ELECTRICAL ENGINEERING AT THE
INVENTIONS EXHIBITION. No. I.
During the last few years the inventive genius of this and almost every other civilised country has been largely concerned with electrical science and its application to useful purposes. The result has been the development of a new branch of engineering, and we find that side by side with steam, hydraulic, railway, naval engineering, and other branches of the profession, that of electrical engineering has come into existence, engaging at the present time the attention, not only of scientific men, but also of practical men who are making a speciality of it. This development has been so rapid and the practical results obtained are so hopeful that one is inclined to listen to the advucate of electricity, and to consider it as something more than a figure of speech when they tell us that the world is now entering into the era of electricity;
just as in the time of James Watt it entered into the era of steam. Whether these prophets be right, and what the outcome of this unprecedented and almost feverish activity in the world of electrical engineering may be, time alone can show, but meanwhile we find in the coming Exhibition a very favourable opportunity for obtaining a clear idea of the present state of the new industry. Within the last few years so many Exhibitions have succeeded each other that one wonders how there can be anything new to show, and yet there always is, especially in electrical matters. As far as the application of electricity for lighting purposes is concerned, the two preceding Exhibitions in South Kensington, and especially that of last year, although only remotely connected with electricity, have afforded an opportunity for display, and have been very instructive and eminently successful. The coming Exhibition will, however, not only outshine even that of last year by reason of a larger and more varied show of electric lighting plant in action, but other applications of electricity will be added, which may soon equal, and perhaps excel, that of electric lighting in practical importance.
We propose to describe in detail and, where possible, illustrate electrical exhibits of interest in the course of these articles as soon as the Exhibition has been opened. At present only very few exhibits are in their places, and with the exception of the electric lighting plant, the erection of which, under the able management of Mr . Gooch, is being rapidly pushed on, the interior of the buildings at South

Kensington presents as yet an almost empty appearance. The shed containing the machinery for electric lightpower, reaching considerably enlarged, and additional steam to give plans and 2160-1.H.P., has been provided. We hope the present our space will only permit us to give a list of the firms who participate in the lighting of the buildings and grounds, and to add some information regarding the number, type, and position of lamps used. By the aid of the plan of the Exhibition buildings and grounds above, our readers will be able to see what parts
have been allotted to the different exhibitors, the numbers inscribed on the plan corresponding to the numbers in the first column of our list, headed "Section." The lighting of an area like that occupied by the Exhibition buildings is no small matter. Here in Euglana, where as yet the number of lights in installations are counted only by hundreds in the case of incandescent lamps, and by much smaller figures in the case of arc Kemps, an installation like that now being erected at south Kensington must appear to be an undertaking of almost cent we and over 400 arc lamps in use every night. But if systems to consider the complexity of the diferent from one central station, it is evident that at these Exhibitious the electric light is produced under difficulties far

PLAN SHOWING DISPOSITION OF ELECTRIC LIGHT SYSTEMS IN THE INVENTIONS EXHIBITION.

greater than could êver exist under conditions of ordinary public supply. The list we publish contains, of course, only those exhibitors whose plant will be actually at work, and engaged in the lighting of the Exhibition. As will be seen, most of the names are well-known, and only a few
new names will be found. Under the old names there will, however, be found many new exhibits. Thus Messrs. will, however, be found many new exhibits. Thus Messrs.
Crompton and Co. are going to show their new type of machine, and the Anglo-American Brush Company will machine, and the Anglo-American Brush Company will
show one of their improved Brush dynamos, with the new wrought iron armature. This is the old 60-light ber of electric lights which will be in use nightly at the Exhibition. In addition to the illumination of the buildings, the grounds will be lighted by small incandescent lamps which are to take the plase of the Chinese lanterns and night-lights in colowo of considerable magnitude, but as the arrangements will not be completed until the 29 th of this month, when there will be a private view previous to the opening of the Exhibition, we must defer our account until then. At present there is little electrical plant in the building, but a few days will suffice to advance matters.

Electric Light Installations at the Inventions Exhibition.

Section.	Exhibitor.	Type of lamp.	$\begin{gathered} \text { Actual } \\ \text { candle-power. } \end{gathered}$	E.M.F. of lamp.	Number of lamps.	Position and remarks.
1	Crompton and Co.	Crompton-Crabb DD aro lamps	3000			
2	Edison-Swan...	Edison and Swan incandescent	10 20	150 100	$\begin{aligned} & 400 \\ & 750 \end{aligned}$	Entrance. South Court.
${ }_{4}$	$\underset{\substack{\text { Paterson and Cooper } \\ \text { Siemens Brothers }}}{\text { ar }}$	Bernstein incandescent	20 50		$\begin{array}{r}750 \\ \\ \hline 200 \\ \hline 180\end{array}$	
5		Swan incandescent ${ }_{\text {S }}^{\text {Sictoria incandescent... ... }}$...	20 20	${ }_{60}^{46}$	1080 750	Middle Court. ${ }_{\text {North Court. }} \int^{\text {S. Gallery }}$
6	Goolden and Trotter	Woodhouse and Rawson incandescent ...	20	100	300	Austrian Court. Current supplied by new Goolden and
8	Elwell-Parker Mackie	Swan incandescent Lea arc lamps	2700	100	$\begin{array}{r} 200 \\ 5 \end{array}$	Royal Pavilion. Elwell-Parker dynamo and accumulator. Old London street. Three lamps fixed to houses, and two
9	Orompton and Co.	Woodhouse and Rawson incandescent	20	100	300	lamps hoisted on two masts. Old London houses. New Crompton dynamo and Willan's
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	Andrews Clark, Chapman, and Co...	Andrews are lamps	1000 20	100	16 200	ened containing machinery for Electric Lighting. Shefreshant Refrestent bar.
12	Anglo-American Brush Company ...	Sellon Brush are lamps	3000		24	Refreshment bar. Queen's.gate Annexe. All a
13 14 15	Jablochkoff Electric Light Company Gailcher Electric Light Company	Jablochkoff candles Swan incandescent	20	45 and 50	750	driven from Brush machine wit South Central Gallery. Aquarium. (Gülcher dynamo.)
	Goulard and Gibbs	Varley lamps and Maxim incandescent...	200			East Arcade and West Gallery, Concert Rooms. Lamps, sco., worked by secondary generators on one main circuit.
${ }_{17}^{16}$	Pilsen-Joel Paterson and coin	Pilsen arc lamps	780 650	二	${ }_{24}^{42}$	West Gallery.
18	Cordner, Allen, and Co.	Thornton arc lamps ...	650		30	West Central Galleries. Arc and incandescent lamps in
$\begin{aligned} & 19 \\ & 20 \end{aligned}$	Maxim-Weston Co. Gülcher Electric Light Company	Weston arc lamps Gülcher arc lamps	$\begin{array}{r} 2000 \\ 700 \end{array}$	50	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	parallel. Galleries. Central Gallery. All the are lamps in parallel ; fed by
$\begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}$	Gülcher Electric Light Company Goolden and Trotter Siemens Brothers	Swan incandescent Hochhausen arc lamps Siemens arc lamps	20 3000	45	250 6 12 12	Güloher dynamo. Chinese Restaurant, Tea-rooms. All lamps paulcher dynamo. lamplel ; fed All the six lamps on one mast over Royal Balcony. For fountain display.
24	Thompson-Houston	Thompson-Houston arc lamps	$\left\{\begin{array}{l}800 \\ 500\end{array}\right.$		$\left.\begin{array}{l}40 \\ 18\end{array}\right\}$	East Gallery. Two Thompson-Houston machines.
25	Clark-Bowman	Arc lamps	$\overline{700}$	=	12	East Annexe. ${ }^{\text {a }}$ (Three exhibitors; names not yet decided.) East Quadrant and West Quadrant.
$\begin{array}{r}27 \\ 28 \\ \hline\end{array}$	Siemens Brothers	Siemens arc lamps	5500	-	4	Conservatory. Same as last year.
${ }_{29}^{28}$	Sun Lamp Company	Sun lamps ...] ${ }_{\text {Woodhouse }}$ and Raws incandescent ...	1100 20		24 300	Cheap dining-rooms. ${ }^{\text {West Ouadrant. }}$,
30	W. H. Allen and Co....	Swan incandescenta	20	100	200	Tea and coffee stalls adjoining North Court. Slow-speed
31	Consolidated Electric Company	Consolidated incandescent ...	20	60	200	dynamo, driven direct by twin engine. East "Quadrant. Lamps arranged in groups on the B.T.K, system,

COMMERCIAL ELECTROLYSIS.

By Paget Higas, LL.D., D.So
As has been said, the first step to the study of the practical laws of this subject is the collation of facts as to what has been really effected in practice; and to resume this, we will first refer to the works of Messrs. Eschger, Mesdach, and Co., established at Biache, near the English Channel. Here is employed a Gramme machine, duplicate
to that used by Dr. Wohlwill at Hamburgh, and this to that used by Dr. Wohlwill at Hamburgh, and this supplies twenty baths, producing daily 880 lb. of copper.
The baths in these works are constructed of $2 \frac{1}{2}$ in. planking, lined with lead. Each bath is 10 ft . long, 2 ft . 6 in . wide, and 3 ft . deep. They are coupled in series, and are filled with a solution of sulphate of copper maintained
uniformly at a density of 19 deg. Baumé. When the bath uniformly at a density of 19 deg. Baumé. When the bath becomes too strongly charged with iron, it is puritied by
crystallisation. Each bath contains 88 anodes and 69 crystallisation. Each bath contains 88 anodes and 69 in 22 rows of four; they are 28 in . long and 6in. wide, by about $\frac{1}{2}$ in, thick. The cathodes are ranged in 23 rows of
three ; they are 34 in. long, 7 in . wide, and about $\frac{1}{1}$ in. thick. three; they are 3 in. long, 7 in . wide, and about $\overline{1}$ in. thic
There is therefore in action about 10,800 square feet.
The copper is deposited on the cathodes in sufficiently thick layers to be taken directly to the rolls. The silver is found in the mud at the bottom of the bath. There, also, are to be found less profitable impurities of the copper, as well as broken bits of cathodes and anodes. The liquor of the bath is decanted through lead syphons, and the mud removed, washed, and subsequently fused with itharge, or with simply a reducing re-agent, the former product
being treated as argentiferous lead. The decanted bath liquor is raised again to the baths by means of a leaden
Giffard injector. Two meu are sufficient for the labour Giffard injector. Two men are sufficient for the labour, and during five years of work there have been only two
important stoppages, both of them due to culpable igno important stoppages, both of them due to culpable igno-
rance. Those so-called practical men, who sneeringly impugn the lasting power of the dynamo as a machine, would do well to refer to these machines.
At these works, the production is 1540 lb . (about) of copper in a day of twenty-four hours, or 64 lb , an hour,
upon a cathode surface of 13,000 square feet. The thickupon a cathode surface of 13,000 square feet. The thickness of the deposit is about '00012in. per hour.
The details of the works of M. Hilarion Roux, at Marseilles, may be summed up in the following abstract, given
for reference subsequently when dealing with the practical for reference subsequently when
cost of this process of refining.
The number of the baths is forty, having a total anode surface of about 10,000 square feet, or about 250 square
feet per bath. There are 115 plates in each bath; each feet per bath. There are 115 plates in each bath; each plate is 2 ft . 3 in . long, and is immersed to five-sixths of its
length, by a width of nearly 6 in., with a thickness of
in in. The weight of a single plate is 26 lb . The anodes are distant from the cathodes 2 in., and the latter are 02 in . thick. The total weight of copper under treatment is 54 tons. Twenty-three pounds are refined per hour, or about 550 lb . per day, with an expenditure of 530 lb . of coal per day, used in driving a No. 1 Gramme depositing machine at 850 revolutions, absorbing about 5 -horse power.
The density of the bath solution is 16 deg. to 18 deg . The density of the bath solution is 16 deg , to 18 deg .
Baumé, and the bath is maintained at a temperature of Baumé, and the bath is maintained at a temperature of
about 25 deg. Cent. The deposit is at the rate of 0002 lb . about 25 deg . Cent. The deposit is at the rate of 0002 lb . per square foot of cathode, or a thickness of rov in . per
hour- a remarkable instance of the importance of small increments of matter.
In addition to the previous details, a description of the process and details of the work as carried on-as far as is
known-at the Selby Oak Works, near Birmingham, by known-at the Selby Oak Works, near Birmingham, by
Elliott's Metal Company, will afford sufficient data on Elliott's Metal Company, will afford sufficient data on which to base conclusions as to the commercial character
of the electrical processes of refining copper. These works of the electrical processes of refining copper. These works
produce ten tons of refined copper a week; the current is obtained from five Wilde's machines; the baths are in five series of 48 , coupled one after the other in each series. The baths are 2.9 ft . long by the same width, and 4 ft .
depth; each contains 16 anodes, 2 ft . long by 6 in . wide by $\frac{1}{2}$ in. thickness, weighing each 26 lb . But there are only 10 cathodes in each bath, each cathode being 1 -4ft. long, 22 in . wide, and 03 in. thick, weighing 2.86 lb . The total weight of copper in each bath is about 450 lb , and in a
battery of forty-eight baths about 10 tons. The distance between the electrodes is $3 \frac{1}{2} \mathrm{in}$. The immersion of the anodes is only to 20 in . of their length, so that the
immersed surface, counting both sides of the anode, is only is square feet, and there are 30 square feet in each bath The production for the forty-eight baths is nearly 30 lb an hour, or about 65 lb . per bath per hour, corresponding to a current of 235 amperres. The anodes are replaced
every five weeks, and the work is consecutive for 156 hours a week. There are at Selby Oak Works five similar installations to that described.
It would be useless to multiply examples of the commercial importance of electrolysis; it remains to be seen
whether these processes are conducted on sound commercial principles-that is, whether they pay and how they pay. Subsequently we may consider whether they are capable of extension.
That these processes pay we judge, à priori, from the any opinion as to their value as commercial concerns it is necessary first to take into account several technical points The first is the thickness of the deposit in a given time
Amongst the earliest investigators in this important field source of electricity a Daniells employed as a generating varying the resistances, so that a given thicknessin 45 minutes, as the quickest, rate. Between a thickness of 00012 in -- measured, of course, by weighings-and of -00144in. deposit per, hour-that is, between-rates of
deposit as 1 to 12 up to the limit of the last-the deposit was good; beyond this all quicker rates gave defective deposits. From these trials Mr. Sprague concluded that the limit of current of 1 ampère to 33 square centimetres, or to, say, 5 square inches, should not be exceeded. This

30 ampères per square foot of anode. But in practice this limit can never be attained. Even in the most careful manipulation of typographic clichés, when depositing from anodes of pure copper, one-third this rate is rarely
exceeded with safety. Indeed, there is scarcely a safe, exceeded with safety. Indeed, there is scarcely a safe,
hard-and-fast rule, for the impurities of the anode really hard-and-fast rule, for the impurities of the anode really
control the speed of the operation. M. Gramme has control the speed of the operation. M. Gramme has tenth of this given rate; and has obtained hard, fine, and tenacious deposits at even 1 ampère per square metre. We have previously referred to the rate of deposits as obtained at Hamburg, at Biache, and at Marseiles, and we may now tabulate these results; but in order to give the
deposits appreciable thickness, the total of a week's work deposits appreciable th
of 156 hours is taken.
Maximum deposit chemically pure anodes.
Sprague's results ; good deposits
Stin.
.
Sprague's results; good deposits
Ha s results
Biache Works
Mache Works
Melby Oak Works
.0 in.
.07 in.
.
.

The purity of the copper obtained depends on the continuity of the operation, on the distance between the electrodes, and on the purity of the solution and of the anode. want considering circumstances upon which that the results, good or space, enter here, works quoted are very closely similar when the deposit does not exceed the rate of 2 millimetres, or, say, 08 in . per week.
fining of ce corer economical conditions relating to the rea little careful thought.

THE DISTILLATION OF SEA WATER.
The supplying of the troops at Suakim and in the Soudan with water is one of the most important items in the whole
conduct of the Egyptian war. Even in cold or temperate latitudes fresh water is a first necessity for animal life ; much more is this the case in the desert; ; and the wells in the country forming the scene of our military operations form in has to be supplemented, and to do so artificial means and the aid of the engineer have to be enlisted into this service.
Many of our readers see notices from time to Many of our readers see notices from time to time in the newspapers about this or that ship being employed, or at least her steam fittings, in distilling water for the use of the troops still it is no disparagement to some of them to assume that they are more or less unfamiliar with sea water distillation on the scale on which the process is now being carried on at Suakim; and as the subject is of general interest, we give n In nesiption of the proces.
In a general sense fresh water is obtained from sea water by team through a surface condenser, and filtering the resulting water. The obtaining of fresh water in this way has been in practice on board sea-going ships for many years. It is sup. posed by some authorities on this subject that the first time fresh which rainust of water, sea he a brig into strips, which he bent and solered into pipe He with the carpenter's aid, fitted a wooden lid in one of the cooking boilers, and fixed one end of his pipe in it. He next sawed a water cask in half, bored a hole in the space round the a worm and still or condenser. The distilled water, however,
was scarcely drinkable. Not to be benten captain got some pieces of charred wood which he put in the water, which so far improved it as to render it at all events fit
to sustain life, and our skipper brought his brig and her to sustain life, and our skipper brought his brig and her crew
safe to port. What suggested the use of charcoal to his mind history does not tell. For many years past scarce any sea-going vessel leaves port that is not fitted with a properly constructed is that each ship thus fitted to the satisfactioning this practice Trade inspector is allowed to sail with only half the quantity of fresh water on board which she should have if not provided
with a distiller. The distiller and filter ocupy very with a distiller. The distiller and filter occupy very much less of water otherwise required to be carried.
Coming now a little to detail, sea water distillers are usually supplies the steam both for distill stion and to drive which latter working its circulating pump. Smaller distillers are worked without a pump, the cooling water merely passing through by gravitation. These smaller affairs again are of two kinds, the one being mounted at one end of the cooking hearth, as in outone end. A is the supply pipe to admit air to aërate the water ,

B is the cock where fresh water is drawn off; C is a pipe conveying cooling water to the condenser E , placed on three little feet dome top, where it expands number of tubes about 1 in . Ilected in a bottom lin. diameter, in which it is condensed,
cock B. A distiller of this size would make about thirty gallons
of fresh water per day, Very of fresh water per day. Very frequently a distiller, such as is
shown in the sketch, is mounted separately, and placed near the winch or donkey boiler, which supplies it with steam, near part F being then used as a filter. The diameter of E is from part F being inen heod ater casing being either iron or conper
1 in Another form of distiller is one like the above, but larger, and having a small donkey engine and circulating pump attached thereto. As a rule these distillers are vertical, but larger apparatus are arranged horizontally. To give our readers some general idea of size, weight, and produce of water, we may say that a plain cylindrical distiller, mounted on a square
filter case, measuring 3 ft . 9 in. high, weighing $4 \frac{1}{2}$ cwt., will filter case, measuring 3 ft . 9 in . high, weighing $4 \frac{1}{2}$ owt., will
distil twelve gallons per hour. A larger size, measuring 6 ft . 2 in . distil twelve gallons per hour. A larger size, measuring ort. 2 in ,
high, and weighing about 23 cwt., will give 85 gallons; whist a still larger one, measuring 7 ft . high and weighing 32 cwt., yields 150 galons. These have is pumps. from an engine and in the smaller to 50 per cent. in the larger sizes. An immense advantage attends the use of those distillers that are combined with a winch boiler. Of course, the chief use of the winch is while in dock; some use is made of it at sea to do heavy pulling
and hauling, to wash decks, and in case of emergency the circulating pump is used as a fire engine Were it not however, for the distiller, the winch boiler would simply be idle lumber at ea. The distiller, however, finds useful employment for ity
and has also this excellent effect, that as steam is pretty constantly kept up for the distect, that as as in the eve is pretty
of a fire the boiler is ready to work a firo the boiler is ready to work at once. In bori-
zontal types of distiller an engine and pump are mounted on a cast iron casing as a bed, and in this casing is placed
a number of tubes through which the steam passes to be condensed, the whole being simply a surface condenser with engine and pump above. Another type is that of a small singleflued horizontal boiler with combustion chamber and twenty or thirty return tubes-in fact, the present high-pressure marine
boiler on a small scale. A boiler of this sort, measuring 4 ft . to boiler on a small scale. A boiler of this sort, measuring 4ft. to
5 ft . long, 3 ft . 9 in . to 4 ft . 6 in. diameter, would have a horizontal 5 ft . long, 3 ft . $9 \mathrm{in}$. to $4 \mathrm{ft}$. . 6 in . diameter, would have a horizontal
donkey engine on a bed at its side, and at the end of the engine ankey eagine on a sertical cylindrical condenser.
Few have done more, perhaps none so much, as Dr. Normand make sea water distillation not only a success as a source of
 the regenerative system in his apparatus, using the heat taken from one lot of steam to generate more, and again the heat from this he used over again. The defect of his older arrangements wai undue complexity and consequent trouble to keep in order.
As can be well imagined, the distillers in use at Suakim are on much more colossal scale, and owing to the now almost universal use of surface condensers in ocean steamers, no great difficulty one of our transports, One of these full powered ste indicate, say, 5000 -horse power, and assuming her engines to use 25 lb . of steam per indicated horse-power, or $2 \downarrow$ gallons, she could distil some 12,000 gallons of water per hour. As no appreciable prossure of steam need be maintained, the boiler
would suffer little from deposit, especially if regularly blown out Hard firing need not be resorted to; indeed, it would be in judicious, as, of course, priming must be carefully guarded ainst. Of course, the salt water distilled will affect the
working not exactly of the distillers, but of the boilers. If the water in the harbour, as is not improbable, is muddy, some nethod of filtering it before pumping it into the boilers ought preserving the boiler plates from, muddy deposit, and abo preserving the boiler plates from muddy deposit, and also to muddy water. No doubt the medical staff take care that the distilled water is alike thoroughly aërated and efficiently filtered The most successful method of aërating is, we believe to cause the current of steam as it enters the condenser to suck in air by induced current along with it. The filtering ought not to present any difficulty, as at all events sand enough can be had.
Charcoal, however, is another affair, and all distilled water Sight to be brought into contact with this substance.
Simple, however, as such an arrangement as this appears to be, practical difficulties, which it is said are insurmountable, duced for Ferpt if ed in
 principle involved is, however, in all cases the same. Steam is generated in one of the ships boilers, and condensed, filtered and aërated in a special apparatus. The great objection to the use of the ordinary surface condenser is that the main engine to pa, in the majority of cases, have to be kept going, in order circulap the distilled water out of the condenser, and to supply proper, this difficulty But is easy to see that if engineers thought proper, this ditniculty could be readily got over. Separate the addition of a special pump for lifting the condensed water presents no difficulty whatever. While the main engines are
running the withdrawal of running the withdrawal of much condensed water would no
doubt risk the safety of the boiler ; but in the case of so-called "distilling" ships, there need be no trouble incurred on this

ENGINES OF THE MONA.

