STEAM ENGINES AT THE INVENTIONS EXHIBITION.

The Inventions Exhibition was opened on Monday by the Prince and Princess of Wales with all proper form and ceremony. As usual, exhibitors had left a great deal to be done nearly at the last moment. It was done, however, and the Exhibition was more complete on Monday than
any of its predecessors on their opening days. It is to be hoped, however, that not a little remains to be effected. For some cause there are large spaces in the buildings completely empty, not so much as a packing-case being visible.
We presume that these will be filled ultimately; the effect at present is dreary and deplorable. The Middle, South, and
North Courts, the Central Gallery devoted to music, and some other departments, leave nothing to be desired; yet the effect is, on the whole, in a sense disappointing. Perhaps too
much was expected. It was intended that the Exhibition should bring before the public examples of the work done by the great inventive power of the nation; but either the
inventive power of the nation has achieved less than was inventive power of the nation has achieved less than was
imagined, or the Exhibition has failed to attract exhibitors. Possibly the truth lies between the two. It is one thing, moreover, to invent; another thing to get the public to
believe in the value of the invention, or manufacturers to take the invention up, and spend money on it. All this, however, is in the nature of a digression from the main object of this article, which is intended to tell
something about the steam engines exhibited.
These are comparatively few in number. The largest is a horizontal, in the West Central Gallery-America-by Messrs. Hick, Hargreaves, and Co., of which we shall
have more to say. It is a fine engine, with modified Corliss have more to say. It is a fine engine, with modified Corliss
valves. The cylinder is 20 in . diameter, 4 ft stroke, making 60 revolutions. The fly-wheel is grooved for ropes, and the engine drives a long overhead shaft, giving motion to
machinery which does not nearly load it. At the end machinery which does not nearly load it. At the end
of the North Court, not far from where the bakeries stood last year, is a compound engine by Messrs. Galloway. The high-pressure cylinder, 14 in. diameter, is put over the low-pressure, 24 in . diameter, which is horizontal, while the
small cylinder is inclined, so that one overhung crank answers for both cylinders. The stroke is 3 ft .; revolutions, 75. This engine drives a line of shafting running overhead
along the gallery, and is supplied with steam by three large along the galery, and is supplied with steam by three large several other engines in the main gallery. The two
engines just named, the Galloway engine which drove the engines just named, the Gallowas engine which drove the Paxman, and Co.'s engines in the electric light shed, are
the largest engines in the place. the largest engines in the place.
The most prominent feature seen on first entering the
building from Exhibition-road is the exhibit of the English War Department, which we have fully described in another page. Just beyond this is Mr. Webb's compound loco-
motive, the Marchioness of Stafford. We have already published very complete sectional diagrams of the first of
Mr. Webb's compound engines. These were, however Mr. Webb's compound engines. These were, however,
found to be not quite powerful enough to work the northern section of the London and North-Western Rail way, so Mr. Webb designed a new and more powerful type,
the first of which, the Dreadnought, attracted a good deal of attention last year when the members of the Iron and
Steel Institute visited Crewe. The Machioness of Stafford Steel Institute visited Crewe. The Machioness of Stafford
is similar in all respects to the Dreadnought. An elevation of this engine will be found on page 352, while the front
end view on page 349 gives an excellent idea of the unusual appearance presented by the enormous low-pressure cylinder
filling up the whole space between the frames of engine has larger grates than any other on the lype
The engine has two high.pressure cylinder. The engine has two high-pressure cylinders, 14 in . diameter and 24 in . stroke, attached to the outside frame plates
between the middle and leading wheels the connecting rods working on to the crank pins in the trailing wheels, and one low-pressure cylinder 30 in . diameter and 24 in . stroke, placed between the main frames at the front end
of the engine, the connecting rod being attached to the single throw crank of the middle pair of wheels. The driving wheels in each case are 6 ff . 3 in . diameter. The
steam is supplied from a regulator in the dome to a T pipe steam is supplied from a regulator in the dome to a T pipe
on the smoke-box tube plate, and thence by two 3in. copper pipes, down each side of the smoke-box through the
cross back plate of the low-pressure cylinder, and between cross back plate of the low-pressure cylinder, and between
the frames to the high-pressure cylinders. The exhaust steam is returned by two 5in. pipes running parallel with the others into the smoke-box, and each pipe is carried
round the inside of the smoke-box and enters the lowpressure steam chest on the opposite side. Thus the pipes themselves are of sufficient capacity to act as a steam re steam is to some extent superheated by the waste gas in the smoke-box. The final exhaust escapes on either side of the the usual way, with this difference, that there is only
half the number of blasts to urge the fire compared with the ordinary engines, and yet the engine steams very freely with the blast nozzle the same diameter as in the steam direct from the boiler can be admitted to the lowpressure cylinder for use when starting, but a relief valve
is applied in connection with the steam chest, so that the pressure may never exceed about half that carried in the excentric rods, and considerably reduces the number and weight of the working parts. The reversing is effected by an arrangement recently designed by Mr. Webb, by which simultaneously. This was specially designed to enable the the same time, by means of a single screw and whee The gear consists of a cast iron bracket, in which is carried a long malleable cast nut, screwed for the greater portion end of the screw is a double-ended lever, free to turn on ats centre, as in the accompanying sketch. To the upper
end is attached the long rod leading to the reversing shaft
of the low-pressure engine, and to the lower end, the long

1 Thainil

guides, which work in the ma shaft of the high-pressure engine, or vice versa.
each end of the double ended lever, and to one
side of it, are fixed sliding in position by means of main casting, and are secured plate is made sufficiently long to form a support for length of tha the screw, when the latter lo notched or serrated, and a loose block, with corresponding notches, is inserted in an opening in the casting, through which it can be pressed down on the guides by means of an excentric, or wedge and lever, thus holding it
firmly in position; or the block may be held tight by screw in the ordinary way. The lower guide bar is left plain on both edges, but a plain block is pressed against
its lower surface by means of a lever, screw, and wheel, so that it can be held in any position with varying amount of friction. Attached to each of the guides, and working
through slots in the cover plate, are indicator figures which show at glance the dearee of expansion to which the engine is working. The slots also serve to act as stops for the reversing screw. The working of the gear is as follows: -When both engines are in full gear, and it is necessary to cut off steam at an earlier portion of the stroke in the highis made fast by pressing down the block on the top edge, then the guide for the high-pressure engine is released, and the screw acting on the centre pin of the double-ended lever can be made to move the rod in either direction until the degree of expansion is obtained. The low-pressure engine can be treated in the same manner by jamming the lower guide, leaving the upper guide free to be acted upon by the screw, as in the case of the high-pressure engine.
By this arrangement both engines can be reversed at the same time, and also can be worked independently of each other for the purpose of expansion. One of the features which class of engines is the adoption of a boiler in which the water space is carried under the fire-grate, so avoiding the necessity of a solid foundation ring. The and re-box tube plate is arranged so that it can be taken out and replaced by a new one without disturbing any othe part of the fire-box. The leading axle of the engine is itted with Mr. Webb's improved form of radial box, which allows a ateral movement of 1 in. on each side of the spring arrangement, which has been extensively adopted not only for engines, but also for the new carriage stock now being made for the London and North-Western Rail way Company, of which a model is exhibited, fitted wit the radial gear referred to. The objects to be attained fo which the compounds were expressly designed, were the greater economy in the consumption of fuel, and the doing way with coupling rods and the double throw crank, at the same time retaining the advantage of the weights o two pair of wheels for adhesion, without the necessity
coupling them. It will be seen that the arrangement this system allows the high and low-pressure engines work independently of each other, so that it is not neces sary that the two pair of driving wheels should be of the practically balances the engine and enables it to ru steady at very high speeds. The commercial result obtained with the compound engines on this system, up to
the present time, have been, we are informed, very satisfactory, and have shown to great advantage in the ne of the ordinary type of Metropolitan engines working on the District Railway, which was converted into a compound about twelve months ago. This engine has run over 34,000 miles, the average consumption of coal being, we are told, 23.51 lb . per mile, including the usual allowance made for raising steam; the average consumption of the same type of work, thus showing is $31 \cdot 41 \mathrm{~b}$. per mile, when doing simiar of the cond a very considerable economy in starting and stopping of the trains has proved to be no detriment to the engine.
The dimensions of the Marchioness of Stafford will be Found on page 350.
Messrs. Mannin
Messrs. Manning and Wardle, of Leeds, show a small locomotive fitted with Parnell's valve gear. It will be
remembered, no doubt, that Mr. Parnell is the inventor of a very ingenious and successful rock drill, in which the valve is actuated by the compressed air working the drill. This system has been applied by Mr. Parnell to the engine in question. Mr. Parnell for the present withholds information concerning it, we presume with a view to the completion of foreign patents.
Close to this engine are two steam tram-car engines, one by Messrs. Merryweather and Sons, the other a Wilkinson engine. We have not found any other examples
of railway locomotives in the building other than those named
We have already stated that some examples of what are now come to be known as high-speed engines will be at work in the electric light shed. We use the future term not yet in place. By high-speed engines we mean engines of the single-acting type capable of running at any high velocities, such as 500 or 600 revolutions per minute. A journal that if a high-speed reciprocating engine was to be successful it must be single-acting. At the time we wrote nothing of the kind was in existence, but our suggestion bore good fruit, and now types of single-acting for the electric light shed is Parsons' patent, invented and patented by the Hon. R. C. Parsons, son of the late Lord Rosse, of great telescope fame. Mr. Parsons' engine is
manufactured by Messrs. Kitson, of Leeds, and is in considerable use. Externally it is not a pretty machine; but we may let this pass. Its construction will be fully understood, we think, with the aid of the engravings on
page 353, and the following description :-Fig. 1 is a top
view, Fig. 2 a sectional elevation, Fig. 3 an end view, and Fig. 4 diagrams illustrating the mode of action of the engine. When a circle of any dimension is made to rol inside a circle of double the diameter, every point in the circumference of the smaller circle describes a straight line, which is a diameter of the smaller circle; points at right angles to each other-that is to say, 90 deg. apartwill describe lines at right angles to each other. In the Parsons engine the cylinders are fixed in a frame, and they are free to rotate round a central axis H, while the arank on which the pistons act rotates round the centre G pairs engine has four single-acting cylinders, placed in circular casing fitted to each, other and cast in one with a really excentry fitted with trunnion bearings, which are The crank axle has two cranks, placed opposite to each other, and is free to rotate between the cylinders; but its cylind, as we have said, excentric to that on which the cyank revolve by a distance equal to the throw of the entre Each pair of pistons are bolted together in the bearing, and there, one at either side of the crank-pin is distributed by a cylindrical valve; it works steen face of the cylindrical casting which carries the cylinder It is contained within a ring which is bolted to the cylin ders, and into which the high-pressure steam is admitted through the trunnion and passages formed in the cylinde casing between the admission ports to the cylinders. The back of the valve is made steam-tight by means of a piston ring, which is kept up to the face of the ring by the pressure of the steam. The diameter of this ring is such ylinder fay balance the pressure of the valve on the otate within. The valve is held in position, but is free to xis of the valve bridle, which is capable of keeping the of the cylinder casing. It is thus evident otate, the valve admits to each in its turn the high pressure steam contained within the ring, and exhaust it from its inner edge, similar to an ordinary slide valve. In order to vary the admission of the steam, or reverse the excentrically on either side of the axis of more or less easing; this movement is effected by the had the cylyinder To ensure the protection of the working parts from injury and from dirt, they are all enclosed within a casing, which enables a most perfect system of lubrication to be adopted.
The engine is fitted with a small pump, which injects a tream of oil through the pipes to all the working parts. When the oil escapes it falls down to the bottom of the casing, to be again drawn in by the pump. As the oil the bottom of the tank, formed to act as a separator, allows to water-which, owing to its density, falls to the bottom - to drain away througn a passage, whilst the oil, which rises to the top, is drawn in by the pump. The centre of gravity of each pair of pistons is at che centre of its crank pair ; consequently they rotate with the crank axle as a balanced system. The valve, cylinders, and cylinder casing are also balanced about their own axes. The engine, thereis quite steady, and requires no foundations or fixing. The engines are fitted with a very sensitive governor, so that the speed is uniformly maintained under varying conditions.
Compared with the ordinary type of engine, that which we have just described is not an economical machine, for it uses 40 lb . of steam per indicated horse-power per hour
but it is in all probability quite as economical as any other of the high-speed engines under consideration. Indeed, economy in such engines is of comparatively small importat a tremendous speed for long periods without making a noise or breaking down
The Coalbrookdale
The Coalbrookdale Company, shows the "eleotric" simple littlell and Parker's patent. This is an extremely slide acte engine. It is single-acting, with a piston plicity of construs is sold at a very moderate price. Its sim plicity of construction renders special description entirely
unnecessary. It was fully illustrated in our impression for October 24th, 1884.
Pursuing our way down the main gallery, we find the Wheelock engine, which we illustrate on page 348, con
structed by Messrs. D. Adamson and Co. It is a very highly finished engine and is shown in motion although it has no machinery to drive. The Wheelock engine has long been known at this side of the Atlantic and an extremely beautiful example of the type was show at Paris in 1878. The gear adopted by Mr. Adamson differs in several respects from that of the Paris engine The construction of the machine will be readily understood from our engraving
Referring to the illustrations, it will be seen that instead of side valves four semi-rotative valves below the cylinder are employed. The long spindle main valves A are disimmediately behind the main valves; thus when the valves are opened to exhaust, before steam can pass into the exhaust pipe, it must leak past both the cut-off and main valve faces, a contingency most remote. The main valves
are worked directly from the excentric rod K by levers L key work keyed upon the valve spindles. The cut-off valves are
actuated through the bell-crank levers M , keyed to the spindles by a positive motion obtained from the stirrup link T attached to the lever I by a pin, the stirrup upper part of the stirrup link is fixed a hardened steel catch plate which, by the reciprocating motion of the lever L , is made to engage with a hardened steel block at S on the arm of the bell-crank levers M, and thus the cut-off vaives are opened. When the point of cut-off is reached the valves are closed by the balance weights N attached to weights being quicked bank levers M , the action of the to the lower part of the same. The lower ends of these weights are bored out, and drop nearly air-tight on to fixed pistons, so that a dash-pot action is secured. The point of

THE INVENTIONS EXHIBITION-25-H.P. WHEELOCK ENGINE. messrs. d. adamson and co., manchester, engineers.

cut-off is determined by loose sleeves, moving freely loose sleeves, moving freely Behind the bell- srank bush M , on the bell-crank lever M, on the lower side of the sleeve, is a lever Q, con nected directly with the go vernor by means of a coupling rod, so that the sligntes variation in the action of the governor moves round the sleeves, so altering the position of the tappets P in rela tion to the stirrup links T, which these are the point at which these are released from contact with the trip blocks at , which is the point at which cut-off is effected. The drag pins are made slightly excentric, so that the cut-off valves at each end of the cylinder may be regulated to precisely the same point of action. In regulating the speed of the engine, the governor is fixed at mid lift, so that should any accident happen, such as the driving gear or belt giving way, the governor is free to drop to its lowest position, bringing into operation the tappets on the loose sleeves, by which the stirrup links T are prevented from catching the trip blocks S, the cut-off valves are closed, and, steam being shut off, the engine is stopped. The governor is of the loaded parabolic high speed type, sensitive, and

acting directly on the cut-off valves at the least variation in speed of the engine. Both valves A and B are suspended and carried by the hardened steel spindles and bushes. The spindles are securely keyed to the valves, and have collars on their inner end close up to the valve. Symmetrical with these collars are steel bushes, ground a steam-tight fit into the front valve chest bonnets, both collars and bushes being ground to a true valve face, and being thoroughly hardened, forming a frictionless joint. At the rear end of valves, and secured into the back bonnets, are similar spindles moving in steel bushes contained in the valves themselves, thus forming a centre or trunnion for the valve and taking the weight, the valve faces being only in sufficient contact to be steam-tight. To regulate this contact with the greatest nicety, the valves and seatings are taper, allowing of end adjustment in the manner of a plug tap.

We have here a sufficiently simple engine, working with very little noise, extremely well made and of neat design, and giving a very satisfactory diagram. We understand that Messrs. Adamson and Co. have made a considerable number of these

MR. F. W. WEBB, M.I.C.E., OREWE, ENGINEER.

engines, which are giving every satisfaction. We do not see why they should do otherwise. The engine, we may add, is 25 -horse nominal, and would no doubt easily indicate 90 -horse power or 100 -horse power. The Wheelock engine got, we may add, the grand prize in 1878 in Paris.
Messrs. Goodfellow and Mathews, of Hyde, Manchester, will show three engines driving Messrs. Siemens' installation for lighting the gardens and fountains. The engines are compound tandem triplex, patented by the makers.
Fig. 1 is a longitudinal section of the engine showing the coupling and fly-wheel in section, and the Siemens dynamo, a B^{3} machine, in elevation. Fig. 2 is a cross section of the engine, partly through cylinders and partly through valve-boxes. Fig. 3 is an end elevation of the engine on the valve box side.
The high-pressure cylinders are 9 in . diameter, and the low-pressure cylinders 18 in . diameter, the effective surface of the latter being the annular area between the two circles; the ratio between the pistons is therefore as 1 to 3. The stroke of the engine is $10 \frac{1}{2}$ in., and working speed 320 revolutions per minute, representing a mean piston speed of 560 ft . per minute. The valves B C in Figs. 1 and 2 are 5 in . diameter, have a travel of 4 in ., and arearranged to cutoff at about five-tenths of the stroke; the steam is consequently times. long in the bearings; the crank pin C P is $5 \frac{1}{2} \mathrm{in}$. diameter, 9 in . long; the crank shaft, which is of best mild steel, is 5 in . diameter in the body, with bearings 24 in . long on the driving side CS and 16 in . long on excentric side C S'. The pistons, crosshead pins, and crank pin liners are of steel, rectangular in section, 2 ft . 6 in . long centre to centre; the bearing surface of the connecting-rod on the crank pin is about 35 square inches. The pistons, connectingrods, \&c., are balanced as shown at B W. The steam branch S is $3 \frac{1}{i} \mathrm{in}$. diameter ; to the flange is bolted the combined stop and throttle valve V-Figs, 1 and 3 regulated direct by a Pickering high-speed governor; the steam passage $\mathbf{P} \mathbf{P}$ supplies the three high-pressure cylinders with steam; $\mathbf{R} \mathbf{R}$ represents the receiver which is common to the three cylinders; and E X is the exhaust passage from the low-pressure cylinders to the atmosphere the valve chambers through the ports $\mathrm{K} \mathrm{K} ; \mathrm{S} \mathrm{P}$ are the steam ports of the high-pressure cylinders; through R P the exhaust steam from the high-pressure cylinders passes to the receiver; S^{\prime} are the steam ports of from the low-pressure cylinders passes through E P to the common exit EX. The valves are of phosphor bronze, with steel spring rings and stop bits; D D represent the steel valve spindles, to which the valves are secured by locknuts. The lower part-Fig. 1 -of the valve spindle is
enlarged to the diameter of the valve liner, and is fitted
with a phosphor bronze pin of ample bearing surface; this upper valve spindle is hollow, as shown in Fig. 1, for purposes of lubrication. It will be observed that the top piston also has a passage through the prolongation PR , through which the crosshead pin receives its supply of lubricant. The two oil cups G and G^{1} are supplied from the automatic sight-feed lubricator shown in Fig. 3. A third branch on the lubricator leads to the steam pipe immediately above the stop valve. The excentric rods are of steel, rectangular in section; the upper rod is cottered to the phosphor bronze excentric clip, while the two diagonal rods D R are jointed as shown in Fig. 2. In addition to the means of lubrication already mentioned, the crank shaft has a spiral groove cut in it, along which the lubricant is conducted over the whole length of the journals to the centre chamber, the crank pin being thus efficiently lubricated; the crank pin receives a further supply from the lubricator at the end of the crank shaft which is bored through its entire length.
The construction of the patent flexible coupling will be readily understood from the section in Fig. 1. On each half coupling four prongs $P G$ are cast; these ar enveloped by a leather ring formed of a series of links jointed to each other. Any inequality in the wear or setting of the respective shafts is thus provided for with out strain on the bearings. The fly-wheel, which also forms a casing for the coupling, is 5 ft . diameter.
The engines are so arranged that each part may be got at and examined with the greatest ease, and through the two side doors on the casing the working of the interna parts may be seen. Each engine is calculated to indicate 200 -horse power with a boiler pressure of 120 lb . per square inch, representing a total of 600 indicated horse-power, or 500 -horse power given off by the three engines. The compactness of these engines is seen from the fact that the total space occupied by the engines and dynamos for this electric installation does not exceed 400 square feet with a maximum head room of 10 ft .6 in . above the foundation level. The general arrangement of the plant shows clearly the relative positions of the engines, dynamos, and boilers the latter, which are of the water-tube type, made by the Babcock and Wilcox Company, are placed in close proxi mity to the engines. The dynamos are so arranged that any two of the set may be used, the third machine being a spare one.
Besides these engines, Messrs, Greenwood and Batley of Leeds; Messrs. Alley and Maclellan, of Glasgow; and Deakin and Parker, of Manchester, and many other firms show engines, notices of which we must reserve for a future occasion.

THE INVENTIONS EXHIBITION-COMPOUND
LOCOMOTIVE, L. AND N. W. RAILWAY.
Above we give two end views of the compound locomo tive Marchioness of Stafford, exhibited by Mr. Webb, to which we have referred at some length in another page
and we now give the following particulars of this engine which Mr. Webb has courteously supplied to us. They are certain to prove interesting to a great many of our readers:-The boiler shell, frame plates, axles, tires, pistons and connecting-rods are of steel; inside fire-box of copper, and tubes of brass. The smokebox tube plate is steel. The axle-box guides are cast iron, except for the leading axle, which is fitted with a radial axle-box, the guides for which are steel plates, stretching across from frame to frame. The axle-boxes are of cast iron in each case, with the brasses fitted in. The leading wheels of the engine are cast steel, the others wrought iron, but patterns are now being made to cast them in steel. The tender wheels are wrought iron, out of the ordinary stock. The stuffing-boxes were arranged in the first engine for metallic packing, but this not giving satisfactory results, has been changed for the ordinary packing throughout the engine; the crossheads are of cast steel, the wearing surfaces being faced with white metal. The guide bars are of wrought steel, not case-hardened. The top and side rows of tubes are reduced from $1 \frac{7}{8} \mathrm{in}$. to $1 \frac{5}{8} \mathrm{in}$., so as to give more metal between the holes, to prevent the plate from cracking, and also to reduce the draught through the outer tubes. The "Dreadnought" class of engines are being worked at 175 lb . pressure per square inch. Butt joints, with inside and outside welts, double rivetted, are used for the longitudinal joints in the boiler shell. The weight of engine, Dreadnought, empty is 39 tons 10 cwt. The weight of the same engine in working order is 42 tons 10 wwt., distributed as follows:Leading, 12 tons 10 cwt .; low-pressure driving, 15 tons; high-pressure ditto, 15 tons; total, 42 tons 10 ewt. The tender is the standard 1800-gallon tender, with space for five tons of coal. There is nothing special in the design, The weight of the tender empty is 12 tons 1 cwt. The number of each class of Mr. Webb's compounds now in use on the London and North-Western Railway is: Thirty "Compound" class, with 6 ft . 6 in . wheels, and cylinders 13 in . by 24 in , and 26 in . by 24 in . One Metropolitan engine converted; wheels 5 ft . 9 in ., and cylinders same as 6 ft . 6 in Three "Dreadnought" class, with 6 ft . wheels, and cylinders 14 in . by 24 in . and 30 in . by 24 in . There are seventeen others of this type in hand. The compound engines are being introduced on to the Western Railway of France Autofagasto Railway, South America; Oude and Rohilkund Railway; Austrian State Railway; San Paulo Railway Buenos Ayres. The Experiment-the first Webb com pound which was built-has run 173,802 miles between the dates of February, 1882, and March 20th, 1885. The greatest number of miles run by any engine of the "Compound" class is 95,333 , by engine No. 300, from March, 1883, till March 20th, 1885. The number of miles run by the Dreadnought, from September, 1884, to till March 20th, 1885 , is 15,477 , with trains averaging twelve vehicles between Crewe and Euston. The aggregate number of train miles which have been run up to March 20th, 1885 ,
by the various compound locomotives on the London and North-Western Railway, is $1,826,031$. In the early part of 1884, one of the ordinary type of Metropolitan side-tank condensing engines, working on the District Railway, was
converted into a compound engine, with two high-pressure converted into a compound engine, with two high-pressure
cylinders 13 in. by 24 in ., and one low-pressure cylinder cylinders 13 in . by 24 in , and one low-pressure cylinder
26 in . by 24 in . It was sent to work on June 4th, 1884, and up to March 20th, 1885 , it had run 33,014 miles, with an average consumption of 23.5 lb . per mile, inclucing
the usual allowance made for raising steam. The average consumption of the same type of engine, non-compound is $31^{\circ} 4 \mathrm{lb}$. per mile, when doing similar work, thus showing a very considerable economy in favour of the compound system
Engine No. 503, the Dreadnought, worked the $10 \mathrm{a} . \mathrm{m}$. Scotch Express, Euston to Carlisle, on the 19th March, continuous run of $300 \frac{1}{4}$ miles, with an average load, infuel, $29 \cdot 2 \mathrm{lb}$. per mile; evaporation of water, $9 \cdot 49 \mathrm{lb}$. of water evaporated per pound of coal. The train arrived a arrived at Carlisle four minutes before time; went up the Shap incline, $5 \frac{1}{2}$ miles, 1 in 75 , in ten minutes; averag speed up the incline, 33 miles per hour; average running
time of the train, $44 \cdot 7$ miles per hour. Neither smoke-box nor ash-pan was raked out during the journey, nor was
the fire cleaned. Weight of ashes in smoke-box on arrival at Carlisle, $40 \frac{1}{4} \mathrm{lb}$.; ashes in ash-pan, $59 \frac{1}{4} \mathrm{lb}$. Engine steamed freely throughout the journey. Engine No. 504,
Thunderer, "Dreadnought" class, worked the $5.5 \mathrm{p} . \mathrm{m}$ passenger train, Liverpool to Euston, between Liverpoo and Crewe, on Friday, March 27 th, with a load of eighteen vehicles-weight 227 tons 15 .w., exchasive of engne and The journey from Edge Hill to Crewe was run in forty-five minutes; distance, 34 milles-
Statement showing the Mileage of the various Compound Engines
from the Date of commenoing Regular Work to 31st March 1885, inolusive: also the Nu
Average Miles Run per Day.

This shows that the engines cannot have been very long in the shops for repairs,

The Mgrropoitran Raluway.-We learn that Mr. J. J. Han-
bury has been appointed locomotive superintendent of the Metro pury has been appointed locomotive superintendent , Resigned. Mr Mre Hanbury has had a large experience on the Midland Railway
having been for some years district locomotive superintendent at Leeds, and for the lase four years at Kentish Town.
Paddie Stramers for the Nile.-Towards the close of last wheel steamers for the Nile expedition. These were sent out $\mathrm{ti}^{\text {y }}$ whiee steamers for the Nile expedition. Ghese were sent out in
pieces, one, the Waterliy, was put together at Alexandria; the
other was sent above the second cataract and ereeted at Semeh ; this boat was named the Lotus, In consequence of the proved suitability of this description of steamer for the Nile, the Govern
ment have entrusted Messrs. Yarrow and Co. with an order for
隹 eight more. Two of these are 120 ft . in length by 23 ft . beam, and draw when light 15 in. only. There are three steamers of a length
of 85 ft , by a beam of 18 ft ,, which will draw a little more. These five vessels will be mainly used for transport purposes for the conveyance of siek and wounded down the river and of stores up. There
are also three more which are to be looked upon as the fighting
los boats of the expedition. They are of the same size as the smaller boats above alluded to, but will have more draught in consequence of under steam at Messrs. Yarrow and Co.'s works on the 18th nit. On the upper deck is provided a large saloon with sleeping accom-
modation. The rest of the boat will be provided with stretchers
hung from the forward part of theof for the accommodation of the sick. In the two at the stern. On the main deck is provided a steam capstan
which will be used for hauling the boat over the worst of the rapids. Above the upper deck is the pilot house, which, owing to its elevated position, enables the steersman to obtain an all-round
view.
18th ult., illusel of trating the Lotus and Waterlily was shown on the for indicating the draught of the river some distance ahead. Thi conssists of employing two poles about 50 oft. long, at the end of which
are suspended two vertical iron rods, the bottom extremity of which comes about one foot below the level of the boat itself. One pole projects direct ahead from the port side, and the other from the
starboard side. Attached to each of these vertical iron rods is a wire rope which passes in board, and is connected with the whistle on the boiler, and the gear is so arranged that immediately this Whistle to blow. This plan in the first instance draws the pilot's Attention to the fact, and also points out to him on which side of the isteamer the sandbank or rock exists, so that it gives him warn-
inty in which direction to steer. The five boots just completed were putsiordered at the end of February,

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our spondents.]

UOUS BRAKES
SIR, -The return relating to continuous brakes in use to 31 st December, 1884, has recently been published, but, unfortunately ike its predecessors, it furnishes evidence that at present there companies are actually continuing the absurd practice of fitting olling stock with inefficient brakes, showing practically that the care neither for the safety of their trains nor for the waste of their shareholders' capital. It should be mentioned that the Board of Trade has considerably improved the form of the return by in different columns from those which have "apparatus for working," or through pipes or chains only; the percentage of vehicles and mileage on each railway is also valuable information, perhaps in future returns still further detaiss will be given in the orm of a summary of "failures," placing the total instances unde noulated statement shows the amount of rolling stock fitted and unfitted on 31st December, 1884:

Total amount of stook returne
nis filted with
appear to oomply with thi
conditions of Board of trade.
Total amount fitted with brake

The above figures show very plainly that the majority of railwa companies are not making sufficient progress, for out of a total of
6454 engines, only 3066 have brakes whioh even appear to be efficient, and of 50,512 vehicles, only 19,047 profess to have Those brakes; and it must also be remembered that, to use the
words of the return, some of the brakes so returned but very imperfectly fulfil that designation. The North London Company,
for instance, gives 83 engines and 560 vehioles fitted with Cly
 nothing of the kind. Then again the Midland and Great Western
comphies take credit for a large number of engines fitted with non-automatio steam brakes, and vehicles provided with that mos acuum system. No person oan honestly say that the "leak-off" conditions contained in th firculer of 30th Angust and
Having given the total amount of stock fitted, referenco should
now be made to the actual progress. The following table shows the total number of engines and vehicles which were fitted with $\frac{\text { each system during the half-year ending 31st December, } 1877 .}{\text { Namo of brake. }}$

Westinghouse automatio

Sanders and Bolitho autom
Smith's automatio vacuum
Clark and Webb's chain .
natic vacuum
Smith's vac
Newall's ..
L. and N. w.)

Wostinghouse pressure
All other systems ..
Total
$307 / 2491$

In addition to the above, 25 goods engines on Railway have boen fitted with the Westinghouso brake, \dagger The 64 engines fitred with Sanders' brakes

From these figures it will be seen that sufficient progress was not made during the last half-year, and it must also be remembered that a large amount of stock returned as fitted in the six months is Company appears to have fitted a large number of vehicles with Clark and Webb chain, is being taken off, and it is by no means certain that the new simple vacuum is a better or safer appliance than the discarded chain. The following table is obtained from a comparison of the last two returns, and shows that during the
half-year under-mentioned brakes were removed.

London and North-Westorn
 West Conast J.S Great Eastern

ancashire and Yorkëhire

	Engines.	
	Vehicles	
Chain Brake	-	881
Smitho Vacuum	-	77
Fay's	-	70
do	3	
Smith's Vacuum	4	28
Stecl-MoInnes	1	-

The fact that in six months companies should take off such a ever been thrown away upon fitting the absurdity of money having part of the whole "Return" is again that portion relating to "failures," the information in many cases being either incorrect or absolutely false. The Manchester, Sheffield, and Lincolnshire The Midland Corts an actual failure under the head simply of delay. the "two-minute leak-off vacuum"" yet it is a well-known fact that numbers of failures have taken place, causing trains to run past stations and signals. This is not hearsay evidence, as I have seen some cases, and been in the trains, therefore to these I can peak with certainty. At the congress of the Amalgamated Society of Rail way Servants, held at Bath last year, it was dis and nothing can confirm the truth of that statement more than the recently-published Board of Trade Return.
element E. Stretto
40, Saxe-Coburg-street, Leicester, Mem. A.S. Ry. Servants.

