RADIAL VALVE GEARS. By Robert Hudson Graham, C.e.

No. V.
AT the end of the last article on "Radial Valve Gears," which appeared in the issue of The Enginger for June 29th, 1883, pages 497-9, it was intimated that, in completion of the subject, another paper might follow dealing with the adjustments necessary to effect an equal distribution of steam in Brown's radial beam-lever valve gear. The tardy appearance of this article must be ascribed to a desire I had to develope and annotate some passages in this part of Herr Hoffman's manuscript, which seemed obsive by way oed an appendix, with numbered notes, for which, there fore, I am alone responsible. It will be advisable for those interested in the subject to re-peruse, before reading this article, paper No. 4 of the series, which appeared in he issue of The Engineer above mentioned, and to which requent reference will be made
In ordinary cases one of the leading causes of unequal steam distribution is the obliquity of the connecting-rod. In the Brown system the difference, due to obliquity, may be compensated, either wholly or in part, by controlling the action of the beam lever A G B, Fig. 4, page 499 ante, which object can be attained by keying the small crank of this lever upon the crank shaft at the same angle as the main crank. Were the main and lever cranks keyed diametrically opposite to each other, the differences due to obliquity would be additive and augmentative, not subtractive and mutually corrective. The maximum difference arising from this cause is expressed by-see page 498 ante-
$O O^{1}=\frac{r^{1}}{\mathrm{R}} \cdot b\left(1-\sqrt{1-\frac{\mathrm{R}^{2}}{b^{q}}}\right)-\frac{r^{1}}{r} \cdot a\left(1-\sqrt{1-\frac{r^{2}}{c^{8}}}\right)$.
Let us first suppose the valve diagram symmetrical, so that, for the same phase, all the four ordinates $\frac{B}{2}$ are equal to each other. It is then clear that the steam admission will be greater on the stroke towards than on that from

the crank shaft, because, at any phase w, the excentricity $O O^{1}$ of the crank circle would occasion a difference, equal in the sum to $2 \cdot \mathrm{QQ}^{1}=\frac{2 \mathrm{OO}^{1} \cdot \sin ^{5} .^{2} w}{2 \mathrm{R}}-$ see Fig. 10 and Appendix, Note 1.
This difference must be eliminated by operating upon the term z_{0} and u_{0}. The term z_{0}, Fig. 4, page 499 ante, $\mathrm{B} \mathrm{N}^{11} \mathrm{~B}$ o from the circle described a out the centre M with a radius $\mathrm{L}=\mathrm{B} C$. In order to eliminate the evil influence of the excentricity OO^{1}, the lengths of the ordinates $\frac{{ }_{2}^{2}}{\frac{\mathrm{~B}}{2}}$ must be arranged so that those on the right of the axis of y may be shorter than those on the leftsee Appendix, Note 2.
It will be remembered, page 498 ante, that the term z_{0} lengthens the ordinates $\frac{\mathrm{B}}{2}$ above, and shortens those below, the axis of x; hence it follows that the differences in steam admission are always augmented on one and shorted on the other stroke, in virtue of the alternate addition and subtraction of the term z_{0}.
The diagram, Fig. 8, p. 499 ante, taken with the text, shows that the term u_{0}, when negative, shortens the ordinates $\frac{B}{2}$ on the stroke towards the crank shaft, and augments the same values on the opposite stroke, whether the engine be set in forward or backward gear. This term, therefore, can be used as a means to balance the evil effects of obliquity, or, in other words, of the excentricity OO^{1} of the crank circle. See Appendix, Note 3.
In the case of machines whose motion can be reversed, the evil influence of obliquity can be perfectly eliminated only by adjusting the curve described by the end of the valve radius rod. In machines which turn always in one sense, the term z_{0} may prove a very useful means of compensation. We must then make z_{0} negative on the forward. and positive on the return stroke. See Appendix, Note 4 But in many arrangements the curve of z_{0} cannot be varied' and in such cases the evil effects of obliquity must be prevented, as far as possible, by operating upon the term u_{0}; then whatever difference remains will be unavoidably intensified by the action of the term z_{0}. If, in consequence of the radial suspension of the system, the variable u_{0} became greater or less than what is strictly required to compensate the obliquity, one stroke would be favoured compensate the obliq
more than the other.
In the equation of ante, it was assumed that

$$
x=r \cos , w-a\left(1-\sqrt{1-\frac{r^{2} \sin .^{2} w}{c^{2}}}\right)
$$

The correct value of this term is-see Fig. 4-
$x=r \cos . w-a\left(1-\sqrt{1-\frac{\left(\mathbf{A} \mathbf{A}^{1}+G G_{1}\right)^{2}}{c^{2}}}\right)$
$=r \cos , w-a\left(1-\sqrt{\left.1-\frac{\left(r \sin . w \pm p\left(\cos , \phi-\cos . \phi_{0}\right)^{2}\right.}{c^{z}}\right)}\right.$

Substituting in this formula the particular values $w=90^{\circ}$ and $w=270^{\circ}$, we obtain
$x=r \cos w-a\left(1-\sqrt{\left.1-\frac{\left(r \pm \sqrt{1-\frac{r^{2}}{p^{z}}}\right)}{c^{2}}\right)}\right.$
Substituting these values for x in the expression for the excentricity OO^{1}, we obtain-

$$
\begin{aligned}
& \mathrm{OO}_{1}{ }^{2}=\frac{r_{1}}{\mathrm{R}} b\left(1-\sqrt{1}-\frac{\mathrm{R}^{2}}{b^{2}}\right) \\
& -r^{r+r} a\left(1-\sqrt{1-\left(r+\sqrt{1-\frac{r^{2}}{p^{2}}}\right)}\right) \\
& \mathrm{OO}_{2}^{\prime}=\frac{r_{1}}{\mathrm{R}} b\left(1-\sqrt{1-\frac{\mathrm{R}^{2}}{b^{2}}}\right) \\
& \cdots\left(1-\sqrt{1-\left(r-\sqrt{1-\frac{n_{2}^{2}}{p^{2}}}\right)}\right.
\end{aligned}
$$

See Appendix, Note 5.
These equations show that the excentricity OO^{1} has two distinct values, one corresponding to the area above, the other to that below the axis of x. Hence, rigorously speaking, the half crank circle above the axis of x ought to be described about an independent centre O^{\prime}, , Fig. 11, and the lower half circle about a second independent centre $\mathrm{O}_{\text {q }}$. See Appendix, Note 6.
The mean linear direction OE^{1}, Fig. 13, of the beam
lever makes an angle $\mathrm{EOE}^{1}=\mathrm{TO}^{11}$ with the lever makes an angle EOE ${ }^{1}=$ TON 11 with the contral

axis of the machine, and, therefore, the points $B_{1}{ }^{0}$ and \mathbf{B}_{0} will lie above the axis OT. Consequently, the differ ences $\mathrm{NN}^{11}, E E^{11}$, and the difference between the excentricities $\mathrm{OO}_{1}{ }^{1}$ and $\mathrm{OO}_{2}{ }^{1}$ are then smaller, which is an advantage in view of the more equable distribution of steam. The dead points would not in this case coincide with B_{0} and $\mathrm{B}_{1}{ }^{\circ}$, but would fall earlier or later in proportion to the magnitude of the angle EOE ${ }^{1}$. In order to take account of this angularity of the dead points, the centre line, Fig. 12, is deviated so as to make an angle with the axis of x equal to EOE ${ }^{1}$-see Appendix, Note 7 Wherefore the whole system, which serves to correlate valve and piston displacements, is turned through an equal angle.

In the construction of a new gear we can use the formula $\epsilon=\mathrm{A} \cos . w \pm \mathrm{B} \sin . w$, which by Zeuner's methods enables us to find all the dimensions of the valve Assuming, for example, the linear advance $O P_{0}=A$ Fig. 5 ante, and a given maximum admission; draw the two centre lines of valve circles, each distant $\frac{A}{2}$ from the centre O. Next represent the crank in the position O R ${ }^{2}$ corresponding to the given cut-off; then describe the crank circle about O as a centre, and lastly the outer lap circle. The lap circle will then intersect the crank arm assumed in position, at a point v_{9}; and if a circle be described from a centre C^{1} on the corresponding line of centres, so as to pass through the three points O, v_{2}, and
\mathbf{P}_{0}, this centre will determine the length of the ordinate P_{0}, this centre will determine the length of the ordinate
$\frac{\mathbf{B}}{2}$, and thereby the diameter of the valve circle, namely
$\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}$, which also represents the maximum valve displacement on the side of its centre of travel corresponding to the forward piston stroke.
The valves A and B being once, fixed, it is an easy matter to establish the ratio $\frac{l}{\mathrm{~L}}$, the excentricity r, and
the angle of cant α^{0}, necessary to obtain a total horizontal displacement equal to twice A, and a total vertical movement equal to twice B.
Mr. Charles Brown, the manager of the Winterthur Works and the author of the system just described, had made some 500 sets between the years 1876 and 1883 . He generally uses a working beam, so as to get the cylinders well away from the road and to place the slide valves under the cylinders. So, also, as far as is practicable, he radial slot, which is liable to frictional wear, especially in dusty continental towns.
dusty continental towns.
The method developed in the fourth and in the present article of this series affords a good illustration of the intrinsic difficulties which oppose the reduction of a radial system to the stereotype analytical expression of Zeuner's polar diagram. The purely graphic method which, in the first three articles, we demonstrated and applied to a Crewe goods engine, and which we have since tested by numerous examples, is, we venture to think, more direct, constructive, and expeditious, whilst it is certainly not less correct, than Herr Hoffmann's able, elaborate, and well-digested application of Zeuner's diagram to a radial system.

APPENDIX.

1. Draw, Fig. 10, the line $O^{1} \mathrm{~K}$ at right angles to $\mathrm{O}^{1} \mathrm{Q}^{1}$, and KP at right angles to OO^{1}; then, in virtue of similar ratios, the line $P Q$ will be parallel to $O R$ and $O^{1} Q^{1}$. Hence

$=0 \cdot \frac{\mathrm{~K}}{\sin .} \times=0 O^{\prime}$ sin. $\cdot \mathrm{w}$.

FIG. 13

There would be a like difference, with unlike sign, on the opposite stroke; whence the total difference or algebraical sum would be

$$
2 Q^{1}=200^{1} \sin .^{2} w ;
$$

or, expressed in percentage of the piston stroke, the difference in admission is

$$
2 \mathrm{QQ}^{1} \div 2 \mathrm{R}=\frac{2 \mathrm{OO}^{1} \sin .^{2} w}{2 \mathrm{R}}
$$

2. The stroke towards the crank being taken from right to left, the cut-off on this stroke must be hastened, because the piston displacement is accelerated on the stroke towards the crank shaft. This can be effectively done by reducing the ordinates of the centres C_{11}, Fig. 8 ante, of the valve circles, which throws the point of cut-off v, nearer to the beginning of the stroke. We shall explain this principle more fully in a subsequent note ; in the meantime it must be taken for granted that the period of steam admission is lengthened or shortened with the increase or decrease of the ordinates $\frac{B}{9}$
3. In the preceding note we have already laid down the principle that the period of steam admission is lengthened or shortened concurrently with the increase or decrease of the ordinates $\frac{B}{2}$ of the valve circle centres. This will be seen more clearly on referring to Fig. 8, page 499 ante, where it is manifest that by increasing the ordinate $\frac{\mathrm{B}}{2}=\mathrm{C}_{1}{ }^{\circ} \mathrm{C}_{111}$ of the valve circle centre, we displace the point of cut-off v_{2}, which is also the point of intersection of the lap and valve circles, towards the left, and the period of admission will be thereby increased. Now on this stroke, that is from right to left or towards the crank shaft, the acceleration of the piston, due to the obliquity of the connecting rod tends to lengthen the period of admission expressed in terms of the piston stroke; hence
this effect can be prevented by using the term u_{0} to shorten $\frac{B}{2}$ on the forward stroke.
4. Referring to the equations for forward and backward gear-column 3, page 498 ante-it will be seen that on the forward stroke, here used for stroke towards the crank shaft, the term z_{0} is plus or additive; that is to say, it tends to increase the ordinates $\frac{B}{2}$ of the valve circle centres. Therefore, the proper effect of z_{0}, as it exists in Fig. 4 page 499 ante, is to increase $\frac{B}{2}$ and with it the period of admission on the forward stroke. But we can well imagine that if of ordinates B N ' B, z_{0} would become negative on the forward stroke and thus serve to reduce the ordinates $\frac{B}{2}$.
5. There is apparently an error in the numerator of the fractional term in brackets, either existing in Herr Hoffman's original manuscript, which is no longer in my possession, or made in the transcription; for, referring to Fig. 4, we have-
$p \sin . \phi=r \cos . w$; whence $\sin . \phi={ }_{r}^{r} \cos . w$;
and
whence, if $\omega=90, \cos . \phi=1$, and $\phi=0$.
Again, if $w=0, \phi=\phi_{0}$, and

$$
\cos \phi_{0}=\sqrt{1}-\frac{r^{2}}{p^{2}} .
$$

Hence
$p\left(\cos . \phi-\cos . \phi_{0}\right)=p\left(1-\sqrt{1-\frac{r^{2}}{p^{2}}}\right) ;$ and the term in question should therefore be-

$$
r \pm p\left(1-\sqrt{\left.1-\frac{r^{2}}{p^{2}}\right)}\right.
$$

or approximately

$$
r\left(1 \pm \frac{r}{2 p}\right) .
$$

6. The first equation corresponds to that part of the loop curve, Fig. 4 ante, which lies below the axis of x; the second equation to that part of the loop which lies above he same axis. The half crank circles are described abou because in this way the period of admission is proportionately lengthened on the stroke towards, and shortened on the stroke from, the crank shaft.
7. The radii p and BC, Fig. 4 ante, being equal, the versines of their arcs, which appear in the numerator of and $\mathrm{OO}_{2}{ }^{1}$, are reduced in virtue of the given cant in the ratio $\frac{E E^{11}}{E^{1} E^{11}}=\frac{N^{111}}{N^{1} N^{11}}$. It would seem, however, unnecessary to turn the diagram through the cant angle, except for the purpose of showing how the projection apon the piston path is the same, whether it be drawn
R. H. G.

NVENTIONS EXHIBITION. - MISCELLANEOUS EXHIBITS.

No. II.
In the main gallery Mr. J. Kirkaldy exhibits a fine collection of his condensers for obtaining fresh water, surface condensers for engines, and feed-water heaters. He also exhibits a fine collection of drawings showing these condensers and feed heaters as fitted on board vessels for the Government and for private shipowners; and the pplication of the surface condensers is also further shown by a highly finished working model of a compound marine engine. The first feature which attracts attention to these condensers is their remarkably small size for the work they o; and this applies to the condensers for obtaining fresh water from sea water, as well as to those for steam engines, In the small steam engine shown at work, the condenser is quite unobservable, inasmuch as it is stowed away in one of the uprights supporting the cylinders. This compactness is due to the use of Kirkaldy's patent solid-drawn corrugated tubes, and to the way in which coils of these tubes are interlaced, thus presenting very large surface in most effective form, and completely breaking up the mrushing jets of steam, and equally breaking up the tream of cooling water. Several forms of the condensers and the feed-water heater are illustrated by the accompanying engravings. We may first, however, refer to the condensers or stills for obtaining fresh water. These it is annecessary to illustrate here, as they were illustrated in our description of them published sometime ago; but we may ive some figures showing their remarkable efficiency, as obtained by the Government tests of those fitted on board he Calabria, the International, and nine other vessels, for obtaining fresh water at Suakim. These vessels are fitted with condensers together amounting to a productive power of 220,000 gallons per day, thirty-nine condensers being used, most of them being of the size for condensing 6000 gallons per day. These condensers are so small that, when not fitted with filters, they occupy a space of but 12 in square and 27 in in height, and even when fitted with a filter weigh but 370 lb ., the filter occupying about as much space as the condenser, and forming a stand upon which the condenser is fixed. They are thus in size and weight almost incredibly small for the work they will perform, but the Government tests showed them fully up to the power, and it was found by these tests that steam at 47 lb per aquare inch was condensed to water at 70 deg at the rate of $128 \cdot 34 \mathrm{lb}$ per foot of tube surface per hour the circulating water entering at the temperature of the Thames in March last, and leaving the condenser at 90 . It should, however, be remg the condenser at 90 deg. It should, however, be remarked but the Kirkaldy was taken as if of ordinary circular tube, but the Kirkaldy tube really gives much more surface than feature in favour of the condenser, but it is not essential feature in favour of the zondenser, but it is not simply that greater surface is given in the same space by this corrugated tube, but that the steam being caused to pass
along narrow grooves having very small capacity but large
surface, and thus being rapidly condensed to water, which has rapid effect on the main body of the steam in the tube. The steam is, moreover, caused to rub continually agains edges or angles, which are most easily cooled by the circuang wa tion of the

KIRKALDY'S SURFACE CONDENSER.
and feed-water heaters, and with equal success. One form of these condensers is shown by the engraving Fig. 1A, which is an elevation partly in section, and a plan, also partly in section. This engraving almost explains itself, except that it should be mentioned that the coils of corru-

Fig. la-KIRKALDY's SURFACE CONDENSER
gated tubes interlace each other, and that all the tubes are fixed by means of screw collars and nuts, so that the joints of every tube are absolutely permanent, and the coils secure that perfect freedom for expansion and contraction which prevents the slightest stress from being thrown

upon its joints. One of the larger sizes of the condensers is shown in Fig. 1, in which \hat{A} is the admission of the exhaust steam from the engine, P the outlet for the condensed steam, B the inlet for the circulating water, and D the outlet for the circulating water. Every coil is fixed by a nut N, making a metallic joint in the upper plate R and lower plate P , and passes through a hole in the intermediate plate C. The circulating water passes through the holes in the plate C round the tube, and thus enters as
an annular stream, which is rapidly broken up in its passage an annular stream, which is rapidly broken up in its passage
amongst the coils. The holes in the plate C are made
of different sizes, so that the quantity of circulating water passing through to the different coils may accord with the quantity of water passing the tube as due to its position. of wher a of water passing them than those near the centre, and thus tube plate C. The tube plate C. The steam may be passed either through the tubes or amongst them, as desired by engineers. The smaller in the same form, as at Figs up much in the same form as shown at Figs. 2 and 3,
which are elevations partly in section, and a plan in

section of a feed-water heater. The application of one of these condensers to a small compound horizontal engine driving machinery in Mr. Kirkaldy's works is shown at Fig. 5, which also shows the application of the smaller size of feed heater. In this engraving, which only shows a small part of the engine, A and B are respectively the high

CONDENSER AND FEED-WATER HEATER.
and low-pressure cylinders, C the steam pipe from the high to the low-pressure cylinder, H the feed heater through which the exhaust steam from B passes on its way to the condenser D , the cold feed entering at F and passing away to the boiler at F^{\prime}. This engine has cylinders $7 \cdot 25$ and $13 \cdot 25$ diameter and 1.5 ft , stroke, and when running at 100 revolu-

tions per minute indicates about 24 -horse power. The two pairs of diagrams, Figs. 6 and 7, are taken from it. The condenser D is but 6.5 in , diameter, its length being 4 ft .5 in ., and theair pumpE 4 in . This air pump was, before the introduction of the new condenser, 8 in . diameter, the stroke being, as now, 8 in . With a view to experimental determination of a sufficient size for an air pump, the diameter was reduced to 5 in ., and then to 4 in ., and with results that showed it to be as efficient as the 8 in . pump. The engine has been at work many years, but the high-pressure cylin der was recently added, and some economy obtained; but the gain resulting from the employment of the feed-heater and condenser has been much greater than that resulting from compounding. The diagrams, Figs. 6 and 7, from the high and low-pressure cylinders are reduced from diagrams of respectively 30 lb . and 8 lb . to the inch.
The feed-heater shown at Figs. 2 and 3 is made for use either feed-heater shown at Figs, 2 and 3 is made for use
or exhaust steam, and some remarkablo
results have been obtained with it. In this the coils of results have been obtained with it. In this the coils of
tubes are all fixed to the one plate B, the ends of the tube tubes are all fixed to the one plate B, the end of ate T, and
being fixed with nuts, making a metallic joint at covered with covers C, which can be separately removed when necessary for examination. This method of fixing the tubes on the cover plate B makes it quite easy to remove the whole in one mass when, after long use, cleaning may be necessary. To prevent the passage of dirt ing may be necessary. To prevent the passage of dirt with the stean or the feed-water into the heater, the dirt arrester, Fig. 4, is attached, this arrester being fitted with While being large and numerous enough to permit the free passage of the large and numerous enough to permit the free small enough to intercept dirt; and its efficient action smail enough to intercept dirt; and its efficient action seems to depend less upon the action of the tray as a mere obstacle. The tray may be removed and returned in two or three minutes, as the joint does not need re-making. Its application is shown at D, Fig. 3.
A large number of these heaters have been fitted to the ships of the Great Western and other lines, and are shranged to work with live steam. There would seem to be no cause for any economy from heating feed-water by this means, but the experience of a large number of points to a very decided gain. On board the Devon, for points to a very decided gain. On board the Devon, for nstance, the result of continued working is given by the hours. To make the admission of steam to the heater houm.oatic so that it enters only when feed water is pessin to the boilers, a flap valve is fitted in the short cylindrical piece seen at the bottom of Fig. a and this by means of mall disc and crank pin M, on its spindle N moves the pindle T, this controls a valve V-see sectiones the pindits the water of condensation to pass to the well he admission of steam being stopped at the outer end o he condenser. The heater thus requires no attention on the condenser. The heater stokers, To some ships the he part of eso bers. heater is fixed between the low-pressure cylinder and the
existing condenser, the heater thus merely forming a part or the whole of the eduction pipe.
A very important application of Mr. Kirkaldy's heater is by an arrangement which he has secured by patent for fitting up boilers after they have been emptied in port. It is well known that more damage is often done to marine boilers by filling with cold water and getting up steam than by the actual working. To avoid this, and the costly epairs which result, Mr. Kirkaldy arranges his heater so that the feed-water may be heated by steam from the donkey boiler while the main boilers are being pumped up, and so that the heating may be done by steam from the nain boilers when they are at work. By this means the instead of taking several hours to get up steam, and even hen with the greatest care, steam can be had in the lareest oilers in from an hour to an hour and a-half, as the fires boilers in from an hour to an hour and a-halr, as the tires way the hot water forced in by the donkey pumps. Not
 le stresses due to unequal expansion in beiles when etting up steam but hot feed may be passed into the getting up steam, bip
Milers when the ship is stopped in entering ports.
Messrs. Hawthorne and Co.'s special compound engines re designed for yachts, line fishing boats, steam launches, design, be very popular amongst the owners of such craft

