this monster orduance was not wanted for sea fighting.
The President's address was received with applause, and Captain G. H. Noel, R.N., then read a paper
On a Praotical Measurement of the Comparative Fighting Efficiency of Ships of War. It is quite impossible to give an abstract of this paper. It must suffice to say that Captain Noel attaches certaia co-efficients of value to certain cha-
racteristics of a ship, formulates these, and deduces racteristics of a ship, formulates these, and deduces
figures of comparative merit. Thus, for example, he gives for speed $S=\frac{D_{3}^{2}}{250}(s-8)^{2}$ where $s=$ full speed in knots on the measured mile, and $\mathrm{D}=$ tons displacement. For torpedoes he gives $\mathrm{T}=t \mathrm{D}_{4}$, where $t=$ number of tubes for discharging torpedoes, and D tons of displacement. For complement he gives $\mathrm{H}=\frac{26 p-\mathrm{D}}{200}$ where $p=$ number of officers and men, and D displacement of tons. As an example of the comparative figures obtained, we give the
table in the next column. The higher the flgures in the table in the next column. The higher
grand total column the better the ship.
The discussion which followed was all to the same effect, namely, that the system devised by Captain Noel was
very ingenious, but quite useless, except for ships which very ingenious, but quite useless, except for ships which
closely resembled each other in their main features.

Sir E. J. Reed took occasion, in criticising this paper to say a good deal on the burning question of armoured versus unarmoured ends, and he called special the Giten to the fact that the Admiral class of ships which 5 deg. without putting the whole of the armour under water, while the heeling of the Collingwood only $1 \frac{1}{2} \mathrm{deg}$ would have the same effect. If he had 2800 tons of armour to dispose on a ship of 10,000 tons, he would at least take care that it would not all be represented by a belt 130 ft . long by 1 ft , above the water line. Admiral Sir Spencer Robinson agreed with Sir E. J. Reed; so did Mr Samuda, who, pointing out that it was impossible to attach any value to armour until it was known how it was arranged, stated that the proper thing was to so arrange arranged, stated that the proper thing was to so arrange

Name of ship and	nage.	Total α.	$\begin{aligned} & \text { Total } \\ & \alpha+\beta \end{aligned}$	$\begin{gathered} \text { Grand } \\ \text { total } \\ \alpha+\beta+\gamma . \end{gathered}$
Lepanto (Italian)	Tons. 13,850	901.4	$1122 \cdot 7$	1142
Amiral Baudin (French)	11,441	$722 \cdot 6$	996.7	$1017 \cdot 5$
H.M.S. Camperdown	10,000	$711 \cdot 7$	$912 \cdot 7$	$942 \cdot 6$
H.M.S. Edinburgh	9,150	$538 \cdot 9$	$730 \cdot 1$	$749 \cdot 1$
H.M.S. Ajax	8,510	$446 \cdot 3$	$617 \cdot 0$	$545 \cdot 6$
H.M.S. Nelson	7,630	$447 \cdot 3$	638.0	666.0
Sachsen (German)	7,400	$450 \cdot 7$	597.0	$601 \cdot 2$
Caiman (French)	7,240	$480 \cdot 6$	$646 \cdot 3$	$650 \cdot 8$
H.M.S. Conqueror	6,200	$388 \cdot 2$	$548 \cdot 2$	$563 \cdot 7$
H.M.S. Orion	4,870	$273 \cdot 8$	$395 \cdot 8$	$395 \cdot 8$
New belted cruiser	5,000	$386 \cdot 2$	$540 \cdot 2$	$565 \cdot 7$
H.M.S. Arethuse	3,750	$243 \cdot 0$	$307 \cdot 2$	$337 \cdot 2$
H.M.S. Aotive	3,080	$174 \cdot 6$	$208 \cdot 6$	$208 \cdot 6$
H.M.S. Opal	2,120	$102 \cdot 4$	$131 \cdot 7$	$131 \cdot 7$
H.M.S. Caroline.	1,420	$81^{\cdot 6}$	111.0	$114 \cdot 2$
H.M.S. Cormorant	1,137	$55^{\circ} 0$	84.2	84.2
H.M.S. Hecla ...	6,200	$244 \cdot 5$	284.5	336.5

armour that it would enable a ship to keep afloat under an enemy's fire as long as possible, and this
certainly could not be best done or done at all by concentrating it in thick masses on portions of the hull. It should never be forgotten that while we were always talking of the risk from shells, no shell as a shell had ever yet been fired through an armour-plate and burst behind it. The shell played the part of a solid shot if it came through at all, which it could not do if it had a charge of powder in it. In that case it burst outside, and even a thin plate would burst it ; therefore he held that even thin armour all over was better than thick armour in patches only.
Mr. W. H. White found the same faults as other speakers had done with Captain Noel's paper, but he said
it was useful, as showing the value attached by an able it was useful, as showing the value attached by an able In reply to Sir E. J. Reed, he would add, that it had never been pretended that the stability of the new ironclads was to be protected by armour; and he was pleased to find that Captain Noel had placed the Italia and Lepanto at the top of his list, although they had no side armour at all Sir John Hay, Captain Noel replied briefly, and a vote of Sir John Hay, Captain Noel replied briefly, and a vote
thanks having been passed, the meeting adjourned.
On resuming after luncheon, Mr. P. Watts read a paper On the Use of Water Chambers for Reducing the Rolling of Ships at Sea.
This paper referred to the use of a transverse chamber containing water as a means of reducing rolling. The
accompanying diagram shows H.M.S. Edinburgh, with

which a series of experiments have been made. The transverse water chamber is shown in section at A. It water acts in the following way:-When the ship heels to port, let us say, the water runs down to the port side, and as it always moves after the ship has moved, it will all have heapeditself upat the port end of the transverse water chamber just at the moment when the port side is beginning to rise again, and it will delay and retard the rising of the ship. follows the next rolls to starboard, and the water again of the starboard side. Let us suppose that a plank is balanced on a knife edge and caused to rock like a child's

seesaw. If, now, a man ruu along the plank in such a way that he will always reach that end of the plank which
seen that considerable effort will be required to keep the plank rocking. The water plays the part of the man. It happens, however, that just the right quantity of water be just about half-full; if more or less, then it may arrive too soon or too late at the end of the chamber. Mr. Froude has carried out a series of experiments with Mr. Watts, and he showed a model in action which beautifully illustrated the theory. A A is a wooden frame with a knife edge at B, on which is carried the second frame C C; D D are two balance weights by which it can be levelled, E is a rectangular vessel with a front of glass, through which the behaviour of coloured water may be seen when C is caused to rock, as indicated by the curved dotted lines; H is a pointer.
The discussion which followed was opened by Mr. Liggins, who hoped that this device would be applied to merchant steamers to prevent rolling. Sir E. J. Reed, as of very doubtful value as applied to passenger ships, because the violent action of the water rushing from end to end of the chamber might, and certainly would in weak danger. It is noteworthy that in the course of this discussion it was stated that there is now a tendency to make merchant steamers too wide for their depth-possibly as a
reaction from the Austral type, which is crank-with the result that they roll fearfully, and two or three wide ships have already been lost, it is assumed, from the straining excessive rolling. Certain exp Mr Watt given by Mr. Froude, and after a reply from Mr. Watt,
and a vote of thanks, the meeting adjourned until yester-day-Thursday-at noon.
The proceedings on Thursday commenced with the reading of a paper by Mr. J. H. Heck, on "A Mechanical
Method of Measuring a Vessel's Stability," Method of Measuring a Vessel's Stability." After some
discussion, this was followed by three papers as follows: "The Stowage of Steamships," by Mr. F.P. Purvis, Member; "Method of Arranging the Coal Bunkers of a Steamer so as to Reduce the Ballast to a Minimum" a Steamer so as to Reduce the Ballast to a Minimum," by
Mr. John Nicholson; "On Yacht Measurement and 'Ime Mr. John Nicholson; "On Yacht Measurement and Time Allowance for Racing," by Captain J. C. Tuxen. This completed the proceedings for the day. In the evening commenced with the reading of a paper on "The Most Suitable Propeller for Shallow Draught," by Mr. J. I. Suitable Propeller for Shallow Draug
Thornyeroft, followed by other papers.

THE LATE MR. MICHELL.

Wu regret to announce the death of Mr. William Marwick Michell, of the Patent-office. Mr. Michell entered the service of
the Commissioners of Patents in 1853, having previously filled the post of assistant-editor of Newton's London Journal, a periodical of repute in its day, devoted to the description of patented inventions. His literary experience and his wide knowledge of patent law and inventions were of great value in the office, and about the year 1856 he started the useful series of "Abridgments," by preparing in his leisure time, after official hours, the volumes relating to "Sewing Machines,"
"Drain Tiles and Pipes," and "Aids to Locomotion." He also Drain Tiles and Pipes," and "Aids to Locomotion." He also
compiled the catalogues of the Patent-office Museum, and of the compiled the catalogues of the Patent-office Museum, and of the
collection of portraits of inventors formed by the late Professor collection of portraits of inventors formed by the late Professor
Wooderoft. During the preparation of Mr. Chamberlain's Woodcroft. During the preparation of Mr. Chamberlain's
Patent Bill, which becarne law last year, he was constantly consulted by those who had charge of the measure, and his intimato acquaintance with the practice under the old law, and with the various attempts at reform which had been made from time to time, enabled him to render valuable service. His services were, however, not recognised, the post of deputy-controller, to which he aspired, and to which he was justly entitled, being conferred upon a clerk from the Board of Trade without any previous experience in patent matters. His death took place at Kew, on the 19th inst.

THE REMSCHEID WATERWORKS.
On page 244 will be found the second page engraving illustrative of the Remsoheid waterworks. A description of
the works will be given in another impression with further the works w
engravings.

TENDERS.

FARNHAM MAIN SEWERAGE,
Contract No. 2.-Mr. James Lemon, M. Inst. C.E., engineer.

Engraving by Elecrricity.-Our Birmingham correspondent
says:-An invention which should be of much practical ntility in says:-An invention which should be of much practical utility in
many manufactories has been brought under the notice of several firms here by Lieut. Buller Carter, of Bow-lane, London. It is a new engraving machine, in which electricity has been introduced
into the mechanism with great success. It is chiefly intended for into the mechanism with great success. It is chiefly intended for
decorative engraving upon metal work, and is capable of producing decorative engraving upon metal work, and is capable of producing
highly finished results with a celerity in which manual work is
completely completely outdistanced. The words or designs to be engraved
are first furnished by a setting of ornamental types or a plate. Over this is passed, in parallel lines, an arm of the machine, to which is attached a fine protected platinum point.
The motion of the arm is responded to by that of a table, which carries the metal to be inscribed or decorated beneath the point of
the engraver. The types or stereotype plate, by raising the plating upon an elcctro-magnet, raises or depresses the graver, and produces an enlarged or reduced engraved copy of the types upon produces an enlarged or reduced engraved copy

RAILWAY MATTERS.
A TrANSVAAL railway scheme, from Kimberley to Pretoria, has been mooted.
The Bugsworth "straightening", on the Midland Company"s
Manchester line is now completed. The new works will anvid Manchester line is now completed. The new works will avoid
subsidences, and other troubles, which on the old route have subisences, and other troubles,
cuased a large annual expenditure.
Amose the plant required for the Suakim and Berber Railway, Messrss. Lucas and Aird have specified a number of Norton's
Abyssinian tube wells, with pumps and driving apparatus. They have received orders to prepare these for immediate dispatch to
Suakim. Suakim.
ABouT 6800 tons of steel work for the Forth Bridge superstructure of the large spans are in various stages of preparation in the shops
The portions most advanced are the bed-plates, skewbacks, tubes The portions most advanced are the bed-plates, skewbacks, tubes,
and girders for the North Quensferry cantilevers, but the steel work for t
in hand.
For the supply of water to their men, and for the locomotives to employ a portable arrangement of the Kirkaldy condensing machine for obtaining distilled water from sea water, the water
even for locomotives having for the greater part of the line to be even for locomotive
obtained this way.
AT Manton, on Saturday morning, a connecting rod of a goods engine broke and pierced the boiler. The driver and fireman were
soon enveloped in steam ; the former iumped off the enfine which was going fifteen miles an hour, and was not hurt. The fireman was picked up insensible. He had received a severe shaking and
a slight scalp wound. He did not know how he got off the engine. A cossmpkrable quantity of material is being made with the
ntmost despateh for the railway wagons and carriages for the Suakim-Berber Railway. The work consists of tires, axles, and springs. There is also a good deal of work doing for the frontier
railways of India, and this is being got out of hand with great cases. Hull and Barnsley Railway Company's contracts for rolling The Hull and Barnsley Railway Company's contracts for roling
stock have been given out. The work, which consists of tig
wasons and corriages, has been divided between Messrs. Charles Roberts and Co., Wakefield ; Messrs. Craven Brothers, Darnall Sheffield; the Ashbury Carriage Company, Manchester, the Lan
caster Wagon Company; the Railway caster Wagon Company; the Railway Carriage Compa
and Messrs. Brown, Marshall, and Co., Birmingham.
The railway wagon builders in the Birmingham district note with
natisfaction the Indian inguiries which are being made. The satisfaction the Indian inquiries which are being made. The
Nizam's Guaranteed State Railways Company is inquiring for low
 zauge. The work is to be supplied in parts for putting together in
Indin. The Southern Mahratta Rail way Company in slon in India. The Southern Mahratta Railway Company is also inquiring
for similar ironwork, and for wheels and axles, ironwork for for similar ironwork,
trolleys, and axle-boxes.
Writring of street tramways for China, an American paper says:
(India, Japan, the Enst and West Indies, Mexico, Brazil,
the India, Japan, the East and West Indies, Mexico, Brazil, the veniincose of modern cicivilisation, but the tinked of the bell-punch-
has never yet been heard in populous, ride-loving Chinn. We can state, however, upon good authority, that parties are here arrang-
ing for such plant and appliances as are necessary, and that Yankee street cars will soon bo rolling
city in the colestinal E
THE railway rates question has this week been again considered by the Wolverhampton Town Council, and they have determined firmation by a town's meeting, to dofrry the cost of opposing the
London and North-Western, Great Western, and Midand Company's Bills out of the Borough Fund. Leading members of the
Corporation, who are also manufacturers, expressed the strong Corporation, who are also manufacturers, expressed the strong
opinion that after the opposition offered by Mr. Chamberlain
the Bills will not be presented for second reading. They also the Bils will not be presented for second reading. They also
deprecated the reference of the Bills to a Royal Commission, as is proposed by the President of the Board of Trade.
THR Paris correspondent of the Times announces the death on
Friday last of Mr. Faulin Talabot, an eminent engineer, at the age of eighty-five. : From 1825 to 1830 he was a surveyor of ronds and bridges in the service of the Government. On the introduc-
tion of railwys he threw himelf with enthusiasm into the move-
ment, was manace ment, was manager of the Avignon and Marseilles line, and became
manager of the Paris, Lyons, and Mediterranean. He loss formed a company for cutting through the Isthmus of Suez, but the time was a Deputy. Though blind for some yeara, he continued to the
end of his life to interest himself in railways, and was ever ready with adice on now emes.
Soxg rapid tunnel driving has lately been done on the Mersey
Tunnel Railway, by Colonel Beaumont's boring machine. The distance accomplished last week, through the red sandstone under
the Nerssy, wws 87 yards, which is the "fastest on record". The heading now being driven, and which is nearly completed, has a heading of about 700 yards in length, are intended for effecting the ventilation of the main tunnel. The total distance driven by
Colonel Beaumonts machine-which cuts a circular heading rather Colone Beaumonts machine-which cuts a circular heading rather
over 7 ft . in diameter-in connection with the Mersey Tunnel, is over 7ft. in diameter-in
about 2250 yards, which includes the first operation, viz., the
boring boring of the drainage heading.
The Midland Railway from Woodlesford, near Leeds, to Barrow-
in-Furness was obstructed throughout Sunday. A correspondent says:- Messrss . Cammell and Coug, of Shenfield, recently completed
an immense steel propeller for a stemship, which is being constructed at Belfast. The blades of the ppopeller- one of the
largest yet made-were so wide that they overlapped the opposite largest yet made-were so wide that they overlapped the opposite
line of rails to that on which the propeller was being transported.
On Sunday propeller rrom Woomedesford tore made Skon, for the in convereyanco efffoct this
the passenger trains along the route were shunted and blocked to allow the special train to pass. At the stations and junctions the propeller excited great interest. The train journeyed to Skipton
safely, where it was intended that it should remain until next safely, where it was intended that it shourd remain undil nex
Sunday, but it afterwards proceeded to Carnforth, and subse-
quently to Barrow, where it

AT the half-yearly meeting of the Caledonian Railway it was
stated that the receipts from all sources of traffic had fallen, there stated that the receipts from all sources of traffic had fallen, there
being a decrease under cvery head exeetting that of live stock.
Coaching receipts were less by $£ 4600$ although they had carried Coaching receipts were less by E4600, although they had carried
183,259 more passenger and run 45,000 more train miles than last
year. Third-class passengers yielded forsoo more, but first and
 Merchandise had brought in upwards of $£ 10,000$ less than last
year. The receipts from minerals were only $¢ 1000$ less. There
was an increased train mileage of goods and minerals together was an increased train mileage of goocis and minerals together
11h,oot which meant a large adition to the running charges.
The tonnage earried during the halt-year had been of The tonnage carried during the half-year had been of goods almost
identical with that during the hall-.-year ending Juyl, 11844, and
only some 9000 tons less than that carried during the only some 9000 tons less than that carrired during the half -year
ending January, 1884 That of minerals was 10,000 tons more
than at the corresponding period of last year. Turning to the than at the corresponding period of last year. Turning to the
expenditure side, the cost of working and maintaining the line was
some £8000 less than last year. Maintenance of some 28000 less than last ycar. Maintenance of way, sc., had
cost more by by 9000 ; but the cost of locomotive power was reduced
b 2000 .

NOTES AND MEMORANDA.
Iv London last week the annual death rate per 1000 from all Iv Greater London during the week ending the 14th inst. the The The production of manufactured iron in France during the tons on the quantity produced during the second half of 1883 . THE deaths registered during the week ending March 14th in
wenty-eight great towns of England and Wales corresponded to an annual rate of $22 \cdot 1$ per 1000 of their aggregate population,
which is estimated at $8,906,446$ persons in the middle of this year, which is estimated at $8,906,446$ persons in the middle of this year.
The six healthiest places were Birkenhead, Portsmouth, Hull, The six healthiest places were Birkenhead, Portsmouth, Hull,
Brighton, Derryy, ard Salford. The death rate of Birkenhead was
DIFFERENT views are held with regard to the agents to be used
in cleansing machinery such as beer pumps, and opinion seems in cleansing machinery such as beer pumps, and opinion seems
principally divided between steam and alkaline solutions. Experiments conducted by Herr Kohlmann show that the steam process does not always sufficiently do the work required, while very good
results were obtained with a cold 2 per cent. solution of caustio soda. This latter method is also cheaper than that of steam. AT the Greenwich Observatory last week the mean reading of
the barometer was $20^{\circ} \cdot{ }^{\circ} 7$ in. ; the highest reading was 30° 'isin. at the beginning of the week; and the lowest $29 \cdot 41 \mathrm{in}$. on
Wednesday at noon. The mean temperature of the air was
Tel 4e.9 deg., and 0.5 deg. above the average in the corresponding
week of the twenty years ending 1868 . Rain fell to the agreate week of the twenty years ending 1868 . Rain fell to the aggregate
mount of 0 0.0in. The duration of registered bright sunshine in he week was 29.7 hours, against $28^{\circ} 1$ hours at Glynde-place, Lowes.
FroM a recent paper on the manufacture of gas from oil and the
ye products from Pintsch's gas, read before the Society of Chemiye produets from Pintsci's gas, read before the Society of Chemi-
al Industry by Professor H. E. Armstrong, F.R.S., it appars that the yield of about 80 eubic feet of yas per gallon of oil is
considered a very good yield but the yield depends very much upor the temperature of distillation. There are now about 2400 railway carriages in the United Kingdom fitted on the Pintsch
system, and the gas consumed in total is enough to yield a large quantity of valuable and interesting bye-products.
AT a recent meeting of the Chemical Society, a paper was read
on "Toughened Filter-paper," by E. E. H. Francis. Filter-paper which has been immersed in nitric acid, rel. den. $1 \cdot 42$, and washed with water, is remarkably toughened, the product being pervious
to liquids, and quite different from parchment paper made with sulphuric, acid. Such paper can be washed and rubbed without
damage, like a piece of linen. The paper contracts in size under damage, like a piece of linen. The paper contracts in size under
the treatment, and the ash is diminished; it undergoes a slight decrease in weight, and contains no nitrogen. Whereas a loop
formed from a strip 25 mm . wide of ordinary Swedish paper gave Cormed from a strip 25 mm . wide of ordinary Swedish paper gave
way when weighted with $100-150$ grams, a similar 1 loop of toughened paper bore a weight of about 1.5 k kilogs. The toughened
paper can be used with the vacuum pump in ordinary funnels without extra support, and fits sufficiently closely to prevent
undue access of air, which is not the case with parchment paper. undue access of air, which is not the caso with parchiment paper.
An admirable way of preparing filters for the pump is to dip only the apex of the folded paper into nitric acid, and then wash with
water; the weak part is thus effectually toughened Iv the monthly report on the London water supply, by Mr.
William Crookes, F.R.S., Dr. William Odling, M.B., and Dr. C. Meymott Tidy, MI.B., it is stated that:- "Of the 168 samples examined, the whole, excepting two which were recorded as ' very
dightly turbid,', were found to be perfectly clear, bright, and well silightly turbid, were found to be perfectly clear, bright, and weil
filtered. Tho month of February was characterised by a heavy and more or less continuous rainfall, and by the prevalence of river
floods, conditions eminently unfavourable to the quality of the water supply. In regard to freedom from turbidity, however, the
subsidence and filtration arrangements of the companies sufficed to meet any extra strain put on them by the prevailing conditions,
only two of the 168 samples examined during the month bein only two of the 168 samples examined during the month being
found to present even that low degree of turbidity denoted by the carbon in the water supplied by the Thames companies during las month was 182 part, as against 137 part in the preceding month
nd as against a five years average for the month of $\cdot 190$ part 100,000 parts of the water. The mean amount for February 1883 , was -238 part, and that for February, 1884 , when the river was in
an exceptionally excellent condition for the tume of year, only ${ }^{140}$ narx exeptionally excellent conditer.'
part in 100,000 parts of the water.
THE returns of the census taken in 1882 give the population o Russia in Europe as numbering $77,879,521$, of whom $38,651,977$
were males and $39,227,544$ females, making, with the Grand Duchy of Finland and other parts of the empire, a total of over 102,000,000 souls. Classified according to provinces, the population is larges

 are the only provinces in which the population exceeds $2,000,000$ the minimum being reached in the province of Archangel, which
has only 315,367 inhabitants. The population is densest in th
 Kursk, and Kieff: from 40 to 50 in the the province of Pultava, Orel, Kharkoff, St. Petersburg, and five others. The provinces most sparsely inhabited are Perm, 877 to the square verst; Oren
burg, $7.2 ;$ Astrakhan, $3.8 ;$ Vologda, 3.3 . Olonetz $2.9 ;$ and Archangel, 04 . TTe urban population is $9,263,100$, and the rura
population $68,616,418$. The number of ille much hreater in the towns than in the countrym beeing children ins per
1000 births in the former and only 177 per 1000 in the latter. The mortality is greater in the country tha
per 1000 inhabitants, as against 344 .
IN a paper read before the Statistical Society on the 17th ult
Sir Richard Temple endeavoured to check the various official returns of the population of China by applying the results obtained rrom the population statistics of British India. The various state
ments made by the Ohinese Government as to the numbers of ments mader its rule show violent fluctuations, those of the last
people und
century nnd atsolf returns, as Professor Douglas pointed out, varied with the purposes for which the enumerations were made. China proper and
India, said Sir Richard Temple, are about the same area-a million and a-half of square miles. Both countries are under similar
conditions-physical, technical, climatic geographical. In both conditions-physiaal, technical, climatic, geographical. In both
there is a strong tendency to multiplication of the race. In both
the pert doww and multiply there till the land could scarcely sustain the
growing multitudes, and to leave the less favoured districs with sconty, though hardy population. The average population of the
whole of Indin is 184 th the whole of India is 184 to the square mile, and if this average be
applied to China-exclusive of the Central plateau-it gives a
population of $282,191,600$ souls. pop onet the eighteen provinces of China proper with the district
by in India corresponding nearly in physical characteristise and cultivable arca, and, summarising these computations, he found
that, over a total area of $1,500,650$ oquare miles, the population, according to this estimate from the Indian averages, would be
$282,161,923$, or, say, 183 persons to the square mile; while the latest officicial returns obtained from China show $349,885,386$, of
22 intabitants to the squaro mile. The general condusion, he
said, might be that the latest Chine excess of the reality, did not seem to be extravanung probably in
on theredibl excess of the reality, did not seem to be extravagant or incredib)
on the whole if tested by the known averages of the Indian censua

