HIGH SPEED LOCOMOTIVES.
We explained last week that a locomotive constructed to run a distance of 120 miles in 120 minutes must be competent to attain a velocity of at least 75 miles an hour
for a portion of the time, unless the line traversed was a for a portion of the time, unless the line traversed was a
dead level; and we added, that for such speed a single pair of drivers 9 ft . in diameter would probably be found necessary. We also showed that the centre line of the
boiler need not be unduly raised, as a height of 7 ft . 6 in. boiler need not be unduly raised, as a height of 7 ft . 6 in .
would be found sufficient. We have now to consider the would be found sufficient. We have now to consider the
work which the engine would have to perform, and the work which the engine would have to perform, and the
means to be adopted in order to obtain the requisite power We have fixed the gross load at 175 tons. Our reason for doing this is, that with the narrow gauge it will be
found impossible to use a boiler capable of developing much found impossible to use a boiler capable of developing much
over 1200-horse power. Indeed, as will be seen further on, over 1200 -horse power. Indeed, as will be seen further on,
it is questionable whether sufficient boiler power can be obit is questionable whether suficient boiler power can be ob-
tained at all. A train to weigh 100 tons might consist of nine vehicles, namely, seven passenger coaches and two
brake vans, one at the front, the other at the rear of the brake vans, one at the front, the other at the rear of the train. Each coach would seat forty passengers, weighing
about 3 tons. If the train were filled it would carry, say, about 3 tons. If the train were filled it would carry, say,
21 tons of passengers and 4 tons of luggage, or in all 25 tons. The net weight of the nine vehicles must therefore not exceed 75 tons, or 8 tons 6 cwt. 2 qrs. each. This is very
light, but we have no doubt that by the free use of steel specially designed coaches could be produced of this weight. The total number of passengers carried would be
280 . Extra fares could of course be charged, but at 3d. per mile the total sum received would be $£ 420$ for a run of 120 miles, which would pay very well indeed. The train would of course be strictly " limited."
We have said that the resistance would not in our opinion exceed 40 per ton on a level at 70 miles an hour. But, as we have shown, the speed if the whole line was free from inclines would be but 65 miles an hour. Allowing 40 lb . to
the ton at this speed-which is well within the mark-we the ton at this speed-which is well within the mark-we
should have a gross tractive resistance of $175 \times 40=7000 \mathrm{lb}$. Now, 65 miles an hour equals 95.3 ft . per second, or 5718 ft . per minute, and $\frac{5720 \times 7000}{33,000}=1213$ indicated horsepower. These figures show that if we cannot reckon on getting more than 1200 indicated horse-power out
of our boiler the weight of the train must be kept down to about 175 tons, as we have said. But our line is not level. We assume that there will be gradients of as that the higher the speed the less will gradients affect the 264 will represent a resistance of 8.5 lb . per ton nearly. This would be about the resistance of a train at 25 to 30 miles an hour. Such a gradient would, therefore, donble the will augment the resistance of our fast express by little will augment the resistance of our fast express by little
more than one-fifth ; that is to say, an addition of about an hour, and by dropping the speed to 60 miles an hour is possible that the incline would be surmounted with 1200 -horse power only. Indeed, curves will be found on
the whole more serious impediments to high speeds tha the whole more serious impediments to high speeds than
reasonable inclines. In any case, we believe that for such reasonable inclines. In any case, we believe that for such
a line as the London and North-Western from Chalk Farm a line as the London and North-Western from Chalk Farm
to Crewe, 1200 -horse power would suffice to give an average to Crewe, 1200 -horse power w
velocity of 65 miles an hour.
The question of adhesion now presents itself. It is of course useless to provide boiler and cylinder power unless we also provide means for utilising it. The tractive effort
to be calculated on is, as we have seen, 7000 lb ., and it will not be safe to count on a coefficient of adhesion greater than one-sixth. Thus we have $6 \times 7000 \mathrm{lb} .=42,000 \mathrm{lb}$. $=$ $18 \cdot 75$ tons as the load to be carried by the driving wheels. This may appear a tremendous weight, but it is not too much for an 84 lb . bullhead steel rail. Mr. Pearson's
engines on the Bristol and Exeter line, already referred to, engines on the Bristol and Exeter line, already referred to,
carried over 19 tons on their 9 ft . drivers ; and we believe that Mr. Stirling's single engines, with 8ft. drivers, on the Great Northern Railway, carry quite 18.5 tons. We see therefore, that adhesion can be had; ; but we also see that
the weight of our train will not admit of being augmented. the weight of our train will not admit of being augmented.
Any addition to its weight would render it necessary either to increase the load on the drivers, which we dare not do, or else to couple two pairs of 9 ft . wheels, which is quite
out of the question, if for no other reason then because of out of the question, if for no other reason then
the excessive length of coupling rods required.
A very brief calculation will suffice to show that the cylinders of our high-speed engine must be 20 in. in diameter, with a stroke of 28 in . An average pressure of 1 lb . in a cylinder of this size will give 103 lb . tractive effort, and $\frac{7000}{103}=68 \mathrm{lb}$., in round numbers, as the average effective pressure which must be maintained in the cylinders. This may be taken as standing for a boiler pressure of 150 lb . per square inch, and we may assume an initial 165 lb . absolute. Steam of this pressure cut off at onefifth of the stroke would give an average effective pressure of about 70 lb . in theory, or nearly what is actually wanted in practice, and this represents a fair amount of economy.
A properly designed engine rumning under these condiA properly designed engine running under these condi-
tions ought not to burn more than 3 lb . of coal per horse per hour, or for 1200 indicated horse-power 3600 lb ., or for a run of 120 miles 7200 lb ., or 60 lb . per mile. No doubt this will appear at first sight an enormous consumption, but the work to be done is enormous. The advantage gained by the work to be done is enormous. The advantage gained by caused by ascending them, and steam must be kept full on from start to finish. In a word, we have the case pre-
sented of an engine which has to be run as fast as it can sented of an engine which has to be run as fast as it can
possibly go without any regard for economy of fuel. The cosst of the coal burned is here a matter not worth a second thought. Economy in its use is only to be sought because
the greater the work that can be got out of it the better is the greater the work that can be got out of it the better is
the prospect that the speed demanded will be obtained. the prospect that the speed demanded will be obtained.
We may add, however, that we believe that 60 lb . per mile We may add, however, that we believe that 60 lb . per mine
but we must provide for the worst, and it must be borne in mind that our engine cannot run into the terminus with
an empty fire-box. The pressure will have to be maintained to the very last.
We now come to the most important consideration of all-the design of the boiler. As the driving wheels will rise above the middle of the boiler, its diameter must be kept down sufficiently to admit
maximum diameter outside cannot exceed 5lin., and to get this the lagging must be suppressed in the wake of the wheels. Without unduly adding to the length of the tubes, it will be impossible to get more than 1000 square
feet of tube surface into such a barrel. Under these circumstances we shall have to rely on the fire-box for the production of steam to a much greater extent than usual We have to burn 7200 lb . of coal in two hours, or 3600 lb . per hour; and even if we burn 100 lb . per square foot per grate cannot be more than 3 ft .6 in . wide, and $\frac{36}{3.5}=10 \cdot 3$ as its length. Such a box could not be properly fired by any stoker, and unless a tremendous draught were maintained by a contracted exhaust, which would entail many evils, 100 lb .
could not be burned per square foot of grate per hour could not be burned per square foot of grate per hour. It would be necessary, we apprehend, to enlarge the fire-box on the Wooton system by spreading it behind the driving wheels over the trailing wheels; but this would entail the construction of a very complicated fire-box, or the placing of Crampton's type of engine might be adopted. The great obstacle standing in the way of this would be the difficulty of distributing the weight, and the only advantage gained would be an addition to the diameter of the boiler barrel.
So great, indeed, are the difficulties which stand in the a great, indeed, arogress that we are forced reluctantly way and bar our progress is impossible to design a narro gauge engine which shall develope 1200 indicated horse power steadily for an hour and yet shall be of anything
like the ordinary type. If this be the case, then, it is not like the ordinary type. If this be the case, then, it is not
easy to see how runs of 60 miles can be accomplished in 60 minutes.
One way out of the difficulty that suggests itself to
 us is the adoption of a fire box shaped in plan diagram. Virtually, we would have in the part an ordinary fire-box with about 18 square remaining portion D , a species of addition might be 7 ft . by 4 ft . Thus we should have a total grate surface o
order to get in sufficient tube area an oval boiler barrel. In this there is nothing novel, as such barrels have been used for years on the Continent. The driving wheels are shown at A A, while B B are two fire doors. On such a grate the requisite weight of coal could be consumed at the rate of about 78 lb . per square oot per hour, which is quite feasible
We have not gone into details of design, nor is it necessary of the we should. Our object has been to put the rather than attempt its solution ourselves; and, doubtless many of our readers will take sufficient interest in this most attractive subject to say something to the purpose in our correspondence columns. We have based tosay on the assumption that at.exceedingly high speeds such We have also, however, expressed the belief that it is not nearly so much. If it were we do not see how the present Northern, could be maintained on the Midland, Great it is very much less lies the possibility that the chance that velocities may yet be attained on English railways. The discouraging fact is that on no railway in the world is 60 miles run in 60 minutes.
It is a noteworthy fact that this subject has not hitherto met with the full discussion it deserves. In the mind of the general public there appears to be an idea that railway
trains could be run much faster than they are if railway companies pleased. The truth is, however, that the quickest trains on our great lines are run as fast as they bilities, indeed, that nothing is left to contingencies, and a mall mistake with fire or water will suffice to render them several minutes late. Nothing, indeed, but consummate judgment on the part of driver and stoker can secure that clockwork regularity for which some of our northern lines are famous. If we have done something to open the subject shall not have written in vain. Men who ought to know better make enormous mistakes concerning it. Forexample, Mr. Barnet Le Van, a well-known Philadelphian engineer, read last year, before so eminent a body as the Franklin Institute, an elaborate paper to prove that 60 miles could easily be run in 60 minutes, wherem we find the following passage. He is dealing with the horse-power miles an hour is about 40 lb . per ton, or, say, for a train of 150 tons, 6000 lb . On the Pennsylvania or Bound Brook railroads, at the above-named speed, this would correspond to about 300 indicated horse-power. This amount of power would be obtained at 60 miles an
hour by 19 lb . mean cylinder pressure with two 18 in . cylinders and 24 in . stroke, making 264 revolutions per minute, corresponding to a piston speed of 1056 ft . per
. Mr. Wooton uses in some of his fast engines fire-boxes oft. long by
st... wide, and abount 68 suquare feet of ginte bar, for burning anthracite
wasto wasto at the rate of about 50 bol a a mile. It is shid that an engine of this
type has rum with a light train down an incline of about 1 in 1000 at the
minute; driving wheels 78 in . diameter. The dead weight and load would require 25 lb . additional, or 44 lb . per load combined at 60 miles an hour between Philadelphia and New York, and would be as follows:-H. $=$ $251 \times 10^{\circ} 56 \times 44$
$33,000 \times 2=71070$-horse power." We confess we have not the least idea what Mr. Le Van means by "the resistance and load combined," but instead of 300 -horse power as given above for the resistance, the true figures are $\frac{88 \times 60 \times 600}{33,000}=960$-horse power. We need scarcely add that Mr. Le Van in no way concerns himself about the boiler required to supply the necessary volume of steam. which would continually develope 1000 a locomotive which would continually develope 1000 or 1200-horse unless a more or less wide departure be made from dor ing tyes Thless bil diparlich ade fish ing types. Thus, a boiler on Fairlie's system might be easily designed which would give both grate surface and tube surface enough; or a combined engine with two footplates together, so to speak, might be employed; but we do not quite see how the weight is to be kept down, in such a case, to reasonable himits. Other schemes suggest ing methods of construction that it would probably be useless to suggest them
In conclusion it may be well once more to point out that if long runs can be maintained, the chances in favour of 60 miles an hour are greatly increased. Thus with a run of 200 miles without a stop, the average speed need
very little exceed 60 miles an hour, provided a pushing engine was used at the start to get up speed very quickly.

THE MANCHESTER SHIP CANAL
The Select Committee of the House of Lords appointed to Mersey to Manchester for constructing a canal from the upper seven sittings under the chairmanship of the Duke of Richmond but they have not made very much real progress, Happily their lordships do not seem to be in any particular hurry, and as only this one Bill has been referred to them, instead of the group generally handed over to a Committee, it is assumed that follow the proceedings very closely, and the noble chairman displays remarkable acuteness and appreciation of
the points involved. His well known interest in the incidental manner. One of the witnesses having alluded to the importation of cattle, as it might be affected by this canal, his grace immediately put a number of questions to the witness as confined to the trade aspect of the scheme, a large number of Lancashire merchants, cotton spinners, and manufacturer having been called to show the effect the canal would have on transit rates and on the general trade of that part of the Manchester ard theed that the charges by rail from Liverpool to not only in regard to the bad state of trade, but in themselves and that, indeed, these imposts have had a great deal to do in reducing os tho present condion. as Live to foreign natural, if not the only, outlet for their their putting prices on their manufactures higher then those foreign manucturers producing the sae rictes example, one witness showed that Bombay was producing goods similar to Lancashire products, by having the cotton on the spot at such prices that Lancashire had little chance of competing and they traced this to the excessive cost of getting their consignments out to India. In the same way it has been given in evidence that the continental competition is doing much to ruin the Lancashire trade; and upon this point some extraordinary statistics have been given, especially in regard to Bombay products.
Rylands question of savings, a representative of Messrs. John Rylands and Son, of Manchester, predicted a saving of half the that must mean, he stated thot whe canal, an to no less than $£ 3000$ a year to his firm Roure amount to employing over 11,000 hands, and owning 200,000 spindles and 5000 looms, this witness's support of the canal project must carry considerable weight by itself, but it has been confirmed by Among these wan afacturers doing business on a large scale and Sons, Halifax-a firm doing business to the extent of a million a year-who explained that in consequence of the heavy Hull, and other east cosst ports foen driven from there to belief of course is, that the canal oxpe made their goods. The steam and sailing, will go right up to Manchester, and through Liverpool but the loss through only dock and town dues frequent handlings, commission to agents to supge buik an shipment-by being able to do it themselves in Manchesteramount saved would be something enormous; but realised, the has still to be heard.
It is too soon to attempt to conjecture the leaning of the been some, but in one or two instances the promoters have路 Mr . Adamson, the chairman of the Provisional Committee therefore a most influential and representative witness, admitte to an scheme, held in the autumn, he had made these remarks : "The great, renowned, big, infallible Lancashire Pope might mistak able to alter the fact thest the facts, but he would never best paying that had ther main euterprise was one the when he had pricked the great canal bubble the contents woul overwhelm him like an avalanche, and nothing would be visible of him save the dishonoured wig of a Queen's Counsel and twenty stone of bones and corruption." He also confessed to having said that he had never known a more fractious, disturbing, interrupting chairman than Sir Joseph Bayley, who preside over the Commons Committee last year. Of course he had an explanation of this strong language ready, but such observations are hardly likely to win the favour of any Committee
One point the opposition might bring out is that the
enthusiasm in Lancashire for this canal is dying out, and that money is not so readily forthcoming; but on this question
those best qualified to know have emphatically declared that
subscriptions to the preliminary expenses have come in this year almost as well as they did last year ; no less than $£ 26,000$ or $£ 27,000$ have been received this year. Last year over $£ 65,000$ were received; but then less money has been required for this second application. With regard to one question, they have chester and Lancashire are coming forward to support the project much more than they previously did ; it is certainly a significantan mano sent up members to give evidence on their behalf in favour of the
Bill. Besides the reducing of railway charges, several curious reasons have been given for constructing the canal, one witness urging that it would be a great benefitto Lancashire if vessels could take direct to Manchester the agricultural products of the South and West of England. Another witness predicted that if Australian ships could get straight up to Manchester with their wool cargoes, Manchester would become the wool market of the country, as it ought to be considering the position of the woollen goods' towns. In a few da
will probably be taken up.

