MISCELLANEOUS EXHIBITS AT THE INTERNATIONAL INVENTIONS EXHIBITION. No. III.
Price's. Patent Candle Company exhibits in operation in the West Annexe a plaiting machine, with its patent switching arrangement for transferring the bobbins from one spindle to the other. Plaiting machines are usually made up of four heads, each head consisting of a pair of upright spindles, carrying dises, and rotating at the same speed in opposite directions; the bobbin spindles, which carry the bobbins with the cotton, being held in notches in the peripheries of the discs. Each bobbin spindle, as it passes between the axes of the discs, is transferred from the discs upon one axis to those upon the other; the bobbins being thus made to describe a path resembling the figure 8. This transfer is controlled by a switch, which crosses from side to side in the intervals between the passages of the bobbins, so as to pass the bobbin to right and left alternately. In the ordinary plaiting
upon a series of skewers, which are afterwards withdrawn and the wicks inserted. It is claimed for this method that, as there is no waste of wick nor remelting of candle material, it is more economical than the old system, an further, that it produces much better shaped candles:
Three candle-moulding machines are to be seen in operation. One of these is for producing Price's drawingroom candles with improved self-fitting ends, and differs slightly in some details from an ordinary candle-moulding machine. A "self-fitting" candle being tapered towards both ends, cannot, of course, be moulded in a single
mould. In the machine shown the moulds are enlarged mould. In the machine shown the moulds are enlarged at the top to receive the "caps" which form the conical ends, and when the candles are forced out of the moulds they carry the "caps" with them. The candles are placed, one row at a time, on a "drawing board," the "caps" being received and held by a series of recesses. By moving a lever the operative advances a bar with a series of rams against the ends of the candles, pushing the
finish, and may be formed with a series of $V$-shaped flutes, which are easily abraded, so as to fit any sized candle stick. Another of the machines, and that which most probably attracts the greatest amount of attention, is for making Price's spiral candles, and is illustrated below This machine does not differ essentially from that already referred to, with the exception of the internal
circulation, which has been improved by the application of circulation, which has been improved by the application of a central outlet, as the production of spiral candles in such a machine is only possible with a very efficient cooling arrangement. The advantage of thus moulding spiral candles over the older method of cutting them in a lathe is too obvious to require comment. The other machine shown is for the manufacture of perforated candles, and is similar in design and general arrangement of its parts to those shown by Price's Company in the Health Exhibition last year. This machine works with the clamps just like an ordinary candle moulding machine, and is very
compact, occupying as it does less than half the space, and

SECTIONAL ELEVATION
SIDE ELEVATION

machine the motion of the switch is determined by the impact of the bobbin spindles themselves-as shown in the detail sketches above-each bobbin spindle as it passes from disc to dise striking against a wing bracket, which stands out from the axis of the switch and carries it back against a stop, thus moving the switch through a sufficient angle to cause the next bobbin to cross over in the other direction. This method of switching the bobbin spindles is open to the objection that it is very noisy, and there is also considerable wear and tear; so much so, that large bobbins cannot be run at high speeds. In the plaiting machine shown the switches are actuated by a positive motion derived from the dise spindles, the wing brackets and stops being dispensed with, a crank pin working in a slotted arm serving to move the switch. Thi arrangement is illustrated above. The crank is fixed on the end of a spindle which is geared into the disc spindles in the ratio of 2 to 3 , and moves the switch from side to side at the proper intervals for transferring the bobbin spindles to the different disc spindles, no other contact taking place between the bobbin spindles, and the switch or parts connected with it, than that by which the bobbins are guided in their course. In this way the noise and wear and tear are reduced to a minimum, and the machine can be run at much higher speeds than it otherwise could. The machine is shown in operation plaiting candle wick, for
which purpose Price's Candle Company employs a consider able number of machines at its Battersea Works; but the switching arrangement is capable of application to plaiting machines for all purposes.
Another interesting exhibit is the manufacture of snuffless dips. Dip candles, as most people are aware, are made by winding the wick upon a rectangular iron frame and vessel containing the melted tallow or it into a trough or candles by a series of dipping being gradually formed upon the wicks themselves. The manufacture of snuffless dips as shown by Price's Candle Company, differs from that method in so far that instead of forming the candles upon the wicks, the candles are produced by continued dippings
whole batch out of the "caps" simultaneously. The wicks at the same time producing 25 per cent. more candles at are then severed by a knife sliding in a groove in front of one operation than the French machine. This feature of the "drawing board." Before "filling up" again, the compactness is a characteristic which distinguishes all the wicks have to be threaded through the "caps," and these machines shown by Price's Company, and it has been
secured without cramping the machines or interfering with their working in any way. The arrangement throughout is exceedingly neat and handy, everything being so placed as to be within easy reach of the workman. They are also of easy access for cleaning-a matter of very great importance-as by simply raising a loose cover the workman can introduce a brush and clean the outside of all the moulds in the tank without the least trouble. The work is very strong and substantial, the materials being specially selected, cast and wrought iron being in some instances replaced by steel.
Morgan's ingenious, and, for its day, efficient candle-making apparatus, was worked by Price's Candle Company on a large scale, but was supplanted by the still more effective plant designed for them in 1856 by Mr. E. A. Cowper, at a time when other candle-makers were, for the most part, making candles with the old hand frames. The candles with the old hand frames. advanced position which it held then it which it makes at the Inventions Exhibiwhich it makes at the Inventions Exhib
tion shows that it is still well to the front.
Messrs. Anderson and Gallwey, Cremorne Works, Chelsea, exhibit a comprehensive
inserted into the tops of the moulds, the wicks being held centrally over the moulds by a slotted L iron bar, which passes along the top of each row of moulds. This method of working is scarcely so neat or so expeditious as that are, that by obtaining a proper circulation of the possesses water, the self-fitting ends produced have a much finer
collection of their fixed and portable
hydraulic hydraulic rivetting machines, embodying their most recent improvements. One of the machines is an Eagle" fixed rivetter, with patent automatic return
stroke, in which, by means of a constant pressure ram the stroke, in which, by means of a constant pressure ram, the rivetting die is brought back immediately the foot lever is released. The stroke of the die is adjustable, and can
be instantly altered to any required length by altering the e instantly altered to any required length by altering the

position of a tappet. This does away with the old plan of worked by belting from the main shafting of the shop, and road, exhibit Greenaway and Kitt's patent four-slide changing dies for every fresh length of rivet and for vary- for this purpose are provided with fast and loose pulleys, exhauster and pump. The principal feature in this ing thicknesses of plates, so saving both time and money. but, of course, they may be driven by a steam engine apparatus, which we illustrate by three views below, is Another feature in this machine is the improved treadle combined on the same frame, if thought desirable. There the provision of four slides worked from a shaft placed starting gear, which may be frame, the attendant's hands being left entirely free to control the work between the dies. These rivetters are made in all sizes, and have been supplied to many of the leading firms in this country and abroad. Among the latter we may mention the Compagnie Général Transatlantique, which has recently erected one of the most powerful machines yet made, capable of putting on a closing pressure of 120 tons closing pressure of 120 tons on view a new form of is also fixed rivetter, in which the frames are formed entirely of steel plates and angles of steel plates and angles
built up into box girders, to which the hydraulic cylinder and rivetting apparatus are fixed. Such a machine, being very light, is specially being very light, is specially
suitable for transportation, and also offers facilities for readily changing the hydraulic cylinder to suit rivets of varying sizes, the cylinders being merely attached to being merely bolts. Notwithstanding its lightness, built up framing lightness, built up framing rigid, and it can be madery rigid, and it can be made so foundations than the ordinary type of framing Of nary type of framing. Of
portable machines, Messrs. portable machines, Messrs. hibit four varieties nent nent among them is a ally designed for specially designed for use on of which work, by means usually consids of the boiler sible to considered inaccescan be readily rot at can be readily got at. The suspension gear enables the rivetter to be placed in any position and at any angle, so as to reach such work tire hole valve seatings, fire hole doors, foundation "Bear" Ac. Another type of Bear" rivetter, which we illustrate on page 491, is by the makers and is claimed by the makers to be the smplest form of portable machine in the market. Its suspending gear merely consists of two eye-bolts screwed into the frame, as shown on the engraving, to either of which the hook of a pair of blocks may beattached according as the machine is required zontal position vertical or hori-

gREENAWAY AND KITT'S GAS EXHAUSTER.位 sufficient for the requirements of ordinary girder work, for machinery we have described, and an assortment of with the exception that the jib is a double one, the two which these machines are intended to be used, and no doubt their great simplicity renders them pecuiarly suitable for it. The "Lion" or hinged type of portable rivetter is represented by one machine. In this class the cylinder and ram are placed at one end of a pair of steel arms, hinged at the centre, and having the dies at the other end. The advantage of such an arrangement is that the ends of the arms carrying the dies are not encumbered by the hydraulic working gear, as in the case of direct-acting machines, and can therefore reach into corners and other parts where room is limited. An important matter in portable rivetters is to so construct the valves that they are opened and closed with little effort, in order that there may be no tendency to drag the dies away from the rivet head, after having roper position brought into the and Gallwey have paid Anderson ttention to this point, paid special ful balancing have succeeded in roducing a valve which can be worked with a very slight applica tion of pressure upon the licaBesides rivetting machines, therer. Iso exhibited high-pressure vertical


AMOS AND SMITH'S DIGGER. portions being kept sufficiently fa apart to admit of the frame of the digging apparatus passing between them. This frame is of wrought iron, and is pivotted to the top of the pillar at one end, the other being suspended by chains from the jib, so that it may be raised and lowered according to the depth of the surface of ground it is desired to remove. The digger is shown in the sketch on the next page. It consists, of a series of steel tines $A$, each $2 \frac{1}{2} \mathrm{in}$. wide, placed side by side in pairs in strong clip sockets $B$, which have movement given to them by the combined action of the cranked shaft C, which is driven by means of gearing from the top of the pillar, and the link D which is hung from a spindle attached to the framing. The shaft has three cranks at angles of 120 deg , each crank operating a pair of tines, so that while one pair is in the position shown in the sketch, i.e., commencing to cut the earth, another is just completing its stroke, while the third is being brought forward ready to follow the tirst pair. The earth removed at each operation is indicated at E. It operation is indicated at E . It is pushed back on to the plate
$F$ pumps, specially designed to work hydranlic machine tools. cupped leathers, which, both as regards material and work- it falls into an elevator which raises it to the top These are strong and well constructed, the workmanship manship, seem of the highest excellence. of the pillar and discharges it by means of shoots being of a high quality. The pumps are intended to be $\mid$ Messrs. Thomas Horn and Sons, Gray-street, Waterloo- into trucks. The digger head is raised and lowered

## APPLEBY BROTHERS 20-TON OVERHEAD CRANE CRAB.



APPLEBY BROTHERS TUMBLER BEARINGS
by chains worked by a crab on the frame. When using a double line of trucks, the spoil is delivered at either the of the machine at will, irrespective of the position of machine can head, and when working in a gulley the By examining the sketch it will be seen that the action is a mechanical imitation of spade digging, the tines being pushed forward into the earth, the same as a spade is pushed by the foot, and then being swept back with increasing rapidity as the position of the centre of suspension alters. We understand that the inventor has devoted several years to the subject of excavating, during which time he has made numerous experiments on a large scale


AMOS AND SMITH'S DIGGER.
on this and the kindred subject of digging for agricultural purposes, these experiments having satisfied him of the superior results to be obtained by this system over those in which a bucket is dragged through the soil. One very important result anticipated is a great saving in repairs and maintenance. For in the new system the digging tools are simple and massive, and have only their proper work assigned to them, viz., that of loosening and moving the earth on to the carriers, which, being relieved of the heavy work of digging, can be run at a comparatively high speed and be made correspondingly lighter. In the machine, the model of which is now at the Exhibition, the gauge of the wheels is that of the ordinary railway, The necessity for laying a special track is therefore avoided,
while convenience is secured by the machine being made available for use at any part of the works on the contractor's lines, or it may be passed to other works over th ordinary lines of railway.


## APPLEBY BROTHERS WHIP CRANE.

Messrs. Appleby Brothers, Greenwich, exhibit an verhead travelling crab for 20 -ton rope crane, which we illustrate above. All motions for lifting, tra velling, and traversing, are transmitted from a shaft
sidered by the makers a better arrangement, both as regards safety and durability of rope, than passing the rope backwards and forwards in the usual manner. The attendant travels with the crab, and being directly over his work, has a much better command of it tha he were stationed at one end, as is often the case. The clutches for working all the motions are of the double-cone friction type. Tumbler bearings, which we also illustrate, are used for supporting the transverse shaft previously mentioned, and may, of course, be applied to any shafting the bearings of which must be alternately removed and replaced. There are three moving parts-viz., the falling bracket bearing, the strut which holds it in position, and the spindle which lifts and depresses this strut. This lastnamed operation is performed by an inclined plane, which is fixed in front of the travelling carriage, so that it engages the hook which is shown on the top of the spindle. The bearing gives a perfectly firm support for the shaft, and has, we understand, been used for several years with very satisfactory results. The whip crane which we illustrate is a cheap and neat arrangement for obtaining the speed required in loading and unloading light packages, while at the same time a means is provided for raising loads up to two tons. Weights of 5 cwt. and under are lifted quickly by pulling on the hand rope, which acts without gearing direct on the large wheel at top of the pillar; above that, and up to one ton, the handle is shipped on the barrel shaft; whilst for loads between one and two tons the pinion shaft is used. The crane is carried on a strong wrought iron post keyed into a cast iron base, whose bearing on the floor is so large that but little holding down is required. A cast iron sleeve fits over the post, and carries all the lifting gear, the lower end having a friction roller, which permits the crane to be very easily swung round. This is a neat and inexpensive crane, which may be very advantageously used in many circumstances. Below we illustrate a neat and compact handsteering gear, patented by Mr. 1. Archer, and exhibited by the manufacturers, the Dunston Engine Works Company, Gateshead-on-Tyne. It consists of a cupped chain drum with internal toothed wheel, which runs loosely upon a horizontal shaft and gears with a pinion mounted on an excentric formed on the spindle to which the hand-wheel is fixed. On turning the spindle movement is communicated to the drum according to the difference between the number of teeth in the wheel and pinion, the latter being pre-
vented from turning round by a stalk which projects down into the standard and is loosely guided by it. The position


ARCHER'S EPICYCLOIDAL STEERING GEAR.
of the rudder is indicated by a pointer actuated by a worm and wheel. The gear is self-holding, consequently less manual labour is required than with the ordinary handsteering appliances, the rudder remaining in whatever position it may be put without exertion on the part of the steersman. It is, moreover, quicker in action, and being very simple and compact, can be produced at the same price as the ordinary apparatus. We understand that this patent gear has been largely used by Sir W. G. Armstrong, Mitchell and Co., the River Tyne Commissioners, and many leading firms in the North, and has invariably given satisfaction. The same firmalso shows Archer's patent compressor or nipper for holding steel hawsers, which consists of a frame in which are two loosely hinged grooved jaws. By means of a lever, worked by a handle, the jaws can be opened and closed, so as to admit the hawser or grip it, the pressure when the rope is in place increasing with the downward movement of the jaws, which, when they once come together, form a kind of toggle joint. In this way the hawser can be held with certainty, or, if need be, it can be gradually slacked out without damare, it may be released at once, while there is no possibility of it becoming wedged hard and fast, as is the case with some compressors.

A simple and inexpensive little machine for cutting keyways in pulleys and wheels is shown by Messrs.
Harpers, Aberdeen. It consists of a circular table with a Harpers, Aberdeen. It consists of a circular table with a
hole in the centre, through which a vertical rectangular hole in the centre, through which a vertical rectangular
cutter, serrated on one side like a milling tool, is caused cutter, serrated on one side like a milling tool, is caused to reciprocate by means of a crank and gearing below.
The pulley or wheel is clamped to the table by a lever bar and pressed against the cutter, the width of which varies and pressed against the cutter, the width of which varies
according to the size of keyway to be cut. Compared according to the size of keyway to be cut. Compared
with an ordinary slotting machine, the keyseater has many with an ordinary slotting machine, the keyseater has many
advantages. There is no frame above the level of the advantages. There is no frame above the level of done table to limit the diameter of wheel; the work is done
much more rapidly than with an ordinary slotter; and any much more rapidly than with an ordinary slotter, and any desired taper can ge given to the keyway wand that as
trouble of adjusting the wheel. We understand many as sixty-six small pulleys have been cut in one hour by one of these machines.

COMMERCIAL ELECTROLYSIS.

## By Paget Higgs, LL.D., D.Sc.

In the refining of metals the mechanical power producing the electric current-for, in present practice, the
electric current is always produced by dynamo and magnetoelectric current is always produced cyifly in overcoming the resistance of the baths, which resistance depends upon the resistance of the baths, which resistance depends upon the
distance apart of the two electrodes, upon the concentradistance apart of the two electrodes, upon the concentraIn plating the power expended in transporting the metal
from the anode to the cathode is insigniticant, but in from the anode to the cathode is insigniticant, but in
refining the mere weight of metal deposited requires clearly refining the mere weight of metal deposited requires clearly considerable work to be expended. As stated, this amount
of work may be made, nearly without limit, almost as small of work may be made, nearly without inmit, are most as small
as we please. To calculate the amount, there are required as data the quantity of current in ampères, and the resistance of the baths in ohms; the best resistance of the bath is a matter of economic moment. Now it is always
possible to diminish the resistance of a bath by increasing possible to diminish the resistance of a bath by increasing
the surface of the anodes and cathodes. Also the quantity of current may be diminished for a given production of metal by putting several baths in chain, and by so increasing their surface as to make the total resistance equal
to that of the first bath. It is possible, theoretically, thus to that of the first bath. It is possibie, theoretically, thus
to refine a ton of copper per hour with the expenditure of only a horse-power of work. But there are two limitsfmall density would be crystalline and not reguline ; and small density would be crystalline and not reguline; and
secondly, the amount of capital required to be sunk in secondly, the amount of capital required to be sunk in
weight of metal operated upon, and in the construction of baths. The work expended is, in fact, only one of the economic considerations, and when favoured by such
natural advantages as a fall of water adjacent to the natural advantages as a fall of water adjacent to the
factories or by the collateral requirements of even large steam powers for rolling or wire drawing, is then o secondary importance. It would be very easy, notwith-
standing the great profits and advantages to be obtained refining copper, to cause the interest upon the capital sunk to exceed the profit upon
the work done. If a given quantity of copper economically refined with the expenditure of a certain power, and it is desired to double this production maintaining the same expenditure of power, it would
require fourfold the quantity of metal to be put under treatment, and this would entail much more than fourfold the expenditure for baths. The limit is reached really
much earlier than would appear probable at first sight. much earlier than would appear probable at first sight
Two French authorities, Hospitalier and Fontaine, hav both pointed out that the limit of economy appears to hav been reached with 128 baths in chain. That concentration
of solution attended with the best practical results appears from numerous authorities to be a solution of sulphate of copper in water at 16 deg . Beaumé, or $1 \cdot 1247 \mathrm{sp}$. gr which corresponds to 12.42 per cent. of CuS O, or to
$18 \cdot 267$ of the crystal. The resistance of a cubic centimetre of this solution, or its specific resistance, is 32 ohms at 20 deg . C. With ordinary commercial sulphates of copper pecific resistance of

## 

The distance between the electrodes in refining is rarely less than $2 \mathrm{in} .(=5 \mathrm{c} . \mathrm{m}$.$) , and this comparatively great$ contact between the anodes and cathodes. From the foregoing figures it is easy to ascertain the resistance of a 20 ohms, as purer metal results from this than from a more acid bath. For instance, at Marseilles there are 22 square metres of anode surface per bath, and the anodes are
5 centimetres distant from the cathodes. It convenient 5 centimetres distant from the cathodes, It is convenient resistances, but we may for practical purposes take the resistance of a cubic inch of sulphate of copper solution as
 metre is $\frac{1000}{}$ of the resistance of the whole chain of baths is 0.0184 ohm. At Birmingham the resistance is 0.2 ohm for the chain of forty-eight baths, and at Hamburg it is
for 120 baths 0.1 ohm. From the deposits at these works for 120 baths 0.1 ohm. From the deposits at these works
it is easy to calculate the quantity of current in each it is easy to calculate the quantity of current in each
circuit or chain of baths. This at Birmingham is 230 ampères; at Marseilles, 220 ampères; and at Hamburg 265 ampères. From these currents we deduce that abou 1
${ }_{4}^{4}$-horse power is used in the baths at Marseilles, about
${ }_{3}^{2}$-horser at Hamburg, and about 15-horse power at Birmingham. The waste works may be represented at about 1 per cent. of the total work for that done on the
metallic resistances, and at 5 to 10 per cent. for that due metallic resistances, and at 5 to 10 per cent. ior that due
to polarisation. We have now only to deal with the actual commercial cost.
Cost of installation. - The cost of installation at Elliott's Metal Company, Birmingham, may be assumed for forty-
eight baths, each of about one cubic yard capacity, and the work employing a motive-power of 20 -horse power, as at
$£ 1724$, or $£ 1610$ s. per ton of copper refined per year. At
Hamburg this is $£ 3940$, or falling to $£ 128 \mathrm{~s}$. per ton of copper refined per annum, with 120 baths, each of two cuble yards capacity, employing 12 -horse power; and at M. Roux's at Marseilles this is $£ 1680$, or rising to $£ 1810$ s. per ton of copper per
cubic yards capacity
Value of metal under
inder treatment may breatment.-The value of the metal under treatment may be taken as at $£ 6410 \mathrm{~s}$. per ton on average, but this is very variable. At Hamburg the total
weight of metal under treatment is about 122 tons, at about this price, and as the output is about 325 tons yearly, the capital sunk in the metal in the baths represents about $£ 25$ per ton. In Marseilles there is sunk in copper under capital of nearly $£ 3000$ for an annual output of 75 tons. At Birmingham the quantity of metal under treatment is smaller, only about 10 tons, representing a capital of $£ 650$ with an annual output of 100 tons. Per ton of copper refined yearly in these three large works the capital may thus be distributed:-

|  | $\begin{gathered} \text { Installa- } \\ \text { tion. } \end{gathered}$ | Metal under treatment. | Cost of | $\begin{gathered} \text { Total } \\ \text { expense. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Birmingham | $\&$ <br> 1610 <br> 10 | ${ }_{6}^{8} 88$. | ${ }_{6}^{8}$ | $\begin{aligned} & \underset{y}{\&} \mathrm{~s} . \\ & 28 \\ & 10 \end{aligned}$ |
| Marseilles | 1810 | 368 | 8 | 63 |
| Hamburg... | 12 | 244 | 15 | 5112 |

The cost of refining the copper must include interest on capital sunk, the cost of motive power, that of manipulation, the wear and depreciation of plant, and general expenses. laking capital at 5 per cent. interest, and price, also assuming a high average price per horse-power or motive power, as this is obtained in small amount, with abour at 7 d . an hour, or at 15 s . per day for forty baths and $£ 110$ s. a day for 120 baths, and with general expenses at 100-150 per cent. upon the cost of labour, we may calculate the total cost to be made up as follows:-

Expenditure per Ton of Copper Refined.

|  | $\left\|\begin{array}{c} \text { Interest } \\ \text { copital } \\ \text { capital } \end{array}\right\|$ | Motive power. | Depro- ciation. | Labour. | $\begin{aligned} & \text { General } \\ & \text { expenses } \end{aligned}$ | To |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Birmingham.. | $\begin{array}{ll} \sum_{1}^{2} & 8 \end{array}$ | $\begin{array}{lll} \hline 8 & \text { s. } & \text { d. } \\ 7 & 4 & 0 \end{array}$ | $\begin{array}{lll} \hline \sum_{1} & \text { s. } & \text {. } \\ 1 & 4 & 0 \end{array}$ | $\underset{2}{2}{ }_{2}^{x}$ | ${ }_{2}^{2} \mathrm{~s}_{6}$ | $\begin{aligned} & y_{14} \mathrm{~s} . \end{aligned}$ |
| rseilles | 33 | 4100 | 0140 | 217 | 46 | 151 |
| Hamburg | 211 | 111 | 09 | 112 | 112 | 716 |

From these figures it is easy to see that the cost of refining copper by the electrical way is largely dependent apon che circumstances of the installation, but aso that hese circumstances are under control to a very great metals obtained account has been taken of the prect, and ne that stands as a great advantage of this method of refining. The cost has been calculated upon the basis of pure copper obtained, and although, as compared with
ordinary metallurgical treatment, it is high, yet the resulting fine metallurgical treatment, it is high, ye nelectrical material much higher than any other process has been able to attain.
In my next and last article I will endeavour to point mercial electrolysis.