Wiluias C. KisgsLey, the originator and builder of the The death is announced of B. B. Hotchkiss, the inventor of the
world-famous Hotchkiss mathine The number of men employed on the Torth Bridge works is
about 2000 , including the Italians engaged in the compressed air about
sink arrangements.
A NEW iron bridge, designed by Mr. Kinniple, C.E., is being
erected at the mouth of the West Harbour of Greenock. It will cost upwards of $£ 9000$
ALNwICK seems to be going for medicinal supply on a large
scale, for last week the Local Board adopted a proposal to obtain water supply from the Senna Wells.
IT is stated in Vienna from Rome, that the Italian Government has of a cable from Minssowah, via Aseab to Perim. A LECTURE on "Calculating Machines" is to be delivered before
the Physical Society in the Physical Laboratory of the Science
Schools, Suuth SoME idea of the extent of the electric lighting at the Inventions Exhibition may be gathered from the fact that the Henley Telegraph
Works Company has supplied the Exhibition with ozokerited india
rubber electric light cables to the value of $f 800$.
SEvERAL overhead wires fell during last Sunday, and though no
personal injuries resulted, some of the wires could not have fallen little snow for years that the wires have not been tested, and the sh saturday night was sufficient to break a good many. The ss. Etruria, a sister ship to the Umbria, built by Messrs.
John Elder and Co. for tho Cunard Company, isnow ready to Ievere
the Clyde. Built of steel, her tonnage is 800 tows; she is 220 tit.
 WE hear that at the special desire of a foreign Government, and
with a view to meet on equal terms the competition of French and German firms, Messrs. Yarrow and Co. have in contemplation the
establishment of a branch factory on the Continent. A similar course will probably be adopted by a large firm on thie cast coast,
whose name we are not at liberty at this moment to
OUR Birmingham correspondent says: "Urgent orders have just
been placed by the Government with Birmingham gunmakers. ben placed by the Government with Birmingham gunmakers
They embrace thousands of Martini-Henry ritles, carbines, and
revolvers. The men at a number of private establishments, will be employed night and
day, and some hundreds of hands discharged during the bad trade have been re-engaged. The arms have to be shipped to Bombay
as fast as they can be manufactured." A sMoLL vertical boiler recently exploded in a foindry in Cork.
In a Baard of Trade report on the subject, Mri, Trail says:-
axplosis explosion appears to have been due to the fracture of the uptake
tube at the root of the upper flange, which was probably iniurd in flanging. Flanged uptake tubes are very liable to give way at
the roots of the flanges, sa in this case, nad, therefoe, should not be regarded as stays. Such a boiler should be sufficently strong
without relying on the uptake as a IN answer to a question in the House on Monday, Mr. Hibbert gaid:- "The eatimate for the pier at Easky was 4000 , and the
contract has been let for $£ 3553$; the corrosponding, figures for Aughis are £2000 and £1898. The contractors are under bonds to
commenco the works during the present month and complete them
by November 1st and October 1st next respectively. As regards by November 1st and October 1st next respectively. As regards
Pullendiva no final recommendation has y yet been received from
the Fishery Piers and Harbour Commissioners," The new screw tug Condor, built by Messss. Morton, of Leith, had a trint trip on the erver Thames on 12th March. The Condor
was built to the order of, and was designed by, Messis. Watkins
and Co . Fenclurch-street, Iondon and fitted with their sluice

As
 W. Weems, has been erected in the Imperial Arsenal, Constantinople, and tested, in the presence of his Excellency the Imperial Minister
of Marine, and principals of the Admiralty Council, and a certificate bearing the Sultan's Imperial insignia in gold states that the working of the whole plant was highly satisfactory, the whole of the
various sizes of piping being turned out true and uniform. Br the Northfleet Docks Bill for which the Standing Orders
Committee of the House of Lords refused, on Tuesday, to dispense with the Standing Orders, powers were sought to incorporate a
company for the purpose of constructing a main dook, with an
entrance from the river Thames at Northflect, near the Posh entrance from the tiver Thames at Northfleet, near the Rosher-
ville Gardenss 417 yards in length and 200 yards sin width, with two branch docks each 400 yards long, and about 83 yards wide. It
was also proposed to construct trailways to connect the docks with
the SouthON SSaturday, the 21st instant, the ss. Eastwood, built ty Messrs. Earlis shipbuilding and Engineering Company, was taken on her
official trial trip. The dimensions of the vessel are as follows:-
Length, 256 t. Length, 236 ft. breadth, 34ft; depth of hold, 17ft. She is built
to the highest class in the Liverpool Registry., She has been fitted
by the builders with their triple compound thre-crank engines, sy the buiders with their triple compound three-crank engines,
steam for which is supplied from a large single-ended steel boiler made for a working pressure of 1421 lb per square inch, this seing
the tenth set of triple compounds completed by Messrs. Earle Company.
Messss. John Brown and Co. have just completed the roller
plates for the batteries of the Doria and the Morosino, for the Italian Government, which are now being despatched to Spezzia
and Venice. Several leading officials of the Japaneso Government railways visited Masers. Brown's works on Thursday, when there
was also a vigorous deputation of forty members of the Manchester Geological Society, who witnessed the process of rolling armour plates, and other industries, and afterwards inspected the com-
panys colliery at Aldwarke Main, where they witnessed the process
of getting coal by means of lime cartridges. A Wansing to colliers is being from time to time published by
the Manchester Guardian, guided by Mr. Ellis Lever. In one of
these, published last welk, these, published last week, he says:- "The whole body of the
atmopphere over northewest Europe is in a very unsettied state,
and it is likely to remain so for some little time and it is likely to remain so for some little time. No naked light
must be permitted to pass into the workings. No shot to be fred
until a thorouph investigation has beck made of the surrounding greatest care should be used. If the weather be fine, do, not relax
vigiance. Should any signs of increased danger appear, notico
will be given."
THE Select Committee of the House of Lords appointed to con--
sider Iord Camperdown's Water Companics' (Resulation of Powers) Bill, held their first meeting on Tuespayice 'The Committioe consista of Earl Jersey, Earar Stanhope, the Karl. of Camperdown, the Earl
of Elgin and Kincardine, the Earl of Normanton, Viscount Bar
rington, and Lord Bramwell. Lord Camperdown was elected chairman, and the Committee will meet on April 14th to consider
the proposals which will then be laid before ethem by the metro-
politan companies. By the terms of the reference the water com politan companies. By the terms of the reference the water com-
panies and other petitioners against the Bill may be heard by
themselves or their agents, but not by counsel,

GENERAL PLAN OF ATHUS DISTRICT, SHOWING POSITION OF MINES AND WORKS.

DISTANCE BETWEEN WORKS AND MINES, ABOUT THREE MILES.

SEOTIONS OF BORE HOLES, MARKED ON PLAN A, D, AND F RESPEOTIVELY.

ORE WAGONAND DRAW-HOOK, ATHUS.

THE ATHUS IRON AND STEEL WORKS. No. I.
The Barons d'Huart, an old French family, have during many generations made iron, when they could find leisure from actively serving their country in the field. The present barons, M. Fernand d'Huart and M. Hypolite d'Huart-in France, Belgium and Germany all the sons of an hereditary baron bear the title-possess an old blast furnace at Senelle, near Longwy, and potteries at Longwy-
bas, besides being largely interested, in conjunction with bas, besides being largely interested, in conjunction with
the Société des Usines de Maubeuge, in two blast furnaces the Société des Usines de Maubeuge, in two blast furnaces
near Longwy, one of which has been in blast for six near Longwy, one of which has been in blast for six
months. They have also a considerable interest in, and are the administrateurs delêgues of, the Société des Hauts Fourneaux et des Aciéries d'Athus, in Belgium.
Athus, the name of which betokens Roman origin, is a
mall village in the extreme south-east of the Belgian small village in the extreme south-east of the Belgian province of Luxemburg, at the junction of Belgium with the accompanying general plan. There are some deposits of alluvial iron ore in the immediate neighbourhood of the furnaces, but not of good quality; and small quantities are still extracted from the Bois d'Athus and smelted, with a mixture of other ores, at Charleroi Although blast furnaces formerly existed at Aubange, but which led to the erection of blast furnaces at Athus in the year 1872, but rather their proximity to the larger and richer deposits in the Grand Duchy of Luxemburg, with convenient means of transport by the Prince Henri Rail way, while being situated in Belgian territory, with the prospect of a market at the Charleroi rolling mills without the customs due of five francs a ton levied on all pig iron entering Belgium. The basic steel works were beginning of last year.
Ifines.- The ore supply is entirely derived from the Grand Duchy of Luxemburg, where the construction of the Guillaume-Luxembourg Railway revealed the existence of valuable oolitic deposits, to develop which the Prince tour of the line of hils io ras to conver the the condirectly, with a minimum of haulage and barrow work. The Luxemburg ore beds run east and west, the content of metallic ore being tolerably uniform, 35 to 40 per cent.; of metallic ore being tolerably uniform, 35 to 40 per cent.;
but the ore in the east is much more valuable than that in the west, because it is intimately associated with lime, and this to such an extent that no further addition of flux is necessary for smelting. In the west, however, the lime is generally replaced by silica, the former diminishing and the latter increasing with remarkable regularity from east to west. It therefore happens that, while possessing mines t Petange, in the west of the ore-bearing ground, the company finds it advisable to purchase supplies from Esch-sur-Alzette, the centre of the iron district, as well as from Differdange. Another reason for this is that the hands employed at Pétange are not regular miners, but chiefly farm labourers, who are fully occupied at harvest time, so that extraneous supplies are necessary to keep the furnaces going.
The mining law of Luxemburg differs from that of the neighbouring countries, having been carefully deliberated when the ore was discovered which has proved quite a belongs to the surface proprietor be worked open-cast allowing him even to work by drivings in certain cases ; but all the ore below a certain geological levelplan on the opresented buered portion of the general State, to be granted in concessions to ironmasters
who shall erect blast furnaces, and railway companies who shall form means of communication. It is thus that the Prince Henri Company, in return for valuable iron ore property-indeed, the most valuable in the Grand Duchy -made and work the unremunerative lines in the north, ss well as the paying mineral line in the south. As its furnaces are not in Luxemburg, the Athus Company was
not entitled to an ore concession. It has, however, acquired not entitled to an ore concession. It has, however, acquired
the mining property-shown hatched in the general planconnected by an incline with the Pétange station of the
Prince Henri Railway Prince Henri Railway.
The most northerly, as well as the most important, is the Prinzenberg royalty-marked $\mathrm{P}-45$ hectares, or 111 acres in extent, about 27 hectares, or $66 \frac{1}{2}$ acres, of which may be worked open-cast. The second royalty in a southerly direction is the Schlammenberg-marked S-of $1 \frac{3}{4}$ hectares, or 4 acres, with the Rothe Köpgen-R K-of 3.8 hectares, or 9 acres; then comes the Fuchsbusch-F-of 9 hectares, or 22 acres, in extent, and then, most southerly of all, the concession known as "Im Gärtchen,"-I G-27 $\frac{1}{2}$ hectares, or $67 \frac{1}{2}$ acres, making a total area of 87 hectares, or 215 acres. The last-named royalty was granted by the Grand Ducal Government to the Société des Chemins de fer Sécondaires, in return for their making two railways, and was by them sold to the Athus Company; but all the other royalties are simply surface property purchased by the company from their owners. Sections of bore holes a and d in the Prinzenberg and of another a little to the north of F in the Fuchsbusch royalty are given below the plan on the opposite page, All the royalties contain two principal seams between 5 m . and 6 m . thick, while the Prinzenberg royalty has, in addition, over about half its area, a third seam, varying from 2 to 3 metres in thickness. These three seams yield on an average 40 per cent. of metallic iron in the furnace, while, with the exception of the black or top seam, they also contain 5 or 6 per cent. of lime, which materially assists in the reduction.
The following results were obtained from an analysis, made last December, of the three seams at Pétange:-

The Prinzenberg Royalty, the most valuable of the whole mining property, is the only one as yet turned to account. It is worked entirely open-cast; and nearly all figure may be extracted in this manner. The annexed showing the method of working in large steps. A double line of tramway, 0.8 metre, $=2 \mathrm{ft}$. 7 i in . gauge, is rum from the top of the incline-the centre line of which is shown at P on the general plan-all along the work ing face, the rails being moved further in from time to time as the ore is worked out. While the ore is run along by the wagons to the incline, the unproductive portion is wheeled beyond the tramway and thrown out to regularly to form piers for supporting temporary timber bridges, like that shown in the section, thrown across the tramway for conveying the rock from the upper
strata to the spoil bank, in wooden trucks smaller than chose used for the ore. As the work proceeds, the bridges re a is and the working of the whole vertical slice is let by

section of workina face.
contract to the chief of a gang. The measures are worked downwards in steps, powder but not dynamite being used where the rock is solid. The following sketch shows he arrangement of powder magazine adopted.

As regards the consumption of powder and safety fuse, the mine may be divided into four parts: (1) that in the north, consisting of about one-fourth surface and threeourths solid ore and limestone, or unproductive rock; (2) that on the west, where the surface and all ore which can be got with the pick does not exceed one-tenth of the whole; (3) that in the south, where one-third the height is surface, and the remaining two-thirds are small blocks of ore and limestone, with many fissures, having a slight fall towards the face, which greatly facilitates the work of mining; and (4) that also to the north, but with solid ore in horizontal beds and already laid bare.
Two years' working has shown that the getting and removal of a cubic metre (1.3 cubic yard) of ore and rock requires : for the first part 22 grammes or $\frac{3}{4}$ oz. of powder, and 8 centimetres or 3 in. of fuse ; for the second part, 36 grammes or $1 \frac{1}{4}$ oz of powder, and 16 centimetres or 6 in . of fuse ; for the third part, 43 grammes or $1 \frac{1}{2}$ oz, of powder, and 18 centimetres or 7 in , of fuse ; for the fourth part, 53 grammes or $1 \frac{3}{4} \mathrm{OZ}$. of powder, and 22 centimetres or $8 \frac{1}{2} \mathrm{in}$. of fuse. At the rate of $1 \cdot 1$ fr. per kilogramme, or 5 d . per lb , of powder, and 40 centimes for 10 metres (or ld. for 8 ft.$)$ of fuse, the getting of the cubic metre (1.3 cubic yard) on an average of the four parts, requires 38 grammes metres (61 in .) of fuse, costing 0.6 centime. It will not be far wrong to add 5 s. per cubic metre for the cost of labour in getting the ore and putting it into wagons.
When first established, the incline, 245 metres or 267 yards long, was sunk so as to be worked by a pair of orizontal-loor carriages, on which three . Heuskin, from the Ecole des Arts Liége, and the Ecole du Génie Civil, Ghent, filled up the incline to the height of the carriages, which he suppressed, retaining the gradient of 0.24 m , per metre, or nearly 1 in 4. The three wagons are now run in tandem directly off the tramway, with a saving in labour of two men at the top and two at the bottom, each of whom was paid about 3f. 50 c ., or 2 s .9 d , a day. Above is shown the wagon, the body of which, made of plate iron, tips sideways from the quay wall into the railway trucks on the siding. An M. Heuskin, for preventing the draw-hook, devised by M. Heuskin, for preventing the necessity of running back the wagons a hittle way, to slack the rope, and so release
them at top and bottom of the incline. The tongue of the
hook is jointed to the shank and held by a shackle, which hook is jointed to the shank and hetd by a shackle, which
is secured by a cotter, and that by a split pin, The wagns
are relesedd while the rope is tijht, by simply taking out are released, while the rope is tight, by simply taking out
the split pin and cotter and knocking off thesthackle. The
ore was ore was originalyy takenaway by the purely mineral branch
of the Prince Henri Railway-shown by the black line following the contour of the iron ore deposits, which are chequered on the general plan-but now it is an run down the main line.

LETTERS TO THE EDITOR

[We do not hold ourselves responsible for the opinions of our

 peroman senoso I Tas making no gavatation, nor reterring to ann
 for tho words "if the cart pulis the horose hack sas harrd ase the the

 motoon on hor
horete and arrt.

 ${ }^{\mathrm{kim}} \mathrm{T}$.

 thatemonetat bolead to drat:

 mom mot T ventrot ot osammo that tam ritht and that Dr. Doige

 moment tet haw

all times the pulls of the two groups are exactly equal and opposite, and to prove that they are, we have only to refer to the
ope, the strain at one end of which in one direction is exactly "Ohal to the strain at the other end in the opposite direction. only because it moves that the strain on both emds of the rope is placo; ; when the men with bated breath and muscles like iron lay ack to their work, and no motion took place either way? At last one party gives way and moves. I wan
Return to the stone and the rope which I pull. Am I to assume that the pull is not the real cause of the stones movement? If this be so, let it be plainly state
some one else in authority
As the matter presents. itself to me, we have a body whioh is
at rest, but it is pulled by me or some one or something else, and at rest, but it is pulled by me or some one or something else, and
no matter how hard I pull it alveays pulls in the opposite direction with quite the same force-I beg pardon, stress or effort. Why, then, does it move? It cer
This, then, is the crucial point of the whole question. This is the point on which I ask for a decided expression of opinion from
Professor Hudson, or Dr. Lodge, or any other competent authority. Does the pull cause the stone to move or does it not? If the pull does not cause the stone to move, what sets it in motion? If
pull is only equal to a resistance-see Newton's third law-oan Ine pull cause the stone to move? If so, why so
I am quite sure that I have not expressed myself an think that Dr. Lodge will perfectly understand my meaning, already. It may be so, but confess that, having read his article three times-and I add hat I have done this with the greatest pleasure and, I hope, some rofit-I still remain entirely in the dark on the points I have named.
Would it be too much to expect Professor Hudson also to answer y questions, as he understands the matter? It is quite evident hat he does not see it in the same
nultitude of counsellors there is wisdom
In Dr. Lodge's article I find under the head "Resistance," he following statement:- "There can be no difficulty what ever in perceiving what the resistance to any given motion
s; but now if we proceed to assert that resistance is equal and opposite to action, that the force resisting the
motion of a body is always equal and opposite to the foree assisting that motion, we shall talk unmitigated nonsense." If
this be true, then Newton talked unmitigated nonsense, for there his be true, then Newton talked unmitigated nonsense, for there no other explanation to be put of Newton's words pace Dr.
Lodge. Newton says as plainly as possible that just as much as
he horse pulls one way the cart pulls the other. To assume that Newton did not use the word pull in the ordinary common-sense way has no justification whatever. Nowton wrote common sense
because he thought it. Acoording to Nowton, the resistance which n arrow offers to the bow which propels it, is precisely equal to the ffort developed by the bow. There is no possible escape from thi
unless we deny Newton's third law. London, March 23rd.

Sin,-As this subjeot is now attraoting and receiving so much ttention in your pages, perhaps you will permit me to make a few When I learned dynamios a
people did not know much about anything, I was taught that odies moved further apart than when they approached each other Thus, for example, the discharge of a gun was always pointed out hot example. The action of the exploding powder against the hot was alwas said the exactly equal to its chonagainst the principle of Barker's mill, was another example. The water reaction being equal and opposite. I think these examples are quite to the point.
Permit me now to
Pernio mo now to ask a question bearing on them. It is a kind effects. That is taught in all treatises on dynamics, and seems to me to be quite consistent with reason and with Newton's third
law. However, be this as it may, it is, to use Professor Lodge's forcible form of expression, a lic
I have a gun which weigh
I have a gun which weighs 1000 lb . Into it I put a charge of poe way and the gun the other. It is obvious that the force, or
offort the gun, and no longer, as it does on the ball, and it is also obvious that by Newton's third law it operates with the same force on the gun that it did on the ball, no more and no less. The ball gets a
velocity of, say, 1000 ft per second. The gun having a mass 100 speed of the ball is highest just when it leaves the muzzle, and the speed of recoil is also highest at the same moment.
Now if like causes operating for like times produce like effects, then the work in the gun at the instant I have selected should be
the same as the work in the shot. But it is nothing of the kind. The work in the shot in foot-pounds by the formula $\frac{\mathrm{M} v^{2}}{2 g}=$ $0,000,000=156,250$ foot-pounds, but the work in the gun is 100,000

64

Now I want to know why it is that a given force operating for given time on two bodies does ten times as much work on one as it
does on the other? And I want to know, further, whether the statement that the magnitude of a force is known by its results,
time being constant, does not need a good deal of qualification? Again, let the shot strike a mass, say, a sphare, weighing 1000 Mb moveat precisely the samespeed as the gun did, and through the same distance--this is acoording to the mathematical theory-assuming, will have no more foot-pounds capacity for work than the gun had; difference? The momentum is the same in the gun, the shot, and the target or sphere ; but the energy or work-performing capacity law of the conservation of energy? Is momentum anything but a
name for an arbitrary quantity? Has it any real existence as an entity useful in the arts like

Sir, - Allow me to add a few remarks to the discussion. Instead rough horizontal plane, and connected by a flexible cord passing over a pulley to a weight, exactly equal to the friction between the mass and the plane. Suppose the system at rest, then the action the weight, for if it were not so the whole system would move in the direction of the greater force in virtue of the residual force, as
pointed out by Newton. Likewise the tensions at any two points in the cord are equal. Communicate motion to the system by an eaction are still equal motion will result, but the action and the cord, whilst the velocity is uniform and not variable. In itself In the case of the impact of a
one the action and reaction are perfectly intelligible; the increase of the momentum of the other.
Let us return to the former examnle and increase the weight to
exceed the friction of the mass, then a change of motion or
accelerated velocity will ensue. Here seems to be the whole diffi-culty-the discovery of an equal and opposite reaction to thi
residual force or action, which is generating motion in the system The difficulty arises out of the soccalled attractions. We are tol in the first law that external force is essential to the generation of motion. Why not consider the attraction due to the motion or impact of an ether analogous in its action to the second example should dismiss our old ideas of action at a distance, and become Camborne, Maroh 24th.

Sir, - In The Engineer of the 20th Maroh, Professor Oliver
Lodge gives the general law of motion $m d v=\mathrm{F} d t$. From this, where $\mathrm{F}=0$, also $\mathrm{F}-\frac{d}{d}=0$, and $m=0$-that is, the force of resistance m is a consequent of the accelerating force; so if there
be no propelling force, there can be no mass or inertia-an evident Again,
Again, taking mass $=$ inertia, we have
$=$ volume \times weight,
$=$ cubic space \times weight
cubic space \times effect of gravity.
Consequently, where $\mathrm{F} \frac{d t}{d}=0$, the effect of gravity is nil. But
we know that effects of gravity never are nil. These notable
effects are produced by gravity-or a force we call gravity effects are produced by gravity-or a force we call gravity
(1) weight; (2) accelerated motion; (3) constant motion. An ounce and a pound of iron falling in vacuo will acquire the same velocity, although the weights are different. Water flowing unde The action of gravity may have unifors velocity.
these effects can be deduced. The equation given by Professor Lodge is for specific cases, just as Newton's three laws are, and are but anticipated deductions-excuse the expression-of some general law not yet discovered, and which probably lies hidden in
Referring to the factor m, we find it cannot be resolved into
mathematical elements like $v=s$. It has an empirical character, and vitiates the equation as a true mathematioal expression. It i an approximation sufficient for our requirements, but as such should be taught, and not as a general and absolute truth.
In the case of the horse v. cart action and reaction being equal and opposite-it does not- follow there cannot reaction equals the sum of the resisting forces, including inertia motion is just as possible as rest. For since a body in equilibrium in a state of rest possesses no functions to oause motion, it is equally true it possesses none to oppose motion. Therefore the tractive power of the horse being equal to the total rosistanco
including inertia, there can be motion, as there is nothing to pre ncluding inertia, there can
vent it. If there is, what is i
Leominster, March 25 th.

