THE CHICAGO RAILWAY EXPOSITION. No. XII.
A few years ago the permanent way of most American railways was proverbially inferior to that found in most parts of Great Britain. The introduction of steel rails, however, has been accompanied by a great improvement, and many of the first-class American lines have as good a road bed as English railways of corresponding standing, though the great severity of the winters renders it difficult to keep
on a sheet of paper by various pens, which are moved through a system of levers by wheels kept always in close contact with the rails. This diagram, therefore, represents the mean inequality of each mile of track, and is constructed from Fig. 50 by means of an integrating machine, as is more fully explained further on. In Fig, 50 the top line is termed the location line. The pen, if undisturbed, simply rules a straight line on the paper, but on pressing a button it makes a mark on the paper, and is therefore used
line gives the speed at which the dynagraph car is line gives the speed at which the dynagraph car is
travelling. The distances between the marks are measured on a scale which is given on our illustration. The marks are made by a clock, which makes an electric contact at are made by a clock, which makes an electric contact at
stated intervals of time. The further the paper has travelled during that time, the faster the car is roing A speed of about eighteen miles an hour is found to give the most trustworthy indications. The dynagraph car somewhat resembles in outward appearance an ordinary American passenger car, carried on two four-wheeled bogies.

Fig. 50
First line, Location

Fourth line, surface. I. II Rail

Scale for Tine 5. Cant or Super-

Firter tine. Cant or Superelevation $n^{-e l e v a t i o n}$

Any point in cant, $75 f^{7}$ a head of other points

Sisctit Zine. Surface R . H Rail
 Sioctin kine. surface $R . H$ Rail

 Seventh line, Speed

the track in good condition throughout the year. One factor in the great improvement which is fast taking place in American permanent way is the system of track inspecrecord graphically on paper every inequality and imperfec-
to denote the situation of a mile post, culvert, or any other object passed on the road. The second line makes a mark at every 100 ft ., and therefore serves as a scale to measure distances, and identify the exact spot where any unusually defective joint or rail was found. The third line gives the

Internally about half of the car is taken up by a large com partment, in which is situated the table over which the dia gram paper is drawn by gear driven from the wheels which are kept in contact with the track. The marking pens
are mounted in a frame which spans this table. In addi-

Fig. 51

Horizontal scale, 1 mile between the vertical lines.
Vertical scales,-In the original-which is twice the sizo of our cut-
the horizontal rulings are 30 per inch; the horizontal rulings are 30 per inch; each 5 th and 25 th lines being
heavier for convenience in counting. heavier for convenience in counting.
To show "condition of track" and
tion of rails and joints,", each horizontal space represents $1-100$ of lin.
To show "age of steel," each horizontal space represents one year of service.
To show "alignment of track," each horizontal space represents 10 per

To show 9 roadmasters avernge marking, enet horizontat ppace ropro sent $1-10$ of a unit.
To show "side
irregularities of rails" and "gauge of track," each horizontal space represents 1110 of 1 in.
To show "profile of line," each horizontal space represents sft.
tion in the surface and alignment of the rails passed over. Professor P. H. Dudley, of 66 $\frac{1}{2}$, Pine-street, New York exhibited an inspection or dynagraph car of his invention, which has been used to inspect the condition of the track of the New York Central, Boston and Albany, and other leading, railways. The car is attached to a locomotive fitted with the Westinghouse automatic brake, and is run over the line as a special train eighteen or twenty miles an hour. The mechanism measures from a definite length of wheel baseas plane length of wheel baseasa plane,
the surface undulations of the surface undulations of each line of rails, and the
depression and deflection of depression and deflection of the joints. The car weighs about 23 tons, and therefore the weight on each axle is nearly 6 tons, and the deflections caused by this weight are presumably similar to
those that occur under ordi-
those that occur under ordinary rolling stock. The inspection car records the exact bends the rails take under the load, whereas the ordinary ganger's examination simply notes the rails as they appear to the eye when the weight is removed
On Figg. 50 and 51 will be found copies of the diagrams given by this car. Fig. 50 represents the markings made

tion to the gear which actuates the pens, the wheels are inge, the straight line being the normal, and the crooked connected with a low point spotter or marker, which from the proper width of gauge are shown full size. In throws a splash of paint on the road bed near any particuthe paper from which our illustration is taken, the greatest larly bad or slack joint. The surfacemen thus have their deviations from the proper gauge are $\frac{9}{10} \mathrm{in}$. too wide and attention drawn to the joints which most need packing or screwing up, and the number of low joints is recorded in the dynagraph car, and forms an important item in graphically estimating the relative condition of track. Its marks are not shown on Fig. 50 , but enter into the lines on Fig. 51, giving the mean condition of the track. Any excessive vertical movement of the wheel brings an adjustable stop on a vertical spindle into contact with a valve, which, when opened, permits a jet of paint to escape. The paint is contained in a cylinder in which works a piston, the upper side of which
zin too narrow. The fourth line shows the surface of the left-hand rail, giving its vertical inequalities. The line below this shows the cant or super-elevation, the amount of which is found by measuring from the straight line which hows the absence of cant. The sixth line shows the surface of the right-hand rail, and the seventh or bottom
with the main air pipe of the Westinghouse brake. The paint being thus phar the Westinghouse brake. The paint being thus under a pressure of about 80 lb . to the square inch, rushes out in a jet, falling on the ballast directly
the valve is opened. As the stop is adjustable it can lie the valve is opened. As the stop is adjustable it can be stance, it may be found that every joint will give about
fin., and therefore if the stop is set at $\frac{5}{5}$ in. it will only
indicate those joints that are worse than the average. Fig. 51 seems somewhat complicated, but it will repay the careful study of those who are interested in the condition of permanent way, as it affords in a small compass comrelative surface given in wear by different brands of rails, and affords space for the " road-master's marks" rails, and affords space for the "road-masterss marks" on the bed, and other items which can only be estimated by eye. Any improvement or deterioration of the vertical surface of the rails can also be shown, light and heavy lines indicating the result of successive inspections. Fig. 51 shows the New York Central Railway between New York of Poughkeepsie, a station on the Hudson River, $73 \frac{1}{2}$ miles and Albany. The rails are all steel, gravel ballost is ork the fish joints are placed opposite one another, and the traffic is very heavy, in tonnage probably exceeding that traffic is very heavy, in tonnage probably exceeding that
of even the London and North-Western, though the number of trains is considerably less. The gradients are good, but the curves are very frequent. The goods traffic hown on the lower portion of the diagram. The following explanation of the diagram is slightly abridged from that furnished by Professor Dudley
Miles, sections, and names of stations are common to up and down lines. The general base line for each track is Steel," "Approximate Amount: Deflections on Rails and oints, an Condition of Track," are "hown from re same base mile .Age of Steel and brands are given per mile and part of mile, as reported by
the railway company. The brands are designated by letters, the key of which is only furnished for official use. The undulating line just above "Age of Steel" for ach track shows the "Approximate Amount, Deflections of Rails and Joints" per mile, under the weight of the
inspection car, and is obtained from the combined indicainspection car, and is obtained from the combined indicapoint spotters, as marked on the diagrams directly by the instruments, giving each rail and joint in detail. This ine shows the theoretical possible improvement which ballast, new joint fastenings, and sleepers, sufficient to remove all deflections under the trains. The best practical results so far found only lower this line to 14 or 16 of the ine may be lowe by labour or material as above rack
 16 on the scale, are not readily seen by the platelayers in 6 on the scale, are not readily seen by the platelayers in cooking over the surface of the rail, as in the ordinary custom of surfacing the track,
howing the "Approximate Amount of Deflections of Rails Tran", "ay "Co the , khow that labour does not improve this feature; but, on the contrary, it shows the additional effect of each year' he contrary, it shows the additionai effect of each years
traffic. When the surface of the rails is more or less rough irregular undulations-the "Condition of Track" line will be high, while that of the "Approximate ts low, Dellection or hairs and Jonts may be near its lowest limits (see thirtieth to sixtieth mile). The all the various surface undulations of the rails per mile, and are relative as to the base line-comparative as to one mile with another. The surface undulations of the rails, their unevenness, iz, roughness of the rails from unequal wear, long and short bends, low joints, deflection of loose rails, joints, and sleepers, particularly when the fastenings are loose or
worn, defective ballast, drainage, and deficient tamping, The undulating line showin the is obtained as follows:-As the inspection car passes over he track its apparatus mechanically sums up the amounts of the various undulations into feet and inches per mile, giving results independently of personal opinion. The
number of inches thus obtained divided by 176-the number of 3 fft. rails per mile-gives the average per rail
for each line. When there is a difference between the two ails per mile, the men is taken. For example:-On the p track, first mile from New York, the mean averag indulation per rail was,$\frac{63}{100} \mathrm{in}$.; for the second mile, $\frac{66}{100} \mathrm{in}$. for the third mile, $\frac{63}{10}$ in.; and for the fourth mile, $\frac{53}{0.0} \mathrm{in}$.
In like manner the average results are found for both lines of rails for the entire road. To plot the figures of the Condition of the Track," as shown in Fig. 51, each hori contal line above the base line represents $\frac{T_{0 \overline{0}} \mathrm{in} \text {.; therefore }}{}$ for the up track, first mile, we take the sixty-second line bove the base, for the seond mile, the sixty-sixth line; or the third mile, the sixty-third line; for the fourth mile the fifty-third line ; and so on for the entire length of the ailway. The various points are all connected by a heavy ne, the upper side giving the reading, the average condition of the mile being read from the right-hand side of the space. The line showing the "Approximate Amount, Deflections of Rails in Joints," is plotted and read in the ame manner as the line just described.

Lines marked "Gauge of Track" read downward from the base line just above, and show the amount the track is point project each horizontal space representing $\frac{1}{10}$ in.; wider than th rest. The lines marked "Side Irregularities of the Rails," just above base line described, represents the side irregu $\frac{1}{10}$ in. This line reads like the "Condition of Track" for the mile the highest point on the right-hand of the space found in a definite forms, due to their pirmint beris directly traceable torms, due to their permanent bends, sleepers.being unequally packed or supported by the ballast. They can be classified under three principal primary forms represented by Figs. No. 52 to 54 ; there are often com-
binations of the forms shown in Figs. 52 and 54 and Figs.

53 and 54. Wear produces distinct forms, though, when the stee is not homogeneous, one
surface somewhat like Fig. No. 54 .
The form shown on Fig. 54 represents on an exaggerated scale badly surfaced rails as they sometimes come from scale boally surfaced rails as they sometimes come from
the rolling mills. Under traffic they gradually assume the form shown on Fig. 53. Rails of the form shown in Fig. 52 have generally worn, bent, or broken fishplates, and rest loosely on the joint sleepers. This is the worst form the rails can assume, as the receiving ends of the rails are rapidly "cut out" under heavy traffic, and the ost of transportation is thereby increased.
Fig. 55 shows, to some extent, the characteristic deflections or undulations which even the smoothest rails assume under heavy cars, due to looseness and unequal tamping of all the ties ; with double angle plates in good condition, practically making a continuous rail the succeeding one, appear in good surface when not under trains.
While it is true that the nearer the "condition track" line is to its respective base line the better the track, the effect upon the riding of the cars will depend largely upon what element constitutes the principal portion of the undulation; if it be low or loose joints, like those will receive jolts of more or less magnitude; depending somewhat upon the system of "alternate" or "opposite joints." The smoothest riding track is where the railsdeflection of one rail to the next, and not allow it to break at the joint.
the average as made by the diffent ing, their opinion as to the various elements of the trackconsidered Only the markings showing surfee of track, line and gauge, cleanliness of roads, and ditches and drains, are here recorded. Perfection, or 10 , would be the 100 line or top of the diagrams-see scale of Fig. 51. The nearer these ar
The general lowering of the "condition of track" lin for 1882 below that of 1881 -see Fig. 51 -shows the improvement effected, and is a tangible piece of evidence which should be more satisfactory to those connected with the track than the usual vague personal opinions as to the roughness or smoothness of the road.
The Exposition contained many interesting exhibits of points, crossings, rails, and permanent way tools, the illus-
tration and description of which must be deferred to succeeding article.

HIGH SPEED LOCOMOTIVES.
Many of the great English railway companies are now building locomotives intended to attain very high speeds with heavy trains; and those who have watched the process of development of the locomotive, know that there is agrowing desire-manifested by the direction which this development is taking-for higher and higher speeds. We pmount of rivalry exists as to who rums the fastest trable It remains a fact that the average velocity of 60 miles an hour running time-that is exclusive of stops-is not attained on any railway in the world. It may be thought that an addition of five or six miles an hour to the speed of some of our best trains would be a small matter, but it is not. It is the last straw that breaks the camel's back, and engines which can be easily persuaded to run at 50 miles an hour can, by no possible process, be induced to go faster. We propose to consider here a few of the problems engine which shall be capable of rumning 120 miles let us say, in two hours.
If an engine draws a train at 30 miles an hour, or 44ft. per second, it will encounter a given resistance which we shal orll x. When it draws the same train at double the speed, or 88 ft . per second, it will encounter a reistance
greater than x, but for the moment we shall assume that x is a constat in both $x=3000 \mathrm{lb}$, then the work done by the engine in the first case will be $\frac{3000 \times 44 \times 60}{33,000}=240-$ H.P. When the speed becomes 60 33,000
miles an hour we have $\frac{3000 \times 88 \times 60}{33,000}=480$-H.P. We see
from this that the resistance remaining constant, we must double the power of the engine. To increase the speed from 50 miles an hour to 60 miles an hour will render We fury the exertion of 6 -horse power where 5 sufficed. few ind it necessary to insist on this point, because not a the subjiect, hold that if not given sufficient thought en with the speed, there would be no increase of power needed; and the mischievous result is that in attempting to provide for high speeds they deal with only one element, namely, the augmented resistance, taking no thought for the reduced time in which what they call the constant resistance has to be overcome.
Now x is certainly a coefficint increasing in a rapid ratio with the speed of the train, but this ratio is in no sense a constant. It the case of a ship we can say that within certain limits her resistance will augment as the square of her velocity, and the power required to propel
her as the cube of that velocity. But fluid resistance is ander the stated conditions invariable. This is not the case with the resistances encountered by railway trains For the moment we shall disregard gradients. On a level the resistance will augment faster than the speed at variable rates, depending (1) on the condition of the road (2) on that of the wheel tires; (3) on that of the journals ; 4) on the wind ; (5) on the form of the coaches composing bulk ; atmospheric resistance depending more on the buk of the train than on its width or height. The better Towers' experiments on friction show that at very high Towers experiments on friction show that at very high
speeds efficient lubrication of axle journals is of much
more importance than is generally supposed. Various
 factory because we cannot be certain that quite satisobtained on any one day with one train will be applicable to another the seems, rightly or wrongly, to be accepted by locomotive superintendents that the resistance at 60 miles an hour is 40 lb per ton a deal There is reason to believe that is an erroneous estimate. For a gross load of 300 tons we should have $\frac{300 \times 40 \times 88 \times 60}{30}=1920$-horse power
But the Gladstone has attained on the Brighton Railway nearly 60 miles an hour with not much more than half this hose power down an incline of 1 in 264 , which would reduce the resistance by a little over 8 lb . a ton only deducting this from 40 lb . we have $\frac{300 \times 32 \times 0}{33,000}$
$=1536-$ H.P. instead of 1000 ; and our own experience leads us to believe that at 70 miles an hour the resist-
ance does not exceed 40 lb . per ton for the whole train in good weather and on a good road
One of our American contemporaries has recently pub lished a series of designs and suggestions for a locomotiv to run 80 miles in 80 minutes, which designs we may add We nearly all modified English, not American engines we propose here to consider what kind or locomotive 2 hours and 5 minutes the make a run of 120 miles in one stop about mid-way in order that the tender might b replenished with We shall assume the weight of the engine and tender full to be 75 tons, and that of the train 100 tons, giving a gross load of 175 tons, making no allowance for the lightening of the load on the tende as the water is used up. We shall further assume tha the road is in first-rate condition, that the inclines shal balance each other, and that the maximum gradien
shall be 1 in 260 . We shall also assume that the line shall be 1 in 260 . We shall also assume that the lin at each of the three stations-starting, middle, and ter-
minal-and for some distance is a dead level. Under these minal-and for some distance is a dead level. Under these conditions it may be taken as certain that a speed of 60
miles cannot be reached until the train has run 3 miles Consequently the train will make after starting 3 miles at a average speed of 30 miles an hour. It will start twice, onc from the terminus and once from the middle station; there fore, 6 miles will be made at 30 miles an hour. It will stop twice, once at the middle and once at the termina
station, and allowing 2 miles for slowing down at each, station, and allowing 2 miles for slowing down at each,
we shall have 4 miles at 30 miles an hour ; and the whole trip would be run as follows- 10 miles would be run at an average speed of 30 miles an hour, and 110 miles at 60 miles an hour; the average velocity of the whole trip would
therefore be less than 60 miles an hour, and the train therefore be less than 60 miles an hour, and the train
would not comply with thestated conditions; consequently the 110 miles must be done at more than 60 miles an hour, and the 10 miles allowed for starting and stopping must be done at more than 30 miles an hour. The fact
is that the full speed portion of the run must be made at 65 miles an hour
We have said that the maximum gradient shall be 1 in 260 , and it may be taken that while only a comparatively small portion of the road shall be as steep as 1 in 260 we may deal with a road of this less inporta wo may reduce speed in going up hill, and make up for los time when going down, or we power to maintain a steady pace with little change of
velocity the whole way. The latter course will be found quite essential. It is possible in the case of an road to reduce all the inclines and levels to two averag gradients, one rising and the other falling from a summi which may, if the inclines balance each other, be place mid-way of the length of the road. Let us suppose that our imaginary line is so treated, and that it rises for 60 miles, and then falls for 60 miles from the middle station at the rate of 1 in 500 . Now if a continuous speed o 65 miles an hour is to be maintained, the engine must be sufficiently powerful to take its load at this pace up 1 i 500 for 60 miles. If, however, we please to let the speed down while ascending, and make it up while descending, we shall apparently gain a great deal. Thus we might go up one middle station would then occupy 80 minutes, while th remainder of the run down hill must be done in 40 minutes, or at the rate of 90 miles an hour. A simple calculation, possible, wire show thy ho great reduction wh short and steep incline has to be surmounted. Let us cuppose, for example, that one-half the whole run, or miles for starting and stopping, we have 55 miles 50 per hour, and 5 miles at half speed $=10$ miles at full speed, making total for 50 miles per hour $=65$ miles. Now be done in $65 \times 1.2=78.0$ minutes. Out, then, of the 120 minutes 78 have been used for the first half of the journey or 60 miles, leaving for the second 60 miles $120-78=4$ nnutes. Of this 60 miles again 55 have to be done at the speed on the second 55 miles must be equal to 65 mile in 42 minutes. Now, this will give 0.646 minute per mile, so that the 55 miles must be done in $55 \times 0^{\circ} 646=$ 35.53 minutes, and the 5 miles at ends in 6.4605 minutes The manimus, and th in $60 \div$ ends $=93$ miles menute The maximar speed then is $6 \div 0045=93$ miles per hou We see from these fitant is the part playe by steady running over long distances, and how great are the delays entailed by stopping and starting. Indeed, it may be safely said that it would be essential under the on litions to employ a pushing engine at t train in all cases to get up the speed if possible within mile, and continuous brakes should be used to save time
stopping. The inclines, however, remain to be dealt with stopping. The inclines, however, remain to be dealt with
and as some allowance must be made for retardation, it follows that we must not reckon on travelling 120 miles in wohours unless a velocity of quite 75 miles an hour is some twohours unles
times attained.

It matters nothing whether all the inclines are concentrated as we have supposed, or whether they are scattered along the road with levels between. The principal and important fact remains, that if an average velocity of 60 miles an hour is to be maintained, our engine must be suitable for a speed of 75 miles an hour. The first point to be secured is that the engine shall not run off the road at this tremendous velocity; because, no matter how powerful or how excellent it might be in other respects, it could not be used unless it was safe. We have therefore to regard it first as a carriage, or vehicle. But we cannot quite do this and neglect other considerations. Professor Osborne Reynolds has fully considered in our pages the abstract questions which concern limits to speed; and we have fully dealt also with the strains on coupling rods. We need not repeat what has there been said. Taking various points which present themselves for consideration, we believe that an engine intended to run steadily and safelyat 75 miles an hour must have a single pair of drivers only, and these would be best if made 9ft, in diameter. 10 advocate so enormous a wheel requires some courage; but it must not be forgotten that we have to provide for an altogethe exceptional velocity. It is extremely doubtful if a speed of 75 miles an hour has ever been attained save for a mile or two by any locomotive, 72 miles an hour is the highest velocity of which we have any personal experience, and this was attained by engine, on the Brighton Railway, the velocity being checked Wy a suoudey speed indicator on the foot plate and a Westingouse recorder in the guard's van. We have travelled at 1 miles an hour on the Great Northern and nearly as fast on the Midland, but only for short distances We are contemplating the case of an engine which may have to run 60 miles or more per day at the rate of 7 mils and said, that a 9 ft . wheel will be found indispensable; at 75 miles an hour this wheel will make 229 revolutions per 1030 ft . of piston speed per minute, which is quite fas nough.
A 9 ft . wheel entails outside cylinders as a matter of course, and even with these the centre of gravity of a narrow Gauge-4ft. 8 din-engine must be raised considerably We may point out, however, that the London and North Western engine Cornwall ran with great success for many years with 9 ft . driving wheels. Mr. Pearson used them on the Bristol and Exeter Railway, but as this line was then 7 ft . gauge, his practice will, perhaps, not be allowed count.
For reasons which we shall set forth fully further on the diameter of the barrel of the boiler of our high-speed engine must be of large diameter-as large, indeed, as it can possibly be. The bottom of the shell cannot safely be hung lower than 8 in . above the centre of the driving axle and this will bring the middle line of the boiler abou 7 ft .5 in . above the rails. The centre of gravity of the engine will of course be far below this; but comparisons between enginesare usually based on the height of the middle lines of the boiler shells, and the figures given above are not excessive. We may go further than this, and ask what are the objections to a high centre of gravity in a locomotive? There is not an instance on record of a locomotive upsetting while the permanent way remained able to carry an engine at all; and we may dismiss the notion that any risk can be incurred in this way as a result of a high centre of gravity. As regards easy running, on the other hand, it will be found that a high centre of gravity promotes it. There is, however, more risk that spring will be broken. We can, we think, make this quite intelligible in a few words, although certain writers have found it necessary to invest it with what is to some an appalling array of figures and formule.
We have to deal with lateral strains. The engine may oscillate from right to left alternately, or it may from a straight run on to a curve. Let us suppose that in the accompanying diagrams, Figs. 1 and 2, we have end views of two engines, one with a low the other with a high centre

of gravity. The arrows show the direction of the overturning force. It will be seen at a glance that this force will of necessity be nearer the rails in Fig. 1 than in Fig. 2. B B are the overturning moments, while D D represent the bursting effort on the rail. The inclined line C shows the direction into which this bursting strain will be ably directed in Fig. 2 than Fig. We have further to consider that the engine is not rigid, it is supported on springs; and the higher the centre of gravity, the
greater may be the load put on the outer spring, as shown on the outer spring, as shown
by the line C, Fig. 2; and by the line C, Fig. 2; and the less in proportion the Fig. 3, let A be the position of the centre of gravity in of the centre of gravity in
the high engine, B and C the points where the dead
 the springs, and \mathbf{E} the rail level. The tendency is to surn the whole engine over about the point I, under the tread of the wheels. The spring C will be compressed and \mathbf{B} relaxed, because that part of the engine

carried by the springs will tend to turn round the point L . As, however, the engine will not turn over, we have a horizontal component of the force denoted by the arrow to deal with, tending to burst the track. If the centre of gravity be brought down to the point H, the moment of the overturning force will be reduced, there will be less difference in the load on the two springs, and there will be a greater force tending to drive the outer rail out of gauge. With the same springs, the high engine will swing more than the low engine, but it will ride more easily, and the elasticity of the springs being brought more fully into play, the road will be spared rough side shocks and jolts, and the axles and wheels will also be less violently tested. On the other hand, as we have already said, the chances that springs will be broken are increased; and the system of springing that will answer with a low engine will not necessarily be the best for a high engine. Thus, for example, balance beams are especially useful in the case of engines of moderate height; but we doubt that any locomotive superintendent would use them with a lofty engine. They would supply too flexible a base for the dead weight, and would permit the engine to roll too much at high speeds. It must not be forgotten that, for the reasons already pointed out in connection with Fig. 3, the load on the inner rail of a curve will be greatly reduced; experiments, indeed, have shown that it may entirely vanish under certain conditions. There is, then, nothing to keep the wheel on the rail but its own weight. The higher the centre of gravity, the more will the load be transferred from the inside to the outside rail. This is, no doubt, useful, because the flange of the leading wheel will be pressed hard against the outer rail when the engine is running at speed round a curve, and the load will prevent it from climbing the rail; but the engine is liable at any moment to have its leading end jerked violently toward the inside of the curve, and if the load on the inside wheel is then small, the engine may leave the rails. There are of a curve, and this is specially likely to happen if the "cant" or superelevation of the outer rail is too great.
Balancing all the various considerations, we see no reason to fear that the use of a 9ft. driving wheel could raise the centre of gravity so much that the engine would be unsafe at any speed up to 80 miles an hour, or even beyond that. Danger would only arise, indeed, on tolerably
sharp curves, and these should not be attempted at all at such speeds as we are contemplating. On the other hand, there is no reason to doubt that an engine with 9 ft . drivers would run quite steadily at 75 or even 80 miles an hour round curves of good radius, but, as we have said, special care would be required to suppld sprat a spring is a spring, while others look on them as nuisances which interfere much with the design of a locomotive. On proper springing the engine depends for smooth running, and too much care cannot be taken to secure the best results. Nothing but experience, however, can dictate the best practice in this respect.