THE PHYSICAL SOCIETY
"ON the Winding of Voltmeters," by Professors W. W. Ayrton
nd John Perry. As it is most $i$ important that voltmeters, ohmmeters, powermeters, and ergmeters should be so constructed that the percentage increase of resistance of their fine wire coils due to
the heating effects of the currents passing through them should be Uhe heating effects of the currents passing through them should be
as small as possible, the question arises as to whether such coils should be made of German silver wire, or of copper, or partly of
German silver and partly of copper wire, and how the diameter of Cou wine shoull vary in different per parts of the cow the The authors of
thave therefore been led to investigate the conditions that make
hat have therefore been led to investigate the conditions that make
this heating error a minimum with cylindrical coils of internal and this heating error a m
external radii $r_{o}$ and $r$
At a place whose distance from the axis is $r$ let the cross section assuming that $x=x_{0} r^{a}, p=\rho_{0} r^{b}, \rho_{0} r=p_{0} r_{0} r_{0}$, and that a current C in one spire of radius $r$ produces a magnetic effeet
$\mathrm{KC} r^{d}$ on the suspended needle, they find that the heating error is proportional to
where $p=d-a+1, n=2+b-2 a, m=2+1 \cdot 144 b-4 a$. The conditions that make this expression a minimum are worked
out in the paper, the result being that with one of their magnify out in the paper, the result being that with one of their magnify
ing spring solenoid instruments where $d=-1$, the values of $a$ and giving a minimum value are $a=0.325$ and $b=-0.5$; and since
in practice $b$ cannot $a=4$ give the best results, $i$ i.e, that all the wire employed in the bobbin should be of copper, and the law of increase of cross section proceeding from the centre should be $x=x_{0} r^{0}$
The actual waste of energy in the instruments is next considered,
and lastly, the authors show how to pass from a voltmeter with and lastly, the authors show how to pass from a voltmeter with
known winding, and whose maximum reading is $P_{1}$, to another of he same volume and shape whose maximum reading is to be $P_{2}$ energy is the same in both for their maximum readings, the resistances of the instruments must be proportional to the squares of $P_{1}$
and $P_{2}$; or, following the law already arrived at for a minimum error due to heating, the cross sections of the wires of the two and $P_{2}$.
The
he employment of outside coils for voltmeters is considered, and it is shown that if we desire the same error in the two instrusame size and shape, it is necessuty to terist the cons ratio between the resistance of resistance coil and that of the magnetising coil in the two cases. To have a less or a greater error in the second case
$c\left(\right.$ the error) $=\frac{2+F V}{1+F V^{\prime}}$
where F is a constant and V the volume of the German silve
resistance coil. From this V may be determined, and the ratio
$\frac{\mathrm{R}_{1}}{\mathrm{R}}$ of the resistances of the resistance coil and the magnetising
coil is given by $\frac{R_{1}}{R}=\frac{F}{D} V$, where $D$ is a constant which, like $F$, is obtained from experiments on the first instrument. The diminu-
tion of the heating error by using much iron in the instrument so as to obtain the same magnetic action with a much smaller current as to obtain the same magnetic action with a much smaller current
is discussed, and experiments were shown to illustrate how such employment of iron introduced a permanent magnetism error an caused the indications of such an instrument on the lower part of
the scale to be uncertain and to depend upo whether measure ments were being made with an increasing or a diminishing current. On the Manner in which Light affeets the Resistance of
Selenium and Sulphur Cells," by Mr. Shelford Bidwell. In a communication made to the Society at its last meeting, the author selenium cell when exposed to light. The action of this cell was quantity of sulphide of silver. If this were the case the result of a current traversing the cell would be to deposit sulphur result of anode, and as sulphur has an enormous resistance, that of the cell the silver. It is this sulphur thus deposited combined with much facilitated by light, a supposition the author believed
he had confirmed by direct experiment. Mr. Bidwell had also measured the resistance of a piece of selenium that was
believed never to have been heated in contact with a metal. The specimen was crystallised by heating for some time in a glass mould, two opposite sides cleaned, and two pieces of tin foil,
between which the resistance was measured, pressed against them.
In this way the In this way the specific resistance was found to be 2500 megohms,
which is enormously higher than that of the selenium in the cell, a fact tending to confirm the theory that the conduction in such ing the terminals produced in the locking, and similar to that of the sulphur cell described above. culating Surface Tensions from the Dimensions of Flat Drops and Bubbles," by Mr. A. M. Worthington. In a series of wroll-known
papers, Professor Quinke has recorded a large number of measures of flat drops and bubbles, from which he has deduced the values of tensions for the free surface of a liquid and for the common
surface of two liquids in contact. The numerical results obtained in this way exceed those obtained from observations upon the rise in capillary tubes, which Professor Quinke attributes chiefly to the ington, in the latter case the edge angle is not zero. Mr. Worthfessor Quinke with flat drops are too high; this arising from his having assumed that the drops were flat at the vertex. The error as much as 10 per cent. of the whole value, and upon its being as much as 10 per cent. of the whole value, and upon its being
duly corrected, the values obtained do not appreciably exceed those obtained with capillary tubes.
M. Mascart with those of the British Association by Mr. R. T. Glazebrook.

NAVAL Engineer Appointments.-The following appointments
have been made at the Admiralty:-Charles A. Biddick, chief
engineer, to the Albacore; F. Worth, engineer, to the Asia, addi-
tional, for the Malabar; Wiliam Broad, engineer, to the Indus,
additional, for the Wrangler; H. P. Vining, assistant engineer, to the Asia, for the Imperieuse.
Efrect of Encasing Wood with Iron.-It was always expected since first wooden ships were clothed with armour-plates,
that they would speedily decay, and this anticipation has been abundantly realised. The only excuse for the armour-plating of the Lord Olyde, Lord Warden, Ocean, Prince Consort, Caledonia Zealous, Royal Oak, Repulse, Royal Sovereign, Favourite, an ing, and were of no use at all unless so protected. When once stocks when ironclads were proved to be an absolute necessity, no other wooden ironclads were laid down in this country, but iron to be built until within the last eight years, and it is this fact which has doubtless induced the French Admiralty to lay down so
many iron and steel ironclads since that time. It is the closel fitted wooden backing on the outside and flanking on the inside which entirely prevents air from getting at the unseasoned oak
timber of the frames, and this causes the juices of the timber to ferment, and so induces the growth of the peculiar fungus known as dry rot. An examination of our wooden ironclad fleet a few
years ago resulted in their being almost entirely condemned, and now we find the Admiralty are turning them into money by sellin them to the ship breakers. The Royal Sovereign-the ship in
which Captain Coles' turrets were first tested-also the Zealous and Favourite, have just been sold for this purpose, and others will
doubtless speedily follow. While vessels of less than twenty-five years old are thus being broken up on account of rottenness, it is interesting to notice the num thirty or forty years old - which still survive in ordinary at Portsmouth, Devonport, and Sheerness. Th
timber before the age of hurry set in.
Another "Fundamental" Patent.- The following, from the
Electrical World is not without interest in this Elcectrical World is not without interest in this country :- "The widespread interest manifested in the electric lighting patent suits
fully detailed in our last issue will be increased by the announcement of the issuance of an important patent on the 12th of this this patent this patent present special interest in the light of recent develop-
ments, and are the following :- (1) An incandescing conductor for
an electric lamp, of carbonised fibrous or textile material and of an arch or horseshoe shape. (2) The combination, substantially as hereinbefore set forth, of an electric circuit and an incandescing
conductor of carbonised fibrous material, included in and forming part of said circuit, and a transparent hermetically-sealed chamber in which the conductor is enclosed. (3) The incandescing conductor
for an electric lamp formed of carbonised paper. (4) An incandescing for an electric lamp formed of carbonised paper. (4) An incandescing electric lamp consisting of the following elements in combination
First, an illuminating chamber made wholly of glass hermetically First, an illuminating chamber made wholly of glass hermetically
sealed, and out of which all carbon-consuming gas has been sealed, and out of which all carbon-consuming gas has been
exhausted or driven. Second, an electric circuit conductor passing
through the glass wall of said chamber and hermetically sealed therein, as described. Third, an illuminating conductor in
said circuit, and forming part theref within said chamber,
consisting of carbon made from a fibrous or textile materil. consisting of carbon made from a fibrous or textile material,
having the form of an arch or loop substantially as at this late day, it must be explained that Mr. Edison, filled
his original patent on high resistance carbons on Nov. 4, 179.
His his original patent on high resistance carbons on Nov, 4, 1879,
His patent was issued on the 27th of January, 1880 . But in the
meantime Sawyer and Man had filed their application on Januar meantime Sawyer and Man had filed their application on January
9 th, 1880 , and when it came to be acted upon an interference with the Edison patent was naturally declared. Messrs. Sawyer and
Man claimed priority of invention, and the case was carried from Man claimed priority of invention, and the case was carried from to the Secretary of the Interior. A large amount of testimony was
taken on both sides, and the case argued by Messrs. Roscoe Conkling, $\underset{\mathrm{Br}}{\mathrm{H}}$. H. Dyer, and C. L. Tomlinson for Edison, and by Messrs. Amos Broadnax and H. K. Garden for Sawyer and Man. This Patent-
office litigation was decided in favour of the latter, and hence the office litigation was decided in favour of the latter, and hence the
allowance of the patent after more than five years. We understand
that the Consolidated Electric allowance of the patent after more than five years. We understand
that the Consolidated Electric Light Company, the owners of the
Sawwer-Man patents, intend to assert their rights, so that more

RAILWAY MATTERS.
A PASSENGER train on the St. Paul Railway, nine miles north of
Sioux City, Iowa, was on Friday last struck by a cyclone and Sioux City, Iowa, was on Friday last struck by
almost entirely wrecked, six persons being injured.
THE first sod of the railway from Stanthorpe, Queensland, to
he border has been turned. It is regarded as the first step the border has been turned. It is regarded as the first step WHAT might have been a very serious railway accident on the
Alta Italia Railway was happily averted by the Westinghouse Alta Italia Railway was happily averted by the Westinghouse
brake. On the 16th inst., as the train from Truin to Paris was
running at high speed down an incline of 1 in 33 at the Mont Cenis Tuntel, one of the down an plates of the of sleeping car broke; the
driver feeling the hitch immediately applied the Westing driver feeling the hitch immediately applied the Westinghouse
brake, and the train was pulled up at once. It was found that the sleeping car and a saloon carriage were off the line. No one was
injured, but considerable delay was caused in forwarding the passur
THE Vienna tram-cars carried about $36,000,000$ passengers in cars only were put on the lines during the year, the numbers being 603 in 188, 60 in 1883 ; and this, the Reiveray Neve says, is held
to justify the loud complaints which have been heard ass ot the
overcrowding of tram-cars in Vienns. shamefully overcrowded, and it is no uncommon sight to see one
horse painfully dragging a car with forty persons in it. The traffic of the Vienna omnibuses, which are elongated coaches carryin

The effect of the weather on tram-car business is shown by the
following:-In 1884 the miles run by the South London cars on Whowing:- In 1884 the miles run by the South London cars on
Whit Monday were 5271 , this year only 4863 , the extra cars that woudh have run all day De passengers carried thast yeard were 54,571, in $£ 270$ this. Owing to improved weather on the Tuesday and suc ceeding days, the company more than made up itt loss, the cars
being well filled. The receipts on the week were $£ 1556$, against £1491 in 1884, about 15,000 more passengers being carried than The yearly average of railway accidents in the United States for
the four years ending last Apri was 1408 accidents, 410 killed, and 1695 hurt. The monthly average for last year was 105 accidents,
30 killed, and 144 hurt. The month of Arpil was below the
ave average in all respects, although approaching it closely in the number injured. The averages per day were, for the month, $2^{\prime} 70$ accidents, $0 \cdot 47$ killed,
and 2.50 hurt; for the year, $3 \cdot 5 \cdot 5$ accidents. 1.00 killed, and 4.63
injured. The average casualties per accident in the month Arii were 0.173 kikaged casualties per accident in the month of 0.926 hurt; for the year they were
0.290 killed and 1.342 injured. THE Times Calcutta correspondent, telegraphing on Sunday,
said :-"The cholera epidemic on the Bolan Railway is now dying sat, if it has not quite disappeared. The work is being resumed,
outh it it is expected that the line will be open to Nach by the 1th
and
of August. This work will sustain a serious loss owing to Colonel of August. This work will sustain a serious loss owing to Colonel
Iindsay, chief engineer, being compeled to go home invalided. It
is understood that his place will be taken by Major Gracey. The work of the Pishin Railway has been seriously delayed by floods
and cholera, and the portion between Nari and Hurnai is temporarily suspended, but the alternative line up the Bolan Pass is pro
gressing Chorena having disappeared in that quarter, it i expected that it
open to $Q u e t t a$.
IN a paragraph headed "Failure of the Cable Road in Phila-
delphia," the Scientitic American says:-" The road is constructed
throngh twelve through twelve miles of the principal streets of the city, and has
cost the projectors 60,000 dols., but it is estimated that $1,250,000$
dols. more will be required to correct mistakes. When dols. more will be required to correct mistakes. When the iron
conduits through which the cable passes were laid, iron rods were just below the slot where the grip passes down to the cable unde the width of the slot and hinder the passage of theund ", The public will no doubt soon hear announcements relating ot the cable Tram fays iure in this case will, however, not be of oo mechanical
origin, but will probably be due to the dificulty of showing where
the money has gone, or in what way it has been used.
A corrgspondens writing to the Times, calls attention to the
scheme for deepening the Grand Junction Canal between Birming. ham and London. At a meeting of the Council of the Wolverhampton Chamber of Commerce on the 5th inst. it was announced,
as stated in our colums, that the South Staftordshire Railway
and Canal Freighters' Association had taken up this scheme, involving an expenditure of one million sterling, for deepening the
Grand Junction Canal between Birmingham and London to allow of the passage of steamers of 120 tons burden. The Association correspondent referred to says :- "This movement will, I trust receive the hearty support of London traders generally, who have
been unfairly handicapped by the various railway companies. For been unfairly handicapped by the various railway companies. For
instance, the rate for sugar by railway from London to Birmingham, a distance of of 113 miles, is 20 . per ton, whereas
from Greenock to Birmingham, a distance of 312 miles, is only 25 s . per ton; and although the rail way companies have been asked to
lower the London rate, they have so far declined to do so. Conse. quently a large tonnage is now going by canal, and more would
certainily go by this route e af anything could be done to facilitate
the Wrirting to the Times, a correspondent sends the following
account of an accident which happened in the Mont Oenis Tunnel, account of an accident which happened in the Mont Cenis Tunnel,
with view to a timely warning of those readers who wish to
travel by that pleasant and well conducted line:-" Whe eft Turin travel by that pleasant and well conducted line :- "We left Turin having taking three places in a coupe salon, quite the best and
most luxurious raillwy carriage I have yet travelled in. We
reached Bardonnechia in good time, and entered the famous tu reached Bardonnechia in good time, and entered the famous tunnel
at an unusually slow pace. This, however, was soon changed to a rate quite novel to myself, who have often done the journey
before, and we rushed along through the thirteen miles long before, and we rushed along through the thirteen miles long
tunnel as if speed, and speed only, was the chief object in view,
Our carriage wobbled about ominously for a time and then left the line. Our four lamps, two in each compartment, went out, and
we bumped and jolted about in the dark, wondering what our fate delay to recover ourselves, we proceeded to light a bit of candle we
had with us and look about. Our four lamps no longer existed, and the glass slobes, of extra thickneess strpewed the floor in small
fragments, the oil being impartially distributed over ourselves fragments, the oil being impartially distributed over ourselves and
the cushions of the seats. One of the two lavatories in the
carriage also was wrecked. Looking out of the window, we saw large pieces of the springs of the carriage scattered about and the
rails torn up, the corriage itself having come to a standstill only a
few inches from the wall of the tunne few inches from the wall of the tumnel. After waiting for an hour and three-quarters in suffocating smoke and anxiety for the
promised relief, we were packed into the van of our own trainpromised relief, we were packed into the van of our own train-
which operation, by the way, might have been done at the first-
and so found that our train-or I should more correctly say an engine with perhaps a couple of empty carriages, our train still remaining without waiting for us its passengers. So we had to remain in that at midnight; we were only passengers, entitled to neither courtesy nor consideration on the part of the railway staff."

NOTES AND MEMORANDA.
THE following, from the report of the Astronomer Royal, are the principal results for magnetic elements for 1884 :- Approximate
mean westerly deelination, 18 deg. 8 min.; mean horizontal foree, nean westerly decination, 88 deg. 8 min.; mean horizontal 67 deg,
3931 in Engish units, 1812 in metric units; mean dip, 67
29 min. 8 sec. by 9 in. needles, 67 deg. 29 min. 32 sec. by 6 in. needles, and 67 deg . 30 min .9 sec. by 3 in . needles. In the year 1884 there
were only five days of great magnetic disturbance, but there were also about twenty days of lesser disturbance
Thr mean daily motion of the air in 1884, as given in the report
the Astronomer Royal, was 286 miles, being three miles of the Astronomer Royal, was 286 miles, being three miles greater
than the average of the last seventeen years. The greatest daily motion was 891 miles on January 23 rrd , and the least 78 miles on February 8th. The only recorded pressure exceeding 20 lb, on the
square foot in 1884 was 22.7 lb . on January 23 rd after which the connecting chain of the pressure plate broke. It is probable that great pressures occurred afterwards on the same day, and also in the gale
of January 26 th, at which date the chain had not been renewed.
The monthly report of Mr. William Crookes, Dr. William Odling, and Dr. C. Meymott Tidy shows that the character of the
water supplied to the metropolis during the past month has been in every respect excellent. The mean ratio of brown to blue tint
of colour in the Thames-derived water was found to he as $114: 20$; While the mean proportion of organic carbon was wart in 128 part in
100,000 parts of the water, with a maximum in any examined
sponding t spallon.

PAPER was recently read before the Paris Academy of Sciences on the electric conductibility of solid mercury and of pure metals
t low temperatures, by MM. Cailletet and Bouty. From numerous experiments made with med silver, tin, aluminium, magnesium copper, iron, and platina, the authors conclude that the electrio resistance of most pure metals decreases regularyy when the tem-
perature is lowed from 0 deg to -123 deg., and that the coefficient of variation is apparently much the same for all. It seems probable that the resistance would become extremely slight at temperatures
her lower than
cally tested.
M. P. Gabriel gives the following method of tempering steel, in The Revue Chronometrique:-Cyanide of potassium is dissolved and then immersed in the liquid until red, and afterward plunged in water. This process is said to give great satisfaction, and many
advantages are claimed for it. The temper is said to be hard and if a inished piece is under treatment the polish is not lost. will show a greyish tint, but the original polish will reappear immediately, if a piece of polished wood with the finest rouge is passed
over it. It is also said that if the steel has been well annealed, and not put out of shape by the file or the hammer, it will come from not deformed, if tempered by this method. It is recommended as particularly advantageous for tempering escapement springs. Tre incandescent lamp life test which has been going on at the
Franklin Institute, Philadelphia, has reached its 1064th hour. The Scientific American says the Edison, the Weston, the Stanley, nd the Woodhouse and Rawson companies competed. The
Sawyer-Man and Brush.Swan companies were invited, but declined to participate in the trial. Extraordinary precautions were taken to prevent access to the lamps except by members of the committee.
The lamps were lighted on April 11th, and have burned ever since. The lamps were lighted on April 11th, and have burned ever since.
At 11.35 this morning the Edison Company, who had entered At 11.35 this morning the Edison Company, who had entered
21 lamps, had lost 1 , the United States Company, who entered
24, had lost 17 ; the Stanley Company had lost 19 out of 22 , and Woodhouse and Rawson, an English firm, had lost 11, or their
whole number entered. The Edison Company used the natural fibre bamboo carbon, while the Weston people used the artificial tam

Some curious statements on tempering steel are made in a paper pubished in Dinglers" Polytcchnic Journal, vol. 225, by Herr A.
Jarolimek, "On the Influence of the Annealing Temperature upon tenerally considered that to obtain it is necessary to heat the hard steel to a particular annealing colour-that it rapidly cool. Thus, for example, that steel might anneal-
it be tempered- yellow, it had to be heated to 540 deg, and the sup. momentary subjection to this temperature. Herr Jarolimek says the requisite temper which is obtained by momentarily raising the temperature to a particular degree, can also be acquired by sub-
jecting the steel for a longer time to a much lower temperature. jecting the steel for a longer time to a much lower temperature. o 260 deg of heat ; in other words, by placing it in water rather above the boiling point.
A paprr was read in April before the Royal Society " $O$ Magnetisation of Iron," by Dr. Hopkninson. It contained an
account of the results of experiments which have been made considerable number of samples of iron and steel of known composition, including samples of cast iron, malleable cast iron,
Wrought iron, ordinary steels, manganese, chromium, tungsten,
and silicon steels. The electrical resistance and the met properties are determined in absolute measure. Amongst the electrical resistances the most noteworthy fact is the very high resistance of cast ron-as much as ten times that of wrought iron.
The fact that manganese steel is almost non-magnetic is verified, and its actual permeability measured. The action of manganese appears to be to reduce the maximum magnetisation of steel, and
in a still greater ratio the residual magnetism, but not to affect the coercive force materially. It is shown that the observed permeability of manganese steel containing 12 per cent. of manganese
would be accounted for by assuming that this material consists of a perfectly non-magnetic material, in which are scattered about
one-tenth part of isolated particles of pure iron. Some practical applications of the results are discussed.
At the meeting of the Royal Geographical Society on the 23rd
inst. Sir Peter Lumsden read a he has recently visited west of Afghanistan. He gave an interesting description of the geography of the Murghab valley and the
customs of its people, and quoted a singular account of the Numaksar, or salt lakes of Yar-oilan, visited and described by Captain Yate.
He said: "The valley of the lake from which the Tekke Turkomans
from Merve get their on all sides by a steep, almost precipitous, descent impassible for baggage animals, so far as $I$ am aware, except by the MITrerve rood,
in the north-east corner. The level of the lake $I$ made to be about 1430ft. above sea level, which gives it a descent of some 400ft. from the level of the connecting ridge, and of some 950ft. below the
general plateau above. The lake itself lies in the centro of the
basin unlimited. The bed of the lake is one solid mass of hard salt, perfectly level, and covered by only lin. or two of water. To ride
per it over it was like riding over ie or cement, the bottom was covered
with a slight sediment, but when that was scraped away the pure
white white salt thone out below. How deep this deposit may be it is
impossible to say, for no one has yet got to the bottom of it. To
the east of the dividing ridge is the secon the east of the dividing ridge is the second lake, from which the is situated ins much the therger of the two valley in which thatey this lake
is
is The salt in this lake is not smooth as in the other, and did not look so pure. It is dug out in flakes or strata, generally of somene 4in, in
thickness, is loaded into bags and carried off on camels for sale without further preparation."

MISCELLANEA.
Nature says it is contemplated to use the electric light in Algiers
for night work during harvest time, in order to escape the heat, which is just too much for Europeans, and is an obstacle to their carrying on agricultural work.
THE first annual dinner of the University Oollege Engineering The attendance was large. Ameng oth at the Holborn Restaurant. Donkin, Mr. Rich, Mr, C. E. Stroneyer, and others. Professor
Alex. B. W. Kennedy, president of the society THE Russian papers say that, at the request of General Komaroff recognised the urgency of immediately establishing a line of telegraph connecting Merv with Askabad. This line would pass by Annow, Babadoorma, Bougatchik, Artchigan, and Sarakhs. Its
Althoth
length will be 500 versts, and the expense about 100 ,oor length will be 500 versts, and the expense about 100,000 roubles.
MESSRS. Ross, Dowss, AND THoMPson, of Hull, have published an exceedingly well-finished new edition of their catalogue of oi mill machinery, oil refining plant, warehouse and other hydraulic
machinery and appliances. It is well got up for office use, and $i$ is bound with a sheet of paper between each two pages for notes, \&c. We notice that a first-class medal for oil mill machinery has been a warded this firm at New Orleans.
STRIIESS and rumours of intended strikes are on the increase in wages that prevail in certain branches of labour are somewhat startling. Thus the linen weavers of Erdmannsdorf, a village in
Silesia, have ceased work in an attempt to secure an advance o sinesia, have ceased work in an attempt to secure an advance
about 20 per cent, on their wages, which average six and a-halt
marks per week for twelve hours work per day and seldom or neve marks per week for twelve hours work per day, and s.
exceed nine marks, equivalent to as many shillings.
IT is said that the construction of a ship railway to connect the
Bay of Fundy with the Gulf of St. Lawrence has been finally decided on. Ships of 1000 tons and under will thus be able to
reach St. John from Montreal, Quebec, and other ports on the St reach St. John from Montreal, Quebec, and other ports on the St.
Lawrence, without having to encircle the dangerous Nova Scotian coast, a saving of 600 miles. The ship railway, which is to be
seventeen miles long, will, it is expected, be supported by a subsidy of $£ 60,000$ per year for 20 years from the Canadian Government. A FLOATING dome was some time since presented by M.
Bischoffsheim to the Observatory at Nice. It is intended to cover circumference of 60 m ., or 2 m . more than the dome of the
Panthe Pantheon. Instead of rendering it movable by placing it on rollers, for air, which rests on the water in a circular basin. This system of suspension is said to be so perfect that, in spite of its grea
weight, a single person can turn it completely round the horizon According to the report of Dr. Frankland on water supplied to the metropolis during May, the Thames water sent out by the
Chelsea, West Middlesex, Southwark, Grand Junction, and Lambeth Companies exhibited a further improvement as regards organic matter, the average proportion being even less than in any
month of last year. All the delivery. Of the water drawn from the Lea, that distributed by the New River Company was, as regards organic matter, secon Company's supply contained rather more organic matter than the Thames waters. Both samples were clear and bright.
THE longest bicycle ride ever made has just been completed by
Mr. H. R., Goodwin, of the North Manchester Club. Leaving Land's End on June 1st, he journeyed to John o' Groats, having
reached which point in $7 \frac{1}{2}$ days, he at once turned southward, and again arrived at Land's' End on the 16th, the dooble journey of
about 1750 miles, or from one extremity of England to the oth having occupied less than sixteen days. From Land's End he
rode to London, which was reached on the 19th, the rider having thus completed a journey of 2050 miles in exactly nineteen days, or an average of 108 miles per day. Mr. Goodwin
"Facile" safety bicycle, and arrived in London well.
A Selecre Committee of the House of Lords, presided over by Water Bill, which empowers that company to construct at Forest Hill, in order to give a high-service pressure to Wimble don. It also enables the company to affix stop-cooks to every
service pipe in their district for the purpose of preventing and detecting waste, which stop-cock must be paid for by lthe con additional capital, but the Committee have inserted a clause compelling the company to raise the sum by debenture stock to be issued by public tender at par. The clause by which the company sought powers to purchase the ust-siiting yard near their Batter
sea filter beds was struck out on the opposition of the Brighton sea filter beds was struck out on the opp
Railway Company, the owners of the yard
THR New British Iron Company, which by-the-bye is one of the
oldest iron manufacturing companies in this country has awoke to the fact that the printing machine may in various ways facilitate the communication from manufacturer to consumer of information many ready to supply it. Old reputations are not sufficient to make new consumers run after those possessing them, and hence
the New British Iron Company has just published a well-executed catalogue of its manufactures in iron and steel. This company always produced first-class irons, and its brands, Lion, Corn greaves, and Ruabon, are known to thousands who do not know to
whom they belong. hearth process in six different grades, and no doubt will openthe same high reputation which it has held for foubt will acquire
The New British Iron Company wacture AT a meeting of the Meteorological Society on the 17th inst. a
paper was read on "The Mean Direction of Cirrus Clouds over Europe," by Dr. H. H. Hildebrandsson, Hon. Mem. R. Met. Soc.
The author has collected a number of observations on the ments of cirrus clouds over various parts of Eurone, ond after di cussing them, has arrived at the following results:-1 1 ) The mean
direction at all stations lies betwen south-west and (2) in winter the cirri come from a more northerly nirectionest in summer from a more southerly; in winter the northerly com-
ponent is greater on the Baltic and the north coast of the Mediterranean; (4) the mean directions of the upper currents nearly
cincide with the mean tracks of storm centres ; (5) the upper currents of the atmosplend in general to flow away from surface towards those in which there is an elevation of pressure. ThE steel armour-plated barbette ship Rodney, ten guns, 9600 Frida, after a suwcessful series of trials of her engines. The
official trial, whioh took place most satisfactory character. With a natural draught the following 2es2, port, 4040; collective, 8262 ; steam in the boilers, 89 lb .
42cuum in condensers, starboard, 28 . in , per minute, starboard, 94 ; port, 93 ; mean pressure in cylinders,
starboard, high, $45 \cdot 61$; low, 11.74 ; port, high, $43 \cdot 44 ;$ low, $11 \cdot 50$. With forced draught and enclosed stokeholes, the following result port, $5558 \cdot 21$; collectively, $11,156 \cdot 76 ;$ steam in the boilers, 90 lb , starboard, 104; port, 103; mean pressure in in cylinders, starboard of speed attained was beyond that anticipated, over 17 knots per
hour hour being made, notwithstanding the fact that the vessel's bottom The machinery worked with smoothness and regularity, the boilers
generating an ample supply of steam, and no hitch occurred.


