GRAPHICS, OR THE ART OF MAKING CALCU LATIONS BY DRAWING LINES.

By Professor R. H. Smith.

No. V.

Grapho-trigonometry.-We will deal here only with plane trigonometry. We have to make calculations regarding plane figures bounded by straight lines. In doing so we must frequently plot off angles. The instrudevices protractors are nearly all of them very rough devices at the best, and are far too unde by Ster accurate work. The vernier protractor made by stanley trustworthy and thardord and accur instrument, but is costly. The maer is p useful, Bute isy a low bur wilh orinery But as any aif can berred nstruments with any desired degree of accuracy, the us following and requires the use of a toble of notural showing, and requires the use of a table of natura mathertiel the table found in Moleswoth tot suffie for couse it ives the pes for descree only' wheres, the angle is read in the field to minutes First draw from the centre from which the angle is to be plotted a circle of say 5in radius On this circle the chord of the desire ane is evidently 5 multiplied by double the sine ale is evidently in. multiplied by double the sime the angle The angle can be halved mentally. This hal angle is looked up in the table of natural sines; its sine i multiplied by 10 , is, the point removed one place, and this pred the chord of the desired angle For example, suppose the chord of the desired angle. For example, suppose $0 \sin 47 \mathrm{deg}$ or min $7 \cdot 38^{2}$, Wre in of 94 deg . 48 min . on a circle of 5 in. diameter. Now, from the table 48 mind that $7 \cdot 37=10$ sinamecer. Now, from
 7 deg 19 min and 2×47 de $19 \mathrm{~min}=94 \mathrm{deg} 38 \mathrm{~min}$ Now, it is posible with ordinary care to seg. 38 min passes to in but much sreater accuracy than thi is not easily posible Thus we cannot pretend to set of very accurately as a or between 7.36 and 7.37. These, as we have seen, correspond on a circle of 5in radius to angles differing by 0 deg. 10 min . With this size of circle the we cannot drend to plot wing to any greater accuracy than 10 min With very small angles, indeed, the scuracy is increase o 7 min , but with angles larger than the above - 94 deg -it is considerably reduced. Thus it is advisable never to plot off by this method angles greater than 90 deg. The supplement of the angle-for instance, 180 deo deg. The $48 \mathrm{~min}=85 \mathrm{deg} .12 \mathrm{~min}$.-should be plotted off instead This is also the degree of accuracy obtainable with circular protractor without vernier, with a divided circl of 10 in . diameter. If a circle of 10 in , radius is used, the sine of the half angle must be multiplied by 20 and an accuracy of 5 min . ohtainable If 2 :in is ued at radius, the sine of the half angle is multiplied by 50 , or $\frac{100}{2}$, and an accuracy of 2 min . is obtainable in plotting.
To make the construction on this large scale requires beam-compasses, and, of course, to maintain this accuracy beam-compasses, and, of course, to maintain this accuracy throughout the diagram it
The "solution" of any triangle or other plane rectilinear figure is accomplished graphically by plotting it of
 If it is a length that is to be found, it is measured in the ordinary way; an angle is to be measured by a reversal of the above explained process ; and the measurement of areas we will immediately proceed to explain. But it hould first be observed that in plotting off, all the angle required should be set off in the first place upon one and the same circle, and the directions so obtained then trans ferred by the sliding set squares upon straight edges into the positions required in the drawing. That is, we are not o draw a new 5 in . circle at each new point of the drawing where an angle is to be set off, because such a proceed ing would involve the waste of time and labour, becaus it would cover the paper with unnecessary and confusin nes, and because at several of thes points it will usuall ee found that there is not room inside the limits of the paper to use a good sized circle-such as 5in. radius. The he middle of the eorin circle is conveniently chosen nea he midule of the height of the paper and about in. or so from the left-hand side. A vertical line being drawn hrough this and asemicircle draw, it is clear that this semicircle will sumice for the marking off of all possible angles. Thus in Fig. 13 let it be required to mark of

from the line O A down angle 140 aeg. Instead of doing this directly, we mark off upwards 180 deg. -140 deg. $=40$ deg. from A to B, and thus get BO as the desired direction, which can now be transferred any part of the drawing. Again, let it be required to mark of 7 deg. downwards from $O A$, the angle A than 70 deg. We first mark of 70 deg, from 1 to C^{\prime}, then take the chord $A C \cdot$ in the dividers and set it off from to C . We thus obtain C O as the direction wanted. We now give two examples of plotting off. In Fig. 14 is shown the calculation of the height of a church spire from theodolite measurements.
The theodolite is first placed at a station A. The height of The theodolite is first placed at a station A . The height of levation to top of spire is measured 43 deg .25 min . Another levation B is chosen in line with A and top of spire. Dis station B is chosen in ine with A and 120 ft . Difference of leve f ground at B and A is measured by reading with theodolite at A placed with telescope level on surveyor's levelling staff
held at B, $2 \cdot 34 \mathrm{ft}$. Theodolite is now placed at B, and height of its axis above ground measured 4.47ft. The angle of ele vation to top of spire is measured 25 deg. 15 min . The construction is so simpleand so easily understood from the figure that no explanation is needed. The marking off circle struck from O, the position of the theodolite axis at station B

with radius $\mathrm{OH}=5 \mathrm{in}$. The line a^{1} is drawn parallel to a, the angle H $\mathrm{O} a$ being made 43 deg. 25 min . From the intersection of a^{\prime} with $O b$ is measured X down to the ground line through station A. This is the height required. The distance Y from station A to centre of base of spire may also be directly measured from the diagram. The calculation of X by ordinary trigonometry involves the solution of the two following equations:-
$(120+\mathrm{Y}) \tan .25^{\circ} 15^{\prime}+4 \cdot 47-2 \cdot 34=\mathrm{Y} \tan .43^{\circ} 25^{\prime}$ $\mathrm{X}=\mathrm{Y}$ tan. $4325+4 \cdot 1$
The solution of these equations gives $\mathrm{X}=121 \cdot 207$ and $\mathrm{Y}=$ 123.744. In Fig. 15 is shown the plotting of a piece of ground

surveyed with the theodolite, and through which flows river, preventing the direct measurement of the two sides $C D$ and $A G$. All the other five sides are measured in the field, and the external angles between each contiguou pair of sides are also measured. The sum of these externa angles measured in semicircles is two more than the number of sides, so that, except as a check on the accuracy of the work, the measurement of one of these angles may be omitted. The sides CD and AG are measured on the plot and stated below the diagram. In plotting off the angles at the left-hand of the diagram, always the diference between the given angle and the nearest greater or less multiple of one right angles is made use of. After

FIG. 17

plotting D EF G, from G is drawn $\mathrm{G} b$ parallel to the dire tion of $A B$ and equal to the known length of $B A$, namely 230 ft . Then c is dran the equal in length in the known $B \| A G$ and from the intersection drawn cob to meet B / A, and from con there is drawn BA to kiow in A. To find $C D$ and $A G$ by ordinary trigonometry involves a consideulation, and the solution of two not very nometrical calculation, and the solution of two not very easily formed equations

Areas.-The areas of rectilinear figures already plotted can easily be calculated by the meanght of the area above that
base. The following are amongst the most convenien constructions for this purpose. The proofs of the con structions are easily recognised and do not need formal demonstration here.
Fig.16. Area of Triangle $=\mathrm{A}=$ Base $\times \frac{1}{2}$ Height $=\mathrm{B} \times \frac{\mathrm{H}}{2}$ or $\frac{A}{B}=\frac{H}{2}$. Calculate A. Mark off 2 or 20 or 200 or 2000 along B to scale of figure. Draw m_{1} and $m_{2} \| m_{1}$. The height of intersection of m, with opposite side measures the area; that is, $\mathrm{A} \times 1$, or $\mathrm{A} \times 10$, or $\mathrm{A} \times 100$, or $\mathrm{A} \times 1000$ $=$ area of triangle $=\frac{1}{2}$ H B.
Fig. 17. Area of Parallelogram $=\mathrm{A}=\mathrm{H}$ B. Mark off 1 or 10 or 100 , \&c. \&c., along one side. $A=$ height of intersection of m_{1} and m_{2}, or of m_{4} and m_{3}. Area $=A$, or 10 A, or $100 \mathrm{~A}, \& \mathrm{c} . \& \mathrm{c}$
Fig. 18. Area of Quadrilateral with unequal sides $=A .-$

The given quadrilateral is indicated by heavy black lines. It is split into two triangles by the diagonal m_{1} along which is marked off 2 , or 20 , or $200, \& c$. \&cc. m_{2} and m_{1} $m_{s} \| m_{4}$ to meet the two sides of the quadrilateral meeting at corner from which 2 was marked off; m_{0} is drawn A is measured perpendicularly to m or m. This line is incorrectly given in the diagram; it should extend from the point n in line m_{6}. The construction is equally good whether the diaronal m_{1} is $>$ or <2. The area $=\mathrm{A}$, or 10 A , or 100 A , \&c. \&c.
Another good construction is the following. The quadriateral is divided into two triangles by the diagonal m_{1}, from one end of which a circular arc is struck with radius 2 , or

20 , or 200 , \&c. \&c. A tangent m_{3} to this arc is drawn from other end of m_{1}, and m_{4} and m_{3} are drawn $\| m_{1}$. They cut off A on m_{a}. The radius 2 in this construction must b less than the diagonal m_{1}. The area $=\mathrm{A}$, or 10 A , or 100 A, \&c. \&c.

Fig. 20.-Areas of irregular polygons.-Reduce to triangle, and proceed as in Fig. 16, or to a quadrilateral, and proceed as in Fig. 18 or Fig. 19. The given polygon is indicated by the heavy lines. The extension of the sid 09 is chosen as base because it is the longest. Draw $12^{\prime} \| 20$. Then the triangular area $92^{\prime} 29$ equals the quadri lateral area 90129. Similarly draw $23^{\prime} \| 32^{\prime}$ and $34^{\prime} \| 43$ The triangular area $94^{\prime} 49$ equals the area of the polygon 9012349. Also draw $87^{\prime} \| 79$, and $76^{\prime} \| 67^{\prime}$, and $65^{\prime} \| 56^{\prime}$, and $54^{\prime \prime} \| 45^{\prime}$. Then the triangular area $4^{\prime \prime} 4^{\prime} 44^{\prime \prime}$ equals the polygonal area to be calculated, namely, 90123456789. rrom 4^{\prime} mark off 2 or 20 or 2000 , \&c. \&c., and from the end of this to 4 draw m_{1} and draw m_{4} from $4^{\prime \prime} \|$ to m_{1} to inter-
sect $4^{\prime} 4$ produced. The length of m_{2} from $4^{\prime \prime}$ to this
intersection measures the area; that is, the area equals A or 10 A or 100 A , \&c. \&c.
Fig. 21 shows the method of applying the construction of Fig. 19 to the polygon. It is somewhat shorter and neater than that of Fig. 20. It consists essentially in reducing the area to a triangle whose height is 2, the base of which therefore, of course, measures numerically the area. From any corner 6 describe arc $m_{\text {, }}$ with radius 2 or 20 or 200 , \&c. \&c. To this are draw a tangent m, from any other corner, such as O. Use m_{2} as
a base on which to reduce the polygon, in same manner as in Fig. 20. The polygonal area equals the triangular area 4 , A or 10 A or 100 A, \&c. \&c
lated by dividing them intondaries.-These are best calculated by dividing them into parallel strips, each of a width easy to deal with as a multiplier of the mean length or height of the strip. If there is no inconvenience in making them so, all the strips are made of equal width. In this sum then multiplied by the common width and and their sum then muriplied by the common width. But trouble and time are often saved by taking the widths unequal.
The sharper the curvature of the boundary the narrower The sharper the curvature of the boundary the narrower
ought the strips to be taken. The mean height is obtained in all cases with sufficient accuracy upon the supposition that each small portion of the curve belonging to one strip is parabolic. in shown Fig aproxi not imply the supposition that the whole curve from end to end is a part of the same parabola. The different smal parts off different parabolas such as most nearly coincide such as most nearly coincide
with them throughout the small length.
In Fig, 22 the strips are ruled of in direction of the is possible, and in order to make the small areas at the ends of the strips between the boundary and the chords as mall as possible in proportion to the areas of the strips The full lines indicate the dividing lines between the strips taken, and the dotted lines are midway between the full ines, i.e., they are the centre lines on which the mean lengths of the strips are to be measured. The first two strips are taken $\frac{2}{10} \mathrm{in}$. wide, the next two $\frac{1}{1} \mathrm{in}$. wide, the next two $\frac{9}{n}-\mathrm{in}$. wide, and this leaves a portion of width $x \mathrm{X}$, which is an odd fraction of an inch. The mean length of this last portion is $x y$, and it is reduced to a strip of width $\frac{y}{10}$ in. $(=67)$, and of length. X Y by the construction hown-i.e, by drawing the line $x \mathbf{Y}$. The mean lengths taken on the dotted lines are not measured to the curve itself, but are taken as the lengths between the chords
plus two-thirds the distances between the chords and the urve. This is shown on the small diagram to the right hand. Instead of measuring to n on the curve, or to m on

the chord, the mean length is measured to $r, m r$ being two-thirds of $m n$. The division of $m n$ into three parts an be accurately enough performed by the eye, and the points r need not actually be marked as in Fig. 22; the ength can be read off on applying the scale to the line without the point r being actually marked on the paper, in fact the small divisions on the scale assist in the accurate aking of the $\frac{2}{3}$ of the small length $m n$. The constructions ines need not be drawn in fully as shown in the diagram ; is sufficient to mar
It must be understood that in all the constructions rom Fig. 16 to Fig. 22, the dotted lines represent lines which are not to be actually drawn but only "formed " by laying the edge of the set-square along them and making the required intersections. The practical draughts-
man avoids drawing in as many lines as possible, man avoids drawing in as many lines as possible because unnecessary lines not only dirty the paper when
in pencil but they also make the diagram confused and in pencil but they also make the diagram confused and y the eye.
Frequently the number of measurements taken, from which figure has to be plotted, is in excess of the number absolutely required, There is then an embarras de richesse of data for the calculation, and the results calculated from different sets of data may not exactly agree.
The disagreement shows that small errors have been made The disagreement shows that small errors have been made
in the measurements. In the beginning of our next article in the measurements. In the beginning of our next article
we will show how these errors are most equally distributed we will show how these erro
in the graphic constructions.

South Kensington Museum.-Visitors during the week ending March 1st, 1884:-On Monday, Tuesday, and Saturday, free, from $10 \mathrm{a} . \mathrm{m}$. to 10 p.m., Museum, 10,696; mercantile marine, India section, and other collections, 3307 . On Wednesday, Thursday,
and Friday, admission 6 d , from 10 a.m. to 5 p.m., Museum, 1545 ; mercantile marine, Indian section, and other collections, 164, Total, 15,712. Average of corresponding week in former year
15,137 . Total from the opening of the Museum, $20,810,747$.
length, would be well supported by the public, and where they could not be so well worked by other means. This is the case with the little railway which was laid last year by Mr. Magnus Volk along the beach at Brighton, and worked by him at a good profit. In some respects the circumstances under which this line was made and worked were exceptional; but as the line is now being extended and new permanent way and plant put down, a few words may be said about it
To begin with, it may at once be observed that if this had been in the hands of any company promoter, or in those of a limited company, it certainly would have failed credit, or any profit. It required but. Volk booked to its credit, or any profit. It required but small capital, only a little of the time of a manager, few servants, and no offices or officers. In July last year the Brighton Corporation gave Mr . Volk permission to lay a small line along the beach from the Aquarium to the chain pier. This was
done, and the little line of $24 i n$ done, and the little line of 24 in . gauge carried nearly 300,000 passengers between the commencement of August and the 4th of January last. The rails were of the flat foot section, weighing 20 lb . per yard, and spiked to longitudinal ing in 10 ft . lengths, and having two cross pieces in $\mathbf{i n}$. i . The in 10ft. lengths, and having two cross pieces in each. These were laid on and packed by the shingle of the beach,
close under the foot-path. To provide a current a close under the foot-path. To provide a current a 2 -horse power gas engine was fixed in an arch under the roadway
opposite the Aquarium, and this, working up to opposite the Aquarium, and this, working up to nearly or about 3 -horse power, drove a Siemens D5 self-regulating generator, giving a current of $25 \mathrm{ampères}$ and 50 volts, or about 1250 volt-ampères. Most of the time a machine of the same size, but with magnets and armature arranged in series, was used as a motor in the car. The resistance of the rails in the quarter mile of line was one-nineteenth, or about 0.05 of an ohm.; the whole resistance in the circuitnamely, along one rail-through the motor and through the return rail being 0.55 ohm . This would probably have been less if the rails had been more efficiently fished together, The loss by leakage was verysmall indeed-not

THE ELECTRIC RAILWAY AT BRIGHTON. The application of electricity to the working of light railways has now been a subject of attraction to many for some years, and everyone has from time to time since the running of the toy railway in the Dusseldorf Exhibition In 1880 been made familiar with the practicability o working small lines by this means. There are now three Giour such railways induding the has has not indicated resuits so far superior in economy or to make the light railway or tramway companies of thi country eager to take it up. They fear to make any country eager to take it up. They fear to make any
extensive venture in providing a whole line with the necessary plant, and they are not inclined to make experi nents. Kowledge of merits of the system must short lines, just as it did in the early days of steam rail short lines, just as it did in the early days of steam rail
ways. Although it might be dangerous to estimate the working expenses and advantages of an electric rail way many miles in length by reference to the result obtained from a line a quarter of a mile long, these results must, nevertheless, be taken as afford ing an indication of what may be done on a line FIC. 21
more than a quarter of a mile in length. Thare are rail places in this country where tramways or light railways of under half a mile, or in sections of that more than 5 per cent., or about 1 ampère in the wettest weather. This seems very little; but the fact may be accounted for when it is remembered that the line rested on the shingle, which afforded the most perfect drainage. One car only was employed, and this carried ten passengers,
the speed being about six miles per hour. The whole the speed being about six miles per hour. The whol hing was, then, very small indeed as a railway; but small a it was, it was large enough to carry numbers of passenger, and to earn money in doing it. It was also enough to show that an electric railway may be a very simple thing. Thu encouraged, the Brighton Corporation gave Mr. Volk arther concession, and he is now relaying and extending the line on a 2 ft .9 in . gauge, but with the same size of rails he latter will, however, be laid on creosoted transvers instead of longitudinal sleepers. They will be 4 ft .6 im . in ength, 9 in . wide, and 3 in . thick, placed 3 ft . from centre entre. The new car will be much larger than that used last year. It will carry thirty passengers, and will D2 on 24in. Wheels. It will be fitled with a siemer D2 motor, which will be the same size as the gene vator, which will be of the same mark. The generato will be fixed in by a-horse Oto gas engine, whic mill be fixed in an arch in the high sea wall under Madeiraroad, and opposite the pier at Pastor-place. The engine ill run continuously, as it will also have to drive a small entrifugal pump, by which a tank at the top of the sea inclined railway, which Mr Ve igh ris hight of steps between the Madeira-road at this place an he Marme Parade. The new rainway is 1400 yards in resistance of the circuit is only 0.25 earculate enarator will be generator will be capable or giving about 3600 vol mper an with abo ${ }^{2}$ 2-hore the Chain Pier the line dips and rises by a gradient of in 45 . 45

There seems to be no reason to think that this line will not be as popular, and probably it will be much more popular, than that of last year. It will accommodate many ore and will ply between two well-known places
Things of this kind must have a small beginning, and he experiment which is being made by Mr. Volk has his feature of interest, namely, that though a small affai it is being constructed and conducted with the view to the profit it will earn. Last year's experiment proved to hin that an electric railway might be worked at a profit which was worth obtaining. It has, therefore, shown what capitalists want to know ; but it must be remarked that Gavourable in every way to the railway. He has not had o buy land He has net had to eam a dividend on arge eapital but has only had to cot a protit on as many arge capita, but has only had to get a pront on as many pounds, shilings, and pence as had a very small, and the charge for manacement was wit The mall arned however, was as much as would have poid high rate of dividend, and, therefore, with similar relative receipts and capital on a much larger railway, a considerable dividend could be paid with a higher rate of working expenses. But it has to be remembered that only one set of plant-that is to say, only one engine and one generator-was employed. In a larger railway a double set would probably be thought necessary, though ther was not a single hitch on the little line during its time of was not a single hitch on the lithe line during its time of stations whereat only one set of generating plant is in use. This one set, however, is relied upon just as is the one engine in a mill or a steamship; and with proper care and attention there is no reason why this should not be the case with light railways. Engine and machine can be looked to when trains have ceased running, and thus kept il repair. Under these conditions light railways may be very economically worked by electricity, and there is no doub the experiment at Brighton will lead to many more unde similar conditions.

The End of an Old Ship.-Between ten and eleven o'clock on Saturday morning, the 9th ult,, says the Nautical Gazette, the old line-of-battle ship New Orleans, which has been on the stock in Sackett's Harbour since 1815, and has been undergoing demoli tion the past three weeks, parted directly in the centre and fell to
the ground, instantly killing a workman named John Oates, and seriously injuring Ralph Godfrey, M. Jeffrey, and a man name Hemens. Eight other workmen narrowly escaped. Oates wa terribly mutilated, a spike being forced entirely through his head
and a bolt through his back. The New Oreans was begun by and a bolt through his back. The New Orleans was begun by
Henry Eckford, of New York, about the 1st of January, 1814, Henry Eckford, of New York, about the 1st of January, 1815,
under contract with the Government. Her name was fixed by under contract with the Government. Her name was fixed by
the authorities after General Jackson's victory at New Orleans on January 8th, the same year. She was to be 3200 tons burden
Jand January 8th, the same year. She was to be 3200 tons burden
187 ft . length of keel, 56 fft . beam, and 40 ft . depth of hold, pierce for 110 guns, but could carry 120. When Eckford was awarded the contract a large force of men was secured and timber wa gathered from the surrounding forests. Nails, spikes, and bol
were forged on the ground, the bolts being entirely of copper were forged on the ground, the bolts being entirely of copper
The timber was mostly cedar and oak, and beams in the kee being of an extraordinary size. The gun carriages were carte across the country from the Mohawk Valley, and were compose of mahogany and lignum vite, and are still in the storehouse a Sackett's Harbour. The Peace Commissioners from England an
the United States met at Ghent, Belgium, and declared peace on the nited States met at Ghent, Belgium, and declared peace on
December 24th, 1814. The news did not reach Washington til the February following, and it was not until two weeks later that Eckford received orders to cease work, which he did about March 1st. During sixty days the immense ship had been nearl finished, the main deok was laid and supports for the bulwark
raised. The New Orleans was intended to be used as a floating battery, to be stationed at the head of St. Lawrence rive to prevent the British fleet from entering the lake. As she wa constructed entirely of green wood, it is an open question whethe she could ever have been navigated. Eckford some years later accepted the position of superintendent of naval constructio
under the Turkish Government, and he died abroad. I 1823 under the Turkish Government, and he died abroad. In 1823-
he built several vessels for the United States, among others the Jefferson, whose hulk may now be seen during low water a Sackett's Harbour. The Government caused a house to be erecte over the New Orleans several years ago, but that was finally destroyed, although the place was visited by hundreds of tournss and curiosity seckers each season. In 1882 Congress ordered the
sale of the New Orleans at auction. Last August Alfred Wilkir sale of the New Orleans at auction. Last August Alfred Wilkir
son, of Syracuse, bid her in for 400 dols. While being demolished under his orders the accident occurred. Wilkinson, it is sad will net about 4000 dols, from his investment.

THESCHUCKERTDYNAMO ELECTRIC MACHINE.

DYNAMO ELECTRIC MACHINES AT THE VIENNA EXHIBITION.

No. II.
Ar the Vienna Electrical Exhibition few firms showed greater vigour and enterprise in their exhibits than did Messrs. S. Schuckert, of Nürnberg. Their display attracted as much attention as any in the machine hall. It was particularly rich in dynamos, a considerable number of which were always to be found at work. No fewer than ten machines were running at various periods, and a still larger number, although not driven, were there to be examined. There were several different types exhibited, and two or three sizes of each of most of these types. There has been at difrerent dates very considerable modification in the designs adopted by schuckert, and we understand that great attention has been paid to the various requirements of different trades using current electricity. It is to these aried needs that the numerous styles of design are due. In Figs. 1, 2, and 3 we illustrate by per-
used for electric lighting on commonly used for electric lighting, charging accumulators, and transmission of power. Fig. 1 shows the older form. The cheeks of the
frame are bound together at top by a stout frame are bound together at top by a stout cross-bar. In side view they have a peculiar curved and unsymmetrical shape, which leaves one side open, as in the letter C. In the recess are placed the main bearings. The shape of the standards makes these bearings especially accessible. The caps can be readily removed, the journals examined, and even the whole shaft and armature removed with great ease and without the necessity of disturbing any of the magnets, or in any way throwing the rame out of adjustment. No doubt this is a decided advantage ; but we do not think it at all counterbalances the disadvantage of the want of steadiness it gives to the upper part of the machine where the upper pair of magnets are supported. It is too often not considered that there is a real mechanical force between the rotating armature and the magnet poles tending to drag the magnet along with the armature. This force is not a constant force ; it oscillates rapidly between maxima and minima. To estimate roughly the magnitude of this force it is only necessary to remember that the whole horse-power delivered to the machine is expended in overcoming it with the exception of the very trifling amount spent in overcoming the friction of the bearings. Now this whole force in this machine is exerted half at the upper and half at the lower pair of magnets. The oscillation of the intensity of the force takes place as many times per revolution as there are segments in the commutator. It is only necessary to keep these facts in view to recognise the great importance of having every part of the frame that supports the magnets massive and stiffly designed in order to prevent vibration. That part of the frame that carries the main bearings is not the only part that requires solidity; in fact, so far as the internal stresses in the machine are concerned, this is the part that requires least solidity, because the internal forces on the bearing are pretty evenly balanced, and it is only the side pull of the belt and its variations that seriously strain these main journals. We cannot help thinking, therefore, that this most common of Schuckert's frame designs could be very simply improved in a large degree by extra front plates bolted on, which, when removed, as they could be removed without disturbing the rest of the frame or the magnets, would leave the armature free to be drawn out to one side as it is at present. We also fail to see any good reason why the bearings should not be put considerably closer together, which would further greatly promote steadiness in running. It seems to us that at least one decided advantage of the "flat ring armature" consists in its permitting the bearings to be brought much nearer each other than in any other style of dynamo. This apparent advantage is wholly thrown away.
Practically the same design of dynamo is shown in Fig. 2. It is here shown coupled to, and driven by, a four-
cylinder steam engine of the Abraham patent. This engine ran very quietly at the Exhibition, notwithstanding its high speed, and no doubt four-cylinder as well as threecylinder engines have a large future before them for dynamo driving. We have not seen as yet any engines of this class compounded, but we expect that it will not be long before we do see them so built, because the system offers special facilities for compounding.
Fig. 3 shows the latest design that Herr Schuckert had brought out at the date of last year's exhibition, but we believe he is now engaged in elaborating still further developments. In the machine shown in Fig. 3 there are four pairs of magnets. They are supported on side frames, in which the open side style is of necessity abandoned. These magnets, like those of the other machines, have cylindrical cast iron cores, the winding also being of cylindrical shape. These are bolted in the usual way to the frames. The pole piece of each extends circumferentially through a considerable are, covering the

EIGHT MAGNET SCHUCKERT DYNAMO

sides as well as the outer cylindric surface of the armature. All the pole pieces are bound together by brass bands, and through these derive extra support from the two heavy binding and stiffening bolts that pass from end to end of the machine between the side frames. The shaft bearings are globular swivel brasses, according to Seller's system. These bearings are placed in separate plummer blocks, partly, we presume, for convenience in manufacture, the construction of the Sellers swivel bearings being more complicated and requiring more handling than the simpler style, but chiefly in order to allow the shaft to be set so as to get the armature to run true with respect to the pole pieces of the magnets. The plummer blocks are set in position by keys, and bolted down to the frame in the ordinary manner. A large brass boss keyed about the middle of the length of the shaft carries the armature, the two being bound together by brass clamps and screws. The armature, like all those of Schuckert's various machines, is of the "flat ring" type. The core is made up of a large number of thin annular plates, round which the wire is coiled in the ordinary Gramme style. There are eight magnets altogether. All of them are wound com-pound-that is, they are each traversed by the main current through a coil of thick wire, and also by a shunt current through a coil of fine wire. The main current traverses the coils of each pair of opposite magnets in series, but the four such pairs are coupled in parallel circuit for the main current. The shunt current, on the other hand, traverses all eight magnets one after the other, i.e., in series. The commutator is divided into sixty-four segments, the armature coil being divided into the same number of sections, each of which is joined to a corresponding commutator segment by a wire led parallel to the shaft at a short distance from its surface. The
brushes are mounted on a pair of cast iron bridges firmly bolted to the side frames, and so arranged that they can be rotated into the position giving the maximum electrical efficiency. There are four brushes, and the currents between the two pairs can by suitable connections be combined either for quantity or for tension. The machine is intended to feed 500 Edison lamps. The annexed table gives the measured electro-motive force for dif ferent numbers of Edison A-16-candle-lamps put in circuit, the speed being taken as constant at 500 revolutions per minute.
The last three columnswe have calculated on the approximate assumption that the resistance of the leads is inappre ciable in comparison with the other resistances, and that the resistance of one lamp is 140 ohms. This machine is catalogued as F. L. 7.
The diagram, Fig. 4, gives in a series of curves the results of experiments on a smaller size of machine of the style shown in Fig. 1 running at 1200 revolutions per minute. It is catalogued as T. L. 3. Th coil resistance of the armature when it is warm is 0.202 ohm. In the following formula this is called ρ. The resistance of the main current coils on the field mag. nets is 0.504 ohm and is called r_{1} below That of the shunt current coils on mag nets is 75.5 ohms, and is called r_{2} in the formula. The shunt is from brush to brush. Thus, if R represent the external resistance between the terminals of the machine beyond the magnets, the total resistance of the circuit is

$\rho+\frac{1}{\frac{1}{r}+\frac{1}{\mathrm{R}+r}}=\cdot 202+\frac{75 \cdot 5(\mathrm{R}+\cdot 504)}{76 \cdot 004+\mathrm{R}}$
 $=\frac{53 \cdot 4+75 \cdot 7 \mathrm{R}}{76+\mathrm{R}}$.