THE LAWs of MOTION

Sir,-In my letter in your journal of this week I refer to having number of years ago published what I considered a demonstration eight years since I did so, perhaps you will allow me in a few sentences to summarise my argument. I showed by a number of cases that we have as good evidence of the existence of centrifugal
force as we have of any other force force as we have of any other force, excepting, perhaps, that of
gravity, Then, if centrifugal force exigts at all, it mugt he pqual
and opposite to the force that is pulling or pushing the body into
the curvilinear path. If this is so, then the direction of motion of a body may be altered while all the forces affecting it are balanced. Then, also, the velocity of a body may be altered while all the forces affecting it are balanced; for when a body is moving in a curve enges to the direction of motion. But if we have velocity at that the velocity of a body may be altered while all the forces affecting it are balanced, we cannot stop short of the presumption that all the forces affeeting a body are always balanced. I then went on to show that we have ample evidence that resistance to duced by force and such as nothing but force produces : and hence we are justified in speaking of resistance to alteration of velocity as
If I am asked, how then is velocity produced ?-of course I
I mean change of velocity-and have to answer that question, 1
would require to reproduce nearly the whole of my paper, and Would require to reproduce nearly the whole of my paper, and I
don't apprehend that your journal exists for the purpose of repro ducing old papers. I may mention that about the time I wrote the paper referred to, I believe that confusion in the language
used about force and motion had about reached a climax. I can remember when Newton's definition of force as any pull, push, cc., was generally accepted and fairly understood, but even then in all conscience. Later on, force came to be used to represent momentum and work, and I don't know how many other things, which added to the confusion. Finally, Professor Tait, in 1876,
capped the whole affair when he proclaimed that there was no such thing as balancing of forces, but only the balancing of velocities, so that when a body was lying on a table apparently at rest, velocity downwards at the rate of $32 \cdot 2 \mathrm{ft}$. per second, and by the
ver upward force of the table on it it was always acquiring upward
velocity at the same rate. According to which, if the body had lain on the table an hour, the poor thing, which seemed to be quite
unconscious that it was moving at all, was really going down at rate. this absurdity is the outcome of gradually changing the meaning of the word "force," and it seems to me that it can only be rectified by going back to the original meaning of the word, that
is to say, that it is a pressure or strain. The force propelling a steam engine piston is the total difference of pressure on the two sides of it, and has nothing whatever to do with the rate the piston is travelling. One fruitful source of confusion in this subject is using the word "inertia to represent both what Professor Lodge
calls "reaction," and the inherent quality of a mass by which it is capable of resisting change of velocity up to a rate proportional in fact, without which it would be impossible to apply force at all to a body free to move.
One thing I think is transparent throughout this correspondence, which is that the great bulk of the difference of views arises from
the habit of the careless and inappropriate use of terms. Is it too much to hope that as a result of so many men in prominent positions having taken part in the discussion-is it too much, I say, to hope that a decision may be come to that shall be binding as to
the definition of a certain number of terms the want of which is manifestly the principal source of all the discussion ?
Hyde Park street, Glasgow, May 2nd. \quad R. D. Napier.
Sir, - "ф. n.'s" difficulty is that if Newton's third law were true we could have no experience of motion, but that as we have
experience of motion, Newton's third law cannot be true. But surely the reaction is seen in the motion, actual or molecular, communicated to one body previously at rest, by another acting
upon it. Why should so simple a fact be involved in so much of verbal mystery? To take the now familiar instance of the horse and cart. "中. n.'s" idea is that the pull of the horse upon the
cart, and the resistant pull of the cart upon the horse, are, by Newton's third law, exactly equal, and not unreasonably he quite fails to see how it is that the cart ever moves. And yet it does move, as we have every day abundant proof; hence, says the Newildered Φ. n.," Newton's third law must be wrong. But did
Newton ever say that pull and resistance were equal? he only says
that action and reaction are equal. Action and reaction are far wider terms than pull and resistance, and include many more manifestations. If we begin by assuming that the strength of the horse to pull and the weight of the cart to resist are exactly But if we assert that the power of the horse to drag is greater than that of the cart to exists some equivalent of the horse's pull in the shape of molecular motion or heat before the cart moves at all. And when the cart does begin to move what do we find. Why, that the motion of upon the horse's action. The cart may be so heavy that the horse fails to move it at all, in whis case Nowon's axiom is illustrated
differently; each remains quiescent, because their pull ance are equally balanced. Then we lighten the cart, and the horse is enablod to pull it at a slow rate, and so on, the motion of
the cart being always in an inverse ratio to its weight-in short, the motion of the cart \times its weight (or mass-acceleration as Dr. sum equalling the action of the horse. No matter in what way we look at it, we must always oome to the same conclusion; for if, instead of lightening the cart, we add another horse; if, instead of lessening resistance, we increase the puls, the result is the same-
we get motion. In the whole process there is nothing left unaccounted for. If the horse exert a greater pull we have an (Couldn't it be shown that the equivalent is exact, and not merely Opproximate:) If the cart's motion is not part of the reaction I should like to ask what is it? How is it acoounted for? or are we to suppose it is an effect without a cause ?

Girton Girl
SIR,-As both Dr. Lodge and " $\$$. I." have made free use of sion to say a word or two more on the subject.
So far, I have failed to quite understand Dr. Lodge's meaning, Perhaps before we go any further, he will favour me with a reply to the following question
I have a piece of clockwork mechanism so contrived that when
wound up it will climb a vertical rack at a definite yelocity rack is about 50 ft . high. The clockwork, \&ce., weighs 13 lb . About 2 ft are passed over during the period of acceleration, so that we have, making all allowances at top and bottom, a vertical height of 40 ft . traversed at a uniform velocity, and in about one minute of time. The work done by the spring driving the clockwork is
$13 \times 40=520$ foot-pounds. The rack is suspended from the top, $13 \times 40=520$ foot-pounds. The rack is suspended from the
and for the present purpose I suppose it to have no weight.
While the clockwork is at rest on the rack anywhere, the pull on the hook carrying the rack is obviously 13 lb .
Now, if I understand Dr. Lodge
Now, if I understand Dr. Lodge aright as to the tug of war
question, one party overcomes the other because the ground is to say, the party overcomes the other because the ground-that the other
Then, by parity of reasoning, my clockwork climbs the rack because the rack pulls it up more strongly than gravity pulls it
down. I ask Dr. Lodge to kindly say either "yes" or "no" to this my first question.
My second question is ; Supposing that the rack does pull up
more strongly than gravity pulls down, then the earth pore strongly than gravity puils down, then the earth must in turn push up the hook carrying the rack more strongly than gravity pulls
downas Now, the pull of gravity is certainly $18 \mathrm{lb}_{\text {y }}$ and cannot be
less. Therefore, the pull up must be more than 131 b . Will Dr.
Lodge say whether the strain on the hook is more than 131 b , while the elockwork is olimbing at a uniform speed? My third question is this. During the time of uniform climb no
less than 50 foot-pounds of work are being done. Is this done by the ground-that is to say, the earth-overooming the action of
gravity? Dr. Lodge will, I suspect, say it is not. Well, then, it gravity? Dr. Lodge will, I suspect, say it it inot. Well, then, it
appears to me that although the earth does all the pulling up,
clock does all the work, which is, to say the least, a remarkable division of
Iastly
labour.
Lastly, I ask Dr. Lodge, does he believe in resistance in the
popular sense of the word, and is resistance identical with what he terms reaction ? I have read what Dr. Lodge has written with great a are,
May 6 th.

hydraulic lifts.

Sir,- We do not expect to further encroach upon your courtesy by asking additional space, but Mr. Ellington's letter in your last
issue is of such a nature as sto create erroneous impressions. The points to which we wish to refer will be so obvious that to secur facture of lifts about thirty years, but until six years ago the busi ness was confined almost exclusively to steam lifts. We then
began to make the Standard hydraulic lift. Since, therefore, that part of our business is only six years old, and since the machine is 'an anticuated type of apparatus." (2) In August last wail it made 3345 lifts. Of this number there were in the City of New York alone more than 520 passenger lifts, of which only about 75
were steam, and more than 970 goods lifts. We do not know how many of these are hydraulic. Our passenger lifts in New York City alone are carrying daily more than 400,000 passengers, and our goods
lifts in New York City are carrying daily more than 10,000 tons of Ellington states that in the last fifteen months 80 hydraulic lifts have been adapted to the use of the poower, his figures are undoubtedly
correct, because no such arrangement could be effected without his knowledge. It must, however, be borne in mind that this
his mure figuro does not represent the production of any one company,
but is the aggregate of all the manufacturers of lifts who use the hydraulio power. It is very true that the three lifts for
Warnford Court were let when the buildings were outside the area of supply, but the use of the power was strongly urged and care-
fully oonsidered, and if it had been desired the power would have been brought there. Mr. Ellington correctly "imagines" that the
low-pressure lifts "erected on the line of the power mains since the supply was availabe"." do not greatly exceed these three; but his imagination does not cover the orders which have since been
taken by us for lifts about to be erected. (3) There is more than one argument which will justify the use of our system, without
entering into the question whether the supply given by the Power entering into the question whether the supply given by the Power
Company can be depended upon If
depended admit that it can be be
upon, the question still remains as to the cost and depended upon, the question still remains as to the cost and
frequencoy of necessary repairs, and the damago which may be
caused by faults in the service at such high pressure caused by fanlts in the service ot such high pressure. If, there-
fore, we concede the eriliability of the power, there will
as anotil remain as another argument for the use of our low, presure lifts the
absence of the need or cost of freguent repairs, and the absence of
interruptions. Mr. Ellington's statement, that we "acknowledge interruptions. Mr. Ellington's statement, that we weknowledge
that if the Power Company redued rates suficiently, the systen
they-we-recommend must fall," is sufficiently
temarkable. We they-we-recommend must fall," is sufficiently remarkable. We We
seek in vain for any such acknoledgment, than which nothing
could be farther from our thoughts. EEver lift fixed by us is, in
the quality of its service, an arghument for soue quaity in of its service, an argument for our syster.
sifts, and vin for instances of an equal quality of service in other lifts, and are still asking where it can be found It is generally of liftts has been developed in the Uneited Stas othes mores that than in use this
country, and in this country thus far those who use lifts have been use of the Standard lift grows, and as it is found that they work
uithout interruption the the mill We think weareable, toshow thatititeannot be found in in other systems.
(4) We must not (4) We must not pass unnoticed Mr. Ellington's remark in the
first part of his letter, that the use of the Pubtic Supply Hydraulic
Power has already superseded for lifting purposes every other system previously in uperse in London. fort liftainly puis this is not true in regard to the standard lift, the use of which is so rapidly growing.
Wo have already said, and cordially repeat, that the work of the
Power Power Company has been admirably done, and that the use of the
power is wise in many cases, but all tho facts go to show that
passenger lifts are not among those cases, wnlese veed in comine passenger lifts are not among those ases, unless used in combina
tion with our low-pressure system, and this we are always ready
to do. The Standard lift has not only not been superseded or displaced, but the evidence accumulates that it will not be. (5) We
see no reason for Mr. Ellington's objicction to our " hypothetical case, the use of which has led to all this discussion, and reference
to your issue of April 17 the will show that Mr. Elington is is in error
in saying that we "shifted th in saying that we "shifted the ground of discoussion." We have
furnished ample proof that a given amount of work could be done
in our way and by our system with vastly better results than by in our way and by our system with vastly better results than by
any orther system; ; nd, this being proven, of what consequence is
it whether the caso was hypothetical or not it whether the case was hypothetical or not? (6) We do not tax
your space further. We have prited a paphhlot containing al
the discussion on both sides up to the issue of this last letter of Mr. Ellington, and we shall be glad to furnish it to any who may
desire. Our appeal is to the facts.
AMERICAN ELEVATOR Co. desire, Our appeal is to the facts.
38, Old Jewry, E.C., May 2nd.

boller efficiency

Str, -In ThE ENGiNER of the 24 th
deseribing whil, "Economist," in to the furnace of steam boiliers by means of a fan, goes far to
describe what I applied to an externally-fired boiler when manager
of the North Wall ITownorks, in the summer of 1865 , which, with yef the North Wall Irowworks, in the summer of 1865, which, with
your permision, I will describe. On setting up an fan oto blow
several smiths' fires, it took up the speed of the engine and several smiths' fires, it took up the speed of the engine and
machinery so much that II had to think what was to be done
to to get more pressure. The boiler was set in a furnace withou
wheel flues; the direct heat of the fire played on it for abou two-thirds of its surface; the chimney could not be got to bring up
suuh a sharp heat in the fire as was seen to be eneessary to produce more steam. I had to think how the difficulty was to be got over,
and after seeing how a small fan could be conveniently driven,
determined to blow, by hand, single fires for blacksmiths. A A in. pipe was laic
from this fan to right under the fire bars, with the end of it turned up. A flat plate was laid over the bottom of the ash-pit, with a
7in. hole cast in it, to allow the wind to pass up through, and over this again was placed an oblong shutter plate, which played an
important part in the mechanism. A circle, 7in. diameter, was
 into the wind-pipe, and by drawing it along, we could shat the wind off altogether, or partly so only. A pair of tight fitting doors,
with a sight hole nearly at the top of one of them, completed the
apparatgh apparatus. As to the damper being kept full open as formerly,
one-fourth open was all that could be permitted after the steam Was up. Ebullition seemed to get so strong that water rose with
it and went over into the enging. I cannot say that the air in the ashpit kept cool, but rather got very hot, and what of it did no
get up through the fire-bars at once semed to recoil down the
sides of the sahpit sides of the ashpit, and rise again with the incoming blast, as seen
through the sight-hole in the door when wood shavings were put
in The engineman would have it that less fuel was consumed
$\left\lvert\, \begin{aligned} & \text { but I did not pay any attention to that, seeing that he could alwayb } \\ & \text { keep up plenty of steam. }\end{aligned}\right.$ keep up plenty of steam,
This blowing apparatus when steam was slowing off furiounly yat both unit and main safety
valves, and the machinery all on, the damper having been left inadvertently full open. This system gave me much satisfaction for the four remaining years s was in the works.
Seville Engineering Works,

Seville Engineering Works, Dublin, May 5th.
 m. Robertson.

SR,- Referring to your description of the above, and to the
letter of ""." in your issues of the 3rd and 24th ult. respectively letter of "Z." in your issues of the 3rd and 24th ult. respectively, I cannot but think that this great work, which will cost apparently
some $£ 2,2000,000$, hardly meets with the attention it deserves.
There are so many it that I am sure it would be a boon to your readers if you could publish detail drawings showing sections of the docks, walls, \&c.
I visited the works last year, and was much impressed with the grave engineering fifculties that have to be overcome. These to which it it snecessary to go to obtain foundations beyond what the necessities of the work require; and secondly, the very soft
nature of the excavation. When I was there it seemed difflcult to make this stand at any slope, and even though slopes had been flattened from the $1 \frac{1}{2}$ to 1 , which "Z." states were
originally intended down to 6 to 1 , apparently it was still slipping.
I could no I could not help thinking that it would have been better to substitute walls for these slopes, especially as these latter were so flat
they almost filled up the tidad dock, leaving but little more than
the olannel way through it. No doubt to have substituted walls forn slopes would have caused great extra expense, as the
foundation level-ballast level-is so deep. I was somewh staggered to find there was as much as 30 ft . to 35 ft . of solid concrete under the walls and floors of the small graving docks, and
this will in all probability cause the cost of thes this will in all probability cause the cost of the shallow graving docks
to be greater than that of the deep ones ; they are all founded a about the same level. I oould not understand why the graving dooks were not placeed at the extreme north end of the wet dookks,
where, I believe, the foundations were some $25 f t$. less in depth; but probably there is some reason for this.
Your correspondent refers to the
structed without a coffer dam. If I remember rightly, I was told the piles for the jetties jutting out into the river solid. Ae either
70 ft. or 80 ft . long, in order to reach something sume it would be necessary to use similar piles in the coffer dam here practicable to to construct a oo ther daustion, even though ith a 40 ft . to 50 ft .
were
head of water against $i t$, head of water against it, and with but little that was stable to strut to. It appears to me that this is pre-eminently one of those
cases in which walls may advantageously be built on the monolithic syay, sth.
Mand
FRICTION of SLIDE VALVES.
"SIR,-Is it not possible that the fact of your correspondent
Jonus," being the only one-among so many who have discussed "Janus," heing the only one among so many who have discussed
or read the letters on this subject-to find out that my relieved
slide valve was old, may not argue superior intelliget side valve was old, may not argue superior intelligence on his
part but the reverse
to bear on the bubings forward two
neither of which, instances intended resemblanne the the conditions under which my valve works. He
says the latest
 " "Janu of motion. This may seem a matter of little importance to
 Halpin's valve and mine, and if there were not a do dozenco others it is quite sufficient to prove the utter dissimilarity of the two ideas.
Ineed not refer to the complicated nature of Halpin's valve both in design and manufacture, and it may hardly be wondered at that,
if hit had not failed otherwise, this alone would have condenned it,
while the simplicity while the simplicity of both the relieved valve and cylinder is
certainly apparent. In a former letter I said that I never expected
that the val prevent its keeping tight and reducing the strain in the gear by a
eeast 60 or 70 per cent If it does this I think it trivial to con least 6 or 70 per cent. If it does this I think it trivial to con
demn it because its face may not wear like a straight-edge. A any rate, as a perfectly relieved silide, withon not, ase "Janus" says
of relief rings and all such vaities, it is
an old idea ; and Ithink it only due to me to draw attention to the fact that "JJnus" has made a s statement regarding it, which, i least attempt to substantiate, and which, so far as is at presen
ascertained, is not true.
EDWARD C. PECK. ascertained, is not true.
Old Oharlton, Kent, May 5th.

KING'S COLLEGE ENGINEERING SOCIETY AT the last meeting of this Society a paper was read by Mr
Smith " On the Use of Petroleum as a Fuel." Petroleum, though found all over the world, has as yet only been successfully worked
in America and Russia. Last year the output of crude oil from American wells was computed at $3,000,000$ tons, ranging in pricu
from 16s. to 32s. per ton, as against $1,1130,000$ tons from Baku, where it was worth from styd. to 2 2s. 6 .d. per ton. The Pennss.
wanian oil seems to be found in strata always older than the carboniferous; while that in the Aspheron peninsula soaks
tertiary sandstones, both, however, being associated with metatertiary sandstones, both, however, being associated with meta
morphism. The original source of the oil, however, is still un known. Its use as a fae in this country dates some twenty-thre Woolwich, together with similar tests in America and France giving most promising resalts, but with the effeet that the price o
crude oil was raised to a prohibitive figure. All this work had
beed been done with crude oil, and it was only when it was found that
the distillation, first of the lighter benzene products, then the illuminating oil, kerosine, and, tinally, the separations, of a valuable uel, and fuel only, that petroleum had its chance
According to the latest research Baku oil differs from American,
not only in yielding some 60 per cent. of refuse instead of 15 per ent., but chemically in that while the former is rich in paraffin which renders it useless for liquid fuel, the latter has not yet been
found tocontain more than q per cent. Russian petroleum refuse
is is a black-brown liquid of high viscosity, having an average speciff gravity close upon 0.9 and an average theoretical evaporative
ower, from and at 202 deg., of 21 . The history of its use as fuel during the last fifteen years shows that the oil was sprayed ato the combustion chamber, first by an air jet in the easy burner added to the spray. Steam injection alone soon followed in the
burners of Lentz, Karapetoff, and Hoffman, while a hollow flame supplied by a separate air injector with the oxygen necessary fo he perfect combustion is the latest development, as in the burner
of Anderson. The early experiments with boilers and fire-boxes designed for the comparatively moderate heat of conl soon showed and its important use as a store for heat was recognised later First, a brick hearth, then a brick box, and finally in marine
boilers a complete flue lining was the result. Siemens has lately found that this lining may be broken into rings. Nobel, both fo metallurgical and boiler firing, has used a trough burner, in which
the oil is consumed direct without being pulverised. Experiments in locomotive practice, and the Caspian oil fleet in marine practice,
its economio advantages. In England, where the crude oil exceeds
$£ 5$ per ton, we must await the completion of the proposed 560 miles of pipe from maku to Batoum on the Black Sea, before
mate refuse can be obtained. Drawings and diagrams of all the prin.
cipal burners in use, diagrams of locomotive and marine boilers cipal burners in use, diagrams of locomotive and marine boilers
adapted to petroleum fuel, curves of cost and consumption, illusadapped to petrole
trated the lecture

LAUNCHES AND TRIAL TRIPS.

On the 29th ult. the ss. Courage, built by Messrs. Raylton proceeded to sea, making a successful trial trip. This is the fifth steamere of the kind buatilt ty this ffrm for this. company, beeides a
fleet of ten sailing vessels, and is to be erployed as carrier betweet fleet of ten sailing vessels, and is to be employed as carrier between
the trawling fleet in the North the trawling fleet in the North Sea and the London Billingsgate
Fish Market. Her principal dimensions are 128 ft . over all, 21 ft . beam, 11 ft . 7in. depth of hold. She is fitted with engines of
50 -horse power by Messrs. Blair and Co., Stockton, and will drive 5o-horse power by Messrs. Blair and co, 11 knots., The engines are
the vessel at sea an average speed of
place placed in the after part of the vessel, and the forehold is divided
into two compartments, the smaller being for the stowage of broke ice which spe will carr out to the fishing fleet where this is the packed boxes which are stowed in the main hold of steamer. The main hold is protected from the effects of external heat by being lined throughout with timber and caulked, the space between the being the case under the deck. She is also fitted with a steam capstan and every convenience for trawling when not employed in aish carrying. Messrs. Dixon and Co. have also at present in hand 2nd inst. Messra Oswald, Mordaunt, and Co., South ampton, launched the Woolton, a fine iron sailing ship of 2100 274 ft . $7 \mathrm{in}$. . bereatth, 40 ft .3 iin. ; depth of hold, 24 ft . 2 in. . The
vessel has been built for Messrs. R. W. Leyland and Co., Liver pool, and exceeds the highest requirements of both Lloyd's and
Liverpool Underwriters' Registry. She is full rigged and fitted with a topail on main mast, she is fitted and chains. During construction the vessel has been under the On the 2nd inst.t the ess, Donegal, 125ft. by 22 ft . by 10 ft. Gin.,
built by Messrs. Craig, Taylor, and Co., of Stockton-on-Tees, Liverpool owners, made her trial trip. She is fitted with engine working pressure being 85 lb . They are made by Messrs. West garth, English, and Co., of Middlesbrough, and indicated 281-horse On Saturday the screw steamer sitonia, built and engined by
Messra, Widham Richardson and Co . proceeded to sea for her trial trip. She is a vessel of 950 tons dead weight carrying capacity
tripl
buit to the order of London, for Messrs. William Thorburn and Sons, of Uddevalla,
Sweden, and is intended principally to trade between Uddevalla nd Lond ships. The engines are compound surface-condensing of 750 indi pressure. All the latest Sressure. Al the latest improvements both in machinery and
fittings are provided, and on the trial trip were found to work to
俍 take very great series of runs over the measured mile off Whitley, and
take On Wednesday, the 6th inst., Messrs. Earle's Shipbuilding and steam fishing cutter, built for the Great Grimsby Ioe Company The vessel, which is classed $100 \mathrm{A1}$ at Lloyd's, is for carrying fish
from the Grimsby fishing fleet. Her dimensions are as follows :Length, p.p., $137 \mathrm{ft} . ;$ breadth, 21 ft . 6 in, , depth of hold, 11 ft .
She has a raised quarter deok aft, extending from the engine and shear so as to make her a a fast and at and the same time a seaworthy fitted with a powerful steam winch and trawling gear arrangeemployed for trawling. She will be fitted by the builders with their triple compound engines of 80 nominal horse-power.
the tenth steam vesscl built by Earle's Company for Grimsby fishing companies.

THE IRON AND STEEL INSTITUTE

Tre annual general spring meeting of the Iron and Steel Engineers, when the report of the Council for the year 1884 was presented and accepted. The Bessemer gold medal for Dr. Percy, F.R.S., took the place of the retiring president-Mr. B. Samuelson-and delivered his inaugural address. As would original, characteristic, and valuable information and suggestive thought. We are, however, owing to great pressure on our
space this week, forced to postpone our account of the meeting and of the papers read.
EXPRESS LOCOMOTIVE, MIDLAND RAILWAY We publish this week, as a supplement, a working drawing-
No. 125 of THE Evarser portfolio of working drawings-of one of the new express engines designed by Mr. Samuel Johnson, for the fast passenger service of the Midland Railway. We
gave a perspective view of this engine, with full description, in our impression for February 6th, and a cross section on
February 27 th. The drawing being fully dimensioned, it is unnecessary to give further particulars here.

A Grear Shapisg Machine.-We omitted to state in our description of Messrs. J. Archdale and Co.'s great shaping machine
illustrated in our last impression, that it was specially constructed for Chatham Dookyard, where it will be employed in shapin Naval Enginerb Appointirests.- The following appointment have been made at the Admiralty :-Robert Burridge, chie engineer, to the Indus, for the Tamar ; James D. Chuter, engineer,
to the Pembroke, for the Traveller ; John W. Henwood, engineer to the Pembroke, for the Rover; John G. Stevens, engineer, t
the Asia, for the Mainstay; Henry Wallis, assistant engineer, t the Enchantress; and Alian H . Photograpring to Scale. - Writing on the production of photographs to scale, a correspondent of the Field says: "I "I
not think it is generally known how simple a matter it is to photo graph to scale so that measurements can be accurately taken. If
man wants a carriage or implement photographed so as to make a working copy to scale, all that is necessary is, when the photo is implement or carriage ; this is photographed along with the a arriage
and no matter what the the size of the print or negative, whe same pro portion as the carriage. I do not think this simple and accurate saale is generally known in photographing. Larger works, such as
iron bridges, a larger rule of, say 6 ft , or 12 ft , introduced
photo would be found useful, the

THE INVENTIONS EXHIBITION-PARSONS' PATENT HIGH SPEED ENGINE. messrs. kitson and co., Leeds, engineers.

THE INVENTIONS EXHIBITION-BUDENBERG'S HIGH PRESSURE GAUGE.

THE accompanying engravings illustrate a gauge for pressures up to as much as 10 tons per sq. in., made by Mr. A. Budenberg. tone of the ordinary steam pressure and vacuum gauges can be applied for indicating constantly such high pressures as
300 lb . per square inch, and still less so pressures very much higher which are needed for high-pressure tubing, hydraulic presses, \&c. Messrs. Schäffer and Budenberg have, they claim, succeeded in constructing gauges which have overcome these difficulties. In manufacturing tube springs, steel rods of the highest quality attainable are cut to the proper length of the springs
required; they are bored out, and turned off outside, except the ends, on which a suitable thread is screwed. Fig. 1. After which operation they are at the same time flattened and con veniently shaped. Fig.2. They undergo a process of tempering, and thereafter the one end is screwed into the stem or principal part of the gauge-Fig. 3-through which the pressure is carried on from the generator, and upon the other end is screwed a solid piece of metal-Fig. 4-to which the rod is fixed transmit-
ting the movements of the steel spring by suitable gearing
-Fig. 5-to the pointer and dial of the gauge. The springs for gauges to indicate the very highest pressure are prepared in a similar manner, the lower pressures requiring the larger tubes. This solid steel tube spring is exceedingly durable, retaining perfect elasticity, and has the great advantage that all soldering is avoided, which is requisite in the Bourdon and other constructions in which the spring consists of a tube. These gauges were originally only intended for hydraulic purposes, but the principle has been so far
modified as to allow of its being applied to modified as to allow of its being applied to gauges for

ELECTRICAL ENGINEERING AT THE INVENTIONS EXHIBITION.

No III.
As was pointed out in our last article, the office of the field magnets in a dynamo machine is to create and
maintain a field of magnetic lines of force through which the wires on the revolving armature cut, and so create an
electro-motive force which is the immediate cause of the current produced by the dyuamo. It will be evident that parts composing a dynamo, the shape of the one must, to a certain extent, determine the shape of the other; and we find accordingly that during what may be termed the magnets have been developed, each being more especiall Thpted to be usd wh armatures ore pall, kind The number of types in use is necessariy small, for ther simple thing as a horseshoe magnet. Inventors generally have paid a great deal of atlention to the armature, bu almost inclined to think that the majority of inventors are under the impression that as long as they can get a good under the impression form of field magnet is good enough This is certainly not sound reasoning, and must lead to failure, as is shown by the large number of useless patent taken out. The number of really successful dynamos is
surprisingly small; each is the outcome of a long series of experiments undertaken not only with the object of finding experiments undertaken not onty with the object of finding tion, and arrangement of field magnets.
In general character all magnets for dynamos are of the horseshoe pattern. Such a magnet consists of two poles
between which the armature revolves; two coressurrounded by the wire coils used for exciting the magnet, and a yok joining the ends of tue cores. a rectangle, two opposite sides of which are the cores and the other two sides the armature and yoke. That side which represents the armature should be drawn slightly
shorter than the distance between the two cores, thus leaving a gap at each corner corresponding to the air space our last article. The wires on the armature in passing these gaps must cut the lines of force which run round the magnetic circuit, represented diagramatically by the rect
angle. Such magnetic circuits can be traced in all dynamos; there may only be one, or there may be a combination of several having certain parts in common, but in
all cases the circuits are interrupted by the air space, and the lines of force leaping across this air space are those Gramme machine two pairs of magnets are employed The cores are parallel to the axis of the armature, and the two yokes serve as supports for its bearings. The poles are provided with extensions nearly surrounding the arm the Vi at the Vienna Exhibition in 1883. The armature and pole
pieces were placed at the end of the cores, and their other ends were joined by one common yoke, the spindle passing through a bearing supported by this yoke. Similar
machines, but of more recent design, are to be exhibited this year.
In the Schuckert-Mordey, Guilcher, Brush, and other the original Gramme magnets is used. The active portion of the wire on the armature is not only that on the outer
periphery, but also that on the sides of the disc; and in rder to bring that portion well within the lines of force the cores are arranged to either side of the disc, the whole
or the greater part of the active surface of the poles being a plane at right angles to the axis. It may be mentioned
that on theoretical maximum of electro-motive force with a given length of wire, because, with the exception of that small portion of
the winding which crosses the ring on the internal periphery, the whole of the wire is active; but there are some practical difficulties in attaching the core of the armature to the spindle, and some space on the inner periphery
must be sacrificed for this purpose. There is a yoke on must be sacrificed for this purpose. There is a yoke on
each side of the machine joining the outer ends of the cores and supporting the bearings, as in Gramme's original design. In the larger types of Schuckert-Mordey and
Gülcher machines a double set of magnets is employed, Guilcher machines a double set of magnets is employed,
producing four poles around the disc. In this way the output in current from these machines has been
doubled. doubled.
Another type of field magnets, first employed, we
believe, by Siemens is particularly applicable to cylinbelieve, by Siemens, is particularly applicable to cylin-
drical armatures. The cores are placed at right angles to the axis of the armature, and are arched in the middle, so as to form polar cavities surrounding a little over a third of the armature on eech side. Yokes are placerd at each end of the cores, so that two complete magnetic circuits
are formed with poles common to both. In the original Siemens machine the cores are not made in one solid piece, but consist of a number of bars separated from each other of manufacture and partly to avoid eddy currents in the body of the magnets, and to facilitate the ventilation
the armature. The magnets of the Maxim dynamo are constructed similarly, but those of the Bürgin, Crompton,
and Lumley machines have solid magnet cores. The original Weston dynamo had a set of three or more cylindrical cores on each side of the armature, and cast iron pole pieces also provided with narrow slots; but later
types are made with one massive core and cast iron pole types are made with one massive core and cast iron pole
piece on each side. It may be opportune here to say a few piece on each side. It may be opportune here to say a few
words about the comparative value of cast iron and words about the comparative value of cast iron and
wrought iron as a material for the construction of ${ }^{\text {wrield magnets. }}{ }^{\text {It }}$ It is generally admitted that wrought iron is the better material of the two. It requires less magnetising power-measured by the product of current and number of convolutions in the exciting coil-to pro-
duce a given intensity of magnetic field. Yet we find that some very excellent machines of recent design, like he modern Weston and Bürgin, have cast iron magnets. It would not be logical to assume that in these days of competition, when manufacturers are striving in every machines, these inventors would neglect to avail themselves of the advantages to be gained by using the better mall dif tese advantages are worth the comparatively mall difference in cost between wrought iron and cast
iron. We are thus forced to conclude that in these particuar machines the advantages are not so very great. On he other hand, we know that other makers find it an normous gain to use wrought iron magnets. To explain only, but to the machine as a whole. As a matter of fact ve find that most of those machines which have smooth rmatue cores employ wrought iron magnete The core of the Weston armature consists of a number of toothed discs, presenting, when put together, the appearance of a wire is laid. The external surface of the armate copper finished consists of groups of wires alternating with strips finished consists of groups of wires atternating with strips
of iron. Professor Pacinotti was the first to employ such n arrangement of armature core in his electric motorwhich was the immediate precursor of the Gramme machine rejecting berg thus inere the staticl pull on projecting teeth, and cus increase the statical pull on the dynamo machine, the outer surface of the iron teeth come ithin very small distance of the polar cavity of th field magnets, and assists in directing the lines of force
into the body of the armature core, thus increasing the lectro-motive force as compared to an armature with mooth core. The effect of these teeth on the magnetisn of the pole pieces may be compared to that of a lightning
conductor on atmospheric electricity. To use a homely expression, the teeth suck in lines of force from the iron arface of the pole piece. The magnetic resistance of the ircuit is thereby reduced, and the number Put created ar
ber of lines which can pass tbrough a square inch of soft rought iron is a limited quantity-between 60,000 and 80,000 in absolute measure-and when that limit has been veached the teeth are saturated, and cannot take in any Any additional lines must pass into the armature cor considerable distance from the polar surface, the magnetic resistance is great, and only a sum fore, the teeth of a Pacinotti armature, through their power of sucking ines, become aiready fairly wrought iron field can only slightly increase the tot number of lines passing into the armature, and the gain in lectro-motive force is so slight that it does not repay the
additional expense. Similar considerations hold good for the Birgin machine. The armature consists of a number ot hexagons of iron wire placed spirally on to a spindle The copper wire is wound on the sides of the hexagon, and distance of the polar surface. Most of the lines of force nter the core at these corners, which correspond to the teeth in the Weston armature. Experiments made by the writer have shown that the increase of electro-motive
force obtainable by the substitution of wrought iron for cast iron magnets in a Buirgin machine is only slight.
An ingenious form of field magnets which will be show by Messrs. Mather and Platt may be described as a horse-
shoe, with the exciting coil placed over the yoke. To revert to our geometrical illustration, that side of the rectangle which is parallel to the line representing the
armature is the core surrounded by a magnetising coil, and armature is the core surrounded by a magnetising coil, and the two other sides are merely prolonged poles. A similar
arrangement was some years ago used by M. Gramme, and shown at the Paris Exhibition in 1881; but the design worked out by Messrs. Mather and Platt is more massive and shows a due appreciation of the necessity of having a shall in a future article illustrate and describe in detail this dynamo, as also the very compact driving gear and diagonal engine used with it. Perhaps the most
simple form of field magnets is that used in th simple form of field magnets is that used in the
Edison dynamo. It is a vertical horseshoe, the arma ture being at the bottom and a heavy yoke at the
top. In the original American machines the pieces and yoke were joined by a number of long cylinmodern Edison-Hopkinson machines of English make have only one massive and shorter core on each side. The
resistance of the magnetic circuit has thereby been consi derably decreased, and the output of the machines has been nearly doubled.
list of field above descriptions we have not exhausted the a general review of those types or modifications of types that are mostly used, and reserve description of particular forms to future occasions, when we shall give a more detailed
Formerly some of the more important machines exhibited
direct on the magnet cores, but now almost every make winds the coils on separate formers, which are slipped on
to the core. The advantage of this method of construction
is evident. In the first place the weight and size of is evident. In the first place the weight and size of
modern machines would make the direct winding of the modern machines would make the direct winding of the the second place, the exchange of a damaged coil would almost amount to the rewinding of the whole magnet.