FOOT PLATE OF G. S. AND W. R. ENGINE.


PASSENGER ENGINE, GREAT SOUTHERN AND Boiler-
WESTERN RAILWAY, IRELAND.
On page 500 we illustrate one of several new engines with 6 ft .6 in . drivers, constructed by Mr. J. A. F. Aspinall, locomotive superintendent of the Great Southern and Western Railway, for working the passenger traffic of the line. Above we give a view of the foot-plate. Mr. Aspinall, it will be remembered, succeeded Mr. Macdonall as locomotive superintendent at Inchicore, when the latter gentleman went to the North-eastern Railway. Mr. Aspinall does not lay claim to has carefully made every part interchangeable with other engines already on the line The working parts also inter change with the goods engines, and although Mr. Aspinall has got a more powerful passenger engine than was before built at Inchicore, there are still only three classes of engines on the line. The arrangement for the vacuum brake is one introduce by Mr. Aspinall, which gets rid of useless piping. The ejector is placed in the smoke-box, and bolted on to the cylinders round which air passages are cast. These passages are continued to the back end of the cylinders; from these run two pipes to the engine foot-plate. A flap valve is placed in the pipe near each in which it is prision in which it can be readily got at, and the footplate the pipes are cast in thus getting rid of a number of joints liable to leakage, and making a neat-looking arrange ment. The old method of running the pipes along under the outside footplating was bad, because if an outside rod broke all the piping was knocked away, and the brake rendered useless.
From the end view of the footplate it will be seen that two glass water cauges are fitted, a Shendley's speed indicator, and a duplex vacuum gauge, with other ordinary fittings.

| Diameter .. | 18 in . |
| :---: | :---: |
| Stroke .. .. .. .. .. .. .. |  |
| Distance apart between centres .. | 2 2ft. 6 6im |
| Length of ports ... | 131in. |
| Width of exhaust port... | ¢ |
| Width of bars | 1 in . |
| Lap of slide valve | in. |
| Lead of slide valve, full gear |  |
| Travel of valve, full gear | 33in. |
| tion- |  |
| Throw of excentrics | 23 i |
| Diameter of piston-rods ${ }^{\text {a }}$ |  |
| Length of connecting-rod between centres | 5 ft . |
| Length of excentric-rod between centres | 10 |
| eels- |  |
| Diameter of driving wheels | 6 ft . 6 in . |
| Diameter of trailing wheels |  |
| Diameter of bogie wheels |  |
| Distance between centres of bogie wheels |  |
| Distance between centres of bogie and driving wheels |  |
| Distance between centres of driving \& trailing wheels | 8 ft . 3 in . |
| Width wheel base | 20ft. 43 zi |
| Width of tires ... |  |
| Thickness of tires .. |  |
| Length |  |
| Liangth |  |
| Thickness of plat |  |



The gauge, 5ft. 3in., gives the designer of Irish locomotives splendid opportunities, and of these Mr . Aspinall has availed
himself, and produced an engine handsome to made, and thoroughly suited to the work which it has to do.

## WALSH'S SELF-REGULATING MILL AND

 PURIFIER FEED.In the East Annexe of the Inventions Exhibition Mr. J, E Walsh, of Crossley-street, Halifax, exhibits the self-regulating
feed for roller mills and purifiers illustrated by the
engraving, in which $\cdot \mathrm{A}$ is the hopper, B is a pivotted door, to
which is attached a pivotted adjustable inclined stud or lever C which is attached a pivotted adjustable inclined stud or lever C upon the lever is a sliding weight D; to the weight is attache the hopper; the pulley $G$ is adjustable, and regulates the

position of the sliding weight upon the lever $C$; the chain $E$ passes down the inside of the hopper to the bottom of the pivotted door, to which is attached the sliding weight $D$ upon so evenly distributes the contents of the hopper to the crushing rollers below the sliding weight, acting both upon the lever and upon the bottom of the door or valve by means of the chain when a flush or flooding of the hopper takes place, the door after offering the necessary resistance, opens, and as it opens the gradient of the lever is decreased, so that there is both less pull and leverage upon the door. As the feed supply increases or diminishes, the weight moves automatically upon the inclined lever, acting as a perfect governor to the feed. The collar J acts as a limit or check to the door or valve. The limit or easily and readily adjusted. The gradient of the sliding weight easily and readily
is also adjustable. $\qquad$
BOTTING'S AIR-TIGHT COVERS AND PLUGS. THE accompanying engravings represent a form of air-tigh cover for sanitary and other work, and in small size for per manently or temporarily stopping water, gas, ventilating or sewer pipes. Fig. 1 shows the larger size cover as an air-tight cover plate. which is an india-rubber ring, which is forced outward when squeezed by screwing the discs together by the bolt shown


The action is precisely the same as with the world-known Thomson's pickle bottle stopper. Figs. 2 and 3 show a smaller form of the plug in different applications, such as stopping a clearing socket in a drain and stopping a water pipe. They are also used for stopping drain and ventilating pipes during smoke or water test. Mr. F. Botting, Baker-street, W., is the maker.

FIFTY-HORSE HORIZONTAL ENGINE. THE engine which we illustrate by the engravings on pages 480 and 496, is one of a type made by the 'Société Lyonnaise, Paris It has been fixed in the Hotel du Crédit, Lyonnais, Parrent for the Brush lamps, by which thises, which provide lighted.
The distribution of the steam is effected by means of the excentric E and two Farcot valves $\mathrm{T} \mathrm{T}^{1}$ on the one spindle F guided by the slide D. On the back of the valves slide two cut governor il , the movement of which is determined On the axes of these cams are fixed two helicoidal pinions, movable by the two screws and the hand-wheel G. By this means the position of the cams is adjustable, and thereby the cut off, through a range of from one-lifteenth to one-half the stroke. The arrangement secures very short steam ports. The governor is of the Buss type, driven by gearing, and steadied by an air cushion in
the cylinder H. The engine is fitted with
enser, the double-acting air pump, of which is actuated by a abnormally great, and more nearly constant than any other ell-crank lever, and the rod worked from the crank. The bell- elemererature. It varies from 18 to 24 lb , per ton (coefficien nds are steam operates the feed-pump. The cylinder and the ylinder are both moved by one lever L, and the pipes from them converge in a cock $R$. The engine, in case of need, can be orked without the condenser, by closing the admission there ato of the exhaust by the valve shown attached to the con lenser, and allowing it to pass into the air
Our information is taken from the Annales Industrielles, which ives particulars of the sizes and prices of these engines for the eight different powers in which they are made.

EXPERIMENTS ON JOURNAL FRICTION AND TRAIN RESISTANCE
We give below the chief conclusions on the subject of journal friction in starting trains, which were drawn from the experiments made with an apparatus illustrated in the Railroad Gazette ${ }^{*}$ :-
The tests were made with three different loads, corresponding as nearly as might be to the loads on bearings of a loaded car, empty car, and truck alone. The further details of the manner of making possible, hardly need to be given in full. In order to derive as much insight into the general laws of friction as might be pos-
and temperature. It varies from 18 to 24 lb . per ton (coefficient those limits it is not greatly modified by load or temperature. (2) This abnormal increase of friction is due solely to the velocity of unchanged and returning to the same amount whenever the velocity is reduced to the same rate, barring exceptionally slight variations, probably due to differences of lubrication and temperature. It is not appreciably affected by the fact that the journal may be just starting into motion, or is just coming to rest, or is (3) At velocities higher than $0+$, but still very low, the same general law obtains. The coefficient falls very slowly and regularly as velocity is increased, but is constantly more and more affected by differences of lubrication, load, and temperature. (4) A very could excess of initial friction proper-varying from $\frac{1}{4} \mathrm{lb}$. to 2 lb .could generally, but not always, be observed over that which con
tinued to exist at the nearest approach to a strictly infinitesimal velocity which it was possible to obtain. This difference was by analogy, ascribed solely to the fact that the lowest continuous velocity attainable was not strictly infinitesimal, and the final conclusion was drawn that-(5) There is no such phenomenon in distinction from-i.e. differing in amount from-friction of motion at slow velocities, and due to the fact of quiescence. Consequently, the use of such a term, although convenient, is scientifically in-
neasure the same pressure, or a little less, as existed in starting same friction as in starting, The same test was made by inter rupting tests at speed, so as to give a continuous motion, but to suddenly reduce the speed to $0+$. These tests were repeated gain and again, with practically identical results. Comparing writer's conclusions from the results of his gravity tests, as will be seen below. In the tests by Mr. Beauchamp Tower no low speeds nor low pressures at all were tested, since they began at a journal peed corresponding to twelve miles an hour, where the writer's ests left off, and gave no pressure less than 100 lb . per square "Initial" journal friction-i.e., at velocity of $0+$

Writer's conclusions from journal tests, above say.. Pounds per ton.
Writer's conclusions from
I俍 (soe Trans. Am. Soc. ".E.E., Feb., 1879), "rat least""
Prof. R. H. Thurston ""Friction and Lubrication " page 14 to 18 175), W. Va. oils .. .. .. .. Labrication, pag sperm
lard.. 22 to 28
14 to 28
Prof. Kimball (Am. Jour. Sci,., March, $\ddot{1878, \text {, or " } \because \text { Friction }}$ and Lubrication," page 186) $\quad \ddot{ } \quad . \quad$ iddition it may be noted $\quad . \quad$. pains to observe with some care at various times that in ordinary service no railroad cars can start them. selves from rest, nor can they, in general, be started
without the use of much force, on a grade of 0.7 per without the use of much force, on a grade of 0.7 per
cent. ( $=14 \mathrm{lb}$. per ton, 36 ft . per mile), but that they

The intensity of the strain per square inch of journal (longitudinal section) is indioated graphically in this and


Highest Line of each, Journal hot, $120^{\circ}$ to $150^{\circ} \mathrm{F}$
Lowest "
cool, under $100^{\circ} \mathrm{F}$.



Fig. 1
Diagram of Results of Tests as Tabulated below.

Note. - In all these diagrams the journal speed has been reduced to its equivalent train velocity in miles per


Fig. 2


Figs. 3 and 4.

Results of Mr. Beauchamp Tover's Tests, giving Effects of Hugh Velocity,
Variation of Pressure, and Diferences of Lubrication upon Coeflicient Variation of
of Friction.
bstract of Tcsts made with Apparatus shown in " Railroad Gazette," May 22nd.-West Virginia mineral oil. Frec lubrication by pad of waste. Resistan
train resistance. Divide by 200 for coefficient of friction.







 and an equally mar
thickness of lines.

Velocity in miles per hour $\times 9=$ (approximately) journal speed in feet per minute.

|  |  |  | $1439 \mathrm{lbs} .=$ 29 lbs . per $\mathrm{sq}, \mathrm{in},=$0.88 tons per car. |  | $7439 \mathrm{lbs},=157 \mathrm{lbs}$. per sq. in. $=14.88$ tons per eight-wheel car. |  |  |  | $13,439 \mathrm{lbs} .=279 \mathrm{lbs}$. per sq. in. $=26 \cdot 88$ wheel car. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ¢ |  |  | Cool. | Hot. | Cool. | Cool. | Cool. | Hot. | Cool. | Warm | Hot. |  |  |
| $0+$ | $0+$ | - | - | $24 \cdot 5$ | $21^{\prime} 5$ | $23 \cdot 6$ | $22 \cdot 9$ | $24 \cdot 1$ | $\left\{\begin{array}{l} 22 \cdot 4 \\ 20 \cdot 0 \end{array}\right\}$ | $20 \cdot 0$ | $20 \cdot 9$ | $6 \cdot 7$ | $4 \cdot 9$ |
| 144 | 0.24 | 24.5 | 17.3 | 21.0 | $14 \cdot 1$ | 18.8 | 21.5 | $20 \cdot 8$ | $15 \cdot 3$ | 16.9 | $20 \cdot 1$ | 6.2 | $4 \cdot 8$ |
| 212 | 0.37 | - | 10:3 | - | Grew hot | $14^{-1}$ | Grew hot | 18.8 | 18.3 | 15.2 | 18.6 | $5 \cdot 9$ | $4 \cdot 8$ |
| 327 | 0.54 | - | - | - | - | $13 \cdot 7$ | - | 17.0 | $10 \cdot 1$ | 15.0 | 16.9 | 5.6 | $4 \cdot 7$ |
| 600 | 0.98 | - | - | 13.9 | - | $11 \cdot 0$ | $16 \cdot 1$ | $16 \cdot 1$ | 6.7 | 13.9 | 14.6 | $5 \cdot 6$ | $4 \cdot 6$ |
| 1440 | $2 \cdot 36$ | - | $8 \cdot 3$ | - | - | $9 \cdot 4$ | $\begin{aligned} & \text { Cooled } \\ & \text { in } \end{aligned}$ | $12 \cdot 1$ | $4 \cdot 6$ | $8 \cdot 1$ | $10 \cdot 0$ | 4.8 | 3.5 |
| 2400 | 3.93 | - | - | - | - | 8.0 | water | $10 \cdot 5$ | $4 \cdot 1$ | $6 \cdot 1$ | $7 \cdot 4$ | $4 \cdot 0$ | 8.1 |
| 3600 | 5.89 | - | - | - | - | $7 \cdot 0$ | 6.7 | 8.0 | $4 \cdot 1$ | - | $5 \cdot 7$ | - | $2 \cdot 7$ |
| 6000 | $9 \cdot 82$ | - | - | - | - | 6.0 | - | 6.7 | 3.8 | - | 5.0 | $3 \cdot 0$ | $2 \cdot 2$ |
| 7200 | 11788 | - | - | - | - | $5 \cdot 1$ | - | 0.0 | $3 \cdot 6$ |  | - | - | - |

sible from these tests, they were compared with those previously made by the writer on railroad rolling stock by the gravity method tions of Prof. R, H. Thurston, as set forth in his treatise on the ubject, and with a still more complete series of tests recently the Institution of Mechanical Engineers. In the apparatus for the latter tests a suspended dead-load was used of the actual weight which it was desired to throw upon the bearing, instead of using springs, as in Professor Thurston's apparatus or everage, as Mr. Tower's investigations, however, did not were directed, viz:-
Initial friction in starting trains.-The observations under this head were exceptionally complete, and the conclusions reached were as follows:-(1) Friction at very low journal speed of $0+$ is
" "Experiments with Now Apparatus on Journal Friction at Low
Yelocities. By A. M, Wellington, C.Fi, Trans. Am. Soc, C.E.,
December, 1884 .
accurate, in that it ascribes the phenomenon to the wrong cause, that friction of rest, as such, appears to exist, is due solely to the ract that no journal or other solid body can be instantly set into rapid motion by any force, however great. There must be a certain
appreciable instant of time during which the velocity is infini ppreciable instant of time during which the velocity is infini-
tesimal and gradually increasing. This interesting fact, which is believed to have been here observed for the first time-no other apparatus being known to have been used suitable for determining it-was determined with great completeness by many tests. Very
slow motion could be produced at slow motion could be produced at any time by revolving the
driving pulley of the lathe by hand when geared for a slow speed driving pulley of the lathe by hand when geared for a slow speed.
With a little experience, the weight on the scale-beam could be placed in advance at a point which would be a trifle less than the initial friction proper, and-when properly placed-it would barely lift when motion first began, and then have to be moved baok a notch or two only, to weigh the friction which continued to exist
indefinitely Similarly, when a test at compartion indefinitely Similarly, when a test at comparatively high spoed
was about ig be concluded, the scale-weight would be placed to
will gonerally, but not always, start of themselves on
a grade of 1.1 to 1 12 per cont. ( $=221 \mathrm{lb}$. to 241 lb per
ton, 58 ft , to 63 ft , per mile), indicating an "initial"
ton, 58 ft .
friction of
These results agree wonderfully well with each other, the aver per ton, the $18 \mathrm{lb} ., 16 \mathrm{lb}, 25 \mathrm{lb} ., 20 \mathrm{lb}, 18 \mathrm{lb}, 25 \mathrm{l} \mathrm{lb}$., and 22 lb . $20 \frac{1}{2} \mathrm{lb}$, the average of all being $18^{\circ} 0 \mathrm{lb}$, to $25^{\circ} 0 \mathrm{lb}$. per ton, or accelerating force of gravity on a 1 per cont corresponds to the also the lowest grade, upon which cars can be relied on to start off from a state of rest, the correctness of this coefficient may be considered as well determined.*

* On a 0.7 per cent. grade- 14 lb . per ton-the writer found it impos-
sible in soveral instances for six men pushing, two with pinch bars, to sibart itwo loaded box-cars into motion. In no singingle instance out of over
start
sixty did cars state with sixty did cars start without some assistance. This indicates that a state-
ment on page 14 of "Friction and Lubrication," "The resistance in
隹 starting co. has for its measure $\frac{2}{2}$ of 1 per cent., or $8 \frac{1}{2}$ lb. per ton,"
requircs correction; being inconsistent
results given in the same volume.
requircs correction; being inco
fesults given in the same rolume.

But as respects the friction of journals when coming to rest,
Professor Thurston's results differ markedly from the writer's. But as respects the friction of journals when coming to rest,
Professor Thurston's results differ markedly from the writerts.
He find this friction, "at the instant of coming to rest," to be
nearly constant instead of varying considerably, with the pressure
 at the instant of starting. It seems rational that there should
be this difference sinee the journa is mely be this difference, since the journal is more likely to be well
lubricated in coming to rest; but the writer did not find it so and the point was tested so many times in so many different
ways, that he feels compelled to believe that the discrepancy ways, that he feels compelled to believe that the discrepancy
arises from the theoretical deficiency in Professor Thurston's
apparas apparatus, before alluded to, for testing rapidly varying
and almost instantaneous changes of coefticient. That such a change of resistance, if it be called upon to do wwork
dynamicaly, before it can express itself statically upon
the inder, the index, cannot but introduce a possible source of errop, is
made still plainer if we remember that a fotce of this kind which
was strictl pendulum, and hence express itself upon the index at all. cities. - Certaino general facts seem to be clear from fall oll the various
tests here considered that the character and completeness of lubrication of these i ore important than the kind of the oil, or even pressure and temperature, in affecting the coefficient. dhis
very cear from the diagrams- Figs. 1 to 5 showing the
various results. Mr. Tower found that lubrication by a bath whether barely touching the axle or almost surfounding it, was
from six to ten times from six to ten times more effective in reducing friction than
lubrication by a pad. By this method of lubrication Mr. Tower succeeded in reducing the coefficient in a large number of
tests to as low a point as 0.000 , equivalent to only $0 \cdot 2 \mathrm{lb}$. per ton
of tractive resistance of tractive resistance, and the general average in the bath tests
 any heretofore reported, as will be seen from the following general average of results; not considering now the the comparatively
minor variations produced by ordinary working differences in temperature, load, \&o. The The normal journal friotion under faveur
able conditions, deduced from various series of tests marised as follows for velocities greater than ten miles per hour, o Oft. per minute, journal speed :-

| Thurston, light"loads pad or syphon Welling hean (gry loads <br> " " " $"$ heavy loads. <br> ", direct tests (as shown in Fig. 2) .. <br> Thurston, inferior oils ("Friction and Lubrication," p. 173) <br> Morin, continuous lubrication |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

These discrepancies, especially as they are accompanied by many
minor ones, are very instructive, as showing that the character lubrication is the great cause or variation of coefficient. Thus, Thurston's experiments show almost everywhere a very marked
advantage in sperm oil over all others for reducing the coefficient. This does not appear at all in Mr. TTwerr's tests. Thurston als increasing the load from a 100 to 2001 lb per semperare inche, increases agrees almost precisely
100 lb wh . Thurston with sperm at 90 deg. an 100 lb ., finds that inereasing the pressure to 200 lb . materially decreases the coefficient. The extent of these discrepancies
is shown in FFig. 5. Other minor discrepancies of this kind
5. might be pointed out. They are not, it is beneved, to be taken a menter, but simply as showing the overmastering effect of minute curionsly shown in two ways in Tower's experiments :- (1) It was
nceidentally discovere actually floated on a film of oil between the lubricated surfaces which is soo truly a fluid that it will rise through a hole in the top of the bearing in a continuous stream and exert a pressure against
a gauge equal to more than twice the average pressure per square inch on the bearing. This is precisely what theory would requir if the lubricant were a perfect fluid. (2) Tower's apparatus re
quired that the journal should be revolved first one way and the the other. It was found that the friction was always greater when the direction of motion was first reversed. The increase varied considerably with the newness of the journal. "Its greatest
observed amount was at starting, and was almost twice the observed amount was at starting, and was almost twice the
nominal. friction, and it gradually diminished until the normal This increase of friction was accompanied by a strong tendency to heat, even under a moderate load. In the case of one brass which
had worked for a considerable time it almost entirely disappeared., It is with apparent justice concluade that the phenomenon mus after having been for some, after having been for some time stroked in one direction. $\dagger$
In view of the variations of several hundred per cent., often produced in the lowest coefficients of friction by minute differences in lubrication, as shown by comparison of Thurston, and Tower's tests, and in view walso of the further facts (1) that the
lubrication of railroad journals is far more imperfect than an oil lubrication of railroad journals is far more imperfect than an oi rarely free from dust and of uniformly good quality

That the condition of the surface of ordinary railroad journals and bearings is and necessarily must be inferior to such as are
stated to have been employed in Thurston's and Tower's tests
it it seems reasonable to conclude that the writer's direct tests
Fig. 1) correetly represent journal friction under ordinary
working conditions, and that it may be talken at $55^{\circ}$ to ton with empty cars, and 3.5 to 4.0 lb . per ton with loaded cars or heavy passsenger cars, at the velocity of minimum friction, which appears to be from 10 to 15 miles per hour.
writer from gravity tests of cars in ordinary service e the latter results giving 0.5 t to 1.0 per ton greater resistance, but including
rolling friction between rail and whel,

## LETTERS TO THE EDITOR.

## [We do not hold ourselves responsible for the opinions of our

the laws of motio
Sir, - " $\Phi$. II." will, I trust, permit me to congratulate him on his good nature and his perseverancec, moth of which are admirable.
In so far as he is an apostle of Sir William Thomson's doctrine that elasticity is a mode of motion I have no fault to find with
him, and am in no concern whether the him, and am in no concern whether the idea is or is not original
on his part; but what has this doctrine to do with "the laws of may ultimately turn out to be in its essence motion-in fact, this seems extremely likely; but I deny that Newton's laws of motion " "Friction and Lubrication," page 175. On page way or the other. it stated that
"it is nearly constant, and may be taken at 0.03 ," qquivalent to $^{\text {olb }}$. per




In other words, I deny that an acceptance of this doctrine is in the least degree necessary for a comprehension of the "third law."
If I may be permitted to say so, in all sincerity and polite-
In ness, " $\Phi$. $\Pi$." does not understand the third law, though
he believes he does, and he has invented an ingenious
dition way of his own of evading or slurring over the difficulties
in which such a misunderstanding would otherwise inevitably nvolve him. Let me further assure him that I read his letters carefully, and have not forgotten declining to write "motion" for
"energy," Were every proof forthcoming that there was no energy," Were every proof forthooming that there was no
energy but kinetio, I should still, just as strongly, decline this misuse of terms. (By the way "\$. II,'s particula, He will find however, what he is thinking after, viz,, a gyroscopic model of a
coach spring, depicted in Sir W. Thomson's address to Section $A$ of coach spring, depicted in Sir W. Thomson's address to Section A of
the British Association at Montreal, as printed in the annual volume of the Association.)
I understood "Ф. П." to say that "gravity had ceased to act on a freely falling stone," and I think he did say so. [Quota.
tion from " $\Phi$. l 's" letter of 29 th May: "When a heavy body drops freely it ceases to have weight. In other words, gravity
exerts no push on it. no force of any kind acts on a body freely falling in vacuuo. The body under such con-
ditions possesses mass, but not weight. Why should such ditions possesses mass, but not weight. Why, should such
truths ssic) as these be kept from the student? Put tis no
matter what he said if he didn't mean it. He now says he did not assert that gravity exerts no push on a freely fallings stone, but
only that it is impossible to "detect the least trace" of such a push. Even this statement $I$ am constrained to differ from. The
accelerating velocity of the stone is good evidence, and indeed


I know he why is its velocity not constan that
I know he means that you can't show its weight by hitching a
pring balance to it ; but neither can you by hitching a thermome spring balance to it ; but neither can you by hitching a thermome
ter to it. You are not likely to be able to demonstrate a thing unless you go about it the right way. A spring balance hanging on a fixed hook does well enough to measure weights of stationary dangerous, ot attempt to indicate the weight of a alfing cannon-
ball by any such device. The weight of a flying bullet is mon ball by any such device. The weight of a flying bullet is mani-
fested and measured by the curvature of its path, i.e., by its downward acceleration; the weight of a falling one is manifested I had better not discuss " $\Phi$. $\Pi$.'s" tug-of-war experiment, in which the "facts" seem turning out hostile to me; though I shall
amuse " $\Phi . \Pi$," by informing him that if I did discuss it I should have to take up the position "so much the worse for the fax." an ordinary tug-of-war contest was perhaps modified in this case
by the insecure nature of the foothold, and that his big son had too great an involuntary regard for his own spine, or for his small A psychological explanation of a physical experiment
A psychological explanation of a physical experiment cannot be
very satisfactory. I do not, however, quite know what " $\Phi$. $\Pi$." wished his experiment to prove; but surely we do not differ on a
theoretical point of such simplicity that it can be crucially settled I will a observation like this.
I will grant him that action and reaction between bodies in contact are equal and opposite, as much as ever he likes. But it contact. For "equal action and reaction" let me use the short of war. There is a stress between A and rope, and a stress
between A and ground. There is a stress between B and rope,
and between B and ground. So far we agree; but " $\Phi$, $\Pi$." seems and between B and ground. So far we agree; but " $\Phi$. $\Pi$." seems
o wish me to go further, and agree that these four stresses are always and necessarily equal. This I can't do. They all happen
to be equal during periods of static straining or equilibrium, but to be equal during periods of static straining or equilibrium, but
directly motion begins they are not equal; in fact, motion begins directly motion begins they are not equal; in fact, motion begins
because they are not equal. The A-rope stress is a trifle greater than the B-rope stress when motion begins, unless you prefer to neglect the inertia of the rope.
bigger than any of the others,
inertia of $A$ and of rope and of $B$
Let a man stand on a roller-plank or a boat and suddenly begin
to run, does not the plank or boat move backwards? And if it to run, does not the plank or boat
Finally, in my mentence referring to a falling stone "there is
and only one force acting on the stone," $\Phi$. H. "only one foree;" if he had italicised "acting on the
italicise "only
tone" he would have understood what I said better. There stone" he would have understood what I said better. There gravitation medium, and the reaction or push back of the stoneutt only one of these equal forces is acting on the stone. I said this
If I have not succeeded in making this at last intelligible I must

## Liverpool, May 21 st.

Sir, -I am very much obliged to "A Girton Girl" for her last has made that belief certainty. She holds that it is quite possible for an unbalanced force to exist. I do not. Here, then, is a fundamental difference between us, which renders it impossible to
continue this discussion with any advantage. Before we could continue this discussion with any advantage. Before we could
advance one step further we should have to go into a secondary controversy as to whether it is or is not possible to have an isolated disposed to break new ground in this direction than I am.
One word in conclusion. "A Girton Girl" says that I have
advanced no proof that force is not a cause of motion. I can only advanced no proof that force is not a cause of motion. I can only vours. Possibly the following argument mayy modify her views. It is
stated by all philosophers, and universally accepted as true, that matter is entirely incapable of resisting motion. If this be so, why should force be necessary to cause motion?
It is due perhaps to myself, or rather to the opinions which I
hold, to say that I have never for a moment denied that stress, effort, push, pull, or force accompany the transfer of motion from one motion, and neither "A Girton Girl" nor any one else can cite a single instance in which effort has not got motion for an antecedent.
When a boat moored to the shore pulls on her painter, that pull is caused by the motion of the stream; that pull is typical of Force in general, and the action of the stream is typical of the modes of
motion which cause Force.
Here my discussion with "AGirton Girl" ends, if she will permit statement at least which she has made-namely, that my letters have given her something to think about

## London, June 24th.

Sir, -To one not a metaphysician, " $\Phi$. H. s" last contribution is
mostinteresting. I could not see the dificult mostinteresting. I could not see the difficulty about the stone, or the unintelligibility. Nor can I see why for most purposes the worl force may not conveniently denote certain transferences of occult such a phrase as " "the sentient ego is conscious of a tabular impression on the retina "should not be understood to form part of the connotation of the verb to see when "A Girton Girl" says
she sees a table-or was it a trunk? The notion, too, of applying she sees a table-or was it a trunk? The notion, too, of applying
spring balances to freely falling weights rather transcends my comprehension, unless we may consider the earth a freely falling
weight. But the experiment with the plank was worth betting weight. But the experiment with the plank was worth betting
about, and the result opens quite a vista of possibilities to the practical mind.