THE SALTERHEBBLE VIADUCT

THE supplement which we give this week is a perspective vew of the Salterhebble Viaduct, by which it is proposed to carry a portion of the Huddersfield and Halifax exten-
sion of the Hull, Barnsley, and West Riding Junction Railway, sion of the Hull, Barnsley, and West Riding Junction Railway,
of which Mr. W. Shelford, M.I.C.E., is engineer-in-chief, over the Salterhebble valley. The site of the viaduct lies about a mile south of the great manufacturing town of Halifax, near which, as perhaps our readers may be aware, are
some of the best of the Yorkshire building stones,
This fact might suggest the propriety of constructing this important work entirely of masonry, were it not that the spans
prescribed by Parliament for the various roads, canals, and railways which it crosses, and the acuteness of their angles, are too great to allow of this being done. These circumstances, coupled of this part of the valley, render almost obvious the adoption of wrought iron girders, supported on massive masonry piers, as best meeting the requirements of the case, and the somewhat bold and novel form in which these have been designed is, in our opinion, well adapted to the work they will have to perform, the form of the pier also lending itself readily to the sharp kews of the various openings required.
A very fair idea of the extremely fine effect which will be produced may be obtained from the perspective view which
forms our supplement, and which has been reproduced from a forms our supplement, and whi
drawing by Mr. Leonard Stokes.
The total length of the proposed viaduct, which runs nearly due north and south, is 1342 ft ., consisting of a south abutment having an arch 40 ft . span over a road, nine spans 130 ft . between centres, and a north abutment with a plate girder
bridge of usual construction over another road. The greatest height from rails to the surface of the ground is 142 ft . The seneral shape and design of the masonry piers and abutments will readily be seen from our engravings on page 220 . The will have to sustain. The foundations being good, no difficulty is anticipated in obtaining a solid base for the piers and abutments. The main girders, which, it will be seen, are of the
simple Warren type, of 126 ft , span between centres of bearings, simple Warren type, of 126 ft , span between centres of bearings,
and placed 23 ft . 8in. apart between centres, are arranged especially to meet the present requirements of the Board of Trade and the method adopted of suspending the cross girders imme hately bed itself to our roaders, the as economical and ance iding a substantial viding a substantial parapet in the event of a train leaving the
rails, which it could do without any danger to lattice bars or other vital parts of the structure. A wind fence is further provided, which greatly reduces the likelihood of a carriage mounting the metals in a high wind, such as caused the unfortunate Tay Bridge disaster. The flooring, which has to be maintained watertight over many of the spans, is of flat wrought iron plates, which, in addition, gives the platforms and main girders great
lateral stiffness. The drawings we have now given of the lateral stiffness. The drawings we have now given of the
viaduct show so completely every part of the structure that viaduct show so completely every
further description is not necessary
It is to be hoped that the construction of so fine a piece of and Barnsley Railway to Huddersfield and Halifax will shortly and Barnsley Railway to Huddersfield and Halifax will shortly be put in hand, for the railway when finished will provide a
much needed and long wished for additional route from the West Riding to the port of Hull and to the Midland Counties and will also form the most important link in a new north and south line, via the Midland Railway, through Huddersfield and Halifax to Scotland. The design has been worked out in all its details in Mr. Shelford's offise by Mr. Wilfrid Stokes.

International Healith Exhbition. - The great interest has been made, by British exhibitors alone, for space five times a great as that actually at the disposal of the Executive Council.
Information has recently been received that the French Government has appointed a Commission; and Italy-owing in a great
measure to the individual exertions of a member of the Executive Council-will, it is hoped, talke an active part. A portion of the Educational section of the Exhibition will be located in the Central Institute of the City of London Technical Guilds, the handsome
building in course of erection in the Exhibition-road, which has been kindly placed at the disposal of the Executive Council. The
Royal Albert Hall, with its musical attractions, will now form an integral part of the Exhibition; and the Aquarium, a popular portant part of the Health Exhibition. In the Dress Section, the most popular exhibit will probably prove to be a series, which is
being prepared, illustrative of English dress of all ranks of life, from the time of the Conquest to George IV. While the main objects of the Exhibition-which are to impart instruction on the
principal sections of the undertaking--have received the fullest visitors has not been overlooked. The Band of the Grenadie Gisitors has not been overiooked. under the able conductorship of Mr. Dan Godfrey, will, as last year, perform each day: and, actuated by the success, which
attended the visit of the Thuringian Regimental Band to the Fisheries Exhibition, the Executive Council have taken such steps as may, it is hoped, lead to the visit of representative foreign
military bands this summer. It is also intended that concerts shall from time to time be given in the Albert Hall. An International Congress on Education will be held, and conferences and
lectures will conduce to the elucidation of the subjects of the lectures will conduce to the elucidation of the subjects of the
Exhibition. It is also proposed to have a Library and Reading room in connection with the Exhibition, which will be open to al
visitors, under proper regulations, while the Exhibition is open The Library will consist of books on various subjects comprised in the classification of the Exhibition, both English and foreign.
Application has been addressed to foreign and colonialGovernments asking for reports and statistics on sanitary and educational matter
and to authors and publishers for works of a similar character.

FRICTION OF LUBRICATED BEARINGS.

 THE results given in tables V., VI., VII., VIII., which will be found below, were obtained in this manner. Experimentshowed that the friction varied considerably with temperaturesee Table IX. All the oil-bath experiments were therefore taken at a nearly uniform temperature of 90 deg ; the variation above or at a nearly uncrm
below this temperature was never allowed do be more than $11+$ deg.
(3) Results of experiments.-In the experiments shown in tables I., II., and III., care was taken not to load the bearing up to seiz. I., II, and III, care was taken not to load the bearing up to seizIn Table IV. the bearing seized unintentionally. In tables V., seizing. The experiments shown in tables V. and $V I$, were specially made for the purpose of ascertaining the greatest load which
could be carried with rape and mineral oil in the oil bath. The greatest load carried with the rape oil was 5731 lb . per square inch, and the greatest load carried with the mineral oil was 625 lb . I
both of these casest been taken out and scraped, but with no better result. The general results of the oil-bath experiments may be described as follows :-
The absolute friction, that is the actual tangential force per square inch of bearing, required to resist the tendency of the brass to go round with the journal, is nearly a constant under all loads, within ordinary working limits. Most certainly it does not increase in
direct proportion to the load, as it should do according to the ordinary theory of solid friction. The ordinary theory of solid friction is that it varies in direct proportion to the load; that it is independent of the extent of surface; and that it tends to diminish liquid friction, on the other hand, is that it is independent of the pressure per unit of surface, is directly independent on the extent
of surface, and increases as the square of the velocity. The results of these experiments seem to slow that the friction of a perfectly lubricated journal follows the laws of liquid friction much more circumstances the friction is nearly independent of the pressure per square inch, and that it increases with the velocity, though at a rate not nearly so rapid as the square of the velocity. The experi-
ments on friction at different temperatures, shown in Table IX., indicatea very great diminution in the friction as the temperature rises. Thus, in the case of lard oil, taking a speed of 450 revolu
tions per minute, the coeffcient of friction at 120 deg. is only one-third of what it was at a temperature of 60 deg . A very interesting discovery was made when the oiluath oxh experi.
ments were on the point of completion. The expriments being carried on were those on mineral oil; and the bearing having seized with 625 lb . per square inch, the brass was taken out and examined, opportunity was taken to drill a din. hole for an ordinary lubricator through the cast iron cap and the brass. On the machine being put together again and started with the oil in the bath, oil was
observed to rise in the hole which had been drilled for the lubriobserved to riso in the hole which had been driled for the lubri-
cator. The an attempt was made to plug up the hole, first with a cork and then with a wooden plug. When the machine was started the plug was slowly forced out by the oil in a way which showed that it was acted on by a considerable pressure. A pressure gauge was scrowed into the hole, and on the machine being started the press
sure, as indicated by the gauge, madually rose to nbove 200 lb sure, as indicated by the gauge, gradually rose to above 200 lb . per square inch. The gauge was only graduated up to 200 lb , and tho
pointer went beyond the highest graduation. The mean load on the horizontal section of the journal was only 100 lb . per square inch. This experiment showed conclusively that the brass was
actually floating on a film of oil, subject to pressure due to the actually floating on a film of oild subject to a pressure due to the
lood. The pressure in the middle of the brass was thus more than double the mean pressure. No doubt if there had been a number of pressure gauges conneoted to various parts of the brass, the and diminished to nothing towards the edges of the brass. The experiments with ordimary lubrication were begun with a needle
lubricator, the hole from which penetrated to the centre of the brass. A Aroove in the middle of the brass, and parallel to the for distributing the oil-see Figs, 5 and 6 , It was found the with this arrangement the bearing would not run cool when loaded would only 100 lb . per square inch \& and that not a drop of oil hole filled completely with oil, thus giving a head of 7 in. of oil to force it into the brass. It appeared as
being in the oil-film to escape. This view was confirmed by the following experiment. The oil-hole being filled up to the top, the weight
was eased off the journal for an instant. This allowed the oil t Was eased off the journal for an instant. This allowed the oil to
sink down in the hole and lubricate the journal; but immediately the load was again allowed to press on the journal the oil rose in showing that flormer level, and the journal became dry, thu a means of lubricating the journal, was a most effectual one for collecting and removing all oil from it. It should be mentioned that care was takento chamfer the edges of the groove, so as to
prevent any scraping action between them and the journal. As the oil, it was resolvelwas obviously the wrong place to introce the the centre hole and groove were filled up, and two grooves were made. These grooves were parallel to the axis of the journal,
extending nearly to the ends of the brass, and were placed at equal distances on either side of the centre ; they formed boundaries to an are of contact, the ehord of which was 3 łin--see Figs. 7 and 8 .
With this arrangement of groove the satisfactory, the oil going down into the journal and the bearing running cool. The results of the experiments with this arrange ment of brass are given in Table VII. The bearing neverthelessseeized with an actual load of only 380 lb . per square inch. The arrangement of grooves was then altered to that usual in locomotive axie-
boxes-seo Figs, 9-11. The oil was introduced though twe boxes-seo Figs 9.11 . The oil was introduced through two holes,
one near each end of the brass, and each connected to a ourved space in the two curved grooves nearly enclosing an oval-shaped pace in the centre of the brass. At the same time the are of con-
tact was reduced till its chord was only 2 in . This brass refusel to take its oil or run cool. It would sometimes run for a short time with an actual load of 1781 lb . per square inch, but rapidly
heated on the slightest increase of the load. The brase been a good deal cut about by altering and filling up groous having considered desirable to have a new brass, and one was accordingly obtained. The grooves being made exactly the same as in the last
experiment with the old one, this brass seized with an actual load experiment with the old one, this brass seized with an actual lond
of only about 200 b. per square inch. The oil-box was completely cut away so as to allow a freer current of air round the bearing, and the lubricator pipes were soldered into the brass. The wicks
were taken out of the lubricators and the lubricators filled full oil, by which means oil was supplied to the brass under a full head of '9in, and yet the oil refused to go down, and the underside of
the journal felt perfectly dry to the hand, and speedily heated with a load of only 2001 lb . per square incl. The fact that this arrangement of grooves, which is found to answer in the axles of railway
vehicles only be accounted for by the fact that a rail way ave appas a continual end play while rumning, which prevents the brass from be. eoming the perfect oil-tight fit which it became in this apparatus.
The The attempts to make this arrangement of lubrication answer were
not abandoned until after repeated trials, It now became clear not abandoned untu after repeated trials. It now became clear
that there was no use in trying to introduce the oil directly to the that there was no use in trying to introduce the oil directly to the
part of the brass against which the pressure acted, and that the only way to proceed was to oil the lower side of the joumnal, and trust to the oil being carried round by the journal to the seat of the pressure. The grooves and holes in the brass were according
filled up, and an oily pad, ontained in a tin box full of rape
was placed under the journal, so that the journal rubbed against
in turning. The pad was only supplied with oil by capillary
attraction from the oil in the box, and the supply of oil to the journal was thus very small ; the oiliness, in fact, was only just
perceptible to the touch, but it was evenly and uniformly distri buted over the whole journal, The results are given in and three observetioaring fairly carried 551 lb . per square inch was on the point of seizing and did seize after running a few the bearing seivis load. It will be observed that in this instance oil bath experiment with rape oil. These experiments with the oily pad show a nearer approach to the ordinarily received laws of nately matery constant, and may be stated as about Ito on an average.
There does not in this case appear to be any well-defined variation of friction with variations of speed, acoording to any regular law.
The results of the experiments with rape ool, fed by a syphon
lubricator to side grooves-Table VII.-follow nearly the same law

as the results obtained from the oil bath experiments, as far as the approximate constancy of the moment of friction is concerned; but oil bath. It should be stanted that though only these two tables are given as the results of the experiments on what is called ordinary yubrication, that is, lubrication by means other than that of or attempts at experiments which were made on this subject But they are the only experiments the results of which were suff results, generally speaking, were so uncertain and irregular that they may be summed up in a few words. The friction depends on the quantity and uniformity of distribution of the oil, and may be anything between the oil bath results and seizing, according to the
perfection or imperfection of the lubrication. The lubrication may

this point without imminent risk of heating and seizing. The oil the limit beyond which friction cannot be reduced by lubrication per minute, by properly proportioning the bearing surface to the
load, it is possible to refuee the coefficient of friction as low a
 Pov. A coefficient of sbor is casily attainable, and probably
frequently attained, in ordinary engine-bearings in which the direction of the force is rapidly alternating and the oil given an opportunity to get between the surfaces, while the duration of the orce in one direction is not sufficient to allow time for the oil film
to be squeezed out. The extent to which the friction depends on
. the quantity of the lubrication is shown in a remarkable manner in
Table X.; which proves that the lubrin Table X.; which proves that the lubrication can be so diminishe
that the friction is seven times greater than it was in the oil that the friction is seven times greater than it was in the oil bath,
and yet that the bearing will run without seizing. Observations on the behaviour of the apparatus gave renson to believe that with perfect lubrication the speed of minimum friction was from 100 ft t. to 150ft. per minute ; and that this speed of minimum frictio perfect lubrication. By the speed of minimum friction is mean that speed in approaching which, from rest, the friction di minishes

Table V.
Bath of Rape Oii. Temperature 90 deg. F. . 4in. Journal, 6 m.
long. Chord of Arc of Contact of Brass $=3.92 \mathrm{in}$.

\times the nominal load $=$ nom
per square

䆘卦 Nominal frictional rosistance por square inch of bearing.

N.B. The bearing seized on reversing with 573 lb . per square
inch. The experiment was repeated, but the bearing refused to
carry more weight inch. The experiment was repeated, but the bearing refused to
carry more weight. These quantities were obtained by a dirict
load on the lever, so that in these the coefficient is calculated from the force of the lever, instead of the force on the lever being cal. culated from the coefticient, as was the case in the former experi ments.
Bath of Mineral Oil. Temperature 90. deg.

N.B.-The bearing carried the 625 lb , per square inch rumning both ways, but seized on the weight being increased. These quanti-
ties were obtained by a direct load on the lever, as in Table v. This was a thinner sample of mineral oil than that nsed in the previous experiments; it was fluid at 50 deg., while the oil previ-
ously used could only be described as grease at 50 deg. This will account for these experiments showing less friction than the former except with the highest load, at which, the thin oil being overloaded and on the
thick oil.
Rape Oil, fed by Syphon Tablebriator. पin. 4 in. Journal, bin. long.

Coefflicients of friction, for speods as below

${ }_{\text {las }}^{\text {libs }}$	${ }_{\substack{\text { lis } \\ 317}}$		$\cdot 0056$.0057	-0063	.0068			
${ }^{205}$	252	-0132	-0008	-007	. 0077	.0082	-0087		
100	123	-014	'0125	.0146	-0152	. 0163	$\cdot 0171$		

The nuove cooficients per sq. inch of bearing.