The following additional particulars of the engines of the Mona-illustrations of which appeared in our last impreasionmay be of interest:- The dimensions of the engines are as
follows: Cylinders, 20 in . and 40 in . by 2 tiin. stroke; crank shaft of steel, $7 \frac{1}{2}$ in. diameter; main bearings, 1lin. long ; centre bearings, 14in. long ; piston-rods of steel, 4in. diameter; diameter of air pump, 15 in . by 15 inin stroke; feed and bilgo pumps, 3 gin. sure cylinder; ; circulating pump, independent, 9 kin . diameter and 12 in , stroke, double-acting, driven by a Pearn direct-acting engine, oxhausting into condenser, driving also an auxiliary feed
pump, sucking from bottom of condenser, and acting as pump, sucking from bottom of condenser, and acting as an air
pump when engines arestanding, and steam is being blown through pump when engines arestanding, and steam is being blown through
into thecondenser; condenser tube surface, 750 squarefeet; thrust bearing with single collar connected to engine bed by stays, Donkey engine, double-acting; steam cylinder, 7in. diameter by bucket, liner, and valve, arranged to draw from sea and engine room bilges, and to pump into the boiler, overboard and on deck, and exhaust led to this, to waste pipe, or condenser. A 4in. doub ieacting brass-lined hand pump is fitted, to pump on deck
and into the boiler, and draw water from the sea and biges, with a cock for testing the condenser. Boiler, 11 ft . 6 in , diameter by 10 ft , long, of steel, stayed for a working pressure of 100 lb , and tested by hydraulio pressure to 200 lb .; three furnaces, each 2 ft , 9 in .
diameter and $\overline{\mathrm{fts}}$ 6in. long: total heating surface, 1050 . diameter and 7ift. 6in. long; total heating surface, 1050 square feet; grate area, 45 square feet; weight of engines and shafting,
without propeller and pipes, 26 tons; weight of boiler, with without prope
water, 28 tons,

RAILWAY MATTERS.

Mr. C. L. Tate has been appointed general manager of the
Mersey Tunnel Railway. The eastern system of Cape railways, passing through the
colonial coal fields, was completed and opened for traffic to colonial coal fields, was co
Burghersdorp on the 19th ult.

On the 10th inst. the Wigan Tramways Company sold the whole of its remaining stock of horses. These lines have for the last
three years been worked jointly by steam and horse-power, and it is through the undeniable economy shown by the past three years' working by steam as against horses that the above resolution was
passed. The engines exclusively used on the system are the Wilkinson type.
A company is being formed for the purpose of constructing a
railway, to be known as the Sutton and Willoughby Railway. The line will run from Willoughby to Sutton, where it is proposed to
construct a North Sea Fisheries Harbour and Dock. It is proposed to construct the line and dock and harbour in response to the
wishes of the smack owners, fishermen, and merchants of Grimsby the fish dock there not meeting the requirements of the trade.
THE published accounts of the railway companies for the past
few half years generally show that working expenses are growing less in relation to the amount of work done, and in fact, companies in this way have been able to make dividends that would otherwise
have been small; and this is notwithstanding a considerably increased mileage of line to work, and a largely increased train
mileage. Much depends on careful and judicious enterprise of mileage. Much depends on careful and yudicio.
Messrs. Craven Brothers, Darnall Carriage Works, Sheffield, have just delivered to the Cheshire Lines Committee forty composite carriages of a very comfortable and substantial type, which
are intended mainly for the through traffic to Liverpool. The same firm are now building two large dining saloons for the Great
Northern Railway Company, to be used in their express service from London to Scotland. They will be somewhat similar to the new dining saloon recently constructed at Gorton for one of their
special fast expresses between Manchester and London.
Speaking of the Suakim-Berber line, a Times correspondent
says :- "The construction of the railway is a curious and interesting sight. In advance is a picket of cavalry, while far off on either side the vedettes scout in the bush. At the immediate head
of the line is a battalion of infantry-at present the Grenadier of the line is a battalion of infantry-at present the Grenadier
Guards-echeloned, and advancing as the rails are laid. Streams of collies carry the sleepers from the trucks, and teams of four
artillery borses drag up the rails, two at a time, to the navvies, artillery horses drag up the rails, two at a time, to the navvies,
who lay them in a twinkling, and drive the spikes. In the rear
are are gang,
Mr. Holt S. Hallett, who had charge of the Colquhoun exploration, delivered an address on Monday before the London
Chamber of Commerce on "Railway Extension to South-West China and Siam." He sketched out the route of a proposed railway, setting down the cost of the line at six millions. There were
no extraordinary difficulties in the matter of construction. The
main line from Bangkok to Kiang Hsen should not cost more than main line from Bangkok to Kiang Hsen should not cost more than
four millions, and it ought to pay as well, or better, than the
Irrawaddy Valley State Railway, connecting the British Burmah Irawaddy Valley State Railway, connecting the British Burmai and passed through a less thickly populated and fertile country.
THE Railroad Gazette record of train accidents in February con-
tains brief accounts of 61 collisions, 136 derailments, and 19 other accidents; 216 accidents in all, in which 44 persons were killed and
259 injured. Fourteen collisions, 9 derailments, and 2 other accidents caused the death of one or more persons; 8 collisions
and 29 derailments caused injury, but not death. In all, 25 of the whole number, in which no injury to persons is noted. In the 61 collisions there were 23 persons killed and 57 injured.
In the 136 derailments, 18 persons were killed and 202 injured; while the 19 other accidents caused 3 deaths, but injured no one.
WHEN the projected new line, 600 miles long, from Winnipeg to
Hudson's Bay is opened, the distance to Liverpool from Manitoba,
via Hudson's Bay, will be lessened by via Hudson's Bay, will be lessened by more than 800 miles of rail-
way and 64 of sea. The distance to Liverpool from Port Churchill,
on Hudson's Bay, is 2926 miles, or 64 miles nearer tlmn Montreal, which is 2990 miles; and 114 miles nearer than from New York to which is 2990 miles; and 114 miles nearer than from New York to
Liverpool, which is 3040 miles. It is therefore anticipated that
within three or four years a further reduction will be made in the within three or four years a further reduction will be made in the
cost of Manitoba wheat at Liverpool equal to the saving on 800 miles of railway carriage, or about 3 s . per quarter on wheat and $£ 3$
per head on cattle, without taking into account the saving in time, per head on cattle, without taking into accou
which is estimated at more than three days.
Accibents on American railways in February last are classed as to their number and causes as follows by the Railroad Gasette:Collisions: Rear, $38 ;$ butting, 21 ; crossing, $2 ;$ total, 61 . Derail-
ments: Broken rail, 34; broken frog, 6 ; broken switch-rod, 3 ;
broken bridge, $3 ;$ spreading of rails, 9 ; broken wheel, $15 ;$ broken
axle, $5 ;$ broken truck, 2 ; broken draw-head, 1 ; dropped brake broken bridge, 3 ; spreading of rails, 5 track, 2 ; broken drow-head, $1 ;$ dropped brake
beam, 1 ; accidental obstruction, 3 ; land slide, 1 ; wash out, 1 ; snow or ice, $20 ;$ wind, $1 ;$ misplaced switch, $6 ;$ purposely misplaced
switch, $2 ;$ raii purposely removed, $2 ;$ malicious obstruction, 1 ;
unexplained, $20 ;$ total, 136 . Other accidents: Boiler explosion, unexplained, 20; total, 136. Other, accidents: Boiler explosion, $2 ;$
flues collapsed, 1; broken parallel rod, 10; broken wheel, not
causing derailment, 4; broken truck, not causing derailment, 1 ; causing derailment, 4; broken truck, not causing derailment, 1 ; car burned while running, 1 ; total, 19. Total number of accidents,
216.4 general classification of these accidents may be made as
follows:-
 As usu
whole.

Ar the end of 1883 the capital of the six leading French railways,
Areluding the subventions, was $10,671,716,000$ f., of which including the subventions, was $10,671,716,000$ f., of which
$10,069,671,000$. had been expended on the lines of the old and new network, comprising about 25,647 kilos, authorised, of which
23,201 kilos. Were in work. The cost per kilometre worked was
about $434,000 f$, whilst the total about $434,000 \mathrm{f}$., whilst the total charge for rolling stock was
$1,468,128,0000$., or equal to 63,300 . per kilometre. The total $1,468,128,000$., or equal to 63,300 f. per kilometre. The total
traffic receipts of 21,163 kilos. brought into these accounts were
$1,040,572,902 f$., or an increase of $3,370,954 f$. over 1882 , whilst the expenses rose from $513,682,321 \mathrm{f}$. in 1882 , to $537,522,442 \mathrm{f}$., or
$28,840,121 \mathrm{f}$. increase, leaving $503,050,460 \mathrm{f}$. against $523,519,627 \mathrm{f}$. as net receipts, or a decrease of $20,469,167 \mathrm{f}$. The proportion of
expenses to receipts was $51 \cdot 66$ as compared with 49.53 per cent.,
or $2 \cdot 13$ per cent. increase. In 1883 the companies carried expenses to receipts was
or $2 \cdot 13$ per cent. increase. In 1883 the companies carried
$6,566,448,000$ passengers one kilometre at an average fare of
$0^{\circ} 04844$. For the same year, the tonnage carried by the petite $0^{\circ} 0484 \mathrm{f}$. For the same year, the tonnage carried by the petite
vitesse one kilometre was $10,66,532,000$ tohs, at a cost of 0.0571 .
To secure this traffic the trains ran 198,912,000 kilos., the locomo-
tives $228,891,000$ kilos, and the carriages and wagns of all sorts ives $228,891,000$ kilos., and the carriages and wagons of all sorts
$4,128,558,000$ kilos. Looking at these results from a financial point $4,128,558,000$ kilos. Looking at these results from a financial point
of view, the results of the wworking of a group of lines having a
capital of $8,305,500,000 f$., a revenue of $522,287,000$. was earned, giving 6.29 per cent. on the capital. Frotn the statistics it appears
that the working of the lines, which in 1882 left a balance of
$7,163,881 f$. towards the repayment of advances made by the State, $7,163,881 f$. towards the repayment of
left in 1883 a deficit of $11,783,822 f$.

NOTES AND MEMORANDA.

THE pig iron production of Austria in 1883 was 522,400 tons,
gainst 445,478 tons in 1882 . Of this quantity 474,754 tons were forge, and 47,646 tons were foundry iron.
The total production of iron ore in Austria in 1883 was 882,313 tons, against 905,510 tons in the preceding year. The average out-
put of each of the hands employed was 180 tons. Bohemia, 209 put of each of the hands employed was 180 tons. Bohemia, 208
tons; Carinthia, 149 tons; and in Salzburg, 111 tons. The largest output was obtained in Styria, where 544,243 tons were worked.
PROFESSOR RIATTI has constructed a thermo-electric cell, based
upon the principle that the production of electricity is due to the difference of the temperature of two parts of a single fluid. The cell consists of a receptacle of wood or porcelain, traversed by two
tubes of copper, with wires at a certain distance between them. By the principal tube a jet of steam is passed, and by the other cold water. The outer jar contains a solution of sulphate of copper. and is deposited in the other. This cell is said to be constant, and ot liable
HERe, says the Carriage Monthly, is a brief description of the process of steel-converting axle spindles. The threaded portion is
incased in a ball of fire-clay. The axles are next stood-points incased in a ball of fire-clay. The axles are next stood-points
down-in metal boxes ; the space between the axles is then filled with animal carbon, usually calcined "bone dust," to a point lin.
or more above the collar. A fire is then made about the metal boxes, and kept up until the carbon ignites and penetrates the iron,
the whole being at a red heat. When thoroughly charged with the carbon, and while red hot, the axles are removeved and placed in the cooling vat, the water of which is most
and sometimes with prussiate of potash.
Writiva to the Times on the fracture of the South Foreland
Lighthouse lenses, Professor Tyndall says: "I have already shown that different kinds of glasses act differently on radiant heat. W have now to add that different kinds of radiant heat act differently n the same glass. Take an example. A plate of transparent lass will transmit 40 per cent. of heat from a brightly burning heat radiating from à plate of metal with a temperature of 700 deg. Fah. This small transmission implies a correspondingly large absorption. Now it so happens that precisely where the fractures
begin at the South Foreland a source of heat over and above the blames comes suddenly into play. This second source is the flue
flater nto which the products of combustion, and indeed a portion of the stating that the heat radiated from this flue is wholly lodged in the glass. Thus, from the second lens upwards, we have the combined
action of two sources of heat, and to this union of forces I attribute action of two sources of heat, and to this union of
the partial destruction of the upper three lenses.
Gaus has computed-taking as a unit of his measure a magnet
14 in . long, 1in. wide, $0^{\circ} 25 \mathrm{in}$. thick, weighing 1 lb . made of the hardest steel and of the strongest magnetic force possible-the
earth's magnetic force as equal to $8,464,000,000,000,000,000,000$ such magnets. The attracting or lifting power of such a magnet is about 10 lb . which would make the attractive power of the earth
$42,310,000,000,000,000,000$ tons. This calculation may be rather curious, a multiplication of a quantity by 10 reducing it by a good probably thought that when all is guess work it is not wise to waste time on minute accuracy or give it a second thought. It adds, if
this magnetism were equally distributed throughout the mass of this magnetism were equally distributed throughout the mass of
the earth, the magnetic intensity of each cubic yard would be equal to six of these magnets, or about 60 lb . attractive force. Professo Is a power filling space to an unknown distance and radiating in
in the lines of magnetic force very much as the rays of the sunlight, as indicated by the compass needle.
Some interesting facts are published concerning what are known
as "the greyhounds" of the Atlantic. The steamship Etruria, as "the greyhounds" of the Atlantic. The steamship Etruria,
the latest addition to the Cunard Line, has made 805 knots in forty-six hours with three-quarters steam. From the Fastnets to with sixty-three revolutions of the screw hours' run in the Clyde, with Scotch coal, she reached 67.5 revolutions of the screw, and made $20 \cdot 233$ knots, going and returning
between the Pladda and Sanda. This gives a speed of 24 statute miles per hour. The Etruria is a sister ship of the Umbria. She is entirely of steel, 520 ft . long by 57 ft . 3 in . broad, and 41 ft . deep.
The following figures relate to nine vessels of the fastest class, all constructed within the last eight years :-

Five of these, the Servia, Oregon, Aurania, Umbria, and Etruria, five have a greater breadth of beam and greater depth than their competitors-an important element in the calculation of comfort
and safety. During the seven voyages from May last to January, the Oregon never steamed less than 400 knots per day coming east, passage out and home-the quickest passage on record-was done in 12 days 21 hours 9 minutes, or an average of $18 \frac{1}{2}$ knots, or $21 \cdot 40$ statute miles per hour,
The employment of the telephone increases very rapidly in
Europe. In Italy ten cities possessed telephone lines at the end of Europe. In Italy ten cities possessed telephone lines at the end of
1884, the same number in 1883 ; but the number of subscribers
increased from 3710 in 1883 to 5301 in 1884, an increase of 30 per increased from 3710 in 1883 to 5301 in 1884, an increase of 30 per
cent. In France eleven cities had telephonic communication both
in 1883 and 1884; the number of subscribers increased from 4739 in the former year to 5535 in 1884, an increase of 15 per cent. In
Belgium, in five cities, the increase has been from 2051 subscribers Belgium, in five cities, the increase has been from 2051 subscribers
in 1883 to 2443 in 1884 , or 19 per cent. In Great Britain, London
had 3350 subscribers in 1884 , against 2565 in 1883 , an increase of had 3350 subscribers in 1884, against 2565 in 1883, an increase of had together 2359 subscribers in 1883 , augmented to 2734 in 1884 ,
or an increase of 17 per cent. For Sweden the figures for 1882 and or an increase of 17 per cent. For Sweden the figures for 1882 and
1884 are available; they show the largest increase for any country. In 1882 only five cities, with 1504 subscribers, had the telephone in 1884, fifty-one cities, with 7787 subscribers, an increase of 398
per cent. in two years. In Holland, in eight cities, we find 1972 subscribers in 1883, and in 1884 , in nine cities, 2250 subscribers; an
increase of 14 per cent. In Switzerland, in ten cities, in 1883 increase of 14 per cent. In Switzerland, in ten cities, in 1888
there were 1778 subscribers, which figures rose in 1884 to twenty seren cities, with 3771 subscribers ; increase, 112 per cent. In
Russia there were in 1888 , in six cities, 1485 subscribers, rising to seven cities with 2230 subscribers in 1884; increase 60 per cent The statistics for the German Empire for 1883 and 1884 are not yet published. There were 1500 subscribers in Berlin in June, In Norway on June 30th, 1883 , two cities-Ccristiania and
Drammen-had 755 and 150 subscribers respectively. In Denmark, Copenhagen had 516 subscribers in June, 1883. In Portugal there were at the end of 1883 telephone lines in Lisbon, with 343
subscribers, and in Oporto with 183 subscribers. Spain is the only subscribers, and in Oporto with 183 subscribers. Spain is the only was recently passed by
telephonic monopoly.

MISCELLANEA
ArTER a year's effort to obtain and refine oil from wells in
Burmah, recent Government reports state that, "So far, attempts to obtain, recent in paying quantities in British Burmah have proved a At the meeting of the Iron and Steel Institute on the 6th, 7th, and 8th May, ten papers will be presented, several of which are of more than usual interest,
tion of Civil Engineers,
A bill now before the New York Legislature provides that the portion of any telegraph, telephone, or electric light lines in any
town in this State shall be assessed in the manner provided by law for the assessment of lands.
A UsEFUL table, showing the horse-power transmitted by shafts and
A.M.I.C.E., has been published by Mressrs. S. and E. Norris and
Co., the well-known leather belt AT the entrances to the Inventions Exhibition fifteen of the registering turnstiles of Messrs. Isler and Co. will be employed.
The new subway from the station to the Exhibition will reduce entrance stiles.
The Board appointed to investigate the charges preferred by Mr.
J. H. Howe, M.P., in Parliament-South Australia-against Mr. J. H. Howe, M.P., in Parliament-South Australia-against Mr The Brussels Municipal Gas Company has decided to reduce the price of gas consumed during the day to 10 centimes per cubic
metre, and proposes to use a meter with two indices-one for metre, and proposes to use a meter with two indices-one for
registering consumption at high pressure and the other for that at mption.
The Engineering News Publishing Company, New York, has Drawings and Data," illustrative of the New Croton Aqueduct from Croton Dam to Harlem River. There are sixteen plates,
which are of considerable interest to engineers concerned on water which are of
supply works.
DURING 1884 the imports of frozen meat amounted to the enor of these supplies arrived in " magnificent condition," but in some instances great deterioration had taken place during the voyage,
involving heavy loss to the importers, and showing the great value of trustworthy refrigerating machinery.
The keenness of the competition in the bridge building trade is
causing some manufacturers to agitate the question of the adviscausing some manufacturers to agitate the question of the advis
ability of taking steps to cause, if possible, the insertion in the ability of taking steps to cause, if possible, the insertion in the
public press of the results of the tendering for large Government work which is from time to time given out, in the same manner as the applications for tenders are now published.
The Government have entered into a further contract with
Messrs. Yarrow and Co., of Poplar, for the immediate construction of three more stern-wheel steamers for the Nile. The new boat will be shipped in large sections, which can be bolted together
afloat, thereby avoiding the delays and difficulties of rivetting up and launching. They will also be provided with powerful armament, and may
the expedition.
The French authorities in Cochin China have erected overhead wires across the river Mekong, posts 165 ftt . high having been put
up on each side of the river, at a spot where the width is 2560 ft ., up on each side of the river, at a spot where the width is
and from these silicious bronze wires-one 04in., and the other ${ }^{\circ} 055 \mathrm{in}$. in diameter-are suspended across the stream. Over a tributary of the river another similar connection has been made,
1670 ft span and more than 114 ft , above flood water. The former of these is a span of $0^{*} 46$ of a mile.
From the annual report of the Manchester Steam Users' Asso-
ciation it appears that, during the year, the occurrence of 36 steam ciation it appears that, during the year, the occurrence of 36 steam 44 other persons, came to the knowledge of the committee, while others, also toous explosions, killing 8 persons and injuring 21 49 explosions, 31 deaths, and 65 cases of personal injury. At At
Bilston, three boilers blew up simultaneously, and three men were

In their report on the water supplied to London during March, Meymott Tidy say: Of the 188 samples examined, the whole were amount of organic carbon in the Thames-derived waters for March was practically identical with that for February, viz., $0 \cdot 18$ in
100,000 parts of the water. Considering the condition of the river during the month, and the additional care needful to effect good
dut during the month, and the additional care needful to effect good
filtration, it is noteworthy that not one of the 188 samples examined by us contained so much as a trace of suspended matter
A NEW Telegraphic and Electrical School has recently been
opened at the Lecture Hall, Royal Hill, Greenwich, by Messrs P. Chattock and S. T. Dalton, for the purpose of affording instruc-
tion in electrical science and in telegraphy, both practical and theoretical. During the summer months the theoretical instruc tion will be confined to laboratory work, but early in October it is
intended to supplement this by a series of lectures. In the classrooms there is a good collection of apparatus, including most kinds of telegraph instruments at present in use, and this will give a
good opportunity for those wishing to prepare for the expected development of telegraphy when the new rates come into force. A NEw pumping engine, of considerable power, built by Messrs,
Hathorn, Davey, and Co., of Leeds, has been put down at the Moat Colliery, near Princes End, by the South Staffordshire
Mines Drainage Commissioners. It will be publicly inaugurated on Saturday, when a luncheon will be given by by the members of the Tipton District Committee. The boilers have been supplied by Messrs. Hawksley, Wild, and Co., of Sheffield. The engine is
of the horizontal compound differential type. It has a 44in. highpressure, and 76 in . low-pressure cylinder, and a 10ft. stroke, with
air pump and surface condenser. The pumps consist of two 19 in . plungers, with 10 ft , stroke, placed at a depth of 464 ft . At each surface. The engine, is capable of raising over two million gallons in twenty-four hours. An extensive system of levels is
under completion, and when the levels are finished, it is expected under completion, and when the levels are finished, it is expected
that the one new engine will be pumping an area that has hitherto In a letter on "River Conservancy," Mr. J. Bailey Denton says does not believe that the year 1885 will be signalised in the east
and south of England by the lowering of the subterranean water upply and the redotion of thering of the subterranean water which case the evils of pollution will be much aggravated. While of the average annual fall of fifty years, the depth due to the which months, from October to March inclusive, the period upon 1883-4 and 1884-5, considerably below the average fall wo the period, whle in 1884-5 the proportion of the rain evaporated was remarkably great. "The result of these coincidences manifested itself in a twelve years by a declension of depth between the 1st of April,
1882 , and the 1st of April, 1885 , of 8 ft . 10 in . He felt that such a
fact as this is worthy the attention fact as this is worthy the attention of all who take an interest in
the regimes of the rivers upon which we depend so much, for it the regimes of the rivers upon which we depend so much, for it
shows how desirable it would be to replenish the natural reservoirs we possess in the water-bearing strata under our feet by sinking
shatts or sumps into them from the surface of our valleys, so as to
turn turn to useful account the flood and excess waters which are
injurious to agriculture,

THE BLAAUW KRANTZBRIDGE, CAPE COLONY.
messrs. handyside and co., Derby, construotors.