HAWTHORNE'S COMPOUND ENGINE.
is they are intended for. There is nothing exceptional beyond this in their general arrangement, which can be at hee seen on reference to our illustration, or on a visil to ton, but in the details they are new in several points. They are compound surface condensing, having a highmessure cylinder of \sin. diameter and a low-pressure of 16 in the stroke in both being 12 in . They are fitted with 16in., Chapman's patent combined air and feed pump. The part of the pump below the piston does the duty of an air pump, and is $2 \frac{1}{1} \mathrm{in}$. diameter, having a stroke of 12 in . The ram, which is 1 gin. diameter, leaves a space on the top of the piston to act as feed pump, having separate suction and delivery valves. This pump is materially without interfering with its own work, is able to keep a
vacuum of from 20 in . to 22 in . in the hot well, and so taking the load off the air pump discharge allows that pump to be considerably reduced in size. All the pumps dispenses with the usual levers and links, and by reducing the working parts, reduces the wear and tear of the engine whig parts, redu larger proportion of the work done to be absorbed usefully The slide valves are on the front of the cylinders, and are easily got at for examination. The frame bars in front of the engine are connected to a weigh bar on top of the cylinders, which is carried through the engine-room skylight, on which a double-handled lever is fitted, one end being in the enginefrom the weigh bar to the steam regulator, so that in order to stop or reverse the engine it is merely necessary to move the main handles either on deck or below.
The centre crane, which we illustrate below, is shown by drawing in the main gallery. It has now been in by drawing in the main gallery. It has now been in
end terminating in a hole bored through the centre of ram, the upper end also entering the post, to pass water through top bearing. A reference to the engraving will show how the balancing of the strains is effected. The wrought iron post A is carried from a socket K in the foundation to a socket C in the roof. The post is enlarged in diameter at its lower portion. The cylinder D works up and down upon this part, the top gland of the cylinder working on the smaller diameter, and the bottom gland working in the larger diameter of the post. Thus when water is admitted into rises with a lifting a hole in the post, the cylinder itsel two areas of the post multiplied by the effective pressure of the water. Further, by flattening one side of the post at the larger diameter, and adapting the lower gland box to this form, a sliding key arrangement is produced, so that for horizontal rotation the cylinder and post move round together. The two steel trunnions \mathbf{F} are mounted upon this cylinder, and the platform for supporting the

Mr. T. Wrightson, and made by Messrs. Head, Wrightson, and Co., Stockton-on-Tees. In the Bessemer process the molten steel is poured from the converters into the ladle supported by the centre crane. The ladle must be capable of motion in several directions in order to fulfil its functions. (1) To accommodate itself to the tipping motion of the converter, it must be able to move vertically up and down a few feet. (2) For the same object it must be capable of a horizontal motion for a few feet. (3) It must be able to move round horizontally at a considerable radius, so as to discharge successively into the ingot moulds placed round the pit. Where there are such large masses of highly heated material to deal with as in a Bessemer pit, it is desirable to make the pit as large as practicable, to keep the hot ladle and ingots as far from the machinery and men as possible. The original Bessemer crane has been increased in rake to meet these require ments, and owing to this the strain upon the ram, with an overhanging weight of increased amount and increased distance from the centre, become so great that its safety is questionable. To get rid of these strains, and to gain greatly increased rake, and to retain generally the conditions of structure first settled by Sir Henry Bessemer, this crane was designed. In our engraving A is a ram or crane post revolving on a pivot, and carrying the cylinder D with it in its horizontal rotation by means of a key, with it; C is for sheaves fixed on ram, roof, maximum horizontal strain not exceeding $4 \frac{1}{2}$ tons in a 15 ton crane with 25 ft . rake; D is the lifting cylinder with 21in. gland at bottom and 12 in . gland at top; E is the cradle for carrying machinery and ladle ; F, pivot fixed at bottom of cylinder on which the cradle has a sligh tons of steel ; H, balance weight, adjusted so as to balance the cradle when the ladle contains half its charge or 6 tons of steel ; I, annular balance of such weight as will balance the whole 6 tons maximum preponderating weight at any time possible on the cradle; K, steel pivot water, and forms pivot; L, revolving joint on top of crane post, for conveying water to and from cylinder ; M, stop to prevent the cradle from drooping when the preponderance is on ladle end. The stop is left off the opposite side, so that if the bottom of ladle be lowered upon anything unyielding, the frame simply hinges v wards on its pivot. N is a pipe conveying water to and from cylinder, the lower
ladle is poised upon these in such a way that a rocking motion of the platform upon these trunnions can take place. The platform is made very rigid by trussing, and half the maximum weight of steel to be lifted in the ladle is balanced by a fixed counterweight H at the opposite end of the platform. There is still left one half the weight of the steel unbalanced, the effect of which has to be neutralised or removed to another portion of the structure. To accomplish this, chains are led from each end of the girders forming the platform over sheaves fixed in a strong rame B at the top, and forming part of the crane post immediately under the top socket, so that the sheave frame can rotate horizontally with the crane post and cylinder. The two sets of chains, after passing over their respective sheaves, descend to a heavy balance weight I of annular form surrounding the upper portion of the crane post, which acts as its guide, the point of connection of both sets of chains being the same, and in a plane passing hrough the centre of gravity of the weight, so that it may hang indifferently on either one or the other set of chains. The crane of this form at the North-Eastern Steel Works deals with 2000 tons of ingots per week. In the Wrightson crane all the hydraulic joints and glands are above ground and easy of access, and any leakage which occurred could be seen at once, and easily repaired.
Mr. Pickering, of Stockton-on-Tees, exhibits the pulley blocks and hoists known by his name, the ingenious self sustaining device of the latter of which we illustrate below. Fig. 1 is a plan of the overhead gear of a hoist, Fig. 2 is a perspective of the clutch gear, and Fig. 3 a section of this same part. The hand rope pulley P and the box A are fixed to the spindle; the box flange A is bolted to the disc C, which turns freely upon the body of the wheel D. This clutch B is in one piece with the toothed cluteh that drives the chain barrel wheel, and at B is face on C which inclined teeth that flange C . The ratche wheel E can only be turned in one direction, being held by'a pawl fixed to the hoist framing, and the disc \mathbf{F} is in one piece with E . Thus the box AC , the pieces BD and EF, are all independent one of the other. Assuming that the last operation was the lowering of a load, to raise the weight the rope pulley must revolve so that the clutch on C will slip upon the clutch face of B, and there would be no motion imparted to B , and therefore to D , and through D to the hoist, but for the fact that, in slipping upon each other, the clutch faces also must tend to separate. This they cannot do because they are too close a fit in the box

A C, and thus, by the wedging action of the faces B and C, the whole of the different parts shown in Fig. 3 become, as it were, a single piece, and all turn together, the ratchet E partaking of the general motion, the rotation in that being held by the wedge-like action of the clutches B and

PICKERING'S HOIST GEAR
C. The weight left to itself, and tending to fall, will turn the wheel D towards and cause the wedge faces of B to slide up the face of C , again tending to separate the parts which, being thus wedged together, can only move together, and F being bound up with the remaining parts as before must turn too. $\%$ But F cannot turn without E,

detail of automatio clutoh.
and for this way round \mathbf{E} is held by the pawl on the frame, and the action of the weight thus brings E against the pawl, which thus fixes the whole. The weight can thus only be lowered by keeping the rope in motion, when the clutch C will drive the clutch B just at the speed desired; and if B should overrun C the wedging

SECTION OF CLUTCH.
action is at once set up and the apparatus brought to rest. It is essential that the fact be kept prominently before the mind that A and C are united by bolts, is attached to the rope pulley spindle, the ratchet E being
free upon it, and only acting when the wedge action of free upon it, and only acting when the wedge action of
the inclined faces B and C press the disc E firmly into conthe inclined
tact with A.

SIMPLE CIRCLE SQUARING,

THE following simple method of solving problems involving the rectification and quadrature of the circle by construction, has
been devised by Mr. E. Bing, manager of the Russian-Baltic been devised by Mr. E, Bing, manager of the Russian-Baltic
Wagon Works at Riga, and is likely to be of considerable service in mechanical investigations where graphic methods are used. The only special instrument required is a set square, Fig. 1, having the acute
nagle $\alpha=27^{\circ} 35^{\prime} 49^{\circ} 636^{\prime \prime}$ angle $\alpha=27^{\circ} 35-49.636$
whose cosine $=$
π whose cosine $=\sqrt{1 \pi}$. This
may be easily constructed, as may be easily constructed, as
it correspunds almost exactly it corresponds almost exactly

23, or $\tan \alpha=23 / 44$. The following are examples of its use
with proofs of the solutions:1 a.-Given diameter d of a

On A E set off AD $=2 d$, place the hypothenuse of the set square and straight edge parallel to A E, and from A draw a line parallel to the longer side, and from D one parallel
to the shorter side of the right angle intersecting at C. Then reversing the set square, draw from C a line parallel to the longer side of the right angle, which will intercept on A E the length $\mathrm{A} \mathrm{B}=u$, or the required length of the circumference. For proof draw H C perpendicular to A B,
Then $\mathrm{AC}: \mathrm{AD}=\mathrm{AH}: \mathrm{AC}=\cos , \alpha=\sqrt{\frac{1}{4}}$
whence $\quad(\mathrm{AC}: \mathrm{AD}) \cdot(\mathrm{AH}: \mathrm{AC})=\mathrm{AH}: \mathrm{AD}=\frac{1}{4} \pi$
But $\quad \mathrm{AD}=2 d$ and $2 \mathrm{AH}=\mathrm{AB}$
$2 \mathrm{~A}=2 d \pi$ or $\mathrm{A} \mathrm{B}=d \pi=u$, or the circumference
equired.
1b.-Given the circumference u to find diameter d. The

construction is similar to the preceding but in reverse order $\mathrm{AB}=\pi d=u$ being given. First find C , as above, then with C D parallel to the short side. This gives $\mathrm{AD}=2 d$, which
sidere may be halved by lines respectively parallel to C B and perpendicular to A D, as indicated in the dotted lines in the figure. The proof of this construction is similar to that of $1 a$.
$2 a$. -To find the side of a square S , whose area corresponds to With the short sideter d.
With the short side of the set square against the straight edge draw the diameter A D with the hypothenuse. The

length of the chord A C drawn parallel to the third side will give the side of the square required. For proof complete the Then $\mathrm{AC}: \mathrm{AB}=\mathrm{A}$
Then $A C: A B=A C: d=\cos , a=\sqrt{1 \pi}$,

${ }^{2 b}$.-Given S to find the diameter d or radius r of the circle whose area is equal to S^{2}.
Make $\mathrm{AC}=\mathrm{S}$, and wit
Make $\mathrm{AC}=\mathrm{S}$, and with the longer side of the right angle
parallel to the straight edge, draw lines paraller to
thenuse with the acute angle alternately to right and left ; the point 0 , where these lines intersect, will be thecentre, and the lines

AO AC radii of the required circle.
For roof draw OH perpendicular to AC
Then
$\begin{array}{ll}\mathrm{AH}=\mathrm{HC}=\frac{1}{2} \mathrm{~S}, \\ \text { and } & \frac{1}{2} \mathrm{~S}: \mathrm{AO}=\cos , \alpha=\sqrt{1} \frac{1}{1 \pi}=\frac{1}{2} \sqrt{\pi,} \\ \text { or, } & \mathrm{S}=\Lambda 0 \sqrt{\pi}\end{array}$
which squared gives $\mathrm{S}^{2}=\frac{\mathrm{A} O}{\mathrm{AO}^{z}} \sqrt{\pi}$,
which squared gives $\mathrm{S}^{2}=\overline{\mathrm{A} \mathrm{O}^{2}} \pi$ and $\mathrm{AO}=r$.
It will be readily understood
solved by other methods, thed that these four problems may be solved by other methods, those given being only the simplest, may be solved by square and straight exception of No. $2 a$, they may be solved by square and straight edge alone, without com-
passes.
The same set square is also applicable to other problems involving the factors as $\pi, \sqrt{\pi}, \pi^{2}$, such as the quadrature of the
ellipse, \&c., and in combination with ellipse, dc., and in combination with one of 30 deg ., it affords a
ready method of effecting the so-called golden section-sectio aurea-i.e., the division of a line into two unequal parts, so that the longer is a mean proportional between the shorter parts, so that entire length. This is done in the following manner:-Let A B be the given line.
From A draw A C
inclined 30°, and from B BCinclined a° to A B. Then, with the short side of the right angle In the straight edge parallel $1 \mathrm{~B}_{\mathrm{p}}$ it parallel to the hypothenuse to D. The two parts AD and D F is not strictly accurate, as the trigonometrical proof shows an
error of $0.0 C 0568$, or ${ }^{17}$ I 5 th part of the entire length, which,
however, is sufficiently small to be disre greater accuracy is likely to be attained, even with the most carefully executed drawing, by the more complicated construction previously used.
We are indebted to Dingler's Polytechnic Journal for the above extract, which is taken from a lecture on drawing instruments delivered at Munich by Professor Fischer. The set square under the name of Bing's Kreiswinkel is made in two sizes, both in wood and ebonite, by J. Schröder, of Darmstadt.

THE TREVITHICK MEMORIAL.

WE are informed by the honorary secretary that it is the intention of the committee to close this fund. A meeting was held at the Institution of Civil Engineers on May 13th to decide upon how the funds collected are to be disposed. The following resolutions were proposed, and it was decided to send a copy of the minutes, with a statement of account, to all members of the committee, in order to elicit a full opinion upon the disposition of the fund:-
" (1) That a sufficient sum of money be offered to the Council of the Institution of Civil Engineers for the establishment of a triennial Trevithick Gold Medal and premium of books,"
hester, tenable for one year." enable for one year.
the That a copy of the bust of Trevithick now in the theatre Cathedral-if permi of Civil Engineers be placed in Truro mounting on the base, showing how the memorial fund was raised and how it had been expended."

Statement of Account of the Trevithick Memorial Fund,
Dn
Dis5
May 13.
printing pald E E. N. Spon for

Ditto Bedford Pr
Ditto R.Tiling
Ditto various pos
Balance down

| 20616 | 2 |
| :--- | :--- | :--- |
| 29113 | 6 |

$\overline{169898}$
By amount in the hands of the hon.
treasurer as per minute-book, May
1sth, 1885 168s3 6.6

By balance down .:.
By amounts promised, viz: :-
R.
R. Tangyo, Esq.
Sir.
 \square
$149113 \quad 1698 \quad 0 \quad 8$
"
By subscription from J. Vivian, Esq.

Society or Arts.-The results of the Society of Arts' examinations have just been published. There was a satisfactory increase
in the number of candidates, 1208 having presented themselves at in the number of candidates, 1208 having presented themselves at
44 centres; whereas last year there were 991 candidates and 38 44 centres; whereas last year there were 991 candidates and 38
centres. Of these 1208 candidates 953 passed and 255 failed. The number of papers worked was 1321; of these 145 took first-class certificates, 410 second-class, and 474 third-class, while to 292 papers no certificate was awarded. Eleven of the thirteen subjects set down for examination were taken up. In two no examination was held, as the requisite number of candidates (25) did not present themselves. The largest number of papers worked (336) was in
book-keeping. Other favourite subjects were :-Arithmetic, 171 . English-including composition and correspondence and précis writing-118; shorthand, 253 ; theory of music, 243 . In French there were 96 candidates; in German only 28.
Checking Dishonest Conductors.-The problem of effectively defeating the malpractices of dishonest conductors on omnibuses and tramcars has long perplexed the minds of directors, managers, and mechanicians, but hitherto without positive success. Methods by the dozen, embodying an immense variety of devices, have been
invented and tried, with a view to ensuring that while passengers by car or omnibus should pay no more than the legal fare, every penny they paid should reach the hands of the lawful owners. Some of these devices may be seen in operation at the present time in London and in the large provincial towns, but it is certain that Whether such a rash to predict, but there is no question that a great improvement is possible upon the methods heretofore applied. In most of these patents the ruling principle is that of a ticket with the amount paid punched into it being given to each passenger on payment,
or a ticket of a certain colour according to the fare. For the or a ticket of a certain colour according to the fare. For the tickets thus given in receipt conductors have to account, and at
first sight that would seem to be a sufficient check, especially when colours are used, as also where the act of punching the ticket records a mark on a register, as is the case in some of the machines. But from various causes these devices have been only partially effective, and a satisfactory machine is still wanted. An invention claiming to meet this want is now being tried on the cars of the
West Metropolitan Tramway Company, and pending a longer trial than has yet been practicable, an examination of this machine shows that it is far in advance of any of its predecessors. It is registered as O'Kelly and Ullman's Cheoking Apparatus. The apparatus is a small metal box weighing only 10 oz ., attached to a short leather tube, the opposite end of which is affixed to a bag slung over the conductor's shoulder. The box is fitted with a
handle, and with a hook by which, when not in use, it is suspended to the conductor's coat collar. A slit in the top of the box-the op being made of glass to enable those concerned to see the money-admits the coin into the box, where it rests for a moment. At the same time the conductor takes a ticket coloured according to the fare, and punches it ; the act of punching opens a valve
through which the penny passes through the tube already mentioned through which the penny passes through the tube already mentioned
into the locked bag, and the selfsame action drops the clipping from the ticket into another receptacle, and records the mark on a register also inside the box, dialled up to 1000 . Thus there is a five-fold check-first, the penny carried into the bag; second, the lippings retained in the box; third, the record on the dial; fourth, the tickets issued each day to be accounted for; fifth, the obligaof the right colour. The pennies can be counted against the absent tickets ; the clippings against the pennies, and the register marks against all. This seems to go as far as mechanical ingenuity can go to prevent fraud, and only one thing appears wanting to make this an absolute check, and that is that each passenger shall make sure that his coin is put into the box, and shall insist upon
having a punched ticket. If that is not done there may be room having a punched ticket. If that is not done there may be room
for embezzlement, but it is fair to assume that the public will at least do this much in the interests of honesty. This invention has only been in operation on the West Metropolitan cars for a few weeks, but we understand that it has received high commendation from qualified authorities.

RAILWAY MATTERS

The report that the plant of the Suakim-Berber Railway has THE Suakim-Berber Railway having been definitely abandoned, IT is not true that the London, Chatham, and Dover Railway overed sheep trucks at present.
IntrrNational parcels post arrangements are being made by the
ieneral Post-ofice.. Arrangements are not yet made by which a

BY the completion of the Canadian Pacific Railway, troops can eight days, and carried thence to New Westminster in six or seven or
lays more, and onee arrived there centration in India or in the southern Colonies, or for a descent on the only vulnerable
or Petropaulowski
THE Great Northern Railway are lighting one of their trains
with E.P.S. accumulators, placed in each coach. The cells are charged by a dynamo driven froced the axles, and an E.P.Slls mage
net dynamo rises above that of the cells. The Electrical Power Storage Company have lately supplied accumulators for use on the
Lancashire and Yorkshire Railway, as well as the Great Eastern Railway.
Avinterestingacoountof the hydraulicmotive power at the extremities of the St. Gothard Tunnel, and of its employment during the Bauzeitung by M. D. Colladon, who was consulting engineer on the tunnel works. The account is of the diary order, and is of much mportance as bearing upon the employment of water power for rustees of M. Favre and the railway company.
The Australasian debts are in total $£ 1110,000,000$; but, with the exception of a small sum spent by New Zealand in quelling the
rebelion of the native tribes, this has been expended almost entirely in. In the ten years from 1872 to 1882 the uniteprouctive the Australasian Colonies had increased from $£ 42,000,000$ to
£99,000,000; the length of railways opened had increased from 1362 miles to 6207 miles. Thus, greatly as the debts have grown,
the increase being no less than 112 per cent., the mileage of railEtGHTEEN acres of land adjoining Wool wich Arsenal have been railway plant, which is on its way back to England in thirty-two steam vessels, which are ordered to the Arsenal to discharge their cargoes. To facilitate the removal of the plant, a broad-gauge line
is being constructed from the pier to the place of storage. The novel a appearance, in consequence of the locomotives, carrainges,
tations, ticket-oftices, \&oc,, being painted with the words, "Suakin. Berber Railway,"
The London, Chatham, and Dover Railway Company have further development of the continental tratfic viia Flushing. The longer than the present structure, and will admit of two large
steamers anchoring alongside eto load and unload at the same time.
As soon as the pier is completed it is intended to sup As sonn as the pier is completed it is intended to supplement the mails are carried -with a day service, and in anticipation of the
increased traftio, threce oowerful steam packets are being built for the Royal Zealand Steamship Company, whose boats run between
Queenborough and Flushing, in conjunction with the London, mpany's trains.
Avorter branch of the great system of tramways being formed
cound Birmingham was officially inspected by Major-General round Birmingham was officially inspected by Major-General
Huthochinson, of the Board of Trade, on Monday. It is a new line which has been laid between Birmingham ana Dualey by the
Birmingham and Midand Tramways Company, and is somee
fifteen miles in length. Steam power will be employed, and already twelve engines and sixteen cars have been procured from throughout the day was three miles an hour. General Hutchinson
expressed the opinion that the Birmingham Tramways ought to expressed the opinion that the
command more traftic than tramways in other targe towns. Steam as a motive power for tramways is only on its trial in Birmingham,
and it will depend much upon the careful management of the
engines whether it will continue to receive the support of the engines whe
authorities.
For several years oculists have engaged attention in Germany
by their writings on colour-blindness. The number of railw by their writings on colour-blindness. The number of railway men
found to be unoertain as to the colours of signal lights has caused found to be unoertain as to the colours of signal lights has caused
our Board of Trade to look into the matter Dr Brudenel Carter,
F.R.C.S., in a lecture on optics, stated that colour-blindess affected. 4 per centure of on optics, stated whole male population of civilised
countries, and of 9200 engine-drivers, an examination detected the countries, and of 9200 engine-drivers, an examination detected the
fact that 400 were colour-bind. D. Brailey secretary to the
Opthe Opthalmological Society, mentioned that out of 18,088 persons
oxamined, including Eton, Westminster, and Christs Hospital, and 5000 members of the metropolitan police, 750 were defective.
On the 1st of May, 1877 , the testing of the sight of candidates for masters and mateses certificates came into operation. By a parlia-
mentary return it was shown that for the two years ending in
m mentary return it was shown that for the two years ending in
May, 187 , there were
Ong in individuals who had been examined.
Out of that number thirty nine were rejected, but twe Out of that number thirty-nine were rejected, but twelve out of
those unsucoessful candidates subsequently passed, and this
reduced the proportion to twenty-six out of the 2929. Attention reduced the proportion to twenty-six out of the 2929. Attention
was called to colour-blindness, in the first instance, in conse-
,uence of the proved difficulty on the part of an engine-driver to quence of the proved difficulty on the part
distinguish a green from a red shaded light.
The following from the Chicago Herald is as much a comment
on the American Railway bridges as a proof that the driver
 Voluntarily." "Didn't you like the rood " Yes, all but the double
tracks. It was a two-track road then. I dont' want any dobble.
track running in mine. It isnn't safe. Give me a single-track road track running in mine. It isn't safe., Give me a single-track road
every time. You think it funny, don't you? 'Tis queef for a fact,
but 1 know what I am talking about. Did you ever ride on a locomotive? On the cow-atcher? Well then you must have notitece
that whenever she strikes a ridge she seems to drop down a little,
Itts Its the bridge seting under the terrific pressure. As you first
strike, it feels as if you were going down, sure enough. Perhaps strike, it feels as if you were going down, sure enough. Perhaps
you never thought of the tremendous blow a locoomotive strikes on
a bridge. It's not alone the weight of her, but when she's making a bridge. It's not alone the weight of her, but when she's making
fortyor fifty miles an hour and comes. down on a bridge its enough
to make it settle. Right here comes in my objections to double.
 Cay and was just approaching a bridge when I saw another train
coming toward me. All of a sudden the thought ran through my
brain- what tif bothl locomotives should strike the bridgeat the
same instant one at either end?. The very thought of it startled me so that I shut off steam and put on the brakes. I I in't a coward,
but I don't want any of that in mine. I wouldn't risk 50 per cent. of the railroad bridges in the country to stand a blow from both
ends at the same instant. Of course, a road may go along a year and
two trains may never happen to meet just that way-and even then
the eridge might stand it it-but I thought so muoh about the thing
that that I lost confidence in myself on the
been a single-track engineer ever since.