There are seven curves drawn in the dia gram. In all of these the horizontal distances represent external resistance inserted between the terminals of the ma chine, measured to scale, $10 \mathrm{~mm} .=1 \mathrm{ohm}$ The range of external resistance covered by the curves is from 5 to 33 ohms. There are three curves marked $\mathrm{C}_{1} c$
and $c_{\text {a }}$ giving (1) the current through and cegiving (1) the current through the armature; (2) the current through the external resistance and through the main coils of magnets; and (3) the shunt current round the magnets. All these are plotted to a vertical scale of $10 \mathrm{~mm} .=1$ ampère. The

No. of Edison A lamps 16 candles) in multiple arc	$\begin{gathered} \text { E.M.F. } \\ \text { of } \\ \text { machine, } \\ \text { volts. } \end{gathered}$	Calculated external resistance, ohms.	Calculated current, ampères.	Calculated useful electrical horse-power
400	97	-350	277	36.0
380	98	-368	277	36.4
360	99	-389	255	$33 \cdot 8$
340	100	-412	243	$32 \cdot 6$
320	100	-437	228	30.5
300	101	-453	216	29.2
280	101	- 500	202	$27 \cdot 3$
260	101	-538	188	$25 \cdot 4$
240	101	-583	175	23.7
220	101	- 636	159	21.5
200	100	$\cdot 700$	143	$19 \cdot 1$
180	100	$\cdot 777$	129	$17 \cdot 3$
160	100	-875	114	$15 \cdot 3$
140	100	1.000	100	$13 \cdot 4$
120	-99	$1 \cdot 166$	85	$11 \cdot 3$
100	99	1.400	71	$9 \cdot 42$
80	98	$1 \cdot 750$	56	$7 \cdot 36$
60	${ }_{9}^{97}$	$2 \cdot 333$	42	5.46
40	96	$3 \cdot 500$	27	$3 \cdot 47$

height of the first (C) is at any point equal to the sum of the heights of the other two $\left(c_{1}+c_{2}\right)$. There are also two curves marked E_{1} and E showing the electro-motive force between the brushes and the electro-motive force between the terminals. These two are plotted to the scale 10 mm . $=10$ volts. The difference of height between these two curves is, of course, $\mathrm{C} \rho$, which varies with C , but is always small because $p=\cdot 202$ ohm only. The curve marked
 being the product of the electro－motive force between the terminals and the external current．The vertical scale of this curve is $10 \mathrm{~mm} .=100$ volt－ampères．The whole electrical work done is the sum of four parts－（1）that done in coils of armature ；（2）that done in shunt circuit； （3）that in main current coils of magnets；and（4）that in external circuit．The last alone is called the＂useful＂ work done，and its ratio to the sum of the four amounts is called the＂electrical efficiency＂of the dynamo．Adding the four parts in the above order，their sum equals－
The electrical efficiency stated as a percentage is，therefore $100 c$, E．
This curve is plotted off and marked by the above formula． Its vertical scale is $10 \mathrm{~mm} .=10$ per cent．；it shows that
power for 20 cubic feet of gas．This result corresponded to one
third，or one－fourth，of the consumption recorded for the early gas engines made by Lenoir．Moreover，they showed that from 16 to 24 per cent．of the whole of the heat generated was actually converted into indicated horse－power，notwithstanding the
enormous waste of one－half by conduction across the walls．In enormous waste of one－half by conduction across the walls．In
absolute heat efficiency，therefore，the gas engine was already 100 per cent．better than the steam engine．When，however，what might be termed the relative efficiency was compared，that was to say，the relation between the theoretical achievement which was possible and the actual achievement，the steam engine would be
found nearly to have reached the limit of what was possible tound nearyy tr
probable，whereas the gas engine was very imperfect，and therefore gave hopes of great improvement．Taking the range of tempera tures as the highest and lowest used in a gas engine，the ideal efficiency might．tbe spoken of as 77 per．cent．，but no real gas engine could reach this figure，because the heat was not wholly given at the higher nor wholly rejected at the lower temperature．If the
indicator diagram were treated as bounded by two adiabatic curves

FRICTION OF LUBRICATED BEARINGS． The following is the first report on friction experiments made is by Mr．Beauchamp Tower．
（1）Description of machine．－In experimenting on the friction of lubricated bearings，and on the value of different lubricants，one
the difficulties which is first met with is the want of a method the difficulties which is irst met with is the want of a method
applying the lubricant，which can be relied upon as sufficiently ppifying the lubricant，whinh can be relied upon as sumfitiently
uniform in its action．All the common methods of lubrication are so irregular in their action that the friction of a bearing ofter varies considerably．This variation，though small enough to be of o practical importance，and to pass unnoticed，in the working of value of a set of experiments，say，on the relative values of various abricants；for it would be impossible to know whether an observe variation was due to a difference in the quality of the oil，or in it itself，apphication．The first problem therefore which presente lubrication such present experiments，was to in a method of would form an easily reproducible standard with which to compar other methods．These conditions were best fulfilled by making the
bearing run immersed in a bath of oil．By this method the bear－ ing is always supplied with as much oil as it can possibly take ；so tood it represend with which to times perfectly uniform in its action．It is very easily define and reproduced；and it also has the advantage that the tempera－ ture of the bearing can be easily regulated by gas jets unde
the bath．Experiment showed that the bath need not be full．the results obtained were the same when need not empty that the bottom of the journal only just touched the oil． The journal experimented on－see Figs． 1 and 2 －was of steel， 4 in Bath of Olive Oit Table

	Coefficients of friction，for speeds as below．							
				$\begin{aligned} & \text { 宮具 } \\ & \text { 品薄忽 } \end{aligned}$			$\begin{aligned} & \dot{b}_{4} \text { 見 } \\ & \text { 寞荡 } \end{aligned}$	
$\begin{aligned} & \text { lbs. } \\ & 520 \end{aligned}$		－0008	．001	－0012	－0013	$\cdot 0014$	$\cdot 0015$	－007
468		－0011	－013	－0014	－0015	－0017	－0018	．002
415		－0012	． 0014	－0015	－0017	－0019	－0021	002
363		－0013	－0016	－0017	－0019	－002	－0022	－02
310		－0015	－0017	－0019	－0021	－0022	－00	－027
258	－0014	$\cdot 0017$	－002	－0023	－0025	－0026	－0029	－003
205	－0018	$\cdot 0021$	－0025	－0028	$\cdot 003$	－0033	－0036	－004
153	－0023	－003	－0035	－004	－0044	－0047	－005	000
100	－0036	－0045	－005s	－0063	－ $\mathbf{C 0 6 9}$	－0077	－0082	008

The nomimal load per sq．finch is the total lood divided by (4×6) ．
Table II．
Bath of Lard Oil．Temperature 90 deg．F．Yin．Journal，Gin．
long．Chord of Aro of Contact of Brass $=3.92$ in．

Nㅡㄴ mhldilithind
$\frac{1 \mathrm{lbs}}{520}$
415
310
205
16
100
coofficients \times the lond $=$ neminal frictional resistanco p p sq．inch of bearing

펴́ Nominal frictional rosistance per sq．inch of bearing．

diameter and Gin．long，with its axis horizontal．A gun－metal the journal，rested on its upper side．The exact are of contact of
ther this brass was varied in the different experiments，as will be seen by reference to the appended tables of results．Resting on this brass was a cast iron cap B，from which was hung by two bolts a cast iron cross－bar C carrying a knife－edge．The exact distance of
the knife－edge below the centre of the journal was 5in the knife－edge below the centre of the journal was 5in．On this
knife edge was suspended the cradle D，which carried the weight knife edge was suspended the cradle D，which carried the weight
applied to the bearing．The cap，bolts，and cross－bar were put together in such a manner as to form a rigid frame，connecting the brass with the knife edge．If there had been no friction between the brass and the journal，the weight would have caused the knife－ edge to hang perpendicularly below the axis of the journal．Fric－ tion，however，caused the journal to tend to carry the brass，and
the frame to which it was attached，round with it，until the line the frame to which it was attached，round with it，until the line
through the centre of the journal and the knife－edge made such an angle with the perpendicular that the weight multiplied by the distance from the knife－edge to that perpendicular
sing moment just equal to the moment of friction．

| Suppose | $\begin{array}{l}r=\text { radius of the journal-Fig. } 3, \\ s=\text { distance of the knife-edge from the }\end{array}$ |
| :--- | :--- | $s=$ distance of

then, from above, $s \times w=$ the moment of friction.
Now, the friction at the surface of the
ow the friction at the surface of the journal
$=$ the moment $=v \times s$
Hence the coefficient of friction
Friction at surface of journal
so that the coefficient of friction is indicated by s in terms of r, no matter what the weight is. As an example, suppose s was equal
 to avoid the difficulty of determining accurately when the knife edge was perpendicularly under the centre of the journal-a know-
ledge which was necessary in order to obtain a measurement of s and which was very difficult to obtain owing to the considerable
friction between the brass and the journal when at rest each friction between the brass and the journal when at rest-each
experiment was tried with the journal revolving in both directions, experiment was tried with the journal revolving in both directions and the sum of the values of s on both sides was measured; and
then the coefficient of friction was indicated by the chord of the whole angle, included between the two lines of inclination caused by the friction, with the rotation in the two directions, the chord being expressed in terms of the diameter of the journal-see Fig. 4. Each result was thus a mean of two experiments, one with the axle running in one direction, and the other with it
running in the other direction. In order to read the value of the
under a full load without appreciable increase of friction or a
tendency to heat or seize. The phenomenon must be due to the tendency to heat or seize. The phenomenon must be due to the surface fibres of the metal, which have been for some timestroked
in one direction, meeting point to point and interlocking when the motion is reversed. The very perfectly fitting brass was probably entirely separated from the journal by a film of oil; and there being no metallic contact the phenomenon did not show itself. In consequence of the above facts, it was found necessary to proceed
with the experiments in the following order. A complete series of with the experiments in the following order., A complete series
experiments, with a gradually increasing load, was taken with the iournal running in one direction; the load was then diminished by the same steps as it had been increased, and the experiments thus repeated, the shaft still running in the same direction, until the lood had thus been reduced to 100 lb . per square inch, which was
the load due to the unweighted cradle. The direction of The load due to the unweighted cradle. The direction of motion it thoroughly used to going the other way; after this the load could be increased and the experiments taken without any difficulty. The experiments, as before, were taken at each step of both ncreasing and decreasing the load; so that each recorded result is
really the mean of four experiments, which have in many instances really the mean of four experiments, which have in many instances
been taken several hours apart. This method of obtaining adirect indication of the coefficient of friction, by the angular displacement of the frame connecting the brass and knife edge, would undoubtedly have been the best had the coefficient of friction been nearly as constant as it has hitherto been supposed to be. But as shown by the tables of results, the coenherely of rscion was found
instead of being constant, to vary nearly inversely as the load also to be much smaller in quantity than was expected; the conse.

coeflicients thus obtained, a light horizontal lever L was attachedshiown in Fig. 1 -to the frame connecting the brass to the knife between the centre of the furmal and the lmife edre, so that at the end of the lever the chord indicating the coefficient of friction was magnified twelve and a-half times. As a chord of 4in. at the knife-edge represents a coefficient of $1, a$ chord of 50 in. at the end of the lever also represents a coetficient of 1 , while jin. represent
 racing point attached to the end of the lever, and marking o metallic paper carried upon a revolving vertical cylinder P. The distance between the two lines obtained by running the axle both ways, when measured on the above scale, indicated the value o the coefficient.
table III.
Mineral Grease. Temperature 90 deg. F. 4in. Journa
Gin. long. Chord of Are of Contact of Brass $=3$.92

搞

(2) Method of Experimenting.-Early in the experiments it wa found that, immediately after the motion of the shaft was reversed, running in the same direction some was when the shart had bec due to ceversal, varied considerably. It was greatest with a new brass, and diminished as the brass became worn, so as to fit the journa more perfectly. Its greatest observed amount was at starting and was about twice the normal friction, and it gradually diminished until the normal friction was reached after about ten minutes' con-
tinuous running. This incresse of friction was accompanied by strong tendency to heat and seize oven under a moderate load. In the case of one brass, which had worked for a considerable time without accident, and had consequently become worn so as to fit after reversal almost entirely disappeared; and it could be reversed
quence was that with high loads the height of the diagram was very small. In the cases where with the greatest loads a coeffilines was only foin. The results shown in tables I., II., III., IV.,

FIC. 3

FIC.
that the moment of friction was much more nearly constant than the coefficient, it was resolved to alter the method of observation, and to measure the moment directly instead of the coefficient.
For this purpose the paper cylinder was removed, and a small lever M-see Fig. 1 A -was connected to the main indicating lever in such
table IV.
Bath of Sperm oil. Temperature 90 deg. F. . 4in. Journal, Gin.
Coofficients of friction for speeds as below.

Seizod.
-
-
-0013
-0016
-0025

-0015	-0017	-0018	-0019	-00.	-0021
-0011	-0012	-0014	-0016	$\cdot 0017$	-0018
-0016	-0018	-0021	-0023	.0024	-0025
-0019	-0023	-0028	-0030	-003s	.0035
-003	-0038	-0044	.0051	-0057	-0061

The above coofficients \times the nominal load $=$ nominal friction resistance
per square inch of bearing.

	Nominal frictional resistance per square inch of bearing							
	${ }_{\text {Scived }}^{\text {lib }}$	${ }^{\text {mb. }}$	${ }^{\text {lb. }}$	${ }^{1 b}$.	${ }^{1 b}$.	${ }^{\text {1b. }}$	$\mathrm{lb}^{\text {b }}$	
415		${ }^{6} 21$	705	.746	$\bigcirc 78$	- 829	. 87	87
0		341	372	434	445	${ }^{526}$. 557	'588
5	-266	$\cdot 327$	368	43	-471	${ }^{401}$	512	'552
153	$\cdot 244$	-221	-352	-428	$\cdot 459$	-505	-535	-566
	${ }^{25}$,	-38	$\cdot 4$	$\cdot 51$	3	$\cdot 61$	

a manner that the motion of the end of the main lever was mag. nied five times at the end of the small lever. The end of the smail lever was pointed, and when the machine was working this
point was brought exactly opposite a fixed mark by putting weights
by observing that boilers employed for raising steam were mostly of the Cornish and Lancashire type, which evaporated on an average only one-third of the water which, according to science,
ought to be evaporated, and that, even with Galloway tubes ought to be evaporated, and that, even with Galloway tubes, it
was not possible to evaporate more than half the proper quantity was not possibe ece eaporate more than half the proper quantit
on account of incrustation. The ash-pit, causing a cold draught kept the bottom of the boiler cool, which caused non-circulation of the water, and unequal expansion. The worst evils in boilers were stated to be incrustation, imperfect combustion, and smoke. To prevent the latter, mechanical stokers had been introduced, man
of which, after a few years' work, had been removed. Priming in boilers, the author stated, was but little understood, and cause great harm. Another evil arose from the accumulated gases and acids in boilers, which not only did mischief to the plates, but might cause great injury in case of an explosion. To remedy these
defects a new construction of boiler had been designed by the author with flat flues, stayed with vertical tubes, affording tho space for the water and steam, with a tank at the back end of the boiler for discharging all gases, and throwing down combinations of lime. By these means the feed-water was boiled, and as it was then almost pure, no scale was formed on the flue. This
boiler being entirely bricked in, unequal expansion could not take boiler being entirely bricked in, unequal expansion could not take
place. There was an entire absence of smoke. No priming coul place. There was an entire absence of smoke. No priming cou
take place in consequence of the shallow surface of water over the large heated flat flue below. Tests had been made by Mr. W. H Maw and Mr. D. K. Clark, the former in his trials evaporating
11.3 lb . of water from 81^{-6} Fah., and the latter 11.85 lb . of water 11.3 lb . of water from 81.6 Fah ,, and the la Rolling Boiler Plate Rings.- It will be remembered that in
our annual article, published on January 4th, we referred to the production of weldless boiler plate. We said: "A company has been formed, and will start at Barrow-in-Furness, for the manufacture of rolled steel boiler shell hoops, without a weld, up to 16 ft . in diameter, 1 in. thick, and 4 ft . 6 in wide. This will at once augment the strength of boiler shells by 25 per cent. for a given
thickness of plate; only transverse seams will then have to be rivetted. The machinery required is, we need hardly say to a very heavy type, and is being made by a very eminent Manchester
virm. There is therefore no reason to doubt that the scheme will be entirely successful." On Monday the Vulcan Works, Salthouse Barrow, where the new process is to by carried on under Mr. of steel tires, forging, \&co., only will be carried on. Mr. Thomas Barlow-Massicks and Mr. David Caird purchased the works at Salthouse, formerly owned and worked by Mr. S. J. Claye, as the
Barrow Railway Rolling Stock Works. On Monday a large party Barrow Railway Rolling Stock Works. On Monday a large party
first proceeded to visit the Bessemer department, where one of the first proceeded to visit the Bessemer department, where one of the
converters was blown, the charge beingabout5tons weight, being composed of Millom and Askam iron, and tires were subsequently rolled. man, in ret subsequently, several speecheswere made, and the were not going to trea thanks to the Mayor of Barrow, said they were but they had secured a patent from their works manager, Mr. John Windle, for the manufacture in the United Kingdom of this patent would work out very successfully, and it would be one of the features in the manufacture of steel which would be associated with the town of Barrow. These cylindrical rings of steel would add greatly to the strength of the boiler, as much as, he was told, 25 per cent., and they had it on the authority of Mr. Parker,
one of Lloyd's chief engineers, that there would be a saving of one of Lloyd's chief engineers, that there would be a saving of
something even more than this. Especially would this be a saving in the expense of Atlantic liners both by boiler space, boilers required, and even economy in fuel. They could produce these
plates here and get almost what price they might nsk for them plates here and get almost what price they might ask for them,
but they did not wish to be unreasonable, as they were thinking of granting licences to the East Coast, the Clyde, and elsewhere.
They would see, however, that they were going to speciality at their works which would not place them exactly in an analogous position with their neighbours at Hindpool." This will no doubt be one of the most import
duced in the manufacture of boilers,

MAIGNEN'S ARMY TRANSPORT FILTER.

Fig. 2.

Fig. 6.

Durang the past few years the construction of filters for domestic and other small supply purposes has passed through so many phases that everybody is more or less accustomed to the ratus of this kind, and if all have not arrived new thing in appawhich seems to have been reached by our conted at the conclusion namely, that the difficulty is to find the filter that will punch, east harm, most, no doubt, have decided that all small filters are equally a troublesome necessary, which may do as much harm as good if kept in continued use without cleaning or renewal for more than three or four months. This, however, is not necessarily the case, as is shown by experience with the filter we are about to describe, though even this one will not reharge or renew itself with new filtering material. Maignen's filter rew of the army a very brief explanation by Government for the use
the army a very briel explanation will be sufficient
Assuming for the moment that all water filtering is only bject must be to filter is only a fine strainer-in this case the into a given unit space, or, in other words, to get amount of surface which shall at the same time secure perfect porosing medium mallest pores. The mostobviously practicable method of doing this is to use a very finely granulir material. This has been the practice in the construction of filter beds with sand, of small filters with sand and fine charcoal, and with blocks of agglomerated charcoal. This method of construction has, however, prevented the employment of powdered charcoal, inasmuch as with a mass of this material, capillarity would prevent any but exceedingly low percolation of water if under the pressure due to a small head, while a great pressure would cause the continual removal of the powder and its mixture in a finely divided state in the the use of fine powder charconl, Mr. Maities that would thus attend Over a supporting structure of Maignen uses a combination. causes this powder to distribute itself from the water in which it is mixed, and put into the filter for filtration. The water passes through the asbestos cloth, and leaves the powder caught in its interstices, and a further quantity deposits itself over the whole surface of the supporting material. A thin film, or one of any neceessary thickness, is thus obtained of very minutely porous charcoal. This forms the central part of a filter vessel, the space around it being filled with granular charcoal. The filter thus made up will intercept, not only the finest suspended or bacillium. The filtering the same with the small bacterium imply a mechanical stroiner properties of a enables it to act, as is proved by experiment character, which inorganic matter in solution. We have upon organic and sulphate of iron, then a solution of acetate of lead, then of urine, passed through a filter of this kind, and exhibit afterwards in the test tube no trace, or scarcely any, when treated with the proper reagents. Through a similar filter, or rather the same one recharged in a few minutes with filtering material, a bottle claret was passed, and this came out clear white, without the aintest taste of claret, but only a taste of water with a slight ddition of spirit. All the colour was equally taken from a solution of permanganate of potash-Condy's fluid. Whatever
the cause or combination of causes, the result is as stated; and this great efficiency has caused the War Department to send out to Egypt the form of the filter we now illustrate, which is, of course, a special form made up for transport.
Fig. 1, covered with asbestos cloth tinned iron filtering frame Fig. 1, covered with asbestos cloth fitted with an outlet tube A provided with a screw and leather washer, and at the top an air
pipe B. This frame is plased in a tinned copper case, pipe B. This frame is plased in a tinned copper case, Fig. 2, the tap D is provided for fitting on to the screw of the tube A. The frame, when placed in the tinned copper case, is covered by a tinned copper perforated screen L through which the air pipe passes. The filter is placed in an outer leather case, Fig. 3 , pro vided with a pocket E for holding twelve $\frac{1}{2} \mathrm{lb}$. packets of finely powdered charcoal, and a brush. Two folded canvas buckets i are strapped underneath the pocket. When in use the filter should be raised from the ground by placing it on boxes, or by poured ing the the tain board of a wagon. Water should first be poured into the filter, until it is filled nearly to the top, Fig. 4.

Half of one of the packets of finely powdered charcoal is to be put into an empty bucket G and placed underneath the tap D, hand in the other bucket I filled with water, and, the tap D having been opened, poured into the filter K. The charcoal in the bucket G is to be stirred up with the water coming out of the filter, and again poured into the filter K. The water coming from the filter must be stirred in the bucket, so as to mix it with the charcoal which may have been left at the bottom, and again poured back into the filter. The object to be attained is to coat the whole of the surface of the asbestos cloth with an even layer of the finely powdered charcoal, and, to attain this object, it will until the whole of the charcoal is in water that comes out copper screen L is now to be taken out whilst the filter is still full of water, and the space M, Fig 5, round the frame is still inch or two over M^{1}, is to be filled with granulated charcoal about 16 lb . would be required for this purpose. The screen is then to be put in its place, and the filter is now ready for use Fig. 6. The water that has been used in starting the filter should be thrown away. The time during which a filter thus
charged will continue to be in working order will depend upon the character of the water to be filtered. The filter should be cleaned once a month, or if the water is very bad, twice a issued on cloth to the men in Egypt:-Unscrew the tap and tate it off; lift the filter out of its leather case. Take out the upper part of the granulated charcoal to the depth of about 2 in . and throw it away Turn the filter over on its edge, Fig. 7, an shake the filter until the frame and charcoal fall out. This should be done on clean ground, or upon a piece of canvas, or on a board, so as to be able to recover the granulated charcoal The granulated charcoal should be placed in the two buckets and washed with filtered water several times, the charcoal to be stirred up by the hand, and the dirty water poured off. This washed charcoal, with a nitle additional new charcoal, can be used over again. If the charcoal is so der as not to be capable thrown away, and fresh granulated charcoal substituted The filtering frame, Fig. 8, can be cleansed by dashing water smartly against it.
Besides this special form, this filter is made for use by wine and spirit merchants, brewers, and, in a small form, for laboratory purposes. In breweries large sums are being saved by filtering cooler bottoms, which used to be squeegeed down
into the drains, and in this way a wort of high gravity i into the drains, and in this way a wort of high gravity is obtained, which was previously considered
Wort is also filtered by it before fermentation.

BALLS IMPROVED AUTOMATIC TRUCK
ThE engravings represent a form of truck, manufactured by The engravings represent a form of truck, manufactured by Park, N.J. These trucks are used for handling locomotive and pipe, round and square timber, stone, shot, shell, \&c. Variou

forms of tongs suited for the purpose are used for lifting these different objects. In Fig. 1 the truck is represented in the position it occupies when about to take up a car axle. The tongs $a a$ are pivotted at $c c$ and are pressed apart by a spring s.
The shaft or tongue $b b$ has a handle d on its back end, by which it can be or tongue $b b$ has a handle d on its back end, by which Fig. 2. The shaft, on its front end, has an elliptical shaped
年 cam e. The shape of this is shown by the dotted lines at e in Fig. 2. This cam works between the upper ends $f f$ of the tongs. When the handle d is turned into a vertical position, as shown in Fig. 1, the major axis of the cam is vertical, or it

stands up edgewise, so that the spring s can throw the lower ends of the tongs apart, and then, by raising up the handle and by simply the tongs, the latter are in such a position that brought into a position with its major axis horizontal, as shown in Fig. 2; the upper ends of the tongs are thus spread apart and the lower ends brought together so as to grasp the axle or other object. At the back end of the truck is a forked bearing g. If now the tongs take hold of the axle somewhat back of its centre of gravity, the tendency will be, when it is raised, for the front end to tip downward. By bringing the handle down to the position in Fig. 2, the forked bearing g is brought down so as to the front end from drooping down. It is thus supported

PUMPINGENGINE, MARPLE WATERWORKS.

securely by the tongs and the forked bearing, and can be moved about anywhere that the truck can be rolled on its wheels, Axles and other objects can be picked up and laid down as they are hot or cold. Two kinds of wheels are used for these trucks; one kind is made of iron, shown in Fig. 1, and the other is Sarven's patent wooden wheel, shown in Fig. 2. A special form of truck is also made for handling car axles with the wheels on them. It is claimed that in handling axles, \&c., a great deal of labour is saved by the use of these trucks, and that one man can move loads of 800 lb . to 1000 lb . with them with ease and rapidity. They are used in some of the largest establishments in the country, including the Baldwin Loco motive Works in Philadelphia.-Railroad Gazette.

$\overline{\underline{ }}$

HYDRAULIC PUMPING ENGINE.
THe hydraulic pumping engine which we illustrate on this page affords an illustration of the way in which under certain circum stances pumping may be done at no cost for fuel. At Marple there existed two water supply reservoirs, one at a considerable elevation above the other which it supplied. To another and water. For this purpose it was desired to force a supply of It derives its power from the water falling from the central reser voir-see the annexed diagram-to the lowest, where the engine is situated. A part of this water it forces back to the highe reservoir. This scheme was devised by Mr. Alfred Moore, of Manchester.