DAVY'S STEEL-MAKING APPARATUS.
The accompanying engraving illustrates a steel-making apparatus patented by Mr. Alfred Davy, of Messrs. Davy Brothers, Sheffield. The drawings will explain themselves. The principle involved is that of the Bessemer converter. A ladle full of cast iron being drawn from the cupola, is submitted to the converted into or air, by which the metal is Bessemerised and is nothing novel in this scheme, which has often beep suggested in one form or another, and tried; but no apparatus so complete, or so well calculated to secure the required object, has hitherto been brought before the public; and we understand that Messrs. Davy Brothers are now putting down twenty-four sets of their plant in Sheffield alone
It may be well to explain that unless due precautions are taken the results obtained will be extremely disappointing Thus certain classes of pig are quite unsuitable for Bessemerising Indeed, nothing but hematite should be used when the bes results are required. Again, in all cases the blow should be continued until the whole of the carbon has been got rid of, and the proper percentage should be restored by the addition of spiegel.
In fact, the whole process must be carried out on the same lines In fact, the whole process must be carried out on the same lines
as the Bessemer process. Any attempt to improve cast iron by "blowing " out some of the carbon must end in failure, because in no two cases can the same results be obtained. We have no doubt, however, that in proper hands, and with suitable irons, very excellent castings can be made in this way.
In our engravings Figs. 1 and 2 are an elevation and plan of the apparatus, with a sliding tuyere, pipe, and converter; and Figs. 3 and 4 arefrontandside elevation of an apparatus with a fixed tuyere, pipe, \&c., and foundry ladle, worked by an ordinary foundry crane. Mr. Davy states that this apparatus will enable every ironfounder to produce large or small quantities of steel for
castings or other purposes at about the cost of cast iron; and he castings or other purposes at about the cost of cast iron; and he
claims that " the quality is superior to most crucible steel for castings, and may be guaranteed to contain not more used 35 per cent, carbon, with a tensile strength of 40 tons pere square 35 per cent. carbon, with a tensile strength of 40 tons per square
inch and 20 per cent, elongation." The 35 per cent is obviously a misprint for 0.35 of 1 per cent. It is claimed that steel may be produced by this apparatus of any temper or quality-except perhaps the highest class of tool steel-in large or small ingots, at $£ 4$ to $£ 45$ s. per ton-taking pig iron at 60 s. per ton and other materials at the prices current to-day. The cost of apparatus for ironfoundries is as follows:-Figs. 1 and 2, for producing 1 ton of steel at a time, or say 100 tons per week, or any lesser quantity, at the user's option, £595, with blowing engine complete; Figs. 3 and 4, for similar quantities, £525, complete. Larger plants cost the same in proportion to output. For steel would have there are no cupolas, the cost of a cupola only would have to be added to these figures

Electrical Enginekring.-The final lecture of this series was delivered by Mr. John C. Fell, in the reading-rooms of the Society 10th, Mr. Arthur Rigg, president, in the chair. The lecturer concluded this series by an explanation of the nature and action of secondary batteries. He pointed out their most valuable anctions for the regulation and storage of the electrical current in any case of electric light installation, the steady supply of a
uniform current being thereby insured, and the danger of darkness from the stoppage of the generator thereby obviated Mr. Fell concluded with an account of some novel results in thermoelectricity.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
FUEL $\overline{\text { AND WATER. }}$
ing you for the very
FUEL AND WATER.
STR, -While thanking you for the very prompt and favourable
review of Prof. Schwackhofer's work on "' Fuel and Water," edited by me, may I ask space for two remarks? The first is sthat your
review reviewer was too hasty in saying that I had nowhere replaced the
mettriaal lystem of measures by its English equivalent. In all the practical parts of the book he will find that this has been done, or
else that both sets of figures have been given side by side. In
the else that both sets of figures have been given side by side. In
theoretical investigations, or scientifio experiments such as those on fuel consumption, thee advantage of agreeing on one system of measures is now generally y recognised. At At least I may plead the
example of Mr. I. Lowthian Bell, who is surely practical as well as theoretical, and whose researches on blast furn
recorded in the language of the metrical system.
The second point regards the phrase "quantity." In mathematios tecond of countre is isased constantly for anyittying capabale of
being expressed in figures. Thus we should speak of temperature being expressed in figures. Thus we should speak of temperature
as a quantity-being measured in degrees of the thermometeras a quantity-being measured in degrees of the thermometer-
though perhaps we should not speak of quantity of temperature. though perhaps we should not speak of quantity of emperature.
As reards heat, the definition I have given p . 7 - is not my own,
but that of all Sunt it is measured by the evis vivanca or energy of motion of the
the the
constituent particles. It therefore varies as the square of the constituent particles. It therefore varies as the square of the
velocity, while temperature varies, to all appearances, as the velocity simply. To measure the heat in a body on this basis we must be
able to estimate both the sensible heat-indicated by temperature and the internal heat, and this weat-annot do direectly. But the
Pact that we must resort to indirect methods and consider the phenot we must resort to indirect methods, and consider the
phenomen of specific heat, \&ec., does not forfeit the advantage gained by having a clear conception of the "guantity" of which we
are in search. 9, Vietoria-
the clayton brake again
SIR,-I have read with great interest your article-page 168upon the dangerous character of the two--minutute brake unsed upon
the Midland Railway, and can fully confirm the opinion that it is only a question of time before a really disastrous collision ocours.
Several of the company's offlcials consider that " severe," but they are unable to point out one single statement as incorrect. The danger of the Clayton brake is not n mere matter
in mat incorrcect. The danger of the Clayton brake is not n mere matter
of opinion, but an antual fact. The collisions with buffer-stops at
Liverpool, Northamptoan, Bradford, and Leeds, also the numerous Liverpoo, Northampton, Bradford, and LLeeds, also the namerous
failures to act, both in in cases of emergency and in ordinary working, should cause the Midland directors yery carefully to consider
the danger of tho brake in use on their line. Hardly a day passes the danger of the brake in use on their line. Hardly a day passes
without the brako allowing a train to run at teast of fow carringe
lengths past a platform or signals on some part of the line. This would not be so very serious if the oblock system were worked under efficient rulos; but it must be specially remembered that, as pointed
out by Major MINrindin in his recent reports upon the Sikipon and
Wincont Wincobank accidents, the rules require the sigmal "line clear" to
be given for a train to approach when the line is clear to the home so gival, "even althhought theren may be an obstructeon on the hine en
foot beyond it," the keeping of the signals at danger being the only protection from acoident. It is, therefore, a fact well known to Midland drivers that if they run ift. past a "home" danger signal
they nro liablo to oome into ollision with another truin. With
the Clayton brake lioble to sit Catayton brake liable to fail at any moment, it will be seen the
sitution bomes one of great anxiety. I have before pointed out in your columns that on the Midland there is more double engine
working than upon any other line, yet the power over the continuous brake is not placed in the hands of the first or pilot engine driver, as the brake pipes are not extended to the leading ends of
the engines therofre, it is frequently the case that the first
driver seess danger but can only whistlo to call the second driver, sees danger but can only whistle to call the second
drivers attention to put on the continuous brake. Think
of the serious loss of valuable seconds here lost, when a quarter of a seond may mean the difference wetween
langer and safety. Very frequently the stenm and smon from the first engine obstruct the second man's viow to such an
extent that he can see neither road nor signals for minutes together. extent that he can see neither road nor signals for minutes together.
More than ten years ago I pointed out the advantage of continuing
the brake pipes to the leading ends of engines so that the control the brake pipes to the leading ends of engines so that the control
should be placed where it ought to be, namely, in the hands of the leading driver. The additional coot, of a few feet of pipe and a
hose coupling would be a mere triflo, yet the company still neglects to supply its engines with the required fittings.
Your readers will remember that about thr
Bramwell and Cowper were employed by the Midland to consider the merits of the Sanders and Clayton brakes. These gentlemen found that the Clayton system leaked off in less than two minutes,
but considered "two minutes are sufficient to admit of the application of hand sootches to the whocls,", Alt the vans have sinoe been
provided with the necessary scotches for the provided with the necessary scotches for the guard to jump out and apply to wheels when necessary in consequence of the brake leaking
off on an incline. This sootch idea was from the first absurd, and the company has how decided to pace a valve in cach van and stop
up the leak hole in the one piston under the van itself. If the of in two minutes as before, but if placeed to the other side the van
brake will remain on for a considerable time. This plan will come into general use in a few weeks, but already it has been found that great caro will be required in placing the handle in the right
position, also delays have taken place in roleasing the brake on the pons. Since writing the above another Clayton brake failure has
vand Lcurred. On the efth inst, the 9.15 a.m, train from Bradford to
Leodssisted of a tank engine and fourteen coaches. The brake was in good order when it started, yet when applied as usual to
stop at Apperley Bridge the whole train ran its full length past the platform. What would the result have been if an obstruction
had-as allowed by rule-been upon the line a foot beyond the Saxe-Coburg-street, Leicester, March 8th.

LABOUR AND MACHINERY

Str, - In your issue of the 29 th ult. you have favoured our Society with an article on the remarks addrossed to our rembers in
the 59th annual report. The object we have in view when sending these annual roports to the press is for the purwose of inditing
criticisms on our utterances, and then, whether adverse of friendly we try to profit from the oppinions of those who are outside our
ranks. Having this object in view we naturally expect that at canks. Having this object in view we naturally expect that at
imes the organs of capitalists will attempt the "pulverising" we cannot make any complaints; but on the o ther hand we generally In present instance we should have done so and of uttered no
In complaint as to your artiole, nor even attempted to reply, had it not
been one paragraph, that if it is not corrected will lead astray The paragraph reads as follows:-"They-the Steam Enemine Hakers- have apparently forgotten that engines are still running France." We confess that wo had almost forgotten the fact, as it is ot long ago, and the complaint we have to make is why did you
not tell our readers when this occurred? It is nineteen years sinc vorking engineer is t bo be convineed of of thotives risk hamed, and if likely to the
rom forcign competition, we think he showld hel from foreign competition, we think he should have had a cose of
more recent date than the one in question. The fact, however,
that theee locomotives were made in France does not, even as an
isolated instance, show any proof of foreign competition, for at that
time- 1865 - the locomotives engine builders of this country had so much work on lhand that, if we are to take Sir Thomas Brassey
as an authority, they did not feel any evil effects even at that as an
period.
He
He states in his book "On Work and Wages," page 183: ordered for the Great Eastern Railway from MM. Schneider. These misgivings would probably have been allayed had it been generally known that at the same time when the fifteen engines
were ordered from Creusot forty other engines were ordered from were ordered from Creusot forty other engines were ordered from
English firms, and that when MMM. Schineider were subsequently the price they had the construction of twenty-five more engines a ordered, the offer was declined." This, then, is the case of foreign
ond tor competition that the leading journal in the engineering trade tells
to its readers, when it holds up to ridicule the opinions of the artisan as to how a remedy can be effected to reduce the glut in the labour market Any who have a knowledge of the en revolutiow that oven whin the pas worked; yet an old fossil case of nainherry, wages, in furbished un as a bogey to frighten us, as though we were children who had
been previously spoiled by kind treatment. If we are to be been previousy spoiled by kind treatnent. If we are to be con-
vinced that foreign competition is dangerous to our own particular trade, let us have something more original than M. Schneider's locmotives, for since he made them wages have advanced, hours believe that the foreigner whas not a chance in the race, on country being handicapped with tariffs, and in others the stamina of mediocrity for a month in their workshops.
We trust we shall be pardoned for expressing an opinion on your
article, but we are compelled to say that it reads as though written in two parts, and by two different hands. The first part boasts of our increased exports of engines and machinery, whilst the second
introduces the bogey, and reads a homily on the apparition. The first part is literally true, for our exports have doubled since 1871 first part is iteraly true, for our exports have doubled since
when hours were reduced and wages advanced, thus stultifying the arguments of the second part. As a later proof of foreign com.
petition theory, permit me to quote two cases against the one named in your article. Within the past two years, Mr. Wiilson, with an accident when entering New York Harbour, and she had to be repaired before she could return. These repairs cost him
E1000, but could he have had the same work done in Hull it would not have cost more than $\& 3 c 0$. Another case of which I have
the full particulars is briefly this:-Inst year a Ger the full particulars is briefly this:-1ast year a German firm asked
for tenders for various ensinerino work, and as a result the price from German firms was $£ 1400$. The work has been executed by an English firm - that pays fair trade wages-for the sum of recompense for his services. These are realities of the present day and when artisans can read for themselves, they require quite on
amount of convincing that the Britisher cannot compete with any country in engineering
As previously stated, we do not object to criticism, but we do opinions left out, and only the "Ind the context containing mild In ouradaress we discuss the labour question in various branches
and various countres and sum up our opinions that one remedy for this oomplex question neither labour nor capital would be sufferers in the long run. We,
however, did not advise the "Laddite plan" for effecting this however, did not advise the "Luddite plan" for effecting this
alteration, as the artisan engineer claims to have a clear certififate in such cases, and when a reform has to be effected or a grievance then they have the Trade Union prerogative of declining to work save on their own terms. Knowing their character and disposition
so well, we advised them in our report in these terms-"We do not advise this course to be taken at once, but let us discuss and argue the question in all its bearings and effects, gain public
opnion in ins favour, and then"- This advice as given in our from which you extract part statements only, shows that We have some system in our madness and avoid rovolutionary
advice, but suggest reason and argument as the first step to effec what we desire and what, we believe, will benefit both employer
My letter has already reached such a length that I cannot trespass on your space further by replying to your comments on labour-saving machinery. I must therefore contont myseif by picturing in my
own mind utilising the strength and power of our great tidal rivers that their
force may supply the motive power for our mills and workshops,
 nature's gifts. When this happy time arrives skilled artisans may it on the river banks, and watching the water's flow that is
depriving them of work, may think the millennium has arrived break forth into songs of praise, and conclude with your solemn
dirge-" The next generation may be better off. The present generation can starvo slowly to death
As a counter opinion to that expressed at the end of your
article in relation to the power of the Steam Engine Society, permit me to conclude this letter by an extract froms leading journal in one of our principal cities, wherein they quote the paragraphs to which you take much exception: "We give this
quotation without any comment to show the view taken as to the solution of the most difflcult of industrin problems, by the our trade organisations." JMAES SWIFT, General Secretary, Stam Engine Makers' Society
General Office, Marketbividings, Thomas-street, Shudehill,
[We publish Mr. Swift's able letter with mach pleasure. Trut
an only bo reached by discussion; let us have both sides by all
neans. Let us take Mr. Swift's view of the importation of Iocomotive engines, and see what follows. Locomotives could not be ha at the time in England, therefore they were
obtained in France. Now the efteot of shortening the hours
of labour must be to make, let ns say locomotives or labour must be to make, let us say locomotives, harder to
be got in England than they were before. The result would
onot more work for the Steam Engine Makers' fully employed, but the importation of locomotives fromabroad. We
fhall be glad to and we grad to hearr what Mr. Swift has to oondense many on this suber, askect, him to sny definitely at
and hat point a contraction in the length of the working day must
stop in order that risk of forcign competition may not be incurred Secondly, would he herrit the number of steam engine makers to be increased if the working day was shortened ? and, thirdly, how
he would deal with orders to be exeouted in a given time-for
example, twenty locomotives are ordered from example, twenty locomotives are ordered from a given firm which
cannot complete them in the time without rumning seventy hours
a week. Should the firm take the order or refuse it:-ED. E.]
the creators of the age of steel."
Sirr, -My attention has been called to the fact that Mr. Carulla,
he general manager of the Landore-Siemens Steel Works, stated at the Royal Institution that "' ronders of the technical papers
may have seen from Mr. Mushets indignant letters that Mr. Jeans, nay have seen from Mr. Mushet's indignant letters that Mr. Jeans,
in The Creators of the Age of sted,' has done him scant justice as hie Creators of the Age of Steel, has done him scant
ns he fis from regarding Mr. Mushet as oone of the creators of
the age of steel." Such a statement, coming from a gentleman the age of stee. huch a statement, coming from a gentleman
ilke Mr. Carulla, has lod mo tor ce-xamine the point and I find
that Mr. Mushets patent of September 16th, 1856, which was his rrst patent, was for applying a mixture of " oxide of manganese and such carbonaceous matter as bituminous coal," reduced to
"small, pieces or powder," to molten iron purified by air in
Martiens process. But then In and find that four month ite
ously-on May 31st-Sir Henry Bessemer specified in his patent
the use of oxide of manganese in the powdered state and five months previously-March 15th-Sir Henry specified the use of carbonaceous matter, such as charcoal, anthracite, dc.., in his con verter for the purpose of improving the iron or steel produced in ferent explanations, vindiations, or self-glorifications; and besides, there is the inexorable fact that all Mr. Mushet's patents up to Mr. Mus, 1059, were taken out for the Martien process, which second patent Mr. Muw describes as "utterly worthless." In his only, such as coal-dust-no manganese ; and in his first two patents of September he mentioned iron only - no steel-as the mentioned ir use, Sir Henry's patents or March and May both -that Mr. Mushet mentioned the use of manganese without coal for producing steel; while Sir Henry had mentioned the use of Is it any wonder that Mr. Mushet's own friends would not pay an man who represent his patent for improving an "utterly worthless process" as a "dis"indignant" at the primary facts being brought to light? 'If I "invention" appears to consist in patenting for an "utterly Worthless process" the use of the materials that another man had four months previously, specified the use of in his own invaluable
process, I should feel that the evidence of facts and the dictates of truth would alike convict me of a wilful perversion of language.
The man I have done "scant justice" to is Sir Herry Bessem for I omitted to give the date of his patent which had specified the use of manganese in the Bessemer converter before Mr. Mushe knew of the existence of the Bessemer process ; but I shall take
care that in the new edition of "The Creators of the Age of Steel," now in preparation, the exact facts as to his honourable priority vill for the future be placed beyond doubt by any sane man.
Brixton, March 10th.

he fastest train in oreat britain

Sis,-The Scotch express is a heavy train, and not the fastest on compare fairly with the Dutchman and Zulu. The up trains ars allowed 147 minutes from passing Nowark to reaching King's Cross, i.e., exoluding 5 minutes at Grantham, they run 120 miles
in 142 minutes, as against $118 \frac{1}{2}$ miles in 143 minutes, the running time from Paddington to Bristol. The Great Western stops twice almost in Great Northern train now is the 5 p.m. down on Sundays, which
accomplishes the distance from Hitchin to Peterborough, $44 \pm$ mile in 50 minutes $=53 \cdot 1$ an hour. The 1.05 All these speeds were surpassed by the Leeds expresses in 1880.
 o Wakefield, $70+$ miles, or 5 4 miles an hour.
May I add that twenty years' constant experience of expresa
travelling has made me entirely incredulous of such speeds as 80 travesing has made me entircly incredulous or such speeds as 80
miles an hour in daily practice. On falling gradients a rate of 70 is not unfrequently attained, anything above is exceptional. The great merit of the Dutchman is the steadiness with which it main
tainszm arge portion of its journey
March 10th.
Sir, - In an article which appeared in your paper a week ago on this subject, I see that no mention is made of the Oheshire Linces
expresses, There are no less than fourteen of these daily, which expresses. Mherc are no less than fourteen of these daily, which
run from Manchester to Warrington, 16 miles, in 18 minutes which gives a specd of
for tiz more decisively the fastost trains in Great Britain
In justice to the Great Northern it is only fair to say that the cotche express is far from being their fastest train; for instance, 105) miles, in 2 hours and takes 2 hours and 9 minutes to do the same distance. One of the Cross at 1.15 p.m. This train runs to Doncaster, 156 miles, in
Cur Shours and 13 minutes, and after deducting the time nccupied in starting, stopping, and standing, the specd comes out at nearly
54 miles per hour, as against 50 of the Sootch express, and 56 of speeds, I should think that the Groa Northern trains, over some portions of their journeys, run at a steeper, and it is probable that the Midland, Caledoninn, and Blackheath, March 10th.

She i the efficiency of fans.
sin, -1 was pleased to observe in your last week's impression
hat Mr. Capell admitted his misrepresentations. I note also he calls his 3 ft . fan a little fan of 18 gauge iron. I beg to say that I have
made and sold over 6000 fans, not one of them being made in stouter iron than 18 gave up to 4ft. in diameter, and have secn
one of my ft. fans. give 28 in. of water pressure. He tells you the a Lloyd type fan in my life
He says the power to draw from the tube was surprising to all could be traced to another cause. He gives you the speed in feet per put the won on as in wed god smashed instrument, and tha he put the stop on as soon as broken; the instrument was not in
the suction two seconds bofore it smashed. He puts forwaril another table for a square zinc pipe, knowing at the same time it was round, with lapped joints in 3ft. lengths and soldered from end
to end. The speed of the 4 ft . fan, he says, was 1460 revolution per minute; this is also incorrect, as it was only 1044. He should
have remained at the trial and learned the data of powe hould I have scores of 4 ft . fans at work, and every fan user as well as at no time be surprised to see one of Mr. Capell's fans at work, a its operation would not be foreign to me, as 1 have already replaced comparisons between fans, I am quite aware how he performs the operations he mentions, and I have made fans of certain types for
the past sixteen years that would not a littlo surprise him, were hard see tom, much more to ward and inward blades ; and after what Mr. Capell has thought fit to say about comparisons of fans, I would now confirm Mr.
Hendy statement of my fan fft. discharging 35,000 cubic feet of air at 285 revolutions per minute.
46, Commercial-road, Lambeth, S.E.,

wonks iv woon

SIR,-Will you kindly allow me to call the attention of your be held under the auspices of the Carpenters' Company and thy Joiners' Company of the City of London, at the new hall lately
crected by the former Company, at the corner of Throgmorton erected by the former CC
avenue and London Wall.
It is well known thet.
It is well known that these two companies had for many years name they bearr, and ati ind soubthotessowing to this faot that Brition
workmen, and especially Londoners, attained to their rare excel
name they bear, and it is doubtless owing to this faot that Britioh
workmen, and especially Londoners, attanined to their rare exee.-
lonce in those branches of art. The days of restrietion and search
reason why the spirit of emulation, so rife in these days, should not be evoked to produce similar results. These two companies have, therfore, determined to invite British workmen generally to number of prizes, details of, which can be had by application to the Clerk of the Carpenters' Company. The number of responses
received warrants the belief that there will be a good collection of auticles of interest, of which a large number will be made for the
occasion.
I hope that many more of your readers will still find time to prepare something for the exhibition, and as it is proposed to form oinery, the committee will be much gratified by receiving merely for the purpose of exhibition any models of drawings of existing or ancient works in wood, which would be of interest in showing the kind of work done both in the olden and the modern times. The exhibition will be opened about the middle of May, and will morning till five o'clock in the evening on four days in the week and till nine o'clock on Wednesdays and Saturdays.

William Willmer Pocook,
Master of the Carpenters' Company
Carpenters' Hall, Lond March 10th.
friotion of water in long pipes.
SIR,-I wish to say a few things in answer to your correspondent
C. A. C." (1) Referring to his diagram in your last issue, I may say that the power necessary to discharge 3000 gallons of water per minute through $44,880 \mathrm{ft}$. of 12 in . pipe would be nearly the same whether it was forced from A to C to discharge at B , or direct from A to B . Undoubtedy the best course is fromA to B . In either circumstances would, according to Molesworth's Tables-which your correspondent used-be about 1346 ft . I find that other ables give a higher head; but disregarding this, and taking 1346 as the true head-as it will answer my present purpose-we have $44,880 \mathrm{ft}$. of 12 in . pipe. This is termed "loss of head due to friction," and is altogether irrespective of the height of 50ft, in the diagram. (2) It will thus be seen that the sending of this quantity
 a great length of 12in. pipe gives rise amount of friction Your correspondent
will not be surprised at this when he
remembers that the friction of liquids, for low velocities, increases tremendously with increase in velocity. In high speeds the increase being in proportion to the
cube of the velocity, so that four times the velocity means 4^{3} times cube of the velocity, so that four times the velocity means 4^{3} times
the amount of friction. In the case before us, however, it does the amount of friction. In the case before us, however, it does
not amount to quite so much as this. (3) It follows from this that to do the work set before us in this case economically, we must reduce the friction by reducing the velocity. Taking it for granted that the quantity of water and length of pipe are fixed
let us suppose that the 12 in . pipes are replaced by 24 in . pipes let us suppose that the 12 in . pipes are replaced by 24 in . pipes.
Now note the result. Taking the same tables as before, we find hat to discharge 3000 gallons per minute thre this pipe a head of about 70 ft . is necessary. Add this to the origina
50 ft ., and we have a total of 120 ft . head to do the whole amount of work. Hence the power required is that which will raise 3000 gallons per minute to a height of 120 ft . Your correspondent wil doubtless see the reason of this great decrease in the power required. The velocity is reduced from 10.2 ft . per second to
about 2.45 ft . per second. In other words, we have four times less elocity in the 24 in . pipes than in the 12 in . pipes; and from what has been said it will be clearly seen that this means a tremendou eduction in the amount of friction.
Bradford, March 10th
Bradford, March 10th.

BOLTLESS RAIL JOINTS.

Str,-I was glad to see the letter on "Boltless Rail Joints" in your last week's issue, as I am much interested in the Vignoles permanent way. As the tendency now is to reduce first cost as much as possible, I am of the opinion that the Vignoles way will, under
certain circumstances, be more used than it has been. In fact, it certain circumstances, be more used than it has been. In fact, it is well known that in the last few years several hundred miles of general use ; the Northern and Eastern Railways of France and nearly all the German lines have adopted the Vignoles section For heavy traffic and express running there certainly is nothing like the bull-headed rail, 80 lb . to 85 lb ., laid down by our principal railway companies; but I see no reason why a road of the above mile, should be laid for lines rumning through thinly populater agricultural districts, whose earnings will only be about 112 to £15 per mile per week, when a Vignoles way laid with rails, say,
70 lb . to the yard, at a cost of about $£ 1100$, would be ample. In 70 lb . to the yard, at a cost of about $£ 1100$, would be ample. In act, very heavy traffic can
way of this description.
way of this description.
It is hardly necessary to enter into the peculiar merits of the various systems, as that has been so often done. I simply advocate advantages may be summed up as follows:- Small first cos elasticity of road when laid, and small amount of damage done i truck accidentally gets off the road. This on a double-headed road means heavy repairs in chairs and often derailment of other
trucks. It has this disadvantage, that owing to the lack of weight in the road it is rather apt under heavy traffic to knock out of line especially on a single track; this makes it rather more difficult to keep in order. It can, however, be maintained with the usual man per mile. On some of the heavily laid lines where there is no much traffic three men are kept to four miles, while on others I
have known as many as five men to $2 \downarrow$ miles. You will however think that I am wandering from the subject, viz, rail joints, but only wished to show that although the Vignoles road is not hel in much favour in England, yet owing to its small first cost it is eing more used, and therefore anything that would tend to improve it should receive consideration. With regard to the Gibbon rail oint I should like to ask the question that directors always ask
irst, viz., "What will it cost $\%$ " Secondly, what advantageleaving out the question of bolts-has it over the ordinary fishplate with a sleeper under the joint? There is a great advantage in not requiring bolts, for besides the continual labour in tightening required, the cost of renewals is an item in maintenance amounting 18 I have found to nearly $£ 1$ per mile per annum. The test of the and I for one should like to see a piece laid down in Fin in a siding, March 10th.