NOTES AND MEMORANDA.
IN greater London last week 2847 births and 1894 deaths were registored, corresp.
of the population.
IN Greater London, during the week ending the 23 rd ult., 3027 births and 1945 deaths were registered, corresp.
rates of $30^{\circ} 4$ and 19.5 per 1000 of the population.
AT a recent meeting of the Paris Academy of Sciences a paper
was read on "The Radiation of Heat during the Night in connection with the Normal Lowering of the Temperature during the Months of April and May," by M. J. Jamin. This lowering of
the temperature often sodestructive to the spring crops, is rightly
attributed author finds attains its maximum about the months of April and author
May.
IN a recent number of the Comptes Rendus experiments are
described by M. J. Thoulet on the effect of immersing various solid bodies in saline solutions, such as marble, quartz, \& 8 .., in
aqueous solutions of aquuous solutions of sodium or barium chioride. In each case a
portion of the dissolved salt was precipitated on the surface of the immersed solid. The conclusion is drawn that there is an attraction between the dissolved salt and the solid immerses, and that
the amount of attraction is proportional to the surface of the solid
The Hydrographic Bureau at Washington published lately the fo determine te length, depth and durions carried out in order to determine the length, depth, and duration of ocean waves. The
longest wave hitherto observed is said to have had a length of 1ongest wave hitherto observed is said to have had a length of
half-a-mile, and to have spent itself in 23 sec. During storms in
the North 4 tlantic waves sometimes extend to aleng the North Atlantic waves sometimes extend to a length of f500ft.
and 600 ft., and last from 10 to 11 sec. The most careful measurements of the height of waves give from 44ft. to 48ft. as an
extreme limit ; the average height of great waves is about 30 ft . Ir is time that a ship's caulking machine were made, for the IT is time that a ship's cauking machine were made, focure according to the following scale :-(1) That a day's work
furk on caulking at old work on a ship's side shall not exceed 80ft.- old
ships' decks, 150 ft . per day. (2) That a day's work on metalling ships' decks, 150itt. per day. (2) That a day's work on metalling
shall in no case exceed twenty-five sheets on hardwood ships, and twenty-eight sheets on softwood ships, and that the strake amid-be-the same to constitute a day's work fore-and-aft. (3) That a day's work at stripping shall in no case exceed thirty-five sheets
per day-the stages to be lowered fore-and-aft, the berths being of per day- the
equal length
A NEW process has been devised by Dr. Thresh for treating the sewage of Buxton. The precipitant used is a mineral water Buxton. It contains 1.2 grains of iron per gallon in the state of to the air, the carbonic acid escapes, and the iron, taking up more oxygen, subsides in the state of ferric hydroxide, in combination
with a considerable part of the organic impurities suspended dissolved. The results, according to an analysis quoted in the contains free ammonia, 11.74 per million, and albuminoid ammonia, 1.60. After treatment these figures are reduced to, free ammonia, 4.00 parts per milion, and album noid ammoma, 0

IN London, during the week ending the z3rd ult., different forms negligence or accident, among which were 18 from fractures and iontan intants under one year of age from suffocation. The 18 deaths
from fractures and contusions were thus returned : - Male, aged 3 , and female 9 , run over by van; male 43 , run over by omnibus;
male 69 and female 2 , run over by cal; female 4, run over by cart
male 32 , fell from dray; male 33 , fell from omnibus ; male 38 , fell male
from cart ; male 52 , knocked down by horse $;$ male 43 , fell from maile 1, run over by train ; female 2, sale 4 and female by swing ; male 90 ,
fell from bed ; and female 54 , fell downstairs The coal-beds of New South Wales are said to be of enormous extent. The mineral has been traced for hundreds of miles along the coast, and has been worked at various levels from 450ft. below,
to 1500 ft. above the sea. The lower beds are geologically older than any that have been yet worked in Europe, and the quality of
the coal which is taken from these inferior strata is therefore unsurpassed. Not only so, but in certain districts immense seams
of this mineral are found in immediate juxtaposition with an abundance of iron ores, limestone, and fire-clay. Up to the present 25,000 square miles of country; and it is almost everywhere within easy reach of water or railway communication. When
it is remembered that the coalfields of Britain only cover one twentieth part of the area of the country, or about 4000 miles, and that nevertheless the output of this mineral in the mother-
country is upwards of $120,000,000$ tons per annum, it would be difficult to over-estimate the magnitude of the eproportions to which the
after.
AT a recent meeting of the Chemical Society a paper was read
on "A Calorimetric Method for Determining small Quantities of Iron," by Mr. Andrew Thomson, M.A., B.SS.. The author has
applied the well-known thiocyanate reaction of ferric salts to the applied the weil-nnown thiocyanate reaction of ferric salts to the
quantitative determination of small quantities of iron. The metals that interfere To perform the analysis, a weighed quantity of substance is dissolved in acid, the excess of acid driven off by evaporation, the
iron, if necessary, oonverted into ferric salts by means of potas
sium permanganate, and finally the solution is diluted to 1 litre Into each of two similar cylinders 5 c.c. of dilute chlorhydric or containing 40 grams per litre, are pourred, and to one a measured bulk of the solution to be tested is added. Both cylinders having
been filled up to the esame height with distilled water, a standard solution of ferric salt matohing that in the cylinder containing the substance under

Mr. WriLism TkbiuTr, of Windsor, New South Wales, has
constructed a private observatory, which has taken a place the principal observatories recognised by the authorities of the made here as far back as 1854 , and it was not till ten years afterward two merid atory was erected. It comprised a transit room with was determined by means of a transit instrument of 2 in, aperture and 20in. focal length. A small octagonal tower rising from the
centre of the building and covered by a conical revolving roof accommodated a refracting telescope of 34 in. aperture, and 48 in
focal length. In 1873 a round building of pine, 12 ft . in diameter, of a new and ond a now and focal leength, the work of Mesers. Cooke and Sons,
and or
York. This instrument is furnished with a position filar micro meter, ring micrometers, squaro bar micrometer, first surface
reflection prism, and a battery of Huyghénian reflection prism, and a battery of Huyghénian eye-pieces, with
powers ranging from 55 to 400 diameters. In 1899 a substantial
observatory of brick was erected. From the centre of observatory of brick was erected. From the centre of a room at
its west end rises a pyramidal pier of brick and cement, which
passes through a floor above, and is surmounted by the 43in. equatorial already referred to. The equatorial room is covered
by a roof of galvanised iron, revolving on ter wheels ind by a roof of galvanised iron, revolving on ten wheels, and similar
to that which covers the great Northumberland telescope at the
Cambridge Observatory. The meridian room is furnished with an excellent 3in, transit instrument.

MISCELLANEA

The entries for the Wirral and Birkenhead Agrioultural Society's
THE Cape Cod Canal is being pushed forward with considerable energy by the Massachusetts people. Wreng for two years cutting through the hard blue clay, and about half a mile of the seven miles has been dug. The canal is to
be 200 ft , wide and 23 ft . deep, and is estimated to cost $£ 1,400,000$. AT the Artists' fancy dress ball recently held at the Prince throughout the evening by Mr. Barraud, of Regent-street, by the electric light, and the negatives are stated to be as good as those taken by daylight. Two arc lamps with 10 ampè reses current were
supplied with current from E.P.S. accumulators. The installation supplied with current from E.P.S.a. accumulators.
was carried out by the Electrical Power Storage Company
The Panama Canal has been commenced along its whole lengtl t some places than at others, but increasing activity prevail some praces than at others,
everywhere. The Nautical Gazette says :-" "Some idea of what is being done may be formed from the fact that there are over twenty
thousand navvies at work on the canal, and that on the 73 kilometres al which the worns entend there exist as many as tw hundred kilometres of rails, and six thousand trucks of all sorts
used in the excavation works," AN interesting little book, entitled "Walks in Epping Forest
Hand-book to the Forest Paths, with Cycling and Drivin Routes,", written by Mr. Percy Lindley, has lately been published
it 125 , Flo at 125, Fleet-street. It contains 117 pages, but as it is printed on
thin paper it is not bulky, and with its map and many illustrations forms a very interesting and instructive companion on a visit to
the beautiful but comparatively little known forest half om thondon and belonging to London. The historic association the Forest should become a favourite haunt of Londoners,
A corr of a "Desometric Diagram" has been sent us by its
designer, Mr. W. W. Mackenzie, of 7 , De Grey-street, Elswick.
The weights of iron bolts of The weights of iron bolts of any size from 0.25 in . to 1. Sin. diameter,
either with hexagonal or suare heads and nuts, and from 0 to
iter $1 \cdot 25 \mathrm{in}$. and up to 6 in . length are given by it. It gives these weight with very little trouble and in a fraction of the time required to calculate them. A few minutes serves to learn to use the dia
gram, which is a lithograph about 14in. by 8in. It will be found very useful in engineers' offices, but we may suggest that it would

THE price of dynamo-electric machines has been so reduced in
Germany that some of the makers already say the trade is hardly worth having. If is said that during the past six years dynamoo shops in Germany, representing a value of $\pm 700,000$. The number o
arc lampsmadeduring the sameserid was 20,000 , our yers 1880 to 1884 , the number of telegraph open to the public rose from 5114 to 7529 , and the mileage of the
wires from 121,520 to 150,040 miles. The telephone was introduced into Germany in 1880 ; there are to-day 58 country exchanges,
having 7311 subseribers, and possessing a network of wires extende of 10,100 miles.
The Council of the Parkes Museum propose to hold in the
nuseum a series of exhibitions of domestic museum a series of exhibitions of domestio gas appliances, and
have accepted an offer from Mr. Fletcher, of Warrington, to supply
the apparatus for the first of the series, which will include- gas cooking and heating stoves, incandescent, gas fires, instantaneous
water heaters, washing and drying machines, grillers, hotplates and ranges, confectioners' ovens, coffee roasters, workshop tools.
Lectures upon cookery and the practical demonstrations of the Miss Young. The exhibition will be open each day from 10 a .m. 9 p.m., from the 8 th to the 27 th inst.
A sTrike has begun in the Pittsburg ironworks against a 20 per
ent. reduction in wages. The workmen offer to accept a 10 per cent. reduction, to which several of the masters agree, including
Carnegie Brothers ; Dilworth, Porter, and Co.; and the Republic of the others in the district will be closed, and nearly 100,000 workmen will be idlle. All the mills in the Mahoning region, Ohio,
were closed last Saturday, 10,000 men losing employment, and also ing to careful reports sent in from all the places where the strike exists, 78,000 men are idle, and 4300 are working. The daily
wages of the idle strikers amount to 160,000 dols. MEssRs. H. B. BarLow \& Co., of Manchester, have introduced a upon the Harrison expanding mandril manufactured by this firm
for some years past. In the new mandril, pulleys or heavy wheels an be turned upon it without any back centreing, and one grea advantage is that it brings the work very much closer up to the
face plate than in the old mandril The body of the mandril con-
sists of a steel forging, flanged with a taper nose, bored up, in which a bolt works. The split dies, which are bevelled at each
nd, work upon the taper nose, and the mandril is expanded by simply turning an ordinary hexagon-headed bolt and released by ring this
TyE directors of the Suez Canal Company report that the com-
pany has weathered, without appreciable diminution of profits, the nost severe and general economic crisis ever experienced, and this reduction has enabled shipowners to go on building, and to make temporary sacritices for the sake of retaining their old customers,
while new and comparatively poor merchandise could pass through the canal owing to the consequent rexuction of frielghts. The total
tonnage last year was $8,319,967$, against $8,051,307$ in 1883 . The posed improvements being $200,000,000$. Th. electric lighting exA crowDED and influential meeting of merchants, shipowners, Arokers, and others interested in mercantile matters, was held at
Liverpool, on Tuesday, in opposition to the ship canal shemee, in
Lhe large he large room of the Cotton Association, and under the auspices
of the Chamber of Commerce, the president of which body, Mr. E.
mith, occupied the chair. It was decided to memerial House of Commons in opposition to the ship canal scheme, and to send witnesses to give evidence befres of the Parliamentary
House. Sir William Forwood, chairman on Committee of the Liverpool Corporation, was one of the speakery,
and he described the canal scheme as "the greatest bubble that ade ever been thrust upon the credulity of the British public since
the days of the South Sea bubble." A MEMORIAL has been presented to the Secretary of State for
India beging him to direct that the work of deepening the inner
harbour at Aden so remain afloat, and leave at all states of the tide, shall be begun as soon as possible. It is pointed out that the work will be of
the greatest service to her Majestys ships as well as to the
mercantile marine, and that it is a necessary complement to the mercantile marine, and that it is a necessary complement to the
new fortifications at Aden. There is, it is stated, alarge balanco
t the credit of the Aden Port Fund, which would provide the the credit of the Aden eort
dredging plant. The Nautical Gazette says the memorial is supported by every leading line of steamers trading through the supez
Oanal, as well as by private shipowners. The Government have given a concession to the firm of Messrs. Tylor and Bright for
placing hulks in the Aden Harbour, so that vessels can coal day or night regardless of communication with the shore. A corre
ppondent of the Times thinks this obvintes the necessity proposed dredging as suggested by several correspondents,

ST. HELENS WATERWORKS-KNOWSLEY PUMPING STATION.

By the engravings on pages 416 and 436 we illustrate the buildings of the new waterworks in course of construction for the
supply of St. Helens. We also supply of St. Helens. We also pumps; the engines we do not illustrate, as they are duplicates of the Luton engines, also by of the Luton engines, also by
Messrs. Hathorn, Davey, and Co., of Leeds, which we illustrated a short time since.
In 1881 the Council of the borough of St. Helens, finding their sources of water supply would soon be unable to meet the growing demands of the borough, authorised the town clerk and water engineer, in action in preparation for parlia. action in preparation for parliawater supply. At the same time plans and sections showing the contemplated works, with sites for wells, at Knowsley and Kirkby, were submitted and approved. The sites for the wells were first selected by Mr. D. M. F. Gaskin, M.I.C.E., water engineer, and Mr. Alderman McBryde, chairman of the Water Committee, and subsequently approved by Pro-
fessors Hull, F.G.S. and C.E. de Rance, F.G.S. During the progress of the Bill through progress of the Bill through clauses were inserted for the protection of Lords Derby and Sefton, as well as an alteration in the site for the Kirkby well. The Council were successful in obtaining their Act, and immediate steps were taken for the carrying out of the works at the Knowsley site and laving the pipes from there to the service reservoirs at St. Helens. Mr. obtained the beverley, having well sinking and borehole at Knowsley, the mayor cut the sod on the site of the south well on the 28th of October, 1882 . The works consist of two 11 ft . diameter wells, each 170 ft . deep, connected by a driftway 22 ft , by 6 ft ; and one 6 ft , diameter well, 160 ft . deep, connected with the north well by a driftway 6 ft . by 5 ft . The borehole was sunk from the bottom of the smaller well by a Mather and Platt boring machine, commencing with a 24 in. total depth of the borehole is 536 ft . These works are sunk in the pebble beds and lower mottled sandstone of the new red sandstone formation; the quantity of water obtained is

THE INVENTIONS EXHIBITION-THE FIELDING HIGH-SPEED ENGINE.
MESSRS. FIELDING AND PLATT, GLOUCESTER, ENGINEERS.

between, and form the parallel motion. The valves are Cornish double beat, and are actuated by Mr. Davey's differential gear, which has all the latest improvements. The air pump is worked from an arm on the side of one of the rams, and is the in form, and is fitted with gun-metal tube plates and brass tubes. The whole of the water pumped passes through the condenser around the tubes. There is a bye-pass arrangement, so that the engine can be worked non-condensing if required. There are two 16 in . by 6 ft , stroke ram pumps, one fixed directly below each cylinder, which pumps force the water from a cistern formed in the foundations of engine-house through $6 \frac{1}{4}$ miles of pipes to a vertical height of 154 ft . The bucket pumps are 20 in . diameter by 4 ft . stroke, and are worked by means of two wrought iron counter beams connected at their inner ends to the ram pump rods, and at their outer ends to fulcrum links. These pumps raise the water from the well, 155 ft . deep, to the supply cistern for the ram pumps. The bucket and suction valves are of gun-metal double beat. On the rising main a $1 \frac{1}{2}$ million gallons of water in twe engine and purg a total vertical beight of 309 ft ., exclusive of friction in pipes, through 61 miles of pipe, to the high-level service reservoirs in St. Helens.

THE FIELDING HIGH-SPEED ENGINE.

 This engine, exhibited at South Kensington by Messrs. Fielding and Platt, of Gloucester, consists virtually of an universal joint connecting two shafts whose axes form an obtuse angle of about coupling on each shaft. The word cylinder isused in a conventional sense only, since the cavities acting as such are circular, whose axes, instead of being straight lines, are arcs of circles struck from the centre at which the axes of the shafts would, if continued, intersect. The four pistons are carried upon the gimbal ring, which connects, by means of pivots, the two chair couplings. Fig. 10 shows clearly the parts constituting the coupling, cylinders, and pistons of a compound engine. C C are the high-pressure cylinders; D D the low-pressure; E E E E the four parts forming the gimbal ring, to which are fixed in pairs the high and low-pressure pistons GG and F F ; HH HH are the chair arms formed with the cylinders carrying pivots IIII, which latter fit into the bearings JJJJ in the gimbal ring. Figs. 1, 2, 3, 4 show these parts connected and at different points of the shaft's rotation. The directionpressure cylinder C is just about taking steam, the upper one just closing the exhaust ; the low-pressure pistons are at half stroke, that in sight exhausting, the opposite one, which cannot be seen in this view, taking steam.In Fig. 2 the shaft has turned through one-eighth of a revolution ; in Fig. 3, a quarter turn; Fig. 4, three-eighths of a turn. Another eighth turn brings two parts into position, represented by Fig. 1, except the second pair of cylinders now replace the first pair. The bearings K L support the two shafts
and act as stationary valves, against which faces formed on the cylinders revolve ; steam and exhaust ports are provided in the faces of K and L , and two ports in the revolving faces, one to mined by the length of the admission steam is cut off is deterexhaust port is made of such a length that steam may escape from exhaust port is made of such a lengt that steam may escape from
the cylinders during the whole of the return stroke of pistons. Fig. 5 shows the complete engine. It will be seen that the engine is entirely encased in a box frame, with however, a lid for ready access to the parts for examination, one great advantage being that the engine can be worked with the cover removed, thus enabling any leakage past the pistons or valve faces to be at once detected. The casing also serves to etain a certain amount of lubricant
The lubrication is effected by means of a triple sight-feed lubricator, one feeder delivering to steam inlet, and two serving the main shaft bearings
Fig. 6 and 7 are an end elevation and plan of the same engine There is nothing in the other details calling for special notice. Fig. 8 and 9 show the method of machining the cylinders and pistons, the whole of which can be done by ordinary lathes, which is evidently a great advantage in the event of re-boring, \&c., being required in the colonies or other countries where Fial tools are inaccessible.
Figs. 11 and 12 are sections which explain themselves,