The engine is provided with an adjustable self-acting apparatus by which it stops automatically when any predetermined quantity of water has been pumped to the highest reservoir. keferring to the drawings, it will be seen that a lever with number of holes is worked by means of a rod from and operated by the pump piston-rod, and that this in its turn gives notion to a small connecting rod which actuates a lever provided with a pawl by which the ratchet wheel, seen at W, the pured a small part of a revolution for each double stroke of disc is a w. At the other end of the spindle carrying this ratchet deep notch made in it, into which a catch drops when the notch is uppermost. This catch is connected with the dead weight piston in the dashpot, seen at A, so that when it drops into the notch referred to the supply of water is stopped. It will be seen that this arrangement makes the engine its own water meter.
The supply and exhaust valve here used is a modification of
that used by Messrs. Hathorn, Davey, and Co., for other engines. Referring to the sectional view below: The supply water enter at one side, and when the water is admitted to the upper side of the piston on the rod C, this piston is forced down, and water then
passes by the valve at the lower end of the rod C , and thence passes by the valve at the lower end of the rod C, and thence

DAVEY'S PATENT SUPPLY AND_EXHAUST VALVE,
into the engine. The small supply of water admitted to the top of the piston is controlled by the engine crosshead acting on a small slide valve. When the engine stroke is made the small supply is exhausted, and the piston goes up owing to its area being greater than that of the valve below it. Continuing to
rise it lifts the exhaust valve, and allows the water to pass into the exhaust passage. The operation is then repeated. It will be observed that this very ingenious arrangement gets over all dificuity arising from the want of simultaneity between th closing of the supply and opening of the exhaust.

SCRATCH GAUGE

THE gauge represented in the engraving can be used by carpenters and others for scratching or scribing, and is thus described by the Scientific American. People other than carpenters must have often thought that the gauge used by carpenters and joiners wanted altering so as to be just a little quicker; now it is done. The rod and other details of the device are preferably made of circular form, so that it may be used Upon the rod A is fitted a slide B, forming the hope of the gauge, and also sliding thumb piece or clamp C, having pro

jecting from one side a screw b, which is constructed with three longitudinal slits extending inward from the outer end of the screw. The end of the screw is tapered in order to bear against a taper socket d, at the inner end of a threaded portion in the slide B, so that when the thumb piece is screwed up the split hollow screw will clamp the rod, holding the slide at its proper position. If preferred, this construction of the thumb piece and disc, Fig. 3, that may be screwed to the working end of the bar By the circular construction of the gauge the marker is made more durable, since the different points may be used. This useful device has been recently patented by Mr, John E. Sherman, of North Attleborough, Mass,

HYDROGEN AMALGAM
Hyproges, although a gas, is recognised by chemists as a metal, and when combined known to electricians -as the polarisation of a negative element, the compound may correctly be termed an alloy; whilst any
that
compound of hydrogen with the fluid metal mercury may with compound of hydrogen with the fluid metal mercury may with
equal correctness be termed an amalgam of hydrogen or "hydrogen amalgam." The efforts of many chemists and
mining engineers have for many years been devoted to a search mining engineers have for many years been devoted to a search
for some effective and economical means for preventing the for some effective and economical means for preventing the
"sickening" of mercury and its consequent " "louring" and loss.
Some sixteen or more years ago, Professor Crookes, F.R.S., dis. Some sixteen or more years ago, Professor Crookes, F.R.S., dis
covered and, after a series of experiments, patented the use of covered and, after a series of experiments, patented the use of
an amalgam of the metal sodium for this purpose. He made
the amalgam in the amaliam in a concentrated form, and it was added in various proportions to the mercury used for gold amalgamation. Water
being present, it will readily be understood that the sodium, in becoming converted into the hydrate (K H O) of that metal,
caused a rapid evolution of hydrogen. The hydrogen thus evolved was the excess over a certain proportion which enters
nto combination with the into combination with the mercury, While the mercury
retained the charge of hydrogen, the "quickness" of the fluid retained the charge of hydrogen, the "quickness" of the fluid
metal was preserved; but upon the loss of the hydrogen the
"quickness," ceased and the mercury was acted upon by the "quickness," ceased and the mercury was
injurious components contained in the ore
Since the introduction of the sodium amalgam, many attempts have been made, more especially in America, to overcome the tendeney of mercury to "sicken" and lose its "quickness," The
greater number of these efforts have been made by the use of electricity as the active agent in attaining this end; but such
efforts have been generally of a crude and unscientific character. efforts have been generally of a crudo and unscientific character.
Latterly Mr. Barker, of the Electro-amalgamator Company, Limited, has introduced a system-already detailed in these
pages by which the mercury is "quiekened." In his method the running water passing over the tables, or other apparatus of aimiar character, is usec as the electrolyte. In this arrangeconstituting anodes are brought into contact with the water passing over the mercury in each "riffle." Both the cathode
and the anodes are of course, maintnined in contact with the poles of a suitable source of electrical supply. The current then passes from the copper nonode through the running water to the mercury cathode, and so on to the negative pole of the electro-
motor. As a consequence of this arrangement, hydrogen is evolved from the water, and has the effect of reducing any oxide or other detrimental compound of the metal; in other
words, it "quickens" and prevents "sickening" of the fluid metal, and consequent "flouring" and loss. Whilst the hydrogen
is evolved at the cathode, oxygen enters into combination with the copper constituting the anodes. This to some extent imThe latest process, however, is that of Mr. Bernard C. Molloy, M.P., which we have already characterised as highly scientific and effective, the production of a suitable amalgam being
obtained under the most economical and simple conditions obtained under the most economical and simple conditions.
This process has the advantage of producing not only a hydrogen malgam, but also at will an amalgam of hydrogen combined with any metal electro-positive to this latter. Thus hydrogende seen by the following description, Mr. Molloy 's effort appears to have been, in the first place, apparatus, and in certain cases where water was scarce to avoid
nitogether the use of that, in some districts, rare commodity For the purpose of explanation we select an ordinary amalga. mating table fitted with mercury riffles. The surface of the table is in no way interfered with or disturbed. The bed of the
riffle, however, is constructed of some porous riftle, however, is constructed of some porous material, such as
leather, non-resinous wood, or cement, which serves as the diaphragm upon which the mercury rests, and separates the fluid the table is a thin layer of sand, supported and pressing ngain of the table is a thin layer of sand, supported and pressing against
the diaphragm, and lying in this sand is the anode, formed reeferably of lead. A peroxide of that metal is formed by the action of the currents, and may be readily reduced for use over nnd over again after working for from one to three months,
The peroxide of lead, as is well-known, is a conductor of elecricity, and this fact constitutes an important advantage in the working of the process. The thin layer of sand is satu-
rated with an electrolyte, such as dilute sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}+20 \mathrm{H}_{2} \mathrm{O}\right)$ to give a simple hydrogen amalgam ; and
$\mathrm{K}_{2} \mathrm{SO}_{4}+x \mathrm{H}_{2} \mathrm{O}$) to give a hydrogen sodium amalgam; or hydrogen potassium amalgam.
Numerous other electrolytes constituted by acids alkalies salts, can be used to form an amalgam permanently minitained in a condition of "quickness" and freed from all liability to nercury is connected with the necative pole of the voltaie battery or other electro-motor, and the lead made with the positive pole of the same source. When the current passes there is formed, according to the nature of the electrolyte, a hydrogen
amalgam, or an amalgam of hydrogen with a metal amalgam, or an amalgam of hydrogen with a metal electro-
positive to hydrogen. The electrolyte, which, it will be under tood, is distinct and apart from the body of the water passing over the table, will last almost indefinitely, there being no con-
sumption of any of its constituents, excepting hydrogenand oxygen sumption of any of its constituents, excepting hydrogenand oxygen
from the water of solution. The quantity of acid or saline material contained in the electrolyte is so very small that there can be no difficulty in finding a supply in any district. The question of the supply of electricity is one which in many mining districts nvolves considerations of practical importance, since a large supply would necessitate water or steam power. It has been Iound that two cells having an electro-motive force of about two
volts each will in this process suffice ; if preferred, however, very small dynamo machine can be used. In connection with
the clectro-motive force it is requisiste to use it may be observed the clectro-motive force it is requisite to use, it may be observed
that an amalgam of sodium containing only a small quantity of that an amalgam of sodium containing only a small quantity of
this metal would, when constituting a positive element in conjunction with a lead negative and on an aqueous electrolyte give an opposing electro-motive force of less than three volts motive force of about four volta, The electrical an electro the circuit constituted by the apparatus being very small, no electrical power is wasted. When water constitutes the electrothe electro-motive force require above specified. The conditions assured under this process
appear to be all that can be required, whildt the amalgam obtained are these most calculated to preserve the "quickness," and prevent the "sickening," of the mercury.
Mr. Molloy has designed a special form
machine to be used in conjunction with the above process, and machine, By the employment of this machine, each particle of the ore is slowly rolled in the quickWhen the extent of the gold and silver mining indus
considered, and when it is borne in mind that a considerable
percentage of the precious metal present in the ore is, in the percentage of the precious metal present in the ore is, in the
ordinary process of extraction, lost through defective amalgama-tion-due to insufficient contact with the mercury, or to a total that the introduct, as in the case of float gol matter of very great importance to those who are interested in the above-mentioned industries. We expect shortly to hear of the practical introduction on a large seale of Mr. Molloy's pro-
cess, and we look forward with interest to the results which may be obtained from it.

ELECTROLYTIC RESEARCHES ON THE APPLI-

There has reeently been published an interesting paper on The subject by Hans Jahn, in the Monatsh. Chemic. He says known law of paradey, fom whieb, wen expris existing conceptions, we learn that equal quantities of electricity are capable of setting free equal numbers of combining units on equal intensity must see also it follows directly that currents of ties of the two ions composing an electrolyte; and consequently that the work done by the current in decomposing chemically equivalent quantities of the electrolyte is the same for all
electrolytes, and quite independent of the chemical nature of the ions contained therein
that the atoms or radicles according to the ordinary assumption a peculiar force-affinity-depending only on the chemical nature of those atoms, the explanation of electrolytic pheno
mena in the sense of Faraday's law is attended with considerable difficulty
Solutions of copper sulphate and zinc sulphate of equal
strength yield equal quantities of oxygen and sulphuric acid at the anode and chemical equivalent quantities of zinc and copper atthe cathode. But thequantitiesof work whichmustbe expended by the current in order to constituents, vik, meta, oxygen, and sulphuric acid, are very the amount of wak that suffices tor the decomptin of the copper salt; and in accordance with thi fact, it ha been show by Thomsen that the formation of vinc sulphate from zinc oxygen, and sulphuric acid, is attended with the evolution of nearly twice the amount of heat that is evolved in the formation of the copper salt, viz.
$\left(\mathrm{M}, \mathrm{O}, \mathrm{SO}_{3} \cdot \mathrm{Aq}\right)=106 \cdot 01$ heat units.
$\left(\mathrm{Cu}, \mathrm{O}, \mathrm{SO}_{3} \cdot \mathrm{Aq}\right)=55^{\circ} \cdot 96$ heat units.
Granting, however, the existence of different forces of affinity,
follows that, in the electrolytic decomposition of a salt, the current must loosen these forces of affinity by restoring the component atoms and molecules to their original condition of
movement; but since the decomposition of vinc sulphate requires the expenditure of an amount of working force nearly to follow that equal quatities of electricity will b socm twice ns mueh of the latter selt of of the fome whel appears at first sight to be in direct contradiction to Farday' law of electrolysis, The author, however, suggests that in the decomposition of equivalent quantities of the salts under consideration, part of the electric force is expended in the purely
chemical work of neutralising the chemical work of neutralising the forces of affinity, and another part in overcoming the resistances to conduction and other Faraday himself in his classic researches on electrolysis; and as the first of those amounts is directly, and the second inversely propurtional to the affinity of the ions, the sum of the two quently the quantities of electricity required for the and conse tion of equivalent quantities of different electrolytes must be the same in all cases,-which is Faraday's law.
With the view of throwing further light on this matter, the author has made a series of experiments on the quantities of
heat evolved in the clectrolysis of the copper, using a calorimeter of peculiar construction, for the description of which the reader must be referred to the original paper in the Monatsheft.
The main result
 electricity used up, or rather converted into heat, in overcoming inversely proportional to the forces of afflinity of the ions of the electrolyte. Hence it appears, in spite of the different amounts of chemical work which must be supplied by the current for the of energy in the circuit is the same in both coses, the entire loss that Faraday's law holds good, even if we admit the existence of a determinate affinity between the ions to be overcome by the electric current.
The author has also subjected this inference to a further test, If the quantity of electricity converted into heat by the resist. less, as the affinity between the ions concerned is crenter, the amount of heat evolved in the electrolyte of copper sulphate and zinc sulphate with copper and zinc electrode respectively must be the same for both salts; for it is clear that if the development or abstraction of heat, due to the solution of the anode, with the quantity of heat due to salt, increase to conduction dim nishes, the total amount of heat evolved must be the dimi both cases.
This conclusion is fully borne out by the author's experiments, In solutions containing respectively $\mathrm{CuSO}_{4}+200 \mathrm{H}_{2} \mathrm{O}$ and Zn of equivalent ${ }_{2}$, the quantities of heat evolved in the deposition copper, 39497 ; and for zine 39958 hinc were found to be: : or containing $\mathrm{CuSO}_{4}+100 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zn} \mathrm{SO}_{4}+100 \mathrm{H}_{2} \mathrm{O}$, gave for copper
 what smaller result is regarded by the author as probably due to the fact observed by Hittorff, that in the electrolysis of copper and rinc solutions equal proportions of the working focco ere converted into kinetic energy of tho ion, whereas in silver solu-
tions a larger proportion of the working is thus converted, and consequently only a smaller proportion is converted into heat. sulphate the deposit on the cathode consists wholly of copper.

FOREIGN NOTES.

A powkrfut steam dredger, built for the Imperial Chinese Government by the Vulcan Shipbuilding Company, of Bredow, has just departed from stettin on its voyage out to China. The Work for which this craft was specially desipned is the deepening
of the channels leading to Port Arthur Harbour, on the north
coast of China, but it is also proposed to employ the same at any
point on the coast where its services may be required. The point on the coast where its services may be required. The
dredger has therefore been constructed in such a manner as t t be able to keep the sea in all weather. It will be remembered

 is consident lying under the forts of Swinemunde, and that helter of a German port until the differences now existin between the Governments of France and China have bee arranged. No such considerations, however, appear to hav interfered with the departure of the above dredger, although i munitions of war, such as torpedoes, Mauser rifles, \&c
Considerable satisfaction is felt in Germany at the prospect of
 no definite arrangement appears as yet to have been made, the conclusion of such a treaty between the principal rail manufa turers of England, France, Germany, and Belgium, is regarde as almost certain by the trade in Germany, and the prospect successful termination to the negotiations has aready mado favourable impression on the Berlin Bourse.
The Journal des Interets
The Journal des Interets Maritimes, of Antwerp, reports at nhiderable length on the cases of spontaneous combustion Bordeauxand Paris, and maintains that this was mainly due to th fact that these steamers were provided with German coals. It asserted that this coal is peculiarly liable to ignite spontaneously, and that it is, therefore, dangerous to employ the same on ship board. Thisstatementhas caused some commotionamong German coalowners, and the matter has been taken up by the west
phalian Society for the Export of Coal, who maintain that the ierman fuel is no more liable to cause mishaps, such as the bove, than English or Belgian coal. This affair is of consider ble importance to the German trade, as many thousand tons of the Saarbruicken districts, and it is feared that the frequent occurrence of cases of spontaneous combustion will materially
affect the same
The Société John Cockerill, of Seraing, in Belgium, have con luded a contract with the Eastern Railway of France for the atisfaction among Fons steel tires. This has created some dis. thenorth is still very much depressed, and it is argued that in con dideration of this circumstance so large an order should not hav been permitted to leave the country. Mis,er, not very probable that the conduct of railway companies will be influ will have to seek a remedy elsewhere against the recurrence of uch contretemps.
A series of very successful experiments with 45 -centimetre suns are at present being carried out at the Kummersdor nice to these trials that the mury paper obn by thie cnce to these trials that the projectiles thrown by the above
guns weigh 350 kilos, and that the charge consists of 49 kilos of prismatic powder.
It is reported that
ave obtained the contract. J. and G. Thompson, of Glasgow, ronclad vessels of war for the Greek Government. If thi gratulated on their success in securing a contract for which the competition has been almost without parallel in the annals of解 shipbuilding trade. Well-informed persons on the Contibuilt at either Stettin or Toulon, and the result has therefore taken them completely by surprise. It will be remembered
that when the Government of China some time ago ordered exulted in the supposed fact that foreign nations were at lengt prepared to acknowledge the great superiority of German naval
architects. This triumph was, however, of but short duration, as it soon became apparent that the orders had only come to Germany in consequence of the ruinously low prices at whic the contracts fom the first
ninben 16th February there was launched at Cherbourg ne Cor the French Navy. The vessel, which was name the perpendiculars, 150 ft ; beam, $23 \mathrm{ft}$.7 in ; depth in hold ominal The she supplied with engines of $100-\mathrm{horse}$ powe wo 4 in brech that she will realise a speed of at least eleven knots per hour.

DR. TODHUNTER, F.R.S

It rarely falls to our lot to record the death of a man 80 killed in teaching pure mathematical science as on the present casion. It is stated, and with great justice, that considerable loom was cast over University circles on Sunday last, at Cambridge, by the mournful intelligence, which spread over the town, that Mr. Isaac Todhunter had died on the previous evening Mr. Todhunter, who had been in ailing bealth for some time was universally known by his numerous mathematical pablications. He twok his degree in the year 1848, when he was Senior Wrangler, the late Bishop Mackenzie being second to hin in the mathematical tripos. He was also First Smiths Prizeman, whilst Bishop Barry, who left but the other day fo mathematical tripos of 1865 , and whe made Examiner in 1860 He also took the degree of Master of Arts in the University of 5 on don. In 1871 he was succeesful in winning the Adams' prize for the best essay on pure mathematics; this is awarded every two year to the author of the best essay on some subject in pure mathe matics, astronomy, or other branch of natural philosophy. Hc was an Honorary Fellow of She Rociet, and was last year made an
Fellow of the Rorider
Honorary Doctor of Science of the University of Cambridge. He Honorary Doctor of Science of the University of Cambridge. He
was the author of several mathematical works, ns has already was the author of several mathematical works, as has already
been stated, including "The Theory of Equations," "Plane Trigonometry," "Spherical Trigonometry, "Plane Co-ordinat Geometry, as Applied to the Straight "Exations," "The Differential Calculus and its Applications, "Analytical Statics," The Rev. F. F. Goe rector of St Ge an Aloomsbury, in preaching the University, secrmon last Sunday, made feeling allusion to the death of Dr. Tochunter, while the
Dead March in Saul was played by Dr Garratt at the conclu sion of the service. Mr. Todhunter was Principal Mathematical the most favourite "coaches " for the examination for the Mathe matical Tripos.

RAILWAY MATTERS.

The loop line to Weston-super-Mare, which has been recently Br the fail of a tunnel on the Bangor and.Bethesda Railway on the 5 thin inst., two navvies were killed and three others seriously
injured. It is believed that heavy rain had loosened the top of imjured.
The London and North-Western Railway Company opened a
new station at Sandycroft, near Chester. on Saturday. The station has been erected, to a great extent, for the accomn
of the Sandycroft Foundry and Engine Works Company.
The South-Eastern Railway Locomotive Works aro to be
removed to Sevenoaks. The Ashford establishment will be removed to Sevenoaks. The Ashford establishment will be
retained as a carriage building works. Is it too much to hope
that there will soon be a sensible improvement in the pessengel retained as a carriage
that there will soon be
rolling stock of this line?
Ir is not long since the Belgian State Railroals have published
俍 their report for the year 1882. At the close of the year the
system included 1887 miles of road, ninety-four miles having been added to it during the year. This system had cost the Government
$£ 45,248,000$, or at the rate of $£ 23,974$ per mile. The earnings of this system in 1882 were $£ 44,454,111$, which is $£ 2491$ per average mile worked, an increase of \&10 or 04 t percent. permileover 1881. Of these earnings 64 per cent. was absorbed by the working
expenses, leaving as net earnings $£ 1,617$, 620 , or $£ 375$ per mile of road.
Railway extension in India seems likely to be strongly pressed
upon the Government. The Bombay Chamber of Comper upon the Government. The
submitted a memorial to the Vieeroy, urging that railway extension be prosecuted at the rate of 2000 or 3000 miles annually fors the
next ten years at a cost of $\sum 20,000,000$ per annum. The following are the works most urgentil needed:-(1) An extension, on
the broad gauge, of the Bhopal State Rail way, throxgh Lolitpore
and Jhansi to Gwalior, with a branch from Jinsi to Co ${ }^{(2)}$ The construction of a broad gauge Jhansi-Manikpore line. (3) Of a broad gauge line from Calcutta to Nagpore ; and (4) of a
broad gauge line from Godra to Rutlam. They suggest that in future agreements with guaranteed companies the Government should always reserve the right to fix rates and fares, and to
receive a moiety of the excess of profit over the guaranteed
interest

The Whitechapel extension of the East London Railway was
inspected on Saturday by General Hutchinson, R.E., of the Rail way Department of the Board of Trade. He was accompanied by Mr. Shaw, the secretary, Mr. Spagnoletti, Mr. John Robinson,
resident engineer, Mr. Charles Barry's represer resident engineer, Mr. Charles Barry's representative, Mr. Thos,
Walker, the contractor, Mr. Banister, C.E., Mr. Williams, Traftic way, and a number of other gentlemen. The inspector made a
careful examination of the ready to bo open for traffic. This extension branches from the Kast London Railway, under Cotton-street, passes under Raven-
row, East Mount-street, the London Hospital, and the White. chapel-road, in front of the Pavilion Mheatre, and terminates a
St. Mary's Station, near the Volunteers Drill Hall, where it joins
the extession now in course of construction, of the Metropolitan the extension, now in
and District Railway.
THE passenger traffio on the Belgian State Railways in 1882
amounted to $47,986,402$ passengers carried an average distance on 13.18 miles, whion was an morease ofrred 9 per cent. ing pasengers
over the previous year, the average iourney beingalmost identically over the previous year, the average journey being almost identically
the same. The increase was chiefly in the travel at lowest rates and the passenger earasings increated onlye 7 per cent., the average
receipt per passenger being about 8 d ., or 0 . Cd . per mile- the lowest receipt per passenger beng.
in Europe, doubtless, but not as low as on some railroads in India
No No less than 18 per cent. of all the travel was on commutation
tickets, producing less than 5 per cent. of the passenger earnings tickets, producing less than 5 per cent. of the passenger earnings,
so that the average rates on this travel must have been extremely low. A large part of this travel is by workmen carried from
villages near by to the places where the mines or factories are situated in which they work. The average fare paid by a com
muter was $2 \% 5 \mathrm{~b}$. , by other classes of passengers, 9 A . At thes muter was 2 .5., by other classes of passengers, , id. At these
low rates the passenger earnings were 32 per pent. of the total
earnings. The whole passenger traftic amounted to $669.600,000$ passenger miles on the 1887 miles of road, which the Railroud Gazette compares with the $432,000,000$ on the 1000 miles of the 450 passengers carriod each way daily over the whole mileage. By
the census of 1880 the number in this country was equivle to ninety-eight passengers each way daily over every mile of road
but some of our roads, besides the New York Central, have much more than the Belgian State roads.
On Sunday morning a serious railway collision, or a series o
railway collisions, occurred on the north-eastern section of the Caledonian Railway. A goods train from Perth to Aberdeen had got as far as Kirriemuir Junction, about three miles from Forfar train pass, Shortly afterwards another goods train from Forfar came up and collided with the Perth train, the result being that nine wagons were smashed and both lines were blocked. Some
very large logs of wood which were thrown from the wagons fell upon the signal wires, so that the officinls were unable to raise the signal against the mail train, which had before the collision It seems, however, that even had the signals been workable there would not have been time to avert the second collision which
ocourred. The mail train had reached the distance signal, but the
. thick weather prevented the driver of the mail seeing what had cocurred. As soon as he did see the wrecked train he applied his
brake, but it was too late : the engine struck one of the wngons and then came upon some of the logs of wood. In this way the engine Wasnearly yoverturned, and the permanent way torn upand destroyed.
The scene was now one of great confusion; wagons, engines, and
defric blocked both nails miraculous way the officinas in charge of the trains escaped almost
without injury, as did also the Post-office officials, but some were ANorHer question affecting the charges of railway companies in been brought under the attention of the coal trade in the North. The Town Clerk of Blackburn has sent out a circular note to the trade calling attention to the fact that the following clause appears
in a Bill wwith is being promoted by the London and NorthWestern Railway Company in the present session of Parliament
viz,: "Section 60 . -In lieu of any other payment, charge remuneration which under the Act (local and personal) 9th and
10th Vic., chap. 204 , entitled the London and Birmingham Gran 10 th Vic., chap. 204, entitled the London and Birmingham Grand
Junction and Manchester and Birmingham Railway Companies," the company is entitled "to demand and receive in respect of Wagons or carriages provided by it for the conveyance of coal,
cannel, slack, culm, coke, or cinders where the same are conveyed or any distance not exceeding 50 miles, the company may demand and receive any sum not exceeding 6d. per ton, and where the same are conveyed for any distance exceeding 50 miles, but not exceeding
150 miles, the company may demand and receive any sum not rceeding 1s. per ton, and where the same are conveyed for any istance exceecing 150 miles the company may demand and receive up for consideration at the meeting of the South.West Iancashire Coalowners' Association on Tuesday, and also at a special meeting
of the committee of the Manchester Coal Exchange, held on Tuesday. As the passing of a clauses such as the above was considered to be detrimental to the interests of the coal trade, it was decided
by both associations that they should take such steps as were in
their to in the circular.