CLIMBING TRICYCLES,

Sir, - In reply to the various correspondents on this subject, I would say that having no intetest in any particular machine one else, but solely to contend for right principles in construction. nowledge of cycling and also construction, and I judge a tricycle y the expenditure of power required to arive it; also its speed in "National" showing its superiority in any point, but rather the National" showing its superiority in any point, but rather th
reverse. It is absurd to talk about "enormous frietion" an
"eomplication" in the chain system,
per cent. of the makers of tricycles adopt that mode of transmitting the power from the crank? The fact is there is practically very little friction in properly constructed chains, and certainly no
complication. It is also useless to make any comparison with the bicycle, as th. It is also useless to make any comparison with the Stability affects one but not the other, viz.: It matters little with the bicycle whether the rider is elevated 20 ft . or 5 ft ., but in the tricycle it is a very material point as to the centre of gravity with a limited wheel gauge. Therefore the object of both chain and stirrup is to lower the centre of gravity and thus obtain greate stability.
I shoul
I should like to know if the dynamometer was applied to any mer tricycle at the show, and with what result, because there i
0 more weight or friction in the "Monarch" than in the "National;" therefore with the same size wheel or crank the result must be the same? But I do not accept such a test; should be carried out during the running of the machine over a balloon in a coal mine as to test the capabilities of a tricycle and down stairs.
There are many other important details wanting in the pedals, rate of pedaling c., centre of gravity is lowered and a chain or a stirrup, because the centre of gravity is lowered and a better position obtained to per-
form the work required and the safety of the rider increased. For the information of those who wish to know, I may add that refer a modification of the "Merlin" system, and shall be gla variable road. H. ALDRidge. 40, Oxford-street, Reading, March 10th.

SIR,-Your correspondents in last week's issue appear to over direct-acting tricycle, when, however, it comes to ascending lon steep inclines, with possibly a bad road and an adverse wind, the work of propulsion is enormously increased, sufficiently so to severely tax the powers of an average good rider, even whe conditions, he dismounts and pushes his machine before him such It is here, therefore, that a well-made tricycle with multip gear, which can at will be speeded down, say, from 48 in . to 30 in must have a decided superiority over a direct-acting one of equal sized wheels. Given good roads and a fair wind, the increase The second point overlooked is that a direct-acting tricycle must o necessity have its seat placed at a much less safe height, when the distance between wheels-which is common to both-is considered. The difference in the height of the seat between a geared and direct-acting machine is roughly
tion of the seats will be seen These two triangles.
The addition of the stirrup arrangement partially meets
his drawback; but as a set off, it entails occasional bruises, by the shins coming
in contact with the cranks besides which in the case of spill it may involve entanglement. London, E.C., March 12th.

Sir,-In confirmation of your able article in favour of the direct your readers that it is by no means unusual for the simplest ide to appear almost last, and as the result of the most complicate experiments
For fiftee
For fifteen years I have been carefully experimenting with tions have bicycles, \&o., as the Patent-office can show; my invenments, but they were chiefly to increase power by adding various inds of mechanism. Gears of many sorts and varions various have, however, now been dropped, for by slow darreus speeds earned that it is impossible to increase the power, which in the bicycle and tricycle is that of the legs only. The improvements, my opinion, can only arise in the direction of economy in spending the strength
Hence I have come to direct action, which has enabled me to
publicly exhibit, at the Agricultural Hacl, publicly exhibit, at the Agricultural Hall, all this week, the
following challenge, which ought to answer your correspondent' letter conclusively. The only response, so far, has come from two who have completely failed and two others who have withdrawn after accepting the challenge.
[Copy of Challenge on Stand No. 10.]
"Challenge for every other tricycle in the Show."
"As a test, to prove the weakness and loss of power existing in tricycles with chains and cogs, I hereby challenge anyone to ascend
these stairs on one of those machines, treading fairly alternately as daily performed here on my "Old" National Roadster at 4 and 8 o'clock."
"Note.-A tricycle that can be ridden up and down a flight of
stairs is far easier than any tricycle yet heard of.
March 11th.
H. J. Lawson.

PROPELLER SHAFTING.
Sir,- The proposal made in your number of the 7th inst., to support the intermediate part of steamship's screw shafting lying girder, will, even if it was not practically too expensive and took up too much room to carry out, simply make the bending strain or angle more acute and sudden next both the base plate carrying the same at the propeller end-also one end of the shafting, and thein distributed over the whole length. If the curve A B , under the true line E, in an exaggerated form, represents the drooping or manently or as the momentary yielding cansed by passing waves, the length of shafting on which the propeller is keyed, and which
\qquad
A
may be considered as rigid within the stuffing box, would then shaft joins the shafting, turning within at C, where the propeller same thing will happen at the crank end D.
Say the length of shafting that is subject to flexure to be every passing wave, then at every revolution the end of the propeller shaft is forced out of truth equal to its describing a circle lin. in diameter. This straining and curving as each wave passes breaks. In your number of $18 t \mathrm{th}$ February, 1882, I described a coupling for quiok disconnection to save steamers from falling into ooupling with a slight modisicabled, and pointed out that such a on shafting arising from the lines of a vessel being altered from any eause. Such a coupling placed about the middle of the length of shafting, or preferably nearer the crank, and having within itself in a limited range the properties of a universal joint, would take
up and neutralise all passing strains thrown on it either by the
weakness of construction of the vessel or the weight of cargo March 8th.
Married, and
.
log Chip.
the merchant shipping act
SIR,-The strong opposition raised to the new Merchant Shipping worthiness is not commented upon. Is it not possible to hav some record of a vessel's stability and condition of lading under

which she sails? Could not underwriters and owners be induced to examine more closely into the question of a vessers staby the construction of a metacentric curve, as applicable to all classes of vessels, it would be easy to see and determine the relative value of

the vessel's stability under different conditions of lading. The accompanying figures show a metacentric scale or curve for each centre of internal capacity, it is possible to see the value of the metacentre under any condition of stowage, and with any variabl kind of cargo at different dranghts of water. If a scale of this
description could, in the case of new vessels, be deposited at the

Board of Trade, it would be possible to examine and see the probable stability any one vessel may have under the condition of determine the draught to which the vessel should be laden to sea way.
Old Cha Iton, Maroch 10th.
[For continuation of Letters sce page 210.]

CURRIE AND TIMMIS' ELECTRIC RAILWAY SIGNALS.
the glouoester wagon works company, gloucester, engineers.
 under them by the Gloucester extensive premises we recently extensive premises we recently
witnessed the operation of a set of wituessed the operation of a set of the signals. Primarily the value of
the system is that it enables signals to be worked at any distance from a xignal-box or station; but several other important collateral advan. tages are obtained, including great facility of arrangement of large signal plant, simplicity of the work. ing apparatus and the arrangement, and for interlocking and the immunity from danger, secured by he fact that any disarrangement of any part of the apparatus or con danger. In the apparatus employed the long-pull magnet. The idea of using a magnet to operate semaphore arms is not, it is known, new; but no form of magnet hitherto brought out has had a sufficient range of powerful pull to permit the realisation of the idea. Half an inch range is as much as has hitherto been available, and even with this the strength of the pull has decreased approximately as the square root the magnet and the armature, and vice veras, and consequently the velocity with which the armature of a powerful magnet came into contact with it was so great that the shock to it and any attach ments made to it for effecting mechanical work were so great as to make it almost or wholly impos. sible to use the magnet for such purposes. Moreover, the rapid decrease of magnetic attraction, as the armature leaves the magnet, necessitated the use of great
electro-motive force, and a powerful electro-magnet in a power-

greater distance than in any other electro-magnet of the same weigh and with the same current. exercises a practical working pull of several inches, and by the use of
various sizes and shapes of the various sizes and shapes of the
movable parts of the armature and magnet, the pull can be graduated according to the requirements of any particular case. It is simple of construction, and the wire helix is thoroughly protected. A very small current is required, and a very small electro-motive force, and conse quently there is no danger in hand ing the wires when the magnet i t work

This magnet we illustrate in two forms by Figs. 1 to 6. From these it will be seen that the single magnet, Figs. 4, 5, and 6, consists of a central soft iron tube, the lower end of which is attached to a soft iron plate, which at its periphery supports a larger soft iron tube, the annular space between the two being filled with wire of various sizes, generally 048 . A brass plate cover the upper part of the magnet so made. The armature consists of a central core, the lower part of which is covered by a brass tube. At the top of the brass tube the core is and above this it supports a soft iron disc, with a flanged periphery, of the section shown at Fig. 4 . The outer part of this flange is adjustable as to the amount by which it projects downwards from the disc, and it is, moreover, in some cases made with a serrated or waveformed edge, as shown near Figs. 4 and 6, the object and the result of this being that the pull by the magnet is not suddenly increased as the disc nears the magnet head. It obtain any considerable pull even at half an inch, and this great | electro-magnets," because the magnetic attraction in them is |short core act as a solenoid, until the core has entered a consider| | obtain any considerable pull even at half an inch, and this great | electro-magnets, because the magnetic attraction in them is | short core act as a solenoid, until the core has entered a consider- |
| :--- | :--- | :--- | :--- |
| power is nearly all wasted at the final part of the pull. These | much more evenly distributed over a long range, and, at the | able distance into the tube. This gives the first part of the pull; | | disadvantages are, however, obviated in the "Currie long-pull $\left.\right|_{\text {same time, a much stronger initial pull can be obtained at a }}{ }^{\text {a }}$ and as the strength of the pull on the core is decreasing, owing

CURRIE AND TIIMMIS'ELECTRIC RAILWAY SIGNALS.

to the core having reached the position of greatest solenoid effect, the disc head itself is nearing the magnet head, and the pull on it consequently increasing. Hence the approximately equal pull through a considerable range. The sudden contact by a violently strong pull, which is common to ordinary magnets when the armature reaches the magnet, is avoided by the form of the disc periphery. Owing to the use effective pull just at contact is prevented by the loss of vertical effect consequent upon the diversion of the attraction or of lines of force-or of amperrian currents-into a direction radial to the magnetic centre or normal to its cylindric surface, which results from the capping of the magnet pole by the armature flange. Figs. 1 to 3 show the magnet as arranged in pairs, to obtain a double length of pull, as required, for working signals, when the semaphore is required to stand at the three positions of line clear, caution, and danger. When the armature of the upper of the pair of magnets has reached its lowest point, the armature of the lower magnet has reached a position in being free to slide within the core of the upper armature. This is sufficiently obvious from the engraving to make further explanation unnecessary. The curves given at Fig. 7 show the variation of the pull of the magnet as the armature descends. This is reproduced from a diagram, and gives the pull in inches and kilogrammes. A good deal more might be said respecting this magnet, and its many possible applications; but
whole of this arrangement is so simple as to require no urther explanation. Figs. 9 and 10 show the application of the modified form of the magnet, made, as already stated, with a view to holding the semaphore in either of the Three positions, "line clear" |, "caution"
, and "danger"-. ments so often pointed out by Colonel Yofland, Major Marindin and other officers of the By Colone Yolland, Major Marindin, Trade.
At Fig
At Fig. 11 is a sketch of the arrangement of the signals and Wagon Company's Works. Three pointlevers of the usual kind are shown, and ten signal levers by the new system, with the accompanying electrical instruments. In order to describe the arrangement of the wires, contacts, and commutators employed in this signal-box, with the various connections, we must refer Fio the details shown at Fig. 12 and 13, and the diagram plan Fig. 14, which shows the coupling up of levers, resistances, an At Figs. 15 and 16 we show the
system is applied to existing signals, so that they moy the worked by old or new system independently,
In describing the action of the various parts we may at first refer to the signal levers or handles as we must call them, as they are so small. In Fig. 11, which is from a photograph taken from within the signal-box at Gloucester, the switch levers, numbered 1 to 6 , are coupled up, the remaining four were

not only act as resistances, but they show the signalman when the current is passing and all is working properly. When the armature of the magnet is pulled "home" and the signal is free -i.e., "line clear"-a contact switches on a small return return current-which works a small magnet and tell-tale signal

the electro-magnetic phase of the matter will occur to most electricians, while engineers will be satisfied to let these gentle men amuse themselves with the physical side, so long as they know that they are provided with the practical fact that such a application.
aplied engraving, Figs, 8, 9, 10, will be seen the magnet as applied the a signal, with the semaphore balanced at mid-length, that a box containing the magnet is at the side of the post opposite to that carrying the arm and spectacle. The spectacle forms the balance weight, or rather weight by which the semaphore is held at "danger," when the electric circuit is broken and the magnet not acting; the rod between spectacle and semaphore is jointed to spectacle, so that when the spectacle is down, showing danger, its pivot or spindle, and the rod joint upon it, are in line with the rod, and consequently the semaphore is locked in that position against any forces other than the pull of the magniet upon its quadrant at the other end of the spectacle plate. The
not. Levers 1,2 , and 6 are forward, and the corresponding lamps are incandescent. In Figs. 12 and 13 these small switch levers are shown to a larger scale, and the Swan lamps used as resistances shown in Fig 11 From these engravings it will be peen that when the lever Y is in the position Z the contact piece C is not touching L, so that the current now going to the signal magnet must pass through the lamp into L. Only a very small current is thus passing, this being the position of the lever when the armature is upon the magnet. When the lever is in the position \mathbf{X}, see Figs. 12 and 13, the semaphore stands at danger. When the lever is pulled over to the position \mathbb{Z}^{1}, the contact piece being in contact with 1 , the full current passes to the signal magnet. This is required to start the magnet and pull the semaphore down. This is done momentarily and the lever will not remain in this position unless purposely held, because the spring S pressing against the quadrant R causes the lever to take the position Z . The quadrant and spring also come into
play when the hande is pushed beyond \mathbf{X}. The Swan lamps
or "repeater" in the signal-box, and thus tells the signalman the position of the semaphore. The small resistance wire which takes up the return current, instead of allowing it to go directly the magnet from 5 ampes the amount of current passing throug the electric current A reference to Fig. 7 shows that 125 am pères is more than sufficient under all possibilities to keep the signal arm down-i.e., "line clear." Where only one signal is worked, a single switch is used; where two or more signals are worked from the same box, multiple or commutator switches are used, making it impossible to "free" more than the ight signals at one time
We may now refer to Fig. 14, and it will be seen from this that all the signals and points which are not actually required to be in operation are locked, and cannot be worked at the same time as any others.
As an example of the method of working, let it be supposed that an up main line train is required to be sent on to the branch. It will be necessary to work thepoints7, Fig. 14, thelocking
bar 6, the signals 1,3 , and 5 . The normal position of points
being as shown on drawing, it is necessary to pull the locking being as shown on drawing, it is necessary to pull the locking and P P (7). The points' are then set right for the branch line. Then tracing the connection onward we come to S S (8), down branch point lever, which must be back or in its normal position. Then from S (8) we come to E (3). By putting switch (3) forward the connection is made between E H L (3). On the switch touching L (3), current runs through B B (2) to signal 3, which
is lowered. Also the current runs from H (3) to E (1), and on is lowered. Also the current runs from H (3) to E (1), and on
the switch (1) being put forward, E H L (1) are connected, and signal 1 lowered. Similarly the current runs through
P P $(7), \mathrm{S} \mathrm{S}(8)$, E H L (5), B B (4), B B (10), to signal 5
Por instance, in the example of working just given we send an up main line train on to the branch. ThereBy reference to the diagram it will be seen that if the signal 10 were lowered, i.e., the switch (10) put forward to make connection E H L (10) then B B (10) would not be connected, and therefore signal 5 , up branch departure, could not be lowered. Similarly the other signals are all interlocked, so as to secure absolute safety. It may be here mentioned that the points and locking bar 6, 7, 8, may be worked either by electrical power or by the ordinary levers in the usual manner,
the levers in the latter case being furnished with the contact the levers in the latter case being furnish

Bill the Corporations of Liverpool and Birkenhead, Sir Humphrey and Irwell Navigation Cock and Harbour Board, the Mersey Western Railway Company, the Shropshire Union Railway Company, and Mrs. Adelaide Watt, all of whom with the exception of the last named opposed the Bill of 1883. Several petitioners against the Bill have reserved their right to appear Mr. Pember, Q.C., in the course of an opening speech lasting over four hours, referred to the circumstances under which the promoters came to Parliament, and then proceeded to explain to their lordships the details of the present scheme
The Committee met for the first time on Tuesday morning there was a remarkable and a crowded. At the first meeting there and on each successive sitting the Committee room has been more than well filled. Mr. Pember, Q.C., now the acknowledged leader of the Parliamentary Bar, again appeared as principal counsel on behalf of the Bill, supported by four other counsel, and the twenty or so learned gentlemen appearing for the various opponents were pretty much the same as they were last session, Mr. Pope, Q.C., Mr. Aspinall, Q.C., Mr. Bidder, Q.C., and Mr. Littler, Q.C., being again conspicuous.
was unsuccessfully submittedably, that the scheme which was unsuccessfully submitted to Parliament last year was incomplete in regard to one most important particular: As originally lodged the scheme included proposals not

Fig. 7

employed, which is furnished by secondary batteries, which for several reasons the Messrs. Currie and Timmis consider better than primary batteries. There is, as already explained, a condown. "line clear," so that the normal condition of arms are is at "danger." Every signal arm is pulled down "line clear" by its magnet; and, though at the moment of maximum 5 amperes is sufficient, a maximum current is provided of 10 amperres. When the armature of the magnet is home, i.e., the
signal arm is down " line clear," and the resistance is switched signal arm is down "line clear," and the resistance is switched in automatically, the current is reduced to the "retaining" pull which is taken at " 2 amperes. The time that each signal arm may be down "line clear" is calculated at twelve hours out of
each twenty-four. The times that each signal arm may be lowered in each twenty-four hours is calculated at 150 . On hese data we have the 2 lowing as estimated cost of current:seconds $\times 10$ ampères $=50$ ame

Amp. hr., per signal, per 24 hours $=3.2 \mathrm{\prime} \quad "$
C. as above $=3 \cdot 2$.
E. $=$ C.R. $=10$ (max. current) $\times 5=50$,
H.P. $=\frac{\mathrm{C.E}}{746}$ Watts $=\frac{3 \cdot 2 \times 50}{746}=2$.

This electrical expenditure per signal arm per 24 hours $=$ 2 H.P. $=1.2 \mathrm{~d}$. This cost is based on the assumption that E. $=50$, whereas the current used is only one-third of the
maximum provided, which is double the maximum used, and the nventors thus estimate that the real cost of signal arm per twenty-four hours is not much more than $\frac{1}{4} \mathrm{~d}$.

THE MANCHESTER SHIP CANAL.

The Manchester Ship Canal Bill on Tuesday came before a committee, consisting of the Duke of Richmond and Gordon, Lord Barrington, Lord Lovat, Lord Norton, and Lord Dunraven.
The Bill, as originally presented to Parliament last session, proThe Bill, as originally presented to Parliament last session, proposed to sanction the provision of an efficient waterway to
Manchester, by means of dredging the estuary of the river Manchester, by means of dredging the estuary of the river
Mersey as far as Runcorn, from which place a canal was to be Mersey as far as Runcorn, from which place a canal was to be that inasmuch as the promoters had failed to deposit plans and sections of the estuary low water channel works, they had failed to comply with the requirements of the Standing Orders; and this decision was so far sustained by the Standing Orders Comto proceed on condition that all powers relating to this portion of the scheme should be struck out of the Bill. As amended, therefore, the project went before a Select Committee of the
House of Commons, and after a more or less patient hearing, extending over a period of more than six weeks, the Bill received the sanction of the Lower House. In due course it reached the ommittee stage of the House of Lords, and after another search ing inquiry, was rejected. The promoters, not disheartened, and the scheme now submitted to Parliament is the result of their labours. The principal opposition to the accordingly find as the eight petitioners appearing against the
only for constructing a navigable canal between Runcorn on the Mersey and Manchester, but for making a channel in the estuary of the Mersey; but in the preliminary proceedings before out on technimers the last-named portion of the scheme was struck into by Committees of the two Houses was to thently inquired into by Committees of the two Houses was to that extent im-
perfect. If the scheme so modified had been sanctioned it would have been necessary for the promoters to come to Parliament again for a separate Bill for dealing with the estuary, but the Bill being rejected by the Lords' Committee, an opportunity Was offered for the presentation of a complete scheme this year,
and this could be the better done because the House of Commons Committee had advised the projectors to invite the authorisation of Parliament to the proposed operations in the estuary of the Mersey as a part of the canal scheme, rather than rely upon the
powers of the Mersey Commissioners in this respect under their powers of the Mersey Commissioners in this respect under their
Act of 1842 . Defeated last session, the promoters accordingly re-inserted this part of their scheme in such a form as to avoic all difficulties as to technicalities, and as Mr. Pember pointed out in his opening, they have now
by which they will stand or fall.
The first day's sitting was entirely occupied by Mr. Pember's opening statement; half of the second day was devoted to an examination by that learned gentleman of the various petitions against the Bill, and then came the evidence of witnesses on very much the same as that last session, inasmuch as the circumstances were almost identical, and the new portion, or rather the reinstated portion of the scheme, did not require more than a brief explanation. After recalling the circumstances
of last year in both Houses of Parliament, he explained that the deep water channel proposed to be made in the upper Mersey would be 300ft, wide at Runcorn, where it would begin and really join the canal proper, and it would widen gradually to 1000 ft at Garston at
the other end. The depth would be 12 ft at low-water spring tides, the other ond. The depth would be 12f. at low-water spring tides, 20ft, at low-water neap tides, and 40 ft , at high-water spring tides.
Under Runcorn railway bridge there would be a headway of 75 ft . at high water of spring tides, and a proportionately greater headway at other states of the tide. It was proposed to regulate the channel by training walls, constructed with the material gained in excavating for the canal; and the real object in regard to this part of the scheme was to rectify the sinuosities of the channel already existing. The length of the canal itself, from Runcorn to Manchester, would be $21 \frac{1}{2}$ miles, with four sets of locks. The total fall from Manchester to the river would be only 50 ft , or about $2 \frac{1}{\mathrm{f}} \mathrm{ft}$. to the mile; the minimum width at would bottom would be 120ft., but at each end the bottom width would be much greater, so that two large vessels would be able to pass each other, and still leave a roomy highway. Mr. of the Suez Canal or the Amsterdam Canal. and for the rest of his speech enlarged upon the immense sifantages which the construction of this canal would confer, not only on the zommercial interests of Lancashire, but on the trade of the United Kingdom. The inquiry is likely to last over many days.

Sir W. Srrmens,-A perfeet likeness of the late Sir W. Siemens has been published by the Universal Printing Company, High Holborn, It is an admirably executed steel engraving rather veys more perfectly the character of the face of the man, than veys more perfe
any photograph.

SHIPBUILDING IN 1883.
The following figures, showing the enormous increase in the
tonnage of shipping built last year, are from the Nautical tonnage of

Steel Steamers Built in the United Kingdom and Registered as New British Ships.				
$\begin{aligned} & \text { Ports } \\ & \text { where built. } \end{aligned}$	$\begin{aligned} & \text { No. in } \\ & 1883 . \end{aligned}$	$\begin{aligned} & \text { Gross } \\ & \text { tonnage } \\ & \text { in } 1883 \end{aligned}$	No. in 1882	$\begin{gathered} \text { Gross } \\ \text { tonnage } \\ \text { in 1882. } \end{gathered}$
Clyde ports	55	94,257	37	
Tyne ports		835	- 2	255
Sunderland	2	3,573	2	08
London	14	3,386	8	2,514
Southampton			1	340
Livorpool	1	2,993		594
Barrow	3	7,512	3	12,116
Belfast	5	16,083	3	9,863
Dundee	8	12,137	. 10	4,043
Grangemouth		2,236	- 2	1,172
Kirkaldy		4,906	1	1,863
Leith		1,304	1	1,640
Other ports		2,380	2	368
Total	103	156,619	64	113,389
Iron and Steel Sailing Ships Built in the United Kingdom and Registered as New British Ships.				
Ports where built.	No. in 1883.	$\begin{aligned} & \text { Gross } \\ & \text { tonnage } \\ & \text { in 188. } \end{aligned}$	$\begin{aligned} & \text { No. in } \\ & \text { 1889. } \end{aligned}$	Gross tonnage in 1889.
Clyde ports	49	64,045	49	650,154
Tyne ports			-. 1	251
Sunderland	- ${ }^{3}$	4,663 3,479	$\because \quad 1$	7,436
London		${ }_{91}$	5	877
Southampton	8	14,874	4	8,001
Liverpool	11	19,433	11	21,345
Barrow	1	2,129		
Cumberland ports	4	7,439	.. 5	7,370
${ }_{\text {Belfast }}^{\text {Aberdeen . }}$.	3	7,723	$\cdots \quad 4$	7,289
Dundee	3	3,021	3	3,226
Leith	. 2	3,765	1	1,032
Other ports	. 1	8		
Total	87	130,660	91	126,395
Of the total for 1883 , nine sailing ships, with an aggregate tonnage of 10,583 , were steel. Of the total for 1882, twelve, with an aggregate tonnage of 10,156 , were steel.				

aggregate tonnage of 10,156 , were steel.