For consider, we have a system consisting of two boys and a
plank isolated by the projection of the rollers from the universe so
far as motions in the direction of the length of the plank are far as motions in the direction of the length of the plank are
concerned. A strain is set up between them, and presently the
two boys who beegan at opposito ends of the plank are found together at one end, the plank retaining its position in space
unaltered, so that in an isolated system we have observed an alteration in the position of the centre of mass, consequent upon stresses acting wholly within that system. Apart, therefore
from all questions of causation, we are witness t from all questions of causation, we are witness to a case of
unbalanced motion. This result, to be sure, contradicts my experi-
ence with the ence with the boat; but perhaps s did not take enough care to keep
my feet steady. Further, it is likely that if the boys jumped of at one end the plank would recoil, which suggests that recoil only takes place when the parts of a system actually lose continuity,
and that the recoil of a gun would be annulled if the shot were infinitely long! But beor russing the rof wimith thi anh boys idid not keep their feet steady, and what happens if they
the sharply along the plank, and $I$ should like the experiment run sharply along the plank, and I should like the experimen
repeated in a light punt; and finally, I would suggest that till we have settled the simplest aspects of the question, we shoul
regard cart and horse, or tug-of-war teams with connecting rope regara cart and harse
and our molecules of several atoms, subject no doubt to
intere noeresting internal stresses, but moving visibly together if they move at all, and as units by no means capable y themselves o
illustrating the third law of motion, and showing us plainly two
W. A. S. BENSON. 23, Young-street, W., June 23rd,

$$
\begin{aligned}
& \text { STRAIN DIAGRAMS. } \\
& \text { of the } 29 \text { th }
\end{aligned}
$$

STRAIN DIAGRAMS.
SIR,-In your issue of the 29th of May last I communicated
what I considered a novel proof of the fact that, in experiments on what 1 considered a novel proof of the fact that, in experiments on
elasticity, the quantity $\frac{d P}{d t}$, or the rate of addition of load, ought to be constant both in magnitude and sign. As far as I am aware this was the first attempt to submit a strain diagram to Newton
laws of motion. It is curious, therefore, to read in a contribution to your number of the 12 th inst., from the pen of Professor A.
Herschel-who, by the way, seems to fancy that he has solved the fan problem by stringing together all the sesquipedalians in the of motion;" and in the same number Dr. Lodge illustrates hi Iucid defence of Newton's laws by a reference to "strain motion." My object in adding this note is, first, to express my satisfaction
to find that I am not singular in this view of an elastic curve, and secondly, to point out the logical inforence that, in order to study any aut
curve fr words, we must make the dependent variable $d s$ take its dimen-
tions from the independent variable $d \mathrm{P}$, which is added at a
I cannot fathom Professor Unwin's reasons for calling a strain diagram a "stress strain diagram." In a steam expansion curve steam have ordinates giving pounds pressure;; yet we do not gay",
pounds pressure expansion curve," but more shortly, "steam expansion curve," or a "steam pressure curve." So also of think we ought to limit our precision to the simpler expression
of a strain diagram," reserving the term "stress" in its usual Referring to Professor Unwin's letter on this subject in your tension, whether they be plotted with load or extension ordinate are all written from left to right; so that Professor Unwin
illustration from the letters of a sentence is not apposite, and is only partially true of a compression strain curve, the positive, not Greenwich, June $24 t \mathrm{i}$.

STEAM HAMMERS.
SIR,-Absence from Glasgow during the last ten days has pre-
vented the letter of Mr. Graham Stevenson, in your issue of 5 th inst., being seen by the writer till now. Mr. Stevenson seemst to
be dissatisfed with us frem the description of his "patent" steam hammer. We trust he will
not be displeased when we say that his letter he tha sided "considerable" amusement, because it is so evidently the producton of one who feels called upon to say something in his defence
and who has nothing relevant to say. We have to thank Mr. Stevenson for his courteous testimony to the excellence of design
and workmanship in our steam hammers; but in the same sentence he takes exception to our extreme watchfulness over our interests which he likens st to the ""watchfuluness of a gaoler.". It it true that
before this time we have been compelled on several occasions, in before this time we have been compelled on several occasions, in
your columns and elsewhere, to call in question the action of various parties, Mr. Stevenson himself among the number; but
does it not occur to Mr. Stevenson that his simile is somewhat unfortunate? To all law-abiding people "watchfulness", in a
gaoler or detective is a commendable quality; it is only to those gaoler or detective is a commendable quality; it it in on
who transgress that such watchfulness is objectionable.
Pre
Passing over three-fourths of Mr. Stevenson's letter as quite
irrelevant, we come to the remarkabbe statement that he regards our query, "Wherein lies his patent," as "ill-timed and not bond stand that the query is "ill-timed" for Mr. Stevenson, because he ide," and, we take leave to say, not at all ill-timed for the public. What are the facts? In your paper of 15th ult. a hammer by Mr. lt. we pointed out that ind deerribed as patented. On the 29th of a hammer patented thirty years ago by William Rigby, and we out what he claims, This he naturally ask Ir. Stevenson to point out what he claims. "his
dealines to do for no sufficient reason ; but he tells us that "Rigy
had no profound knowled had no profound knowledge of patents," and that some patents
"have no rights save those alone which the public choose to generously accredit." Can it be that Mr. Stevenson is drawing still more largely on a generous public by asking them to accept his
hammer as "patent" without having applied at all for the neces It is pleasing to observe that, amid the busy and practical life of
an engineer, Mr. Stevenson is able to devote some attention to the refining pursuits of poetry. He quotes the line, "There is a the words composing it are all old words and often used in writing prose. We are glad to agree with Mr. Stevenson in something
and therefore concur in his remark, but beg to point out furt that if any writer were now to inatroduce the ebo point line ound pass
ti off as his own composition, that writer would be justly chareed
 man throws himself open to quite as heavy a charge.
Greenhead Engine Works, Glasgow, June 18th.
TREviTHick MEMoriAL.
Sir,- There is no need for Colonel Davis to attribute to my
etter the term " acrimonions" whil letter the term "acrimonious" until he has answered it. In my
letter I endeavoured to avoid personalities, as he will see on reperusal. I shall be ready to attend a committee when there is chance, but this does not affect the public, as there is no persona Richard Trevithick in Westminster Abbey shall not be altered o abandoned at a amall committee meeting, which ought in actual
course to have been adjourned, and further, that our committee shall, according to practice, convene a meeting of the subseribers
to the Trevithick memorial, to determine on the report of the
committee when duly made, To no one point raised has Colonel Davis given an answer or an explanation, $\quad \begin{aligned} & \text { point } \\ & \text { 32, St. Georgess-square, S. W., } \\ & \text { HरDE }\end{aligned}$ ClarkE, June 2oth,


FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

LENPSIO.-A. TWirtiryzr, Bookseiler

## TO OORRESPONDENTS.

* All letters intended for insertion in The Enainker, or con. taining questions, must be accompanied by the name and address
oo the eriter, not necessariy for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous communications.
*We cannot undertake to return drawings or manuscripts; we
must therefore request correspondents to keep ${ }^{\text {must therefore request correspondents to keep copies. }}$ ** In order to avoid trouble and confusion, we find it necessary to public, and intended for for insetrtion of in thinuriry column, must, in alhe
cases, be accompanied by a large e evvelope legibly directed by the cases, be accompanied by a larre envelope lepirim, directed by the
writer to himself, and bearing a dd. postage stamp, in order that answers received by us mayy be forvoarraded sto their destin order that
No notice will be taken of comer No notice will be taken of communications which do not comply




machinery for making five gallon "drums. Sir,-Can any reader inform meo of the name one ot the makers of appli.
andeef formaking five gallon round iron drums? The drums are required
for carrying seed oils. ances for making five
for carrying sed oils.
London, June 22 nd.


## aUtomatic feed of rock borers.





## BUBSORIPTIONB.


$\qquad$


Advertisements cannot be Inserted unless Dellvered before six

THE ENGINEER.

## JUNE 26, 1885.

## the a b c process at aylesbury.

The A B C process, as carried out at Aylesbury, is the subject of a report by Dr. C. Meymott Tidy and Professor James Dewar, who have for the purpose carried out a
series of experiments at the Aylesbury works. The experiments seem to have been of an exhaustive character; that is to say, they were not made upon a few samples of with a large number of samples collected on several days. It is very well known that the strength and composition of sewage change rapidly and frequently, and conclusions
based upon a few isolated observations are therefore useless. Moreover, as the passage of sewage through the eflluent taken at the same samples of raw sewage and of no real relationship. For these reasons Dr. Tidy and Professor Dewar conducted March last; each series continued throughoung and two in hours, so as to embrace the varying conditions of the sewage and effluent. Samples of both these were taken every half-hour, and equal portions of four consecutive
half-hour samples were mixed together for chemical examination. Guided by the rainfall principally, the reporters chose three different periods, which gave samples of se
and strength.
For the purpose of the experiments it was necessary to obtain the amount of sludge from a given quantity of suwage, and the proportions severally of the A B C preci-
titing materials and of the sewage matter. A special
arrangement was needed for this purpose, it being found impossible to determine these details with even an approach to accuracy in the large subsiding reservoirs.
Four iron tanks, each holding about 200 gallons, were therefore divided, by chalk lines on the inside, into six equal divisions, one of these divisions being filled every hour by means of a small force pump placed in the narrow channel down which the treated sewage runs before enter-
ing No. 1 tank, with the sewage that had been already treated. The deposit in each of these four tanks, there fore, represented the mean amount of sludge produced during six consecutive hours. The sewage deposit in these tanks was allowed to settle, and the clear ettluent syphoned
off. The deposited sludge was then dried at 212 deg. Fah. and weighed. The quantity of carbon, clay, and alum used during the twenty-four hours was determined, and subracted from the total-calculated-sludge.
The usual method of working the process was carried on without any innovation during the experiments. "This may be described in the words of the report. "The
sewage is delivered at the works into a small oblong space sewage is delivered at the works into a small oblong space
about 4 ft . wide by 6 ft . long, paved with bricks. Across this space, and about one yard from the sewer mouth, a wooden $V$-shaped trough is placed, into which the B C mixture is run-even distribution into the sewage being
effected by means of numerous notches cut on the sides of effected by means of numerous notches cut on the sides or
the trough. By this means the sewage is completely and the trough. By this means the sewage is completely and
immediately deodorised, no escape of offensive odours from the sewage into the surrounding air taking place. The entire works are free from any objectionable smell whatsoever. After being mixed with the B C mixture the sewage passes through an iron grid for the purpose of catching paper, straw, and similar floating materials. It then passes along a brick-paved channel for about 12 ft .,
the channel afterwards narrowing to 2 ft . in width. Here the channel afterwards narrowing to 2 ft . in width. Here
the alum solution flows in from a wooden trough in the same manner as described in the case of the B C mixture. The alum is added some short time after the B C mixture. The addition of the precipitating ingredients separately is found to afford better results than when they are run in together. The treated sewage flows along the 2 ft . channel for about 40 yards, in order to facilitate mix-
ture before it is allowed to run into the first subsiding ture before it is allowed to run into the first subsiding
tank. There are three subsiding tanks, each holding 42,000 gallons, through which the treated sewage successively flows before finally passing through a fourth and last tank, which is about double the size of the other three. On leaving the tanks the effluent, now practically free
from suspended matter and devoid of smell, passes for from suspended matter and devoid of smell, passes for several hundred yards along an open brick channel, before
finally discharging itself into the brook finally discharging itself into the brook. The materials used for the precipitation of the sewage matters are clay, carbon, blood, and alum, and they are manipulated as
follows:- Weighed quantities of the clay and carbon are follows:-Weighed quantities of the clay and carbon are ground together in a mill with a certain small proportion of blood and some water. When thoroughly incorporated, the mixture is run into a reservoir placed beneath the min, where a considerable proportion of the heavier clay par-
ticles subside, whilst the lighter particles of clay and ticles subside, whilst the lighter particles of clay and sulphate of alumina is dissolved in a separate tank, and is run directly from this into the sewage. The solution of alum used was found to per cent. of sulphate.
hemi a result of the three series of observations and chemical analysis, the reporters say they consider it estauniform effluent botwithstanding the very varie nature and concentration of the raw material to be dealt with. The quality of the effluent, however, more especially as relates to the quantity and kind of dissolved organic matter, unquestionably depends upon the strength of the original sewage." They add, however, that there seems to be no reason to doubt that a minimum quantity of organic matter in the effluent might be permanently maintained if the weak nightly sewage could be stored and mixed with the stronger day sewage, or if the two effluents were stored and mixed. They say, also, that with due care an effluent can be easily obtained practically clear and with less than one grain of suspended matter per gallon, and that the precipitation seems to be more complete as the uantity of suspended matter in the raw sewage increases The reporters then describe the sludge-drying process and its conversion into "native guano," which, it is remarked, is nothing but the partially-dried precipitated sludge mixed with some "sulphate of magnesia"-ammonia?-and ground. From a table of analyses given in the report, it appears that the manure freshly ground contains $31 \cdot 7$ per cent. moisture, and after being ground five months it contains 28 per cent. of moisture, and one sample after eight 20 per cent. of moisture, the combined nitrogen reckoned as ammoniain themanure is 3 percent. Fromfoursamplestaken from different parts of a heap of the manure, the phosphoric acid was estimated, an average of 5 per cent, reckoned as ricalcic phosphate of lime, being found. On the subject of the manurial value of the native guano Dr Tidy and Professor Dewar express themselves in a manner which certainly does not commit them to much. They say:- "We are strongly of opinion that this must agriculturists than by presumed theoretical values based on analytical data, and on the price of ingredients not necessarily in the same physical or chemical condition rought about in soils may have very important changes effects." The discrimination shown in the selection and combination of words in this paragraph certainly indicates comius which ought to be acknowledged.
So much, then, for the report on the work going on at Aylesbury. The first question that will be asked by every one is-Having this so-called "native guan, wha is the cost of its production, taking into consideration its and the cost not only of the ingredients employed, and the cost not only of the ingredients employed,
but of the machinery and plant used in dealing with but of the machinery and plant used in dealing with
sludge? The report says nothing of cost, and there
is only one mention of the quantity of precipitating
materials employed. It is as follows:-"The quantity materials employed. It is as follows :- "The quantity of precipitating material used was only slightly more than ne-third of the total weight of sludge produced, the ibsence of any appreciable amount of suspended matte In the effluent proving that efficiency was not impaired by the small quantity of material employed." This quantity may be considered small in the sense that by familiarity w may cease to be surprised at anything, but it certainl makes us ask why was this report published. It could not be to prove that a good effluent could be obtained by the A B C process, for that has long enough been known,
and it could not be to show that the process could be and it could not be to show that the process could be looked upon as generally applicable on account of its
cheapness or possible profitable character, for that it does cheapness or possible profitable character, for that it does
not show. Aylesbury is a small place; it does not appear now, any more than in days pone by, that the A B B process could be commercially satisfactory in a larg place. We may be mistaken, but the information at present forthcoming does not convince us of it.

## patent-office delays.

Under the new Patent Act a provisional protection secures the privileges of a patentee to an inventor fo twelve months-that is to say, it nominally does this. As
a fact, the duration of a provisional protection is but nine months, because just before the end of that time at the latest, a complete specification must be filed and a complete patent applied for. For all practical purposes, therefore nine months represent the useful duration of provisiona protection. This period, brief as it is, is seriously curtailed by the action of the Patent-office; and we think that it is quite time that inventors should make their voices heard and take strong action in a matter which very closely con cerns them. When a provisional protection is applied for the petition and specification are accepted by the officials a the Great Seal Patent-office, and a receipt is given with number and a date. Then commences a weary period of waiting extending over at least three weeks, during which period the inventor can take no action whatever, because he does not know whether his specification will be accepted or not. The theory is that during this period searches are being made to ascertain whether the invention is or is no novel. The fact is that the documents are simply put in pigeon-hole to wait their turn, and that as a ruleall the exam nation they receive is performed in fiveminutes. Itis notdifficult to see that if the authoritieskeptabreast of their work would be quite possible in nine cases out of ten to let the applicant have a deinite answer, yes or no, in a couple o days after the specification was lodged. In a few instance where doubts might arise, a longer time would be necessary, and no one could object, because that would be a reasonable cause for delay. But delays now take place for which thote is really no excuse whatever, inasmuch as they have Here ig whatever to do with the question of novelty the coun case in point. Some weeks since an inventor in he received in due course of post a receipt. Then he waited, and continued to wait. At the end of a month o thereabouts he wrote to ask for information, and he very promptly received a reply stating that his papers were
informal because the title of the invention had not been per place on the page. Now we may, for form's sake, concede that it was a criminal piece of negligence on the part of the inventor to write the title in the wrong place, but to the ordinary business mind it appears that it was the duty of the clerk who received the documents in the first instance to see whether they were or were not informal, and if they were, to notify the fact then and there to the applicant. Instead of this號 weeks are lost to the applicant, because, of course, the at lded specification will have the old date. Again, it anyth open to doubt that the inventor would have hear agining more about his papers for months if he had not cited. Such cases are by no means isolated. We ma for another which is instructive. An inventor applied granted him in due course Before the expiration of nin months he applied for another provisional for the same invention, thus adopting a very common practice by months for word with provisional was as nearly as possible word an intimation that this specification could not be accepted, as it covered two distinct inventions. It was useless to poin wat that protection had already been granted once. Ther out. This kind of thing goes on weeck aftion had
We have, too, the strange anomaly that while the authorities will not take the trouble to write the title of a patent in the proper place on a sheet of foolscap-a matter which involves no principle of any kind-they do It is hesitate to settle the claims of very important patents, a specificaurse, tolerably widely known that the claims in may be of the utmost possible importance. The awor ties in Southampton-buildings, however, having examine specitications, construe them after their own fashion, an tell the inventors that their claims are erroneous and must be modified, and state in what way the alteration is to be made; and more than once astonished patentees which found themselves blessed with patents for machines which they never dreamed they had invented until they specification by the Patent-office authorities. Several been made the basis officially amended claims hav arise about them hereafter, the Patent-office will find itself in a very peculiar predicament, to say the least.
There is no reason why competent business men should not carry on the work of the Patent-office just as a bank for example, is carried on. The truth is, however, that the officials employed, with certain exceptions, are not who are. The Board of Trade by their officialism those place from which to supply the Patent-office. In fact, the place from which to supply the Patent-office. In fact, the
traditions of Government offices are against commercial
efficiency. Changes must be effected sooner or later, and they will be effected very much later instead of soone measures to make their complaints heard.
the harbour at aden.
A somewhat unusual question has arisen out of the discussion which has recently taken place with reference to desired improvements in the harbour at Aden. It is, asdeed, of so unusual, and yet of so important a character with reference to action in the future as regards colonial harbours-especially those in the Eastern seas-that it seems very necessary that the matter should engage the improvements of this nature, and of those who preside over the question of national defence. Secured as Aden anchorage it affords at all times, it is yet defective in that shallow water reaches far out from the shore. The tidal range which is experienced there, in common with all ports in the East is so limited that one would view in dealing with the needs of Aden harbour; but, slight as it is-we believe that even at springs it never exceeds 2 ft . 6 in . or 2 ft . 9 in . -the tide certainly plays an important part in the matter with which we propose to
deal. As we have said, the shallowness-or what may, in these days of deep-draught vessels, be considered shalshore, entailing upon all shipping operations very great delay and expense. In order as far as may be to obviate these inconveniences, the large steamers which cal
at the port always enter, if possible, on the top at the port always enter, if possible, on the top
of the tide, so as to secure an anchorage as closely
approaching the wharves, or the foreshore whic approaching the wharves, or the foreshore which
serves as their substitute, as may be safely done is no uncommon thing for the recession of the tide to leave which forms the stattomers partly imbedded in the soft mud which forms the bottom of the harbour, and when that is the case, although steamers sometimes force their way out impracticable to do so, and is always an operation attended with some risk. The majority of the vessels, therefore, the loading or discharge of which cannot be accurately
timed, have to wait for their departure till the rising of the tide sets them fre
It is not to be wondered at, therefore, that the shipowners, merchants, and others who are interested in the shipping trade resorting to Aden, which may, indeed, be have united in a strong representation to the Secretary of State urging the desirability of undertaking extensive State urging the desirability of undertaking extensive dredging to remove the defects named, and so to admit
of a closer approach to the landing place. At first sight it would soen. tion to so manifestly a desirable improvement, but we learn of those who oppose the that it has beenad vanced by some of those who oppose the suggested deepening of the harbour hat oxcavate it would entail the complete nullification ears been constructed. If this be relly the have of lat years been constructed. If this be really the case, we can only say that our military engineers to whom such work culpable want of prescience. We all know with and ulpable want of prescience. We all know with what Aden and Gibraltar is guarded. We believe, indeed foresses as Aden and Gibraltar is guarded. We believe, indeed, that but wo complete plans of them are allowed to be extant, the ne being kept under the most careful guardianship by ur Home War Department, the other being in the charge of the local governor and deposited under locks requiring duplicate keys, the second of which is in custody of the chief local military authority, to open them. It is scarcely ion to judge as to the amount of information possessed by those who have advanced this novel and extraordinary argument, nor of its weight or accuracy. But it may
safely be assumed, we should say, that no one would have ventured publicly to advance such an argument unles he was in a position to feel certain that it could not be herefore, that the position is such as has been stated, we ind that we must either forego the security resulting from works of defence-executed, no doubt, at large cost-or abandon the hope of seeing the
Military engineers charged with the designing of the position or extent of batteries must, it appears certain, obtain the sanction of their superiors at home before proceeding to carry their designs into effect. No doubt, there put in hand the plans were duly weighed and considered y the highest military engineering advice available; without having in thereupon has the necessities of an early future, we cannot but think there has been a lament able want of foresight on the part of the officers consuited. It is the old complaint again coming to the questions-even those of the highest imperial importance from their professional point of view alone. This is particularly the fault, we fear, of military men. It is almost impossible to realise that, with the plan of the harbour as it exists before them, furnished as they must surely have een with the reports of those concerned with the port and narbour of Aden as to its present disabilities and its future necessities, they could have overlooked the fact that the
day for improvement must come, and that they were bound therefore to locate their batteries or defensive works in such positions that their utility could not afterwards be nullified by such improvement. But if such a
mistake, such a palpable oversight, has been committed, it mistake, such a palpable oversight, has been committed, it
is too late to cry over spilt milk, and abstain in consequence of it from work which is a necessity to a large proportion of the carrying trade of the whole world. occupy its former position of a mere fortress only. It is a
large commercial rendezvous, one the importance of which must go on increasing in proportion to the extension of pointed out can be allowed to stay its proper development. We have cited this case because it appears to us to in sidedness of view of future requirements, and a oneexercised with reference to many other places in our colonial possessions which may need, like Aden, artificial extension. It certainly behoves those whose duties lie in faults are not again permitted to be operative.
the amalgamated society of engineers.
The delegate meeting of the Amalgamated Society of Engineers, which for the last five weeks has been sitting at Nottingham, and has not yet completed its labours, will be a very costly
affair. The allowance granted to the delegates represents alone affair. The allowance granted to the delegates represents alone an expenditure of over $£ 1000$ per week, and the total expend
ture out of the funds of the Society, which will be involved in connection with this conference, cannot fall far short of about $£ 8000$ It seems very questionable, however, whether the Society wil whichithas beenput. There have been two special matters very seriously affecting the financial stability of the Society in the future which the delegates have had under their consideration. These have been the alarming increase during the past ten years in the expenditure on superannuation benefit, with the prospect of a proportionately similar expansion in the future; and the enormous expenditure for which during the last two or three years the Society has been called upon by its out-or-work
members. These two questions the delegates have scarcely members. These two questions the delegates have scarcely
faced in a manner calculated to place the Society permanently faced in a manner calculated to place the Society permanently pirit of adopting half-measure expedients simply to overcome present difficulties. The fact that is plainly befo the members is that the Society has been attempting to
do more than its means will allow, and by one of the news paper organs specially representing working class interests, it is estimated that if the Society, with its present accumulating expenditure, is to make any headway financially in the future, it will be necessary to increase the subscription of the members from 18. to 18. 6d. per week. The delegates, however, have
not had the courage to meet the difficulties in which the Society is placed by boldly increasing the subscription
of the members, but have preferred a tinkering amendment of the basis on which the superannuation and out-of-work benefits are to be paid. The period of membership pre-
viously necessary before a member could claim to retire on a superannuation allowance was eighteen years ; this has been twenty years of age the option is still left to a admitted at tively early in life retiring permanently on the Society's funds. The out-of-work benefit has been dealt with in a fashion that is calculated to raise suspicion as to the manner in which members have hitherto been taking advantage of the funds for this purpose. The recent policy of the Society has indicated a disposimembers admitted to a desire to seek after the power of umbers, which may have contributed to the heavy burden of unemployed which of late has been thrown upon its books, It is sought to lighten this burden by limiting the out-of-work that hitherto members have shown more readiness to draw out of-work pay from the Society than anxiety to secure work at their trade, it is difficult to see how such a provision can bring material relief to the Society's funds,

## THE RATING OF MACHINERY,

Shefribld is beginning to feel the pinch which the Leeds istrict felt last year in the assessment of machinery. At the own Hall, this week, the stipendiary magistrate heard a case in Limited, was summoned by the Corporation for the payment of two district rates made on April 9th and October 8th, 1884 , of the amounts of $£ 6710 \mathrm{~s}$, and $£ 6015 \mathrm{~s}$. respectively. The solicitor for the defendant stated that the question at issue was the same as that raised by the counsel for the water company in recent action. During the last twelve months a new assessduced, which had the effect of trebling the rates on his client's property. The dispute was as to what extent machinery was
liable to be rated, and it was a question which involved a arge number of works besides those of his client. Notice of Committee, and he had pointed out to them that the Assessment Committee, and he had pointed out to them that it was scarcely uggested that it be allowed to stand over until the question was settled for the whole of the works. The Assessment Comittee agreeing with that suggestion, the summonses had already contended that the present case did not stand on the same footing as that of the water company, because the defendants had omitted to give notice of appeal against the assessment to rder for the payment of rates now long overdue. The defendants' solicitor pointed out that in the case of the poor rate an appeal could only be made after the Assessment Committee had refused relief, and that in the case of district rates the committee had never refused relief, and, therefore, it was
impossible for the defendants to appeal. His clients were prepared to pay the rates on the former valuation if the case were djourned for six months, or until the case now pending against the water company were decided. The stipendiary gave an order for payment, but granted a case at the request of the defendants. This is a question to which the Chamber of Commerce, rightly appreciating its great importance to
manufacturers, has determined to give special attention.