We have in the foregoing remarks had occasion to use the word exciting coils, and we must now, for the benefit of those of our readers who are not electricians, explain the term. If a bar of iron be surrounded by a coil of insulated wire and an electric current be sent through the coil, the bar becomes magnetic, developing a south pole at one and a north pole at the other end. Lach pair or field magnets of a dynamo may be considered to be such a bar bent into the shape of a horseshoe. What the ultimate commection mall to say, and it is hrely that the problem wis prsolved, like that of the cause of gravitation. But for practical purposes it suffices to kow thand relation exists betweol cose will forces, and that a measurable quantity of electricity will prodaceam inable quantily of magnetism and vice verrad. The aim of the de gigner of din iniuraly be to get a magnetism with a minimum expenditure of electrical enhey the exciting cons. Accordab to the sowce fral whence the exciting corrent is hen, wo to dis excitel delwen seph fy axar all dynamo in bevally the the dynamo is generally used to furnish the exclig current into mats magnets into magnets. Such anrangement is absolute continuous current only can be used for giving the necessary permanent polarity to the fell of ouch a maceto. Wo bine ory spol the Exhibition.We eis the ecesion to sesel about alternating current machines when we come to describe some of the machines of that type exhibited; for the present we must, however, content ourselves with remarking to the currents are generated in coils which ano caused o pass rapidy before the poles of a series of a alternate polarity. Each coil is thus presented in quick
succession to a series of N and S poles, and at each reversal of the direction in which the lines of force coming from these field-magnet poles pass through the coil,
reversal of current in the coil takes place. The strength of the current can be regulated by suitably varying the degree of magnetisation of the field magnets. Tins can The same remark applies to cases where the main dynamo is a continuous current machine, as the electro-motive force exciting power put into the field magnets. The exciting exciting power put into the field magnets. The exciting may at once say that it is quite immaterial how this product is made up. Whether the current be large and the number of turns smal, or the current small and the number of turns large, does not affect the number of lines
created, as long as the product of current and number of convolutions remain constant. If the main dynamo is kept running at a constant speed, the electro-motive force can be varied by varying the exciting power, but the relation between the two is not a simple proportionality. It
is of a very complicated nature, not easily expressed by a mathematical formula. In practical investigations this relation is aways represented graphically by the aid
of the so-called characteristic curve. The curve varies according to the construction of the machine; it has generally some resemblance to a parabola near the origin or apex, but the branches are deflected so as to become nearly parailel to the axis of abscisse. The sponding electro-motive force is found by the length of the ordinates. It will be seen that on account of the approach to parallelism between the curve and the axis a certain
limit of electro-motive force is ultimately reached, to which limit of electro-motive force is ultimately reached, to which is expressed by the term saturation of field magnets, and an increase of exciting power beyond this point cannot sensibly increase the electro-motive force. In practice
machines are generally worked somewhat below saturation machines are generally worked somewhat below saturation point, partly for economy in exciting power and partly to electro-motive forc
As regards self-exciting dynamos, there are three principal types in use-series, shunt, and compound wound the field mature is first led through the exciting coils on the circuit the armature and field magnets is so well and generally known that we need only make a passing allusion to it. circuit ing to this principle, if the resistance of the outer existing sufficiently low, the slight trace of maguetism any piece of iron within the magnetic influence of the earth-induces a correspondingly slight current in the armature, which being led through the exciting coils, reacts in the further intensifies the field until a point near saturation is reached. The machine is then in full work. Since the electro-motive force is dependent on the curlect is evident that the machine cannot produce any circuit of so high a resistance that the principle of mutual accumulation cannot come into action. Series machines are herefore only applicable in cases where the resistance of limit, as in the case of an electric light installation containing a fixed minimum number of incandescent lamps in parallel connection, or where the resistance of the outer ircuit is low to begin with and increases as the current number of arc lamps placed in series. Before the machine is set in motion all the carbons are in contact, offering very

THE ENGINEER.
little resistance to a current passing through the series of
lamps. If the machine be started, the incipient current finds a path of low resistance open, and thus the principle of mutual accumulation can come into action. Another example is the transmission of motive-power by means of
two series dynamos. Whilst the receiving dynamo, which two series dynamos. Whilst the receiving dynamo, which
is acting as motor, is at rest, there is only its resistance and that of the line to be overcome by the generating dynamo,
and a current is quickly started. Afterwards there is the and a current is quickly started. Afterwards there is the
opposing electro-motive force of the motor added to its opposing electro-motive force of the motor added to its
resistance, but the field of the generator being already established the latter is able to maintain the current. It will be seen that series machines are not suitable for incandescent light installations where the number of lamps burning at a time varies between wide limits. For such
a purpose shunt-wound dynamos are somewhat better, but by no means quite so satisfactory as compound-wound machines. We shall decribe the former first. The exciting coils consist of a large number of turns of fine wire having a considerable resistance, and they are connected direct to
the brushes of the armature without reference to the outer circuit. The current which magnetises the field circulates through the exciting coils and armature, and as far as this current alone is concerned, the machine can be considered as a series-wound dynamo working on short circuit-that
is, through an external circuit of no resistance. The is, through an external circuit of no resistance. The
principle of mutual accumulation will therefore come into principle of mutual accumulation will therefore come into saturation point. In consequence of this there will be an electro-motive force maintained between the terminals of the machine, even if the same be disconnected from any
external circuit. It is therefore possible on making the externection to light one single incandescent lamp and to increase the number as required. Each successive lamp switched on forms an additional path for the electric cur-
rent, and the total current given out by the armature is nearly proportional to the number of lamps burning. But as the couren of the resistance offered by thotive force, in consequence of the resistance offered by the wires on the
armature, also increases, and the exciting current circulating round the field magnets is thereby somewhat in the field, and again teacts antain extent the magnetism in the field, and again reacts on the electro-motive force,
tending further to lower the exciting current. In fact, the which the electro-motive force is until a point is reached at which the electro-motive force is just sufficient to maintain
an exciting power corresponding to the intensity of the field town the electro-motive force is due. To represent this graphically, the machine is now working at a
lower point of its characteristic curve, and each lamp fed by it will burn somewhat less brilliantly than before. In some machines, as for example ise Edison and Weston,
the resistance of the armature is so extremely low that this difference in brilliancy between a small and a large number of lamps on at a time is scarcely noticeable. In other
machines tho difference is very marked, and by far too great to allow the use of shunt machines pure and simple for incandescent lighting, unless some sort of electrical
governor is provided which will cause the speed of the machine to increase as the number of lamps burning at a time is increased.
Another way of overcoming the difficulty is by the
employment of a combination of the series and shun systems of winding the field magnets. This is generally known under the name of compound winding, and is now
almost universally used by the makers of dynamos for incandescent lighting. After what was said above abou readers will have no difficulty in seein, our non-electrica tion acts. The office of the shunt coils is to maintain the when the outer cercuit another be switched on, additional now, one lamp after applied to the magnet through the series coils which exciting current to the outer circuit; and this additional exciting power should just suffice to raise the electro motive force by an amount corresponding to the loss due
to the resistance of armature, series coils, and main leads. In this way the difference of potential between the positiv and negative lead at the lamps is maintained nearly con
stant, whatever may be the number of lamps switched on at a time.

A point of great practical importance is the efficiency
dynamo machines. As mentioned above, the aim in designing the field magnets should be to produce a maximum number of useful lines of force with
minimum expenditure of electrical energy. This can be obtained partly by so shaping the magnets as to offer the least possible magnetic resistance, and thus to require only a small exciting power, and partly by using a large
amount of copper in the exciting coils. It must be evident that the thicker the exciting wire in a series machine, the less resistance will the exciting coils offer to the current, and the smaller will be that portion of the total electro-
motive force which must be sacrificed to drive the current motive force which must be sacrificed to drive the current coiled on the magnets of a shunt machine the greater will be the resistance of these coils, and the smaller the In this case the exciting power is nearly independen of the number of turns, because current and number not go at length into these matters, as we have in a recent ferent losses of power taking place in a dynamo machine. more efficient will it be. The electro-motive force pro duced in the armature is proportional to the strength of smaller the number of turns coiled on a given armatur the larger can be the crosssectional area of the wire, and ance of the armature is about inversely proportional to the square of the number of turns. By doubling the
speed of the armature we shall, therefore speed of the armature we shall, therefore, quarter the loss
of electro-motive force due to its resistance. But since
very high speeds are for practical reasons inconvenient
there is a limit beyond which increase of efficiency should there is a limit beyond which increase of efficiency should
not be attempted by the simple device of increased speed. There are also cases where it is absolutely necessary to keep the speed below a certain limit, especially where the
dynamo is coupled direct to the engine, and then economy dynamo is coupled direct to the engine, and then economy
must be sought in other ways than by increasing the speed. This can be done by an increase in the size of the armature, and by employing a very powerful field. After
what we have sid it will be seen that it would evidently what we have said, it will be seen that it would evidently
be unfair to compare the efficiency of different dynamos be unfair to compare the efficiency of different dynamos
irrespectively of their speed. To obtain a just basis of comparison between two machines of equal electrical out put but different speeds, the loss of electrical energy in
the armature should in both cases be multiplied by the square of the speed, and the figures thus obtained should It is interesting to
It is interesting to note that recent improvements in innamos have generally been in the direction of a decrease in speed, whilst the makers of steam engines have striven
to increase their speeds. A point has thus been reached where the two meet, as is shown by the comparatively large number of direct-driven dynamos exhibited

THE NEW ORLEANS EXHIBITION.

No. IV.

Amone the most successful of the manufactories in ling tha boducts as made at home ar shut out by the ence, and workmen here and endeavour to carry on their accustomed trades. As an example, the manufacture of sewing cotton, or, as it is called here, spool cotton, is exhibited by two of the largest firms in the world-Clark,
of Glasgow, and the American Willimantic Company The former has a very large factory in America, and exhibit a complete set of machinery showing the treatment of the cotton from its raw condition as purchased from the plantation to the finished reel or bobbin as sold to the consumer. The reeling machinery is one of the most extraordinary series of automatic processes ever witnessed, and in its completeness and compactness quite outshines the less efficient appliances of the American firm, who, however, in all the preparatory stages, are on an equal footing. It is interesting to note how in the subdivisions of manufacture machines have been brought together from the two mantic Co mus on the different mace of Curtis, Son, an Co., of Manchester ; J. T. Boyd, of Glasgow ; the Lowel Machine Company, of Massachusetts; the Machine Com pany of Providence, Rhode Island, and others,
The introduction of old-established trades from a foreign country is not always successful, for it is not easy to trans plant industries which grow up in districts, affording subsidiary trades of all kinds; and a single factory in a new country is often hampered for want of the preliminary or secondary processes which are best performed as separate enterprises, and which are abundant only in places where manufactories congregate. Such a trade as lace-making for instance, which at present is carried on mainly at Nottingham, Calais, and certain German towns, is not doing very well here.
The Government and State exhibits alluded to in a previous article are so complete and well arranged, and display so plainly the vast resources of the country, espe-
cially of the parts hitherto least known to the world, that hey alone, by the information they afford, justify the trouble and expense of the Exhibition, and make amends for the many minor defects in the undertaking. It was at first intended to make this official display in the main building, but so great were the demands for space in the or them alone, and it was decided to construct a separate building for the official exhibits. This building, already alluded to, is about 900 ft . long by 600 ft . wide, and of the 540,000 square feet of space thus available, the Government takes about 100,000 , and the forty-six States and territories the remainder, Texas heading the list with 18,000ft., and all being represented except Utah. Besides these purely Government displays, two of the principal South, nompanies interested in the development of the known as the Queen and Crescent route, and the Richmond and Danville system, which embraces lines south and south-west from Washington through Virginia, also take 10,000 and 12,000 square feet respectively, to show the
agricultural, mineral, and other products of the lands they traverse.
The last-named company affords a curious example of railroad development in this country. The original line
from Richmond to Danville measures only 140 miles now the mond to Danville measures only 140 miles, and of which the Virginia Midland is probably the most important, connecting, as it does, to Baltimore and WashNew leased lines into both Carolinas and to Georgia. The tendency to bigness in this country is specially seen in the nomenclature of the railroads, and a small line seeks greatness by adopting the name of a State or district some
thousands of miles distant. Thus it is with the Georgin Pacific, which is controlled by the Richmond and Danville Extension Company, but which, except in its name, will reach the western ocean only in some remote future,
In the centre of the building devoted to the Government and State display are the national exhibits, classed according to the branch of service they represent. Thus the spicuous in the medical branch, which shows models of railway ambulances, which are ingenious adaptations of the usual American cars for conveying wounded soldiers, while surgical instruments and appliances of all kinds are are also extlipanged for inspection. Naval hospital ships present conspicuous in this country, and do not claim
sorting cars, which differ in many respects from those used in England, and fitted with apparatus for taking up and
throwing off mail bags while running of a kind much throwing off mail bags while running of a kind much simpler than those on English railways.
postage stamps are exhibited, and with these also are shown a complete assortment of bank notes, the pictures and other portions of the design which are peculiar to the paper money of the country aftording exquisite specimens of fine-line engraving.
The Government Surveyor's Department has a very fine display of maps, some of them in relief, which give
amongst other information the results of the latest amongst other information the results of the atest
mineralogical investigations. The Smithsonian Institute exhibits an interesting collection from its museum and library. The Patent-office has a department of its own,
with conveniently arranged books of reference and other with conveniently arranged books of reference and other
information generally accessible only at Washington. In information generally accessible only at Washington. In appliances adopted in the common schools of the different States, including in these some most interesting informa tion concerning rudimentary technical schools which hav been recently established in various districts. specimens
of artisans' work from the New York trade schools are shown. Typical engineering structures on a small scale as suitable for instructional purposes are exhibited, amongs them being a useful and ellective display of models American bridges and roof trusses. In this department foreign as well as home exhibits are admitted. There is chool workshop from sweden, and rance sends a very complete display of drawings, tools, and appliances from the Rouen primary technical schools. Probably the old connection of New Orleans with France illibe the authorities to take the great trouble this exhibit must
That agriculture should have the prominent place among he separate State exhibits was to be expected, and even to those whose interests lie in annordion, the endless variety and vast extent of food products are significant as
showing how real and solid a base there is for a future manufacturing populatio
The display of timber is astounding, both in regard to extent and variety. With every kind of hard wood, many with with the southern part of the Continent; with hickory and other tough woods, which are used for so many
purposes here, the forests abound also in soft woods, easily purposed and admirably adapted for building purposes. At present in these sitch pine and other imber is obtainable for the labour outho it, while in the less-explored States want of transport at present is the Mly hindrance to supplies even greater than here. fine lumber she exports so largely, while in the forests in England as coming from Pensacola, Mobile, and other ports on this coast
Cotton, which bas heretofore been a source of wealth by export only, is now being manufactured in Georgia,
South Carolina, and other States, and the rapid growth of actories, under the most favourabe future prosperity of a kind wish were 100,000 spindles at work in 1880; the number has greatly increased since, and the New England factories are ikely to find an increasing competition every year. To do justice to the actual facts as presented here, and to the
future they suggest, would need many volumes rather than future they suggest, would need many volumes rather than
the space available in The Engineer, and those who desire fuller information should seek it from the Commissioner of the different States, most of whom have prepared Amongst the varieties of climate products and other circumstances peculiar to each State, it must suffice here to and engineers in the present condition and rapidly approaching development of the Southern States, parti-
cularly Alabama and Georgia. Under one of the gallerie of the main building are exhibited the products of the Birmingham Rolling Mills, Alabama There is nothin very grand or imposing in the display, and if it were showi England, it w, Philadelphia, or in Birmingham, of an enterprising firm who manufactured rolled iron in rather more variety than is usual in any one establishment But coming from where it does, it betokens an approach ing revolution ine therld. It can hardly be supposed that the significance of this exhis rities here, and it can only be laid to their hospitality in this capital of the South that they gave it so unobtrusive
a place and left the conspicuous spaces in the building to exhibitors from the North. But to an impartial observe from Europe, who has no bias either for North or South it would have appeared more appropriate if Mr. Pullman
with his model train and sumptuous cars, had been move aside fors cat had been move for the bars and patal snd sheets of the new iran city visit to this Birmingham hower rocessary to a proper description of it, and this we shall give at another time. \qquad

THE INVENTIONS EXHIBITION－BERNAYS＇STEAM PUMPS．

We illustrate above a novel steam pump，the invention of We illustrate above a novel steam pump，the invention of
Mr．Joseph Bernays，M．I．C．E．，of London，a name that will be well Mr．Joseph Bernays，M．I．C．E．，of London，a name that will be wel fugal pump．The pump now under notice is a decided novelty， The patentee claims for his invention that the new patent pump combines the advantages of direct－acting pumps with those of the fly－wheel type．It admits of the long stroke and simple construction of the former，whilst retaining the steadi－ ness and certainty of action，economy of steam，and accessibility of working parts，of the latter．The novelty consists in making the connecting rod C B of the same length only as the crank， and by the use of two toggles A A to lead the rod to change its position during each stroke from－in the vertical type－above he crank at one end，to below the crank at the other end．The rod way suses the piston to move through four times the length of the crank，instend of twice only，A simple contri rance keeps all the working parts in their proper relative positions during the stroke，and at the same time relieves the piston－rod from side strain，in consequence of which crosshead guides are dispensed with，and the wearing of the glands avoided．The engraving above shows one arrangement，in which an excentric is combined with the crank and connecting rod．The piston moves accurately in accordance with the true law of the versed sine，both on the in and out stroke；it therefore reaches the cylinder ends at greatly reduced speed， and the slide valve can be set alike for both ends．It is by no means easy to make the action of this gear clear，even with drawings，although it is exceedingly simple，and can be grasped w think be understoo if the reader ragard the connecting ond B in the skooch． troke into a tooth space A in the toggles，it will be seen that once the end of the connecting rod gets into this space，it is im－ possible for the piston to continue to make its stroke without causing the crank to revolve．To put what takes place in a very crude form，the crank is＂kicked over the dead points＂ at each stroke by the toggles．The pumps take up very little space，and can be fixed in places where other fly－wheel pumps would be impossible．They are made in all sizes，and can be dapted for any purpose
We have inspected two of the pumps exhibited．The smaller of the two is a ram pump having a steam cylinder 2 in in．in dia－ meter．The ram is $1 \frac{1}{2}$ in．diameter，with a stroke of 3 in ．，and delivering at 160 revolutions per minute about 180 gallons per Sin diameter，water cylinder 41 in diameter，and stroke 0 ins；
the cylinder is lined with gun－metal，and the glands bushed with the same metal．This pump will deliver at an average peed 4800 gallons per hour．Mr．Bernays has granted an exclusive licence for the making of his patent pump to Messrs， Larmuth and Co．，engineers，of Salford，Manchester，and the sidered details of construction have been very carefully con－ specially arranged pumps，available for all general purposes boiler feeding，\＆c．，and of sufficient power for use as fire pumps in cases of necessity． \qquad
THE ROYAL AGRICULTURAL SOCIETY
Few persons whose duty it becomes to make anything like detailed examination duty becomes to make anythog like a hedding to be found in the Implement Department of the Royal Agricultural Show will be at all sorry to learn that this ection of the Preston Exhibition，to be held next July，will not e on quite so extensive a scale as its immediate predecessors， he appended figures will enable the reader to compare the lottor allotted at Preston and the preceding five shows ：－

	$\begin{aligned} & \text { sin } \\ & \text { 惠 } \\ & \hline \end{aligned}$	离宫	亲		$\begin{aligned} & \text { 宮 } \\ & \text { a } \end{aligned}$	蕒
	1885.	1884.	1883.	1882.	1881．	1880
Ordinary	8，417	9，315	9，569	0，326	9，136	6，662
Fachinery－in－motion．	2，063	2，035	1，949	2，289	2，012	2，000
ide sheds	1，520	1，554	1，618	1，402	1，511	1，059
Total ．．	12，000	12，904	13，136	18，017	12，751	9，781

How far the reduced dimensions of the forthcoming show may be attributed to the depressed condition of trade it would be hard to determine．This perhaps has had some sort of that the most powerful cause is to be found in the fact that this year there are to be no trials of new implements worth mentioning．The trials，in fact，relate only to harness，whipple trees，and butter packages．Beyond these prizes there is，of course，the stereotyped offer of ten silver medals，which may be awarded in cases of sufficient merit in new implements；and，in
special awards of medals for efficient modes of guarding or shielding machinery．
Last week the official statement of accounts relating to the show held last summer at Shrewsbury was made public．The total expenditure connected with the meeting amounted to balance of $£ 2900$ and the receipts to $£ 16,8583 \mathrm{~s}$ ． 5 d ．，leaving a the Royal Agricultural Society．The actual outlay for showyard works was $£ 9521$ 148．8d，from which，however，must be deducted the sum of $£ 497178.9 \mathrm{~d}$ ．，proceeds of the sale of materials used，and the charges for work executed for exhibitor and refreshment purveyors，thus bringing the net cost of the showyard works down to 24550 6s．1id．The latter amoun was more than met by the fees charged to exhibitors of implementa，the paymeats for sheddis reaching a total of $£ 190$ We note too that fine of $£ 25$ was enforced for non exhibition of one of the sheaf－binders entered for trial．The trials themselves appear to have been conducted with much greater regard for economy than on some previous occasions．

＝

Old War Vessels．－The Admiralty are fast clearing the national harbours of the obsolete hulks．In addition to the Daledonia，Hastings，Magpie，Dapper，and Oromer，at Devon－ Zealous，Favourite，Netley，and Plover at Portsmouth． It will thus be seen that the fleet of old wooden armour－clads promises soon to be nothing more than a naval tradition．The Caledonia， 6832 tons and 4538 －horse power，was launched at Woolwich in October，1862，and was paid off at Devonport in
March，1875．Her total cost，including engines by Maudslay，was March， 1875 ．Her total cost，including engines by Maudslay，was
$£ 264,658$ ．The Royal Oak， 6366 tons and 3704 －horse power，was launched at Chatham in September，1862，and was last paid off at Portsmouth in January，1872，when it was ascertained that it would require about $t 00,000$ to make her good for commission． Her original cost was £234，691，inclusive of $£ 45,310$ for machinery by Maudslay．The Favourite， 3232 tons and 1773－horse power，
was launched at Deptford in July，1864，and was finally paid off was launched at Deptford in July， 1864 ，and was finally paid off
at Portsmouth in December，1876，after having in 1869－70 been re－ fitted at a cost for hull and machinery of $£ 6815$ ．Her first cost was $£ 122,423$ for hull and $£ 24,016$ for engines by Messrs．Hum－ phrys and Tennant．The Zealous， 6096 tons and 3448 －horse power， was launched at Pembroke in March，1864，at a total cost of E220，079，inclusive of $£ 53,168$ for engines by Maudslay．She was
paid off at Portsmouth in June，1875，when，as in the case of the Royal Oak，though two years younger，it was found that E60，000 would be required to prepare her for another commission． Of the entire fleet of fourteen wooden armour－clads only two，the Lord Warden and the Repulse，are in commission．

THE INVENTIONS EXHIBITION-WICKSTEED'S TESTING MACHINE. messrs. joshua buckton and co., leeds, engineers.

WICKSTEED'S TESTING MACHINE.

The testing machine shown at the Inventions Exhibition by Messrs. Joshua Buckton and Co., Leeds, presents features of very special interest to all who are concerned with Mr . Wicksteed has enabled the the first time almost, Mr. Wicksteed has enabled the material under test to record its own behaviour, and this by a method involving the use of exquisite mechanical devices, depending on the discovery of a new principle. The well-known single-lever testing machine of
the firm is fitted with a new patent autographic indicator. This traces a line upon metallic paper, showing exactly the extension of the sample as the load upon it increases. A reduced copy of one of the diagrams is shown in our engraving. The height of the figure represents the load in tons, and the length of it the extension in inches. The line indicating the behaviour of the test pieces begins at A and ends at B. It will be seen that the line rises to 17 tons with very little lateral movement to show extension. At that point it records a sudden extension of the sample
without any additional load. This is the first permanent set of the material. After about $\frac{1}{4} \mathrm{in}$. of this lateral movement the line makes an ascending curve, showing a rapidly increasing extension in proportion to the added load, until it reaches a height indicative of 23 tons of load with $2 \cdot \mathrm{lin}$. of extension. At this point the descending line begins to show a diminution of the load carried, while the extension of the sample continues till it breaks at B This reduction of load takes place owing to the rapidly decreasing area of the sample before it breaks. This rapid decrease begins when the extension leaves off, being general throughout the length of the sample, but becoming rapidly localised in that part of the sample where it is going to break. The indicator is extremely sensitive, and records the smallest alteration of load upon the sample, together with the accompanying extension due to that load.
A general explanation of the action of the whole system of testing may be given as follows:-The sample A is ping box C. The upper box is suspended from the brip
centre of a steelyard D, which weighs by the adjustment of its poise weight E whatever pull is put upon the sample The lower box is connected with an hydraulic ram \mathbf{F} which puts the pull upon the sample and extends it until it breaks. Thus, while the hydraulic system is doing the mechanical work of breaking the sample, the steelyard system is accurately measuring the load it is sustaining. The object of the indicator is simultaneously to record the amount of load and the extension due to that load, and the area of the diagram gives the amount of mechanical work done in breaking the sample, which may be conveniently expressed in the equivalent of tons lifted lin. high. To get this simultaneous record, the ram of the indicator which carries the pencil is in fluid connection with the hydraulic system that puts the load upon the sample, and the indicator system that puts the load upon the sample, and the indicator
therefore partakes of that load; and as the load is measured by the steelyard, so the reading from the steelyard determines the scale of the diagram. Thus in the indicator the water system imparts the movement to the pencil, but the steelyard system assigns the value to that movement. It

THE INVENTIONS EXHIBITION-MATHER'S PORTABLE ENGINE.

remains to be explained how the motion is given simultaneously to record the extension
The metallic paper on which the pencil travels is mounted on a brass cylinder G, like that of a Richard's the extension of the sample by means of the following arrangement: The sample has two light clamps, H H, attached to it on the datum lines between which the extension is to be measured. A fine wire is attached to the bottom clamp and turns round a pulley on the upper clamp, thence it goes horizontally along a radius bar I, through the body of the machine, and passing round cylinder carre joint of the radius bars, it descends to the are, by the invention covered by the patent, so disposed that no general movement of the sample causes alteration in the length of the wire, but the minutest alteration of the distance between the clamps upon the sample causes a lengthening of the wire, which communicates a corresponding movement to the diagram cylinder.
The object of the belt pulleys L, seen at the right-hand of the indicator, is, by the invention covered by the patent o impart a revolving motion to the hydraulic ram of the in deathers which entirely prevents the friction of the hydraulic leathers from interfering with the free action of the ram in responding to the very smallest increase or decrease of pressure in the water system. The effect of the rotary motion of the ram is that the ram seems to float, and moves absolutely without friction longitudinally, although very considerable power is needed to cause its rotation, 4in. strap being required to rotate it at about 120 revolutions per minute. The delicacy of this response is shown by the behaviour of the pencil at that part of the diagram where the permanent set takes place, and again by the drooping curve after the power of the sample to carry the maximum load is passed. It will be seen that this system of testing is almost equivalent to loading the sample with actual weights, seeing that the load sustained by the sample is a dead weight of one ton acting through a single lever of the first order, this lever having for its fulcrum a long knife-edge which vibrates without appreciable friction, even when supporting a load of fifty tons. The purely horizontal movement of the poise-weight imparts no unrecorded strains to the sample, and the water pressure is brought to bear without impact. The whole machinery may be worked so quickly as to break twenty pieces in an hour, and this without introducing any errors from unrecorded strains.
The accuracy of these single lever dead weight testing machines has led to their adoption by Professor Unwin at the new laboratory of the City and Guilds Institute for where he has just pudjors the Ex Messrs, Buckton's

100-ton machines. They are also in the laboratories of the Royal Indian Engineering College, and of the Bristol University College, and are about also to be placed in the new laboratory of the Yorkshire College, Leeds; and these machines are fitted with apparatus for testing in which these the delicacy of the measurement has led to their extensive adoption at steel works in this country working under the survey of Lloyd's Register and the Board of Trade ; the machines have also been supplied to several foreign Government yards and private works abroad.
It is Messrs. Buckton's intention to allow any samples that may be brought to the Exhibition to be tested in the machine, and to make a diagram, a tracing of which will be presented with half the broken sample returned.

MATHER'S 4-H.P. PORTABLE ENGINE.
THE accompanying engraving illustrates a very ingenious portable engine patented and made by Mr. G. R. Mather, Wellingborough, and shown made by Mr. G. R. Mather This engine has been exhibited more than once. The boiler has two cross tubes, and is mounted on a wrought iron foundation plate; an ash door is fitted, which serves as a regulator for the draught. The chimney is fitted to a pair of malleable iron joint rings, and has a movable iron fork provided to receive it when doubled back for travelling. The cylinder, guides, and framing are all in one casting, the framing joining the cylinder at its lower end, and may be compared to arms and legs, all of which are cast hollow and are of great trength. To the arms and horizontal side stays, afterward bolted bolted four wrought iron steys, the ends of wich are bolted to the boiler; two running to the side horizontally and twe to the centre obliquely.
On the back of the cylinder is cast a bracket of the same adius as the boiler, to which it is secured by bolts. On the barrel is bolted by two bolts; the joints, which the feed pump made with paper for easy removal. To the back of the bracke is attached the treble valve-box, the upper end of which joins the boiler. The cylinder cover or head contains the steam and exhaust openings and piston valve, and also carries the governors The piston and crosshead are in one casting; the upper end i dished, and fitted with two rings, and the lower end is fitted with one ring immediately under the slide plates, which are adjustable. A lubricator is fitted to the crosshead, having three outlets, one central, oiling the upper end of the connecting rod, and the other two conveying oil to the slide plates, The pump plunger is screwed int the crosshead flange. The lower end of the cylinder is covered by a drip pan, provided with a drippings are conveyed by a tube into the hollow leg frame and join any leakage that may arise from the pump plunger,
and are conveyed by a pipe into the ashpit. The crank shaft, which is 3 in . diameter, and of Bessemer steel, bent to obtuse angles-this form giving great stiffness-carries the two traveling wheels, one on each end. These wheels, which are 42 in . diameter by $4 \frac{1}{2} \mathrm{in}$. broad, serve the purpose of fly-wheel when steaming and of road wheels when travelling. One of the wheels is keyed firmly on the crank shaft, while the other has a set screw and glut, which is tightened before running under of corners withened berore travelling, allowing the easy turning from the crank bearing before travelling by simply driving out a cotter, so that none of its working parts are in motion during its removal from place to place. The crank shaft carries driving pulley and also a grooved pulley, which, by a band drives the governors immediately over. There are no excentrics, with their attendant rods, straps, and pins, but the valve motion is given by a bent forked lever, which is at its lower extremity joined to the connecting-rod by a forked rod. The valve, an before mentioned, is of the piston type, and of gun-metal, fitted with rings, and serves the three-fold purpose of steam inlet exhaust, and throttle valve. One obvious feature in this engine is its extreme simplicity, without destroying efficiency. There is only one gland in the engine, that being for the pump-rod; zontally actuate a small wedge the sliding of which adjuats the valve to the required opening. The valve is not connected to the lever, but from the latter a short rod is suspended, which works into a semicircular groove, allowing it to lift during the time the governors hold down the valve. Two men are sufficient to pull down the engine on its wheels, in which position it balances whilst being drawn by the horse. The shafts can before running, if desired, be witharawn by slackening the clip nuts, or they can be retained in position. The piston and valve may be taken out and replaced in a few minutes, without break ing and joints and without the usual tools. There is a pipe fitted from the exhaust to heat the feed-water before passing into the coiler. There being two fy-wheels and aiso a pulley, a strap can be led from each of the wheels, thereby, in many cases, this engine is that the cylinder is open at its lower extremity, whereby any serious leakage past the piston rings may be whereby any serious leakage past the piston rings may be
detected and remedied, thereby preventing waste of fuel. tube is fitted from the cylinder bracket through the boiler into chimney flue, carrying off any slight leakage, thereby preventing inconvenience. These engines have now been two and a-half years under test, and give, we understand, satisfaction. They are at present made in two sizes- $-2 \frac{1}{2}$ and 4 -horse power. A the working parts are all in compression, they seldom necessitate adjustment, as no knocking would be heard even under considerable wear.