THE BRUSSELS INTERNAL NAVIGATION

 CONGRESS.The Brussels Internal Navigation Congress has met and had its say, and done its navigation excursions and visits. Very numerous questions relating to inland navigation were discussed and the value of canals, as compared with railways for heavy expected that railways for this work were not to be painted in the most attractive colours. They were allowed to have their uses, though they had had their day for heavy traffic. For this the railway men have to be thankful. The canal questions discussed were, however, of great importance, even if we exclude the long description of the Manchester Canal, which Mr. Leader Williams and Mr. D. Adamson were not at all averse from giving, with various opinions on the Liverpool people who are not quite
ready to embrace the scheme, Some interesting facts were ready to embrace the scheme. Some interesting facts were
given on the Suez Canal improvements by M. Dirks, engineer in-chief of the Dutch Waterstaat, national Committee of the Suez Canal. He mer of the Intertions which had been put to captains and pilots respecting room required in different parts of the canal for large ships to cross each other, as to the depth below keel necessary for easy steering at a speed of 8 knots per hour, and the speed at which full size ships might travel. The following are the conclusions arrived at by the Committee:-That the existing canal should be enlarged that it should ultimately be deepened to 9 metres-nearly 30 ft , -below low-water mark of ordinary spring tides, but that for the present a deepening of $8 \frac{1}{2}$ metres is sufficient; the width at
bottom between Port Said and the Bitter Lakes should be 65 metres- 213 ft - in the straight portion, and 75 metresand 80 while between the Bitter Lakes and Suez the straight part while between the Bitter Lakes and Suez the straight parts
should be 75 metres-246ft.-wide, and the curves all of 2500 metres radius, 80 metres- 262 ft .-wide. Among the different systems for protecting the banks already applied to the canal the Committee preferred, where possible, a stone pitching, carried 2 metres- 6 ft . 6 in .-below low-water mark of ordinary spring tides, and to a height of about 1 metre above high-water mark of ordinary spring tides. M. Dirks concluded by expressing the opinion that the future speed in the canal, improved in accordance with the suggestions of the International Committee, would be about 8 knots an hour, or nearly double the present speed. that planting the banks with the protecting them. Where this was not possible, they should be pitched ; and this would enable the passage of the canal to be made in ten instead of twenty-four hours as now. M. Tcharnowsky, civil engineer, of St. Petersburg, described the method adopted in the Goutonieff dock of the Petersburg and Cronstadt Ship Canal, 17 miles long and 22 ft . deep, the cost of which amounts to $£ 1,200,000$. The walls consist of a framework of fir logs, forming hollow cubes, well tied together with half logs and bolts. As the timber work is not carried high enough to be ever uncovered by water, it will last for a great length of time, and is not liable to the attack of teredos. The timber framework is filled in with boulders and pebbles, and has a layer of concrete laid on the top, on which masonry is carried up to neer-in-chief of whe works for the canalisation of the Main engisome particulars of that enterprise between Frankfort gave Mayence, to be completed on 1st October, 1886. The useful depth of the Main will be increased from less than a metre to two metres, or 6 ft . 6 in ., while the locks are constructed in view of a further deepening of half a metre. Herr Stahl, of Frankfort, gave an account of the port to be made in connection with the Main navigation, which will put Frankfort in direct water communication with the Dutch and Belgian ports.
Mr. Mulvany, of Frankfort, former!y Commissioner of Public Works in Ireland, said he did not believe that, in the long run, Liverpool and Antwerp, Rotterdam and Amsterdam, would suffer through the making of ship canals. He had not a very high opinion of the English parliamentary system, whereby a eparate law was required for each public improvement, thus take the sea f as possible into the interior should to thought, be made.
M. De Maere Limnander described the projected ship canal between Bruges and Heyst on the sea coast, and an excursion to that place on the following day was made
Professor Schliehsint, of the Berlin Polytechnicum, gave an Pre of the canalisation of the Weser and the Port of Bremen. The congress certainly brought inland navigation into special consideration.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our

SHE LAWS of motion.

publish on this subject, it would scarcely be becoming in all you trespass further on your valuable space, and if youm will io me the
favour to insert this letter I think I may promise that it shall be the last. I had no intention of writing again, but " Φ, H., s" letter in your. last issue, ppartioularly its concluding paragraph, seems to to
call for some reply from me. I thank " $\$$. Π,", very cordially for call for some reply from me. I thank "\$. Mi." very cordially for
the trouble he takes not only to read my letters, but also to understand and answer my objections, and I agree with Mr. Lousley
that if " $\$$.". should see fit to alter his statement to "Probably
Foree is either "ondition Force is either a condition or a mode of Motion" he would take up
a poisition very difficult to attack. I, at any rate, should then
I foel that there was some graond. upon whyich we, cound agree.
form
Indeed, in one part of his letter he scems to suggest that he considers Force and Motion interchangeable terms, for he
says "Motion is Energy, and Energy is nothing else than Motion." But his next paragraph, completely yoverturns my dawning hope of
a possibility of agreement between us, and it is this last paragraph a possibility of agreement bet ween us, and it is this last paragraph
about which I want to say a few words. " Φ. Π." asks me what I should say if he gave me an instance of a body acquiring velocity
while no Force whatever was being exerted upon it I I that such an instanee, if proved, would go far indeed to convince me of the truth of his theory. What 1 deny is, that he has given me any such instance. Of course, I know that a heavy know is, that " "gravity exerts no push upon uti." With all due
deference to " Φ. Π,", I should think it is because gravity evert a push or rather pull unon it, in other words beeause only one
unresisted force is acting upon it. The body falls because of its nherent property of inertia, its incapacity to resist any motion or energy which is exerted upon it. "\$. H." then goes on to say,
"Work is being done, and yet not the slightest trace of effort in the shape of dowward paut can bo detected trace of effort in in must
" Φ. Π." to say what work is beinn done? For is it not true that falling body is only without wieight solong as no other body yesists
its fall? I cannot conceive any work that this falling body could do without a second body on which to act, and the instant we
suppose it to be eacting upon any other body we know that effort
would come int Would come into operation on the part of both- on the part of the
lescending body to overcome the resistance to its fall, on the part f the body desecended upone, to oppose its descent.
So far, I have been reasoning of course entirely
point of view, but if " " . . ." prefers to consider, gravity as motion transferred to a body insteed of Force exerted upon ut, , I cannonot
disprove it; all I contend is that in the present crude state of our disprovo it, all I contend is that in the present crude state of our
knowledgo as to what gravity is, his theory as to its nature is a knowledge as st what gravity is, his theory as to its nature is a
mere assumption, and he can bring forward no proof of its yerity.
It weam to me to It seems to me to be a case in which we must be content to take
our choooe, for is it not not teant as reasonable for me to consider
gravity, as Foroe transferred to a Body and manifested in Motion

SIR,-I have read with a degree of attention the various letters on the above. Thave read them in the hope of gleaning something
that would make my own ideas clearer on the subject. Week goes rriving at a satisfactory solution as to the truth, or a correct arriving at a saisfactory solution as to the truth, or a correct
definition of the truth, are drifing into discussions on problems
and matters which, if not away from the main question altogether, and mattors which, if not away from the main question altogether,
are at least in a bye-path. I see quite clearly myself that reaction is equal to action, but confess I have a difficulty in putting my thoughts into olear or explicit language. This I have done to the best of my ability, and would feel obliged if any reader of this
letter differs from me will inform me in his opinion where I am Suppo Suppose I were to fire a cannon ball at a mountain; given the
substanec of the mountain to be of carth, the cannon ball would substance of the mountain to be of carth, the cannon ball would
bury itself a few feet in the ground and would then stop dead. I
see very clearly here that the force the mountain opposes to the cannon ball, or the reactionary force, is equal to the active force of the cannon ball; ; if it were not soo, why does the ball stop.
Again, take two balls of lead the same size, suspend Again, take two balls of lead the same size, suspend one by an
imaginary thread. Then get the other cast at it with a force
capable of doing capable of doing 300 lb , of work, that is, going with a velocity that
would take 300 lb . to stop it. If these balls have cannonod fair on the surface, when you go after them and pick them up the indentation, or rather flattening, on each ball will be the same, This
experiment could not be practically carried out. In the first place, the lead composing each ball would not bo perbaps equally pare, a proof of the truthi, you could get make true enolly the aim. If you wame
a preme experiment
with two eggs of the same strenth finger and eggs of the the same strength. Hold one between the fore-
 subject to difficulties, as you perhaps never would get eggs of
equal strength. Where the mistake is made is in the wrong conception of the
word action. Take the instance of the two cannon balls. One is moving with a force of 300 lb . That is not to say it strikes the
other with a force of 300 lb ; if it did so it would stop dead. But it does not; it goes on in its career till it encounters something
with a greater inertia than its own. Then action $=$ reaction Mint agreater inertia than its own. Then action = reaction comes
into play, and it stops dead. But what foree edd it ts trike the
stationary ball with? With an amount of force exactly staionary ball with? With an amount of force exactly equal to
the eresisance o the passive ball to be moved with the imparted
velocity. That is to say if it moves the passive ball with a velovelocity. That is to say if if moves the passive ball with a velo-
city corresponding to 50 , if. of work, then the imparted force or
action equals 50 lb. The acting ball then evidently has action equals 50 Ib. The acting ball then evidently has 250 lb of
energy, it I may use the expression, left. In the case of a horse
and cart. I imagine the horse to have for convenience anke
 same velocity as the horse is, say, 140 lb . When the horse gets to
the end of his trace his pull comes in of 420 lb . Of this amount the end of his trace his pull comes in of 420 lb . Of this amount
the cart feels 140 lb - the amount equal to its resistanee to be
moved with the imparted velocitymoved with the inparted velooity-and exerts a reactionary forec
of the same amount. You will say, How is the rest of the force
expended expended! In the case in point it haw in is the reent of the forces
exened at all;
beause the horse has not been brought to a dead stop by its load. A portion of it can be expended by accelerating the motion of the
cart. With this example the mistake cart. With this example the mistake has been made, as was
pointed out by Profesor Lodge in your last weeks's issue, of sup-
posing that the cart's reactionary force was opposed to its own
motion, wherens it posing that the cart's reactionary foree was opposed
motion, whereas it is opposed only to that of the horse.
This is how I define action, viz. is always equal to the restion, vace of: The the body, eithed against a body in imparting
velocity or altering structure. To prove this by the eall
 to the resistance or reaction of the passive ball, but greater than
it, why does it not impart a greater force than 50 lb.? If, on the
other hand it is ise other hand, it is less, why so much? I hope I make my case clear
and would feel greatly flattered by Professor Lodge's attention to
the ideas of a humble
STUD, INsT. O.E. Goole, June 2nd.

Lodges atention
STUD, Inst, O.E.
SIR,-Dr. Lodge's last letter is a very remarkable letter in so far
as it applies to me. It is remarkable in the sense that whereas Dr.
I. Lodge is usually extremely lucid, he is in it so vague and indefinite
that I confess I have entirely failed to grasp his meaning. I need that I confess have entirely failed to grasp his meaning. I need
hardly point out that the simple assertion that I am wrong conveys
Do conviction to go conviction to anyone, and contributes nothing of yalue to this
discussion. We want proofs, not words; and, of course, there in
no proof or attempt at proof in Dr. Lodge's reply ${ }^{\text {to }}$.my munication.
For some

For some time past I have suspected that whereas I always use the word rorce to mean one thing, Dr. Lodge uses it to signify more than one thing, and, with your permission, 1 must ask
now to fix upon some single meaning for the word, and to let me know what it is; I do not care what it is so long as I understand what idea he intends it to convey. So far as 1 can make out, it I should use the word Work, and that he does not regard Resistance pure and sip
clear this up.
ciear this up.
sense in which I use the we other hand, that I should define the have yet done. I always use the word in the the sense precisely than
to narrow the ground, I will in any further leter to narrow the ground, I will in any further letters which you may
favour me by publishing use the word Force in the popular favour me by publishing use the word Force in the popular sense of
Push. I might, of course, add pull, but I I will not do so, for virtually they are the same thing; and as Dr. Lodge has said in one of his
letters, that motion can This a tergo-the word push will serve all purposes admirably.
Thuch presumed, I will now repeat the statement I made in my last reply to Dr. Lodge, nnd will ask him, if I am wrong, to
favour me with a proof. and I will leave Sir Isan Now utterances on one side for a moment.
(1) A push is a Force.
(2) Dr. Lodge admits that there cannot be such a thing as an unbalanced Force.
(3) Therefore he admits that there cannot be such a thing as an Whalanced push.
notion by degrees. For a certown into the air, it parts with it regard to a spot on the earth beneath it. Gravity pushes it
towards the earth; but we have seen (3) that there cannot be such a thing as an unbalanced push. Consequently, the stone pushes up against gravity as much as gravity pushes it down towards the
earth. The stone does not resist its own motion, it resists the push of gravity. Why does the stone fall? or rather, is it not clear that because the stone does fall push is not the cause of its motion 1 may add here that I have no reason to be dissatisfied with the
progress I have made. I started with the statement that motion is a cause of force. Dr. Lodge has admitted this. I I gave a new certain views on the nature of gravity. Dr. Lodge holds, he eays,
nearly the same views. The dofinite points at issue between us are now very few, and I fancy that they may entirely disappear as
soon as we have learned to understand clearly the sense in which we use the words we employ,
H. Lousley must excuse me if I decline to reply at length to his Dr. Lodge. For the rest, I am unable to see how a push can be a "mode of motion." That the push is caused by motion is what am contending for, and that a push cannot exist without the
motion of something to cause it is the thesis I maintain. But to nonsent that a push is a mode of motion seems to me to be pure Is he quite sure he understands himself? Can he cite a single instance in which push is not due to motion
at Cambridge by Mr. G. J. Romanes Rede Lecture was delivered abstract of this lecture, published in the Times of Wednesday the following passages, which I commend to Dr. Lodge's atten the forces, and this moans that if any kind of motion could pro-
duce anything else that is not motion it would be producin duce anything elso that is not motion it would be producing of the word a miracle." . . . "Just as it follows from the con servation of energy that motion can produce nothing but motion motion.' The words I have italicised embody the point for which
I am contending. Mr. Romanes further quoted from Hobbes "motion produces nothing but motion." Ineed scaroely add that it gives me great pleasure to find on my side so profound a philo
\$. $\overline{\text { apher and so able a man as Mr. Romanes. }}$

London, June 4th.

steam hammers.

$\mathrm{SIRB}^{-}-$Your last issue contains a lotter by Messrs. Glen and Rose, in your issue of 15th May. This publication is confessed by the criticisers to be of considerable interest to them. Your readers might surely have been trasted to arrive at that concus rion from
the evidence through the letter, without the aid of this confession. Glen and Ross are makers of great standing and renown; deservediy and eyill admit, for to the practical perfection of workmanshi add bold defence of its distinctive features, and a watchfulness o its reputation equal to the watchfulness of a gaoler or income-tax resuscitated by the deseription given, and, I have to add, their letter also brings up strange memories, which, however,
quite in accord with those mentioned by Glen and Ross.
Will
Nilliam Rigby, of Parkhead Forge, was a genuine pioneer in of his day, by which some owning smaller measures of genius and more stereotyped brains have been led in easo and pride to con-
siderable fortunes. Rigby, like many other true inventors, as also ntors at all, had no profound knowledge o little about such claims. It therefore came to fact, he care the alleged passing of the patent rights of the Rigby hammer into
the possession of Messrs. Glen and Ross in 1856, that few or no rights existed save those alone which the public choose to generously No. 25, of 1854, and a clear impression of the hammer first made point , the outline of which is reproduced with the letter in ram or hammer bar being a pade in claim on the mere fact of the the non-projection of its face past the ram sides, was far from my
contemplation ; and this may be said of the valve and other parts to which allusion is made. Nessrs. Glen and Ross, in short, have missed the "facing points," their "considerable interest" in this matter if persevered in, may "Wentually see cleared away, Meanwhile I regard their query, therefore have no direct answer to make to it Suffice it to say that between the lines reproduced from Rigby's specification and those merest novice in patents may see to be sufficiently wide for accommodation of many patents. Patent rights, like poetry rights, are
not, however, grasped by everyone. Some in these matters are born to colour blindness, just as some are to non-discrimination between certain of the rainbow's stripes. Thus it is that now and again
even honest instances are met with in which loud cries novelty, anticipation, and previous use are heard in connection with the most valued of our modern machines and discoveries brought ste emaborated his famous compound engine, and by it Britishers were told by oousin Jonathan that steamships had been a ' working in 'Merica on that 'ere principle more'n thirty years.
The multitude should alway often many who lay claim to special knowledge, for in point of fact John Elder's patent compound engine, in a sense, may be said to be separated from Jonathan Hornblower's and other earlier patents by mere hair lines. Hair lines, however, often make a
world's difference in the matter of efflciency ; in fact, sometimes most value is added by the fipest lines; pad apropos of this it may
be borne in mind that the hairs which divided compounding are
again being subdivided in triple expansion in hopes of great resulta; and so on, one might go as to steam boilers, breech-loaders, steam hammers, sewing machines, telegraphs, and others without number. But again, and to conclude, patents are, like poetry, and, for
instance, "There is a beauty born of grace, " that line by itself Instance, My There is a beauty born of grace," that line by itseff is
poetry. My ritios may, however, only see in it only plain prose, poetry. My critics may, however, only see in it only plain prose,
the words composing theline being allold and by themselvescommon-

Airdrie Engine Works, Airdrie, June 1st.

trial of a compound engine.

SIR,- In your paper of November 7 th, 1884, you published an
ill ustration of our tandem compound engines. We now bey hand you particulars of a trial of one of these engines, which took pressure eylinder, 30in. low-pressurue cylinder by 20 in. stroke; and driving the Wellington Cement Works of Messrs. Matteson and tones, wash mill, elevators, \&ce--is very regular, and was not altered during the trial, which wasted reur and a-quarter hours. Aut me wat fire left on the bas noted; and at the conclusion of the trial, steam and water were exactly the same as at the commencement, and the fire in as nearly as possible the same condition. 2welve diagrams were taken during the trial, of which we beg to
enclose herewith a sample. The mean of the whole is 103.2 horse
eteam exlbs

btroke roo reve ho wios

power. Total consumption of coal 1016 lb ., being at the rate o 32 b . per horse-power per hour. The coal was of the kind
known in Lancashire as duff, and in this district as rough small, of ery moderate quality, and towards the conclusion of the trial very vet. The boiler was a very ine one, 7 ft . diameter by 30 tc . long y Messrs. Galloway and sons, Manchester; but, like the engine, the steam from blowing off without sometimes letting the fire burn in holes. But the size of the engine and boiler was arranged with a view to extensive additions to the machinery driven being required at an early date. From the results of this trial we have no doubt but that when the engine is loaded to 180 -horse power
the consumption of small coal will not exceed 2 lb . per horsepower per hour. (For Worth, Mackenzie, and Co.)
Vulcan Engine Works, Stockton-on-Tees, June 2nd.

Vacuem brakes-jerks in trains.

SIR,-The subject of "jerks in trains" is just now receiving very great attention in Leicester, in consequence of a well-known
local town councillor having recently been charged before the magistrates with getting out of a rrain in motion. The facts of the case are very simple indeed. The $9.43 \mathrm{p} . \mathrm{m}$. train from Trent to Leicester is always made op of an engine and tender fitted with
the steam brake, a few carriages with tho automatic vacuum leakoff two-minute brake, a large number of meat and milk vans not fitted with brakes, and a rear van with a hand brake only. The
train stops at every station, and each time the continuous brake is applied to the leading portion of the train the unfitted meat vans push forward and compress the buffer rprings. Just as the
train is coming, or has nactually come, to rest, the clayton brake
" ben rain is coming, or has actually come, to rest, the Chyton brake
"leaks off," and the jerks and recoils which follow are very violent. Several passengers have been thrown down and couplings broken in such ciroumstances.

On the night of 17th April Mr. Councillor Green, of Leicester,

 was a passenger by the train in question, and on arrival atHumberstone Road he waited till the train came to rest, and Has just getting out when the brake leaked off, and the company charged him before the magistrates, but the case was dismissed. It has before been argued that the train must have
ieen in motion or the passenger would not have been thrown ben in motion or the passenger would not have been thrown
lown; but surely the bye-law refers to persons getting out of a ain before it has sto
If the bye-law includes these "jerks," it would be well to put a If the bye-law incluces these yerks, it woula be well to put a
notice in the carriages that passengers must stop not only till the
rain stops, but till the vacuum brake has seaked off and the recoil rrain stops, but till the vacuum brake has leaked off and the recoil
ceased. The attention of the chairman of the company has been directed to the case, and it is hoped in this district that the meat rain wir be taken of the passenger train and worked in a separate
reicester, as they already are from Leicester to London. I can speak positively as to the risk to passengers,
having only a few months ago narrowly escaped being thrown own at Leicester by the coil of this same train.
40, Saxe-Coburg-street, Leicester, May 23rd.

the hooghly bridge.

Sirs,-I desire to oall attention to what I conceive to be a some been the practice in bowstring or hog-backed girders to make the upper or compression boom in the form of a continuous circular curve. This practice is a perfectly correct one in the caso of
plate web sirders where every point in the upper boom is tied plate web girders where every point in the upper boom is tied
down to the lowe boom. In open webbed girders it is
incorrect. Here the compression boom should be polygonal, consisting of a series of straight portions meeting at a slight the points where the is so slight that no reasonable objection can be made to the popular arrangement, and this is true of at least three.fourths of the length
of the Hooghly Bridge girders, as illustrated in THR ENGINERE of January 23rd and February 13th. But in the end bays of these irders we find a very different state of things. On the accomENGINERR of February 13the, it will be seen that the "line of thrust" or line of action of the resultant compression, instead of
coinciding with the "mean fibre" centre of gravity of each cross section, departs fully a foot from it owards the inner or weaker side of the compression boom. Now, of pressure be moved from the centre of figure to a point one-sixth of the width toward one side, the compression per unit of area will be doubled on that side and be reduced to zero on the other ; so at the Hooghly Bridge. The ine of thrust passes more than
one-sixth of the width of the boom below the centre of cravity of
the cross section, and consequently the stress on the light angle 3 will be relieved from all stress. The loss of strength must, I ferefore, be most serious.
I fail to see any reason why the portion X Y of the girder should not have been made perfectly straight, with its mean fibre coincient with the line of thrust, as in Fig. 2. Then the thrust would the metal would have been fully utilised.

I am well aware of the frequent and notable departures from ires. That correct forms that are to be found in existing strucnind, but little, for, in the first place, bridges are usually designed to carry some possible, but highly improbable, load greatly exoeed ing their ordinary working load; and then, in the second place,
ordinary factors of safety contain a large allowance ostensibly rdinary factors of safety contain a large allowance ostensibly
ntended to cover contingencies in the direotion of bad material or doubtful workmanship, but which in not a few instances has served to counteract errors in design.

MEAN FIBRE AND LINE OF PULLL

We have in Melbourne a girder bridge in which the bottom boom endures a tension of 5 tons per square inch from the weight of the structure alone, 7 tons with a moderate or ordinary load, and
15 tons in the event of a dense crowd collecting. This bridge has tood for twenty years, and I have had the greatest difficulty in persuading the authorities to olose it. No engineer, I feel sure, with their tension members one-third of the size approved by the Board of Trade. A girder of 420 ft . span is a very serious matter, and I should most carnestly deprecate any departure from theoretically accurate forms, even though such departures might appear o have been made with impunity in smaller structures.