THE "IMPROVED" EXHAUST STEAM INJECTOR
Messrs. Holden and Brooke, of Manchester, have introduce a further development of the comparatively recent type of exhaust steam injectors, the chief features of which are pretty clearly shown in the accompanying illustration. This they have termed their patent "improved"-rigid nozzle-exhaust steam injector, and the leading feature is that it dispenses with the flap or split nozzle of the ordinary exhaust injector, which in replaced by a small valve. The large surface-which of necessity must be accurately scraped up-of the split nozzle, with it hinge, is obviously an objection if the work can be done equally
well with a much less surface, and this objection Messrs. Holden and Brooke have overcome in a very simple and at the same time very successful manner. In an exhaust injector of any kind it is essential for its efficient operation that the feed water shall be able to get freely away until the jet can acquire a sufficient velocity to pass through the delivery or receiving

cone, and it is also necessary that when the injector is at work there shall be no access of air or vapour to the combining cone. These are points to which special attention has been paid in the bining nozzle is rigid Messrs. Holden and Brooke. The com fixed gaps or openings, whilst the small surface of the valve presents the minimum risk of getting out of order. The construction of this injector, as shown in our illustration, may be described as follows:-A A are the gaps discharging into the chamber B, which chamber B is isolated from the vapour given off at the ordinary overflow C, by the packed bearing D, and from the outer air by the valve E . The action of the jet in the combining nozzle forms a powerful vacuum in the chamber B, and so holds the valve E firmly on its seat; at other times the valve E readily opens to allow the free escape of water, falling to its seat again by its own weight as soon as the flow of water ceases. The valve turns freely and independently of the arm
which carries it, so that by removing the cap M it can be readily which carries it, 8 that by removing the cap M it can be readily
cleaned and reground on its seat. The cap M carries the over. flow pipe as shown, and serves also for the ordinary overflow passing out at F . The arrangement of the slits, whereby the passing out at F . nut at the bottom serves for withdrawing the whole nozzle for examination, and also for regulating the water supply entering round the end of the steam nozzle. A number of these new injectors have now been at work for a sufficient length of time to afford an adequate test of their efficiency, which has been
fully proved, and we have had an opportunity of inspecting several of them in operation-in one case working against 801 lb . boiler pressure. In their action they are perfectiy automatic, and if the engine is stopped, as in the case of winding engines, they will re-start with the re-starting of the engines, and we have seen them start straight off without any loss of water whatquestio :ably introduced a very excellent and efficient exhaust

steam injector, and the fact that under conditions where other injectors had been found unworkable it has fulfilled efficiently all the conditions required, certainly gives it a claim to consideration.

WOODHEAD'S STEAM HAMMER
THB accompanying engraving illustrates a type of steam Works, Whitehall-road, Leeds. Whis hammer is Hammer
designed for studs, bolts, and other forgings made out of solid iron, and is suitable for ironmongers, machinists, and other special forgers. The special features are, that it is arranged for the smith either to work it by his foot, or it can be used as a hand motion hammer, or self-acting, with variable strokes, light or heavy blows, or with any number of dead stamps, as little extra foundation, thus is readily fixed, and requires very for foreign markets, and has already been supplied to the West Indies Australis South Africa and continental markets. It a handy tool of simple construction.

FLUSH TANK.

THE annexed sketch illustrates a novel automatic flushing pparatus. To whom to give credit for it we do not know, but the American Sanitary Engineer is of the opinion it was exhi bited at the International Health Exhibition, and we will be glad to give the name of the inventor should we be informed of it The diagram needs little explanations. Water enters through the rain pipe until it overflows through the pipe A into the bucket B. The weight of water in the bucket overcomes th

the discharge of water into the drain. The inductive action of the water as it passes the valve starts the small syphon D, which empties the bucket of weight, allowing the valve to close. Regu lation is secured by the ball C on the balanced lever.

Naval Engineer Appointments. - The following appointments have been made at the Admiralty:-George H. Weeks, chief engineer, to the Bacchante ; Peter Eckford, chief engineer, to the Hercules; Burridge chief engineer, to engineer, to the Euphrates; engineer, to the Penelope, additional; William Hines, engineer, to the Bacchante ; John G. Jenkins and Frederick W. Austin, assistant engineers, to the Bacchante ; George J. Fraser, chief engineer, to the Ruby; Alfred Rayner, engineer, to the Ruby ; Isaac E. Hurst, engineer, to the Pembroke, additional; Edward G. Guyatt,
assistant engineer, to the Ruby; and Will assistant engineer, to the Ruby; and William C. Beal, chief engi-
neer, to the Iron Duke.

THE BLAAUW KRANTZBRIDGE, CAPE COLONY.
messrs. handyside and co. derby, construotors.

THE BLAAUW KRANTZ BRIDGE IN CAPE COLONY No. III.
Moving load.-The numerical values for the reactions of one half of the arch upon the other, and for the strains in the six supernumerary bars, were stated on page 202. By reference to Table I., the strains in the twenty-five bars or lamine of the left half were then easily found by first adding the products of the values $\sigma^{\mathrm{I}}, \sigma^{\mathrm{II}}$, $\sigma^{\mathrm{III}}, \sigma^{\mathrm{HI}}, \sigma^{\mathrm{K}}, \sigma^{\mathrm{V}}, \mathrm{SP}^{\mathrm{P} \circ}$ into the values: s^{s},
$\mathrm{s}^{\mathrm{II}}, \mathrm{s}^{\mathrm{III}}, \mathrm{H}, \mathrm{K}, \mathrm{V}, \mathrm{P}_{0}$, out of Table III., together; then progressing to P_{1}, \&c., in the same manner; and, further, to the loads on the other half of the arch, by putting in Table I. $\sigma^{\mathrm{VI}}, \sigma^{\mathrm{V}}, \sigma^{\mathrm{IV}}$, for $\sigma^{\mathrm{I}}, \sigma^{\mathrm{II}}, \sigma^{\mathrm{III}}$,
and using the values for $s^{\mathrm{VI}}, s^{\mathrm{V}}, s^{\mathrm{IV}}$ out of and using the values for $s^{V 1}, s^{v}, s^{v V}$ nut of
Table III. In this way another table was constructed, which contains the strain or moment in each of the sixteen bars and nine lamine from each of the eleven loads $\mathrm{P}=1$. Then multiplying with such values in tons, as each P has in Fig. 1, and adding, on the one hand, the positive values, and on the other the negative values together, the maximum and minimum values for each bar for the moving load are finally arrived at. If it were desired to find the abutment reaction for any load P , it would only be necessary to construct the resultant of the corresponding forces H, K, and V in order to obtain the reaction upon the unloaded half, and the resultant of H, K, V, and P in order to obtain the reaction upon the loaded half. These reactions are indicated in Fig. 1 by dotted lines.
Fixed load.-The calculation of the strains from the fixed load which have to be added to the results, so far obtained, is much shorter, as the arch rested during the erection on three hinges, which were well oiled, and whose friction could therefore be disregarded. The three supernumerary diagonals of the left half have the same strains as those of the right half, and the calculation consequently presents only three unknown quantities instead of nine

Temperature.-The effect of the change of temperature is calculated by putting in equations (1) to (12) $\Delta h=\Delta k$ equal to the positive or negative extension of an iron bar

BRIDGE IN PROCESS OF ERECTION
of the length of half the span, $\mathrm{V}=0 ; a$, ,vv, $c, e, f=0 ;$ sufficient to determine the five unknow sumces the alteration of heint of forces and the alteration of height of the rown the ah. is found equal to centigrade the oft is an of the 1 half of the arch acts upon the other. The position of the force is indicated on Fig. 1. ists of six systems, viz the four raditing sists of six systems, viz., the fors ${ }_{P_{1}}$ systems, terminating in points $P_{2} P_{4} P^{1}{ }_{8}$ form, ; ond a syizontal system, viz, the platplatform When the wind pesoure the platform. When tho win pressure acts these systems press upon each other in their points of intersection, and these pressures appear Theor could be usel, in comb quantiles. These could be usea, in com nation with the the pressures whic the knonsion the tho f, which are known, for the staterit of expressions for the horizontal denection of each system separately, and on account of the equality of two such deflections ne number of equalions sumcient in calculation of those pressures. It would be, however, almost impossible to make this calculation with an accuracy equal th that for the verticalioads on the arch, as in addition to the direct loads there also appear their turning moments. These act as loads upon the two arch systems, and thus have an influence upon the above-mentioned deflections. In the attempt to deal with the question from this point of view, the calculation assumed very soon unmanageable dimensions, and it was found necessary to imagine the six lateral systems as acting upon each other independently of the triangulated arches. In other words, looking upon the whole arch structure as a statically undetermined system in space, it has so large a number of supernumerary bars-i.e., unknown quantities-that many of them must be altogether ignored before the calculation can be made. These complications are not peculiar to the structure here spoken of, but exist in most structures excepting straight girders. If the six systems act independently upon each other, as indicated above, the reactions in the
points P_{4} and P_{2}, and the two other intersections below these points, B and C , are found to be about $+206 \cdot 6$; $+1126 \cdot 6 ;-623 \cdot 0 ;+936 \cdot 12$ superficial feet of wind pressure surface on the assumption that a railway train covers
every wrought iron part, not excluding, however, lesser strains; and secondly, the more modern principle which
takes into account the change of intensity of the strains from the moving load. The latter principle-now more

Details.-Some of the details of the arch are given in igs. 2 to 7. One point may be mentioned with bracing between the outer arches, especially the above-

IRONWORK OF THE BLAAUW KRANTZ BRIDGE
the whole bridge uniformly. The wind pressure for this \mid and more adopted in calculations of strength-is based case was assumed at 31 lb . per foot superficial, while for the unloaded bridge 56 lb , were assumed.
upon the well-known Wöhler's experiments, and is expressed by a formula for the factor, which, divided

into the maximum stress in a bar, gives its sectional area in inches. This formala, known as the Laun-hardt-Weyrauch formula, is as follows:Factor $=a\left(b+c \frac{\text { minimum stress }}{\text { maximum stress }}\right)$ tons per sq. inch, where c may be taken between 0 and $\frac{1}{2}$, according to circumstances, viz., whether a structure is intended to resist a small number or an infinite number of changes of stress. In the present case, of a bridge upon which a very large traffic is not expected c was c was taken at $\frac{1}{4} ; a$ was taken at 4 , so that the parts where the stress from fixed and moving for parts where the stress from fixed and moving loads together does not vary at all, 4 tons where it varies minimum and nimim, and 3 tons where the minimum and maximum stresses are equal but opposite. The sectional areas thus obtained were augmented by an amount due to the stresses from the change of temperature and the wind pressure, calculated by dividing by the factor 75 . They were them within the rule of the Bary, so as to bring many parts of the structure it word orade. In many parts of the structure it would have been practically impossible, or at least, inconvenient, to withe closely to the sectional areas thus calculated without using rolled bars of excessively thin stronger than necessary, and the fact is worth mentioning, in so far as it indicates that the system of structupe here adopted would have given still better results if the, dimen sions of the arch had been larger, or the load upon it heavier.
mentioned systems of wind bracing, are connected with them. In similar cases, where the two outer systems are inclined towards each other, the intermediate bracing has generally been placed in planes at right angles with the vertical plane, which contains the longitudina axis of the bridge. If this plan had been adopted, all connections with the outer inclined systems would have contained irregular angles, which it would have been difficult to construct in the actual work. Instead of this, the intermediate bracing was placed in planes at right angles with the two outer systems. In this way the connections referred to become quite simple, and the difficulty is localised in the few connections which lie in the intersections of the planes, and, at the same time, in the vertical central plane. The opposite halves of the intermediate bracing thus meet in ridges, which give a somewhat peculiar appearance to the elevation of the structure, but this effect is almost lost in a perspective view. As the method of construction here spoken of has, perhaps, not been adopted before, it would be premature to recommend it for imitation; but at any rate it may be worth calling attention to it,

Erection.-It has been mentioned already that the continuous girders on each side of the arch were used as cranes for lifting the lower parts of the arch into position, and that after a connection was effected with the arch at the projecting end of each girder, the arch could be completed by building forward from each side towards the middle. Thus very little timber was used in the erection except some poles, which were lashed to the ironwork of the panel just erected and which formed the beams of a stage for the erection of the next. It was originally intended to fix the lower part of the arch within convenient reach from the ground, with the bottom pivots in their right position, and then to tilt it up bodily, an operapow which would not have required a greater lifting power than about 20 tons. The iron parts would in that case have been deposited on the slopes of the ravine. Eventually, however, the better plan of Messrs. Handyside and Co., and their resident engineer, Mr. H. Parker, was adopted, according to which the parts were deposited immediately in their final position from an overnead wire rope tramway stretched across the ravine. In conclusion of the description of the structure some of its characteristio features may now be enumerated, viz, (1) the combination of two continuous girders, with an arch resulting in great economy of metal and in the advantage of erecting without scaffolding ; (2) the peculiar form of the arch, inasmuch as the platform of the bridge is treated as an indispensable member of its structural framework ; (3) the introduction of three temporary pivots, in consequence of which the strains could be determined with accuracy; (4) the omission of cross-ties at the bases of the arch fesulting in a lateral thrust upon the abutments as well as a longitudinal one $;$ and (5). the connection of the

THE BLAAUW KRANTZ BRIDGE, CAPE COLONY.

lateral bracing with the two arch systems in planes at right angles with them. Some of these points are unusual in the practice of bridgebuilding, and the success of the structure depended upon the accurate calculation of the strains, which was an intricate one. In examining the design with a view to adopting it for the Granamstown and Port Alfred Railway, the engineer of that railway, Mr. R. E. Cooper, had therefore to deal with an unusually dimicuit case, and to take upon himself the responsibility for the success of a work which might by some be called an experiment. Two series of trials were made in Sith the bridge, viz, one in September, 1884, under Mr. Cooper's personal supervision, and the other in December last, according to his instructions. The first series of trials included one with two engines coupled together treated as stationary loads, one with a train of four engines and sixteen loaded wagons passing over the bridge with a speed of twenty miles an hour, and one with a train of four eugines with a velocity of
fifteen miles an hour, and the fifteen miles an hour, and the sudden application of the brakes in the centre of the bridge. The greatest deflection took place in the centre of the arch and amounted to fin. Lateral vibrations were just noticeable, but too small to be measured. A permanent set did not take place. The second series of trials were made with three engines and tenders coupled together, and running over the bridge with velocities up to twentyseven miles an hour. The greatest deflection in the centre was 0.72 in ., and so far as can be judged from the report there was no permanent set. The report of the second series does not mention any vibrations having occurred. In the course of these articles several authors have been referred to.

The following papers may, among others, be referred to for the theory of taking into consideration the extensions of the single members in the calculation of statically undetermined systems. The formula, as stated in No. II., will be found in Schäffer u. Sonne, Bríckenbau, p. 495, see below :-

Maxwell.-"On the Calculation of the Equilibrium and
Strength of Erames," PhilosoStrength of Erames," Philosophical Magazine, 1864, xxvii., page 294.
G. F. Schulze.-"Theorie einer Bogenbricke," Zeitschr. d. Vereins deutscher Ingenieure, 1865, p. 536.

Lamé.-"Leçons sur la théorie mathématique de l'élasticité des corps solides," 1866, p. 79.
Mohr.-"Beitrag zur Theorie der Holz-und Eisencontructionen." Zeitschr. d. Arch. u. Ing. Vereins au Hannover, 1868, p. 19.
Mohr.-"Beitrag zur Theorie des Fachwerks," Ibid., 1874, pp. 223, 509 ; 1875, p. 17 ; 1881, p. 243.
Schäffer u. Sonne.-"Der Briickenbau," Handbuch der Ingenieurvissenschaften I1., 1882.
Swain.-The Journal of the Franklin Institute, 1883, pp. 102, 194, 250.
"Stresses in Statically Undetermined Systems," Engi. veering, 1883, II., p. 509 ,

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO CORRESPONDENTS.

$* *$ All letters intended for insertion in The Enginker, or con-
taining questions, must be accompanied by the name and address of the writer, not necessarily for publication, but as a proof of communications.

* We cannot undertake to return drawings or ma
must therefore request corvespondents to keep copies.
*In order to avoid trouble and confusion, we find it necessary to inform correespondents that letters of inquiry addressed to to
pubtic, and intended for insertion in this column, must, in all cases, be accompanied by a larye envelope legibly directed by the writer to himself, and bearing a $1 d .0$ posagee stamp, in order that
answers received by us may be forvarded to their destination No notice will be taken of communications which do not comply with these instruction
${ }^{*}$ * We are compelled by pressure of other matter to hold over a
number of "Letters to the Editor" this weel. Prrplexed.-There is no waen of tis week
through a futer in ohich charcoal is used.

tan-burning bollers.

ventilating rallway carriages.
 xxeluston of dust and that
Madras, March 10th.

aCid proof cement.

Tir Exainger can be had, bubsorderiptions.

 Cloth eases for binding Tur Exorsker Volume, price 2a, bd, each.
1 complet est of The Exarxer can be had on application. 1 complete set of The Exarssers ann be had on anplication.
Forreign Subscriptions for Thin Paper Copies will

 ADVERTISEMENTS.

THE ENGINEER.

APRIL 17, 1885.

OUR NEW sHIPs.
A kees discussion has been going on for some time concerning the merits and demerits of certain British men-of-war known as the "Admiral class", because they have been named after celebrated English admirals, such as
Collingwood and Benbow. The arguments advanced by each party are so strong that they are apparently unanswerable, and whether we read the statements of Sir them, the result is the same-conviction for the time
being that the contentions last heard, whether they be those
of Sir E. J. Reed or of Mr. White, must be right. But of Sir E. J. Reed or of Mr. White, must be right. But
we think that the subject admits of being discussed quite we think that the subject admits of being discussed quite
apart from the arguments of either gentleman. Indeed, apart from the arguments of either gentleman. Indeed, opinion, not one of fact; and this for the simple reason that there are no facts obtained by direct experiment to
go on. In brief, Sir E. J. Reed holds that under go on. In brief, Sir E. J. Reed holds that under
certain conditions the Admiral class of ships must upset; certain conditions the Admiral class of ships must upset;
Mr. White, and the Admiralty party generally, admit this, but they maintain that the requisite conditions of capsizing never can exist. This is the point really at issue, and
because the experiment has never been tried it cannot be settled definitely one way or the other. To put the matter in a nutshell, the Collingwood has a narrow belt of armour,
and it is asserted by Sir E. J. Reed and his supporters, who are numerous, that this belt is so narrow and inade quate that the bows and stern of the ship may be riddled and filled with water, in which case the ship must upset.
An experiment was tried some time since by the Admiralty An experiment was tried some time since by the Admirate with certain scale models in a tank of water. It was then
shown that so long as the water was smooth the riddled shown that so long as the water was smooth the ridd
ship would float, but when its surface was agitated, the ship would float, but when its surface was agitated, the
model turned turtle and went to the bottom. Now Sir E. J. Reed maintains that owing to the great power of J. Reed maintains that owing to the great power of
modern quick-firing guns, the ends of the Collingwood can be effectively riddled and water-logged; while the designers of the ship maintain that nothing of the kind can take place in a naval action. It has, of course, been suggested
that a ship should be taken and fired at for an hour or two to try the experiment; but this is obviously too costly a way of settling the question, and it will be left, we suppose, to be tried by our Russian friends.
The desiguers of the Collingwood stake the existence of the ship on the chance-which they call, and doubtless regard as, a certainty-that she cannot be water-
logged in the time which an enemy could find available for the purpose. This we need not discuss at all. In fact, to dyscuss is is useless-or at least, such a discussion can
only possess value as the expression of the opinions of more only possess value as the expression of the opinions of more
or less competent men who have no practical experience concern J. be water-logged in a very short time; but the impartial If he wees that this simply means that he believes. If he were giving evidence in a court of law on the point, that evidence would have value, not because it was a
statement of fact, but because it was a declaration of his faith by a competent naval architect. We prefer, as we have said, to consider the controversy from another point
of view, and ask, Is it well that ships should be built which may perhaps be sunk in the way indicated by Sir E. J. Reed? There appears to be at first, sight but one answer to this, namely, that it is not well. We have
here beyond question an experiment, and that a very costly experiment. The Collingwood is a ship of 9150 tons, with號 T3-ton breech-loading guns, tremendously powerful weapons,
The Howe is a 9600 -ton ship, with four 63 -ton guns. The Benbow is a 10,000 -ton ship, mounting two 110 -ton guns. The Anson is a very similar ship to the Howe. It is obvious have an experiment of very imposing dimensions indeed on our hands. But confining our attention to the Collingwood, we repeat that if it was possible to avoid making her experimental in the sense we have indicated, it seems that it would have been wise policy to have done so. Two general
statements may be reproduced here. The first is that the displacement of a ship is the capital with which the naval architect works. The second is that it is, above and beyond all other things, necessary that a ship shall float. Now, as
regards the first, the naval architect has to deal with regards the first, the naval architect has to deal with
certain claimants for his capital, and the claims admit of being stated in a very simple way. We have, first, so many tons for hall ; next, so many tons for
armour; then, so many tons for guns and stores; next, so many tons for boilers and machinery; and lastly so many tons for coals. Let us call these : hull a,
armour b, guns and stores c, boilers and machinery d, coal e. Then $a+b+c+d$ and $e=10,000$, let us say. Every one
of these factors is variable, and they all depend on and of these factors is variable, and they all depend on and
influence each other. We make any of them we pense influence each other. We make any of them we please intensified, so to speak, for the rest. Thus, let us suppose that $b=2500$. Then we have only 7500 left for $a c d$ and e; and it is evident that the more we augment b, the
narrower are the limits within which the remaining letters narrower are the limits within which the remaining letters can be altered. Let us again suppose that $a b c d$ amount
to 9500 . Then we have only 500 tons left for coal, and if the ship is of great power-that is to say, if d is largethen 500 tons of coal would go a very short way. Again, it will be found that certain letters always augment or
diminish together. Thus, if b increases, a must increase too, diminish together. Thus, if b increases, a must increase too,
because a strong hull is needed to carry heavy guus, The great art of the naval architect is displayed in dividing his capital among the different creditors so that
the most satisfactory result will on the whole be obtained. The designers of the Admiral class say that by keeping down the extent of ship covered with armour, they have been able to make that armour more efficient; and they say, secondly, that they have also secured the most impor-
tant advantage-that the ship will be able to steam at tant advantage-that the ship will be able to steam at
$16 \frac{1}{2}$ knots, which is a higher velocity than any armour-clad $16 \frac{1}{2}$ knots, which is a higher velocity than any armour-clad
ship has yet attained. Now, the general answer to all this is, that with a capital of 9600 tons or so, 2500 tons of armour
could have been distributed to better advantage than it has could have been distributed to better advantage than it has been-better, at least, in the sense that the ship could
certainly float until the end of an engagement. Thus, for instance, instead of concentrating 18 in . armour on a species of central citadel, a portion of the armour might have been made much thinner than 18in.- not more, perhaps, Here it may be urged that 4 in , armour would be useless. On this point there is fortunately plenty of information available which shows that it would not. Within the last few months an entirely new element has turned
up in naval warfare. We allude to rapid fire heavy
guns. A little reflection will show that although it may not be possible to apply to the fullest extent the principle
of the Gatling, Hochkiss, or Nordenfelt machine guns to of the Gatling, Hochkiss, or Nordenfelt machine guns to heavy ordnance, it is quite practicable to go a step in this
direction, and the step has been taken.
Long since a machine, tun step has been taks. a couple of pounds through which sent steel shot weigs and we have now 6 -pounders; and there is no apparent reason why we may not get on to 40-pounders. It is in the existence of the 6-pounder quick-firing gun that Sir E. J. Reed sees the great danger for the new type of sivided into a multitude of compartments, and various
dive devices, such as cork packing, are to be employed
to keep water out. All this may be very effectual against big guns, which, after all, can not plant shells enough in the unarmed ends to do much harm in a hurry; but quick-firing or heavy machine-guns have changed the whole of the conditions, as they could plant literally hundreds of shells in the bows and stern of a ship in a few minutes, and blow them, practically speaking, to atoms. It is against this danger that the 4 in . or even 3 in . plates would act effectually. Mr. Samuda, at the last meeting of the Institution of Naval Architects, called attention to the truth, too often forgotten, that no shell, as a shell, has ever yet been fired through an armour-plate; and this is a very important fact-so important that it rodies in the most material way every argument concerning armour-plates. It is so important that some persons hold that even the Warrior would be by no means so useless a vessel as she is commonly suppused to be. We certainly do not go so far it ought to be on line-of-battle ships; but the fact still it ought to be on line-of-battle ships; but the fact still remains that even a thin plate will cause the explosion of
a charged shell outside instead of inside the ship; and it a charged shell outside instead of inside the ship; and it
must be remembered that in experiments such as those reported from time to time in our columns, charges of powder are not put in the projectiles, which are eeither
solid shot or loaded with sand up to the full weight. Armour-plate of very moderate thickness would completely baffle the operations of any heavy machine-gun
which it is likely will be produced for years to come which it is likely will be produced for years to come. Cathered, we think, from whate subject will be readily that to leave so much to chance as is left to chance in the case of our new ships, has been unwise. The experiment whs, hower, to a be exter justilable at the ships were designed; but it is in 10 sense or way justifiable to repeat it now that the heavy machine-gun element promises to play so important a part in naval warfare.
the position of colonial coal stores, Or several occasions, when discussing in these columns the important question of colonial defence, we have re-
ferred to one branch of that subject which is of the most ferred to one branch of that subject which is of the most paramount importance-viz, the security which is needed
that the stocks of coal accumulated at the various coaling that the stocks of coal accumulated at the various coating
ports in our colonies should not be liable to destruction. It is not necessary that we should recapitulate all that we It is not necessary that we should recapitulate and that we
have before written as to the several aspects under which this question presents itself, but there is one special point in connection with it to which we called attention in our earliest leader on this subject, our remarks as to which appear to have aroused apprehensions in one of our leading colonies-Ceylon. In a recent issue by our contemof the island authorities to the insecure positions in which of the island authorities to the insecure positions in which are situated the sheds wherein the carge stocks of coal
from which the numerous steamers calling at the port of Colombo are supplied, and acknowledged that position to After reference mad to the fact that astention After reference made to the fact that attention had been called to this point by ourselves, the journal in question proceeded to discuss the several dangers to with that exposed situation renders Colombo liable. We are
informed that the sheds line the quays of the harbour, and that these are absolutely without the slightest covering that these are absolutely without the slightest covering
save their tiled roofs. It was ably argued by the writer save their tiled roofs. It was ably argued by the writer
of the article that, in the event of warfare, it would undoubtedly be contended that coals constitute in the present day a munition of war; nor could any endeavour be made to contest this assumption. We may observe here that the supply of coal is forbidden by international
law by neutral Powers law by neutral Powers to the war vessels of belligerents;
and that fact alone would justify the acceptance by our contemporary of the postulate that coal is a "munition of
Under such conditions what would be the position of Colombo, as also of other ports where similar disabili-
ties may exist, in case of hostile attack by sea? The aim of an enemy being, as far as possible, to cripple the movements of an antagonistic fleet, naturally the first endeavour of a commander would be most effectually to do so by the destruction of the coal by which alone such movements
can be carried on. By another provision of international law it is understood that defenceless situations and private property are exempt from bombardment unless-and of the situation these are so situated that they hamper attack upon fortified positions nothing, therefore, in the law we have referred to to prevent a hostile vessel from firing shell in the endeavour to ignite and thus destroy the coal; and, as in the case of Colombo -as also, we believe, at many other ports-the coal-sheds are just to the rear of the lines of merchant shipping,
while the Government buildings, while the Government buildings, merchant offices, and numerous other private structures are again just to the rear of the coal-sheds, it is evident that any fire directed and lie latter must infallibly seriously injure the shipping exemption which are directly in its line. Hence the might well be claimed for property of this class would be annulled, and most disastrous loss might result.
It may be argued that such loss is to be apprehended little consideration condition of hostile attack, but very fare is waged in the present being exceptional-will prove
such an argument to be fallacious. Let us suppose an armoured cruiser of great power and speed approaching
Colombo with the object of destroving the coal. At a Colombo with the object of destroying the coal. At a
distance of 3000 yards her aim would be sufficiently accurate, and the chances of her armour being penetrated at such range not very great. She would therefore, we
apprehend, have no difficulty in lodging shells charged apprehend, have no difticulty in lodging shells charged material among the sheds, and it would be a miracle hardly to be anticipated if some of those shells missed igniting the shipping or private buildings referred to. We
were very much surprised to find a correspondent of the Ceylon Observer, when writing with reference to the editorial, contending that the danger pointed out did not
exist; that, indeed, it would be extremely difficult to fire exist; that, indeed, it would be extremely difficult to fire
the coal "in a tropical climate." We should have thought the dry and dusty condition of the coal due to the heat more than customarily liable to ignition : and we fancy th there are few, if any, who would differ from us in such a view. We cannot resist the belief that such an arguinterests would in some way or other be affected by the emoval of the coal stores to a place of security, or at all events to some position less certain to involve, in the case
of attack being directed against them, the danger to private property and shipping we have indicated. That proposed change of site, does not admit of reasonable to pay for proper security for the Government to compensate such interests. At all events, we may feel assured
that they will not be allowed to stand in the way of the fullest action being taken should the conclusions at which we have arrived have weight with those
details of colonial defence may be entrusted
As this journal was, as we believe, the earliest in the discussion of this important matter, we may fitly claim to call the very serious attention of the authorities to this particular phase of it when the plans upon which ports
and harbours circumstanced as is Colombo with regard to its coal stores are to be defended, have to be decided upon. It is one which we feel must most materially to be erected. When the particular danger about which we have written is absent, or may be readily averted, our military engineers will have their work much simplified points, or to repel attempts at landing, has to be added
 increased. Now, as our contemporary already quoted pointed out, much foreshore at Colombo is being reclaimed dredged in the newly made harbour, and as fast to work of reclamation is going on is the land recovered being utilised for coal storage. Surely such land can be put to some better use than in multiplying the disabilities fully with the Ceylon Observer in its view that it is at the time such works are in progressthat the question raised ma ities greatest proprityengagethe the authe how the existing situation may best be ameliorated or the danger entirely overcome; but the article which has called from us these remarks suggests that as all coal supplied to shipping in the Colombo Harbour has to be boated, it operation if the boats had to be filled somewhat an whence communication with the harbour could easily be established by canal, and whereat the coal sheds could are said Colombo alone that our remarks are intended to apply, for we believe the question to be one of very extended range as also of the highest importance as affecting the whol design upon which the large-though relatively, as com pared with the interests involved, trifling-expenditure is
to be incurred for the defence of our colonies. We trust that we shall receive assurance, when the details of the defence of each colony have been decided upon, that this vital element of danger has been fully guarded against.