South Kensinaton Museum. - Visitors during the week ending May 2nd, 1885:-On Monday, Tuesday, and Saturday, free, from $10 \mathrm{a} . \mathrm{m}$, to $10 \mathrm{p} . \mathrm{m}$. , Museum, 12,008 ; mercantile marine, Indiai and Friday, admission 6d., from $10 \mathrm{a} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$., Museum, 2152 mercantile marine, Indian seotion, and other collections, 245 Total, 19,090 . Average of corresponding week in former years

CROSS SECTIONS OF PROPOSED LOW-LEVEL TOWER BRIDGE.

DESIGN FOR THE TOWER BRIDGE.
ON another page we express our views as to the scheme of the Corporation now before Parliament, and the following is a description of the design proposed by Mr. R. M. Ordish and Mr. Ewing Matheson, as illustrated above and on page 460 :-The bridge is in one span of soit., with four main ribs or arches of wrought iron or steel. The thrust oncete foundations on the London clay, which is well suited to sustain such a lond. The roadway is suspended from the arched ribs by vertical members strongly braced together, and in the centre a portion of the roadway is movable and made to hinge upwards as a bascule bridge, leaving an opening 120 ft . wide and 120 ft . high for vessels to pass through. The arched form of the bridge, its width, and its great weight, not only afford sufficient stiffness and stability against wind pressure and the strains caused by the traffc, but in regard also to the possible collision of vessels passing through the bridge, the structure would have ample strength. Even at high water the bridge would be clear above the hulls of the largest steamers
navigating this part of the river. The one clear opening of navigating this part of the river. The one clear opening of 120rt. in an unobstructor navigation as the wider opening proposed is the Corporation design, where the channel is obstructed by large piers in the centre of the river. If, however, it were deemed important to provide a wider opening than here proposed, the design would admit of an opening of 150 ft ., or even 200 ft . This is, however, deemed unnecessary and inexpedient. In regard to the future addition of a railway, which is contemplated, if the time should arrive when the movable part of the bridge was no longer opened, it is proposed to carry the four lines of rails above the road traffic, as shown in the cross sec tion above, namely, two lines above each roadway, this higher level being as necessary for the railways as the low levelis for the street traffc. The briage woule :- On either shore of the shown in the engraving on this page:-On either shore of to river suitable staging would be erected
one pair of ribs, and during the building of these ribs the road traffic below could be arranged to pass through openings in the traftic below could be arranged suping. By means of a sufficient counterweight at the
stage staging. By means balancing the overhanging weight of the rib, the staging could be removed, and the half arch propelled forward over the river on a suitable cradle resting on the approaches till it met the corresponding half arch in the middle of the stream, and the two halves would then be united, The second pair of ribs could then be erected in the same way, and then braced to the first pair. From the arch ribs the platform of the bridge would then be suspended and braced, leaving open in the centre of the bridge a gap 120 ft . Wide for the movable part. This gap would be taled by a bridge in two halves, each hinged, and whe moving in the segment of the circle the altering weight necessary for a balance. Only a moderate the altering weight necessary for a would, therefore, be required, and this could be con-
veniently obtained from the mains of the Hydraulic Power Company now laid along the banks of the river, and constantly charged with water at a pressure of 700 lb . per inch, or by other
motive power. The counterbalance weights and mechanism would be placed in the spaces available inside the arched ribs, and would present no obstruction to the road traffic.
During the interruption to the road traffic while the bridge is open for masted vessels, foot passengers could cross by stairs attached to the outside of the main ribs, as shown in the engravings. If the time arrives fons the closing of the opening span, it would be easy to alter the moving part of the bridge to make it like the fixed part. If then or thereafter a railway were to be added, an upper floor could be placed, as shown in the for it. The some of the bracing being removed to make room the river would be on viaduct, which would be made in convenient spans, so as not to impede the road traffic below. The estimated cost of the bridge in the first instance-that is to say, as a road bridge, with mechanical opening and without the rail way-is $£ 820,000$. This sum does not include the cost of land or compensation. The cost of altering the structure to a closed bridge and adding four lines of railway would be about $£ 20,000$.
—
WELFORD'S PATENT FURNACE.
This patent furnace, illustrated by the accompanying cut, and

been designed more especially for the complete combustion of bituminous coal, but with every kind of coal it will, it is claimed, give most economical and smokeless combustion, and with any annexed sketch shows a longitudinal section of the furnace in Cornish boiler. The apparatus consists of an open fre-door in which are fixed shutters, a fire-brick fire-grate, closed hanging bridge, closed ashpit lined throughout with fire-brick, a bottom air flue underneath the ashpit, and a fire-brick flame bed or
regenerator. The shutters or venetians in the fire-doors are so arranged as to prevent the air from striking the top of the flue, and at the same time prevent the radiation of heat into the through the grate, which renders it necessary that the ashpit should be closed at its front end. The bottom air flue has perforations for the admission of a fixed quantity of fresh, pure air. The flame bed is so arranged as to throw the heated products of combustion against the top of the flue to be utilised -at firsthere-for thegeneration of steam. The fuel isfed on to thegrate in the usual manner, and the draughtisregulated by the venetians. The major portion of the air to effect combustion comes through the fire-door, the solid fuel being distilled into the ashpit as in full combustion. The gaseous fuel and flamers of red-hot coal at a high temserature by theous fuer aly name are maintained of fire-brick in the ashpit, and being met by currents of fresh pure air from the air flue underneath, final combination takes place, and the gases are completely burnt. It may be stated that the air in the flue below the ashpit is necessarily heated, which, of course, effects the combustion more readily; also, that without the lining of fire-bricks in the flame chamber, the degree of heat would not be sufficient for the decomposition of the hydrocarbon compounds. It is claimed that the intimate mixture of the gases with the air causes a very small excess of air to be
owes its success mainly to the high efficiency of the refractory material used for forming the grate.
This grate is peculiar in that the bars are made of fire-clay. We have seen the furnace in operation in Iondon, and found it The mere fact that the gaves are carried downward nonts with it. fuel is not enough to prevent smoke, and the eficiency of the apparatus depends on the arrangement for the edmission of below the bars and of the fire-bricks there provided or ay
PROPOSED LOW LEVEL TOWER BRIDGE. messis. R. M. ORDISH AND EWING MATHESON, ENGINEERS.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

With this week's's number is issued as a Supplement, a Working
Drawing of a Four-Coupled Locomotive on the Midland Railvay. Draving of a Four-Coupted Locomotive on the A Iudhand Railvay.
Every ocpy a sisued by the Publisher contains this Supplement,
and subscribers are requested to notify the fact should they not

TO CORRESPONDENTS

* All letters intended for insertion in The Enarnker, or con-
taining questions, must be accompanied by the name and address of the writer, not necessarily for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous good faith. ${ }^{N}$
communication

* We cannot un

must thereforere request conreesponden dravings or manuscripts; we must therefore request correspondents to keep copies.

* In order to avoid trouble and confusion, we find it necesary to
inform correspondents that letters of inquiry addressed to the inform correspondents that letters of inquiry addressed to to the
public, and intended for insertion in this column, must, in all pases, be accompanied by by larye envelope lepiblyn, dirested by the
writer th himesf, and bearing a 1d. postage stamp in orde that
unsvers received by us may be forvarded to their destination. answers received be ulu may be forvactded to their destination.
No notice vill be taken of communications which do not comply

SUBSORIPTIONS.

The Enornger can be had, by order, from any newsagent in toon or country at the various railza Halfyearly (including double numberse Yearly (inctuding tuo doble numbers If credit occur, an extra charge of tivo shillings and sixpence per annum will be made. Ture Enoinerr is registered for transmission abroad. Cloth cases for binding Trar Enornerr Volume, price 2s, 6d, each A complete set of The Enorsera can be had on application. Foreign Subseriptions for Thin Paper Copies will, until further notice, be received at the rates given below:-- Foragn subseribers paying in advance Subscriptions sent by Post-oflce order must be accompanied by letter of advice to the Publisher. Thick Paper Copies may be had, if prefred, at Remittance by Post-affice order. - Australia, Belgium, Brazil, British Columbin, British Guiana, Canada, Cape of Good Hope, Denmark, Egypt, France, Germany, Gibraltar, Italy, Malta, Natal, Nothor Mands, Now Brunswick, Nowfoundland, Now South Wales, New Zenland, Portugal, Roumania, Switzorland, Tasmania, Turkey, United States West Coast of Africa, West Indies, Cyprus, 21 16s. China, Japan, India, $\mathfrak{E 2} 2 \mathrm{os}$. 6 d . Remittance by Bill in London. - Austria, Buenos Ayres and Algeria, Mauritius, Sandwich Isles, 2258 . ADVERTISEMENTS. ** The charge for Advertisements of four lines and under is three shillings, For every tivo lines arterwards one shilling and sixpence: odd lines are charged one shilling. The line averapes seven woords. When an advertise: ment measures an inch or more the charge is ten shillings per inch Al single advertisements from the country must be accompanied by a Post-oflice order in payment. Alternate advertisments voill be inserted veith all practical regularity, but regularity cannot be puaranted in any such case. Advertisements cannot be Inserted unless Dellvered before SIx

MEETING NEXT WEER.

THE ENGINEER.

MA Y 8, 1885.

engineers and contractors.

W_{E} have more than once commented on the business relations existing between engineers and their contractors during the performance of any given work, and it is with
some regret that we find occasion to return to the subject. some regret that we find occasion to return to the subject.
At present, contractors as a body have, or believe they have, certain grievances in connection with the terms of
specifications, the mode of letting contracts, and the conspecifications, the mode of letting contracts, and the con-
ditions insisted upon by engineers under which the work is to be carried out. The list of thees alleged grievances may be put concisely as follows:-(1) That engineers do
not certify for the full value of the work done, some men certifying for only 90 per cent., others for 80 , a few as low as 75. (2) The security demanded, complaint being made that not alone is 15 or 20 per cent. of the value of the
work retained or kept back, and the whole of the tools work retained or kept back, and the whole of the tools
and plant constituted a legal pledge - not being deemed the property of the contractor till the work is completed and passed-but in addition the contractor is called upon to
provide two substantial securities or bailsmen to join him in a bond equal to one-fourth of the amount of the contract. (3) The stipulation that the contractor shall take out his own quantities. (4) The clause constituting the engineer
absolute and final judge in all matters of dispute arising during the progress of or before the work is finally accepted. That ground of dissension should exist between
should fancy it has a grievance against the other is almost equally bad; and the sooner such ground, whether real or imaginary, is removed, the better, not only for the parties
immediately concerned, but also for their clients, who in many, probably the majority of cases, are public, corporate or other bodies. In order to effect the removal of an evi it is necessary first to gauge its extent; seek out its primary
cause; and to dissever what is genuine from that which is imaginary. In this, as in all other worldly affairs, ther are two sides to the matter, and both must receive equal
attention. Contractors as a body are sensitive to anyattention. Contractors as a body are sensitive to any-
thing touching their business-over much so, we think, sometimes. We will analyse the grievances which w have enumerated, and endeavour to determine how much foundation of fact they have to rest upon.
To begin with, the circumstance that the position of the engineer, in reference to the work in hand, differs very
materially in its social or moral aspect from that of the materially in its social or moral aspect from that of the
contractor, must never be lost sight of. The engineer contractor, must never be lost sight of. The engineer
works for others; the contractor for himself alone. Like Hal of the Wynd, he fights only for his own hand, owing responsibility to no one. Once his work is passed and paid for, his responsibilities are to all intents ended. Not
so the engineer. He works for others in a very wide so the engineer. He works for others in a very wide
sense of the term. He is employed by bodies of men responsible to their ratepaying constituents, or private shareholders, for the outlay of public money, trust money the private savings of a lifetime, the sole support of old
age. These bodies seldom number experts among their ranks; they are necessarily absolutely in the hands of their engineer, whose advice they must, as a rule, either accept or reject as a whole. The engineer's responsibilities
by no means end with the discharge of his duty to his by no means end with the discharge of his duty to his
council, his building committee, or his board. Morally, if not legally, he is responsible for the safety of every person using the work he has originated, and whose construction he soas superintended. From a business point of view, also, great public interests, whether sanitary or com-
mercial, are concerned in the soundness of his work. The Tay Bridge disaster was a painfully accentuated example o his; and however much Sir Thomas Bouch must have been sympathised with, still his share of responsibility for that aftair seemed more than he could bear, and it is possible accelerated hisdeath. The contractor'sassociation with any given
work usually ends when the work is completed. So long work usually ends when the work is completed. So long, however, as that work exists, its engineer's name and
reputation are bound up in it. Can it, then, be matter for reputation are bound up in it. Can it, then, be matter for
surprise if gentlemen who have spent large sums on their surprise if gentlemen who have spent large sums on their
education, who have given years of study and hard work education, who have given years of study and hard work
to acquire their special knowledge, should, when they come to acquire their special knowledge, should, when they come
to practise that knowledge, attended, as the practice is, by to practise that knowledge, attended, as the practice is, by
so great responsibilities, can it, we repeat, be matter of so great responsibilities, can it, we repeat, be matter
wonder if they take every precaution to guard against wonder if they take every precaution
mishaps, either structural or financial?
Contractors aver that certain conditions bear hardly upon them, and at a time when competition already presses them sore. But to begin with, from a generic point of view, the conditions complained of have nothing to do
with competition. If they bear hardly at all, their incidence is not on individuals, but on contractors as a body Competition does not affect this. Passing from this'to detail, and examining each of the items of complaint in the order we have enumerated, then the first is that full certificate is not given. In reference to this, contrac tors will scarcely dispute the fact that the entire conduct of their business involves investment. Why, then, shoul their payment in the work during its progress-to become their payment in the work during its progress-to become,
as it were, mortgagees of it-be a hardship, bearing in mind that their business foresight induces them to charge good interest by allowing for it, or taking count of it when sending in their tender? One man may perhaps say, Competition is too keen to admit of my doing so;" but this is no more an argument than if he were to say, "I dare not charge more than such or such a percentage
for profit on the job." Besides this, if the engineer will not give the money, a banker will, and at percentage probably less than the mortgage interest
charged by the contractor himself.
The holding of the tools and plant in pledge during the progress of the work cannot be in any sense upheld as a grievance. Until the work is complete it is useless to the contractor, or, at all events, unavailable to him for anything else. A
certain advantage to him, too, exists in this same lien held certain advantage to him, too, exists in this same lien held
on it. The lien is equivalent to a protection order; and even if the contractor get into difficulties, his plant at the works is safe from his creditors-an immense advantage,
as preventing a forced sale of it at perhaps a ruinous loss. The system of bails or bondsmen is not universally pursued; some very eminent engineers dispense with it, deeming it in most cases more trouble than value. The third grievance is that the contractor should have to take out his own quantities. This grievance is generally more imaginary
than real. In works of moderate size an old hand at contracting can very rapidly and accurately estimate the quantities; while if the work is extensive the profits margin will certainly, either by direct computation or
incidentally, defray the cost of a quantity clerk's time incidentally, defray the cost of a quantity clerk's time.
Besides, we can hardly imagine any better system than that where the engineer, on behalf of his employers, esti mates the cost of his work, which is subsequently checked by the contractor. "Out of the mouths of two or thre witnesses" begins an adage applicable here. Suppose the engineer takes the responsibility of the correctness of the and an quantities, and, being human, is therefore false what a field for dissension friction, and delay is opene up! How much better that such things should be found at the outset.
The fourth item of contractors' complaint has long formed a burning subject, and we have commented ourselves upon it in our columns. The arguments we have engineer's position reference to the difference between the an eminent degree here also. Besides this the engineer may fairly say, "I must be the best judge of what sort of thing I want." He may, and usually does, follow prece-
dent-too much so very often-when drawing a specification ; but he by no means binds himself to do so, and it is habit for the contractor instinctively to assume that he dispus so bind himself, and hence the trouble. When a workmanship either as to the quality of material or of the thing is reasonably good; that is to say, he appeals at once to a vague, ill-defined precedent; he implies that the work or material is as good as that usually put in like work, and that it is a reasonable compliance with the terms of his agreement. All these arguments we have heard advanced in times of dispute. To some extent engineers are to blame about this more than contractors, for some engineers draw very formidable specitications certainly, but do not insist on the fulfilment thereof. This
practice unfortunately has wrought much mischief, and griven rise to a great deal of heartburning and dissension. The true way to get good-to get the bestclass of materials or work is to draw a moderate and thoroughly practical specification and to print
thereon a notice that its terms will be rigidly exacted, hereon a notice that its terms will be rigidly exacted,
and to stick firmly to it. In regard to the terms of the clause constituting the engineer sole judge in all matters of dispute, the contractor should bear in mind that the engineer is not judge in his own cause; in no sense is he so. A great deal of misapprehension exists in the contractorial mind on this point. Were the engineer his own client even, all the same he has a perfect right to insist on getting that which he described and is willing to pay for ; just as much right to get a girder, a pier, or a steam engine, as he has to get a coat that fits him, or a pair of gloves of such fashion as pleases him. At the same time, nasmuch as too many engmeers have, may we venture to say, intimespast, been ordering one thing and accepting another, it is a little excusableif contractors as hey glanceover-they seldom, we fear, read or thoroughly study - a specifcation say: "H"m. a 1ot more is asked here than will be actually insisted on." We ourselves have heard it said: "These things are put in specifications, but are never exacted. framing a tender, and it is of the highest importance that, where possible, the engineer should refer those invited to tender for his ene engineer should refer chose invited to done in the style he require In case the contractor visits and inspects this example, he then begins operations with his eyes open. If he neglects to do so, he has no one thank but himself if he comes to trouble afterwards. We have felt it our painful duty to thus far give our judgment in the growing controversy between engineers colum; and the contractors allege a rievance which, if they can substantiate it, is very vexatious. We refer to their statement that an undue delay exists in the making public a notification that a contract has been let, and the return of the caution money lodged by each firm applying for the papers of an advertised job. Contractors allege
cases where the caution money has been $£ 5$, which is lodged in the engineer's clerk's bank to his own account that no receipt or acknowledgment is given to the payer of the money; that a cheque, which would form at least a constructive receipt, will not be taken, and that the money is not returned except at the clerk's own convenience. All this, if substantiated, ought to be reformed. In nothing
can an engineer more fully display genuine ability than can an engineer more fully display genuine ability than
in the smoothness which characterises the execution of his contracts.

THE TOWER BRIDGE

The very severe inconvenience which has been felt by the great trading communities of East Londonseems more likely now than at any time to be speedily ended. Our readers are already well acquainted through our columns with what has been proposed by the City Architect to meet the decision of Tower . The Bill of the City of Ievel opening bridge at the Tower. The Bill of the City of London Corporation seek accordance with the outline idea of Cold character, and in illustrated in The Evaineer, 31st October 1884 hoos, as read a second time before the House of Commons, and is this week before a Committee of that House. The design and construction of a bridge across the Thames at Tower hill is, however, a matter of much importance, and the result to be obtained is one which may have either inestimably benencial advantages, or be attended with almost disas trously undesirable effects, so that the mode of procedure adopted in obtaining a design ought to be free from any of the defects which are so very likely to accrue from the hasty adoption of plans which could not afterwards be said By the mode the best bridge-designing talent of the day ne engined of procedure now adopted, the design of neer, and hurried into consideration by by a second engiout There is no opportunity for independent views to gain hearing in the Committee, and it therefore becomes a duty to draw attention to the dangers involved.
We have always, as is well known, advocated the construction of a low-level bridge, and are glad to recognise in the design now presented to Parliament a fair effor o secure for East London a bridge of the character most suited to the requirements, but at the same time w must say that the design is so far faulty that it is to When the Board of Wat it will not be sanctioned by law Works Bill for a tunnel was throw that a low-level bridge with mechanical openings should be constructed, and that the work should be done by the Corporation of the City of London; but so far as the project has yet proceeded, the Corporation has failed to mak most of a grand opportunity for benefitting London by ot the work which might also be a great public ornament discussion of the There are, as the lapse of time in the with the construction of a bridge east of Rennie's bridge which are of no mean order. These are not, however, interests, many of which are of a curiously mistaken
class, and result from a failure to reognise the real character of the work to be done, and its effect.
of tenerally, it would have been supposed that the desire of the Corporation would have been to erect the best
bridge e that could have been desigrect; and that for this purposes all avalable e iad from the designers of bridges in
this country and abroad would have been enlisted, so that this country and abroad would have been enlisted, so that
no esenential ideas should be best. This plan was adopted by the Govermment in obtaining the designs for the taw
Court, and more reenty for the war-otice and
mot

 ments is i work which fer men can do well and which
fow men, veren amongst the very ablest of those of the
 toet is before the public. The one leading idea in his dillow stipsp or boats with masts to posss, and e even to arrive nt an opinion as to m menns of ffectining this compraratively mind wide to look at swing and other kinds of movable aridges On the much harger question of the general lorm of structure and the best methods of protecting the wharf and river interests, which until this year seemed to be the
chief consideration of the Corporation, he seems to have
 abrith shouldid give way to his personal opinion as an
 supported on two lofty towers each of no lees than 7oft. in with, phaced in the midade of the tide way, thesel
 the roadway wasb opened for the panage of shipse that the navigateo channel or hot teanes is the paroe ine which to put them, it they are not tesentiuit thio thadion That they are not neceary may be seen from the deeign
we give this week for a bridge in one ppan without nany
 might not have been obtained if free scopese had been itiven The minimisising of obstruction during the builining of the Thre mimimising of ootruction during the bailding of the
bridge seems also
ato
have been ighored, and the unaul impediiments of oflerdams and staging may be expected
if the City deign is curried out. 1 It will be seen tron the if the city deeign is carriva out It win be seen from the
project teseribed on pagge 555 that theso impediments are Long as London
Long as London has waited for a bridge at this site, even now the authorities do not seem to grapp the import
ance of the whole guestion ; and this is apparent in the finan ein lapeect of the cosion, aspat forward. pphene estim thed

 drawn, , ss there are no fundsa available to pay such claims
Now, though we by no means desire to see money Nopplied unghe wesarily to compensanstionsire tor doubtrul monees
 London conld afioro to pay for her mina draingo, for the
 viev should be taken of the matter. The opening span is
not likely to be used long. $A \mathrm{As}$ we have often pointed out,
 survive many years longer, and then, as population and
street traftic grows, he Tower Bridge will
have more and more thrown upon it. As pointed out in the esheme of
Mr. Ordish and Mr. Matheson, the railways will want croses and it would bebut prudent foresigitit to provide for this contingency, and and not only gave the trooble and diş
putes which the claim for a new railway crosesing would cause, but obtain from the railways a valuable contribution to the expenses now incurred.
If the Corporation are con
If the Corporation are content to make ooly a bridge
sutficient for the present day - if they p plead poverty reason for doing anything but the best then it it it
evident they do not realise the situation The time is not evident they do not realise the situation The time is not,
goo far ans they are concerned, ripe, and they had beter withdraw and leave the matter to other hands, Unfortumately, the vievs we advance are not likely to bo listened to
in a Parriaimentary Committee, for those who have a loceus standi, and have petitioned anganst the Bill, are opposed to a bridg a a all, and are not intereteredin hiowing that Metropolitatas Board of Worksking the Corporation will give a hearing to outside views, a Royal Commieis
should be appointed to gather independent testimony.

Turgre are an present many patented compositions in
he market, ench climinin to be the best that can be used the market, ench claimining to be the best that can be ued
for keeping steam pipes and boilers warm. We have not the smilestintention of pronouncinin an opinion onoerning the relative merits of thees materials; our purpose is to
say a fev worts which my nerve as a general guide to the steam user who has to select one. In other worts,
 to state here. It goos without saying that the coating

 to their use under certain circumstances, as, for example,
in yachts, where a ton of boiler coating may mean a ton less coal carried, or a reduction in speed. The coating
ought to be waterproof, in the sense that it will ought to be waterproof, in the sense that it will
not suffer water to get to the boiler from outside, and yet it ought to show in a few minutes a leaking the material of the boiler, and it ought to admit of being nicely finished. Lastly, it is highly important that many coatings are very deficient, although otherwise good. many coatings are very deficient, although otherwise good
To explain what we mean, we may suppose the case of two boilers-one coated with one material and the other with a different composition. The first one rises, we shall say, in contact with it; the second rises to 180 deg. or 200 deg . Yet the latter may be really the more satisfactory material of the two, because, radiating less freely, the boiler-room
will be cooler. Thermometer tests made by contact are indeed of very little value; the radiation test is that on which most reliance should be placed. The thermometer should be held at a distance of 3in. from the surface of the sary in such cases to prevent the influence of currents of air being felt,
A great many
made from time to of different materials used as clothing for steam boilers and steam pipes. The system of testing adopted is nearly
 clothed with the material whose value as a nonconductor of heat is to be ascertained. The quantity of steam condensed in a given time with two or more comAt first sight this seems fair, trustworthy, and accurate; but At first sight this seems fair, trustworthy, and accurate; but
it is quite possible to admit no small errors. Professor J. M. Ordway recentlysent a paper on this subject to be read before the American Society of Mechanical Engineers. He herein gives some particulars of experiments he has carried out. He used a number of blind pipes of various flly pocketted and trapped, to get rid of water, so that were coated with the material whose value was being investigated. Arrangements were so made that the water could be withdrawn, and measured, from the pockets and traps; but Professor Ordway states that "the condensation by no means proportionate to the found anomalous, and by no means proportionate to the lengths. I have been
much puzzled to account for the strange behaviour of these pipes, and have even gone so far as to change the It is evident that the water formad does not all find it way into the proper pooks and that moving steam must carry forward a little." Professor Ordway very properly points out that if water is entrained with the steam the esults of the test must be deceptive. To make this quite clear it is sufficient to say that the test consists simply in
finding out how much water is discharged from a steam pipe cooled with the composition being tested in an hour or menter ; but the worst material may be easily made to appear the best if dry steam be supplied to it and wet with him, that the steam should invariably be tested for its hygrometric quality, and he states that since he adopted the calometric method of testing has found that in many trials the steam was dry while in others it was wet, the of the whole. "This priming," he says, " comes suddenly and mis based on the latent heat of the condensed steam. As there is no instrument which, like the thermometer, render and unknown." Another source of inaccuracy is thaspected and unknown. Another source of inaccuracy is that the condensed water being drawn off frequently, is at a highe temperature than 212 , and the moment the cock is opened It is very diffiult to fashes into steam and is lost as water It is very difficult to obviate this, and at the same time apparatus.
As to the value of different materials tested by Professo Ordway after he had adopted the calorimeter method of testing-that is to say, after he took care to ascertain what
percentage of water the steam really containedpercentage of water the steam really contained-he gives
some particulars which are interesting. The best coating he employed was made of cork strips put on and cemented ogether with water glass. Whether the water glass would or would not make the cork incombustible we are unable to say; but we remember some years ago that certhe ignition of the coating of a boiler and steam pipe into the composition of which coating cork entered largely. Professor Ordway carried out a number of very interesting experiments by constructing on the upper end
of a vertical steam pipe $7 \frac{1}{5}$ in. in diameter a species of cell of a vertical steam pipe $7 \frac{1}{2} \mathrm{in}$. in diameter a species of cell
which could be filled withany material whosenon-conductin power was to be tested. A brass vessel containing water and 6 in , in diameter, could be arranged at any required
distance from the cap of the steam pipe, so that it rested on the material in the cell. The elevation of the temperature in the calorimeter in a given period measured the conducting power of the material placed in the cell to be tested. Professor Ordway gives a table of the results he per hour through a thickness of 25 mm ., , say, lin. From this table it appears that wool was by far the best non-conductor of twenty-nine materials tested, its coefficient being 4. That of compressed cotton was 4.5 ; of
compressed fossil meal, $7 \cdot 7$; of the loose meal, $7 \cdot 2$. Thi meal is Kieselguhr-the same material used to absorb nitro glycerine when dynamite is being made. Fine washed pumice-stone flour, $15^{\circ} 4$, while air alone gives $23 \cdot 7$. Professor Ordway calls attention to the interesting fact that air at such a temperature as 311 deg ., corresponding to a
steam pressure of about 80 lb ., is of little or no value as a
non-conductor. Something is wanted to prevent the air from moving. It is well known that the principal value whether for boilers or human beings, depends on the air entangled in the interstices of the stuffs. It appears, therefore, that the spaces someth will play the pays Ordway eplusions on this point are novel for most engineers hold that an air space is as good a non-conductor as it is possible to employ.
the mileage of screw shafts,
Notwithstanding the complaints made from time to time against engineers about the failures of screw shafts at sea, the work to be done by any given shaft is not easily
expressed, at all events from the lecture-room point of view. In engines of the highest class and best design the twisting moments are far from uniform, as may be seen by an examination of stress diagrams, the prominence and depressions representing the Taryll work is the the more or less in the condition of a torsion balance, and doubtless has its period of vibration. This period may doubtless has its period of vibration. synchronise with the irregularities of the engine effort either at the normal speed of revolution or at the higher rate of revolution, as when racing. The longer the line of shafting the greater the amount of torsional deflection isof course other things being equal. Again, the varying immersion of the screw propeller blades is the cause of severe straining in heavy weather. Other and probably of form to which the ship may be subject due to the of form to which of shay different conditions of a at the ends-the shafting will generally have sufficient elasticity to fall into its position in the pedestal blocks by gravity, and probably in the opposite condion of the vessel the elastic limit transversely. Yet, as has been pointed out before in jour 1800 pointed out before in jo mand is made one Any change of the vessel's form due to wringing necesases the evils due to hogging or sagging, as in bad weather it may occur with either of the latter. The least surg portion of the screw shafting, by reason of in diameter than the rest, is often known to break. How far this may be due to deflection and gripping in the stern tube must be an open question.
With the increasing size of screw shafting, and the fastgrowe 8 ravor flexure which sifl when the unsupported portion of the stern shaft is made stiff by an increase of diameter, as noticed in a paper read at the Institution of Naval Architects this recent Admiralty practice. The occasional breakage of strains on shafts at sea, for in a perfect arrangement these should be subject to shearing only when going The combination of stiff shafts with a yielding ship is bably be less felt in vessels of H.M. Navy, as they usually are possessed of a large amount of longitudinal strength to of the size alluded to in Mr. Linnington's paper, about 45ft, between the bearings, and of an enlarged diameter to provide stiffness, would probably prove a great source of trouble if used in a merchant vesson shation of steel for iron shangs. The almost as in the case of steel and iron rails, but it must be borne in mind that the endurance of steel has its limit; and although transverse deflection is said to impose an additional duty on a revolving shaft doing work, yet by going to the other extre and roaking propeller shaft unduly rigid, severe local and occasional stresses may be set up which, if they do not cause fracture in the shafts
themselves, may cause trouble in the neighbourhood of stern pipes, bearers, or engine bearings.
The provision of a certain small amount of elasticity is generally said to encourage durability in the webs of loco motive crank axies, and in the case of screw shafting lexibimodate itself to the changes of form in the vessel which, although slight, cannot be utterly ignored. With greater experience of a material of more uniform strength, such as steel will shortly become, the lifetime of a marine crank or screw shaft may in time perhaps be predicted without any serious error. A steam vessel doing, say, $12 \frac{1}{2}$ knots per hour with sixty revolutions, makes about 288 revolutions per nautical or 250 per statute mile. This number of wheel makes per mile. Taking 120,000 miles as the life of makes per inle. Taking 120,000 miles as the life revolutions is $120,000 \times 250=30,000,000$. A screw shaft will in this number of revolutions have driven the ship $104,000 \mathrm{knots}$, or about eighteen trips to New York and back. If a month is allowed for each trip, eighteen months is the lifetime on the same terms as those of the locomotive crank axle; as, however, shafts usually last much longer than this, it seems that the conditions under which they are used are more favourable than those this iecide the longevity of railway axies. No douit concussions to which a locomotive crank shaft is submitted. It is not pretended that the cases are capable of close comparison, the only object of the preceding figures being to or its shat some allowance should be made for mileage for broken screw shafts. It is, we shall add, highly desirable that Lloyd's should collect and publish some data on the mileage of screw shafts, with the size of each shaft, the number of bearings, and the power transmitted
through it. This is of all others the kind of information
most wanted just now by mariue engine builders. Data abundant, but they are not made public as they ought to be.

steamships and war risks in mutual offices

 ThE uncertainty that has prevailed politically of late has brought to the front a question of great interest that can politics before; it is that of the war risks on steamships insured in mutual assurance associations, In these the risk is nominally undertaken by the clubs; it is one that is included in the risks assured against, but practically it is one that has not been contemplated, for since the organisation of these clubs for steamships we have had no war with any great Power. It is now seen that the inclusion of these risks does subject the vessels to differential treatment without a differential rate. If two vesselsinsuredin these clubsaretaken as an example, one of whichaccepts freights that are near peril, that is to say, for instance, accepts a high rate of freight to a port in a country that may be an nemy serore the work is completed, and ir the other accepts tection than the other, but the charge to both is at the same percentage. It is now seen that this involves in times like have taken a moderate freight, say, to an American port, and the other a very high rate to the Azoff, but though the danger is much greater in the latter case than in
the former, yet both are assessed to contribute at the same rate to the assurance association. The risk to the atter in case of seizure is very great, and the question has in the last week or so been much discussed as to whether it is desirable to equalise the matter by increasing the charge to the high rates of freight, or whether it is expedient to prohibit the rade to ports that may be called perilous in periods such as that of the past and present month. It is a question that needs to be carefully thought out in the interests of the shipowners themselves, and it is one that has many branches, and that may lead to very considerable improvements in the methods of ing losg the contributions of steamships to the funds for meetvery greatly, according to the type of the vessel and the nature and locality of the work.