South Kensington Museum.-Visitors during the week ending March 8th, $1884:-$ On Monday, Tuesday, and Saturday, free, from $10 \mathrm{a} . \mathrm{m}$. to 10 p.m., Museum, 11,456 ; mercantile marine, Indian
section, and other collections, 2792 . On Wednesday, Thursday and Friday, admission 6 d ., from $10 \mathrm{a} . \mathrm{m}$. to 5 p.m., Museum, 1421 , mercantile marine, Indian section, and other collections, 125 ,
Total, 15,794 . Average of corresponding week in former years, Total, 15,794. Average of corresponding week in former
15,343 . Total from the opening of the Museum, $20,826,541$.
Steel at the Royal Abtillerry Institution, Woolwich,-On Artillery Royal Artillery Institution, on the present condition of the manu facture of steel. General Smyth, the commandant at Woolwich, was in the chair. The lecturer first drew attention to certain statistics of the question. He showed by diagrams the relative quan tities of steel and iron made in the principal countries in the countries in the manufacture of wrought iron, but in steel, Germany be excluded, it appears that England does as much as all other continental Powers put together. America has taken considerable strides in steel making, but still takes large quantitie from England. Belgium and Spain stand in a complimentary
positionas it were; Belgium makes steel from imported ores, her own being exhausted, and Spain making no steel, but largely ex porting ores. France comes next to Germany in steel making After dealing with crucible, open hearth, and Bessemer steel, ani the standards and tests employed for steel, especially by Si Joseph Whitworth, the lecturer dwelt on the application of these to military purposes, and some others, especially noticing guns-
now wholly made of steel-small arm riffe barrels, gun carriages, axletrees, bayonets and swords, armour-piercing shells, common and shrapnel shells, torpedo tubes, armour plates, rails, girders, and propeller shafts, \&c. The lecture was ably and clearly given, the lecturer's main difficulty being the vastness of the subject. He had repeatedly to dismiss sections with a much briefer notice tiscussion, which experience shows can seldom be brought on to any purpose after a lecture exceeding an hour in length. A dis cussion followed, in which the chairman, who only ceased to be a member of the Ordnanee Committee on his appointment as com mandant, took a leading part. The general tendency of the dis sion that England has need to watch closely what is done in stee on the Continent, especially in the matter of projectiles and armour. It was noticed that an American Commission has reporter that in war material, steel on the Continent is ahead of steel in England. Some sense of relief was evident at learning that the 18 in , of iron, did not represent a supply of similar shells to foreign Power. The following specimens were lent to the lecturer on the occasion:-From the Gun Factories, Laboratory, and Car riage Department, test pieces, gun hoop, torpedo tube, shrapne shell, and axletree ; from Enfield, barrels and bayonets ; from Si J. Whitworth's, the 9 in. shell noticed above, and a series of tes
specimens ; from Hadfield's, specimens of steel bricks, specimens; from Hadfield's, specimens of steel bricks, sc., con

torted without fracture; from Gilchrist, phosphorus pig and steel articles made on his process; from Middlesbrough, steel rails Scotland Steel Company, steel plates and bars for shipbuilding Cammell's armour, Landore mild steel twisted in knots ; Atlas Company (Brown's) photograph of armour manufacture; South Kensington Museum, diagrams of processes of manufacture an steel tubes with heads drawn in, and shells stamped from discs of | $\begin{array}{l}\text { steel t } \\ \text { steel. }\end{array}$ |
| :--- |

RAILWAY MATTERS．

The Whitechapel Extension of the East London Railway has

 een opened for public traffic，THE Daily News hears that the Railway Commission Bill is now House of Commons before Easter．
Jacoo KobyLanskr，a fitter on the Great Western Railway，has
been accidentally killed at St．Clear＇s station in a remarkable way He was repairing a truck，which was supported on jacks，which
gave way，or rather launched the truck，and Kobylansli was struck on the shoulder by a buffer and crushed into the bank，death being nstantaneous．He was an elderly Russian Pole，and had been employed by the company thirty－two years at Carm．
his exile from his country，where he owned property．
hre report of the Registrar of the London Coal Market states that the total imports by rail and canal in February amounted to
547,720 tons，against 524,438 tons in 1882 ．The tonnage carried by the various companies were：－London and North－Western，126，300；
Great Northern，80，929；Great Western， 86.999 ； 180，648；Great Eastern， 65,0944 ；South－Western， 5814 ；Soutl， onths of the current year the total was $1,118,258$ tons，the two $1,083,302$ tons，or an increase of 34,956 tons in the present year． The report just issued of the Board of Trade on the South－
Eastern Railway－Various Powers－Bill observes that，in spite of he adverse decision of Parliament last session on the subject of the Channel Tunnel，the South－Eastern Railway have again brought in
a Bill authorising the construction of the tunnel．As soon as this Bill is puthorising town for seonstruction of the tunnel．As soon as this the Board of Trade will oppose the project，and will recommend that the time for the compplsory
purchase of lands authorised in 1881 to be acquired for experi－ mental borings and other works shall not be extended until Parli The number of railway carriages now being provided with proved means of lighting is larger than generally thought．The
Pintsch＇s Patent Lighting Company has fitted on the Midthe Railway 11 carriages and has 84 in hand；for the Great Western
 for the Metropolitan， 257 fitted and 60 in hand；for the District，
296 fitted and 5 in hand；for the London and South－Western， 292
fitted and 61 in fitted and 61 in hand；for the Great Eastern， 560 fitted and 32 in
hand；for the Caledonian， 102 fitted and 40 in hand for the Glasgow and South．Western， 100 fitted and 100 n hand；for the North British， 2 fitted and 24 in hand；making a total of 1804
carriages fitted and 456 in hand．But of course a total of 2260 is small compared with the total number in use．It is，
indicative of the spread of a much－needed improvement．
Asoosa the further indications to hand－writes our Birmingham Freighters＇Protection Assocsiaty on may be bouth staftordshire instances of Barker，of the Chillington Iron Company，Limited，Wolve．Thomas points out how custom of the Liverpool newd London，Mr．Barker houses for black sheets is being transferred from South stafford－ miles－the freightage rate is 15 s ，per ton；and to Liverpool－ 90
miles－ 10 s ，a ton． But from South Wales，although the distance is greater，the rates are much lower．To London -160 miles－the
rate is 12 s ． 6 d a ton；and to
Thiverpool－ 150 miles－it is 10 s ． These figures may well seem to be proof that the railway boards
are developing the industries of every country and district－Ger－ are developing the industries of every country and district－Ger－
many，Belgium，or South Wales－whilst，with their iron hand they are holding South Staffordshire back from its legitimate markets．As Mr．Sarker correctly enough remarks，the terade from
South Staffordshire has been the backbone of the London and North．Western Railway Company，sucplying its shareholders sith
magnificent dividends for years past；byit the traffic returns show magnificent dividends for years past；but the traftic returns show
that the trade is being driven out of the district，and possibly，when the carriers discover the mistake，it will be too late．
Mr．J．Fogerrer，the concession naire of the Vienna City Railroads，
writing with reference to a recent statement of the Times Vienna correspondent，observes：：＂＂When the concossion was applied for
in the yeas 1882 ，the railway committee of the that a portion of the proposed system of the corporation suggested should be constructed as a＇double railway＇with four lines of rails， on account of the great traffic to be expected on that section，
connecting several of the existing main lines of the country with the proposed Central Station near the Bourse，and this suggestion
was adopted by the Government，although objected to by the promoters on the ground of extra expense．Now that the working plans of this section of the railway，with four lines of rail，along
the bank of the Danube Canal have beenapproved by the authorities， and the official order to commence the works is about to be issued， the Vienna Corporation suddenly reconsidered the question，and withdrew their previous suggestion by asking that only two，lines decision rests with the Government，who merely receive the
opinions or suggestions of the muncipal authorities，and as
communicated will suffice if so laid that the additional width of structure for a double railway with four lines of rails can be added at a future
date when requisite for the traffic，＇which，is certainly expected， will require the extra accommodation at this point at no distant
date．Had the Vienna Corporation decided at an early date to agree to the inevitable，or understood as clearly as the railway
officials of the Government did from the outset that no＇under－ ground or＇tunnel＇system of railway was practicable in Vienna，
the works of the prosed elevated rail way would in all probability be now in active progress．As it is，from want of knowledge，or
from the obstinacy peculiar to corporations，they have merely hindered for a period of two years the execution of a great public
work of A GooD deal of difference of opinion is being expressed upon the
nerits of the proposed Parks Underground Railway，which seems to be promoted under very influential support．A great deal is made by the promoters of the necessity for cheap communication
between the outskirts and centre of London for working men， Parks Railway Company does not really wish to construct the railway for philanthropic purposes any more than other companies proposed railway wrill in some way injure the parks，and
that the route to be taken and the sites for the termini that the route to be taken and the sites for the termin
are not such as will best meet the requirements of the
class whose needs are supposed to be most considered．The Times points out that it is a manifest defect in the proposed
line that it will have no junction with the District Railway，
and Mr．St．G．Nivart，writing to the same journal，adds that it has the further defect of not carrying the mass of the people where they want to go．＂They do not want to go from
Paddington to Albert－gate，but to Charing－cross，as is shown by
the crowded state of the omnibuses which descend the Edeware the crowded state of the omnibuses which descend the Edgware．
road to the elatter place．Neither is either Praed－street or Edg．
wian converge there，but others come in at the next station－Baker－ street．Obviously，then，public convenience would be best served
by a line direct from Baker－street to Charing－cross，with a junc－ tron at either end．Such a line，I am told，might be constructed tunnelling under Cavendish－square，with an Oxford－circus station in Argyli－street．Thence it might pass under small streets to its southerrn junction．Thus the public would be most efficiently served without risk to the parks，which，as beoming more and
more the centre of London，will become more and more difficult to preserve，even with the greatest care

NOTES AND MEMORANDA．

OF the $1,329,604$ tons of new shipping constructed in 1883 ，
 16，353 gross tonnage
During the week ending January 26th，1884，in thirty－one 7，301，300，there died Sied 2946 pes，having an aggregate population of which is equivalent to an annual death rate of $21^{\circ} 0$ per 1000 ，a slight increase on that of the preced ing week．
THE gross tonnage of new shipping constructed to Lloyds＇surve nirn and steel respectively，during each of the last four years，
was－ 1880 I Iron， 362 vescess， 447,39 tonagage steel， 26 vessels，
 nage；steel， 73 vessels， 1127,927 tonnage． 1883 ；Iron， 644 vessels，
933,774 tomnage；steel， 109 vessels， 166,428 tohnage．
The total gross tonnage of new shipping launched in the Uniter Kingdom during 1883 was $1,329,604$ tons，against $1,240,824$ tons in 1882 ，the increase for 1883 being thus 88,780 tons．The aggregat
tonnage launched in each of the last four years has been givat Mr．Jeans in the＂British Iron Trade Association Reporit＂asfollows $-1880,796,221$ gross tonnage $; 1881,1,013,208$ gross tonnag
$1882,1,240,824$ gross tonnage $; 1883,1,329,604$ gross tonnage．
The extensive filtration works of the Tegel water supply Berlin，which were begun less than two years ago，are finished，an
will be put into operation at once．Ten covered filter－beds，with total area of 22,000 square metres，have been constructed at a cost
of 1900,000 marks possible to filter 45,000 cubic metres of water every twenty－four hours
time．
For the week ending February 16th，1884，in thirty－one cities of there died 2923 persons，which is equivalent to an annual death rate of 20.7 per 1000 ，slight increase over that of the preceding
week．For the North Atlantic cities the rate was $18 \cdot 9$ ；for the Eastern cities， $23 \cdot 1$ ；for the Lake cities， $14 \cdot 6$ ；for the River cities， coloured， $39^{\circ} 0$ per 1000 ．Of all the deaths 37 per cent and for the
Oere under five years of age，the proportion of this class in the Lake cities being 433 per cent．，and rising to 50 per cent．in Detroit．
The Director of Public Gardens in Jamaica reports the existence inst．Helena of large quantities of black oxide of manganese，or pyrosu－ lite，samples of which have been analysed by Professor Roscoe，with
the result that one sample of St．Helena manganese，soft，found in clay beas，yielded $35 \cdot 41$ per cent．of manganese a－oxide；while per cent．of manganese di－oxide．This recalls the fact that large quantities of this material exist in Jamaica，samples of which analysed by Dr．Lewis Hoffmann for the Geological Survey of
Jamaica，show $88 \cdot 89$ ，or practically 90 per cent．of manganese di－oxide．

Av interesting experiment with the phonograph is to be made by Dr．Zintgraff，who，in company with Dr．Chavanne，is about th says the Daily News，＂a phonograph wherein to fix the speech the instrument，will be forwarded to scientific men in Germany The apparatus－which will be used for such a purpose for the firs time－has been made by Mr．Fuhrmamn，of Berlin，and exactly in Africa can be sent to Berlin to be unrolled by that machine，and

Mr．W．PARkER＇s formula for the working pressure of corrugated urnaces， $1 \frac{1}{2} \mathrm{in}$ ．deep，is $p=\frac{1000 \times(\mathrm{T}-2)}{\mathrm{D}}$ where T is the thick－ ness of the plate in sixteenths of an inch，and D the greatest
 urnaces，when their thickness is reduced by corrosion by bin．，will in each case possess a margin of strength of 3．9．The introduction
of the term $(T-2)$ in the numerator practically provides for the fact that an equal amount of corrosion weakens as structure composed of thick plates to a less extent than it does one made of

THE deaths registered in twenty－eight great towns of England
and Wales for the week ending March 8th corresponded to an nnual rate of 225 per 1000 of their aggregate population，which estimated at $8,762,354$ persons in the midale of this year．The Wolverhampton，and Cardiff．In London 2754 births and 163 deaths were registered．London was during that week growing at
the rate of 16.4 births per hour，and decreasing by 973 deaths；but nmigration is also increasing the growth．Allowing for increas the average numbers in the corresponding weeks of the last ten nnual death－rate from all causes，which had been equal to 202 and $19 \cdot 3$ per 1000 in the two preceding weeks，rose t he death－rate．averaged the first 20 ten wee 1000 ，of the against $26 \cdot 3$ and 21. in the corresponding periods of 1882 and 188
ATarecent meeting of the Chemical Society a note was read on the behaviour（ 1 ）of the nitrogen of coal during destructive distillation， and（2）a comparison of theamounts of nitrogen leftincokes of various origin，by Watson，Smith．Prof．Foster in a recent paper－＂Chem，
Soc．Jour．Trans．，＂ 1883 ， 110 －states：＂I have not made any experi－ ments on the amount of nitrogen in tar，nor am I in possession of any information on the subject．I have assumed that the quantity it
relatively small．＂The author of the present paper has investi． gated the subject，having observed in 1868 that ammonia was年equently formed durng the distillation of coal tar．He ha 186 ；in creosote oil， 2.005 ．in＂red oil＂， 2.194 ；in the pitch， 1．595．The author has also estimated the amounts of nitrogen in
three cokes－(a) ordinary gas coke，（b）beehive metalliurgical coke， hree cokes－a）ordinary yas coke，ok beehive metallurgica＇coke，
（c）a hard compact metallurgical coke from Simon Carree＇s oven． （a）contained 1 ＇ 75 per cent，（b） 0.511 ，（＂＇） 0.384 per cent
In a book on the high Alps and glaciers of New Zealand，Mr．W fit Mount Cook corresponds with that of Florence in the norther Mount cook core the sland is 10 deg ．lower than that of corresponding latitudes in Western Europe．There is，however，much less difference between The extremes．Tor instance，the mean summer temperature of 507 deg ．Fah．The rainfall on the eastern coast is mean winter as on the English lowlands，being 33in，at Dunedin and the sam解 Thus the snowfall on the mountains is heavy，and the line of per－
manent snow is full 3000 oft．lower than on the Alps．Hence the laciers descend far below the level of those inswitzerland，coming level，while on the eastern they terminate at about 2000ft．；on this than on the western．On the whole the area covered permanently by ice and snow in the Southern Alps is about 160 square miles，
or twenty more than that in the Bernese Oberland．The Grea Tasman Glacier is eighteen miles long，thus exceeding the Grea Aletsch by three miles；further it is two miles wide at the end，

MISCELLANEA

Professor F．ELGAR read a paper before the Royal Society
esterday upon＂The Variation of Stability with Draught of yesterday，upon，
Water in Ships，＂
IT is thought probable the Government of Victoria will repea
the offer of a ligh premium for a combined reaper and thrashing machine suited to Australian requirements．
MessRs．Gerard and Co．have just announced that they
obtained a diploma of honour from the Fisheries Exhibition for their installation there．This seems late enough to be curious AT the Calcutta Exhibition the Bell－Coleman refrigerator has
An machine，as refriverators are of great importance from a ganitary point of view in India．
THE discussion which has been occupying the Institution of Civil Engineers on hydraulic propulsion confirms the conclusions long
since arrived at by some，that to pump a lot of water aboard and throw it astern at a high velocity is a very wasteful way of using

The Giffard－Northcott patent cold－air machine and ice－making chamber，made by the General Engine and Boier Company，and
exhibited by the Giffard Patent Freezing Company at the Calcutta exhibited by the Giffard Patent Freezing Company at the Calcutta
Exlibition，lave received the highest award，viz．，1st class certifl－ Exte of merit and gold medal．
THE United States Senate，by thirty－eight votes to thirteen，has passed a Bill authorising the building of seven new steel vessels for
the navy，one of 4500 tons，one of 3000 tons，one despatch vessel of 1500 tons，，two heavily a armed gunboats of 1500 tons，one light gun． boat of 750 tons，another of 900 tons，and also one steel ram and
three torpedo boats．They will be built by contract in private yards． Messrs．C．C．Dunkerley and Company，of Manchester，who Company，Limited，Oldham，and the Duke Spinning Company Limited，Shaw，near Oldham，have，we learn，secured the contracts for the girders for the Fern Spinning Company，Limited，Shaw，
near Oldham，and Patricroft Spinning Company，Limited，Patri
Ir is stated that the sub－committee of the Departmental Com． have practically agreed upon their report，and it will be finally have pracicaly agreed upon their report，and it will be finally revised it will be handed over to the Committee on Conviot Labour， who will add to the experts reports a statement of their own view as to the enplay such aboor in the silected project． A wRLL has been completed to the depth of 300 ft ．for the E．C．
Powder Company，Limited，at their new works at Bean，Dartford， by Messes．C．Tsler which is sunk to the depth of 208 ft ．from the surface 6 ft ．in dia meter，the remainder is continued by means of a boring 10in．in diameter．The cause of sinking that depth is the existence of
the water level at 209ft．from the surface．The supply obtained i 2500 gallons per hour．
The ironmasters＇returns for February show that the make of spiegel，and basic iron， 71,376 tons，making a total of 221,262 tons， or 8362 tons less than the output for January．At the end of the kinds of iron．The quantity of fron in stocks and stores amounte kinds of iron．The quantity of iron in stocks and stores amounte
to 296,940 tons，being an increase of 10,623 tons since the end of
January during the last three months．
Mr．Benjamin Sykes，the manager of Messrs．Charles Cammell yyclops wile department，popularly known as the＂Father of the Cyclops orks，has retired from his work after forty－six years
In recognition of the event the staff and workme enerally have presented Mr ．Sykes with y a purse containing fifty guineas，a pair of gold－rimmed spec
tacles，with a handsome edition of Shakespeare＇s works．Mr． Sykes was widely known，even outside the circle of Messrs
Charles Cammell and Co．，and this pleasant proof of his fication ton by who conow hes in that great concern has given grati ficatio
The
The Ironmasters＇Association has just applied to the Board of Trace expressing the wish that the Department will be disposed to
nccede to the desire of the iron trade to recongise＂B．G．＂as the tandard gauge for sheets and hoops．This application is in scordance with the decision reached at the reeent meeting of the
heet and hoop makers in Birmingham，when it was decided that no trade should ayopt as the futures standard that gauge issued
some time ago by the Ironmasters Asociation，and a copy of masters of North Staffordshire，Lancashire，and Scotland are acting in unison with the South Staffordshire makers in this

According to the last report of the Panama Company＇s chie
engineer，M．Dingler，the works are now being pushed on activel n fourtens sections of the Canal．Within the last few month is not very much in comparison with the eighty million cubio ion cubic
ler hopes
th which he says labourers are procured，that the canal will be entirel mished in three and a－half years，that is to say，a little before the
period first announced by M．de Lesseps．The labourers come The total number of men now engaged on
he works is fifteen thousand；their wages＇average being，it is said about five francs a day each．
In Denmark the long－expected armour－plate experiments are at last fixed for the 20th inst．There will be an Ellis and a
Wilson compound，and a Creusot plate，all 2 metres long by
1.500 metres wide by 9in，thick，bent so ass to represt 1500 metres wide by 9 in．thick，bent so as to represerin a segment turret on a ship．Both in Italy and England further trials will be朝h the largest guns we have－in Englan
 brown powder，is capable of giving the heaviest blow to which any
armour plate has as yet been subjected．Armour has thus got it armour plate has as yet been subjected．Armour has thus got is
work set once more．We have now arrived at this stage，that it
． 0 break the plate in pieces，which have to be kept in their place by the fastening bolts．
Nearly twelve months ago the Duke of Sutherland，Admiral
Sir E．Inglefield，Admiral Lord Olarence Paget，Mr．Mackinnon， and some others formed the Palestite Channel Syndicate to ending out competent engineers for the purpose of making the necessary surveys for that project．It Arrang if possible，the required survey without any official assistance．
Colonel Colville has succeeded in accomplishing the object of his mission，and reached London on the 31st of January，bringing with After minutely describing the topography of the Wady－el－Arabal ontinuation the been filled up by debris；that the promontory of Rishi is underlai by sandstone；and therefore，that any cutting made from sea leve
to sea level would be through travel，limestone，possibly sandstone General Rundall has arrived at the following estimate of the pro bable cost of constructing the proposed canal：－The north or upper
canal，$£ 4,880,000$ ；the south or lower canal，$£ 42,580,000$ ；total． $£ 47,460,000$, Compensation for flooding，\＆c．，$£ 2,000,000$ ；build
ings，wharfs，\＆ce，$£ 1,000,000$ superintendence direction，\＆o．，
$£ 2,000,000$ ；contingencies，$£ 3,000,000$ ；total，$£ 55,460,000$ ．
SALTERHEBBLE VIADUCT, HULLAND BARNSLEY RAILWAY, HUDDERSFIELD AND HALIFAX EXTENSION. mR. w. shelford, m.l.c.e. enginger-in-Chief

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, ve find it necessary to
inform correspondents that letters of inpuiry addresed to the inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this ocumn, must, in ald
cases, be accompanied by a large envelope legibly directed by the
 answers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply No notice will be taken
with these instructions.
$* W$

${ }^{*}$ We We cannot undertake

${ }^{\text {must }}$ Al therefore request correspondents to keep copies. ** All letters intended for insertion in THE ENGINERR, or con taining questions, must be accompanied by the name and address
of the uritro not necesararily for publication, but as a proof of
oood faith. No notice whatever vill be taken of anonymons communications.

\qquad
MEETINGS NEXT WEEK.

THE ENGINEER.
MAROH 14, 1884.
> the sewrrage of the lower thames valley While the discharge of sewage into the Thames below London is the subject of a costly inquiry under the powers of a Royal Commission, the Local Government Board have been called upon to investigate a scheme for rescuing the
Thames from pollution above London. This up-river Thames from pollution above London. This up-river inquiry comprehends a district extending from Mortlake ingston ${ }^{\text {O }}$, Marnes, Mortlake, Esher Heston, Isleworth, West Molesey, Hampton, and New Malden, are all concerned in the matter, being represente on the Lower Thames Valley Main Sewerage Board, by which body the scheme has been promulgated. The urgency of the question appears when we consider that a persons is prohibited from discharging sewage into the Thames, and at present has no other outlet available. Of necessity sewage is entering the river daily from some of the localities, but tremendous penalties have lbeen
threatened, and the fines prescribed by law would suffice Thames Conserve property in the several parishes. The Thames conservators put the law in motion, Dat there has has been allowed for the execution of works which shall dispose of the sewage without polluting the river. Nex Michaelmas the days of grace expire, and the most that be finally approved, such as shall reconcile the require be finally approved, such as shall reconcile the require-
ments of the law with respect to the river, and likewise furnish the inhabitants with proper means of drainage The story is an old one, the drainage of these parishe aving been the subject of schemes and contests for the ast ten years. An expenditure of $£ 30,000$ has simply house being drained in consequence, nor a single outlet provided. Sewage irrigation has been scouted as a nui ance, and plans for carrying off the drainage to a point of ime there seemed to he have proved that the Join Board would succeed in getting the sewage admitted int the West Kent system, and this was a plan which found favour with the Local Government Board. But difficulties rose and the project broke down. So it has happened rom first to last, that whether separate localities tried t was a combination of all under a toint Board period-there nded in an extra rate to pay for the cost of a Government inquiry without any practical good being accomplished Eminent engineering talent has been called in, and laborate plans have been prepared, without carrying th subject a single step towards a settlement os been of cotly and antensive ch, and although doubtful whether it will at once put an end to the dead lock which has so long prevailed. Mr. J. Thornhil Harrison has been the inspector before whom the proceedngs haren place. His report, and the dision wocal a. The basis of the inquiry is andionsions y the Jint Sasis of Boid for is extension of time which to cary out the requisite works, and for a Pin isional Order giving ןower to acquire compulsorily certain and at Mortlake on which to erect cos bance with a plan adopted by the Board. Mis plan provides for bring all the sew of the distris, an spot on the banks of the Thames in the parish of Mort ake, having an area of fifty acres, and there treating it by chemical process. The effluent will pass off into the Thames, and the deposit or "sludge" will either be sold arried off in barge down the piver to Raingo in where it will be laid upon the land a being proposed for that purpose. The present sewage of the population is estimated at $5,261,850$ gallons per day and from thirteen to twenty tanks are to be erected at the Mortlake works in order to effect the precipitation of the olids. One of the opposing counsel at the inquiry sug gested that if the plan were "put into operation, Mortlak hould hencerort be in cost of the enire shie to the Join Bourd is is $22 \pi, 647$. $£ 25,534$, requiring a E25,534, requ .or ate provid ropayg or the pred op poar Ahan consting of the Duke of Devonhire and two opt indowner in thicity, ther with waio par hud in whe tho in the the Thames Rowing Clubs, to the number of forty the Thames ro comprehending more thas 6000 members, objected to the project, as calcactice.
The absolute necesity of providing some method for the relief of the district concerned is now so clearly recognised that if the present scheme cannot be accepted as it stands, there seems a prospect that it will lead to some modifica The oncentration that will provide for a final settlemen The concentration of so large a volume of sewage in on place is one of the leading objections, and it also appears that the towns will be put to a further expense to provide for the disposal of surface water. These are matters
which suggest the probability of a change in the elements of the scheme, though the project may yet serve as a ver useful point of departure. The plan is itself somewhat elastic, or at least the original report had that characteristic In the proposals laid before the Joint Board by Messs: Mansergh and Melliss, two other sites were specified a alternatives to the one at Mortlake. In ract there were three different plans-one concentrating the sewage Mortlake, another at Barnes, and the third at Ham Fields, But in each case the final treatment of the sewage was the same. Taking the sewage to Barnes, the estimate was
$£ 323,814$, and the rate nearly 9 d . in the pound. For taking the sewage to works at Ham Fields the estimate was $£ 237,634$, and the rate a little under $7 \frac{1}{2} d$. in the pound. In the course of the inquiry much stress was laid on the suitability of the Ham Fields site. It seems rather either of the this spot was not selected in preference to outlay and annual cost. Messrs. Mansergh and Melliss, in their report, said with regard to Ham Fields: "No one can deny that this place is in every way admirably adapted for the estabishment of sewage works for chemical treat ment." The situation is almost in the centre of the popilation whose sewage is to be provided for; and althoug not actually in the district of the Joint Board, yet power to purchase the land would not be difficult of attainment supposing the scheme to be approved. But the Join Board professed to be afraid of the opposition that would have to be encountered in that quarter, though it is not readily to be conceived that this would amount to anything more than that which has arisen over the Mortlake scheme. The Ham Fields outlet being near to Teddington Lock, might suggest a fear that the sewage mant would possibly reach the intakes of the Water Com-

Latham, who gave evidence in favour of the Mortlake plan aid it was now Ba man pass over he fok. boafs a thoston hand been the was likly to bed below Tedli; and as he chann was liky to benan, he thought mouth Itory sping the of Joint Board had this consideration before them whe Joint Bo dhe Bat hey hom-whe their minds, and it was this-that an attempt had been made to obtain the Ham Fields site on a former occasion, with absolute failure. So also a site at Barnes had been ought in vain. Mortlake was a new idea, but it has scarcely justified the preference
If an proximity to London. If an outfall Wh Ham Fields would be near the intakes of be within ix mile of Hyde Park Comer. To create such n establishment on the western border of London naturally excites apprehension. If, as some people believe sewage cani come up to Westminster from Barking and coming wo Mo coming down from Morlake! But the up-river sewage is to be purified. Will it indeed be pure Opimions differ treatment of sewage. But the Leyton works are young, treatment of sewage. But the Leyton works are young es which the population is only about one-fourth that which has to be dealt with above London. Coventry was mentioned as a place where the Rivers Purification Comparl and the Warwick That Concil had threatened legel pro ceedings under the Rivers Pollution Act, but the Gol town clerk considered the alleged pollution of the river by the part of W wis" The effect of the Hertfoul wod the river Le Cho rave rive Fin the works Lea Chiswick uncer revith Even the sewage works a chis complaint from some parties. Thus it appears that the effluent may prove troublesome, if not immediately at least subseguetly; and if the eflue be cor may be a difficulty with the sludge. If chemical precipiirrigat were acconanid by would be a for bof good effluent. But this is not proposed in the Thames Valley scheme. If the sewage were wholly diverted and carried away past the southern outskirts of London to own the river, the ratepayers would have a tremendous bill to pay, and perhaps even then the Join board would have to fight a hard battle. No doub sewage can be purified so as to go into the Thames with
 after a, here is he sluage to be deald where and this may sewage is very large the difficulties multiply. Apparently we can do is to choose that plan which in bin can do is to choose that plan which is best, though it may Kew short of perfection. One witness, who came fron Kew, gave a very honest opinion when he said that an a great improvement on the cerpis wich at present It will be highl were a great detriment to property
It will be highly interesting to mark the result of th nquary wrin has just been hed. The Local Governmen Board must be anxious to terminatea state of things which has grown into a great public scandal, and which is now attracting more attention than heretofore. If the scheme is endorsed as it stands, it is believed that ther Or be further opposition offered when the Provisiona Order comes before Parliament. On the other hand, ther is a disposition on the part of those who oppose the scheme, including the pue Devonshire, be con tent if each locality had to bear the burden of its own sewage only. This policy, if adopted, would, of course Split up the district and put an end to the Lower Thame Valley Main Sewerage Board. But probably the Board would be glad enough to go, if only the long struggle could be brought to an end and the townships rescued from their unhappy dilemma.