standards of light

A report possessing considerable interest, both from scientific and a practical point of view, has just been pre politan Board by Mr. W. J. Dibdin, the Board's chemist Light" The Co atto Light." The Committee have laid the report before the question to be decided being whether or not the inquiry tion be cinied further. According to his original instruc"exh, dating from last July, Mr. Dibdin was to report to this requirement be has carried out a long series of experiments. The time at the disposal of Mr. Dibdin has necessarily been limited, owing to numerous othe initiation and management of the the least being the initiation and management of the operations connected
with sewage treatment at the main drainage outfalls. with sewage treatment at the main drainage outfalls.
Nevertheless the report contains a vast amount of inforNevertheless the report contains a vast amount of infor-
mation, and shows that the inquiry has been sedulously and carefully pursued. As the matter now stands the report presents somewhat of a preliminary character, and it
is obvious that while much has been gained, there is need to pursue the investigation has been gained, there is need to pursue the investigation beyond the point it has reached,
so as to arrive at a perfect conclusion. The settlement of a proper standard of light is a matter of real moment partly for the reason that it enters into the arena of legislation, and governs the infliction of peguniary penalties.
By the Gas Acts, the candle is recognised as the measure of light-a method which dates baok to 1760 , and therefore commencing at a period when gas companies were
unknown. A candle may be of wax, tallow, paraffin unknown. A candle may be of wax, tallow, parafin,
stearine, or sperm but the Metropolis Gas Act of 1860 prescribes "sperm candles of six to the pound, each burn-
ing 120 grains per hour." Candles have long been subject to criticism as unsatisfactory standards of light, and
various substitutes have been proposed. Mr. Dibdin various substitutes have been proposed. Mr. Dibdin
mentions numerous contrivances which have been brought forward at different times for this purpose. The incanforward at different times for this purpose. The incan-
descent platinum unit has been advocated in France as descent platinum unit has been advocated in France as
possessing decided advantages; but Mr. Dibdin is by no possessing decided advantages; but Mr. Dibdin is by no
means assured of its excellence. The standards which he has deemed worthy of his immediate attention are the French "Carcel" colza oil lamp, equal to about $9 \frac{1}{2}$ candles; Keates' sperm oil lamp of 16 candles; Harcourt's pentane or air-gas flame, equal to 1 candle; Methven's screened
Argand flame of 2 candles; and Sugg's test of 10 candles. The legalised English test consists of two sperm candles the already mentioned; and probably will the observer be troubled with the introduction of error. But the standard cannot be very high in power without practical inconvenience; and we may presume
that the Keates lamp presents as powerful a photometric that the Keates lamp presents as powerful a photometric
standard as can well be tolerated, at least so far as the gas supply is concerned.
At the Congress on this subject held in Paris in 1881 the Carcel lamp was recommended, the fused platinum rejected on account of the difficulty attending their application, and the colour of the light emitted by them. In the same year a committee appointed by the Board of Trade to inquie into the merrit of certann standards of that Mr. Keates' lamp fell short of the requirements of a standard of light ; that Mr. Methven's standard was not to be relied upon in all cases, although extremely usefu the sperm candle, Mr. Harcourt's air-gas flame was exact and trustworthy as a standard of light. It would seem the conditions laid down by its inventor. He required that it should only be used when the light afforded by it ranged between 16 and 17 candles. The Committee made
but few tests with this lamp, and in no instance did they keep within the limits assigned for its use. Mr. Keates combated the conclusions of the Committee, and so in
his own case did Mr. Methven. The Council of the Gas Institute were also greatly dissatistied with the results號 by the Boed of the matter up themselves, appointing a Committee of
their own, who engaged the services of Messrs Heisch and Hartley to conduct an elaborate series of experiments. The result, as Mr. Dibdin says, was Board of Trade Committee." They claimed better quali ties for the Methven screen than had been allowed
by the previous tribunal, and gave that standard the preference. Concerning the present legal standard, they declared themselves convinced that sperm candles gene-
rally had grown brighter than of yore, developing more light per grain than was the case some years ago. This light per grain than was the case some years ago. This
startling conclusion, capable of being turned to account by the gas companies, is traversed by Mr. Dibdin, who gives he considers Messrs. Heisch and Hartley might with equal reason have found that the regulation sperm candle had
decreased in luminosity rather than increased. The condecreased in luminosity rather than increased. The con-
demnation of candles seems to be general, and nothing can e more conclusive on this point than the experiments tests with candles made by firm A showed the illuminating equ Bo andles, while candles manufactured by firm B gave a value of 14.94
candles-a difference of 0.82 candles. On the second day the divergence became still greater, candles A giving a vandles B gave a value of only $12: 86$, or two candles less These results are said to have been so often confirmed as were made solely with the candles of one maker and from one packet The greatest difference obtained in the average of three tests, each consisting of three complete observations, was 1.3 candles, while the greatest difference between any day the greatest difference in the average of three tests made as before was only 0.31 candle, and the greatest difference between any two single observations was
$1: 33$ candles. After making all due allowance for disturbing causes, Mr. Dibdin recommends with regard to candles that "as speedily as possible they should be rejected as the standard of light." The public have the more reason to
desire a change, seeing that Mr. Dibdin states, concerning desire a change, seeing thintred Dibain states, concerning tendency is the other woy ths of candes, that the value of the gas. A very unsatisfactory state of things is deteshown to exist. The question of half a candle may determine whether or not a gas company shall be fined, as under the lash of the law. On the other hand the come sumer may be the sufferer-and this appears to be the greater risk-by being supplied with gas considerably deficient in lighting power, which is, nevertheless, officially reported as complying with the Act of Parliament. It is meter recently devised by Mr. Dibdin pive tolerably uniform results, although the candles used in this apparatus enjoy no special protection, being merely shielded from
decided draughts. Screens, boxes, intended to ghts. Screens, boxes, and other devices appear to have a somewhat contrary effect. Passing from consideration of the sperm candle to the standard offered by the Carcel lamp, Mr. Dibdin gives results ing as the lamp devised by Mr. Keates steady in workthe mean value of the Carcel lamp to be 9.41 standard candles, a close approximation to the value recorded in 1870 by Mr. Sugg, who made it $9 \cdot 6$ candles. The late Mr. Keates objected to the use of colza oil, declaring that heen proposed for burning as a staudard of light. The
high reputation of Mr. Keates as an authority on the Sperm oil had his preference, as a natural production, merely filtered to separate it from the solid spermaceti, nd never undergoing any chemical treatment, its constiHence therm ol is Hence sperm oil is used in the Keates lamp, in addition o which there is careful provision for an even and well regulated supply of air to the flame, in which respect tands superior to the tarch. As heady sta Mr Dibling power of the Keates lamp is 16 candes Mr. Dibdar sabjected its The ordeal we to rigorous one and certainly appears to he ordels whom able uniformity of results. In testing Mr. Vernon Harcourt's pentane air-gas stand liffers from Messrs. Heisch and Hartley as to the want of steadiness which they alleged to be apparent
in the flame. His own conclusion is that the results which seemed to show a defect of this kind would not occur in practice. On other points also Mr. Dibdin defends the Harcourt standard, although he gives reasons for preferring the Keates lamp, partly because it admits of being made war corese e prohibitory to the pentane, the Methven screen, or ffected by the fact Mr Hect has laty devised fected by the fact hat Mr. Harcourt has lately devised lamp that it is not portable, and thet it pentane xpensive apparatus. This lamp was received by Mr Dibdin so recently that he has not been able to submit . oxh it has he he The investigation the las uidegone at hre hand ind of the Into the detal of the experment
Tethren dereen and Mr Suggs 10 -and t present enter. Mr. of the cande test we cannot possess certain merits. Taking a general survey of the ubject, Mr. Dibdin arrives at the conclusion that whether e adopt the Harcourt, the Methven, the Keates, or the Sugg standard, we get something that is either better than the sperm candle, or can at least be made so. On the whole, Mr. Dibdin inclines to the Keates lamp. Yet he is mally as shath of the four standards shomb nally auopted is, in his opimion, of he ment. But stitutes for candles be adopted as the standard of light, a stematic series of tests should be made on arree or beter bup shuld be thang madialy so that one cental neter bur be be franged rady, so thene colr ight should be simultaneously tested by the competing mand he her bin hitherto precluded the adoption of this desirable arrangenent He has done thal hed his in the purpose. It is evident that Mr. Dibdin has now gone ar enough go somewhat further in order to show finally what is o be d ment of practical science, and we trust he will complete the inquiry in which he has already demonstrated such important conclusions. A few evenings ago, Mr. Dibdin brought this subject before the notice of the Society of Chemical Industry, when a discussion took place, in which Mr. Harcourt, Mr. Hartley, Mr. Methven, and other especially dwelt upon in Mr. Dibdin's report, were exhi-號 the occasion, and Mr. Harcourt himself acknow ledged the steadiness and excellence of the Keates Mr. Harcourt there Mr. Harcourt, there can be no doul scientific, and has some very distinct points of merit.
There is no wick, and the flame is wholly uncovered, besides which the proper intensity of the light can alway
 seems to lie between the Keates and the Harcourt standard, though it is possible that further investigation may somewhat alter the aspect of the case.
the amalgamated society of engineers,
In the thirty-fourth annual report issued this week to the members, Mr. John Burnett, the general secretary of the Amalgamated Society of Engineers, states that for the general it was quite evident that the depression which had affected thei own trade so grievously had not been the result of foreig com petition or a lessening of demand from abrond for the articles which they produced Want of employment for their member had been a characteristic of the year, and in their monthly returns of out-of-work members, which from 1893 in January had increased to 4090 in December, a retrogre rate to very bad trade was clearly shown. As the reason for this was not to be found in the foreign trade returns they must look elsewhere, and it was largely attributable to the collapse in the shipbuilding trade, which at a moderate computation had With regard to the position of the Society, they had at the close of 1889424 branches; since then they had opened new ones in Cheltenham, Glasgow South, Long Eaton (Derbyshire), Bris U.S., making a present total of 430 branches, which were dis. tributed as follows:-England, 307; Scotland, 42; Ireland, 14 Australia, $10 ;$ New Zealand, $3 ;$ Queensland, 2; Canada, During the year admissions of new members had been admissions num exclusions much larger than in 1883, the with the close of the year they had only an increase of 263 members, the total being 50,681 , as compared with 50,418
at the close of 1883 . The income, owing to a special lery which had been made, had been the largest in the history of the Society, and had reached the large total of $\mathcal{\ell 1 5 7 , 4 8 4 \text { , an increase }}$
over the provious year of $£ 22,835$. The total outlay for the over the previous year of $£ 22,835$. The total outlay for the
year had been $£ 172,841$, which was $£ 48,117$ more than they spent in 1883. Qut-of-work suppor h. which. bad. tequired
$£ 59,056$, had taken the lion's share of this outlay ; and special
strike expenditure had been very heavy, the amount being strike expenditure had been very heavy, the amount being
$£ 20,499$ to their own and other trades. Sick benefit had taken $£ 27,977$, funeral benefit $£ 8253$, and superannuation $£ 30,519$. follows:-At the end of 1884 they had 50,681 members distributed among 430 branches, Their total income for the year was $£ 157,484$, and their expenditure $£ 172,841$. They had thus spent $£ 15,357$ more than they obtained; and deducting this
from their previous balance of $£ 178,125$, they had still left an
accumulated fund in the hands of the branches and offices of accumulate
$£ 162,768$.

steel ships.

THE demand for steel ship plates is at the moment greater
than the supply, at all events on the north-east coast. At Consett one large mill is nowexclusively employed upon them, and turns out about 450 tons per week. Ships which are nominally
built entirely of steel are now frequently posed of that material. The shells are of steel, but the bulkheads, floors, keelsons, and internal work generally are of iron.
It is said that vessels so constructed are really better than those altogether built of steel, because the iron being of heavier scant lings, they are in consequence stiffer. There is a growing feeling and will have to be altered. A steel ship which recently entered Liverpool after a voyage was so strained that the locality of every frame could be seen from the outside. The spaces between had actually in various places become concave from the pressure
of fenders when rubbing gagainst q uaay walls. The favour which of fenders when rubbing against quay walls.
steel as a material for ships enjoys is based principally on the fact that steel plates are not easily broken, as, for example,
when a ehip runs on a rock the tough metal gives way by bending; but there is somecting more than this wanted in ship. Let us say, for example, that we have a perfect metal
which will bear a strain of 60 tons on the square inch, and have used a tin. plate would in one sense where a $\frac{\$ \text { in. skin plate is now }}{}$ were employed ; but no shipowner in his senses would meta
wse plate so thin. Something more than tensile strongth is wanting, yet be heard on this point.

LITERATURE.

Our Gold Supply. By Thomas Connish. 8vo., pp. 212. London: This volume, which "embodies the result of a long practical experience of gold mining in some of the chief
gold-fields of the world," contains a series of more or less gold-fields of the world," contains a series of more or less ciscursive notes on the production of gold in the different
districts that have come under the author's notice since the districts that have come under the author's notice since the introduction of gold mining, which, according to him,
"may be termed a new or novel industry", that from the may be termed a new or novel industry," that from the text appears to have originated in California in 1848. In the
outset the author combats the generally accepted belief of outset the author combats the generally accepted belief of
economists, that gold is to be regarded in the same way as economists, that gold is to be regarded in the same way as
any other commercial product, by expressing a "belief" that the production of any given quantity of gold is of more direct immediate and permanent benefit than that of any other specific article of supposed equal value. Then
follow accounts of the beginnings of gold digging in New follow accounts of the beginnings of gold digging in New
South Wales and Victoria, where "the iniquitous and South Wales and Victoria, where the imquitous and
almost prohibitory measures adopted to extend the development of the gold-fields were such as could only have been expected to be initiated by some insane autocrat," the
colony of Victoria being taken "as an example of the result of narrow-mindedness, incapacity, and vindictiveness of the governor and his ministry.
This strong and somewhat inconsequent language does not mean that the present state of these flourishing
colonies is due to the incapacity of their ruler, but is colonies is due to the incapacity of their- ruler, but is
incidental to an account of the differences between the incidental to an account of the differences between the
miners and authorities as to the assessment of licence dues in the early days of the gold-fields. The author has also had some experience of the West Coast of Africa, and is very severe upon the doings of some companies, "who
erected saw mills before putting up their stamps, which he denounces as an absurd waste of money, as any timber required can readily be obtained on the ground, and either cut by the pit saw or cut and squared by axe and adze;"
while immediately before he has decided "that decent places of accommodation, with a supply of food and drink suitable to Europeans, should be provided on the road from the coast to the mines, through the tropical forest, to preserve visitors from England from disagreeable first impressions of a rough road in a strange country." This is
straining at a gnat and swallowing a camel with a straining at a gnat and swallowing a camel with a vengeance. As a practical suggestion, however, we fear
it is not of much value, as the money wasted on the it is not of much value, as the money wasted on the and stock the wished-for hotels on the road.
In the section on the Transvaal some remarkable statements are quoted as to a great vein 80 ft. thick by a mile long, of ore, worth $£ 25,396,875$, which valuation another authority qualifies "as so astonishingly low that he cannot allow it to pass unchallenged," but makes it to be worth
$£ 59,536,000$. The author, commenting upon this, remarks, somewhat drily, that it is difficult to understand why more gold has not been obtained from the Transvaal if the demolish the statements founded and then proceeds to between the district and that of Ballarat. Towards the end of the book are some remarks upon the valuation of mines, which are of a sensible and practical character; as are those on development; although here the language is not quite as clear as it might be, as we can scarcely
suppose that the statement that in laying out the surface works of a mine that has been sufficiently proved provision should be made for ultimately sinking the shaft to a depth of over 2000ft. is to be taken literally. The final proposiwhich is proved by a quotation from the prospectus of , which is proved by a quotation from the prospectus of a scheme for making a tunnel four miles long to connect all
the mines now working near Georgetown, Colorado, showthe mines now working near Georgetown, Colorado, show-
ing how profitable the mines would be if the tunnel were ing how profitable the mines would be if the tunnel were
only made. The large amount of statistical matter scattered through the volume will give it some permanent
value as a work of reference, although the absence of both
index and table of contents detracts considerably from its index and table of conn
utility for this purpose.

EXPERIMENTS WITH A CORLISS ENGINE AT CREUSOT.

(Conoluded from page 248.)