The chord of the are of contact of the brass $=34 \mathrm{in}$. . The nominal load per sq. in. is the total load divided by 4×6. The actual load per sq. in. is the total load divided by $3 \times 6 \times 6$. 380 lb . per sq. in
 With nominal load of 258 lb . per sq. in. the temperature of the bearing was 90 deg. With nominal load of 205 lb . per sq. in. the temperature of the bearing was 85 deg. With nominal load of 100 lb . per sq. in. the temperature of the bearing was 80 deg .
 Rape Oit, Pad under Journal. 4in. Journal, 6in. long. Chord of Aro of Contact of Brass $=2$ i in.

The chord of the arc of contact of the brass $=2 \downarrow$ in.
The nominal load per sq. in. is the total load divided by 4×6. The actual load per sq. in. is the total load divided by 24×6.
The results with the actual load of 582 b . per sq. in. were obtained with wifficulty, and the bearing seized with that load after running for a short time.
The pad consisted of a piece of felt pressing against the journal,
and resting on worsted immersed in a tin box full of oil and resting on worsted immersed in a tin box full of oil.
Bath of Lard oil. Variation IX.

Comparison of the Friction with the D. Different Methods of Lubrication, under as nearly as possible the same cireumstances. Lubri-
cant, Rape Oil; Speed, 150 revolutions per min. -

	$\begin{aligned} & \text { Actual } \\ & \text { fosed } \\ & \text { osp per } \\ & \text { sq. } \end{aligned}$	Coofficient of friction.	$\underset{\text { tive }}{\text { Compara- }}$ friction.
oil bath..	263	-00139	1
Syphon lubricator	252	-00980	7.06
Pad under journal ..	272	-00900	6.48

Comparison of Friction with the XI.
${ }^{\text {as }}$ nearly as possible the the various Lubricants tried, under -

Lubricant.	Mean resistance.	Per cent.
Sperm oil	$\mathrm{lb}_{0 \cdot 484}$	100
Rape oil	0.519	106
Mincral oil	$0 \cdot 623$	129
Lard oil	0.652	135
Olive oil	0.654	135
Mineral grease	1.048	217

N.B.-The above figures-calculated from Tables I.-VI.-are the means of the actual frictional resistances at the surface of the journal per sq. in. of bearing, at a speed of 300 revs. per min.,
with all nominal loads from 100 lb . per sq. in. up to 310 lb . per
sq . in. . also represent the relative thickness or body of the various oils, and also in their order, though perrsaps not exactly in their
numerical proportions, their relative weight-carrying power Thus numerical proportions, their relative weight-carrying power. Thus weight-carrying power; and though the best oil for loads, would be inferior to the thicker oils if heavy pressures or high temperatures were to be encountered.
Of the discussion
Of the discussion which took place on this paper when read at
Birmingham in November last we cave an Birmingham in November last we gave an account in our impres.
sion of 9 th November last. The short renewed discussion of Friday added nothing of importance.

THE INSTITUTION OF CIVIL ENGINEERS.
hydraulic propulsion.
AT the ordinary meeting on Tuesday, the 26 th of February, Sir
W. Bazalgette, C.B., president in the J. W. Bazalgette, C.B., president, in the chair, the paper read
was on "Hydralic Propulsion," by Mr. Sydney Walker Barnaby,
Assoc. Assoc. M. Inst. C.E.
The idea of
The idea of propelling ships, by forcing water through the bottom or sides by means of pumps, was suggested in 1661 , which
was the date of the first patent upon the subject. The Nautilus was the date of the first patent upon the subject. The Nautilus
and the Waterwitch, built in 1866, attracted a good deal of public attention. The latter was an armoured gunboat built for the Admiralty at the Thames Ironworks, the machinery having been
designed by Mr. Ruthven. This gunboat was driven by two waterdesigned by Mr. Ruthven. This gunboat was driven by two water-
jets discharged from nozzles at the sides level with the water, the
 diameter of each of which was 82 in. The jets were supplied by a
centrifugal pump, 14 ft . in
diameter. The uaantity of water dis. charged per second was 5.2 tons at a velocity of 29 ft . per second. When the engines were developing 760 indicated horse-power the
vessel, which was of 1161 tons displacement, attained a speed of $9 \cdot 3$ knots. The Viper, a similar vessel, but driven by a screw propeller, with a displacement of 1180 tons, attained a speed of 9.58 knots, with 696 indicated horse-power. Although this pointed
to a considerable waste of power by the hydraulic system, many people thought it had not received a fair trial : and Lord Dufferin's Committee on Designs of Ships of War in 1871, recommended that in view of its suitability for draughts of water so small as to
preclude the use of screws, it should receive a more thorough trial. In 1878 a hydraulic torpedo vessel was built in Sweden for competition with a similar vessel propelled by twin screws. The
vessels were 5 sft. in length, with 10 ft . 9 in . beam, and of 20 and vessels were
21 tons displacement. in The screws with 90 indicated horse-power drove the boat at a speed of 10 knots, while the turbine, with 78 indicated horse-power, gave a speed of $8 \cdot 12$ knots per hour.
The displacement coefficients were 82 with the screw, $52 \cdot 5$ with the turbine. The Fleischer Hydromotor, built in Germany in 1879, also failed to compere with the screw in poi. The steam acted
this vessel there was no centrifugal pump. this vessel there was no centrifugal pump.
directly upon the water, forcing it out of vertical cylinders through
nozzles in the bottom of the vessel, which could be turned in any direction. The motion was unpleasant owing to the intermitten action of the jets, and the speed obtained was small.

The advantages which the hydraulic system of propulsion preunder sail; no racing of the engines; power of reversing motion in the hands of heoliter on deck; fuil engine-power for mancouvring; vessel capable of being made double-ended, and power of ramming
much increased. The propeller was not liable to receive damage nucm increased. The propend was not liable to receive damage
from runing aground, and could not be fouled by floating obstructions ; it was favourable for light draught, and the large pumping-power was available for keeping down leaks. The dis.
advantages were mainly these:--The difficulty of utilising the full advantages were mainly these:- The difficulty of utilising the futl
energy of the water entering the propeller ; every particle of water energy of the water entering ine propeller; every particton of the
acted upon must be carried in the ship; loss by friction of then In 1882 Messrs. Thornycroft were building at Chiswick twenty second-class torpedo boats for the Admiralty, and they were commissioned by their Lordships to fit one of them with a Ruthven propeller in competition with the screw. As the machinery was
necessarily heavier, the hydraulic boat was given a little extra ength. The dimensions of the screw boats were :-Length 63 ft , beam $7 \mathrm{ft}$. . Gin., draught 3 ft .88 in ., displacement 12889 tons. In
the hydraulic boat the length was increased to 6 6ft. 4 in. the beam was 7 ft . 6 in., draught 2 ft . 6 in., and displacement 14.4 tons. The eylinders 8 inin, and 14 lin in diameter, with 12 in. lengeth of stroke. They drove a turbine 2 ft , 6 in, in diameter at 428 revolutions per minute. The inlet to the pump was at the bottom of the vessel about amidships, and the discharges, 9 in . in diameter, were at the sides just above the water. In all previous hydraulic boats the water had been taken in through a hole in the bottom, in such a
way that all its velocity relative to the ship was destroyed before it entered the pump. This velocity had to be restored by the pump, which involved a large waste of power. In the Thornycroft hole was presented to the water at right angles to the keel. The water flowed with unchecked velocity through the pump, and if
the vessel was towed along the water wns scooped up, flowed of its own accord through the pump, and fell out at the nozzles. The nozzles could be worked from the conning-tower, and made to discharge the water ahead, astern, or athwartships, thus driving
the boat in either direction or stopping her. On trial the pump the boat in either direction or stopping her. On trial the pump
discharged one ton of water per second, at a velocity of $37+\mathrm{ft}$ t. per discharged The horse-power developed by the engines was 167.
second.
The The speed obtained by the boat was 126 knots per hours The
engines in the screw-boat were considerably lighter. The cylinders were $8 \$ \mathrm{in}$. and $13 \mathrm{din}$. in diameter, with 8 in . length of stroke. They
developed 170 indicated horse-power, with 636 revolutions. The speed obtained was 173 knots per hour. The method adopted for measuring the quantity of water discharged from the nozzles in
the hydraulic boat was considerably more accurate than hitherto employed. On the Waterwitch, very imperfect measurements of the velocity of discharge were taken with a patent \log placed in the jet. Measurements were made by the the end of enew boat ty a thin plate 1 si in, square, attached to the end of a lever, and placed in the jet just where it left the The apparatus was so arranged that the pressure could be measured at every part of the jet, and not in the centre only. The pressure varied greatly in different parts of the jet, the mean being nine-tenths of the pressure in the centre. From this the velocity of the water was estimated, and also the quantity dis
charged. The efficiency of the jet was found to be 0.71 , and of the pump 0.46 . In In the thate jerwitch found to be 0.71 , and of
was 0.5 , and of the pump $0^{\circ} 47$. In the Swendiency of the jet Was efficiency of the pump was $0^{0.5}$. and of the pump 0.55 . The total
the the efficiency or ratio of useful work in the jet to the actual work expended in producing it was - in the Waterwitch, 0.18 ; in the
Swedish boat $0.214 ;$ and in the Thornycroft boat 0.254 . The Swedish boat 0.214 ; and in the Thornycroft boat 0.254 . The
displacement coeefficients at the maximum speeds were, in the displacement co-efficients at the maximum speeds were, in the
Thornycroft screw-boat, 69 ; in the Thornycroft hydraulic boat, 72. The only fair comparison, however, between these two boats was at the same speed of $12 \cdot 6 \mathrm{knots}$; the co-efficient of the screw was then 140 -still nearly double that of the other boat. It must also be remembered that no comparison could fairly be drawn
between the co-efficients of the Thornycroft hydraulic boat $12 \cdot 6$ knots and the coefficient of the Waterwitch at $9 \cdot 3$ knots which was 116. The speed of $9 \cdot 3 \mathrm{knots}$ was an easy one for a
versel 162 ft . long, while $12 \cdot 6$ knots was a speed difficult of attainment by a boat only 66 ft . long. If the latter had been designed to run at $8 \frac{1}{2}$ knots, its most economical speed, the co-efficient would
have been 140 against 116 of the Waterwitch have been 140 against 116 of the Waterwitch. In conclusion,
it was worthy of note that one of the greatest obstacles to the sucess of the jet propeller, namely, the loss of energy of the water entering the propeller, had been overcome. It had bee clearly foreseen by Mr. Thornycroft ; and by adapting the bottom of the boat to meet it in the manner described, the efficiency of the jet had been raised from 0.5 to 0.71. Unfortunately this
obstacle did not stand alone. What efficiency it was possible to get with not strifuml second, with a lift of $21 \frac{\mathrm{p}}{\mathrm{p}} \mathrm{ft}$. and of limited weight and dimensions the author could not say ; 46 per cent. seemed very low; had reached 70 per cent. the total efficiency would have been 0.38 and the speed upwards of 15 knots. Perhaps this amount of succes might yet be achieved for the hydraulic propeller, but it was not
likely to be exceeded. The case at present stood somewhat thus: -In the screw-boat the efficiencies were-engine, 0.77 ; screw propeller, $0^{\circ} \cdot 65 ;$ total, $0^{\circ} 5$. In the hydraulic boat-engine, 0.77 jet propeller, $0 \cdot 71$; pump, $0.46 ;$ total, 0.254 . The jet, as a
propeller, might be taken as a little better than a screw, but the propeller, might be taken as a little better than a screw, but the
loss in the pump was a dead loss, and represented about half the loss in the pump was a dead loss, and represented about half the
power. In other words, before a hydraulic-propelled boat could be made to compare favourably with and driven by a screw, the pump made to compare favourably wing the jet must work without loss.
produt

The Electric Light in Foundries.-Messis. Thwaites Bros. of Bradford, are now using the electric light very successfully. At
present the light has only been adopted in the erecting shop, a present the light has ony been adopted in the erecting shop,
large building some 4oft. hight, of about the same width, and perraps, 60 ft . in length, without any floors. The difficulty of lighting a large room such as this, in which the centre must be large castings by an overhead travelling crane, is one which pre sents features of peculiar difficulty. With gas it was practically impossible to light the place at all adequately, and after dusk it
was not considered safe to go on with work which involved the con stant moving of heavy castings, so that during the winter monthe and especially on dull and fogey days, work was frequently brought almost to a standstill. These difficulties led Messrs, Thwaites Bros. to consult Mr. Wilson Hartnell, engineer, of Leeds, who advised the introduction of the Crompton-Burgin light. The installation consists of a small Crompton-Burgin dynamo machine,
which is remarkably simple and solid in its design and construction, and six double differential arc lamps-Crompton and Crabhe's patent. The current produced by the dynamo is just double that commonly used by the Brush Company, and the light is estimated 3000 -canout two and a-half times as brilliant, or from 2000 to 3000 -candle power. Each lamp carries two pairs of carbons, so
that when one pair is burned another is automatically switched into circuit; and thus the lamps can be made to burn for any length of time. It is found by Messrs. Thwaites that the light thus given is perfect for their purpose. Although from the neces. sity existing for placing the lamps around the sides of the room much light is wasted, yet still the whole area is so well lighted dynamo is driven by a belt from the main shafting daytime. The shaft intervening, and is thus liable to considerable and frequent variations in speed. This, of course, affects to some extent the steadiness of the light, but it in no way reduces its value. The consumption of power is comparatively slight, and, in the case of Mess
Thwaites Bros.' installation, is not an appreciable consideration.
SALTERHEBBLE VIADUCT, HULLAND BARNSLEY RAILWAY, HUDDERSFIELD AND HALIFAX EXTENSION. IR. W. SHELFORD, M.L.C.E. ENGINEER-IN-CHIEF (For decaription sec page 218.)
 rr. w. shelford, m.l.c.e. engineer-dn-chief
Piers $N^{0} 3.4 \& 5$

THE INFLUX INJECTOR.

Messrs. Holden and Brooke, of Simon-street, Salford, are now introducing an injector-Brooke, Holden, and White's patent-which they have named the "Influx," and which we a "lifter" or "non-lifter" as may be required, and in either capacity starts, we understand, with unfailing promptness, and should its action be accidentally interrupted-as by the jolting of a traction engine or locomotive, or by the rolling of a ship-it re-starts automatically without any attention on the part of the
man in charge. In design it has the advantage of being without qplit or hinged nozzles, lifting spindles, or levers, and is consequently without glands or packings. It is set to work by merely
opening the ordinary boiler steam cock, and on account of this and its capacity for re-starting itself, may be trusted in unskilled hands and under conditions where ordinary injectors have failed. The ordinary type will lift water from 12 ft ., but a special type is made of similar action which will draw water, we understand,
from a depth of 20 ft . from a depth of 20 ft .

BAILEY'S TESTING APPARATUS.