## railway preferences.

7 man thall Scandinavian trade, and a considerable part of the in the exported to and imported from that port is sent inland. It Wear, and Tees. Nearly forty years ago there were three railways competing, and shipping at three ports; These three 1854, the three companies amalgamated, and formed the NorthCastern Railway. The basis of rates then agreed upon has basis which Hull is now determined to upset. On the part of
or receive the goods for shipment or which have been imported,
and that it ought to have the benefit of that proximity i cheaper rates than it has. On the part of the North-Eastern ports it is contended that there has been a basis agreed upon for years ; that it is this which has allowed trade to grow into its pre sent channels, and that it is inexpedient to disturb it, whilst it would be unfair to disturb it. The North-Eastern Railway Com pany takes this view, and it is one of the defendants in the action Midland ather far made no sign of their opinions It is evident that question is one the utmost importance to the trading classes, for the principle at stake would affect many districts and trades ; but on the whole the opinion of the com mercial classes will in this instance be with the north-easter railway powers, an lained of because its alternative routes to the seaboard at substantially similar rate and to the exporter or importer a free choice of ports. It has been well said that it is a commercial sequel to the parable of
the labourers, for Hull receives its traffic at rates lower than agreed upon, and in consequence it has little ground of com laint. But the issue of the question will be awaited with
iterest by all concerned in traffic to and from ports.
railway rates and foreign competition.
The question of Belgian and German competition in the wire trade still demands much attention. By the wise and generou co operation of the workpeople our Warrington and Birminghan ence in price which formerly gave the foreign product such an with the heavy charges for freightage made by the railte companies. This is a difficulty that they have not been able to overcome, and they are now renewing their protests against the
 week at Birmingham, laid it down that the matter of freight was the only serious advantage which the foreigners now possessed. In regard to wages, the advantage which they have
now, in the view of this authority, become an apparent rather than a real advantage, since he believes that the increase the increased output. There is , if not compensated for, by that in Figland the that in England the railway companies seem to discourage manufacturers. Some further relief must be afforded the wire industry by the carriers, if the trade is to is not conceded, we shall undoubtedly hear of English firm hintierring their business abroad. Nettlefolds are aready geographical position of the foreigners, remarked that he though it would be necessary for that company to take such steps a their foreign competitors enjoyed

## THE iNFLEXIBLE EXPLOSION.

IT is as yet too early to venture upon any discussion of the recently occurring in the coal bunkers of H.M.S. Inflexible We must await the details to be furnished after due examina tion before discussing them. It may, however, be remarke the sitting of a special commission to inquire into the explosion which but a short time back caused the total loss of another of the vessels of our Royal Navy. But we can consider with propriety one of the causes named, to which some weight appear
to be attached by the authorities at Portsmouth as likely, least, to have conduced to the comparative frequency of such explosions. It has been stated that, as a rule, the coaling of which has for some months been exposed to the action of th atmosphere, and has thereby been caused to part with much of
its gas. The Inflexible, on the contrary, was supplied direct from the vessel which brought the coal southwards ; it bein argued therefrom that that coal remained charged with an
amount of gas from which stored coal has been freed. We do amount of gas from which stored coal has been freed. We to use deteriorated coal, or to advocate its use, as a possibl factory a way of escaping from future cause of accident as can well be imagined. In parting with its gas a very valuablo usty condition inimical to proper the coal is sacrificed, and a vill be very undesirable to try and escape from the dilemma by onstruction and ventilation of the bunkers themselves that the true remedy must be sought,

IF one might expect to find ttention paid to the condition of the drainage of London, it should be in the locality immediately surrounding our
great naval, military, and civil offices, and yet it is scarcely too much to say that nowhere in this great city are fouler smells to be met with by passers by than have of late emanated from the gratings situated upon Horse Guards' Parade. Warned by repeated disagreeable experience we have, when recently crossing this open space, given these gratings as wide a berth as possible, and we would call attention to what is nit only a public mony many men whose avocations compel the occupancy for many
hours of the day of the buildings surrounding it. We re unaware in charg space is subject to the charge of Metromilitary authorities. Certainly we have observed none of those precums taken which are to beseen used in daily practice by the employes of the first-named body. In even the most distant of sewers and the deposition of deocorising material not only below the gratings themselves, but on the matter remaining at their sides after every cleansing operation. It has never come under our own observation, though repeatedly crossing the Horse
Guards' Parade, to see even the ordinary precaution of cleansing practised. It may be that this is not altogether unattended to; but at all events it is either too rarely or too inefficiently performed, and the sooner the charge of this area is put into hands experienced in such matters the better for the general weal
well as for that of the occupants of our great public offices.

Commentivg on the accident which occurred on the 8th of this month to the mail train on the Nicolai Railway from St. Peters-
buyg to Moscow, a foreign contemporary says the facts confurm
the supposition that it was the result of criminal intention.
"It was established beyond doubt by the Judge of Twer and the police that the derailment of the mail train was brought about by criminals, who had unscrewed one of the rails of the Moscow line. This rail was found lying on its side at a distance of about 17 ini. from its normal position, whilst the bolts, nuts, keys, and spikes, \&c., which had been taken out, were found by
the side of the detached rail. The permanent way was considerably damaged for some distance. The sleepers were of excellent quality, and were laid in 1883 . Not a single person
was injured, and in the opinion of the inspector, who had been was injured, and in the opimion of the inspector, who had been
ordered by the Minister to investigate the accident, the fortunate ordered by the Minister to investigate the accident, the fortunate
results were principally due to the powerful action of the Westinghouse automatic brake with which the train was fitted, and built on the American system.

## TRIPLE EXPANSION ENGINES.

IT is very generally held now by engineers that the marine engine of the immediate future will have three and very probably four, cylinders, in which steam of very
high pressure will be expanded three or four times. Now, high pressure will be expanded three or four times. Now,
there is nothing in the thermo-dynamic theory of the steam engine to justify the belief that any peculiar virtue resides in the system of expanding steam over and ove again in different cylinders. The consumption of fuel for a given power depends, other things being equal, on the number of expansions, and on nothing else. The economic results are very nearly the same whether we expand 50 lb . steam five times or 100 lb . steam five times. Indeed, there will bea small loss incurred by adopting the higher pressure If, on the other hand, we expand steam of great pressure a great many times-as, for example, 150 lb . steam twenty times-then a serious loss is incurred by condensation taking place in the cylinder, a result which ensues because we are dealing, not with a gas, but with a very unstable elastic fluid. All this is an old story, however, and it will suffice to recall the circumstances to our readers' minds with out going into details. A practical fact, however, appears to be that triple expansion engines are more economical than compound engines with two cylinders only, and it is, we think, not a little remarkable that no attempt worth the
name has ever been made to explain why practice should name has ever been made to explain why practice should
in this matter give the lie to theory. It is quite useless to in this matter give the lie to theory. It is quite useless to
assert that practice is wrong in this matter. Engineers assert that practice is wrong in this matter. Engineers
and shipowners know much better. The result of voyage and shipowners know much better. The result of voyage
after voyage demonstrates that the triple expansion engine after voyage demonstrates that the triple expansion engio
uses less coal per horse per hour than the ordinary com pound engine. Does this follow because steam is mor expanded in the triple than in the double compoun engine, or in spite of it? The information placed at the disposal of independent experts by the builders and users of triple expansion engines is very limited. It is by no means easy to obtain diagrams, or accurate data of any
kind concerning minute details. With the object of throwing some light on the subject, we place before our readers the following facts concerning one of the first triple expansion engines ever made. The performance of this engine is exceptionally good; in fact, nothing but a few changes of a trifling character in the arrangement of certain details are required to render it very nearly a
perfect steam engine, in a practical sense of the word. perfect steam engine, in a practical sense of the word
When indicating $200-H . P$. the consumption of Welsh coal is about 300 lb . per hour.
The engine in question was designed for the steam yacht
Isa, by Mr. Taylor, of Sunderland, and was built by Messrs. Douglas and Grant, of Kirkaldy. The Isa is a ver handsome yacht of about 270 tons. She was built for Mr Andrewes about seven years ago. She is now the property of Mr. E. C. Healey. No repairs of any importance were made or required during six years, although the boat did where. Last winter, however, it was deemed advisable to thoroughly overhaul the engines, and this work was carried out by Mr. Mumford, of Colchester. The principal repairs consisted in renewing the brasses of the worn brasses of connecting rods, and replacing tlocks with larger surface. As the yacht has just been commissioned a run from Wivenhoe to Southampton was made a weather, trial trip, rendered non-continuous by stormy night and which made it necessary to lie at Deal one taken on Noard quality that it was impossible to keep steam at much above 85 lb ., or 40 lb . under the proper working pressure. pistons are $10 \mathrm{in} ., 16 \mathrm{in}$, and 28 in . diameter, with a stroke of 2 ft .; and with the full working pressure they make of the boat revolutions per minute, depending on the trin by one boiler with two furnaces. The boiler is 8 ft . 9 in diameter and 8 ft . 6 in . long. On the top of the boiler is a horizontal steam drum in the fiddley house. There is no superheater. The smallest cylinder stands on three legs on top of the intermediate cylinder, and both are very careuly jacketted. The low-pressure cylinder,
driving the after crank, has no jacket. We give here three sets of reduced diagrams chosen from a considerable number taken with a Darke's indicator during the run. These diagrams were taken only to ascertain whether the slide valves were properly set or not, and it will be seen that
the distribution of steam is very good indeed is, however, wanted on the underside of the More lead piston. On Saturday there was some thumping on both piston. On Saturday there was some thumping on both
cranks, though the brasses had been set up by Mr. cranks, though the brasses had been set up by Mr,
Weldon, the chief engineer of the boat, on full 64 in . leads, Weldon, the chief engineer of the boat, on full 64 in . leads, on Sunday and Monday the forward crank ran in perfect silence, without a trace of heating, or water being neces sary, but the after crank had an obstinate thump on th bottom centre. On Monday morning, therefore, the low-pres sure slide valve, which weighs about $2 \frac{1}{2}$ ewt., was drawn,
and a large washer, $\frac{1}{10}$ in. thick, dropped down the rod to rest on the lower nut, thus virtually giving a little more lead below and a little less above. The result was found
to be very satisfactory, for although the thump was not
removed, it was greatly reduced. If it does not entirely disappear when the brasses have been again adjusted on board, a Welsh anthracite, a large proportion dead on board, a Welsh anthracite, a large proportion dead
slack which ran freely through the fire-bars, it would have been useless to test for economy.
Diagram Fig. 1 is from the high-pressure cylinder, and shows a maximum pressure of 122 lb . above the atmoshows a maximum pressure of 122 lb . above the atmo-
sphere, revolutions 108. It was taken a few minutes after sphere, revolutions 108 . It was taken a few minutes after
starting when the steam was well up. Diagram Fig. 2 is from the intermediate cylinder. The pressure was 93 lb .,

FIC. 1


ATMOSPHERIC LINE
revolutions 104. Diagram Fig. 3 was taken when the revo utions were 100 and the pressure but 85 lb . These diaindicator available, and the arrangement of pulleys or fair

FIG. 8
REVS. 104

ATMOSPHERIC LINE
eads for the cord took some time to adjust, so that it was impossible to get a number of diagrams from all three cylinders in a short time. This is, however, a matter
of small importance, as they serve to illustrate varying

conditions. The diagrams have been calculated for the conditions under which they were taken. No. 1 shows 64-2-horse power, No. 2 shows $23 \cdot 8$-horse power, and No. 4
shows 98 -horse power. The gross power, therefore, is 186 .

boiler pressure no.lbs.

With the normal working pressure of 120 lb ., the engine indicates about 200 -horse power
Certain points about the performance of this engine are worthy of special notice. In the first place, in spite of the jacketting, the condensation in the high-pressure and he laediate cylinders was very great. The stuffing-box of water poured from it. Neither in it nor in the highpressure cylinder was it possible to obtain dry steam when the indicator cock was opened. The jacket was kept carefully blown, but this did not appear to make the smallest difference. Diagrams were taken with the jacket full of water and full of steam. No alteration could be detected. From the low-pressure cylinder, on the contrary, not a drop of water could be obtained. The steam was to all intents and purposes quite dry. The few drops of water formed about the indicator cock when ituwas opened disappeared in a moment. From the stulfing
boxes--the tail rod comes through the top of the cylinder -no water ever drips after the engine has been once warmed

The frigorific influence of the condenser is here absolutely nil. Furthermore, the curious fact is shown by little affected by that in the boiler. This statement is so remarkable that we make it with hesitation, yet we cannot see how an error could have occurred. The indicator was in perfect order, and diagrams taken on two different days and under different conditions tell the same story. Comparing diagram Fig. 4 with Fig. 3, and it will be seen that while the maximum pressure in the latter is 16 lb . at one 18 lb and 18 lb . at the other, the pressures for No. 4 are pressure for Fig. 3 was 85 lb . only, and the revolutions 100 , while for $\operatorname{Fig} .4$ the pressure was 110 lb ., and the revolutions 102. Thus a difference of boiler pressure of 25 lb had no effect in the low-pressure cylinder. We believe that engines. Of course this only obtains within certain limits as was proved by the fact that when the engine was much throttled and run at half speed there was little or no work done in the low-pressure cylinder, as was evinced first by the cessation of thump on the crank pin, and the moment after by the cracking of water against the cylinder covers showing that under these conditions the condensation in
We may call attention now tg the yery small powe
developed in the intermediate cylinder. We have a 10 in cylinder developing very nearly three times as much power as a 16 in ., and it may be asked, is it worth while how very little it contributes to the general duty? The principal object secured by the intermediate cylinder is to princlise the strains on the two cranks, and the succes which has attended Mr. Taylor in this respect shows with what care and discrimination his calculations were made The fact remains, however, that very little power is got out of the intermediate cylinder, which really plays to some extent the part of the receiver used in ordinary compound engines, and we therefore give the preference to the pound-rgines, and we therefore give ther hand, however, it
three-crank triple engine. On the other must not for one moment be forgotten that the three-crank must not for ue moment be forgotin and is more expensive
engine takes more engine takes up more space in a ship and and to maintain than the tandem type. What type ought to be adopted depends entirely on the ruling conditions

It will be said that we have advanced nothing to show why the triple expansion gear engineismore economical tha the double expansion engine. This, however, would extend this article to a wearisome length. What we have to sa on the subject shall be said at another time. Meanwhil we have, we believe, placed some facts not without interes before our readers, and a discussion of these facts, and th columns, would no doubt elicit information concerning the columns, would no doubt elicit information concerning the
performance of other triple expansion engines which would prove very useful.

THE PRESERVATION OF TIMBER.
The following is a summary of a voluminous report of the Com mittee of the American Society of Civil Engineers on the preservation of timber. The report itself. was presenh
of the Society at Deer Park, Md., June 24th
After a brief statement of the labours of the Committee and of on account of rapidly diminishing supplies of timber, a shor
of history of the progres of the art is sivpn, showing three principal
methods of working, viz.:-(1) Steeping. (2) Vital suction methods of working, viz:--(1) Steeping. (2) Vital suction or
hydraulic pressure. (3) Treatment in closed vessels by steaming, The experience in $t$
The experience in the United States is given in five tables, comprisils or experiments.
trial or less length in the text, sutficiently to give the reasons for success
or failure, and the lesson to mot or failure, and the lesson taught. The five heads corresponding to the tables are :-( $)$ Kyanising, or use of corrosive sublimate
(2) Burnettising, or use of chloride of zine, ; (3) Creosoting, or use
of Miscellaneous, or use of various substances
Of the first, Kyanisin
Of the first, Kyanising, it is stated that an absorption of four or
five pounds of corrosive sublimate per 1000ft., board measure, is considered sufficient, and it would now cost about 6 dols. per 1000ft. It is not recommended except in situations where the air can
circulate freely about the wood, as in bridges and trestles; but in very damp locations-as for ties when in wet soil and pavements - its success is doubtful. Its cost when first used led to cheating, which for a time brought discredit upon it.
Burnettising the committee do not cons
Burnettising the committee do not consider the best adapted
to use where the timber is exposed to the washing action of water to use where the timber is exposed to the washing action of water,
as this removes the preservative; but, on account of its cheapness it is probably to be preferred at the present time to any other
process for the preservation of railroad ties. The Wellhouse, Thil. process for the preservation of rairroad ties.
many, and other modifications of the process aim at making the chloride insoluble, but are yet on trial. This process has been largely and successfuly introduced in Germany. Experience
shows the life of soft wod ties to be doubbed and trebled by its
sise Ite measure, or 20c. to 25 c . per tie, and for the latter purpose the committee particularly recommend it. The work must be well
done; but some of the failures were from doing it too well-that is, from using solutions of too great strength, thus making the
timber brittle. A solution of 2 per cent., by weight, of chloride of zine in water, is recommended.
Oreosoting, or the injection of timber with hot creosote oil in a
cylinder under pressure, is considered to be the very best which has been fully tested, where expense is not considered. It is as yet the only one known which is sure to prevent the destructive attacks of the teredo or other marine animals, and to give
absolute protection against decay in very wet situations. It is a
somewhat expensive process, somewhat expensive process, requiring for protection against the
teredo from 101b, to 20 lb , ere from 12 dols. to 20 dols. per 1000ft., B.M. For resisting decay The a cost of 10 dols. to 14 dols. is sufficient.
The Boucherie process, in which green timber is impregnated Wra sucume when well done, using a solution of 1 llb. of sulphate
or a vacuum, whate
to 100 , whe to 100 lb . of water, has proved fairly successful. Under the head
of "miscellaneous," are classed forty-one experiments with almost as many substances, sulphate and pyrolignite of iron, lime, resin, oil, tar, \&o., but with as yet no commercial success. The general
principles laid down are to select the process with reference to principles laid down are, to select the process with reference to the
subsequent exposure. Use open-grained, porous timber, and for that reason in in general the opheaper woods. Extract the sap and
then water to make room for the material to be injected, natural seasoning, except for the Boucherie process, being very desirable. septic to insure a good result, and then let the timber dry antiusing, as its durability will thus be increased. Do not hasten the work if it is to be well done. Protect ties or timber in the track as far as may be from water by drainage. Contract only with who must be in constant attendance when the magnitude of the order warrants.
There is at the
There is at the close a discussion of the question, Will any preserving process pay? This is answered in the affirmative. The
chairman of the committee gives a careful estimate in one of the appendices in an actual case in this country; another general estimate is given based on European experience, and three other separate appendices give different methods of examining the ques-
tion of economy and comparing values. Other appendices-to the tion of economy anc comparing values. Other appendices-to the tion and conservation of forests, experience of a number of engincers, with methods pursued, apparatus used, \&cc.

Sugar Production,-In 1884 the production of sugar over the world, so far as it came under the cognisance of statistics, was
about $4,600,000$ tons- - say $2,100,000$ tons of cane-and $2,500,000$ tons of beetroot sugar. This quantity was in excess of consumption,
and resulted at December 31st last in a surplus of about 200,000 and resulted at December 31st last in a surplus of about 200,000
tons, which surplus had increased by May 1st to 230,000 tons, cons, which surplus had increased by May 1st to 230,000 tons, or
5 per cent, over consumption, in visible stocks. There has been no faling off in consumption, which in the United Klngdom has
for upwards of forty years increased at an average of about 3 pee cent. per annum. The increase in America is at the that about of 6 per
cent., and over the world the average increase is about 200,000

## ELECTRICAL ENGINEERING AT THE INVENTIONS EXHIBITION

## No, v .

Having in our four previous articles treated this subject from a general point of view, we must now confront it more closely and describe some of the exhibits in detail. In doing this the question presents itself, In what order should we describe them? Should the most novel, or the largest, or the most well known, or the best dynamos, be described first? Any such distinction would e unwise and, perhaps, unfair; for, apart from the obvious impossibility of finally saying what is best or most novel in an exhibition which is still incomplete, we hold that it is not within our province to pronounce judgment on the exhibits. Our duty is to critically describe and bring facts efore our readers, who must then judge for themselves, To avoid making any unfair distinction, we propose to describe the dynamos in the same order as the exhibitors supplied us with the information. Those who were most ready to give figures and show us details enable us to describe their dynamos first, whatever may be our own opinion as to excellence or novelty. At the same time, the readiness of a maker to publish details might perhaps be taken as a proof of the excellence of his machine, or at
to the spindle, was only about lin., and therefore it wa easy to coil the copper on with sufticient grip to withstand the comparatively small force which could be exerted over lin. of its length. On account of the projecting corners of this hexagonal core, the magnetism can only travel round it in a somewhat jerky fashion, or, to speak more scientiof force eregnetic field is considerably disturbed, and ine these corners along the polar surfaces. If only one such hexagon were used the current would be very jerky indeed and heavy sparking at the brushes would take place. To overcome this difficulty Bïrgin uses a number of hexagons, mounted spirally on the same spindle, and each of which is so light in comparison to the field magnets that the disturbing influence of the corners of the armature is only small. Yet the disturbance exists, and is evidenced by some slight sparking at the commutator. We have saic above that Bürgin departed from the Gramme machine for mechanical reasons. Messrs. Crompton have gone back to the Gramme armature for electrical reasons, The evolution of their modern machine out of the original Bürgin machine is very interesting, and is illustrated by a number of armatures exhibited. We find here the original ten-ring Biirgin armature, the core of each ring being lin. wide and $\frac{1}{2}$ in. thick radially


## 22-UNIT CROMPTON DYNAMO AND WILLANS' ENGINE,

least as a proof that the maker is satisfied with it, and The total cross sectional area of the armature is therefore thinks it will bear public scrutiny with advantage. When
an exhibitor absolutely refuses to make known the an exhibitor absolutely refuses to make known the he fears comparison with others, or to have his patents infringed, or be perhaps himself sued for infringing; or last, but not least, he is unwilling to give to the world information which might enable other people to improve
their dynamos. There can be no doubt that a close study of all the machines exhibited would enable every individual maker to find something to improve in his particular machine, for we cannot believe that a condition of finality has already been reached in this branch of electrical engineering. Some of the machines exhibited this year was it last year, and yet improvements were made. It is reasonable to assume that other improvements are still possible, though we may at the present moment hardly see how there can be room for them. We hold that every improvement introduced by one maker must indirectly benefit all the other makers, and must directly benefit the cause of electric lighting in general. But we are digressing, and must turn to our task of describing particular exhibits
Messrs. R. E. Crompton and Co. show various machines of their new type and a collection of Biirgin armatures illustrating how the former was gradually developed. It is interesting to note that Bürgin departed from the Gramme type of armature simply for mechanical reasons, He used to say that a Gramme machine was in reality not a mechanical machine, but rather a scientific apparatus and, in so far as the attachment of the core of the arma ture was concerned, he was no doubt right. In the ordinary Gramme machine the armature is held by being driven over a wooden hub, and the power in the spindle has to be transmitted to the outer armature wires by rriction pure and simple. To overcome this difficulty Biirgin made the core hexagonal and held it by a gunmetal star-or spider, as it is technically termed-the spokes of which were forced into the corners, thus making the connection between the spindle and the core mechanically perfect. Each side of the hexagonal
core was wound with insulated copper wire; and in this core was wound with insulated copper wire; and in this respect the machine was not mechanically perfect, for the copper wire had to be carried through the field simply by
friction. In the original Birgin machines this presented no difficulty, as the length of the core, measured parallel

5 square inches on each side, whilst the perimeter of the first turn of copper wire on each ring is a little over 3in The electro-motive force of the machine is proportional to


## CROMPTON'S 2I-UNIT MACHINE.

the area of the core, and the resistance of the armature is proportional to the perimeter. Say we double the dimen-


## CROMPTON'S 21-UNIT MACHINE,

sions of the core, making it 2 in . by lin., we shall have twice the electro-motive force in each ring and twice the resistance. But since the resistance of the armature absorbs only a small fraction of the total electro-motive rings. This was found experimentally by Messrs.