LITERATURE.

Modern Shipouilding and the Men Engaged in it. By David
PoLlock, Naval Architect. London: E. and F. N. Spon. 1884.

The author explains in his preface that his object in producing this volume has been more to enlighten the general reader than to interest or inform the expert. Being chiefly historical, the book is also limited as to its originality. To be accurate and lucid, as well as fairly comprehensive, is the most that can be demanded; and to this extent Mr. Pollock has achieved success. The author has set before him a double task, seeing that he deals not only with ships, but also with those who build them, or who are in some way connected with them. Thus we have a series of portraits and succinct biographies scattered through the chapters treating of the various departments of marine architecture. Even the professional man may find this handy volume useful, while to those who have only an outside knowledge of the subject the several chapters will convey a vast amount of information presented in a very readable form. Although dealing exclusively with shipbuilding for the mercantile marine, Mr. Pollock has found a wealth of materials at his disposal which he might easily have extended over a much wider space. Beginning with a generous recognition
of the merits of the Great Eastern- "Brunel's grand audacity "-we are shown how the colossal proportions of this extraordinary ship are being approached by recent constructions. A prediction is quoted that in the course of a few years we shall see steamers of eight hundred feet in length acting as "the ferry-boats of two oceans, with America for their central station, and Europe and Asia for their working termini." No doubt our shipbuilders only want the order, and they can produce the ship. The failure of America to compete with England in the production of ocean steamers and in the conduct of the carrying trade is, of course, due to the narrow policy under which American shipbuilders have shielded themselves from foreign competition. But the elements of marine architecture are many, and in this scientific age scarcely anything is more remarkable than the changes which relate to the construction and working of ships. Thus we have the introduction of the compound engine and engines of the triple expansion type, the more extended adoper ballast, and other innovations, The progress of ocean steam navigation is a marvellous chapter, and we are stillleft to believe that the fastest possible steamship has not yet made its appearance, despite the intense competition which has animated the Transatlantic companies. The value of steamships capable of travelling at high speed has been recognised by the Admiralty, and has given rise to the scheme of the auxiliary mercantile fleet, lately applied on a large scale in anticipaAdmiralty plan there comes under review the ques tion of water-tight compartments and the safety of ships. Double bottoms belong to the same cate gory, and mild steel also comes in aid. Progress
the science of shipbuilding furnishes the author with fruitful topic, which he handles with much ability ; and towards the close of the book there is a description of
some of the more notable shipyards. Taken throughout, we have in this volume a very able review of an extensive subject, treated in a manner which is popular without being superficial. The portraits-fifteen in number-are has been flattered. That which is wanting on the part of the artist is, perhaps, compensated by the statement of the biographer, that Sir Edward "has recently devised and patented a method of construction for warships which will reduce to a minimum the destructive effect of marine torpedoes and which promises to revolutionise present structural systems" A pcording to this, wonderful as th past has been, there is something considerable ahead.

THE WENHAM LIGHT

As interesting new lamp for the economical consumption of common gas has been invented by Mr. F. H. Wenham, C. .., LampCompany, and isshowninactionattheInventions Exhibition. The claims made by the company as to the economical advantages
of the lamp are exceedingly large, namely, that it increases the of the lamp are exceedingly large, namely, that it increases the
illuminating power of common gas from 200 to 400 per cent., illuminating power of common gas from 200 to 400 per cent.,
and that, too, without charging the gas with additional hydroand that, too, without charging the gas with additional hydro-
carbons. In the Wenham lamp the gas is burnt downwards carbons. In the Wenham lamp the gas is burnt downwar it
instead of upwards, and the common air is heated before it reaches the flame; as a gas flame consumes about fifteen times as much air as gas, care is taken to heat this air as much as possible before it comes into contact with the gas. The flame of the Wenham lamp has the form of a flat, horizontal ring, resembling a quoit in shape, but not so large when the lamp is of any ordinary size. The flame has no invisible or blue part to it, but over its whole area is intensely and equably luminous, and
is more painful to the eyes than a gas flame to look at for any is more painful to the eyes than a gas flame to look at for any
length of time because of its brilliancy, and its being richer in length of time because of its brilliancy, and its being richer in
the rays of the blue end of the spectrum. There is little or no fliekering with the flame, or variation in its form, but it is simply a steady, luminous ring.

The accompanying diagram, Fig. 1, represents the whole arrange ment. In this cut A is the air inlet, and B the regenerator heat from the gas-flame below to communicate it to the in coming air. A cylinder C conveys the heated air to the burne through perforated discs; D is the burner, E the flame, F the reflector, G the fastener of the ring J , which carries the lamp-
glass K , and has a hinge at H . The chimney is at L, M is the glass K , and has a hinge at H. The chimney is at L, M is the
gas supply pipe, and N the heat disperser. It ansly pipe, and N the heat disperser.
It was necessary that the glass hemisphere K K should be light, and this was a difficulty, most of those in the marke lighter form and better quality are made in Paris. Theme o pany so far has been of flower shades, and fitted with an artificial rim invented and patented by Mr. Wenham ; it consists of a band made of asbestos, cemented to the glass by silicate of soda.

A section of the burner is represented in Fig. 2. In this cut A is the porcelain burner, held in position by the ring $\mathrm{B} . \mathrm{C}$ is a perforated disc, and D a perforated button; E the stem supporting the button, F the gas way to the burner, G a perforated dome, H a ring secured by a bayonet lock, K the external cylinder, L the gas supply pipe, and M the flame. The gas Mr. Wes in a horizontal curve from a ring of holes in the burner. Mr. Wenham finds that to get the best light, the gas must issue in a series of streams rather than as a thin sheet; the air gets little projections begin to appear at the outside edge of the ring of light, the arrangement is giving the maximum illuminationg The external appearance of the simplest form of the Wenham amp is represented in Fig. 3, but it is, of course, made of various shapes and sizes, and with more or less attention to the requirements of the luxurious
Mr. F. W. Hartley has photometrically tested the illuminating power of the flame of the lamp at 45 deg . from the vertical, and gives the following certificate of the results:-

Lamps tostod.	Gas burned per hour.	Total light obtained.	Light per Cubic foot of gas.
No. 1	Cubic feet. $6 \cdot 4$	$\begin{gathered} \text { Candles, } \\ 55 \cdot 00 \end{gathered}$	$\begin{gathered} \text { Candles, } \\ 8^{\circ} 60 \end{gathered}$
" ${ }^{2}$	$12 \cdot 9$	122-50	$0 \cdot 50$
" ${ }^{3}$	$15 \cdot 2$	171.00	11.40

Mr. Hartley remarks about the above figures that the vertical
lighting power on the average of the tests was more than 50 per cent. greater than with angular lighting. The "total light" and and the figures give the number of these which it would have been needful to burn at one time to produce a light equivalent to that of the Wenham lamp. The average amount of light yielded per cubic foot of gas burned from an average burne does not exceed, he says, the equivalent of $2 \cdot 6$ standard sperm candles.

Dr. John Hopkinson, F.R.S., and Mr. George Livesey have so tested the flame of the lamp photometrically; their results, given below, agree closely with those of Mr. Hartley:-

Lamp.	Feet per hour.	Total light.	Equivalent per cubic foot.
No. 1	$6 \cdot 4$	$\mathrm{C}_{54 \cdot 1}^{\text {Candlos, }}$	$\begin{gathered} \text { Candles. } \\ 8.5 \end{gathered}$
2	12.8	121.6	$9 \cdot 4$
" 3	$15 \cdot 1$	$173 \cdot 9$	$11 \cdot 4$

In these tests, taken at 45 deg. from the vertical, reflectors were desire the experiments were made with the lamps complete with their reflectors, just as they would be used, and the light was tested both at the vertical and angularly at 45 deg." The average
light directly under the lamps at the same distance from the flame was about 55 per cent, more than at 45 deg.
Some photometric tests of the economy of the Wenham light, made in comparison with an ordinary gas flame under the same
conditions in each case-that is to say, both without refleotorswould be of scientific interest, At the same time the Wenham light is of unusual brilliancy, as any visitor to the Exhibition may see at a glance.

CONTRAOTS OPEN.

FLEXIBLE BUFFERS AND SOREW COUPLINGS FOR WAYS.
The Indian State Railways require tenders for the screw couplings Secretary of 'State for on page 368. Tenders, addressed to the for flexible buffers and screw couplings" on the envelope, must be delivered at the India-office, Westminster, S.W., before 2 p.m. on Tuesday, the 12 th May, 1885 . If delivered by hand, they are to
be placed in a box provided for that purpose in the Store Departbe plac
ment.
The
truction, supply, and delivery in England at onsists of the conports named in the conditions and tender, of 746 sets of flexible bffers and screw couplings, complete, with steel and india-rubber Every part of theoks, with pins complete, for flexible buffers. structed of wrought iron, india-rubber, or steel. The coupling hooks, coupling bolts, nuts, washers, and pins, coupling blocks, yokes, yoke pins, and washers, screws, connecting-rods, and con-necting-rod pins and washers are to be forged from Lowmoor iron
supplied direct from the Lowmoor Company. The yoke nuts and serrules are to be of steel. The wrought iron. The for the nuts and is to be of some best best brand, which is to be of a quality and made by a manufacturer approved by the Inspector-Generail, and equal to a tensional strain of 21 tons to the square inch, with a contraction of 10 per cent. of tested area for all plates, 22 tons
tensional strain with a contraction of 15 per cent. of tested area for all channel, T, and angle irons, and 24 tons tensional strain with a contraction of 20 per cent. of tested area for all flat and round bars. The steel for the yoke nuts and ferrules is to be of
such a quality as is equal to a tensional strain of not less than 27 tons, and not more than 31 tons, per square inch of sectional area, and will exhibit a contraction of area at the point of fraction
of not less than 30 per cent. The steel of which the volute spring of not less than 30 per cent. The steel of which the volute springs
are to be made is to comply on analysis with the following conditions, namely, its carbon must not exceed 9 or be less than ${ }^{6} 6$ per
cent., and silicon, phosphorus, and sulphur must not be present in cent., and silicon, phosphorus, and sulphur must not be present in
greater proportion than 06 per cent, each. The manganese must greater exceed 6 per cent. One spring in each 300 will be selected by not exceed ' 6 per cent. One spring in each 300 will be selected by
the company's engineer, and will be subjected to complete analysis, Should this analysis show the carbon, silicon, phosphorus, or man ganese in the steel to exceed the specified maximum, or should the carbon fall short of the specified minimum, the 300 springs repre sented by the spring showing such defective analysis will be
rejected. The india-rubber used for the work under the contract must be of the best quality and free from objectionable smell be free from the iron is to be well and cleanly rolled, and mus blemishes. No iron of foreign manufacture is to be used. When
scrap iron is used, it must be cleaned in a properly constructed machine before being used for the manufacture of forgings.
The intention of this contract is that every piece of iron shall be
manufactured with such accuracy thet manufactured with such accuracy that any piece may be used
without dressing of any kind, in the place for which it is designed To ensure this every piece must be made from a carefully prepared metal template or gauge, and all holes in it must be drilled. It
must further be drilled through the holes in the template, so that must further be drilled through the holes in the template, so that
the corresponding parts in the different articles may withon the corresponding parts in the different articles may without
doubt be exact duplicates of each other. All templates and gauges must be provided by the contractor. at his ownlates an and must be of such material, and made in such a manner, and be renewed as often as the Inspector-General shall desire. The standard length of the coupling hook, measured from the centre from which the rear bearing surface of the hook pin-hol is struck to the inside of the nose at the tip, is to be 12 in .,
and from the same centre to the bearing part-at the root12 in. The bend in the hook must be made so as to allow of effective contact on the proper surfaces of the hook and
coupling block when the lower or higher than the centre of the other buffer head, both buffers being placed horizontally in position for coupling. The
buffer heads may be dabbed on to the buffer heads may be dabbed on to the jaws under a steam hammer,
kut great care must be taken to secure a thoroughly sound weld

THE INVENTIONS EXHIBITION-MESSRS. GOODFELLOW AND MATTHEWS' ENGINES.

[^0]RAILWAY MATTERS.
IT is estimated that the railways in America employ, directly and indirectly, $2,000,000$ men.
RapiD progress is being made with the connecting line between
East and West Bournemouth, a short but expensive piece of line, East and West Bournemouth, a short but expensive piece of line,
involving a good deal of viaduct work, and comprising a new station at Bournemouth East.
The Berber Railway to Otao, with a siding and an unloading to go on, as they have enough rails to reach Ariab. It is said that the line will be doubled from Suakin to this place.
To secure the control of the emigrant husiness towards the
United States, the Pennsylvania Railway Company has reduced the fare from New York to Chicago to as low as one dollar. By
this means the company has obtained the bulk of the emigration this means the company has obtained the bulk of the
traffic, the other companies having given up the contest.
A paper on "Cast Iron Car Wheels," recently read before the American Car Builders' Club, gives information from which it
appears that the ordinary cast iron wheels on the Buffalo roads appars that the ordinary cats iron wheels on the Buffalo roads
break 28 to 1 of the wrought iron and steel tires on English railways, and that the best wheels used on the
Erie lines break 6.4 to 1 of the English tires,
The Canadian Pacific Railway Company has completed the line
between Halifax and the Rocky Mountains. It has notified the British Government that in a fortnight it will be able to carry troops by rail from Halifax to the Pacific coast, the transit taking
seven days. This will be of advantage in the sending of troops and supplies to Vancouver Island and other points on the Pacific.
The Connecticut Legislature has refused to pass a law requiring projected rail ways to be submitted to the railway commissioners
or approval before construction. The A merican Railuay Revier says:-"This is disappointing. Either it or something similar
should be urged before other Legislatures to a final enactment. It is better even to bear the 'parliamentary expenses' evil which has grown up in England, than to continue to
effects of the speculative paralleling schemes."
ON English lines, the failure of tires is about 1 in 1631 . The fifteen or twenty of the largest manufacturers; but even these best makers the contrast is very marked. Thus, on the Erie,
the best maker of all had, in 40,000 wheels, 32 in 10,000 break the best maker of all had, in 40,000 wheels, 32 in 10,000 break;
the next best had, in 43,000 wheels, 46 in 10,000 break; the next
the in $40,000 \mathrm{wheels}, 110$ in 10,000 break-giving the average of 63 in ,
Mr. Whilias Twernis, A.M.I.C.E., has been appointed chief engineer and superintendent of the Porto Alegre Railway, in
Brazil He leaves England for Rio Grande on May 24th. Mr.
Tweedie has had long experience in Brazil, and was chief engineer Twoedie has had long experience in Brazil, and was chief engineer
of the Sao Gerompno Railway, the first line opened in the province of Rio Grande do Sul. Since the opening of that line ten years
ago, this large and fertile province has made rapid strides, and
there are now some hundreds of miles of line in operation and in course of construction,
These acoidents on American lines during last March are classed as to their number and causes by the Railroad Gazette as follows:-
Collisions: Rear, 19; butting, 14; crossing, $3 ;$ total, 36 . Derail ments: Broken rail, 10 ; broken bridge, 2; spreading of rails, 5
broken wheel, $2 ;$ broken axlen $6 ;$ broken drawhend, $1 ;$ droppee
brake-beam, $1 ;$ wind, $1 ;$ misplaced switch, $1 ;$ malicious obstruc brake-beam, $1 ;$ wind, $1 ;$ misplaced switch, $1 ;$ malicious obstruc
tion, $1 ;$ unexplained, $13 ;$ total, 43 . Other aceidents: Broken
parallel rod, $4 ;$ broken wheel, not causing derailment, $1 ;$ over head bridge, 1 , car burned while running, 1 , total, 7 . As usual,
derailments oontitute about 0 per cent. of the whole of the acc1-
dents, and about 30 per cent. of these are unexpline dents, and about 30 per cent. of these are unexplained.
NEGLGESCE in operating is charged with 25 per cent. of all the
accidents ; defects of road with $25 \frac{1}{2}$, and defocts of equipment with 21 per cent. A division of the accidents on American lines in February acoording to classes of trains and acoidents
the Railroad Gazecte as follows, and is very instructive

Total

 Of the total number of acoidents, 138 are recorded as happening largest rocorded for many months, and is explained by the severeweather and the many snowstorms, which made the month a more trying one to railroady men than any which they have experienced
for several winters, The following engine-driver's story of a brakeman is given in
the Chicago Herald:-"Several years ago I was running a fast the Chicago Heralid. Several years ago I was running a fast
expres., One night we were three hours behind time, and if
theress anything in the world I hate, it's to finish a run behin schedule. These grade crossings of one-horse roads are nuisances to the trunk lines, and At had crossing I had never seen a train at
slacking up for 'm. At one that time of night, and so I rounded the curve out of the cut at
full tilt. I was astonished to see that a freight train was standing right over the crossing, evidently intending to put a fow cars on
our switoh. I gave the danger whistle, and tried to stop my train but had seven heavy sleepers on, and we just slid down that grade, spite of everything I could do., Quicker than I can tell you, the
brakesman of that freight train uncoupled a car just back of our crossing, and signalled to his engineer to go ahead, which he did
sharply, but of my, engine took the buffer off the rear car. Through that pittle hole we slipped, and lives and property were saved. Now, that
brakesman was only y ommon railroder, yet he saw that situa-
tion at a glance. There wasn't time to run his whole train off the crossing, nor even half of it- barelely time to pull up one car length
by prompt, quifk work. He kept his wits about him as, I venture os say, not one man in a thousand would have done, and saved my
reputation if not $m y$ life. He is now a division superintendent of reputation if not my life. He is now
one of the best roads in this country.
THE following is given by the Chicago Herald on "Kentuoky,
 electric or pneumatio signals?' 'No, sir,' 'Have you a double
track?' 'No.' 'Well, of course, you have a train dispatcher, and run all trains by telegraph?' 'No.' 'I see you have no
brakesman. How do you flag the rear of your train if you are, 'Great freavens! What a way to run a railroad. A man takes
And
 you can get off and walk. I am the president of this road and its
sole owner. I am also the board of directors, treasurer, secretary passenger mager, superintendent, paymaster, track-master, general agent, conductor, brakeman, and boss. This is the Great Western
Railrond of Kentucky, six miles long, with termini at Harrodsburg Railroand of Kentucky, six miles long, with termini at Harrodsburg
and Harrodsborg Junction. This is the only train on the road of
any any kind, and ahead of us is the only engine. We never have col-
lisions. The engineor does his own fring, and runs the repair-shop and round-house all by himself., He and I run this here railway,
It keeps us uretty bysy, but we've always got time to stop and ejeceps us pretty busy, but we ve always got time to stop and
thasonger. Do you want to behave yourself and go go
thaysthas, wo will you have your baggage set off here by the
haystack

NOTES AND MEMORANDA.
A NEW alloy known in Germany under the name of " glass com.
position" is said to possess good qualities for bearing surfaces. It position is sarid to possess good qualities for bearing surfaces. It
contains a certain percentage of a vitreous substance, stated to be
sufficient to contains a certain percentage of a vitreous substance, stated to be
sufficient to impart to the alloy a durability and uniformity not
hitherto reached, while even at high speeds the heating of journals is said to to be avoided. Wxperience does not seem to point to proba-
Expen at high speeds the heating of founals bility in this, but it is seriously stated.
THE total number of biler explosions in the United States in
1884 was 152 , by which 254 people were killed and 1884 was 152 , by which 254 people were killed and 261 others
injured. This number falls slightly below that of the preeeding year. Fifty-six of the explosions were of sawmill boilers. The percentage in 1884 was 37 per cent. of all the explosions, instead
of over 40 per cent. the year before. There was a falling-off of two in the number of loce boiler explosions from the record IV preceding year.
Iv the absence of a duly authorised and official standard of filtration regulating the volume of water to be passed through a
given area of sand in a given time, it has been found during the past twelve years that when the rate of filtration does not exceed
540
gallons per square yard of filter bed each twenty-four hours 540 gallons per square yard of fiter bed eaci twent-four hours
the filtration is eftectual; and this has been generally recogised
as a tentative standard rate of filtration. The water companies all as a tentative standard
keep within this limit.
ONE thousand cubio feet of nitrogen weigh 80 lb , at a tempera ture of 32 deg. Fah, and a pressure of 151 lb . per square inch,
oxygen weighs 901 b ; the mixture of 770 lb . of nitrogen and 230 lb . of oxygen makes 10001 lb . of common dry air. As the oxygen is heavier, it occupies less bulk in proportion, so that if we take the
air by bulk, 790 cubic feet of nitrogen and 216 of oxygen make 1000 cubic feet of air, which will weigh 821 b . The amount of
watery vapour is very variable, changes from hour to hour, and watery vapour is very variable, changes from hour to hour, and
differs in localities; but the small amount of carbonic acid is less
俍 variable, and
that amount.
Accordivg to a correspondent of the Journal of the Franklin
Institute, there were compound engines at work on the Hudson as Institute, there were compound engines at work on the Hudson as
early as 1830 or 1832 in two steamboats-the S wiftsure and merce. Their engines were of the upright square form, or cross low-pressure being abaft the paddle-wheel shaft, and both connected to it by cog-wheel gearing. About the same time the Post Boy,
with similar machinery, built by Mr. Allaire, was sent to New Orleans. In the machinery of the above steamers, the exhaust steam of the high-pressure cylinder passed directly to the low-pres-
sure cylinder without the intervention of valves or reciver between the two cylinders. The Swiftsure and Commerce were in use for several years, and the machinery of the former was subsequently taken out and rerppaced by the orrinary beam engines. The compound
engine built by the late Erastus Smith was of the ordinary beam pattern, except that it had two steam cylinders, the higharppeasume
being within the low-pressure cylinder. Their respective diameters being within the low-pressure cylt.
were 37 in , and 80 in ., stroke 11 ft .
HERREN MUTHRL and Lutke, of Berlin, have dévised a process for the manufacture of varnish. Oxidated combinations of the metal loids, which by an elevated temperature lose a part of their oxygen,
are formed by the influence of electricity. Suitable for this purpose are mixtures of equivalent quantities of chlorine and vapour water, sulphurous acid and atmospheric air, oxygen, or hyponitric
acid, protoxide of nitrogen gas is submitted during some time, in condensing apparatus, to
strong electrio discharge, produced by a dynamo and an induotion
dy apparatus. In this manner 2 HCl and O give birth to Cl_{2} and $\mathrm{H}_{2} \mathrm{O}$, and $\mathrm{S}_{2} \mathrm{O}_{\mathrm{O}}$ form by electrification a mixture of SO_{2} and atmospheria
air.
This 80 deg. Cent. Oxidised gas is sent through the oil while it is being agitated, and the decomposition of the glycerides is rapid. The
products of decomposition are regenerated or burnt, and the clean products of decomposition are regenerated
product is washed with ammoniacal water.

Capt. L. U. Herexderex, of San Francisco, communieates to

 scicnce the following notes on prehistoric structures in MicronesiaA few years ago I visited Ponapé Island, in the Pacifo, in A fow years ago 1 visited Ponape sland, in the Pacific, in east
longitude 158 deg. 22 min. and north latitude 6 deg. 50 min. The island is surounded by areen, with a broad ship-channel between it
and the island. At place in reef there were natural breaks
that served as entrances to the harbours. In these ship-chanels there were a number of islands, many of. which were surrounded by a wall of stone 5 ft . or 6 ft . high, and on these islands there
stood a great many low houses, biutit of the same kind of stone as the wails about them. The walls are a fore or more bolow the
water. When they were built, they were evidently above the water, and connected with the mainland. The natives on the
island do not know when these works were built ; they have even no tradition of the structures. Yet the works show signs of great
skill, and certainly prove that whoever built them kne how to transport and lift heavy blocks of stone. Up in the mountains of the island there is a quarry of the same kind of stone that
was used in building the wall about the islands, and in that quarry to-day there are great blocks of stone that have been hewn out, read
In a lecture on acoidental explosions produced by non-explosive liquads, sir . A. Abel said. It has been proved experimentally
that if the reservir of a burning lamp be warmed so as to favour
the emission of fapour into the opening in the top of the reservoir be then uncovered, air will be vapour, which, espater ang from form the lamp explosive mixture to the wiok with the the
will of danger introduced in the construction of lamps which should be openings of considerable size close to the burner, apparently with the object of affording a passage for the air, or vapour, in the
reservoir which may expand as the lamp becomes somewhat warm. A simple arrangement which would effect the desired object with perfeet safety, and would at the same time protect the lamp wicks
from deterioration by the grosser impurities sometimes contained in portions of a supply of oil, is to attach to the bottom of the bunner a cylinder of wire gauze of the requisite fineness -28 meshes
to the inch-which would contain the wicks, and would allow the passage of air or vapour through it towards the burner, while it
would effectually prevent the transmission of fire from the lamp In a paper recently read before the Chemical Society, on "Combustion in Dried Gases," by H. Brereton Baker, B.A., the author necessary for the combustion of carbon and phosphorus in oxygen. The phosphorus used-commercial amorphous phosphorus-had
been washed with water and dried at 100 deg. in a a current of carbon dioxide previously passed through two wash-bottles of sulphurio
acid; it was then heated in a Sprengel vacuum at $150-160$ deg. The carbon-finely powdered chareoal -had been heated to bright
redness in containing it was then transferred to an air bath and heated at 200 deg., while a current of dried air was passed through it. Portions
$\left(0^{\circ}-1-1\right.$ gramme) were sealed up in bent hard glass tubes along with phosphoric oxide, the tube being filled with oxygen prior to sealing;
to freo the glass from adhering moisture, the ends of the tube containing the carbon or phosphorus were heated in an air-bath at
$130-150$ de $130-150$ deg., the other ends beeng kept cool. After about eight
days, the tube eontaining phosphorus and dried oxygen and another
similar tube with phosphorus in oxyen similar tube with phosphorus in oxygen saturated with water were
supported at the same eight above the flame of an trgand buner supported at the same height above the flame of an Argand burner
the phosphorus in the weet gas soon took fire, but that in the dried

The Crystal Palan MISCELLANEA
HEL Crystal Palace Company has just published its programme
or the season 1885. It contains a great many special a atractions GaLVANisED iron tanks for holding drinking water are not
allowed on board the French men-of-war, because zinc carbonato THE Chilian ironclad Esmeralda, of which an account was
recently given in our columns, has arrived at Panama. It is reported that a contract has been made for the transfer of this THE committee appointed to consider the question of forming
"Textile Institute of Great Britain" have decided in its favour, and forms of application for membership can be obtained from Mr,
T. R. Ashenhurst, Technical College, Bradford. A SYNDICATE formed by the tradesmen of the Palais Royal in
Paris has decided to light the shops, the galleries, and the garden by electricity. The central station, in which the neoessary works
are to be commenced as soon as possible, will be arranged for 3000 incandescent lamps.
A stran boiler in the Tremont Hotel, Galveston, Texas,
exploded on Sunday, killing four persons and wounding six, while the building was somewhat shattered. The exploded boiler was hurled to a great distance, passing through four small houses,
which it partly demolished, and finally lodging in the fifth house,
one hundred yards a way.
THE Maine is to be made into a canal, with a uniform depth of
2.50 metres-8tt. 3in. - by means of weirs and locks. The nature of the river and its banks makes it peculiarly suitable for this reatment. In the plan which is now being carried out, there are
five weirs at Frankfort, Hochst, Okriftel, Raunheim, and Kostheim. At each of these places there is on the left bank of the river a for rafts. for rafts.
A NEW Act has been passed for the regulation of the bituminous
coal mines of Pennsylvania. It is enacted that the Governor cuthorised to appoint six competent and experienced miners and operator from each bituminous inspection district, five members of the House of Representatives and three members of the Senate, Who shall, wish he six mine inspectors of the biuminous region,
 report to the Legislature at its present session if possible, and if not at the next session thereof.
THe project for making Paris a seaport has once more been
brought before the public, this time in lagrye. He said the subject was of importance from two opoints
of view. The first and most important was the military one. The
lit defence of Paris demanded imperatively the establishment of a
port which would assure the victualling of the capital and its of the project is evident. The port should be established in the
Poissy basin, and the Seine should be dredged to a mean depth of $6 \frac{2}{2}$ metres. M. Me la Grye requires only the deepening of the bed
of the river by dredging. It could be executed in four or five
years. The total expense would be about 100 millions of franos. THE official report for March says that the state of the water in
the Thames at Hampton, Molesey, and Sunbury-where the in takes of the West Mididdesex, Grand Junction, Soure thwark and
Vauxhall, Lambeth, Chelsea, and East London Companies are situated-was indifferent in quality from the 1st to the 10th March, when it became good, and remained in that condition to
the end of the month, with the exception of the 23rd, 24 th, and much as possible during floods, , oto avoid taking in turbid water
The highest flood state of the river at West Molesey during this month was 3 ft. .3in, above summer level mark, and the the lowest was
in. above that mark The rainfall at West Molesey during the 4in. above enat mark. 119 in.the rainfall during the whole of the year 1884
month was having only been $15^{\circ} 06$ in. The quality of the water after filtration
delivered to the metropolis during the whole of the month of davered was exceptionally good for this season of the year.
A MoDirication in the United States postal regulations is about
to take place. Beginning with July 1st next, the weight of all single rate letters is increased from half an ounce to an ounce Newspaper postage, which the publishers are obliged to pay in
advance, is reduced from two cents per pound to one cent, and this incluades specimen coples sent out from the publication office. The was stoutly opposed in the Senate, but was finally agreed to in
conference committee. These letters will be delivered between 7 a im. and midnight, and be of the greatest convenience and save the
expense of telegrams. Orders have been issued by the Post-office Department for the preparan of a new one.encne spaper postag of matter subject to newspaper rates were sent through the mails The postage amounted to $1,899,592$ dols. 14 cents. This was an for the same increase in matter sent for the next fiscal year, it is estimated that the reduction to 1 cent per pound will result in a
loss of over $1,000,000$ dols. to the revenues of the Post-office Department on this item.
THE American Government is bestirring itself in the matter of of the army can be briefly summarised. A 12in. breech-loading cast iron gun has just been completed at South. Boston and for-
warded to Sandy Hook for trial. Two other 12in. guns are under construction there. One of them is to be tubed and hooped with
steel steel on the French plan. The other is to be lined with a wire-
wrapped steel tube. The first oasting for this gun unfortunately went to pieces in the lathe, and a n new oasting is to be made. A
12inin mortar has been completed at South Boston and sent to Sandy
Hik
 guns are to bo constructed there. One is to bo a cast iron gun and
 Point Ironworks. The tube and jacket are from Whitworth and
the hoops from Midvale. The department has also opened negoti the hoops from Midvale. The department has also opened negotia-
tions with Whitworth for a
Sin. gun last mentioned. gun, on the same plan as this Invise
Invessicarioss have been recently made by Dr. Klopsch to
determine whether the sewage of Breslau is sufficiently purified by determine whether the sewage of Breslau is sufticiently puritied by
passing through the sool of the irrigation fields to allow of its dis-
charge into the surface waters. The Breslau sewers discharge annually $11,000,000$ cubbic metres of sowage, containing 100 grammes we take 150 kilogg. per hetre, ore as annualy, the largest amount of nithogen
which can be used as a fertiliser without waste, we have here an which can be used as a fertiliser without waste, we have here an
allowance sufficient for 7000 hectares ; it is, however, all distributed upon 300 hectares. The result is that the sewage is very far
from being purified, although the usual sewage farm statement are made of the labourers drinking the effluent water without ill
effects. In this case the water from the drains is yellow, slightly
turbid, has a musty odour, and contains both ammonia and organio matter. Of the fertilising ingredients only the phosphhorio
acid is anything like completely asoobbed; one quarter of the potash find its way into the drains, and 30 per cent. of the nitrogen, the
later, however, largely in the form of nitrates. The experience of three years shows no reason to fear a clogging of the eground,
or a diminution of its purifying power, or an excessive and injurious
accumulation of the mineral substaneos which are ounted among
the plant foods, such as phosphoric acid, potash, and magnesia,
CONTRACTS OPEN-FLEXIBLE BUFFERS AND SCREW COUPLINGS FOR CARRIAGES AND WAGONS, INDIAN STATE RAILWAYS. (For specification sce page 363.)
Fleaiblo Buffers \& Screm Coupling.