Sir,-I had hoped on sening Professor Lodge's paper on
Dynamics" that he would really clear away some of the difficul ties of yoct, but if he found confusion, I think he has left "confusion worso conge is willing in its place. Now, Sir, I suppose Professo is recorded in Trinity Chapel, that "he surpassed the human race in his intellect," for it was he who made dynamios possible to us. Taking that for granted, he sets out by totally disregarding
Newton's definition of the word motion, which he gave thus :Newton's definition of the word motion, which he gave thus :-
"Change of motion is to mean rate of change of momentum "-or the amount of momentum added on to a body's momentum in a the amount of momentum added on to a bodys momentum in
unit of time. Professor Lodge makes the, to my mind, great mistake of calling velocity motion, but
I quite admit that half the difficulties of beginners in this subject are owing to their misapprehension of the terminology of it,
and we teachers cannot be too careful how we use those terms and we teachers cannot be too careful how wo use those terms,
would advise all learners to expunge the word motion absolutely would advise all learners to expunge the word motion absolutely
from their vocabulary, so far as dynamics are concerned. Newton practically did so, for in his notable second law having used the word motion, he immediately goes on to define the meaning to be attributed to it, and in its place gives terms about which no person need entertain the shadow of a doubt, since by definition momentum is simply the product of the number of units of mass of a In the next place, Professor Lodge fancifully divides the forces acting on a body into three families, named respectively, Force,
Action, Reaction. I confess to only knowing one kind of force, and its definition is, 1 fear, a lame one, since it defines not what it which moves or tends to mere matter:" and why one part of that force acting on a body should be called a Force, and part of the an Action, and a third a Reaction, I fail to see. The definition given above includes all equally well, and further, the acceleration of the mass is equally due to them all. In fact, the equation
$m \mathrm{P}$ P , which is the analytical expression of the second lawλ being a constant-takes no cognisance whatever of the distinctions between the parts of the resultant force which acts on the mass,
and the symbol P is simply the resultant of all the forces which act on the mass m, provided only that f is its resultant acceleration. Now to take the example which Professor Lodge cites of the
horse and cart. People who entertain the well-worn Action and Reaction difficulty in that acting on the horse and cart. If we consider the mass of the the force which the cart exerts on him backwards, the force which the ground exerts on his hoofs forwards, and if the latter is equal to the former there will be no resultant horizontal foroe on the horse, and he will either remain at rest or will move with uniform velocity either backwards or forwards, according to which way he happens to be going at the instant when tho corizontal force on him vanishes. Next, horizontal forces on it are the force exerted on it by the horse forwards, the force exerted by the ground on the wheels backwards. But if we are to consider the horse and cart jointly as one mass, which we can clearly do, since they move with the same velocity or acceleration, as the case may be, then we have not to consider the force that the horse exerts on the cart or that the cart exerts "impressed" for these now become internal forces and not and we have as the forces acting on the mass - i.c., the mass of the the ground on the horse forwards, and the force exerted by the ground on the wheels backwards, and the \mathbf{P} which appears in the equation $m f=\lambda \mathrm{P}$ will be the resultant of these forces, reckoned
in the same direction as that in which the acceleration f is taken, m being the sum of the messes of the cart and horse repeatedly with students, that they have great difficulty in dis. tinguishing between external or impressed force and the forces between the different parts of the same mass, which, of course, cannot affect the velocity of acceleration of the centre of gravity of
the whole mass. This difficulty will crop up again and again to the end of time, and in my opinion teache

"The momentum of a particular fog. "fort means its velocity multiplied

 by its inertia or mass." These, Sir, are, perhaps, the mostremarkable words in Professor Lodge's paper. At last we
have the definition of have the definition of the word inertia! According to Pro-
fessor Lodge it is the same thing as mass ! I should like to hnow then what the unit of inertia is? Now I confess to a great中psire to expunge this word also from the scienoe, for wo do not
peed it. Professor Lodge can evidently do withont it, I myself
pover met with the term used in a sclentific sense until' read Dr,

Routh's most delightful treatise on "Rigid Dynamics," and there on
page 2 you will see these words: "If the mass of every particle page 2 you will see these words:- "If the mass of every particle
of a material system be multiplied by the square of its distance
from a straight line , the sum of the products so formed is called the moment of inertia of the system about that line here that one does in other scientific investigations, such as is meant by the moment of a force about a line or plane, or the moment of momentum about a line or plane, \&c.
obvious that a "moment" is the product of some quantity and a litine; hence by the above definition of "moment of inertia," inertia must be something of the nature of mass mutivinied ba a The, which does
not agree with the idea that it is simply mass. The word inertia, however, is a ""ische thus, "moment-of-inertia," and eo unws then the three womtaken together should only be considered as the name of the sum of those products quoted above from Dr. Routh's book.
Again, Professor Lodge says: "I call P - R the total impressed force F , and $m \frac{d v}{d t}$ the reaction." That $m \frac{d v}{d t}$ is equal numerically to the measure of the whole force on m in the direction of v
I am quite ready to admit, but is the product of a mass and an
accelerationa force? Perhaps Dr. Lodge would call this " "quibbling accelerationa arocee? Perhaps Dr. Lodge would calt this "quibbing
about words," but I think we cannot be too careful in our use of words when dealing with an exact science, and it is simply absurd to say that a mass multiplied by an acceleration is a force.
In one of Professor Lodge's opinions I can entirely cons In one of Professor Lodge's opinions I can entirely concur, and in fact, I always tell my pupils the same thing, viz, that Ne,
first law is entirely contained in the second. The second is

$m d v=\lambda \mathrm{P} d t ;$ or

$\frac{m d v}{d t}=\lambda \mathrm{P}$.
If $\mathrm{P}=u$, than $v=\mathrm{C}$, a constant, which may or may not be zero;
and there is no necessity for using the first law in arriving at this
One word, and I have done. Professor Lodge has invented still nnother term to bowilder the young, viz, mas8-aceeleration. What
is this hybrid? We do not want it. JAMEB Lros, B.A., Cambridge, March 24th. $\begin{gathered}\text { Suprintendent, Engineering DDepartment, } \\ \text { Cambridge University }\end{gathered}$ ridge Oniversity

SIR, - It is a pity that the only result so far of my attempt to
state certain mechanical ideas in new language is that I am regarded as an unbeliever in Newton, Mayer, Joule, Clerk-Maxwell,
Rankine, Tait, and Thomson, one who should be handed over to the secular power under the writ de herectico comburendo. Whereas
really the above named eminent men have no more docile discips really the above named eminent men have no more docile discople
than myself, and all I want to do is to interpret their ideas. Two things, however, I do regard with jealousy. One is the increasing
use of symbolic reasoning in physiess and the other is the attempt
to to include statics in dynamics. Aplied mathematics are to
physics very much what bookkeeping is to business. Pretty equa. but, \&c. \&c. Dynamics relate to force and motion, statios relate not so in problems of the the latter. The real working parts of a
not
machine machine give dynamic problems, its other parts give static
problems. ${ }_{\text {To }}$ regard statio problems as if they were balanced dynamio problems is pretty mathematios but bad physies-hence
the confusion. Action and reaction is static as well na dyne It is the statio aspect of it that prosents difficultitis to the student. difficultics that my "right angled sliding action theory" sur-
mounts. Professor Lodge deeerves thanks for his clear and able dynamic paper, but I hope to try a fall with him on his statics
oon.
WA. Murr. 9, Angel-place, Edmonton.
Maroh $24 t h$.

the friction of slide valyes.

Sir,-I read with much interest your article on "The Friction
of Slide Valves" in your issue of the the urt., because it has always
seemed to me most desirable that seemed to me most desirable that something definite should be
known as to the actual power absorbed in the actuation and I hope that your remarks may prompt experiments which wili
throw light upon our darkness. It has often struck me as most curious that while valuable experiments have been made by the
Royal Agrieultural Sooiety by means of the dynamometer-the
only true test of effliency in the steam engine is so rapidy being exhausted, no test of the same relisble character is so rapial made in marine engines. It has always been an oper
has been made question in my mind whether the present marine engine is as
efficient as it might be, and whether the Corlise engino would not
beat the compound if the two principles were properly tested from beat the compound if the two principles were properly tested from
the enme boiler and by the aid of the dynamoneter. Such a trial
as this would probably suggest further trials on the subject of loss by friction, in which the friction of the stide valve would not be
likely to oborlooked. Ifear the love gain is the sole motive
of lour ene of our enginecrs, and that they all forget that gain is more likely
to come to the truly scientific man than to the man who lives only
by the ideas of others. But I have tre troned by the ideas of others. But I have trespassed too much upon your
patience, and so will say what more I wish to say with more
brovity The subject of your leader of the 6th is, without doubt, most
important, and if proof of this were asked it might be pointed out that a new slide valve, having for its object the great reduotion of
friction, was no doubt at the time your article was being written oceupying the mind of Mr. Peck- see your journal of the 27 th ult.
Whatever may be said against this valve, it cannot be said that it does not reduce the friction in a very great degree.
The remarks of " Marine Engineer,, ns to to the unequal wear to
be anticipated in its use, are of value, but I have more than once found that imaginary imperfections wwere imaginary only, nand in
one important instance I found that an imaginary imperfection one important istance
turned out to be a perfection, and saved the invention from damna tion; so that the other arrangement spoken of in your notice of Mr. Peck's valve, but it appears tome that this other arrangement would
not have suggested theremarks of "Marine Engineer." 1 should feel
obliged to Mr. Peck if he would, by your permision, not have suggested the remarks of "Marine Engineer." Ishoubld feel
obliged to Mr. Peck if he would, by your permission, publish a
sketch of it
The test of the slide valve friction suggested by "Volvox"-see
page $163-\mathrm{is}$, in my idea, excellent, and one or two experiments page 163 -is, in my idea, excellent, and one or two experiments
wiht it would be most interesting; but ane there engineers who
will try it will try it, simp
March 23 rd .
smith's and marshall's gland packing.
Sir, -We observe in your issue of yesterday's date an article on
Smith and Marshall's Gland Packing, and stating that it is being introduced by the above-named gentleman in Euston-road.
Mr. Snith's connection with the patent ceased in December last, and a notification to that effect was published in the Gazactle, and
the title and address of the patentees and sole manufacturers of the packing you describe in your article is now "Marshall and
Thunder, "nd lest the notice ou kindy gave it should lead to
Tonfusion we whall feel confusion, we shall fee much obiliged by your giving publicity to
the fact. We have much pleasure in supplementing the informa-
tion
 unqualified satisfaction. Some of the first supplied have made
alrachy three voyages to Caloutta and back, and are an sood as neww.
121, Fenchurch-street, London, MARSHAL AND THUNRER.

March 21st.

BoILER FURNACES.
STB,-In your issue of to-day appears a letter from Messss.
Hawksley, Wild, and Co., Skeffleld, in answer to which I may just
say, by way of explanation, that a paper which occupies one hour
to read cannot be expected to appear in full in any engineering journal. The sentence to which they take exceeption appeared in repairs are required necessitating the renewal of a full ring of plate and seam, the front end plate must berenemoved before furnaces can
and drawn out." I admit Hawksley-Wild's patent flange can be
年 be drawn out." I admit Hawksley-Wild's patent flange can be
repaired more readily than the Adamson flange or Bowling hoop, repaired more readiy than the Adamson hange or
and in mo opinion, is a better construction throughout; but I I fail to see how rine enire furnace can be drawn out for renewal, or how thre plates to form a ring, or with a great amount of springing
which boiler engineers would be likely to object to. With the which boiler engineers would be likely to object to. With the cone furnace mentioned in my paper of ie er repairs to shell. As
drawn out or renewal of any portion of it, or
the Association of Employers and Foremen are having the paper the Association of Employers and Foremen are having the paper
published, I hope to forward a copy to Messrs. H. W. and Co. hortly.
I may just mention that in the conclusion of the report
on my paper the word "theologioal" should have been "theoretical.,", March 21st.
Salford, Maren

Sint tanks for suakin.

Sur,- - Seeing a paragraph in your last issue, in which reference
is made to the tanks made and fitted by a well-known teamer Woodoock for service at Suakim, and as the statement is the actual facts should be known. The order for the tanks in question was given on the 28th of February, and instead of the
whole being delivered and completed on the 14th of March, as stated, some of the tanks were not actually shipped till Thursday,
the 19th of March, and the work was not completed till Saturday, the 21st inst., or exactly three weeks after receipt of order I may add, that I made and fitted the tanks to another vessel,
the Camel, for the same service, the order being placed in my hands on the 16 th of February, and the work was completed to the satisfaction of the Government surveyors on the 2nd of March,
just seven days less than the time taken for the Woodock. The were specially made to fit the vessel; they were also fitted with strong internal bulkheads, and with an elaborate arrangement of valves and pipes.
In the face of the an soarcely claim any credit for having performed a particularly Byng-street, Millwall, London,

March 25th.

Sir,-In reply to railway signals. Driver," if he thinks that the above invention referred to by Express Driver is not a good one, if he will write to one of the
patentees, Mr. Croft, 9 , Charles.street, Ecoles, he will forward to him or anyone else a diagram of the above patent
can judgo for themselves the merits of the same.
S. A. Crort.
ped-water for bollers.
Sir, - In following the interesting discussion now going on in that any of your correspondents have proposed anything more as described in your columns of the 18 th July last year. I have since then had repeated opportunities of observing the excellen
A. B.
cesults obtained by this arrangemont. results obtaine
March 2 2th.

STEAMERS ON THE NILE.

THE chief engineer on the Yarrow stern-wheel steamer Lotus,
who left Korti on the 17th ult., gives an account of the remarkable voyage of his vessel to that place from Semneh, which shows the
fitness of this kind of craft for the navigation of a river so difficult and dangerous at all times, but especially when the stream is low stability gained by a breadth of beam-18ft, - proportionately great for her length, which is about 75 ft ., the boat passed without injury up the long and almost continuous series of rapids and cataracts
between Semneh and Abu Fatmeh, a distance of over 200 miles by the river. What proved of greatest moment in the behaviour of the steamer was the rapidity with which she answered to the whee
and the action of the twin rudders. This perfect manageablenes which Mr. Stanley found in an equal degree in a Yarrow boat of the edme type now running on the Congo, it win be readily under
stood is of the first importance in the navigation of a tortuous and swift stream with a rocky bed. The steersman placed forward on
the over deck can, with a single turn of the wheel, so instantaneous is the action of the balance rudders, avoid a sunken rock, and it is marked when the engines are reversed and she is going astern. it is remembered that nearly all the steamers which have bee
wrecked on the Nile between Semneh and Khartoum have been in coming down stream, the value of these characteristics of th stern-wheel Yarrow steamers will be appreciated, for there can b
little reason to hope that, even with high Nile, the dangers will much diminished, although extreme lightness of draught may cease
The Lotus, or, as it was officially called, Yarrow boat No. 1, wa sent out in sections or pieces of easily movable dimensions, the
heaviest indivisible portion of the machinery being the large paddlewheel shaft. This, which weighed about 6 owt., had to be slung to The difficulties of that it was decided to put the Waterily, the second boat of thil type, together at Alexandria. This was done under the superinten-
dence of Mr. Broadmeir, one of Messrs, Yarrow's engineers, a young German, who has had some experience of these boats on South American rivers. On ecord from Cairo to Assouan. The Nile was tho low, however, for the steamer to pass the second cataract, and
the Warlily Halfa and Philo. The work of putting together the Lotus had been in part carried out, when the engineer in charge, Mr. O. . Wigg,
fell sick of gastrio fever, and was invalided home. Mr. Broadmei then directed the work on the Lotus until the boat was ready for the royage. ${ }^{\text {S.N., who pad ten or a dozen blue-jackets with him }}$, Canadian voyageurs, of whom two left the boat at Dal. They also had the services at times of Nubian pilots. For fuel, wood was
used, logs and old pieces of timber from wrecks of nug waste being picked up occasionally. There are large stores of coal but all the availabletransport service having been employed in the forwarding of ammunition, provender, and stores for the troops,
the coal supplies were not accessible. It is intended to make arrangements for wood stations if the natives can be induced to bring wood suitable for fuel from the interior.
Leaving Semneh on January 2nd, the firat encountered at the succession of rapids forming difficulty was Cataract, where the stream has a fall altogether of about loft. have, one after another, to be passed through. Of these the last
offered the most erious difficultis. rock near the middle of the river, has hollowed out a cravity in the constant ciroular action of the pebbles there is a strong whiry constan this perilous spot ledges of rock jut out from the banks on
Above
torrent athwart the bed of the river. At first an attempt was
made to pass up to the left of the whirlpool, 300 Egyptian soldiers, made to pass up to the left of the whirlpool,
in equal parties on either bank, hauling at the hawsians, and the
engines working with thill stenm on oaught the full force of the cross current above the rock in mid stream, the stern was swung round, and the vessel was saved only by instantaneous obedience to the reversed action of the wheel which brought her astern and out of harm. It was then deemed
advisable, in order to avoid risk of life advisable, in order to avoid risk of life, to take the crew off and to
haul the vessel through without steam. Three hawsers were used, manned by 700 Egyptian soldiers. The three ropes broke at the critical moment, and for a few minutes the stcamer was left at th mercy of the stream. At last she was got through in safety, and with but one dent, which was of no importance. Progress unde such conditions was necessarily rather slow. They called at the military stations, of which there are twelve from Wady Halfa up
to and including Dongola, taking instructions and occasionally stores. They had to stop whenever they saw a chance of obtainin any wood for fuel, and before it became suddenly dark, or about fast to the bank for the night, starting happened to be, they made fast to the bank for the night, starting again about eight in the morn
ing. On January 12th they were at the Lower Tanjour cataract. This system of natural weirs whas, like that of Ambigole, four gates or passable waterways in the successive ridges over which the rive ground they had to get over, for there was very little water and a great deal of rock. Having decided upon their course, they got up
steam and tried to take the first gate. They very steam and tried to take the first gate. They very nearly sucoeeded
but when half way over they stuck, poised in the rapid, and had fall back. Another hawser was run out, and a second rush proved successful. "The whole time we were passing this cataract," Mr broadmeir says, "it felt as if we were going overland, the steamer severe this trial of the strength of the boat was may be inferred from the fact that the floats of the wheel, which do not go so deo
as the botto the centre of the shaft to the extent of 3 in . There were, as may be supposed, many dents, but there were no holes. A better proot
of the wisdom of using a tough and elastic material like steel for These long, light, shallow boats, with the weights of the machinery divided by placing the boilers in the fore part and the direct-ncting engines near the wheel at the stern, are so braced by the use of steel rods to to take any strain, after the method of construoting a
suspenion bridge, that it may be enid Messrs, Yarrow have devised suspension bridge, that it may be said Messrs. Ya.
and perfected a marvel of lightness and strength.
The second and third gates in the Tanjour cataract were steamed
 attempt they got through, and on January 16 th found them. selves in a wide reach of the Nile, , locally known as the Bay of Tan,
jour. They had now been fiften days in making about thirty milcs. The owners of the few native boats which ply on the river
at high Nile as far as Abu Fatmeh do not attempt to navigate the at high Nile as far as Abu Fatmeh do not attempt to navigate the
river at this season of the year. Taking in cargo and stores which Bay on the 19th, an steaming hard all the time, up the series of rapids, about four tinually bumping on the rocks, and reached Upper Dal on the through the Hannek cataracts with few noteworthy incidenta The latter is another succession of rapids about two miles in length, thirty, miles the third time they succeeded. At Abu Fatmeh, thirty miles above Kaibur, they reshipped the cargo and stores
which had been brought on camels and by carriers from that which Dongola-that is, the place marked oarricrs from that map New
place. Don
Dongola, where the Mudir resides mas 31st, and on the afternoon of February 3rd they steamed up to Korti, towing a couple of whalers bringing provisions which
hey had picked up at Dongola. Lord Wolseley and many
officers, with some 400 or 500 men, were on the river hank to see ofncers, with some and naval officers who knew the difffoulties
them come in, and of the undertaking exprear arrival at Korti, the Lotus was at issue employed to run regularly between Dongola and Korti, taking
wounded down and bringing stores up. Although by specification the Lotus was only required to carry 25 tons of cargo, she has, in
faet, been taking up loadd of 46 tons comprising grain, ammuni20 tons on provisions. Towing at the same time a barge with the current a mean speed of seven to eight miles an hour, a highly
atisfactory performance. Two of Mr. Cook's steamers having been wrecked, the Ghizeh at Tanjour and the Nasif Kheir at Abu Fatmeh the Lotus is now the only steamer larger than a pinnace at Lord
Wolsele's command, and in view of this fact it would seem to be naking only necessary provision against contingencidionl inue to of this tye which have been ordered. In Messrs. Yarrow's yard at
Poplar there are being built five stern-wheel steamers, all larger than Poplar there are being built five stern-wheel steamers, all larger than of that vessel, and three having about 20 per cent. more earrying pace. Winth spatriotic regard or the needs of the service Messrs.
Yarrow have given the War-office authorities facilities for placing of boats on the model of theirs, and Messrs. J. Elder and Co. have
orders in hands for ten stern-wheel steamers of this type. The two larger boats which Messrs. Yarrow are building are so divided by
transverse and longitudinal bulkheads as to have 26 water-tight compartments; the three smaller will each have 13 compartments. pound condensing engines. Mr. Broadmeir reports that the railway round the second cataract has been extended rather more than 20
miles beyond Sarras, past Ambigole, and to within about 20 miles 40 Akasha. T Taking the distance by river from Semneh to Korti at 400 miles, it wil be seen that the Lotus, all stoppages included,
made on an average only about 13 miles a day, and this indioates made on an average only about 13 miles a day, and this ind
sufficiently the present difficulties of steaming up the Nile.

Durham and Churchill's Pistons.-We are requested to state that the piston illustrated in our last impression, page 231, is sup-
plied by Nlessrs. Durham and Churchill, 23, Leadenhall-street, E.C. Naval Enginker Appointursts.-The following appointments
have been made at the Admiraity:- John T. Harris, chief engineer, additional, to the Indus; John Pitt, chief engineer, to engineer, to the Nankin, for service in the Howe . Williner, cilito ongineer, to the Asia, for service in the Calliope; 'William J. Blaok,
assistant engineer, to the Polyphemus ; George V. Cawley, George $\underset{\substack{\text { Tamar. } \\ \text { Tar } \\ \text { STE }}}{ }$
Strax Trawlise in Brazit.-We understand that a concession Messrs. Castel and Pontet for the purpont of Para, Brazil, this important city with fish. The concession, which is for a considernecessary refrigerating apparatus of the most modern and improved quality. Captain Pontet, of the above-named firm, is now in the order for his steamers with Messrs. Cochran and Co., of ir the Mead. The steamerse and and, we believe, the first boots built for this purpose
on the Mels of the kind built
of steel in England. of steel in England. It speaks well for the enterprise of the Pro-
vincial Government of Para to encourage an industry so important as that of fishing, and no doubt the enlightened policy of the
President, who is so unwearied in endeavouring to increase and cheapen the fish supply, especially for the benefit of the working
classes in the city and province of Para, will be highly sppreciated,
THE REMSCHEID WATER WORKS-TOWER AND RESERVOIR.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER. PARIS-Madame Boyveav, Rue de la Banque.
BERLIN. - Asher and Co., 5 , Unter den Linden.

PUBLISHER'S NOTIOE.

*The Publisher begs to announce that next week The Exginerr
will be pubhished on Thursdar instead of Good Frinar vill be published on ThursDay instead of Good Friday.
Advertisements intended for that Number must be forvarded not Adver tisements intended for that Number mu.
later than Six o'clock on Wednesday evening.

TO OORRESPONDENTS.

*all letters intended for insertion in THe Engiverr, or conof the writer, not necessarily for publication, but as a a proof of
good faith. No notice whatever will be taken of anonymous ${ }^{*}$. ${ }^{W}$ We cannications.
** We cannot undertake to return drawings or ma In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addresed to the pubri, and intended for insertion in this column, must, in all
cases, be accompanied by a larye envelope legibly directed by the ariter to himoself, and bearing a 1d. postage stamp, in order that
ansuers rececived by us may be forvarded to their destination ansvers received by us may be forvarded to their destination.
No notice vill be taken of communications which do not comply Exprxsoos.- The receiver has nothing to do with the matter, because the
admission port to the low-presure cylinder is alieays closed before the

tricycle making machinery

GUTTA-PERCHA.