Crompton, whose first step in this direction was to increase such ring the original rings to $1_{1} \mathrm{~T}_{1} \mathrm{im}$. as ten of the old form, and the total area is 6.5 square inches, giving an ncrease of electro-motive force of about 30 per cent. The eight-ring armature is shown on Messrs. Crompton's stand. To push the rings more closely together the original spiral arrangement was abandoned, or rather modified in such way that rings $1,3,5,7,2,4,6,8$ formed the spiral. This brings the corners of one hexagon nearly to the middle of the winding of the neighbouring hexagons, hus utilising the space available to greater advantage. The idea of this improvement is due to Mr. Crabb, foreman of the Chelmsford Works. In subsequent machines the idea of increasing the area of the core and reducing the number of rings was carried still further, and we find armatures with seven, five, and even only four rings exhibited. The core of the latter is $3 \frac{5}{8} \mathrm{in}$. wide and $1+\mathrm{in}$. thick. With such a heavy core, however, the disturbing influence of the corners of the rings on the field was excessive, and the machines could not be made to run without sparking. The number of parts in the commutator was only twenty four, and this increased the evil still further. The remedy was evidently to abaudon the Buirgin hexagon, and to go back to the original circular core of the Gramme machine Thus the disturbing influence of the projecting corners was avoided, and the commutator could be made with any convenient number of parts. Theory and experiment having meanwhile shown the advantare of a large mass of ron in the armatures, the core of the latter was made much heavier, as customary in the Gramme machines, In consequence of this and of the employment of wrought iron field magnets, a comparatively small number of turns of copper wire on the armature core suffices to produce the desired electro-motive force, and in machines built for an electro-motive force of 100 to 120 volts, only one layer of wire is necessary on the outer circumference of the rmature. The distance between the outer surface of the core and the inner surface of the polar cavities has thereore been much reduced-it messures now only froms in remall machines to 1 in in larger machines and a 10 ruit of smaw magnetic resistance has been obtained. We must t once mention that thi srangement is not confined to he machines of Mesars, Crompton but nearly all he mod modn lymamo of the Gramme or Siemens the goo now made so that the magnetic resistane of the air space is exceedingly low. The peculiarity of the machine of Messrs. Crompton is in the way the machine of Messrs. Crompton is in the way
the core is supported. We have said that the original Gramme machine was defective in this respect, original Gramme machine was defective in this respect,
and our readers will naturally ask how it is that, in spite of this defect, so many Gramme machines are yet in spite of this defect, so many swamme machachine may be weak and yet not break down, and that in machines of older design the strain was not concentrated as at present into a minimum of space. In comparison to the power absorbed those antiquated dynamos are very bulky, having comparatively large surfaces along which an attachment y smple friction can be made ; whilst in modern machines he field is so strong and the power so concentrated, that nothing but the most positive mechanical attachment will o. Messrs. Crompton build up the core of their armature of thin charcoal iron discs, about twenty-five to the nch. Every alternate dise is coated on both sides with Stannic paint, by which means the discs are insulated rom each other. Notches are stamped out on the inner circumference, into which fit the dovetailed outer edges of phosphor bronze bars, the inner edges of which are fitted into grooves in the spindle as shown in the annexed sketch. Thus the driving power is delivered by a positive mechanical attachment into the armature core. We give in Fig. 1 a transverse section through the machine which is used for the lighting of Old London. It is driven direct by a
Willans engine, as will be seen
 from our engraving, Fig. 2.
Fig. 3 is a perspective view of the complete arrangement. The core of the armature of this machine is 28 in . long, and $2 \frac{1}{2}$ in. deep, the external diameter being 12 in . There are 120 turns of wire on it, and at a speed of about 450 revolutions the external electro-motive force is 110 volts. In this machine every $1 \frac{3}{4}$ yards of wire on the armature produces about 1 volt in the external circuit, a fairly good performance. This is, however, not the best Messrs. Crompton's machines can do. We have received from them particulars of two machines lately erected at Buckingham Palace, where every $1 \frac{1}{2}$ yards of armature wire produces 1 volt in the external circuit at a speed of 440 revolutions per minute. We give below the details of the tests:-


The dimensions are: Armature core, 28 in . long, $2 \frac{1}{2} \mathrm{in}$. deep, 12 in . diameter, wound with ninety-six turns of copper tape 0.300 in . by 0.180 in .; bore of pole pieces, $12 \frac{5}{5}$, giving an air space of 0.47 in .; density of current in armature wires, 2100 ampeeres per square inch; resistance of armature cold, 021 ohm. The field magnets are arranged vertically, their cores being 24 in . wide by $4 \frac{1}{2} \mathrm{in}$. thick, whilst the length over all is 3 ft . 6 in . They are compound wound, the main wire being 0.265 square and the shunt wire 0.120 round. The exciting power in one half of the magnets is 11,000 to 12,000 ampereturns. There is one bearing for the dynamo spindle at the commutator side, the other end of the spindle being provided with a solid flange coupling forged on, by which it is bolted to the coupling on the shaft of the Willans engine. The portion of the spindle inside the core is triangular in shape, to admit of letting in the radial bars without unduly contracting the opening round the shaft by which air may enter. The core is subdivided lengthways by twelve air
spaces intended for internal ventilation. The makers state that a machine precisely similar to that here described has given an electrical output at the terminals of 25,300 wats, the proportion between external and internal elficiency of outp oing 91 per cent. efficiency of output of the machine is $6 \frac{1}{2}$ per cent. of the indicated power of the engine. This is a very good performance, and is ascribed partly to the great care taken in
the manufacture and partly to the quality of wrought iron used. What an important item the iron magnets are in a modern dynamo the visitor can
 see from a large magnet exhibited on Messrs. Crompton's stand. The scale of $1: 25$. The polar cavity is 3 ft , long 2 . The polar cavity magnet cores are 23 in . wide by in. thick. On the same stand will be found a small arc dynamo incandescent a small dynamo for output of about 4000 watts and larger machine of 7000 watts also the first Bürgin machine made by the firm and a later type, which is still being made for arc light ing when required. A disc arma ton's patent is also exhibited ton's patent, is also exhibited and proves that the firm do invention which has failed alongside of their successful machines, and are thus assisting materially in the object of "step winding," and has for its object to more completely atilise the space available for windng in disc armatures. As will be seen from the annexed sketch, the disc is covered by long and short coils, holes being left through which the wire of the short coils passes The difficulties of insulation in these holes, and on the inside of the disc where the coils come neces-
 sarily very close together, were, however, so great that the design had ultimately to be given up. Even had these difficulties proved less formi dable, it is doubtful whether the system of step winding has any advantages over the winding employed in the new "Brush" machine, where the triangular spaces left between the coils are utilised by letting the body of the core project into them. In this way is obtained not only a very substantial support for the armature coils in the direction of the driving force, but the magnetic resistance of the core and air space is reduced in a similar manner as in a Pacinotti armature,
On Messrs. Crompton's stand will also be found a large collection of arc lamps, switches, measuring instruments, and various accessories used in connection with the electric
lighting industry. These exhibits we shall describe in a lighting industry. These exhibits we shall describe in a future article.

SEPARATOR FOR STEAM BOILERS.
The separator shown by the accompanying engravings is made by the Stratton Separator Company, Cortlandt-street New York, and is for use on steam pipes between boiler and of a casing to which steam is admitted at the top. In this

casing the steam pipe proper is attached; it is open at the bottom, and the current of live steam entering the casing is carried round it several times, parting with whatever water it angles to its original entrance. The object is to avoid direct draught upon the steam space of the boiler, so diverting the current and changing its direction that water, whether by priming or of condensation, falls by gravity into a suitable receptacle. This is shown in the section. The device has been in use for some years, and has proved efficient.

NEW pier has been opened at St. Ann's-on-the-Sea. It is 350 yards long, and has cost about $£ 18,000$. Beyond the pier is an

HETT'S TURBINE GOVERNOR.


WATER-WHEEL governors of the old form, although theoengine governor are not found in practice to give suffiently teady motion for the finer provisions of the textile manufa tures, and they are totally unsuited for electric lighting purposes. The subject has received a great deal of attention at the hands of turbine makers and others, and their efforts have met with varying success. But no governor previously constructed can be said to give a regular speed to the turbine, whilst silent working and durability are attained.
The governor we illustrate above is patented by Mr. Hett, of the Turbine Works, Brigg, and it is intended to possess the necessary qualifications of a thoroughly trustworthy speed regulator. The governor proper consists of weights revolving round a pring. The whole is enclused in a case which is made a spiral driving pulley, receiving the motion of the driving belt. When devolving at the proper speed the weights are in mid position, and nothing is in motion but the governor proper. Should the speed increase, the weights fly outward, and in doing so, press the cone into the conical recess in the mitre wheel. The governor now carries the bevel wheel round with it, putting the whole train of wheels in motion, and gradually closing the turbine gates until the velocity
is reduced to the proper speed. The weights collapse slightly is reduced to the proper speed. The weights collapse slightly, and the cones disengaging the train is thrown out of gear, and the wheels rest until a further fluctuation of the load affects Similarly when the governos acion, the spring, and the same time the opposite cone comes into contact, the train of wheels being set in motion in the opposite direction, thus opening the turbine gates.
Silence and durability are secured by the absence of any motion in the gear, except when the governor is actually engaged in adjusting the gates. To prevent any danger of the governor moving the gates too far, a clutch is provided, which enables the wheel to slip round the spindle when anything obstructs the movement of the gates. It also allows the governor to be thrown out of action when the turbine is
stopped, both stopping and starting being done by hand.

## HEDGES' SPEED GAUGE.

THE accompanying engraving illustrates a novelty in the way of speed indicators, which has been introduced by Mr. Killing worth Hedges as a simple and cheap instrument for reading the speed of dynamos or other quick running machinery. The instrument, termed the Vortex Indicator, is simply a removable glass tube, which is revolved in a metallic case furnished on its outside with a sliding ring. The tube being partly filled with water, when revolved the water has a tendency to creep up the
side of the glass and imprison the air therein contained, ing it down in a parabolic form, which is elongated as the speed increases. The bottom of the bubble gives the speed which is easily ascertained by getting the two fine wires of the sliding ring in line, the revolutions being marked on the case. Mr. Thomas Blakesley, M.A., has investigated this instrument velocity of the water which causes the depression for any given speed can be ascertained without experiment. The depression is always proportioned to the speed, so that the calibration of the instrument is far simpler than those other forms of speed indicators in which the ordinates vary wlth the increase of speed. As far as we are aware, Mr. Hedges instrument is unlike all others in having the divisions at equal distances, and should prove of great utility for registering the speed of loco
motives, and perhaps may be adapted for ship
of these indicators are at work in the electric light shed of the Inventions Exhibition. They can also be tested at the offices

of the Globe Electrical Company, Dartmouth-street Westminster.

South Kensington Museum.-Visitors during the week ending June 20th, 1885:-On Monday, Tuesday, and Saturday, free, from 10 a.m. to 10 p.m., Museum, 8777 ; mercantile marine, Indian and Friday, admission $6 d$ frons, 2157 . On Wednesday, Thursday, mercantile marine, Indian section, and other collections, 188 Total, 12,902. Average of corresponding week in former years 18,939 . Total from the opening of the Museum, $24,096,512$.

STEAM BOILERS AS MAGAZINES OF EXPLOSIVE ENERGY**

## By Robert H. Thurston, Hoboken, N.J.

## Section I.-Computation of Energy.

In the following paper it is proposed to present the results of a series of calculations relating to the magnitude of the store of
energy contained in masses of steam and of water, when heated to temperatures customarily met with in the various applications of the expansive power of steam, in the arts, and especially in steam
boilers This enery may be measured by the amount of work boilers. This energy may be measured by the amount of work
which may be obtained by the gradual reduction of the e temperature of the mass to that due to atmospheric pressure by continuous The subj
both the man of science which has often attracted the attention of from the standpoint of pure science and from that of science applied in engineering and the minor arts, is such as would justify yet been given it. The first attempt to calculate the amount of sation in expansion by explosion, was made by Mr. George Biddle Airy, + the Astronomer Royal of Great Britain, in the year 1863 , and by the late Professor Rankine. at about the same time. Mr.
Airy and Professor Rankine published papers on this subject in the same number of the Philosophical Magazine, November, 1863, of that year. The former had already presented an abstract of his work at the meeting of the British Association of that year.
In the first of these papers, it is remarked that "very little of the destructive effect of an explosion is due to the steam which is The rupture of the boiler is due to the expansive power common at the moment to the steam and water, both at a temperature higher than the boiling point; but as soon as the steam escapes, and thereby diminishes the compressive force upon the water, a new ture; when this escapes, and further water, reducing its temperaforce, another issue of steam of lower elastic force from the water takes place, again reducing its temperature; and so on, till at ength the temperature of the water is reduced to the atmospheric boiling point, and the pressure of the steam-or rather the excess of steam pressure over atmospheric pressure-is reduced to 0 . Thes it is shown that it is the enormous quantity of steam so rapid operation, that produces the destructive effect of steam oiler explosions. The action of the steam which may happen to be present in the steam space at the instant of rupture is considered mimportant.
Marnitury had, as carly as 1849, endeavoured to determine th been unable to do so in consequence of deficiency of data. Hi eterminations, as published finally, were made at his request by Professor W. H. Miller. The data used are the results of the experiments of Regnault and of Fairbairn and Tate, on the relation pressure, volume, and temperature of steam, and of an experi motive boiler, at four atmospheres pressure, discharged one-eighth of its liquid contents by the process of continuous evaporisation bove outlined, when, the fire being removed, the pressure was reduced to that of the atmosphere. The process of calculation assumes the steam so formed to be applied to do work expanding om to the boiling point, in the operation. The work so done is inally reached is that "the destructive energy of one cubic foot of rater, at a temperature which produces the pressure of 60 lb , to the square inch, is equal to that of 1 lb . of gunpowder.
3 of work of Rankine is more exact and more complete, as well described presently, and involves the application of the formula or the transformation of heat into work which had been ten years aper worived by Rankine and by Clausius, independently. This nade by Airy at the have been brought about by the suggestion shows that the energy developed during this, which is an adiabatic nethod of expansion, depends solely upon end specinic heat and he temperatures at and has no dependence, in any manner, upon any other physica
properties of the liquid. He then shows how the quantity of onergy latent in heated water may be calculated, and gives, in illustration, the amount so determined for eight temperatures exceeding the boiling point. Approximate empirical expressions are given for the calculation of the energy and of the ultimat有umes assum

$$
\mathrm{U}=\frac{772(\mathrm{~T}-212)^{2}}{\mathrm{~T}+1134 \cdot 4}
$$

$$
\mathrm{V}=\frac{\mathrm{T}, 1134 \cdot 4}{36 \cdot 76-212)} \mathrm{T}+1134^{\cdot 4} ; \quad V_{\mathrm{m}}=\frac{2 \cdot 29(\mathrm{~T}-100)}{\mathrm{T}+648} .
$$

These formule give the energy in foot-pounds and kilogrammetres, nd or the tables to be civen, but, in view of the completeness of the latter, it will probably be seldom necessary for the engineer to resort to them.
This subject attracted the attention of the writer at a very carly date. Familiarity, from early boyhood, with the destructive effects of steam boiler explosions, the singular mystery that has upon him, in the course of his professional practice and of his tudies, to examine the subject and to give advice in matters relating to the use of steam, and many other hardly less controlling rombly robably no subject witin the whole range of the practice of the nd probably no such subject is to-day less satisfactorily developed n theory and less thoroughly investigated experimentally than his. It is one which the writor has endeavoured, at several different periods in the course of his work, to take up and reduce, possible, to a consistent theoretical and practically applicable efore they were fairly hegun. In the year 1872 the writer received from the Secretary of the Treasury of the United States a communication in which he was requested to prepare, for the use of the Treasury Department, a report on oilers, and he began the preparation of such a report, in In the year 1875, the writer, then a member of a commission formed by the Government to investigate the subject, was asked y the Cabinet officer having direction of the matter to accept the chairmanship of the commission, and to give his time to the subect under in7estigation. For sufficient reasons he was unwilling o undertake the work, and an older and wiser head was appointed,
t his request. A little later ill-health compelled him to resign from the commission, but his brief connection with the Board led them to the further study of the subject of this paper; the investigation was, however, again interrupted, and has not since been taken up in the systematic manner then proposed.
In this paper it is proposed to limit the subject to the investigation of the quantity of energy stored in some of the familiar and soen endangering, to a greater or less extent, the lives and property

* Read before American Society of Mechanical Engineers.
+ "Numerieal Expression of the Destructive Energy in the Explosions
of Steam Boilers."
i "On the Expansive Energy of Heated Water.
of all who may be either permanently or temporarily within range of them. A steam boiler is a vessel in which is confined a mass

Clausius, who determined this quantity almost simultaneously, to be easily expressed in terms of the two temperatures between Which the expansion takes place.
from an initial absolute temperature T to a final ated, expands perature $T_{2}$, if $J$ is the mechanical equivalent of the unit of the per unit of $w$ the measure, in the same units, of the latent heat by unity of weight of steam, the total quantity of energy exerted $\mathrm{U}=\mathrm{J} \mathrm{T}_{2}\left(\mathrm{~T}_{1}-1-\right.$ hyp. $\left.\log . \mathrm{T}_{1}\right)+\mathrm{T}_{1}-\mathrm{T}_{2} H$ This equation was published by Rankine a generation ago.* When Table I.
Available Stored Energy in Water and Steam.

| Pressure above a vacuum in pounds per square inch. | Same pressure as indicated by steam gauge, 14.7 lb . for atmospheric pressure. | Absolute in atmospheres. | Number of British <br> thermal units required for the evaporation of 1 lb . of water known as latent heat of evapora tion, H . | Temperature in Fahrenheit of the steam and of the water from which it is evaporated. | Temperature in degrees Centigrade of the steam and of the water from which it is evaporated. | Corresponding , absolute temperature in degrees Fahrenheit | Corresponding absolute temperature in degrees Centigrade. | contained in 1 lb . of water which may be liberated by explosion or expansion to 212 deg . Fah. | Corresponding amount of energy contained in the latent heat of evaporation. | Total amount of energy contained in at corresponding temperatures and pressures. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |

the writer found the weight of steam to be less than 250 lb .114 kilogs-while the weight of water was nearly $40,000 \mathrm{lb}$.
$-18,144$ kilogs. As will be scen later, under such conditions, the quantity of energy stored in the water is vastly in excess of that contained in the steam, notwithstanding the fact that the amount of energy per unit of weight of fluid is enormously the
greater in the steam. A pound of steam, at a pressure of six atmospheres- $-88^{\circ} 2 \mathrm{lb}$. per square inch-above zero of pressure,


## Fig. 58

and at its normal temperature, $177 \mathrm{C} .-319 \mathrm{deg}$. Fah.-has stored in foot-pounds of mitish thermal units-32 calories-or nearly 100,000 of weight, in excess of that which it contains after expansion to atmospheric pressure. A pound of water accompanying that steam, and at the same pressure, has stored within it but about onesixteenth as much available energy. Nevertheless, the dispropor-
tion of weight of two fluids is so much greater as to make the tion of weight of two fluids is so much greater as to make the
quantity of energy stored in the steam contained in the boiler quite facts will $h$ comparison with that contained in the water. These sented. The quantity of work and of energy which may be liberated by the explosion, or utilised by the expansion, of a mass
of mingled steam and water, has been shown by Rankine and by
a mingled mass of steam and water similarly expands, if M represents the weight of the total mass and $m$ is the weight of steam
alone, the work done by expansion will be measured by the $\mathrm{U}=\mathrm{MJT}\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}-1-\right.$ hyp. $\left.\log . \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)+m \frac{\mathrm{~T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{2}} \mathrm{H}$
This equation was published by Clausius in substantially this form. $\dagger$


Fig. 59-Absolute pressure in foot-pounds per sq. in.
It is evident that the latent heat of the quantity $m$, which is
隹 water, and that the first term of the second member of the equation measures the amount of energy of heated water which may be set free, or converted into mechanical energy by explosion. The easily measurable.
As has already been stated, this method was first applied by
Rankine to the determination of the available energy of heated water for several selected temperatures and pressures. It has long been the intention of the writer to ascertain the magnitude of the
quantities of energy residing, in available form, in both' steam and
water, for the whole usual range of temperatures and pressures water, for the whole usual range of temperatures and pressures
familiar to the engineer, and also to carry out the calculations for
 but which are iliely to be reached in the course of time, as the con-
stantly progressing increase now observable goes on. The maximum attainable, in the effort to increase the efficiency of the steam
engine and in the application of steam to new purposes, cannot be to day predicted, or even, so far as the writer can see, imagined.
High pressures like those adopted by Perkins and by Alban may yet be found useful. It was therefore proposed to carry out the tables to be constructed far beyond the limit of present necessities. It was
further proposed to ascertain the weights of steam and of water contained in each of the more common forms of steam boilers, and to determine the total and relative amounts of energy confined in
each under the usual conditions of working in every-day practice, and thus to ascertain their relative destructive power in case of
explosion. This part of the work is reserved for description in a explosion. This part of the work. The present section is devoted to the first part of the subject
At the commencement of this work, the writer employed the
ate MI. W. G. Cartwrigt, M.E., as computer, and, with his aid,
are prepared tables
 "ater was computed, the energy obtainable from the so-called
"latent heat,", and their sum, i.e., the available energy of steam per unit of weight. In the course of this work, each figure was
calculated independently by two computers, and thus checked. As a further check, the figures so obtained were plotted, and the
curve representing the law of their variation was drawn. This was a smooth curve of moderate curvature, and an incorrect determination was plainly revealed, and easily detected, by falling outside
the curve. Three curves were thus constructed which will be given uter: (1) The curve of avaiable energy of heated water; (2) the energy of steam. The second of theese courves presents an intinerest-
ing peculiarity which will be pointed out when studying the forms
The work was interrupted by more pressing duties, and was
nally resumed in the spring of 1884 and completed in the form now presented. The computers of the more complete tables here
niven were Messrs. Ernest H. Foster, M.E., and Kenneth Ter. rance, M.E., who, pursuing the same method as was originally
adopted for the earlier computations, have revised the whole work,
re-calculatining every figure, extending the tales by interpolation,
and acrirying them up to astil higher pressure than was origially
rooposed
 beyond the range of possible application, its temperature exceeding
that at which the metals retain their tenacity, and in some cases
exceeding their meltan exceeding their melting points. These high figures are not to be
taken as exact. The relation of temperature to pressure is satained by the use of Rankine's equation, of which the can ond
said that it
within which experiment exact throughout the range of pressures within which experiment has extended, and ed are probably yuite
verified. The values estimated and tabulated
exact enough for the present purposes of even the military engiexact enough for the present purposes of even the military engi
neer or ordnance oficer. The forme of the equation, and of the
curve representing the law of variation of pressure with tempera ture, indicates that, if exact at the familiar pressures and temperara-
tures, $i t$ is not likely to be inexact at higher pressures. The curve at its upper extremity, becomes nearly rectilinear.
The table which follows presents the values of the pressures in
pounds per square inch above a vacuum, the corresponding reading of the steam gauge-allowing a barometric pressure of 14.7 lb . per esponding temperatures as given by the Censpherexe, and the
Fahrenheit thermometers, and as reckoned both from the usua and the absolute zeros. The amount of the explosive energe us of a
unit weight of water, of the latent heat in a unit weight of steam and the total available heat energy of the steam, are given for whole range in British measures, atmossherio pressures being
assumed to limit expansion. The values of the latent heats are taken from Regnault, for moderate pressures, and are calculated for the higher pressures, beyond the range of experiment, by the use of Rankine s modification of Regnault's formula.
Studying the table, the most remarkable fact note
pressures is the enormous difference in the amounts of energy In avaiable form, contained in the water and in the steam, and
between the energy of sensible heat and that of latent heat the sum of which constitutes the total energy of the steam. $A$ 201b. per square inch above zero- $1 \cdot 36$ atmos. - the water contain
but 145. foot--pounds per pound; while the litent heat is equiva
lent to $16,872^{2} 9$ foot-pounds, or more than 115 times as much heat per pound, as does the water, from which it is formed, at the
same temperature. The temperature is low; but the amount o energy expended in the production of the molecular change result-
ing in the conversion of the water into steam is very great, in consequence of the enormous expansion then taking place. At 501 l .
the ratio is 20 to 1 ; at 100 lb . per square inch it is 14 to 1 , a
500 it is 5 to 1 ; while at 5000 .b. the energy of latent heat is but $1 \cdot 4$ that of the sensible heat. The two quantities become equal at
about 7500 lb . At the highest temperature and pressure tabled, the same law would make the latent heat.
uncertain what is the fact at that point.

At 50 lb . per square inch, the energy of heated water is $2550^{\circ}$ its own weight to a height in each case of a half mile or of 12 miles At 751 lb . the figures are 4816 and 90,739 , or equivalent to the work oemanded to raise respectively. At 100 lb . the height
of about 17 miles,
1 mile for the water, and above 20 miles for the steam.
Plotting the tabulated figures and determining the form of the peculiar set of diagrams exhibited in the accompanying engraving In Fig. 58 are seen the curves of absolute temperature and of latent heat as varying with variation of pressure. They are smooth and
beautifully formed lines, having no relation to any of the familiar given the curves of available energy of the water, of latent heat and of steam. The firstand third have evident kinship with the
two curves given in the preceding illustration; but the curve of two curves latent heat is of an entirely different kind, and is not only peculiar in its variation in radius of curvature, but also in the
fact of presenting a maximum ordinate at an early point in its
course. This maximum is found at a a ressure of about one ton per square inch, a pressure easily attainable by the engineer. no relation to the conic sections, and that the curve, the peculiarities of which are here noted, is symmetrical about one of its
abbcisse, and that it must have, if the expression holds for such pressures, another point of contrary flexure at some enormously "rational" one, and it is by no means certain that the curve is of
the character indicated; although it is exceedingly probable that it may be. The presence of this characteristic point, should experi-
ment finally confirm the deduction here made, will be likely to prove interesting, and it $m$
possibly prove to be useful.
the superposition of one of the two preceding curves upon the the superposition of one of the two preceding curves upon the
other. It ises rapidly at first, with increase of temperature, then
gradually rises more slowily, turning gracefully to the right, and
finally becoming nearly reetilinear. The curve of available energy
of heated water exhibits similar ch
is more gradual and more niform
Comparing the energy of water and of steam in the steam boiler with that of gunpowder, as used in ordnance, it will be found that at high pressures the former become possible rivals of the latter.
The energy of gunpowder is somewhat variable with composition and perfection of manufacture, and is very variable in actual use, in consequence of the losses in ordanance eue to leakage, failure of
combustion, or retarded combustion in the gun. Taking its value at what the, writer would consider a fair figure, 250,000 foot-pounds
per pound, it is seen that, as found by Airy, a cubic foot of heated water, under a pressuré of 601 lb . or 701 lb . per square inch, has about the same energy as ib. of gunpowder. The gunpowde nearly fifty miles, while the water has emough to oraise its weight
noter
about onesixtieth that hieght. At a low red heat water has about forty times this latter amount of energy in a form to be so
expended. One pound of steam, at 60 lb . pressure, has about one third the energy of 1 lb . of gunnowder. At At 100 lib. it has as much energy as two-firths of a pound
its energy increases very slowly.