M. Delafond discusses at considerable length, not only the results which he has obtained, but the reasons for these results. Those of our readers who wish to follow Annales Industrielles. In his final paper, contained in the impression of the journal just named for March 23rd, impression of the journal just named for March ${ }^{23 \mathrm{rd} \text {, }}$
he gives a summary of his conclusions, from which we extract the following statements:-
(1) The engine tested worked with the greatest economy admitted to the jacket, when the pressure when steam was -about 64 lb . per square inch-when the expansion was moderate, say, about five-fold. Under these conditions the weight of steam used was about 17 lb . per indicated power per hour.
(2) The jacket is efficient with high pressures and grades of expansion; but its value rapidly falls off as the pressures and grades of expansion diminish, and it is quite useless jor low pressures and grades of expansion. This apparently justines the theory that it is useless to apply a jacket to
the low-pressure cylinder of a compound engine, held by many engineers of very large experience.
(3) Compression is extremely useful when the engine is worked without condensation, and is more and more valuable as the compressive pressure approaches aore the great compression which takes place in locomotives at high speed is a direct means of economy.
(4) The engine tested did best when giving off on the brake 120 to 170 -horse power. It rapidly became less economical when these limits were passed in either direction. As the power exerted augmented, the value of the condenser became smaller and smaller, and after 175 -horse power was reached as good results could have been obtained without the condenser as with it, by using water. Dr. Alban, of Plau, said much the same thing
(5) The initial condensation increased as the initial pressure was augmented. The weight actually condensed underwent very complex variations when the ratio of expansion was greater than 5 to 1 ; for ratios less than this steam was worked without expansion. The jacket diminished the initial condensation, whether the engine worked with or without the condenser scarcely modifying the results. The importance of initial condensation appears to depend above all on the subsequent cooling which takes place during expansion.
(6) The evaporations and condensations which take place during expansion are very complex, especially those which occur when high-pressure steam is used. For presdiminished the or low, when the ratio of expansion was there was no re-evaporation, but rather condeusation. The jacket augmented re-evaporation. Pressures of from 64 lb . to 50 lb . gave the largest re-evaporation during
(7) Moderate pressures are the most economical, because they are accompanied by the smallest amount of initial condensation and the largest amount of re-evaporation during expansion.
(8) An augmentation of the piston speed, and the supply of the jacket with steam hotter than that admitted
to the cylinder are favourable to economy
(9) Lastly, keeping in view the results
without a condenser, the pressures being 78 lb experiments 50 lb without a condenser, the pressures being 781 b . and 50 lb ., cylinder, at any time when the ratio of expansion is
M. Delafond concludes his valuable paper by saying that these conclusions are very valuable and complete from a practical point of view, while they are unfortunately echo his wish, that the initiative taken by M. Schneider may find many imitators, who will render assistance in solving the very difficult problem of ascertaining what For ourselves we shall only say that we have done little more than place an outline of this most valuable series of experiments before our readers; but the very circumstance before them in the most compact form, will we hope the better concentrate attention on the figures we have given We may perhaps be excused if we add that these figure that moderate are as economical as high pressures. This that moderate are as economical as hidi pressures,
statement appears to be flatly contradicted by the results obtained with triple expansion engines. It remains to be seen, however, whether the type of engine is or is not able of experiments with the compound engine which will be comparable with those made by M. Delafond ? Such a Enginers not be unworthy of the Institution of Civi Engineers.

THE NEW ORLEANS EXHIBITION.

No. III.
In looking at machinery and engineering appliances in this country, one cannot help feeling that, in the interchange of ideas between England and the United States, the westward movement is the slower of the two. This naturally follows from the fact that, while American manufacturers are free to send us what they please, so that we can, where their ideas are best, accept them and adopt any higher standard of excellence they may offer, they, by shutting out our goods, deprive themselves of much information which they by no means desire to exclude, and which they might receive with advantage. Of course the mass of the people engaged in manufactures never have the opportunity of examining points of excellence where they might learn from us. This is exemplified here in the agricultural exhibits. American reapers are wel appreciated in England; we use many of their small implements at homsed in thousands in England, to the steam pumps are used in thousands in wngland, to the
advantage of American patentees; and we are constantly advantage of American patentees; and the competition of American inventors. But in looking at the portable engines here, one is reminded of those which were exhi They provincial shows in England twenty years ago They are less substantial and less sym in any way; the water space of the boiler is continued under the fire-a useless expense; double cylinders are seldom used, and the compound system is not adopted Portable engines are not rated here as with us, an attempt to state the nominal nearer to the indicated horse-power. Anengine, for instance, having a 10in. by 12 in cylinder is classed as 20 -horse power, and one $5 \frac{1}{2} \mathrm{in}$. by 6 in. England constantly before us the never-ceasing improve ments in the marine engine; here, though English practice is followed, if but slowly, in sea-big boas, he marine engine trade is in very few hands, and the stimulus of competition arising fron an extensive trade is entirelt non-co. . . non-condensing engines. Notwithstanding the long sea board, the long navigable rivers, and here at New Orleans, solitary steam launch of very indifferent design is the only representative of this branch of engineering.
The sleeping cars have been already alluded to. The large relief model of the town of Pullman, situated near Chicago, showing workshops, houses, churches, and parks, This town has every sanitary improvement, and the houses are comfortable, but the place is governed absolutely by Mr . Pullman with a parental despotism strangely at variance with American ideas, and in ts not too benevolent system, more like that on a dity prince o fifty years ago than that which Enghish-speaking people tion of the Mann and other competing cars may induce the Pullman Company to improve the details of its cars, for although every one appreciates on a long journey the In the frod for improvement In the first place the car-builders her, in common with making a comfortable seat. Except in a few of the best clubs and private houses furnished according to English On a long journey in a so-called parlour car, or in the day use of a sleeping car, where passengers twist their bodies in the vain attempt to find a comfortable posture, one lings even for the third-class carriages of our norther The window fastenings and adjustments need alteration serviceable racks or netting should be provided instead of the diminutive kind in vogue, this being particularly necessary in a country where the rule that anything that
can be classed as a hand package shall be excluded from the baggage car is strictly enforced.
New Orleans is the greatest cotton shipping port in the world, the Mississippi with its tributaries and the southern railways bringing hither a large proportion of the total prowith. The levee and the neighbouring streets are strewn building in the and the new Exchange is is interesting to note how this merchandise is handled. The landing places and railway wharves extend about a mile along the river front, and the cotton as it arrives from the plantations is taken on drays
to the packing houses. The roads are bad, and a great saving might be effected by establishing tramways. The ifting arrangements are inefficient, as they generally are in America. A few steam or hydraulic cranes, such as are made by Stothert and Pitt, of Bath, would save conderable time in transferring the bales. This apparent at the large steel works of America the hydraulic lifting machinery is as good as in England. But New Orleans is far South, where steel making and its adjuncts are differs in many respects from that usual in India or Egypt. In the latter countries the bundles or loosely pressed bales as they arrive from the up-country districts are opened, system involves the use of press boxes, 12 ft . to 15 ft . deep and, if power is to be economised, many gradations of cotton is pressed at the plantations to a density of about 8 lb . or 10 lb . per cubic foot, and these bales are merely squeezed smarer between platens without any enclosing
boxes. The usual mercantile weight of bale is about 450 lb ., but there is no uniformity in size, as this depends on the dimensions of the plantation presses, which vary considerably. These local presses are constructed mainly of wood, are many of them of very rude kind, and are either worked by hand screws or, more generally, by combinatien of levers worked by oxen, mules or men

There are two leading types of packing presses in New \mid four or six cylinders of smaller diameter for the two Orleans, and they merit some description. One is a steam and hydraulic machine, and the other is a steam lever press. In both the operation is simplified by the shortness of the stroke, about 4 ft . to 5 ft . and by the absence of boxes. The annexed diagram will sumciently illustrate the method of the steam hydraulic press, which, though some of its details are peculiar, involves no principle new in England. form indicated by the diagram eleorm indicated by the diagram elevation, Fig. 1. Two standards A A support the upper or fixed platen, and the two hydraulic cylinders CC pon it. The rams, about 18 C . to which enter the arched casting B , bors D D, ach made of tensiont bars D D, each made of wrought their lower ends and fastened at The plantation bale having been brought near to the press, the hoops ore cut and about half their length thrown aside, and before the bale has time to expand it is placed upen the lower platen E, pad the pres the lower platen E, and the presder C C. As the rams R R and der C C. As the rams $R \mathrm{R}$ and the casting B rise, they pull up the lower or movable platen e and then re-fastened round the original bagging cloth, the cloth is sewn over the ends of the bale, the rams descend, and the bale is released There are no bydraulic pumps the force which comes directly from the steam cylinders being graduated as follows :- Fig 2 is a plan of the steam and hydraulic concentrating cylinders, which are fixed diago nally The steam cylinders N are each about 54 in . diameter, and the each about 4 m . diameter, and the R S into the hydraulic cylinders H J, the ram R having a diameter of δ, the ram R having a diameter Steam being admitted into cylinder Q, the force upon the piso cylinder centrated on the ram S , which gives centrated on the ram S, which gives about seven times that of the steam; namely, in the proportion of area of 54 in , and 20 in . diameter. The pressure water is conveyed to the press cylinders through the pipe P press cylinders through the pipe P,
and this force suffices for the and this force suffices for the is then admitted to the cylinder N , and the force upon the piston conand the force upon the piston conabout 25 to 1 -and this higher pressure conveyed to the press by pipe V completes the packing. After the first bale has been pressed, inthe first bale has been pressed, in-
stead of steam being admitted to cylinder Q direct from the boiler, cylinder Q direct from the boiler, is utilised for the purpose. The force exerted on the cotton of course depends on the steam pressure. This in practice is about 85 lb . to the square inch, and the hydraulic pressure given by the 8 in . ram is about 2000 lb . to the inch on the water in the press cylinders, affording through the two

STEAM HYDRAULIC PRESS.

18 in . rams about 500 tons. This could obviously be increased by a higher steam pressure, but the cast iron cylinders will not endure the strain. Steel cylinders or too much here, and it has been proposed to substitute

stroke and no more, however slight the resistance of a particular bale may be. To meet this difficulty a wedge casting is introduced above the upper platform, serving as a packing or distance piece, and the engineer,
judging by the appearance of the plantation bale as it is presented to him to what density it can be squeezed, adjusts the wedge so
as to give the necessary width of as to give the necessary width of gap between the upper and lower
platen. Another plan by which platen. Another plan by which the force of the press can be utito of the balthe loss just referred to of the bale expanding after it is released from the machine, is to pack two bales together, so that in the two bales there will only be two bulging surfaces instead of four in two single bales as at present. The merchants do not, however, encourage this. In justice to the Morse press it must be said that those at work wear well ; there are eleven now working in New Orleans; and that of late years many more presses on this syed ordered than on the hydraulic
system. The cotton trade is an system. The cotton trade is an important one; more than six million bales annually are pressed at American ports, and the money stake is considerable. The speed of packing ranges from forty to sixty per
hour. The bales weigh about 45 lb hour. The bales weigh about 45 lb . per cubicfootasmeasured by theshipper, but while held in the press sixty, The eosen more, is of packing per bale, exclusive The cost of packing per bale, exclusive
of the hoops, is about $60 \mathrm{c} .-2 \mathrm{~s} .6 \mathrm{~d}$.

FLETCHER AND MAN'S PATENT CUT-OFE VALVE. IT is now many years since the mechanical world was astir through the introduction of the Corliss cutoff valve, which, modified and improved, has maintained its position as a first-class cut-off valve actuated by "trip" motion. It marked an era in the construction and economy of the steam engine through the application
of a principle that would indeed seem difficult to improve upon ; but we lay difficult to improve upon; but we lay
before our readers drawings and description of a new cut-off valve, the invention of Messrs. G. Fletcher and Co. and J. H. Man, which is actuated on an entirely new principle, and which, through various and severe tests, has proved itself to possess advantages beyond the expectations of its inventors and advocates. To describe the principle of its action we cannot do better than quote from the preamble to the patent specification, which runs thus:passes through an orifice into any lower pressure, its velocity is due to and varies approximately as the square root of the difference of pressures when this difference is small. If, then, the orifice be that of a valve free to close, but kept open by its own weight or a spring, it is evident the valve will not remain open when the difference of pressures on either side of itself proing daily in the Exhibition. Its general design is shown|keep it open. The valve is in equilibrium when these forces are by the annexed engraving. The supporting framework is equal and opposite, and the velocity of the steam at the moment entirely of timber, the other parts, except the two connecting rods, being mainly of cast iron. The steam cylinder but in the varies in different presses working in the city, but in the one exhibited is of the maximum diameter of on the underside of the piston. The piston-rod being only on the underside of the piston. The piston-rod is attached o a double rack, working on each of its two rows of cogs the top or finish of its stroke. The enging showing this rack at the top or finish of its stroke. The last teeth in the rack, forged solid with the rack strain, are of wrought iron forged solid with the rack body and piston-rod. The toothed sectors are so designed as to move rapidly at the
beginning of the stroke, when the resistance of the cotton beginning of the stroke, when the resistance of the cotton
is slight, and with slower and more concentrated force is slight, and with slower and more concentrated force when the resistance is greatest. The upper platen is stationary, the lower one rising as in the hydraulic press just described, this arrangement facilitating the handling of the bales. The gross force exerted by this machine ranges from 1000 to 3000 tons, according to the steam pressure. The loss by friction must be considerable, probably not ess than one-ifth. There is no need for the maximum force mentioned above in order to obtain the density of bale required by the merchants. Indeed, much of the power given is wasted, as the hoops, applied as is customary here, cannot hold the bale to the shape given it by the press; and as no mechanical means is used for pulling the hoops tight, fully 3 in . is lost, the bale expanding this much when eleased, and this last 3 in . has cost more in steam power and fuel than all the rest of the compression. This loss is partly due to the insufficient number of hoops, but it arises also from the large area of the bale in proportion to its thickness, as in practice it is found impossible to prevent the bale bulging into a rounded form, which-as the freight is calculated by measurement tonnage-is so much lost to the merchant. There is a natural rivalry between the Taylor and the Morse systems, each claiming points of superiority. The Taylor is simple and direct-acting, and though not so powerful, is said to compress the bales as small as will obtain the maximum saving in freight allowed by the shipowners. Moreover, whatever the thickness of the plantation bale, the maximum force is applied to it, while in the Morse machine the piston makes a certain
equal and opposite, and the velocity of the steam at the moment

of equilibrium is therefore definable. By introducing such a valve between the slide case and the cylinder, so that the velo-
city of the steam shall just produce equilibrium about the valve

FLETCHER AND MAN'S PATENT VALVE GEAR.
MESSRS. G. FLETCHER AND CO., DERBY, ENGINEERS.

at the moment of maximum piston speed, the valve will close and give an instantaneous cut-off at about half-stroke. To effect the cut-off earlier than half-stroke, the phenomenon of equilibrium has merely to take place at some previous moment,
which may be accomplished (1) by an increase in the speed of the engine; (2) a decrease in the area of the valve; and (3) decrease in the load on the valve. From a study of the first of these causes, it appears the valve, when once adjusted, should be an automatic regulator of speed, and this is actually the case to a certain extent; but in practice it will be found necessary to adopt one of the other causes. Locomotive, marine, and other engmes that require regulation of power at varying speeds can be fitted with mechanism by which the area of the valve or the load on it can be altered at pleasure, and so vary the point of cut-off to suit circumstances. In other engines requiring regulation of speed, any governor can be applied to actuate the cut-of valve or its load.
The particular design of valve preferred is shown in the accom-
panying illustrations. Itisconstructedon thedifferential principle, panying illustrations. Itis constructed on the differential principle,
for the double purpose of increasing the area for the passage of steam and decreasing the weight of the valve. It is simply a hollow bobbin of steel or other suitable material that slides on a central spindle, which, in the type shown at Figs. 1 and 2, is hollow, so that the steam for the supply of the upper seating passes through the valve itself. At Figs. 1 and 2 we give sectional views showing its application to a pair of vertical balanced piston valves, and Figs. 3 and 4 show it as applied to the ordinary slide valve. The principle is, however, precisely the same, whether the application be to flat or cylindrical in pes, working eits thorking or vertcally, via, the stean in passing towards the cylinder passes through the top and the passage of the steam be not large enough for the mainten ance of initial pressure within the cylinder, the steam will become throttled at some points in the stroke. In other words, there will be a slightly reduced pressure within the valve chamber, the excess of external pressure tending to raise the valve. It will thus be seen if the weight of the valve on its effective area-the difference between the areas of its two discs -represents a pressure downwards less than the excess of external pressure upwards, the valve will be closed by the steam at a velocity approximately equal to the influx of steam, thus producing an instantaneous cut-off. The exact point of cut-off is determined solely by the position of the valve-the amount of opening-in relation to the speed of the engine, and it is merely necessary to raise or lower the stop B on
We shall also give at some future date its application to that class of engine known as the single-acting trunk piston engine. cylinder engines, The principle is applicable to s valve of any cylinder engines. The principle is applicable to a valve of any
design. Messrs. Geo. Fletcher and Co., of London and Derby, are the manufacturers of these engines, one of which has been running their works for over a year. It is a horizontal, 16 in . by 20 in ., making eighty revolutions per minute, from which the diagram Fig. 5 was taken. Figs, 6 and 7 are taken from the type shown by Figs. 1 and 2, which is a 10 in . by 15 in . cylinder, making 225 revolutions per minute.

If any confusion still exists concerning the precise mode of action of this beautiful device, it will be set at rest by calling to mind what takes place if a room door be set open when a
draught of air is blowing through; the door will clap. This
valve is exactly in the position of the door. As the piston valve is exactly in the position of the door. As the piston
starts from the end of its stroke the steam flows into them the end on its stroke the steam flows at slow speed from the dead point, the steam rushes in more and more quickly past the valve, and at last claps it to on its seat, where it will remain until the end of the stroke, when it will fall open again by its own weight. The governor causes the semi-rotation of the spindle, on which are keyed the toes B ; that is to say, as the balls fly further apart the toes are raised or lowered according to the arrangement of the engine, so as to prevent the valves from opening so wide as they did when the balls were closer together, and the valve will then shut sooner, just as a door will clap to with less draught if nearly shut than it will when nearly full open. The working of the engine, which we sound produced by the valves noting bo be desired, the only so noisy as the common type of Corliss engine. so noisy as the common type of Corliss engine.

MORRIS'S WAGON COUPLING

The accompanying engraving represents a wagon coupling invented and made by Mr. R. Morris, of Doncaster, and applied

spindle J is passed, which carries curved levers A and the draw link F, which fits on a square part of J. At H, on the end of
the draw-link E, are horns. On the end of the spindle carryin the draw-link E, are horns. On the end of the spindle carrying
the arm B is a handle, by moving which the rod C pushes the
lever A, and thus raises F , and with it the link, the draw-link G, to the position necessary for coupling to the next wagon. The lower part of the engraving shows a plan of the links and gear. This, to save space, is turned round, as will be seen, and wagons are close up and have to be coupled, the link G is raised by means of the wire cord D. This also facilitates the uncoupling when wagons with spring buffers are pressed close up.

STREET LIGHTING IN THE CITY.

The works executed by the Commissioners of Sewers during the year 1884 form, as usual, the subject of a report by Colonel W. Haywood, the engineer to the Commissioners. Amongst comparative cost, under is the cost of gas lighting, and the Electric Light Company, for lighting With gas at $2 \mathrm{~s}, 8 \mathrm{~d}$. per 1000 , the cost per lamp in 1884 was, for lamps burning 5 cubic feet per hour for 4300 hours, $£ 217 \mathrm{~s}, 4 \mathrm{~d}$., | lamps burning 5 cubic feet per hour for 4300 hours, $£ 217 \mathrm{~s}$. 4 d ., |
| :--- |
| and |
| 10 cubic feet, $£ 514 \mathrm{~s}$. 8 d . per year. The | cost of lighting and repairing brought these figures respectively up to $£ 315 \mathrm{~s} .4 \mathrm{~d}$. and $£ 612 \mathrm{~s}$. 8 d ., except in the case of round lamps, which cost more for cleaning and maintaining, and these cost a total of $£ 319 \mathrm{~s} .7 \mathrm{~d}$. and $£ 616$ s. 11d. respectively. In several places large lamps were employed, as at crossings and open spaces-large lanterns of octagonal form taking the place of five small lamps on the large standards. The burners in each of these lamps consume 50 cubic feet of gas per hour, and are estimated by the patentee, Mr. W. Sugg, to give a light equal to 2 camn to of gas per hour, and were estimated to give a light of 70 candles, One of Bray's patent lamps and burners, consuming $16 \frac{1}{2}$ cubic feet of gas per hour, and giving a light estimated by the patentee at 60 candles, was fixed in the centre of New-square, Minories. The extra expenditure of gas has, in these cases, been paid for by the patentees. However, after much negotiation between the Commissioners and the Hammond Company, a contract was arranged in February last, the company to deposit $£ 5000$ on executing the agreement and $£ 5000$ within two calendar months, as security for carrying out the contract. The company is to replace by 30 -candle power incandescent electric lamps the public gas lamps in the following streets, viz.: Old Broad-street, Hansion House (in front of), Royal Exchange Buildings, Bar-Birchin-lane, Bishopsgate-street Within, Throgmorton-street, Threadneedle-street, and Gracechurch-street, Thmorton-street, Threadneedle-street, and Gracechurch-street. The company is public gas lamps in the district, the price for each being $£ 315 \mathrm{~s}$. per annum. The contract is for seven years from lst January, 1886, the Commission having the option of renewing, on certain terms, for another seven years, and so on from time to time. The company is to lay mains for private lighting, but not to have the exclusive right of private lighting; and if default is made in the public lighting, the right to supply for private use is to cease. If this contract is carried out, the Commissioners are to have a better light at a cost per unit of light not half that of gas. It does not appear whether this sum includes maint

CONTRACTS OPEN-GOODS AND BALLAST WAGONS, INDIAN STATE RAILWAYS.

CONTRAOTS OPEN.