THE ENGINEER.
MARCH $27,1885$.
the inventions exhibition.
It has been finally decided that the International Inventions Exhibition will open on Monday, the 4th of May. be all too short to permit chaos to be reduced to order; but it is always the rule at exhibitions to drive everything off to the last, and there is no reason to conclude that this
will supply an exception to the general practice. Indeed, chaos has not yet commenced at South Kensington. The
buildings and gardens are being cleaned and put in order; but the exhibitors have made no sign, if we except Mr. Webb, of Crewe, who has got the most powerful compound main hall, about one-third of the length of the building from the principal entrance. The engine stands on a couple of lengths of rails supported on Mr. Webb's patent got in for a horizontal engine by Messrs. Adamson, of Hyde, Manchester. A few show cases are being put up,
and this seems to be about all that has yet been done by exhibitors. This main or south gallery has been really occupied last year by the working dairies and dining rooms is now thrown open to the main gallery, and on the garden mprovement in appearance is very marked. The main gallery looked at all times too narrow and cramped. The three galleries together side by side form a really imposing structure of great area. Along the centre line of the new gallery iron columns are being put up to carry a line of exhibition will be the large quantity of machinery shown in motion.
The electric light will be used more extensively than ever, and to the almost total exclusion of gas. The additional space to be lighted will demand more lamps, both arc and incandescent; and besides this the oil lamps which have hitherto been used to decorate the gardens at night will be superseded by incandescent lights. The total power required will exceed $2000-\mathrm{H} . \mathrm{P}$. indicated. Mr . Schultz, in carrying out the necessary alterations. The Paxman engines used last year will be retained. The two and theylinder horizontal enines, one indicating $340-\mathrm{H}$. P those occupied last year. The compound engine has been turned at right angles to its former position, and some modica. Aditiona made in the position plied by Messrs. Davey, Paxman, and Co., of Colchester, and the concrete foundations for them are well forward The whole of the steam plant is being overhauled, refitted Messe D, Messrs. Daver, Paxman, and co.s represectaive. The new boilers are intended to supply steam to a number of
high-speed engines, which will constitute one of the most interesting features of the Exhibition. These engines will Willans, Mr Westinghouse the Coalbrookdal Com Mr Messrs, Armington and Sims, Mr. Brotherhood, Messrs, Messrs. Armington and ims, Mr. Brotherhood, Messrs
Elwell, Parker, and Co., the Hon. R. Parsons, and Mr Towers, It is intended to carry out competitive trials of these engines during the Exhibition, to test them for economy. durability as well.
The water arrangements will be modified and, it is hoped, mproved, though it is difficult to see how Col. Sir Francis Bolton can improve on the beautiful display of last year
Several new buildings, mostly, however, of small size-if we except a concert room-are being put up. At the present moment, however, it is impossible to have an adequate idea of what the Exhibition will be like. "Old London"
remains, and the whole of it has, we understand, been remains, and the whole of it has, we understand, been
taken by a group of exhibitors whose specialities are art workmanship in plate and metal of various kinds, so that this section of the Exhibition will be as attractive as ever New brick pathways are being laid down in the street and certain improvements of various kinds are being carried
out. The Albert Hall will not, we believe, be included in the out. The Albert Hall will not, we believe, be included in the
Exhibition this year ; last year it performed the partof white Exhibition this year; last year it performed the partof white elephant to admiration-its special role, we need scarcely observe. That the Exhibition of Inventions wilh be a great
success there is no possible reason to doubt. There were at east eight times as many applications for space as could be entertained in the first instance; and even after these had been carefully and judiciously weeded, there remained enough to fill twice the space available. It is to be regretted that a few important firms, finding that they withdrawn, and will not exhibit at all; but this was to a large extent unavoidable. The public are promised more attractions than ever, both within and without the buildings, and nothing is wanted to render it even more popular The Metropolitan District Railway Company is pushing on rapidly with the subway from South Kensington Station to the Exhibition. This subway will be entered direct from the station. 0 wil up Exhibition-road. The notion of a narrow passage is often associated with the word subway, but this will really ee a covered footway, wide enough to permit two venicles
to pass each other, and lined with white glazed bricks. It is so nearly complete that the roadway is being rapidly is so nearly complete that the roadway is being rapidy
re-made over it for a considerable distance, and it will no doubt be quite ready for use by the 1st of May.

he official examination of patents.

Under the patent laws existing previous to Mr. Chamberlain's Act, the provision for the official examination of patents applied for was a dead letter; and-intending patentees or their agents, had to make personal search in
order to ascertain with some accuracy whether their inventions were distinct from those for which patents had already been granted. The new law of 1883 has altered this, and given vitality to the system of official exami nation. Doubtless such an examination is right in principle; indeed, it is a logical and necessary consequence of any legislation having for its object the granting of monopolies ; for if a monopoly in the sale of a specific article is granted to A. to-day, a granting, or rather an attempt to grant B, a monopoly of the same to-morrow stultifies the whole affair. Unfortunately, however, here, as in many other mundane affairs, while the principle
excellent, its practical application is not easy ; neither do the examiners appear as yet to have succeeded even in
applyingit as well as is possible. In two essential points they need toimprove their precedure. In the first of these, namely, their interpretation of claims, they seem to be in danger of confounding their functions as judges of mechanical construction with those of the judges of law. With the latter, so far as we can perceive, they have nothing to do.
As we interpret the new Act, the sole business of the official examinterpret the new Act, the sole business of the onced examiners is to see that patents are not, as it were, granted
in duplicate; and if our interpretation is correct, they have simply to notify to any applicant for a patent that which indeed they do, viz, either that his application has been granted, or else that his proposed patent
infringes that of another. If the examiners stopped here all would spondent lately pointed out, take upon themselves to alter claims, indicating to the individual exactly the claims he must make. No one but the intending patentee can, save in exact working onal simplicity, perfectly compres and illustrates it more fully than it is usually possible to do in a patent specification; and the alteration in the wording of a claim demanded by an Examiner may destroy the entire principle of the scheme. Examiners not only may, but altogether mistake their functions when they send draughted claims to inventors to sign. Besides the inappropriateness of such a course, what benefit is given to the empowered to decide disputed points of baw. The claims they draught for a patentee to sign will not prevent subsequent law proceedings arising out of disputes, nor influence the decision of the presiding judge. Another point connected with the new system of examination the often contradictory action of the Examiners, On the one hand, Mr . Chamberlain's Act and its interpretation draws a very hard-and-fast line, remulating, or to be more correct, attempting to regulate disfinct inventions, while on the other, the Examiners report that A's proposed patent appers to Examiners report that A.s proposed patent appears to these specifications were submitted to an unofficial expert meshanic or expert in the subject doalt with in themperis decision might just reverse that of the Examiners. If the decision might just reverse that of the Examiners. If the some good; they have spared the patentee or his agent the trouble of making searches themselves, and so far save him expense ; beyond this neither they nor the Comptroller have any jurisdiction; the cut-and-dry claims sent to a patentee are altogether valueless in a court of law.
he question of what constitutes distinctness of invenfficial litigatinamiers appears likely to iscrease grounds of they ron grally. already granted; on the other hand, they will report of aiready grawed, on one hand, hey will report of nother specification that, in their opinion, it contains, not one, but two distinct patents. Either of these reports might be cited-at all events, unofticially-in a court We law as evidence for or against infringement actions. We are of opinion that if Examiners through the Comptroller have power to reject an application, on the ground that more than one invention is described, as well as to warn an applicant that his specification infringes that of nother, they should frame some general rules as to what in their opinion constitutes distinctness or similarity, as a sort of guide for patent agents and inventors. Thus, for
example, they might rule that the reciprocating of a piston, example, they might rule that the reciprocating of a piston, valve, or other part, if effected by a rocking crank, wourd
be deemed a distinct invention from that wherein the same reciprocation was effected by a shorter crank set into rotation. But these rules should form the basis of the Examiner's own judgment also. If Examiners lay down certain rules for framing claims, as they have been attempting to do, in order to be consistent, and to gain respect for their reports, they must themselves work to rule also. As it is, inventors have reasonable ground for suspecting that the answers to either of the two highly important questions-(1) What constitutes infringement? (2) What constitutes a single invention, and for what must more than one patent be sought?-depends very much upon the ndidual opinion of the particular Examiner hass the infringement be the former of these cases, unless the granted with the previous caution; in the latter case the applicant may be absolutely refused a patent, save for either of the parts of his specification adjudged by the Examiner to be distinct. The Patent-office authorities themselves by amending claims tacitly admit the possibility of framing rules on which to base judgments,
Another point in the administration of the new patent law greatly needs amendment, namely, the long delays be Examiners thent of applications and the reports of hought that under the new hen first published, evh one an entire year of provisional protection wherein to perfect his invention, but a perusal of its clauses soon showed that the net useful period of protection at best was but about eight instead of twelve months. At the expiration, or before it, of nine months, the complete specification must e lodged. Now, however fit and reasonable such a condition may appear to legal minds, common-place laymen may naturally ask what earthly use is there in the odd three months? If the final is not lodged before the end of the ninth, the patent is lost at the end of the year ; and on the other hand, if the final is lodged in time and the patent granted, the greater, as every mathematician knows, includes the less, and three months are aasted. It in therefore, absurd to any but the official mind to tell an inventor he is safe for a year. The clause in the Bill enacting that the duration of the patent shall date from day of application is also contradic ory of the clause granting twelve months protection; it only under very exceptional circumstances indeed that Acts of Parliament are made retrospective ; but the grant ing a man protection a month or two months after he has
asked for it is essentially retrospective. During the time
the authorities are deciding whether he ought to have a
patent or not, he can do nothing with his invention. Under patent or not, he can do nothing with his invention. Under Three times that period is now absorbed. This delay is a decided hardship on an inventor, for he can do nothing
safely after he has lodged his application; he knows not what alteration, emendation, or so forth, the examiners may demand. There is no reason, save securing priority, so far as the interests of those in whose behoof the Ac was framed are concerned, there are the reasons above given against it. The inventor might, at all events, be the evil does not end here. It is ruled that if the applicant does not receive any notification within
twelve months from the date of his application may deem that it has been rejected. The words of the fication has been accepted within twelve months from the date of application, then-save in the case of an appeal
having been lodged against the refusal to application shall, at the expiration of these twelve months, tion for a complete patent in the first instance, he may remain an entire year in ignorance as to whether his of that time his invention will be useless to him. This is certainly taking away with one hand that which was given
by the other. Under the old Act three years' protection were given without any material delay; under the new, it is possible that the whole of the additional year conceded by it may course for the intending patentee is to apply for a provisional protection, and if he be not ready to apply for his final, lodge a fresh application for another provisional. In this way he gets eighteen months protection for two pounds.
This has been done under the old Act, and the new contains nothing contrary to a continuance of the practice.

meteorological progress.

The annual report of the Meteorological Council, addressed to the Royal Society, comes rather late to hand, history of the previous year. We presume this is unavoidable, and that on the whole there is a substantial
equivalent for the time consumed. The information collected from the logs, prepared by ships' officers,
necessarily reaches England considerably after date. The necessarily reaches England considerably after date. The
investigation of the weather over the North Atlantic is an extensive affair, the data for a period of thirteen months
being contained in 10,502 forms received from 2563 ships. A reduced copy of one of the charts thus prepared is given in the report, furnishing various particulars as to wind,
weather, and barometric indications, while another chart weather, and barometric indications, while another chart the weather. The charts for the month of August,
although limited to the Atlantic, are founded on as many as 80,000 observations. The Indian and Pacific
Oceans are also under surveillance, though not with the Oceans are also under surveillance, though not with the
same minuteness as the North Atlantic. The Meteoro-
筑 logical Council likewise have an eye on the Arctic regions,
and there is a Circumpolar Committee engaged in the and there is a Circompolar Committee engaged in the
discussion of a mass of observations relative to meteorology and magnetism. The weather forecasts are said to exhibit
an increased measure of success, fulfilment being claimed an increased measure of success, fulfilment being claimed
in 81 per cent. of the predictions, as compared with 79 per
cent, in the year preceding cent. in the year preceding. The greatest proportion of
successful forecaste occurs in the Eastern Counties and the South of England. Agricultural interests are consulted in
the shape of "hay harvest forecasts." In some districts the shape of "hay harvest forecasts." In some districts
these have been very satisfactory, and on the whole they these have been very satisfactory, and on the whole they another feature, and these are a little unlucky. The warnings have been justified by the event three times out
of four, and in some years the proportion has been higher. of four, and in some years the proportion has been higher.
A sudden and severe storm in the North Sea was not anticipated, and we think there are reasons for the oversight. The conditions under which it occurred are said to have been
"very unusual," but we fear that even under ordinary circumstances an easterly gale, with a touch of north about it, is not to be easily foreseen. Observations on Ben
Nevis, 4000 ft . above the sen, carry us into the regions. Another mode of approaching the heavens is afforded by the skill of the artillerist, and we find Captain
Andrew Noble devising a bombardment of the bigher Andrew Noble devising a bombardment of the higher ployed to detect the course of elevated currents.
Coming down to earth again, we are introduced to an Herethemenof sciencehave been baffled by the circumstagnce that of late the London fogs, with rare exceptions, have modestly declined to be interviewed. Nevertheless, we
learn from the researches of Dr. Russell, extending over a period of two years and a-half, that during the prevalence acid in the metropolitan atmosphere The are carbonic portion of carbonic acid present in the air of London is slightly below four parts in 10,000 , and it is singular that this is rather less than the proportion found in the air of
the few other towns where observations have been taken Pure country air has three parts of carbonic acid in 10,000, so that under ordinary circumstances London is not much worse than the country in this particular. But when the reaches $7 \cdot 2$ parts of carbonic acid, and this was very nearly doubled during a protracted fog in December, 1882 .
With the disappearance of the acid speedily declines. On bright summer days this gas falls to a minimum, the lowest point on record being
reached on the Bank Holiday in August, 1883 . This was reached on the Bank Holiday in August, 1883. This was
no mere casual coincidence, for we are told that the amount no mere casual coincidence, for we are told that the amount
of carbonic acid in the air of London is always considerably
below the average on a Bank Holiday below the average on a Bank Holiday. Hence a sanitary
virtue attaches to this modern institution. We should virtue attaches to this modern institution. We should
presume that the same result would be generally exhibited presume that the same result would be generally exhibited
gn a Sunday. It is impportant to obserye that the yariation
in the quantity of this gas must indicate corresponding
fluctuationsintheamount of manyother impurities in theair. London rain, as well as fog, has been placed under examination. The amount of sulphates and chlorides in the rain has been determined, and the average serves to show that the as that of central part contains twice as much impurity rain, as found in the samples collected, have been washed out of the atmosphere. Wet days in London are not pleasant, but it is satisfactory to know that they make the dence has some sanitary advantage. We should add, that the moisture of air condensed by the application of cold is found to contain impurities similar to those of rain. It is may be serviceable--that at Kew there is a greater chance of rain in the afternoon than in the carly morning or during the night. This is not a general rule, for at Valencia the minimum
o'clock in the afternoon
A curious chapter in the Meteorological Report is that which has reference to the "Krakatoo wave,"
It is stated that on the receipt at the office in September, 1883, of the photographic records for the observatories, without exception, peculiar barometrical disturbances had occurred during the last five days in the month. These disturbances were nearly simultaneons,
and were unaccompanied by any change of weather. The daily curves published by the Brussels Observatory showed a similar state of things, and on inquiry it was found that well as Coimbric records at St. Petersburg on the east, as results. A careful consideration of the data led to the conclusion that a connection existed between the violent eruption of Krakatoa in the Straits of Sunda on August in Eud 27 th, and the oscillations of barometrical pressure and now accepted as correct, was that the phenomenon was produced by the passage round the earth of a series of concentric aerial waves, travelling at the rate of nearly
700 miles an hour from the scene of the returning in the opposite direction, after having met at the antipodes of Krakatoa. Also that a succession of such waves was three or four times repeated. Records found to confirm this in various parts of ene are promised something further on the subject. It is a marvellous testimony to the tremendous nature of this volcanic outbreak, that it should have affected the atmosphere over The fact may be taken as correlative to the abnormal tints of sunset and sunrise which for a considerable length of time attracted notice in various parts of the world. The alliance which is found to exist between phenomena apparently distinct and remote from each other gives hues in a British sunset should be kindled by a volcano on the coast of Java sounds Mke a romance, but is made appear as a sober reality. Meteorology is a wide-spreading
science. There is some sort of weather everywhere, and the weather affects everybody. The difficulty has been to deduce general principles from the myriad of facts ever
presenting themselves. We are getting on by degrees, and by piecing our knowledge together we may hope to ology in its practical aspect has proved worthy of regard in ect of the fishermen at Hull, Scarborough, and other places on the north-east coast, who refused to go to sea on recent occasion, and kept their fleet ine because of
weather telegram from America predicting a storm. That weather forecasts have saved lives and property need not
be questioned, though the forecasts may sometimes fail. Meteorological science may go on to win fresh conquests,
and certainly the field is a large one. We should like to know a little more as to the apparent connec tion between the display of the aurora borealis and the
fall in temperature which generally follows. There was all in temperature which generally follows. There wa Kirkwall on the evening of Sunday, the 15 th inst. A week later, a snowstorm of unexampled severity swept in the midst of the mildest weather of early spring, when we are dreaming of summer rather than of winter, the Northern Lights make their appearance, we may rest flush, streaked with gold and emerald, is a trustworthy token of something at the back of the north wind.

house-to-house electric liohting

Wirhout entering now upon the question of how far the Act of 1882 has or has not checked the development of electric lighting in this country, we may yet notice a movement which Finding that there was extensive dissatisfaction with the measure passed three sessions ago-and possibly also feeling that the hopes created by that Act had not been realised-the
President of the Board of Trade suggested the formation of a Committee to take the matter in hand, to prepare amendmenta to the Act, and to confer with him upon the subject. A Com-
mittee, with Lord Thurlow as chairman, was thereupon constituted, and they have just completed a draft Bill embodying the Electric Lighting Act, 1882 , in such manner as to
place electric lighting undertakings in the same position place electric lighting undertakings in the same position
in regard to privileges and obligations as gas supplying
concerns. They propose, first, that where electricity is not ascertained by meter the consumer shall not use any lamp which has not been approved, if uot supplied by the
producers, or any lamp which is calculated to expend more electricity than the consumer has contracted to pay for. Then
they seek to repeal section 27 of the Act by which, after the expiration of twenty-one years, local authorities may purchase an electric undertaking on paying the then yalue of all
suitable lands, buildings, works, \&c., of the undertaking without any addition in price on account of compulsory purchase, good-
will, or profita, The propits of an undertaking ape limited to
the rate prescribed by the Provisional Order or Special
Act, or where no rate is prescribed, to 10 per cent. per
annum. Act, or where no rate is prescribed, to 10 per cent. per
annum. The principle whereby dividends are increased
or diminished in inverse ratio to increase or diminution of price is introduced on the method of the sliding scale
applied to gas undertakings, except that, having regard to the applied to gas undertakings, except that, having regard to the
small price charged per electrical unit as compared with the small price charged per electrical unit as compared with the
price charged for 1000 cubic feet of gas, the dividend is inprice charged for 1000 cubic feet of gas, the dividend is in.
creased or reduced by 5 s. per $\& 100 \mathrm{in}$ respect of every $\ddagger \mathrm{d}$. instead of 1d. as in the case of gas, Other provisoes are that
new or additional capital shall be offered to the public by auction in accordance with the usual auction clauses applied to gas supply of ele that the undertakers shall furnish a suty-five yards of the main ; that they shall supply electricity for public lamps; that they shall keep the mains fully supplied; that
penalties similar to those under the Gas Acts shall be imposed penalties similar to those under the Gas Acts shall be imposed
for default by the undertakers; and that local authorities shall have similar powers of acquisition by agreement to those given in regard to gas undertakings by the Public Health Act oh a
In support of these proposals-- - owhieh, of course, Mr. Chamberlain will have something to say-the Committee quote Mr. great advance America has made in electric lighting, as well for private as for public purposes. They point out that electric lighting has been highly successful here for lighting ships, especially those of the Royal Navy, and they show that, owing to provisional orders, and spent many thousands of pounds in the expectation of establishing valuable undertakings, have been unable to carry out their intentions, and so there is not even yet a single central station in operation in London, or in any of the
large towns in the United Kingdom, to furnish a house-to-house supply, as is done on an extensive scale in Americ

free gift of a week's work.

As incident altogether unparalleled in the iron trade, and, so by our Sheffield correspondent. Mesers. William Cooke and Co, of the Tinsley Iron, Steel, and Wire Works, have from 120 to 150 puddlers and millmen in their employ. Their wages are governed and the the way of wages reduction, even if the employers were to
 which feeling ran so high that one workman who would not go with the majority had his hand chopped off with a butcher's cleaver. A very difterent feeling prevais amoni the workmen now. On he 1 o pally realising the extraordinary hardness of the times, they regretted they were not in a position to take action except in one way, and that was to ofier the company the free gift of a feeling that it was their duty to do something to nasist their employers in tiding over the time of depression. The manager,
Mr. Thomas Wilkinson, was startled by the offer, which was conveyed to him by a deputation representing the
workmen. He very properly told them that the money value of the offer, though that was considerable, was nothing compared
to the nobility of the spirit which it indicated. a feeling of sympathy and interest was shown by the employćs, he company-he felt-must surmount all difficulties which casons of adversity brought upon them. The incident has
created much interest everywhere in industrial circles, Not only is the offer absolutely novel, but puddlers and millmen are None of England's toiling millions work harder than they do. In front of the furnace, the very breath of which would slay ordinary mortals, they stand for eight and nine hours, day. How they bear the heat passes comprehension. Winter or summer they are condemned to these fiery prisons of theirs,
labouring with little more about their bodies than the full uniform of one of the Mahdi's soldiers. These men rarely get credit for considerate conduct, and it has been left for them-
perhaps the least thought of in the great army of workers--to perhaps the least thought of in the great army of workers - on
show an example of seff-sacrifice and generosity to the rest. Their offer is all the more commendable as it comes at a time when they are themselves pinched by want. Recently they therefore no superfluous cash to justify them, casting away a turning, and men of this stamp be early rewarded for doing what they could in the time of trial.

sliding scales in iron mining.

Thr notice to terminate the sliding scale in the Cleveland ron mining industry is not due to discontent with the sliding parties to it to improve that scale. During the period of the currency of the three scales in the industry, there have been very many fluctuations in wages both upwards and downwards, but
in all cases the parties concerned have willingly accepted the in ali cases the parties concerned have willingly accepted the
award that flowed from the accountants' figures ; and there award that flowed from the accountants' figures; and there
has been a large number of local reductions and increases of wages, so that the fluctuations in the market and in the price or iron have been from time to to to adjusted to the rates, or nd in the general mining rates, the course of the trade so for as it has affected the prices. In no industry has the fluctuation of price ed to such willing acquiescence in the adjustment of wages thereto as in the Cleveland iron mining industry, and therefore it may be fairly hoped that the renewal of the scale in some modified form is a matter of certainty. The period during which the three scales in the iron mining industry have been in operation has been amongst the most eventful in the history of that trade in the North of England; the labour employed in it is often recruited from those not very \&killed or highly educated; and thus the fact that there has been so marked a success, and
that there are to be negotiations for the formation of another cale, is one of the most telling of the testimonies to the value of the system, and to its adaptability to many industries, It if have followed Durham in adopting the sliding scale system, here has been, as far as we know, no attempt to introduce the stiding scale system into any other of the large iron mining dis-
tricts; but it is probable that in the future there may be a change in this respect.

sUbstitutes for hard wood.