## ( $T_{0}$ be continued.)

DRIVING BELTS AND ROPES.
AT the Millers' Convention, held in Glasgow on the 16th inst. Mr. John Tullis read a paper, from which we extract the A modern flour mill is now one connected machine-so much s that from the time the wheat is subjected to the first operation, it the market. A single hitch of half an hour with one machine or one belt will disarrange the entire mill. To the miller, therefore,
the best of belting is a very important consideration, and little the best of belting is a very important consideration, and little
hints regarding the preservation of it may be of some use. The question for consideration is-" Whether belts or ropes are the paring ropes and belts. There is no doubt that main belts are much more expensive than driving ropes of cotton or hemp. But
we must also look at the first cost of rope pulleys, and compare we must also look at the first cost of rope pulleys, and compare
them with the price of belt pulleys, When these values are conthem with the price of belt pulieys. Whe these values are con-
sidered, I believe the belt-driven mil will be started for very little and widths are properly calculated, giving lin. of width of belt, traveling at 500 it. per minute, 1 -horse power to transmit, therly
result will be eminently satisfactory stretched leather belts will run as straight as a line, last for thirty
years, and be good for cutting up into smaller sizzes after that. A mill en mitter of power. It absorbs less power in itself than ropes. number of textile ropes on one pair of pulleys never pull altogether
as one. Each individual rope has a travelling speed of its own; consequenth,
transmits the power from one pulley to another in one solid grasp Belts and ropes both drive well when the distances from centre to centre are great, and the pulleys large in diameter. But a rope
has no chance against a belt when the shafts are near each other, or the pulleys less than 4 ft . 6 in. in diameter. Under these circum-
stances a good belt will give splendid results, while the best of ropes are a constant annoyance. Main-driving leather belts should in its place, it ought to present the appearance of an endless belt. After having been taken up once or twice during the first year,
good belts such as these require very little attention during the good belts such as
subsequent years of theire require long life. If the the belt is driviving ina warm warm times a year. All belts having much work to do ought to present a clammy face to the pulley, and this condition can be best maintained by applying one coating of dubbing and three
coatings of boiled linseed oil once a year. This oil oxidises and the gummy surface formed gives the belt a smooth, elastic
driving face. A belt looked after in this way will always run slack, and the tear and wear will be inconsiderable. On the other refuse to lift the work. The friction of the running pulley "burns the life" out of the belt while this slipping is going on. The
driving face is made as hard as millboard, and as well polished as a millstone. Bushes are ground down, shafting worn, oil con-
sumed, the belt killed and condemned, because the disease has sumed, the beetsoded and condemnea, because the disease thas
been misunderstood. If a belt is wanted to do more work than was originally intended, by, say, an addition to the machinery of the mill, a very good plan of getting power is to run a second belt
upon the top of the one in use. Do not connect them in any way, and the outside belt will work for itself, and do a large proportion
of the driving. By way of experiment, I have made four 6in single belts, running independently on the top of one another over 4ft. driver and driven pulleys, transmit over 80-horse power, the
belts travelling at a speed of 1800 ft . per minute. Each of these belts did its own share of the work, and while running over its own circumference each gained a little over 30ft. per minute
upon the one below; so that the outside belt travelled over
90ft. per minute more than the inside belt. The best leather for making belting is proved to be that known as "Orange
Tan." This leather is made from the heaviest and bestgrown Highland ox hides. During the process of tanning,
instead of swelling, as is the case with all bark tannages, this
in leather becomes thinner in substance, and weighs 45 per cent. .ess
than if tanned with oak bark. The breaking strain, according to Lloyd's proving house test, is 45 per cent., greater than oak-bark other leather. For driving machinery this leather stands first. Long belts should never be made heavy, because the weight makes then scillation. Double-orange tan belts will work as steady as
the oscaile ribbons up to 350 ft. long. The Singer Manufacturing Company, when designing their new Glasgow factory, were nearly dever, gin in
favour of ropes for the long-distance driving. However, after testing the orange tan leather as to weight, working, and breaking
strain, the decision was-" "There's nothing like leather." There can be seen working at this factory every day between thirty and
forty main driving belts up to 30in. wide; nearly a dozen of them are long, being 150 ft . by 19 in. , and of double orange tan. They run as straight and as steady as a line, and have only been once
taken up. Now comes the answer to the question often asked as to which side of a leather belt ought to run next the pulley. It is pulley there is a considerable gain in driving power. However, by
using the boiled linseed oil as before mentioned, the fesh will soon become as smooth as the grain, and the driving power fully
as good. A belt working with the grain side next the pulley reall has a much shorter life than the belt running on the flesh side.
Patent leather chain belting. -Arched to suit the curve of the Patent leather chain belting.- Arched to suit the curve of the
pulley, leather chain belting is proving to be one of the best belts
ever invented the belt comes in equal contact with the entire face of the pulley, No unequal strain comes upon the rivets, as they have a Ievel bee
to lie upon. This belt is made a little thicker at the edges than in ise centre. It can be made to suit any curve of pulley. All that
is wanted is a templet of the pulley on which the belt has to work This class of belt transmits 25 per cent. more horse power than point. In practice, however, the truth of this statement has been proved to be quite correct. A flat belt always retains a cushion of
air between itself and the pulley, which prevents perfect grip.
This air escapes through the spaces in the ohain belt, and the edge This air escapes through the spaces in the ohain belt, and the edge
leather takes full charge of the power which it has to turn. I will
only mention one example. Mr. John Smalley, of Mellor, Lanca-
shire, was troubled with a 28 in. flat double belt not being able to transmit the power of his engines, therefore a quantity of the maohinery had to stand idle. A belt of this class was made
specially to test this question. That belt is now doing over 25 per cent, more work than the flat double belt could do. It works very
steadily, driving as easily as possible. It is the most rapidy
joined belt of any. The links have only to be interlocked, the joived connection made, and then you have an endless belt which
runs so be Quite a number of these belts are driving three and four
boller mills, and are considered by the millers using them to be
role

## perf

Half-twist belts.-This class of drive is sometimes the cause of much annoyance. A short belt has a poor life, and if the power
wanted demands a wide belt, then the strain upon the outside of the belt becomes so great that bevel wheels and upright shafting have to take the place of a belt. In using ordinary flat belts for this kind of drive, it will be observed that a large portion of the belt assumes a slack appearance on the inside oral hlans have been
leaves the pulley and does no work. Several tried to overcome this difficulty, such as splitting the belt up into two or three widths, and securing them with cross connecting
straps. But none have been so successful as the patent thick-sided and tapered chain belt. The links may be lin. deep at the one
side, tapering to sin. deep at the other, By this formation a twist belt can be made to any width. It comes in contact with every slackness is taken. out, and the belt seems to work as well as if there were no twist to contend with.
Cotton belts.- These are very good for many sorts of drives, such
as paper mills, dye works, wet spinning flax mills, and all sorts of works in which steam and water are present in abundance. They
lso answer well for outside driving. At our own works we hey also answer well for outside driving. At our own works we have from one building to another, in all weathers, with no other covering than a coat of boiled linseed oil, applied every two months. In
warm countries these belts do remarkably well. The objectionable fraying of the edges has now been cured by applying our patent rojecting leather edge. This edging is now securely rivetted on
rith the copper wire machine, and is so placed that it meets th with the copper wire machine, and is so placed that it meets
thrust of the shifting fork, and saves the cloth from being cut. Accumulations or lumps on pulleys and belts.-Dust should never be alfowed to gather into a cake either on pulley or belt, for
if so, the fibre of the leather gets very muah strained. The belt is prevented from doing its work, because this stranger defies the Leather ropes.--Ever since the introduction of grooved pulleys, leather has come up in various forms of driving rope. Up till now none. There is the ordinary cable laid hide rope, the strands of which soon cut themselves into pieces by pressure
and internal friction. There is also the "Coombe rope
rope which is made of a multitudinous body of long leather strands
twisted together; the friction and pressure also soon cut them up. Then there is the V-shaped solid leather rope,
which is much too stiff and hard. The bottom plies with t broken by the outside strain. There is the $\bar{V}$-shaped rope with two or more plies of solid leather, with friction sections
rivetted on these plies. The openings left between these sections are meant to make this rope more pliable, and less liable to cut It has done some work, but is noi a success. There is the square
solid leather rope that is now being made, the faults of which nothing as those of the solid leather V-rope. However, there is is the patent V -shaped chain rope. This rope seems to possess al the qualities required to enable it to become the driving rope of
the future. (1) It tan be put on in a very short time, and can be解 whe the workin short. (4) It will work well over small and large diameters. (5)
This This rope can be made to fit any form of groove. (6) Where
textile ropes give trouble, we are willing to run a number of these
on twelve months' approbation.

LAUNCHES AND TRIAL TRIPS. On June 13th Messrs. Oswald, Mordaunt, and Co., South-
ampton, successfully launched the iron sailing ship Halewood, of 2100 tons net register, and of the following dimensions:- - Length,
274ft. 3in.; breadth, 40ft. 1in.; depth of hold, $24 \mathrm{ft}$. . Fin . The vessel has been built for Messrs. R. W. Leyland and Co., of Liverpool, and exceeds the highest requirements of both Lloyd's and
Liverpol Underwriters' Registry. She is full rigged, and fitted
with skysail on main mast. Ample accommodation is provided for captain and officers in full poop; large iron deckhouse is fitted
midshins for petty officers and crew. She is fitted with Emerson and Walker's combined capstan wirdlass for working anchors and chains.
On the 17 th inst. the same firm launched the Ormerod, an iron screw steamer, built for Colonel Thursby, and intended for general
carro carrying, being specially designed to carry a a large cargo on a
 schooner-rigged, and has a large bridge and topgailant forecastle.
Accommodation for captain and officers will be provided in bridge, saloon being in front, whilst the crew will be berthed in forecastle
below main deck. She is fitted with three steam winches, by Messrs. Clark, Chapman, and Co., quartermaster steam steering gear amidstips, wheel and pinion aft, Har started on April 16 th, and by the 18 th of June she had her engines and boilers on board. She is built on the cellular prinipiple, and to
class 100 A . She has anadditional floor between, eachdeep floor is cellular bottom, 1 in. deeper and 1 in. thicker than ordinary floors for a engine and boiler space all the floors run to tank top, Her shell is in excess of Lloyd's requirements for highest class; having no reduction in way of tank, the sheer strake increased in
breadth and thickness, bilge strake increased $\frac{1}{8}$ for 70 Oft. each side amidships, iron deck plating all fore and aft increased in thickness at
hatchways and engine and boiler casings. Her hatchways are 3 ft. above deck, having large iron web plates for additionally strengthensug same. The vessel has during construction been under the
therintendence of Oaptain George Richards, who will command the vessel after completion. The engines have been built by the
same firm, and are of inverted surface condensing compound same firm, ard are of inverted surface condensing compound
with cylinders 2 lin. and 42 in. diameter, 30in. stroke, with one 100 lb . pressure

TENDERS.
ENGINE, PUMPS, AND TANK FOR WEST HAM UNION.


## AMERICAN NOTES.

New York, June 12th.
There are some probabilities then conper from this port will fall off. Lake is selling at 111 dols. 30 c . Baltimore offered at 11 dols. 60 ..; tin-plate is in active demand at
4 dols. 15 c.; tin, 19 dols. 40 c . Western miners are anxious to make contracts for early delivery. The exporters and importers are not disposed. to take any rikss. in the presentun unsettled condition of the
market. The American iron market is extremely unsettled. It Was thought a few weeks ago that pricess would remain firm at the figures then reached, but a further fluctuation is now in progress
which points to a lower range of prices all through the list. Sales of Pennsylvania foundries are being made at 16 dols. for No. 2 ,
and 17.50 dols. for No. . Foundries are offered in large lots at hese prices shaded. Several furnace companies have negotiations
pending for their summer production. The iron makers of that egion are endeavouring to secure lower freight rates for ore, coal,
and iron, and anticipate a successful answer to their requests. Prices of coal average from 2 dols. to 2 dols. 25 c . A reduction of 50c. to 75. per ton is asked. The transporting companies have
the monopoly of the mining and transporting interests and charge whatever they please, and this has had the effect of keeping half the furnaces of the Schuylkill Valley idle. It is estimated that
ron can be made at 2 dols. per ton lower in that valley if justice iron can be made at 2 dols. per ton lower in that valley if justice
was done produeers. The anthracite coal combination is suffering from the competition of bituminous cool, and that fuel is now a drug in all Eastern and Western markets. Prices to-day are lower
than ever before known. Several mining companies are barely uan ever before known. Several mining companies are barely btaining cost of mining and shipping. Companies using anthracie
are now trying bituminous, and the anthracite interestst are omelled to recognise the competition. The rail mills throughout at from 26 dols. to 28 dols. The mills are almost bare of orders,
and are offering medium iron at 1 dol. 60 c . The Western nail
The nills have not yet resumed, and the Eastern Nail Association is in its two weeks suspension for this month. The Dolphin, John
Roach's war ship, made another trial on Thursday, with what esults it is not known.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

## (From our own Correspondent.)

THE condition of the finished ironworks at Midsummer gives hope
of fair employment for the ironworkers at the chief establishments after the quarter has urned. There is an encouraging demand for
sheets of all descriptions, and to this demand the reguis sheets of all descriptions, and to this denand the requirements of
the galvanisers largely oontribute. India, usustralia, and certain
of the South American markets some freedom, and certain of the best situated makers deceline at present tob book further forward at current rates. The orders from
the colonies for a few brands of bars of high quality are larger than has slately been noticeable, and it is gratifying that the report this
week by cable of the state of the Sydney market indicates week by cable of the state of the sydney market indicates some
revival. Business in hoops is a little brisker, but the inquiries for

 gaage; and Woodford charcool sheets are quoted. $£ 16$ for 20 g ,
$E 1710,10$. for 24 g ; $£ 119$ for $26 \mathrm{~g} . ;$ and $£ 1910 \mathrm{~s}$. for 28 g . remembered that this fgure is still 5 s., more than the quotations
for Welsh bars delivered in this district, and is some for Welsh bars delivered in this district, and is some 13s. or 15 s .
per ton above the price which Wellh makers are getting at works.
Welsh bars are freely offered Woise bars are rreely offered at $£ 5$ per ton, delivered here
figure which does not mean much more than 4410 se or 4412 s .
the Welsh makers. Sheets, singles, are quoted $£ 67 \mathrm{~s}$. 6 d . E6 17s. 6 d ., according to quality and state of makers' order books;
while dobles are $\$ 7$ to $£ 7.2 \mathrm{~s} .6 \mathrm{~d}$. Nail sheets are $£ 510 \mathrm{~s}$. The Midsummer quarterly meetings are fixed to be held in
Wolverhampton and Birmingham respeotively a fortnight hence and it is hoped that the merchants and other buyers from the
leading commercial and manufacturing centres of the kingdom leading commercial and manufacturing centres of the kingdom
who will attend those gatherings, will place orders which may sensibly contribute to the aotivity at the works.
It is most probable that at the
 the protests of some makers. In that event his Lordship's priees
will be:-For rounds, $£ 8$. 2 s . 6d. lowest quality ; $£ 9$ 10s. single




 hase bars applied to rounds asd squares din. to 3 in., and flat
hain. Angles were 10s. per ton extra, and tees 20s. per t m extra.
Good all-mine pig iron is quoted from 55 s . to 57 s . 6 d ., which is
rather higher than Shrophire metal. Two or three of the best
staffordshire makers refuse to book orders at less than 60 s ., a figure which they contend is relatively 10 s . per ton lower than the
 Native part-mine pigs are 37 s . 6 d . up to 44 s ., and cinder pigs,
32 s . 6 d . up to 35 s . 28. $6 \mathrm{~d} . \mathrm{up}$ to 35 s,
A meeting of th the South Staffordshire Mines Drainage Acts was held in Woiver Wor
hampton on Wednesday to hear appeals from mineowners thempton on Wednesday to hear appeals from mineowners against
the arbitrators' draft award for levying in the Tipton district a the arbitrators draft award for lerying in the Tipton district a
rate of 3 d. per ton on firec-clay and limestone, and cd. per ton on
ironstone, coal, slack, and other minerals. The applications of ubout nine appellants for graduations of the rate were heard, but
the Court deoided to reserve its decisions. The difference between the masters and men at the Samson
Colliery, Oldbury, has been adjusted this week by the men consenting to pay the increased contribution from 2d. to 3d. per week
towards the Ymployers Liability Insurance Corporation.
Railway rolling stock and other railway material firms note with Railway rolling stook and other railway material firms note with
satisfaction the further contracts which are upon the market on satisfaction the further contracts
necount of the Indian services. Iron underframes, underframe and
nem State Railways Company, chiefly for carriages of 2 fft. Iong and
Sft. Cin Stt. Gin. gayge. Steel rails and axle boxes are needed by the
Soinde, Pujaub, and Deihi Railway; fish-plates and bolts for the
Indian State Railways; and crank axles and steel tires for the Indian State Railways; and
Great Indian Peninsular service
Pipe founders hereabouts will
Pipe founders hereabouts will attempt to secure the contract for
between ten and eleven miles of cast iron water pipes which are
inst now jetween ten and eleven miles of cast iron water pipes which are
just now offered on account of the Sutton-in-Ashifild Waterworks
Nottinghamshire. Nottinghamshire, The contracts for about 7000 yards of cast irkon
sewage and air mains, and for air-oompressing machinery and
boilers offered by the sanitary authority of Henley-on-Thames, are
scarcely likely to affect this district because of the very heavy cost of conveyance.
The Birming
The Birmingham Chamber of Commeree have been in communi-
cation with the Board of Trade touching tha proposed intention cation with the Board of Trade touching the proposed intention o
the Russian Government to raise the import duties upon certain articles manufactured in Birriningam, and the desirability of giving early additional publicity of the intention of foreign
Governments to increase import duties as soon as possible after the official receipts of such intelligence by the home Government. The reply of the Board of Trade, after referring to the Russian
tariff, contains the further satisfactory information that the question of giving additional publicity to particulars of this nature in the way desired dy the Birmingham Chamber of Commerece is now under
the consideration of the Board of Trade and the Lords of her the consideration
Majesty's Treasury.
The increased duties in Russia will, Messrs. Nettlefollds, of Bir mingham, are of opinion, disadvantageously affect their trade wit
that country, but they believe that if they can only be place
 increased trade with that country would go a long way towards
comenating for the decline with Russia. compensating for the decline with Russia, Western District Tramways Company for a provisional order empowering them to make
additional lines, so that they could carry traffic from the South Staffordshire lines into the heart of Birmingham, came before a
Committee of referees of the House of Commons a few days ago Committee of referees of the House of Commons, a few days ago. locus standi against the Bill; but after hearing counsel's statement case had been made out to allow the application. The mills in North Staffordshire are receiving inquiries for very welcome. The aggregate demand from Liverpool and Londo merchants for the oolonies and the European markets is silighty
better ; but the wurks could execute a great deal more work with out being in any way pressed. Bars are the description in best changes in customers' views are giving increased attention to th steel question, and are making arrangements for entering into the
steel business.
 37 s .6 d . per ton. The miners employed at the Hanley and Bucknall Colliery, in
North Staffordshire, have accepted a reduction of 10 per cent. in wages. The masters at first proposed a drop of $12 \downarrow$ per cent., but
a settlement has been come to on the terms mentioned. The men a settlement has been come to on the terms mentioned. The men
at the Podmore Hall Colliery, of Mr. W. . . raig, M.P., have
also agreed to a similar reduction under the special circumstances Messrs. John Knight and Co., of Cookley, Worcestershire Maessrs. Joun Knghe and co., of Cookley, Worcesterssire,
manuacturers of sheets, tin plates, and tin sheets of iron, steel
and charcoal qualities, are just now increasing their business, and removing to more convenient premises at Brierley Hill, in the
centre of the celebrated ten-yard thick coal ditriet of the Earl of
Dutre Dudley. The wor
increased facilities.

NOTES FROM LANCASHIRE.
(From our oven Correspondent.)
Manchester.-With the close of the half-year there is the usua tendincy to taper off in the wiight of buying until after stock-
taking or balanoing, and this has given a quieter tone to the actual condition of trade. There is, however, a continued absence of improvement, or even prospect of improvement, which produces a generally depressed feeling that gives, if anything, an unduly
prominent tone to the market. Although business comes forward lowly, and, for the most part, in comparatively small transactions
it represents in the bulk a moderate trade actually it represents in the bulk a moderate trade actually doing. The the face of constant reiteration that prices have got to the bottom, they have persistently continued to go lower, buyers naturally
have no confidence in the future, and this is shown in the con cinued hand-to-mouth character of the business doing, which is, in
fact, to a large extent really the meaning of the present bad trade. Cact, to a large extent really the meaning of the present bad trade
There was less than an average attendance on the Manchester bssence of some of the principal buyers and sellers, and business was flat, with very low prices ruling for both pig and finished iron.
During the last few days Lanceling During the last few days Lancashire makers of pig iron have been bookng orders
unneeossary any further pressure to sell for the present, but to
and quoted rates of 39s. to 39 s . 6d., less $2 \hbar$, for forge and foundry prices vary, according to quality, from 38s. to 38s. 6d. up to 40 s . to
$40 \mathrm{~s}, 6 \mathrm{~d}$., Yess $2 \frac{1}{2}$, delivered into this district, but no weight of usiness is reported even at the minimum rates. For outside brands prices rule very low. Scotch iron lying at Lancashire ports
is offering at very little over the price of warrants at Glasgow, and good foundry brands of Middlesbrough can be got at about 41s, to
$1 \mathrm{~s}, 6 \mathrm{~d}$. net cash, delivered equal to Manchester 41s. 6d. net cash, delivered equal to Manchestor.
For hematites there is still only a very poor de
male extremely low
In the finished iron trade orders still come forwal ither for home requirement or for shipment, and with very few exceptions forges are not kept going more than about four days a
week on small orders coming in from hand to mouth. Where usiness is done it is still on an extremely low basis of prices, which
average $£ 5$ 5s. to $£ 57 \mathrm{~s}$. 6 d . for good ordinary qualities of Lancashire and North Staffordshire bars, $£ 515 \mathrm{~s}$, to $£ 517 \mathrm{~s}$, 6 d . for hoops, and $£ 617 \mathrm{~s}, 6 \mathrm{~d}$. to $£ 7$ per ton for sheets.
The condition of the engineering trade
change, the reports from most branches being that new orders are scarce and that generally works are getting slaok.
Government orders in connection with special tools for ordnance and other work continue to be given out in this district, and Messrs.
Craven Brothers have received an order for a powerful gun-boring Craven Brothers have received an ordior for a powerful gun-boring
machine similar in general construction to the exceptionally large of which has been given in THE EVGNEER. The machine which they are now making is to bore 30 in. in diameter, 55 ft . long, and
will weigh about 150 tons. A new swivel tool holder-Gavin Jones ${ }^{\circ}$ patent-has been introThese by Messrs. Hulse and Co., ortio engineer, and they are applicable to all machine tools in which steel bar tools in general are used. In these swivel holders the two adjustments of the tool are effected separately and independently
of each other. A cutter may be fixed taken out, or replaced without disturbing the previous angular adjustment, and the cutter can e swivelled to any angle horizontally without disturbing its position in relation to the work.
The Manchester Association
Draughtsmen, have arranged an expursion ${ }^{2}$ Foremen, and Iancaster, and a visit to the Lancaster Wagon Works, and to the
extensive Art Furniture Works of Messrs. Gillow and Co. The excursion will also be diversified by visits to Lancad

## Morecombe. An ingeni

An ingeniously designed illuminating power register-Thorp's
patent-for showing instantly the illuminating patent-for showing instantly the illuminating power of gas and
at the same time recording it-has been introduced by T. G. Marsh, of Oldham. The instrument effects its purpose by photographing
ajet of gas. A sheet of sensitive paper revolves on a cylinder, and in
doing so takes the photograph of the jet through a aloto. The sensi-
tive paper is is uled off to give the hours of the day and night, and the
hei height of shadow or photograph gives the illuminating power at the
various periods. Thus, by looking at the register paper the quality of the gas at any particular moment may be instantly ascertained
and these registers or diagrams when filled afford a useful continuous record.
The coal trade generally of this distriot is in a depressed condition, and four days a week is the full average time at which the pits are kept running. House-ire coals are now in very limited and forge purposes continue a drug and bad to sell; engine classes of fuel also meet with only a dull inquiry, and notwithstanding the lessened quantity of round coal now being screened, slack is still plentiful in the market. Quoted rates are without much
 prepared to martan itens are mouth best coal averages 8 s . to 8 s . 6 d . per ton ; second qualities
 to 3s. per ton.
For gas coal there has been a tolerably good demand, and con-
tracts for canncl have been placed at about last season's The shipping trade is only moderate, and at Liverpool there are a good many complaints as to the scarcity of orders. Prices are
without material change, and good qualities of steam coal delivered at the Garston Dooks or the high level, Liverpool, averal ahbent 7 s . The terrible di
The terrible disaster at the Clifton Hall Colliery, near Manthis district during the past week. The only actually ascertained with the far, which can be regarded as having a probable connection of shots in the mine; but until a full inquiry is held it would be premature to comment upon any of the theories which are set up
as to the real cause of the calamity. It will not, however, be out of place to draw attention to the absence of any permanent relief districts and other important mining centres in the country have
dine long since established for providing efficient relief to the sufficrers, not only on occasions of great disaster, but also by the constantly
recurring smaller accidents which, more than the large explosions, swell the great total of lives lost in mining operations. The witheries in the Manchester district have been content to go on
whe the old gystem of pit clubs, which no doubt meet of the pits. When, however, a calamity like the present the sufferers are at once thrown upon the generosity of the public is only a proof of the deep sympathy for the sufferers which disasters like the present must always arouse, but that such
appeals should practically be the only resource for providing
relief is somewhat a reflection upon the important mining of Manchester, in the face of what other districts have long since done for themselves. Quite recently a grant from the surplus of
the Hartley fund, which was secured for the Manchester district, afforded an opportunity for establishing a system of permanent
relief, but the old system was allowed to go on. The present
disaster, with its deplorable loss of life, should lead to some disaster, with its deplorable loss of life, should lead to some
efforts being made in the direction followed in other parts of the Lancashire coal-field with such beneficial results.
Barrov.- The orders which have been booked for hematite pig position of makers, who have still every reason to complain of the scarcity of orders, and who it is expected will have to reduce the
output of their furnaces if the orders are not extended and if the amount used in the district by steel makers and others is not earlier in the year was satisfactory when compared with last year, is now no more satisfactory than that of producers of pig iron,
and the scarcity of orders for steel of course affects the iron trade an equal extent. As a consequence of this condition of things nere is a disposition to increase the stocks of iron held by makers
and consumers. Prices of iron are very steady, but they are nd consumers. Prices of iron are very steady, but they are
unchanged at 43 s . 6 d . per ton net for mixed parcels of Bessemer iron net at works, and 42 s . to 42 s . 6 d . per ton for forge and
oundry samples. There is a very dull tone in the general trade in steel, and orders for special qualities come to hand very slowly. satisfactory position, and there is a great scarcity of orders from but in the general trades in there is no ine department are still busy, coal dull. Earl Spencer will unveil a bronze statue, by Bruce Joy, to Lord F. Cavendish at Barrow, on Tuesday next.