Messrs, W. H. Bailey and Co. have devoted considerable attention to the manufacture of testing machinery. Fig. 1 is a new pattern of a dynamometer or power tester. This has been designed for testing the different machines employed in a
cotton spinning and weaving mill in Spain. The base plate is mill in Spain. The base plate is
mounted on wheels, and the mounted on wheels, and the so that it may be bolted to the floor in a convenient place opposite the machine to be tested. The value of a minute of speed is indicated by the number of revolutions on the index. Each weight on the end of the lever represents 132 foot-pounds per revolution. This dynamometer is for testing machines to 4 or
5 -horse power, although it is 5-horse power, although it is
strong enough to test higher strong enough to test higher powers, of course dependent chines are run. With ten weights on the lever, as shown, and the speed at 100 revolutions per minute, the power indicated would be 4 -horse. To prevent violent agitation of the lever when at work, the rod is coupled up to a dashpot, in which is a piston working in oil or glycerine. Fig. 2 is a new pattern of Pro-
fessor Thurston's oil tester; the fessor Thurston's oil tester; the tively well-known invention by placing the oil on the bearing placing the oil on the bearings, a spiral spring in the pendulous lever. The number of revolutions required to raise the temperature of the bearing to 200 deg. Fah., indicated by thermometer fixed in the top step, giving the value as of the co-efficient of friction, and thus by this simple process being repeated with another oil, the difference in value as a lubricant between one oil and another is indicated.
Fig. 3 is a view of Messrs W. H. Bailey and Co.'s modification of the German method of testing Portland cement. This is called the table pattern tester, the stress being placed on the briquette, which in its weakest section is lin. by lin., by means end of the lever and by an chenious arrangement the supply of shot is automatically stopped when the briquette breaks By By weighing the shot and multiplying by fifty, the value of the force exerted to break the briquette is at once ascertained.
We understand that Messrs, Bailey and Co. make larger machines on a similar principle to test $1 \frac{1}{2}$ in. by $1 \frac{1}{2}$ in. briquettes up to 200 lb . of stress, but instead of shot, water is used, slowly descending from one vessel to another, after the manner of the Clepsydra or water clocks of the Greeks, mentioned in the tragedies of Eschylus, who flourished 500 years B.C.
We will mention before we leave this subject that we have just seen a copy of the new sectional catalogue published by Messrs. Bailey and Co., which deals with the subject of testing, and Bailey's recorders, tell-tales, nocturnographs, and tide

gauges. This catalogue contains much to interest those who wish to take automatic records of the speed of engines or pressure in steam boilers, the behaviour of watchmen, the height of reservoirs and of the tide, depth of wells, the punctuality of workmen, the duty of pumping engines, and a host of other
graphic records, which may be useful to our engineering friends who study workshop economical statistics.

CROSS-HEAD PIN TURNING MACHINE.
Ths turning off of what the National Car Builder, from which we take the following, calls wrist pins when cast or forged solid in locomotive crossheads is a laborious and expensive process, operation. This work can be accomplished in a very expeditious and correct manner with the portable tool shown in the engraving. The operation of the machine is easily understood. First lay out centre-marks on outside of crosshead exactly opposite where the centre of the pin is wanted. In these centre-marks screw the centres of the machine, when the tool will be in position for work, the driving mechanism and cutter
holding all parts in the ceptre, and as firm and strong as though
they were solid. After being placed on the crosshead for work, the cutters are so arranged that the whole length of the pin can be turned from end to end, and as true and smooth as though pin, the work being done in a very short time, make the tool,

it is claimed, one of the best labour-saving devices in the market. It is made of several sizes-the standard size being adapted to a greater range of locomotive crossheads-by the L.B. Flanders Machine Works, Philadelphia, Pa.

NEW TRAMWAY RAIL.
The accompanying engraving illustrates a form of rail designed and patented by Mr. G. F. L. Meakin, Kingston-on-Thames The engraving explains the invention ; the object being to pro vide a rail renewable in the wearing part without removing the paving setts. This is accomplished; the only objection which
presents itself to the form is that the rail may gradually become

loose, and thus require a fresh set of the keys A, though if these are put in at first rather tight, so that there is initially a spring grip on the rail, looseness may not arise. The ends of the wedge strips A are notched, so as to be readily prised out of place when required. It would probably be found in practice better to make the upper face B of the angle iron parts of the per-
manent way more nearly horizontal. The sleepers are laid to manent way more nearly horizontal. The
break joint, so that no fishing is required.

A Triple Railroad Crossing.-Three heavy steam railroads crossing one overhead of the other at the same spot will be one of crossing one overhead of the other at railroad construction in Pittsburgh. This coincidence, as it might be termed, says the Railroad Gazette, is formed by the lines of the Pennsylvania Railroad, the Junction Railroad, and the East End Railroad all coming together in the
narrowest part of a narrow valley. It is just a short distance, narrowest part of a narrow valley. It is just a short distance,
perhaps a few hundred yards, west of the Millville station in the pernaps a few hundred yards, west of the Millville station in the that point, and a tunnel will be extended under the road-bed of the Pennsylvania Railroad in order to continue the route to Lawrenceville. At the same spot a handsome iron bridge for the
East End line will span the Pennsylvania tracks, enabling the new East End line will span the Pennsylvania tracks, enabling the new
company to cross from the top of one hill to the summit of the other. This bridge will be 7oft. above the Pennsylvania tracks and 90 ft . above the Junction line. Thus, while a through passenger train may be flying eastward on the Pennsylvania road, a heavy freight train may be thundering immediately under it towards the north, and at the same moment a way accommodation
train passing south in mid-air above. The bridge to span the valley train passing south in mid-air above. The bridge to span the valley
will be the handsomest and most important on the route of the East End road. It will be a substantial iron truss, 750 ft . long, and having a 120 ft . span over the Pennsylvania Railroad. All the other bridges on the line, crossing streets, will be of the plate girder class.
Trial Trip,-On Thursday the 13th inst., the steel screw
steamer Bulli, built to the order of Messrs, B. S. Lloyd and Co. steamer Bulli, built to the order of Messrs. B. S. Lloyd and Co., London, for the Bulli Colliery Company, of Sydney, by Messrs.
Napier, Shanks, and Bell, Glasgow, went down the Firth of Clyde for her official trial trip. Specially designed for the Australian coal trade, the Bulli is of the following dimensions :- 164 ft . in length, 25 ft . moulded breadth, 133 ftt . depth of hold, the gross register tonnage being $450 \cdot 77$, net register, $277 \cdot 15$ tons. She is constructed of steel, to class $90 \mathrm{A1}$ at Lloyd's. The decks and deck
fittings are East India teak, and the style of finish throughout is of fittings are East India teak, and the style of finish throughout is of
a character not usually seen in colliers, and does credit to the builders. The engines, constructed by Messrs. Ross and Duncan, Govan, are of thenominal power of 95 horses, the cylinders being 23 in . and 44in. diameter, length of stroke 33 in . The boiler is of steel, with Fox's corrugated furnaces, and the working pressure of steam is g ar, and she has a Dunlop's patent pneumatic and steam combination governor, Duncan's patent propeller, and all recent improvements. The steam windlass made by Napier Bros. is a very compact and effective combination of windlass and winch, in addition to which she has three quick acting coal whipping winches,
with frictional gear. On her trial, which was made in with frictional gear. On her trial, which was made in boisterous
weather, she was loaded with 400 tons coal, and was under steam weather, she was Toaded with
for nine hours. The engines developed a power of 350 horses, the mean speed of four to-and-fro runs at Skelmorlie being $9 \cdot 89 \mathrm{knots}$, which was considered very satisfactory. The Bulli has been built under the superintendence of Mr. J. H. Ritchie, naval architect, London,

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our

Climbing tricycles.

SIR, $-I$ should not have troubled you again on this subject, but tion. The article dealing with this subject was hill climbing, and tion. She article deaing wing tricks. If Mr. Lawson adheres to the stairs as a
not
test. will he undertake to ride up ordinary steps placed at the same test, will
angle?
Ever.
EVeryone, perhaps, did not notice that the treads of the stairs
he uses are so arranged that the wheels meet the obstruction he uses are so arranged that the wheels meet the obstruction
always at the most effective part of the crank; thus, if the wheels were put a quarter revolution forward or backward the test would ${ }_{\text {I }}$ a am sorry Mr. Lawson wasted so much in finding an idea for driving tricycles direct, because he might have cested that plan that time driven direct from the crank. To my mind the whole thing seems so absurd that one may as well expect a steam engine
to be tested by gas, or a horse by lis ability to swim. The test I still advocate is uphill and on the level ; and although I consider my modififation the better, I know the "Merlin" will challenge
any direct-acting tricycle for hill climbing, and certainly not be Reading, March 17th.
H. Aldridge.
$\mathrm{Sir},-\mathrm{I}$ have read with great interest the correspondence in your paper upon "Hill Climbing Tricycles," and must confess to having
had my convictions deepened in favour of "direct-action." Your orrespondent of the 1 tht has evidently been judging of the merits of the "National Royal direct-action" tricycle by the old pattern
that was made by the National Company, instead of by the new and much-improved pattern of the National Oycle Works, Limited. This machine has perfect double-driving and free pedals, accom-
panied by a.means for back peralling. Moreover, it is made
wider, ow one of the safest and most comfort distribu now one of the satest and most comfortable machines to ride.
With regard to its marvellous liill-cimbing power, Ithink, Sir,
that the fact of its being ridden up a flight of stairs unmistakeably lemonstratese its superioritiy in this respect. Thais muntst be obvious
lo most of your readers, and I utterly fail to understand how your correspondent can see any analogy between testing a balloon in a cool mine and putting a tricyole eto such a severer test as this. It
should be remembered by your readers that the ineline, apart from he dead lift of 8 in. at each stair, was greater than any yet xhibited for testing the hill-climbing power of a tricyole.
The assertion, too, that "direct-action" as applied to The asertion, too, that "direct-action" a a applied to tricycles
is assailed by manufacturers generally, I think, proves nothing, and I am rather surprised at a reader of The, Exarsekr bing be true, even then it is only sharing the same fate as all good
ideas. All improvements have been everywhere spoken against at irst, and especially by those who have had interests to guard.
Rochester, March 19th.
CYchisT

steam hammers.

Sir,-In your issue of the 14th inst. we observe Messrs. B. and S. Massey take notice of our letter which appeared in The ENI-
NEER of February 20th. Their letter cannot be called a reply to urs, and might have been allowed to pass without further notice
but for the closing paragraph. Messrs. Massey maintain that wn description of our hammers supports their assertion that "the openings cast in the framing below the eylinderss, , intsead of beeng
machined to the sizos and sections of the piston-rods, are about machined to the sizos and sections of the piston-rods, are about
Sin. Iarger on all sides, so that there is no guide for the piston-rods the extreme bottom of the central parts of the framing." come from practical people immediately after reading our letter in which we give a section of the working parts under the cylin.
der of our hammers, and describe it as follows:-" You will observe that the hammer piston works through guides or glands at A and B, truly machined out of the solid metal to fit the section
of the piston-rod. Those guides are situated at the extrome top
and bottom of centre piece, and are therefore on the very best pose sible position for the purpose."
Messers. Massey's opening statement, that "hammers of this type have been made for a generation," is perfectly correct. It is
exactly thiry years since Rigby's patent was taken out for out a patent for a hammer of somewhat similar design, but guided through the top of cylinder. During the currencoy of these patents
we were the sole makers. of Rigby's patent, and R. Morrison and Co., Neweastle, worked the Morrison patent. GLEN AsD Ross.

Greenhead Engine Works, Glaggow, March 17th.

labour and machinery.

Srr,-Had it not been for your editorial note appended to $m y$
letter of last week-which you were kind enough to print in fullshould not have ventured to trouble you further with my indinudess opmionens, but have contented myself with the one expression taken up in our Report was untenable. As to the importation of be obtained in England, but what I did say, was that they-the Eng lish builders - had so much work on hand that they did not feel the evil effects of the small order that then went to France. The real
cause of the fifteen locomotives being made in France was the price, as tenders were solicited for eighty locomotives of different MM. Schneider sent in a list of prices, the highest tender being E3350, the Belgian $£ 2890-$ four English firms being under the
latter tender-and MM. Schneider $\mathrm{EL491}$. This statement will show the tender to have been accepted on account of the lower
price; but as they would not build others at the same rate we can price,
only assume that they were not remunerative, and no more were buil in France. 1867 it was estimated that the works then in existence were capable of making 1500 locomotives annually, which were far in excess of
thoso required on our own railways : and as these firms have been those required on our own railways; and as these firms have been
fairly employed, we may assume that large numbers have been The thad in the interval.
ine we have questions, or queries, in your addenda travel beyond the point we have taken up, as they open up matters that could only point a contraction in the working day must stop in order that the
risk of foreign competition may not be incurred," is to solicit an opinion that would be based entirely upon suppesosition. To arrive
at such a conclusion would require the fullest details as a the the at such a conclusion would require of the countries who would be
rates of wages, proftrs, and taxation of the our competers, and as we do not anticipate the hours question
being deanted or settled on such a basis, it had better be left on one side until such times that we have real proof that the foreigner
is coming on our own soil to undersell us. If, however, we take is coming on our owh soil to undersell us, If, however, we take
the case quoted in my last letter as a criterion, where the German
firm firm asked $£ 1400$ for work that was completed by an English frm
for $£ 8500$ or if engineers in America being about double to those in England, then,
I think, they would allow a we should need to feer the loss of trade to the beneitit of cither of
the countries named. the countries named.
As evidence in suin
As evidence in support of these views I will quote a case that
will at the same time, I think, answer your third query, the es-
tract being taken from the Buenos Ayres Standard about twelve paper as well:-"The locomotives for the Rosario and Candelaria section of the Western Santo Fe Railway have been ordered from
an English firm. It is said that the agents commissioned to an English firm. It is said that the agents commissioned to place
the contracts called upon thirteen of the best engineering firms, The contraces called upon thirteen ore the best engineering firms,
who all declared that their books were full up to the end of 1884 , The company having promised, however, to open the first section
of the line early in November, and being determined to have the engines at any cost, increased its terms, and a leading English firm thereupon took the contract.
As to an increase in the nu
hours being reduced, our contention is that there are alrealy of many in the trade, and even if hours are reduced there will be abundance of men to perform the work. If we add to these the rising generation who are now learning the trade, it will make the
future future far more difficult than the past to find employment for point to one of our leading railways, where, in the locomotive department, they are not only supplying themselves with their own journeymen brought up from boyhood, but we, in self defence, are
compelled to draft these young men to other localities, whilst compelied to draft these young men to other localities, whilst
many have left for the Colonies to find on their arrival the same glut in the labour market that they had left at home. Whatever may be the productive cappacity of our engine works, there is evidenee on all hands that they are producing annually far more
tradesmen than employment can be found for, and we, tradesmen than employment can be found for, and we, in
self-defence, say-reduce the working hours that our unemployed self-defence, say-reduce the working hours that our unemployed
lists may be less, and as a result, less privation be found in our

[We
[We must again trouble our correspondent with a few questions, as nothing is more to be desired than that a full statement of the
case, both for men and masters, should be made public. Does Mr. Swift propose that the reduction in the hours of labour should be accompanied by increased wages or not? Even if the increase
is not made in money, it would appear that a reduction in the working hours would be tantamount to higher pay, and would certany make the trade of a steam engine maker more attrac-
tive than now. If this was the case, then more men than ever would be found in its ranks. If, on the other hand, the hours of labour were increased and the rate of pay diminished, the business
would no longer prove attractive and its ranks would be thinned would no longer prove attractive and its ranks would be thinned.
It is well known that pattern makers were at one time extremely scarce because their wages were low, and many instances could be supplied of the same thing. It appears, therefore, that Mr. the numbers of the steam engine makers. Does Mr. Swift pronow, and does he wish that come more expensive than they are capitalists in putting down plant for their production? We work. Yet it is clear that if they are as full of orders now as they can be, they must either refuse to take more or else put down more plant if they are to keep their works open for a smaller number of hours per week than they are now open. We believe that
benefit would result from a clear enunciation of Mr. Swift's views on these points, and we venture to hope that he will not be
reticent.