April 18th.

the heberlein brake

Sir,-In a letter of the 26 in inst., published in last week's Evaineer, Mr. Clement Stretton mentions that it was stated in your previous issue that the Heberlein brake on the Colne Valley
Railway fulfils the well-known conditions of the Board of Trade, but that information received by him that day from that railway leads him to ask for some further details. As Mr. Stretton's letter would seem to convey the impression as if the above statement was made by your authority, whereas any responsibility for it rests solely on myself, may I be allowed to point out that, as shown by Revice of the same date, that gentleman at the time he wrote was in possession of the following full details respecting the train in question, as published by me in the Review of the 22 nd, and that it is therefore difficult to understand the object of his letter:"The Colne Valley train consists of a van and two carriages with brakes, three carriages with cord guides for the continuous brake
line, and an engine fitted with the reel by which the engine-driver controls the brake power. The engine is not fitted with the friction brake, because we never connect the driving wheel brake of a tank engine-nor, indeed, of any engine-with the continuous brake, as cases frequently occur where the automatic action of so powerful a brake in front of a disabled vehicle might create the very accident it is desirous to avoid. The control of the driving
wheel brake is consequently given solely to the engine-driver, who is to avail himself of it or not, according to the circumstances of each special case. If the engine has a tender, the brake of the latter is treated as belonging to the continuous brake."
With regard to the requirements of the Board of Trade, it may, With regard to the requirements of the Board of Trade, it may, the best as well as the only proper judges as to the proper inter-
pretation of the wording of their own conditions, which also differs very materially from that given by Mr. Stretton in his letter. The circular says that the brakes are to be instantaneously self-acting in case of accident," and that they should be "put on and taken off with facility on the engine and every
vehicle of a train." There is not a word in the circular about vehicle of a train." There is not a word in the circular about
their "remaining on even if the engine and every vehicle become separated." So we may probably understand this to be one of Mr. Stretton's usual side thrusts against the so-called two-minute brake on the Midland Railway, as it cannot possibly have any
reference to the Heberlein, it being evident, in the nature of reference to the Heberlein, it being evident, in the nature of
things, that these brakes, after application, will remain on until
they drop to pieces from old age and corrosion, unless intentionally Supposi nadvisability of connecting the driving wheel brake with the continuous tender, and train brakes-in which, however, we are supported by the resolution recently passed at the general assembly of all the railways of the German Railway Union, by which it was
decided that the driving wheels of all engines should be braked, but that they should be kept independent of the continuous brake-it is only necessary to fit the same lifting gear to the engine brake as to the tender and carriage brakes in order to bring it at nce under the control of the continuous brake line, and it was only after a careful inquiry into the facts of the case that the
Board of Trade acknowledged that the present form of Heberlein brakes shall in future be entered in the first-class in the return. June 3rd.
C. Fairholme.

THE TOWER BRIDGE.
$\mathrm{Sir},-$ The question of communication between the banks of the Thames below London Bridge is receiving-and deservedly so-a scheme to erect two towers in the river, each 70 ft . wide and nearly as high as St. Paul's, and by another scheme to throw an arch
850 ft . span and 170 ft . high over a river a few feet 850ft. span and 170 ft . high over a river a few feet deep, any
attempt to introduce common sense into the subject should be encouraged. Whatever form of bridge is erected, public opinion has decided it must fulfil two conditions : it must be a low level bridge, and it must offer no obstruction to the shipping. Both
Mr. Horace Jones' design and that of Messrs. Ordish and MatheMr. Horace Jones design and that of Messss. Ordish and Mathe-
son, described in your issue of May 8th, 1885, fulfil these conditions. But what advantages do they offer over a bridge of ordinary vehicular and pedestrian-and in both schemes the former must be suspended while the bridge is open for passing vessels. Let us now see what each proposes with regard to the pedestrian traffic.
In Mr. Jones' scheme it is proposed to raise the foot passengers in parties of thirty-six to a high-level platform, and lower them again by hydraulic lifts, each journey occupying, say, two and a-half minutes. A passing vessel will close the bridge for traffic for five minutes, so that after the first lot of passengers have been carried up and down, it is clear the next lot might as well wait the other
two and a-half minutes as occupy that time in going up and down
two and a-half minutes as occupy that time in going up and down

the lifts. Taking the worst case, where the bridge is closed for twenty minutes, 252 passengers could be accommodated by the And this is all that is accomplished by this stupendous structure, with its towers 300 ft . high. In the case of one ship passing
tbrough, 36 foot passengers each way are saved two and a-half through, 36 foot passengers each way are saved two and a-half
minutes, and in the case of several vessels passing, 252 each way minutes, and in the case of several vessels passing, 252 each way
are saved an average of ten minutes. How do Messrs. Ordish and Matheson propose to deal with this traffic? By means of 300 steps! A good many of us would prefer waiting a minute or twoif it did not occupy the whole five minutes in going up and down-
and I know some who would prefer to wait twenty minutes rather and 1 know some who would prefer to wait twenty minutes rather
than attempt any such exhausting performance. than attempt any such exhausting performance. schemes are shown by dotted lines. It has one great fault I know -it lacks novelty; but it will only cost half as much as the others, and that, after all, is worthy of consideration. The working expenses will be very much less than in Mr. Jones' design, as it will not be necessary-without any wind-pressure- to raise 40
an average height of 50 ft . every time the bridge is opened.
For the convenience of foot passengers, while the bridge is closed for traffic, let there be a wharf on each side of the river, adjoining to and communicating with the bridge, from which two small steamers could make frequent passages, the cost of which could be
defrayed by a small charge, or it might be considercd as part of the defrayed by a small charge, or it might be considercd as part of the
working expenses of the bridge. work expenses of the bridge.
Mr. Jones' scheme witl is not quite clear whether the lifts in passengers for each journey. I have, however, taken the larger figure.
Derby, May 31st.
the ratio of contraction of area to elongation in TESTED BARS.
SIR,-Professor Unwin has, in your last, taken considerable trouble to prove that the mathematical problem which he solves i
supported by experiment. There can be no doubt that the solution is correct, but the experiments, instead of showing this, appear to me to prove what he has just before disproved. I have recalculated the table commencing with No. 943 , and find the difference between theory and experiment to be 11.4 per cent. in 2 in , lengths and $13^{\circ} 5$ per cent. in lin. lengths. If the contraction
is compared with the elongation per original length, the differences is compared with the elongation per original length, the differences
are very much smaller, though theory says they should be larger. The mean differences are only $+\frac{1}{2}$ per cent. in 2 in . lengths and -4.3 per cent. in lin. lengths. This matter is of great interest and it is to be hoped that Professor Unwin will on an early occa sion explain in what way the experiments must be read in order agree with the theory
London, May 30th.

SIR,-I should be sorry if your readers suppose, as "R. H. G.," seems to imply, that I asserted a stress strain curve to diffe more usual and more convenient to take strains for absoissme. The letters of this sentence would have the same curves if written-a an engraver would write them-from right to left. But it is mor usual and more convenient to write from left to right.

the friction of slide valyes,

Sir,-Your correspondent, Mr. Henry R. Leahy, will no doubt be surprised to hear that the form of relief ring and exhaust applied exactly thirty years ago-in 1854 -to two locomotives buil at Carlsruhe, in Baden, for the Frankfurt-Hanau Railway, and soon after abandoned, and new cylinders made with common D valves.
16, Burney-street, Greenwich, May 29th.

DEEP WATER DOCKS, TILBURY
Sir, -I am surprised that up to the present there has been no
authoritative statement to put right, if need be, your corre-
spondents "Forth," "Thames," and others. I consider with your correspondent "Thames" that it is questionable as to whether the slope of 6 to 1 will stand, especially at the entrance where shown on his sketch. I think there is no doubt that the flattening of the
slopes has affected the design for the entrance ; but whether it is slopes has affected the design for the entrance; but whether it
economical to make the upper side of the entrance in the manner shown on your view remains to be seen. H. K. June 3rd.
gas engine governors
$\mathrm{Sr},-$ We notice in your issue of 29 th ult, that you describe a
pendulum governor fixed on a gas engine exhibited by Messrs. pendulum governor fixed on a gas engine exhibited by Messrs.
Tangye Brothers at the Inventions Exhibition. This is covered by Tangye Brothers at the Inventions Exhition. Holt and Crossley You will see that it is only fair to us that this should be published as our governor will shortly appear in the same Exhibition on a five-man engine which we are sending in a few days. Please insent this letter in your next issue.
Openshaw, Manchester, June 1st.

INSTITUTION OF CIVIL ENGINEERS.
the signalling of the london axd northewestern AT the ordinary meeting on Tuesday, the 5th of May, Sir
Frederick Bramwell, F.R.S., president, in the chair, the Frederick Bramwell, F.R.S., president, in the chair, the paper read was on "Mre" by Mr. Signalling of the Loson, Assoc. M. Inst, C.E In this paper the author first referred to the disadvantages ari ing from signal-work being left in the hands of district engineers, and he advocated its being carried out by an independen department and superintended by an engineer specially traine for the work. He traced the development of the system on the directors of the company, who had already spent more than $£ 1,000,000$ on the work, and in view of a further large outlay instructed their chief mechanical engineer to prepare the necessary shops and machinery at Crewe for the manufacture of every appl ance to carry on the signalling of the line. Large fitting and
erecting shops, carpenters shops and saw-mills, with special
machinery were provided'; and arrangements mere made for the rolling of the Bessemer steel-point rod, locking-bar, and other iron,
and the stamping of corrugated steel signal-arms ; while plans were prepared of the locking-apparatus and other requisite appliances, a signal department was instituted, and an engineer appointed to superintend the work. A brief description of the growth of the locking-apparatus was then given, up to the date of the introduction of the frame now used by the company known as "lever-locking,"
the invention of Mr. F. W. Webb, M. Inst. C.E., so called to dis. tinguish it from " catch-rod-locking." These two methods of locking, together with the signal-cabins, signals, signal-slots, adjusting apparatus, point-rod compensators, facing-point locks, detector-bars, and other kinds of apparatus, were described in detail. Attention
was directed to a want of improvement in the grouping and general was directed to a want of improvement in the grouping and general tant junctions; and after giving an account of a simple plan for cheaply interlocking unimportant roadside stations, adopted on the London and North-Western.Railwayat the suggestion of the author, statistios were introduced of the number of men employed, signalcabins, signals, and the cost of maintenance. The appendix con-
tained a copy of the company's rules for the sighting of signals for the general work of the department.

TENDERS.

NOTTINGHAM CORPORATION NEW CATTLE MARKET, Contract No. 1.-For abutments and approaches to bridge,
general formation, sewering and levelling of market. Mr. Arthur general formation, sewering and levelling of ma

Foster and Barry, Nottingham
Hodson and Son, Nottingham
T. Smart

Thombs, Nottingham
H. Viekers, Nottingham near Alfretor Meats Brothers, Nottingham
J. and G. Tomlinson, Derby \qquad

Consract No. 2.-For two entrance lodges, offices, refreshment lairs, \&c.

> Wheatley and Mank, Nöttingham
Bott and Wright, Nottingham
> Bott and $\begin{aligned} & \text { J. Jdams, Nottingham } \\ & \text { H. Vise }\end{aligned}$
> E. Vickers, Nottingham
> E. Hind, Nottingham
Foster and Barry, Nottinghai
Hodson and Sons, Nottinghan

> Hodson and Sons, Nottingha
J. Hutchinson, Nottingham
F. Wartnoby,

Contract No. 3.-For ironwork to bridge, roof, pens, stalls railings, hurdles, \&c.
> E. C. and J. Keay, West Bromwich
G. R. Cowen and Co, Nottingham

> Newton, Chambers, and Co., Sheffiel
Handyside and Co., Derby
> Butterley and Co., near Alfreton
> G. Fleteher, Wolverhampton
Braithwaite and Kirk, West Bromwich
J. Tildesley, Willenhall, Staffs
> J. Tildesley, Willenhall, Staffs
J. T. Marshall and Co, Sandion, Notts
Goddard and Massey, Nottinghnm

> Goddard and Massey, Notting
White and Son, Nottingham
Abbott and Co, NNewark

The amount of the three accepted tenders is $£ 22,688$; the borough engineer's estimate was $£ 25,425$.

THE Almi
THe Admiralty contract for asbestos for use
been awarded to the United Asbestos Company,

THEINVENTIONS EXHIBITION-THE FIELDING HIGH-SPEED ENGINE. messrs. fielding and platt, gloucester, engineers.
(For description see page 437.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO CORRESPONDENTS.

* All letters intended for insertion in The Enginerr, or contining questions, must be cacompanied by the name and address
of the writert, not necessariciy for poblicatiton, but as a prof of
good faith. No notice whatever will be tuken of anonymous good faith. No
communications.
* We cannot undertake to return dravings or manuscripts; we
must therefore request correspondents to keep conies * In order to avoid trouble and confusion, we find it necessary to
inform corvespondents that letters of inquiry addresed to the
public, and intended for insertion in this col umm tust in cases, be accompanied by insertion in thise column, must, in and
vriter to himself, and bearing ald pope legibly directed by the writer to himself, and bearing a 1 d. postage stamp, in order that answers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply with these instructions.
R. D.- Your enjine will use a preat deal more steam running at 75 veroriu-

crayon pencil and plate polishing powder makers. SIR,- Will any of our readers of tell me of of some good firms who are
makkers of crayon pencils and plate polishing powder
Dover, June s.
C. D. G.

CANESPLITTINGMACHINE.
(To the Editor of The Engineer.)
Sir. -1 shall be glad to kowow if in Entland any machinery is made for
splitting reed or cane; also for making cane-bottom and basket work of spitting reed or cane;
reed or cane.
Hamburg, June 1st.
suction taking-off apparatus.
 envelope or printing mact.
Edinburgh, June 1st.

(torth's friction gear.

 Str, -In a noticico of our exhibit of at the Engiveer.).appeared in yourtions Exhition which paper, we find that no mention was made of the fact
 han this should bom enationed.
Sandon Works, salford, June
[Why is it called Raworth's gear?-ED. E.]
MESSRS. FORD, STATHAN, AND CO

James Bridge Ironworks, Darlaston, May 29th

SUBSCRIPTIONs.

 Cloth cases for binding The Enarnerr Volume, price 28. 6 d.
A complet set of The Enginerr can be had on application.

 Renicrasedece rates. Post-affece order. - Austraila, Belgium, Brazil, British
Columbia, British Guiana, Canada, Cape, of Good Hope, Denmark,
 Portugal, Roumania, switzorland, Tasmania, Turkes, United Statas
West Coasto of ffrica, West Indies, Cyprus, \&1 los. China, Japan,
India, E2 Os., 6d.
 Mauritius, Sandwich Isles, 2×25 S.

DEATH.

THE ENGINEER.

JUNE 5, 1885.

an unconsidered aspect of modern strikes,
IT is announced that over 100,000 hands engaged in the United States. In this country the great colliers' strike has ended disastrously for the men. During the strike has ended disastrously for the men. During the 1,500,000 tons of coal have not been drawn which would work. This quantity of coal represents about $£ 250,00$ n in wages alone. To this has to be added the diminution in the consumption of stores, such as timber and other materials used in and about the pits, $£ 120,000$; while the ever, $£ 55,000$ at least in keeping the roadways in good condition, and the ventilation right with a view to the resumption of work. Nor is this all the injury that has been done. Contracts which would have been taken in the Yorkshire district have gone to the Durham and Northumberland coalowners. One coals being laid lost The export trade has suffered most severely, many vessels which usually load at Hull with Yorkshire coal having gone to the Tyne for cargoes. It is calculated that twelve months will elapse before the export trade recovers this loss; and now that the miners have returned to work they are finding that employment is much scarcer than when they went out. In not a few instances the pit owners not yet gone down. Thus history repeats itself. The Sunderland strike of engineers has brought misery to thousands of unoffending folk. There is no reason to believe that the American strike will prove any exception to the political economy can teach, appears to have the smallest effect in preventing men from resorting to this crude and
ineffective method of fixing the price to be paid for labour; and the philosopher regards with wonder the continual adoption of a policy which always ends badly for those who follow it up. The practical man will, howtain the means of preventing strikes than in speculating on human folly in the abstract. Indeed, the questions involved are of the greatest possible importance, and it is earnestly to be desired that some agency should be emact, the baleful influences brought to bear on the working men of all countries. It is not for one moment The rank and file always want leaders before they will take action; and some dominant minds are invariably assoit were practicable to enlist on the side of peace and order men who have both the will and the way to persuade the rank and file that there are much better methods of adjusting wages disputes than strikes, good might
be done, and we by no means hold employers of labour blameless in this matter. They hardly ever stir a finger or wag a tongue. They take no steps of any kind to teach The demagogues have it all their own way, not only stump, but in the reading-room and the lecture hall. No attempt is made to teach the whole truth to men, who, imbibing a mixture of truth and falsehood, see but one way to cure all ills, and that is to strike. Why should
not the masters have a literature of labour questions? Why is it that pamphlets, broad-sheets, books, speeches, do not abound, all having the same object-namely, to counteract doctrines which are pernicious. The working man never hears more than one side of the question.
Whose fault is it that he does not hear both?
There is good reason, too, for believing that just now much good might be done by such a propaganda as that
at which we hint. The working man sees things from a point of view not quite what it was twenty or even ten years ago. Although arbitration has failed to do good,
the sliding scale has been more successful, and its greatest success lies in the circumstance that it has taught the working man much that he did not know before. So long
as employers kept their books secret, so long did the workers believe any cock-and-bull story told them concerning profits, and the injustice with which capital treated labour. The regular publication of the selling price of ence of which they did not previously suspect. The result of this, and the spread of information in some other directions, has been that strikes are now seldom, ostensibly at least, directed against capital in the old and bitter
fashion. In other words, when 40,000 colliers turn out in the North of England, they strike not against the colliery proprietors but against the consumer. They ask for more wages, or that wages shall not be reduced, according to
circumstances. The masters reply that they cannot afford to comply with the men's request, because prices are too low. The men answer that this is quite possible, but that
the masters ought to raise the prices, and to compel them to do this they strike. The working man is shrewd enough to see that when coal is sold for 7s. a ton the
masters cannot pay as much wages as if coal wal It is no longer strikes against capital with which we have to do, but strikes against the consumer. The colliers insist that the iron-maker shall pay more for his coal. The company shall pay more for plates and rails. This would lead to larger expenditure on ships and railways, dearer freights, and higher fares. For these things the striker care nothing atur. But the old parrot cry that capital io
getting an undue share of profit is dying out. It is not yet dead, for such theories die hard; but it is moribund The question is, Shall we be better off when it is gone Is there anything encouraging about its decease? The
answer must, we think, be in the affirmative. It is a
hopeful sign that men admit that low prices are the cause hopeful sign that men admit that low prices are the cause of low wages. It is a great thing that eoncede that masters really do tell the truth when they say that they cannot work at a profit and comply with the demands of the men at the same time. It shows that the hard outer crust of self-deception has at last been penetrated, and it leads to the conclusion that, with a little more teaching, the working man might is as powerless as the man to determine what the selling price of anything sold shall be. The most recent development of the strike policy is the desire to get the capitalist to make common cause with the coalowners in Great Britain would constitute themsel ves mighty ring, and say that no coal should be sold at less than a sovereign a ton, the colliers maintain that they would have good times of it again. No doubt they are in a certain sense right. The masters could afford to pay
higher wages, and if the matter ended there all might be well; but it could not end there. We shall say nothing now about the effect produced on other industries depending on coal for their prosecution. We may narrow the rcle fin would not be really the better for the establishment of the
ring.
Let us suppose that the wages of the collier being now s. a day, the enforcement of the ring restriction would
double them. The direct and instantaneous result would be that the number of men anxious to earn 10s, a day a colliers would be enormously augmented. The rise in the price of coal would at once reduce the demand, and very much less would be raised than is now the case; fewer colliers would be needed, and the number of applicants for work would be out of all proportion to the willing to work for 7 s .6 d . a day, and these in time would be underbid, so that in a very short time wages would go back to 5 s., or to such other sum as would suffice to limit the supply of labour. The colliery proprietors would be the only gainers. Of course it may be pointed out that it would be impossible to get such a ring to hold together now, not with the capitalist, but with the men. The true way to raise the wages of colliers is to limit the supply of colliers, but this the men are as powerless to do as the masters are to settle the price of coal. The number of men working in our mines is determined by the number of men willing to do this for a certain remuneration, Wages are regulated by this condition more than by any other, and, indeed, the men of all trades unions pretty fully understand this, and act upon it, by endeavouring to keep down the number of apprentices which the masters shall take. If there are plenty of fitters to be had at 26 s . a week, it is quite hopeless to expect that men will get 288s. A trike is the full and complete embodiment of a policy dicot only to limit the supply of workers, but to stop it of altogether. If they could only partially limit it they would and the practice of divided strikes is well understood, and used at one time to be carried out with some success, until indeed, the masters put down their feet, and adopted the universal lock-out as the weapon with which to fight.
extent, over old ground, and it is impossible to avoid doing so. The new feature of the question, namely that strikes are now not only virtually but ostensibly directed against the consumer and not against the capitalist or employer, has not yet received the attention it deserves It is an aspect of strikes which was not, a few years ago at we have said, it is encouraging, because it shows that the working man can change his ground and shift his basis of operations. In other words, it proves that his mind is open to conviction even on trade questions ; and it may the impossible to prove to the next generation, if no attempting to strikes are a most defective ong to dispute the right of a man, or a body of men, to strike We do not assert that it is not a tempting expedient. We will even admit that strikes have ere now done the working man some service, but we do assert which is that they are enormously expensive. They represent an intolerable outlay, and it is a disgrace to a civilised community that a cheaper and better method of determining what is the proper price to pay for a day's devised if be deve working man could be tanght the whole truth; and we end this article, as we began it, with an exhortation to employers, in season and out of season, to work at the extension of education so that men may see that trades union leaders are not invariably infallible and that, however possible it may be to crush a capitalist The power on earth exists which will crush the consume and the consumer like wheat between the upper and nether millstones, the consumer is certain to win in the end, and the only victory which the working man will achieve must be won in the character of a consumer

telegraphy in time of war.

Every crisis in the history of a nation is bound to develope some question or other which has long slumbered; nd even if its bearings have not been altogether over ooked in time of peace, they become prominent when consideration is forced upon nations by the alarm of possible elements become so diverse and extended as to entail upon us year by year new responsibilities under conditions which were altogether absent in the past; and the advance of science, which has done so much in increasing the blessings of a state of peace, has also done its utmost to neutralise them when that state is changed to one of warfare, actual or apprehended. No stronger exemplar of the
fact could be adduced than the alarm which has recently given rise to much discussion in the House of Commons as
to the possible insecurity of the telegraphic communication to the possible insecurity of the telegraphic communication
we possess with our colonies in the event of war breaking we possess with our colonies in the event of war breaking
out with Russia. How far international arrangements would protect submarine cables in the event of hostilitie it is difficult to say. These arrangements are in themselves extremely complex; and even should they in theory
afford sufficient protection, we fear that late events on the afford sufficient protection, we fear that late events on the
borders of Afghanistan prove to us that we may have to borders of Afghanistan prove to us that we may have to
deal with a Power which is apt to override all and every consideration in its efforts to secure military advantages.