THE SHEFFIELD DISTRICT
In spite of a firmer tendency at Birmingham on Thursday, with rather more business doing, and the additional fact that Scotch ever. Consumers still hold back in the hope that lower prices may號 stocks are certainly not diminishing in the more imQuotations at the Birley Collieries-Sheffield Coal Company-are as low as they have ever been, viz., hand-picked Silkstone branch coal, 10 s . 10d. per ton; best screene ${ }^{2}$ Silkstone house coal, 7s. 11. s ;
screened Silkstone seconds, 5s. ; screened Silkstone nuts, 4s. 2d. Travelling much in the collery districts, I can notic goodly stock of accumulations, and it is idle, with the diminished export trade from this district, to anticipate any brisk business in the Yorkshire coal-field this season in the absence of any sudden
revival of trade in the iron and heavy industries, of which at Tent there are few indications.
The Sheffield Chamber of Commerce has decided to give Parliament by the Manchester Association on the question of rating machinery. The subject came before them in the form of a
circular from the Associated Chambers of Commerce. The Council of the Chamber will be called together in about two months time to consider the propased received from mentioned Secretary of State for India, intimating that the Government contemplated spending $£ 1,000,000$ in addition to the amount usually spent on works-principally rainways-in India. All efforts to get not yet been abandoned, notwithstanding the failure of recen that their secretary should again Nheffid Chamber have resolved of State for Foreign Affairs, making urgent representations on the The Cutlers' Company has achieved a victory in regard to the to wait on Earl Granville on the subject, but recently appointed has been received stating that the sect, but a communicatio will not be required, inasmuch as his lordship had direoted that by the Cutlers' Company should be brought before the next Inter national Convention by the British delegates. This amounts to a The Industrial Exhibition to be opened here on Wednesday by Prince Albert Victor of Wales will be the first ever held to illus-
trate the handicrafts of Sheffield. There will be of industrial processes of great technical interest, and general visitors will find as sources of attraction collections of quaint
armour and steel work of great historic importance.

THE NORTH OF ENGLAND. THE Cleveland pig iron trade is still without signs of improvement. At the market held at
Middlesbrough on Tuesday last, prices were previous market day, but the amount of business done was extremely ymall. There is some com-
petition amongst merchants for the few small lots petition amongst merchants for the few small lots
wantforimmediate delivery, and though the buyers
 ton, they do not refuse
delivery, 32s. 3d. is quoted. The
forgen forge iron has slackened, and the price is now 32s.
per ton. Makers still quote 33s. for No. 3 , and as they do not seem inclined to take less, they make very few sales.
Warrants are 32 .
speculators appear to think things per ton. Some specuators appear to think things are about a chasing and putting into store.
Messrs. Connal ind
Messrs. Connal and Coo's stock at Middles-
brough, after having steadily decreased brough, after having steadily decreased during
the last eight years, is now increasing. On Monday last the quantity held was $52,69 \mathrm{4}$ tons, being 1464 tons increase during the wee
Exports of pig iron from the tees to So Scotland
continue good, but there is no improvement foreign shipments. The quantity sent away this about 10,000 more than during May.
The manufactured iron trade is in a stagnant condition. There are few orders in the market, and makers are consequently unable to run their
mills full time. Prices are unaltered, being as mills full time. Prices are unaltered, being as
follows: - Ship-plates, $E 417 \mathrm{f}$. 6 d . to $£ 5$ per ton ; angles, $£ 412 \mathrm{~s}$. 6 d . to $£ 4115 \mathrm{~s}$.; and common bars, works, less $2 \frac{1}{2}$ per cent. discount.
Messrs. Bolckow, Vaughan, and
received an order for 15,000 tons of steel rails for Indian rail ways. This will keep the Eston rail
mills fully occupied for five to six weels. A new company was registered on the 15th
inst. called the Haverton Hill Salt Company. The capital is to he £22ert50, in $£ 50$ shares. It is intended to lease land at, Billingham,
Newport, in order to work the rock salt.
Newport, in order to work the rock salt.
The Scarborough and Whitby railway is
completed. It was inspected by the directors and engineer of the North-Eastern Railway Company on the 22 nd inst. The formal inspection by the Board of Trade will be made shortly, and it is
believed the line will be opened for traffic next believed
month.
Boys cannot as a rule be expected to have more
sense than their fathers. Messrs. Bolckow, Vaughan, and Co., had occasion recently to discharge five putter boys at their Westerton pit for
some misconduct. This was resented by their some misconduct. This was resented by their
comrades, not only there, but also at all other pits of the company. To the number of 124 they struck without notice, thereby putting themselves
in the wrong. Summonses were taken out aganst each and all, and the Bishop Auckland magistrates had no option but to inflict fines which,
with expenses, amounted to 39 s . each. They authowith expenses, amounted to 39 s . each. They autho-
rised the company to pay themselves these sums out of any wage balances they might have in hand.
Poor boys! They had often seen their elders Poor boys! They had often seen their elders
strike, and sometimes sucessfully, and they did not anticipate a result sodisastrous to themselves.
No doubt many No doubt many a father would also have to suffer
by reason of the loss of his son's wages ; and properly, for unless men had countenanced the poys'strike it would hardly have taken place. great meeting of sympathisers with the lads was
held after the decision of the court was known. Indignation was expressed that the miners' paid agents had not given more assistance, and they
were accused of caring more for political manceuvres than for attending to their proper
duties. Finally a resolution was passed to ask Messrs. Bolckow, Vaughan, and Co. to refund the fines and costs, in which case it was said the men and boys would all return to work. It is
exceedingly improbable that this cool request will be granted.
North-country shipowners, to the effect that the The war soep their ships employed except at a loss into action, but since it nassed away freights have sunk to their old level, and there is nothing for it but to lay them up again. Consequently in the Yyne, the Wear, and at the Hartlepools numbers
of vessels now entering remain, and do not leave again. The officers and crews are paid off and fresh engagements.
The return of vessels built under Lloyd's surve and launched during the month of May has jus been issued. It gives a total of 49 vessels and 44,379 tons, as against 55 vessels and 52,654 tone
for May, 1884 . Of the 49 vessels, 14 , or 29 per Seventeen vessels and 22,666 tons were turned out from yards on the North-east coast, and 18 vessels and 16,846 tons from Clyde yards. It therefore appears that the latter district has for the time time beinglost its former leading position of Northand Tees, as well as theHartlepool having launched eight ships and 12,770 tons. On the whole, the returns, though far from satisfactory, are not s bad as many persons feared they would be.

## NOTES FROM SCOTLAND.

(From our own Correspondent.)
THE Scotch pig iron trade continues very quiet, improvement now during the summer months was darrants this week only a moderate business low. The, and the demand for makers iron was to 7957 tons, as compared with 9916 in the preceding week and 12,731 in the corresponding week tons for the week in an stock of pig iron in Messrs. Connal and Co.'s Glasgow stores. Friday at 41s. 1dd. cash. The tone was flat on Monday, when the cash quotation receded to
40 s. 10.d. a ton. On Tuesday forenoon tions were noted at 40 s .10 d . to 40 s . 10 d d d cash the market being steady at the latter figure in
the afternoon. On Wednesday the market was he afternoon. On Wednesday the market was
depresed at 4os. 9 d d. to 40 s . Iod. cash. To-day
Thursday-there was a slightly better feeling with the transactions up to 41 s , , closing a 40s. 11 d . cash.
On account
market the equotatione continued dulness in th somewhat lower as follows:--Gartsherrie fo. .o. at Glasgow, per ton, No. 1, 47s. 6d. . No. 3 ,
44s. 6 d .; Colttess, 49s. and 47 s . 6 d. ; Langloan

 and 38.s., 6.; Govan, at Broomielaw, 41s. 3d. and
39s. j Shots, at, Grangemouth, 51 s. and and and 48s.; Carron
Bo'ness, 4 s . 6 d . and 42 s . 6 d . Gineil, a
 41s. 6 d . The total shipments of Soctch pigs to
4lo
date are 220,668 tons, against 273,189 tons in the same period last year.
The export trade in manufactured iron and machinery is upon a moderately good scale, an
there is altogether a large amount of work in hand for abroad.
In the coal trade there is less activity than of late, but it is no unusual thing for the business to contract about the middle of the summer.
The week's shipments of coals included 16,900 tons at Glasgow, 129 at Greenock, 3259 at Irvine,
102 at Irvine, 8703 at Ayr, and 18,121 , at Grangemouth.
Towards the end of last week a mass meeting of colliers was hell in Hamilton, when
it was stated 10,000 men it was stated 10,000 men were idle that day,
and taking them at four tons each, it was
alleged that this coal kept out of the meant about 40,000 tons o their meeting. Probably this statement was an
exaggeration; but, at any rate the masters are exaggeration; but, at any rate, the masters are
finding little difficulty in meeting orders, which are neither so large nor so pressing as they were a former resolution to start on the eight-hours
day; it was also resolved-"That all district demand back the last reduction of 6 d . by 1st July, and that the reports be given in on the following day." In mas meting to to be helise resolved
on will do his utmost to prevent any iron or coal master, or any other employer of labour, from vote at the ensuing general election, at which the vote at the ensuing general election, at which the
miners of this country will possess an enormous
Tower. Linwood district of Renfrewshire, which a
The short time ago and for many years was a busy mhanged toat has 1 changed by the closing of pits. Two belonging to are only one or two collieries open, owned by Messrs. Dunlop and Co. The iron is by no means
exhausted and the stoppage of the two pits referred to was not anticipated
Ate a meeting of the Executive Board of the Dunfermline on Saturday, a letter was read from the Coalmasters' Association, refusing to concede
an advance of wages. It was determined to hold a series of meetings to bring pressure to bear upo the employers in the matter

WALES \& ADJOINING COUNTIES. (From our ove Correspondent.)
GLascow has secured the contract for making 25,000 tons of pipes for Cardiff new waterworks.
The joint tender of Thomas Edington and Sons nd Mr. D. Y. Stewart, of Glasgow, was accepted I hear te97,349 16s. 11d.
ottom, so the trial pits have shown capital Cothon, so the work will commence forth with
The soner the better is the general voice. The leading industry of Wales, coal, is still in the ascendant, and the large averages 1 have
reported are fairly maintained in the case of in the case swansea, but not quite so wel sions of late has shown the astonishing total foreign exports of coal of 180,000 tons, but in
each case the fall next week was to the extent of each case the fall next week was to the extent of
30,000 or 40,000 tons. This was the case last week; yet shippers and coalowners are quite average 180,000 tons, but believe it is coming. At present a fair average of 140,000 tons is main-
tained. The great mass of exports is composed tained. The great mass of exports is composed
of the best four-feet, six-feet, and nine-feet, Small steam, too, figures well. Small bituminous coal is somewhat quieter. The buoyancy in the trade generally is a good prompter to speculation, and new companies are being formed with spirit. One such Inoteaspromoted by Cardiff men. This is to acquire the Tyla Coch, Nant Ddyrus, Penwli. Last week an attempt was made to dispose of some good mineral ground in Mon-
mouthshire, but in the majority of cases the bid did not reach the reserve nond as the reserve was in the opinion of some of the leading coalowners present,
ownership.
A large demonstration of Neath and Swansea colliers took place on Saturday at Swansea, when
resolutions in favour of trades unions and of resolutions in favour of trades unions and of
certain alterations being carried out in the Mines certain alterations being carried out in the Mines
Regulation Act of 1872 were carried without opposition. I find that these suggested alterathe district, and it is probable will make an changes proposed are - (1) to give the colliers the right of appointing as check weigher any person
they may choose, whether in the employment the firm or not; (2) to institute proceeding against owners or management for the neeglect of duty or breach of the Mines' Act, in a similar way
dien to the power possessed by the manager to proceed
against the workman; (3) that relatives of persons in led in or about the mine shall be able to appear and give evidence, this being conducive to jury, increased attention to the security of life and limb

The sluggishness in all pertaining to iron and steel continues, though the exports, especially
from Newport, last week showed better than of late. The total exported, principally rails from the Monmouthshire works, was composed of
1164 tons for Montreal; La Guayra, 10 tons; some small parcels to the Continent. Cyfarthf Two fatal aceidents happened at Cyfarthfa The total iron ore received at Newport and 20,000 tons. Prices about the same.
In tin-plate a tolerably good trade has been kept up. The prevailing complaint is low price,
and I hear that buyers are ready to place an abundance of orders if prices can be arranged, but
as that will entail a further drop it will be
Prices are too low at present to give anything like a living profit. For ordinary cokes 13s. 6d.
is the quotation; steels are dull; charcoals and is the quotation; steels are dull; charcoals and
ternes in demand at firmer quotations, and good inquiry prevails for large sheets and squares nese specials are sought after as paying a shade
better and making up for the dead level of ordmary make. How some of the smaller works manage to exist is a marvel, and rumours of struggles and coming disasters are rife.
I have just been favoured with a com
I have just been favoured with a comparison of
iron and coal returns. They are interesting iron and coal returns. They are interesting aa
showing that Cardiff in in May reached its highest total yet. Cool exports from Cardiff, May,
69,495 tons January, 559,955 tong 699,495 tons; January, 559,595 tons. Newport,
May, 164,55 tons ; January, 131,505 tons
to Swansea, May, 79,100 tons; January, 80, 802.
During the five months of 1885 , Cardiff ha exported 188,877 tons of iron and steel, and New-
port 47,335 , thus showing the lead of the Monmouthshire works.
In the matter
the same period 90,633 tons, fund $S$ Cardiff sent in $\underset{\text { tons. }}{\text { I see that the East Usk preamble has been }}$ proven.
This week a portion of the Rhondda and
Swansea Bay line will be Swansea Bay line will be opened for passenge
traffic, that from Aberavon to Pontrhydyfew. has been already worked for mineral trattio.

## THE PATENT JOURNAL

** It has come to our notice that some applicarits of the
Patent-oftice Sales Department, for Patent Specithed



Applications for Letters Patent.

* When patents have been "communicated," the
nare and andress of the communicating party are
printed in italics.

1287. Boilurr 16 th June, 1885.
1288. Bourer Tures, J. Pickering, Stockton-on-Tees.
1289. Toou Holvers, H. Parkin, Munchester,


H29. stove Grates, J. Webster and H. Hudson,
H292. Max
faking Nets, H. B. Barlow.-(J. H. Coevoct,









$J$.
Jis. Sraegue, D.S.).
OvENs, G. H. Leech and J. H. Hoyle.-(R. Leech,










1290. Avtomatio Fire Alarm and Heat Indicator, A
Huadon, Loondon.


T330. Kirchens Racobs, R. Hunter and J. Turnbul,
1291. Cotring Wers of Papre into Strips, P. Stowart,
Gliaggow
1292. Driluina or Perforating Coal, \&c., c. Burnett,

London.
733.3. DRediva or Grab Buckets, c. W. Hunt,



 7338. ELLETratic Morors, C. A. Jackson, London.
7339. Fire-proor CEILNos and FLoors, H. R. Snel grove, London.
3to. Gookeniors for Steam Enaines, \&c., J. Scott,
London. London.'s Bottles for Aerated Liquids, w. A

 Craig, London W. Sykes, London.
3i7. PATENT CARTRDE Box, L. G. Bachmann, Liver-

 S5.'S. Shurtices, A. J. Boult.-(J. P. Thompson, United
Staten) 354. AUTVMatio Rallway or other Couplina, T. V.
Riordan, London.
 Waring, United States., H. H. Lake. -(J. F. Golding and U. B. Durkece, United States.)
3ss. Coke Overs and T. Smith,
1ondon. 17th June, 1885.
359. Drivisis Wire Nails in Boots, de., H. H. Lake




 Manchester.
Mand Pulverisina Bone, J. Beales, -( O. Suchiso and Closisiso Umbrellas, W. E. Heys, - (J. Scchs and Co., Germany.)
 Converting Lineal into Rotary Motion, A. T. Boors, S. Reid, Newcastle
 securise Handles of Table Cutlery, w. e.

 LTondon.
T37. Brech-Loadina Fire-Arms, w. w. Wickham,
London. 7sso. Corfer Por, C. Odé and P, Niel. London.
73si. Cask for HANDKERCHIEFB, do., J. C. Mewburn.-


 and R. Hanson, London
3S6. HEATINa
YEED WATER,
L, J. Crossley



 Londou.
739. SAFETY L Lock, J. J. Y. Johnson.- (C. A. Le Masoson,








 400. Fillisa GAPS in Book Shelvis, J. A. Bennett,
Bath
407t. Portable, dc., Music Stands, do., J. Fielden, 740. Codariliva Siarts, H. MacColl, Glaggow.
7409. Oval or ELliftical Soldoriva Mchine, w. J.

 steward and W. Dredge, London.
7413. ARTIFICILL Production of Codkia, D. B. Dott, Glasgow.
7414.
Oow
Bows for Holdiwa Twine, J. Darling and D.

 London.
717. Finirutrusa the Setriva of Types by Haxd,
C. G. Fischer, London.

 420. SMokr-


 7426. CuITrisg Prise FAbrics, J. E. Bennett and J.
8ternberg, London.
sternberg, London.
7427. WABMINO W FARINa Apparki, G. Thornton and


Counary Utressiss, W. Dobson, London.
 Dusert, France.),
7432. Quarz CRushisa Machine, T. D. Williams,
Londont 7433. Machinery Belt Fasteners, w. J. Brewer, 7434. Festmistrining Windows, de., W. J. Brewer, West.








 London.
7447. STrp Liders, H. D. Hatfield, London.
7448. Trioycles, J. E. Holloway, London.

 Tuson, London.
7 Thisilison for Tonsina Seaments of Spheres, c. c.
Elison, London.









 19th June, 1885.
7465. Livrrin Boxes, R. Grimmond, Manchestor.

 7470. O. Ont Lhompanh, Lhestater.
Dublin. Dublin.
747. Eapri Curps for Forariso Elsctrical Circuits,
A. Whalley Halifal



 Beill, Whitby.
747T, Revolvis Elavatoble Emitrer, P. H. Clague,
Liverpool
 747. Mastino, Rusia.). MALWA SIOMAL, H. Cooper.-(J. C. Cumming,
Russia.)












 498. Coxvpoosirios for Coatino Bric

Lake.- (S. Roebuek, United States.) London.
 7501. Drimstock for Watconмakkrs, G. Cornioley,
7500. Hond










 20th June, 1885.







 Fessey, London.
7552 .
sTopreR for
fors,
 7524d Siozs, D. W. Fessey, London

 erty Liverpool.
7527 DEcoons Solution of Todine, H, N. Draper, Rathmines.

 and
and J. G. New, Rirmingham.
531, Spans MA Trisgs, J. T. B. King, Manchester.


 J. Grathvoh, and H. A. Browne, London
5535. DistuLisa Sprirts from Swer Po

YAAMs, A. Ralu, J. Grathvohl, and H. A. Browne,
London.


and 6 . 540. Pin vororitg Accions, G. H. Brockbank, London.
541. GAs Moror Exoivs, J. Shaw, London
 D. Overing and A. R. Tulip, London.
754. Mourtrice and Lid for PowD

 7546. CHes, London. 7547. Appilyino Bronze to PAper, w. B. Silverlock,
 FotDED to TyPE REoistrer, H. Harrild, jun., and A.
 Kieeow,-(J. Schreiber and Neften, Austria).
 Los. Adon
755.
FS5S. Advertisina Suekts and Paprrs, \&co., w. Wattls,
Liverpool





 7564. Boandiva, ce., Leximes, W. Paul, London.
7665. Comination of Corver, MiLk, and Suank, H.


22 2nd June, 1885.
75e日. BaLL and Rollurn Bkanivas, F. H. Anderton
and G. W. Elliott, Sheffleld. 7570. Ciours, O. He, Wood, Shiefield.
7571. Bessmani Converter Bortom
tec., G. A. Jarvis






 7582. Textronalpr, Lond. T. J. Handford.-(T. A. Bdison,


 7586. BLaNk Bouss, do., J. Leyland, London. 75S8. Brbarciso Elzotric Oircutrs automaticalle, 758. Wormvonted Ftuvi

Boluers, J. D. Mortiso
 London.
7502. Foundtow and FAstenver for Tiles, \&c., R. G.
Robson, London. R5obson, London
7504 Co
$7 \mathrm{Compressin} a$
Har, J. Bamber, London.

 7596. Coiour Pristiva, J. Greth and H. de Barranca,


## SELEOTED AMERIOAN PATENTS

317,800. Poursuma Farsi, william, A. Knipe, Claim. - 1 ) As an in improved article of manufacture, tho rotary polishing wheel, composed of the plates $a$,
having contran aportures to rocelvea sutud or arbor and
detachably sea ared together

### 317.800


of yarn or thread clampod between the proximat
faces of the plates, subbtantially as described. (2) In
 reoiving orifices, the radiditing bunches of yarn or
hirend

 Claim. - (1) In an electrio lamp, a pair of curved
carbon pencils mounted upon movable arms insulated
 regulating mechanism wherebeb said pencils, whine nand
lamp is in operation, are caused to approach each other amp is in operation, are caused to approach each other
and to mantinan the are constantly at substantially
 curved carbon pencils mounted upon morable arms
insulated from each other and d depending in a vertical

tion and eduction valve for the latter, an exhaust port
opening from the high-prossure cylinder between the
 cylinder, whereby the steam is solely exhaustod from
the e the engine, first from the high-pressure into the low.
pressure cylinder, and then back and outward throw pressure cylinder, and then back and outward through
the sole exhust port between the pistons of the high.
pressure
 hifh.pressure and low-pressure cylinders and their
pistons and connecting ports, having its sole exhaust
phat ratchet mochanism and gearing connecting the
anme to shaft, connection between said shaft and the



317,962

side wall and a serios of slots cut in ita tapering
surface, all filled in with soft metal, as and for tho
317.962

purpose stated. (2) In a stuffing box, the floxible


## CONTENTS.

Tar Exannern, Juno 26th, 1885.
 before deseribed apparatus, a core formed of an annular
shell or section, and of wires wound circum terentially thereon, the ends being secured at equal spaces from substantially an sot forth. (4) $A$ core ormed of a sheil
of substantially channel shape, having flanges 12 m of substantially channel shapo, having flanges 122
and the esetions of wiro wound thereon, substantially as deseribed.
817,780. Courtvanon Toorr, Francis M. Helms and
Christopher C. Trinkle, Vederburv, Ind.- Filed
October 11th, 1884. provided with fanges $\mathrm{B}^{2}$, overlapptag the upper and
lower edges of the beam and having a concavity in its lower edges of the beam, and having a concavity in its
outer face formed with a serios of vertical serritions, the standard fitted to such concavity and having a rib


C, formed to engage the vertical serrations, the plate
D, provided on tits innor gide owith a concavity fitted to the outor side of the standard, and fastenings whereby
the phte D is limpea aguinst the standara, and the
the


Claim, ID In In compound engine, the combination
of high and dow presure clyindores the former carry
ing a double piston operating as
 anfertices, and suitable mechanism between said holders are mounted, whereby the pencils are allowed
to approach each other and their position determined substantially as described.
317,779. Dynamo-enserric Machine, Charles F.
Heimrichs, New York, N.Y.-Filed December 15th, Claim,- (1) In the hereinbefore described apparatus,
ring armature channelled or recessed on the side or sides away from the inducing magnet and wound with insulated wire, substantially as described. (2) In the
hereinbefore described apparatus, a channelled ring horeinbefore described apparatus, a channellod ring
armature having the channellod or recessed side away
from the inducing from the inducing magnet and wound with insulated
wiro, substantially as described. (3) In the herein-


AMOB AND SMITİ' Excavator. (Illustrated.)

Archer's Strerino Grär
Commercial Eleotrolybis,
Tho. IV. The Physical Sodery.
Railway Matters ..
RALIWAY MATERS.
NOTES AND MERONA

Rallway or Ireland. (Illustrated.).. (iilus.)
Walsh's Self-reoulatina Mile-rekd.
Walsis selina's Atr-tioht Covers, (Hlustrated.)
Botilus.)

Thes Laws of Motion-
STREAN DILGRMMS
STAAM HANMER
Stenm Haymers
Trevithick Monu
Leadino Articles-
The a B C Procers at Aylesbury
Patent-office Delays
Patent-office Delays
The Harbour at Aden
Amalazated St adity of Enöngers
Ratina of Mactinery
Ratlway Preferences
Railway Rates and Foreion Compertition
The Explosion on H.M.S. Isflexible
Drainaor of Horse Guards' Parade
Drainage of Horse Guards' Parade
Railway Acoident in Rubsia
Triple Expansion Enornes
Preservation or Timber ..



Stram Boilers as Macazines of Explosive Enkroy
Drivina Belts and Ropes
Launches and Trial Tripg


Notes frox Lasoashirs
Notes yrou Sheytrid

Notes from Walles and adiolinino Counties

Pargaraphs-
Encasing Wood with Iron
Fundamental
Fundamental Patents
Sugar Production
KRAKOW