INDIAN STATE RAILWAYS
Thrs contract is for iron underframes, underframe and body ironwork, and roofing for covered goods wagons, and open-sided
goods or ballast wagons, for the Cawnpore-Kalpiand Kutni-Umeria Railways, 5 ft .6 in . gauge.
The work required comprises the construction, supply, and
delivery in England, at one or more of the ports named in the delivery in England, at one or more of the ports named in the conditions and tender, of iron underframes, underframe and body
ironwork and roofing, with all requisite bolts and nuts, rivets, washers, panel pins, and coach screws, for putting the work together in India, and fixing the bodies to the underframes, for
eighty iron covered goods wagons, 18ft. long; ninety open-sided eighty iron covered goods wagons, 18ft. long; ninety open-sided
goods or ballast wagons, 19 ft . 3 in . long. The covered wagons are goods or ballast wagons, 19 ft . 3 in . long. The covered wagons are quality that it shall be equal to the undernamed several tensional
strains, and shall indicate the several rates of contraction of the tested area at the point of fracture that follow, namely :-

	Tensional strains per square inch.	Percentage of contraction of fractured area.
Bars and rods	$\begin{aligned} & \text { Tons. } \\ & 24 \end{aligned}$	20
Plates	22	10
Channel, anglo, and T-iron	22	15

The channel and angle bars and plates may be made of steel of
such strength and quality that it shall be equal to a tensional such strength and quality that it shall be equal to a tensional
strain of not less than 27 tons, or more than 31 tons, per square inch of section, and shall indicate a contraction of 30 per cent. of the tested area at the point of fracture.
The roof sheets for the covered goods wagons are to weigh
before galvanising not less than 14, lb, per square foot before galvanising not less than $1 \frac{1}{l} 1 \mathrm{lb}$. per square foot, and after galvanising they are to weigh not less than 30 oz . per square foot.
The whole of the sheets and other ironwork are to be galvanised with the best Silesian spelter. The roofing sheets for the covered goods wagons are to be corrugated after they are galvanised to a
pitch of 3 in , from centre to centre of flutes, and pitch of 3 in , from centre to centre of flutes, and $\frac{\mathrm{Sin}}{\mathrm{S}} \mathrm{in}$. deep; they
are then to be curved accurately to the radius shown on the drawing. The character of the work may be gathered from the drawing. Tenders to be sent in not later than $2 \mathrm{p} . \mathrm{m}$. Tuesday, the
21st inst,

MOGUL ENGINE

We are indebted for the following specification of a Mogul locomotive engine-illustrated on page 300 -having three pairs coupled wheels and a two-wheeled radial truck, to the American Journal of Railvay Appliances:-
General description.-Cylinders, 19 in . diameter and 26 in .
stroke; drivers, 57 in . diameter; gauge, 4 ft , 8 tin, fuel, bitustroke ; drivers, 57 in . diameter ; gauge, 4 ft . $8 \frac{1}{2} \mathrm{in}$. ; fuel, bitu-
minous coal ; driving wheel base, 16 ft . 6 in .; rigid wheel base 16 ft . 6 in .; total wheel base of engine, 24ft. 2 in .; total wheel base of engine and tender, 46 ft .; total weight in working order, about 50 tons ; weight on drivers, about 43 tons ; weight on truck, about 7 tons; weight of tender, about 24 tons; tank capacity, 3000 gallons.
Boiler.-Made of Otis steel $\frac{7}{10} \mathrm{in}$. thick; rivetted with $\frac{3}{4} \mathrm{in}$. rivets placed not over $2 \frac{1}{8} \mathrm{in}$. from centre to centre; all horizontal seams and junction of waist and fire-box double rivetted; all longitudinal seams provided with lap welt with rivets alternating on both sides of main seams, to protect caulking edges, and all parts well and thoroughly stayed ; top and sides of outside fire-box all in one sheet, back head a perfect circle. All plate planed on edges ansuring plates injury by chipping and caulking with sharp edged tools. Boiler tested with 180 lb , to the square inch steam pressure. Waist 52 in . in diameter at smoke-box end, made wagon top with extended arch, with one dome 30 in . diameter placed on wagon top; tubes of charcoal iron, No. 12 B wire gauge, 200 in number, 2 in . outside diameter and $11 \mathrm{ft} .8 \frac{3}{4} \mathrm{in}$. in length, with copper ferrules at fire-box end; fire-box made of Otissteel 78 in . long, and 34 in . wide; all plates thoroughly annealed after flanging; side $\frac{\pi}{10} \mathrm{in}$. and back sheets $\frac{8}{8}$ in.thick; crown sheets $\frac{3}{8} \mathrm{in}$. thick; flue sheet, $\frac{1}{2}$ in. thick; water space, 5in. wide at sides, $3 \frac{1}{2}$ in. wide at back, and $3 \frac{1}{2} \mathrm{in}$. to $4 \frac{1}{2} \mathrm{in}$. wide at front; stay bolts, $\frac{7}{\mathrm{in}} \mathrm{in}$. diameter, screwed and rivetted to sheets, and not over $4 \frac{1}{4} \mathrm{in}$.
from centre to centre ; fire-door opening formed by flanging from centre to centre; fire-door opening formed by flanging and rivetting tolether stay-bolts above fire ; two rows of tell-tale stay-bolts at top on sides ; crown supported by crown bars, each made of two pieces of 5 in. by 4 in. wrought iron, placed not over $4 \frac{1}{2}$ in centres, the bars to extend across, with their ends resting on castings on the side sheets ; crown bar bolts, $\frac{7}{8} \mathrm{in}$. diameter, with flat heads under the crown sheet, the fit in the crown sheet to be tapered and drawn to its place by a nut above the crown
bar ; the crown to be well and thoroughly stayed by braces to dome and outside shell of boiler ; cleaning holes in corner of fire-box, and blow-off cock in side ; smoke stack straight ; dampers front and back ; balanced poppet throttle valve, of cast iron, in vertical arm of dry pipe.
Frames.-Main frames of best hammered iron, forged solid; front rails bolted and keyed to main frame, and with front and back lugs forged on for cylinder connections ; pedestals protected from wear of boxes by cast iron gibs and wedges, firmly secured by thimbles and through bolts.
Machinery.-Cylinders, 19in. diameter and 26 in . stroke, of best close grained iron, as hard as can be worked. Each cylinder cast in one piece, with half saddle placed horizontally; right and left-hand cylinders reversible and interchangeable, accurately planed, fitted, and bolted together in the most above face of cylinder, to allow for wear; cylinders oiled by oil valves placed in cab, and connected with steam chests by pipes running under jacket; pipes proved to 200 lb . pressure; Allen valve-Richardson's balance-in steam chest; piston hends and followers of cast iron, fitted with Dunbar packing; piston-rods of cold rolled iron, keyed to crossheads, forced and rivetted to piston; guides of close grained cast wheel iron, fitted to wrought iron guide yoke; crossheads of cast steel; valve motion of most approved shifting-link motion, graduated to cut off squarely at all points of stroke, links, sliding blocks, pins, lifting links, and excentric rod jaws made of the best hammered iron, well casehardened; sliding blocks with long flanges, to give increased wearing surface ; rocker shafts and reverse shaft of wrought ron, with arms forged on; driving wheels, six in number, 57 in ,
in diameter; centres of cast iron, with hubs and rims cored out, and turned to 51 in of chers to crucible cast steel, 3in. thick; front and back pairs, flanged, 5 in. wide, middle pair plain, 61 in wide; axles of hammered iron; journals 8 in . diameter and 8 in . long; driving-boxes of strong closed-grained cast iron, with wide flanges and heavy brass bearings ; springs of best cast steel, tempered in oil, made by A. French and Co.; equalising beams of wrought iron and of解 approved arrangement, with steel gibs and keys; connecting and parallel rods of hammered iron, forged solid, with
plied by two non-litting injectors and pump, or valves and cages
of best hard brass, accurately fitted; cook in feed pipe reguof best hard brass, ac
lated from foot-board.
Enyine truck.--Centre bearing swivelling two wheel swing motion truck; truck frame and braces of wrought iron, with
cast iron cross spider fitted with swinging bolster and cast iron cast iron cross spider fitted with swinging bolster and cast iron make inin. in diameter ; axles of best hammered iron, with cast steel tempered in oil, made by A. French and Co., connected by equalising beams, resting on tops of boxes. Accessories.-Cab, of good pottern, built of ash, well sea-
soned and finished, fitted with joint bolts; pilot of seasoned oak; cylinders lagged with wood, and neatly cased with No. 12 iron ; cylinder head casings of cast iron polished bands ; steam
chest casings of cast iron polished bands; dome lagged with wood and cased with cast iron on body, and cast iron top and
bottom rings; boiler lagged with wood, and jacketted with planished iron, and secured by planished iron bands ; hand-rails
of iron pipe polished; running board nosings of iron; wheel cover nosings of iron; engine to be furnished with sand box, and safety valves, heater, steam gauge, cab lamp, sauge cocks;
also a complete set of tools, consisting of two heavy juck screws also a complete set of tools, consisting of two heavy jack screws
and lever for same, one heavy pinch bar with steel point and heel, one 18 in . case-hardened monkey wrench, one 12in. case-
hardened monkey wrench, one 2 lb . machinist's hammer, one soft hammer, one flat chisel, one cape chisel, one poker, one scraper, one slice bar, one set of packing irons, one set of
hardened double-ended wrenches for all nuts and bolts on engine larger than tin. diameter, including two packing wrenches-duplicates- or piston and valve stem glands, one
16 in. flat bastard file, one 1 bin. half-round bastard file, one 16 in. round bastard file, two padlocks and keys for tender boxes, two
cab seats with covers and locks, two cab seat cushions, one clamp for pulling down driving-box oil cellar, one stud for same one eye bolt for same, one galvanised iron water pail, one steel
screw-driver with 10in. blade, five oil cans, viz., one squirt can with brass bottom, two one-quart long snout cans with cast iron bottoms, one two-gallon can with cast iron bottom, one two-
quart tallow pot with cast iron bottom ; one 23 in. deep reflectquart haad-light ; engine and tender to be well painted and specified by purchaser.
ccurately fitted to construction.-All principal parts of engine interchangeable ; all movable bolts and nuts, and all wearing surfaces made of steel or iron, case-hardened; all wearing brasses made of ingot copper alloyed with tin as hard as can be worked Tender.-Tank strongly put together, well braced with angle
iron corners ; bottom plates iron corners ; bottom plates fin. thick ; side plates
top plates thick;
in. $\frac{\mathrm{T}}{\mathrm{T}} \mathrm{in}$. rivets, $1 \frac{1}{\mathrm{in}} \mathrm{in}$. pitch; capacity 3000 gallons; tender frame substantialy
trucks, two centre bearing trucks made with bars and crossbeams of wood with additional bearing at sides of back truck; springs, four cast steel springs in each truck made by A. French and Co.; chilled wheels of approved make 33 in . in diameter; brakes on both tender trucks; axles of best
hammered iron; outside journals 3 isin. diameter and 7 in. long oil-tight boxes with brass bearings; three tool boxes of hard
wood; all patent fees not covered by this specification excepted.

THE LONDON, TILBURY, AND SOUTHEND RAILWAY BILL.
AFTRR many delays and postponements, in some quarters attriof the openents, the Bill for conferring further powers on the London, Tilbury, and Southend Railway Company, with respect to its own and other undertakings, and for other purposes, was
brought forward for second reading in the House of Commons on Tuesday by Sir Selwyn Ibbetson. The honourable baronet, alluding to that part of the opposition referring to the use of
an old burial-ground, explained that the company believed an old burial-ground, explained that the company believed
that it had power to do what it desired in this direc-
tion without any further Act of Parliament, but to avoid possible expensive litigation, it had inserted a clause in the Bill to make the matter quite clear. In con-
sequence of the opposition anticipated, although the Bill sequence of the opposition anticipated, although the Bill
originally took powers with reference to the burial-ground, the specific power sought for had now been abandoned, and it was chase which they already possessed. Another cause of opposition to the Bill was an alleged infringement of the rights of way
of the fishing inhabitants of the village of Leigh, near Southof the fishing inhabitants of the village of Leigh, near South-
end, by the proposed abolition of a level crossing there. But end, by the proposed abolition of a level crosesing there. But Companies Act of 1875, they were clearly and entirely abolished by that Act. He urged that the House seltom refused a second that if the petitioners could show any case, it could be fully Mr. into before the Committee.
Mr. Ritchie said that, although the House seldom refused a Bill which proposed to set aside a public Act of Parliament. The hon. baronet now told the House that the promoters proposed to withdraw the objectionable clause and to ant in ier defiance constituents, to preserve the burial-ground proposed to be purchased from being built over by the railway company. He He
wanted to know what sort of a position the poor of the locality would be in in raising an action against a powerful railway company. Ho was sure the House would agree with him that
attempts of this kind ought to be watched with the extremest attempts of this kind ought to be watched with the extremest
jealo jealousy. He sympathised with the proprietors of this picec of lied and closed ought not to be looked upon any longer as the property of private individuals, He begged to move as an
amendment " That this House declines to assent to the second reading of a private Bill which proposes to set aside the proColonel Makins seconded the amendment, and dwelt upon the interference with the rights of the fishing community at Iesigh which would be effected by the abolition of the level crossing there as proposed. He could only plead in forma paupcris for
these poor people, to whom the Bill, if passed in its present form, would bring so much hardship and inconvenience
Mr. Bryce, in whose name the following notice o Mr. Bryce, in whose name the following notice of motion
stood on the paper, "That, in the opinion of this House, railway companies ought not to be permitted to acquire open spaces oxisting in crowded districts of London, except upon the terms of their undertaking to provide in the same neighbourhood other
open spaces of equal area available for the recreation of the open spaces of equal area available for the recreation of the
people," said that he was perfectly satisified with the statement
of the hon. baronet, that the clause which proposed to give the railway company power to deal with this burial-ground was
abandoned. Now that the principle he advocated had been recognised by the company, he failed to see any reason for continuing his opposition to the Bill. He might also say that his motion for the rejection of the Bill was quite satisfied with the statement of the promoters, and would not persist in his opposition.
After some further and unimportant discussion, the Bill was read a second time.
It appears that under certain Acts obtained and agreements entered into by the company, it has acquired authority
purchase additional lands in West and East Ham and Leigh, in Essex ; to extinguish certain rights of way over its railway : to construct goods and warehouse premises ; to acquire the
burial-ground of the "Seventh Day Baptists" in Whitechapel, burial-ground of the "Seventh Day Baptists in whiteciapel, Reformed Church in Hoperer-spuare, Whitechapel ; to construct
a railway to form a junction with the railways authorised by the Metropolitan Outer Circle Railway Act of 1882 ; to acquire a coal depôt of the London and Blackwall Railway Company;
and to build and work steamers across the Thames. But some of these powers cannot be carried out without a
further Act of Parliment, and as it requires some addi tional powers, it has brought forward the Bill abovenamed. It, therefore, askz for statutory authority to
acquire: (a) Lands lying between Plaistow Station and the northern main outfall sewer of the Metropolitan Board of vides of their railway to the enst of Leigh Station, to stop nd crossing to the south-east of the Bell Inn, Leigh, subject to the payment of compensation where necessary; to stop up the pathway from Barking to Pitsea, on condition that it first provides for public use a substituted footpath from the point of intersection of the existing footpath with the railway on the north of the line to the Hacton-lane. These powers of compusory purchase are to the Seventh Day Baptists' burial
then, with regard to the ground, the promoters point out that by reason of the with this ground under their previous Act, and they ask to be exempted from the provisions of that statute by the present Bill. Its next request is for power to abandon the construction of the railway to form a junction with the Outer Circle seeing that the Outer Circle Company has been unable to proceed with its undertaking under the Act of 1882 , and is seeking power to abandon it. This power, however, 18 to be
accompanied by the condition that the company shall be liable oo pay compensation to any owner or occupier of land, for any damage occasioned lyy the entry of the company on
such land for surveying, taking levels, boring or probing, such land for surveying, taking levels, boring or probing, my "Where before the passing of this Act any contract may have been entered into potice given by the company for the pur chasing of any land for the purposes of or in relation to the railway or any portion thereof, the company shall be released from all liability to purchase or to complete the purchase of any such land; but, notwithstanding, full compensation shall be made by the company to the owners and occupiers, of other persons interested in such land, for all injury or damage sustained by
them respectively by reason of the purchase not being completed them respectively by reason of the purchase not being completed
pursuant to the contract or notice; and the amount and application of the compensation shall be determined in manner provided by the Lands Clauses Consolidation Act, 1845, as amended by of compensation paid for lands taken under the provisions of compensation paid for the promoters, owning a reservoir, well, and
thereof." and spring mains and pipes, in East, Tilbury,
and Chadwell St. Mary, in Essex, within the supply district of the South Essex Waterworks Company, they further propose to take power to purchase the works of the waterworks company on terms to be agreed upon; and in
addition to their right to work boats across the Thamesunder their Acts of 1852 and 1875 -between West Tilbury and Chadwell, on the Essex shore, and Gravesend, they apply for authority to prohibit the anchoring or mooring or any vesse any vessels so moored or anchored. By another clause they seek power to enter upon the existing coal depot of the London and make their new depot, on giving a month's notice, and providing for damage and inconvenience, Finally, all these proposals are covered by a proviso that, "Nothing in this Act shall authorise the company to purchase or acquire urban sanitary district occupied either wholly or partially by persons belonging to the labouring class-as defined in Standing a further proviso that nothing shall exempt the company from the provisions of any general Acts relating to railways.

THE PHYSICAL SOCIETY
AT the meeting of the Physical Society, March 28th, Pro-
fessor Guthrie, President, in the chair, the President announced fessor the hrie, President, in the chair, the President announced particulars would be communicated to the members. Mr. Hawe was eleoted a member of the Society; The following papers were Calculating machines are of two classes-the automatic and the semi-automatic. The former were invented by Mr. Oharles Babbage between 1820 and 1834 , and were designed mainly for the computation of tables. The difficulties against which this invento contended, and the perseverance he displayed in the construction
of part of the "difference engine" he had imagined are now of part of the "difference engine" he had imagined, are now a
matter of history. On acount of the great cost and high degree
of complexity of this machine, it was never completed, and the calculating machines of the present day belong to the send the matio class, the first example of which is found in a rough and incomplete instrument by Sir Samuel Morland in 1663 . Fron
1775 to 1780 the Earl of Stanhope invented machines which were great advance upon those of Sir S. Morland. In these is found the steppee reckoner," the basis of al modern instruments
This sstepped reckoner
was improved by M. Thomas, of Colmar who in 1851 produced a machine which is now largely in use. Thi machine, somewhat improved in detail and construction, is now
made by Mr. Tate, of London, and Mr. Edmondson has patented a modration in which the form of the instrument is circular, b wollection of various valuable instruments, which had been kindly lent for the occasion, were exhibited.
A discussion followed, in which General Babbage, Mr. Tate,
Professor MoLeod, Dr. Stone, the Rev, Professor Harley, Mr Professor MoLeod, Dr. Stone, the Rev. Professor HArley, Mr
Whipple, Professor Ayrton, and other gentlemen took part.
"On the Structure of Mechanical Models Ilustrating some Pro
perties in the Ether," by Professor G. F. Fitzgerald. The author
had recently constructed and described before the Royal Society of Dublin a model illustrating descriain properties of the ether.Nature, March 26 th. This model was one-dimensional, but the author now showed how a tri-dimensional model might be
imagined though probably medl its actual construction impossible. Each element of the ether is to be represented by a cube, on each edge of which there is a
paddle-wheel. Thus on paddle-wheels. Now, if any opposite pair of these rotate by different amounts they will tend to pump any liquid in which the
whole is immersed into or out of the cube, and if the sides of the cube be elastic there will be a stress which will tend to stop this rotate by different amounts they may undo what the first pair do, and thus the stress will depend on the difference between the siferentian rotations of these opposite pairs of wheels. If η repre-
sent the angular rotation of one pair, and δ that of the other, the stress will depend upon $\frac{d \eta}{d x}-\frac{d \zeta}{d y}$. In order that these four wheels may not similarly work with any other wheel it is necessary to standing on a face of the cube. They must be so made that liquid may not be able to pass from one cell to another through the
diaphragm or beside the paddle-wheels; to effect this the floats on the padage-wheels would have to be drawn down while passing the
diaphragms. Tus the energy of distorsion of such a medium

$$
\left(\frac{d \zeta}{d y}-\frac{d \eta}{d z}\right)^{2}+\left(\frac{d \xi}{d z}-\frac{d \zeta}{d x}\right)^{2}+\left(\frac{d \eta}{d x}-\frac{d \xi}{d y}\right)^{2}
$$

And Maxwell has shown that this is also true for the ether. The faces of the cubes shoum be eliquid, and whose elasticity should be most means of storing electrostatic energy in the medium. The most complicated results follow from supposing the faces of the ticities. Such a structure represents a crystalline medium, and vibrations would be propagated in it according to laws the same as
those regulating the transmission of light in crystalline media. It the cubes were twisted, the structure would be like that of quartz or other substances rotating the plane of polarisation. To reprenecessary to in troduce some mechanism connecting the ether wit matter. The author, in conclusion, insisted upon a view which alterations of structure, and of displacement exeouted in a medium possessing the properties of an elastic jelly. instruments were exhi-
At the close of the meeting the following ins bited and described in a conversational manner by their makers :A chronobarometer and a chronothermometer by Mr. Stanley.
These instruments consisted of clocks regulated by pendulumb formed in the first instrument of a mercurial barometer, and in the second of a similar barometer enclosed in a hermetically sealed air chamber, the enclosed barometer thus acting as an air thermo. meter. Increase of pressure in the one case and of temperature in the other causes the mercury to rise, and thus accelerates the pendulum. By the gain or loss of time the mean pressure or tem.
perature can be calculated for any periods. A heliostat and galvanometer by Mr. Conrad W. Cooke. The galvanometer is intendent to show the internal current in a cell. The battery plates
are in two cells connected by four glass tubes in multiple, and are in two cells connected by four glass tubes in multiple, and coiled round an astatic needle. The glass work is by Mr. Giming
ham. A spherometer by Mr. Hilger was made of aluminium combined lightness with rigidity. By an electrical contact the maker asserted that measurements could be made to one-millionth part of an inch. Colonel Malcolm exhibited a spectroscope and a adjustable ; and Dr. Watts exhibited a simple modification of a
and quadrant electrometer

TENDERS.

LIst of tenders for alterations and additions to the premises
containing the Roman Pavement in Jewry Wall-street, Teicester and other works in connection therewith. Quantities and specif-郎on by Mr. J. Gordon, C.E., borough surveyor.

LIsT of tenders for the erection of a boiler-house, coal-houses, and other works at the Borough Lunatic Asylum, Leicester.
Quantities and specification by Mr. J. Gordon, C.E., borough

KIDDERMINSTER URBAN SANITARY AUTHORITY. Watrrworks.-Contract No. 1: For the manufacture and

WATERWORKS.-Contract No. 2: For the construction of covered service reservoir, and laying pipes, \&c.

> Thomas Valë. .̈
Herbert Hughes, Lower Gormai
Richard Thompson, Kidderminster
George Law, Kidderminster-accept

SEwErage Works.-Contract No. 3: For the laying of culvert Thoman Williams, Swansea
Herbert Hughos Lower Gornal
Goorge Law, Kiddorminster-ach -accopited

AMERICAN NOTES.

(From our oven Correepondent.)

THE copper market is in an unsettled condition. April 4th,
Prices are declining , stocks are heavy; negotiations are pending for heavy
exports. New copper mining regions are under process of develop. ment. The market for tin, lead, spelter, and zine is active, though transactions are small in amount, and prices firm. The movements in tin-plates are free, and a much larger than ordinary distribution
is predicted by wholesale and retail dealers during the coming
all kinds of material, excepting steel rails. Machine and tool shops
and agricultural implement establishments and agricultural implement establishments have secured a fair
volume of business, and anticipate an even run of orders up into
 Orders are small, proitstace ars. low, and future requirements are not
anticipated in any oase. Locomotive establishments are ordering anticipated in any case. Locomotive establishments are ordering
very little. Several are barely able to continue in operation; two have received orders su cien to carry them three montis. The
Baldwin's are finishing up a few orders for exportation. The leading railway companies are pursuing arg abeck bartation. policy in
ordering motive power and railway equipments. The returns, ordile showing a little improvement, are not such as to juss
whife tify a liberal expenditure. Steel rails are selling in a
small way at 27 dols.; old iron rails, 17 to 18 dolss; old steel rails,
15 to 16 dols.; Bessemer, 19 to 20 d $25^{\circ} 50$ to 26 dols. Scotch iron is in slagggish demand. There is but little activity at the Bath, Me., shipyards, or at the shipyards of
the Delaware. The demand for iron and steel which imparts positive activity to the iron trade is withheld, and there are no
mmediate prospects for any substantil immediate prospects for any substantial improvement. Pric
must for the present continue depressed, and demand irregular.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM,
OTHER DISTRICTS.

OTHER DISTRICTS
 (From our own Correspondent.)