But apart from this conviction, leaving for the moment out of consideration how far international engagements
are likely to bind a Power which can shield itself by are likely to bind a Power which can shield itself by
repudiating of the acts of its agents, attention has been strongly called to the precariousness, to say the least which would attend our telegraphic communication with
our distant colonies while it is, as at present, so largely our distant colonies while it is, as at present, so largely relations with those foreign countries through which much of it is carried on. The dangers to which that communication is exposed under existing conditions have not
unnaturaliy given rise to much alarm in our important Eastern colonies-Hong Kong and the Straits ments. When attention was called to this matter in the
House very recently, it was stated by Ministers that the telegraph lines through which messages are seyed to hose colonies are alternative, that they are in duplicate, and he in two separate countries, it being argued there from that it is improbable that this country would be at war wurn both at the same time, and that therefore one communicalin be a very is mient basis upon wrich to rest content. As one member put it, it is an indeterminate question as to
how far the restraints upon neutrals would justify them in permitting to pass over their telegraph lines message affecting the direction of military or naval operations; and it might well be that question being decided adversely to the interests of Eng.
land, we might find ourselves at any moment deprived of land, we might find ourselves at any moment deprived of
the only means at our disposal of either giving instruction receiving that rapid intelligence which is a necessity of all modern operations, whether warlike or pacific
disability with regard to Sir Charles Wheing such acedings in Bechuana Land, and it is made known that the breakdown of our telegraphic communication with outh, Africa has caused intense anxiety to our Govern-
ment, in view of the differences existing between the officer referred to and the High Commissioner, Sir Hercules Robinson. It is certain that anxiety would be greatly increased if war with Russia should break out and in the face of such existing experience, we fail to believe the wisdom of the ministerial utterance which has
stated the view that the expense of an independent line stated the view that the expense of an independent line
of cable to Hong Kong would not be justified by any apparent advantage to be derived from it. Lord Carnaron, we cannot but think, was right in stating that, considering the imperial interests involved, it is imprudent
0 base a refusal to provide independent accommodation n any commercial aspect of the question. It seems to us hat the outlay for providing such an independent cable
to Hong Kong and Singapore, as well as duplicating that ow existing to South Africa, would be more than repaid by the security it would afford against a possible plarm. The same point of expense was over and over gain urged when it was endeavoured to persuade our uthorities to give telegraphic communication to our
colonies of Natal and at the Cape; and it required the stimulus of actual warfare to convince them that the position assumed upon it was untenable when the strain at
last came. We may feel assured that, should war with Russia break out, the same necessities would then becone apparent in dread of a crisis which might occur at any
moment, and the haste, and consequent extra expense, moment, and the haste, and consequent extra expense,
which were observable with regard to the laying of the which were observable with regard to the laying of the
South African cable, would tind its parallel in the mergency which would then have to be dealt with.
In this connection we may revert to the contingency
alluded to in the beginning of this article, viz., the chances that an unscrupulous Power might override all international obligations, and either openly or by secret agency ffect the destruction of one or more of our submarine cables. We may, perhaps, assume that the lines connect-
ing England with Erance would be secure against grappling and cutting; but more, in such an instance, because of the hostility of France such an act would create than because any watchfulness on our part could
absolutely prevent it. But there are numerous other points at which our oceanic telegraphic system would be vulnerable, and they might be attacked in shallow water
by the most innocent looking craft, the appearance of oy the most innocent looking craft, the appearance of
which could give rise to no suspicion, and whose secret which could give rise to no suspicion, and whose secret preclude for want of proof the possibility of calling a
belligerent to account under any international provision. The science which has made it possible to lift and repair The science which has made it possible to lift and repair
a cable readily has also made it possible for an enemy to secretly destroy it. Such an operation would be most easily performed in the near neighbourhood of a friendly or neutral coast. It might even be given the appearance
of mere accident ; but if our cables were laid, as it is contended the projected lines to the East should be, in the depths of the ocean, the appliances required would almost certainly ensure the detection of any vessel fitted out with
such an object under the power of the right of search of such an object
neutral vessels.

the u.s. despatch boat dolphin.

Iv our last impression we briefly noticed the failure of the engines of the United States despatch boat, Dolphin, to comply with the terms of the contract under which she
was engined by Mr. John Roach. If our readers will furn to vol, Ivi, of The Engineer they will find par-
ticulars of this ship, and of war ships to be built at the same time, and for convenience we reproduce our
illustrations and description of the Dolphin on page illustrations and description of the Dolphin on page
446. It will be remembered that we criticised the design of the engines of the war ships, and our criticism so strengthened the hands of those on the other side of the Atlantic who agreed with us, that the engines in question nust prove ineficient, that radical changes were made in the report on the additions which the United State Navy required, and to assist the Naval Bureau. What is very daken place concerning these engines and ships 1 is very difficuit to ascertain, because, for hose concerned have kept their own counsel very closely and the trials of the Dolphin and the results obtaine with her are now to some extent public property As yet, however, nothing like the whole truts has come
out, members of the press having been rigorously excluded out, members of the press having been rigorously excluded, but this as a matter of course has only kept a portion of
the truth in the background. The facts, as far as they the truth in the background. The facts, as far as they
can be ascertained, are that Mr. Roach bound himself to run the engines of the Dolphin at full speed for six hours, indicating not less than 2300 -horse power. Sh mand without success. On the very first trial the screw shaft was broken; on all the subsequent trials the boilers heated heated. The best trial lasted for something less than hour, when the engines with picked coar and extra tokers, indicated 2180 -horse power for a short time. Government under the circumstances refuse to take he er on the nation, and we are disposed to think that he has great deal to urge in his favour
In the United States there is an Institution, the Bureau of Steam Engineering, nothing analogous to which exist in this country. This Bureau has among its members one or two very good men, and all its members are well
educated in theory. They have, however, no extended experience in designing or building engines, and they attach to theory a great deal too much importance ; so ndertimportance, indeed, that they do not shrink from undertaking work of considerable magnitude. Now, the
theory of the steam engine is one thing, practical engine building is quite another thing. Very good engines, indeed, can be built by men who scarcely know what
steam is ; but Hirn or Clausius would scarcely be regarded men competent to design and superintend the construction the team Engineering or the Naval Advisory Board felt it inumbent to prepare designs for the engines of a war ship, biviously he rily sensible course which they could adop sould be to get hold of the drawngsof some successful Eng Ish engines, and copy these engines as closely as possible.
Instead of doing this, however, the Bureau has rashly broken new ground, and amateurs have rushed in where ngineers would fear to tread, and always with the same result-failure. Nor is this matter for wonder ; indeed,
it would be surprising if any other result could ensue. The Bureau possesses no practical experience of any kind in the building of engines, in the proper sense of theterm. No more than this is required Nothing short of but every more than this is required. Nothing short of an every
day acquaintance with the steam engine can give that nformation concerning details in the absence of whic failure is certain. On particular points the practical man
simply laughs at theory. The great success which has simply laughs at theory. The great success which has by the great skill of, after all, a comparatively few men and the wider has been any departure from received pro portions and methods of arrangement, the greater has been the trouble incurred. We might cite, for example the City of Rome, in which vessel more than one innova-
tion was to be found which did not fulfil the expectations formed of it. We do not blame the Bureau of Steam Engineering for being incapable of designing a good marine engine; but we do blame it for atttempting to achieve
what must be for it an impossibility, and for throwing what must be for it an impossibility, and for throwing
away the last chance of success by rejecting as much as away the last chance of success by rejecting as much as
possible that which appeared to be derived from English Mr. Roach contends that the engines of the Dolphin were designed from first to last by the original Naval Advisory Board, and that they are responsible for the failure.
We are not quite sure that this contention is entirely justified by the facts. If we are not mistaken, Mr. Roach only obtained from the Bureau certain dimensions, and was left to work out the details himself. But even with
this limitation, it is clear that Mr. Roach had his hands very effectually tied. We cannot do better here than quote the New York World:- "Whether there will be another trial is extremely doubtful. Mr. Roach said it was a matter for the Secretary to decide ; but his manner plainly showed that he didn't care much whether there
was one or not. He will take the ground that the vessel, was one or not. He will take the ground that the vessel, as it stands to-day, was made under the most minute ofticers drew plans and specifications, directing the size and style of every bolt and pin in the entire vessel. It the horse-power is not shown with the boilers ordered by the Board, Mr. Roach will shrug his shoulders, and point to the specifications fixing length, height, and grate surface. If speed does not come, he will shrug again, and point to the propeller, and say it is of the Board's ordering. Mr. Roach is getting into fighting trim, and will soon have a battery of figures to fire at the department over the heads of the old
Board. There is music ahead, and the old Board know it and are keere is music aw. Roach will claim that the breakdown on the first trial when the shaft snapped was one which could not be foreseen. That at the second trial the horse-power rose to 2180 in the required 2300 , which is near enough for any reasonable man, and that the tests to which no new machinery should be subjected, Meanwhile the worst hot journals in the whole matter, in
the opinion of Mr. Roach, are such journale as the World,
which have insisted that a contract is a contract, and should be lived up to." There can be little doubt that if the old Advisory Board, which may be termed a supplement to the Bureau of Steam Engineering, had been in power, Mr. Roach woulties for the sake of the Board's reputation. But the old Board was dismissed, no the new Board is by no old Board was dismissed, and the new Board is by no
means likely to favour its predecessors or Mr. Roach. If means likely to favour its predecessors or Mr. Roach. If
a lawsuit takes place, some very interesting matter is likely o come to light.
It is stated in the World that the officials on board representing the Government refused to permit water to
be put on the crank shaft. If this is really the case, it be put on the crank shaft. If this is really the case, it
shows remarkable ignorance on the part of the officials, They ought to have been familiar with the fact that screw ngines, when worring for pow have engines fairly worked down to their bearings, and in plendid adjustment, may run now and then for some
 one of the practical peculiarities of marine engineering.
Theoretically there is no reason because engines are in in a ship that they should need what they would not require in a ship that they should need what they would not require a ton of theory not guided by practical experience.

Restriction in core production

AFTrR failing in the iron trade, restriction is, it seems, to be is not a novelty, for the "regulation of the vend" in the North of England is a historic method, though one which can scarcely be said to have been a success. But as far as we are aware, in are some rade it is a novelty ; and in that mes of competitors for instance - which have made the attempt in some of the distries of the chemical trade a success just referred to, an according to the best information we have, about three-fourth of the coke makers have decided to adopt a "sale syndicate, which is to begin operations when it has received a few more diherents. , Wat are the objects of such and the to the extent of the success of the attempt, the consumers will have to pay more for their coke. Hence these users should charge more for the iron they smelt, and thus it is that to the extent of its use, the restrictive process forces up the price, and makes the user pay more to the producer. It is possible that in the coke trade, especially in the centre we have named, there might be an mauguration of the method, but it is clear that it is only both in the or two's operation that the real results will be seen coke, and in the increase or decrease of the profit of the ironmaster. We have referred to the apparent success of the attempt in one branch of the chemical trade, but it is to be moved upwards, yet that price is received for a diminished noved upwaras, yet unat price ind part of the working charges
 the attempt of the German coke makers should be pointed out, so that it should not have its success or otherwise determined yust be maid to be too easily affected in the early part of such ia novement by speculative sales, so that it will be needful to suspend judgment as to the results until we are able to
state the general bearings of the movement, not for a month state the general bearings of the move
or two, but for a more prolonged period.

the colombo breakwater.

This great work, which has occupied in its construction about twelve years, received the ceremonial finishing touch at the
hands of its designer, Sir John Coode, on the 22nd April last It is but fitting, as we have noticed this fresh triumph over one of the greatest forces in nature repeatedly throughout the its final the operations, that we should thus briefly announce power ere very long to furnish to our readers the very many nteresting facts and figures which will illustrate the cost and method by which this result has been secured. The exposure to which a work of this kind is subjected during the long period required to complete it furnishes a sufficient guarantee that it
is fitted to withstand any influence attacking it, and the colony Ceylon and its engineer may be congratulated on the n of a work likely to contribute so greatly to the解 coremony consisted simply capping; and Mr. Kyle, the resident engineer, whose services have contributed so greatly to a successful issue, has finally eported that "the whole of the work reclaiming the inner arbour foreshore, including jetties, sheds, \&c., has now been losed." the operations in 1873 to their close has been $8,125,438$ rupees, or in round figures about $£ 812,500$. There appears no reason
to hope that for the present the local Government will enterain the carrying out of Sir John Coode's design in its entirety by undertaking the construction of a northern breakwater.
the manchester ship canal.
On Tuesday the Liverpool Chamber of Commerce expressed in every strong terms its opinion of the Manchester Ship Canal, far from being due to a concurrence with the promoters of the project. The scheme was characterised as of the South Sea ubble order, and statistics were quoted to show that the estipromoters for instance, expect that the traffic on the canal will each $9,469,000$ tons, and it was triumphantly shown at the meeting on Tuesday that the whole road, rail, and canal traffic, is only ,85ed based, as so many opposition arguments are, upon things as
they are or have been, and not as they will be when facilities for increased trade develope it. The pretended fear that the estuary again paraded, and finally a motion was adopted empowering the council of the chamber to oppose the Bill in Parliament and all evidence. Liverpool is getting another fright about losing

Ir has often been complained that emigrants who feel "lone some" in the land of their adoption, send home glowing account come and join them. Sheffield artisans who have recently migrated to the United States, Conado and even Aurmiy
have not committed this serious error. Letters have been
received from these various labour markets strongly dissuading received from these various labour markets strongly dissuading
other Sheffield operatives from following the footsteps of the writers. The last warning fom comes from from Caneda. fotsteps of therkman,
writing from Montreal, cautions cutlers or grinders writing from Montreal, cautions cutlers or grinders against
going there in the hope of finding employment. "We are
very going there in the hope of finding employment. "We are
very short of work," he says, "and in addition we have been
obliged to take a 20 per cent. reduction since last December and have been. short of workt. reduct since that simee., last Dinecember,
anding that the masters wished to tide over "the bad time from December
to May," the men offered to work for six months, and draw hald their salaries, and the other half by instalments of so much per week at the end of six months, but these terms were refused
the employers offering the alternative of another 20 per cent. the employers offering the alternative of another 20 per cent.
reduction, making 40 per cent. in all. The workman adds that 0 per cent, reduction, and the C Diedian prices without the
 save some industrious families a long
but vexation of heart at the end of it.

LITERATURE.

The Works Manager's Handbook of Modern Rules, Tables, and
Data for Oivil and Mechanical. Enjineers, Millurights,
 Mechanical Engineer.
This is the second edition of a book which has been well received, and deservedly so. It addresses those of every
branch of engineering, and some of other industries. It branch of engineering, and some of other industries. It
is not like any of the recent books of its order, as it treats every subject from the point of view of one who has collected workshop notes for application in workshop practice, rather than from the theoretical or literary aspect, which is gained only by practical experience, and is seldom which is gained only by practical experience, and is seldom
written in books. It is all given in a form for ready written in books. It is al given in a form for ready
application in the works or office, and every subject is application in the works or ofice, and ebtery rules. treated wide into six sections, which are-(1) stationary
is divide
and locomotive steam engines and gas engines; (2) and locomotive steam engines and gas engines; (2)
hydraulic memoranda, pipes, pumps, water power; (3) millwork, shafting, gearing, pulleys; (4) steam
boilers, safety valves, factory chimneys; (5) heat, warming and ventilating, melting, cutting and finishing metals, alloys and casting, wheel-cutting and screw-cutting; (6) strength and weight of material, workshop data, \&c. In ealing with steam engines, the author makes some remarks on range of expansion and lowest terminal pressure, which
are evidently based more upon practical experience than on consideration of what ought to be from a thermoon consideration of what ought to be from a thermo-
dynamic point of view, and which will mislead no one with great expectation from the use of high ranges. A
number of short rules for dimensions are given, which are number of short rules for dimensions are given, which are
generally safe rules ; but it is hardly safe to make cylinder generally safe rules; but it is harddy safe to make cylinder
tlanges only of the same thickness as the cylinder, and it is not possible to proportion the ports of a cylinder by
dividing its area by 12, as the area of the ports should dividing its area by 12 , as the area of the ports should
bear some relation to the speed at which the piston is to bear some relation to the speed at which the piston is to
move, even if the pressure of the steam is not taken into move, even if the pressure of the steam is not taken into
account. Among these rules the outside lap of a slide valve is given as the width of the steam port multiplied by
0.62 , a proportion which might be correct in one instance; $0 \cdot 62$, a proportion which might be correct in one instance;
this is, however, corrected by a rule given later on for the this is, however, corrected by a rul
On governors, some rules sufficient for general purposes
are given, but more satisfactory information is are given, but more satisfactory information is required
in some cases on the power of a governor of given proportions.
On locomotives, the information given is all of the practically required kind obtained by reference to modern
examples; for instance, specifications of details by Mr. examples; for instance, specifications of details by Mr.
Barton Wright and by Mr. W. Kirtley, Mr. W. Stroudley, Mr. F. W. Webb, and Mr. S. W. Johnson, are given as examples. The information on gas engines is contributed
by Mr. Robert Wilson. An extensive and useful lot of rules and hydraulic memoranda are given, including pumps, dimensions and capacity of power required, dis-
charge of pipes, effect of bends, \&c. The rules on the procharge of pipes, effect of bends, \&o. The rules on the proportions, weight, and strength of gearing are fore fod dif-
tables giving diameter, weight, and horse-power for erent widths of face.
In dealing with steam boilers, and in a brief note on the effect of heat on water, the author speaks of heat in a new way. He says: "The particles of water expand and form
themselves into bubbles of steam-that is, the heat becomes themselves into bubbles of steam-that is, the heat becomes enclosed in films of water-and gradually ascend," \&c. To
this exception will, of course, be taken; but for the purthis exception will, of course, be taken; but for the pur-
pose of the author's explanations respecting the transference of heat to water, it answers his purpose, though, of course, he might have been more accurate with equal
clearness. The book by Mr. Robert Wilson and the reports by Mr. Lavington Fletcher are largely drawn upon for the matter given on boilers. The rules given are all of the empiric kind, and no pretence to a scientific treatment
of boiler construction or design is made. Several tables of boiler construction or design is made. Several tables are given of the sizes and weights of boilers of various
types. A good deal of information on mixing iron in types. A good deal of information on mixing iron in
the foundry for general and for chilled castings is given which is not elsewhere to be found in a handy form, and some of it not at all in books, though more information on chilling mixtures has been given in our columns. The
notes on alloys are extensive and useful. There is a useful notes on alloys are extensive and useful. There is a uselul
series of weights, measures, and multipliers, and a collection of often-required miscellaneous workshop and office
data, which we can but mention. The book is provided data, which we can but mention. The book is provided
with a good index, and will be found useful. Concerning with a good index, and will be found useful. Concerning
the suppression of all formule and the substitution for the suppression of all formule and the substitution for
these of written rules, we feel bound to say that there are very few men capable of acting as works' managers who would not much rather use a simple formula in preference
to a worded rule. The latter is a clumsy method, as comto a worded rule. The latter is a clum, a a glance, shows relations which are not gathered but with loss of time from ar rule,

THE IRON AND COAL DISTRICTS OF ALABAMA.*

Iv leaving the Exhibition at New Orleans and travelling northward through forests and cotton country to the mineral lands of Northern Alabama, one is struck first by by the vigour and enterprise with which one district after by the vigour and enterprise with which one district atter
another is assailed. But at present the rate of progress is slow, the supply of skill and capital being much behind the demand, and entirely inadequate to the immense description of the newloitation. In attempting a brie Alabama, and in comparing them with those which ar better known and longer established in the Northern States, the bases of comparison are mainly-as they must ever be in discussing the commerce in iron-ore, fuel, and transport. The reasons why coal was mined and iron for iron came almost exclusively from the New England States, and even in the old colonial days, iron from the Cambria Valley east of Pittsburgh was brought by canal and road to Philadelphia and New York. Pittsburg was natural centre for great industries; not for the iron she possesses, but because of the two other main conditions
of success-exhaustless fields of coal and convenient transport. The coal is too well known to need description, and the coke from the Connelsville ovens is of cost, the selling price that of Durham, and at hal the per ton. Situated at the confluence of the Monongahela and the Ohio rivers, whence the double stream flows forward as the Ohio, there is cheap water navigation to the Mississippi, and thence to the sea at New Orleans, the fine of 2000 miles; while east and north and south facilities for transport. Anyone who visits Pittsburch with its vast iron, steel, and glass works, is struck by the signs of wealth and enterprise that abound on every side But while the district afforded till recently greater advantages than were available in any other part of the Union, and with a tariff protection from European competition, had a monopoly of the trade and grew rich accordingly, it had not the advantages of our best English iron districts. Unlike our Cleveland in this respect, suitable coal and iron were not found together. There is no steel-making ore in the vicinity as at Barrow-in-Furness, and the river navigation is frozen up for four months in the year. Although much iron is found along the Allegheny slopes in Pennsylvania, and is used with other ores at Pittsburg, the best supply even for iron making comes 600 miles from the Lake Superior mines, which also supply non-phosphoric ores for steel making. The distance is so great that, even with rates of railway carriage lower ranges from 7 dols to 10 the cost of ore at the furnaces a constant import of ore from Europe, though lately this duty, does not now find its way so far inland
The above recapitulation of well-known facts is only given as a necessary preface to what follows about the if the proclaimed advantages of the naturaly anises, have they not been developed before? The answer is a blast furnaces and rolling mily or sixty years ago, when tion in Pennsylvania, the Indians still roamed through Alabama and Kentucky, and when these States were opened out by emigration from Virginia and other of the
older colonies, agriculture was the only pursuit. The rich cotton planters of Alabama, with their numerous slaves, States a monopoly of the world, and they formed a rich and exclusive aristocracy who scorned any other industry.
The Civil War impoverished the Southern States and killed off the best of the population; and when the strife finished, after Sherman's famous march to the sea, all that was left of the capitals of Georgia and Alabama were a few smoking ruins to show where these cities had once stood. For many years after the war there seemed no hope that land had lost their slaves and their money, and competing cotton from Egypt and India lowered prices of their product in Europe. The older lands were impoverished by found their habits and education were not adapted, even if they had the means, for mining enterprises and manufacturing trades; so that, notwithstanding the mineral wealth iron tradeir feet, nothing was done to develope it, and the undisturbed by fears of Southern competition. But, though dormant, the stores of coal and iron were not hill sides in Northern Alabama to be ignored, and, eve since the white man came, has been mined to supply local tities; and when, was smelted and forged in small quanwere shut out from the world, the native iron proved of great value. So richlas some of the ore, that by means horseshoes directly from it.
The great extent of the coal-fields of Alabama was that date in describing th. A writer in a magazine of rich in bituminous coal of a most excellent quality. It is English coal. It is very heery burns with a good flame and gives out much heat; it also yields carburetted hydrogen gas in immense quantity. The veins or forma tion of this coal are quite extensive. It is first seen in the bed of the Black Warrior river, near Tuscaloosa, and next appears on the surface of the ground to the north-east and