NOTES AND MEMORANDA.
During last year vessels having a total tomnage of 393,941 tons
were returned as lost or broken up. Of these, 144,138 were of were returned as lost or broken up. Of these, 144,
wood, 248,221 of iron, and 1582 of steel.
 the 446 . In 1883 it was $1,075,259$, in 1882 it was $1,204,603$ in 11881
was 843000 At the commencement of the current eyar it was
wen 345,813 tons less than 1883 . The decrease in the tonnage of hen 345,813 tons less than 1883. The decrease in the tonnage of
ron vessels under construction is 28 per cent., but of steel vessels per cent.
The Monitcur Industriclle gives as the composition of an 15
15 of sulphur, with 15 to 30 of turyentine or 55 to to 60 of petro-
eum. Mix well; heat to 100 deg. C. -212 deg. Fah. - until com pletely dissolved; let cool to 30 deg. to 35 deg. C. -86 deg. to
$\$ 5$ deg. Fah.; and a solution of 3 parts of caseine in weat mmonia, and a little methylene; re-heat to 100 deg. to 120 deg with a 15 to 20 per cent. solution of tannin, and about 15 parts o ammonia. After boiling several hours, wash and cool.
AT a recent meeting of the Chemical Society, a paper was read
in the expansion of liquids, by D. Mendeleeff, translated from the Russian by B. Brauner. In this paper the author, principally from
data furnished by Thorpe-Chem. Soc. Journ. Trans., 1880, p. 141 -gives the equation $\mathrm{V}=\frac{1}{1}$ as expressing approximately the expansion of liquids. k is named the " determinator of expansion." a specific gravity, boiling point, \&co. The author states that the above expression, although many liquids deviate slightly from it
is sufficient in the majority of physico-chemical investigations.
THE report of the American Commissioner of Patents has been
published. From it we learn that the total receipts of the office r the year 1803 were $1,146,240$ dos., and the expenses 675,23 dols. The total number of applications relating to patents was
34,576 , of which 33,073 were for inventions, 1238 for desims, and 265 for reissues. There were 2741 caveats filed, 915 applications for registry of trade-marks, 834 for registry of labels, 18 disclaimers
and 640 俍 and action. The number of patents issued in 1883, includin lesigns, was 22,216 , and there were 116 reissues, or a total
22,383, angainst 19,267 patents and reissues in 1882 , and 16,584 in labels, while 8874 patents expired, and 2366 were withheld fo non-payment of the final fee.
Writivg on "Brass Castings," the Age of Steel remarks :-"
if diversity in results. What with the volatility of some metals, and the varied melting points of others, in the same mix it is wonderZinc sublimes-burns away-at 773 deg . to 800 deg ., while the heat of the metal with which it should be intimately mixed in making yellow brass-copper-is nearly 2000 deg . Zinc, tin, and lend enter
into compositions of copper, to form alloys in varying proportions -always in definite quantity for a given alloy. It will be scen away, at comparatively low temperatures, that it is a very easy
matter to make several kinds of metal with the same mix. WW may add that copper often manifests a remarkable proclivity fo
leaving the casting house, which further complicates the question.
Dubisg 1883 there were registered four steamers of over 5000
 sow, for the Cunard Company's line from Liverpool to the United States. Oregon, iron; length, 501 ft ;; breadth, 54.2 ft , depth 38ft.; gross tonnage, 7375; registered horse-power, 2000. Built
and engined by Messrs. John Elder and Coo, of Glasgow, for the Guion Company's line from Liverpool to the United Stanes. City
of Chicago, iron; ; length, $430 \cdot 6 \mathrm{ft}$; breadth, 45 ft .; depte
 Messrs. T. Connell and Co., Glace how, and engined by Messrs.
Mal Liverpool to the United States. Bitterne, iron; length, $387 \cdot 2 \mathrm{ft}$,

Iv the last number of the Journal of the Russian Chemical Socces of gravitation, cohesion, and chemical atfinity being consi dered as three different degrees of one single force, which differ rrom one another only by the distances at which the action of the
force is exercised. M. Alexeyeff asks, "Which of these two las forces, of cohesion or of chemical atfinity, is manifested in solufons. and pronounces himself for the former. The simplest cass
solutions are, in fact, those where there is no chemical affinit between the bodies dissolving and dissolved. Such cases were we known long since for gases and solid bodies. The eolation of gases
in solid bodies is quite analogous to imbibition of solids with liguids, in solid bodies is quite analogous to imbibition of solids with 1iquads, xplained by the greater penetration gases bee perfectly agreeable with the supposition that the dissolved gases with regard to solutions of liquids. The simplest of these is the olution of phenol and aniline in water. The stability of the compound formed by phenol with aniline shows that both have no
affinity to water.
Further, M. Alexeyeff discusses the applicability of his theory to bodies which easily pass from one state to another, and the relations of water to colloids, the solutions of liquids in iquids being, on his hypothesis, quite like emulsions. Natur mentions that he is engages now the experiments intended the

- According to Faraday's law and the experiments of M. Beoquerel, a given current of electricity, traversing a series of salts
capable of being electrolysed during a given time, separates at the negative pole weights of the different metals proportional to their equivalents ; that is to say, that $107^{\circ} 9 \mathrm{gr}$. of silver being precipitated, the same current will precipitate, in the same time, 103.5 gr r. of
lead. It will also separate $39 \cdot 1 \mathrm{gr}$. of potassium and 68.5 gr of barium. A these latter metals decompose water they do not
exist free, but are found as a free base round the pole. These
different weights are proportional to the different weights are proportional to the equivalents -that 1s, to tuted the one for the other. In order that they should be propor-
tional to the atomic weizhts. tional to the atomic weights we ought to obtain, in the same time
as 107.9 gr of of siver, 20 g gr of lead-that is, double the weight actually precipitated; in the same time as it takes to obtain 39.1 gr .
of potassium we ought to obtain 137 gr . of barium, whieh the case. In the same way with the electro-negative elements. If wo elecetrolyse in a similar circuit the chloride and oxide of a same period are proportional to 35 gr ., 5 gr . for chlorine and 8 gr . for oxyen- that is, to the equivalents. If they were proportional
to the atomic weights, we ought to obtain for $35^{\circ} 5 \mathrm{Fr}$ of chlonia 16 gr, of oxygen, which is not the case. Without entering into any discussion on the valency of bodies, the idea of which is anterior
to the new atomic notation-since it is the result of the discovery of polybasic acids by Graham in 1835, of polyatomic alcohols by myself in 1854, and of glyool two years after by M. Wurtz-1
confine myself, M. Berthelot, in the C amptea tostify ying that Faraday's law is more simply expressed, as a rule, by means of equivalents than by means of atomic weigh
concerns elcetro-positive and electro-negative elements.

MISCELLANEA.
Ax explosion occurred on the 27 th ult. at a powder mill near
Omaho, by which four boys were blown to atoms. MessRs. Hayward Tyler AND Co. have received the (Gold
Hedal-highest award-for aeirated water machinery, at the Cal utta Exhibition
The Preston Town Council have approved plans for an extensive
ystem of dock accommodation devised by Mr. E. Garlick, the lans including wet and dry docks and extensive river diversion. THE water committee of the Birmingham Corporation on able reduction in the charge
mainly by improvements in plant.
MoDERX gas apparatus, shown by the Corporation Gas Com-
nittee will be included in the third amnual exkibition in conned tion with the National Trade Exhibition Association, to be opened
the Mayor of Birmingham-Alderman Cook-on April 28 th in y the Mayo
Bingley Hall,
Ov Saturday, the 1st inst., Messrs. Earle's Shipbuilding and
Engineering Company, Hull, launched a steel screw steamer for Messrs. Thos. Wilson, Sons, and Co., of the same town. The limensions of the vessel lare an an oflows::-Length, 175th;; breadth,
dift.; depth of hold, 14 ft . Triple compound expansion engines 90 nominal horse-power. Miss Mary Cameron named the ship IN a lecture on Wednesdny evening at the Society of Arts, Mr.
W. H. Preece pronounced electric lighting a practical success. What had proved a disastrous failure was electric-company mo sering and electric-lighting inance. People would pay a reaso able price for electric light, whatever might be the price of gas.
At present it is a luxury, but the progress made was so rapid that the day was not so far distant when it will be demanded as a necessity.
The New Zealand Shipping Company's new steamer Tongariro bas performed the voyage from Lyttelyon, N.Z., via Cape Horn, in
he remarkably short space of 38 days 3 hours. This means that in fair weather or foul the vessel has plodded its way through the
ocean at an average of $12 \cdot 8$ knots per hour, or over 308 miles per ocean at an average of $12 \cdot 8$ knots per hour, or over 308 miles per
day. The Tongariro is over 4000 tons register. Out and home the whole actual steaming time of the Tongariro was 78 days 12 hours
32 minutes, the total distance being 24,165 miles, being 12,410 niles out and 11,725 miles home
EvERTONE must sympathise with the efforts of the London
vestries, or their delegates, to stop the made by wealthy water companies: but the public, as well as their elegates, must be reminded that such unqualified denunciation nd false statements respecting the quantity and quality of the
ater supplied by the water companies as those made by Mr. Squire, at Camberwell, on Tuesday, must do the cause of reform much more harm than good, and could only proceed from
unqualified absence of real knowledge of the subject discussed. THE members of the Edinburgh Stock Exchange Association have torwarded a memorial to the Postmaster-General pointing
put the inconvenience and loss resulting from the constantly recurring interruption of telegraphic communication caused by the requent storms, and suggesting that at least the principal lines of tmospheric disturbance by wirce being placed underground. It is not proposed that the undergroound system should supersede the present system. In ordinary circumstances it auxiliary, and in contingencies only as a substitute.
THE notice which has been served by the associated masters in
the wire drawing trade for a reduction in wages of 25 per cent. is the wire drawing trade for a reduction in wages of 25 per cent. is
being resisted by the Shropshire operatives. These state that upon some sizes the notice means a reduction of from 30 to 40 per cent.,
but the masters aver that these are very fine sizes, of which a worknan does not make more than, perhaps, 1 owt cent. The men have come out on strifer, but the masters state
hat they have no alteranative but to enforce the notice consequent apon the increasing German competition, which has already brought prices down to a very low figure. How long the strike in
Shropshire will continue depends mainly upon the Warrington

Mr. Arsold Morley, M.P., has at length issued his report relating to the explosion at Wharncliffe Carlton Colliery on the
18 of of October last. Mr. Morley states that the inquiry has not led to any practical results, mainly owing to the necessity for
closing the mine in consequence of the apprehended conflagration. closing the mine in consequence of the apprehended conflagration.
The inquiry, however, he thinks, proved conclusively that there are no grounds for believing that the disaster was in any way due with the colliery, and he, therefore, reports that in his judgment either for an offence against the rules in relation to the manage ment, or for criminal responsibility with reference to the loss of
ife resulting from the
AT a meeting of the Institute of Mining Engineers at Dudley on
Monday, a letter was read from the Royal National Miners' Life saving Institution, accompanied by a prospectus. This set out
that the scheme was to be supported by voluntary contributions, and that powerful pumping machinery in case of sudden floodings to give aid to sufferers and divided into parties of rescuers. The two members to be on the Council. The Pre side-president held that it was a carrying forward of the work of the
Fleuss systen and that some of the objects of the Institution Fleuss system, and that some of the objects of the Institution
were already in progress, such as barometrical warnings and the rill and matter before consenting to the request of the Institution.
The New British Iron Company, makers of the "Lion"
brand of Staffordshire iron, has recently lighted its Corn greaves Works, near Birmingham, by electricity, the Maxim-
Weston Company supplying the installation, which consists of eleven Weston aro lamps of 1400 candle-power each, supplied with maximum speed of 1050 revolutions by one of Messrs. Tangye transmitted through a short length of shafting by means ordinary leather belts rusning on special wrought iron pulley
supplied by Messrs. Hudswell, Clarke, and Co., of Leeds. The New
Retich Britis lation has worked well, and with the arrangements made is likely to give satisfaction and be economical
A NEW Stroud reservoir was inaugurated last week. The board the aid of a contractor. The work has afforded employment to large number of men for the past eighteen months, and the whole duties in a very capable and the quantity of powder used ing thasting and removing the
rock, few accidents have occurred to thel men. The site of the reservoir was an old quarry, and the labour of forming and clearing
the floor to the revired the total quantity of debris required to be moved being about
the 14,000 tons. The side walls and floor of the reservoir have been constructed entirely of concrete, and the roof, which consists of
brick and concrete arches carried on iron girders, is supported by seventy-three brick pillars. The whole of the floor and side walls have been finished with cement rendering 11 in. in thickness. The
capacity of the reservoir is about $2,100,000$ gallons, amounts to $\varrho 11$ ise per 1000 gallons, the area being, and the cost

Mr. J. P. Lofthouse is the engineer of the work.
SALTERHEBBLE VIADUCT, HULL AND BARNSLEY RAILWAY, HUDDERSFIELD AND HALIFAX EXTENSION.

OREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

*. In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all cases, be accompandeded bor insertion in tharge envelope legibibn, dirested by by the
writer to himself and bearing writer to himself, and bearing ae 1d., posage stamp, in order the
answers reccied by us may be forwarded to their destiontion answers received by us may be forvoarded to their destination.
No notice will be taken of communications which do not comply Wo notice einitructions.
${ }^{\text {with these }}$ We cannot undertat
must therefore request correeturn drawings or manuscripts; we * All letters intended for insertionts to in Thep coovies. of the writer, not necessarily for publication, but as a proof of the voriter, not necessarily for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous communications.

chilled castings.

elastic boiler cement
 The coment was exhibited
Ipricutural Hall
Ipsich, February 2 2th.
 ne Exorsker can be had, by onsier, from any no

 ADVERTISEMENTS.

 Advertisements cannot be inserted unless Delivered before Six

THE ENGINEER.

MARCH 7, 1884.

colonial defence.
The projected Federation of the Australian colonies will doubtless lead to the question of their defence being dealt with in a more satisfactory manner than has hitherto been
possible. It would be a fitting opportunity also for
clearly defining the responsibilities of this country towards the new Federation, and the duties of the latter in the
event of our being involved in war with a maritime Power It is obvious we could not largely increase the number of our vessels in various parts of the world at such a period;
and therefore it is essential a colonial defence should be and therefore it is essential a colonial defence should be
organised to repel any sudden attack an enterprising organised to repel any sudden attack an enterprising
enemy might make if he evaded our cruisers, or was too enemy might make if he evaded our cruisers, or was too
powerful for them to cope with. We should be prepared for such expeditions as that of Admiral Missiessy, who,
with a French squadron, in 1805, exacted contributions with a French squadron, in 1805, exacted contributions
from certain of our possessions in the West Indies, and returned to France without encountering any of our ships. Can we assert now, after the lapse of nearly eighty years,
the presence of a similar hostile force on the Australian coast would cause no fear in that region; and strong in a well-organised defence, a stout refusal would be the answer to a demand for half-a-million sterling. We are
afraid that at the first shot the whole fabric of afraid that at the first shot the whole fabric of resistance
would fall to pieces; terms would be made, and probably would fall to pieces; terms would be made, and probably
separation from the mother country follow a revulsion of feeling against a connection which had been productive of such a calamity. On the other hand, what power for
defence might be developed by these colonies if all united in their resources and organisation! They might, indeed, defy any such detached force as just alluded to, and remove
all uneasiness in this country as to their ability for selfdefence. There are even some who look forward to the time when a more intimate connection with the colonie purposes, and by representation in our Parliament have some voice in the declaration of war which may affec hem so deeply. But for some years to come an efficient defence is as much as we can ask for or expect. At a
time, therefore, when we hear of certain measures being aken towards the provision of material for this purpose ferent collon look for some indication to show that the dif or less adopted the same means on some settled plan of pro-
fere cedure. Instead of such being apparent, we observe a diver sity of action in this respect, which is much to be regrettcd One colony invests in a number of small torpedo boats Another colony lays out a Another colony lays out a large sum in two gunboats, one
large and several small torpedo boats. The value of the gunboats is a matter of opinion, but as in time of war raids of detached ironclads may be expected, it is
question whether the money might not have been more question whether the money might not have been more two sizes are fitted for different patterns of torpedo even if two types of boat were desirable. But all those even if two types of boat were desirable. But al those
with practical experience advocate the larger type as more uitable for coast and harbour defence.
thus we ind that aggregate is being pent, or, as some might term it, frittered away in these ports. In some measure it already exists, because at Mel ourne and Sydney fortifications, submarine mines, and essels have been provided for this purpose ; but organisation is lacking should they be required in earnest. At other points, as the New Zealand ports, little or no preparation
has been made. It may be urged with some truth that the Imperial Government is not free from blame for not having imperial Government is not free from blame for not having initated joint action years ago instead of proudy holding
aloof, leaving the colonies to follow their own devices in this matter. It was certainly our duty to have advised them how best to utilise their limited resources. We thought, however, the gift of a ship cancelled further obligation and relieved us of future responsibility. Can we be surprised if the colonies now omit to seek that dvice when they proceed to improve their defences in the and experience be at their service, but we should also encourage some of our best officers to enter the colonial service, which hitherto has certainly not been the case
There would be but little use in referring to the past did ve not indicate in some measure what seems needed for the defence of a united Australia against any hostile force that cal defence of its coasts. First of allshould be organised the local defence of each important port, to consist of fortifica-
tions, submarine mines, and large torpedo boats. The fortifications should be those most suited to the particular locality, the employment of earthworks being especially advocated. The submarine mines should, where practicable, be commanded by the guns, and the simpler the system employed the better. All elaborate methods of scertaining the condition of the mines when in position Experience has shown the former to be unreliable and if Exp doubt exists as the flcien of mine the plan in texise and examine it The type of mine to employed depends much upon local conditions, as depth of it iu, rile to point. Doubtless some plant of this nature already exists, but the staff for its use seems lacking in practical knowledge, as evidenced in an occurrence took place at Melbourne a few years ago, when an officer exercise. Though the actual cause was never clearly ascertained, the inquiry afterwards elicited facts showing ascertained, absence of certain precautions, which, if taken, would an absence of certain precautions, which, if taken, would
have rendered the disaster almost impossible. The torpedo boats should be large enough to go out and attack such operations much depends upon the attack being made such operations much depends upon the attack being made
frommorethan onequarter, according to a preconcerted plan. In this case locomotive torpedoes only should be used, the boats having no otnel armament; but when employed upon reconnoitring duties, or against other boats of similar
character, a machine gun equipment should replace the torpedo. The small boats could only perform such services in calm weather. They could not keep the sea for any time,
or proceed from port to port independently, so little reliance can be placed on them. In addition to the purely local
ironclads that could proceed to any point threatened with attack. Timely warning would be flashed by cable to all parts of the Federation, every port put on the alert, and torpedo boats sent out as vedettes to give notice of the enemy's approach. Under such circumstances he should expedient to leave that part of the world undisturbed. We have in these cursory remarks pointed out the general principles upon which the material for colonial defence should be formed, details of which it would not be politic to make public. Neither will space permit us to deal with the personnel of such an organisation, though it isevident that this portion is of equal, if not greater importance, because the most elaborate machinery without a competent staff to work it is worse than useless. We must therefore reserve further observations on this subject for a future occasion.

our guns in the soudan.

Attention is naturally drawn to the subject of the guns which we found useless in the camel battery, and hose drawn from our ships to replace them. There appears to be some difficulty in arriving at the truth. There
has been a succession of light short guns employed in has been a succession of light short guns employed in had to be carried entire on the back of an animal its weight had to be limited to from 150 lb , to 200 lb . The piece was a short one discharging a 7 -pounder projectile with a low velocity. Its trajectory was therefore curved, and though it carried a fair sized shrapnel shell, its effect was necessarily feeble. We have endeavoured to thd out by inquiry what guns constituted the camel batlery, bat it is very difncuit to obtain more than conjecture on the
point. The guns from the ships are called 7 -pounders, and they appear to have replaced a mountain equipment. On the whole we are inclined to think that our division of men had nothing at all so good as the weak r-pounde mount, indeed, have been a "toy." By some means it might be that the guns from the navy which replaced
 arm of the expedition until the Krupps were captured, were he 7 -pounder mountain guns. We kin that ships generally have not these mountain equipments, into the feld wad the wing into the field, and the guns widh caragee for working on shore are 9 -pounders, not 7 -pounders. The fact is men tioned, however, that the salors dragged the field guns The 9 poin th with field which ${ }^{\text {a }}$, mulled by the men whith are ofte. In the shoe and puled by the men entailed wis ense, waver, neither calls for strongs of the camel battery formed part of the naval equipment. It certainly oattery formed part of the naval equipment. they were so
is discouraging to think that it is possible that the is discouraging to think that it is possible that they were so
absolutely useless as to be left behind. Be this as it may, the matter of importance is the absence of fairly powerful guns Lord Wolseley is credited with the refusal to supply the expedition with field guns. Such a refusal can only be expedition with field guns. Such a refusal the guns
justified, we think, on the supposition that the justified, we think, on the supposition that the gun could not move over the country. Supposing this
to be correct, it reminds us of the necessity of having the only powerful mountain guns we possess more exten sively issued, namely, the 7 -pounder screw guns firs made by Sir William Armstrong on a suggestion described with Mesurier. These guns-which we fully 1878 - have the field guns, Being unscrewed and carried in pow of field gate Beimb they and to be brougt up to separ. weint, they ar jectory and accuracy would enable them to hold their own fairly against field guns. We have made the supposition that the absence of field guns proper was due
to the idea of difficulty in解 it may be due to another cause, namely, reluctance to expose British guns to risk of capture. We have heard of this idea gaining ground to what we think is an unhealthy extent. Happily, such British guns as have been taken in war have generally been recaptured ; we know of none exhibited as trophies abroad. Guns are generally lost when an army has to fall back before an enemy. If this is likely to be a fundamental "strategic movement" of the campaign, surely the campaign is a mistake. If, on the other hand, the danger isdue to fitful and sudden changes of position for temporary purposes, guns might be held in hand; but they are too useful to sacrifice the advantage of the arm altogether in all but very exceptional case
column ould have had pow fors and ours only weak pow to bring , winst there take and ours, only weak ones, to brig agains whem. This to lead to loss is our mad the Arik ald to lead to loss ins rack us as luey atack Bat, in disposed of them almost without loss by holding thei square formation and behaving with nerve and stegdiness Having guns, it was possible that the enemy might wait Having guns, it was possible that the enemy might wait Arabs lay hidden in great numbers. Then a sudden concentration of fire on the square might tempt our officers to deploy, and such a moment would be most fayourable to the startling appearance and rush of Arab warriors. They did not manage, however, so to combine the advantages of guns with their peculiar way of fighting. Nor did we
much expect it. It was far more likely that the preser of the guns and the lessons in making that the presence tempt them to a compromise, which, if it caused more los to our men than the rush of desperate Arabs, would be doomed to sudden failure eventually, even more certainly than the other

shipowners and the board of trade

Mr. Chamberlain's Merchant Shipping Bill is not un naturally exciting a great deal of attention among shipowners, and crowded meetings have demanded that before
legislation shall take place affecting the interests of
many millions of capital, a Select Committee shall be
appointed to inquire into the conditions under which our narine-carrying trade is conducted. But according to the latest reports the negotiations betivcen Mr. Chamberlain and the shipowners have as yet failed to lead to any understanding in regard to the Merchant Shipping Bill. The shipowners will not consent to refer it to the Standing Committee on Trade ; and Mr. Chamberlain, on the other hand, believes that to send it to a Select Committee would havesess. But if the Government is right, it can
have nothing to fear from such an inquiry, the results of which ought to strengthen Mr. Chamberlain's hands. on the other side, the shipowners are contident that by it their characters will be cleared, and that it will be proved that such sweeping measures as that proposed by the Board of Trade are not wanted. Concerning the provi-
ions of the Bill we do not propose to say anything now sions of the Bill we do not propose to say anything now.
They are, beyond question, being fully discussed elsewhere. Our object at present is to consider the nature of the
theory on which Mr. Chamberlain is acting, and the evidence which he is bringing up to prove the soundness
of his views. We have already dealt rather fully with of his views. We have already dealt rather fully with
the whole subject, but it will bear rehandling. Indeed, it is impossible within the compass of a few articles to treat Mr. Chame
Mr. Chamberlain's thesis is, that because a ship and her cargo can be fully insured, shipowners do not take sufficient precautions to render their vessels and seamen safe. The President of the Board of Trade would not concern himself
about the ships or their cargoes if no lives were lost; but is soul is harrowed as he reads of the shipwrecks and eaths which daily take place. He holds that the deaths are, for the most part, strictly preventible. He arrives at
this conclusion from two points of departure. In the first place, our great ocean steamers make their voyages with place, our great ocean steamers make their voyages with econd he has collected facts and opinions which prove, he thinks, that the ships which are lost go to the bottom as a
result of the greed of the shipowner. We shall deal with the latter aspect of the question presently, but meanwhile ve may point out that, if it were made imperative that ar ocean carrying trade should be conducted as the mail altogether, simply because it could not be done at the rice; and we would call special attention to the fact, often f not universally overlooked, that an increase in the cost
of ocean transport will have precisely the same effect, in so ar as the consumer is concerned, as an import duty; while, an export duty. Thus, for example, if the cost of importing grain were augmented, bread would rise in value;
while if the cost of exporting, say, rails to India ere raised, the ironmaster must suffer, and with him our ail trade. The head of a great Govermment department beyond question in every way desirable that loss of life at ea should be brought down to the smallest possible limit ut it must not be forgotten that chere are even highe nerests to be considered tham the lives of men; and many ruin our shipping trade in order to save sailors from risk. It would be as politic to shut up all coal pits lest men hould be killed by explosions. We do not assert that very possible precaution should not be taken by the shipequally take all possible precautions to see that legislation lay not have the effect of killing a great trade while aiming cate legislation. We raise our voices against mischievous legislation ; and we assert that legislation in this case cannot fail to be mischievous, unless it is based on infor mation elicited by a careful investigation before a Select Committee.
We may now turn to some of the statements on which Mr. Chamberlain supports his thesis. We have lying Commissioner, and entitled "Lives lost bery, the Wreck Commissioner, and entitled Lives lost by drowning or other accident in British merchant ships in the United Kinglom, calendar years 1871 to 1882 inclusive." This return "contains," says Mr. Rothery, "a list of all the cases which have come before mesince my appointment at the end of
1876 , and show in each case the nature and cause of the casualty; whether any, and if so, how many lives were ost; whether blame attached to anyone, and if so to whether there is nothing to show how it occurred. It will seen 'shat have arranged the cases in four classes, ases of 'stranding, cases missing, or abandoned vessels,' whilst the remaining cases, such as those relating to explosions of steam or coal gas,
spontaneous combustion, \&c., will form the fourth class. The total number of cases was 402 , of which there were foundered, missing, and 67 cases of 'collision,' 127 cases of of 'vessels otherwise damaged.'" After explaining that he wants to set forth how many of these casualties are due to preventible causes, he goes on, "In looking at the which it may, perhaps, be said that the casualty was due to causes beyond control, and 40 in which there was nothing to show how it had occurred; so that in the
remaining 326 , out of a total of 402 cases, there was blame to some one, sometimes to the master or other person on board the ship, sometimes to the owner or his agent on shore, sometimes to both; cases, in fact, which may fairly
be called preventible casualties. The returns also show that in 307 of these cases the master or some person on board was in a greater or less degree to blame, and in 94 the owner or his agent on shore." Having explained
that he would extend the responsibility of the shipowner in many more cases than are set forth by the figures given of 'foundered, missing, and abandoned vessels,' we find that in no less than 67 cases out of the whole number of 127, that is to say, in more than one-half of them, the owners or their agents on shore were in a greater or less
degree to blame, owing to the vessels having been sent or
allowed to go to sea either in an unseaworthy condition, or overladen, or undermamned, or with insufficient fittings, views in in his own words, and at the first glance it will be seen that this is a very heavy charge against
the shipowners of the United Kingdom. Let ns however, examine it a little more closely, and see what it really In looking over the tables which constitute the major portion of the report, we find, first, that no information
whatever is given as to the kind of ship which was lost. whatever is given as to the kind of ship which was lost We are told nothing of her size, class at Lloyd's, or the
nature of the trade in which she was engaged. We have identified a few of these vessels, however, and find that they can in no sense or way be taken to represent sea-going ships in the proper sense
of the term. In the year 1879, which we take at hap-
In hazard, we learn that forty-one out of a total of fiftythree casualties occurred from careless navigation. The
number of lives lost in this way was twenty-eight, of whom number of lives lost in this way was twenty-eight, of whom
fifteen perished on board one ship, the J. H. Lorentzen, of Newcastle. Six vessels were injured by the explosion of coal gas or spontaneous combustion of coal ; only one
life was thus lost. In nine cases Mr. Rothery holds the owners responsible. The first of these was an "explosion
of coal gas for lack of ventilators," one man killed ; the next case is one of "improper loading and careless naviga-
tion," eight men killed; the next is an "explosion of coal tion," eight men killed; the next is an "explosion" of coal
gas,", no one killed ; next we have "insufficient ballast gas," no one killed; next we have "insufticient ballast
and low power of engines," no one killed ; next "explosion of coal gas," no one killed ; then we have " "under manned and careless navigation," no one killed equipments and badly handled, two lives lost;" and last breaking of a discharge pipe," no lives lost. Thus it will for the loss of fifteen lives in Rothery, owners are to blame by Ot lo these figures apply to the cases heard before Mr. Rothery alone, 1 repesent onty a moderate percens.a of al figures , the a the plas. Bul for as the figures go, they appear to us to put the action of ship-
owners in a favourable light. Indeed, we have in the whole list but one of those cases which Mr. Chamberlain the rule intead of the exception mamely, that of the Mesopotamia. In the following year
the record is very much worse, because by the loss of the Borussia no fewer than 154 lives were sacrificed, and she was pronounced by Mr. Rothery to be undorthy, and her owners to blame. On one point, and that of great importance, Mr. Rothery is entricly silent. It is contended tuat existing legislation is quite competent to deal
with abuses in the conduct of the shipping trade. Now it will be seen that Mr. Rothery holds that no fewer than foundered, were lost, or abandoned because of the greater or less misconduct of the owners or their agents who sent cient fittings. Why, we ask, did not the Board of Trade dealing with old coasting craft we could understand this, but we cannot understand how large ships could get to sea Board of Trade did its duty. It will not do to say that the work is more than it can accomplish. When it thinks proper the Board is powerful enough. For example, one of the greatest evils of the shipping trade is that vessels
are sent to sea insufficiently manned. On this point there can be no doubt whatever. It is in this respect that shipowners are more to blame than in any other. Lloyd's, in a recent letter to the President of the Board of Trade, say that where a ship is not provided with a proper and
sufficient crew she shall be deemed unseaworthy. Now a given sailing ship goes on an ordinary trading voyage This is the minimum allowed by the Board. On the next voyage she takes 500 emigrants ; but before she will be perHow it that Gomer then and not in another? Why should the existing minimum be fixed where it is? No one, we think, disputes that there are black sheep in the shipping trade as in all other trades郎 Board of Trade was properly done It awer, they would lead a very unpleasant lif
It appears that a very large proportion of the death navigation, while a comparatively small proportion can be traced directly to the owner, and this is a point to which Mr. Chamberlain might with advantage devote his atten-
tion. It will not do to attempt to charge the owners with complicity in this respect. To what, then, is careless navigact thawing We opine that it must be attributed to the fact that the Boad or rrade is not sufficiently careful in granting certificates to captains and mates, Much more and a knowledge of "lunars" and "seamanship." To return, however, to Mr. Rothery's report, we repeat that it loses much of its value because it gives no clue whatever
to the nature of the vessel concerned, and this is a point of the utmost importance. A very broad distinction must be drawn, but it is not drawn, between ships of various kind and trades, and different classes of owners. There are coasting craft afloat now-litte brigs and schooners, and
such-like-which ought not to be entrusted with the life of a man. They are timber built, of great age, half rotten as regards sails, hull, and ropes. If these are caught in a
gale they cau have but one end. These vessels ought not to be used. It may be said that the law cannot be mad which would touch them. We believe that the law as it stands, if it were properly administered, would effectually that the Plim. I 1 perfectly well known, for instance great number of unsesworthy craft. It is the annual des truction of vessels of this type which swells the list of shipwrecks on our coasts, and runs up the deaths by
accident at sea to the high percentage of one in seventyfive per annum. To class owners of great merchant
steamers with those of 90 -ton colliers, brigs, and such-like
craft, is a gross injustice to the former. Mr. Chamberlain muddles up all classes together; to him a ship is a ship, and an owner is an owner. The report of a select Committee could not fail to set facts on this point at least before the world, and Parliament, instead of taking a leap in the whole could legislate with advantage for the good on hich with this ques tion, because the shipping trade is rapidly falling into disastrous condition. At the commencement of 1882 the $1,264,603$. Last year it was $1,075,259$. At the begiming of 1884 it was only 729,446 . Thus on the 1st of January there were 345,813 tons less of iron and steel shipbuilding 1883, being action than at correspondigg pere it i estimated that the number per cent. To resent lying idle in the Tyne is 63 ; in the Wear, 25 ; at Hartlepool, 34 and in the Tees, 2 ; in all, 124 , representing a gross tonnage
of 130,136 , or a capital of $£ 910,952$, and 1560 men out of employment. These figures speak for themselves.