THE enormous advance which has of late taken place in the price of some of the hard woods required in various special producing some less expensive material as a subbettutute, and in
one branch of trade this has been carried out with very success－ ful results．For the manufacture of loom shuttles boxwood has hitherto been very largely used，but the price of this description
of wood has become almost prohibitive，and it has been found of wood has become almost prohibitive，and it has been found
that by the compression of cheaper classes of timber－teak being about the most suitable for this purpose－a substitute meeting all the requirements can be obtained．For carrying out this process，Sir Joseph Whitworth and Co．，of Manchester，have just completed for Mr．Robert Pickles，of Burnley，a powerful
hydraulic press to be used in compressing timber for loom shuttles．This press consists of a strong cast iron top and bottom，with four steel columns and steel cylinder，with a large ram．In the centre of this ram is fitted a smaller ram，with a rectangular head，fitting into a die which is placed on the top of the large ram．The timber is put into this die，and a pressure of 14 tons per square inch is applied．The pressure is then relieved，and the large ram descends．The top pressure block， pushes the timber out at the top of the die．The ram rising preated is made very dense the top of the die．The timber so that it is capable of taking a very high finish．For the manu facture of shuttles it has been found as good as box wood and there is no doubt that a similar process might be applied with advantage to other branches of industry where expensive hard woods have to be used．

LITERATURE．

Report on the Manufacture of Coke．By J．D．Weeks．New
York：Williams，1885． This is one of the special reports published in connection with the United States Census of 1880，and contains com－ plete statistics of the production of coke during that year， ogether with such information descriptive of the works， of the raw materials used，and of the labour employed，as could be obtained in addition．From the general abstract riven on page 3 of the Report，the following statistics are taken ：－

$$
\begin{aligned}
& \text { Number of coke works in Census year } 1879-80 \\
& \begin{array}{l}
\text { Total capital invested... } \ldots \ldots . \ldots \ldots \\
\text { Total number of ovens built, May } 31,1880 \text { (dols.) }
\end{array} \\
& \begin{array}{l}
\text { Total number of ovens built, May 31, } 1880 \\
\text { Ditto ditto building, ditto } \\
\text { Total }
\end{array} \\
& \begin{array}{llll}
\text { Total wages paid } & 2,163 \\
3,140 \\
\hline
\end{array} \\
& \text { Value of materials used } \\
& \text { Tons of coal used. } \\
& \text { (iols.) } \quad 1,197,744 \\
& \text { Value of ditto } \\
& \text { Tons of coke produced } \\
& \text { Value of ditto } \\
& \text { and connected with (dols.) }
\end{aligned}
$$

Capital investedin working coking coals（dols．）10，903，531 The average value of coke per ton at the ovens was there carbonised 63.1 per cent；or 1.58 tons of coal were required o produce a ton of coke，the average cost of the coal in a ton of coke would be about 4s ad Having regand to the enormos exten
States o fields the United on is extremely restricted the coke producing is carried substantially synonymous with the bituminous coal mea substantially synonymous with the bituminous coal mea－ at the extreme northern point of the Allinning very nearly in Pennsylvania，the Appalachians nearly to their southern limits at Huntsville A labama，a distance of about 750 miles，the production of localities outside of this line having been，in 1880，less than I per cent，of the total．The distribution of the works is，however，very unequal；for by far the greatest develop－ ment of the manufacture is in the Connellsville region of Western Pennsylvania－a small trough fifty or sixty miles Western Pennsylvania－a small trough tifty or sixty miles long，and about three miles wide－ 69 per cent．of the total
make of the year having been produced in that region． The subsequent increase has been very great，and it is The subsequent increase has been very great，and it is now 9000．The coal from which the Connellsville coke is now 900 ． made is got from the Pittsburg seam，which is from 8 ft ．
to 18 ft ，thick，with only one small shale parting．It is very regularly bedded，and can be easily dug at a cost of bout a shilling a ton，the average output per man being rom eight to ten tons daily．The coke produced is of silvery lustre，cellular，with a metallic ring，and capable of bearing a heavy burden in the furnace．The bee－hive oven is exclusively used，the average time of burning being
48 hours－－though 24－hour coke is sometimes made－and 2 hours for that left over Sundays．The latter is denser but it is doubtful if it is better furnace fuel than that coked in the shorter period．
Next in importance to Connellsville is the Allegheny region．Here the coals are somewhat drier，and the three methods of open heaps，bee－hive，and Belgian ovens are in use．Third in order comes the New River coal－field in Western Virginia，which extends for about eighty miles through one of the most picturesque regions of the Appa－ achian chain，and is traversed by the Chesapeake and Ohio Railway，This valley has，since the date of the Report，become an important iron－producing district．
In the Western States，coking coals of cretaceous o tertiary age are found in Colorado，at El Moro，near the New Mexico boundary line，in a basin about eighty miles long and ten miles broad．These have，since the author＇s Report，been largely developed，and produce the greater amelting fuel used at the Leadville，Pueblo，and of same kind has been made at Crested Butte，high up in the Elk range of the Poky Mountaine，where gh in very high quality is made from cretaceous coal．The same coal is，within a very short distance，transformed into a dense anthracite．
The second half of the Report，dealing with the details of manufacture，gives a review of the coking processes followed in Europe，a chapter on coal washing，including some valuable detailed drawings of jigging machinery used in America，and another on coke burning proper，with drawings of plant．These are mostly from European sources，those of American ovens being mainly a very simple bee－hive type．The question of the utilisation of the waste products of coke ovens does not seem as yet to have been studied to any great extent in America，and the author＇s references to the subject only come down to 1882 ， concluding with a description of the Carvès oyen．

EXPERIMENTS WITH A CORLISS ENGINE AT CREUSOT．
Continued from page 218 ．）
M．Delafond proceeds to show that the results of these experiments prove that steam behaves very differently in the cylinder of an engine from the way in which it would behave in a non－conducting vessel，and he goes on to con－ sider what actually took place in the cylinder of the Creusot engine．We have to ascertain（1）what was，in each experiment，the amount of condensation during the period of admission，and（2）what was the condensation and evaporation during the period of expansion．The condensation during admission was ascertained in the usual way．The pressure at the moment the steam was cut off was got from the diagrams，and by means of Zeuner＇s tables the corresponding density of saturated steam was ascertained．Knowing the volume of the steam and its density，it was easy to calculate its weight． This weight，less that of the steam in the clearance spaces， would be，if it were not for cylinder condensation， precisely the same as that of the feed－water pumped into the boiler．Thus，if the feed－water used in an hour weighed 2000 lb ．，then the weight of the steam－obtained as we have stated－should also be 2000 lb ．It is，however， always less，and the difference is due to condensation；that is to say，at the moment when the cut－off valve closes there is not steam，but a mixture of steam and water in the cylinder．Let the weight of the steam be x and that of the water y ，while that of the feed－water is W ．Then $x+$ $y=W$ and x and y may vary in many ways，but their sum must always equal W．Furthermore，it must be observed that y may or may not be all due to cylinder condensation， according as the stean supplied from the boiler is or is not quite dry．It may be assumed that unless a super－ heater is used the steam will carry over with it from 5 to 8 per cent．of water in the case of Lancashire boilers．The Table No． 6 gives the result of M．Delafond＇s calculations，

Table 6.
With Condensation；without Jacket．

	Condensation during admission per stroke．		Condensation during expansion per stroke．		
曻品					

1 2 3 4	$84 \cdot 7$ $83 \cdot 0$ $87 \cdot 0$ $104 \cdot 0$	53 45 40 39	$0 \cdot 60$ 6 4 10	二	+0.4 $+3 \cdot 2$ +1.8 +5.9
Pressure， 88 u．					
5	$73 \cdot 6$	43	4		$+2 \cdot 3$
	$73 \cdot 6$	42	－	2	－1．1
7	68.8	35	－	3	－1．5
8	$77 \cdot 2$	34	－	4	-17
9	$90^{\circ} 7$	36	－	10	$-3 \cdot 9$
Pressure， 64 lb ．					
10	$44 \cdot 7$	39	$8 \cdot 5$	－	$+7 \cdot 5$
11	$37 \cdot 6$	27	$6 \cdot 5$	－	＋ 47
12	${ }^{41} 30$	24	4.0 1.2	－	$+\quad 23$ +0.6
14	$29 \cdot 2$	13	－	1	+0.4 +0.4
Pressure， 50 lb ．					
15	42.0	43	21.0	－	$+21 \cdot 6$
16	$38 \cdot 9$	33	15.5	－	＋12．8
17	$34 \cdot 8$	25	5	－	+3.5
18 19	$36 \cdot 3$ 30.5	14	$\underline{6}$	$\overline{9 \cdot 5}$	+3.5 -4.5
Pressure， 33 u．					
20	$40 \cdot 9$	31	18		＋13．0
21	$28 \cdot 1$	13		－	＋1．3
22	18.0	7	－	6	－ $2 \cdot 1$
23	nil	－	－		

With Condensation；with Jacket． Pressure， 110 lb ．

24 25 26 27	$50 \cdot 5$ $50 \cdot 5$ $45 \cdot 2$ $61 \cdot 1$	$\begin{aligned} & 39 \\ & 31 \\ & 29 \\ & 26 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 13 \\ & 11^{\prime} 5 \end{aligned}$	三－	$\begin{aligned} & +12.9 \\ & +9.9 \\ & +8.1 \\ & +4.7 \end{aligned}$
Pressure， 88 lb ．					
28 29 30 31	$44 \cdot 5$ $43 \cdot 5$ $45 \cdot 6$ $50 \cdot 3$	36 33 24 24	$\begin{aligned} & 24 \\ & 18 \\ & 16 \\ & 20 \end{aligned}$	E	+19.2 +13.2 +8.5 +9.4
Pressure， 64 lb ．					

$\begin{aligned} & \hline 32 \\ & \hline 32 \\ & 34 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \cdot 3 \cdot 4 \\ & 36 \cdot 4 \\ & \text { as: } \\ & 32 \cdot 2 \cdot 2 \\ & 24 \cdot 3 \end{aligned}$	34 $19 \cdot 5$ 28 17.0 17 9.0 16 8.0 10 $3 \cdot 5$		\＃	+18.5 +12.9 +5.4 +4.0 +1.5
Presure， 50 lb ．					
$\begin{aligned} & 37 \\ & 38 \\ & 38 \\ & 40 \\ & 40 \\ & 41 \end{aligned}$	$27 \cdot 6$ $33 \cdot 7$ $28 \cdot 5$ $27 \cdot 2$ $26 \cdot 3$	$\begin{aligned} & 34 \\ & 30 \\ & 19 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 20.50 \\ & \begin{array}{l} 23 . \\ 160^{\circ} \end{array} \end{aligned}$	$\frac{=}{\frac{2}{5} \cdot 50}$	+24.7 +198 +11.5 +1.4 -2.4
Preatur， 33 lb．					
42 43 44 45	$\begin{gathered} 30 \cdot 4 \\ 20.6 \\ \text { and } \\ \text { nit } \end{gathered}$	$\begin{array}{r}23 \\ 12 \\ 4 \\ \hline\end{array}$	${ }^{24}$	$\stackrel{\square}{5}$	$+17 \cdot 6$ +2.2 -17

With Condensation；without Jacket．

$\begin{array}{c}\text { Condensation during } \\ \text { admission per stroke．}\end{array}$	$\begin{array}{c}\text { Condensation during expansion } \\ \text { per stroke．}\end{array}$

	admission per stroke．		per stroke．		

Pressure， 110 lb ．

46	$94 \cdot 7$	37	-	15	$-5 \cdot 8$
47	$104 \cdot 6$	35	-	$17 \cdot 5$	$-5 \cdot 8$
48	$96 \cdot 3$	29	-	4	$-1 \cdot 2$

Pressure， 50 ll ．

53	$25 \cdot 9$	14	$\mathbf{6}$	-	$+3 \cdot 3$
54	19.1	8	1	-	± 0.4
55	$8 \cdot 1$	2	-	9	-2.7
56	nil	-	-	-	-

With Condensation；vith Jacket，
Pressurc， 110 lb ．

$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 54 \cdot 2 \cdot \\ & \hline 6 \cdot 8 \cdot \\ & 65 \cdot 2 \cdot \\ & 60 \cdot 3 \end{aligned}$	$\begin{aligned} & 27 \\ & \begin{array}{l} 27 \\ 26 \\ 20 \end{array} \end{aligned}$	$\begin{aligned} & 21 \cdot \\ & 17 \cdot 5 \\ & 13.5 \\ & 10 \end{aligned}$	－	

61	$32 \cdot 1$	16	9	-	$+4 \cdot 5$
62	$22 \cdot 1$	9	6	-	$\pm 2 \cdot 4$
63	$15 \cdot 4$	5	-	1	$-0 \cdot 4$

Pressure， 50 ll ．

64					
65	16	$15 \cdot 7$	7	6	-
65	15	$+3 \cdot 5$			
66	67	2	-	-	$\pm .1$
67	nil	-	-	-	-0.3

The weights of water condensed or evaporated during the period of expansion is calculated in the same way by taking the weight of steam proper to the pressure at the end of the period of expansion－that is to say，just as the exhaust port opens－and comparing it with the weight of steam at the moment the cut－off valve closed．If there is an augmentation，then that is obviously due to the recon－ version of some of the water into steam，which pro－ duces an effect well known to English engineers as＂rais－ ing the toe of
the diagram．＂ Here the dotted line 1 shows the effect of re－eva－
poration．If，on the other hand， the weight of
steam is less at steam is less at
the end of the
stroke than it was at the time the cut－off valve closed，then there has been still further condensation，and the effect on the diagram would be as shown by the dotted line 2．M．Delafond warns his readers that these calculations of the weight of steam are extremely delicate，and that，especially as regards evaporation or condensation during the period of expansion，they can only be regarded as approximate．The table gives the condensation during admission，and the condensation or re－evaporation during the period of expansion．We have not converted the figures into English units because the con－ version would involve numerous fractions．It will be enough to say that the gramme is equal to 0.564 drams avoirdupois．Thus，for example，in Experiment No． 15 the total condensation was 1 oz， $7 \cdot 7$ drams per stroke．The principal value of the figures is，however，as a means of affix anv definite weight value to them．Thus，we see that in Experiment 1，the condensation was represented by the figures 84．7，while in Experiment 22 the condensa－ tion was represented by 18 ，or less than one－fourth of the after allowing for the condensation in the jacket，which after allowing for the condensation in the jacket，which took place when steam was admitted to it．In the experi－ densation was the eame ns in rum 26，that is to say，about densation was the same as in run 26 ，that is to say，about
5 grammes per stroke．In like manner the jacket con－ densation in run 38 is taken as identical with that in run 32．There was，it will be seen，no condensation when the steam was admitted full stroke．Indeed，the weight of steam was admitted fan stroke．Indeed，the weight of
steam is apparently slightly in excess of that of the feed－ steam is apparently slightly in excess of that of the feed－
water．This is no doubt due to some minute error in observation．The results of this calculation are set forth graphically in Figs． 3 and 4 published in our last impres－ sion，page 218.
M．Delafond considers at some length the laws of thermo－dynamics as applicable to steam．We need not reproduce what he has said，as he only goes over old ground．It is more interesting to follow him in his deductions from the results of his experiments．Some of
these we have already given．The table above and Figs． 3 and 4 show clearly－（1）That for pressures above 641 b ．the weight of steam condensed is，other things been equal，the greater the higher the pressure．For pressures less than 64 lb ．the condensations present little difference， and the law of these variations is not clearly shown by the
diagram，（2）For the same pressure，as the admission

CORLISS ENGINE-NEW ORLEANS EXHIBITION.

augmented from about 4 per cent, of the stroke, the condensation diminished. With admission for the whole stroke there was no condensation. It appears that the condensation augments with the ratio of expansion (3) The jacket diminishes the cylinder condensation, and its benefits are most apparent when the initial cylinder condensation is greatest. The benefits conferred appear at first sight out of proportion to the amount of heat given up in the jacket. Thus, if we compare Experiments 8 and $3 \cdot 1$ it will be seen that the condensation in the jacket of $3 \cdot 1$ grammes of steam per stroke diminished by 27 grammes the weight of steam condensed in the cylinder and, again, runs 21 and 62 show that a jacket condensation of but $2 \cdot 9$ grammes of steam diminished by 25 grammes the condensation in the cylinder. (4) The presence or absence of the condenser has but a secondary effect on the condensation during admission. M. Delafond implies that this is a peculiarity of the Corliss engine, and explains why it gives economical results equivalent to those of the compound engine. The shortness of the admission ports, and the circumstance that the exhaust does not take place through the admission ports, appear to be the factors in favour of the Corliss engine.
(To be continued.)

THE NEW ORLEANS EXHIBITION.

No. I.

Among the great Exhibitions which have been held since that of 1851 in London, this present one in New Orleans will hold a memorable place. There has, doubtless, been growing feeling among manufacturers and others that here have been too many of these big shows; there is certainly a tendency to multiply them unnecessarily, and ome justification may be demanded when a remote city ition announces that it is about to hold a bigger Exhi bition than any that has preceded it. The bigness may be excused. It is usual here to advance by big strides, and no true Southerner, strong in the manifest resuscitation of his country-so long under a cloud-and sanguine of the uture, would think of having anything less than, and must needs surpass, the Philadelphia Exhibition of 1876. And hough an impartial observer, as he wanders over the vast area, may think that some of the money spent in the uildings might have been better applied to a completer equipment on a smaller scale, still the energy applied, and the great success in the essential features of the affair, disarms criticism, and leads one to congratulate the pronoters on their efforts. A few words as to the motives that led to the Exhibition may not be out of place. The collapse of the Confederate cause after the great war left the Southern States apparently ruined. After the vast expenditure of money and credit, and the decimation of the population, the freeing of the slaves without compensation to the owners was a revolution that involved ruin to most concerned. The voting power was transferred to the negroes, who, it naturally was expected, would always vote with the party who had freed them, and the victorious Northerners, holding the South firmly in their grasp, had no inclination to let them grow strong again. But times have changed. The whites have during the last ten years regained their natural ascendancy, and now, for the first ime since the war, the Democratic or Southern party are in a majority. They have elected Mr. Cleveland as Presi dent, and now to a large extent control the immediate future of the United States. The Southerners, it any rate, feel that their interests will receive fuller considera.
tion than hitherto. This is acknowledged also in the North, and capital, which is so much needed, may be expected to flow here both from the richer States of the
Union and from Europe. Under these Union and from Europe. Under these circumstances, the project of an Exhibition was well received, and is but a natural expression of advancement and a desire to set forth the resources of the country.
To engineers there are three aspects of the case that are of special interest-one, the growth of railways, the

SECTION OF MUSIC HALL.

Captain Eads' jetties, which have deepened the approaches from the sea; and thirdly, the extraordinary development of the hitherto dormant mineral resources of the Southern States, and the probability that it is in the latter quite as much as, or even more than, in Pennsylvania that the will be found iron and steel trades of the United States et for the . New Orleans is not only the natural outworld, but is also virtually the of river navigation in the of Texas, whiso virtually the only good port for the State Fexas, which is in itself as large as France. As one example of the value of the river for transport, it may be entioned that the supply of coal for this city, port, and Ohio and Mississippi, Ohio and Mississippi, in huge rafts or groups of lighters,
holding in all 20,000 tons or upwards, and so cheaply that the coal fetches about the same price here as does coal in London. New Orleans has a population of about a quarter of a million, but it is isolated, being 800 miles from any other city having more than 100,000 inhabitants. In this respect, and in regard to the consequent probable financial results of the Exhibition, it differs much from Philadelphia, which has within twenty-four hours' by railway more than half the population of the United States. The Exhibition has been established on a site the city, and in its very situation brings into prominence some of the peculiar characteristics of New Orleans. Surrounding the building are pleasant groves of oaks, relics of the original Spanish settlement. The city is situated close upon the river, and the huge high-storied steamboats, our knowledge of which has been revived by Mark Twain's recent descriptions, crowd along the levee or river embankment at the end of the main street. The streets are level with, and in some cases below the level of the river. In the northern cities of the Union the street paving is bad ; here criticism is simplified by the fact that, except in a few of the central thoroughfares, there is no paving at all. The streets have been cut through the fields, a single tram track laid along the middle, and except stepping stones or planks at the crossings, the rest is mud, which be the chaos, as at the Kilburn chaos, as at the Kilburn pre-eminently a city of tramways, and there is practically no other means of locomotion away from the river. On an track free from gradienta track free from gradients the cars run easily, drawn each by a single mule, even when loaded, as is from five to here, with from five to twenty passengers standing up in addition to the proper complement of twenty. As is usual in this country, cabs are practically non-existent, and were it not for the steamboats, access to the Exhibition would be greatly limited, But the steamboats, leaving for the time their proper function of long river voyages, carry to and fro 2000 pasengers at each trip.
As every Exhibition may be supposed to have its special points, so has this one at New Orleans. One must not look for many novelties, though these are not wanting, but one may regard with interest the alterations in American methods and types since the Philadelphia Exhibition in 1876; may study with advantage the development of machines and appliances adapted for the wants of the Southern States; or look with astonishment on the complete

TROSSIN'S SUPERHEATED STEAM ENGINE,

and extraordinary State Exhibits of natural products, 100 ft , high to supply force for the elevators and for fire agricultural and mineral ; and in respect of these latter English engineers may compare, with feelings somewhat mingled, from a national point of view, the potential future prospects of this country with those still left in Great
Britain. The contiguity of Mexico, its development by britain. The contiguity of Mexico, its development by rail ways, the access thus given to its mines, and the open-
ing it presents, unimpeded as it is by protective tariffs, to ing it presents, unimpeded as it is by protective tariffs, to
English manufacturers, are also subjects for investigation. English manufacturers, are also subjects for investigation. materials in their construction, and the unprecedented extent of the electric lighting, are also points of interest.
The Exhibition buildings are constructed entirely of wood in a simple but efficient manner, the design and con-
struction being the sole work of the struction being the sole work of the superintending archi-
tect, Mr. G. M. Torgerson tect, Mr. G. M. Torgerson, who has utilised the local material, pitch pine, which grows within a few miles of the city. This timber is heavier and stronger than that bearing the same name in England, and as the trees grow to a great size, there is no difficulty in obtaining the massive and lofty supports which are necessary to the design. At the same time, as the buildings are but temporary, the highest quality wood has not been selected as may be seen by comparing it with that in the permanent buildings in the city, which are largely constructed of timber. The main building measures 1378 ft . by 905 ft ., exclusive of sundry extensions, and the Government and State Exhibition building 885 ft . by 565 ft . These are similar in construction, being divided into spans varying
from 5 Oft to 75 ft , timber roof principals being supported from 50 ft . to 75 ft ., timber roof principals being supported on vertical posts. Both buildings have galleries 50 ft .
wide. The covering is mainly of tinned iron on boarding with side windows and lanterns of glass. Part of the main building is set apart as a music hall, about the size of the Agricultural Hall at Islington, having, like the latter, a roof formed of arched ribs, and side aisles, but no galleries, the side spans serving as abutments for the ribs. effective, as shown by the accompanying illustration.
This music hall in the main building is 210 ft . long by 50 ft s span. The structure is entirely of wood, with iron tie-bolts at each of the vertical posts in rib. The arched top and bottom members of the ribs are interesting in that they are each formed of laminated boards, ten boards, 8 in . by lin., being bolted together. This is the plan that was adopted for each of the two 90 ft . ribs of the Great Northern terminal station at King's Cross. Some ten years ago this stituted; but on removing the first of the two spans, it stituted; but on removing the irst of the two spans,
wat was was therefore left standing, and now remains in wood. In the New Orleans roofing the inner end ishipped witharched ribs, and enclosed with boarding, to receive the orchestraand organ. There are numerous other buildings for special exhi-
bits, the total area being about bits, the total area being about 23 million square feet, the quantity of timber employed being equal to 17 million square feet of boarding lin, thick-the unit of measurement here-and the average cost $£ 710$ s. per square of 100 superficial feet. So accustomed are the people here to the use of elevators, that it was deemed necessary to erect twenty-six of these to lift visitors to the galleries, and only a few staircases are provided. The water supply is
obtained from the Mississippi river and is filtered, and $4,000,000$ gallons per day are forced through a standpipe

100ft. high to supply force for the elevators and for fire the mildness of the climate has evidently been taken into account. Neither snow nor high winds are to be anticipated, and light buildings and roofs sloping but slightly are permissible. Heavy rains occur, and ample provision is made for carrying off the water by sinking parts of the roof so as to make channels 20 ft . wide, into which water from a wide area of higher roofs converges, and is taken There is no attempt at decoration, the timber being left There is no attempt at decoration, the timber being left
bare and unvarnished, but there is an ample display of flags. In and unvarnished, but there is an ample display of flags. In visiting the grounds of the Exhibition one is struck by the absolute level and by the appearance of the river,
which is within 2ft. of the floor of the Exposition, the which is within 2 ft . of the floor of the Exposition, the drainage, like that of the city, being towards the lake Pontchartraine, which is about five miles to the north-east and 18 ft . lower than the river, this lake being the same level as the sea, while the river has to flow 120 miles to the sea. The soil is but loose mud, and presents great difficulties in making foundations. Numerous buildings in New Orleans show signs of settlement, the new Cotton Exchange, a handsome stone structure, having sunk 9in. within a year, and the Post-office and Custom-house, a building as large as the General Post-office in London, having sunk 20 in . The maximum load that can be placed with safety on this soil, even on a driven pile, is 800 lb . per square foot, The vertical posts of the buildings rest upon sills of timber, which sufficiently distribute the weight bronght upon them. A very large motive force has been provided for the electric lighting and the machinery in motion, the latter, which, as compared with previous exhibitions, is not of great extent, being stopped at dusk when the lighting begins. The engines, shafting, and their numerous appurtenances and foundations have all been arranged by Mr. S. H. Gilman, the chief consulting engineer, who has overcome many difficulties with ingenuity and success. Owing to the soft and loose character of the soil, already beds for the principal engines are ranged upon a platform about 2 ft , above the floor in the centre of the main building. There is not very much variety in these engines, although many different makers are doing their best in competition cylinder vertical engine, of the Willan type known in England, all are of the horizontal kind, mostly adapta tions of the Corliss principle, although there is a tendency tions of some of the makers to ignore the name Corliss, and to chim or their modifications in details the invention ow types At Philadelphis in 1876 the Corliss which new types. At Philadelphia in 1876 the Corliss which now working the car factory in the eng of Puch is It is curious to note how all the engine makers have followed suit in adopting the horizontal type, and it is also followed suit in adopting the horizontal type, and it is also
interesting to see that there is a change for the better in the style of finish, the greater sobriety to which we are accustomed in England having been substituted for the somewhat gaudy ornament which used to be the fashion in this country. It is also to be mentioned that there is not one compound engine in the Exhibition, probably the small amount of marine work done in the country having something to do with the backward condition of American engineers in this respect.