TRAMWAYS IN IRELAND

Government offer to lend the people of Ireland $\pm 2,000,000$ for the purpose of constructing tramways
light railways at 4 per cent., 2 per cent. to be guaran teed by the inhabitants in each barony, to be paid out of other taxes if it were not earned by the tramwavs. In other words, they offer to guarantee 4 per cent. on al sums expended in making tramways, up to $£ 2,000,000$. I the promoters camot otherwise raise the money on this security, the Government will advance it. A many schemes might be brought forward as was though proper, but they must all be submitted to the Grand Juries meeting during the present month. These jurie committeses and they will their functions so many select sufficiers, and they will not impose rates unless there posals have bon shown. A good many of the tramway probeen rejected Trought before them already, and they hav tooth and nail; they have absolutely refused to garante the payment of 2 per cent., and it may be taken for granted that little more will be heard about tramways i Ireland. The Irish peasant is extremely shrewd. I $£ 2,000,000$ of English money was to be spent in Ireland, as methe better. He would try to get as much of it pated could, and laugh at the folly of those who antici-
 did entail a veto, and the tramways will not be made in agricultural districts. A few will, no doubt, be completed in the imme diate neighbourhood of cities like Cork or Belfast; but the rural lines which were to do so much will have no existence. No doubt this will be a heavy blow to the doc-

 by modern British Pariament
at all we need not stop to explain.
${ }^{\text {ti tall we need net stop to explaii, }}$ We pointed out in our impression for Sept. 7 th, 1883, that to lay tram ways to be worked by steanm power on the lighways would be for the most part im impracticable; and

 be made, and very litte about the hying of tram rails oi high roans, The idea that anhose-worked tram way would
pay was quite albsurd; and even the most dense and prejudiced adrocate of the mudertaking as a whiole ccme came the nuestion, Weire such railways wanted? The people of Ireland say they are not, and we presume that nobody knows better than they dao the theory that tight
railways would do Ireland a a great teal of good is bsased on an entirely erroneous analogy. It is argued that rail ways
 The development of America along the track of railways is pointed out as an apt and striking illustration of the power the in in the Unite State in Indin and is possble in Canada, in the Unicd Stase解 totally forget that there is an enormous difference between
Ireland-an old country--and new regions. Where railways have done most for the colonies or America there are no roads worth the name. There it is the railway or nothing. A settler who is more than a very by which they can be taken to market. In Ireland, on he contrary, we have a system of roads probably unell kept The narrow, rutty, ill-kept English parish, and has practically no existence in Ireland; and not only are he roads good, they are abundant to superfluity. Under uch conditions, the traffic on a light railway must be xtremely small. Minerals there are practically none to ransport, because Ireland has none. Ages ago the surace thi sten isl neither coel nor irn, we the The small quantity of anthracite still remaining may be egarded as the last vestiges left untouched of the coal little way affect a general scheme for tramways. As to sending rain to market, it would be cheaper to cart it direct to ad then art it fom the
 re sheep. Once pigs are got into a cart they are best are sheep. Once pigs are got into a cart they are best
kept there ; they do not take kindly to many transfers. They are firm and noisy, and willingly walk five miles rather than pay 2tad. for being carried. The roads present no difficulties ; nay, they are
so plentiful that a choice may usually be made, and the nonotony of an excursion to a neighbouring town may be avoided by going by one road and coming home by
another. All these things are against the tramways, and another. All these things are against the tramways, and
their advocates will find that common-sense still exists in he world, and that even Irish peasants can understand hat nonsense is now and then talked in Parliament. give $£ 2,000,000$ to Ireland is one thing, but to spend it
on making tramways would be sinful waste. That is what is said in Ireland, and no doubt with truth
Yet it is possible after all that the $£ 2,000,000$ may be spent on tramways or light railways in process
of time. The money will not go far. Assuming that the new lines cost complete $£ 5000$ a mile, it would make just 400 miles. This would do very little tomany miles will, as we have said, probably be laid near large cowns or cities. Not 400 miles in all; but neither will such lines be made for $t 5000$ a mile. Before, however, it is too late we would venture to suggest that the tramway scheme money be expended in a totally different way, namely, on improving the arterial drainage of the country.
difficulty which will crop up as soon as any attempt made to reduce this scheme to practice will be found to be identical with one well known in this country. The value of the land saved from floods is not worth the sum which must be expended in saving it, and those who ive on high land unaffected by floods refuse to pay for the celief of their lowland neighbours. When we read more less harrowing accounts in the pages of the daily press oods, we are apt to ay that it is a shame that something is not done to prevent not pay to prevent the floods. An expenditure of a million ofe necessary to keep 1000 acres of land clear of worth $£ 1000$ an acre An outlay of $£ 5$ an acre is probably the utmost that on the whole could pay. At this rate $£ 2,000,000$ would have to rescue not less than 400,000 acres from inundation. We do not say that this could not be done. We do say that we doubt that it can be done in $\ddagger 5$ an acre will not be can or not, it is quite certain that benefitted. There is only one way in which arterial drainage cam be carried out. Let the grant be increased to $£ 5,000,000$ and let the island as a whole guarantee 2 per cent. on the outlay, those actually directly benefitted to pay besides an annual sum, which would suffice to clear off the whole in fifty years. outlay, if properly m useful might be effected, and the extent remunerative. We do not suppose, however, than the suggestion will be adopted in any shape or form. To mention it would be enough to evoke a storm of indignation from those who live far above rivers. This is th
reason why no steps are taken in this country to carry out thrown upon those whose land is drained, and those whose land is not drained will urge with much force that it is no affair of theirs. It would seem hard that a man living in Harrow oron Hampstead Heath should have to contribute money for straightening the course of the Trent; but that is what the inhabitants of Harrow and Hampstead would of Engla if the rate were distributed over the taxpayers be donland. We do not say that such a thing should not autocratic Government-at least not in England. It may be done in Ireland, but then Ireland is like no other place in her Majesty's dominions.
ubject of thi aticle "Try fromcan be en the Grand Juries ays in Ireland." So far as Ireland will not have many new tramways. The whole transaction from beginning to end is extremely instructive It suggests among other things an old nursery story about the top brick of a chimney,

brighton beach

The old saying that "Time brings about its revenges Brighto aptly illustrated by the course of events at shore at that place. We have before drawn attention to the fact that our predictions as regards the ultimate course which would be forced upon the authorities of the adjacent parish of Hove have been fully verified, and now we have named regret, but with no surprise, to state that what we ceedings at Brighton has collow as the result of prorences. We repeatedly drew attenstion th the most suicidal policy adopted by the Corporation of the latter town with regard to the sale of beach near the Toll-house at its which extremity. This was the spot, we felt certain, at which the ill-effects of the works proceeding at the neigh-
bouring beach of Hove would become manifest. although a few members of the Town Council of Brighton echoed our repeated warnings, they were without effect and day by day the valuable shingle was removed for building purposes and the height of the protecting beach danger. Well, the end has come, and from all appearances there is now practically no beach left to spen late severe gales having removed almost the whole of the small amount of shingle which the needs of the Corporation had left untouched. We hear that durinethe recent stormy weather the sea made a clean sweep right up to the the wall of the esplanade; and being at length thus rudely aroused to the sense of danger, the engineer to the Municipality has brought before the Council a plan for temporarily carefully watched and noted the proceedings upon which we have commented for several years past to observe the pretension upon which this proposal is put we should say that intelligent ratepayers of Brighton in the repert of the Council's discussion of the matter an February 21st respecting the real cause of the difficulty, or of its being already apparent. Far from that, we read
that "by the folly of the Shoreham Harbour po that "by the folly of the Shoreham Harbour people in
setting up a groyne which they had no right to, Brighton was robbed of a large quantity of beach:" and, again, and they were suffering from it." All reference to the fact that the town had been robbing itself for years past, in spite of urgent warnings, was carefully avoided,
In fact, we cannot but realise to ourselves that there is great want of candid dealing in this matter, to which the ratepayers will do well to look. What is the proposition
now brought forward to meet the immediate urgency of the case and furnish prospective protection? Nothing more nor less than to construct a huge and unsightly timber groyne, rising 37 ft . high above low-water mark, at facing the Bedford Hotel! and we understand Mr. Lockood, the engineer to the Corporation, to state that it will only be required to serve a temporary purpose, and that
when it has accumulated sufficient shingle to replace that when it has accumulated sumcient shingle to replace that given over to the speculative builders of the town it may
be removed. With the fullest respect for the opinion of Mr. Lockwood, on this question we decidedly join issue with him. If the groynes erected close by at Hove have for years past failed to secure the required supply of beach,
how can it be expected that one placed still further to the eastward will do so? We have pointed out before that at Hastings it has taken years for the travelling shingle to pass a groyne erected to the westward of the town; and will our past experience condemns the hope that Brighton is now to be constructed at Hove will be rum out short groynes, for the purpose of retaining a protecting berm of shingle. Until that is supplied Brighton may wait her ornamental gardens on which the town is now expeniding so large a sum
Further, we observe that a statement was made in the Council that, on Mr. Lockwood's dictum, the groyne now proposed by him would not be necessary "when the East-
street groyne was lengthened and did its work." But it is manifest the was lengthat the East-street groyne has not done its work, and that measures are to be taken to give it some chance of success. It is easy to foresee that some day or other, if this sort of patchwork is allowed to con-
tinue, Mr. Lockwood, or his successor, will come to the Council with further propositions, and will state that these only involve "temporary" measures until the Bedford Hotel groyne "has been lengthened and has done its work." And so on and so on ad infinitum, until thousands of pounds have been wasted for want of what is really common honesty of conviction and intent. There is not a man in the Council who must not know that a course of deliberate robbing of the beach has been going on
unchecked for years ; and its members, if they exercise
the deductive common sense we must suppose them to the deductive common sense we must suppose them to
possess, must be aware, from the experience gained at Hove, that erect as many groynes as they will, the shingle will not be forthcoming to be retained by these for year oc Among the intelligent residents of Brighto who do not participate in the official honours of its late and present proceedings of that body, and who forese with ourselves that the day will not be far off when, after having spoilt their sea front by unsightly high groynes having spoilt their sea front by unsightly high groynes,
they will have forced upon them the course to which the Hove Commissioners are now compelled-the erection of sea wall.
What a commentary does the present position of affair offer on the text upon which we originally started our want of combined action hetween the two ajint , the of Brighton and Hove in the first place; and secondly, the practical proof that want has afforded of the necessity o
 the Council" "that a sentleman wrote very truly in the Times the other doy that the Hove Commissioners ind the cimes ine ocher day that the Hove Comis ands and the Shoreham Harbour Trustees toger ind compel the horeham Harbou Trustees to cease intercepting the with equal justice the inhabitants of Rottingdean further
 the castard may not apply to Parriament for an injunc now contemplates. Who is to be the judge as to the requirements of Shoreham if those of Brighton are to be xempt from official control? It really is, it appears to us until Government does its duty in the matter, a case of very man for himself.
We may fitly close this article with some allusion to he resuls of che late storms at what we cannot but call hery serions encroachment of the we reported in the yery serticle on thim hast few week: bad that not ouly has the lower walk the esper the esplade be places eni ably. The rapidity with which the sea has advanced it mooads, in spite of the temporary expedients used to check it demonstrates in the fullest degree possible how desirable it is that no start should be allowed to such inroads. That Commisioners did their best, with the imited experience, to stay such a start by groyning, w annot but concede, though we pointed out that it probably would be found to be a mistaken and unconomical course; but that, with this experience befor ing in eyes, the Town Coumcil of Brighton shay be least, astonishing.
e suspect the is not far to seek. The bring about the pe, which has so dended the bech concealed cause of the demand upon the purse of the rate Brighton now made. For that sale, and there ore for that demand, the Town Council is reponsible to it lectors, and we can well understand its members prefert ace the latter with a threatened estimate of $£ 1250$ for groyne rather than with one for $\pm 12,500$ for a sea-wall
and it is "pretty," as Pepys observed to see how convinced a considerable number of the governing body are that $£ 400$ is quite sufficient to meet all absolute requirements. W only trust that the townspeople will not bemisled by amateu ngmeers in the Counci, and have the dust of deception incurred, against which these columns spoke early in
 orward such expedients as the Town Councillor of Brighton are only too willing to cling to.

armour experiments.

As we have pointed out on different occasions, all nations are want of a definite system on which to calculate results of
ring against the harder classes of armour, that is those which annot be perforated but yield by fracture. We are glad to learn that some experiments are shortly to be carried out, we
believe by the Admiralty, with a view to determine, if possible, ome law of resistance; and 12in., 14 in , 16 in , and 18 in , steel- face plates are being supplied for this purpose from Messra. Cammel apected to be a match for present system these plates would be ${ }^{14 \mathrm{in} .} 16$ in., 19 lin. 21 tin . of wrought iron ating about We cannot say the line of investigation
these trials, or whether the results will

these tial. fidential.

able, and we ueed of them, how subject is interesting they may lead to good resulte. The the direction we should be inclined to take ourselves, but we must guard our readers from supposing that we can guess
in the least what will actually be done. Believing that the work of fracture on any given plate is proportional to the tot energy of the blow, and does not depend on the calibre of the
sun, we should gun, we should endeavour to test this by employing guns of
widely different calibre. The larger shot of course would have much more weight and less velocity than the smaller one.
might be that velocity tells more than weight and that the might be that velocity tells more than weight, and that the
smaller gun therefore produces most effect, or vice recal. Wo should check this by having shot of widely different weight for the same gun. By this means we might arrive at how each have regular series of trials, taking care in each one to have all elements constant except the actual elements at the moment under investigation. Believing, however, as we do, that a great number of experiments are necessary, we should be inclined to make preliminary experiments on a small scale where little expense would be involved. The action of fracture by cracking is regarded by some as outside the region of mathematical cal
culation; but we cannot admit that this need be the case. The direction of a crack in a plate may be very uncertain, the posil tion of a bolt or many incidental circumstances may determin io ; but after all it is not the question of direction that we care that can be depended on. We can easily imagine that many
might be arrived at which would be of great practical value, not
only in future calculations of results to be obtained against hard armour, but also in other mechanical questions the data obtained experiments on a small scale, we know that Sir Joseph Whitworth has frequently experimented with rifle bullets to test questions for ordnance, and we understand that he has found that the laws governing the experiments are much the same on
the greater and smaller scales. This, at all events, might be the greater and smaller scales. This, at all events, might be
watched and ascertained by making special trials on smaller scales for comparison with known experiments on a large one.
For example, we have recently given the results of a trial of For example, we have recently given the resuls of a trial of
Grison's. We might find out whether the energy per ton of metal in that had produced a similar result to one we might say that any data that may be allowed to be obtained will be most welcome. We recently heard a complaint made by a foreign officer of high position, who was an adviser to his Government lished in England that English material was placed at a disadvantage, and its advocates abroad had an uphill battle to
fight. This a question of national interest, and we trust it may be borne in mind by our authorities in weighing the argument for and against the publication of each experiment

the quality of scotch pig iron.

The committee appointed by the Scotch ironmasters t investigate the allegations "that large quantities of pig iron, in
the manufacture of which a considerable proportion of cinder has been used, have recently and are still being sent into Connal's stores as a substitute for Scotch g.m...," presented afternoon. The committee stated that Messrs. Connal and Co refused to render them any assistance, upon which they asked
for information from the ironmasters Returns were obtained for information from the ironmasters, Returns were obtaine
from the latter, but not from the whole of the firms ; so tha the committee's information was not so complete as could be desired. They proceed to say :-"Their investigations, how-
ever, leave no doubt on the mind of your committee that in certain of the furnaces in Scotland, representing about one sixth of the whole production, a large proportion of cinder
varying from 25 to 45 per cent. of the furnace charge, was used during 1883 in the manufacture of pig iron classed as g.m.b., and that a considerable quantity of the iron so manufactured
has been sent into Connal's store. Your committee have reason to believe that the use of cinder in such large quantities
extends further back than last year, but to what extent iron so made forms the present stock in Connal's store your committee have not been able definitely to ascertain, as the parties
who alone could assist them in obtaining this information ecline to do so. Under these circumstances, it appears to your commititee that the question remitted low them can only be
authoritatively decided by an action at law." At their meeting on Friday the ironmasters approved of the above report, dis. charged the committee, being unanimously of opimion that referred to in the report had been used, ought not to be classed as g.m.b., and that a fresh classification of the brands of
Scottish iron appeared to be necessary, Until this can Scotush iron appeared to be necessary. Until this can be in their own hands by specify ying the particular brands they desire
to purchase." With reference to this matter, Mr. J. Mann Thomto purchase. With reference to this matter, Mr. J. Mann Thom
son, chairman of William Dixon, Limited, Glaggow, writes as follows :-"As one of the largest makers of pig iron in Scotland,
and one whose iron has been stored during 1883, I think the time has come to express my opinion on the question of quality
which has been raised by a section of the ironmasters of this country. I think a great deact that has been dissussed and
written on the subject has really little to do with what is wanted, which is, that the public should have confidence that the iron put into store is good and genuine g.m.b, and will be Whether the pig iron has been made with a certain proportion of cinder, or whether it has been made whith a class of ironstone I think, beside the question ; what is wanted is that the result should be good g.m.b. In making hematite pig iron, in which
I have a large experience, there is a fixed limit of phosphorus and silicon which the iron contracted for is not allowed to pass the iron to be stored in Messrs. Connal's, and let them have the power of inspecting the fracture as at present, but give them analysis ? I have no objection that the standard should be
fixed by the self-lected committee of the Scottish ironmasters." Here the dispute for the present rests. It is evident that good deal can be said on both sides of the question.

safety lamps and colliery explosions.

For some time past a Committee chosen by the Midland
Institute of Mining Engineers have been making important experiments with safety lamps, with a view of determining which is the best and satest lamp now in use when placed in an experiments prior to drawing up a report was made on Monday to Sir John Brown and Co. The company had providel machinery and appliances for carrying out the tests, including the erection of two small gas-holders, with pipes and machinery
for regulating and testing the speed of the current for regulating and testing the speed of the current, The
Committee had caused lamps of all kinds to be collected, and as this was the last meeting for testing the lamps prior to reporting
on the experiments, a mood deal of interest was attached to the proceedings. In the course of the experiments a French lamp,
which has been largely introduced into collieries in an adjoinin which has been largely introduced into collieries in an adjoining
county, was tested. This was said to be impregnable, but, like county, was tested. This was said to be impregnable, but, like
the others, it exploded when subjected to a severe trial. The results of the experiments will be made known in a report which
will shortly be laid before the members of the Institute. The question is important, inasmuch as at a recent inquest
an opinion was expressed by one of the leading district mining engineers that there is at the present time no such thing as an
absolute safety lamp in use.
the load line commttee.
Trg meetings of the Load Line Committee at Newcastle and Sunderland cannot be said to have added much to the knowledge that the public has acquired through the reports of the progress
of the inquiry. At Newcastle the Load Line Committee were very coolly received, the dignitaries of the town being absent, and the evidence was far from representative of the views of the ship-
owners and builders of that town. It is said that this was due owners and builders of that town. It is said that this was due
to the feeling against the Shipping Bill, and was stimulated by the omission of a Tyne representative from the Committee. Sunderland the evidence was much more complete; but at both
places it conflicted. Some shipowners preferred well-deck ships,
but in nearly every case there was a decided objection expressed
to the load line that the Board of Trade approved. It would have been interesting, as the Tyne has been one of the rivers where steamers have been very frequently detained, if the local
officers of the Board of Trade had, there or at other ports, been put forward so that the fluctuating load lines that they have been endeavouring to enforce could have been shown
and their reasons given. As it is, the statement is now made that the primary object of the Committee's visit is one of
inspection rather than to take evidence at the outports. So inspection rather than the Tyne, the visits have been far from
far, at Hull and on the being successful, and the hopes of those who jeutived
mittee would settle much have not yet been justified.

LITERATURE.

Personal Reminiscences of General Slobeleff. By V. J. Nemiro-
vitch-DANTCHENKo. Translated from the Russian by E. A. Brayley Hodaetts. London: W. H. Allen and Co. 188 Skobeler
Turkish way played so important a part in the late Russo Turkish war, and was a man of such remarkable bravery
and energy, that reminiscences of his life will be perused with interest by many of our readers other than those of the military profession. Skobeleff's character was many ilded, and as much of the life of a military manis, fortunatel translated by Mr. Hodgetts, records a great deal that is indicative more of general character than of military prowess. The author was a very intimate friend skobeleff, and some of his pages are written with that unqualified praise which is likely to mark a book writte very soon after the death of a much respected friend He was born in 1845, and though always an erratic and we might say, wayward and somewhat impetuous genius, corning the usual favour and patronage road to promotion, he had won his general's epaulettes in his thirtieth yea As a young man he was, at the same time, very fond even for a Russian. This was the chief cause of his entering the army, as his father could or would no longe pay his enormous debts. He joined a cavalry regiment at Warsaw, and was engaged in repressing the Pollsh rebel quit Warsaw and join the Turkistan army. In 1868 he comm staff of the Grand Duke Michael. He joined the Khiv expedition and distinguished himself under Kaufmann. Ang of the Carlists ang during the long range fight expedition and became general. In 1877 the war with Turkey broke out, and in spite of great opposition of envious favourites, he rose to his high position through the daring and ability which he then showed, the records of
which are to a great extent within the memory of all who followed the events of that war. His great abilities as a general showed themselves most at Plevna, some of the gents of which, and the passage of the Balkans and the battle of Shipka, are graphically described in this book In view of the recent phase of the Merv question his xploits at Geok Teppé and his near approach to Mer are of much interest. We must, however, refer
reader to the book itself as one of very great interest.

The Electric Light in our Homes. By Robert Hanaond. London: Frederick Warne and Co. 1884. 205 pp .
THE title of this book almost indicates its purpose namely, to describe the advantages of the electric light fo domestic purposes ; and to do this in popular language, so
that the many who do not know anything of electricity, that the many who do not know anything of electricity theless gain an intelligent idea of what is really the nature of the electric lamps now so commonly used, and how it is that electricity is used in causing them to give the light they do. The book is the substance of some popular lectures delivered by the author in different places; and though reatise it will help muat it in any way a sciellisen general reader a lpowledge of the new light than most the books which are of a more exact and technical character. Electricians refuse to see the value of books of this kind, but that which helps to popularise knowledge of a thing which must become popular in its applications, must be doing good, just as the populariser of any branch of therefore powin thy way more complete teaching. Those who are thoroughly masters of a scientific subject find considerable difficulty in writing popularly upon it, and popular books are, therefore, seldom written by them; but this is no reason why such books should not be written, provided they do not teach what has afterwards to be unlearned. Omission in them is unavoidable, but to convey false notions is inexcusable. The weakest part of this book is that which describes the production of electric currents, although other points might with advantage be more fully elucidated. The incandescent lamp in many pretty applications is well illustrated, and rooms fitted up with various forms of lamp-holders, ats used in hall, dining and drawing-rooms, and study, are illustrated by photographs of those in the author's house; but they do not give at all an adequate idea of the pleasin character of this mode of illumination as there carried out. This private installation is worked by a gas engine, which is started by the gardener, and the engine is then left; and when the light is no longer wanted a switch in one room turns a current into the coil of an electro-magnet, which releases a catch holling the tever of the gas cock by wh
the engine is supplied, and thus the engine is stopped.