rope driving gear

Sir,-By some unaccountable neglect we did not notice yourarticle
of the 11th January on "Rope Driving Gear"" till this morning, of the 11 th January on "Rope Driving Gear" till this morning,
or we should have asked space for a few words on it earlier. That so good and exhaustive an article on steam-driven rope gear could
have been written and yet the name of the inventor be left out shows the truth of the old saying, "Out of sight out of mind." Possibly we may be open to correction when we assert that the late
James Combe, of Beffast, first used ropes on the fly-wheel of a steam engine, but he certainly drove his own place, Falls Foundry, gearing to us, which was in 1865, he spoke of it as quite an ng. Mr. Combe took out no patent for grooved wheels by which steam power could be transmitted by ropes. Whether he could
have done so we do not attempt to depis have done so we do not attempt to decide, but he did patent a
machine for plaiting leather rope for working in the grooves, and wo think that if hemp ropes were already in use and were answering well, as they certainly ddd when they were tried, Mr. Combe
would not have spent his time, of which he was a great cconomist, would not have spent his time, of which he was a areat coonomist,
inventing a dear thing to perform an operation already well done by a cheap one.
We ourselves
article on rope gearing, for think, entitled to a passing word in an wheels and pulleys in considerable quantities; and though we do not for a moment pretend that we have made as many steam
engines fitted with this kind of gear as the truly great leaders of engines fitted with this kind of gear as the truly great leaders of
our trade, Messrs. Hick, Hargreaves, and Co., of Bolton, yet we think we might assert that
before they had made one.
You illustrate an excellent arrangement of driving gear lately worth Brothers, Bradford, but if you had but stepped across the
word road-for their gates are just opposite each other-you would have
seen at the mill of their relatives, Messrs. Isaac Holden and Sons, three steam engines with grooved fly-wheels, the first of which was
made by us ten years ago. You speak of Mr. Duril Durie it shauld be-and quote his words. Is is it egotistical in us to say that
these words were ours, for he was our Manchester agent, and that the facts so nicely given by him in the paper which you quote, and Which was read before the Institution of Mechanical Engineers at
Manchester in 1876 , were furnished by us? This paper by Mr. Durcie, and the articiele on rope enearing in ". Elements of Manhine
Design," by Mr. Cawthorne Unwin professor of enginering at the Royal Indian Civil Engineering College, for which we also furnished the data-see page 8-of preface, constitutes, we believe, almost
the only printed information we have in English on the subject. You reer the construction of wheels and pulleys of thin steel; ideas were never finally patented, yet the affair was provisionally protected many years ago
The size of the cotton mill engines for Bombay, of which you
speak, is certainly very great, 4000 -horse power, transmitted by wheel of 30 ft . diameter having sixty ropes, , must the sight worth going to the East to see. 2000 -horse power with a wheel of 30 ft . mill in Calcoutta.
is our greatest achievement; this drives a jut
PRARER Brothers, Engineers,
Dundee, March 8th.
gas engine economy.
SIR, - Your last number contains an extract from a paper lately
read before the Institution of Civil Engineers on the mechanical duty obtained by the explosion of gas in engines and mechanical teet of that in Crossleys and Clark engines it requires 20 cubio tho old original Lenoir engine required four times that amount. Now this statement, so far as the Lenoir engine is concerned, is utterly incorrect. As the manager of the works where these
engines were first made, I had ample opportunities during the construction of many hundreds to test the consumption of gas as
it was passed through an ordinary meter, and I found the conit was passed through an ordinary meter, and I 保d the con-
sumption for a 1-horse engine never exceeded 50 cubic feet per hour. The power was measured by the dynamometer, so that the
nseful effect was obtained -a very tifferent thing to the indicated horse-power, as stated above. It is well known that in small
engines the power absorbed by friction is proportionally much greater than in larger engines, so that if allowance be made for
something like 50

9, Victoria-chambers, Viotoria-street, S.W., March 11th.
 \section*{March 11th}

the creators of the age of steei
SIR,- Your current issue contains a letter from Mr. W. T. Jeans,
which must make Sir Henry Bessemer wish to be saved from such a friend. No one besides Mr. Jeans will think that Bessemer can desire to have attributed to him any discovery that belongs to
another, as his own achievements place lim so ligh amongst the another, as his own achievements place him so high amongst the
world's inventors that he could afford to be magnanimous were there a doubt on the point
If, however, the patent adduced by Mr. Jeans as proof positive
of Bessemers title to the discovery claimed by Mushet be all that can be brought forward to rest such a title upon, the foundation i indeed a frail one :
What doess Bessemer himself say, in this patent of May 31st,
1856 ? Here are his words:-"In the treatment of different irons by the process of forcing atmospheric or other oxygen therein, will be found advantagoous in some cases to use such fluxes as wil best act upon the different bases associated with the iron; in this way smal quantities of lime, silica, or alumima may be added wit advantage, and so in mo mide of ther or soum, iron scales in the separation of the impurities contained in the crude metal as have before been used for like purposes, and the application of the same is not claimed by me under the present letters patent." If it be a proof of sanity to interpret this as meaning that
Bessemer claims the addition of spiegeleisen to decarburised metal, in order to convert it into a material that shall work under the F.J. R. Carulia. $\begin{aligned} & \text { asylum, including } \\ & \text { Swansea, March } \\ & \text { 17th, } \\ & \text { a }\end{aligned} 1884$.

Sir,-May I beg the miners death roll.
acts, which I hope may yavour of your insertion of the following our brave miners as is shown for our sailors, and that this Instituthe necessary $\ell_{\mathrm{s} \text {, } \text { d. to carry out } \mathrm{its} \text { humane and life-savin }}$ objects. You will observe from the prospectus enclosed-whic you may publish if you choose-that the Institution is most
influentially supported, and that Messrs. Coutts and Co., 59 , Strand, London, will thankfully acknowledge subscriptions., Mr W. Thomas Lewis, Lord Bute's general manager, and Chairman of tion south Wales Sliding Seale and the South Wales Con ion, and who is also one of our Council, has kindyy given us con
sent to place his lordship's name on our list for 1100 , and I hop nie coliery owners and other min
will at once respond to this
There are 500,0000 persons employed in our coal mines, and of ten years, since the passing of the Mines Act, the average yearl loss of life has been 1129. But in addition is the fact that there are many other acoicents in mines not officially recorded, and it it
believed the total lives lost in our mines of every kind is 2500 every year-forty-eight every week, or eight every day. Will the
British public, but especially our colliery owners and the owner of every other mine and your readers generally, help to reduce this terrible death roll by supporting this Institution, and thus savin many homes sorrow and sadnesss. Wo a wait the practical response of every class. Messrs. Coutts and Co, are the bankers
The Royal National Miners' 'Life-saving Institution,
36, Parliament-street, S.W., London, March 12th.
SIR,-I notice the following paragraph, signed by Mr. Thos.
Fenwick, going the round of the press:- Cl There are 500,000 Fenwick, going the round of the press:- There are
persons employed in our conl mines, and of these in 1878 not less persons employed in our conl mines, and of these in 1878 not tess
than 1413 were killedj and within the last ten years, since e he passing of the Miners Act, the yearly average has been 1200, of lost nt sery 38 employed, as compared with 1 in 75 of our sailor accidents total lives lost in our mines is 2500 every year, 48 every week, or every day. A very slight attention to these figures wil show that by 1200 the quotient is 416 , instead of 38 , so that, according to loss is only 1 in every 416. The second portion of his remarks loss is only 1 in every 416 . The second portion of his remarks,
which is a pure assertion uncorroborated by any evidence worthy of consideration, displays great ignorance of the coroners' clause
of the Mines A ct, 1872 , and supposes that the mines inspect are either stupid or are wilfully suppressing information. The Collowing table, taken from the Board of Trade returns, and give loctel P. C. Greenwell in an address on the occasion of his bein Mechanical Engineers, shows the accidents compared with the num

Employed in	$\begin{gathered} \text { Persons } \\ \text { employed. } \end{gathered}$	Deaths by accident.	$\|$Ratio of perosons omployed to each death.	$\left\lvert\, \begin{gathered} \text { Death rate } \\ \text { per 1000 } \\ \text { porsons } \\ \text { omployed. } \end{gathered}\right.$
Mines (1876)..	514,532	${ }^{933}$	${ }^{501}$	
MorchantService(1876)	198,688	227	87	11.4
Railways (1874) ..	270,000	1000	270	

The yearly loss of life in mines for ten years, ascertained from

	$\begin{gathered} \text { Persons } \\ \text { employed. } \end{gathered}$	Deaths by accident	$\left[\begin{array}{c} \text { Ratio } \\ \text { of porsons } \\ \text { omployed to } \\ \text { each death. } \end{array}\right.$	Death rat per 1000 persons omploy
${ }^{1878}$	514,149	1099	480	2.079
1874 1875	¢ 5858,889	1056 124	510 480	1-959
${ }^{1876}$	314,332	933	651	1.813
1877 188 188	${ }_{\text {49, }}^{49,391}$	1208 1418	${ }_{436}$	-
1878 189		${ }_{978}$	190	2.040
1880	484,933	1318	368	2.718
1881	405,477	${ }^{954}$	519	-1.925 2.925
Average of 1885 years	603,428	1126 1129	${ }_{445}^{447}$	-

Mr. Fenwick, who, without any previous knowledge of the question, has only just given his h her the subject, shoul all events, be sure that the figures are correct before he casts aspersions on the conduot of men who have devoted
their profossion, and who

Secretary to the Northumberland and Durham Coal Trade Coal Trade Offices, Newcastle-upon-Tyne,

Mr. J. Evelisx Willisiss, C.E., has reported on the improve mends the enlargement of the sea sluice and the straightening of
the river, at a cost of $\mathcal{M} 9,425$.

RAILWAY MATTERS.

Accordisc to Tiftis papers, the Persians have made application for permission to connect the Caucasus Railway system wit
a project which, if realised, would be an important matter A Pamphert, by Signor Salvatore Raineri, of Rome, has been sent us descriptive of the wire rope haulage system for tramways
as in use in San Franciseo and Cllicago, under the Hallidie system. The tender of the Hudson Brothers Company, a local firm, has
been aceepted by the New South Wales Government for the supply been accepted by the New South Wales Government for the supply
of the brake-vans required for the Eastern and Southern Railway lines during the wer five yent
ONE of an ordnance survey party, Edwin Wales, has been
killed by a passenger train near Gainsborough on the MIanchester,
Sheffield, nad Tincolnshire railway Sheffield, and Lincolnshire railway. Seeing a train advancerng
he became confused, ran in front of the engine, and was cutto pieces. AT a meeting convened by the Mayor at the Guildhhll, Chatham, and Dovers and the South-Eastern Railway Companies for opening up a direct route to Folkestone, the former by way of
Kearsney and the latter vid the Elham Valley, a resolution in Kearsney and the latter vid the Elham Valley, a r
favour of the Chatham and Dover project was carried.
The report of the directors of the North British Railway Com-
pany gives the miles worked by its engines 1138.75 miles, and the pansenger train mileage $2,627,901$, goods and mineral trains $3,273,276$ miles, or a total of $5,901,177$ miles. The total const of
the locomotive power was $£ 154,78288$. 10 d. , which is equal to the locomotive power
but were just going t.
say sixpence per mile.
way schemes in Ireland, viz.:-Ulister, 13; Munster, 24; Leinster, 16; Connaught, $23 ;$ total, 76 ; repreesenting 1390 miles in length, with a capital of $£ 5,000,000$. The Government guarantee interest on $£ 2,000,000$ only upon projects recommended by the Lord-Lieu-
tenant. The Irish farmers and landowners, however, quite righty refuse to give the necessary support
which would be of no use whatever.
The record of United States train accidents in January contains notes of 49 collisions, in which 32 persons were
Killed and 65 injured; 86 derailments, in which 21 persons were
killed and 146 injured, and 12 other accidents, in which the killed and 146 injured, and 12 other accidents, in which three per-
sons were killed and 29 injured, a total of 147 accidents, in which 56 personswere willed and 240 hurr.. As compared with, January
1883 , there was a decrease of 21 acidents, but an increase of 1 in the number killed and of 41 in that of persons injured.
IN reporting on the accident which occurred on the 4th December,
near Fordham station, on the Ely and Nowmarket branch of the Great Eastern Railway, when a passenger train from Ipswich for Ely ran into a herd of cattlo about half a mile after leaving Ford-
ham station, and killed eight out of the twenty beasts of which
the herd was rails, though all the vehicles composing the train kept on the line
the
 throughoutt was nodoubt the means of having prevented this accident being
the case."

The American railway accidents during January are classed as Collisions: Rear, 31; butting, 14; crossing, 4; total, 49. Dazette:ments: Broken rail, 18; broken frog, 1 ; broken switch-rod, 5 ;
broken bridge, 3 ; spreading of rails, 7 ; broken wheel, 4; broken axle, 1; broken truck, 2; accidental obstruction, 5; land-slide, 2 ing-rod, 6 ; broken axle not causing derailment, 2 ; broken whee not causing derailment, 1 i cars burned while running through
oil, 3 ; total, 12 ; grand total, 147 . Five collisions were caused by
og, three by the derailment of preceding train, fog, three by the derailment of preceding trains, two by trams
breaking in two, two by misplaced switches, one each by snow and a mistake in orders.
The passage through the Dominion Parliament of the resolution of
the Bill granting a loan of $22 \downarrow$ million dollars to the Canadian Pacific Railway is already giving an impetus to the completion of the building of that line. This is more especially the case in the division north
of Lake Superior. The track has been laid from Port Arthur, the of Lake Superior. The track has been laid from Port Arthur, the
western Lake Superior port of the system, for a distance eastward over the north of the lake of nearly 100 miles. The road will, it it
anticipated, be constructed as far as Mackay's Harbour by the spring. The work of construction is to be resumed in the Rocky
Mountains in the beginning of April, and the track laid from the
summit of the Kicking Horse Pass, which was the point reached summit of the Kicking Horse Pass, which was the point reached
last season, westward to British Columbia. Activity is also being shown in the preparations for the furtherance of
in Manitoba by the construction of branch lines.
The baggage traffic on the Belgian railways in 1882 yielded
bout $£ 37,400$, and the express traffic $£ 293,080$, the latter being $6 \frac{1}{4}$ per cent. of the total carnings. The freight earnings
were $57 \frac{1}{2}$ per cent. of the total earnings and $4 \frac{1}{2}$ per cent. more that in the previous year. The average receipt per ton-of 2000 lb .-
was only 56 cents ; noticing this an American was only 56 cents; noticing this an American contemporary
says :-
now the average receipt per ton per mile we are not able now to give, for lack of a statement of tonnage mileage, but
it is much greater than on many American roads, the average haul
being very short. At the same time it is probably muca, less for so eng very short. At the same time it is probably much less for so
shorta haul than on most American roads. The mileage of cor-
poration roads in Belgium in 1882 was 914 , and they earned about $, 925,000$ dols. gross and $3,686,000$ dols. net, or 8670 dols. and
4033 dols. per mile. One corporation road, $23 \frac{1}{2}$ miles long, was
added to the state system during the year, which now includes added to the state system during the year, which now
$67^{\prime} 4$ per cent. of the whole Belgian system of 2800 miles.
A GENERAL olassification of the railway accidents in January in
the United States is given as follows by the Railroad Gazette:-

$\begin{array}{ll}\text { Defects of rond } \\ \text { Defecta of equipment } \because & 2 \\ \text { Negligence in operating } & 38 \\ \text { Unoreceeen obstructions } & 9 \\ \text { Maliciously caused } & . . \\ \text { Unexplaslined } & \end{array}$

$\begin{array}{ccccccccc}\text { Total } & . . & \overline{49} & . . & \overline{86} & . . & 12 & \overline{12} & \overline{147} \\ \text { Negligence in operating thus includes a larger proportion-30 }\end{array}$
ent.-of the whole number of accidents than any other class of

Tink exportsof nils from Grat Bitiain to America in JInnuary

 Cot your, and oven 7 per ent. India, ano 213 to A Autrain, ind 253 to south 1 merien coum

NOTES AND MEMORANDA.