The largest engine is a Harris-Corliss, made by a company of that name at Providence, Rhode Island. This engine has a cylinder 30in. by 72 in , with a nominal capacity, according to American rating, of 650 -horse power. The principal novel feature in this engine is in the self-packing of the valve spindle in the steam inlets, by which it is claimed that much friction on the spindle is avoided. The fly-wheel is 24 ft . diameter, 6 ft . wide on he face, and is built up of ten segments, weighing 40 tons in all. The main shaft carrying the wheel is 15 in . diameter. The power is transmitted by a Gandy cotton belt, 4ft. wide, woven in one length. The foundation for this and the other principal engines is on brickwork in English Portland cement, the beds being splayed out at the base so as to impose a load of only 600 lb . per square foot on the soil below. The effect of the tarift is shown in one of its many peculiar aspects in this matter of cement. No chalk has yet been found in this country ; the cement made here from other material is of a very inferior kind and those who desire good cement have to pay the penalty of a high import duty, so that cement which costs 7s, 6d. a barrel in London costs 15 s , here. The lofty memorial tower which has lately been completed at Washington, and which probably concentrates a greater load on its foundations, in proportion to their area, than any other masonry structure in the world, showed signs of yielding at its earlier stages till English cement was used. The engine next in importance is a Reynolds-Corliss, with 32 in . by 60 in . cylinders. There is also a Corliss engine, made by Hewes and Phillips at Newark, New Jersey. It has a cylinder 18 in . by 36 in ., and is rated at 100 -horse power. We illustrate it above. In all there are about forty-five engines actually doing work, besides more than 100 running empty
Steam at 80 lb . pressure is supplied to the engines from fifty-three boilers, ranged in line outside, and 50ft. distant from the main building, the boilers being in groups or batteries of four and five. Along the front of the boilers is one main trunk steam pipe, 400 ft . long, 30 in . diameter, of $\frac{3}{8}$ in. steel plates. This pipe was made at Pittsburgh, and brought to the site in 30ft. lengths. There are no expansion joints, the pipe being fixed in the centre of the line and resting on concave rollers placed at interval along its length, the supply pipe from each group of boilers being connected to it by a vertical bend swivelling in a stuffing-box. A similar arrangement is adopted where the steam branch pipes
 are attached to the various engines, these branches being taken as T pieces from the main trunk pipe, and always main the top of the pipe. from the top of the pipe.
Several very long branch peveral are used to transmit pipes are used to transmit
the steam to the various the stean to the various
engines in the building, one pipe being 2400 ft . long, another 1900ft, and another 1100ft. All these are fixed on rollers as just described, without expansion joints The pipes are well enveloped in a wrapper of paper and asbestos, which retains the heat very well,
and the pipes are never allowed to get cold even
when the engines are not running. The exhaust steam from the large central engines converges to one main trunk pipe below the floor, and within it is a group of which the water is raised to a temperature of about 200 deg.
None of the boilers are of a kind which would be used in England for such a purpose. All are fired externally, the heated vapours passing along outside the boiler, returning by two internal tubes, and thence up the chimney. cox, composed entirely of tubes, but more successful, it is said, in operation than have been the Root and other tube boilers tried in England. A group of tubes is arranged sloping downwards from the front, and a furnace being built in brickwork below, the heated vapours pass first upwards between the tubes and along the top of them and directed down and below the tubes, and thence up the chimney. Vertical tubes connect those just described to a horizontal cylindrical tube of large diameter above the brickwork, this large tube being half-full of water, and the upper half forming the steam space.
The use of boilers of this or somewhat similar types is so lap-welded tubes has large There are six lines of transmission shafting, $11,000 \mathrm{ft}$. in all, much of it extending into the machinery annexe, the longest line being 1900ft. This shafting is not turned, but Jones and Laughlins, of Pittsburg, who make a speciality of this system, and who produce large quantities of small diameter shafts for cotton mill spindles. The shafting in the Exhibition has been accurately set out, but universal couplings are provided at intervals to allow for settlement, and the vertical bracket bearings on the timber supports supporting frames, to ensure a firm bearing in the loose soil. Holes for the vertical posts having been excavated some inches larger than the posts, the latter were inserted 16 ft , into the ground; the surrounding space soon filed
with water, and into this heavy sharp sand of a peculiar kind found on the sea shore was inserted, and the sand as it sunk expelled the water and held the posts in a firm grip. The electric lighting installations, as at present established in the city of New Orleans and at the Exhibition, together form a larger aggregate than exists at any other place in
the world. In many of the American cities the electric light is used instead of gas to a much larger extent than light is used instead of gas to a much larger extent than
in England, the simple reason being that gas is so much in England, the simple reason being that gas is so much
dearer here, while the cost of coal or other fuel is as cheap as with us. The present price of gas in New Orleans is 78. per 1000. In the city the Brush Company have the sole
concession for the electric lighting of the streets, and their concession for the electric lighting of the streets, and their
lofty poles carrying the wires along the main thoroughfares, additional as these poles are to those of the telegraph and telephone companies, greatly disfigure the streets. An annual fee or rent of 5 dols, is paid to the municipality for
each pole erected. The whole of the city electric lighting, each pole erected. The whole of the city electric lighting, worked from one central station, there being fourteen circuits, averaging five miles each. There are 250 public
lamps, burning all night, for which the city is charged 200 dols . per lamp per annum. In addition to these there are 550 private lamps, all alike being of a nominal $2000-$ candle power. The motive power is provided by three
Atlas-Corliss horizontal engines of from 250 to 275 -horse Atlas-Corliss horizontal engines of from 250 to 275 -horse power each, worked from five groups or batteries of boilers,
each group being of 200 -horse power. This electric lighting is confined to the principal streets or avenues, there being much gas lighting also in the less important streets. At the Exhibition the Government building has been allotted to the Brush Company, and here they have at present 300 lights, and 60 more are being added, the power
being provided by the Harris-Corliss engine before described.
The main building is lit by the Louisiana Electric Company, which uses thirty Excelsior dynamos, each equal to thirty arc lights of 2000 candles. At present the
number of these lights in operation is 825 , the carbons number of these lights in operation is 825 , the carbons
being $7_{6}^{7} \mathrm{in}$. diameter, and a current of 30 amperes, the lamps being known here as the invention of E. Pickering. Of these 825 lamps seventy-five burn all night, the remainder only for four hours. Power is supplied by
of the big Corliss engines and seven smaller engines. The Jenney Electric Company, of Fort Wayne, Indiana which have a special dynamo and arc lamp of its own,
light the cattle, carriage, and furniture sheds with 112 lamps of 2000 candles, and besides these it has ten similar lamps on each of the six towers in the grounds. There are at present being prepared five groups of lights, to give 36,000 -candle power in each group, on similar
towers. The towers are 125 ft . high, framed of three wrought iron solid columns of a cross-shaped section, the three columns being arranged as a triangle in plan, with eleven tiers, exclusive of the basket at the top holding the lamps.
The Thomson-Houston Company, of Boston, lights the horticultural hall and the surrounding ground. This known in England, has its own lamp, and a dynamo with an automatic regulator, which, by a self-acting movement of the brushes on the commutator, allows a 25 -light
machine to serve instantaneously a single light. By means of six 30 -light dynamos and one of twenty lights, 175 arc of six 30 -light dynamos and one of twenty lights, 175 arc
lamps are illuminated, and a few incandescent lamps. This company is arranging for a complete and extensive sington this year. In regard to force of current and in sington this year. In regard to force of current and in
other main respects, the system is very similar to that of other main respects,
All the foregoing installations are confined nearly exclusively to arc lamps, and the incandescent lamps are allotted to the Edison Company, which lights the art gallery,
the music hall, and under the galleries of the main build-
ing, 500016 -candle lamps in all, the full capacity of the
machinery being 6000 . There are six steam engines and twelve dynamos.

THE MACKINNON PEN

Althover the pen is as old as the sword or the plough, its original form is still retained; but the material of which it is vegetable kingdom. About the year 1875, Duncan Mackinnon, a druggist of Stratford, Canada, read a statement in the
Scientific American to the effect that he who should devise an ink-writing instrument, as convenient as the lead pencil, would achieve both fame and fortune. This stimulated his inventive from the stylus of the ancients. In a couple of years he had produced an instrument which, though far from perfect, was
welcomed in the United States, and, after a year's constant wse was stated by the above-named journal to have "given good satisfaction," while the Science and Art Committee of the
Franklin Institute also reported favourably on the invention But, though the also reported favourably oen attained, the

movement of rod n to one side or the other is temporarily pre-
vented. The disc m is moved in the direction of the arrows, shown in Fig. 3, by means of a cam on shaft c, and thus its
movement is temporarily communicated to rod n. By means of rod o the small slide p in slide-box q is shifted, and thereby
the steam ports $r r r$ are more or less opened or shut. Rod o is the steam ports $r r r$ are more or
with the grate t, and fire-door u, and its ring-shaped space v is with the grate t, and fire-door u, and its ring-shaped space v is
filled with a certain amount of the lead-tin alloy. The boiler is placed on the superheater, and, as shown, the entire machine is placed on the superheater, and, as shown, the entire machime
with boiler and superheater is enclosed in brickwork except at K , in the middle of the machine, where the wheel case B is screwed together. This opening is closed by means of two
plates w, and the holow space is filled up with sand. The Hlame and heated gases pass partly through the lower opening Y of the boiler J into flue Z, which surrounds the superheater,
and then rise round the steam wheel case B. The gases then return in a flue round the outer half of the boiler, and are thu: sufficiently cooled to enter into the chimney. The remaining
gases rise into the boiler and pass by a damper 1 1 into the the boiler the soon as sufficient pressure has been obtained in
 the metal, which has already been melted, and drives it through and through closed by the end of rod o steam wheel case B, where it surrounds the steam wheel A and fills the buckets. As soon as all metal has entered the case B,
the strongly superhented steam enters the buckets of the the strongly superheated steam enters the buckets of the
wheel, which, by its buoyancy, it causes to turn round. Every bucket, as it passes by the steam ports, is partially filled with
steam, and as it moves upward the steam expands and trans mits its energy to the steam wheel. Thus all the buckets on the left side of the wheel are filled with steam, whereas the
buckets on the right side are filled with metal. The difference buckets on the right side are filled with metal. The diference
of weight contained in the buckets on each side is the driving shaft by means of spur wheels D and E. As soon as each bucket arrives at the top its mouth is directed upwards; hic
steam passes out and the liquid metal-which stands a few steam passes out and enters into the buckets. The steam
inches over the wheel
隹 escapes through the perforated plates 6 and 7 -in order to pre-
vent the metal from being carried over-through stop valve 8 into the spiral tube 9 , situated in the boiler. The superheated
steam is cooled nearly to the temperature of the saturated steam, and almost the whole amount of heat which had been expended in superheating the steam is recovered. From this spiral tube
9 the steam is conducted into the feed-water heater or in 9 the steam is conducted into the feed-water heater or in con-
densing engines into the condenser. The steam flows into the machine without interruption, and therefore there is, of course no valve gear required. The small slide p is required only for
the purpose of regulating the steam supply An engine of Otto Trossin, 2, King-street, Finsbury-square, London.

THE METEOROLOGICAL SOCIETY

Turis Sooiety opened its sixth annual exhibition of instruments

ments.

F.R.S., read a paper giving a obriof the president, Mr. R. H. Scott, F.R.S., read a paper giving a brief account of the various instru-
ments and arrangements to bo found in the exhibition for the purposes of recordings solar and terrestrial radiation and the dura-
tion of sunshine, both in regard to its light and its heat, the lastnamed being obtained by means of the sunshine recorders which are now pretty generally used. Ho exhibited twelve monthly maps, showing the percentage proportion of hours of recorded sun-
shine to the hours the sun was above the horizon in the various shine to the hours the sun was above the horizon in the various
districts of the United Kingdom. Ho stated that the features which strike any one on examining the maps of sunshine, which are for the most part for the last five summers and the last four
winters, excluding January to March, 1885, which has not yet winters, excluding January to March, 1885, which has not yet
expired, are:-First, the broad fact that the extreme south-western and southern stations are the sunniest, as has already frequently
been pointed out. Jersey is undoubtedly the most favoured of our stations in this particular. Secondly, that in the late autumn and winter Ireland is much sumnier than Great Britain, Dublin having absolutely the highest percentage of possible duration of sunshine
in November and December, and being only equalled by Jersey in January. The Dublin instrument is not situated in the city, but at the Mountjoy Barracks in the Phoenix Park, beyond the Viceregal
Lodge. The north-east of Scotland is also exceptionally bright, as the station-Aberdeen-lies to leeward of the Grampians. In April the line of 40 per cent. of possible duration takes in Jersey,
Cornwall, Pembrokeshire, the Isle of Man, and the whole of Ireland, except Armagh. The absolute maximum of the year occurs in May, and the amount rises to 50 per cent.-nearly 60 in Jersey
-over the district just mentioned as enjoying 40 per cent. in April. In June there is a falling off, which is continued into July England, however, a second maximum occurs in August, the figure for Jersey rising to 50 per cent. This is mainly due to the excep-
tionally bright weather of August, 1884, in the southern counties tionally bright weather of August, 1884, in the southern counties
of England. In September Ireland shows a falling off, and the of England. In September Ireland shows a falling off, and the
greatest degree of cloudiness is in Lincolnshire. In October the midland counties of England are the worst off. In November the
line of 40 per cent. encloses two districts, one Dublin, already mentioned; the other the eastern counties-Cambridge and
Beccles. The absolutely highest monthly percentages in the period Beccles. The absolutely highest monthly percentages in the period
under consideration are in the month of May, 1882, in which St. under consideration are in the month of cay,
Anne's Head, Milford Haven, had 62 per cent.; while Geldeston-
Beccles-Douglas-Isle of Man-and Southbourne-Bournemouth Beccles-Douglas-
-show 61 per cent.

Drinking Water for the Soudan.-Particular attention has oeen paid by the Transport Department to the important matter
of water supply for those engaged in the present Soudan Expedition, nearly the whole of the vessels chartered having condensers for the production of drinking water. The following vessels,
among others, are so fitted, and with the producing capacity men-
tioned :-

Name of ship. $\begin{gathered}\text { No. of } \\ \text { condensers. }\end{gathered}$ Maker. Daily production.

PRIVATE BILL LEGISLATION.

Durisc the past week a fair amount of work has been accom-
lished in regard to Private Bills, although few Select Complished in regard to Private Bills, although few Select Com-
mittees have sat. Judging from what has taken place this week, there is not, after all, very much vitality in the opposition to Bills this Session, and Standing Orders Committees, Examiners
nnd Locus Standi Committees have already decided the fate of
many of the Bill without mittees as have mave casily disposed of the schemes sub mitted to them. The Ship Canal Bill is, of course, a conspicuous exception, but of that more later
The Thames Deep-water Dock Bill, which we have previously mentioned, was in the end thrown out by Earl Ducie's Com-
mittee, the object of the measure being to obtain an extension of time for three years, within which to purchase lands for the proposed deep-water dock at Dagenham, sanctioned in 1881 . It
was at first thought that this decision would necessarily destroy the whole scheme, but it seems that the powers for acquiring till a chance of purchasing the land, or coming to some aree ment with the owners. Then they can go on with their scheme in their own way. The Standing Orders Committee of the Palace, South-Eastern, and Metropolitan Railway Bill, and the East and West India Dock Company's Bill to proceed, but which therefore fails. The corresponding Committee in the Commission has allowed several Bills to go on-despite certain
non-compliances-including Southwark and Vauxhall Water Bill; but declined to dispense with the Standing Orders in favour of the Regents' Canal, City, and Docks Railway-lands-
Bill, and the two Bexley Heath Railway Bills. In the Court of Bill, and the two Bexley Heath Railway Bills. In the Court of
Referees' the Metropolitan District Railway, and the London Chatham, and Dover Railway sought for a locus standi against cost of $£ 25,000$, on certain lands at New Cross, which they hold on lease from the East London Railway Company. The case of five metropolitan companies was that these lands belong to the rights over the East London line, and they therefore objected to the Metropolitan Railway Company obtaining a separate title to the property. After a long argument the referees so far agreed for. In the same Court a lengthy discussion was also raise with regard to the petitioners claiming a locus standi against
the South-Eastern-various powers-Bill. There were in all seventeen petitioners, but the principal were the Midland, the Some of the cases were arranged privately, but nearly all the rest obtained a locus with respect to certain portions of the Bill, especially that relating to the making of agreements with Committee, presided over by Mr. W. H. Gladstone, was disposed of in a very summary manner, all petitions against the Caterham lrawn ; an agreement being arrived at respecting the Maidstone Water Bill, and the opposition to the Rickmansworth Water measures of a minor character. A Bill for the abandonment of the Skipton and Kettlewell Railway Bill-through want o support and consequent insufficiency of capital-and the release
of the parliamentary deposit ; and another Bill to revive and extend the time for the compulsory purchase of lands for the were passed as unopposed Bills by the Chairman of Ways and Means ; as were also the Oswestry Water and Runcorn Gas The Mersey Subway Bill likewise came before Sir A. Otway before being passed. The purpose of the Bill is to extend and enlarge the powers of the promoters of the Liverpool and Birkenhead Subway, the capital for which is fixed at $£ 500,000$. One
of the gentlemen interested-Mr. Bushell-stated that on a of the gentlemen interested-Mr. Bushell-stated that on a
moderate calculation a surplus of income over expenditure to the extent of $£ 20,000$ a year would be realised, and it was proposed to save that profit year by year till the capital could be
returned to the subscribers, after which the tolls would be abolished. Sir A. Otway asked why, instead of the promoting Company, the wealthy Corporations of Liverpool and Birkenalthough the Mersey Dock Board had about one-third of the docks at Birkenhead, there had always been jealousy between help the scheme until they saw the result of the Mersey Railway scheme. They had not actually refused to subscribe to this subway, but the Birkenhead Corporation had subscribed a had agreed to subscribe $£ 75,000$. Observing that, in his opinion, a scheme for uniting these two important places in this way
ought to have been undertaken by the two Corporations, Sir ought to have been undertaken by the two Corporations, Sir
A. Otway next assailed the proposed toll of 1 d . each way, urging the promoters to reduce it to $\frac{1}{2} \mathrm{~d}$. each way, as in the case of the
Thames Subway, or else to make toll 1 d . for the double journey. He pressed this suggestion more than once, but it could not be, or, at any rate, was not adopted, and all he could
then do was to declare the Bill proved except upon one technical point. That was whether under certain Standing Order 5 amended since the original Bill was passed, a fresh deposit of 5 per cent. on the original estimate should be required and im-
pounded. This question he reported for settlement to the House, and by. the House it was referred to the Select Com mittee on Standing Orders,
The Water Companies-regulation of powers-Bill having considered on Monday by that body. The principal matter for discussion arose out of Lord Camperdowns clauses requiring water companies to supply the particulars of their claims, and consumer. A number of petitions were presented against the argument an adjournment till after Easter was ordered Although there were these petitions, the companies generally
show a desire to accept the Bill with certain amendments, and show a desire to accept the Bill with certain amendments, and
Mr. Hollams, representing the Metropolitan Water Company, said they wished to so alter the provisions with regard to giving particulars as to enact that the companies should not have
power to cut off water or to enforce their powers until a period say of twenty-one days had elapsed after they had delivered fubjecticulars and given foll oppor the to a magistrate to fix the amount of the claim, then the company's powers of cutting off water should not be exercised until the magistrate had given his decision.
In the House of Lords, on Tuesday, Lord Lamington endeaVoured to raise another discussion on the Bill for widening
Parliament-strect, although, as he himself admitted, the Bill
was no longer in that House, but in the Commons. On the
conclusion of his remarks, Lord Rosebery said he quite concurred wath his noble friend in considering it highly objectionable that so important a site as Parliament-street, so close to
the Government offices, should be dealt with by private enter prise; but although they would keep the subject before their atention, the Government could not do arything in the matter minster Hall bect con their inquiry for a wedminster Hail have suspended their inquiry for a week; but
before their last adjourument they went in a body down to Werore their ast adjourument Halle we judge, by means of wood and canvas
Wodels, of the effect of the designs under their consideration. Into these designs we need not enter now; but although the Committee will take further evidence, it is believed that they ncline to a design embracing a two-storey structure, which will contain rooms likely to be of use to members of Parliament.
Two matters connected with Private Bills, although not arising in the House may be mentioned. The parochial authorities Shoreditch and Bethnal Green have resolved, after a conference ith the promoters of the Columbia Market Railway Bill, to development of the market as far as that is possible by means of the projected railway. Lord Henniker's Committee of Peers, Iembers of the House of Commons, and others interested in sider further their position with regard to these Bills. After a long discussion the Committee decided to take no further steps of negotiation until it was seen The Manchester Ship Canal Bill continues to engage Earl Cowper's Select Committee of the Lords, eleven sittings having
now been occupied. The promoters' and that of the neering part of the scheme ; and here it should be explained hat since our last issue the Committee have announced that, ing portion of the project first they will not decide ugon the Bill until they had also gone into the various other elements in he measure.
After the point at which we left the enquiry last week Mr. Leader Wiliame, the engineer, was cross-examined on some of Hichael, Q.C., then produced this new clause which the promoters had drawn up in place of clause 31 of the old Bills, and which "The company may from time to time dredge the bed, banks, shores, and channels of the river Mersey or the estuary thereof,
and of the river Weaver or the estuary thereof, and of the river Irwell, within the following limits and for the purposes, in the nanner, and to the extent following: That is to say, for the purpose of making and maintaining an access to the canal at hasham, so much of the river Mersey or of the estuary thercof
as lies below the commencement of work No. 1 and between Bromborough Pool and the commencement of work No. 1, and Nithin those limits between the southern shore of the river ansey and an imaginary line drawn from the ef from the shore at Eastham Ferry and 500 yards from the shore near the magazines at Bromborough. For the purpose of
making and maintaining accesses to and from the lowwater channels of the river Mersey or the estuary thereof, from and to the works No. $1 \mathrm{BB}, 1 \mathrm{G}(a), 1 \mathrm{G}(b), 1 \mathrm{G}(c)$, and
$1 \mathrm{H}(a)$, and for securing the passage and escape of land waters H (a), and for securing the passage and escape of land waters river Mersey or of the estuary thereof as lies to the north of work No. 1 and between the commencement thereof and Runcorn Bridge and an imaginary line drawn parallel with and at
distance of 500 yards to the north of the side of that work connection with and for the purposes of the works authorised by this Act, so much of the river Weaver and of the estuary thereof as lies between Frodsham Bridge and the estuary of the Mersey, also of so much of the river Mersey as lies between Runcorn Bridge and the junction of that river with the river Irwell, and so much of the last-mentioned river as lies between
its junction with the river Mersey and Hunt's Bank in Manits junction with the river Mersey and Hunt's Bank in Man chester." Mr. Aspinall, Q.C., representirg the Liverpool Corpo ration, said he was not satisfied with this clause, and promised
to show that in effect there was no difference between the new to show that in effect
and the original clause
The promoters' evidence being resumed, Mr. James Abernethy, C.E., consulting engineer to the promoters, was examined. He expressed the conviction anved else, that the present plan took the most practicable route for a ship canal between Runcorn and Eastham ; and that the works would not affect the estuary at all prejudicially, or tend to deflect the course of the present channel. He was also of opinion that the Weaver and Bridg. water Navigations, and the various systems connected with them, would be in no way injured, but, on the contrary, im and pay tolls rather than wait for the tidal water of the estuary He was satisfied further that this canal would not diminish the
tidal scour of the Mersey. Mr. Hill, C.E., took a similar view on each of these points; and following him on the same side came Mr. Vernon Harcourt, C.E., a convert to the Bill. In
1883 and 1884 this gentleman gave evidence 1883 and 1884 this gentleman gave evidence against the scheme
because, as he now esplained, he believed that a fixed channe would injure the estuary. He believed, however, that a dredged channel, such as was now proposed, would not injure
the estuary, hence his appearance on behalf of the Bill. As to the conffict between the promoters' scheme and that suggested last year by Mr. Lyster, he agreed that they ditfere the estuary, while the latter would not. All things considered on either side. Mr. John Fowler, C.E., enginer to the Tee Commissioners, and Mr. Messent, C.E., engineer to the Tyne Bills, also spoke in favour of the present scheme, the latter observing that he still thought last year's plan a perfectly good one, though the present. plan was, perhaps, more workable, as
not being open to the objection of possible injury to the estuary Three or four more experts concluded the engineering case fo the promoters, among these being Mr. Giles, C.E., M.P., eng considered the previous schemes quite practicable, and that he was of opinion that the present scheme entirely got rid of the
objections made against cutting a channel through the Mersey estuary. As the opponents bad proposed practically the same scheme as this, he could not understand their opposition from an engineering point of view. The abstraction of water from the estuary would be so small in quantity as not to be worth consideration, and the ports on the river would not, in his judgment, suffer, while s
The petitioners' case was opened, without any preliminary
peech, by the examination of Captain Graham Hills, and hii
evidence had some surprising results imparting some very
welcome animation to the proceedings. This gentleman is the marine surveyor to the Mersey Docks and Harbour Board, and may therefore be regarded as having the same interest in this matter, if not precisely the same views, as Mr. Lyster, the engineer to the Board, but it would appear that something ha quite at one. He of course combatted Mr. Leader Williams's contention, urging that a far greater amount would be extracted that great damace would be han Mr. Williams estimated, and to the bar by this scheme. He also severely criticised the tions that en chies, and remarked that in some of his calcula for his basis. He, in fact, condemned the promoters' scheme and evidence all round; but when he came to be cross-examined
by Mr. Pember, he boldy declared that Mr. Lyster's-his colleague's-alternative plan was not his plan, and he should recommend everybody interested in the Mersey to oppose that commotion for a time ; but its effect was somewhat mered the subsequent explanation that he bad not been asked for by the subsequent explanation that he had not been asked for his
advice upon Mr. Lyster's plan, and knew nothing of it
beforehand. Later on he admitted that this plan was less open to objection than the promoter' 'plan, because it
followed the sinuosities of the high-water line more closely and did not cut off the indentations to the same extent, nor statements was very singular, and it is said that more surprise are in store for the Committee. Mr. Lyster was next examine in opposition to the Bill, and with reference to his own scheme differed radically from, and was much more last year, that it than that of the promoters, and that it would be impossible to work the canal with such a system of locks as Mr. Williams During the week a number of petitioners, including the Weaver Navigation Justices and the Rochdale Canal Company,
have come to an arrangement with the promoters, they being satisfied with the provisions proposed for safeguarding their

AMERICAN NOTES.