BOOKS REOEIVED.
Electricity in Theory and Practice, or Elements of Electrical
Enfinecring. By Lieut. Bradley A. Fiske, U.S.N. New York: Engineering. By Lieut. Bradley A. Fiske, U.S.N. New York :
D. van Nostrand. London: E. and F. N. Spon. 1883 .
The Gas Engineers' Text Book and Directory of Gas Companies of Grat Britain and Irland, Continental, Colonial, and Forciogn
Gas Companics By A. Th. Thomson editor of The Gas Engincer Gas Companies. By A. H. Thompson, editor of The Gas Engincer,
Birmingham. Pubished at the offie of The Gas Enginer,

PRIVATE BILLS IN PARLIAMENT.
In the House of Lords on Tuesday, the Select Committee on Standing Orders met to consider the Examiner's report of nonThe petition of the Belfast and Northern Counties Railwa Company for an additional provision to their Bill, the Newpor Southern Trames (Extension) Bill, and the London Tram way Bill were allowed to proced without any question arising for bill were allowed to proced winout any question arising go Vorwood, Dulwich, and London Railway Bill a discussion aroso on the opposition of the Croydon Direct Railway Company, the romoters of a rival scheme. The various points raised in the
etition were dwelt upon at length by Mr. Rees and Mr. Hoskins the agents for the opponents and promoters respectively; but The same course was taleen with regard to the London Eastern Tramways Bill, opposed by the West Ham Local Boar
In the House of Commons the Court of Referees sat on Monday,
under the presidency of Mr. Pemberton. The first case which under the presidency of Mr. Pemberton. The first case which
came before them was the Denbighshire and Shropshire Junction came before them was the Denbighshire and Shropshire Junction
Railway Bill, the promoters of which objected to the locus Railway Bill, the promoters of which objected to the locus
standi of the Great Western Railway Company to be heard before Committee against the scheme. The allegation set up in he petition of the Great Western Railway Company was that competition would be estabished by the new scheme, and on
this ground it was submitted that they were entitled to be heard. At the conclusion of the arguments the Court expressed the opinion that the alleged competition was only problematical, ma accordingly they declined to sustain the contention of the
petitioners. In the next case the Manchester, Sheffield, and Lincolnshire Railway Company objected to the locus standi of the River Dee Committee against their Bill for an extension rom Chester to Connah's Quay. The Bill also gives to the Sheffeld Company rumning powers over the Connain's Quay sioners were not the proper persons to represent the interest on behalf of which they opposed this Bill; and the Court viewing
the matter in the same light, the locus was disallowed The Great Western Railway Company-against whose petition objection was also lodged-opposed the Bill on two grounds,
viv on account of the competition which would be established y the introduction of so powerful a company as the M, S. and . Railway into a district hitherto occupied by the Great eestern and the Comnah's Quay Company alone; and, in the
seond place, it was alleged by the petitioners that the bridge to be constructed across the lower Dee would prejudice the port of Saltney, situate higher up the river, the port being Great ground that the alleged competition would not be of such a serious nature as would justify the Court in admitting the Great
Western to oppose the Bill. The Court beld that the Geat Western had a locus standi on the question of competition, which, of course, is a general right to oppose the Bill. The pro"merchants, shipowners, and others" trading above bridge on the river Dee. On Tuesday the Court allowed the locus standiof four petitioners-the Bristol Port Railway and Pier Company thers, against the Avonmouth and South Wales Junction Rail vay Bill. The locus of Messrs. Lake and Co. and others against the Miliord Dos disallowe
this group of six west county Bills. The first matter whe came before the Committee was the Bishop's Castle Extensio oo Montgomery Railway Bill, of which the object is "to in comery a company for constructing a ralway fro tation of the Bishe Cambrian Railway to the Lyanam Heath to use those two stations, and to pay interest upon calls out of capital. The share capital of the new company is to be $£ 150,000$,
and power is taken to borrow $\ell 50,000$, pany opposed the scheme, submitting that the project was un necessary. The Committee passed the preamble of the Bill. Hardcastle, took this group, consisting of four Scotch Bills, The Kilwinning Railway Bill. The tions the construction of various short lines of railway, and nian Company. It is proposed that the name of the promoting company shall be changed to the "Lanarkshire and Ayrshire Company opposed the Bill, the hearing of which is likely to Compay opposed the
occupy the Committee for some days.

Electrical SEarch Light.-The trial of a new form of holophote,
manufactured by Messrs. Siemens Brothers and Coo., took place at the works of Mr. P. Brotherhood, Belvedere-road, Lambeth, on
the evening of Friday last, and was witnessed by a number of experts represung Press. The holophote itself, which is to be placed on board Mr Gordon Bennett's steam yacht Namouna, embodies several novel ties which add greatly to its efficiency, as compared with existin apparatus of the same character. The departure from forme designs, which constitutes the special feature of the new holophote,
are briefly enumerated below:-As in earlier designs by the same makers, the light is concentrated into a beam of parallel rays by means of a Fresnel lens; but in the new holophote a lens of in-
creased focal length is used, so as to admit of it being sufticiently far from the aro to avoid any excessivo heating
of the lens itself; and there was on Friday night's trial ample evidence that the object aimed at was achieved, a to prove inconveniently hot to the back of the hand heate glass screen in front of the lens, as well as a cylindrical hood, pro-
tects it tects it from possible splashings of sea water. Considerable range
of motion is given in horizontal and vertical planes, and divide circles are provided to enable any determined inclination to b holophote itself are carried up the trumnion arms, Tuctors in the accessible by the removal of certain cover plates which are readily by screws, continuity at the joints being obtained by metallic
sides. The usual coloured glass observing windows are providel and a focus observer giving an image of the carbon points. There which has the alve of aignals by he Morse whole beam of light, either concentrated or dispersed by with the an additional lens, a result which has not been hitherto obtained
There is ample ventilation of the lantern. The lamp is regulated
by hand, and by hand, and can be inclined at an angle, or be fixed vertically the lens to adjust its position at the focus. The carbons from moved and adjusted independently or both together by one hand screw only. The results obtained were considered to be hand satisfactory. A dense beam of light of great steadiness was produced with a minimum of dispersion. The current was 100 amperes,
derived from a Siemens'

SEMI.PORTABLE COMPOUND ENGINE, MESSRS. C, BURRELL, AND SONS, THETFORD, ENGINEERS,

Wg illustrate above a fine compound engine which we have already noticed as exhibited at the last Smithfield Club Show,
The arrangement shows the makers' new patent automatic The arrangement shows the makers' new patent automatic expansion gear, in which the chief feature is bringing the die over the rocking centre of the link, thus allowing the valve to remain stationary when the governors are down, and greatly reducing the travel and wear and tear. Another feature is the forming of a parallel motion in the levers connecting the expansion valve rod to the governors, thus reducing all slip and
tendency to hunting in the governors. Instend of the steel bands Messars, Burrell are using Bessemer steel chains to connect the governor balls to the sleeve, and they find them much stronger and more durable. The balls are made with a recessed hole which works up to a shoulder, so that even if the chains were removed they could not fly off. The cylinders are 7 in . and $12 \frac{1}{2}$ in. diameter with 14 in . stroke. The crank shaft, of forged steel, has counterbalances and unusually wide bearings. The crossheads are of steel, with steel adjustable shoes. The low-pressure cylinder is fitted with a double ported slide valve of the marine type in connection with a variable expansion excentric, to enable the cut-off to be proportioned to the duty given out by the engine. Starting gear is arranged at both ends in case of accident; the working pressure is 140 lb . per square inch; revolutions per minute, 155 . The arrangement of the guides and framing is worthy of particular attention. This is fully maintain the reputation for solidity of construction enjoyed by the firm. The engine is heavy, but the weight is just in the right place, and wear and tear and the chance of a breakdown are all reduced to a minimum.

LETTERS TO THE EDITOR.

[Continued from page 201.]
SIk,-I quite agree with Mr. Trew as to the advantages of graphic method, which saves a great deal of time and trouble. By
this anyone can ascertain in a short time which is the most econo- You will perceive from the following diagram-adopted by me mical structure by drawing a few skeleton and strain diagrams and in ascertaining the effects of live load, shearing forces and bending comparing their results, while other means fail to give the same moments on a girder-that they can be ascertained by ruling some

result in the same length of time. It is a great blessing to those who have not a mathematical head. I take great interest in it, nd have applied it in designing bridges and roofs.
number of lines as given by Mr. Trew. There is nothing new i it; but to show that the number of lines can be reduced, I have
compounded the figures which are usually drawn separately. Pand

Q, the reactions of supports and span, being given, let us find the
position of weight R. Draw horizontal line AB representing the span, at A and B draw lines P and Q. Along the line P l lay off by
convenient scale $A E=P$, and from $E, E D=Q$; from E draw convenient scale $A E=P$, and from $E, E D=Q$; from E draw
line $E F$ perpendicular to $A D$, on the line $E F$ take any point C, join A C and $C D$. From the point B draw a line $B G$ parallel on
$O D$, then through G draw line R parallel to P and Q. R show,
Che position of weight on girder . The bending moment can be foumd by mutliplyigy the lengther of line EC by HE G memesurden w be
theith
thespective scales. By reversing the above process we can their respective scales. By reversi.
easily find the reaction at supports.
I enclose herein an interesting diagram which was prepared by
me for reducing the concentrated loads into uniformly distributed me for reducing the coneentreated
load for bridge purposes. You will perceive what amount of time
and thente and trouble it has saved. This is not the only beauty of this
diagram. but if it it onece drawn for the heaviest load that could
be brought on bridge for a span of some magnitude, we can easily be brought on bridge for a span of some magnitude, we can easily
find the distributed load for intermediate spans by marking the find the distributed lood for intermediate spans by marking the
span under the heavier load that would come on it, and then transferring it to the funicular polygon, as shown in the diagram for 1oft. to 60 oft. spans. Finding the bending moment ffrrt as
mentioned above, or a simple case, we can find the distributed
tond load by multiplying the bending moment by 8 and dividing it by the square of the span as per example given below. To find the
bending moment for 110 ft . span I have multiplied the ordinate of the funicular polygon 20.40 by 100 , the constant horizontal lthrustthus $20 \cdot 40 \times 100=2040$ foot-tons the bending moment $\frac{2040 \times 8}{110^{3}}=$ $1 \cdot 35$ tons per foot run.
Bombay, February 21 st. \qquad Dorabjer B. Rabadina.

chain carriage blocks.

SIR,-During the years 1872,1873 , and 1874, I fitted out my,
workshop with several light cranes for blacksmiths and turners workshop with several light cranes for blacksmiths' and turners'
use, of the class which has a horizontal flat bar placed on edge for
the weight bearing carre by a diagonal back stay or stays down from the main post. A by a diagonal back stay or stays down from the main post. At A
first intended to os oonstruct the carriges that Weston's. . Alok
could be hooked in under them to constitute the lifting gear ; but could be hooked in under them to constitute the lifting gear; but
in the cose of two of them which had to pass round under the out of lathes, I saw that there was to be a want of height to lift circular work, of only 4 ft. . diameterer up to the centres. At this
juncture itocourred to me that 10in. or 12in. in height could be jurcuar work oor only to me that 1ioun. or 12in. in heieight could be
gained by combining the top Weston block and carriage in one, and have only the lower block and hook under the crane bar. This combination turned out to be quite practicable, and has made one
of the cindliest working lifts that could wwil be desired. It is
. of the kindiest working lits that could well be desired. It is
show complete in the acoompanying drawing. With your per-
mission I will pive a description of the different parts of this combined block and carriage, as such may be of interest and service to some readers of THE ENGIsERR. It will be observed that two
separate chain wheels had to be used and placed on opposite side separate chain wheels had to be used and placed on opposite sides
of the carriage, with the largest wheel of the one and the smallest
of the other next the side of the other next the side plates.

The chain works on the two inner wheels; the outer ones are of no immediase use, and remain good when those at work are worn
out. These two double wheels are keyed fast on a s short stel
shaft with and the thickness of the twe them for the weight-bearing rolle what larger in the middle, and is filleted down into the bosses of
the wheels, and hardened in oil. The weight-bearing roller, which is nearly as large as the smallest chain whecel is made of hard cast
iron, and bushed with a hardened stecl fervile Two mall rollers iron, ant between the side plates at the ferrule. Two small rollers keep it from tilting, but they take none of the weights off the centre roller ; only one of them appears in the drawing. The sheave of the
lower block is rounded out, as if made for a rope, and of a diameter to take the width of the loop of the chain as it hangs down from opposite sides of the carriage. Perhaps the most important parts
of this combined Weston block and carriage are the chain guides,
which necessarily lead the ohai on both sides of the carringe, whether they are being drawn up or this last is rivetted to the side plates of the carriage, and the outer halves are fixed to them near the ends, with two set screws, as
shown in photo. Two holes are cut centrally out of each half of the guides, and made in the form of a cross, in order to fit the
links as they follow each other through them, and just large enough to allow the chain to pass freely. They are always ready
for work, as no twisting of the chain ever takes place, and both chain and whioeds last very much longer. Wr. Romsmrsos.
Dublin, February 27 th.
the bangor and bethesda contract accident. SIR, -We shall be much obliged by your kindly reporting in a that occurred on the above new railway we are now constructing
for the London and North-Western Railway Company. As the report that appeared in your last issuue was greatly exaggerated and
inaccurate, if has caused great annoyance to the engineers and ourselves, The following is a correct acount of the accident:- "On
Tract now inst, Marcon sth, an aceident occurred on the above con-
Wenstruction for the London and North-
Wailway Company, While four navvies were excavating
Western Railway Company. While four navvies were excavating
the rock at the south face of the tunnel so as to allow of the arch-
the rock at the south face of the tunnel so as to allow of the arch-
ing being turned, a portion amounting to four cube yards fell upon
the stage on which they were working and knocked part of it down
taking with it two of the men. One was killed by falling upon the rails, a distance of 10 ft .; the other two were not hurt, and no damage was done to the tunnel. The rook that fell was required to
be taken to allow of the tunnel being finished. The cause of the be taken to allow of the tunnel being finished. The cause of the
rock slipping was a fault in the formation and could not have been foreseen." By inserting the above you will greatly oblige.
fore
Tregarth, near Bangor, March 12th
Sir, Close fire ranges or kitcheners.
Sri,--In reply to the inquiry of Mr. G. E. Child respecting the was patented, and range manufactured, by George Bodley, of Old first cooking ranges made to carry the heat around the oven, They are now manufactured in many counties and still called
BodLEx Brothers AND Co. Bodley's." Foundry and Engine Works,
Old Quay Fond
Exeter, March 12th.

Exeter, March 12th.

Sir,-Referring to Clothing steam pipes.
SIR, - Referring to the letter of Messrs. Reid, Macfarlane, and
Co., which appears in THE ENGINERR of last week, and is intended apparently to suggest a doubt about the composition tested being
the genuine article, I beg leave to say that it was obtained through Messrs. Morton and Co,, Liverpool, who received it direct from Messrs. Reid, Maofarlane, and Co.'s works. The shipping note
and invoice issued by Messrs. Reid, Macfarlane, and Co., are in my possession, and they bear the marks corresponding with the casks received here containing the composition which was tested. Under
these circumstances there is no doubt that the composition tested was a fair sample of the article Messrs. Reid, Macfarlane, and Co supply to the public, and its value as compared with the composi-
tion of other manufacturers was fairly reported in THE EXGINE
 44, Berners-street, Oxford-street, W., March 12th.

stenm hammers.

She, -Referring to the letter in The Exarverr of February 29 th, intended to have any personal reference, and, as you are no doubt aware, hammers of this type, without sides, have been made for
areration by engineers at home and abroad. But even the the strs your correspondents framing below the cylinders, , instead of being machined to the
frem sizes and section of the piston rods, are about 3in. larger on all
sides, so that there is no guide for the piston rods at the extreme bottom of the central parts of the framing. B, AND S. MASSEY.
Steam Hammer Works, Openshaw, mammer Works, Open
Manchester, March 8th.

electric lightine for mills.

SIR,-In your "Miscellanea" for March 7th we enotice that you
state, in referring to a reent installation erected by the New state, in referring to a recent installation erected by the New
British Iron Company, that you believe they are the first South British Iron Company, that you believe they are the first South
Staffordshire ironmasters to adopt the electric light. Will you
 lighting in a number of our mills for over twelve months? We are
therefore ahead of the New British Iron Company in this respect. oodford Ironworks, Soho,
Birmingham, March 10th.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS
(From our own Corrcepondent)
THE proposal to reduce the output of ordinary merchant and of the committee which has been appointed "to consider the best means to be adopted to secure the unanimous co-operation of the
trade" will be watched with much interest. This-Thursdaytrade" will be watched with much interest. This-Thursday
afternoon in Birmingham they held their first meeting, but its direct result was not allowed to transpire upon Change. As have, efore intimated, there are a great many difficulties in the
way, and it is too early yet to pronounce whether they will be Meanwhile a few of the makers are voluntarily curtailing the output at their individual works, and the tendency of prices to
slightly more strength was more observable to-day than a week ago. In some quarters quotations were 2s. 6d. up upon the week ingles were quoted $£ 712 \mathrm{~s}$. 6 d . and on; doubles, $£ 82 \mathrm{~s}$. 6 d ; ; an
attens, $£ 92 \mathrm{~s}$. 6 d . These advanced prices were not, howere Senerally secured.
The galvanised corrugated sheet makers did not report the
receipt during the week of many additional orders of value. The receipt during the week of many additional orders of value. The
quietude of the Australian market is a matter of these firms just now. Prices in this branch vary considerably, not withstanding the existence of a trade association. The local representatives of the Birkenhead Galvanising Company quoted to-day
-Thursday- $£ 125 \mathrm{~s}$. to $£ 127 \mathrm{~s}$. 6 d . for 24 w .g. bundled, delivered
Liverpooi.
The Worhampton Galvanised Corrugated Iron Company, which site of the old Shrubbery Ironworks in Wolverhampton tor years owned by the celebrated firm of G. B. Thorneyeroft and Co It is understood that the Corrugated Company intends to remove
its present works to the new locality. The object aimed at is its present works to the new locality. The object aimed at is
the securing of canal and railway siding facilities which the present the securing of casal
works do not possess.
The demand for thin sheets continues excellent on export and home account, and makers are busy. The report that steel firms are just now pressing them very much for orders for ingots, blooms,
and billets, in consequence of the limited amount of work in hand at the rail mills - an amount which promises to decrease rather than increase in the face of the new combination. Thin sheets
were quoted by Messrs. E. P. and W. Baldwin to merchants "Severn" singles, £11; Baldwin Wilden B, £12; ditto ditto B. B, £13; ditto ditto B. R. B., $£ 14$; ditto ditto ocharcoal, $£ 16$ 10s.,
ditto ditto Bt. charcoal, $£ 19$ 10s.; ditto ditto E. Bt. charcoal, E21 10s.
The manufacture of steel in this district is extending. The New British Iron Company is now putting down a steel plant at its
celebrated Corggreaves Ironworks, near Birmingham. The open hearth process has been adopted, and concerning the final magnitude of the plant I have it upon the authority of the company
that this will be regulated entirely by the requirements of business that this will be regulated entirely by the requirements of business,
as it may by-and-bye develope itself. The company must neeessarily as it may by-and-bye develope itself. Une company must necessarily,
in engaging upon this new manufacture be guided much in engasing upon this new manuacture, be guided much by not deem it desirable to make known any more definite particulars. When the plant more nearly approaches completion I shall doubt-
less be in a position to enter into detail. The New British Iron less be in a position to enter into detail. Me New british Iron
Comple it will be remembered, is the firm which, as last week stated, has recently adopted the electric light at its, works These evidences of progress on the part of one of the chief "lis "
iron houses of South Saffordshire are altogether satisfactory The bar and hoop trade is in an irregular condition. The amount of business doing at the various works fluctuates considerably. Some mills are not making more than half time. Much activity
is, however, noticeable this week at the works of Messrs, Noah Hingley and Sons. This firm, amongst others, is in receipt of good orders from New Zealand, the South and other parts of Australia,
and other export markets; for heir excellent quality of bars. For
some descriptions of iron on home account also they are expe-
riencing a very fair demand. Upon chain and cable iron for their own use and for sale, the mills are running steadily. The firm
quote their present 1 ist as here:- - Netherton Crown bars, $£ 7$ 10s.; horseshoo iron, $£ 7$ 10s.; best rivet iron, $£ 8$; Netherton Crown plating bars, $£ 810 \mathrm{~s}$.; double best ditto, $£ 9$; and treble best, $£ 910 \mathrm{~s}$.
Angle iron up to 8 united inches is quoted $£ 8$, and T iron of the The bars of Messrs. Bagnall and Sons, Limited, up to 6 in . flat

 firm's.; turning and plating horseshoe bars are $£ 7$ 10s. to $£ 8$; their
find angle iron, £8; and rivet iron, $£ 9$ to $£ 10$.
Wm. Millington and Co,'s ordinary
Wm. Millington and Coo's ordinary bars are quoted $£ 710 \mathrm{~s}$;
small rounds and squares, $£ 8 ;$ Iin., $£ 810 \mathrm{~s}$; fin., $£ 9 ; \mathrm{No} .5$
In
 iron, $£ 9$ to $£ 10$; tang iron, $£ 910 \mathrm{~s}$., according to quality; rivet iron,
 Pigg are here and there moving off in somewhat larger pareels
this week, but there is still not much activity in the trade. Such this week, but there is still not much activity in the trade. Such
native firms as Messrs. Alfred Hickman and Son report that their native firms as Messrs. Alfred Hickman and son report that
current output of part-mine and cinder pigs is going away steadily.
All-mine Foreign sorts are unchanged in price on cinder pigs are 4s. easy. Fores.
the basis of 45 s . for Derbyshires.
The lowness of current prices for scrap iron is shown by the
following incident:-Recently a request for tenders to buy 30 or 40 tons of wrought scrap iron was made. The highest offer re ceived was 35s. per ton. This was in South Staffordshire, and London, as a speculation, 20 tons of wrought scrap at 12s. 6 d . per ton. This purchase will be sold again in this district.
Touching the maintenance of the Mill and Forge Wages Board,
the masters' secretary has sent round to all the works notices declaring that whether the operatives refuse to subrise notices the employers will continue to pay their share. The notices are accompanied with a request that in accordance with a recom be posted up in the several works.
The work now being sent away from the constructive engineer-
ing yards includes a contract at the Crescent Works, Willenhall, of Mr. Jesse Tildesley, for a roof for a alarge public building in this country. It is in three purtions, one of which is the dome. Steel
is not entering in is not entering in any important degree into any of the structure.
The weight of iron to be consumed is 150 tons. The dome is being erected 6 oft. from the ground and is itself 40 ft . high, 7oft. The dome consists of thest inside circular measurement is curb, with twent consists of strong cellular wrought iron lower tapered main ribs. At the top these are held in position by a large
隹 wrought iron top curb or ring, and at intervals down their length are secured by rivetted curvilinear purlins. The inside of the base the peripheric a true circle, but the outside is an octagon, of which will have inserted between each rib slips of polished marble. The most precise, being correct to the eighth of an inch. Of the three portions into which the roof is divided, one had already left the works before the dome was begun. In the course of a few days the dome will be out of hand, when there will only remain that
portion of the roof which is intended to cover the transepts of the building.
suilding. pipes, 7 in., 6 in., 4 in, and 3 in. sizes, is upon the market from the in this district needed for the sewage purification works at Wolverton, Bucks, is how being ine sewage purification works at Wolverton, Bucks, is nixers, carriers, valves, pipes, and the like.
Export orders for hardwares continue below the average, but an trict foreist is expected. In some of the heavy trades or the dis precedents follow suit. The overstocked condition of the colonial market keeps the demand and prices from that source very satis the proposed tariff changes in the United States to result from should become law. But in the event of the Morrison Bill gettiny through the House of Representatives, the protectionists will find a great stronghold in the Senate and the President.
Calcutta of theinnufacturers continue to receive intimations from Calcutta of their success at the Exhibition in the matter of awards. of the manufactures in this great centre is very satisfactory The strike in the Shropshire wire-drawing trade continues affected by the dispute, since the men there are employed under a
special arrangement, and the works, therefore, keep in as steady special arrangemen
employ as hitherto.
Manufacturers are watching with interest the prosess of Kings Norton Gas-Purchase-Bill, before a Committee of the Westminster, about $\$ 80,000$ will have to be raised, of which $\pm 70,000$ will be expended in the erection of works. The reveng fould be $£ 990$, and the profit $£ 4767$. The interest and
sinking fund would represent $£ 3600$, and there will therefore net profit of £1167 on the year's working. The district consumed to be attained for gas in 1882 , and it is asserted that the profit opposers of the Bill affirm that the Birmingham Corporation can
supply gas at far cheaper rates. supply
Among the sanitary engineering operations in prospect hereabouts is the carrying out, by the public authorities of Wednesbury, of a
sewerage scheme of considerable proportions. The difficulties in the way of carrying long sewers over ground honey
combed with mines compel the abandonment of what otherwise be an economical combination of the authorities of Wednesbury, Darlaston, and Tipton in the matter, and
throws upon these districts the onus of separate provision. Wednesbury, for its part, finds it necessary to expend some
E35,000. Mr. E. Pritchard, C.E scheme in which the principle is that of precipitation cyppeme by filtration. It is for 25,000 persons, sewage only being taken. mixed with sulphate of alumina, and the effluent would be be charged into the Tame. With the present population of the dis All the mixing and other operations would be to be disinfected ground, and nothing would be left exposed except the clear water in the tanks.
The South
The South Staffordshire railway separates the line where the
works would be situated from the nest works would be situated from the nearest houses and property, and
the railway is on an embankment to a point above where the tanks would be placed. The owners of this property, however, object to the project, and on Tuesday urged their objections before the
inspector, Mr. J. T. He Board upon the application for powers to borrow the $£ 35,000$
required. The Dariase. The decision of the inspector is postponed. the rriniosiple adopted in this case being a system sof filt $£ 22,500$ beis, and the sewering of the town by pipes varying from 3in by in. in diameter. The sewage is intended to be discharged into
outfall at adjoining by pumping engines. During an official inguiry result ing from an application for powers to borrow, the Local, Govern-
ment Board inspector on Wednesday expressed himself favourable to the scheme

NOTES FROM LANCASHIRE.

(From our own Correspondent.)