Fon the week ending February 23rd, 1884 , in thirty cities of the United States, having an aggregate population of $7,103,600$, there
died 2770 persons, which is equivalent to an annual death rate of $20 \cdot 3$ per 1000 -a slight diminution from the rate of the preceding Eastern cities, $21^{\circ} 4$; for the Lake cities, $15 \cdot 8$; for the River cities,
$18 \cdot 9$; and in the Southern cities, for the whites, $19 \cdot 4$ and for the 18:9, and in the Southe
coloured, $37 \cdot 9$ per 1000 .
The Bilbao iron mines did not export so much ore in 1883 as in 1882. The foliowing figures show the export to different countries
To Great Britain, $2,312,10$ tons; Holland, chiefly transit to Germany, 454,463 tons; Franeo, 461,943 tons; Belgium, 141,918
Cons; Corsica, 1476 tons; United States, 6224 : total, 378,214 This shows a falling off, as compared with the shipments of the
year 1882 , of 314,30 tons.
$1,269,316$ tons, the Cleveland district 680,146 Hritain, Wales, took $1,269,316$ ton
347,756 tons
The deaths registered in twenty-eight great towns of England annual rate of $22 \cdot 6$ per 1000 of their aggregate population, which is estimated at $8,762,354$ persons in the middle of this year. In London 2766 births and 1660 deaths were registered. Allowing
for increase of population, the births were 100 and the deaths 158 for increase of population, the births were 100 and the deaths 158
below the average numbers in the corresponding weeks of the last ten years. The annual death rate from all causes, which has been
1933 and 21.3 per 1000 in the two preceding weeks, rose last week to $21^{1 \cdot 6}$. The death of a retirec.
to be 101 years, was recorded.
M. Cailleter, so well known in connection with the liquefaction of gases, has constructed an apparatus for the continuous production coil of copper pipe which projects from each end of the cylinde coil of copper pipe which projects from each end of the cylinde
Two copper tubes are also screwed into the cylinder, and one these communicates with the mercurial piston pump already used
by Cailletet, while the other receives the ethylene which has been compressed by the pump and cooled by methyl chloride. By thi arrangement he forms a circuit in which the same quantity of con-
densed ethylene is repeatedly evaporated in the copper coil, prodensed ethylene is repeatedly evaporated in the copper coil, pro
ducing intense cold, and then compressed again by the pump being
sufficiently cooled with methyl chloride and ready for evaporation gain. This process goes on as long as the sucking and compressing pumps are working
For cementing brass on glass, M. Pusher recommends
resin soap, made by boiling 1 part caustic soda, 3 parts colophonium-resin-in 5 parts of water, and kneading into
oalf the quantity of plaster of Paris. American quoting a German source says, is useful for fostening the brass top on glass lamps, as it is very strong, is not acted upon
by petroleum, bears heat very well, and hardens in one-half or hree-quarters of an hour. By substituting zinc white, white lead, re air-slaked lime for plaster of Paris, it hardens more slowly
Water only attacks the surface of this cement. Wiederhold parts lead, 2 parts tin, and $2 \frac{1}{2}$ parts bismuth, which melts at parts deg. .ah. The melted metal is poured into the capsule the
glase pressed into it, and then allowed to cool slowlyin a warm pane.

OF American patents granted last year, New York State received
he largest number, 4359 , Massachusetts following with 2173 , and Pennsylvania with 2168 ; then come Illinois with 1792 ; Ohio, 1604 Connecticat, 883 ; Michigan, 727 ; Indiana, 712; Misoouri, 625
California, $596 ;$ Iowa
Int. and the Navy with 3 patents. According to population, the Diss rict of Columbia received one patent on the average for 318
nhabitants, Massachusetts one for 320 , Connecticut one for 705, and Rhode Island one for 845, the fewest patents in proportion to
population being issued to Mississippi, which received one for an average of 22,188 . The patents issued to citizens of foreign countries numbered 1259, or 124 more than were so issued in 1882 . England takes the lead with 435, followed by Canada with 2 and
Germany ${ }_{2} 235$; France, 179 ; Austria, 33 ; Switzerland, 22 ; and Belgium 20.
To file glass, take a 12 in . mill file, single cut, and wet it wit as easily and, the Scientific Amprican says, almost as fast sa if f the material were brass. To turn glass in a lathe put a file in the to stock, and wet with turpentine and camphor as before. To square ron rod with centres through a block of cherry, chestnut, or soft maple, and use the flat of a single-cut file in the tool post, wet as
before. Run slowly. Large holes may be rapidly cut by a tubeshaped steel tool cut like a file on the angular surface, or with fine teeth, atter the manner of a rose bit, great care being necessary, of prevent breakage from unequal pressure. This tool does not of boring and fitting glass may be made by these simple means,
The whole secret is in good high steel worked low, tempered high, and wet with turpentine standing on camphor
Investications reported in the Metallarbeiter, and quoted in which are noticeable when a lead pipe has been for five years in layer of Portland cement. A red coating was noticed $\frac{1}{\text { trin. }}$. to din.
in thickness, the appearance of which corresponded with that of n thickness, the appearance of which corresponded. with that of
oxide of lead as it is usually delivered in commerce. This coating wish carefully removed, and the particles of lead removed along with it were separated by means of a magnifying glass. The
specific gravity of this powder-careunly defined at 59 Peg. Fah.
and reduced for a vacuum-varied between 8.002 and $9 \cdot 670$. This variation is explained by the presence of metallic lead mixed in
the oxide of lead and of carbonate of ontained Qualitative analysis carbonic acid, water, and traces of calcium. The composition of the powder was as follows:-Oxide of lead, $84 \cdot 89$; lead, 12:33;
water, 0.99 ; carbonic acid, $1 \cdot 53$; lime, traces; insoluble in nitric acid, $0 \cdot 16$. This coating on the lead pipe appears to have been
formed by the attion of the oxygen in the air in union with that of the lime contained in the mortar. It is remarked tha
of lime-water on lead has also been noticed by Besnon.
AT a recent meeting of the Engineers' Club, of Philadelphia Mr. Wiflred Lewis read a paper upon the "Resilience of Steel,"
reviewing someo of the means employed for the storage of energy, and showing the place occupied by steel among them. Compressed
air, hot water, and the secondary battery were cited, from Prof. Osborne Reynolds, as beeing about equal in walue, and as giving out about 6500 foot-pounds of work per pound of material employed. 18 foot-pounds per pound. Several experiments were made by
Mr. Lewis upon tempered specimens, both for tension and flexure. Contrary to expectation, the highest results were shown by the flexure of a small spiral clock spring weighing 2040 grains, which
gave out, when wound up, about 45 foot-pounds of energy gave out, when wound up, about 45 foot-pound of energy, or, in
other words, 154 foot-pounds per pound. The transverse strength of this stee
$300,0001 \mathrm{~b}$. per square inch, and its modulus of elasticity about $30,000,0000$ Jb. Surh extracordinary strength, with such a low modulus, was so far beyond conjecture that it seemed to give a new
hope for the success of the project referred top hope for the success of the project referred to; but after making
the neecesary allowances for weight of car and effficiency of
drive mechanism, it was found that not more than about driving mechanism, it was found that not more than about It foot-pounds per pound of car would be available for locomotion.
It was therefore, improbable that such a car could ascend a hili
over 2oft. high. It was also a matter of doubt whether large over 0 oft. high. It was also a matter of doubt whether large
springs oould be made to show results which would even approach
these figure thess figures, and on this account the expe
tried might be looked for with some interest

THE production of the Lake superior copper mines for 1883 wan ixty milion pounds of copper
AgRICULTURAL readers will be interested in the fact that the appointment by the Swedish Government of an entomologist to
assist farmers has been found of so much value that it has been Mrsse
MessRs. Hayward Tyler and Co. have received at the machines, medals and certificates for brasswork, and steam and ordinary pumps of all kinds made by the firm, thus taking in al ne
The first enterprising Londoner who introduced conduit water to his premises was-the Builder says-a tradesman of Fleet-street.
In a record of 1478 it is mentioned that " a wex-chandler in Fletestrete had by crafte perced a pipe of the condit withynne the ground, and so conveied the water into his selar; wherefore he wa, udged to ride through the citie with a condit uppon his hedde,
and the City Crier was to walk before him proclaiming his offence IT is announced from the Impenial and Royal Austro-Hungarian Consulate-General that an international exhibition of
notors and implements for the small industries will be opened at Vienna, on the 24 th of July next, and will close at the latest by
the 12th of October. Applications should be addressed not later than the 1st of April, 1884-"An den Niederoesterreichischen
tewerbeverein I. Eschenbachgasse 11, Wien, Austria," on forms obtainable at the Austrian Consulate.
THE Chinese have begun to adopt the Western chemical science, sulphuric acid on a large scale. Two well-known chemical textbooks, Malgutti's "Elementary Chemistry" and Fresenius's
"Chemical Analysis," have also been translated into Chinese with the help of anceat number of new characters, and adopted into ihe the help of a great number of new characters, and adopted into ihe
Imperial colleges. His Exeellency Tong Kin Sing, First Minister, rand a direcotor of. the Tung Wen Huan, has talken, the work under
his immediate patronage, and written a preface for the first of his immedia
these booiks.
AT the Caleutta International Exhibition, Messrs. Ransomes,
Head, and Jefferies have been awarded a first-class certificate and gold medal for Anselis patent tea sorting and winnowing machine:
Messrs. Priestman Brothers have also been awarded a first certificate of merit, together with gold medal, for their dredgers. Messrs. Hunt and Mitton have been awarded a firss- and design in engine and boiler fittings, hose couplings, and fire brigade fittings. Messrs. Griffiths, Berdoe, and Co., have been awarded a gota
medal for their Grifitit's spatent white, Grifith's's enamels, silicate
Ov Mova More Wuh
Ov Monday, March 15th, Messrs. James Bremner and Co., of Hull, launched from their yard the s.s. Cutch, a fast iron pas.
senger steamer, built for the Eastern Pilgrim trade of Messrs. Jumahoy Laljee, of Bombay. The Cutch is in length 180ft. breadth, 23 ft .; depth of hold, 11 ft . 6in.; net register, 199 tons.
The engines, also built by Messrs. Bremner and Coo, will be very powerful for the size of the vessel, having cylinders 2 jin. and 48 in ay 36in. stroke. Steam will be supplied from a double-ended
boiler, 15tt. 6in. long and 10 ft . 8 inin. diameter, and 1001b. Pres aranteed to obtain 14 knots has been built under the superindence of Messrs. Flannery and
As illustrating the value of the growing cotton mill industries Company has recently declared a dividend of 9 per cent. for the past financial year, against 7 per cent. for 1882 and 6 per eent. fo
1881. The gross profits for last year amounted to $£ 20,182$, from wuspense sum of $£ 4962$ has been written off to the depreciation and shen Leipscic Worsted Yarn Spinining Company also declared
Thividend of 14 per cent. for the past year, the production of the company having incereased 10 per cent. during 1888 agains 1882
The total amount of the profits was $£ 25,909$, against $£ 24,599$ in The total amount of the profits was $£ 25,909$, agains $£ 24,599$ in
1882. The margin of profit was therefore narrower last year on the increased production than in 1882.
ON the 1st inst. Messrs. Harland and Wolff launched from the Queens Island the fourth steamer for the Ulster Steamship
Company forming an important addition to the Head Line. She is
named the Horn Hed named the Horn Head, and the dimensions are:-Length, 320 it.
breadth, 37 ft ; depth, 25 tt ; gross tonnage, 2600. The engine have also been constructed by Messrs. Harland and Wolff. The cylin steam pressure, and about 250 nominal horse-power. The crank shaft is of Vickers' steel, and the propeller shaft and blades are and springs. The boilers are steel of large dimensions, hydrauli fre fitted with Fox's corrugated furnaces, which have vessels of the line are the White Head, the Teelin Head, the Black Head, and the Fair Head, together with the Bickley Head, and at
present a sister ship to the Horn Head is being built by Messrs. A. and J. Inglis, of Glasgow
ON the 11th inst. Messrs. Schlesinger, Davis, and Co. launched Her dimensions are as follows:--Length between perpendiculara 290 ft .; breadth moulded, $37 \mathrm{ft}$. ; and depth moulded, 28 ft . 6 in
She has been built to class 100 Al at Liloyd's. The Obock will specially fitted for conveying pilgrims betwee and she has bee Sea and Persian Gulf, her 'tween decks being unusually lofty an well lighted and ventilated. There is a large deckhouse aft, in whith accommodation is provided for ten first-class passengers.
Cabins for the captain, officers, and engineers are in a deck-house amidships. All the deck-houses are constructed of iron, and have a powerful frictional steam winch at each of the four cargo hatch ways, a Davis' steam steering gear amidships, and a screw gear aft.
Broker's patent davits and detaching gear are fitted to some of the boats, and her cables are Hawthorn. They are of the compound surface condensing type with cylinders 34 iin. and $64 \mathrm{in}$. diameter, and a piston
42in. The steam is supplied from two large steel boilers.
Bristor as a port, like two or three others, has lagged behind
others much younger because of renfliching interests, but now the Corporation have resolved to accept the and Portishead those undertakings, so that the theole of the the docks of the the port
should be united under the management of the Corporation. The Avonmouth dock and warehouses cost originally $£ 780,000$, and the
 at $£ 250,000$, making a total purchase money of $£ 880,000$. At a meeting of the Council, the Mayor, who had carried out the nego-
tiations, said the interest paid by the city for the two undertakings would be $£ 23,550$ per annum; , but with $£ 11,000$ receipts from the two docks and ware-
houses, the loss would only be $£ 5500$ per annum, and certain
re-adjustments of rates, without exercising upon trade, would reduce this to $£ 800$ or 5900 a year. But they would have to create a sinking fund, which woull corst, perhaps,
$E 2500$ per annum. The Council unanimously resolved to promote az ail per annum. The Council unanimously resolved to promote
a Bill at present in Parliament for the purchase of the two undertakings.
TREBLE-GEARED GAP LATHE

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

* With this weel's number is issued as a Supplement a Two-
page Engraving of the proposed Salterhebble Viaduct for the Hull, Barnsley, and West Riding Junction Railuay-Extensions
to Hupderselid and Halifax. Every copy as issued by the
Publisher cont ins this Sulfler to Huddersfield and Halifax. Every copy as issued by the
Publisher contains this Supplement, and suscribers are requested
to notify the facct should they not receive it.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, ve find it necessary to
inform correspondents that letters of innui iny addresed to inform correspondents that letters of inquiry addressed to the
putbic, and intended for insertion in this column, mest, in all
cuses, be accompanied by a large envelope legibly directed by the
 answers received by us may be forvarded to their destination.
No notice vill be tuken of communications which do not comply No notice with ec
${ }^{*} W e$ vese instruction

FOX'S METAL

(To the Editor of The Engineer.)
SIR,-Can any reader kindly inform us who are the minkers of Fox's
WM. R. AND Co.
Latent metat for fixing boits in stone?
London, March 1sth

RIVETMAKING MACHINES
 SIR,-I shall bo obliged to any readers who will.

 ch 18th.
hydraulic cup leathers.

The Exarserz can be had, bub order, from any
 ADVERTISEMENTS.

MEEETINGS NEXT WEEK.

DEATH

THE ENGINEER.