AS ENGINEERING IN BIRMINGHAM
Fros the annual report of the Gas Committee presented to the
Birmingham Town Council on Tuesday it is evident that the Birmingham Hown Counci on Tuesay it is prat that the past year. In 1875 the private companies in whose hands the supply was then vested carbonised 296,000 tons of coal and sold of gas $2,319,000,000$ cubic feet. Last year the corporation carbonised 312,000 tons, and sold $2,861,000,000$ cubic feet of gas Thus for an increase in coals of 16,000 tons there had been an
additional production of $542,000,000$ cubic feet of gas. Provided additional production of $542,000,000$ cubic feet of gas. Provided was the subject of special precautions, the chairman of the Committee, Mr. Maurice Pollack, was justified in terming it " grand result." That an increase of $144 \frac{1}{\frac{2}{2}}$ million cubic feet of
gas sold should have been made in face of the mild winter argue a considerable increase of day consumption for gas engines, gas fires, and cooking stoves, 25, on the year of $£ 50,580$ isement rate, $£ 5000$ to reserve fund and $£ 25,389$ to the sinking fund for paying off loans and annuities-to justify a further considerable reduction in price Of all the sixteen towns supphied with gas by their respectiv corporations only one will now be charging less than Birming as to the cheap supply of gas-coal. And Leeds must look to it urels, for the Gas Committee of Birmingham are determined they announce, not to rest satisfied until their scale of prices i the fact that their progress is due in much part to improvement in plant. Nor is it to be regretted that they contemplate, failing rise in the market value of residuals, the erection in the carly acilities they will be the better prepared, as to gas for powe Compet the competition threatened from, amongst others, the Compressed Air C
directed attention.

LITERATURE

Fuel and Water, with Special Chapters on INeat and Steam
Boilers: A Manual of the Users of Steam and Water. From the German of Franz Schwackhöfer, Professor at the Imperial and Browne, M.A. London: Charles Griffin and Co. 1884.

[Coscludisa Notice.]

We dealt in our last impression wholly with Mr Browne's introductory chapter; we now proceed to the consideration of Mr. So3wackerers portion of thi volume, which occupies 233 pages. It is divided into two
 been handled in anything like an exhaustive fashion in the ame book, and the arrangenent is in every way compendaber thres. solw. It writes far more lik a professor than an engineer. It is easy to see when he
writes in the light of his known knowledge and when he uses what may be termed second-hand information. Mr Browne has, we make no doubt, done a great deal for the Professor; and his foot-notes, commeng on and correct ing his German collaborateur's work, are pertinent and usethe physical characteristics of heat very well don indeed. Nothing less was to be expected from so compe
tent an authority as Mr. Browne. We say this without in tent an authority as Mr. Browne. We say this without in any way disparaging the work of Professor Schwackhofer,
but he is not known, in this country at least, as an authobut he is not known, in this country at least, as an autho-
rity, and Mr. Browne as the translator of "Clausius on Heat" is. A great deal of this section of the book will, however, we fear, be found far above the heads of the
steam users for whom the volume is intended, and we think steam users for whom the volume is intended, and we think
it will be for the best if we confine what we it will be for the best if we confine what we have to say
concerning the volume as a whole to the more practical sections of it
The fourth chapter is devoted to the consideration of steam boilers. It is well known in this country that on
the Continent types of boilers are used which have found little or no favour in this country; and the section under it may be tion is peculiarly valuable and interesting, because it may be taken as an exposition of the reason of the faith
there is in French German, and Anstrian steam users there is in French, German, and Austrian steam users respecting steam boilers. Professor Schwackhofer describes in more or less detail a large number of boilers. At the cylindrical shells, which have the mrent advantage of putting in an intelligible form what does not seem to be fully anderstood by a good many people in this country. We may slightly modify the method of our author and reproduce his explanation. Let us suppose that any cylindrical shell is divided into a number of rings, each lin. long. The force tending to tear these rings asunder-to burst fore, in fact-must not ve reg are-but as though they were all exerted at right angles to a diameter of the ring.
diameter and lin. long. The circumference of the ring will be 18.849 ft ., and the semi-circumference will be 9.424 ft ., or intotwo parts, mustoperateona linedrawn throught the centre. Now it can be proved mathematically that the pressure of any fluid tending to move any surface is not that due to the whole surface, but to that proper to the base on which the surface stands. Ignorance of this fact led a man many years ago to patent a corrugated piston. The augmen-
tation of surface due to the corrugations, he held would bs attended by a corresponding increase in the driving pres sure of the steam, without any corresponding increase in
the volume of steam used. Now our two half boiler rings two pistons opposed to each other, and with steam between them forcing them asunder. Their curvatureplays no part. If it did the rending force-the pressure being 1 lb . per square inch-would be
$113^{\circ} \mathrm{l} \mathrm{lb}$.; as a matter of fact it is 72 lb ., because the diameter of the boiler is 72 in ., and the ring is lin. long This bursting stress is resisted by both sides of the boiler, because the pressure is equally divided over the whole strip, which is in precisely the same condition as if it were a straight girder 72in. long carrying a distributed load, one half of which is held by the support at each end.
In the case of the boiler, each ring acts as the support to the other. Let us suppose that the boiler is by $2 \times 5=1 \mathrm{in}$. of iron. If we take the strength of the iron to be equal to $44,800 \mathrm{lb}$. per square inch, and divide
this by 72 , we have 622 lb . as the bursting strength of the ring; that is to say, a boiler 72 in . in diameter and $\frac{1}{2}$ in thick would require 622 lb . to burst it. In practice, however, we have to deal with rivetted joints, and we must
multiply 622 by 56 for single rivetted, or 75 for double rivetted joints to get the bursting strength. Hence, we get the rule: Multiply twice the thickness of the plate in inches by the strength of the iron in pounds per square inch, and divide by the diameter, to get the bursting stress,
It is a common rule to assume the strength of good plates worked into a boiler at 6000 lb . per square inch. Then w get $\frac{2 t 6000}{d}=\mathrm{P}$; where t is the thickness in inches, d the diameter in inches, and P the working pressure. Apply-
ing this to the boiler we have just cited, we have $2 t=1$, $d=72$. Then $1 \times 6000=83.3 \mathrm{lb}$. It may appear that w have occupied too much space in explaining a very simple matter; but wo happen to know that a great deal of misapprehension exists regarding it which ought to be cleared
away. The formula given by Professor Schwackhöfe for finding the thickness to withstand a given pressure i $d=\mathrm{D} p \frac{5}{\mathrm{~S}}+3$, which, in a foot-note, Mr. Browne puts into English shape, thus: $t=\frac{d p}{44 \cdot 80 s}$; where t is the thick ness, d the diameter in inches, p the pressure in pounds per square inch, and s the working stress in tons per square
inch of plate. For the strength of flues, our author gives Professor Radinger's rule: $d=1 \cdot 3 \mathrm{D} p+0 \cdot 6 \mathrm{~L}+3$; where L is the length of flue between two stiffening rings, d the
thickness of plate in millimetres, and p the pressure in atmospheres.
Professor Schwackhöfer describes, as we have said, in some detail various forms of boiler, beginning with the like because it lacks heating surface, and he quite ignores the great objection to it-namely, the liability to transverse seavid rips due to expansion and con raction. We canno ing a sooty flame, such as bituminous coal, brown coal, and peat, must be burned in external furnaces where the flues furnasily accessible for cleaning purposes. Interna coke and pit coal of the best quality. He is delightfully coke and pit coal of the best quality. He is delightfully
ignorant of English practice at sea and on land, it would appear. He seems to be umaware that simple externally-
fired boilers are used by hundreds in this country for supplying steam to blowing engines, the fuel being gas; can be pot with plain oylivirio boilens with the can be got with plain cylindrical boilers set with flash
flues. He is careful to tell his readers that for feedwater containing any considerable quantity of impurity an externally-fired cylindrical boiler only may be used. Again, we may remark that in this country we manage to rub
along with bad water and Lancashire and other forms of along with bad water
internally-fired boiler.
Our author fairly describes various forms of elephant boiler used on the Continent; some of them excessively complicated. He gives an ingenious explanation of the pir is expelled from the water as it is heated, and clinging to the upper internal surface of the metal, oxidises it int little patches or pits, each of which forms a lurking hole
for a new bubble of air. The only way to avoid this for a new bubble of air. The only way to avoid this
plague lies in sloping the tubes at such an angle that the ir bubbles steam, instead of lodging. We have said that he sets forth abroad, but we confess they do not appear very satisfactory. Thus, for example, speaking of the elephant boile with two bouileurs, he says, "The most striking advantage of the combination lies in the greatly increased heating surface, which results in a better utilisation of heat and facilitates forced working when necessary. At the same time corrosion occurs more frequently in the lower boilers
than is the case in the double boiler. A further and not less important evil is the burning through of the top of the first lower boiler." This is faint praise, to say the least. Concerning Lancashire boilers, Professor Schwackhöfer attaches curious importance to the deposit of ashes in the
internal flues, forgetting that as the bottoms of the flues are of no use whatever as evaporating surfaces, the ashes can have no effect on the economy of the boiler. Concern-
ing the multitubular boiler he is silent ; the water tube ing the multitubular boiler he is silent; ©ellville type for example-he unhesitatingly condemns, and not without reason.

The section devoted to water is very good. It contains so much really useful matter that it is quite out of the of space available to us. We must content ourselves with aying something concerning the Stingl-Berenger process purification, which is not much known in this country. Our author speaks of this in very high terms. ither ats using sodium hydroxide-caustic sodacaustic cream in combonate. T prepare the reagents $2 \cdot 3$ kilogs. of 90 per cent. carbonate of soda are dissolved in twenty times the weight of warm water, and fresh burned lime or milk of lime is added to the extent of 1.09 kilogs. The caustic lime decomposes the soda; the carbonate of lime is thrown down while the caustic soda remains in solution. It appears that the water thus purified flows away per tant. For a full description of the working of the pro cess on a commercial scale we must refer our readers to the book itself. We have also descriptions, on the whol satisfactory, of De Haens chloride of barium and milk hime process, and Bohlig's magnesium process. The work concludes with a chapter on the production of cold and preservation of ice, which contains a great deal of infor We in a small space
We can confidently recommend this book to a class for
nom it does not seem to have been intended. Indeed, whom it does not seem to have been intended. Indeed, it is far more likely to be of service to engineer students
than it can ever be to the steam user. In this matter we than it can ever be to the steam user. In this matter we are not quite in accord with Mr. Browne, we suppose ments frem thot regard ine steam user and hitequre with the statement in Mr., Browne's preface: "Th riginal work forms the first part of an ency clopzedic treatis of modern agriculture. . . Its value will be found to reside in the combined fulness and conciseness of the information
imparted, and on the clearness with which the results of imparted, and on the clearness with which the results of
theory are stated, while the processes by which they have theory are stated, while the processes by which they have he background.
We have only to add that the publishers have done the work full justice; type, wood-cuts, printing, and paper are alike excellent.
A Bibliography of Electricity and Maynetism, 1860 to 1883; vith special reference to Electro-technics. Compiled by G. May,
with an index by O. Salle, Ph. D. London: Trubner and Co. Leiprig: A. Hartleben. 1884. 203 pp
hrs little book will, no doubt, be of great use to student electricity and magnetism; and to those whose studies ore useful that its pae more practical turn, it will be the nore useful that its pages contain only the titles of those book seems to contain the title of every work having any book seems to contain the title of every work having any
claim to notice in German, French, Italian, English, Danish, and Spanish; but valuable as the little volume is, it would, of course, be more so if it contained the titles of the papers read before the leading technical societies in the different would be, perhaps, an almost impossible ho technical library should be without it.

BOOKS RECEIVED.

Practical Gcometry, Perspective and Engineering. Drawing by tion. London: E. and F. N. Spon. 1884. A new System of Laying out Railuayy Turnouts instantly, by
Inspection from Taible. By Jacob M. Clark. New York : D. van
Nostrand, 23, Nurraystrect, Tostrand, 23, Murray-street,
The Railway Companies' Directory; Directors, Officers, and
Chief Ayents of the Railvays of the United Kingdom, with a Digest

Handbook to the Patents, Designs, and Trade Marks Act, 1883. Containing the Act and iutes; asso an Explanatory and Practicar necntors, Manufacturers, de., with a copious Index to the Act and
Rulces. By Bristow Hunt. London : Waterlow and Sons, Ltd 1884. A Concise Treatise on the Law and Practice of Patents for
Invntions. By Olement Higgins, Barriste-at-law. London
William Oiowes and Sons, Ltd., 27, Fleet-street. 1884.

PRIVATE BILLS IN PARLIAMENT

The General Committee on Railway and Canal Bills met on Thursday and made the following appointments:-
Group 1.- The consideration of this group was fived 29th. The group consists of the East London Railway Bill, the London Central Electric Railway Bill, the London, Tilbury, and he Met Raiway Outer Cole Railway Bill, the Metropolitan, Railway (Park Railway and Parliament-street Impropement)
Bill, and the Metropolitan Railway (Various Powers) Bill Bill, and the Metropolitan Railway (Various Powers) Bill.
Group 4.-This group will also be considered on April 29th The Bills forming the group are the Aldershot, Farnham, and Petersfield Railway Bill, the Basingstoke, Alton, and Petersfield London Bnd 'South. Western Rail church Hope Railway Bill, the and Metropolitan District Railways Bill, London, Brighton, and South Coast Railway Bill, Oxted and Groombridge Railway Bill. Group 5.-The following constitute this group:- The Clevehand Extension Mineral Railway Bil, Ennerdale Railway Bill, North-Eastern Railway Bill, Scarborough and East Riding Railway Bill, Scarborough and Whitby Railway Bill, Skipton and North-Eastern Junction Railway Bill, Stockton Carrs Railway
Bill, and Halifax High Level and North and South Junction Bill, and Halifax High Level and North and South Junctions
Railway Bill. The group will come before a committee, of which Railway Bill. The group will come before acc
Mr. Bourke is to be chairman, on March 18th
Group 7.-Sir John Kennaway will preside over the sitting 20th. The group consists of the Dore Chinley Pin Bil 20th. The group consists of the Dore Chinley Railway Bill,
the Great Northern Railway Bill, the Lincoln Railway Bill, the Midland Railway Bill, the Northampton and Daventry Railway Bill, the Sutton and Willoughby Railway Bill
Group 8.-This group will be considered on April 29th. The following Bills are in the group:-Dublin (City) Steam Packet Company Bill, Eastern and Midlands Railway Bill, London and
Worth-Western Railway Bill, Sutton Bridse Dock Bill Swa Harbour Bill, Wirral Railway Bill, Wisbech Dock and Railway Bill.
which meets to consists of the Anglesea and Carnarvon Direct Railway (No. 2)
Bill, Bishop's Castle Extension and Montgomery Railway Bill, Denbighshire and Shropshire Junction Railway Bill, Leominste hire Rail way (Cheter to Manchester, Shemfeld, and Lincoln shire Railway, (Chester to Connah's Quay) Bill, Porthdin
Railway Bill, Ruthin and Cerrig-y-Druidion Railway Bill.
Group 10.-The Committee on this group will meet on March 18 th under the presidency of Mr. Lowther. The Bills to be way Bill, Central Wales and Caerouthen Bill, Great Western Railway (No. 2) Bill, Henley-in-Arden and Great Western Junction Railway Bill, Milford Docks (Junction
Railway) Bill, Swindon and Cheltenham Extension Railway Bill, Railway) Bill, Swindon and Cheitenham Extension Railway Bill, swindon, Marlboro', and Andover Railway Bill, Swindon, Marl Railway Companies Amalgamation Bill, Usk and Towry Railway Bill.
Group 10.-On March 18th a Committee, presided over by
Mr. Hardcastle, will meet to consider the Barrmill and Kil. winning Railway Bill, the Caledonian Railway (No. 1) and (No. 2) Bills, and the Glasgow and South-Western Railway Bill. Standines Oay the select Committee of the House of Lords on pliance in the ense of the London, Reigate, and Brighton Railway Bill. Mr. Robinson had elected six grounds of non-compliance, the irst three being neglect to include names in the book of belonging to the neighbouring classes required to be furnished ing to Standing Orders, the Examiner had held that it was not in conformity with the rules, inasmuch as anted as one adult. This, according to the report, made a difference of 58 in the total, though the promoters admitted that the actual deficit was 111; while the London, Brighton, and South Coast Company, who appeared in opposition to the Bill, contended that the number was much larger than even this latter figure. The last
point of non-complinnce was as to the list of occupiers, which, point of non-compliance was as to the list of occupiers, which,
the Examiner ruled, oughttocontainthe names of occupyinglessee and occupying owners, though these persons might be included in eparate listsoflessees a der espectively. Mr. W. Bell, on the promoters, called the attention of their Lordships to the fact that in this railway, extending over seventy miles
only six matters of non-compliance had been proved, and of these three were as regards instances in which the promoters had been unable to from the particular view taken by the Reference Clerk as to the requirements of the Standing Orders. He contended that there was no possibility of any one being deceived or injured by the failure of the pres he sub mitted to their Lordships that this was not a case in which the
 non-compliance relative to the Book of Reference not any found was in itself a matter of suspicion, for it was quite likely might be many others, t made complaint With regard to the of er matters of nonand. With regard to the other ma character that the Bill ought not to be allowed to proceed After consultation in private, Lord Redesdale, as Chairman nse with the Standing Order
The Committee also dispensed with the Standing Orders in Tooting Bolham al Perton Peilwa Bill, and the Pain, k, Alton, and Petersfield Railway Bill.
ald a meeting on Tuesday, and dee of the House of Common Standing Orders in the case of the Rhondda and Bristol Channel Railway Bill.

SALTERHEBBLE VIADUCT.
AT page 186 we give a general elevation and plan of the Salterhebble Vaaduct, which wil form a part of the Hudders
field and Halifax extension of the Hull, Barnsley, and West Riding Junction Railway. The viaduct is of fine proportions and has several features of much interest, will be full pressions. The construction of the railway is at presen with at an early date.

How the Fire Sceve in "The Streers of London" is
MANAGED,-It was suggested some little time back by one of our MANAGED,- - t was suggested some little time back by one of our
most popular theatre managers, that if the public were to have an most popular theatre managers, that in the
opportunity of seeing the arrangement made for their securit against fires in theatres, it would tend greatly to allay those spas
modic attacks of fear resulting in fatal "t rushes," which we rea of and we should hear less of the danger of ausiences being roasted
alive. Having this in mind, a visit behind the sent alive. Having this in mind, a visit behind the scenes at the
Pavilion Theatre, to witness the manipulation of the "fire scene" proved most interesting. In the EastLondon theatresnothing is don in "Thes, and Mr. Fred. Abrahams has produced at the Pavilion, in The streets of Lond Wen, a performance which has not been
excelled at any of the West End theatres. Viewed from the auditorium, the whole stage appears to be in flames from top to
bottom, and the destruction of the theatre itself seems to be imminent. There is in reality, however, very little chance of this takin
place guns in some performances. The modus operandi is this:-The house to be destroyed is placed towards the front of the stage, and
peforated gas pipes are attached to the framework to increase the flames. At a convenient distance behind the scene an iron frame is set up, and covered with loosely bound tow, saturated wig containing coloured fire, runs across the pans house. A "lycopodium" pot is used to kindle the fire. The pot sponge-saturated with spirit-attached to a wire. This "fire pot" is jerked about at different points of the stage, and a very on the iron screen is now ignited, and in a few minutes the stage presents the appearance of a building which has succumbed to the
fiery element. The windows fall out-being hinged on iron frame It is at this juncture that one of Merryweather and Sons' London Brigade steam fire engines, with a full complement of firemen full-pressue, and whistle blowing. Two lines of hose are run out the firemen attack the flames, which are rapidly extinguished, and the iron screen with wet mops, the smoke finding its way out through the roof. In order to obviate all chance of danger, firemen are stationed in the wings throughout the performance with
hose attached to the high-pressure main in the building. 30,000 people have witnesseed this produ
part of the house being crowded.

LWe LETTERS TO THE EDITOR，

es responsible for
correspondents．］

Sil，－Atthe boltless rail joints．

of this country，I have compiled the tests－of the Gibbon Boltless Kail Joints Fastener－of stress and deflections，and beg to send you engineer，who made the tests．I do this thinking that your engi－ neers would like to know what we are devising to remove the curse to track，i．e．，low joints，as we are to know what they are doing， tending，to the same object．
It is well known to engin
It is well known to engineers in all parts of the world，the joint tenance and rolling stock repairs ；the army of bolts，nuts，and
the washers are ever to be watched，and low joints to be raised．These evils have caused much thought，and many expensive method
have been adsped with
view to their removal，but as yet with have been adopted with a view to their removal．
little avail，low joints and loose bolts still exist．
It is but natural to ask why there should be any low joints，when so much additional material is used．The joint has two plates

Messrs．Adams and Co．，engineers and constructors，both of London，who，when in this，eountry，saw the joint and spoke highly of it，at the Chicago Exposition．Itrust this description of the
joint has interest enough to warrant you laying it before your readers．
Having charge of testing and inspecting steel rails for the above
named company for fourteen years，I find there is no difficulty in named company for fourteen years，, find there is no difficulty in
cutting the head of the rail for this joint．Simply an addition of cutting the head of the rail for this joint．Simply an addition of
two saws on same shafts，which will cut the heads of rails at the same time as the larger saws cut the ends．When cool and straightened，the punching machine used for slotting the flange of straightenect，the pis used for takinge the head from the neck，thus
rail for
saving the expense of drilling，and also saves 1500 lb．of steel per saving the expense of drilling，and also
mile when purchasing rails at the mills．

Thos H．Gibbon，
26，North Pearl－street，Albany，N．Y．，U．S．S．A．，
December 21st．
The Conclusions of Mr．A．V．Abbot＇s Report．
built to give a load of more than $10,000 \mathrm{lb}$ ．on a single ever，are built to give a lood of more than $10,000 \mathrm{lb}$ ．on a single driver ；if
this load be doubled to allow for a severe case of impact due to high

weighing from 30 lb ．to 50 lb ．，four bolts，four nuts，and four washers，to connect the rails together；and it would appear at first rail itself；but it is not，as English and American tests prove．The reason is，too many pieces constitute the joint，and these pieces cannot be screwed together so firmly－allowing for expansion and
contraction－as to make them one ；hence the joint is the weakest

part of the track，and must go down under the pressure of the iron passing train，shortens the life of the very best of rails and their connections．
My method for the removal of these and other serious evils to track is，use no bolts，then you won＇t weaken the weakest part of
the rail by drilling holes in the neck of them．To do this the rail by drilling holes in the neek of them．To do this，I have
taken 2 in ．of the head from cach end of rail，and cast them with the taken 2 in ．of the head from each end of rail，and cast them with the ishand angle plate
ward－which is boxed into the tie，to act as a brace to prevent
spreading of track－and is slotted to allow a $\frac{1}{2}$ ．plate 8 in．square
speeds，a load of $20,000 \mathrm{lb}$ ．is obtained as the maximum stress that can be placed on a rail joint at any time．An inspection of the
foregoing tests gives the following factors of safety under different oregoing tests gives the following factors of safety under different
conditions．In the case of the Gibbon joint used as a suspended conditions．In the case of the Gibbon joint used as a suspended
joint，with the ties placed 20 in ，apart，a load of $104,000 \mathrm{lb}$ ． 52 tons－was retained without any signs of failure of the joint， thus giving a factor of over 5 ．
In experiment 487 ，with ties
In experiment 487，with ties 20 in ．apart，and the middle tie
supported on a yielding foundation of sand，a load of $75,000 \mathrm{lb}$ ，was supported on a yielding foundation of sand，a load of $75,000 \mathrm{lb}$ ．was
supported without failure，giving a factor of nearly 4 ．（Test discontinued．）
In experiment 488B，the joint with a span of 40 in ．－no tie under
the joint－failed under a load of $67,000 \mathrm{bl}$ ． the joint－failed under a load of $67,000 \mathrm{lb}$ ．，giving a factor of over 3，under circumstances as unfavourable to the joint as may be
supposed to occur when the ballast of the track has been washed away from the ties adjacent to the joint．Furthermore in this test the rails themselves failed at the same time as the joint， showing that under such circumstances at least the joint was as strong as the rest of the track．
From the above conclusions it may be safely asserted that the
Gibbon joint is strong enough to do all the work that may be Gibbon joint is strong enough to do all the work that may be expected Trom steel castings that were used in these tests were
stances．The stee remarkably soft and ductile，so that there need be no apprehension remarkably soft and castings would wear unequally with the rails．The
that such
joint，therefore，would seem to be eminently
of the Neptune．If you think it will be of any interest to you，
will give you the expenses of all the ports that they are will give you the expenses of all the ports that they are employed in． from the fine passages some of them have made out to the colonies At the same time a great deal depends on the dredging master in knowing the nature of the soil he is working in，and in keeping his vessel in a proper position．The engineer does the scientific part of the work，but the dredging master has the practical part of it to
do．I am at present employed on board the dredger Forth
 dredgers afloat．We can lift，and deposit at a distance of eighteen miles a cargo of 900 tons，and get back to our moorings in seven hours． She belongs to the Caledonian Railway Company，and is manned hirteen hands．
Amount of mud taken out of Newhaven Harbour by
dredger Neptune for six months，January 1st to
June
June 30th， 8880
Number of trips
Amount per trip．
Expenses for coals
Wages for crew
Stores
Repairs
$\begin{array}{lll}\text { Cost per trip } & \text { Tutal } \\ \text { Cost per ton mud } & . . & . . \\ \text { Dredger Forth，Grangemouth，} \\ \text { February }\end{array}$