The series of papors of which this is the first, has been written by reter to facts very little known in this country, and we commend them
to the specian attention of those interested in the fron trade of this
country.- ED
as the Warrior coal-field takes its name from the Warrior river, which, finding its source in the mountainous country
bordering the coal measures of the State of Alabama on bordering the coal measures of the State of Alabama on
the north, runs directly through them, flowing into the the north, runs directly through them, flowing into the
Tombigbee river at Demopolis, Alabama, and thence onward into the Alabama river and the Gulf of Mexico at Mobile. "For convenience it has been divided into the Plateau or Table Land region, and the Warrior Basin the plateaus sinking into the basin proper. In the first two basins, which may be designated respectively thet
Birmingham Basin and the Jasper Basin, there are not less, according to Professor Euse A. Smith, state Geold gist of Alabama, than 2600 ft . of coal measures, including
between thirty and thirty-five seams of coal, five of which between thirty and thirty-five
Mr. W. A. Gould, an intelligent miner who has been prospecting in this coalfield for twenty-seven years, and whose knowledge of it is extensive and accurate--he having opened many or the coal mines which ane now in sucessul operation-asserts that he has exposed forty-two different seams of coal in the Warrior coalfield, and he in the coal measures there to be over four thousand feet in depth This is a remarkable statement, and shows an extraordinary with others of the United States. In Pennsylvania according to Professor Rogers, the thickness of the coa measures is 2089 ft . In Ohio, according to Professor New-
berry, there are 1455 ft .; while Professor Worthen, State Geologist of Illinois, makes their thickness for that Stat about booft. The Missouri Basin is but little thicker. So taking the lowest estimate-that of Proassor Basin have a greater thickness than those of any other field in the a greater thickness than those of any other field in the
United States by over 500ft., and, according to Mr. Gould of 1500 ft . In 1846 Sir Charles Lyell visited Alabama, and made analyses of the coal of the Warrior Basin field, of which he said:-"The most western of the two coalfield has been found by Professor Brunsby to be no less than
90 miles long from north-east to south-west, with a breadt 90 miles long from north-east ta soun wo Tuscaloosa Wa miles, extending thlount, on both sides Tuscaloosa, Waker, Jeferson, and Blount, on both sides of the Warnor his. The nost eastern coalfield, or " of the Cahawa, .ady 18 by and width. Alabama was also visited in 1875 by Mr. Low ll l, district will be referred to later on
In examining the prospects of Alabama as a coal and iron country, a map showing the courses of the navigabe
rivers is neessary to a proper appreciation of the subject, and in that given for this purpose on page 444, only what is explanatory of the points in question is shown. The Alleghany mountain range, from whose slopes is extracte the mineral wealth of the States east of the Mississipp often quoted in the new Birmingham of the South often quoted in the new Birmingham of the south, tributing her minerals all along this range, has, when she passed south of the Ohio River, appearedi weary of furthe distribution, and has enptied win lavish he There, indeed, it needs no searching, it has long been displayed, and only calls for willing hands to get it. The leading features of the case will be most readily underston by describing the respective advantages of Birmingham, Tuscaloosa, and Sheffield, and to this the following emarks will be mainly directed
Birmingham is situated near the southern limit of the
 regard to coal, iron, and transport for a new city. Three
great railroads meet here ; the Louisville and Nashville coming south from Louisville, the capital of Kentucky where it joins the lines from Cincinnati, Pittsburgh in the ast and Chicago and St. Louis in the north and west, an going south from Birmingham via Montgomery to the
ports of Mobile and New Orleans. Then the Alabama Great Southern forming part of the so-called Queen and Crescent route from Cincinnatti to New Orleans, whicl passes through Birmingham and the heart of the coal and centre of Meridian in the State of Missisippi. As a third system of railways, the Georgia Pacific line, which crosse he above lind and Dangham, connects northwards with俍 Richmond and Danestile system to Washington an Balkrore, andor formays of Meridian, and thence direct south to New Orleans. But valuable as are these railways to the exploitation of the new districts, water carriage is in the case of minerals of ven greater importance, and an Englishman naturally cially when he hears on every side that the export coal trade of Great Britain to North and South America is soon to be superseded by that from Alabama
The iron manufactured at Birmingham is taken from he Red Mountain mines in the vicinity of the town and perated by the sloss, har Pratt, the Frlman, and taken partly from a physical survey of the district by Proessors J. L. Campbell and W. H. Ruffner, of Lexington, irginia, and has been confirmed by personal investigaBirmingham is situated, and the Red Mountain ridges which border it in on both sides, constitute one of the reat ore-fields of Alabama, and embrace two of the geo-
ogical formations noted for the quantity ogical formations noted for the quantity and quality of eature in the topography as well as in the geology of thim eegion. As a conspicuous ridge, rising several hundred eet above the adjacent country, it passes within about a mile of Birmingham, and forms the south-east boundary of the valley in which the city is situated. The Georgia
Pacific Railway passes through Red Mountain at Red Gap, six miles north-east of Birmingham, where the ore-bearing rocks and fragments of ore arefreely exposed. If theyshould prove to be productive at this point, mining and transporta
tion will both be inexpensive. The quantity and quality the ores along the Birminglam yalley have been fully
demonstrated by their extensive and satisfactory use in half-ton of the limonite. This combination yields one ton a number of furnaces. Near Greenpond Station, on the Alabama Great Southern Railway, about twenty-five miles south-west of Birmingham, limonite ores have been mined on a large scale for use in the Oxmoor furnace, where they are employed in the admixture with fossil ores from Red Mountain. The Brown ores from the Alice furnace are obtained from the same region. Ores of the same class are mined for the Sloss furnaces in the valley about eight miles south-east of Birmingham. The Woodward Coal and Iron Company own a mine in the same neighbourhood, from which they supply their large furnace at Wheeling, between Birmingham and Jonesborough.
The red ores have been extensively mined about two miles north-west of Oxmoor furnace. The mines are on the crest and south-eastern slope of Red Mountain, in a
of superior pig iron.
The following analysis of the two varieties of ore from the Sloss mine, furnished by Colonel Sloss, will serve to composition of the Red Mountain ores cenerally, and may be regarded as representing two types ore found at different points along the Clinton formation; the one abounding in carbonate of lime, the other containing very little or none.

Percentage composition.
Ferric oxide.
$\left\{\begin{array}{c}\text { Ferric oxide. }\end{array}\right.$
Corresponding to metallic iron
Carbonate of lime
Silica (chiefly as sand)
$\left\{\begin{array}{l}\text { Phosphoric acid (} \mathrm{P}_{2} \mathrm{O}_{5} \text {) } \\ \text { End }\end{array}\right.$
Equivalent in phosphorus

...	
n	\ldots

No. 1.
74.98
52.48
0.00
14.56
1.05
0.45
The red ore used at the Alice furnar same ridge as those above mentioned and about nine mile

MAP SHOWING THE POSITION OF THE MINERAL DISTRICTS OF ALABAMA

remarkably well-defined bed $7 \frac{1}{2} \mathrm{ft}$. thick between strata of \mid south-west of Birmingham, near the Alabama Great hard ferruginous sandstones, which, with the ore bed, Southern Railroad. It is worked in the furnace mixed make an aggregate thickness of 30ft. The ore is sufficiently free from clay to be used without washing. It is carried down to the furnace by rail, and there mixed with one-third of its own weight of brown ore for use in the furnace. This combination yields 1 ton of pig iron to 2 tons of the ore, and requires for its reduction 1 ton of limestone with $1 \frac{1}{2}$ tons of coke.
For the Sloss furnace the red ore is obtained from a mine a few miles farther the outcrop near the crest of the ridge the bed is worked downward on its south-eastern dip, and has a thickness of 14 ft . of good ore. It is also approached by a tunnel on the north-western flank of the ridge, 250 ft . below the outcrop. The ore brought out by the tunnel is remarkable for its large percentage of carbonate of lime. Both varieties-No. 1 from the outcrop and No. 2 from the limonite of the Quebec period-American nomenclaturein the proportion of one ton each of Nos. 1 and 2 and a

Southern Railroad. It is worked in the furnace mixed 52.81 per cent. of pig iron

The analysis of the red ore of the Alice furnace mine, furnished by Captain Hillman, superintendent, is highly favourable-though unsuitable, because of the phosphorus for steel-making-showing $56 \cdot 64$ of metallic iron and $0 \cdot 29$ of phosphoric acid. The Red Mountain, too, still flanking the valley on both sides for a long distance in the same direction, carries with it out-croppings of its characteristic red fossil ores that point to extensive beds beneath. The increasing demand for these ores will soon give rise to new mining enterprises that will bring them into market as a source of wealth to the communities in which they are located and of traffic to the railroads. Black-band ore and clay ironstone have been found at several points in the coal regions, and some samples from the Warrior field have been tested in the furnaces and found to work well in admixture with more silicious ores. These are the leading ores in England, and have been very successfully worked
in Pennsylvania and in West Virginia, so that their real value has been fully demonstrated. There is good reason, therefore, for making more thorough search for them in all of the Alabama coalfields.
The various mines, as above referred to, which supply the furnaces in the Birmingham district are being developed with considerable care and skill. The principal workings are entered by roads sloping into the mine from the sides of the hills, but there are also vertical shafts. The ore crops out to the surface, the best qualities being found at moderate depths, and the cost of getting is very low. At each of the mines there are complete settlements of well-built wood-framed houses, many of them with small garden plots attached. There is a large proportion of negroes employed, but these coloured men, as they are always euphonistically called, seem to be on friendly terms with their white brethren. The race supremacy of the latter is, however, well marked, and it is found that the negroes work best when stimulated by the example and leadership of the whites. There are large store houses of food and clothing, but there is no Truck Act in Alabama or in the United States generally, as in England, and much of the nominal wages of the miners is paid to them in kind, with considerable profit to their employers, who reduce greatly thereby the amount of ready money necessary for the weekly or monthly pay-day. Co-operative stores and trading, by which workmen find so much benefit in England, are not yet much developed here, and it will be some time before they are educated up to these economies. The transport of the ore is well managed, the small tip wagons from the mine emptying into the railway trucks arranged in sidings at the various exits from the mine. The railways are laid with steel rails well ballasted, and in these respects show well in comparison with the main lines with which they join in the town, the reason being that the mineral lines are private property, while the main lines are, like too many in the Southern States, impoverished by a long career of watered stock and other forms of plundering for which the Wall-street financiers in New York have shown such skill.
In regard to the coal supply, it will be sufficient to describe that obtained from the Pratt seam. This seam is most convenient to Birmingham and to the present lines of transportation, and is largely used for iron smelting and miscellaneous purposes. The daily output from the mines on this seam ranges from 1500 to 3000 tons, according to the demand. This may be deemed a considerable output when it is remembered that it is only four or five years since the seam was first tapped for systematic mining. The only mining so far has been done by the Pratt Coal and Coke Company, whose daily product is about fivesixths of the whole ; and by the Milner Coal and Railroad Company, the latter property having been lately taken over by the Richmond and Danville Extension Company.
The Pratt Company's mines are on the east outcrop of the seam which runs nearly parallel to Sand Mountain, from one to two miles in its rear, and about five miles west of Birmingham. This company mines from one vertical shaft, two inclines or slopes from which go down the seam at a dip of perhaps 20 deg . for a few hundred feet, and then after a short level, at the rate of 6 deg., which is the usual dip of the seam on this side of the basin. A drift has also been opened in a hollow and enters on the flank of the seam, thus giving a main entry nearly on a level. The mining appliances are of the most modern description and on the largest scale, and the practical mining is, in every particular, done in the best manner. There has been no trouble from water, bad air, or bad roof. The screenings are coked at the mines. The company owns its railroad and rolling stock, by means of which it delivers coal and coke to the Birmingham furnaces and mills, and to the two railroads passing through that city. The cost of mining is stated at $85 \mathrm{c}-3 \mathrm{~s}$. 6d.--per ton, delivered in cars at the mouth of the mine.
The mining operations here present many points of interest to an English visitor. The mines are situated in a primæval forest whose lofty trees and undergrowth have been cleared away only where necessary for the buildings, railways, and coal depôts. The buildings are almost entirely of wood, there being houses, stores, and workshops as at the Red Mountain iron mines previously alluded to. Each workman can have as much land as he chooses to clear and cultivate, but there does not seem to be much advantage taken of this. The winding engines and other pit equipment appear to be well arranged, and one is not surprised to find that the best of the miners and mechanics employed are emigrants from South Wales and Newcastle, and these men, as trade developes, are likely to do well. Coloured men are employed in considerable numbers, but the strangest sight of all are the negro convicts. Each State being free to make its own laws in this respect, Alabama not only chooses to employ its worst convicts in the mines, but lets out their labour to contractors. There are about 500 convicts so employed here, most of whom are negroes, the white men, about fifty in number, being sent here as an extra punishment. This system of contract labour is open to abuse, and complaints are not wanting of unfair treatment. The barred gates in the galleries of the mine and the armed guards suggest to the visitor the Siberian mines of Russia.
The Milner Company's mine is an opening on Five Mile Creek, eight miles from Birmingham, where this bold creek has cut across the basin at a level below the horizon of the Pratt seam. The company selected for their operations the lowest line of the synclinal depression, where the outcrops created by the excavations of the creek are scarcely above high water. Numerous openings have been made, and in March this year three entries were being driven on the north side of the creek, and one on the south A few weeks after commencing operations the daily product reached 300 tons, and was soon increased. The appliances for mining are on the same plan as those of the Pratt Company, but are as yet incomplete. The company owns a railroad, ten miles long, to Birmingham.
The Pratt seam, taking the whole field, averages about 4 ft . in thickness, the extremes being about 3 ft . and 5 ft .

THE NORTH OF ENGLAND

(From our own Correspondent)

The outlook of the Cleveland pig iron trade is liomier than ever. At the market held at
Middlesbrough on Tuesday last, merchants wer offering No. 3 g .m.b. at at 32 s . 6 d . pen ton for
prompt delivery, which is 3 d . per ton less than they were willing to accept a week ago. Never-
theless buyers hold back from purchasing even at that figure, and saarcely any sales have recently been made for immediate delivery. Certain con-
sumers show a disposition to buy forward as far sumers show a disposition to buy forward as far
as to the end of the year, and to such merchants are selling at 33s. per ton. Makers are not, as a
rule, in urgent need of orders, and therefore maintain their prices. For No. 3 g.m.b. they still quote 3ss. saarce as it was. Merchants ask the same as for No. 3, viz, 32s. 6d. per ton. Makers ask Yinished ironworks are fairly well employed, but fresh orders are not so numerous as they were, and prices are easier than before the holi-
days. Ship plates are $£ 417 \mathrm{~s}$. 6 d . to $£ 52 \mathrm{~s}$. 6 d . per ton on trucks at makers works. Angles are
$£ 412 \mathrm{~s} .6 \mathrm{~d}$. to $£ 415 \mathrm{l}$., and common bars, $£ 415 \mathrm{~s}$.
 prevails, and pricees are slightly weaker. Steel
plates are now offered at $\& \hbar 2 \mathrm{~s}$. 6d. per ton at orks and angles at $£ 615$ s.
There has been no change in the stock of pig
ron in Messrs. Connal and Co.'s Middlesbrough tore for some time. The quantity now held is 50,242 tons, being a reduction during May of
580 tons. At Glasgow their stock is 597,673 tons, being an increase of 2676 tons in the same
One of the most unpleasant features as regards recently of exports to foreign ports. The shipments coastwise are up to the average, but during
May only half the usual quantity was sent Troad. The ehief export items were as follows;
To Scotland, 25,872 tons ; to Germany tons; to Wales, 4851 tons; to tormany, Holland, 5715
tons; and to Norway and During the first five months of the year 330,920
tons of pig iron were shipped from the Tees, tons of pig iron were shipped from the Tees,
being about 53,000 tons less than in the correponding period of 1884.
worked off at the Teessels are being quickly some workmen are paid off weekly, as fresh
orders are not forthcoming. Messrs. Raylton Dixon and Co. launched a vessel on Monday last, nd have now only one ship and four fishing
macks in hand. They have in their employment only 200 hands, as against 1000 a month ago.
Three years ago 2300 men were employed at this
Will the great strike, or lock-out, or whatever
may be the proper name for what has just may be the proper name for what has just
occurred in in America, affect the trade of the
therth of England? That is the euuestion which North of England? That is the question which
s at present in the mouths of all manufacturers and merchants, and which no one seems able to
answer. Certain it is that for long not much beyond Sootoh pig iron has been permitted to
enter the United States from the North of England. Yet, notwithstanding prohibitive duties, American trade appears to be as little prosperous as is that of their reansatlantic com.
petitors. If the strike were to last several nonths, it is just possible that prices would rise onee again. But this is scarcely likely. The surely be adjusted before it comes to that." And meanwhine American consumers or iron, being of the strike, will probably elect to postpone contructive enterprises altogether and wait for all. Should the employers prevail and establish the much lower rates of wages they seek, it will give them an enormous advantage in cheapening pro-
duction. English ironmasters will be compelled duction. English ironmasters will be compelled ower wages all round.
The trade between the North of England and
St. Petersburg is suffering serious disadvantage from the new regulations compelling vessels to use the canal just completed instead of the port
of Cronstadt. The approach is so narrow that it is only with difficulty that two vessels can pass in it. There are only about twenty-five paassing
it.
berths, if room be allowed for lighters. There berths, if room be allowed for lighters. There
are no facilities for mooring; and if anchors are let go, the water being shallow, there is great risk through the bottom of a noighbouring vessel. No houses or barracks for labourers having been built, the latter have to come by train from St. Petersburg or Oronstadt, which causes the loss of an hour or
two daily in loading and unloading. In con equence of these and other defective arrange cost and nearly double detention as compared Uronstadt. There is also considerable risk of srounding for want of water. A week or two
since the Emperor's yacht, drawing only 17 ft , No legs than thirty tugs were pulling at her, and lthough they finally succeeded in getting he off, it was only with the loss of her rudder. In
time many of these troubles will no doubt be emoved but meanwhile shipowners would do well to avoid the port altogether.

NOTES FROM SCOTLAND.

(From our ove Correspondent.) Thr iron market was much depressed at the end of ast week, in consequence of bome harrants.
having determined to get rid of their warrants
When were quoted at 41s. 4d. cash, but there was more animation, and a slight improvement on some following days. The wek's shipments of pigs
were reported at t1,413 tons as compared w with
and were reported at 11,413 tons as compared
9130 in the preceding week, and 12,107 in
the corresponding week of 1884.1 arg shipment was made to Italy, and a fair amount
to Germany, but the quantities sent elsewhere
were comparatively small in the course of the were comparatively small. In the course of the
week a furnace has gone out of blast at Eglinton, week a furnace has gone out of blast at Eglinton
but as an additional one was lighted at Glen
garnock, the total number in operation remains at ninety-two, against ninety-five twelve months ago. Messrs. Cos sign 900 tons.
Friday at 41s das done in the warrant market on tations were 41 s . 4d. and on Monday the quo improvement taking place on Tuesday to 41s. $6 \frac{\mathrm{~s}}{} \mathrm{~d}$ On Wednesday the market declined from 418. 6 d
to 41 s . 3dd. cash. To-day-Thursday-there was an improvement to 418.5d. cash
sherrie, f.o.b. at Glasgow, per ton, No.
 and
 39s. 6d.; Govan, at Broomielaw, 42 s . and 40 s s.;
Shotts, at Leith, 50 s . and 49 s . 6d.; Carron, at
 Brdrossan, 47s. 6d. and 46s. 6d.; Eglinton, 42s. 3 d . and 39s.; Dalmellington, 44s. 9d. and 41s. 6 d .
The past week's shipments The past week's shipments of iron and steel
manufactures from Glasgow included five locomo manuacactures from Glaskow included five locomo
tives for Bombay, valued at $£ 12,500$; machinery
worth $£ 35000$ goods, $£ 7500$; and general iron manufactures, E20,100.
£20,
The fine The fine weather is reducing the inquiry for
household sorts of all descriptions. Fine stean coals are in steady demand at firm rates, upon which, however, no improvement can be quoted.
The week's shipment of coals embraced, beside some other quantities of less importance, 19,09 tons at Clasgow General Terminus, and 8999 at
the Queen's Docks, 1493 at Greenock, 1784 at
atine Irvine, 7672 at Troon, 7675 at Ayr, and 15,141 at Grangemouth. During the past inonth the eship
ments at Burntisland have been the largest on with 62,336 inn ine corresponding month of last alteration prices in Fife have remained withou f.o.b. at Burntisland, 9d. more at Tayport, and working full time, there being a very good contiports. The large stocks at the collieries, which ports.
accumulated while trade was dull, are now being much reduced.
The miners in Fife are agitating, in common wages. The amount of business being done is but the great difficulty with the employers is that they have not been able to raise the prices of
coals. Great efforts at organisation are bein made by the leaders of the men in the different mining distriots, but they will not likely have
much effect so long as coals

The Mining Institute of Scotland held a meet ing a few evenings ago in Glasgow, when Mr. J.
S. Dixon, the president, intimated that an appeal made to the Sootch coal and ironmasters for a mining machinery and proposed had met with a gratifying measure of success
In the
In the course of the past month twenty-three Vessels with an aggregate tonnage of 18,927 were launched from the Clyde shipyards, as compared
with twenty-eight vessels and 28,570 tons in May, 1884. The new tonnage placed in the water during the first five months of the year has been
78,440 tons, against 116,070 in the same period of 78,440 tons, against 116,070 in the same period of
last year, and 149,969 up till the end of May, 1883. The proportion of sailing vessels bein and the average size of the new ships is very much less than it was a year ago. The tonnage pre-
sently in hand is not much over half what it was at the beginning of June last year. There are, however, a few inquiries being made for addi
tional tonnage for abroad, and it is hoped that some of it may come to the Clyde.