 Manchester.- The condition of business throgghout every branch of the iron trade in this district continuess very unsatisfactory, andall through there is one general complaint of depression. The weight of new orders coming into the hands of pig iron makers is worse, as not only is there so very little business giving out in
manufactured iron that some of the local forge proprietors are beginning to feel seriously the scarcity of orders, but they are having to face an exceedingly keen competition on the part of the both pig and finished iron are holding on to late rates makers of both pig and finshed iron are holding on to late rates, and, so far
as thin pig iron makers are concerned, thee have still tolerably large
deliveries to make against old ocontracts but there is such an deliveries to make against old contracts; but there is such an
absence of any weight of work in prospect that it is more a question absence of any weight of work in prospect that in is more a question
of whether present prices can be maintained than of any possibility of an advance, and the whole tendency of the market is in the
favour of buyers, who naturally show a disposition to hold back from giving out any orders at present beyond what is neceessary for absolute requirements.
There was agemen a ver. dull market at Manchester on Tuesday,
and although the firmer tone reported from Glasgow and Mriddles.
brough had to some extent a steadying influence as regards prices,
 the weight of actual business doing was not appreciably affected,
Both local and district makers of pig iron report that they are booking extremely few new orders; for delivery equal to Manchester they still quote, however, 4 s . d . for Lancashire, and
4 s .4 d . to 444, 10d. for Lincolshire little more than nominal quotationse figures is 80 small that they are of $6 d$. to 1s. per ton upon late rates has been asked for Middles. brough iron, and one or two sales of good brands have been made
at about 458 . 4d. net cash, delivered equal to Manchester, but the rise in Scotch warrants is altogether disregarded in this market, as it is looked upon simply as the result of purchases that are being made by nervous " bear" speculators.
Occasional fairly large seles of hematites are reported at low
figures, but generally business is quiet, and 56 s , to 56 Ess, d. , less 21 figures, but generally business is quiet, and 56 s . to 56s. Cd. , less $2 \frac{1}{4}$
per cent., remains about the average price for good foundry brands per cent., remains about the
delivered into this district.
In the finished iron trade, rather more business is reported in are holding for $\& 8$ per ton, but there are inferior qualities to be bought for delivery into this district at 5s. to 10 s . per ton under
the above figure. In other descriptions of finished iron there is no the above figure. In other descriptions of inished iron there is no
improvement whatever; Lancashire makers, in most cases, still quote 66 for bars delivered into the Manchester district, although in a fow cases 2 s .6 d . less might bo taken for good specifications;
but Cleveland makers are offering both bars and plates freely at ns
low as E5 12s. Gd. per ton delivered here. are in a very depressed
Al branches of the ironfoundry trade and
condition, and in most cases works are only kept going with reduced condition, and in most cases works are only kept going with reduced
staffs of men. Of heavy builders' work there is extremely little giving out, and there is so keen a competition for any orders that

 delivered into the Manchester district.
As regards the engineering trades there is no material ohange to
report. With a good deal of keen competition some works are kept fairly supplised with orders, Tool makers are still moderately employed, and a fow specinl branches are busy. Generally, however,
orders are thinning down, and prospects for the future are not encouraging.
The quarterly meeting of the Manchestor Association of Cmployors and Foromen was held on Saturday, Mr. Thos. Ashbury,
C.E., the president, in the chair. Four candidates for election wero proposed, and of these cleven were elected members. The
resolution in favour of the Manchester Ship Canal, of which I gave n abstract last week, was unanimously adopted.
Business in the coal trade of this
Business in the coal trade of this district has shown a slight mprovement during the past week. At the reduced rates, which
come into operation this month, the better clases of round conl are moving off rathor more freely for house fire purposes, and although pits in most cases have still to be kept on about four
days a week, the accumulation of stocks has been ohecked. Common round coals still move off only slowly for iron making and steam purposes, and the tendency of requirements for general
trade purposes continues more in the direction of contraction than expansion. The present small production of engine fuel continues to move of freely at full current rates. At the pit mooth prices
remain at about 9 s . to 9 s , 6d. for best conl, 7 s , dd . for seconds, 6s
 ts. sd . 6d. per ton for good ordinary qualities.
to In the shipping trade a rather better inquiry is reported with a moderately increased weight of business doing, but 7 s .6 d , per ton
emains about the full average figure obtainable for ordinary Lancashire steam coal delivered at the high level, Liverpool, or the Garston Docks.
Barrow. - I have to report this week a slight falling off in the
business doing in hematite pig iron. The market is much puieter than it has been for sometime past, and owing to the lack of busi. ness, prices have seen a considerable fall. Buyers are slow in
coming forward, and they do not place much confidence in makers. he present business doing is mainly to supply more immediate wants, and not with any idea of speculation. The orders coming ble, and the business doing on foreign account is considerably restricted. Prices this week have seen a great change, and quotations are made at 1s. per ton reduction on all quane andies of
Bessemer. Now I hear that mixed parcels of Bessemer iron are
offered and selling heat Offered and selling at 46s. per ton net at works, prompt delivery. Steel makers find the trade in a very quiet position, and they are
not consuming large parcels of Bessemer. The orders being booked are anything but satisfactory. Rails aro but in quiet ilgand at from \&4 10s. per ton net at works and upwards. Greater anctivity
is displayed in the merchant department. Shipbuilders are also remarkably quiet, and few now contracts are reported as having been booked. Engineers and boilermakers are but indifferently
employed. Iron ore is quiet at last week's quotations.

THE SHEFFIELD DISTRICT.

According to the official statistics for February, our trade in
coal, ooke, \&co, has increased from $£ 676,427$ to $£ 739$, 995 : but last coal, coke, ©c., has increased from $£ 677,427$ to $£ 739,695$; but last
month's oxports in hardware and cutlery wero only $£ 231,090$, as
compared with $£ 294,633$ in Fobrun compared with e294,633 in Februnry 1883. Every market shows
a decrasese except Holland and the Enited States the former has
inerensed from increased from $£ 5636$ to $£ 7030$, and the latter from $£ 28,024$ to
$£ 29,359$. These increases are very slight, and compare

 in South Affica, from $£ 10,410$ to 55038 ; British ERst Indie
$£ 27,508$ to $£ 22,209 ;$ Australasia, from $£ 67,557$ to $£ 43,354$. Pig iron also shows a serious falling-off during the month, from
$\mathrm{C} 244,352$ to 1164,361 . The increasing markets are Russin, Ger-

value fell to $£ 301,670$, and for last month there was a further fal
to $£ 230,886$. Holland, which took rails to the amount of $£ 9550$ in
Ho February of 1883, had none at all last month; Italy fell from Repubic, from $£ 33,068$ to $£ 21,708$; British North America, from c9239 to $£ 685 ;$ British Possessions in South Africa, from $£ 20,161$
to $£ 4827$; British East Indies, from $£ 80,528$ to $£ 26,531$ A Austral In unwrought hand, has increased from $£ 36,610$ to $£ 80,513$. value last month being $£ 79,672$, as ocmpared with $£ 105,612$ for the corresponding period of 1883. The falling off in the United State trade is sufficient to account for the whole of the decrease, last February, 1883 , they were $£ 49,853$. It does not make the figure ny more pleasant reading when it is remembered that in Februay,
1882 , we exported unwrought steel to the value of $£ 181,856$. Machinery and mill work-other than steam engines show
gratifying incresse, the value for February last being $£ 318,164$, o early $£ 103,000$ in excess of that for
 £44,134. The decreasing markets are Russia, Egypt, United
States-which had only $£ 1755-$ British North America, and British Possessions in South Africa.
Generally, the trades of the leanerally, the trades of the town continue very quiet. The pressure in any department. The lesser houses are short of work, no there is undoubtedly a good deal of distress in the town
though it is endured in silence. There is not much prospect o any great change for the better this side of the next winter.
Diere is some movement in the silver trades. Messrs. James during the whole of the season, and they have just received a
splendid order from Australia, which includes a general assortan of their chief products in the silver and plated wares. This firm well as for South America, especially in the Spanish Posesssions street, have succeeded orders, for the Admirally. They report an increasing de
ond in their sterling silver department, which does not mand in if the stering silver department, which does not
look as if the general paitated any early repeal
of the silver duty. Messrs. Walker and Hall are bringing out an instantaneous plate cleaner, which is certain to be
appreciated in every household where there is any quantity of sidver to be keppe tright, and particularly by shopkeepers who have
but limited time in which to maintain their goods in a condition to ttract customer
The Limerick Wheel, famous in the days of the Sheffield floodjast twenty years to a day as 1 write-is the site of extensive nev
works, which Messrs. Ward and Payne, the well-known edge tool carving tool, and sheep shear manufacturers are erecting specially
for the for the production of sheep shears on a large scale. The firm are
addine another ond see adding another and a new department at Limerick Wheel for the
manufacture of spades and shovels. Messrs. Taylor Brothers, Adelaide Works, Sheffield, have been
awarded a first-class certificate and gold medal for their exhibit of saws, \&c., at Calcutta Exhibition.

THE NORTH OF ENGLAND.

> (From our oven Correspondent.)

A vAIR amount of business was done at the Cleveland iron
market, held at Middlesbrough on Tuenday last, and prices were somewhat higher than ruled a week previously. Buyers appear more incined to place their orders than they have been for some time past, and so far as pig iron is concerned, the market is much
firmer sinco the stoppage of furnaces commenced. For this month's deilivery 37s, was on Tuesday freely given for No. 3 g.m.b. For
special brands makers ask 37 s . 6 d . to 388 . per ton, and will not take less. Owing to a deficient supply, the price of forge iron has
risen to 35 s . Gd. per ton, and below this figure none can be had; some makers even ask 6d. to 1s. per ton more for it
Middlesbrough store cont pig iron in Messrs. Connal and Co, Monday last was 61,050 tons, being a reduction of 200 tons for the week, In their Glasgow store they hold 594,006 tons.
trade. But few mill for the better in the manuactured iron trace. is the few milss an here is the greatest difticulty in procuring specifications, Fresh
orders are exceedingly scarce. Prices remain about the same, ship plates being $£ 52 \mathrm{~s}$. 6 d . to $£ 5 \mathrm{~s}$. per ton, shipbuilding angles
$£ 415 \mathrm{~s}$. to $£ 417 \mathrm{~s}$. $\mathrm{d} .$, and common bars, $£ 5$ to $£ 52 \mathrm{~s}$. 6 d ., all free on trucks at makers works, less 2 2 per cent. discount. Puddled bars are offered at 435 . per ton net, free on trucks at makers
works. The steel rail mills are tolerably well employed, but new orders are difficult to get, and prices do not improve.
It will be remembered that most of the steel rail makers, both up prices. They have managed to do this in some degree, but only at the cost of remaining to a considerable extent idle.
The value of the goods exported from the Tees in exclusive of conl and coke-was $£ 146,436$, being ader in Februarycompared with February, 1883. The exports from Newceastle last A new shippi Company, Limited, is being organised at Middlesbrough. The
capital is $£ 48,000$ in $£ 10$ shares, and arrangements are being made for the purchase of two screw steamers of 2400 tons capacity brough, and, considering the large exports and the recent inctresese of the chemical and salt trades, it is thought that there ought to be room for further enterprise in that direction.
A meeting of the Board of Arbitration will be
ton on Monday next to discuss the future wages of ironworkers. It is probable that the notice for a 10 per cent. reduction will be The strike of platers
The an arsitr
the men agreeing to a reduction of 1 s , Gd. per weeke At Messrs Craggs and Son's slipyard at Middlesbrough a reduction of 1 s . per
week only has been effected, but the full reduction of 1 s . 6 . per
 yard. At Hartlepool the dispute has been settled by the men
agreeing to a 5 per cent. reduotion.
came out on strike on the 4 the came
desire to reduce outside men 2 s . and inside men 3 s . per week. Absout 100 men are affected. The helpers on the Wear are also on
strike.
Mr. A. J. Dorman, managing partner of the firm of Dorman, Long, and Co., of the Moor 1ronworks, and chairman of the
North-Fastern Steel Company is seriously out of health through
overwork. Ho is ordered three months rest by his medical overwork.
attendant.

He is ordered three months' rest by his medical

NOTES FROM SCOTLAND
 (From our own Correspondent.)

SIvce the report of the committee on pig iron in Connal's stores
was issued there has been considerable animation in the warrant Was issued, there has been considerable animation in the warrant
market, a large quantity of firon having changed hands at advancing prices. There have also been some additions to stock, amounting
in all to about 900 tons for the week. The number of furnaces in

cash. and 43s. 0 dad., 42s. 11 l , and 43s. one month. The market was
strong on Tuesday, with transactions at 42s. 11d. cash. Business was done on Wednesday at 42s. 9 hd d. cash, and to-day-Thursday
transactions took place at 42 s . 9 d . to 42 s . 9 2 d. cash, and 42 s . 11 d d . ne month.
The market values of makers' iron are firmer, as follow:-
Gartsherrie, f.o.b., at Glasgow, per ton, No. 1, 53s.; No.

 44s, 3d. and 41s. 6 d. . Quarter, 43 s . 9d. and 41s.; Govan, at
Broomielaw, 44s. dd . and 41s. $6 \mathrm{~d} . ;$ Shotts, at Leith, 53 s . 6 d . and
 -and 478. 6d.; Kinneil, at Boness, 46s. and 45s.; Glengarnock, on, 4998. and, 452 s . 6 d .
Spain last week
Evidences are accumulating as to the increasing slackness in the
nanufactured iron trade of the West of Scotland Several hundreds of workmen have been paid off at the Lanarkshire rolling mills, and it is feared that the business will be very quiet during There is a better feeling in the coal trade of the West of Soot land. It is now all but apparent that the lowest point in prices
for the season has been touched, and on this account there is likely to be a substantial increase in the demand on the parts of con-
sumers who have been holding back for still lower rates. The hipments at the differe horts exhibit a slight increase. Amon he cargoes despatched from Glasgow were 1300 tons to River Plate 803 to San France 0 to Bordeaux, 11 antities to other places. There a want of animation in the coal trade in Fife and Clackm Prices are now reduced to 6s. 6d. to 6s. 9d. per ton f.o.b. at
Burntisland, and even at these low figures it has been difficult to btain orders for cargoe In Fifeshire the colliery 1143 left Grangemouth the union, which is now the only one of any consequence remainin in the mining industry of Scotland. The men are kept continuall in a ferment, and heir conditions for the last weive month West of Scotland mining districts, where no union worthy of the West of Sootland mining districts, where no union worthy of the
name exists. Mr. Thomas Barr has dismissed 100 miners from his Orchard gas coal pit at Carlisle in Lanarkshire. Meetings have lately been held in the Hamilton and Dalsery distriets, at which
resolutions were passed that the colliers should restrict the output of conl. At one or two collieries efforts are being made to carry
his resolution into effeet, but it will be impossible to obtain unanimity among the miners on the subject
In the past two months $97,710 \mathrm{lb}$. of gunpowder were exported

During January and February 242 vessels with an aggregate 18,545 tons in the corresponding two months of last year. The and 241,038 in the corresponding period. - with few fresh The shipbuilding trade of the Clyde is quiet, with few fresh
orders coming to hand, and it is antioipated that in some depart inents of labour further restrictions will have to be made.

WALES AND ADJOINING COUNTIES.

$$
\begin{aligned}
& \text { (From our ouv Correspondent.) } \\
& \text { it subject of dincoussion through }
\end{aligned}
$$

THE prominent subject of discousion throughout the district uring the week has been the alleged overtures from the promoten
of the Barry Dock scheme to buy the Bute Docks. That the Mar uis is not indisposed to sell is a fact, and equally true that the Carair conl and shipowners would gladly hail a harbour trust the
ame as at Swansen, and get the docks into their own hands. One In the conditions, 1 am told by one interested, is that no oppositio should be offered by the Marquis of Buto to the Barry scheme. This
would be essential, they say as the Barry Dock would constitute one of the material guarantees to be held by the Marquis. The matter is on of the most important brought under notice of late years, and at
 about a peaceful working must be hailed with satisfaction; but I
am afraid anticipation of a purchase is premature. It is a big question, and would necessitate a long time for discussion an arrangement of decails. The Marquis is at Athens at present. Well sustained, but prices are as firm as ever.
The men have been looking forward to the result of the audit of the last four months sales, and have been expecting an advace This hope, "No change in wages justified." and auitors havin No one moving through the great cool distriets can close his eyes O the strong probability that, so far as our best coal is concerned Rhondda is secured; the last sinkings are beginning, and as the
Ren area narrows and outputs lessen, prices must advance, and wages one of fifty or a hundred years, but it is the last as regards the aluahle No. 3 Rhondda and 4 ft , steam coal, When the owner of these coals-and they might all go into a small London parlour

- can be sufficiently trustful of each otter to associate for the purpose of getting proper value, some return will be obtained fo The question of obtaining the Fleuss life past,
been before the coalowners, and has been relegated to thearatus ha fary dimmitee. A few will very likely be obtained in the more used after the last explosion, the rescubt that, if some had bee some of ipond's men, Monmouthshire, are on strike. Th using standard. It is a pity that the men, instead of striking, February totals of work are satisfactory. Cardiff sent away 582,000 tons of coal; Nowport, 140,000 tons; Swarsea, 80,0000 onss,
nd Llanelly, 5000 tons in round numbers. In addition 20,000 ton nd Llanelly, 5000 tons in round numbers. In addition 200,000 tons were sent away from the various ports by coastwise shipment.
Iron does not show so well. Cardiff sent away 9000 tons, N Now
port 5494 tons, rary, is in good form. Since January 1 st Cardiff has sent away ng up in importance as a port, and the rumour there this week has reference to the tin-plate trade, which is fairly maintained
 ously employed as they might be, and prices remain in the sin inanimate state. Some large machinery has been placed in the
new Troedyrhied. Works this week, and the skill exercised in The report of the Permanent Relief Fund is satisfactory. In 1881 the members were only 5634 ; in $1883,22,541$. In 1881 the
ciaims against the fund were five, last year fifty-seven. There is no movement of any account in iron ore. An average Sow. One vemsel in the trade, owned by a Cardiff firm, has gone
Sown near Bilbo.

IN connection with the International Health Exhibition to be
held at South Kensington, is to bo an exlibition to illustrat the

THE PATENT JOURNAL.

Applications for Letters Patent.

 * When patents have been "communicated," thename and addess of the communicating party are
printed in italics. 4th March, 1884.
4305. Water-closkr, A. Emanuel, London.
4306. SukET HYDA
Giastow Gilasgow. TRan Protecron, S. G. Lingham, Liverpool.
4308. VEstuATor for Fodpri Baos, W. P. Thompson.

Securina Puluks to Alizs, dc., W. Cook, sen.,
ind T. Cook, Atterclifo. 4318. GRoovnco IroNs, W. Cook, son., and T. Cook,
Atterciffe. 4A19. LAMres, C. Campbell, Sheffield.
4320. MAKINO MATs, J. Whiteloy, Bal

 4330. Minerge sherty Lasps, G. A. Haworth and E.
Jonos, Cawthorne.

 433. ADsvistixa the Wrok in LAMMEs, G. Charman,
London.

 5th March, 188.
 E. Protit, LJoeds
13sis. Compous
D.

 Sirming Fastenisg for Haxd BA
Birmingha 4391. Gas Moron Evanss, T. M. Williamson, J.
Malam, and C. W. King, Southport.
 439. Har and other Boxes, G. Downs, Hoole Hill,
4394. Birmingham.

 4405. Sishb-arbs and Astracaiss, G. C. Warden, Tyne
mouth, and J. Ferguson, Edinburgh. E. Cornelis, London

 441

z. Pramexts
whesie.

Leiecoter.
4ivas, dec., A. P. Sheffiold and A. W. wills

6th March, 1884.

440. 4 strazing Gear of Tricycless, de., F. Baker,

E
44
4
4

1ondon.
446. HEATtiso Watrar and Gexeratino Steas, A. H.
Hearington, London.

London.
447.2. Bativo Carpers, S. Child, Bighton.
4is. Preskrvisa Fkrasstro Liecors, R. G. Bell,

44.6. SToprer Locking Devices, J. D. Mattison,
New York. New York.
47. Iron or Stekl Castinos, J. D. Ellis, near
Rotherham.
4478 . Portable Show-case, G. B. Baugham, Waltham-
 -(C. H. Knoop, Dresten.)
481. Booms, J. I. Ward, Licester.
482 Cemsmation Furnaces, J. H. Johnson.-(A. Berthouicu, Paria.)
448, CLosso and Re-opening Soyt Mbtal, D. T.
Bostel, Brighton.

 H. Nicoll, London
499. Brakes for Sropriva Loons, w. Haythorn-
thwaite, Blackburn.

 worth-
51.4
Wring
Wrasss , de., F. Erskine, Hulme, and D. 4IJ. Prerskivinoso Munilut Ropse, J. Brown, Higher
Tranmere, and T. R. Robertson, Birkenhead.

 Halesoonen. Wire Fabrics, E. do Pass.- (E. Popp
4537. KNrTrid
Vienne.)
 I.ondon.
454 Mer
Sererace,

45ther BRe, Paris.) or Wriortivo Motions, J. Parkinson,
Bradford.
 454. Bricks, W. Johnson, Leods.
4545. Railwiv Brakzs, J. B. Slhurp, Odeomb.
 4548. BAND for GENERATINO ELEctrictry, A. H. Byng

4564. Stait-Rod Exvs, E. Taylor, Birmingham.

8th March, 1884.

 Crossmyloof. Chunss, J. Brooks, Sheffield.

 London, Locingo the Barrels of Fmb-Arass, A. Lan-
caster, London.
 4550. Reskrvor Pess, J. E. Couste, London.
4501. GA8 Moror Exaive, W. J, Munden, Lond

Rotary Motios, \&c., H. J. Haddan. - (E. Boettciery
Lefyigi.)
4507. Strarivg Triannay Cars, \&ce., J., W., and J.
Gillespie, Paisley.
 Wallhamstow,
4599. Preveving Robbery from Letter-boxes, J.

109. WEAVING REvERsibLE FABRICs, A. Rothwell, Buyr

W. R. Lake.-(G. D. Corey 4611. BRAKE and SUPponr for RoAD VEmiches, H. Grist
and M. Steel, Horsham.

10th Mareh, 1884.

4612. RabBrT TRAP, \&c.., W. Hornsby and W. Shepherd Griantham. Rastis and Lowerino Boiler Chimseys, w Hornsby and R. Edwards, Grantham,
4613. Vkrmscal stax Bonkre, W. Hornsby and J
Clapham, Grantham 4615. Masive Exolines, T. J. Turner, Bootle

4614. BaLaxce IxDtcitor, J. Giffen, Govan.

 Smenerp Shears, J. C. Mowburn.-(F. Guillumaie,

 STzerino Apparatus for Tricycles, J. m. 4648. CABTors, , A. A. Barratt, Thames Ditton,
4615. OPENTMO and CLostro Swiso SABHzs, Paine, Worthing.
4616. Tkeatina TExtle Materials, H. J. Haddan.

 4653. Domenstro stoves and Grates, H. Thompson,

 4664. Abricivso and Disiscurxa Horses from Vericles,
F. J. Bingham, Potton.

ABSTRAOTS OF SPEOIFIOATIONS. Prepared by ourvelves extresty for Tar Exanser at the
affice of Her Mojestys commissioners of Patents.
3392. Flevorrac Arc Lasps, F. M. Neuton, BeffastTho upper carbon is fod by a brush lined with a
number of elastio fingers axaially inclined to the carbon
in the diret In the direction in which motion is to be prodrucod.
The roush is rocked by an electro-manmet placed in a
Shunt circuit. A solenoid surrounding the carbon-holder serves to draw it down, and so esth.
blish tho arc. The Thboon-holders are split balls held piccos. 3399. Fastentsos for Doors, F. Neoman, Ryle.The object is to enablo doors to open outwardly
 tho door in such a manner that when pressure is
hppliod to the leaf the bolts will bo withdrawn from
their
 This relates to a meter which shall automantically
deduct the amount of current which flows back from a secondary battery whent it it is dischers back. Throm
meter is driven by a small motor, the connections being reversed when the current changes. The meter
gives a signal when the accumulator charge reaches a
 used in connection with an automatic switch, which
causse thine ourrent top pass through one or tho other
according to its nmount.

 glands into a box filled with mercoury. Means aro pros
yoded or filing and emptying the box of its mercury,
so makking or breakiking the connection.

small trough across its top, in
the parts to be joined are laid.
3495. Chemical Derosit Currext Merens used in
Charaing AND Discharoing Acoumulators Emploved for Storivo Elvotrictry, Sir D. Sulomons
 meter when charying the a coum unatoros, sind remo
from the circuit while they are being discharged. 3498. Colovring Maxtren, F. Wirth, Germany,--1
 alphanaphtholmonosulpho acids from alphanaphthol,
ind in the manufacture of azo colours therefrom. 3505. Temerponio A
17ith Juty, 1883.

This relatess to apparatus for long-distance telephony,
und comprises a direct transmittor, a relny trans: mittor, and a olocal reeciver.

 introduced. When turned out of the boxes water is
pourred over the slag, and acting upon the limestone proaks oup the thag.
3515. Bicyoles, Trioxcless, dec, , G. Warwerk, Aaton-
 for the wheols of velocipedes by drawing sheot steo to
tho required form with the edges anbuthing on the
under underside, and over the edges a strongthening piece is
gooddered or bruzed; Sceondy, to an improved method
 tricyceles to be taken through a narrow pasagoo it
consistst in forming grooves in the oxle and antehes in consiststin forming grooves in the axle and eatehese in
tho hub of the orkoel to ongyo such grooves, and
which can be disengaged therofrom by means of a

 Where and numbor of substations aro locatod on one
lin, and consts in
currents currents varying in dircetion. Tho signal me⿵
describod in patent No. 4246 of 1882 is used.
3520. Appanatug por Supportiva or Holdiva the
Drawina Rolis vabd in spinimo on similar

 Ing out the silver in minning nand othor manchincruv, botweon the rolls tobect thio rogulating of the different long tho of staple
that may bo usod.
 Considtses principally of an nir-tight drum, through
the contro of which pasese the manith shant, upon which

 Rolates to the employment of mordants or ingro-
deonts to be used in conjunction with the andline
colours.

 om W. H. H. Sisun, A hooper is iprovided with n vibrating back or front,
and
trand roller carros tho spplints from the hopper und
 Webs, which aro wound upon a roller, the roller being
romovod when full and taken to the phace whero the
igniting materinl tis to be applied.
 zeith.) $2 d$.
Reltat ot the arrangement of a float which controls
vulve for the admissson of water.
 Relates ot the propantition of ocolouring matters by
the action of the organto anhydrides on the halogen
 3528. New on Inproven Revractony Matrrine
 commonly known ns steatitio or soopstono and fircecing

 This relatos to a aystom for simultaneoualy taking being reoded, and rolocosied, and socuring them whild
bhe hanks aro wound.