John Ward．
Who is the inventor of the close fire range，or KITCHENER ？
Sir，－During the last twenty－five years there has been an in creasing demand for close fire ranges，or，as they are usually termed， kitcheners，and which are manufactured by a number of different
firms，most of them of a similar description．My object in writing this letter is to ascertain who is considered the inventor．They but many years previous to that date my father invented and mad similar description to those now made by some of the best makers．It was during the year 1814 that he made the first of the kind，and it gave such satisfaction that it was with difficulty he
could supply them sufficiently quickly to meet the demand．The could supply them sufficiently quickly to meet the demand．The
greater number were fixed in Suffolk and Norfolk，and some in London．The last I recollect his making was fixed at the house of a wholesale jeweller and silversmith，in St．John＇s－square，London． At this time he had some difficulty in getting the castings made to his satisfaction，as there were but few ironfounders in this part sixty years ago，and some difficulty was experienced in casting the
boilers．Many of those then made were fitted with strong，square copper boilers，tinned inside，and with the draw－off cock in front as at present．I have the wood patterns now by me from which the castings were made；they are of similar dimensions in all parts 4 ft ． 6 in ．wide．made by the Leamington makers，of 4 ft ． 3 in ，and made by my father than are contained in any of those since made． made by my father than are contained in any of those since made．
Some of those parts have been introduced，and either registered or patented by others since．The bottom grate was made to rise or fall，so as to reduce or increase the capacity for the fuel，and some others of a minor description．
My father has been
of eighty－eight，and the person who made the patterns has been dead eight years．One firm now advertise as patent a close and open fire cooking range，with the ovens above the fire－place．A range of this description was made partly in my shops twenty－four years ago，by a former workman of mine，and after his death was land counties Southwold，Suffolk，Feb．27th．Engineer and Ironfounder．

NEW LEARNED SOCIETY．

SIR，－May I ask your aid in the double object of giving world－ wide publicity to an institution which appears not to have met as and，next，of making to these promoters a slight request．This institution calls itself＂the Society of Science，Letters，and Art of London；＂but though of London，it nevertheless appears to be of

Results of Experiments of the Gibbon Boltless Rail Joint，to Ascertain the Resistance to Deflection and Rupture under a Gradually Increased Bending Stress．

$\begin{aligned} & \text { Test } \\ & \text { No. } \end{aligned}$	Weight of joint．	Stress in lbs．，deflection in inches，and decimals of inches．																		$\begin{aligned} & \text { Ulimate } \\ & \text { stress- } \\ & \text { lbs. } \end{aligned}$	Span in inches．	Remarks．
		8	8	$\begin{aligned} & \text { \% } \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \mathbf{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 80 \\ & 8 \end{aligned}$	$\begin{aligned} & \widehat{8} \\ & \text { si } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { \%} \\ & \text { \% } \end{aligned}$	8 だぶ	$\begin{aligned} & \text { \%O} \\ & \text { O- } \end{aligned}$	\%	$\begin{aligned} & \text { B⿳⿵人一⿲丶丶㇒一⿸⿻一丿又土 } \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & 80 \end{aligned}$	8	\％	8	8 88 8	\％ 0 0			
449	23 lb ．		$\cdot 106$	$\cdot 200$	$\cdot 257$	－335	$\cdot 525$	－600	－ 810	Casting cracked，and pressure increased to ．．．．．．．．．．．．．．．．．．										42，700	28 in ．	$\left\{\begin{array}{c} \text { Revealing blow-holes in } \\ \text { casting. } \end{array}\right.$
487A	29 lb ．		$\cdot 102$	$\cdot 185$	－228	$\cdot 300$	$\cdot 410$	$\cdot 500$	$\cdot 625$	$\cdot 720$	＇825	－965	1.040	1•150	1－275	\｛ $\begin{array}{c}\text { Gauge removed，and pres－} \\ \text { sure increased to }\end{array}$ ．．..$\}$				75，000	tie in sand．	No sign of failure of joint． Test discontinued．
487B	29 lb ．		$\cdot 150$	$\cdot 300$	－335	$\cdot 425$	$\cdot 475$	$\cdot 550$	－600	－800	Gauge removed，and pressure increased to ．．．．．．．．．．．．．．									66，500	20 in.	When joint cracked slightly
488A	29 lb ．	置	$\cdot 155$	$\cdot 267$	－330	－390	$\cdot 465$	－530	$\cdot 530$	$\cdot 600$	$\cdot 625$	$\cdot 656$	$\cdot 700$	－735	$\cdot 780$	－835	＇95）	1．025	1.45	101，000	20 in ．	$\left\{\begin{array}{l} \text { Test discontinued; no } \\ \text { failure of joint. } \end{array}\right.$
488B	29 lb ．	$\begin{aligned} & \text { \& } \\ & \text { E } \end{aligned}$	$\cdot 125$	$\cdot 225$	$\cdot 330$	$\cdot 440$	$\cdot 535$	－620	－666	$\cdot 765$	$\cdot 875$	$1 \cdot 020$	1．135	1•600	$2 \cdot 800$	（Gauge removed，and pres－） sure increased to ．．．．）				$\frac{* 67,090}{\frac{4920,290}{70,072 \mathrm{lb}}}$	40in．	$\left\{\begin{array}{l} \text { No tie under the joint. } \\ \text { Joint failed by tearing } \\ \text { the bottom of the rail } \\ \text { from the web, hnd by } \\ \text { cracking both raifs thro } \\ \text { the hade at a distance } \\ \text { of 17itin. } \end{array}\right.$
	$\left\{\begin{array}{c}\text { Steel } \\ \text { rail，} \\ \text { 62，} \\ \text { per yard，}\end{array}\right\}$		$\cdot 160$	$\cdot 203$	$\cdot 230$	－ 280	$\cdot 320$	$\cdot 450$	1．020	2•350	Gauge romoved，and pressure increased to ．．．．．．．．．．．．．．									42，550	40in．	Rail completely failed．

Messrs．Fairbank and Co．，Department of Tests and Experiments，New York．Mr．A．V．Abbott，engineer in charge．Thus proving this joint strengthens the rail $25,000 \mathrm{ib}$ ，at its weakest part，viz，the．joint．

to slide through the fastener and under the rail，and resting on the sleeper．The plate when spiked to the sleeper covers the er．ds of a smooth continuous track
Please permit me to add in conclusion the practical cesults of the above method．In September last about 200 ft ．of track was laid with these joints in the main track of the D．and H．C．Co．，and it is estimated that from 300 to 400 engines pass over them every
twenty－four hours，switching，\＆c．Not an hour＇s work has been twenty－four hours，switching，\＆c．Not an hour＇s work has been
performed on this portion of the track since it was laid，so as to illustrate the impossibility of low joints，spreading and creeping of the track，\＆c．The condition of the track at this writing demon－ strates，after five months＇trial，these facts－（1）It makes a smooth
and continuous rail ；（2）has removed low and continuous rail ；（2）has removed low joints ；（3）the track cannot spread nor creep；（4）the spikes are as firm as when first
driven；（5）removes all labour attending low joints，and screwing up loose bolts；；（6）estimated that two miles of track can be laid with this joint in less time than one mile with fish and angle plate； （7）the joint fastener is lighter，cheaper，and stronger than any
other joint fastener in use．I would respectfully refer to Mr．O．D． other joint fastener in use．I would respectfully refer to Mr．C．D．
Peters，Moorgate Works，Moorfields，and Mr．Charles Adams，of
the present was designed，and to obviate many of the objections of the present systems．

the cost of dredaing，

Sir，－Some months ago I saw some remarks in your paper on and others to give some information on the subject．There is one class of dredgers you did not then notice，which in my opinion，as a dredging master of many years＇experience，is the most efficient class of the present time．That is the hopper dredger，patented
by Messrs．Simons，of Renfrew，for bar and harbour work．They do by Messrs．Simons，of Renfrew，for bar and harbo
the work the cheapest，as I hope to show you
For the cheapest，as hope to show you． For the last five years I have been employed on the Newhaven
Harbour works，in the Neptune，a hopper dredger of 500 tons．I Harlour works，in the Neptune，a hopper dredger of 500 tons．I
will give you the working expenses of that vessel，and I challenge any engineer or dredger master to show the same amount of work done by any other class of dredgers at the same cost，and with the same number of hands－a crew of eleven men．Not in Newhaven alone，but in every port these hold the foremost place．I at
present will confine myself to giving you a few figures from present will confine myself to giving you a few figures from the log
a migratory character，for its circulars bear various addresses－ Tollington Park，Sydenham，Shepherd＇s Bush，and Kensington． Its objects are announced to be＂the advancement of science， \＆c．The means it adopts for attaining these objects I do not know，nor after some amount of inquiry have I been able to ascer－ tain what they are．That the transactions of this society are unknown to me is，doubtless，the result of my own ignorance，and that I have never heard of its meetings is but an instance of the ease with which a man may be ignorant of matters closely con－
nected with his own business．There is，however，a provision in its
俍 bye laws under which members of this institution are permitted to wear＂gowns and hoods，＂as well as＂gold and silver decorations；＂ and perhaps it may be fairly assumed that no objection would be they to their employing after their names any quantity of letters they might consider attractive or ornamental．
I became aware of the exiatence of the
that it was its praotice，through its of the society by discovering elected members of the Society of Arts inviting them to subscribe to the＂Society of Letters，Science，and Art．＂In a few cases the persons so applied to did subscribe，believing，as they tell me，that
the application came from or was authorised by the Society of Arts.
Ido not think the money thus paid was in any case refunded, Ido not think the money thus paid was in any case refunded,
though in one or two its return was promised. An institution offering such attractions cannot be too widely known, and it is a pity that it should run the risk of being confounded with any
other. The request with which I would conclude this letter is, that other. The request with which I would conclude this letter is, that
in return for my endeavours to secure publicity to its objects, the in return for my endeavours to secure publicity to its objects, the
institution will choose a name somewhat less likely to founded with that of the Society of Arts, which I can assure you is by no means anxious to deprive of its due credit what might fairly be content to be known as the "Society of Letters." The legitimate aims of any such undertaking cannot fail to be
promoted by publicity, and it is in the hope that this enterrise promoted by publicity, and it is in the hope that this enterprise
may be induced to shine without the aid of borrowed light, and may eventually obtain the full measure of its real deserts, that I have ventured to address this letter to you.

Hociety of Arts, Adelphi, w.C., Febretruary 21 st.

the planimeter.

Sir, -In The Engiverr of December 28th, 1883 , I find what
Mr. Fisher claims to be a "general proof of the action of the planimeter." Mr. Fisher considers that $\int b^{2} d \theta$ is that which is given by the reading of the wheel. This is evidently not the case, since integral is equal to a Pursuing a line partly suggested by this article, I have reached the following, which perhaps you may see fit to give a place in your
In simple rotation of the arm b about J the number recorded by

the wheel W, will be a measure of the change of the angle θ. Let
us designate this number by R. Then the change of θ for simple rotation is $\theta-\theta_{0}=\frac{c}{m} \mathrm{R}$, wherein c is a constant depending on the graduation, \&o. Whenever J moves there results a translation of
the line b, and let us designate by T the number recorded by the the line b, and let us designate by T the number recorded by the
wheel, due to this translation. T will then measure the component of the translation normal to b, and the area swept over by translation is $b(c \mathrm{c})$.
From Fig. $2, d(\mathrm{oT})$

algebraic sum S of the areas swept over by the arm b.
$\mathrm{S}=\frac{b^{2}}{2}\left(\frac{c}{m} \mathrm{R}\right)+b(c \mathrm{~T})=\frac{1}{2} \int b^{2} d \theta+a b \int \cos .(\theta-\psi) d \psi$
From Fig. 1, we have area $A=\frac{1}{d} \int r^{2} d \phi$

$$
\begin{gathered}
r^{2}=a^{2}+b^{2}+2 a b \cos .(\theta-\psi) \\
\tan . \phi=b \sin . \theta+a \sin . \psi=Q
\end{gathered}
$$

$d \phi=\frac{d Q}{1+Q^{2}}=\frac{b^{2} d \theta+a^{2} d \psi+a b \cos .(\theta-\psi)(d \theta+d \psi)}{a^{2}+b^{2}+2} \cos (\theta-\psi)(\psi)$
$r^{2} d \phi=b^{2} d \theta+a^{2} d \psi+a b \cos .(\theta-\psi)(d \theta+d \psi)$ (See Mr. Fisher's article.)
$a b \cos .(\theta-\psi)(d \theta+d \psi)=2 a b \cos .(\theta-\psi) d \psi+a b \cos .(\theta-\psi)(d \theta-d \psi)$
$\int \cos .(\theta-\psi)(d \theta-d \psi)=\int \sin . \theta d(\cos , \psi)+\cos . \psi d(\sin . \theta)$ $-\cos . \theta d(\sin . \psi)-\sin . \psi d(\cos . \theta)=\sin . \theta \cos . \psi-\cos . \theta \sin . \psi+C$ $=\sin .(\theta-\psi)+C$
and for a complete circuit of P this is in all cases $=0$ (zero) Hence, $\mathrm{A}=\frac{1}{2} \int b^{2} d \theta+\frac{1}{2} \int a^{2} d \psi+a b f$ cos. $(\theta-\psi) d \psi$. (2)
In a case such as given in Fig. 1, where neither b nor a makes a complete revolution $\frac{1}{2} \int b^{2} d \theta=0$, also $\frac{1}{2} f a^{2} d \psi=0$.
By comparison of equations (1) and (2) then, we find, $\mathrm{A}=\mathrm{S}=$ rea A, whatever be the value of m.
In a case such as shown in Fig. 3 , where both b and a make a

$$
\mathrm{A}=\frac{1}{2} \int_{\theta_{0}} \begin{aligned}
& \theta_{0}+2 \pi \\
& b^{2} d \theta+\frac{1}{2}
\end{aligned} \int_{\boldsymbol{\theta}_{0}}^{\alpha_{0} d \psi+a b \int \cos .(\theta-\psi) d \psi} \begin{aligned}
& \psi_{0}+2 \pi \\
& \psi_{0}
\end{aligned}
$$

The wheel record is ($\mathrm{R}+\mathrm{T}$) and since $\mathrm{R}=\frac{2 \pi m}{c}$
$\mathrm{S}=\frac{b^{2}}{2}\left(\frac{c}{m} \mathrm{R}\right)+b(c \mathrm{~T})=\pi b^{2}+b c\left(\mathrm{R}+\mathrm{T}-\frac{2 \pi m}{c}\right)$
if then $n=\frac{b}{2}$ we have $\mathrm{S}=b c(\mathrm{R}+\mathrm{T})$.
In this case, the 2 , the number recorded by the wheel is a direc measure of S only when $m=\frac{b}{2}$. Ross E. Browxe. Berkeley, California, January 26th.
hadfield's patent manganese steel
Sir, -Referring to a letter in your issue of 23 rd February from manganese steel, at foot please find copy of letter received from this firm with reference thereto, from which you will see they were mistaken in their statements. We need not add auything further, seeing that the letter will speak for itself, but we may say that
apart from direct commercial interest, we cannot understand why apart from direct commercial interest, we cannot understand why
Sheffield firms should be at all jealous of our discovery and success, seeing that it is believed that many of the hitherto unexplained phenomena now being widely discussed in metallurgical circles
with reference to the honeycombs in steel, and to the gases absorbed with reference to the honeycombs in steel, and to the gases absorbed and given off therefrom, may eventually be solved by means of the
curious results obtained and noticed by us in the manufacture of curious results obtained and noticed by us in the manufacture of
this new steel, and thus ultimately prove a benefit to Sheffiel trades at large. Another very interesting fact connected therewith proving its new character, is its non-magnetic properties.
We should not have troubled to take
We should not have troubled to take any notice of Messrs. B.' letter except in self-defence and in order to prevent any false
impressions being circulated, for we fully intend to protect our patert rights in this matter.

Newhall-road, Attercliffe, 1st March.
P.S.-We notice in your issue of February 29th a very practical Letter on this subject signed "M. E. W.," for which we are obliged especially as your corresp ent is at present unknown to us.
From Geo. Bennett and Co., Foundling Works,
Rockingham-street, Sheffield, February 29 th .
To Messrs. Hadfeld's Steel Foundry Company,
Attercliffe, Sheffield.
Dear Sirs, - With reference to our letters in the Shefiield Daily Telegraph and ENGINEER of Saturday last, Yebruary 2ord, 1884, 2. which we stated that there was nothing new in your paten
manganese steel, we find on making further inquiries and seeing the steel in question that we were and are mistaken, and that your material is totally distinct and possesses entirely different qualitie from any steel that we ever saw or heard of before. We were under the impression that it was similar to our self-hardening planing, and turning tool steel, but find this is not the case. We
therefore beg to withdraw the said letters and apologise for same and for having caused you any annoyance or loss thereby.

$$
\begin{aligned}
& \text { y annoyance or loss thereby. } \\
& \text { (Signed) GEO. BENETT AND Co. }
\end{aligned}
$$

the breakage of screw shafts
Sir, - I beg to submit to the readers of The Enainerr he following scheme for preventing the breakage of screw shatts:-The the framework of steasship being communicated to its screw shaft as it is known to do at present, it being allowed that these strains are more prejudicial in producing fractures of the shaft than

In less than one month applicants received from the Comptrolle progressive notices that each applicant has been anticipated by
prior applicant. One of the three notices I received and enclose In every one it is pointed out that an appeal to the law officers against the Comptroller's decision is open to the applicant whose 217,2566 , 291 , are published, it will 2417, 2566, 2591, are published, it will be seen in what way the
Comptroller has exercised the power given under Sub-section 6 of Section 7. Myself believing that that right will be fairly and justly exercised, I cannot but approve of the working of this part of the new Act, when at a trifling outlay the inventor is placed at once in possession of facts that were impossible or him to get at under the
old Act, and not before he had completed his valueless patent at old Act, and not before he completed his valueless patent at 2, Roseworth-terrace, Gosforth, Newcastle-on-Tyne,

March 3rd.

water power.
SIr,--Having noticed in your columns for the last week or two some valuable information on the above subject, allow me to offer further something which may add to or help to solve or come
nearer the truth of motive power derived by high falls of water. Having had experience in turbines, I find each maker naturally looks for and claims the best result. I find opinions theoretically differ, but help, whatever point is advanced, to throw a new light on the subject. The remarks of Messrs. Hett and Ramsbottom, and their ingenious plans of determining the force of the stream
and power of water, I have read with much interest, but fail to see the water engine most suitable for high falls, or any engine, or turbine, or what not that has an internal discharge. Any water motor that discharges inwardly must of necessity check its velocity, consequently its power is lost. For low falls where the
wheel is enlarged to a proportionate diameter, Wheel is enlarged to a proportionate diameter, and sufficient space
is given to the "natural vent" of the water, those kind of wheels may be applied. But in high falls where the pressure is so great, the velocity must be correspondingly great; therefore, those Wheels of the Fourneyron type, or outward tlow, are far the best. The quantity of water ror a curbine of this prinipie is important less when the fault has not been the turbine at all, but not
lot enough water to work it. Moreover, a full weir and taper pipes leading to wheel, or so many pipes a certain size, and so many larger till it is deemed sufficient to maintain a full supply of water when the turbine is in motion. The siza of pipe required Q $=$ quantity of water in cube feet ;

> Q = quantity of water in cube feet; P horose-power; H $=$ head of water in feet;

Sectional area of supply pire $=0.42$

$$
\begin{aligned}
& \text { ial area of supply pire }=0.42 ; \\
& \begin{array}{lll}
Q=12 \cdot 67 \frac{\mathrm{P}}{\mathrm{H}} \times 0.4 & \text { A. Rernolds. }
\end{array}
\end{aligned}
$$

Truro, February 28th.

> HILL climbing tricycles.

Sir, -I was much gratified to notice in your issue of the 22 nd that one of your correspondents, who is evidently a writer of no ordinary ability, was pleased to confirm my own conviction, that
direct action is undoubtedly the best, both for bicycles and tricycles and I think, Sir, that this must be patent to all your readers who have any knowledge of mechanics. I was somewhat amused, above, which appeared in tour of a letter in opposition to the spondent of that date favours rather a semi-direct action with

el.evation
any working strain to which it could be put. I propose to remedy
this by laying a tubular lattice girder as shown in sketch, through which would be laid the shafting supported by light plummer locks, the girder to be of sufficient size to answer the purpose of fion-it would have to be enclosed at sides and top to prevent any tion-it would have to be enclosed at sides and top to prevent any
thing weighing against it, such as cargo, \&cc. The sketch show thing weighing against it, such as argo, ac. The is sketch shows
the general appearance of it. N.B.-The above not drawn to scale.
Chiswick.
the friction of water in pipes.
SIR,-Would any of your correspondents kindly enlighten me on the following question of the power necessary to overcome the friction of water in long pipes. T wil take an imaginary case as an Supposing A to be a pumping station, I want to know the powe necessary to overcome the friction of 3000 gallons of water per minute flowing in a 12 in . main -I do not take any coefticient of
 friction into consideration; presum-
ably the pipes are of
ast cast iron-up the
slight inclination of sight inclination of
5oft. in the horizon-
tal distance of 44,880 ft., i, i.e., along
A B : and further, on the supposition forced plumb up from A through D to ${ }^{\mathrm{C}}(\mathrm{D} \mathrm{C}=\mathrm{H}$), what must be the hear to get a discharge of 3000 gallons per minute at the outflow B?
According to Molesworth's tables, page 186, the inolination for
the flow of this quantity under the the flow of this quantity under these conditions is 8 or or $48 \times$.
$=1344 \mathrm{ft}$.; add to this the original lift of 50 ft . $=1394 \mathrm{ft}$. for A in the diagram. To force the above quantity through this head will require something like 1200 -horse power, but the net horse-power to raise 3000 gallons per minute through 50 oft. is only about 45-horse
power. Allowing 66 for modulus, we have a total of something like 75-horse power. According to the method of forcing the water plumb up as through $\mathrm{A} D \mathrm{C}$ to B , allowing for modulus, we obtain about 2000 -horse power. Does this mean that it takes the difference between 2000 and 75 -horse power to overcome the friction
alone, and if so, what would be the power to overcome friction alone, and if so, what would be the power to overcome friction alone supposing the water
Sunderland, March 3rd.
the new patent act
Sir, - It cannot be denied that the new Patent Act, 1884 , is of great advantage to inventors making applications for patents for the same or similar inventions. Four applications for improved letter-boxes,
to prevent the abstraction of letters, \&ce., viz., 242, 2417,2566 , to prevent the abstraction of letters, sco., viz, $2142,2417,2566$,
2591, were made within eight days, between the 25th of January
stirups, but thinks there are many others, with the enormous
(riction of chains and cogs, that are better hill climbers. He is also friction of chains and cogs, that are better hill climbers. He is also
good enough to inform us that simplicity is not everything Perhaps, Sir, in your next he will try and convince your reader that a complicated arrangement, with plenty of friction, is every
thing that can be desired. Now, Sir, as a rider of somewhat wide thing that can be desired. Now, sir, as a rider of somewhat wid practice too, that it is impossible to improve upon the action of bicycle, which one gets, with all its advantages, in the Nationa Royal Direct Action Tricycle. I have ridden this machine myself for about two years, and can assure you that no other form of
tricycle will bear any comparison with it as a hill climber, and that there is no kind of machine over which the rider gets more com plete control. This being my favourite steed, after well testing al the best makes, I could not see it abused without taking the liberty of troubling you with a word in its favour. And in conclusion, allow me to remind your correspondent that abuse proves nothing
and is not likely, I think, to meet with a ready acceptance by the readers of such a high-class paper as THE ENGINEER. CYCLIST. readers of such a high-class paper as ThE E
Frindsbury, Rochester, Kent, March 4th.
$\mathrm{Sir},-\mathrm{I}$ should be glad if you would allow me space for a few
remarks on the extraordinary letter from "H. H ." which ap remarks on the extraord. cised in his mind at the Thiscle which occasions to be much exer tion, but surely it would have been of much greater advantange to your readers if, instead of expending his invective against the
National machine, he had favoured them with National machine, he had favoured them with a few words explaining what in his opinion its defects really are.
Now, Sir, as a practical tricyclist, I beg to differ al
Now, Sir, as a practical tricyclist, I beg to differ altogether from
"H. A.". I do not wish to rum down the "Monarch," but to "H. A." I do not wish to run down the "Monarch," but to my certainly not so complicated as many machines, its treadles are certy awkwardy arranged in case the rider has to jump suddenly
vut, or is pitched out while the seat is far to low for
ourper out, or is pitched out, while the seat is far too low for proper
comfort. Of course, extreme lightness does not necessarily mean comfort. Of course, extreme lightness does not necessarily mean ease in propulsion; but the dynamometer trial which you quoted
sets this matter at rest in the case of the " National," as I am not aware that any other machine can be drawn along with so little a 4 lb . with the rider sented. In conclusion, I would just like to say that I think tricyclists should as a body be greatly indebted to you for calling their attention to a really good machine-one capable of steady, every-day work, and capable of not only travelling at a
good pace along fairly level roads, but of ascending any ordinary good pace along fairly level roads, but of ascending any ordinary
hill that one is likely to meet in a day's journey, London, March 5th.

Sir, -I read with much pleasure your article on "Climbing me to deal very abply with the description of the "National"
me tricyole. I fail to see why your correspondent, "H. A." writing
in your issue of the $29 t h$ ult., dealt in such a slashing str) with in your issue of the 29th ult., dealt in such a slashing style with it,
and I think, in the interests of the tricycle-riding public
to to mention why "the laurels should be given to the " Monarch"
instead of the ' Nation instead of the ${ }^{\prime}$ National.'" I Ihave had the curiosity to inspect the
latter machine, and I must say in my opinion-as an old bicycle
and tricycle rider-it seemed to be a simple and light one, well and tricycle rider-it, seemed to be a simple and light one well
adapted for hill work, and as such will surely comen to the front,
in spite of your correspondent's sneer at simplicity. STMPLEX.
March 5 th.
clothing steam pipes.
SIR, - Referring to the article on "Non-conducting Coatings for
Steam Pipes," we beg that you will give publicity in your next ssuu to the following:- (1) The statement regarding our non-
onducting incombustible composition is incorrect.
ont testing engineer, never got any composition from us, (3) We
have, since the article appeared, requested Mr. Clark to inform us where he obtained the composition, which in said to be ourrs, and ment Institution. (4) We have applied through our agents to the said secretary, but have not been able to get a reply,
114, Hydepark-street, Glasgow, REID, MoFARI.

February 28th.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM,
OTHER DISTRICTS.