Ironsastress display some anxiety this week as to the probable
issue of the Russian policy, and attention is strained to forecast issue of the Ressian pontrade of a declaration of war. Temporary
the probable effect upon trate would scarcely compensate for the stoppage of district, but this would scarcely compensate for the stoppage of a portion of the
trade now being received from merchants, Meanwhile the uncer-
tainty is checking business. Merchants are indisposed to operate, ns they remain dobutful whether war risks ire eliskelesed to properail at at
date of export. Neither raw nor finished ironmasters are prepared date of export. Neither raw nor finished ironmasters are prepared
to book orders for forward delivery at present rates. They are convinced that, should hostilities occur, prices will go up.
Change in Birmingham to-day Thursday and yesterday in
Wolverhampton reflected, in a slight measure, the firmer tone of Wolverhampton reflected, in a slight measure, the firmer tone of
the Cleveland market. The better bar prices in the North are encouraging. Makers hero would like to read in the advance the
first indication of lessened competition from Middlesbrough. The export season is now fairly started, and much depends upon it.
At present the outlook is not very promising. The Australian
colonies are here and there distributing more orders, but the South American trade is rather depressed, and the Indian demand is The orders which have been reecived since the quarterly meet-
ings have not been of much account, and works continue iregularly employed. Numerous mills are idle. Sheets display more activity
than any other description. Lattens range from £7 15s. upwards; marked sheets are $£ 9$ to $£ 9$ 10s.; Monmoor singles are quoted $£ 8$.
The demand for galvanised sheets will be improved on lian and New Zealand ncoount by the rains in the colonies. At present, however, the demand is considerably within the supply. Oomplaints are made of the continued consignmentso a course
which tends to depress prices on the Sydney and Melooune
markets markets. Competition is severe, and the leading manufacturers
are. only running part of their plants. Prices are very varied.
Wer are only running part of their plants. Prices are very varied.
While the Association figure is $£ 11$ ios. for sheets of 24 b.g.
delivered Liverpool, many makers quote delivered Liverpool, many makers quote $£ 115 \mathrm{~s}$, and merchants
deocare that they can buy an under $£ 11$. The $£ 2$ extra for sheets
of 26 b.g., and the still further $£ 2$ extra for 28 b .g., is preserved as far as possible, but this is not easy.
Marked bar makers this aftern
Marked bar makers this afternoon spoke of having hardly ever
experienoed so puiet a time. Nevertheeess, , INesrss. Wm. Warrows
and Sons made known that they would accept no orders at below
£7 10s.

 slating bars, and smanll rounds and squares, gin., at E8; beast chain iron, best plating bars, and rounds and squares, tin, $£ 9$; rivet
iron, $£ 8$ 10s., $£ 815 \mathrm{~s}$, and $£ 105 \mathrm{~s}$, according to quality; angles

 Youndry pigs ase selling with some show of a activity to the pipe
they quoterse
founders, but forge pigs remain dull. Stocks in the hands of native foukers aro growing, notwithstanding that the output is decreasing. of pigs from the midland districts, Some brands of South York shire pigs are quoted 53s. 6d., delivered here. Native second-class
pigs are 40 s . to 42 s ., and third-class, 33 s . to 36 s . 3d., in actual The h
The house coal trade upon Cannook Chase is already largely
benefiting by the South Yorkshire strike. Big orders are bein beneifting by the South Yorkshire strike. Big orders are being
reoeived from the London market, and more activity is noticable 3t the oollieries than at any time since the termination of the last
Black Country strike. Better prices by 1s. per ton are also being secured than those which generally regulate sales on London
acoount. The German ironmasters are pushing the products of their
rolling mills into this part of the kingdom with incoeased vigour.
Constructive engineers hereabouts are being off Constructive engineers hereabouts are being offered at the present
time girders and plate iron for rbidge building of German manu.
acture delivered at prices which are less than those of local
 apable of standing similar tests to those which engineers impose
upon nstive iron. This again affords a striking illustration of the
advantages which the cheapness of labour and the longer hours Worked upon the Continent confer upon the continental producers. shire bridgebuilder has to pay his first hands in the yards at the
rate of 7 t . to 8 d . per hour, the Germans can get the same labour
at half the value. at haif the value. From a patriotio standpoint, it is gratifying
that certain bridge ouilders to whom the German products has been offered steadily refuse to employ the work.
There is belief here among certain of the deepstampers that the
Government are now procuring some of their stampings, such as aovernment are now procuring some of their stampings, such a
are neded in the construction of buoys, ordnance shells, and so
forth, from German firms. A good number of cont
for constructive ironwork, foundryty goods, machinery, tand railway
stores. The Indian States Railways stores. The Indian States Railways are inquiring for ironwork
for ballast and goods waone and the Manchester, Sheffeld, and
Lincolnshire Kailway are contracting for their annual stores supply, which include axles and tires, bolts, rivets, and screws, chain iron, springs, tools, pipes, castings, and teleggraph materials. The
Maidstone Waterworks are requiring cast iron sockets and spigot pipes, Newort Gas Company, Monmouth, are about to order six
The Newport
purifiers, each 20ft. square, with centre and other valves and
 Messrs, Walker's tender was the lowest, being $£ 792$.

A valuable machinery contract is on offer by the Rotherham
Corporation for their waterworks. It is for a rotative vertical pumps, one condensing steam engine, actuating two double-acting of water per hour to a height, including friction, of of 200tit, at a
speed of sixteen strokes per minute. Two cylindrical double-flued boilers, to work at 80 lb. pressure, are to form part of the plant. several branches. The tin-plate workers are turning out, for the the use of troops in India, many thousands of steel basins, camp kettles,
and other stamped and wrought iron goods. This week tenders are being submitted to the War-ofticice for heavy supplies of tin-ware in the construction of soldiers' bedstead. A forms, the War-offic axes and spades and shovels have this week been also tendered for
The pipe orders for the Soudan are being turned out so satisfad The pipe orders for the Soudan are being turned out so satisfac
torily that an early extension of contracts is promised. The Railway exeutive of the Birmingham Local Committee for opposing mentary representatives of Midland constituencies asking them to give personal active support to the Committee's views. They
desire that on the seond reading there should be as large an
opposition vote as possible. Mr. Henry Wright, Birmingham, opposition vote as possible. Mr. Henry Wright, Birmingham,
opas been appointed chairman of the Glouecester rron and Wagon
Company, in place of Mr. Joseph Pyons, resigned. Company, in place of Mr. Joseph Pyons, resigned.

NOTES FROM LANCASHIRE.

Manchester.- So far as the iron trade in this district, in the very
depressed condition by which it has been charaoterised for so depressed condition by which it has been characterised for so
a period, could be injuriously affected, it may be said that the
threatening warlike complications of the past week have as a further check upon the weight of business being done, which,
for the moment, is limited to the smallest possible dimensions. for the moment, is limited to the smallest possible dimensions.
In the present uncertainty as to the ultimate issue of the existing In the present uncertainty as to the ultimate issue of the existing
crisis, buyers hesitate to go beyond pressing immediate requirements, as they think the outbreak of war may tend to still further woassibly prices; whilst makers, who consider that they possibly get any lower, whist there is a possibility they may and business will continue thus to be checked until some definite
decision either as to peace or war is arrived at. The iron market at Manchester on Tuesday was fairly well
attended, but the business doing was extremely limited; huyers generally hesitated about giving out orderss and where transaotions
were effected they were only in small hand-to-mouth parcels. Quoted prices were unchanged from last week, but in pig iron a weaker one, ir anything, was here and for prompt delivery here are in many cases able to obtain some concession from makers, and with 40 s . to 40 s . 6 d .2 less 2 L , still the thuoted prices for good local
and district brands delivered equal to Manchester, there would be a little giving way upon these figures where actual present business
could be done. There is, however, some pushing to sell at considerably under these figures, and one or two district brands
cont continue to be
delivered here
The hematite trade continues in a very depressed condition, and
good foundry brands are offered at as low as 52 s . per ton, less $2 \downarrow$年d
delivered herere, without inducing buyers to give out orders.
In be reported manuactured iron trade a generally dull tone has again to were gradually coming into the market with the orpering of the
season has been checked, and the Baltic trade practically stopped season has been checked, and the Baltic trade practically stopped.
Prices, however, are maintained on the basis of $£ 5$ 7s. 6 d . for good qualities of Lancashire and North Staffordshire bars delivered into
the Manchester district, and so far as north country iron is concerned, makers who have booked tolerably large orders recently are even holding out in many cases for an advance of 2 s . 6 d . per ton
upon the very low prices which were being taken a few weeks The condition of employment in the engineering trades continues to show an improvement, acoording to the returns of one or two of
the trades union sooicties, and the calling out of the reserves will
to some extent make itself felt, as during the long continued opersion of trade a considerable number of the unemployed
den in the engineering branches of industry found their
men way into the army. This month's report issued by the Steam
Engine Makers' Society shows a moderate reduction in the The one bright feature in the returns seems to be a continued mprovement in the shipbuilding centres, whilst private locomotive
buiding frms are, generally speaking, full of work; but rail way
hops are full handed, and in some cases worlding surt whilst are fullianced, and in some cases working short time;
solidas have been utilised for extended suspensions. Tool makers are moderately employed, but engineers and millwrights are reported to be not so fortunate, especially those in
mining districts, from which the statements of returns are far from oheering.
At the
At the cosing sessional meeting of the Manchester Association the president, offered a fow very pertinent remarks with reference the want of information frequently displayed by men who
thought they were inventors. He said he was often consulted by such men, and his very first guestion was always-Have you made yourseif familiar with the faiures and the work of other men in
the efirection in which you are now working; indeed, have you
made yourself familiar with the whole published literature on the subject? Do you know the work of the best men, and do you think yourself, better than the best? If an inventor could not
answer these questions it was often useless to waste further time upon him. He had especially been struck by the number of gas nothing about the various engines that were already in the wirdo., the man who had made himselif acquainte, and who fully appreciated the trials and
whe
he troubles of his predecossors, would, under ordinary circum the troubles of his predecossors, would, under ordinary ciroum-
tancees, if he added his own experience, be more likely to do some thing useful than one who worked on in ignorance of what those
who had preceded him had done. The safe working of mines, w ton of explosions, was under discussion at the meeting of the
Manchester Geological Society on Tuesday, and Mr. Hy. Hall, inspector of mines, who occupied the chair, expressed some opinions
upon the subject, Which will be of interest to mining engineers.
With regard to shot-lighting, he had long been of opinion thnt ought to be prohibited in every mine giving out gas, whilst the men Were down ; and in the face of the now well-known fact that coal
dust was partially colarged with gas in in promucing a disastrous explosion,
nore attention would have to be paid to the watering of dry mine in the future. In fact, this dangerous element of ooal dust in
connection with only a small quantity of important wuestions a before the minining of was was one of the mosi
there would be was afraid who had been accustomed to encounter small quantities of gas without apprehension, to fully appreciate the danger. In connec-
tion with shot lighting, Mr. Hall added that particulars which had recently been brought under his notice proved that it was not
necessary that a shot should "blow out" for a working place to
be bo ined with flame, as shot lighters had informed him that thi

when the barometer is falling, take care; then if anything happened
from four to five days in the meantime, we told you so, The Manchester and Salford Trades Council have pas tion to the effect that they view with alarm the proposal for introduced into Parliament by the English railway companies, and they add that the trade in the country has been injured and whioh had caused the removal to some of the industries to other
sem depriving them of their wort or compelling them at great loss to seek employment in other parts of the country. the prospect of a more protracted stoppage of the pits the, and the prospect of a more protracted stoppage of the pits than had
been anticipated, is beginning to make itself felt in the coal trade of this district, and during the past week there has been somewhat a pressure of orders from buyers who have hitherto been getting chiefly for house fire coals ; other descriptions for iron making, demand. For house fire coals prices have shown an upward tendency of about 3 d . to 6 d . per ton upon the minimum rates
which have recently been quoted, best coals now averaging 9 s , nd for 0 .; and common house fire coals, 68. per ton. Steam and forge coals, of which large stocks are held at some of the pits,
remain at about 5 ss . 6d. as the full average figure ; burgy, ts. 6d. to
5s.; and slack from 3s. to 4s, per ton at the pits according to quality.
In shipping there has been rather more activity, but prices have ot shown any material improvement, 78. .t of s . . ad. having been
bout the average figures for good qualities of steam coal delivered about the average figures for good qualities of stee
t the high level, Liverpool, or the Garston Docks.
he hemaiter ound, and very few orders have lately been booked. The value of pig iron is steady at 44s. for No. 1 Bessemer net at works, prompt
delivery, 43 s . 6 d . No. 2 , 43 s . No. 3 , and 42 s , to 43 s . forge and undry samples. Stocks remain very large. Steel makers are
airly employed in both the rail and merchant departments. Ship. uilders have not booked any new orders this week, but they are busier than they were, and an improvement is noticeable in the
engineering departments. Iron ore is in quiet demand. Coal and ngineering departments. Iron ore is in quiet demand. Coal and
oke dull. Shipping quiet. There are no new engineering features interest to note in connection with the trade of the district.

THE NORTH OF ENGLAND

Burers of pig iron have shown more readiness to purchase
during the last few days, but they do not inguire for large quanti during the last ew days, but they do not inquire for large quanti-
ties or for delivery far ahead. The probability of war between this country and Kussia is hindering business considerably. At prompt delivery was quoted at 34 s . per ton by merchants, and at
34 s . 3d to 34 s . 6 d . by makers. In a few cases small lots have been sold yess than 34 s . Frge iron is firmer but as a rule they will not take less than 34s. Yorge iron 18 firmer than No. ., owing to a certain the finished ironworks. Consumers are freely giving 33s. 3d, per ton for it. This figuro is usually accepted by merchants, and by ome of the makers, but there are others who ask k. per ton more.
Warrants are offered at 33s. 9 d . per ton, but there are no transaotions in them.
No change has
No change has taken place in the stock of Cleveland pig iron in
Hessrs. Connal's Middlesbrough store during the last three or foum Shs. The quantity held from the Tees are not so favourable a might have been expected for the time of the year. Only 26, , 83
tons were sent away upto Monday last, which is ibout 6000 tons
less than during the corresponding portion of less than during the corresponding portion of April last year.
The improved tone of the manufactured iron trade is fairly well maintained, and producers are not now willing to sell at the low maintaniod, and producors are not now wiling to seil at the low
rates which ruled a month ago. Ship-plates are 4417 s . 6d. to \&5
 2N. per cent. Steel plates are dearer than they were, $£ 7$ per ton
being about the present value, whilst steel angles realise $£ 610 \mathrm{~s}$. the Tees during March was $£ 183,100$, being an incerease of $£ 3730$ compared with March, 1884. The value of the exports from New-
castle was $£ 191,675$ last month, which is equivalent to a decrease of $£ 40,853$ as compared with March last year.
land miners and blast furnacemen was issued wages of the Cleve解 of No. $3 \mathrm{~g} . \mathrm{m} . \mathrm{b}$. for the thr ending March as 34s. $8 \cdot 3 \mathrm{~d}$. per ton. Consequently the wages of
blast furnacemen will be reduced $1 \frac{1}{4}$ per cent., and those of the miners 16 d . per ton.
company has been formed at Sunderland to take over and
extend the shipbuilding business of Messrs. J. Knox and Co South Hylton. Mr. J. Thompson, jun., of Sunderland, is chairman
A meeting of the Cleveland Institution of Engineers was held at Midchesbrough on Monday, the 13th inst. The discussion on Mir.
Maodonell's paper, on "Grinding Wheat with Chilled Rollers by
the Gradual Reduction System" was resumed was elicited that 5000 sacks of flour per week wero producer by pair of compound engines indicating 500 -horse power, with a coal consumption of about 2 lb . per indicated horse-power per hour.
Professor Fleeming Jenkin, of Edinburgh, then read a paper on his system of airial paper was a development of the one with a similar title recently
read before the Society of Arts. The discussion was postponed till the next meeting of the institution.
The strike which has been proceeding for nearly two years among
the operative mechanics at Sunderland has just collapsed. It was supported by the Amalgamated Society of Engineers, and must less than $£ 40,000$ was spent over it by them without gaining their object. For a time a thousand hands were receiving strike pay, but latterly that number has dwindled oconiderably. TTe prininiple
involved was the right of the men to control the number of The
The goods usually imported from Russia into North-east ports consist of grain, linseed cake, manganese ore, oil, rags, hemp, tar,
pitch, and wood. The exports to Russia from the same ports comprise coal, coke, chemicals, cements, fire-bricks, pigg iron, lead. Of
course, in case of war, this traffic will either cease for the time being or will have to be diverted into fresh channel The freight market seems steadily rising, and for transit to all parts; but whether the extra money is given simply to cover extra
cost of conveyance and extra risk, or whether it is likely to find its way into the pookets of shipowners, is so far very doubtful.

THE SHEFFIELD DISTRICT.

(From our own Cornt

Some time ago Messrs. Newton, Chambers, and Co., Thorncliffe, gave notice to their ironworkers of their intention to dispense with
their services. It was considered at the time that this was done as a precautionary measure, with a view to the action of the colliers
in regard to the 10 percent. reduction. The miners having decided to strike, and, in fact, the strike being now actually he notices have been put in force. The Thorncliffe Company has
close on 3000 pit hands who the situation was made more grievous still by the damping down of
the large blast furnaces at Thorncife, which are amongst the
most important in South Yorkshirce. They were orected in 1873 ,
ducing between 500 and 600 tons per week of the
well
dannown Thorncliffe brand of pig iron. The weil-known Thorncliffe brand of pig iron. The
damping down of the furnaces will necessitate the stoppage of about fifty coke ovens, and thus
add at teast 60 men to the thousands of colliers on strike. The firm have a large quantity of pig coal trade is settled.
The adjourned conference of miners at Barnsley, which was stated to have been the largest repre-
sentative gathering ever held in any colliery district, was not open to the press, but the Union coal getters and trammers. Resolutions were passed to adhere to the determination to resist by
all legal means the proposed reduction of 10 per cent. A committee was elected, along with a scretary and treasurer, to collect and disburs lso decided that there should be a central strike fund, from which the strike committee pay to all
non-union men out of work equal proportions of non-union men out of work equal proportions of
whatever might be collected from non-union men. The determination of the conference to continue he struggle appears to have been very unanimous, ach unionist receives a strike pay of 9s. a week, go of thistrional 1s. for every chiid under the it is stated that the average payment is 11s. or 2s. per family. It is somewhat singular, though shire eollieier district now belongs to the Union, nd it is said that of the entire number in the South Yorkshire district 6000 of them
 ontinued, and non-union men are in the greatest difficulties, for they have no funds to fall back hon, and even the funds which the unionists no substantial assistance-in fact, there has never een a strike of the present magnitude which In consequenct interest.
In consequence of the stoppage of the pits, the
price of household coal has pretty generally advanced from 10d. to 1s. 6d. per ton.

NOTES FROM SCOTLAND

(From our oun Correspondent.)

THere has been considerable excltement in the Glasgow iron market in the past week. This shas
arisen partly from the crisis with Russia, and also partly from an expected reduction of outpu解 pected that in the event of war they will draw in the warrant market has been largely specularesulting covering operations on the part of price The pig iron shipments of the past week were unsatisfacactory, amounting to 9870 tons against 7525 tons in the preceding week, and 12,981 tons
in the corresponding week of 1884. Merchants state that the prospects of the foreign demand
 the past week upwards of 1220 tons have been
added to the stock in Messrs. Connal and Co,

Business was done in the Business was done in the warrant market on
Fridey from 41 Is. Gd. up to 41s. 11 d . cash. The whilst on Tuesday transactions occurred a
 Eusiness was dane on Wednesday at 41s. 10 d.
to 41. . 11 d . cash. To-day - Thurday - the market was irregular. Business was done in the
forenoon at 41 s . 10 d . to 41 . 9 c . cash; while in the afternoon the quotations advanced to 42 s. cash.

 law, 42s. 3d. and 40s. 6d.; Shotts, at Leith, 5 sis . Glengarnock, at Androssan, 48s. and 42s. 6 . 4. .;
and Eginton, 43 s . and
46 s .6 d and 42 s .6 d .
The makers of steel ship-plates in the West of
Scotland have advanced prices Sootland have advanced prices 2 s . 6 d . a ton,
bringing the figure up to $£ 7$, whioh is 10 . more
than at the beginning of the year sucoessfully cast a fow days ago at the Vulcan
Foundry, Coatbridge, the first large housing for Steel Works. The housing is 21 tons in weight. The new steel we the Messss. John Elder and Co. have reecived an he Admiralty, to be employed in the navigation of the Nile. The whole dozen steamers of this
class will be fnished and shipped by the firm in he course of a few weeks.
Among the past week's shipments of iron manuvalued at $£ 20,250$, for the Indian railways
\&14,800 worth of $£ 14,800$ worth of machinery, including sugar
crushing machinery, valued at $£ 12,250$, for Penang and Singapore, and a consignment o
the same class of goods, worth $£ 1500$, to rata; $£ 2300$ worth of sewing machines ; $£ 11,700$ steel goods, including $£ 5275$ worth of bridge work
and $£ 2677$ rails and sleepers, for Calcotta; ; and e36,000 general iron manufactures for different
places,
The coal trade has again been quieter this week. For Quebec some good cargoes have been
despatched, but the Baltitio trade is in an un-
settled condition, as a result of the differences 13,530 tons from Glasgow, 4744 from Greenock, 1413 from Irvine, 8678 from Ayr, 7731 from
Troon, and 910 from Grangemouth. There has been a rather improved demand for manufac-
turing purposes, but the household inquiry is
described as slackening. In Fifeshire, where the
trade has been in a backward condition for a succession of weeks, a more healthy tone now prevails. Several good shiping orders have been
placed, and the miners are obtaining more steady placed, and the miners are obtaining more steady
work tat the collieries. At some ports vessels are more difficult to obtain, and tendency of prices is

upwards

that it will on the 1st of May.

WALES \& ADJOINING COUNTIES

 (From our own Correspondent.)SWANSEA looks particularly brisk at present,
and at Landore there is more life than in any of and at Landore there is more life than in any of
the ironworks and steelworks on "t the hills." In addition to the Hooghly Bridge they have 15,000
tons of plates for the Forth Bridge nd tons of plates for the Forth Bridge, and this will
keep things going keep things going well for some time to come.
Dowlais, Cyfarthfa, and other leading works maintain a tolerably good appearance, although the few clearances show that trade is slow and stocks accumulating. The only good rail clearance this week has been 2400 tons to Canada One slightly encouraging sign is the increased
briskness of the iron ore trade. This week Blaenavon, Ebbw Vale, and Tredegar received
large consignments. No better time for doing this can be found, as prices are at their lowest and so far the uneasy condition of Eastern
affairs has not materially affected freights. In would be sensibly affected, such a thing may have something to do in the
improvement of the ore trade. I fancy that a improvement of the ore trade. I fancy that a
little financing is beginning, as the receipts of
fresh the last week has fallen off considerably. Fortunately, many of the ironmasters are well bought, and our own ores at Cumberland and in the Forest of Dean are not to be despised.
Merks, now working tolerably well at the tin-plate works, now that the hoiidays are ended. Trade
remains much about the same. It is known that experiments are going on with a view to eliminate black spots on "steel" plates, and a report on
the subject will be prepared for the next meeting the subject will be prepared for the next meeting
at Swansea. This is an important subject, and is being watched with a good deal of interest. derin a dispute has arisen about the probable stoppage. It is said, but I cannot certify, that
some of the men are offering two days' work per week to encourage their employers to keep going. My idea is that it is only intended to limit the next at Swansea, when certain tin-plate grievances are to be discussed, such as whether mills should turn out more than 450 boxes each per
week; on the possibility of workmen bettering trade; on injurious patents, their unhealthy ocal matters, such as Association debts. I fancy that a thorough tin-plate government, well organised, and conductes on the lines of the
siding scale by the associated coalowners, is looming scale by the
A large meeting of the Merthyr Vale colliers miners' agent, and at the close they agreed unanimously to join the Aberdare and Merthyr Miners
In coal I hion
In coal I have not much encouraging news to wner I come in contact with says the same. act, for months this branch has been in a bad state, and low prices have failed to tempt business. Second-class coal, too, is weak in demand Hately busy, and this is all that can be said. The hardening tendency of prices has gone off, and in the ace of war contingencies trade is visibly affected. Cardiff only sent away 112,000 tons of coal last week, being a falling away of nearly 40,000 tons,
Newport total was 34,000 tons foreign and coastwise, and was thus also proportionately slack Rates remain about the same, those for the Mediterranean showing, perhaps, a little more
firmness. If Lloyd's "war risks " continue ascending, these will alter, and freights will how a similar tendency.
Preparations for the battle of railways and dooks are rapidly completing, and a stout fight may be relied upon both with Taff and Bute Docks, and Cardiff and Monmouthshire Bils.
As for Neath Water Bill, it is proceeding well, With respect to the Bute Docks, sinister efforts
are still afloat, the latest being, "rumoured is enquired into, the reply is that it is though that the purchase of the docks will hamper the Taff and depreciate its property. The absurdity of this to anyone who knows anything about the facts such that it see however, quote independent and exvellent authority to this effect, that if the Bute and Taff become one, Rhymney Railway will ext fifty years, one of the finest paying properies in the world.
The Times had an article, or letter, some in which the writer intimated that in the infre quency of examination of such axles, as compared with passenger carriage axles, lay one fruitful cause of accident. The writer was correct; the
more frequent use of colliery wagons increasing, more frequent use of colliery wagons increasing,
the crystallisation of the iron is one great cause of accident, and the only cure is more frequent examination and remelting. Last week the sub-
ject was generally commented upon in the disject was generally commented upon in the dis-
trict by a big accident at Machen, on the new wreck of a colliery train and great damage to the road were the results. A new coal company has been started in the eries Company Subscribers are from Glouceser, Ross, Monmouth, Newport, and other quarters.
Coal in South Australia.-It has been announced by telegram, published by the British
A ustralasian, that coal, seemingly of good quality, has been struck in South Australia, near Hergott Springs.