THE INVENTIONS EXHIBITION一HULSE'S MACHINE TOOLS.

Is the Western Gallery Messrs, Hulse and Co., of Salford, exhibit a representative collection of machine tools. Some of these we illustrate above. They are none of them what all of which have some features of novelty suggested by experience, and are of the design and workmanship which has secured to the firm its high reputation amongst tool users, The machines are of comparatively small size, in consequence of the limited space at disposal. One of the tools is a gap bed lathe for sliding, surfacing, and screw-cutting, and designed so that objects may be turned or screwed close up to the face plate whether the gap is open or closed. The guide screw is within the bed, so as to be more nearly in line with its work and to pull the rest carriage without that cross grip friction which is sometimes observable when the screw is outside the bed. It may, moreover, be extended across the gap or withdrawn withis a hollow spindle lathe for turning, screwing and finishing studs and bolts, which may be made from bars passed through the spindle and cut to length after being finished, instead of as hitherto, cutting the bar previously into short lengths and then centreing the ends. The piece or bar is quickly and firmly gripped or released by a concentric die chuck, and the screwing apparatus is readily swung into position for screwing, or outwards when not so required. A sliding saddle, carrying a capstan rest for six tools, is employed for sliding and turning work, and is brought readily into or out of action.
Another noticeable machine is a broad traverse planing machine designed to give either fine, medium, or extraordinary broad feed traverse to the cutting tools, by fine gradations, In the may be readily varied whilst the machine is working. lin. wide It is effected by the traverse of the table on returning wide. It is effected by the traverse oration. The machine exhibited is strong for its size, and is provided with two toolboxes, self-acting in all cuts and in relieving. The arrangement of the pulley and gearing for propelling the table is designed to cope with deep or broad cuts in steel.

A radial drilling and boring machine, in which the driving gear may be driven from a main shaft running either parallel with or at right angles to the machine, as desired, is also sh. The driving may be fixed, as shown, or at one side. A strong driving may be fixed, as shown, or at one side. A strong holding the work, to which a round column is bolted, around which the radial arm turns, and by which the drill spindle commands more than three-fourths of the circle. The selfacting feed mechanism is fitted by adjustments free from end play.
A combined vertical milling and drilling machine is also shown, and is illustrated by our engraving, Fig. 4. The revolving cutter spindle is carried within, and by a square vertical slide, so the cutter, and retain a firm hold upon it in all positions of adjustment. The square slide being comparatively narrow, may, with the cutter, be got to operate in the interior of work, which, with an ordinary slide, is impracticable. The table for holding the work is grooved and surrounded by a trough for the lubricant and self-acting feed and reversing motions, and provided for the longitudinal transverse and circular slides. An improved chuck for holding the cutter firmly and truly is fixed to the end of the spindle, and a self acting down motion for drilling is available when required. The object sought and obtained in this machine is steadiness in circular cutting, so as to get more and better work, and by steadiness of action the therk holding and traversing the work reces forms work with and facility A small pump is attached to the machine for forcing the lubricant on to the cutter.

A horizontal milling machine for straight milling generally and made of great strength and power for cutting steel or iron with rapidity, is also shown. Of this we give an engraving at Fig. 1. The table for holding the work is fitted with vertical, longitudinal, and transverse slides, the latter having a variable automatic feed and self-stopping mechanism. A small
pump is attached to the machine for forcing the lubricant over the cutter.
Another machine of this class, known as a profiling milling machine, is shown, consisting of a strong slide bed and frame ast in one; a grooved table bounded on its side and ends by a rough for the lubricant, and provided with variable automatic eed and self-stopping mechanism. The profiling spindle slides ith 1 response to the former by hand lever or weight. Screws horizontal slidg nuts are also provided for the vertical and utomatically for forcing the lubricant on to the cutter.
A very handy horizontal slot drilling machine Fig of ill utter holes , oriong work, is shown The work is supported ot one end by novable headstock, and held in position by a concentric vice, , may be bolted to a removable grooved table, as is most suitable t has two drilling headstocks, which operate in the same line but on opposite sides of the work. These are provided with variable automatic feed and self-stopping mechanism. The sliding carriage is traversed along the bed by elliptical wheels fo miformity of traverse, and a suitable speed is provided for each inch of stroke. The carriage is actuated through the centre line of the bed, so as to avoid cross straining.
A vertical drilling and boring machine is shown which has framing of an improved form, allowing the driving belt to work at any angle which is likely to occur in practice acting feed motion, by screw with provided with a variable selftaking feed The table is grooved on pherg latter; objects requiring to be drilled at their ends may be fixed and operated upon, the base-plate having an opening to allow of long objects extending below into a pit The table is arranged to move laterally and radially for the purpose of adjust ing the work to the cutter, and is raised or lowered by screws, Messrs. Hulse and Co. also exhibit some small tools, including a pipe-screwing apparatus and some new forms of tool-holders.

THE INVENTIONS EXHIBITION-GUNS AND WAR STORES.
The Government manufacturing departments in several cases exhibit the representative designs of 1862, contrasting with them corresponding designs of the present date, 1885, to show graphically the development of each depart-
ment during twenty-three years. Thus, the Royal Laboratory show the projectiles of the two most powerful Laboratory show the projectiles of the two most powerfil
guns of 1862; namely, the 68-pounder smooth-bore guns of 1862; namely, the 68-pounder smooth-bore
common and shrapnel shells, and the 7 in . Armstrong breech-loading common and segment shells. Waltham Abbey similarly shows the largest firing charge in the
service in 1862; namely, the 18 lb charge for the 68-pounder smooth-bore gun, and the enormous charge $68-$ pounder smooth-bore gun, and the
for the 110 -ton breech-loading rifled gun.
The Royal Gun Factories exhibits guns illustrating the present character of our equipments, as well as designs
which have special individual claims apart from this object. Colonel Maitland, the superintendent of the Gun Factories, sends the following:- (1) 12-pounder breechloading field gun; (2) 8 in . breech-loading gun; (3) 20 in .
trepanning bar, 16 ft . long, with tools and specimens; (4) Sin. tangent sight, showing stages of manufacture, illustrated by about ten successive operations; (5) 6in, ditto; (6) automatic clamp and parts, showing processes of manufacture; (7) 6 in . percussion lock, showing processes also springs, and parts; (8) bronze sight crosshead, as a parts, forged, machined, and completed; (10) ring and turret sights complete; (11) bronze end frame and model breech of $9 \cdot 2$ in. gun, with appurtenances and safety apparatus complete.
Twelve-pounder breech-loading field gun, 7 cwt . Mark I. -This gun is the pattern approved for our field batteries drawing, Fig. 1. The chief characteristic features are the type, constructed to give a high velocity-viz, 1705 fft . per fired with a charge of 4 lb . " P " powder. The capacity of the chamber is 118 cubic inches, and the capacity of the bore 647 cubic inches. The diameter of the chamber and in length, or 28 calibres. It is riffed on the polygrooved system, the grooves being twelve in number, having increasing twists from one turn in 120 calibres at the breech increasing twists from one turn in 120 calibres at the breech
to 1 in 28 calibres at 35.8 in. from the breech, the remaining 35 . 8 in. being a uniform twist of 1 in 28 calibres. The gun weighs 7 cwt . The system of breech-closing is that
adopted generally in the service, viz, the system described as adapted to larger guns, in Colonel Maitland's as adapted to larger guns, in Colonel Maitland's paper-
vide Engrneer, June 27th, 1884-an interrupted screw system, resembling that adopted in France, with modifications and improvements. It appears complicated, but it
fulfils the essential condition of security fulfils the essential condition of security against the danger
of firing with the breech imperfectly closed-which it may be seen, owing to the vent shield, is an impossibility-as well as giving security against accident from a tube not being properly pressed home. It will be found practically that this breech arrangement is easily worked, and the placed, including the vent itself. The total length of the gun is $7 \mathrm{ft} ..8 \cdot 35 \mathrm{in}$. As to construction, it is made entirely
of steel, which is finally toughened in oil. There are two principal parts, the "A" tube and jacket. The latter principal parts, the "A" tube and jacket. The latter
is shrunk on to the former-vide Fig. 1. The jacket contains both trunnions and breech-screw. It follows, there fore, that the longitudinal strain falls entirely on the jacket, leaving the A tube free to meet the tangential strain. The ballistic qualities of this gun are as follows: The muzzle velocity of 1705 ft , with the $12 \frac{1}{2} \mathrm{lb}$. shell, give ton of gun. Our Horse Artillery and field batteries have not yet received this gun, but it will soon be supplied to them.
Fig. 2 shows the 8in. breech-loading rifled gun, Mark IV. It is a piece of the newest type, being adapted to meet the strain thrown on it by slow-burning (cocoa) powder. The
length of bore is $236 \cdot 9$ in., or 29.61 calibres; total length length of bore is 236.9 in. , or 29.61 calibres; total length
of gun, 21 ft . 2 tin ; diameter of chamber and bore respectively, $10^{\circ} .5 \mathrm{in}$. and 8 in.; length of chamber, 34.5 in .; 13,466 cubic inches. The bore is rifled on the poly13,466 cubic inches. The bore is riffed on the poly-
grooved system, having thirty-two grooves of the form shown in Fig. 2. The twist increases from one turn in 120 calibres at the breech to one in 35 calibres at $99 \cdot 7 \mathrm{in}$. from breech, the remaining $99 \cdot 7 \mathrm{in}$, being a uniform twist ment is the same as that described in the case of the ment is the same as that described in the case of the
12 -pounder. The construction of the gun is shown in Fig. 2. It consists of an A tube with breech piece, a B tube and trunnion hoop, small C and four D coils. It may be seen that the breech screw is made in the breech piece,
and the hooks are arranged to give the same longitudinal and the hooks are arranged to give the same longitudina
hold from breech and trunnion that is furnished by the jacket in the case of the 12-pounder gun, the " A " tube being left in the best condition to resist the tangential strain
that falls directly on it. The B tube in this pattern extends much farther forward than in previous guns, the slow-burning and development of the force far forward in the bore having rendered this desirable.
The trepanning bar deserves special attention. Brought out in the Gun Factories, it has met with appreciation,
and has been adopted elsewhere. The name suggests the and has been adopted elsewhere. The name suggests the
character of its work. It is shown in Fig 3. By cutting out a ring of metal, leaving a core from end to end, a great saving is effected in work as well as in material. The
form of head and cutters may be seen in Fig. 3, at A; B shows the end view, C details of bits, and D a section of ingot with space and solid core shown in elevation. A strong current of soap and water is forced down the inside
of the bar, and it returns up grooves leading from the cutters, carrying in it the cuttings of metal as they come off. By making the work revolve, the bar is kept centred, which in very long borings would, of course, be otherwise ar difficult achievement,

The application of the trepanning system saves in some cases as much as 50 per cent. in labour, besides the saving
of waste in material. The most favourable cases of its application are those when a bore of large size is required application are those when a bore of large size is required to be cut in a solid steel ingot. In such cases, by cutting circular or ring cut from end to end, a valuable central ingot is obtained, which is available for smaller ordnance ; and it may be observed, the metal having been already tested, that process is not required for the piece cut out by the trepanning bar. in recently saw a very good of a 63 -ton breech-loading gun. This was cut out from within the ends, the cuts agreeing when they met that was wasted was the annular space extending from $10 \frac{1}{2} \mathrm{in}$. to $12-\mathrm{in}$. in diameter. The central portion of metal which is in this case cut out would be available for the A tubes of 64 -pounder guns. The metal of it would be worth perhaps $£ 25$ to $£ 30$ per ton. Its length was 32 ft and its weight about four tons. The saving in work would be, perhaps, 30 per cent., as compared with boring out. The rate of advance was about 3 in. in an hour Another illustration of the value of trepanning is furnished by the case of the first 80 -ton gun, whose inner tube yielded slightly in course of time and was known to be cracked. This tube was cut out at a rate of 2 in, to 2 ifin. per hour by trepanning, a tube being in this instance obtained, on the outside of which the course of the crack was plainly seen, and might afford valuable information, The particular cylinder cut out which is selected to be exhibited has the "web" of metal left on the end opposite to the path of the cutters--in fact the film of metal left at the end of the trepanning-cut left on it. There are號
the data furnished by the preceding investigation on the principle of carriage used with the 26 -ton gun, a fair approximation may be made to the enormous reduction of strain gained by the use of the elastic principle in this carriage The hishest velocity of recoil of the gun is found to be $36 \cdot 12 \mathrm{ft}$. per second, while that of the gin and carriage rigidly connected is $15 \cdot 56 \mathrm{ft}$, per second. The accumulated work given off by the in imparting to the carriage the latter velocity, calculated from these velocities, is 12,935 foot pounds. This work is performed in $1 \frac{1}{2}$ in in the case of the rigid carriage, and in 9 in in that of the elastic carrige In the latter case this results in a mean pressure of $7 \cdot 7$ tons, and in the former of 46 tons; but inasmuch as the maximum pressure in the hydraulic buffer can be regulated to be one and a-half times the mean, or even less, and the maximum pressure of impact upon the rigid carriage is twice the mean, they will be respectively 11 and 92 tons. Thus, as nearly as can be estimated, a pressure of impact rounting to 92 tons has to be sustained by the rigid carriage, while the elastic carriage will only be required to meet one of $11 \frac{1}{1}$ tons, and this more in the nature of a statical pressure." Although the committee preferred another pattern carriage for the service which depended on springs for preservation from shock of recoil, the authorities of the Carriage Department have confidence in the advantages offered by this design, believing that on service the dislocation of the parts of a field carriage exposed to such violent strain will ultimately prove so destructive as to make this, or some alternative design, very desirable
The 20 -ton hydraulic jack is shown in Fig. 7. It may be briefly described as follows :-The ram a with external casing b, both of steel, are secured to the reservoir, which is
of malleable cast iron. To the external casing are attached

twelve.pounder aun carriage.

Hence this web shows seven tracks or tool marks on it. The outside of the cylinder shows the behaviour of the cutters. It may be observed that they wore blunt and cut rather roughly after advancing about 4 ft . up the cylinder. There is also a lesser mark fart
showing when they required to be sharpened.
howing when they required to be sharpened
Interesting as is the question of large work
Interesting as is the question of large work performed by trepanning, that on a small scale equally deserves attention. It is employed for cutting test pieces out of stee. Formerly a piece was cut out by a large trepanning tool, and broken off by wedges; now small trepanning tools,
aptly termed "cheese tasters," are employed. These are aptly termed "cheese tasters," are employed. These are length of 43 in . The neatness of this, and the power length of 4 in. The neatness of this, and the power
aforded of removing steel from any desired spot without unnecessary injury, needs no comment. Altogether we hink that Colonel Maitland is to be especially congratuated on the trepanning bar, and we would commend it to the notice of steel makers generally. The American Gun
Foundry Board, in their report on their visit to England, Foundry Board, in their rep
briefly mention this process.
The Royal Carriage Department, under Colonel Close R.A., exhibit the following designs:-(1) 12 -pounder hydraulic carriage; (2) 20 -ton hydraulic jack; (3) a
nodification of Baker's forge blower. The 12 -pounder modification of Baker's forge blower. The 12 -pounder
carriage was designed to enable the pressure of recoil, carriage was designed to enable the pressure of recoil, which expends itself in $1 \frac{1}{\mathrm{~g}} \mathrm{in}$. of motion, to be extended or
distributed over about 9 in . Mr. H. J. Butter, the condistributed over about 9in. Mr. H. J. Butter, the constructor of the Department, in describing this carriage in paper read by him at the Institution of Civil Engineers, makes the following observations:-"Several conditions of construction in the rigid field carriage may not be greatly altered in the elastic carriage, and giving due consideration to these, and applying the elastic apparatus in various ways, as erent designs were worked out, one of which illustration. In this design-Figs 8 and $10-a$ tubular teel axle is adopted, which passes through the upper ends of a pair of levers constituting the trail; two upright levers are connected with and rotate about the axle; the gun rests in the upper ends of these levers, and is connected at the breech end to the piston-rod of a hydraulic
buffer, the buffer itself being fastened to the axle. The buffer, the buffer itself being fastened to the axle. The hydraulic buffer-Fig. 9-which constitutes the elastic medium, is made wholly of gun-metal, to ensure regularity of action, and is small and light, weighing only about
28 lb ., which admits readily of spare buffers being carried with the battery, yet possessing ample strength to resist the pressure of recoil. The levers are so placed as to position to be 6 in . in front of a vertical line passing through the centre of the axle, to ensure the gun, after recoil, falling of itself into the proper position for firing. weight of the gun in the two extreme positions, From
a wrought iron claw e and the lifting handles $f f$. At the bottom of the ram are the gun-metal pump d and the leather packing k : The plunger l is of steel, and contain the inlet valve m. It bor 1 of spindle o supported in bearings in the sides of the reser-
voir c. The spindle o, of steel, has a socket p outside the reservoir for the lever q, which is of wrought iron. The reservoir for the lever q, which is of wrought iron. ram cylinder q, of steel, fits over the ram a and slides ram cylinder g, of stee, fals over it and the external casing b. It is screwed into a malleable iron foot h and is fitted with a leather packing r At the top of the reservoir is an air hole with ? wrought iron screw plug s and leather washer. By it the jack can be filled or emptied. The lever handle has a screw drive formed on one end of it for use in removing the plag.
The action of the jack is as follows :-The lever q, acting upon the crank n through thespindle o, raises and lowers the in the By the up stroke or che one
 forces the hud past .he ilet valve m in the plunger, at opening, the fluid is forced from the pump under the ram, thus raising it with the load. A small hole u limits the height of lift, by allowing the fluid to escape when th ram leather passes it. To lower: the lever is shifted in the socket p so as to bring its shoulder upwards, and then pressed gently downwards, until the plunger touches the valve t. It is then forced down to its full extent, which opens the outlet valve t and allows the fluid in the cylinde to escape through the space round the plunger l in this
position back to the reservoir. The jacks are filled with position back to the reservoir. The jacks are filled with
methylated spirit. Water should never be used for filling methy
them.
Baker's forge blower improved in the Royal Carriage Department offers the adrantages of great speed of cur rent generated in a small space. The screw clutch pre-
vents back draught. It is applied to field forges for vents back draught. It is applied to field forges fo cavalry and artillery, and has been reported to be the best known. It is applicable to any small forge.
The Royal Laboratory, under the superintendent Colonel Barlow, R.A., send the following exhibits:(1) 68 -pounder smooth-bore 18 lb . cartridge, with common shell, section filled, and fitted with Pettman's land service fuse ; also the diaphragm shell for the same gun. Thist the largest charge of powder used in a gun in the time of the 1862 Exhibition. (2) 7in. breech-loading Arm strong gun 14 lb . cartridge, together with common shell section filled, and fused with an Armstrong pillar fuse also an Armstrong segment shell, section filled, and fused nition of the largest rifled gun in 1862. To compar with these is exhibited (3) a 12 in . breech-loading rifled gu cartridge of the present date, with common shell, section shell, and fused with a "direct-action" fuse ; also shrapne shot whole. These are intended to illustrate the progress

THE INVENTIONS EXHIBITION—GUNSAND WAR STORES. (For description see page 370.)

in the development of this branch of artillery between 1862 and 1885. On this a few remarks may be offered. First, it may be observed that, curiously enough, we have in both cases ammunition for rifled breech-loading guns, although England adopted the muzzle-loading system about 1865 , and retained it almost up to the present
time. In fact, at this date nearly the whole time. In fact, at this date nearly the whole of our nava and field equipments, and, indeed, every other, consist of
muzzle-loading guns. So completely, however, have we moz returned to breech-loaders that it may be have w now returned to breech-loaders, that it may be questioned if more than occasional traces of muzzle-loading guns will whe found in the Exhibition. Of course, the scale on This is the to ammuntion has increased is very striking and the other, the fact that we have much longer power burning larger charg of slower powder so longer guns, burning larger chargss of slower powder, so that even the this is connected the size of erain The compriso this is connected the size of grain. The comparison between the grain of 1862 and the pellets of cocoa pall'ser shell reminds $u s$ that rearly the whe ment of armour, and projectiles to the whole develop ment of armour, and pojectiles to pierce it, has taken place since 1862. It was in this year that the original the Warrior was still practically invincible. In 1880 the wand it was still practically invincible. In 188 we find it easier to pierce 30in. of iron than it wa time between the two Exhibitions having included the entire life of muzzle-loading, the development and the entire nie of muzzle-loading, the development and disappearance of studs on projectiles and all that highly-nrized Pettman percussion, which admirably ful filled the conditions of short old type which were in their way, severe type gows-cantion which were, in their way, severe-has now disappeared In nually to sheer the proeecties get into motion to supporting lead cup. Even in the Alexandria crash the supporting lead cup. Even in the Alexandra bombard ment, where new type guns were not employed, the slow the shells were consequently in many cases blind Pett man has been dead for some be thought that he might have modified his fuse. A be thought that he might have modified his fuse. A of his former fuses depends essentially on the action inertia, and this force is too small to be onfely employed inertia, and this force is too small to be safely employed n new type guns. We regret to remark here that we do not find the newest feature in projectiles-namely, the in our judgment, beaten chilled iron, and although we admit that chilled iron shells made in the Royal Laboratory have continued to yield surprisingly yood results their supersession by steel has long been seen to be a mere question of time. Steel common shell are fast coming in also; not being nctually adopted sell are fast jectiles they are not exlibited by adopted as service pro Small-arm ammunition for the Moyal Laboratory. Snider rifles is shown whole ane tartin-Henry and for the Gardiner, Gatling and Nordenfelt machine that The Gardiner and the Martini rifle have bores of 045 in in diameter; the former has a squirted cartridge case and in datterer the rolled sheet pred with cape case, and base disc That the emmunition of these two and solic interchangeable is mef the ores two arms is no doubt not that sooner or later the difficulties in the way woubt not that so
Fuses are shown separate from shells in section. Boxer' Fuses are shown separate from shells in section. Boxers
wood time for muzze-loading guns, 15 second and 30 second, and for breech-loaders, 15 seconds, ignited by a detonator as well as Armstrong, metal time and concussion fuse medium size. Fig. 11 shows Boxer's breech-loader fuse The figures indicating the lengths are now printed, a sown herewith. It has six powder channels, to admit of horing at quarter-second intervals. The detonator A in the head is kept in place by a steel safety pin B, replacing the copper pin formerly used. It has a very light suspending pin at the point of the curved arrow e in Fig. 11 to be sheared by the comparative gradual advance of the projectile fired in new type gra. The hale the the projectile fired in a new type gun. The hole through which the pin passes is made large, to avoid danger of its being shenea by any sight displacement of the safety pin. he her featus on this fuse are well known
Tee And prong metal time and concussion fuse is to all of 1862 . purposes the same as that in the segment shell ears ${ }^{\circ}$, but is now sppeared oat of the service some years ago, but is now employed again in nearly all rifled breech-loading guns. Here, again, is an episode partly, but not wholy, depending on the introduction of muzzle loading guns that would not be suspected by any one only having before them the E time fuse in the segment shell 1862 and this pattern in use in 1885
Yettman's general and land service fuses are shown, as they deserve to be, although, as we have noticed above, they are disappearing owing to their not being put in action in the new type guns. The direct-action fuse is said to owe its origin to Boxer. We believe it acts well,
but its design is uninteresting and unscientific. Its action depends on the actual contact with the object, bending back a plate in the head of the fuse, and firing a patch of detonating composition. Many tubes are shown ; friction, copper, "ad quil of the old patterns, as well as the new pattern "vent sealing and masking" tubes. There are also xhibited the vent sealing electric vent head with masking slide; and the vent sealing friction tube. These tubes are for axial vents ; the principles are as usual, but the slide and tube close the vent much more completely than was formerly the case.
The Royal Laboratory make torpedo and mining apparatus of certain kinds for the Admiralty. Of these the following are shown :-(1) Locomotive Whitehead "fish" torpedo, 14 in .; (2) a countermining naval buoyant case for destroying submarine mines; (3) a floating case containing circuit closing apparatus for firing either by electricity or by the contact of the enemy's ship. The charge employed is 72 lb . of gun-cotton. A good many other exhibits of a warlike character we shall have to notice at another time.

INVENTIONS EXHIBITION-WATER-PURIFYING APPARATUS.

ANDEREON'S WATER-PURIFYING APPARATUS INVENTIONS EXHIBITION.
The apparatus illustrated by the accompanying engraving is shown outside the Austrian Court by Messrs, Easton and Anderson, of Erith. This exhibit illustrates in complete manner the new process of purifying water by means of iron. Some twenty-eight years ago Dr. Medlock first called attention to the remarkable power iron pos. sessed of removing colonr and destroying organic impurities in water, and Professor Bischof has laboured persistently in endeavouring to apply the process both to domestic use and to water supplied on a large scale The spongy iron domestic tilters enjoy a well-deserved reputa tion, and the bold attempt to purify the waters of the Nethe, from which the supply of Antwerp is derived, by filtration through a mixture of gravel and spongy iron, ha met with very marked success, so far as the effect on the water treated is concerned. The objections to Professo Bischof's process on the large scale is that a very consider able area of land is required for the filter beds, that the cost of the iron in them is very great, and that some trouble and expense are incurred in the periodical cleaning of the surface of the iron mixture, a process which necessitates the removal of the layer of sand over it.
The apparatus exhibited is intended to overcome the difficulties and objections above described. This is effected by abandoning the principle of filtration altogether, and resorting to the method of agitating, or mixing con tinuously, a comparatively small quantity of iron with the water, which, after treatment, is suffered to stand for some time in order that all the iron dissolved may become oxidised, and is then passed through an ordinary sand filter, or allowed to get clear by subsidence. The genera arrangement of the exhibit is the following:-The water from one of the cascade basins is forced by means of duplex pump through a revolving purifier into a tank placed 17 ft . above the ground, and fitted up as an ordinary sand filter. The purified and filtered water is conducte by a galvanised wrought iron pipe to the fountain in the Austrian Court and to the drinking fountains; while the overflow, which is purified, but not filtered, falls on to small water wheel, by which the revolver is turned, and then flows away by subterranean culverts to the centri fugal pump which operates the cascades.
The Duplex pump, by means of which the water is raised from the cascade basin, is no other than the Worthington pump, which has recently attracted so much
attention as a new importation from the United States. It is, indeed, an American invention; but Messrs. Easton and Anderson acquired the patent at the time of the 1862 Exhibition, when the pump was first shown, and have manufactured large numbers of greatly improved design since. The pump, which is. capable of delivering 100 gallons per minute, consists of a pair of steam cylinders $5 \frac{1}{2} \mathrm{in}$. diameter, 12 in . stroke, each actuating directly an ordinary double-acting pump $3 \frac{1}{2}$ in. diameter. Steam is distributed by common slide valves; but the steam ports are double, one pair opening into the cylinder some 13 i . from the ends and the other pair at the extreme ends in the usual manner. Steam is admitted by the outer passages and exhausted by the inner ones, but the piston is so constructed that it passes the cylinder openings of the inner passages, and by so doing closes them and mprisons a cushion of steam. The cylinders are stean jacketted, so that the cushion is effective up to the ful pressure of the steam in the jackets. The valves are placed on the sides of the cylinders and worked direct by evers actuated by studs on the piston-rod crossheads, the piston of one cylinder actuating the valve of the other The effect of this arrangement is an extremely simple machine, which will start and stop by simply opening or shutting a cock on the delivery main of the pump.
Pumps of this kind have been extensively used for the supply of towns, such as Wisbech and Huntingdon, and fCr providing water under high pressure for working cranes, hydraulic presses, and rivetting machines, \&c. They pump direct into the mains, and produce a pressure vary ing from 73 per cent. of that due to the steam when working full speed, to 94 per cent. when brought up standing by the water being all shut off.
The patent revolving purifier consists of a cast iron cylinder 2 ft . 6 in . diameter, 5ft. long, with closed ends fitted with hollow trunnions, through which pass, through stuffing boxes, the 3 in . inlet and outlet pipes. The inside of the cylinder is furnished with six curved shelves or ledges, the office of which is to catch up the iron placed inside the cylinder, and shower it down continuously may ba the water slowly flowing along. The iron, which borings being the most effective divided condition, cast iron the volume of the cylinder, and in this particular case weighs 2 cwt .
The inlet pipe opens against a disc 1 ft . 5 in . diameter attached to the end of the cylinder, and within $\frac{1}{2}$ in. of it

This compels the entering water to spread out radially in all directions, and so flow uniformly along. The outlet pipe is fitted with an inverted bell mouth, so proportioned that the speed of the upward current through it is too low to allow any but the very finest iron to be carried up and
whe cylinder is fitted with a manhole and an air cock for letting out the gases, which are sometimes apt to collect, and is driven by a spur ring cast on one of the end covers, actuated by a train of wheelwork, which is brought into motion by a small overshot waterwheel, through the instrumentality of a pitch chain.
The water from the purifier, impregnated with iron, is carried by a 3 in . pipe through the bottom of a wrought iron tank, 7 ft . square and 3 ft . deep, which is formed into an ordinary sand filter. The water falls from the delivery pipe some 4 ft ., in the form of a thin bell jet, and in that way gets well exposed to the air. It runs through the
sand at the rate of 12 cubic feet per twenty-four hours, sand at the rate of 12 cubic feet per twenty-four hours, and as the water is 18 in . deep over the sand, it will remain sufficient time for all the iron to become oxidised and sufficient tim
precipitated. precipitated.
The filter i
The filter is capable of yielding about $2 \frac{1}{2}$ gallons of water per minute, the surplus delivered by the pumps, or $97 \frac{1}{2}$ is further is further aerated, flows into the return culvert leading to the centrifugal pump near the Albert Hall, where it is again lifted to play the cascades. The iron taken up by act the part of a sand filter. Three of the Anderson act the part of a sand filter. Three of the Anderson revolvers, capable each of dealing with 1500 gallons per minute, or together, $2,60,000$ gallons per day, were set to work in mone then last at Antwerp, and are now purifying the whole of the water supplied to the city in a most satisfactory manner. The turbid and highly impure waters of the Nethe, quite as ofrensive as those of the Thames at London Bridge, are rendered perfectly colourless, brilliant, agreeable to the taste, and chemically more pure than any water supplied to London.
The quantity of iron consumed depends upon the quality of the water being treated; it is not likely to exceed onethe cost will depend upon the current price of gallion gallons. The cost wing and turnings form the current price of iron, but as borings and turnings form the best material, the expense is, in any case, very insignificant. The power required to
drive the machine is also very small, about $\frac{1}{2}$-horse power drive the machine is also ver
per million gallons per day.