MAROH 21, 1884.

the breakage of screw shafts.
Notwithstandine the adoption of steel as a material for screw and crank shafts, both break as frequently as in the
powers transmitted are much greater now than they used dealt with them. Ten thousand horse-power, transmitted at the rate of 65 revolutions per minute, represents a tre mendous strain; and it may, perhaps, be taken for granted hat an iron shaft could not be made which would bear it The fact remains, however, that ship after ship is disabled,
and that all the resources of the steel maker and the engineer appear to be exerted in vain to avoid the recurence of very dangerous casualties. The whole subject has been discussed and re-discussed, but the discussion has and that we are as powerless to prevent the screw shaft of a great Atlantic liner from breaking as we are to avert a summer thunderstorm? We hope not ; but it appears to be certain that so long as we continue to combat, by shee brute strength, the forces tending to fracture a shat overcome must be eluded. How to elude it is the question. A correspondent calls attention to the fact that oo information is available as to the manner in which haft gives way. The world learns through the daily press but it is usually impossible to obtain any patienlars concerning the precise locality of the fracture, its exact nature or the presumed cause. There are reasons for this reticence, but they have too much force attached to them. The makers of the defective shaft do not like its failure to be advantage in publishing the precise details of a disaster for which they may be held responsible, and so silence is observed all round: But unfortunately the breakage of shafts in steamships is now a thing of almost daily which anyone need feel shame. If only all the facts wer made public causes might be suggested and devices migh me hit on to avoid such casualties in future. At all events, whether this is so or not, nothing can be gained by
It .
It has been shown almost conclusively that shafts are that at every revolution the shaft is bent twice through small angle. Ultimately it becomes fatigued. Its molecular arrangement is disorganised; and finally it gives way A screw shaft a little out of line will undergo about ,500,000 bendings on a single voyage across the Atlantic In the course of a year, allowing that the steamer makes but six voyages each way, we shall find that the shaft will be hat it should sive way? We think not The only thin hat shoule is that shafts nany years. The degree of bending to which the shaft is anjecteas. The degee olly way, and as the bearings wer more or less The a bei way out of the difficulty is to prevent the shaf from bending. The question is tow is this to shaft fro bet us. The quest , How sow sted Let us suppose twe have a screw shaft 80ft. long, We shall sssume that there are in than four We shali assume that here are in the tunef four bearing these bearings are so disposed that every alternate length of shafting has two bearings, one at each end, while the remaining lengths have no bearings, being carried by the pins in the coupling cheeses, then it is certain that provided the couplings are not set up dead tight, no bend ing due to the straining of the ship, or want of level in the bearings, can affect the shaft ; and, furthermore, the shaft being in comparatively short lengths, these will not be much bent by their own weight. Of course, if the couplings ar et up tight, the existing evil will be perpetuated. Arrive a coupling which shall be flexible. It is by no means easy, however, to do this, and yet prevent back lash and secure sfficient strength within the circumscribed limits of crew-shaft tumnel, but it seems that in this way, and in his way only, can the fracture of shafts be prevente One great obstacle standing in the way is that the coup-
ling must be of such a nature that the engine can be reversed without dragging it open. A simple clutch arrangement might be made to answer every purpos were it not for this Again, the strains are exceedingly variable, depending, as they do, on the crank moment the piston pressures, and the vis viva of the masses put in
motion. We have, too, to provide for racing. It is easy o see that the couplings must be sorely tried; but we d not for a moment believe that the difficulty is insurmount able Thas in the French navy an ordinary universal join has been employed for many years to couple the crank and
screw shaft, and we think we may say with the best results. crew shaft, and we think we may say with the best result In the W inans cigarship-stillyingoff Southampton-ther are three engimes of the steeple type driving the crank shaft and this shatt is made up in turec lengths, united to eac other by a very simple and ingenious yielding coupling. Mr Brotherhood, of Lambeth, hasrecently patented an extremely ingenious flexible coupling, which he applies between the crank shaft of his three-cylinder engme and that of the dynamo which it drives. To one of the shafts is secure a species of cup, with its concavity turned towards the next shaft. Over the mouth of the cup is stretched a dis of leather. To the centre of this dise is secured the shaft to be driven by a suitable circular clamp. It wil be seen that we have here a perfectly flexible coupling of the most beautiful type. The leather coupling has bee nsed with perfect success to transmit as much as 100 in dicated horse-power. Is it not possible that something e the same kind might be adopted at sea, flexible discs of steel being substituted for the leather suitable for smaller pow the arust would stil be transmitted by slightly rounding the ends of the shafts, and letting them abut on each other after passing through the disc or discs. We throw out the sugges
tion out details.
In the absence of flexibility other than that provided by the springing of the shaft itself, we shall continue to have breakages, We suggest here an expedient which we
suggested years ago, intended to minimise the results of ractures. The idea is borrowed from rolling mill practice In order to save the rolls and gearing from the effect of mldue strains, what is known as a "breaking spindle". is always put between the driving wheel and the roll trains. It is simply a short length of shafting of smaller section way the rolls or roll necks. If something must give way, it will be the weak breaking spindee, which, bed of not more than a few minutes' delay. Why should not screw hafts have one short length in each with a strength of, say, 75 per cent of the rest of the haft? Two or three are lengths might be carried. If the shaft breaks at it will be hee and the broken bit can be taken out and replaced by another in a couple of hour. We have heard it objected that to put in a weak longth is heard ort destruction to put in angth is in the way of trument Let us suppose that screw steamer has a propeller shaft 1lin. in diameter now, and that it breake Let it be replaced by an $11 \frac{1}{2} \mathrm{in}$. shaft, one short length of 1 lin . being retained It cannot be said that in this case the ship is worse is the llin leng which will folerably certain that it gives 1an, this can we neplaced time the shaf great deal of mystery is supposed to shroud the failure of marine engine shafts, but it is at all events clear that the existing state of attairs does not reflect any credit ou modern engineers, and that improvements are imperatively demanded in the way in which such shafts are put to work As for the material, that is now so excellent that we do not think there is much chance that it can be made hetter.

engineers and contractors.

A paragraph in our Birmingham correspondent's We refer to his statement that some notice from us, much more tha betofore inciating on the literal caryin out of their specifications In a recent impression we touched upon this subject; but the relations between eng i neers and contractors are uneatisfactory that it will be further discussion Contractory frequently comploin of the difficulties they experiance in getting y con por work the difficulties they experience in getting value for work to be executed. Irtually the question of profit or loss on under whe depends upon the character of the engineee manship can be done has abin cost; but the amout finish demanded hen a the expense involved M my has a great infuence upon the expense and therefore do not reguire the same pount of finseen, the visible 0 not require ane the ond ties may be simply left in the rough, and rivets need not be snapped up perfectly free from hammer marks. The rivetted work need not be cleaned over with a chisel to remove the fraising; and of sundry other portions, such as packing pieces, the same remark holds good. In like manner, the bolts and joints of ties in king and queen rod may be left black, instead of being machin ant over Details of finish are seldom defined in specificions, nor indeed, could they well be; and things of this sort are herefore settled during the pregress of the work. W ourselves have known instances where dissension has arisen
between engineer and contractor during the execution of between engineer and contractor during the execution of
work, as to what was and was not a reasonable amount of finish. A point like this can only be arranged in either of two ways, namely, by the engineer referring the conand tor some similar piece of work already executed shall be in all respects equal to it; or else by a personal interview in the first instance between the engineer and contractor, a shorthand writer being present to record al that is said on both sides, which notes being then read aloud to them should be signed by both parties, and kept Occasionally engineers of emerence in case of dispute clause but eng is eatly to be feared that they do a imish clause, but it is greatly to be feared that they do not insist apon improvenen can take place the relationship as bornacting panties engmeers as a body take care to draw reasonable and pract culfilmecifications, and invariably insist on their exac fulfilment. If engineers complain that they experience difficulty in getting work done to please them, they have only themselves in some respects, or some of their
brethren in the profession, to thank, because of the habit of relaxing apparently legitimate demands. When conly rally regards it as a precedent, and expects to get relaxain the irante inse of his buliess that soch consions ar granted in, it may be, nime cases, he not unreasonably anticipates that he may almost demand them as a right in the tenth. He sends in his tender at a price based on this assumption; but finds when the work is being executed that no concession will be allowed him, and in the case of poor firms the temptation becomes very grea illustrate grant themselves these concessions. We can notice in a beetains base which came under specified to be made briage contract. The rivets were when the rivets of iron of the very best quality, bu the standard, and the contractor being asked why this wa o, after a little pressing, said that the rivets were made of good ordinary rivet iron; and when censured for not adhering to the specification, replied he knew what was in the specification, but that engineers specified for certain things, but they never insisted upon their literal fulfilment. If this was generally true it would denote the existence of a great evil; and we are glad to think that a sounder and more dignified practice is at last beginning to prevail among engineers.
As regards finished workmanship, it may be pointed out known enineers are not unanimous. We ourselves have would never have tendered had they anticipated that extreme excellence of workmapship and finish would have
been demanded; or, if they had tendered, their price would remarked in a former article, in many cases of bad bargains have only their own negligence to thank if they do not attentively study all the stipulations of a contract on which they propose to tender. We can give an instance of this ing a bridge disputed certain instructions given by the resident engineer. The managing director was told
by him that he could not contest the matter, inasmuch as under the specification, in the event of any dispute much as under the specification, in the event of any dispute
arising during the progress of the work, the decision of the arising during the progress of the work, the decision of the
engineer was tinal and could not be appealed against; thereupon the managing director denied that the specification upon the managing director demied that the specinication
contained any such clause. On referring to it, however, contained any such clause. the clause was found; when he replied that he had not
seen it before; that had he done so "he would not have signed the contract."
Another point which is a fruitful source of discussion is the question of extras. We are of opinion that if specifications are properly drawn up first, there ought to be
scarcely any extras whatever; because the introduction of scarcelyations in any piece of work, not the first of its kind, indicates an infirmity of purpose on the part of kind, indicates an infirmity of purpose on the part of
either the engineer or his client. In fact, it might be said of a contract, in the execution of which a great many extras were introduced, that the man for whom the work was being done did not know what he wanted; and by
nothing is the ability of an engineer more conspicuously displayed than by the absence of extras. One reason why extras are so constantly a source of disagreement is the difnculy of estimating their real cost. . They stand in this Many engineers when compelled by the instructions of their chiens to cost; and the proportion such engineers in the pro cost; and the proportion of such engineers in the pro-
fession thus well-informed is, we are happy to think, increasing every year, mere theory being no longer allowed to exclude thorough practical training; but it is entailed, the whole point in dispute being not so much what entailed, the whole point in dispute being not so much what
was and was not an extra, as the price to be paid for it. As was and was not an extra, as the price to be paid for it. As
an example of what we mean about the trouble and expense an example of what we mean abou the troch a point as that
involved in extras, we may refer to such wherein an engineer may decide that certain additional pieces of iron are to be introduced, or certain pieces of different sections, into a bridge during its progress; it may hundredweights of iron. Now this may appear simple to hundredweights of iron, Now the may appear simple to matters know very well that it is much easier to obtain 200 or 300 tons of iron of a given section than five or six. Ironmasters seldom keep just the iron wanted in stock and, besides this, a contractor for a piece of work usually and did he go elsewhere he would of course, have to pay a much higher price for pay a much higher price for a small quantity, es-
pecially if he wanted it in a hurry; and the delays and hindrances to the general progress of the work, and the prolonged exposure of his plant to storm and flood,
standing idle while waiting for the extra, altogether involve expense far in excess of what is apparent to a superficial observer. Another source of expense which
attends on the introduction of extras is attends on the introduction of extras is that they can
seldom or never be introduced without entailing alterations -and often considerable alterations--in other parts of the work. Every competent draughtsman is well aware of
this, as he knows by experience that this, as he knows by experience that when his chief or
manager makes an alteration in a design, such manager makes an alteration in a design, such an alteration
necessitates an extensive re-arrangement of other parts in necessitates an extensive re-arrangement of other parts in
order to make everything fit. A contractor, on the other hand, during the progress of a piece of work will suggest the omission of certain items as being unnecessary, but fails to see the justice of any deduction being made from
his money if the things are omitted. Contractors who act his money if the things are omitted. Contractors who act
thus are unreasonable, because if they have just claim to payment fcr extras, they cannot fairly claim payment for work they have not performed.
Some engineers unnecessarily add to the difficulties of contractors by insisting on materials being obtained from particular sources, and upon the work being performed by a certain method. In respect to the first point, they restrict the contractor's power of getting materials in the
cheapest market; and in the second place obstruct him in cheapest market; and in the second place obstruct him in
executing the work. All that an engineer requires are executing the work. All that an engineer requires are
resulta So long therefore as the materials are of the requisite quality it need matter nothing to him where they are obtained; and so long as the workmanship is sufficiently good, that ought to suffice for him. Another point of grievance with contractors is the incapacity displayed on different occasions by inspectors employed by engineers to superintend the execution of work. Contractors complain that they have had mere apprentices sent to their yard as supervisors of work; men possessing no experience of matters involved in the exercise of duties generally of great delicacy, and having no knowledge of men. Such inspectors, we have been informed, occasionally make
demands and ask questions only deserving the ridicule which they receive. A dispute is easily raised by such tracting parties, and much exacerbation of temper ensues Engineers therefore cannot be too careful in selecting their inspectors. As a rule, inspectors are not sufficiently paid, and consequently the best men are not obtained. In some altogether above a bribe, though we believe that cases where they are offered or received are few and far between.

An impression seems to prevail that contractors when dealing with corporate bodies are more hardly dealt with than when doing business with individual engineers, it
being argued that corporations, usually having men in being argued that corporations, usually having men in
trade on their committees, such members must be pleased trade on their committees, such members must be pleased
as well as the engineer. This is a fallacy. As a rule, traders and contractors have a sympathy amongst themselves as against outsiders; and knowing what they have
to do in their own business, have a fellow feeling for their that it is useless for a contractor to assert his rights in a law court against a corporation. This fallacy has been nection with a contract, in which the engineer to a corporation refused to pass certain work, and, after a great deal of wrangling, the contractor sent a legal notice to the council, which at once took fright, backed out of the affair, overruling their engineer, and compellinghim to compromise plain of the In fact, private traders have no reason to commarkable example of this took place a couple of years ago in a large provincial city between a firm of carpet dealers This was corporation about the bursting of a sewer. close to a large sewer. The owners of the warehouse had excavated the cellar to such a depth that they very materially weakened the sewer, by removing a portion of its arch-giving
not only this, but they also introduced certain obstructions into the sewer itself, in comnection with business purposes of their own. A flood came soon after and burst the
sewer. The water got into the cellar, and damaged the carpets stored there to the extent of some hundreds of pounds. The owners sued the corporation for the damage tiffs suffered this damage in consequence of their own interference with the sewer, as above described. Nevertheless, judgment was given against the corporation, it being held that they were bound to satisfy themselves at Instames that their sewers were in an efficient state by no means at the mercy of corporations to the extent that is sometimes supposed.
The principle of accepting the lowest tender should be oxercised with more judgment than is usually bestowed Inquiry, in the first place, should be made, and a personal visit paid to the works of any strange firm, in order that the engineer may satisfy himself that the firm tendering has the appliances and plant necessary to the proper ful-
filment of the contract. Small but respectable tirms feel tempted to seek after jobs so much beyond their own powers of execution that they are compelled-if they get more pernicious or defective than this, the greatest evil being the subdivision of responsibility created. It is to be correspondent, will order of things, as indicated by our and that an amicable execution of contracts will become universal.

the sunderland engineers' strike

IT seems probable that an attempt will be made to bring to an the employers in the North believe that the time has come for a general reduction of the rate of wages, and in the attempt
that is being made to amicably nffect this there is the oppottunity Chat is being made to amicably affect this there is the opportunity
for some efforts to bring the Wear to a close. It is, of course, well known that the employera ong ago obtained a large number of workmen, and that the bulk of these are still at work, whilst it is as well known that there has been a considerable decline in the amount of work
in the hands of the employers, so that the latter are now practically masters of the situation. The strike began in June, the men making demands in regard to the rate of wages, the has been maintanined ever since. It is clear now that, instead of recciving any advance in wages, the workmen must is probable that the apprentice question will be settled, because the lesser earnings of the men and the worse prospect of the the causes of the strike have settled themselves. It seems therefore the time, if the wages' question of the employers in
the North is to be rovised, that there should be a conclusion to a strike that has hurt the employers, the men, and the general a striko that has hurt the employers, the men, and the genera
trade of the Wear, and that is still exercising a baneful influence even though most of the employers have their shops fairly filled.

LITERATURE.