THE PATENT JOURNAL.

** It has come to our notice that some applicants of the Patent-otice sales Department, for Patent Speciifcatione Pate

Applications for Letters Patent

 * When patents have been "communicated," thename and address of the communicating party are
printed in italics. printed in italics.

 4221. Machines for Preprarina Cotron, dce., W. and
W. Lord, Manchester.

 Mason, Man
d228. Munvoracturixa Oxide of Irow, T. Bayley, Bir-

 4234. Pmotocranaphio CAMERAS, W. Middlemiss, York.
shire
sishre sooppers for Bortures, B. Harrison, Manchester.
4236. Machivery for Roluma METAL, E. Finlayson,

4241. VENTTLLTors, P. M. Walker, Halifax.
4242. ABH REcEIVR, B. Jackson and A. B.

Yorkshire.
42455 FATEEINO WIspow-sasses, dc., C. Longbottom,
Bradford
4246. Borotriss for Continisisa Akrated Fluids, D.
Rylands, Barnsley.

Gliasgow. Impacation of Aryour to Stirs of WAR, J.
Melntyre, London.

4258. Hamarraless Guns, W. P. Thompson.-(A. Hyde,

426i. Sulphate of Manoanise, dco., A.' McD. Graham,

SBavarai.).
$\substack{\text { 4284. FAstexir } \\ \text { mingham. }}$
for Bracklet, dc., J. H. Hill, Bir-

Cross, Stonehouse.
4269. Wasterrveving Cistrins, w. J. and W. F.T.
Rowe Plym
4270. Muls, , H. H. Lilley, London.
4271. BuTros-BoLE ATTACBMESTS, F. W. Smith and S .

Laing Gilasgow,

20.

London.
430.2. Tomacoo Prpss, A. M. Clark.-(La Socitet Caveley and Henry, Prance.). A. M. Clark.-(G. W. Appleby,

 43ianaua.) OLTH Drviso Machisks, G. F. Redfern.-(J. B.
Bied, France.)

 S16. Yiekdisa CourLisas for Rotating Shatrs, B. H.
Heonan, London. cint Foraing Fkatherisa Stitchers by Sewisa Ma.

 sth April, 1885. 4321. Weavino Prie Fabrics, W. Peers, Manchester.
4322. IsDIA-RuBEER Boors and Siozs, M. Franken-

 jrNMmestina Ruches, te., E. Barlow, Notting. ExTractiva Levyer, Jo Joster, Edinburgh.
Closisa Tap Holes, J. Tenwick, Grantham.
 sgow.
Dowsrio Liour Lasps, J. Bannohr, London.
Coas Scoutres, E. Negroin, London.

 Sourtarrss, \&co, J. C. Mewburn.-(La Socite H.

 nany.) or Packisg Casss, F. Myers, London.
BuxEs
ELETRICAL MAchisks, J. S. Willims, Riverton, nited States. Electrical Machines, J. S. Williams, Tronsspoaminso Mrchanical Forcz into Electrac,
 Hilliams, Riverton, U.S. Lat Bowne.-(Madame V. P.

 Nz, U.S.)
Co.a. Cutrac Machisxs, T. and R. W. Bower
J. Blackburn, London. BACK Washing Machises for Wool, de., J. C.
ker. London
Solder's Portable Smetrer, J. A. Young,
Ematotric Batteriss, P. Jensen.-(W. Hellesen,
Emark.)
 pth April, 1885.

SAFETY SADDLE BARS, W. W. Gough, Bloxwich
Brovoles, dc., W. Gay.-(G. T. Warveick, Unitd . Ficuituturisg Rerkrexce to the Costests of

9. Opzatio and Closixa Sash Wisdows, H. W,

7. Duscoonal Hon. J. Whittingham, Nantwich. 8. AxLEs, I. Walker and 8 B. Brown, Rotherham.

4392. Raisina Beer, dce., J. H. Johnson.-(L. Morel,
France.) France.)
4393. SHUTtLe GUARDs, N. Drake and S. Feather,
London. London. Dials of Clocks and Watches, R. Atherton,
4394. London. Water alarms for Steam Bohlers, H
439. Low Wilson, London.
4396. MEASURING DIstances, H. P. Flavelle, London.
4397. VENTILATORS, J. M. Lamb, London.
 Hughes, London.
4400. Emery Wheels, F. W. Sturm.-(J. Pfungst, Germany.)
4401 Expeling Percussion Caps, J. Atherton, London.
4402. Preventing Purloining of Letters, J. G
Moxan Moxan, London.
4403. Embossed Wall and Ceiling Decorations, M. Conrath, London.
4404. Aresting Gear for Pumpina Engines, M 4405. Fezel Motion of Sewing Machines, C. Welch London. London.
4407. Rotary Motor, J. Fielding, Londnn,
408. HAT LEATHER with TICkET Pocket, Marsh and J. B. Harrison, London.
4409. STEAM EnGINES, Jand D. Paterson, Edinburgh.
4410. VEsseLs, A. F. Barth, London. 4410. Vessels, A. f. Barth, London.
4411. SElf-righting Shore Lifeboat, J. Wright, London.
4412. Valves for Air and other Flutids, v. Willis, London. Skurina Sliding Window Sashes, W. Pope, 444. Treating Coll Dross, W. Black, Glasgow.
4415. Anti-foulina Composition for Ships, P Denniston. Glasgow. Motions of the Earth and
4416. Illustrativg the Mind 417. ANTI-FRICTION METAL, A. Lavroff and A. Schen
snovich, London. snovich, London.
4418. Elastic Whel Tires, H. Barrett and J. J. 4419. BAKERE' Ovens, W. Stein, London.
4420. STooprers or Covers for Bottles, Phillips, London.
4421. Turina Circular Ringes of Wood, G. Perry, London.
422. IndiA-rubser Tobacco Pouchrs, A. oldroyd
, Li23. Electro-trlephonic Instruments, S. P. Thomp-
son, London. son, London. Birt and R. J. Foster
 Wise.-(J. P. R and P. R. Bedlington, Spain.)
4427. Foldina Tables and Seats, E. A. Clowes,
London.

10th April, 1885.
428. Swivel Suackle for Surs' Anchors, C. Boyce
Tipton. Tipton.
4429. Fixa or Hanaino Sun Burners, de., T. Red-
man, Bingley. man, Bingley.
4430. SAEETY Bicycles, S. Leek, Walsall.
 Dutton, Oakfield. H. Clark, Hewell Hall, near Red-
4433. Blowers, J. ditch.
4434. Knives, J. Broome, J. Hallworth, and C. W.
Foster, Manchester. 4435. BEDSTEADs, G. and E. Woods, Liverpool.
4436. CARBoNATE of SodA, O. Wigg, Liverpool. 4437. Cutina-ory the Heads or Points of Rivets or
Bolts, J. 8 Wilson, Southampton. 4438, Coorino RANoEs, A. H. Oakden and W. C.
Sharpe, Grimsby.
 burghi
444. Tiles for Stuirs, W. Tapp, Bristol.
4442. Apparatus for Use in BlLLIARDs, den
c., K. Beres4ord, LispliFying Writing and Reading Music, A. J.
4443. Thomas, Weston-super-Mare.
444. Ventilatina Houses, dc., D. P. Menzles, GlasGow. Looss Rerd Motrons, ©c., of Looms for
Wentino, C. Thompson, Halifax.-9th April, 1885 . 446. BAsDEN's PATENT Screw Stoprin, C. I. C. Bailey
and A. Basden, Fulham.
 Bishop's Stortford.
4449. CAsEMENT STA Ys, T. Elsloy, London.
444. Casement Sta ys, T. Elsloy, London.
4450. Lawn TEnNIs Rackers, J. W. Bonnett, London,
4451. DRYING RINa for Oit LAMps, L. A. Groth.-(W. 4451. Drying Ring for Oil Lismps, L. A. Groth.-(W.
Henachen and Co., Germany.)
 Schoeickert, Germany.)
4463. RaILWAY SIosAlusa, J. Tomlinson, jun., and
A. Chambers, London. A. Chambers, London.
4454. ILLUMisNTING GRATinos, A. W. Lake.-(T. Hyatt, 4405. Windraco Muchines, H. J. Haddan.-(H. H.
Dignouite, Saxony.) Dignowits, Saxony.)
446. BoikIs, Heirons, London.
4457. Movable Ironclad Towrr, M. M. A. Bussiere, London.
4458. Damping, ©c., Apparatus, P. Lawrence.-(R. W.
Peach, United States.) 4459. Evaruvers' RoLino Machines, P. Lawrence.-
(T. A. Richards, Uited States.) (T. A. Richards, United States.)
4660. Hyprauto Presses, P. I Richards, United States.).
4461. LockET, J. W. Hofman, London.
4462. SWINO LEVER for SUPRRSEDINO STE
J. R. Baldwin. Detford. 4463. PLovans, W. Dewrar. London.
4464. GA8 WABHERS, A. Kionne, Lond 4464. Gas Washers, A. Kiōnne, London.
4655, Propelivg Boats by Manval Power, dc., J.
Barrott, London. 4466. Surgical Appliances, W. Whitaker, London.
4647. Cricket Stump, G. W. Frowd and P. Surridge,
London. London.
4688. Elzotric Ranlway Systems, T. J. Handford.-
(F. J. Sprague, U.S.) (F. J. Sprague, U.S.)
4469. Securivo siates on Roors of Houses, sec., B. Howetson, London.
4470. Brebel-LaADING Ordnance, A. Noble, Now-castle-upor Tyne.
4471. Decoration of Cakes or Tablets of Meat, F. W. Waide, London.
4472. Metalio Sleeper for Rallways, H. Hodgson, London.
447. Treating Semi-liquid Substances, E. Langen,
London. London.
4474. UTlisina the Waste Gasss of Puddinga and
Reheatina Furnaces, C. D. Abel.- (F. C. Glaser,
Germany.)
4475. Combination Aoricultural Implement, A. E.
Bright and J. W. Robbo, London. 11th April, 1885.
4476. Spring Seats for Chatrs, do., S. Timings, Birmingham.
447. Metal
Shearing Machines, H. I. Knapp, London.
4478. Treatina Waste Liquors, W. E. A. Hartmann,
Swansea. 4479. Prodocing Harmony from tho Ordinary Motion of the AIr or Wrid, C. Meier, Plymouth.
4480. RALIWAY Sigallina APPARATUS, J. Beswick,
Manchester. Manchester.
4481. Hypraulic Packing Machinery, E. L. Bell-
house, Manchester. house, Manchester.
4482. Expandiva Esane Tubes, G. Lewis, Berkeley.
4483. Motive Power EnoINEs, N. W. Curtis, Liverpool.
4484. Ribs and Fastenings of Umbrellas, H. J. 4485. Carving of Meat, W. H. Thorne, Bournemouth.
4486. Paving Slabs, Blocks, Sinks, de., E. Ormerod London.
4487. Construction of Tricycles, S. H. Parkinson London.
4488. Preventing Horses from Slipping, \&c., T. H.
Brigg, Bradford. 4449. Christmas and other Cards. V. Sockl, London. 4490. Meohanograph, R. Daum, London. H. Heard, 4492. Grinding Machinges, R. Rankin, Glasgow.
4493. Brake for Akresting Rotary Motion, L. Fish, 449. Rrake for Arresting Rotary Motion, L. Fish,
London.
4994. Composite Projectile for Small-arms, \&e., Morris, London.
495. Fixina Bottoms to Sheet Metal Buckets, L 4495. Fixiva Botroms to Sheet Metal Buckets, L.
Mel. Spackman and J. Chilton, London.
4496. PRINTINa MAchine, A. MeO. B. Harcourt, 4406. Printina Machine, A. McC. B. Harcourt,
London.
4497. Iron or like Metalio Hooping, R. Stroud London. 4499. Metal Tubes and Cylinders, F. Elmore (F. 4500. External Screw Stopperina for Bottles, E. E. Hanslow, London. Londoricator, J. H. Spencer and A. Eaden, London.
4503. Interchanarable Coupling for Hose, E. Nunan, London.
4504. Smiths Fonars, T. Arscott, London.
4505. Steam and other Engines, S. Z. de London.
4506. Trlegraphe, C. Langdon-Davies, London.
4507. Umbrella Frames, F. A. Ellis, London. 13th April, 1885.
4508. Hongeshors, A. B. Crossley.-(A. Vanderkerken Brusecls.)
4509. Heating Water for Bathe, de., W. Brown,
Halifax. Halifax.
4510. Automatic Pressure-changina Gas Governers, 4511. Proprllers for Ships, W. Wolch, Portsmouth
4512. Cramps for Flooring, dic., J. Powell, jun., Bir513. Driving Gear for Spindles, \&c., J. J. and G. P. Jaques and W. Holliday, Leeds.
5514. Multiplyino Power in Scew Steamers, W. 514. Multiplyina Power in Screw Steasierb, W,
Howson, Hull.
515. Making Spouts for Tea-pots, \&c., W. Catheart, Kirkcaldy.
4516. GRTEE
V. Medynki.
16. Grate Bars for Furnaces, E. Whitworth.-(F, Vi'. Medynski, Iowa.) GATER FIITRRE, Gilson, London.
4518. Compound MARINE STEAM ENiNE and J. King, Glasgow. 4519. Venting Gloos of Soll and Waste Pipes, J. David4520, Convertinga a Single into a Double PerambuLaton, A. Harvie, London.
4521. Water Wabte Preventer, H. Yull, London. 522. Shaping and Sualuening Tools, T. J. Ashton and J. J. Holtzarffel, London.
523. SLidino Nekdie Guide for Kiting Machines, 4524. Prepraling Grinn for Use in Brewing, J. Death, jub., Chesbunt.
4522, Enamblina and Purifyino Casks, J. Death, jun., Chesbunt. 4526 . Examelina and Purifyina Caske, J. Death, jun., Cheshunt. 4528. Photoorampic Casmenas, W. F. Stanley, London,
4529. ActiNometkr for Photooraphy, W. F. Stanley, London.
4530. Protractors, W. F. Stanley, London.
4531. Sprina Shutrer for Cameras, W. L. Sarjeant, South Norwood.
4532. Treatino Sewage and Polluted Water, J. W.
 Wimshurst, London.
4534. Automatic Sayety Devices for Electric CurRENTV, R. P. Sellon, London.
4536. Fixtures na Mouptivas, London. Weber, London.
4537. Cleat or Grip for Holding Cord, Rove, \&c., G. Huggott, London, J. Zarski, Russia.), H. J. Haddan.-(M. A. Romroth
4540. SAMpLE Boxis, H. and F. R. Withelmy, Saxony.)
4541. ELEctric Telephony, J. Lorrain, London.
4542. Primary Electrio Batteries, H. Mower,
 4543. Circulatino Water in Steam Boilerrs, A. W. L.
Reddio. - (Waii, United statea.)
4544. Marine Brakes for Vebsle, P. A. Newton. (J., W. A., G. F., A. G., and E. A. McAdams, United
States.) 4545. Cartridor Cases, de., N. and A. G. Salamon,
London. 4546. Sectional. Warping and Beaming Machines,
J. H. Stott and I. Whitehead, Manchester. 4547. NITRATE of AMMoNIA Explosives, C. D. Abel.-
(F. Barbe, France.) (F. Barbe, France.)
4548. LAMps, A. G. Brookes.- (R. Fritz, Germany.)
4549 UNDER GABMENT for INFANTs, E. St. L. Walker, Leicester.
4550. Hand Grenades for Extinguishing Fire, W. R. Lake.-(S. F. Hayivard, United States.)
4551. Transvirsey Pieroina the Ends of Crairs, J.
Barrett, London Barrett, London.
4552. OBsERINO the by Observing the Front of Travel of Row Boats
Rowers, J. W. Barratt, London. 4553. Treating Iliuminatina Oils, de., J. Roots,
London. London.
4554. Sharpening the Knives of Reaping and Mowing
MAchines, G. W. Murray, Glaspow. MAchines, G. W. Murray, Glasgow.
4555. HaNDEs for Kive, dc., J. J. Mann, London. Johnson.-(A. Scheidel, Italy.)
4557. Diving Dresses, W. R. Lake--(Socield Generale de Sauvetages et de travaux sous-marins, France.)
4558. FLAT WIRE ROPE, R. S. Newall, London. 4559. WIre Rope, R. \&. Nowall, London. 4560. Finishina Plise Fabrics, S. O. Listor and J.
Reixach, Bradford. 4561. CuTTINO Dourde-plle F
and J. Reixach, Bradford.

SELEOTED AMERIOAN PATENTS.

 (From the United States' Patent office Official Gaselte.) 313,152. FLour Bour, James B. Allfree, Cumberland,Md.- Filed September 12th, 1884. Claim.- (1) In a flour bolt, the combination of the
horizontal ribs and the cloth sections stretched from
 adjacent rib, the said ribs being provided with
grooves on their inclosed faces, for the purpose sot
forth. (2) A flour bolt comprising the ribs having the forth. (2) A flour bolt comprising the ribs having the
external grooves and the cloth stretched upon said
ribs from the top of cxibs from the top of one to the bottom of the adjacent
rib, in combination with an adjustable clamp for rib, in combination with an adjustable clamp for
retaining the edges of the cloth sections in the said groove, substantially as described. (3) In a flour bolt,
the combination of the cloth sections, the ribs E, and means for fastening the cloth, the ribs E having to bolted, and the outer channels in which the oloth
seotions are confined. (4) The combination of the
ribs having the
$\left\lvert\, \begin{aligned} & \text { having corded edges, the said ribs being provided } \\ & \text { with screw threaded holes, and the confining strips } \\ & \text { extending prallel with the rib the }\end{aligned}\right.$ extending parallel with the rib contained in the said
outer grove and holding the edge of the cloth secouter groove and holding the edge of the cloth sec-
tions. (5) A centrifugal reel comprising the ribs, the
cloth sections attached thereto and extending from

the upper edge of one rib to the lower edge of the
adjacent rib, and the stretchers whereby the meshes adjacent rib, and the stretchers whereby the meshes
of the cloth are held in a position best adapted for the passage of the flour, in combination with internally
arranged beaters. 313,101 . Hypro
313, Chicago, 1ll.-Filed January 16 th. 1884 , Orland D. Orvis, Claim.- (1) The combination, with the retort and the supply passage thereto, of a deflector projecting
downwardy into the retort from the upper edge of
said passage substantially as described said passange, substantially a as described. (2) The com-
bination, with the supply passage and the deflector bination, with the supply passage and the deflector
projecting downwardly from the upper portion of said
passage, of a retort provided with an outlet, and with

an expansion chamber extending below said outlet,
and betwcen the outlet and the oponing of the supply and between the outlet and the opening of the supply
passago into the retort, substantialy as doscribod.
(3) The combination, with the injector, the oil suppli passage into the retort, substantialy as doscribed.
(3) The combination, with the injector, the oil supply
nozzle, and the passage D , of the air pipe and a drip cup formed, substantially as described,
nozzle, as and for the purpose set forth.
313,114. Vertical DriLL, Edwin Smeadley, Dubuque, Iova,--Filed March $14 t h, 1884$.
Claim.-As a means for effecting a variable feed and Cluim.- As a means for effecting a variable feed and
permitting a quick retur feed in vertical drills, the permitung a quick return feed oscribed, and arranged
soling head f, oonstructed as doved in fixed vertical guldeways g, and pro-

vided with two shaft bearings and a horizontal slot Vided with two shart bearings and a horizontal slot,
and having the worm shaft supported in sid bearings,
and having a handled shaft a, provided with an excontric pin working in such slot, theso parts being
constructed, arranged, and operating as and for the purpose set forth.
313,239. Dravoutsman's Ink Mixer, William W.
Redfleld, Minneapolis, Minn.--Filed May 12th, 1884 . Claim. - In a draughtsman's ink mixer, the com
bination of the frame Δ, the screws P P, and the base

piece B, said baso piece having a relieved boss on top
of same for the purposo of receivlng an ink cup K thereon, and all arranged substantially as and for the
purposes hereinbefore set forth. (2) In a draughts.
man's ink mixer,
with the shaft H, having its slot h and bearing the
bevel gear wheel C, the pieces E and G, the opring F,
the set screw D , the crank shaft L , bearing the bevel the set scrow D, the crank shaft L, bearing the bevel
gear wheel C1, and the set screw J, all substantially
as as and for the purposes hereinbefore set forth. (3) In slot h and a recess at end for retaining a piece of Indian
ink I, substantially as described. 313,307. STEAM Boller, Patrick Fitzgibbons, Osivego,
N.Y.-Filed Auqust 11th, 1884. Claim.-The combination, with the cylindrical up-
right boiler A, provided with the horizontal extension
A1 and horizontal flues Ah and horizontal flues $b b$, as shown, of the fire-box
consisting of a cylindrical shell set concentric in the

boiler shell under the flues and formed with the
crown sheet f, the combustion chamber D, rising fre one side of the fire-box, and the fire door arranged at
the opposite side of the firebox the opposite side of the fire-box, all constructed and
combined substantially in the manner specifiod and shown.
313,366. Compound Steam Enaine, H. Lansing Perrine, Brooklyn, N.Y. - Filed February 13 th, 1884 ,
Claim. - (1) The combination, substantially as before set forth, of two initial steam cylinders, an expansion
steam cylinder, the piston-rods of said steam cylinders coupled to a single crosshead, and a second expansion steam cylinder, the piston of which is secured to two
rods projecting, respectively, from the pistons of the

wo initial steam cylinders. (2) In a compoun
steam engine, the combination, substantially as beforo set forth, of two initial steam cylinders, an expansion
steam cylinder between them, a single valve for consteam cylinder between them, a single valve for con-
trolling the ports of said three steam cylinders, a
second expansion steam cylinder at one end of the secon ther three steam cylinders, and a valve coupled
said the first-mentioned valve for controlling the ports of the second expansion cylinder.

CONTENTS.

South Kensington Museum.-Easter Weke, Freri -Visitors during the week ending Aprill 11th, $1885:-$
On Monday, Tuesday, and Saturday, from 10 a.m. to 10 p.m., Muscum, 31,267 ; mercantile marine, Indian
section, and other collections, 11,191 . On Wednesday, section, and other collections, $11,191.0$ On Wednesday,
Thursday, nad Friday, from 10a.m to 6 p.,., Musum,
6979; mercantile marine, Indian section, and other collections, 4270. Total, 68,707 . Average of corre-
sponding weok in former years, 52,233 . Total from the
opening of the Museum, $23,910,338$.