RECENT EXPERIMENTS WITH GRUSON'S CHILLED IRON ARMOUR

A trial against a side plate of a turret of Griison's chilled cast iron, constructed for two 12 cm . ($4 \cdot 7 \mathrm{in}$.) guns tock place at Buckau, January 19th and 20th, 1885
The object and programme of the experiment was to test the shield by twenty rounds of the Prussian 15 cm . (5.9 in .) gun firing hardened steel shells (Ternitz); charge, 69 kilogs. ($15 \cdot 2 \mathrm{lb}$.$) ; prismatic powder, "const. 68$;" that is to give velocity equivalent to that at 1000 metres rarge
(1094 yards). All the blows were delivered against the left half of the plate.
The plate was sought to be divided by the first five blows rounds one to five, in two nearly equal parts, in order to attack the left half only, and in a way free from objects. Five projectiles out of the twenty to have flat heads. If the plate atter ifteen blows, ,.e., ten per square metre of plate's vertical projection should not be breached, and its interior surface not exhibit cracks dangerous to the gun detachments, the resistance should be considered sufficient. After this five more rounds should complete the experiment.
The form experimented on differs materially from that of previous shields, its construction being based on the results of former experiments. The profile is debased or flattened considerably, so as to avoid an angle of impact exceeding $46 \frac{1}{2}$ deg. from a shell striking horizontally. The plate was fixed between two other side and one roof plate,
so as to form nearly a half cupola. At the open side it so as to form nearly a half cupola. At the open side it was supported by pillars of masonry by means of inter-
mediate iron coupling plates, the whole being protected mediate iron coupling plates, the
from shell fire by earth and wood.
Fig. 1 gives dimensions and profile of shield. The greatest width, measuring round the curve-"développée" - was 3.8 m . (12 ft .1 .7 in .) ; that at the top edge was 2.15 m . (7ft. 0.6 in.$)$. The weight was 19,918 kilogs. (19 tons 12 cwt .0 qr .7 lb .). The Prussian 15 cm . (5.9 in .) gun was mounted in position to deliver seven blows opposite to the centre of the plate at 36 m . ($118 \cdot \mathrm{lft}$.) range,
for the remaining rounds at 24 deg , to the left. The for the remaining rounds at 24 deg , to the left. The projectiles employed were Ternitz hard tempered steel
shells filled with sand weighing 34.5 kilogs . (76.06 lb .) shells filled with sand weighing 34.5 kilogs. (76.06 lb .).
The charge was 6.9 kilogs. $(15 \cdot 2 \mathrm{lb}$.) prismatic powder, as above stated. The initial velocity was 395 m . ($1296 \mathrm{ft}^{2}$). Round 1: Weight, 33.3 kilogs. (73.4 lb .), filled with $1 \cdot 2$ kilogs. ($2 \cdot 6 \mathrm{lb}$.) sand, struck on centre line of plate-vide Fig. 2, which shows the plate surface unrolled-developed angle of impact $34 \mathrm{deg} . ~$
10 min . Effect:
10 cm . (3.94 in .) width, and 7 mm . (0.276 in .) depth. The projectile glan widt, and 7 mm . (0.2 in .) ments, the pieces showing an excellent fracture. Round 2 Full weight $(76.06 \mathrm{lb}$.) without sand. The projectile
struck 26 cm . $(10 \cdot 2 \mathrm{in}$. to the left of the centre line-vide Fig. 2-at an angle of impact 40 deg. 10 min ., making a bruise 11 cm . (433 in .) wide, and 9 mm . (0.035 in .) deep, glancing and breaking up. Round $3:$ Steel shell,
$33 \cdot 1$ kilogs, ($729 \cdot 7 \mathrm{lb}$.), flat headed-that is, with a slightly concave surface 130 mm . ($5 \cdot 118 \mathrm{in}$.) in diameter, and 10 mm . (0.394 in .) deep, so as to have a cutting edge, the weight made up to 34.5 kilogs. (76.06 lb .) with lead and sand The projectile struck 16 cm . (6.3in.) below the top edge of a bruise of 8 cm . ($3 \cdot 15 \mathrm{in}$.) width, and 34 mm . $(1.339 \mathrm{in}$.) depth, the depth being less towards the sides and top; five short radiating air cracks ; nothing visible at back of plate. The projectile glanced and broke up. Round 4

Steel shell full weight without sand. It struck 31 cm . $(12 \cdot 2 \mathrm{in}$.$) to the left of centre line-vide Fig, 2-37 \mathrm{~cm}$. (14.6 in .) below top edge ; angle of impact, 29 deg .27 min ; making a bruise of 9 cm . (3.54in.) width, and 5 mm . ($0 \cdot 197 \mathrm{in}$.) depth, glancing and breaking up. Round $5:$ Steel shell, full weight, struck on centre line-vide Fig. 2 bruise an angle of 43 deg .22 min .30 sec , making a bruise of $12 \mathrm{~cm} .(4.7 \mathrm{in}$.) width, and $8 \mathrm{~mm} .(0.315 \mathrm{in})$. depth, glancing and breaking up. Round 6: Steel shell, full weight, striking 39 cm . (15.4 in .) to the left of centre line, and 12 cm . ($4 \cdot 7 \mathrm{in}$.) above the front edge of the shield-vide Fig. 2-at an angle of
46 deg .15 min , making a bruise of 13 cm . (5.12in.) width, 46 deg .15 min ., making a bruise of 13 cm . ($5 \cdot 12 \mathrm{in}$.) width, and $12 \mathrm{~mm} .\left(0^{\circ} 472 \mathrm{in}\right.$.) depth, glancing and breaking up. Nothing was visible at the back of the shield. Round 7: Steel shell full weight. This was directed at the centre of the shield to take the place of the twentieth round of the programme, in order to save bringing the gun back to this position again. The shell struck 30 cm . (11.8 in .) to left of centre line, and 42 cm . (16.5 in .) above the front angle of the shield-vide Fig. 2-at an angle of
42 deg .19 min ., making a bruise $13 \mathrm{~cm} .(5 \cdot 1 \mathrm{in}$.) wide, and $42 \mathrm{deg} .19 \mathrm{~min} .$, making a bruise $13 \mathrm{~cm} .(5 \cdot l \mathrm{lin}$.$) wide, and$ 4 mm . $(0.158 \mathrm{in}$.) deep, and one hair crack connecting
points of impact 6 and 7 together. The projectile glanced and broke up. Nothing was visible at back of shield.
e on Fig. connecting 4 and 2; the projectile broke up Nothing was visible at the back. Round 13. Full weight bruise 10 cm . (3.94 in) wide and 3 mm . ($0 \cdot 118 \mathrm{in}$.) deep, a bruise 10 cm . (3.94 in .) wide and 3 mm . (0118 in .) deep, 32.7 kilo $172 \cdot 1 \mathrm{lb}$) 14.

 35 deg .30 min ., min, (08 in .) deep, surrounded by edges of slight depth, three hair cracks, $f g$ and h, and one crack i developed the nothing visible at back of shield, and the projectile glanced and broke up. Round 15: Steel shell, full weight, struck at point shown on Fig 2 at 38 deg. 40 min., making bruise 12 cm . (4.7 in .) wide and 5 mm . ($0^{2} 20 \mathrm{in}$.) deep, with visible running from a point 54 cm . ($21 \cdot 3 \mathrm{in}$.) from upper isibe and parallel to the centre line about 22 cm (8.7 in) diste and parall Flat-headed stell wight 32.9 kilogs (70.5 lb) made Flat-headed steel shell, weight 329 kilogs. (70 5 lb .), mad up with lead and sand, struck point shown on Fig. The 46 deg. 6 min., making a bruise with small chips. The head was fixed in the plate. One crack k with chippings
was developed from 16 to 10 , also crack l and crack a was slightly increased. No change at back. The projectile

FIG. 2

On January 20 th the gun was fired from a point 24 deg. to the left of the original position, $36 \mathrm{~m} .\left(118^{\circ} 1 \mathrm{ft}.\right)$ range ; that is, the lines from axis of shield to gun in the two positions apparently formed radii of a circle 24 deg. apart, so as to give lines of fire normal to the horizontal section
of the shield. Round 8: Steel shell, full weight. Struck $15 \mathrm{~cm} .(5.9 \mathrm{in}$. .) to the right of the left edge of the plate, and 35 cm . (13.8 in .) above the front angle of the shield, at an angle of impact of 43 deg. 11 min., making a bruise 13 cm . ($5 \cdot 12 \mathrm{in}$.) wide and 5 mm . (0.197 in .) deep, and one bair crack upwards towards the left and one downwardsvide Fig. 2. The projectile glanced and broke up.
Nothing was visible at the back. Round 9: Steel Nothing was visible at the back. Round 9: Steel
shell, weighing 33.3 kilogs. (73.4 lb .), filled up with shell, weighing 33.3 kilogs. $(73.4 \mathrm{lb}$.), filled up with
1.2 kilog. $(2.65 \mathrm{lb}$.) of sand. It struck $100 \mathrm{~cm} .(39.4 \mathrm{in}$.) from the left and 28 cm . (1lin.) above the front angle of shield-vide Fig. 2-at an angle of impact of 43 deg. 44 min ., making a bruise 11 cm . (4.3 in .) wide and 9 mm . (0.354 in .) deep, glancing and breaking up. Round 10: Steel shell, flat-headed, weighing 33.3 kilogs. ($73 \cdot 4 \mathrm{lb}$.), filled up with
$1 \cdot 2$ kilog. ($2^{\cdot 6} \mathrm{lb}$.) of lead and sand. It struck 74 cm . $(29.1 \mathrm{in}$.) from the left and $12 \mathrm{~cm} .(4.7 \mathrm{in}$.) above the front angle of shield, at an angle of impact of 46 deg .28 min . making a bruise 13 cm . $(5 \cdot 12 \mathrm{in}$.) wide and 38 mm . ($1 \cdot 496 \mathrm{in}$.) deep, and two cracks, a and b, about $10 \mathrm{~cm} .(0.394 \mathrm{in}$.) deep, which did not appear to reach to the interior, but rather to continue under the surface. There were also two short vertical hair cracks. There was nothing visible at the back of the shield. The projectile glanced and broke up. Round 11: Flat-headed, weight 33 kilogs., and made up with lead and sand to 34.5 kilogs. $(76.06 \mathrm{lb}$.). (t) struck the top at an angle of 25 deg .57 min ., making a bruise $14 \mathrm{~cm} .(5 \cdot 5 \mathrm{in}$.) wide and 10 mm , (0.394 in .) deep, with two hair cracks c and d-vide Fig. 2. Nothing was visible at the back; the shell glanced and broke up. Round 12: - vide Fig. 2 - at 26 deg .22 min .30 sec ., making a bruise $9 \mathrm{~cm} .(3.54 \mathrm{in}$.) wide and $9 \mathrm{~mm},(0.354 \mathrm{in}$.) deep, and a crack
broke up. Round 17: Steel shell, full weight, struck point shown in Fig. 2 at 39 deg., making a bruise 13 cm . ($5^{\circ} 1 \mathrm{in}$.)
wide and 3 mm , ($0 \cdot 12 \mathrm{in}$.) deep, the projectile glancing and wide and 3 mm . ($0 \cdot 12 \mathrm{in}$.) deep, the projectile glancing and breaking up. Round 18-vide Fig. 2: Steel shell, full weight
struck at 30 deg. 30 min ., making a bruise $12 \mathrm{~cm} .(4 \cdot 7 \mathrm{in}$. struck at 30 deg .30 min ., making a bruise 12 cm . (4.7 in .)
wide and $6 \mathrm{~mm} .(0.24 \mathrm{in}$.) deep, and one crack m, glancing wide and 6 mm . (0.24 in .) deep, and one crack m, glancing
and breaking up. Round 19: Steel shell, full weight and breaking up. Round 19: Steel shell, full weight, struck at 43 deg. 35 min .-vide Fig. 2-making a bruise
$17 \mathrm{~cm} .(67 \mathrm{in}$.) wide and 15 mm . (0.59in.) deep, enlarging crack a to 10 mm . (0.39 in .), and glancing and breaking up. Round 20: Steel shell, weighing $34^{\circ} 45$ kilogs. ($76 \cdot 1 \mathrm{lb}$.), made up with sand, struck at 38 deg. 23 min . at spot shown on Fig. 2, making a bruise 10 cm . (3.9 in .) wide and 15 mm (059 in .) deep, with crack n and a short hair crack upwards. At the back the crack e was lengthened to the lower edge. No other crack is visible at the back. The joint between the trial plate and the side plate to the left was opened 2 mm . (0.08 in .).
To summarise, the plate has borne twenty blows of steel shells, each 274.6 metre-tons (886.7 foot-tons) or 276 metretons (891 foot-tons) per ton of entire shield, or 552 metre tons (1782 foot-tons) per ton of half shield attacked without destroying its powers of resistance. The crack a, after the removal of the front shield, is perceived to extend under the surface without reaching the edge of the plate, so that the portion affected by it is not detached from the shield. The effect of the new flattened profile is shown to be very good, all the projectiles being thrown more eff. It is true that the flat-headed shells haver are marked on Fin the others-their points of pave not been able to destroy the plate. The shield has greatly exceeded the resisting power demanded of it against the fifteen rounds. It is impossible to say, even approximately, the number of blows necessary to break the shield. The Ternitz steel shells equal the Krupp steel shells as much in tenacity as in hardness. With a fractured point of the shell it is possible to scratch glass, just as with the Krupp steel.

We commend this report to the attention of our English authorities. The principal features are the following :First, the power of resistance of the plate
per ton of plate is a considerable quantity of energy to bear, even when delivered in so large a number of blows, So it seems to us; but our knowledge of this subject in
this country is unfortuately very limited. The blows are this country is unfortuately very limited. The blows are a larger surface of plate, and cognisance of this is taken in the method of proportioning the blow to the weight of the the method of proportione which is the test we have taken.
The advantage of employing a more oblique angle of shield to steel shells than to those of chilled iron accords
with the results obtained with our special committee on plates and projectiles. On the other hand, the effect proence even against hard armour. Altogether chilled iron shields and their attack constitute a matter on which experiments are greatly needed in this coct Were our fleet to engage any foreign cast iron fort at any time,
it is practically certain that that fort would be made of it is practically certain that that fort wond be made of have never fired a single round in this country, and against which our service projectiles, which are chilled iron, have been dechared adopted chilled iron shields for interior fort Government adopted chilled iron shields for interior fort confined their use to coasts when they tried steel projectiles against them. This is equivalent to saying thes against foreign ones for long continued breaching. Our
 are wholly beside the point and likely to mislead us.

AMERICAN NOTES.

(From our oun Correapondent)

New York, April 25 th.
Trlegraphicadvices from inland commercial and manufacturing at nearly all points, as the result of the pleasant spring weather are still ice-bound, but will soon be opened for navigation. The lumber interests have been very active all winter preparing as
usual a large supply of logs but according to all accounts, the saw usual a large supply of logs, but according to all accounts, the saw-
mills will work less than full capacity in order that better prices may be realised. The promised great activity in building operations will absorb enormous quantities of lumber and builders' material and builders' hardware of all kinds, and this demand, it is believed, will result in more trade this year than last, despite the fact that rail-
road building will be of moderate dimensions. In the larger Atlantic sea-board cities there is great building activity, reaching
in some cases 10 per cent. over last year in value. The same activity is reported from many western towns and cities; and in fact throughout the country builders are taking advantage of the ex-
tremely low prices in lumber, brick, iron, steel, hardware and labour, to protitably invest large quantities of capital in view of the coming demand for house room and shop capacity. The agricul-
tural area will not be extended so much this year as last, because of the uncertainty as to the demand for cereals. The flour interests are endeavouring to curtail production, but the possibility
of an export demand is creating a good deal of interest in milling
circles. The iron and steel mills are working to about two-thirds circles. The iron and steel mills are working to about two-thirds
capacity. Contracts were closed this week in this city at 26.50 dols. for steel rails at mill, and for southern iron at 15 dols. for forge.
Agents are closing contracts for Pennsylvania iron at 16.50 dols. for No. 2 and 17.50 dols. for No. 1 . The building requirements for
structural iron keep capacity steadily engaged. Mill quotations for merchant iron are 1.60 dols, for medium, 1.70 dols, for refined; angles, 2 dols.; beams and channels, 3 dols.; steel rails in small lots,
27.50 dols. Old rails are in active demand, but supplies are limited at 17 dols. to 18 dols. Large transactions in lumber have just been
closed, and improving export demand is strengthening prices. The new English textile interests are meeting with an irregular demand for hosiery, carpets, cotton and woollen goods. Throughout visible. For months past manufacturers in many lines have been producing at cost, but this unprofitable course is tiring out capacity
In many lines and working a restriction. The glass factories deal of capacity is under erection. Private advices to-day from PittsNothing bute trouble between the iron employers and workmen. to pay the old scale, which was reaffirmed at a recent ironworkers' convention. Meetings take place next month to readjust working
rates. A 10 per cent reduction will be insisted upon by the manufacturers, and probably a compromise will be reached because of the hreatening aspect of steel manufacturing, which certainly will crowd provements in the new Clapp-Griffiths' process will enable makers to produce high steel at one cent per pound, and the manufacturers
are aroused to the importance of utilising this new process. Any are aroused to the importance of utilising this new process. Any
general improvement in manufacturing will result in numerous strikes. Labour has been actively organising for a year past,
intending to demand higher wages when the opportunity offers. ntending to demand higher wages when the opportunity offers.
The Knights of Labour number about one hundred to one hundred and fifty thousand, and will probably lead in the m
for higher wages or for fewer hours' labour per day.
During the first three months of this year twenty railroad companies, with a total capital stock and indebtedness of thirty-seven roads went into receivers' hands, with a capital and
lebt of $715,000,000$ dols. This indicates an increase of insolven among railroad companies. The Dominion Government has enjoyed by the Grand Trunk and Canadian Pacific roads, who will have the joint ownership of the road between Montreal and Quebec.
The Southern railroad lines have established new and lower freight rates. The Southern railroad companies are cutting rates, and rates. The Southern railroad
bad faith is charged on all sides.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND
OTHER DISTRICTS. OTHER DISTRICTS.

(From our own Correspondent.)

THE effect upon 'Change in Birmingham this-Thursday-after-
noon, and in Wolverhampton yesterday, of the altered political noon, and in Wolverhampton yesterday, of the altered political
outlook, was to encourage anticipation of improved merchant
buying. For three weeks orders have been very light. At present works remain poorly orders have been very light. At
pred, and no one can see orders
Steel blooms and billets are coming into the district from Soot-
land, the West Coast, South and West Yorkshire, and Wales in increasing quantities, and are supplanting finished iron. They
ployed to an augmented extent in chain making and nut and bolt
making, for plating and other purposes. Prices vary according to making, for plating and other purposes. Prices vary according to
the percentage of carbon, from $£ 410 \mathrm{~s}$. to $£ 417 \mathrm{~s} .6 \mathrm{~d}$ and $£ 5$. Steel plating bars are $£ 515 \mathrm{~s}$. delivered.
Finished iron prices show but little alteration. The Pelsall Coal and Iron Company quotes at date :-Bars, 1 in . romnds and squares
and upwards, $£ 5$ 10s. per ton; hoops and strips, 1 in . by $18 \mathrm{~b} . \mathrm{g}$., and upwards, $£ 510$ s. per ton; hoops and strips, lin. by 18 b.g.
and upwards, $£ 515 \mathrm{~s}$, ; superior bars, $£ 6 ;$ horseshoe bars, $£ 6 ;$
superior hoops and strips, $£ 65 \mathrm{~s}$, ; hinge strip, $£ 610 \mathrm{~s}$. ; nail strip superior hoops and strips, $£ 65 \mathrm{~s}$. ; hinge strip, $£ 610 \mathrm{~s}$. ; nail stri
of from 12in. to 24in., and from 14 to 12 byg ., $£ 510 \mathrm{~s}$; ; gas strip
of 63 in
 £6 15s, per ton.
Best sheet makers mostly keep well employed. Crowthe Brost sheet and Co., Kidderminstee, are busy on tinned sheets,
notwithstanding that this is generally a slack time. These sheets notwithstanding that this is generally a slack time. These sheet, engineers, and other consumers who desire iron of first quality and
finish. The firm's best coke tin sheets are quoted $£ 24$ per ton;
best charcoal, $£ 26$; extra best, $£ 28$; and best soft steel sheets also best charcool, $£ 26$; extra best, $£ 28$; and best sot t steel sheets also
$£ 26$. Their ordinary cold rolled and close annealed charcoal sheets are $£ 15$; best ditto, $£ 1610 \mathrm{~s} . ;$ F.S.S. steel sheets, $£ 11$; best S
steel sheets, $£ 1210$; and best homoid ditto, $£ 1310$ s. Pig iron this afternoon was a drug. Sellers could secure but
small transactions at any price. Stocks continue to go up, and small transactions at any price. Stocks continue to go up, and
one local firm is credited with holding 10,000 tons. Native part-
mines are mostly 40 s , to 42 s ., though occasionally 45 s , is obtained. mines are mostly 40 s . to 42 s ., though occasionally 45 s . is obtained.
North Staffordshire common pigs are quoted 41 s . 6 d . delivered
here, Derbyshires 40 s , delivered to stations, and Northamptons 37ere, Derbyshirs.
Cd. upwards.
Coalmasters complain loudly of present prices. South Stafford-
sire forge coal is $6 \mathrm{~s} . ;$ mill coal, $6 \mathrm{~s}, 6 \mathrm{~d}$, to 7 s, furnace, 8 s, to 9 s hire forge coal is 6 s ; mill coal, 6 s , 6 d . to 7 s .; furnace, 8 s . to 9 s .; An attempt will be made by manufacturers here to secure the Railway Company is requiring. Gas engineers will have a try for the two gas exhausters and the central horizontal engine needed by the Newport Gas Company. The exhausters are to
pass 30,000 cubic feet per hour. Renewed complaints are made this week by manufacturers of
the injury to Birmingham trade arising from increased tariff duties lately imposed by Russia, Mexico, Greece, and other foreign
The edge-tool makers have received large repeat inquiries from
the War-offie.. They include 21,500 pikks, 15,500 shovels, 5000 spades, 6000 hatchets, 4000 reaping-hooks, and other goods.
This week has seen but little change in the North Staffordshire This week has seen but little change in the North Staffordshire
iron trade, and prices remain at: Bars, $£ 5 \mathrm{~s} .6 \mathrm{~d}$. per ton; hoops,
$£ 517 \mathrm{~s} .6 \mathrm{~d}$.; sheets, $£ 617 \mathrm{~s}$. 6 d . to $£ 7$.

NOTES FROM LANCASHIRE.

Manchester.-The more peaceful prospects of the last few days have tended somewhat to restore confidence to the market, and in
some departments there have been more inquiries coming forward; some departments there have been more inquiries coming forward;
but there is still an absence of any actual weight of business doing. Pig iron shows no signs of recovery from the extreme depression
which has now prevailed for several months past. Hematite which has now prevailed for several months past. Hematites,
notwithstanding the increased activity in some branches of the steel trade, continue extremely low in price, and it is only here and there that some descriptions of finished iron are meeting with
a better demand. In the condition of trade generally, it cannot be said that there is any really material improvement, and even with a peaceful solution of the political complications abroad-to all
appearances practically assured-the prospects for the future do not as yet develope any very encouraging outlook.
There was again only a very dull market at Manchester on Tuesday, and where business was done it was at very low prices. In the, pig iron trade 40 s , to 41 s ,, less $2 \frac{1}{2}$, for delivery equal to Man-
chester, remained the generally quoted basis for good local hester, remained the generally quoted basis for good local and the market, and they are only got on occasional small parcels that are wanted for special requirements. Cheap brands are still
offered at about 38 s .6 d . to 39 s ., less $2 \frac{1}{2}$, delivered here, and buyers are not disposed to give much above these figures, even for the
better class brands. As a rule, the leading makers decline to way any further upon present quoted rates, but where sellers are determined to do business, they have to be prepared with considerable concessions to bring forward buyers.
Hematites are offered at as low as 5is. 6d. to 52s., less 21, for buying. In the manufactured iron trade there were more inquiries stirring,
and in some instances an increased weight of actua business was
reported. For hoops and shects there is a moderate demand, and reported. For hoops and shects there is a moderate demand, and
some of the bar iron makers are fairly off for orders. Generally,
however, trade is still only slow, and there is however, trade is still only slow, and there is an eagerness for
business which is an indication that, as a rule, makers are not very plentifully supplied with orders. The uncertainty which prevails
as to the future checks manufacturers from entertaining any very long forward business, and in many cases they decline to book specifications quite as low prices as ever are being taken; and
although $£ 57 \mathrm{~s} .6 \mathrm{~d}$. is in most although $£ 57 \mathrm{~s} .6 \mathrm{~d}$. is in most instances adbered to as the minimum
quoted basis for good qualities of Lancashire and Nort quoted basis for good qualities of Lancashire and North Stafford-
shire bars delivered into the Manchester district, a slight con cession on this figure would here and there be made for anything like good orders for immediate delivery. Hoops average $£ 517 \mathrm{~s}, 6 \mathrm{~d}$.,
and sheets $£ 612 \mathrm{~s}$. 6 d . to $£ 7$ per ton delivered into this district. The condition of the engineering trades remains without materia change. Locomotive and railway carriage builders are still kept pany's works, which has led to the men turning out. Some of the toolmakers are getting moderate orders from abroad, including
heavy tools for Russian Government shipyards, but the home trade continues quiet, and in general engineering work the tendency
is still in the direction of decreasing activity. is still in the direction of decreasing activity. The reduction of prices in the Manchester district has been
accompanied by a reduction of about 10 per cent, in the rate of
wages paid to the colliers and underground datalers. In the wages of the colliers the reduction is 2 d . up to 3 d . per ton and 2 d . per yard, and the datalers 1s. per week,
Barrow.-The demand is dull for all descriptions of hematite pig iron, and I can hear on no side of any likelihood of improve
ment. The inquiries from home consumers are fairly maintained but this is mainly on account of steel makers who are using large
parcels of metal for conversion purposes. The continental and parcels of metal for conversion purposes. The continental and
colonial demand has been much restricted, probably owing to the
uncertainty as to whether or not war would soon be declared; but the horizon seems now more clear, and as a consequence more
spirited inquiries are being made by consumers across the Channel. spirited inquiries are being made by consumers across the Channel. time; but it is noteworthy that although prices are at a point so
low that it precludes the possibility of British producers competing on favourable terms with the foreign maker, occasional large con-
signments of pig iron find their way across the Atlantic; but nothing like a profitable trade can be done with America under existing conditions. The value of pig iron remains steady, but
firm, at 43 s .6 d . per ton for mixed parcels of Bessemer iran net at
makers' works, prompt delivery. makers' works, prompt delivery. The steel trade is not fully
employed, although as compared with last season more orders are
in hand; but there is not sufficient work to keep the rail and merchant mills regularly employed, nor are the orders for special steel anything like commensurate in extent with the capabilities of
production. Shipbilders have not booked any new orders, but
 ore is quiet in tone a f from 8s. bi. to 108. ©d. per ton net at mines,
where large pareels are still held. Coal and coke very quiet so far
 on the strikes. The new tram ways at Barrow have nearly all been
laid and in a few weeks steam tram cors will commense unning on the most important roxtes. Several improvements have been
made in the gradients in the town, which will not only be advantageous for the tramway tratfic, but a great public boon as well.

THE SHEFFIELD DISTRICT.

IT has been suggested that the Archbishop of York should be asked to mediate in regard to the prolonged and disastrous strike
at Denaby Main. The Archbishop is a strong man, full of sympathy with the collier, and yet with a sound judgment which would keep his decision thoroughly impartial. His Grace, while earnestly desiring that the present condition of affairs should
terminate, sees no hope of a satisfactory end of the rupture unless
the issue is confined to the question masters can or cannot the question or father the tainable by the usual rates between wages and selling prices." He thinks that question leaves no room for "inflammatory bishop appears to confound the Denaby dispute with the general strike in the different colliery districts. The two are
widely different. The dispute at Denaby, which is now in its sixteenth week, refers to a change in the system of working the
pits, which the men have refused even to try, while the strike in South and West Yorkshire generally is simply on the point of a 10 per cent. reduction in wages. A Yorkshire miner, who says he does not do as he wishes "for fear of those who will neither work themselves nor let others." It is a terrible thing for a man, he says, an outcast of their class, he faces starvation and turns a deaf ear who hries of his wife and children. As for the Union leaders, "If they only had to live on the same pay as we miners," he says, "the strike would not last ten days."
Another large colliery, the old Silkstone Coal and Iron Company,
Dodworth, has been added to those that are standing. This adds about 900 men and boys to those on strika. The men brought out
their tools on the 6th inst. The Car House Colliery men-Messrs. Jobn Brown and Co.-have been five weeks idle, and they passed
a resolution on the 5th inst. to continue the strike. On the 6th a resolution on the 5th inst. to continue the strike. On the 6 th
a large number of the men, accompanied by a dray drawn by about forty colliers, proceeded to Sheffield to solicit aid from the public.
The last of the evictions at Denaby Main took place on Tuesday, The last of the evictions at Denaby Main took place on Tuesday,
and now the colliery village is a deserted hamlet. Half-a-dozen
families are huddled together in houses at Swinton and Mexborough, and others get what shelter they can in encampments in the field, while the clergymen and ministers do their best to keep
them from starving, though all that the charitable can subscribe is utterly inadequate to find even dry bread for the wretched victims quently travel miles to get a crust of bread and struggle back again disappointed. In Sheffield the miners employed by the
Nunnery Colliery Company parade the streets, with bands playing and banners flying, while men with cigar-boxes solicit the coppers of the crowd. It is a miserable business.
The Admiralty contracts have
Harrison Brothers and Howson, of Norfolk-street, have secured the larger portion of the contracts for fine cutlery for officers' use,
including 4262 ivory balance-handle table knives, 432 carvers, \&e. Messrs. Atkinson Brothers, of Milton-street, havealso been successful in getting part of the Admiralty work. This firm is now engaged upon
soldiers' knives and forks for our Government - 84,000 - and clasp knives-6000. Messrs. E. Lucas and Sons, of the Dronfield Foundry, are actively employed upon intrenching tools, see
spades, shovels, telegraph posts, \&cc. A Barnsley foundry has just despatched a large consignment of wheels and axles for use on the Suakim-Berber line. It is not anticipated that any further orders
for rails for this line will be given out, the policy of withdrawal having shortened the route which it was originally intended to take. So far as I have heard, of the entire quantity at first
stated to be required - 25,000 tons-only two orders of 2000 tons each have been placed.
The London ivory sales included only 91 tons ; still, in spite of the limited supply, Sheffield firms had to pay a fair price for the
sorts required for Sheffield purposes. Zanzibar tusks declined $£ 2$ to $£ 4$ per owt., and West Coast African fell $£ 2$ to $£ 3$ per cwt. hard Egyptian was higher by $£ 1$ and $£ 2$, and Cape better by $£ 2$
The total of 96 tons is but little over three.forths of an average
supply to the second series of sales for the previous twenty-two supply to the second series of sales for the previous twenty-two
years. The reduced quantity is attributed to the smaller supply
from Egypt, and to the scarcity of Cape of Good Hope. Mother-0. were generally dearer at the London sales, Manilla being disposed
of at 5s, advance.

THE NORTH OF ENGLAND.
There has been no improvement in the tone of the Cleveland
Then pig iron trade during the past week, the outlook as regards the during April, and there are now prospects of an amicable settle
ment of the dispute with Russia. For the present consumers hold off, and at the market held at Middlesbrough on Tuesday scarcely
any business was transacted. Prices are not lower than they were a week ago. Merchants continue to quote No. $3 \mathrm{~g} \cdot \mathrm{~m} . \mathrm{b}$. at 33 s . 3 d
per ton, but makers will not take less than 34 s ., as they are for the per ton, but makers will not tith orders. The price of forge iron i
most part well suplied wis
firm at 33 s . per ton, and as makers hold almost all the stock of this quality, it is not likely that any concession will be made.
The month's shipments of pig iron from the Tees have been so four days, as against 10,538 tons in April. Finished iron manufacturers are doing better than they were,
The demand is greater than it has been for a long time, especially as regards plates, and makers are firm in their prices. Ship-plates
are $£ 5$ to $£ 5$ 2s. 6 d. per ton ; angles, $£ 412 \mathrm{~s}, 6 \mathrm{~d}$. to $£ 415 \mathrm{~s}$. and
common bars, $£ 5$; all free on trucks at makers' works, cash 10 th, less $2 \frac{1}{2}$ per cent. discount.
The Cleveland ironmasters' statistics for April, issued on the
5th 5 inst., show that the total make of pig iron of all kinds wa
204,591 tons, being a net decrease of 4053 tons when compared
with March. The stock of pig iron in the whole district was
388,398 tons, being a decrease of 856 tons. The shipment 388,398 tons, being a decrease of 856 tons. The shipments reached 70,998 tons, of which 25,700 tons were sent to Scotland, 11,665
tons to Germany, 8410 tons to Wales, 5620 tons to Holland, 4562 The average net selling price of coal by members of the Durham Coal Trade Association during the three months ending April 30th
was 4 s . $6^{\circ} 01 \mathrm{~d}$. per ton. Under the sliding scale the rate of wages payable to operatives will therefore be reduced $\frac{14}{5}$ per cent.
The directors of the Hull and Barnsley Railway Company
announce that their dock and railway will be opened in July next.

NOTES FROM SCOTLLAND.