New York, March 14th.
MALL and telegraphio advices up to to-day, from eastern and western iron centres, all seem to ndicate a gradual improvement iron, merchant bar, and pig inon. The activity grows out of the have been waiting for a long time for the disappearance of cold weather, and the resumption of operations at mills. The lowest prices known in the history of the iron trade now rule.
downward tendency in steel rails has been apparently checked by inquiries from many quarters throughout the West and South for
 bonds of several new railroad companies are about being negotiated, shortly inese operations are successful, railroad building will be seeking employment, and there is no very good reason for not aceepting the statement of railway projectors, that construction
will begin during April. Railroad journals have announcements of the projected construction of between three and four thousand miles of road, running from fifty miles to two hundred. Good
authority inclines to the belief that, in the event of an mprove ment in traffic and carnings, advantage will be taken by railway builders of the present low prices of material and labour, and that
construction will be pushed quite actively during the summer months. Steel rails are selling this week at 27 dols. at Pennsylania mills, and 28 dols. in some Western mills. The production
of piron is not increasing, notwithstanding stocks are light, and consumption about equal to production. Prices range from 14 dols,
to 16 dols. for forge in tide-water markets, and 16 dols, to 19 dols. or foundries, according to quality.
Car builders and car-wheel makers have recently received several orders for between thirty and forty engines. The larger machine shops have added to their labour-force, and there are rumours of large orders coming into the markets at an early day. All of these
movements have had a favourable effect upon manufacturers and manufacturers' agents. The coal trade is on the point of improvement. Contracts possibly within three weeks. At least a great deal of business will be done in this market as soon as the spring prices have been definitely fixed. Anthracite coal has been reduced in price, as has also bituminous, and a sharp competition is now in progress for
the securing of large manufacturing, railroad, and steamship requirements. New England buyers are very short of coal stocks, and the demand which must spring up from this source will be very large, and impart, temporarily, firmness to prices. The
development of new coal-fields in Central Pennsylvania and West Virginia have threatened the permanency of coal prices this season but producers believe their combination will prevent any hurtfu
competition from that source. The transporting interests will remunerative prices.
Advices from interior manufacturing centres show thatanimprove ment has taken place, and the breaking up of the winter, now at
hand, will prepare the way for the placing of a large amount of business.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS,
(From our own Correcpondent.)
The threatening aspect which the political horizon has again assumed was a matter of considerable debate on Change in
Birmingham to-day-Thursday-no less than in Wolverhampton on the previous day. The effect upon the markets is to create such n amount of uncertainty as to prevent all chance of operating for
forward. The demand is without improvement in any direction. of mills which are wholly idle is increasing.
All over the district works are to be found very partially employed. At some establishments only one-third of the plant is
running. This state of things is seen alike in sheeta, hars, and hoops, and the prospects of any early change for the better seem
remote. In one part of the district the make was reduced last Prices the stoppage of about fifty puddling furnaces.
ngineering purposes and for tank making, the competition of the North of England makers is unrelieved. Simultancously, the Lancashire manufacturers are keenly competing with our makers ond ironmasters are pushing their bars into this district. Marked
and bars remain nominally at $£ 710$ s., at which they have stood for
over two years, Current nrices for common bars are the lowest
selling at $£ 510 \mathrm{~s}$. down to $£ 55 \mathrm{~s}$, and even $£ 52 \mathrm{~s} .6 \mathrm{~d}$. Hoops and
strips of common qualities may be had at the same prices, though other makers quote £5 10s. up to $£ 6$.
Colonial orders are about the best on export account, but South America and India are also moderate customers. Enquiries are on 0 ft. lenget this week for baling strips for the dot. Iengths, rolled into coils. Most of the business, however,
doing with the United States and Canada is in thin sheets and tinplates. Prices of merchant and galvanising sheets are open to
much negotiation. Singles are quoted at 56 10s., but buyers much negotiation. Singles are quoted at
declare that they can purchase for less money.
Sales of pig iron are small, and deliveries under former contracts coordance with the expressed desire of consumers who have not in the necessary orders on their books to work them up. One native maker in particular has stacked several thousand tons since naces, therefore, are being blown out. It is estimated that the present w
7000 tons.
Prices are down nearly at the lowest point touched for some hematites quoted 5 5s., and selling at, it is reported in some by the all-mine makers. Part-mines are 42 s , down to 40 , and cinder pigs 37 s .6 d . down to 35 s . per ton. Derbyshire and North.
ampton pigs are without strength, at 40s., delivered to stations, for he former, and 3 s. for the latter
half time, and in the pits are only doing about very depressed, on the basis of 5s. 6d, to 6s. 6d for forge are and 8s. to 10 s . for furnace sorts. Masters are beginning seriously to debate the prospects of a reduction in wages. Of course the men
would threaten resistance, but combined action by the employers might rendere this resistance useless.
at the condition of affairs that thes ructive engineers becoming at he condion of affairs chat they are beginning to regard as
alinost useless the trouble of going through specifications. It is not therefore surprising that there should be serious deabate at the
present time, even by concerns of the largest magnitude of the present time, even by concerns of the largest magnitude, of the
necossity for a reduction of engineers' wages. Only those firms can sce a profit upon current business who are exceptionally placed
in the matter of economical working and the like, and even with these concerns the profits are very small.
Steam pump makers have welcomed the inquiry by the War-
office for four steam pumps for the Suakim Berber pine supplement those purchased from Messrs. Worthington, of Now York. I am able to state that the pumps are to be similar to the
Worthington; $i . e .$, constructed on the duplex principle, and having 18 in . cylinders.
Since last week additional contracts have been received by
certain of the wrought iron tube certain of the wrought iron tube
portions of the Suakim pipe line.
in good demand. The electric machinery for electric lighting are in good demand. The electric machinery firms mostly keep quite
busy. Parker and Elwell, Wolverhampton, are very favourably susy. Parked for orders, alike for engines and dyna are very favo faurably
they they are constantly increasing their working staff, and are running
overtime, they are unable to keep pace with contracts. Among the latest contracts accepted for motors is one for the machines for driving the new electric trams at Blackpool.
Looal engineers should stand a good chanco
non-condensing steam engines, and well pumps, boners just now needed by the local authorities at Hatherntone but the contracts for the capital lot of engines and pumps and stee go to London.
Machinists who supply the wants of the galvanised corrugated sheet makers have not much new work in hand, since the galvanised
sheet business would seem to be rather overdone Yet the Wolver hampton Corrugated Iron Company has just erected at its extensive new works two close-annealing fur
close-anneal 120 tons of sheets at once.
The demand for ensineering and ironfoundry work of a not heavy description for ironworks and colliery purposes is quiet.
Mr. Wiley, a nut and bolt manufacturer of Darlaston, togethe with his twenty-five men, still withstands the strong agoitation
which is in progress to induce him to join the Masters Asociation The Operatives' Society is doing its utmost to get him to give in hi adhesion to the movement, since the general body of masters hae only consented to forego the 10 per cent. reduction on the condi-
tion of the operatives compelling every master to join the Aencition. The agitation is not now conflined to South staffordshire for the Operatives' Society has called men out at Workington, an they boast that they inte
Yorkshire, and Scotland.
An exhibition of gas stoves and other gas apparatus, promoted
by the Bilston Gas Light and Coke Company, is being held in the
Cultivating and edge tool makers are active, but prices are still a matter of loud complaint. India is the best market-railway Madras in large lots. Australia and America are buying modeMately.
pickakers have this week tendered to the War-office for shovels, pickaxes, army picks, hooks, large and one-hand axes, and other
tooos, to be used in the construction of the Suakim railway and for other purposes in the East. Some thousands of each description
of tool is inquired for. A ship tackle firm in Wolverhampton is negotiating with the rom destruction hy torpedo boats.
n important new patent process, manufacturing tubular coils upon the mandril, and draw tubes 70 oft. or 80 8ft. long, or longer, with movable plug. No joint or brazing is required. Very ylarge coils
can now be manufactured with remarkable rapidity, and almost a can now oe manumactured with remarkabie rapidity, and almost a
revolution in this ranch of tube makking is threatened. An order
for the Nile expedition was executed almost as soon as received.

NOTES FROM LANCASHIRE.
Manchester:- Except that there are, perhaps, rather more
nquiries stirring for finished iron, with here and there a slightly increased weight of business doong, there is no very material change
to report in the condition of the iron trade of this district. A lepressed tone still characterises business generally, with a dis notination on the part of bot, buyers and sellers, in the present
uncertain state of the market, to commit themselves at all heavily o any long forward engagements. So far as pig iron is concerned,
consumers who bought at all largely some time back, when tracts for a moderate weight of iron were placed, have in moost
cases either iron in stock or still to come in more than sufficient to over any requirements they have in prospect, and low prices offer
litle or no inducement for giving out further orders.. Practically, the only buyers in the market are those who have all along been purchasing simply from hand to mouth, and as the continued down
ward tendency of prices has fully justified them in this line of aotion, they are still only disposed to give out small orders to cover
cotual requirements. In the manufactured iron trade the sligh mprovement which has been manifested during the past week i to make itself appreciably folt, and in in most cases the forges are still only kept very irregularly employed, whistst prices ares not
more than maintained on the low basis that has been ruling of
The Manchester iron market on Tuesday was moderately well
attended, but there was an absence of any animation in business, and
tosecure ordersvery low prices hadto be taken. For local and district
brands of pig iron, 40 s . to 40 s s. 6 d , less 2 k . brands of pig iron, 40 s . to 40 s . 6 d. , less $2 \frac{1}{2}$ per cent., delivered equal
to Manchester, remained the minimum figures quoted by the leading makers, but on the basis of these prices only a few sma
orders from regular customers are being got, and there are one two sellers of district brands who are open to take 1. 1s. to 1s. 6 d . per ton under the figures quoted above. Middlesbrough iron meets
with little or no demand, and the best foundry qualities are to got at about 43s. net cash delivered equal to Manchester, gordinary g.m.b.s offering at about $6 d$ d. per ton less.
Fer
generally there is a continued absence of business of any generaly yhere is a continued absence of business of any weigh
coming forward. For delivery into the Manchester district 53 s , to 53 s . 6 d. , less $2 \frac{1}{j}$ per cent., are about the nominal quotations for In the manufactured
season is bringing out some inquiry which has resulted in a little season is bringing out some inquiry which has resulted in a little
accession of actual business, and in the home trade a few of the makers report orders coming forward rather more freely, but generally business continues very dull, and for delivery into the
Manchester district prices remain on the basis of about $\mathrm{E}_{5} 7 \mathrm{~s}$. 6 d Manchester district prices remain on the basis of about 457 s . 6 d
per ton good Lancashire and North Staffordshire bars, $£ 5$ 17s. 6d per hoops, and $£ 6$ 17s. 6 d . to $£ 7$ per ton for sheets.
for
In the coal trade
fire classes of fuel, but all other descriptions of fuel for ironmaking, steam, and general trade purposes meet with a very slow
sale, and common round coal is quite a drug in the market. Prices are without material change, and except that some slight giving
way way in the delivered race
chester district, there reduction in list rates with the close of the month. There is, how ever, generally so much underselling where business of any woight is to be done that list rates to a very large extent are little mor than nominal, and alnhough coliery propriecors, in the face of the hareatened strike in the Yorkshire coalfield, are naturally chary
about making concessions just at present, there is no actual firmness in prices. At the pit mouth best coal averages 88. 6d. to 9 s ,

Shipping has been only quiet, with good steam coal, delivered a more than 7 s , to 7 s 3d per ton, and some descriptions to be bought at 6 s .9 d . per ton. pig iron trade. The bulk of the deliveries taking place are on home account, and very little is being done in the continental and colonial markets. Thero is a considerable amount of work in hand
but I hear general complaints of the dilatoriness of consumers to place fresh orders. This is the more remarkable seeing the makers for a good while past have steadily resisted all attempts to lower courrent quotations, and that if any alteration should take ware that several makers with a reputation for acourately testing the trade barometer anticipate with some amount of sanguineness be sorry in any, way to darken this roseate prospect. But
" 1 'homme propose," \&e. Any way, there is nothing to rejoice over in existing facts. Stookk are increasing every day, and I I hear one
important firm has decided to put out two furnaces in order to attain some proportion between output and demand. There is an mprovement in the steel trade both for railway and merchan present a ativity being merely spasmodic. Ton ore is in moderate demand at late quotations. The coal and coke trade has slightly
improved in tone, but prices have shown no terdency to vary improved in
either way.

THE SHEFFIELD DISTRICT.

IT is a good sign that the miners have abandoned the uncom romising attitude they adopted at their first conference at
Rotherham, when they distinctly declined to seek any interview with the employers. They have now solicited a meeting, and the Coalowners ${ }^{\text {Committee have granted their request. No fewer }}$ han 36,000 miners and other colliery workmen are now wid notice in South and West Yorkshire, with a probability of the number being greatly increased by the addition of Derbyshire and
probably South Staffordshire. The esious part of the dificulty is that the coalowners themselves will be rather glad than otherwiso to have an opportunity of elearing off their acoumulated stocks,
which are a great factor in the affair, particularly as summer is approoching. The singular feature of the present wages difficulty
is, that although we are within four days of the threatened stoppage of nearly all the leading Yorkshire pits, coal keeps its
normal value, instead of rising by leaps and bounds onflicts between capital and labour in the Yokkshire colffeld Messrs. Wm. Cooke and Co, of the Tinsloy Steel, Iron, and
Wire Works, have had a very pleasing incident to brighten their prolonged period of depression. It is the only case of the kind nd millmen appreciating the great difficultict. The puddlera and millmen, appreciating the great difficulties their employer
have laboured under during the prolonged depression of trade, held a meeting at which they, unanimously decided to make the comto assist them in the time of adversity. The offer was formally made to the manager on Monday, and accepted. It should be
added that the men's wages are ruled by the South Staffordshire under these ciroumstances they did what they could, and did it handsomely. The offer has made a most agrecable impression in business circles.
The annual meeting of Messrs. William Jessop and Sons,
Brightside Steel Works, was held on Wednesday, The chairman, T. T. Jessop, J.P., presided. The reduced dividend of 5 per cent. tions of the year, Mr. Jessop stated that the American trade had been exceedingly dull, and the company was now turning its
attention to other branches of work, which would prevent its being so dependent on one market. One great speciality, which it has
to itself, was the production of stern frames in solid crucible
 plying between Holyhead and Dublin. It was a stern frame for
 Admiralty, as well as for continental navies.
An unusual event has come to my knowledge within this week About a fortnight ago several Arabs, accompanied by an interpreter, isited Shettield. They had been at Birmingham, and their object
n coming to Sheffield was to secure machinery, for which they were prepared to pay cash down, for the manufacture of gun-locks.
They failed in their mission, and it is believed they were also uncoessful in Birmingham, where, it is understood, they tried to uegotiate the purchase of small fire-arm appliances.
Iron quotations are now as follows:- Common
Iron quotations are now as follows: - Common foundry iron,
No. $1,43 \mathrm{sis}$ per ton; No. 2, 42s.; No. 3, 4 ll .; common forge iron,
 iemens purposes.
The conning towers for the Forth, Thames, Mersey, and Severn,
to which I have already referred in THE ENGINEER, have been to which I have already referred in THE ENGINEEKR, have been
given out to Messrs. John Brown and Co., Atlas Steel and Iron
Works The Ady large armour-clads to be built by contract. Each ship will require
about 2000 tons of compound armour and 700 tons of steel deck.

THE NORTH OF ENGLAND.
Dulness still prevails in the Cleveland pig iron trade. It can been of late, for it seems to be generally believed that the worst has passed. Makers generally have sufficient orders for the prehand, buyers are extremely cautious, and but few sales have been made either by merchants or makers during last week. Prices are naintained at about the same as a week since. at 34 s . per ton. Occasionally makers also accept that figure, but
as a rule they do not take less than 34s. 3d., and certain of them ontinue toy do not take less than 34 sis . a ., and certair o realise 33 s . 3d. per ton, the supply being still very limited. It may, how-
ver, pay to produce more of this grade, now that the difference in price between it and No. This again normal.
There is but little demand for warrants, and holders do not seem There is but little demand for warrants, and holders do not seem
be disposed to take less than 33s. 6d. per ton for them. Messrs. Connal and Co.s stock of pig iron at Middlesbrough is 50,832 tons, Inquiries for ship-plates, angles, and bars are rather more
umerous than they have been for some time; but makers have not yet experienced much benefit, and prices remain the same as
last quoted. Bar makers are fairly busy, and talk of stiffening heir prices. Ship-plates can still be had at $£ 415 \mathrm{~s}$. per ton, ship
ngles at $£ 4$ 12. 6. , and common bars at $£ 417 \mathrm{~s}$. 6 d to $£ 5$; all
and n trucks at makers' works; terms cash 10 th, less $2 \frac{2}{2}$ per
count. Puddled bars are quoted at about $£ 3$ per ton net.
Steel-plate manufacturers are fairly busy, but the demand for
rails is quiet. Plates are $£ 617 \mathrm{~s}$, 6 d , to $£ 7$ per ton, and rails $£ 415 \mathrm{~s}$. er ton
The directors of Sir W. J. Armstrong, Mitchell, and Co. have veclareg an interim dividend of 5 per cent. on the past halr-years The bast furnacemen of the cements by which their wages are regulated, and have given three months' notice to that effect. There is now neary 45 s. per ton difference between the prico of iron
nd that of steel plates for shipbuilding. Not only so, but it is ifficult to obtain steel as fast as is required; whilst, on the other pecifications which may be entrusted to them. The difficulty of btaining steel is not due altogether to deficiency in power of
buply, but partly to the delays and troubles arising from the verity of the tests deemed essential. It is rumo rat Lhayd's committee regrets the largeness of the reduction of scantings,
whish at first it permitted in favour of steel, and that its present poicy is in the direction of diminishing this difference. Eventually hopes to see all steel ships made to the same scantlings as have a better demand for for iron. All this is evidently in avour nd diminishes their carrying capacity. Certainly the safety and
durability of steel ships will be augmented but this is a matter inabiity of steel ships will be augmented; but this is a matter number of steamships laid up idle in the yne. At a meeting of the Commissioners, held on the 6th inst., it was reported that there were 95 , with a gross tonnage of 71,254 .
n March, 1833 , the number ide was 63 , with a gross tomnage of
1,651 From this it would appear that the depression in the carrying trade had neither increased nor diminished. Inasmuch 55 , it would seem that the steamers at present idle are in size only two-thirds of thase which were
once and a-half as many. This is dificult to aco acount for. It may perhaps be concluded that long-voyage freights are the best now,
and short-voyage freights were then.
The Wear shipbuilding trade is still detrimentally affected by They refuse to work at current wages. Some of them have left the town, and the remainder are appealing to tho public for sup-
Sunderland workmen have cortainly obtained a most nenviable notoriety for quarrelling with their bread and butter. uch men do not

NOTES FROM SCOTLAND

There was a slight upward movement in the warrant market early his week, in consequence of a report that efforts were being made which might possibly result in a silight curtailsent of tho output
of pig iron. It is certain that, although there are only ninety-two arnaces in operation, they are producing several thousand tons a week more iron than can be disposed of, and this is a serious rices so low. At the same time, it may be doubted whether the amping of furnaces would yield much relief, particularly in view
of the fact that the consumption of Cleveland pig iron in Scotland las been rapidly increasing since the beginning of the year. The hipments of Scotch pig iron continue very unsatisfactory in
amount. In the past week 7299 tons wery despatched, against
S879 tons in the preceding week, and wisp ponding week of 1885 . The inquiry from abroad does not exhibit my improvement. From Germany, particularly, only the most
meagre orders are available, the Germans having largely increased heir own production of pig iron. The stocks in the Glasgow Business was done in the warrant market on Friday. at 41s, 43d.
41s. 3d. cash. On Monday forenoon business was done at 41s. 21d. to 41s. 3d. cash, the latter being the quotation in the
 ellers do dith buyers at the latter price; For makers iron the demand is slow, and the prices current are
 Monkland, 42s. 3d, and 40s.; Quarter, 418. 6d. and 39 s .6 d .; Govan,
at Broomielaw, 42 s , and 40 s. ; Shotts, at Leith, 51 s, and $50 \mathrm{~s}, 6 \mathrm{~d}$; 44 s , and 43 s. ; Glengarnock, at Ardrossan, $48 \mathrm{~s}, 6 \mathrm{~d}$, and 43 s, ; Messinton, 43s. and 39s, 6d. : Dalmellington, 47s. and 48s.
Mesk and Jas. Stewart, of the Clyde Tube Works, have for the water pipe line between Berber and Suakim. The pipes re strong, malleable, and tested to 1800 lb . to the square inch. builders, the material for which will add to the activity of the The past week's exports of manufactures from the Clyde Included seven locomotives, valued at $£ 18,592$, machinery worth
$\$ 21,200$, sowing machines 11916 , steel goods $\& 8900$, and general
iron mantactures The coal tride
Shipments are lower thex eoptionally quiet in nearly every district. unsatisfactory. At Glasgow the week's exports of coals have been 10,135 tons; Greenock, 91 tons; Irvine, 18067 ; Ayy, 6377 ; Troon,
7094 ; and Grangemouth, 2029 tons. The inquiries are poor at most of the ports, but orders are in hand anq a fow that will keep
them going actively until the shipping trade improves. The in which steam coal ought to be in demand is approaching. In in the
meantime, however, businesis very sluggis.) The price of all
sorts of coals are reduced at Lanarkshire ports. Free on board,

 the irontonen miners and iron workera ara riliteomisio

 action. To the oreditit of tho mastersit thoulala bo stateat that both the amomot of basinesand the pries had bean deoinining for several wekt before itto in Fite ero posted up on Saturray at all the

 man trade has not beon oo dull as it it is at pre $\xlongequal{\underline{\square}}$
WALES \& ADJOINING COUNTIES (From our own Correspondent.) Cardirf has suffered of late from the depresthe penalty for too much speculation. At one time everybody wanted to have shares in a loated by one of the best of the coal firms. steamship Company was held this week, and the report, showing income and expenditure, is of general interest. For instance, I find that, on one
voyage the vessel took coal to Ancona at 10s. 6d. voyage the vessel took coal to Ancona at 10s. 6d. Leith to Odessa at 5s. 3d. per ton; at another, ton. The return voyages were : Rye, 2 s . 6 d . per quarter; iron ore, 7 s .9 d . per ton; wheat, 4 s . per quarter. The total receipts for the year
were $£ 501417 \mathrm{~s}$. 6 d .; expenses, $£ 507315 \mathrm{~s}$. 5 d . In this latter item was included insurance, loss, it was decided to reduce the insurance from $£ 22,000$, the cost of the vessel, to $£ 18,000$. The steam coal trade is decidedly looking up
again at Cardiff and at Swansea. Both ports keep up a good average, and as for Cardiff it is Newport does not share this prosperity thus far, having a greater field of house coal, which remains in a stagnant state.
taking the whole of the coal-field coal trade is dull, tion, and prices are quiet. The leading consideraenjoy the best trade. Small steam continues in one of the caund prices are stiff. I find that one of the causes of this lies in the economical
administration of several French and Italian companies-steam and rail-who are using small steam coal for their locomotives and boilers. The
Italians claim to have found a method for using Italians claim to have found a method for using
small in marine boilers, and the Societe Navigatione Generale Italiana, whose use of coal has
been close upon 200,000 tons per annum, will adopt it.
No settlement has been arrived at between the owners and colliers at Middle Duffryn. The
strike promises to be a severe one. The claim of strike promises to be a severe one. The claim of
the workmen at TylaCoch for $£ 700$ wages will be heard this week, and the result is anxiously looked forward to.
In the course of a week or ten days the battle royal of the railways and docks will take place.
The Bute and Taff Amalgamation sche seouring good support. I should like to see the securing good support. I should like to see the
Taff and Rhymney railways amalgamated. This would strengthen the scheme, and certainly be
regarded with favour by the committee. A good deal of agitation is current amongst Rhymney shareholders anent the matter, and all are anxious to amalgamate if fair terms are offered.
The Cardiff and Monmouthshire Railway scheme has been shorn of No. 8 railway, and will be the gainer in consequence, getting rid of opposition and an objectionablegradient. Cardiff Corporation
will support the Bill will support the Bill.
I referred some time ago to the project of the London and North-Western Company for replacing their wooden with steel sleepers. Some little
difficulty has been met with in making these and difficulty has been met with in making these, and
steel makers in general cases have refused the order, as it has caused damaging breakages to the machinery. Dowlais, I hear, has at length sacceeded in turning them out, and a new trade is likely. A good deal of hopeful anticipation exists at Dowlais on the subject. In addition, an
immense outlay for new machinery and other improvements is being incurred at Dowlais, and this is assumed to mean business.
Early preparations are expected in the Taff
Valley in the formation of the Cardiff waterWorks.
Mr. Walker is getting on with his customary Mr. Walker is getting on with his customary Mr. Riches, the able locomotive superintendent of the Taff Vale Railway, has brought out a new
locomotive with special action. This I shall note locomo
again. Works, near Cardiff, being utilised. A firm-
Castell Patent Fuel and Purified Coal Company Most about to start them.
Most of the tin-plate works are tolerably full of orders, though, in the face of the forthcoming
Birmingham meeting, there is a visible holding back of business by, buyers. On Monday next the proceedings are looked forward to with interest Prices are quiet, and will remain so until both meetings have been held. Good cargoes have
been sent away of late, and Swansea is rapidly becoming the headquarters of the trade. Special sizes and roofing plates continue in de
are regarded with favour by makers.
A project is on foot, principally by Llanelly
men, to start a steamship company for trading hetween Liverpool and ports on the Bristol Channel.
A fine seam of coal has been struck in the Garw Thomas, Brynawell, is the engineer.