WALES \& ADJOINING COUNTIES (From our oun Correspondent.)
The coal trade is in a satisfactory condition, and if the Whitsuntide holidays had not inter-
fered with output and despatch, I should have been able to record even a more favourable conhigh one of a fortnight ago.
As it is, Cardiff last week sent away 130,000 tons, though many offices were closed up to Wednesday; Swansea, 37,834 tons, and Newport,
Mon., 36,432 tons.
The clearances of patent fuel from the district were quite up to the average, Cardiff alone sending away 2500 tons.
Prices are well maintained for all classes of coal, small steam, perhaps, being a little easier than it
has been, and coalowners are not quite so fixed to the 5s. per ton quotation which has existed so Iong. This is due to the largely increased output
of coal, and in consequence more small is thrown on the market.
I noted last week the enormous coal trains at the Roath sidings and their rapid clearance. In striking comparison with tris is a case at rexe so long on the siding that a starling built a nest in the coal, and this with its young freight was discovered when the train eventually reached Liverpool. Wheels scarcely cool with us from
pit to docks, and the prospect of a still busier rade, in steam coals a least, is assured.
In the imports of pigiron swansea shows well, Swansea trade generally is good, and if the Harbour Trust continue its energetic action this port will show even a more prosperous figure than
it has done. Critics who are well conversant with their business say that the chief thing now with their business say that the chiner
wanted is a good backwater for the Prince of Wales Dock.
A portion of the Rhondda and Swansea Bay
Railway, from Port Talbot to Pontrhydyfen, has ust been inspected by Colonel Rich, and as soon as the certificate is issued this port will be opened
for goods and passengers. The rolling stock is district. The passenger carriages are built by

Brown, Marshall, and Co., of Birmingham; ; loco-
motive engines by Beyer, Peacock, and Co., Manmotive engines by Boyer, Peacock, and Co., Man-
chester ; and the goods wagons and trucks by the chester ; and the goods wagons and rucks to hear
Swansea Wagon Company. 1 am glad to now seoured with the Rhondda, The tunnel under the Neath river may possibly I note that the wel Tyla Coch and Nantlerris, with nam coal collieries, Tyla Coch and Nantderris, with plant, will go to
the hammer in a few days; also the plant of the Rhondda Mountain Colliery. I shall expect good bidding for the Tyla Cooh, as it is so well situated on the Taff, and is only twenty miles from cardiff. Tote Aberghors vein is in good repute
for locomotives.
The iron world is still rather quiet. A moderate business is being done with Canada and
India. About 6000 tons of rails were shipped last week, the principal destinations being Canada nd Africa. Yee leading works, Cyfarthfa, Dow lais, Rhymney, redegar, Ebsw Vale, and
Blaenavon are doing better of late, and in the Swansea district the iron trade is regarded as sound and promising. Steel rails are now quoted
as low as they can be made with any regard to worth, and generally the Welsh steel rail, plate and bar
Some failures are prognosticated in the tin-
plate trade, and one or two small works are Pong if not actually closed.
Pontnewydd and Avondale are closed tempor
arily-only, I hope-and 350 hands arily-only, I hope-and 350 hands are idle.
Makers have been lessening make of late, the result has given more firmness to prices. It
is thought that any change the next few week will be for the better. Wasters, which are well sought after, are much firmer, and high-class
plates are quoted at better figures. 1300 tons of plates went to Baltimore last week, and a smal cargo for Bilbao. The men of Rhiwderin are now greed to pay 1 s , per man and 6 d . per boy during the strike.
The dema
or coal has beenton the Dowlais Iron Company efforts have been necessitated to increase output. Mr. H. Martin has been equal to the occasion, and 1 am glad to hear that Bedlinog is now doing four-feet seam at length turns out well
The future of the Bute Dooks is just now on
the carpet. I shall note it fully in a short time.
THE PATENT JOURNAL.
$* *$ It has come to our notice that some applicants of the
Patent-ofice Sales Departnent, for Patent Specitcations,

Applications for Letters Patent. * When patents have been "communicated,", the
name and address of the communicating party are
printed in italice printed in italics.
${ }^{26 \text { th May, } 1885 .}$

6379. SAkDing Motions, de., for Loons, C. Catlow
G380. Staxem Generator and Brick Arch Subjtivte,

ne
635.
638.
But.
But.

Measuring Grain, F. Frazier and A. Arnault
ris.
Rose Turning and Shaping, G. W. Budd

Beanland, Leeds.
B3al. sconisg at Laws Teswis, \&c., H. J. H. Thomas,
6392. Dyvamo-zlectric Machines, G. c. Frioker,

402. VAIIEE MEEANAIIIM for Doplex Steam Puaps,
J. R. Maxwell, London.
ton. Londen Stoprers, C. B. Peacock and C. Hamil-

407. Portable Heating Apparatus, \&c., T. Sutton,
London
400. Steam Exoine Governons, de., M. R. Moore,

Hin. Weather guards for Doors, tec., H. Whiteley,
Halifat

 A. W. L. Redde. -C. H. De Lamater and Co., U.S.).
Mis. RING-spINIING Minchiverr, P., R., and J. Eadie, 6419. SUPRRHERTRRS, K. R. Smith, London.

 United States.)
S48. Casi Reorrrrs, H. J. Haddan.-(J. Ritty,
United States.). 642. IRoN Sposge, ©c., W. R. Lake.-(c. J. Eamee, United States.)
sis. IRoN Browe, ©c., W. R. Lake.-(c. J. Eames,
Onited States.)
 United states.).
Sus. Sake. (F. . W. Matthiesen, United
States.). 5433. CUTHINs, ovr the Soles of Bors, de., W. R.
Lake. (. J. Breach, United States.) London. London,
s436. WATER LATD Ropss, do., H. W. W. Hall, London.
 8439. MeTAL RIB, J. Ellis, London. Smith, London.

$$
\text { 2th May, } 1885 .
$$

 VELLocipepses, S. Moody, Birmingham.
6446. PuMPs, J. Grantham, Blyth.
Lise Educational Applers, J. Wilson,

Edinburgh.
St50 ExTisisulisa Lasps, deo, J. Rayner, New
Shariter
Sharlston.

 LAWN TENNIS and such-like RACEETs, A. Foster,
ndon
Hypravuic Exoines, J. F. Blennerhasset,

 Lefos. VEntiliativa Apparatus, G. H. Haywood and G. Williams, London.
st6e. FTRMARs, H. H. Haddan.-(J. W. Brightman
United States)

 6473. Geigrativa Motive Power, H. H. Lake.-(b.

 28th May, 1885
476. Registrring Numbrr of Paspengers, P. Ogden,
Manchester.

 S482. Sousgrivutes for PAste Wafkrs, E. Mansfield,
Mander
 F. J. Dale, , Leicester.
 Germany.).
4487. TELEPHoves, W. P. Thompson.-(K. S. Dembinski,

 Liondon. Extractiva OiL, de., from Fish, T. F. Veasey,
Lend Sondon.
S496. RUDERs for Boats, J. S. Waite, Twickenham.
C497
 London.
6500. STRMM Exarnge, w. Schmidt, London.
PETROLEUM STOVEs, J. C. Mewburn.
 London.
L5os. Sconator Brusies for Jewellerrs, J. Masters,
Lond. 650. Linivo for Hats, M. A. Ripperger.-(-. Hulfols,
6505. Water Filters, R. R. Kelly and A. C. L. Weigel,

29th May, 1885.

P513. Torpeno, A. P. Sharp, Dublin
6514. Boots and SHoEs, W. H. St
wood, Leicester 6515. Preambulators, C. W. Parker, Starcross.
6556. Compressed Frraules, S. Allocock, Reddit

Sykes, Halifax.
6519. Burniva Tar, be., for Hratina Purposrs, J
Taylor and A. and C. Stewart, Glasgow Taylor and A. and C. Stewart, Glasgow.
650. WHEL BRAKE, J. Taylor and J. Brookwell, 6551. Lock Bricks, T. Street, London,
6522. Steam Boilers, A. H. B. Sharpe, Gainsborough. 6524. Hydro-pnedmatic Motors, R. C. Sayer, New ${ }^{\text {prert, Mon. }}$ EyELet for Labels, \&e., H. Ryland, Bir6526. Tobacco Pouches, H. J. Bovill, Chiswick, and J. A. Broder, London.
6527. BAstina MEAT, W. J. Fowler, Reading.
6523. WASHING MACHINEs, S. A. Sismey, Londo 6523. Washina Machines, S. A. Sismey, London.
6529. Electric Timepieces, w. P. Thompson.-(F. Baumann, Switzerland.) -1 4th April, 1885.
6330. SPINNINa Tobscoo, J. Garside and F. Evans, 6591. Diserpoly and Turgen Covers, B. T. Norton, Chis 6532. Pulleys for Transmittina Power, B. C. Tilg man and G. Richards, London. Burton, London
ner, Tynemouth cors from Wine Bottles, W. Gard6536. Bottles and Stoppres, W. Heatley and C Hutchins, London. 6598. Fastenina for Solitaires, \&c., L. Schneider, 6539. Tea-Rollino Muchingry, J. C. Kinmond and
J. Richardson, London. 6540. Carpet-cleaning

Diggles, London.
Dawson, London.
6543. Cioar and Ash Tray pan, W. Buttery, London.

London.
B5j5. Producing Nitrate of Ammonia, A. Favier, 5546. Pexoll-sharpening Michines, A. J. Boulv.-(W.
H. Lamson, $U . S$.) H. Lamson, U.S.)
6548. Box for Congrcutively Nevarered Ttokets, J.
M. Black, London. 549. Embroiderino Machine, H. J. Haddan,-(F. A G50. BEarinas, L. Budini, London.
6551. Cribs, J. Batley, London.
6552. Stoht Elevators for Frbe-arms, H. P. Miller, London.
653. Looss, M. A. Furbush, C. H. Knowlton, and B.
F. Meyer, London. 6554. TELEPRoNII Circorts, S. P. Thompson, London,
6555. Voltaic Batteries, T, J. Jones, London 556. PENHoLDERS, E. C. Burrows, Brooklyn, U.S. United States.) and Beddisg, H. H. Lake.-(G 8559. Drying Waste Andal, Fish, or other Matter, J. S. and J. Edwards, London.
6560. CuTrIN SoAP, J. A. Crosi, London.
S6E1. CARTRIDGE CABES, F. Bolton, Londo
 30th May, 1885.
6563. Portable Naval Tblegraphe, J. G. Lotrain London.
6564. Paper Box Machinery, J. W. ;Gill, Birming ham. GAs Motor Engines, G. W. Weatherhogg: Swinderby.
B5e6. AUTomatic Couplinas, H. S. Stewart, West-
minster. B567. FAsTE
eninas for Stay-busks, F. R. Baker, Bir mingham.
6568. RoTARy Brushrs, A. Macfarlane and D. Craig,
Glasgow. Giaggow.
650. Wrndow Blind Cord, dce., W. H. St. Aubin,
Blowich. 6570. GA\& LAsprs, R. H. Best, Birmingham.
6571. OLAY B^Ts, W. E. Maddock, Wolstanton.
6572. SLidina Fire-grate for Maring Bollers,
H. Montgomerie, Hendon, Sunderlend. 657. Montgomerie, Hendon, Sunderland. ables for Suppressing Telegraphio
 6576. Prime Movers, G. E. Montagn
6577. Lockina and UnLockina Combination, M. A.
Dalton, London. 6578. Nicotine Co
570. 6579. Dounce Leor Triss for WALLS, \&c., J. D. Denny,
Newbridge, Ruabon. 6580. Heat Hasteners or Roabtina Sorkens, J.
Perty, London. 6581. STEAM ExCA.
6582. Detectina Counterfeit Cons, A. Harris, Lond 6583. TRIPOD STANDS for PHotoaraphic, dro., PURPosks, S584. W. Ramsden, Leeds.
6585. Meohanical Mustcal Instruments, F. E. P. 6586. Sprina Scales, E. Ubrig, London 6587. Spraratina Liquids from Solid Matters, w. 6588. Fleximes Sharts, H. Walley and T. Gare,
Manchester. f539. Roasting Cofyre, ©c., H. Faulder, London,
6590. Stawls, dc., J. T. Apperiy Londo 6550. SHawls, dc., J. T. Apperly, London.
6591. GuNs and Explosive Projrotiles, H. S. Maxim, 6592. Actuatina Shuttle Guards, F. Waterhouse, 6593. Treating Fibres, Yarns, ac., C. D. Abel6594. Treatino Fibres for Spinnino, C. D. Abel.-
 Davy, London. 6597. Countina the
Rooker, London.
6599. SITHINO CINDERS, J. H. Barry, London.
6599. REAPERS and SELF-BINDINa, Jeffery, London. 6600 . Permanent Way of Railways, F. Service,
London. 6601. Pipe and other Wrenchis, H. H. Lake.-(J. F. Guthrie, United States.)
6602 . SWEEPING BRUsBEs
6602. SWEEPING Bruspes, J. H. Simpson, London.
6603. Embossina PAPEr, de., W Napien, 6603. Embosisina Paprr, dC., W. Napier, London.
6004. STop-BALLS for MILK CANs, \&c., W. Jordan
London. 6605. Automatio Feed Apparatug for Steam Bollers, Stretchers of UarbrelLas, de., W. A. Bindley, Strexciers of Umbrellas, \&c., W. A. Bíndley,
J. Gell, and A. F. Boham London.
Loom, M. A. Furbuah, C. H. Knowlton, and B.
$18 t$ June, 1885
6608. Electrical Indicator, E. W. Lancaster, East Dulwich.
6E09. Shutre Tonaues, J. Waddington and J. Wilkin son, Bradford. 6611. Sluide Valves, E. Hunt.- (C. Giebeler, Prussia.) Thompson.--(C.H. M Cormick, jun., U.S.).
6613. WINDow BLINDS, W. P. Thompson.-(o. Sorrlie, 6613. Window BLisDs, W. P. Thompson.-(o. Sörlic,
Norway.) 6614. Discharging Projectiles A. Dexter, London.
6615. Perpetval Ferrule, V. D. de Stains, London. B616. Soarf Pin Fastener, A. Harris, London.
6617. Depolarising Eleotric Batteries, A. C. Hen-derson- (B. Batin, France.)
6618. Tricyoles, A. Collingridge, London
6619. Propelerrs, R. J. Rae, London
6620. Fasteninas for Wearing apparel, J. P. Bayly, London.
6621 . Tobacol Pipes, E. de Pass.-(G. F. Fich. 11 . Germany.)
662. Shiting Gear for Carriages, R. Pink, jun.
Bishopstoke 6623. BATHE, H. H. Statham, London.
6624. SAFET Locks, B. J. B. Mills. M. JaFETY Locks, B. J. B. Mills.-(J. B. Patin an 6625. Frre-boxes, R. A. Hardeastle, London. United States, and A. List, Germany.) 6629. Disingectino apparatus, H. H. Lake.-(A. H. G630. Grinding Corn, J. Schweitzer, London. 663. Brake Apparatus, S. L, Norris, London.
6632. Starting, dca, Tram-Cars, S. L. Norris, Lo
 London
B64. Proplling $V_{\text {essels, }}$ O. G. Bolitho, London. London.
G636. Driving Beits, J. C. Mewburn.-(J. A. Magnin France.
6637. FILTER TAPs, G. Teideman, London. 6638. STEEL ARMOUR PLATES, T, Hampton, London, 6639. Making Bricks, de., F. M. Myte London.
6640. Printing Mchines, A. M. Clark.-(P. Jackson, 641. Well Reamers, A. M. Clark.-(W. D. Braden 6642. Driving BeIt, P. Adie, London. 6643. Kitches Rela, P. Adie, London. G644. Obtainina Carbonate of Potash, H. Trecht,

SELEOTED AMERIOAN PATENTS.

 (From the United States' Patent Oflce ofricial Gavette.)10,586. Steam Enaine Lubricating Attachment
H. Herman Westinghouse, Neio York, N. . - Filed March 25th, 1885.
Claim.-(1) As an improvement in the class of
engines in which lubrication of the moving parts is effected wholly or in part by the splashing of the oil effected by the piston and valve stem connections, the
cmbination of a close oil vat and a vent pipe leading combination of a close oil vat and a vent pipe leading
therefrom, substantially as set forth. (2) As an
improvement in the class of engines in which lubrics. improvement in the class of engines in which lubrica-
tion of the moving parts is effected wholly or in part
by the splashing of the oil effected by the piston and
 valve stem connections, the combination of a close
oil vat and a vent and return drip pipe, substantially
as set forth. (3) In combination with a close oil vat as set forth. (3) In combination with a close oil vat
Y , of a steam engine, a vent pipe a, escape opening or
tinnel funnel l, and drip pipe c, substantially as aset forth
(4) In combination with close oil vat Y, and the cylinders and valve chambers $A V_{\text {, a water escape }}$
pipe e, entering a vat at or near the bottom and rising pipe e, entering a vat at or near the bottom and rising
to the normal oil level of the vat, substantially as set
forth forth.

15,582. Mertod or Operatina Converters, John 1885. -In operating a Bessemer converter, the
Claim.-In consists in maintaining a sufficient minimum pressure

in the blast pipe and tuyeres during the time the metal is not under blow, to counterbalance the pressure
of the column of metal in the converter, substantially as and for the purposes described.
315,738. Fluk Cleaner for Steam Boilers, Wm. H.
Cooper, Quincy, Il.-Filed December 18th, 1884, Claim.-(1) The apparatus for cleaning flues, con. sisting of a hollow cylinder provided with an axially
located jet pipe, and means, substantially as shown,
for connecting the same with for connecting the same with a steam supply, and a
foranch pipe or nozzle which extends laterally outward
from said body, and is adapted at its outer end to fit
within the end of a flue, so as to connect such flue within the end of a flue, so as to connect such flue
with the intior of said body, substantially as specified. (2) In combination with, the body provided with the axially located steam jet pipe, and the
laterally arranged branch pipe, the nozzze adapted at
its outer end to fit within the end of a flue, and at its its outer end to fit within the end of a flue, and at its inner end to fit into said branch pipe, and meens
whereby the latter and said nozzle may be secured Whereby the
together, subtartar and as said and fozzte me may be secured
(3) The apparatus described for cleaning flues, consing.

ng of the cylindrical body having an open upper end xially arranged jet pipe, and with the laterally projecting branch pipes, tho nozzle adapted at one end to
fit within a flue, and at its opposite end to fit within he upper branch pipe, the L -shaped fitting adapted to receive a handle, and to have connected therewith
a fexible hose, and the pine extending between and flexible hose, and the pipe extending between and
perating to connect said fitting with the lower branch operating to connect said fitting with the lower branch
ipe of said body, substantially as and for the purpose set forth
315,805. Metallio Wheel, Justice W. Marshail, Claim.-(1) In combination with the felly and axle, pokes formed in pairs of a continuous rod lapped at
ts centre around the axle and screw-threaded at both

ends, and two screw.-threaded thimbles pivotted in
the felly and screwed on to the two ends of the aforesubstantially as described and shown. 316,214. Stenam Boiler, Louis Zeller, Massillon, Claim.--In a steam boiler, the combination, with an
inner casing provided at its lower end with an out-wardly-projecting flange and an outer casing provided with inwardly-projecting flange adapted to rest
on the outwardly-projecting flange of the inner cas.

[156, 214

ing, of a fire-box provided at its upper end with a lange which forms a seat for the outwardly-projecting
flange of the inner casing, the said casings and firebox being secured together by a single row of bolts
substantially as set
316,302. Filament por Incandescernt Electrio
Lamps, William Stanley, jun., Englevood, N.J.-
laim. Aptember 4th, 1884.
Claim.-A carbon filament for incandescent lamps
bent into the form of two outwardly-inclined lateral

members having loops at two adjacent ends and two direction to said lateral members, and connecting the loops thereof with an intermediate loop, substantially
316,318. Well Tube for Drive Wells, Willett C.
Wells, Tifin, Ohio.-Filed February 19th, 1885.
Clain, (l) The combination, with the well tube
having the shoe at its lower end, having the tapering
bore, of the strainer having the tapering sleeve
secured at its upper end corresponding in taper to the
bore of the shoe, as and for the purpose shown and set forth. (2) The combination of the strainer having
the ene sian the sleeve at its upner end, formed with alternating
threaded and smooth portions at its inner side with the delivery pipe provided at its lower end with the sleve having alterovating smooth and screw-threaded
portions upon its outside, the said ame portions upon its outside, the said smooth and
threaded portions corresponding in width to each other, as and for the purpose shown and set forth. (3) The combination of the strainer, having the drive
point and the concussion block at its lower end, with point and the concussion block at its lower end, with
the tubular drive rod having the upwardly-opening the tubular drive rod having the upwardly-opening
delivery valve within its lower end, as and for the
purpose shown and set forth. (4) In a well tube the purpose shown and set forth., (4) In a well tube, the
combination of the well tube, the strainer having
means for combination of the well tube, the strainer having
means for preventing it from slipping out of the
lower end of the well tube, and having the sleeve at
its its upper end formed with alternating smooth and
screw-threaded portions upon its inner side, and the

delivery pipe having the sleeve at its lower end pro-
vided with alternating smooth and screw-threaded portions upon its outer side, and formed with an internal valve seat provided with an upwardy-opening
valve, as and for the purpose shown and set forth. vale,332. Stena Enaine, James Clark, Medina, N.Y.-
claim.-(1) The combination of the frame having the cylindrical steam chest with the shaft, the crank,
the piston and rod, and the cylinder having a close the piston and rod, and the cylinder having a closed
end that is pivotted upon the steam chest, said cylinder baving a single central port in its closed end
and said steam chest being provided with an inlet and said steam chest being provided with an inlet
and an exhaust port with which the cylinder port

316.332

registers alternately when the engine is in operation, registers alternately when (e) The combination of
substantially as described. (2) The
the frame having the cylindrical steam chest with the the frame having the cylindrical steam chest with the
shaft, the crank, the piston and rod, and crosi-hoad,
and the cylinder having a closed end that is pivotted shat, the cylinder having a closed end that is pivotted
apon the steam chest and having guideways for the upon the steam chest and having gu
cress-head, substantially as described.

CONTENTS
The Enginerr, June 5th, 1885 ,
Radial Valve Gears. No. V. (Illustrated.) ${ }^{\text {Pa }} 431$ Inventions Exhibition-Kirkaldy's Condensers

 Rample circle squaring. (Illustrated.)
Rallway Maters... Notse and Memoranda
ST. Helens Waterworks. (Illustrated.)

Fielding's Hiah-sperd Engine.,
The Brussels Interal

The Brussels Internal Navioation Conoress. 437
The Laws or Motion-
Steam Hammers ö of a Compound Enoine

The Hooghty Bridae.
The Heberlein Brake
(illustrated.)

Stonallina on the north-western Railway
Tenders
Tenders Äticules-
Unoonsidered Aspect of Modirn Strikes
Telegraphy in Time of War
Telegraphy in Time of war i. Despath Boat Dolphin
REstriotion in Ooke production
The Colombo breakwater
The Manchester Ship Canal
Cut Manchester Ship Canal
Cutisans in Canada

MINGHAM, WOLVERHAMPTON, AND DIETRIOT .. Notes from lancashire
Notes from Shertidd
Notes yroa

abstracts of Patent Americañ sprecifioacions 44
ARAORAPHg-
Society of Arts
Cheokin
Society of Arts
Cheocking Dishonest
The Public Health