 A ball rolls upon a dise or table ettached to the bell. 3533. ELsotric. Mgtrg, W. Mc Whirter, GlagoourThe needio is deflected by the current prasing
through two oheliceos, a small electro-megnet, excitod by part of the curront to to emento-magned, excittod tending to
minintain it in its normal position.

 This consists in adding to formentable or fer-
mented substancos phoospotungstio nalds or their
corresponding salts for the destruction of germs.

 spaces botween. The fomplo portion
adapted to poss into one of the spaces.

 cave and a rotary drum having a circular series of of
bars extending approximately parallel with its axis
 arranged alternately in opposite directions so as to
move the fibres altornately towards opposite sides.
mose
 3539.
 spaces representing miles, knots, or other distances, and at one end of the plate is a centre on which turns
a straigh edge, one edge of thich passest hrough the
centre, and and graduated sector by shich the angle centre, and a graduated sector by which the angle
which such edgo makes with the slot can be mensured
 moved along the slot, and a second sector indicato
the angle it makes with the slot. 3540. Sash Weionts, dee, W. Ayres, London, -18 B $^{\prime}$
 woightis are the sash line.
 U.S.,) St dom E. Burnutl One part relates to the closing devices, which allow
the milk to bo withdrawn, but which prevent 1 liquids
bein being introduced into the vessel surreptitiously; ${ }^{\text {a }}$
second feature relates to means for preventing the removal of the closing devices; and n third fenture
relates of an improved carriage for transporting the
cmass or vessels

 whichatus for suppporting and guyding endiom then paper; Thirdy, to a apparatus foo
 fooding and guiding gummed, or pasted labols the
bottles and, Fifthly, to apparatus for removing the
sheot from the 3543. Rockiva Funvick Ban

Tho bars aro made will, 1 cs. The bars aro mand with a coniderable camber or
riso in tho contre, and the two onds aro bevelled of to to
in angle of ato 30 den an angle of about 30 deg, , nd one ond is cast with
jaw to coceive the rocking bark The bearer burs at
anch ond of the the oach end of the furnace aro bevelled to receive the end
 Wridge U Uder tho jaws s.
which is cunsed to vibrato.
3544 .
 Throm the Larzen Ritic Company, Be Dequium.), so, one or more chambers, according to the cartridges t an
bo used. The cartriddess aro superposed in the chanm

 nont o of inborbing a largo quantity of hent fibstricted
capable
rom adjucent heent ylold Irom nadjacent heat-yilding bodies during the process
of vaporisation. Tho cylinders of the compressing pump aro cooled by arrunysing the pump close to the
pofrigorating chamber. The vapour leaking past the lectod in an intermediate chamber communicating with the pump, and similarly cooled by the ofril
verator, thie counterpressure being controlled by
 onam thar, has beon cooled, and become imprognated
gas the
with the lubricating oil contained in the bottom of tho
 pump and along tho cal aor col
546. Moulds on Regerpacless Eyploved iv tur

The object is to construct moulds into which sugar is cast, go that currents of air can cirroulato thirough
tho ound and rupidy dry the sugra, ,nd for this
purpose conicul spaces or pasages aro formed through purpose conle
tho moulds.

 scrowed into a dish opens the valve, which closes
again when the tap is removed.

 holes and furnishod with spirals placed in a pasition
opoosod to the blades of tho scrownd and having an ono
ond a hoppor into which tho material to bo tratod is
no
end
fed.
3549
3549. Wissunvo Michives, J. Heechrood, Leede.-10h

July, 188s, od
A boilor fod with water from a cistern above is
heatod by gas, and contains a corrugated drum, which

 so that one can be filed while the other is being nated
upon by humpers which aro mide with long
handles, and at the end of the shaft whero they

 machine.
3551. Pockir Ksives, J. H. Johnon, Lonton,-190h
July, 188s.-(A communication fom J. Thurmaurr
 This rolates to the combination with the kniff of a
silding dovico to enble thickneses or oxternal dia-
metor to be meousurad. 3552. Foldiso Hoons or Dovnle Prenusbulatons,

tinct planes formod in its head with a rod having a
stop or croshhend (or equivalent) to rost on en eithor
shine plane, and a disce compressing an expanssiblo collar, the
closura and oponingot the joint forned by the stoppor
in the and by mechanical devices, by moving the stop from one plane to another, and theroby causing expanasion or
permitting relaxation of the collar, and locking or
vetaining petaining same in position.
ret
 Relates partly to tho use of Brizil bial serim, Relates partly to tho use of Brazil bagging, scrim,
mustin, oro other toxtiol fabrics in combintion with
Porthand cement and plaster formed into slabs or mouldings.
3556 . Lo
3556. Lockiso the Screw Nuts and Bours of Raid
wAY FISH-pratrs,

 3557. Closisa of Canistres or Rzcertacless yon
Covzex, de., A. W. Jever and C. A. Farveig,

 Wo reaste, -19th Juhl, 1883 .
One part relates to the use of steel knives or blades formed or arranged in ormamental shapes or designs, chiefly in the decoration of wood cut, or what is known
in the timber trade as . .tho plank," too orm a m orna
mental work for various purposes. Other improve. mental work for var
ments aro deseribed.
3559. Macuiss yon Lastiva Boors axd Smors, W.
 Comprises a spear or holdarst against which the prese tho botom of tho insole
which has been previosily tacked to the bottom of The last. This spear pierces tho insole, and forms
 Mo puling over is complete, a tack, fod by suitabio
mochanis, is drive throuh the opper and insole,
hus " insting the shoo by gecuring the upper to the

3560. Utilisino tat Risk axd Fall of the Tide,
 Relates to the arrangement of vossels and the om3561. Morive Powza Exasss, H. R. Neaton, London.

Reforant to that clases of engines in which gas or
vpour gonerated from ammonia or other llquid of

 Wharo.
3562 an and Calomio Enoinss, E. Field

 suitablo metal is enclosed within a corrasponding
exterior vessel of shoet metal, the spaco botwoen
 injury.
3564.
J. Consists, First in the manufucturo of front-steoring
velocipedes with more than two wheels, having pivoted or hingod frames, provided with springs, to
nessist tho balancing of the rider, and stops to insure
 Thirdily, to a brake arrangement

 Consists in the omployment of a bull having the the
same dianotor an, but proferably yhorter than, the
revulation ball, and a small contral cartridgo loaded

Consist in forming or making them of glass, in liou of rion or other metaino materials as hitherto, with an
improved method of lubreating the same from the
ring or travelling rail.
 Relates principally to improvements on patent No.
2181, A.D. 1880 , and consists in an arrangement and construction of the sooraral parts secessitating a modi
fication in the cyclo of operition. 3569. Water Sping Machises, F. C. Glaere, Berlin,

 and is diroctly wound up thereon,
vented from being thrown on one side

The object is to provido both a lever, which operate
the stoppor and an operating hand lever with cogs,
so that the level having the stop attachod theroto can be bo
moved soo to open and dososo the stopper; and to so Construct the parts so that no moisturo will got upon
the joints, and this form rust which will provent
them from oporating them from

The voseld aro provided with a handle, which is
3572. Surin axd Coulun studs, dece, W. c. Aldaridge,

The bick is formed of a disc mado in halves, which

Rentin. $)$ on
Ride-cutting machino constructod with a
adjustable tilt hammer, and the mechanism for effect3575. Vourrato Batrrares, W. R. Lake, London.-2othl
Jull 18ss.- (A communication from J. M. Steboins, Relatest to a bivittery having receptacles in which store of the exciting gist is placed. Hard rubber cups surcound the zinc plates, and are drawn up or down,
according asi it is desired to put the battery in or out of action. The rubber cups contain mercury.

The inventors claim in water meters having the pistons of two eylinders reciprocating aternately, each
piston governing the sidio passages to the other
cylinder piston governing the silide passages to the other
pylindery method of testing tightness by attering
from without tho positition of the silide or its facing, Irom without the position of the slide or its facing,

so as to stop the pistons and tho counter worked by | 3577 . |
| :--- |

weerl Sroduciso Embrowbry, C. F. Bally, Schoenen Reareses to prouncing in duphicate or single pieces
embroidery with a velvet or cut pile face.

1 1883. - (A communication from E. Nugent, Nen York.) This comprises improvements, First, in the hoppor
 jaws $;$ and Thirdy, , in the mechanism by which the
movements of the burs that carrry the outtr formers
or pattern cams and the movable portions of the jaw
aro controlled.
3580. Procks of and apparatus yor Purivino
 soparation of impure tarry or resinous substances, con-
tannod in crude or distilled oils after their treatment.
with in pren 3581. Mandractun

Warington.-21st July, 1883, 2 . Consists principally in the combination with an
india-rubber core packing (with either a solid or coiled coro) of a carign made of sabbestor a loth, cemented
thereon, so as to form a completo covering or casing. 3582. Autorurto Steas Traps, T. Willina, London.
$-214 t$ July $1883 .-(A$ communication from A.
 oxpansion of a liquid, caused by the temporaturo of
the steam, closes the inlet, whitch inlet opens anain
 roduction of tomporature
densation of the stemm.

 3585. Crucimse Funs cors, de., B. J. B. Mills, Lon
 Consists in a heating stove forming a constituont
part of to furnce, nud in which tho chargo that is to
bo meltod in the chetbo

3586. Funace amd Apparatus yor Axyelingo

Tho formaceo ocnistat of soveral furnaco chambern
disposed one above the other in a slanting position fin
 and having a cylindricial or some o ther form suitablo
to the form of the chamber. These veasels contain to be annealed.

 3589. Luruoanapuc Prussas, H. J. Haddan, London.
 pressure on the printing surfaco of a lithogruphic
stone willo the latter is drawn through the prosel 3590. Perprevil Calessnness a. IV. von Naurochis

 coke or like fire.
3593. Craxp Makixg Machuxss, W. Clark, London--
21at July, 1883.- (A communication from Y. Hedhnel, Relates to soveral improvements in the general con-
 Consists in the emplloymont of two boxes or cases,
one placod within the other, with a space betweenh
them for protecting peckine 2595. Militiar axd other Small-arna, b. C. suf, Conists in tho combinition with small-arms of n
safety lever catch engaging with an indicator, and safety lever catch engaging, with an indeater,
displice by the presgage of the thumb upon a button
on the hend of the stock. 3596. Fans on Fansiso Apparatus to ni Atrachisd
 The fanning apparatus is applied to or combined
with arocking ondir or seat, and is actuated by tho
rocking movement thereof,

(Nor proceded widh.) hd.

 Toilers or plate

tonn rom shl
this
tonsitsts

 dropp press
3809 . PiA

 actasting thon outter.
3612. Ranwav C in

 Reantes chiofy to the conversion of gypoum into 3615.
 proceded with.) $2 d$.
This relates to embossing leathor and coating it with

and it consists in ingerting in the tube of the pipe an
inner tube having one or more traps
arranged
therein.

 3823. Sirizp Sirens, T. Bith head, , sheffeld - 24th An adiustabie guard is the tached to the shanks of the
 ${ }_{36}$
3625. Apparatus for Printing, Numbering, and
Denivering Trikets, đc., T. Kiny and R. Wilson,
London.-24th July, 1883.' 6d.

 Tho dyparatust is intanded ospeacilyses.

Thiti ralates to the treatment of the insoluhlo phos
phates of iron and alumina, and it consistst in in nnely

 bismuth, antimony, and tin.
3631. Arpanurus ron Stuan Courvartox, A. Greion

 3832. Prepanuso Iss

 Gotwon them. Prosure is applided to
conosolidate the puint and the brididng.

Tho armature consists of an annular coro dividaed
 capabilo on adjustment end ways
double ringed anmature maxy bo used

 ap pinion on tho other phate, the axto of which carrie
a pointer. Othor arrungements aro deecribed.

 which the otet of disisomecting the eacapement bod
 The object is to offect tho unform winding off of

 Thd odjects are to supply sufficient air to reviviry
the oxidid int hep purifier,
 3643. Proxers pos Loons, dec, J. H. Tullis, Glasyon.

 nimal firess, or of tough grres with guthappercha or
 materili beins combino or not with wire gauz, thin
 This reltan to a
 material the bridgo being so placed that the incilino
due to the risis and tall of the tido is is divided into two 3647. Mastracturb or Vemtriatisa Cowis, dec,
 3648. Fire.nesstrise Doons on stuvtrres, F. W. B.

 Rolates partly to the ustin ocmbination with
streamer,
mada
with rooved ${ }^{\text {fring }}$ with
headed dtuds or buttons.
3850. ATrachiso Door axp ortuen Krons axd

25ith Juty, $1883 .-$ (Not prosesuled wiuth).

 les.

Thisprialates so treating complex orest to separate tho
 notalas, and colleceting und the fumes in in air miltering appa
 Tho instrument consistat ot at suili, rosind fod or

 or regenenting the amo and obtaining potasitime
cymine, and consists in in disolving and leaching the

 then removing the precipitate and Solly emporatiting

3862. Buti on Strap Fstrasras, H. Grene, Londom

Tho inv ventor insitios ob obts or straps without over

 of the stray
3683 . Ap

 or more smaler holes or openings aro also mado at tot orcharo adjusted tube for tho distribution of the

 to the mill whol or and marrounding
cumferenco and curved periphery.

Relites parily to the means of attaching the lid.
 1883.-(A communication from Dr. N. Verguerio,
Braili.- (Not proceded dith.) $2 d$.
Consists essentially in an artifial bladder and the 3670 specia

tho bundlo carrier of, preferably yhaths, is hinged so ant

 Rolites. to the construction of the burner.

 3677. Machistrax on Apparatus sor Makisa Casiss,

 into position and allso as trussing hoops formed in
parts capable of beling druwn together by 1 lever.

 3891. Appanary por Baxiso And Parssryvisa
 Gonsists in the production of tinmed or praserved metalitic box or vesael provided with apertures for tho
escape of of the vesper

 Relatas onticipalis to thio construction and arrange-

 With a fusbib compound, by submerging the rollert in
heo maltod compound contatined in A c cyindricil tube

Relatas prindipuly to tho oombination in. polishing or rrinding machino, of af sorios of hanging framed
oarrying the polishing buffs or bobs or omary or grind
finy

 apool aro sucoessivaly fat tenod, piercod, counter ties are sharpened, after which they pases to the
spind lese $o f$ the third tabile and are poilibed.

 4552. Waren Mrrus, A. E. H. Johneon, Wawhintion

The lower hend of the case has the neeessary ports,
and is combined with a separate top head and a
and 4020. Skepreveriva Flat Forme Printina Ma-

Thisk.). (Complete.) bd. ode in which one or more missed-leaving blanke then en the missed impro عions being afterwards filledue. The printing is effected
by a fat forme upon a web. 4802

 of apparatus constructed so as so bo readily yortable,
and
loadedisily 477e. Heativg and Controluing Gasse fon Moron,

 pressed state and before it enters the engine, and to
 shbjected to the hent produced by slaking lime in the
chhumber containing the coll of pipes.
 The oroer, 1883. (Complete.) Ad. bove the bobbin, upon which the yarn is wound the beoring of the Alyor rumning gin an annulara oound cop and
the yarn passing through the centre of the f yer and cup. 4962. Beariso Blocks with Veogtable Parobarist

 4984 .

 Mitity to a secondary heilx forminting parrent of the procoiv
ing instrument circuit. Several methods of mounting ing instrument circuit. Soveral methods of mounting
the apparatus aro described and illustratod.
 Hinsalale, Cleveland, ohio, U.S.) Bd. fillion, and aro formed with their insulatitng head 5047. Tine Controllina Svaten, W. F. Gardner This rolatos to a system of automaticaly comprouling
 lock, a a serios of secondary con
eories of controlled loeal clocks.

unication from F. Myers, A phteo of motactal (sompresete.) bd. dion which cut out hhe bianks for the nuils, whilo a header spreads and nd turned by suitablo mechanism so as to correctly
resent its end to the nction of the dies and header
 This relhtes to ${ }^{\text {Completen }}$ machines in which the mail blanks aro moved forward intermittontly by a chanin to be the pont and sherod to ffirsh h the poont and and
it consists in the construction of the chain of
 lanks; aliso in the shonves to sustain such chain; the
contruction of the eotlor die and a die and dio block; and a rest for the
5060. Automa
5080 . AuToxatric CAR Couplens, H. J. Haddan,
Kenaingoton:-24th october, 1883.-(A communication
 In its ralsed position when desirod to render the
coupling non-atomatio; further, to securre the pin in
suth such position that tho cars will bo coupled by two of
them coming in contact; also to provent tho pin being cocidentally timown into the locked position; and,
lastlo, to simplify the construction of automatic couplers. Tho pin is ralsed by a link coming in con-
tant wititith bottom inclined end, through an opening
 also so that it will fall again
by trueks coming in contact.

 Jrom E. Rümmelin, Alisace) (Complete.) $6 d$.
Consits in in subjecting the flaments or ribands in a soparated and strotched condition to tho liquids.
5136 BEL California Belt Railuay Company, San F rancilecon) Thiss rolatese to tho employment of a bolt formed of a cablo usually employed. A wheel has arms or tooth
which ongage the belt, and is copable of being braked so as to causo tho car on which it is mounted to be
moved along by the belt. A Apecial arrankement of moved along by the bolt. A spocial arrangement of
sheaves or wheols is doscribed for propelling the car
round urures.
 Bois, Nee York.)-(Complete) $2 d$, ${ }^{2 d}$, This consists of a plumbers trap of soft motal con-
 5200. Machisery or Apraratus yor Uge in Dyeino
of CLEANINo Yars, W. R. Lake, London. 1 let No.
 This consists of an apparatus in which wringing
rollers aro oombind with
compono composed of motal bars hinged nt each end to endiness
chans and feed rollers anranged so that their line of
 aro oprosed together by their own weight whanns, curt
aro
ing tho ing the yarn below the level of the liquid.
5288 . Movrorvo 5268. Mouldivo MachivRRx, J. Walker, Cleveland, This consists partly of a fixed pattern plato com-
binod with an exterior flakk supportign phate sustanined
by hydrostatic rams and means or operating samo,
 on a yielding supporting plate surrounding the pattern
plate, a comprosing dovico being located abovo the
fiask.
 Thiss. $6 d$ d in in machine for grinding or dressing
inimber of file blamks at once. The phanks are held nnamber or which ing is serticanly reeciprocated in a a direc. tion tangental to the periphery of a revorving grind-
tone, by means of screw and bovel gearing above the stone, by means of serew and bevel gearing above the
frrme actuated alterntely in opposit directions by
beits automatically shifted upon a pulley. The grind stone is also reciprocated continuously in the direc
tion of its axis of rotation and across the face of the frame. A devico or or roessind the rorindetstone of fice is
vertically adjustable towards the surface of the stone, vertically adjustable towards the surface
and can also be drawn laterally across it
 ber, 1883. - (Complete) $6 d$.
Relates to improvements in the general construction Relates to imp

 come mined widi and washer carrying a yoke that enters
he silit and opensout the end of 5362 the opensout the end of the bolt.

Consists partly in providing a loom with lease rods

 or clamps
supports.
5423. Dreparso MAcunsery, W. R. Qadge, London.
17th Norember, $1883-$ (communication from H. B. Anpell, San Francisoo.)-(Complete.) sd. ohanin and bucketa, the hadder, the tumblers, at ench
end over which the chain passes : a means for sus-

5447. Trusprovzs, C. A. Jackzon, Laurence, Masa,
U. S.-10th Norember, 1883,
6d. This rolates to a method of coupling.up so as to do way with the contral office, and to onable two or moro from the same instrument at the same tim
5454. Ranway Rall Jowrt, T. H. Gilbon, Albany.-
20ith November 1888 , (Complet.) Relates to a joint for rails, in which the heads of the
conjoining ends are cut away.
5455. Harrows, So Pitt, London.- 20 th Nowerber,
1883.Jercey, $U . S$.$) . Complete. 12$.
Int
rrailing teoth arrunged in gangs transverssely to the
no of draft operate upon the soll no of draft operate upon tho soil, and in the com-
ination of such teeth with crushing bars or lovellers The gangs are hinged so as to follow undulations of
 King teeth and bong saupported dibovo tho front brargo
is to nford n large aren of dischargo for the earth cut is to fford n largo nrea of discha
ap by the teeth of the first gang.
547 B . Syvorrovisiso Clocks, H. J. Allian, London.
21st November, 1883, (A communication from R.
 minuto-hand to a fixed point at a prodetermined

 glycerine, and d a soild dingrodient onlorato of potash-
mix ed tog ther in tho proortion of from four to fivo
parts of the sold to 5633. GAs ENOINM, dec, L. H. Raat
sth December, 1883.-(Complete.) \&d. Brooklyn, U.s. $=$ Tho inventor rofers to a patent applied for Novem-
ber 27 th, A.D. 1883 , in which the gases, atter compres. sion, aro caused to circulato over the heatod parts of
the engino on the way to tho working cylinder. The the ensino on tho wny to tho working cylinder. The
preant invontion rultes to improvents in the
ind prior invention, the objoct boing to enable the engino
to be operatod with a liquid fuol, from which the gas
 forward stroke of the piston, and the heatt producod
by the oomprossion tends to evaporate the fuel, the
vin by the omprossion tends to evaporate tho fuel, tho
vapour of which, mixing with tho arit and gas, forms
nn explosive mit an explosive mixture. Provition is made to to tart the
ongine by the prossuro of the working fuid in the
 communicates with the oompression chamber of ecah
cylinder, so that the compressed gases are discharged
 chamber, where they nccumulato and maintain suffi
cient prosesure to be utilised as a stiarting power. 5837. Woves Fabrics axd Appanatos fon Producivo
 This rolatos, First, to a now woven fabric having on in suitable designg and secondly, to an arrangemen
of loom for producing such andyric
 Warp threads of the foundation fabric, and is ficld to
the body by shuttlo threads passing over the orna mental cord, the ground warp threads boing all
beneath the sime. The figure throad is carried on opposite sides of the ground warp thread, so that ai
sporate design is produced on each side of the fabric By, one serios of figure threads. The loom is provided
with heddles having perforited needle--like projections
wis. through which the ground warp throads and also tho
figuro cords aro drawn, The reed is made with doubly-looped pillars, the ground warp threads passing
through the pillars, and the figure throads or ornamenting cords passing between them

SELEOTED AMERIOAN PATENTS. From the United States' Patent ofice oficial Gazetle.
 Claim,-(1) An astatic contrifugal governor consist
ing of two or more oscillatory pendulums revavin with the rogulator shaft, said pendulums consistin on a pair of balis mounted ind difueront horizonta plane
on osillatory axis, having suitale connections with the said rogulator shaft, whereby said shaft will be substantililly as sot forth. (2) In an astatic centri
 the purposes set forth. (s) The combination, with the regulator shaft 1 and the slecve 2 , carrying brackets
2 a , of thoo ponuulum, mounted upon axes socured bearings in the eald regulator shaft, substantinlly na

 having shafts 3 , journalled in suitable bearings in
semi-cylindrical 'bracket arms and loose connection semi-cylindricali bracket arms, and loose connection
with the cap 6 , subtantially an and for the purpose
set forth. (5) In centrifugal governor, the combinaset orth. (osillatory pendulum mounted on sumitable
tion of an
axis, substantially as herein described, and a support-

ing bracket having adjustable bearings for said axis the combination with an oscillatory pendulum sub stantially as herein deseribed, of a a l g or stop th
arrest its oscillation, as and for the purpose set forth
 Flaile June Thth, 1883.
Claim, - (1) The combination of the casing of the
machine, a closet arranged to close the rear end

combination of tho closet adapted to closo the end
the casing to which it is applicd, nd comprising the hinged doors, the cap or cover of the closet hinged and formed with the tango that enge ese the doors
rotain the sume cosed, at fan chamber securred near Lhe closet and provided with a rotary fan, tho olastic
oxhaust tubses extending from onen of the fan chamber to openings in the hinged cover of the fan chamber, upen axden in dififreromt difrections, an
 Claim-- (1) The heroin-described dircet-acting
rivetting machine, consisting of the cyinders A, D rivetting machine consisting of the criinders A, D
and E, plungers C and F, and snap H, all arrangoi

and operating substantially as and for the purposos
sot forth.
(2) The heroin-deseribed dorice for holding the work firmly while being rivettod, consisting of of
the spring I and sleve s , subetantially as set forth.
 Claim- - (1) A safety strip for electric circuits, having electrodedoposited caps or jacketst of harder metal on
its onds, as and for the purpose set forth. (2) The

lamps, consisting of a strip or filamont, onlarged
clamping ends, and connections of deposited carbon

292.720

uniting the clamping ends to the strip, as herein sot
 Claimo- (1) The hereinbefore described fire and heat
resisting valve, consisting of a cast or wrought iron

or other metal shell, coated with fre-clay or other fre
and heat resisting materinl, constructed to rotate upon and heat resisting material, constructed or rotate upoon
h holow mxist through which a continuous stream of
water may be forced.
 1 ngs.3. and Theodore Walls, scipio-- Fiud Augus
Claim.- (1) In a two whel horso hay rake, tho com Sination of a revolving rake, tho cranked axles on
which the rake head is journaled, thills connected by

[292776

and for tho purposes deseribod. (2) Tho combination
 grooves formod in the oeses of the thill ifons to limh
tho vertical vibration of the axles, all oonotructed and danpted to operato substa.
for tho purposes dencribed.

CONTENTS.

The Engineer, March 14th, 1884 page
The Curicigo Railway Exposition. No. XII.

Erricrser or Fans
Works IN Wood .

Colturiss Tall Tolivis

CLose FTre Raxazs or Citchevkrs

Rallway Matters.
Notres AND MEMORANDA
MTBcELLANE
Mrgcellanea

$\frac{\text { Miniso Lhap TEsts }}{\text { The Londione }}$
Safety Lamp and Collerey Explosions.
LITREMTURE-
Reminiscenos of General skobeleff
The Electric Light in our Homes ..
Private bilis in Parliniment.
Burklis compouxp Brat-rixed Exionï. (iilusi) 21
 Votrs frox Lancasmike

Notre prox scomland

$\underset{\substack{\text { Paraonuphs } \\ \text { Electrical } \\ \text { En }}}{ }$
Steelat the Royal Artilit
Sir W. Siomens
Eloctrical Soarch L̈ight