Tur iron market has been quiet in the past week, with lonly a moderate business. There have been several fluctuationn
in prices, the tendency of which is slightly downward. The
 preceding week, and 15,233 in the correspond-
ing week of 1884 . There has been a fair demand for Canada, to which considerable quantities of iron have been despatched in the past four weeks.
Germany and Holland are also taking a little Germany and Holland are also taking a little
more Scotch pigs, but the requirements of the United States are very easily met. There are 90 furnaces in blast, against 97 at the correspod to the stock in Messrs. Connal and Co.'s Glasgow stores.
Busin
Friday at 41s done in the warrant market on Friday at 41s. $9 \frac{1}{2} d$. Monday being a Scotch
Bank Holiday, the iron market was closed on that day. Business resumed on Tuesday morning
at 41s. 10. course of the day to 41 s . 9 d. d. cash. Business wa done on Wednesday at 41 s s. 9 d d . to 41 s . 11d. cash. $41 \mathrm{~s} .11 \frac{1}{2} \mathrm{~d}$. to 42 s . $0 \frac{1}{2} \mathrm{~d}$., closing at 42 s . cash The demand for makers' iron is quiet, quotations are as follow:-Gartsherrie, N $50 \mathrm{~s} .6 \mathrm{~d} . ;$ No. 3, 46s.; Coltness, 52
and 49 s . 6 d ; Langloan, 52 s .6 d and 49
Summerlee, 50s. 6 d . and 46 s . Calder and 46 s ; Carnbroe, 48 s , and 45 s .6 d. ; Clyde
46 s .9 d . and 42 s . 9 d ; Monkland, 42 s .
 Leith, 50 s .6 d . and 50 s. ; Carron, at Grange-
mouth, 52 s .6 d. and $47 \mathrm{~s} . ;$ Kinneil, at Bo'ness, 47 s .6 d. and 42 s .; Eglinton, 42 s . 3 d . and 39 s . 6 d .; Dalmellington, 46 s . and 42 s .
Hematite pigs, Nos: 1,2
Hematite pigs, Nos: 1, 2, and 3 Bessemer, are 43 s . 6d. f.o.b. at Maryport or Workington. The
stock held at the ports by the West Cumberland Storing Company amount to 79,700 tons, including 2000 of other kinds of pig iron.
The steel trade continues to pro
additional orders reported, prosper. Several being one-half of the steel work for the ironclad pany, which has been given to the Steel Corks Comof Scotland. It is also reported that a large part of the steel for the belted cruisers to be built on the Tyne will go to Scotland.
Glasgow, have obtained an order for twenty and 10in. centrifugal pumping engines, for circulating water through the condensers, \&c., of the six cruisers now under construction for the Admiralty by Messrs. J. and G. Thomson, of Glasgow. The past week's shipments of iron and steel motives and tenders, valued at $£ 9150$, for Sydney machinery worth $£ 1500$; and $£ 26,000$ worth of iron and steel goods, incluaing pipes, \&c., to the value of $£ 10,950$, for New South Wales.
In the past week the coal trade has again been
fairly active, particularly in the shipping depart fairly active, particularly in the shipping depart-
ment. From Glasgow the quantity despatched was 25,835 tons; Irvine, 2202; Ayr, 7044; Troon, 8399; and Grangemouth, 4712 tons. There bas been a moderately good business at Leith. From Burntisland returns are not always available, April reached a total of 73,178 , as compared with 72,286 tons in April, 1884. Within the last week or two the shipping inquiry in Fife has improved, admitting of the miners being placed on full time at a number of the collieries. Steam coals at Burntisland are quoted f.o.b, at $6 \mathrm{~s}, 3 \mathrm{~d}$. to 6 s .9 d .
a ton. The inland demand is fair all over the country, and the increased quantities of fuel required for the steel works have had a beneficial Messrs. Addie and Son, Coatbridge, have struck
a seam of smithy coal a seam of smithy coal below heir steam coal This field is 2000 acres in extent, and it is expected to turn out a valuable and productive one. The directors of the Armiston Coal Company have intimated an interim dividend, at the rate March last.
The affairs of the late Monkland Iron and Coal attention of a meeting of the shareholders in Glasgow a few days ago. It was intimated by
the liquidators that the amount in hand, after satisfying creditors, was £9453, and that if there was no appeal to the House of Lords in the case amount would be divided among the shareholders. Last Friday the ceremony of letting water into
the James Watt Dock at Greenock, and of putting the last coping stone on the walls, took place in the presence of a large and interested gathering.
Provost Wiison laid the stone, and Mr. John Scott, shipbuilder, let the water into the dock Scott, shipbuider, let the water into the dock.
The James Watt Dock has occupied nearly seven years in construction. Outside it a large tidal harbour is being formed. The works, which are from the designs of Mr. Kinipple, C.E., will cost
$£ 550,000$. They will form a magnificent addition to the harbour accommodation of the port, The withdrawal of large quantities spirits, and tobaco from bond in Glasgow during April, in anticipation of the Budget, greatly
increased the Customs revenue, which has increased the Customs revenue, which has
amounted to $£ 197,172$ as against $£ 00,895$ in April

During the first four months of the year 500 vessels have arrived at Clyde ports, with a total
tonnage of 431,729 , being an increase of 29,673 tons over that of the same period in 1884. There
is, however, a decrease of 19,766 in the sailings.

WALES \& ADJOINING COUNTIES (From our ouvn Correspondent.) THRRE is a slightly better tone in the iron trade, few orders being placed.
ment in is good deal of room yet for improve and but for the colonies the depression in trade would be greater. Last week some fair foreign Ongoes
One to Port Alfred was over 2000 tons. A A little more dulness has exhibited itself of late in tin plate. Prices have a tendency to droop, A proposition has now been put forward by a maker
that there shall be a week's stoppage per month
and this is under discussion, though not brough
under consideration in a formal way before the
makers. It is discussed individually, some having makers. It is discussed individually, some having One thing is certain, that the stoppage one week per month is not a natural solution. If there is too much tin-plate made, then workers are too numerous.
I see that an offer has been made by the Avon
Vale Iron and Tin Works to their workmen of $12 \frac{1}{2}$ per cent. reduction. The offer of the men is to give two or three turns a month free. This, again, is not a natural solution of difficulties, and the tin-plate workers as a body are setting their
faces against it. faces against it.
German sheets,
roofing sheets, and they are called, terne plates, respect of prices. Ordinary cokes are not so firm. In ores Bilbao and Carthagena are coming in more freely.
It is expec
It is expected that the furnace at Taff Well The coal trade is certainly better
Mr. James Davies, of Nixon's Collieries, Mounof Merthyr Vale Colli ary having accepted Colliery, vacant by Mr. Prichard the room of the late Mr. Hayhurst.
Mr. W. T. Lewis has completed the transfer the Glamorganshire Canal for the Marquis of Bute, and everything is now handed over. The an independent proprietary more than a hundred years ago, is now at length merged into dock property, and with its ancient rights and privileges, may be regarded as of the highest
strategic importance, and its acquisition by Mr. strategic importance, and
Lewis as a master stroke.

tHE Patent journal.

$* *$ It has come to our notice that some applicants of the
Fatent-ofice Sales Department, for Patent Specifcations,
 both to themselves and to the Patent-aflce Officials, by
giving the number of the page of THe ENaINEER at which
 Index, and giving the numbers there found, which only
refer to the pages, in place of turning to those pages and
finding the number of the Specifcation

Applications for Letters Patent.

 $* *$ When patents have been "communicated," thename and adress of the communicating party are
printed in italics.

28th April, 1885.

6. Producina-Blank Mars, dec, W, s, Brook

Birmingham.
207. Moemtice Locks, J. Blakeley, Cardiff.
Delany, London.
Delany, London.
200. BuTros Fastexres, F. A. Smith, jun.-(E. D.
Steele, United States.).
Steele, United States.)
Rawlings, Leith.
P. Moviso Poists on Trasway Lines, J. Hardman,
Pe
s212. Alphaiktical Electric Telegrapil instre mexts, R. C. Williams, Sparkbrook. J. Faweot
s213. Pressiso Bricks, tc., T. C. and J. D. Fawcett
Halifax.
514 Looms for Weaving, R. and S. S. Hall, Man5215. Looms for Weaving, R. Hall and J. Hobson,
Manchester.
 5217. Ksittixg Macinses, W. P. Thompson.-(G.
Nye and E. Tredick, United
5218. Fitese TElearapi Systes, L. H. McCullough
 522. Skryiette or Napkin Ring, G. Hirst, Whitby.-
 23. Covered Butrons, G. L. Aston, Birmingham.
24. Srises for Ramir Traps I. Waine, London. Fenton, IIleworth.
Laws
26. Mountina
Laws-tensis Nets, E. Biddell, Lend Treathant of Human Excremests, de., C
Lehofer, London.
228 . Vibetina Enges, H. J. Allison.-(W. E. Cris United Statce.)
529, Stos CLAsPs, tce., H. J. Allison.-(F. Armstrong United States.)
523. BuLLEss for Smill-ARMs, \&c., J. J. Talman
Harbledown. Harbledown. Machises, H. Botten, London.
5231. Bramiso mplicable for WEAR in Fencina, \&c., J. S. Batt, London.
S. Rendriso Leather Fleximle or Pliable, H C. Howe, London.
GATEs for Ratway, te., Crossinos, P. M.
Justice.-(The Copeland Menwacturing Company, Justice.-(Thes
United States.
5235. Teletand
5236. Frastes of Urassittres, J. E. Fuller, London, 236. Frames of Uprigitt Planofortes, E. Whitfield,
London. Jones, London.
239. Cork ExTrActors, R. B. Jackson, London.
239. Timerieces, M. V.'B. Ethridge, London. 239. Timerieces, M. V. B. Ethridge, London.
520. Recepticle for Crinolise Stekl, A. Phillips,
Itid London.
241. Gas Requlators, J. Winsborrow, London.
24. Revricelisa Machises, W. S. Squire, London 242. Revriorratisg Machisks, W. S. Squire, London,
243. Ventilatine Hay or other Ricks, J. Starkie,
London.
244. Mechanical Otlers, dec., for Shayting, H. P Humphrey, London. 5246. Cards for Jacquard Apparatus, J. H. Johnson. -(T. J. Sloan, Fvance.) -(G. Brunton, India.) Randolph, London.
5249. DRyINO MACHINE, W. Horsfield, London.
250. SHAFT Couplisos, H. E. Newton,-(S. stuar,

5258. Protecting Vessels from Torpedoes, C. R.
Parkes, London. 5259. SELF-ACTING Pump, C. Robin, Paris.
5259. CHROMATES and ACID Chromates, J. Brock an
W. A. Rowell, London, W. A. Rowell, London.
5260. Borrues and JARs, A. W. Birt and R. J. Forster,
London. London.
5261. Apparatus for Burnisa Naphtha, \&c.,
Nordenfelt, London. Nordenfelt, London.
5262. MinEs and Torpedo Apparatus, C. A. McEvoy,
London. 5264. Hingers, E. A. Clowes, London.
5263. Metal Cylinders, W. R. Lake.-(W. H. Brove United States.)
5264. Skcorisg Rallway Rails in their Chairs, A. B.
Ibbotson, London.
 Burnishing Machine Company, United States.)
5265. Groovisg the NEcKs of BorTLEs, W. R. Lake.-
(W. L. Roorbach, S. and O. Tuvitchell, United States.)
 Lake.-(F. F. Raymond, United States.)
5266. Trainvag Gear of Central Pivot Gun Mount-
INGS, J Vavaseur, London.
5267. SECURING Lasmp Sockets to Tonaues of Btcyele, Securing Laspl Sockers to Tonaues of Brcycle,
Laps, H. Salsbury, London. 27. PREPENTING Bour , NuTs Workiva Loose, E.
Partridge, Birmingham. Birmingham. 274. Making Steel by the Bessemer Process, A
Davy, London.
5268. Making Steel by the Bessemer Process, A. Davy, London.
5269. Char Bexstead, H. A. Wilson, London.
27T. Combined Shats and Poles for VEHicles, A. M. Clark. (J. Pettinger, United States.)
5270. WARM AIR STove, B. Verity, London. Clark. - (E. Lestie Canada.)
2so. Effecting the Decarbonation of Earthy Car

BONATES, W. L. 29 2 2 April, 1885,

281. FAsten
Woolwich.
for Window Sashes, R. Warry,
282. FASTT
Woolwich
283. Swirc
Swan, Ga

Switce for Incandescent Electrical Lamps, A.
van, Gateshead.on-Tyne.
Finishina Web or Textile Fabrics, dec., G.
Dyke, Yeovil.
hampton.
his. Fasterer for Bracelets, dc., C. F. Herold,
Birmingham.
5286. VENTLAT
5286. Vextilators, S. A. Luke, Rochdale.
5287. Packing for Steam Engines, A. MacLaine,
Belfast.
5288. Permanent Way of Rallways, W. F. Batho,
Liverpoo.
5289. Omsibuses, dec., T. Startin, Birmingham.
5290 .
289. OMsibuses, \&c., T. Startin, Birmingham.
290. Cavitic or other Drva HEADs, \&c., H. Bott, and
J. and J. Billinge, Liverpool. J. and J. Billinge, Liverpool.
29i. Corruadte Zinc PERamblator Boderes, w.
Wroe and B. Fowell, Manchester. Wroe and B. Fowell, Manchester.
292. SWIVEL for WATCH GVARDS, cc., W. H. Hemming
and G. H. Hazlewood, Birmingham. and G. H. Hazlewood, Birmingham,
293. SEMAPHore INDICATor for Electric Bells, J. D.
Adams, London.
5294. Shirt Collars, R. Glover, Stratford.
5295. Malt CocoA, J. W. C. Moeller, London.

London.
298. INDUCTIon Corls for Telephonic, \&c., Purposks,
8. Winductions, Newport. Tele Tephonic, \&c., Purposis,
5299. PNeumatic Composition Pedal Apparatus for

Organs, W. G. Wilkinson, London.
5800. BuTrow-hole SEwINo ATtachment for Skwing
Machives, F. Egge and C. J. A. Sjoberg, London.
Machises, F. Egge and C. J. A. Sjoberg, London.
5001. Solitares. R. Bateman, Birmingam.
5302. Dabbing Brushes for Combing WooL, J. J.
302. Dabise Brushes for Combisa Wool, J. J.
Richardon, Bradford.
303. Nals. MAKING. MACHINERY, J. Etheridgo and J.
H. Lloyd, London.

304. VELocipedes, H. A. Barrow, London.
5335. BoDkIIs, A. . L. Gordon, London.
5306. DRIIIN, MECHANISM of Tricycles, J. Beeston,
London.
307. Fixing, dec., Vertical Mill-stones, R. A. Lister
and G. S. Richmond, London.
308. Strikina or Chimpo Ala,
and G. S. Richmond, London.
Londanikina or Caimina Apparatus, C. shepherd,
ion
London.
5300 . Door-closing Apparatus, C. H. Maxsted, Lio. Ruling parallel Lines, I. Beutelrock and Count H. Seilern, London.
Lons. TURNING and TAPPING Lathe, A. Emanuel,
London. Loncon.
5312. Metal Dental Platrs, W. Wbitchouse, London.
5313. Har Breshes. S. J. Hill, London.
5314 Regulation of ElEctrical Circuits, D. L. Salomons, London.
3315. Kicceen Ranass, R. A. Perrott, London.
5316. Drilling Machine, H. Noyes, London. Drilling Machine, H. Noyes, London.
Stamper for Crushina Ores, de , W. Husband, London.
318. Stamper for Crushing Ores, \&c., W. Husband 519. Doors, \&c., for Coal-boxes, dc., C. Sims
London. 5320. Tricycles, W. Starley, London.
5321. Coupliva or Efires Endess Driving Chaiss of Velo 5322. CLOTHiNG for LiFE-shiving, de., Purposes in
WATER, D. H. Sisson, London. 5323. Imritarto A. Asrachan Trimering Fabrics, A. G.
Darby and A. L. Jordan, London. Darby and A. L. Jordan, London.
3324. Driving Bicycles, de., C. W. J. L. de Robert, London.
(325. PIANorortes. W. R. Lake.-(V. A. Thibout,
France.) (ance.) TIME Locks, J. B. Young, London.
CASES of Thread for SEWING
Dewhurst, London. for Sewing Machines, A.
5329. Paskegr Fare Checking, \&c., F. Elmore
(F. Edward), London. (F. Edward), London.
soth April, 1885.
5330. Soap Cuting Apparatus, J. Petrie, Glasgow.
531. Combined surpace spekd and Revolutio INDICATOR, G. Oldield, Glasgow.
5332. APPARATUS for INDICATINo Asouxts of Money
RECEIVED, A. J. Lyon, Cambride. REGEIVED, A. J. Lyon, Cambridge.
5333. KeyLss PUzzL Lock for Work-Boxes, \&c , F
W, Amsden, Birmingham. W. Amsden, Birmingham.
53s. STEAK STEERING GEAR for Vessels, J. Brown,
Manchester. Ing. Trateriers for Ring Spinsing, J. M. Hether
ington, and S. Thornton, Manchester.
36. Rotary Enoines and Pump, H. P. Fenby, Leed 10gton, and S. Thornton, Manchester.
5336. RoTary Evirs and PUMP, H. P. Fenby, Leeds,
5337. JaRs and LIDE, G. Gardtuer, Liverpol. Liverpool.
539. CYLINER with Pistors and Vent Holes, w. F.
Cotterill, Leicester. Cotterill, Leicester.
5340. CENTRIFGAL. MAchines, known as Hydro
ETRACORS, J. Laidlaw, Glagiow,
 5343. Striking Work of Clocks, U. V. Jrege
London.
5344. OrNamentisa Rails of Metallio Bedstead 6344. ORNAMENTING Ralls of Metallic Bedstead
dC., L. Brierley, London.
5345. CENTRIFGAL Bolisg Machines, E. Strietz, 5346. Hydraulic Cemernts, P. C. Lovett, Liscombe
Park. Park.
5347. Electrical Relays, P, G. Forbes, London.
5344. Puririno Drainaoe ${ }^{\text {WatERs, EO., M. Nahhsen }}$
London
5349. Tanks and CElLs, D. A.-Davis, London.
5350. Razors, dc., E. P. Alexander.-(R. J. Reidy and A. L. Alexander, Brazil.)
5351. RoTAY EvaINE, J. Mall, London.
5352. TUNING Frger Rekd, G. Cousins, London.
5353. RAIWAY SI 5352. Tuning Free Rexds, G. Cousins, London.
5353. Raiwhay Signalling, A. Sauvée.- (H. Supéry,
France) France.)
5354. Decorative Concrete of Slag, \&e., E. Robbins
London 5355. ADVERTISING, M. Anquez, London.
5355. Lock-UP STANDS for BoTtLEs, dc., A. Watson 5557. Adapting Designs from Curtains to Table
cloths, A. F. Link. - (H. Jensen, France.) 5858. Transmitting Motion to SEwina Madines, W
Beecroft, London S350. Preparation of Leather, W. R. Lake.-(J. B.
 London. lst May, 1885.
5362. Selp-actisg Mules, W. T. Watts, Manchester.
5363. INotantaneous Photoaraphic Camera Shuter W. J. Lancaster, Birmingham
53c4. Proorooraphic Cameras, W. J. Lancaster, Bir-
mingham. 5365, DEtachable Trie or Hoop for Wheels, T. Snow ball, Neweastle--n-Tyne.
5366. Fabric for Window Blinds, \&c., H. Lee, Manchester.
5367. Portable Stands for Photographic, \&c., Pur-
fose, A. Pilley, G. A. Cubley, and J. Preston, Shef-
field. Kingshill. 5899. Openisg and Clobina Windows, W. Misby
London 70. Exclosino Railway Staxals in Casss, C. J.
and J. G. Howe, Sunderland. Halifax. 73. Washing and Storiso Dishes, W. P. Thomp-son.- (J. S. Stecens, United States.),
5374. SHarpenino Crroular SAws, G. H. Garrett,
Glasgow, 5375. Lock Furniture, \&e., W. Trubshaw, Peckham.
5376. ELbctric Motoks, A. Reckenzaun. London. 577. Venetian Blisds, A. W. Adams, Ponarth.
6378. Wool Combino Macuinss, J. Midgley, London
6979. OpERATINo Electric Railway Trains, T. Handford.-(F. J. Sprapue, United States.)
5380. Brochys, dc, S. Pearce, Birmingham
6381. PINTINO on CLAY, J. GIIdea, Iondon 5381. Pantina on Clay, J. Gildea, London.
5382. Distilina GLyCkrise, A. G. Brookes.-(R. 5383. Revinno Giva itaites, A. G. Brookes.- (r. Giebermarn,
Evans, London. Jonts or Couplinas for Pipes, \&c., J, Evans, London.
5385. AERATED WATERs, C. E. Avery, London S385. AERATED WATERS, C. E. Avery, London.
Sic. Arr, STEM, and Water-tioht Conskotions, O.
Jilliams, jun., London. J. Williams, jun., London.
87. SwITcks for ElEcTRIC Lasips, H. J. Haddan.-
(Schumann and Koche, Saxony.) (Schumann and Kocne, Saxony.)
588. Hyposulphates and Sulrmates of Alkalies, H.
Bollmann, London. Bollmann, London.
5389. Mretallic Slekper for Ratls, F. W. Rafarel, London.
haice. Corsers, C. D. Abel.-(La Societe Farcy et oppen-
5391. CALCINING Sulphides, dec., G. H. Blenkinsop 5391. CALCINING SuLpHiDes, \&c., G. H. Blenkinsop
and J. G. Gordon, London. Garrigon-Lagrange, London. Garrigon-Lagrange, London.
Londonting, dc., Electric Currents, J. H. Davics,
Londor 94. Securino Non-conducting Materialsto Boilers,
©c., J. Fyfe, Glasgow
 5398. Transmission of Motive Force, J. Graber,
London.
S399. Bas of Sugar, W. R. Lake.- (F. Napravil,
Austria.) Austria.)
b40. Elecrical Incandescernt Lasmps, O. E. Wood-
house and F. L. Rawson, London.
 5403. Pipe Couplisges, A. Rollason, London
404. ELECRIIAL TRIN SToNALING APP
M. Clark M. Clakr.- - (B. J. Jerime de Baillechache, France.) A
5405. Meral Plates, W. R. Lake.-(J. Noel and
 Dawson and H. Simpson, London.
540s. SpINsiso and DousLivo Corros, \&c., J. w.
Dawson and H. Simpson, London. Dawson and H. Simpson, London.
S409. SUprootixg the Spisple of Muss or Jacks, A.
G. Brookes.-(J. T. Meats, United States.) 2nd May, 1885
4410. Dyersa, J. K. Kayo, Halifax.
5411. Reservor Peniooders, W. E. Heys. - (
Jut Juliusberger and L. Markeald, Prussia.)
5412. FLour Smpriva Machives, W. Brierley.-(R.
Lanzasch, Germany)
 Wight.
5415. Prevertino Horges, \&c., from Slippina, B.
Harris, Neweastle-on-Tyne. Harris, Neweastle-on-Tyne.
5416. RoTARY PoMp for ExiAUsting, \&c., Lieuids, tc.
R. Wagstaff, Hyde. 5417. Mackame Lick, F. Anyon, Manchester. Welling
borough. Wism Roller, H. W. Bean, Well borough.
5419. Avtomatic Drilling Lathe, J. Parry, Birming

 London.
5426. OPEsisa and Closisa. Doors of Haxsom Cabs, F,
and C. Forder, London.
 6429. HyDroulic Elevators, E. Heurtcbise, London.
5430. Box ExDs of Lathes for Looms, D. H. Hessle:
grave, London. grave, London.
5431. Taking Buckle or Flats out of Stekl Tubis,
E. S. Brett, London. 5432. PERSPEGTVE DEMONSTRATOR, R. Elmore, London.
543. DEORATED CHINA and EARTHENWARE, J. Hold
croft, London. croft, London.
5434. SELF-ACTINo Cooling Apparatus, for Invuriss
to Domestic Antmats, G. Downing.- (L. V. Sucaine,
Germany.) 5435. Stopering Bottles for Ginger Beer, dec., E.
Stiff and G. J. Chambers, London. S46. Sulpuric Acmo W. . L. Squire, London,
5437. PREVENTING Formation of ICE upon WI
 Bemmel, London.
5439. Preventiva Subidiary Fermentations, C. D.
Abel. - (C. Myycr, Lomdon.)

544. Metais and Linisos for Cosdessers, G. W 544. GEMANT, F. Ransome, London.
543. TREATMAT of GAs, F. Lesile and J. A. Wanklyn,

 LIondon.
5450 . TANDEA
Velociprdes,
G. Singer and R. H. Lea ${ }^{\text {545 }}$ Lon. Burs for Horess, dc., J. Roarke, London.

$$
4 t h \text { May, } 188 \sigma .
$$

5452. Cutriva Bonkps, C. J. Corbitt, Manchester.
5453. Deronation of Tinved PLATtes, 8. Groves, mingham,
5454 . Cormeated Plates, J. D. Morrison, sen., New-
 Jackson and G. W. Toney, Birringham
5454. Borise Wruss, C. Chapman, Manchester.
 A Stewart, Glaggow. LATHE CARIER or
 and G. A. Hardy, Notting ham,
5460 . Epocantion 1 , Aptuscors, T. Barker, Rock Forry,

 Wilk kinon, Sheffild.
5455. Fonorno Nurs, E. Davies, London.

 stiz. Pumipyive and Futrinsa Water, L. Schrütor,

 Morrin, London,
5456. STEAM Bour
 T. J. Wilkie, London.
5457. TTuvasiso CAsks, A. Ransome and T. J. Wilkie, 547... Canerers Swarvzns, B. C. Evers.-(IV. H. Castle, United Stateas) Water Velocireder, dc., R. Brooks,

 5196. Duvilex Crank Piston Pomps, J. Dow, London.

SELEOTED AMERIOAN PATENTS (From the United States' Patent ofice oplicial Gazette.) | 313 974. Bert Lace, Nicholas I. Allen, Rochester, |
| :--- |
| N.Y. Filed April 18th, 18st. | Clain-A belt thao mado of tamp wiek trated with

asphaltum or conl tar, provided with metallic tips at 313.974]
its ends, and having strands of wire running longi-
tudinally through the lace, as and for the purpose
 Claim.- A valve to be inserted in a wasto pipe lead.
ing from a bath tub to a water closest, comprising in
combination, the

$$
\text { ombination, the following elements, viz: } \begin{aligned}
& \text { ng bulb } \\
& \text { ng }
\end{aligned}
$$

provided at one end with a tubular extension t, and narrower dimensions than the buls A, , and provided
with a flange g, diss B, of pliable material, secured
$\left\lvert\, \begin{aligned} & \text { between the flanges } 8 \text {, and } 9 \text {, which are secured } \\ & \text { together, and } \\ & \text { not flop } C \text {, formed }\end{aligned}\right.$
 end from the same, all being construc
to operate substantially as described.

Filed Soptember 6 ih, 1884 ,
 jecting stems h, and springs, combined for opera
tion, as specified. (2) The combination in of cup b, tube A, cylinder d, valve ζ, stem h, and

spring g, substantially as doseribed. (3) In a luln
cator, the combination, with the lubricant foedin cator, itio combination, with the lubricant foedin
valuos, with their stems oxtending into the stom
chamber, of the steam valven chamber, of the steam valves acting upon said stem
to open thei valves, substantially as and for the pul
pose 31
314,078. Pour, David P. Stevart, BuJalo, N.T:-Claim.-- (1) The combination, with the piston,
plunger B , of the conneoting rod D , provided with

having A groovo or recess ${ }^{\text {bl }}$, of a conneeting rod
D, provided with a knucklo d, seated in sadd groove
 as sot forth. (3) The combination, with the tubula plunger B, having a groove or recess bl, and lugs in
of tho connecting rod od provided with a T-shaped
 arms $h 1$, , screw bolts k, and jam nuts $k k^{k}$, subustantiall

Claim:- A car wheel having two of its spokes con nocted by wails or wobs, so ns to oorm a chamber
radiating from the hub, an opening at the inner end radiating foom the hub, an opening at the inner end
of the sand chmber oxtonding through tho bub,
scrow plug affording access to the said chamber, and

314,140]

Yugs or flangos oxtending into the suid chamber
from the spokes, forming the end walls ther oof, in from the spokes forming the end walls the of, in
combinat ton with preking phacod in thil inner end of the sudid conamber and 1 etainned by such lugs or flanges,
substantinlly as sot forth. 314,206. Snaft Cobplise, William B. Turner, Nem Clain, -(1) in a shaft coupling, tho cam levers J,
substantally as deseribed. (2) in a shaft coupling

314,206

the combination, with the cam levers J, of tho mov-
able caps $\mathrm{E} F$, substantinlly as described. (I) In In a ablo caps. EF, substantinlly as describod. (3) In a
shaft ourl ng, tho combintion, with tho cam lovers
sat J and rod 8 and nut or nuts T, of tho movablo caps
$E \quad F$, subs:antially as describod. (4) $I \mathrm{I}$ a shaft
 stantially as deseribed (5) In a shaft coupling, the
combination, with the yoke shaped cam lovers Jo,
the
 A of the movable caps EF, F, levers J , and cams p ?
substantially as described.
 Claim, (1) In In avernor for steam engines, the
combination, with the valve and revolving weibht controlling the same, of the spring-actuated stopping controung the same of the sprigg actuated stopping
devico for wholly or partialy closing the value, and
the leerer wherebt the the lever, whereby the said stopping device is retained
inoperative while the oovernor is properly actuated subberantially as deserbed. (2) In anfoveror for
steam engines, the combination of the valve and
s. steam engines, the combination of the valve anc
revolving welights controliling the same with the
年 spring actuated stopping devico and the lever and idle
pulley, whereby the said stopping device is retainod inoperative while the governor-actuating belt is in it it
normal operative condition substanti illy as described (3) In aporevrnor, the conbination of the revolving
weights and their supporting springs with the valve
 the said fevers, substantially as described. (4) The com
bination of the revolving weights and their supporting prings with the valve-actuating levers, bearing piece whereby the pressure of said bearing piees and the
consequent frictional resistance to the movement of

valve-actuating arms or lovors with a rod provided
with flanges or collurs enoved by the lovers, the sadid collarar being provided with and of chamber, surround.
ing the rod, and an inlet puasaluo to mand chamber in ing the rod, and an inlet passago to suid chamber in
 other tauge or collar, substantialy as describod. (1)
Tn atoam ongio goveror tho combination, with
the rovolving weights and valvo stem and valve con.
 thereon may bo varied, subbstantially as as doeseribod. (7)
 ngaging projection on tho valvo optem co-operating 314,533. IsJEGTor, James Jenks, Detroit, Mich,-Filed IJain. 4hh. 1884.
claim.-(1) The combination, in an injector or joctor, of the steam jot, combining tube, and stantially as deseribed, with a piston controlling the admission of steam to the jet, tightly fitting in and
having a reciproating motion within a pertornted cylinder, and a valve upon a yielding stom controlling he overitow passage, substantinlly as and for the pur(nclosed in the same shell, and adapted to dan aw water Trom a plane below that of the implement, and
deliver the same to sald injector, a porforated cylinder deliver the same to said injector, a perforated cylinder
in the steam chamber having a reciprocating piston

314,533

tightly ftting therein, a steam jet, a combining tube tubes being on the same axial line. in combination with a water chamber surrounding the adjacent ends
of said tutbes, having an opening in its top communicating with an overtoo passango, such opening geing
controlled by a vilvo which Fis opened by internal presare and closed by gravity, substantiully na
specifed. (s) In a steam injector provided with inlet, exit, and ooverfow pasanger, the chambers 1 and
O1, the later independenty formod within the body

 valve L, mounted on a yielding stem, and regulating
tho exit from the shamber I to the overflow pipo K, and tho valvo 11 , automatically regulating the ovorfow from the chamber Cl to the overflow pipo K in
the rear of and independently of the valvo L, subthe rear of and independentiy of
stantially as shown and deseribed.
 Norember 20th, 1884
Claim- (1) In a wod-bending or drying machine,
the hoilow platen constructed of upper and lower boiler iron platos B BB, intermodiat © wrouggit metal
frame B^{2}, marginal rivets o, and central stay boits
 the orwor onary theo rack the bars peor pard to tho upper
platen, the crank wheel, and the gearring, whereby

 bination of two hollow platens nadapted to be heated
by stoum; ono of sidd patenn deing provided with
overiapping piates inclosing the sila

tion, with the moving platen, of a drying an
machinne, and the moechanism for dopressing
platan, of a weight connected to said mechanisn

oxerting a staady force theroon, whereby the shrinkage
in the wood is tis in tho wood is tateen up, and dan unvarying prossure is
secured substantially as apecfifed. 314,243. SToNE Litrret, Thomas Heatheote, Allegheny Clain.-The herein-desertibed bitone lifter, consisting
of the cone-shaped plug or with tho ring oand siottod

links d d, with the ribbed foathers $e c 1$, as shown and
doseribed, and for the purpoose intended. CONTENTS.

The Enginere, May 8th, 18 Stram Engisks at tue Invertions Ex. paoz (Illustrated.). ̈. .̈. \#̈ .̈. ." 347

 Contingovs Brakes.
Tak Laws of Motion
Tas LAws or motios:

 Evaiserras and Contractors
Enoiser as and Com
The Tower Brdog
Nos-cosmbocriso Coaitixa yoü bölure

Buffers and Screw Couplings, Indian state

 Rivers ruswisa isto Tideless seas

 (illus.)

MINOHAM, WOLVERHAMETOS, AND DIETRICT
Notrs yrom Sheftikld
Notrs rrox the Nolm or Exölaix
Notes rrom Walks axd apuonino Counties

Paddlo Steamers for the Nile
The Metropolitan
Photographing to Scale
Naval Engineer Appointmento
Tilbury Docks
South Kensington "Musoum
Glasgow Engineers' Association
With a Four-phoe Supplementary Workiso Drawise
of a Midland Express Locobotive.

[^0]: over the whole surface. The buffer faces are to be made to the shape shown on the drawing, and must be faced up all over in the athe. The buffer shanks must be forged solid with the jaws without a weld in their length, and must be drawn down under a
 steam hammer true to the form shown, and the round part must be turned. The buffers must be forged from best hammered scrap iron. The yoke lever, sliding coupling block, connecting-rod and coupling screw, coupling hooks, spring sockets, and plingers must drilled, and the pins must be turned. The yoke levers, sliding coupling blocks, and connecting rods may be left black, if in the opinion of the Inspector-General they are sufficiently neat and clean forgings, All other parts must be turned, bored, or planed where and pins must be an easy fit. The end of the coupling screvw which fits into the sliding block must be a sufficiently easy fit to
 tinted red on the detail drawings are to be bored or turned, and ser mentioned in this specifica tion or not; and all pieces of iron not bored or turned must be cleaned up with the file, and finished off in first-class style Generally, all workmanship must be of the very best class. One set of buffers and couplings must be completely erected and must be approved by the Inspector-General as a pattern before with. Should an examination of this pattern lead the InspectorGeneral to order any alterations in the designs of any of the parts, he is to be at liberty to do so, without claim on the part of the contractor for loss on any parts which he may have made prior to the approval of the sample, or for any extra payment, except in
 regard to weight at the schedule rates. Every set of buffers, \&c., regard to weight at the schedule rates. Every set of if anters, ,cc., vehicles in actual work. This must be so arranged that all the