(From our oun Correspondent.)

ov 'Change in Birmingham this-Thursday-afternoon, and in W. Change in in birminghan yesterday the reports of last week concerning an
mprovement in the export orders for finished iron were confirmed. Manufacturers, especially of sheets, announced an increased number of enquiries from merchants, but not all at satisfactory
prices. Indeed not a few orders were refused this afternoon, makers preferring to let them pass on to other districts, than to

Makers were the less prepared to indiscriminately take all contracts, consequent upon the proposals which are now again being
made to reduce the output of sheets, and to which reference is made farther on. The effect of the proposition to-day was to
slightly stiffen prices. Still singles were to be had at $£ 7$ 隹 upwards, doubles at $£ 8$, and lattens at $£ 9$. Rather than work at a loss, makers are allowing some mills to stand. Instances we
cited to-day in which sheet mills had been idle for three weeks. Prices of superior-thin - sheets for working up and stanmping purposes were strong upon the basis of $£ 10$ to $£ 11$ for the former,
nd $£ 13$ for the latter. These manufacturers are full of orders, ani inquiries are still reaching them. The home demand is verry fair,
and the export demand is good on account of Canada, the United tates, Australia, New Zenland, India, Russia, Italy, Spain, Gernow, and ot faver markets. The Bantic and Canadian ports being 1 themselves active
 necessities, but there were not many large orders for forward
delivery. Such as they were, hoops had the advantage over the Me mils which are producing merchant The Earl of Dudley's bars were quoted at $\mathrm{cs}^{2} 2 \mathrm{~s} .6 \mathrm{~d}$. nominal,
 ${ }_{\text {was }} £ 62 \mathrm{~s}$, 6 d . to $£ 65 \mathrm{~s}$. for gas tube sorts, and $£ 610 \mathrm{~s}$. to $£ 0115 \mathrm{~s}$. for other purposes requiring a better quality
The wire-gange question in the sheet and hoop trade was much
discussed, and the decision come to last week was generally discussed, and the decision come to last week was gencrally
approved. Yet some makers, notably in the thin sheet branch, were unprepared to admit that the gauge which has been deter-
nined upon is the best that could be adopted. These characterised the new gauge as unscientific, but their views were those of only a minority. The new gauge will not make much
alteration in the method of works previously adopted in the sheet and hoop trades. The gauges before worked to were about 1 llb . t, standard is about 988 ib . to the foot.
A large meeting of manufacturers was held in Birmingham on V. Hunter, London. The author announced that Mir. Chamberlain had promised to bring in a Bill giving permanent appointment to
the Railway Commission, a locus standi before it to trade associations, and powers to allot damages and grant injunotions in pre
ferential cases. It was resolved not to cease agitation until the Bill was passes.
Mail advices from Melbourne show that when the mail left
galvanised iron was in better demand, but only one or two parcele adchangod hends, prices varying from \&zo to $£ 21$, according to brand been sold at from $£ 1010 \mathrm{~s}$. to $\mathrm{E111} 10 \mathrm{~s}$. for Nos. 8 to 18 , while hoon ron had been quitted at up to $£ 1010 \mathrm{~s}$.
Fair sales were taking place in fencing wire, at from £11 10s, to The demand for pig iron is restricted, but in two or three weeks sales. Representatives of makers in outside districts reported this afternoon that principals grumble at the prices at which present
sales are being made, and absolutely refuse to allow any further concessions. Northampton pigs are quoted 44s.; Derbyshires, 45 s .
to 46 s , and Lincolnshires, 47 s . Native all-mines are 80s. for cold
 cinder pigs 42 s . 6 d . to 37 s . d ., made in the Dudhey district.
Much inter in in the past year, and in the computation touching the stocks of
pigs in hand in this part of the kingdom. Bearing in mind how
large has now become the consumption at the mills and forges of large has now become the consumption at it is mills and forges of
the crude iron of the adjoining fields, it is deemed no cause for surprise that the make in South Staffordshire and in Shropshire has fallen off, in the former district 443 tons, and in the
latter 9475 tons, leaving the make in South Staffordshire at
the 394,000 tons, and that in Shropshire at 71,000 tons. The great
reduction of 31,760 tons in the outturn of the furnaces of North Staffordshiro is in most partexplained by the lute prolonged and unsuccessful strike of miners in that district, which has an aim ost
illimitable supply of stone, and whose outturn of 285,357 tons upon the year is much within its easy capability. Of the 200,996 tons
smelted in Northamptonshire, a conspicuous proportion has been used up in South Staffordshire. The increase of 8881 tons in the Northamptonshire make is no more than had been expected.
At the same etime that Northamptonshire and Derbyshire the place of the decluing stafo hematites have too been delivered in quanatities which have told
upon the consumption of the famous all-mine pigs from which the well-known "marked" bars of Staffordshire were once exclusively manufactured. There is consequently no room for surprise that
present stocks of pigs in South Staftrordshire should be 55,660
tons, or an increase of 16,798 tons, But for forge and mill purposes of coal from other districts during the miners' strike, which stopped blast furnaces, the consumption of
pigs in the year in North Staffordshire would have been so diminished as to make the stocks there more than 52,495 tons, or an
increase on the twelvemonth of 4972 tons. The Shropshire stocks have grown by only 500 tons, and are now a total of 22,000 tons;
but the Northamptonshire stocks have become heavier by 13,172 Dons, yet learve the existing accumulation at 18, , 822 tons.
Manufacturing coal is very abundant, and Manufacturing coal is very abundant, and cheaper than ever.
Steam coal is priced this week at 4s. 6d. to 5s. per ton; Cannock
 of from three to four days a week,

Much satisfaction has been occasioned in Shropshire by the fact
that the Coalbrookdale Iron Company have seen their way to with draw for the present the notioe which I last week stated had been served upon the operatives at their Horsehay iroctly ors to clos
the establishment. Some 3000 people are, directly indirectly largely dependent upon the Horsehay Works for their existence,
and so glad were the tradespeople around Dawley and Horsehay at the withdrawa of the notice, that they set the church bells
ringing. The threat to close the works arose from no misunder-
standing between employers of the extreme difficulties of receiving minerals and sending manufactured iron by rail on such terms as would pay the shareholders favourable rates are conceded, it is extremely doubtful whether the works will not be closed ultimately. What I have said of railways pany, who appear to have an exclusive right of transit
pany, who appear to have an exclusive right of transit
Complaints are still heard from the hardware manufacturs, as
well as the inomasters, concerning the excessive railway rates. well as the ironmasters, concerning the excessive railway rates.
Only this week a case is mentioned in which a department of trade in the ironfounding line has been lost to Wolverhampton consequent
upon the carriers having persevered in imposing such exorbitant upon the carriers having persevered in imposing such exorbitant
charges that Sootch competitors have taken the business. Now
that that the mischief is done, the carriers have lowered the rates; but to the prayers that were made to them at a time heon the woun
have been a chance of preventing trade from going into other channels they were deaf.
works. At some establislmentert of the constructive encering hand, the makers are, I know, rather behind with their work, and
custo customers are now pressing for delivery. The result is that an Manufacturers note with interest that the contracts iust now yuan the public market include a wrought iron lattice girder bridge in four spans of 50ft. each, to be erected across the river Moy at Cloonacannana, in the county of Mayo; a amall
span to cross the river Idle at West Stockwith ; and a supply of Wrought iron girders for bridge work needs by the Southern
Mahratta Railway Company, Limited. Further, a telescopic gas. holder, 170 ft . diameter, is needed by the Corporation of Leicester at their Arlestone-road Works
I am informed by some of the largest constructive engineers
hereabouts, that civil engineers are now, much more than heretofore, insisting upon the literal carrying out of their specifications. side. While it will assist in clearing the trade of unworthy competitors, it necessarily makes present low prices even still less the execution of the contracts alike in the nctual workmanship and he supervision entailed.
Heary iron pipe founders state that although there could be no viewed from the standpoint of coost, yet thant our large corporations
and public companies, who are the principnl distributors of large and publio companies, who are the principal distroutors of large Manufecturers believe that the chief reason to be found for thi lies in the present quietude of trado the kingdom through, which
naturally deters publio authorities from incurring heavy expense naturany cesing the rates. The Midland Railway Company is
and incresing
seeking a supply of cast iron pipes for a new culvert at Brigsworth, on the northern division of its system.
In the wrought iron tube trade business is quiet and the works have nothing ilke full employment. Prices, which till lately wer
maintained pretty well, are now becoming irregular and show a
Business with India in hardwares at date is below the average but when the stocks of goods soon to be disposed of athe close oo pated that Exders from have gone into consumption, it is anticiwhich has attended numbers of our local manufacturers at that Exhibition is very gratifying. The demand for hardwares from
Australia and New Zealand does not conspicuously improve, stil n a few branches a fair business continues to be done on account of
these markets. South America looks promising as to certain of these markets. South America looks promising as to certain of
her markets; but the Cape and South Africa generally is without

The Birmingham papers are affording local patentees the oppor tunity of narrating their experience of the working of the "ma of the new machinery. One patent agent says that on the 22nd January he filed a complete speciftcation, with drawings, relating
to a "new or improved washing machine," and though the number of this application was 1876, he received official notice of the acceptance of the speifitiation on the 23rd of February-a period
of only one month after fling. Another inventor applied for pro visional protection on the of postb On the 26 ath February he he
neknowledged by return of He returned it amended on the 28 th . On March 4th he got notice that protection was completed. "Considering," he says,
"that my application is numbered 3122 , I do not think that a complaint of lack of promptitude is justified." Doubtless ill advised, imperfect, and badiy prepared specifications and drawin
must inevitably lead to delays whoever may be the examiners.

NOTES FROM LANCASHIRE.

Manchester.-Business throughout the iron trade of this district continues dull and depressed, with practically nothing to look forward to in the immediate future to encourage any deifintite expecta-
tion of improvement. The tendency of requirements so far as the large iron-using branches of industry are concerned seems to be see very little direction of contraction than of expansion; consumera orders they have now in hand, and they are naturally disinclined to buy at all heavily for the present, whilst there is a want of
strength in the market, which is a further inducement to defer buying. Nominally quoted rates aro without any material change
so far as both the pig and finished iron of this district are con.
cerned, as most of the local maters are still kept tolerably well employed with deliveries against old contracts, but in some cases There was only a very dull in easier tone in the market.
Thers.
There was only a very dull iron market at Manchester on Tues.
day. Lancashire makers of pig iron reported very little new bus. day. Cancashire makers of pig iron reported very little new busi-
ness coming forward, and the orders booked during the past week have been confined to a few small pareels of foundry quality to equar to Manchester, which remains the minimum figure that Lancashire makers are open to take. In district brands the business
loing is also extremely small, with quoted prices averaging 44s. 4 d . or forge and 44s. 10 d . for foundry Lincolnshire, less $2 \downarrow$, delivered
The hematite trade continues extremely dull. Nominally quotations remain at about 56s. to 56s. 6 d . for good foundry qualities
delivered into this district, but there is practically little or nothing doing to actually test values.
In the manufactured iron trade the weight of new business
coming forward is still exceedingly small, and works in some casee coming thar ward is shir exceedingly small, and works in some easees
have had to go on short time. For good local and North Stafford

 when they have to seek orders, are compelled in the face
of the low price of Middlesbrough bars to offer some con.
cession to buyers. The competition is felt most keenly in the
orders for shipment, as the Middlesbrough makers have a more
favourable rate to Liverpool than to Manchester, and for shipping orders they are quoting extremely low figures. Cleveland plates
are elso being offered in this district tat eccessively low prices, which rule about the same as those quoted for North-country bars, but in these no very large business appears to be doing. For other descrip.
tions of finished iron prices are also low, hoops averaging about 667 s . 6 d ., and good ordinary qualities of sheets $£ 710 \mathrm{~s}$. per ton I have previously referred to the general feeling of dissatisfac tion amongst the hoop and sheet iron makers in this distriet wit regard to the new standard wire gauge, in the framing of which of industry have been practically ignored. The new standari general into force last week, but from what I can learn there dhere to the old so-oalled Binmingham wire gauge.
In the engineering trades leading firms in this district who have pecial facilities are, with a good deal of keen competition at low enerally the prospects of trade can scarcely be said to be very cheering, and as a rule the orders in hand are running out more rapidy than they are being replaced
The question of the proposed M
 to be held on Saturday, when the effect that it is essential in the growing move a reso ommerce and population of Lancashire that greater facilities be ing, for the transport and handling of merchandise, minerals anufactured goods, \&c., both for import and export to and fron beyond, and that in the opinion of the meeting the proposed
Manchester Ship Canal will afford the best means of giving effec
The coal trade of this district continues in a depressed condition.
All classes of round coal are still bad to sell, and prices have a downward tendency. The reduction in the Manchester list rate where concessions had not already the month has been followed about 6 d . per ton in the pit prices for all deseriptions of round coal upon the market, notwithstanding that pits in most cases are only working from three to four days a week, that it is difficult to giv any really fixed prices. About the average prices now being quoted at the pit mouth are 9 s . to 9 s . 6 d . for best coals, 7 s . 6 d . for seconds,
s. for co as. for common house coans, and 5 s , dd . to 6 s . for steam and forge
coals. II engine classes of fuel prices generally are being kept up Iack ; and of some special sorts there is a searcity of supplies that s enabling sellers to get rather better prices. At the pit mouth
burgy averages 4 s . 6 d . to 5 s ; best slack, 4s. to 4 s . 3 d .; and dinary qualities, 3 s . to 3 s . 6 d . per ton
Shipping is very quiet, and very low prices are being quoted to Liverpool, or the Garston Dooks, being offered at 7s. 3d. to 78. 6d.
The persistent downward movement in the price of coal, and the
Thability that duriny the enving probability that during the ensuing summer business will only be
possible on an extremely low basis of prices, is tending to bring arwary been qeeriously talked of, and although no actually derfite action has yet been decided upon, there is very little doubt but that some steps in that direction will be taken before very long.
The forging and finishing of marine crank shafts was the subject Very interesting paper read by Mr. C. O'Connor, of Liverpool, twe meeting on the 23 rd ult., and in the course of the paper one 1 be worth noticing. Mr. O'Connor he mode upon which a crank shaft forging was constructed than pon the material of which it was made. Ineidentally with regar wing to its want of uniform quality, often resulted in seams or
 orgings of new iron puddled direct from the pig, and although some forge masters were of opinion that this freedom in using new
iron resulted in a loss of strength, he was of opinion that by using
cold blast iron they obtained crystals as fine and as amalil as in in steel. For with large crank shafts the fear of unsoundness
arising engineers to consider the proprity of building the cranks
in separate pieces. One advantage in a built-up crank was in separate pieces. One advantage in a built-up crank was
that should there be a flaw it might be confined to one part only, the whole shaft. His impression was that large shafts would still have to be dealt with in pieces, not because it was a question of
being able to make large forgings sound, but beeause marine engineers woold not care tho run the risk of anything going wrong with
large shafts, and ships having to wait until another could be
finished The buiding presented no difficulty whatever, and in the mechanical engineering of the future they would have to rely upon their tools for putting
large pieces together much better than had been done in the past. large pieces together much better than had been done in the past.
He would find no difficulty in dealing with crank shafts up to 100 tons, which he thought would have to be made within the nex of the marine engine in late years, and the many disastrous effects which followed the breaking of a shaft at sea, also that the tendency of the age was still towards much higher pressures of steam and
further lengthening of stroke, it was not surprising that improve. ments in such an important part as the crank should be eagerly sought after, but it had hat hatherto been ocught in the direction
of material alone. Cast steel had been advocated some extent brought into use, but its expense rendered such whilst in the event of their heating when at work $-n$ not unfre quen occurrence- and having the water hose directed on the crank
pin or journals, it could not be expected that the material would chave any better than, or even so well as, tough wrought iron
So far as his experience was concerned, steel shafts had broke very suddenly without giving any previous warning, and others had thought safe to work them a day longer. An iron shaft, however would show some flaw or mark before it broke : these flaws could
be watched and could be traced fro cient warning was given to enable the necessary repairs to be pit in hand. It was certainly far better that a forging should give the breaking of crank shafts, Mr. O'Connor did not consider tha iron, or the manufacture it was well known ther it was steel shafts were exposed to very severe, uncertain, and unequal strain work which tended to shorten its life, and which rendered it only
question of time when it would give way. Again, cranks were very often permitted to run with slack bearings, and supposing
an engine were making 120 strokes or knocks to the minute on a piece of iron, it destroyed the fibre and thus also tended to
shorten its life. Then the thrust of the shaft, if not shorten its ife. Then the thrust of the shaft, if not properly
attended to, brought a side action upon the after web, which tended
to bend it backward and forward and the the to bend it backward and forward, and in the course of time there
was a fracture either at the neck of the journal or through the web of the crank. In reply to several questions, Mr.
said that where cranks most frequently gave way was through some
flaw in the pin or across the neck. With regard to hollow shafts,
had a much stronger shaft when they were made solid. In the
course of the discussion on the paper, a general opinion was course of the discussion on the paper, a general opinion was
expressed that, however good iron cranks were made, the time
twould come when they would have to give way to those made of steel. large quantities ship plates are offered at $£ 52 \mathrm{~s} .6 \mathrm{~d}$. per ton, angles $£ 4$ 15s., and common bars $£ 5$, all cash 10th, less 2. per cent. dis-
count, on trucks at makers' works. For small lots 2 s . 6 d . per ton
more is asked. Steel rails are quoted at $£ 412 \mathrm{~s}$. 6 d . per ton at works.
The employers connected with the North of England Iron Manufacturers' Association have given notice that they will claim a
reduction of 1 s . per ton on puddling and 10 per cent. on all other forge and mill wages, to take effect from the 29th of March. A
meeting of the Board of Arbitration will be held shortly to consider the matter
The platers' helpers are still out on strike at Stockton, and at a
meeting held on Monday, unanimously decided not to submit to reduction of more than 1s. per week. The platers demanded 2s. 9d. per week red. 6 d .
The shipbuilding industry is exceedingly depressed both on the
Tyne and the Wear. An arrangement has just been come to whereby the wages of platers will be reduced 10 per cent., and o rivetters $7 \frac{1}{2}$ per cent. Joiners wages have also been reduced, and
will now become uniformly 33 s . per week. out eighty of their joiners last week, owing to scarcity of work Messrs. Raylton Dixon and Co.'s joiners, numbering about 150 , are out on strike against a reduction of 3s. per week. They have
offered to resume work at 2 s . per week reduction, and it is thought offered to resume work at 2s. per week reduction, and it is thought
the firm will agree to this compromise. and Woodfield Collieries were laid in on Saturday last, and wil remain idle for an indefinite period. Some 1500 to 2000 men and boys are thus thrown out of work. Co.'s annual report and balance sheet was issued last week. It appears that the nominal capital o
the company is $£ 4,000,000$, and the assets are valued at $£ 4,363,585$ The profit on last year's working was £229,596, which will be
disposed of as follows:-Interest on debentures, $£ 22,471$; dividend isposed of as follows;-Interest on debentures, $£ 22,471$; dividen £81,486; dividend on shares, with £12 paid, $£ 55,827$; written A meeting of the Cleveland Institution of Engineers was held Middlesbrough on Monday last. There was a discussion on Mr. W. F. Hall's paper read at the previous meeting on the "Haswell Mechanical Coal-getter," after which the secretary read a paper by
Mr. D. Adamson, of Manchester, on "The Wheelock Direct-acting
Ste to be present, owing to indisposition. Vevertheless the paper to pe present, owing to indisposition. Nevertheless the paper
excited great interest, and an animated discussion ensued. Mr.
Charles Wood afterwards exhibited and described a yertical steel Charles Wood afterwards exhibited and described a vertical steel
gun, mounted on wheels, for effecting explosions of gunpowder gun, mounted on wheels, for effecting explosions of gunpowder
inside Cowper's stoves, with the object of freeing the flues from dust. The novelty in Mr. Wood's gun consists in the mode of discharging it, after its introduction within the stove. One end of a
ong india-rubber tube is connected with the breech and nipple of the gun; the other end terminates in an elastic ball which can be squeezed by the operator. The pressure of air so created acts at
the inner end on a small metallic-headed wooden piston, driving it against the nipple aforesaid, and discharging a percussion cap previously placed upon it. The gun was fired off several times in the The Chamber difficulty.
The Chamber of Commerce, and of Shipping, at the sea ports on
the north-east coast, are everywhere passing resolutions in favour the north-east coast, are everywhere passing resolutions in favour
of Mr. C. M. Palmer's motion to refer the new shipping Bill to a

NOTES FROM SCOTLAND.

(From our oven Correspondent.)
In the Glasgow warrant market there has been comparativel the controversy as to the quality of certain g.m.b. iron having now almost died away. The fluctuations in prices have been comparatively small, but the figures are steadily maintained at 42 s , and with 112 at the same date last year, and the curtailment of output is already telling upon stocks, which show a decrease on the wee tons, as compared with 10,217 in the preceding week, and 10,217 in the corresponding week of 1883
Business was done in the wa
Business was done in the warrant market on Friday at 42s. 4 d . cash, the price declining on Monday to 42 s . 1d. On Tuesday foreone month, there being no change in the quotations in the after-
noon. Business was done on Wednesday at 42 s , 1 dd to 42 s ar cash. To-day-Thursday-transactions took place at 42s. 3d. to The market values of mid. one month.
f.o.b., at Glasgow, per ton, No. 1, 53 s . . No. 3 , 51 s .; Coltness, 7s. 6d. and $51 \mathrm{~s} . ;$ Langloan, 54 s .6 d . and $51 \mathrm{~s} . ;$ Summerlee, 52 s .6 d.
and $48 \mathrm{~s} .6 \mathrm{~d} . ;$ Calder, 53 s .6 d. and 48 s . Carnbroe, 52 s .6 d and
 mouth, $48 \mathrm{~s} .6 \mathrm{~d} .-$ specially selected, 54 s , -and 47s. $6 \mathrm{~d} . ;$ Kinneil,
at Boness, $46 \mathrm{~s} . \operatorname{and} 45 \mathrm{~s} .6 \mathrm{~d} ;$ Glengarnock, at Ardrossan, 52 s .6 d .
and $46 \mathrm{~s} .6 \mathrm{~d} . ;$ Eglinton, 46 s .6 d . and 43 s ; Dalmellington, 48 s .6 d .
and 45 s .6 d. and $45 \mathrm{~s}, 6 \mathrm{~d}$.
and
There have
There have been considerable imports of iron ore in the Clyde
during the week, both from Bibaoand Cumberland. For hematite the inquiry is steady, but comparatively limited, the prices being the inquiry is steady, but compar
47 s . per ton for Nos. 1,2 , and 3 . Imports of Cleveland pig iron keep well up, and they now the same date last year.
The malleable iron department of the trade, instead of manifesting any improvement, is experienced for several years. The past week's shipments of iron goods from the Clyde embrace $£ 40,700$ worth of machinery,
$£ 6620$ steel manufactures, $£ 37,000$ iron goods, and sewing machines to the value of $£ 6500$.
There has been a rather
There has been a rather better demand for coals for domestic consumption, due, of course, to the wintry weather. The inquiry
for coals for shipment is quiet, but there is still a fair business doing in this department. The shipments from Glasgow have inBordeaux, 1460 for Odessa, 1230 for Savannah, and smaller car goes for other places. There were 6266 tons of coals shipped at
Ayr, 5737 at Troon, and 1581 tons at Grangemouth. The prices at The miners of the hematite district held a mass meeting a few days ago to consider the reductions of wages just made. A long
discussion took place as to the course to be pursued. All were agreed that there was little chance of a strike producing any good
result. It was agreed, however, to restrict the output, so that result. It was agreed, howeve should not exceed 3 s a day. This resolution, it may be pointed out, was really not wanted, as at some of the pits it has
for a considerable time been almost impossible for the miners to obtain full time.
The colliers of Fife and Clackmannan held a meeting on Monday, when their agent, Mr. Weir, made a serious accusation against the
employers. They had, he said, introduced two reductions of employers. They had, he said, introduced two reductions of
wages in as many weeks, dismissed a number of men simply because they were trying to vindicate their rights, had forced on the men the Billy Fair-play system of weighing, which was most unjust and
centrary to the spirit of the Mines' Regulation Act, and had taken contrary to the spirit of the Mines Regulation Act, and had taken
means of preventing miners leaving Fife and Clackmannan obtaining employment elsewhere. This he considered highly tyrannical. Resolutions wed
In the course of the past month twenty vessels, with an aggre
gate tomnage of 29,537 , were launched from Clyde shipbuilding
yards, as compared with twenty-three vessels of 33,650 tons in the same month last year

WALES AND ADJOINING COUNTIES.
Abandongent of promising Bills is becoming a feature. I hope to see it followed by the abandonment of unpromising Bills, such
as the Barry. Rumour has it that should this Bill become law the traffic rate to Barry from the Rhondda will be so much more than that of the Taff Vale to Cardiff, that none but the promoters, who
would get a threefold profit, would figure as freighters. Those coalowners who will, in addition to their collieries, own rail
and docks, will of course find it pay as regard themselves. As to the profitable character of the undertaking, I am like the Scotsman The other Bill that will probably be abandoned will be the Bute
ocks Water Supply Bill. It is stated that now tt e Marquis of Docks Water Supply Bill. It is stated that now the Marquis of getting a supply from the river kumney. While on the subject of is very great at Newport and Cardiff. The leading shipowners denounce many of Mr. Chamberlain's statements as unfounded, particularly those having reference to Cardiff vessels. I must confess, however, to having heard of one or two shady cases, and it
would have been remarkable in the great rush for steamers, and zeal for profit, that some should not have occurred. No one doubts the shipping interest that inspection and insurance should be more rigid.
An excellent step has been taken by the South Wales University This has been done at the suggestion of the South Wales Institute There is little or no change in the staple trade. A few good
Then ron orders are floating about, but they do not appear to settle
down in Wales, I hear of a substantial rail order going to Cammel's, which will take four years to execute. Tredegar has orders are running out, say the mana will only last a few months, by which time, I hope, spring booking
will have made up for winter depression. The slackness of the
iron trade has had a depressing effect all around the only placs where a good deal of vitality is shown is at Cyfarthfa and at on with vigour. I expect that Oyfarthfa will be ready some time
in April, but before that time will endeavour to give my readers some notion of the elaborate arrangements and great outlay in-
curred. A gentleman, formerly manager of one of the old-
fashioned ironworks in Wales visited the place this week, and expressed his wonder at the colossal structures and entire novelty old tools with which we used to get our iron. "They were all new,
It It was like a mason finding Egyptian implements instead of his There is nothing enco
are fairly well off with orders, but buyers are doing their best to pull down prices.
In coal equal b
tons were exported last continues at Cardiff, from which 156,000 firm, and house coal is unsteady in price. The Swansea coal trade is good, though second descriptions are weaker in the market,
There is some likelihood of one or two of the tin-plate works in thi quarter being restarted. In the Rhondda Valley the coal develop-
ment continues as lively as ever. This week the Mountain Ash colliers joined the Rhondda Union, and now form a compact body,

The movement to obtain life-preserving stations is gathering ground; and now that the South Wales Association propose to tak I am glad to note that Mr. W.T. Lewis has been appointed High Sheriff of Breconshire

Vienna City Railways.-Mr. J. Fogerty, the concessionnair
of the Vienna City Railways, writing with reference to a recen statement of our concesel concession was applied for in the year 1 1882, the railway committee
of the corporation suggested that a portion of the proposed system on the Franz Josef Quay should be constructed as a 'double rail way expected on that section, connecting several of the existing
main lines of the country with the proposed central station near the Bourse, and this suggestion was adopted by the Government expense. Now that the working plans of this section of extr way, with four lines of rails, along the bank of the Danube Cana have been approved by the authorities, and the official order to
commence the works is about to be issued, the Vienna Corporation suddenly reconsider the question, and withdraw their previou posed by me, shall be construoted. The decision rests with the municipal authorities, and, as come opinions or suggestions of the 'that for the present two lines will suffice if so laid that the addi rails can be added at a future date when requisite for the which, it is certainly expected, will require the extra accommod tion at this point at no distant date. Had the Vienna Corpora tion decided at an earlier date to agree to the inevitable, or under
stood as clearly as the railway officinls of the Government did fro the outset that no 'underground' or 'tunnel' system of railway was practicable in Vienna, the works of the proposed elevate
railway would in all probability be now in active progress. As it is, from want of knowledge, or from the obstinacy peculiar to
corporations, they have merely hindered for a period of two yent ex er a great public work of admitted necessity,"-Time seems, almost unknown in Victoria, and the advent of one creates almost as great a sensation as the locomotive did in years gone by,
We find in the Melbourne Argus, of the 20th December, 1883, the following passage:-" A fine traction engine, made by Messrs.
M'Laren, of Leeds, was exhibited at the National Agricultural Society's show-ground yesterday. The engine was shown drawing
three trucks laden with 30 tons wire, firewood, and implements. This great weight it drew up hill on the grass as easily as a dray trucks the engine went along on the turf at separated from the It steered very easily, and was taken round to the water tap with as little difficulty as would be experienced in driving a pair of
horses. The engine is 8 -horse power, guaranteed to work up to 35 -horse power. When in full work the pressure in the boiler is
120 lb . to the square inch. It can be used for ploughing, for sawing and hauling timber, for pumping water, for throshing, for sawing so powerful, it has a very light appearance, the weight of the engine being 8 tons. All the castings are of crucible steel, so as
en combine lightness with strength. It is fitted with a spring
to drawing hook by which violent jerks at starting are avoided. The engine was started from Spencer-street Station yesterday morning
drawing the three loaded trucks, and reached the Agricultural Society's ground in about two hours' time. On the way some deej
newly-laid metal was met with, but it was easily surmounted. Traction engines are much used in New Zealand, but as yet they
have not come into favour in Victoria, notwithstanding the many useful purposes to which they can be put. Such an engine and
plant as that exhibited yesterday can be purchased in bond at
$£ 1000$. The importers are Messrs. Gibbs, Bright, and Co."

THE PATENT JOURNAL.