THE PATENT JOURNAL.

\because
F. Ih has come to our notice that some applicants of the

Applications for Letters Patent

17th March, 1885.
314. Pertrouvora and Gas Exarises, J. Spiel, Man

 Manchester
3421. SEWINO

Machines, J. W. Urquhart, North 3422. Vivarturrve. D. Thamson, Glagow. ${ }^{\text {Partis }}$, Birmingham.
3425. SLiding Rina P. E. Ayton, Birmingham. Marsh, Birmingham. for Butter Coolers, dc., T
3428. Lock-stitch Sewino Machines, D. Jones, 3429. Rockers, J. Whitley, Leeds.
3430. SADLEES for Bicycles, \&cc., T. J. Kirkpatrick
In London.
3431. Traviluna Swina, M. E. Studman, Glaggow.
3432. Sairs Anchor or Ridino Liants, W. Harvie, Glaggow.
3433. Rowler for Wrindow Blisds, dec., T. R. Shillito

- (O. Klupe, Germany.) 3434. Guidino, Straionteniso, and Evening Fabrics
H. J. Allison.-(A. M. Arnold, United States.) 3485. Clinmina Chimseys, \&c., J. Brown and T. A
Porter, Londone Portar, London.,

3436. BABEET SKIPs, , Pe., T. Harden, London.
PICKER STICKS for Looms for WEAV 3438. Pumpriva Exanses, G. Parfitt, London. 343. Frus-YEEDER, J. Goodman, London.
3437. Rovariva Horsksiozs, E. J. Hayball, London. C. Ammonited Soaps, Frae from Olisates, dec 34. Sternirs Gondr, A. J. Boult.-(c. H. Washburn,
United States.) United States.)
3438. PLuNzs, J. W
3439. PUMPS, 3445. Demporativo GLABs, Poncercais, \&c., G. J. Atkins,
Iondon. 3446. ELegrrical Genrrutors and Motors, T. J.
Handford.- F. J. Spraque, United States.) 3447. Invalid Coucurs, T., L., M., J., and T. Robin3448, Vondon. 3449. Preparisg. Fat for the Refinisa Operation,
F. O. Kloninger, London. F. O. Kloninger, London,
Pressing, and Tenterisa Woolles, \&c.,
Fibrics, G. H. Nussoy and W. Leachman, London. FABRICs, G. H. Nussoy and W, Leachman, London.
3440. SpINLE-BEARNOs of SpINNING, Ec., MACIINES,
I. H. KIft

Sauvee.-(J. B. G. A. Caneh, France.)-20th Deconbec
3441. Arisa, \&c., Beds, L. A. Groth.-(K. Weinberger, Germany.)
3442. Arivicial Grorros, L. A. Groth.-(A. Dirgh,
Gernany.) Scermany.) Cris or Crizcks, L. A. Groth.-(P. and C. G. Rolla, Italy.)
3443. GAme called Hexaornu, L. A. Groth.-(J. Liude-

 Gruon, Germany.)
Gisinding Mills, W. R. Lake.-(H. (J. Y. Havikins, United States.)
3444. Mrkecass, W. R. Lake.-(F. Fleischmann, 3462. Producing Artifictal Respiration, w. R. Lake.-(J. Ketchum, United States.)

 Dufourg, France.)
3445. DyNaMo-kLETRC Machinas, A. M. Clark.-(L. Vistierc, France.)
3446. Toors, J. Deks, London.
3447. FIXINO for RekIS of FISHIN
London.
3448. Repetiva Rifuna
Sit
3449. Reppatino Rifless, C F. Wood, London.
3450. Gas Exins, W. W. Pope, London.
3451. Atb-tioht Botries, \&c., L. Hamel, London. 18th March, 1885.
3452. Sucar Surters, A. J. Bailey, Birmingham
3i74. Washino Machine, J. Kidd, Dubling
 Slater, and F. T. Hollins, Derby.
3453. Axchos, W. W. Smith Newwastle-on-Tyne.
3454. Cminners CowLs, T. S. Wilson and H. T. Johnson, Manchester.
3455. Requatiso the Prussure on the Rollers of
Cfothes Wrinoiva Machines and Manoles, P. Burt, Glaggow,
3456. RoLER for Wasurvo, W. J. Knowles, Halifax. 3450. TAPs or STop-cocks, J. Dunbar, Glasg
34S1. ALARX BLLS, T. E. Ware, London.
3457. PERYETION SABE, T. J. Hawkins, Ux
 3484. Covers for Botrles, dc., W. P. Thispson.-(
H. Warin, France.)
3458. CATTE Food. G. Lewis, Liverpool.
 3488. Coloured Ormamental Glass, G. Stephens, Lis9. Lux.
34evum Paintina in CoLours, L. H. Goggs,
London

 Newcastlo-on-Tyne.
3459. CutTIIGO STELL RatLs, J. Cooke and J. Rushton,
, Fivinizanamu

Tond Cosvyyascof for Cattue, do., E. D. Mocarthy

 02. Gas-burners, W. Goebel, London.
3460. Hydraulic Testing Pumps, T. I. Cammell,
London.
3461. Weighing Machines, J. C. Mewburn.-(D Girres, France.)
3462. ELEOTRIC CABTRIDGEs, S. Russell, London. $-22 n d$ October, 1884.
506 WAsHING, \&c., Wool, T. Speight and H. W
Whitehead, London. Whitehead, London.
Simpsonen, London. Lever Weighina Machines, W. 350 and TEFLEOTOR SUSPENDER for GASen, Birmingham. LAMP
3463. Horse-shoaing, J. Atkinson, London. 3509. Hosse-sHosing, J. Atkinson, London.
3464. Tools for Moulding the HEADS of Bottles, Deeks, London.
3465. SECURNG FLANGEs to Copper and Brass Tubes,
J. W. Woore London 3512. FIxING Door KNobs to their Spindles, de., E. S13. STorp TaPs, \&c., T. Carpenter and W. H. Ford London. FAstexer for Gloves, E. Fisher, London.
3466. Corsers, S. and A. Uhlman, London. 515. Corsers, S. and A. Uhlman, London,
3airn, Londong.
baing or Roling APPARATUS, C. Fair 517. Appliance to Sugar Bagiss for Holding the
Soar Tonge, M. F. E. Huard, London.
 London.
3467. LUBR
3468. Lubiricators, R. Lauder, London.
3469. Circular or Endless Ralways, H. H. Lake.Crrcular or Endless Rallways, H. H. Lake.-
Wood, Jis.).
Eletric Dynamic Motors, T. J. Handford.(F. J. Sprague, U.S.)
3525 D Distributing and Utilisina Electricity, R. P.
and J. Sellon, London. and J. S. Sellon, London.
Her. METAL Toe CAPs for Boots and Shors, C
Hamilton, Acton. 3527. Pnevmatic Transmission of I
Clark.-(J. B. Berlier, France.)

19th March, 1885.
528. Railway Sleepers and Chars, J. Howard and
E. T. Bousfield, London. E. T. Bousfield, London.
3529. STopprava Bottles, de., R. G. V. van Avezathe,
Wolverhampton.
 Lusher, Birmingham.
3531. Rounvino and Ironing the Curves of Hats, F
Cree, Manchester. S32. Distisautibing and Reckoning Postage Stamps,
*C., W. Balk, London.
3533. Rollers for Wrivoing Machines, dc., T. E. 3534. VICEs,, . Flagstad, Norway.
3535. STRIKINO PLATES or STAP Wilkes, Walsall. 3536. Measurina Anoles, P. Nevill, Isle of Man.
3537. Electrical Lamp Holders, A. Swan, Gateshead-on-Tyne.
35s8. Skwino Machines, W. E. Heys.-(B. Rudolph
Gernany) Germany.)
S53, STopina Leaks in Vessels, dc., T. Hodgson,
Neweastle-on-Tyne. 3540. Embossing of Earthenware, J. Holderoft,
Longton.
3541. Conneotino Links for Chanss for Velocipedes, H. J. Brookes and W. R. Kettle, Smethwick.
3542. Scourino Staps. and Bands used in Harnes, A. S. Findlater, Dublin.
3543. Dosmes or JAcQuARD of Looms, J. Holling 3544. VALVEs for Steax and other Liquids, J. Dawson and G. A. Sonior, Halifax.
3545. DUPE HEALDS, S. Butterfield, Halifax.
3546. UNTAPPED NUTs, J. P. Binns, Halifax. 3547. Invention for Persons not having the Usk
their Hands, M. E. de S. la Terriere, Cheltenham their Hands, M. E. de S. la Terriere, Cheltenham.
3548. HAULING or Workivg the NETs of Fishisg
Boats, W, and J. B, Morrison, Glasgow, Boats, W. and J. B. Morrison, Glasgow,
3549. ADVUsTALELE Brackets, W. Lea and J. Beech,
Wolverhampton.
 London.
London. Agting Filiterina Apparates, J. Walsh,
London.
3552. SToves, J. Barnett, London.
3558.

London.
3556. Apparatus for Exercising the Finoers, Hand,
Wrist, J. Brotherhood, London.
Metalicic Tubes for Sten Boilers, \&c., S. Fox, 355s. Controlling the Speed of Velocipedes, R. M.
Smith, London. Smith, London.
3559. WATER GANoEs, L. J. Crossley, R. Hanson, and
J. J. Hicks, London. 3560. METAL, or Alloy for Embrotdery, \&c., J. H.
Hollinghurst, London.
3561. Ring Spinnino Frames and Spindlys, H. J. 3561. Ring Spinniso Frames and Spindlers, H. J.
Allison. (C. H. Chapman, V.S.)
3562. SEpArating Cinders from Ashes, H. J. C. Fenn,
London. 3563. Employisa Hydraulic Pressure as a Motive
Power, F. W. Richardson, London. 3564. Telephonic Apparatus, de., S. P. Thompson,
London.
3565 . Vkssel for Containina Lieuins and Displayiso
 3566. Hydravlic Machine Toots, J. L. Anderson and
W. H. Payne-Gallwey, London.
3667. Mroodeons, \&c., W. L. Wise.-(L. Lörenthal,
Germany.) Gcrmany.) Flasks, J. MacNaughton, Glasgow.
3568. Livoor Flat
3569. Sinole-actina Stear Engines, P. Jensen.Richards, U.S.)
3570. Justiryina Printina Slips, de., S. Pitt.-(M. H. Dement, U.S.
$\left.\begin{array}{l}\text { 357. Joivis for Iron Pipes, A. Sauvée.-(H. Jandin, } \\ \text { France) }\end{array}\right]$ France.
3572. SEcurisa CART and Wacon Doors, J. Kaye,
London. London.
3573. PICKing Motions of Weaving Looms, R. Ecroyd
and J. Bentloy, London. and J. Bentloy, London.
3574. Filtrrivg Apparatus, W. R. Lake.-(A. Helaers,
Belpium.) Beloium.
Sitrerisa Msc
Gibbons, London.
3576. Producing Piotures on Glass, T. J. Gullick,
London.

London.
357. Pressed Yeast, J. Imray.-(M. Hatechek, Switzer-
(and.) 3578. Cooling Liquids, H. A. Dufrené, London.
3579. Drcoratima Surfaces, J. H. Johnson.-(G. Cleis,
France)

2014 March, 1885

Exposing Advertisements, H. Hitchen and R.
iteley, Halifax.
Wood STaIs, G. G. Wolff, London.
ATACHMENTs to SidDLEs, N. R. Roskell, London
Pistows and Pump Buckets, W. J. Murgatroyd,

21st March, 1885.

 London.
3cs. Fastexn for Gloves, Ac., F. R. Bakor, Birming
him

 Higher Broughton.
364. Roolera Mancuss, E. G. Camp, Bristol. 3641. Roller Manoleg, E. G. Camp, Bristol.
S64. Detectiva the Exact Whreabots of Leakao
in Underground Water Maing, D. Bentley, Brad3643. Perambulators, 8. Hall, Derby,
3644. Protoraprocic Cameras, J. Billeliff and J. T.
Chapman, Chorlton-on-Medlock. Chapman, Chorlton-on-Medlock.
S645. BTERMING and Brake Mecrunism of Tricycles,
(Ec., S. Martin, Birmingham.
 ham.
$\begin{aligned} & \text { 364. Embossing and Printing Machines, B. Stans- } \\ & \text { field, Manchester. }\end{aligned}$ field, Manchester.
3650. Waste Preventing Cisterns, B. C. and D. Crobs, stonehouse.
3651. Norserss Revolving Chimesgy Cowl, W. Green,
Northampton. 3652 Lasts for Boors, H. W. Mobbs and A. Lewis, 3653. CIrcular Floe Stoves, \&c., B. J. Saunders, J.
Wooven, and W. Eade. Brighton.
3654. Hydro-carbon OIL LAMPs, J. B. Fenby, Sutton Coldfield.
3655. Macines for Turring FAnrics, M. F. Connett,
jun., and H. B. Buck, London.
 London.
3659. WAsma Machives, A. Whowell, London,
3660. Firg-cratrs and Stoves, J. W. Lewis and C. W. Rawlings, Halifax.
3661. SupLYING WATER to WATER-CLOSETS, \&e., A.
Stephens, London. 3662. Paotocrapitic Casernas, J. Rigby, London.
3663. Adustro and Supporting Toilit GLasses, \&c.,
 3666. Book-MakRERs, T, M. Potter, London.
3667. Lawr Texkis Bats, C. Strange, London.
36e8. METALLIC Packiso, R. White and N. 8. London, SHoulder Rest for Violins, dc., F. Upton,
London. 3670. Passemagr Carriages for Rallways, de., J. R
Banks, London. Banks, London.
367. Ekecric CArtridges and Primers, S. Russell,
Lindon 3672. Ivaor Moulds, L. G. Laureau and E. Ford,
London. 3673. Rallway Stonal Lasps, S. T, Dutton, London.
367. Portable Lanterns or Labrs, J. Everard, 3675. Distance Recordina Instrumests, T. Dunn, London.
Glasgow. Ler-Press Printing Maceine, J. Paterson, 3677. Keriess Lock, J. Martin and J. C. Mineard,
London. 3678. Voltaic Elements, C. P. Orne, Cambridge, U.S.
367. ELectro-motors and Dynamo Mackises, M.
Immisch

 363. Niont Lioits, S. Clarke, London.
36s. INFANTs' Food Warmer or Ni

Clarke, London. Kniturno Macuines, and F. Chadwick, London.
36s6. Tricrolvs, \&c., A. Paget, London.
3687. CLockwork for Rotatiso the Oprical AppaRatve
in LLomeryouss, dco., J. Hopkinson and J. Kenward,
ind 23rd March, 1885.
3688. Accoumodible and Expansive Valves, D. P. G.
 S60. Aymard PRontaon. for Derivina Belts of MA-

 West Mustow, near Kidderminster.
8.695. Comb, G. A. Binns, Halifax.
3606. PAARR
CAPBULEs, de., Mich
3697. Lever Prbsars, W. P. Abell, . ${ }^{\text {36mon Preparina Cotron, de., for Spinnita, J. Mao- }}$

 cloth, de., T. Rowley Grimshw, \quad Kidd, Manchester, H. S70. TRAMsmirtiriso. Powen by Roprs or Bands, J. H.
 Lobinan. Achonolic Beveraozs, J. H. Loder, Nother-
370. ${ }^{3707}$ Britiopaque Stanned Glass, G. H. Stevens, North
 3709. Cutivo Machink, J. Hunt, London.
3710. Stove Grate Onsamkis or Scres 370. Stove Grate Oinamexts or Schesme, J. H.

 3724. FunsAcEs, W. H. Tooth and J. E.' Rooker,

 ST30ess, M. Knowlen, London. 3731. Coxpoosition

E. Morewood, London. ©c., into Sukers, do.

 374.2. KEy, for sicurawa Cranks, de., P. L. C. F.
Renout, Londen.
 3744. Requenatons for Dymawo-ruzgrtic Machines, J. 3745. CEsturvean Micherivs, E. Edwards,-(E. Rothe,
 Exonves, H. P. Holt, London. 3748. Blesichina Cotton Yarss, de., w. Mather,
London. 3740. PRodective SAFtiv Door Fastener, R. W. Pyne,
London.

SELEOTED AMERIOAN PATENTS. (Prom the United States' Patent Offce Oficial Gazette.) Claim, - (1) The combination of the hinged reciprocating y yoke P, provided with the pawl E, the excentric
cam H, atteached to the shaft Z, the shatt Z, the gears , and the othor geara, bearong socurod to the barrel shaft urpose specifed. (2) The comblination of the barrele 311.551

with a rack, 1 and 3 , and one of said plungers, B,
being provided with the pin Q and tho pinion 2 , as
bin the extracting plunger B1, the lever 8 , pivotted thereoto, the oxtracting pwitg a nothch at the, front end and and a
and provide one
bevel at the rear end, and the casing provided with bevel at the rear end, and the casing provided with
the ehoulder J, and opening δ, as and for the purpose specified.
311,549. Dis Srook, Frederic E. Wells, Greenfeld,
Mass.- Filed Mareh 5th, 1884. Clinim. The edide stock comprenending the dies AA ,
the die holder B , and the guide C , all constructed,

arranged, and
and described.
311,770. Steam Exone Gorervor John M, Mame 11,770. STRAM ENOINE Goverxor, John M. Mason,
Chelece Claim.-(1) In a governor, the combination of the
alvo rod made in seections, as described, the turn bucklo connecting said sections and provided with
longituelinal ribs or flanges 77 , and the pin 8 , passing troogh a soocket in the supporting frame and project-
ing between anid flanges to provent the turn bucklo ing botween said fanges to provent the turn buckio
from rotating, said pin being becured by a set serew 9 , from rotating, said pin beeng secured by a set sereve 9
whereby it may be oosened and withdrawn to permit the rotation of the turn buckle, as set forth. (2) The
pivotted governor arms having rocesses $q q$ and studs

311,770

having orifices in its ends adapted to engngo baida
atuds, as set forth. (3) In a governor, the combina studs, an set forth. (3) In a governor, tho combina-
tion of the revolving governor arms, the fixed supporting frame having tho flanged baso or plate under anid
arma, and the olastio sheot metal dome or cover Atted to andd flanged base and bobaring asgainst tho same with on the base and its ready removal ls permitted, as sot 311,790. PLovaH HAsple, Harrison D. Spangler, RuahClaile, -Thio combination of a plough handlo A, hav-
ing atapering temon upon its upper ond, and a motalic Ing a tapering tenon upon its uppor end, and a motallic
hand ploce B having a tapering sockot upon its 1 lower end, adapted to fit over saidd tapering tenon and
and

elongated bolt holos, and the bolt b, adaptod to pass hrough said tenon and said bolt holes and securo said
handle and hand pieco togother, substantially as shown and described.
 1884. (1) The combination, with the concentrio
clain.-
onductors a and b of an electric arc light cable, of the 311,914

pieces i and k scrowed to the oppoing onds of the
tubo of the outer conductor, and the ends of the
central conductor projecting through openings in said
pieces, respectively, and the
removable cross pieces l pieces, respectively, and the removable cross piecess l
and m, substantialily as and for the purpose specified. (2) The combination, with the conduntor a, of the
outer conductor b, and the pieces $i k$, provided with
 311.973 BиесиLO

S1, Gatling, Hartiford, Comn - Filied June 20th, 1883. Claim. (i) In co bination, the gun barrel, the
adjustable nut accessibly and exteriorly attached to
 tudinally botween the diaphring pm anking nut, all subustantially as deseribed. (2) In combination, the gun
barrel, the adjustable casing formed with the the intermed to the the barre, the the
phate
phame phragm, and tho contained elastic spring packing
holl Hongitudinally between the diaphragm and nut, all substantially ho described. (3) In a breech-loading
gun, a breech block bearing ge hammer and mind spiris of the gun in firing the charge, all substantialy
axi as described. (4) In a breech-loading gun, a breech
block bearin. pin, in combination with the pawl attached to the prreech, whereby the hammer is operated by the
botion of the breech block, all substantelly
me motion of the orech block, ill substantinlly as do-
soribed. (5) In a breech-loading gun, 'in sommina-
tion seribed (5) In a breceh-loading gun, in sombina-
tion, the reciprocatigg breoch book bearing the
pivotted ejector pawl, ind the breech pieco bearing

311.973

ejector, and the ellding breochblook with pivotted
ejector pawl, by the transverso motion of which the eoceor paoperatod, all aubstantinlly as deseribed. (7)
In a devico for mounting a gun, the bed.-plate P , having a pivot nocket closed by the cap q, In combina,
tion with the hardened step t, the scrow bolt r, and the wheck nut, all substanthlty as desecribed, (8)
th a gun mount, the combination, the swivel s , the
In

 stcam, compreased arr, or like mochanism for firing
the gun, all substan tially as doscribed tou gut, tho combination, with a swivel bearing the
mun, of mechanimm for adjusting the gun through the modium of a sighting lover carrying a firing handle,
substantially as deacribed. (11) In a gun mount, the combination, with the swivel 8 s and shaft si, and, gear
wheels, of the rotary case K , for inclosing the gald wheols, of the rotary caso K, for inclosing the naid
gear wheels, and formed with' peripheral sockets and gear wheels, and formed with peripheral sook
a locking dovice $v i$, substantially as dosertbed.
 June $18 t h, 1884$.
the open troush eod devico for broech-loading guns.

 broch- loading guns, a feed caso having a handlo fixed
to tse to its lower side an opening through the bottom of
thoo case, a alidig followor berning a lover, and a
brech opening in a gun having a shoulder or lug
311,974

forming a fulcrum for the short arm of the lever, al substantially as described, and for the purposo set
forthe (3) In a feed deovio for broechloniding guns
the ense a having the fion the case a, having the flanges or guldes b, fixed
handlo e, and opening $a 1$, the siding follower e, borne on the guides, and having pivotted there to tho lover
d, with handle $d 3$, and short arm dl ,ull subetantill as described. (4) In a feed devico for breech-loodin puns, a a case boaring a seilididg follower and pivoding
1over, in combination with a gun tha chived Iover, in combination with or gun the chamber of
which bears a fulcrum socket for the lever, all sub-
stantialy
sat described 311,096 Primsur ron Mowiso Machives, Deaitt C.
 inctosing said
externally and: internally serew threaded, which

threaded, which screws into one of said straps and which serews into said plug at one end and at the other end into the other strap and against the inclosed
bearing box, substantially as and for the purpose set bearing
forth.
312,012. File Holopr, W. H. Phelps, Stemford, Comn. Claim.-(1) A file holder consisting of a stock A,
having at one edge thereof and at a distance apart having at one edge theroof and at a distance apart
two downward projecting shoulders a, a handle B , projecting upward from the said stock, a elamp C,
arranged intermediate to the said shoulders to silide
 toe el, projecting downward at the side edgo of the
stock oppposite that having the hhoulders a, and means
for tion

theroof and at a distanco apart two dowward pro-
jecting
shoulders
a,
a handlo B, projecting upward from the said stock, a champ C, arranged intermediate
to the maid shoulders to slide transversely to the

 also n threaded shank d^{2}, and a nut D, upon thio suid
shank for tightening tho
srip of the sand clamp C , substantially as and for the purposess set forth.
312,034. Lathe And PLansa Tooo, Herbert B. Steele, Claim.-(1) The combination, in a lathe or planer
 an aro of a circle and a stock formed with a coin-
oidently-curved side groove to receive and support

said cutting bar, substantinlly as specified. (2) The combination of curved outting bar c_{1}, and body or
stock C, prooved to receive and support maid bar. and having, slot a, and steadying pin d, substantialiy as
specifici.

CONTENTS.

The Enoinger, March 27 th, 1885 . Tae Laws op Mortos
I NatTrution or NAvai

Notss and Mestonampa

Lerters to pus Edron-
Nkwton's Laws or Motion

Lexding Anticless
Tir Isyextions

Freg gipt of AEER's Work
SLidiso Scales ix Imox Minisa
SLIDIso Scalzs is IRoN Minisg
Sungrituras ron HARD Wood

Litrixature
Expranuext

paos

paraoraphs-
PARNoraphs-
Engraving blectricity,
Steam Trawling in Braxil,
Naval Engineor A ppointmention
Drinking Water for the Soudan
238
243
2230
250

Soutr Kesaisatox Museum.-Visitors during the
 and Saturday, froe, from 10 am . . $\mathrm{to} 10 \mathrm{pm.m.}$, Musoum,
$11241:$ mercantale marine, Indina soction, and other ollections, 2o2s. on Wedneeday, Thurday, and
Friday, admisesion 6d, from 10a.m to 5 p.m., Musoum, 14050, merantille marine, Indian section, and other
collections, 123 . Total, 15,747 . Areng of