Puth has coma to ourn rotice that some applicants of the

Applications for Letters Patent

*When patents have been "communicated," the name and address of the communicating party ar name and addre printed in italics.

$$
\text { 28th February, } 1884 .
$$

3911. Botrle Soaking and Washing Machines,
Hill, Kingston-upon-Hull. . Feed Mechanism for Circular Knitting M ines, H. Clarke, Leicester.
Doubie Syphon for Flushina Water-closet B914. Marking Laston Tennis Courts, W. Hampson,
Rock Ferry Rock Ferry, Cheshire.
3912. Compouxd Exaisss, H. Guy, West Coweq.
3913. Lubricators, W. P. Thompson.-(S. Reid and J. C. Thayer, Chicapo, V.S.)
3914. Lobriostors, W. Thompson.- (s. Reil Clicago. U.S.)
391s. LUBRICAROR, W. P. Thompson.-(J. c. Thayer 3919. PRessuree Gavaes, J. Burden. Birminghan.
3915. Potato Planters, J. Mellor, Cheadle-Hulme. 3920. Potato Planters, J. Mellor, Cheadle-Hulme.
3916. Basic LinINes for OPEN-HEARTH FURNACES,
F. Batho, London. F. Batho, London. 9922. FLAP BRackets, R. Stone, Werling
3923, SToves, A. Acaster, Rotherham,
3917. WATches, D. Edwards, Coventry.
3918. Indecting Plates for Public Gas Lamps, C. A.
Doran, London.
3919. Turning Balusters, \&c., J. and J. Leeming,

Halifax.
3927. Holdasts for Carpenters, \&c., W. Hayhurst,
Burnley. Burnley.
3928. Tensis Bats, H. W. Brewtnall, Thelwall.
392. CuTrino orr the Ends of Ecos, G. Woodhall, Birmingham.
930. SELF-ACino Escape Valve, F. Barklam, Wel
lingborough. lingborough.
8in. D.mpina and Oiling Thread or Yars, S. J. A.
and Laing, Hawiek.
932. Pulleys and Drvis, J. Shepherd, Manchester.
93. Propklear for Vesskls, de., H. H. Werninck, P9y. CUutrino Drain Trenchss, J. Forster, St. Helen's.
935. Cioaretre Macmines, H. J. Allison.-(J. Burns,
 Combs, W. Crabb, Newark, U.S.
7. Solez and Heat, H. Cooper, Bristol.
8. Cowso Sirk, de, H. Polak and H. Lowe, Hyde
Prodversa G Gs, L. D. York. Portsmouth. 939. Producisa Gis, L. D. York, Portsmouth. and P. Galmart, Belpium.)
11. Bracesers, J. Cook, Birmingham.
42. NE.cTtss, W, D. Ross, Aberdeen.
 Hollow Risis for the Wheels of Velocipedes,
de., A. B. Woakes, Londones

Paris.)
948. Body Belts, J. H. Briorley, London.
49. Cmitdren's Cots, R. Beldam, London
75. MeDDeval Prevpration, H. Withers, London.
951. Tromones, C. A. Goodison, London. 951. Trombones, C. A. Goodison, London, Andrews, London.
3033. Boors and Smors, Bathins, Chalons, France.
334. YarNs, W. C. Whitehead, Leicester, and L. J.
Crossley, Halifax.

 3960. EquaLIsina Valves, A. J. Boult.-(I B. Davis,
Hartford, U.S.) 3961. Foldina Veloctpedes, J. T. Hícock, Birming
ham.
3962. Producino the Circulation of Water in Steas
Boters, A. W. L. Reddie.-(W. Craig. V.S.)

 2tih Fchnuary, 1884.

 7. Iron Fencincen, 4099. Combin
Penge Park.
4010. CARDIS
4011. Looms.
4012. STEAMM Penge Park.
4010. Cardrag Ena
4011. Looms, J Sill
4012. STEAsMING and
aker, Newlay.
4013. Forging Mac

nevs, J. Elce, Manchester.
lavan and J. Belicard, Mai 4013. Forgino Machines, R. Busek and W. Fischer
Vienna 4014. Oxy
London.
4015. SEco
. Securing, de., Jacks Employed in Kiuting Acuines, F. F. Mellor, Nottingham. Wade and J 7. Sưprended Stomach Belt, L. A. White, Man choster.
4018. SILk Twistiva and Throwing. E. Trafford, Leek.
1019. STar-rod Fasteners, G. F. Thompson, Chester. STair-rod Fasteners, G. F. Thompson, Chester
VEocpenes, W, Scantlebur, Lower Clapton.
Roofing Times, F. I. Nibbs, London. Drying Woot, J. A. Thackray, Pouttofract.
SAfity Lasio, E. G. Rivers, Rosslyn. SAFETY LAMp, E. G. London.
Butron, R. Owen, Lotrical. Conductors, E.
4025. ElLzorrical Conderors, E. T. Truman, London
4026. SLIDEsof Steam and other Evgines, W. Schmidt

3runswick. Bicmosate or soda, W. J. Chrystal, Glasgow.
Breech- Londina Fire-arms, G. Jeffries, Norwich.
030. Cee Springs for Carriages, J. Allen, London.
031 Contructing, de., Urinals, T. Waller, London. 4031. Constructiva, de., Uhivalis, T. Waller, London
4032. Galvanic Batrery, H. Fairfax, Loudon.
1033. Cocks and Valvise, L. Dove, London.

 (MeIntyre Manu fucturing Comppan, Nev York.) 4040. VExTILATING, J. Gilmore, Lower Norwood, and
W. R. Clark, Peckham.
4041. W. IGMIN Scales, W. R. Lake.-(J. o'Grady, Neinton, U.S.)
042. Exablina Elsctric Arc Lamps to be Used in Parallel. Circuit with one another, J. E. H
Gordon, London. 4043. Lamp Cumpseys, \&c., W. F. Lotz,-(Messrg.
Berthold and Hirsch, Germany.)
4044. Sprives for the SADDLE of SEATs of Bicycles,
 4046. Uмm
mingham
4047. SMoki
Sente,
4109. Minerng Machines, A. M. Clark.-(Collin et Cie.,
Paris.) Paik.)
4110. Gullex Trap, B. Giles, Blackheath.
4111. Grates for GAs Fires, W. T. Sugg, London.
4112. Commutators, de., J. H. Johnson.- (Z) 29th February, 1884
4113. Regulating the Flow of Liquids, J. Landlers, 4114. Drying, \&c., Washed or Wet Grain, J. Ritchie, Liv. Mpool.
4115, SALL, H. Whitehead and R. Hodgson, Ettiley Heath, near samabach,
4116. Horse RAKE, T. H. Ramsden, Leeds,
411. Housz RAKE TEETH, T. H. Ramsden, Le
 4120. Calculativg \&c., App,
Aston, near Birmingham.
12. Coke Ovens, J. McCulloch, Airdrio, and T 4123. SAFETY STIRrup Bar, A. Damarell, Exetcr.
4124. DRying DAMP WALLs, J. Hartill, Dudley. Graigue. Nuts, W. P. Kelly, Mount Brandon, nea
Grater for Holding Stair-zods, J. Walker Birmingham,
127. Waterproor Fabrics, H. H. Waddington, ManHis Gutiley Trap, C. Hill, Heywood, and G. H. 129. STARR-EYE, C. Hill, Heywood, and G. H. Wilkes, West Bromwich.
130. SETtling, de., the Bodies of Fkit Hats, J. and 4131. Watkrpoor Clotr, E. S. Helwitz, Cheetham.
4132. Detached Household Furniture, C. H. Wood Shemeld. Machings, J. Wilkinson, Birmingham,
 Montreuil sous Bois, France.)
36. I. Ibbotson, Sheffield. 4137. Movld CANDLEs, W. Wigifeld, Rotherham.
138. LAWN BILLIARD, W. Benbow, Wallington. 4139. Rock DrLLL, W. Teague, jun, Cornwall.
4140. BuRINo GAs from a UNITED Holdrr, H.
Clements, London 41. Invecron, R. B. Sanson, London.
42. Heatino Smoothino Irons, R. San 43. Commised Prussvir Reoviator \& Ecosomiser,
S. Bowden. (I. Roff, R. S. Eastham, and J. 144. Colouming Protooraphic Prists, W. B. Ander-

28th Fchruary, 1883.

4048. Umareilas and Parabols, J. B. Sill, Urmston.
4049. StEam Trap, F. W. Dlek, Glasgow, and J. Flom-
ing, Renfrew, N.B. ing, Renfrow, N.B.
4050. Arc Lamp, A. Aowen, Lancashire.
4051. Frames for Constructiva Concrets: T10Ns, W. Thompson, Stratford-upon-Avon.
4052. GRve TABLEEs, R. Priest, Birmingham.
4053. ATTACHING Doon HANDLES to their SPIN W. Attachiva Doon Hendes to their Spisdles, G Davis, Birmingham.
SIzINO MAchises, A. Hitchon, Accrington.
CLEANERS used in MAchivery for PREPARIN Cleaners used in Machinery for Preparing
Cotron, J. Heginbottom, Oldham.
Storping Apparatus for Twist Lace Machines, Trazer, Long Eaton.
SAFETY APPARATUS for the CAGEs of Hotste, w.

 68. GULIT TANK, tc., J. Phillips, , London
4054. RAILWAY SIGNALIIN, W. Hopkin, Pendieton.
4055. Prepaina Nitro-ANIIINE, \&c., I. Levinstein, Manchestor. Paper to Printiva Macmives, H. J.
Ga. Fkerdina
Salmon, J. Capper, , nd W. H. Duffett, Manchoster.
 TABLE, E. Roden,
Hes. FIBH Ova HA
Headingley, Leeds.
Headingley, Leeds.
4056. Ferding Steam Bolurs, G. Weston, Sheflield,
4057. Governors for DyNamo Macmines, dc., J. Swin burre, Brookley.
4058. VELOCIPEDEs,
407.2. Wmitsk or Mrixino MAcIITE, R. Morton, Wishaw.
4073 . Boots, \&c., G., W. H., and T. T. Lindrea and G,

Lant. RAristol. Burvers, R. Hill and J. Darling, Glasgow,
4075. Gas Producers, J. McFarlane, Motherwell.
4076. FLUsmise WATER-CLosETs, W. Dawes, Leeds

\section*{| 4145 |
| :--- |
| 4140 |
| 11 |
| 114 |
| 4148 |
| 4149 |
| 4150 |
| F |}

 448. BotTLE OPENER, J. Appleyard, Bradford.449. HyDravic BaLace. M. D. Y Gost, Barcelona.
450. DryINo HIDEs, \&c., H. J. Hiddan.-(o. Lumpp, France.)
451. CARtadies, W. S. Simpson and G. Smith

Barrott, London,
452. Boxes, E. S. Bombs, London.
415b. MAOAZINE. FIRE-ARMS, B. Burton, 4155. Macazine Fige-arms, B. Buton, London.
453. Magazine Fime-ARs, B. Burton, London 450. Adjustable Tables and Seats, J. Glendenning,
4orwich. 158. Thermo-klectric Piles, H. H. Lako.-(D. LauLensack, A. Kohn, and O. Laske, Vienna.), (H. Ziss,
454. Frims for Larrks,
Frankjort-on-the-Maine.) 4160. Moulds and Matricus, C. F. Hilder, Newcastle-
on-Tyne, and S. J. A. Cotterell, near Rotherham. 4161. Chain Whez.s, R. J. Smith, Sunderland.
455. Suspendiva Carriage Bodrs, de., H. W. Mason, London
4163, Con
456. Openino and Closiso Wixdow Sashes, de., H. Tosh, Glasgow, and S. Preston, Barrhead.
457. Stanting Gas Engines, P. Jensen.-(C. Winslöre, Copenhagen.)
458. Detsoming Gear for Ships' Boats, T. Woodhouse, South Shifelds.
459. Contact Arms between Telpher Trains, de., F. Jenkin, Edinburgh.
4168, HoLDers for SUPPortiso Boxes, 8. B. Stevens, Reading.
460. Skirracrisg Foot Brakes for Bicycless, tec., J.
Watkins, Saltey. 4170. Morive Power, G. W. Jones, London.
417i. Lasp GLases, J. H. Johinson.-(W. Hirech,
Radeherv, Surosys Radeberg, Suxony.)
461. WINDIN MECHANIsm of Automatic Atmospheric
CLocks, J. Sainsbury, London.

1st March, 1884.
4173. Millinery Trimminas, J. Sidloy, Nottingham.
4174. Coolino the ATMosphere in Smitha' Shops, \&c.

 4177. Solitaires, dc., W. Burnett, Jarrow-on-Tyne.
4178. REMovisg LeAd from WATER, J. B. Hannay,
Ioch Lonis Loch Long.
4179. STrtching Cond or Fabric to Hat Bands, dec,
F. W. Cheotham, Hyde. 4180. PaINTED FELIT CARPETs, dc., R. J. C. Mitchell,
Waterford. 4181. Cordodated Spring for Carriages, \&c., F.
Kreisler, Crookhaven. Kreisler, Crookhaven.
4182. BREwING, E. T. Pemberton, Liverpool.
4188. HYDRAOLIC APPARATVS, A. Hivinoon, 4183. Hydranic Apparates, A. Higginson, Liverpool.
4184. Extivousmino, dc., Gas Lamps, J. Froestone
and G. Kyle, Geddington. and G. Kyle, Geddington.
4185. Combinkd Racks and Berths, J. Cochrane,
Barrhead. 4186. Courping Apparatus, W. W. Burland, York.
4188. Barbed Fence Wire, J. S. Taylor, Clayton.

 Brella Stretcirrs, J. Edmonds, Balsall Heath.
4192. Combunicatiso in Railway Traiss, J. Maguire,
4193. Ovelomiter, T. N. Harwood, Northolt.
4194. Treatino Domeatic Revue, dc., J. C. Morrell, Wroxham.
4195. BIcmmomate of SodA, C. S. Gormon, Irvine.
4196. Covered Box, T. and J. Toogood, London.
4196. Covered Box, T. and J. Toogood, London.
4197. Iro-NAZAL StEAM InHALER, T. and J. Toogoo
London.
 4199. Removina Sandanks- \&c., E. Foulger, Liverpool,
4200. Holders for Ever-poristed Pexctis, \&c., J. Appleby, Birmingham.
4201. FIERE STVFrs, A. Flegel, Berlin.
4202. SolidIFYINa SURSTANCES and
4202. Solidiryiva substances and Liquids,
Foulis, Musselburgh.
4203. CHIMxEY CowLs, T. G. Dorning, Manchester.
4204. GAs Supply Pipss, H. Devine, Manchester.

4206. Rotary Motors, H. L. Bemison, London.
4207. Suprlying Steam and Air to FUrmaces, R. H.
Hopburn, London.

420. ScGurivo Place Rods, C. F. Archer, London.
4210. Scemenva or Dressina Machine, R. Boby, Bury
St. Edmuds.

St. Edmunds.
4211. SAFETY Valves, W. N. Nicholson and A. T.
Allcock, Newark-upon-Trent.
$\underset{\substack{\text { 4212. Reqexierators of Furnaces, G. Winstanley, } \\ \text { Coventry. }}}{ }$ Coventry
4214. KEY Regs, J. Horwitz, London
421ANorortes,

 West Croyddon.
423. Curtino our Purry from Wisdow SAshes, T. Le 4235. MEasuniena Degvioss, A. M. Clark, London.-(A.

 4239. Domestio Fine-rscaprs, J. C. Bauor, Brockley
4240. GAs-Luantisa
APPARATUS, A. M. Clark. - (

4242. Loons for Wexvina W. H. Hacking, Bury.

 Chestor.
424e. Procrictiva the Mouths of Honsss, A. E. Webb,
Biow
 and J. Greenhalgh, Oldhamb

4256. MATMCH-ROXEXS, B, May, Moseley,
4257. NozzLes of OHL CANs, J. Neale and T. H. Price,
 Pillin, Anerley.
4259. Puevestiva Smoky Cumansys, E. G. Wright,

 Birkdale, and C. Waiton, London. 4 . M. von Donat,

 4275. Sirims and Smirt Corrs, F. Walker, Loods.
4276. OUT PILE FABRICs, A. Hind, Wyke. 4276. Cut Pue Fankics, A. Hind, Wyke.
 4280. PonsTs or 8wrowrse, A. C. Jameson, London.
4281. Yukt, $J_{;}$Parruett, London.

 4297. Capstan Apparatus, w. Ellott, Beccles, and W.

 London.
4503. Mestrisa Distascres, A. M. Clark.-(Dany and

ABSTRAOTS OF SPEOIFIOATIONS.

2303. Producino Mural Celiniso and other Archi- pulp, asbestos, and solenill coment.

 Concave niches are cut into the body of the lenves the book, the said niches forming two walls, on the

 limimpead and besen trom two poid

 3204 Perwerneon mh, and ammer

 3352, sum

 and
 3350.1

 3364 Boor ANO Stom, tes

 ${ }^{30} 0$

 3380. Tw manmen rive
 $\substack{\text { axdangsa } \\ 3382.1}$

 383 .
 cuncer nad hopidiz.
䢒

 338,

 head comily mid of nusy sios requrred

 Kity Ind

 turnis any demem Axxd nimber

2tisitin tho

 aine in ta
asin

 and mochanamem tor rexatifg tho milt

Matates to to emana ammement, so that thio

 Rotas stimimy

 Thininemor chimes purty thin madino for making

 minmit rile

 Tho obed th to inareas ito dumation of tho wir

 Thin rates obimpoimenta on paton No. Nos. in and

 Reatee thitionastraction of aprimery hater to

 3457 .

 fom pination pate for the purpeos of providige a dr

 , mithaneme tor

which the teoth are secured to a strip of metal), which
is then wound spirally on the cylinder body the sides
 which wires are inserted to hold the coils in prace, The
surface of the cylinder body is covered with solder, as is also the strip carrying the teeth, and gas-burners
are arranged so as to molt the solder as the strip is being wound on the body.
 The object is or heat bakert, ovens. by was and so
render them smokeless, and it consists in the use of two rows of burner tubes introduced through the
oven wall and at one of the front corners below the
roof the roof, the tubes in each row diverving radially from
one another, and the inner ends of the two rows beim brought into line with one another. Air openingss are provided both above and beloot the burneres, and out-
fets at the back of the oven open into a flue. 3464. ELectric Current Swrtores asd Cur Outs,

 ceeded vith.) 4d. Tinais invention relates to twenty-six different con
 munication frion C. G. Perviins, U.S.)
ceded (Not prith.) 2d. Relates to hydro-carbonising carbon filaments by
nid of hydro-carbon fumes and heat.
 Tho object is to afford an abundant supply of air
and to focilitate stirring the firo ; and it consists in torming the grato of diso-shaped, polygonal, or
spherical sections mounted on shatte, which aro adapted to recoivo rotary motion
 This rolhtes to an arrangomement of ratchot toeth and
a pin which allow the handlo of the spanner to be a pin which alow the hanalo of the spanner to be
turnod beck indeondently ot tho part ombractg the the
nut, that the spanner need not be romoved after 3480
 To a bracket securod. Et othe tho , Girmowny) frame is
 pivottod, and is also omovablo m a vertical plano and
provided with a guide or channel,
to that
whon tho the cord tso pullod sidd wawas or thatevers
and clip the cord betwoen them.
 The. object is to faciltate tho unfastening of the
hames of horses, and it consists in tho uso of f hook fistoned to ono hame, and composed of two parts the other himmo is passed, and which chatin can bo
rolensed by opening the hook, 3472. Boors Axp Smors, H. W. H. and R. R. W.
Lutham, Brightom, $-13 h$ July, 1883 .- (Not proceded

 From no golitine photographic pioturo in rolioe is
is for printing on paper or or orthor sort material or for
prosiling tho design into thin sheet metal, such as tin-

 allow the projections to leavo the recesses.
3479 . Cosstruveriva Sub-AQuzous Struerures, svor

 In which the samo nro confined undor prossuro, by
cuasing tho prosurro of tho conined dgas or liquid to
act aginst

 within a fow inches of the ground, thhoroby faciltititing
tho mounting into the gaddo, thus losening the
height from which a man would fall.
 which is caried by ar rotating composod of rods,
barrel is a cylinder of wiro cloth.
 Consists, First, of a method and apparatus for
Cist
Iding together the ends of undercut groored tires

 into the hollow a coro
other suitable material
3486. Vatyses, J. Kroog, Halle-on-the-Saale.- 16 th

This consists in a valve in which both the seat and
valve proper are provided with duplicate horizontal
 which serves as a guldo for tho valvo,
placo by a plate fastenod across the top.
3488. Watrer-coserss do
 charge pipe fitted with a, second lower syphon trais
 provided in the dischargo pipe between the two traps.
By these means the valves and fittings usually em3489 are abolished.

The stationary jaw is formed with an arm, on the ond of which is mounted a pinion gearing, with
toothed segment formed on an arm connected with the movable jaw. The pinion is actuated by a handle for
cutting flat metal. A rotatable die having holes or different guage is fitted in the arm of the fixed jaw shearing plateo so othat round matal, when inserted ad
through ono of the openings in the dio will
 prond
of met
3490 .

 n the middle, in which is mounted a pointer, to the the
pindle of which is connected a weight, such pointer moving over a dial plate.

 Diamethylanililino nzo-benzol prasulpho aced is dis. duced into the solution until it is completoly dis
coloured, when the solution is heateo and soparated from the sine powder by filtration, and the solution
then acidulated with sulphuric acid. The ligund when cool is treated with sulphurotted hydrogen, and by
 3492.

 fliced in the intorior of tho vessel, and which can be

This rolaton to tho application to machino or battery
Tuss of
lise systom described in patent No . 8178 1883 , wheroby the recollo of tho gut is utilisod to effico
the operation of fooding, firing, extracting, and ejoot.

 nonts inchargo ortrdges consist in makrrages the the impolspove out the ordinary rim or flange, and forming partly or
wholly around the shell a serices of grooves which permit the oxtractor of the gun to take. बfirm grrasp of
the sholl. Tho base of the gholl is cup-shaped and fits ightly within tho tubular part thereof a hhort distance
rom the ond, bo that whon driven back by tho explo ion tin anta, on the broech moving mochnism, and and
he brecah block moves backward tho bell he breoch block
by the extructor.
3496. Rroistimiso and Cmeckino tue reckipt or
 Tho number of p pasisongers travelling on onch soction
fa line is cuused to be printed or rogistered on dif. orent colourod
3497. LaxD-n
 This relates particulariy to ind rollors actuated by
a portablo stoum ongine and consists in means for

 on a shinft, and to the outer head of one of which a friction wheon is securoct, and cann be brough to bear
anginat ono of two frition pinions, by which means
the hooks to which the hauling ropes aro socurod aro tho hooks to which the hauling ropas aro socured aro
moved in opooito diroctors on tho frame of tho
roiler, and the latter is thus turned in the desirod
and direction
3500 .
3500. Honss RAkss, J. Hovart and E. T. Bousteld,
 ixed on the travelling wheels, the tine frames being Attod with means for tightening bands on the outaides of the drums, whereby the tines aro raised from the
ground and relloved of tho loadd and the obecta of
his inventon ure to poride his irventuon aro to provido a moro direct neturn of
 expansion is phacod within each of tho drums, When
the rings aro oxpanded the wheels aro locked, and the onward moveroment of tho
(rume and raises the tines
3502. Rotary Wra Printivo Macmings, G. A. Wi-
 and provided with A fangod nut or its equivalent;
Secondly, folding cylinders with internal cam shants and cams giving motion to blado carriers; Thirdly, shafng cylindors fiteod internally with cams and
shats carriod in boarings in the cylinder ends, and netuated by toothod goring. Fourthy, cam enhats
fitted in folded oylind oras provided with drivin whectes and connoctod theroto by pawls or catches; Fithly,
fording cyllinders fitted with folding and grippling
Olidel

Roaltos to collocting, folding, and delivering in pilies
or batches of any desfred number, sheets of paper from
 onding oylinders or oquivalent devices.
 The inventors construct packing for the stufing
boxes of piston and other rods of rings or coils of either motal or other packing materina, whether hard
or soft, through which rings or coils the rod passes,
 or coils pressed tightly against the rod ds the packing
wears.

Tho articles are decornted by conting them with an
enamel of a syrupy consistency, and whill still sticky, strowing gmall glass beads theroon, the articles boing
then subjocted to heat, so sat to malt tho eonamel and
canses the beeds to bo cemented to the surfice of the
 Thomas, Sordare, -17h July, 1883. 8d.
The principal objects aro to ensuro the accurato
weighing of the screened small coal or other matter
under all
usual circumstances, to prevent any tamper ing with the machinin in the abberce of the weiphor,
nd a considerable saving and avoidance of damazo t, he indicating dials
3511. CLossso or Sropprring Bortless, dec., J. A.
Boortes, London. 1 17th July, 1883. (Not proceded

Consistst in the use of a stopper composed of a
wooden or other stem or cylinder, within which works
 ing or pad may also be placed beneath a finage upon the upper end of the
the top of the bottle
3512. Wartr-closirss, E. and A. E. Gilbert, Dundee.-
17th Jull, 1883 .
6d. Refers to a mode of constructing the seats so as to
avoid the necessity of bringing the person into contact with the usual wood framework.
 Relates to washing machines in whith a dolly is
employed, working in in un uririth topisition, and which
dolly is actuated by a hand lever at the side of tho doly y is
machine.

 The object is to convert the residunl products of the
distillation of spirits, or the returns, into loose, more or less fino--grianed fodder, which my by bo oasili, trans.
ported or preserved and will not get mouldy if stored
 One of thin objects 8 is to provide a eonvenient and
scourate means for adjusting the bearings of the upper working rollor in a rolling mill correapondingly
upwards and downwards, and for "rockikn" upwards and downwards, and for "rocking" suid
roller, or simultaneousty incrasigg the prosuro on ono bearing and easing or relioving the ofther bearing
of pressure when the metal is silighty thicker on one dgo than the other or has a tendency to run crooked; paper, from roughing as it it is fed betwoen the rollores, and to tako out any wrinklos and smooth the mo
and to guide and confine it as
close point of contact betweon the working rollers.

This relates to improvements on patents No. 2145,
A.D. 1863, and No. 1485 , $A . \mathrm{D} .1873$, and it consists in orming indiarrubber springs for nall way and onther ongines, of blocks of indiarubber, through,
transverso channels or pussages aro provided.

SELEOTED AMERIOAN PATENTS.

291,324. Appanatus pon Extrisautsinva Fmus, John

 furnace B, ns ihown and doesribed. (2) Tho conbina.
tion of a firo-box and boiler providod with soparate. uptakes, pipes connected to suid uptalkes for tho ocon-
vyanco of vithated air and stoam rospectively, a fan blower or pump connocted to suad pipes, throttho
valves to control the thoroughtaro through the pipes

and a boilor and steam ongine for driving the fan
 and shown in tho drawings for tho purpose especified.
(3) The combination of the boiler A, fire-box B, uptakes Connd D, pipos F and G, fan howor or pump
E, coupled pairs of throttlo valves $H H M$, I, steam
 29pecified. L27. Lathe Centre Grindino Machise, Darius

plane-faced friction whoel M , socurod thereto, and
tho friction wheel L and its shaft, with means for nrinsmittin whee L and its shaft, with means for
tring motion therefrom to the grinding 292,232. Reoulator Vasve, Timothy J. Kieley, Neio

plate upon its upper surface, the said plate being
connected with a weightod lever by the anti-frictionroller journal M, the valves C and D , the valve D and
its valve seat being

either the valve C or D , and the spider guide located insuring the accurate seating of the valves and pre-
venting the lateral movement of the diaphragm, sub-
 Cluaim- (1) In an oloctric are hamp, a asplit annular
cluteh j adapted to normally grip and aift the anbon adppted to sprend the split clutch and release said
rod, substantally as described. (2) In an electric arc lamp, tho combination, with a spilit annular clutch an plectro-matiting to grip and lift the carbon rod, of to elevato said clutch, and an olectro-mgnnotio dovico
in a derived circuit around the arc operating to spread

292293

(1):

tho clutch nnd releano tho carbon rod, substantinily

 carbon rod, and having fork, , of tho dorivation
mngmot K, armaturo L , shaft m, fingor n, having forl magnot K, armaturo L, shaft m, fingor r, having forks
o, cam $~$
 Claim:- (1) In a fork for hay todders,

substantinlly as spocifod. (2) In a fork for hay tedders,
the comblination, with tho tines T, mado of a singlo
 abovo and one below the bend of the tino plieco, sub-
stantilily as specifocd.

CONTENTS
Time Enoinger, March 7th, 1884 pags

Dit. Todrustra
RALIWAY MATTER
Notres asp Mrwouio

Lemiso ARTICLES
Colontal Derzee

Gas Examerentra is Brianta
Boors Recrive

The Planimitel.

Notrs frox Laxcashime
Notes rnox Smerimid

Abtricts of Pattant Americas Specticutions.
Pataocaphe-
Tho End of an Old Ship
Aspocition of Municipal and Sanitäry Ëngineeris
Socidy

178
181
181
181