The Gaillet and Huct Process for Softening and Purifying Water. AxDREw Howsison, C.E., 11, Queen Victoria-strect, London.
Extract from the work Etude sur Extract from the work Ltude sur les Eaux Industriclles ef
leur Epuration, by Gaillet and Huet. London: T. Pettit and The above is the title on the wrapper of this pamphlet; but on the first page we have a fresh heading: "The
Purification of Water." In fact, according to the Index we have three chapters headed respectively: "The Inconveniences of Impurities in Water;" "Chief Means that are Adopted for Remedying the Inconveniences of Impurities Huet's Process,'
In the opening chapter the authors deal with the principal impurities whicharemet with in water, and they are classitied as follows: Carbonate of lime, sulphate of lime, chloride of calcium, carbonate of magnesia, sulphate of manganese, silicates, potash and soda, atter. Then they treat of steam boilers, and the fluids employed to prevent their loss of heat and danger of explosion; the washing of wool similar industries; tanning, leather dressing, and dye works. In the second chapter, which deals with the chief means that are adopted for remedying the inconveniences of impurities in water, we have much elementary advice of the purification of water; and we then proceed to the chemical purification, which is, in fact, the important part of the pamphlet.
The chemical purification and the preparation of the canstic which is a mixture of solution of caustic lime and here that the use of milk of lime is imperfect and often
even dangerous. In fact, the quantity of lime to be added Whenen water to purify it should be exactly determined. When too little is used the purification is imperfect, an soda is then mixed with it and it is converted into carbonate of soda when it is added to the water to be purified, and this carbonate of soda then reacts upon the sulphates and chlorides of calcium and magnesia. After this treatment, all that remains in the purified water is sulphate of soda and chloride of calcium-harmless products, which in no case can do any mischief, either in the feeding of steam boilers or in any use to which the purified water can be put. There still remains the consideration of the elimination of organic matter. It is generally enough to add to the water during the purification process a small quantity of some salt of iron, or alumina. Such a salt yields precipitate of sesquioxide of iron or alumina, whicl falls down, easily catching up at the same time any organic matter present, and thus brings about a rapid
clarification of the water. Certain precautions necessary by reason of the solubility of the hydrate of protoxide of iron in an alkaline solution, are referred to. The proportion of the reagent requires special attention because the apparatus, contrived for rendering the wate
clear, is automatic and continuous. The tanks in which it is to be prepared should either be large tanks in which tain such a quantity of the reagent as will suffice for the work of a considerable time-for twelve hours, for example; or, on the other hand, an automatic apparatus may be employed which prepares the reagent con-
tinuously as it is wanted, and only requires to be charged with the constituent materials at wide intervals of time as every twelve hours, for example.
Te places:- "In such installation " " t herly rendered in and other expressions that are quite difficult to understand For instance, "The decantation of water holding an acces of lime in solution is very easy and rapid." Here, doubtthe excess of lime is not in solution, but in suspensionstate of things directly in contrast to solution.
The mode of removing the precipitated lime carbonate and all the other insoluble salts is by passing the water up and down over melined iron plates arranged in a low bottom of the inclination, and are so easily separated. But there are many questions which suggest themselves: At What inf is precipitate deposited in certain cases What influence has temperature on the rate of its deposi-
tion? We should like to know somewhat on these all weighty points; but not a word on this subject is vouchsafed to us. The precipitation takes place in the cold which greatly retards the settling down of insoluble products.

The Principles of Mechanics. By T. M. Goodeve, M.A. New edition. Re-written and enlarget. Lordon: Longmans ant
Co. 1883 .
This book was good in its first edition, but it has been much improved, both in arrangement and in the
exactness with which the principles involved are dealt exactness with which the principles involved are dealt
with, and in the numerical examples which are given of with, and in the numerical examples which are given of
the application of mechanical principles in practice. One the application of mechanical principles in practice. in
is almost inclined to agree with Sir W. Thomson in his is almost inclined to agree with sir
addition of a sense of force to the usual five senses, for proper comprehension of uniform and variable forces and
their measure, requires a sense which is distinct from their measure, requires a sense which is distinct from
touch, although, as Mr. Goodeve remarks, our ideas of matter and force exist together. A mode of measuring force, whatever the ideas as to its nature, is an essential i mechanics, and hence this and the reasons which have led to two different methods of measuring or expressing
force, $i . e .$, in gravitation units and absolute units. We must not, however, follow our author in this subject, or i his treatment of the laws of motion, energy, inertia, and so on, but must notice that in exemplification of these he
very properly refers, as examples, to practical applications very properly refers, as examples, to practical applications
of these laws. This is particularly noticeable throughout this book, and must appeal to the student inle throughout to make his comprehension of the laws much more easy, at the same time that a concrete exs it The properties of fluids and laws relating to their move ments are dealt with in the same happy way, and the style
of treatment of every subject in the book renders it inteoth thery though a piece of work taken up only perforce. In the graphic solution of problems in framework, the author very briefly explains the use of reciprocal figures, the origin of
which he attributes to Prof. Culmann, of Zurich, and deals with the principle of the sufficiently fully into the demonstration of the residence of the resultant pressures. The book concludes with some apt illustrations of the application of the mechanical principles explained, including the centrifugal pump, injector,
dynamometer, and Watt, chronometric, and loaded highspeed governors.
It is unnecessary for us to do more than call attention to this new edition of a well-accepted book-one which has every claim to a place amongst the works a student will not be excusable.

The Science of Building. An Elementary Treatise on the Principles of Construction, espccially adapted to the requirements of
Architectural Students. By E. WrNDHA TARS, M.A. Second edition, revised and enlarged. London: Crosby Lockwood The first chapt
chiefly as chapter of this book is on mechanical principles, chiefly as related to stresses in beams. The second, a
short one, is on retaining walls ; the third is on arches, supolas, and spires. Here the graphic method with
curd reciprocal figures has been introduced, and examples of the use of the formule are given for finding the stability of arches and abutments or piers for semicircular, segmental,
and Gothic arches, Iron domes are cut off with about a and Gothic arches, Iron domes are cut off with about a
page of generalities. The fourth chapter is on building
stones, and the fifth on timber and the strength of beams and pillars, roof timbers, and centreing. Chapter VI. is on iron, and here space is wasted in descriptions of how cast iron, wrought ins too incomplete to of any to anyone needing metallurgical knowledge, and not required by those for whom the book is written. What is said on steel is especially useless from a building point of view. The method of treating the stresses in girders and beams is not that calculated to encourage young architects, They want to be shown how to arrive at the stresses in iron beams and girders, and then how to apportion the sectional areas, not only as regards a mere black board diagram girder, but a real one made up with plates and Motion," the pressure of water in tanks and reservoirs is dealt with, and amongst other things the author wanders off to the method of finding the specific gravity of alloys He does, however, get back to water in motion, and deals with friction of water in pipes by the aid of Weisbach and others. The part dealing with wind pressures needs modification, and the eighth chapter, which is on lightning conductors and the nature of lightning, is very poor and out of place. As a book on "The Science of Building," it is disappointing.

4 Royal Road: Being a History of the London and South-Western Railway from 1825 to the Present Time (1883). By SAM FAY This little book begins with a reference to the want xperienced early in this century of communication between the South of England and London, and the proposal to construct the London and Spithead ship canal at a of the Stockton and Darlington Railway in 1825, and the issue on the 6th April, 1832, of the prospectus of the "Southampton, London, and Branch Railway and Dock Company," with a capital of $£ 1,500,000$ in shares of $£ 25$ ach. The basis on which the hopes of the promoter were founded are set forth, and then the history of South-Western Company, and the history reminds one very much of the histories of other railways. A good leal of information descriptive of features of the line, its branches, tunnels, and future extensions, is followed by a glance at the locomotive history of the line. We do not otice any special reference to the date of the very old rolling stock still in use for conveying pas engers on the South-W estern line, so it is to be presumed the first operation of openin the new line in 1899 of the first operations of opening the new line in 1839 made South-W astern has always paid a yidend opening the ceut. per annum except in 1850, when it was but 3.5 per cent. In 1845 and 1846 it was 8 per cent.

Economy of Coal in House Fires; or How to Convert an Ordinary Fire-grate into a Slow Combustion Stove at a Small Cost. By
T. Prdon Teale, M.A. London: J. and A. Churchill. 1883 . IT is hardly necessary to give more than the title of this little book to enable our readers to know what it is about but we may say that after some sensible and not wildly enthusiastic remarks about economy and waste of fuel in house fires, slow combustion, construction of the fireplace and economiser dampers, lighting "economised" fires,
diminution of smoke, and so on, the economiser is dediminution of smoke, and so on, the economiser is de-
scribed as consisting of a shutter to place in front of the space under the grate of any ordinary existing fireplaces, and a damper for closing more or less of the lower part of the front when a small fire is required. Slow combustion
stoves with air chambers and baffle plates are also stoves wit
described.

BOOKS RECEIVED.

The Practical Dictionary of Mrchanics, a Description of Tools,
nstruments, Machines, Processes, and Enfinerring: General Tcchnological Vocabulary, and Digcst of Mechanical Appliances Supplementary volume. London: Cassell and Company. 1884.
Personal Reminiscences of Gencral Skobeleff. By V.J. Nemoro-vitch-Dantchenko. Translated from the Russian by E. A. Brayley Hodgetts. London : W. H. Allen and Co. 1884.
A B C Paper Mill Guide for Great Britain and London: W. John Stonhill, Ladgate-circus, E.C. Mediaval Military Architecture in England. By G. T. Clark, The History of a Lump of Iron, from the Mine to the Magnet. Moxon's Fuide to the Use of Belting. Upperthorpe, Sheffield: J. Moxon. 1884.
Fortunes M. Traphical and Ancedotic, from the Pecent History and Industry arstommerce by various Writers. London: Sampson. Low, Die Stollenanlagen Rivingtons. 1884.
on Geo. Haupt. Berlin: Julius Springer. Journal of the Society of Telegraph Engineers. No. 50. London
E. and F. N. Spon, 1884.

TENDERS.

WILDERSPROOL-ADDITIONS TO THE BREWERY. MEssRs. DAyIsoN, INsKIPP, AKD MAckgyzir, architects and
consulting engineers, 62 , Leadenhall-street, London. Quantities
for for No. 1 contract by Messrs. Curtis and Son.

PRIVATE BILLS IN PARLIAMENT.
THE Select Committee of the House of Lords proceeded with
the consideration of the Manchester Ship Canal Bill, as will be the consideration
een on page 217 .
Group 5.-On
Group 5.-On Wednesday the Select Committee of the House of Commons met under the presidency of Mr. Bourke to con-
sider a group of six Bills relating to the North-east district of England. Four Bills were placed on the list for the day. At the no business ready for the, however, it appeared that there was and and Messrs. Bolckow, Vaughan, and Co. had withdrawn the petitions which they had presented against the North Eastern Railway Bill. The promoters of the Halifax High-leve and North and South Junction Railways Bill had concluded satisfactory arrangement with W. H. E. Rhodes and Messrs.
John Crossley and Sons, and the opposition to the Scarborough John Crossley and Sons, and the opposition to the Scarborough
and East Riding Railway Bill disappeared with the withdrawal and East Riding Railway Bill disappeared with the withdrawa appearance on behalf of the petitioners against the Cleveland Eppearance on behalf of the petitioners against tue clevelan Committee adjourned till Monday next.
Group 9.-The Committee on this group, Admiral Egerton presiding, passed the Denbighshire and Shropshire Junction Railway Bill, of which the object is to incorporate a company for making a railway from the authorised Wrexham, Mold, and Connah's Quay Rail way at Wrexham to the Cambrian Railway,
near Wolverhampton. The Committee then proceeded to the consideration of the Manchester, Sheffield, and Lincolnshir Railway Bill. By this Bill the Sheffield Company is authorised to make a line from its railway at Chester to Connah's Quay,
where a junction will be formed with the Wrexham, Mold, and Connah's Quay, over which running powers are taken. Mr Littler, Q.C., on behalf of the promoters, put before the Committee the objects of the Bill. Connah's Quay, he said, was chemical works. Until 1861 the district was sendent for and way accommodation upon the London and North-Western Railway Company; but since that time the Connah's Quay Company had come into existence. The Bill was opposed by the
London and North-Western Railway Company and by the Corporation of Chester, and others, on the ground of the inter-
ference with the navigation of the Dee by reason of the swing ference with the navigation of the Dee by reason of the swing
bridge which it is proposed by the promoters to place over the bridge which it is proposed by the promoters to place over the
Dee at a point in the lower part of the river. Evidence was given by gentlemen representing the various collieries in the district, who spoke of the very great advantages which would resure
from the carrying out of the scheme. These witnesses were followed by representatives of the salt
also expressed their approval of the Bill
Group 10.-The Committee in this group sat on Tuesday set down for their consideration were matters. The four case the Great Western Railway Company on the one part and the swindon and Cheltenham, Swindon, Marlborough, and Andover
Companies on the other part. The Committee were informed, Companies on the other part. The Committee were informed, between them, and in consequence the Swindon and Cheltenhan Railway Bill, the Great Western Railway Bill, the Swindon an Cheltenham, and the Swindon, Andover and Marlborough Rail
way Bill, and the Swindon and Cheltenham Railway Bill would be unopposed, while the Swindon, Marlborough, and Andover Railway Bill would not be proceeded with,
Group 13.-The Hardcastle Committee resumed their consideration of the Barmill and Kilwinning Railway Bill, which provides for an extension of the company" system to Ardrossan and Ardrossan Direct Railway Company." The case for the promoters was further gone into, and Mr. Bolton, the chairman of the Caledonian company, gave evidence in support of the
Bill. He stated that although the Caledonian had originally had o connection with this company the line should be worked by the larger company. He confrom the scheme. Mr. W, J. Wainwright, manager of the Glasgow and South-Western, and Mr. Henry Oakley, manage of the Great Northern, gave evidence in support of the allega tions of the former company against the Bill. Eventually the Committee passed the Bill, with a condition that if the rail ways were carried out, certain improvements in Ardrossan Hararbour. The Committee then took up the Caledonian Railwa No. 1) Bill and the Glasgow and South-Western Railway Bill each of which proposes an extension from Greenock to the port
Garnock. The matter will be severely contested by the tw companies, and it is thought probable that the case will last fo a week.

DEATH OF SIGNOR QUINTINO SELLA

During the last few days the death of one of the most illus trious of the statesmen and scientific men of Italy has been recorded, and it is noticeable how his earlier fame has bee eclipsed in the later, so that the daily papers hardly mention
he fact of his being known for his scientific work he fact of his being known for his scientific work. He waa
Professor of Geometry and Director of the Mineralogical Museum of the Royal Technical Institute of Turin, and was Member of the Academy of S.iences there. One of his first papers was on some of the forms of the red silvers, quartz, and calcite on the crystalline forms of certain salts of platinum and adamantine boron; and on the forms of certain salts derived
from ammonia. Most of them appeared in the Nuovo Cimento, nd were occasionally reprinted in Poggendorif's Annalen. In 1864, during the later period he delivered the discourse at the opening Congress of Naturalists at Milan in September; then
we have "An Ascent of Monte Viso," and "Geometrical Principles of Drawing, especially on Axonometry;" and in 1868, "Pyrites Pollux," evidently suggested by the caesium of Bunsen; and, in Friday at Biella, in Piedmont, close to the spot where he was
born, at Mosso, near Biella, on July 7th, 1827. He was
Yinister Minister of Finance in the Ratazzi Cabinet in 1862, in the Marmora Cabinet of 1864, and again in the Lanza Cabinet from
1869 to 1873. During this latter period he rendered two memorable services to Italy. By most unpopular but salutary
fiseal measures he saved the State from bankruptey, and after Sedan he forced on the Italian Government the occupation of Rome. During the last two years, although only 58 years
of age, he had almost entirely withdrawn from active politics, devoting himself to the care of his woollen manufactories at
Biella Stils he was regarded by all parties as one of the strongest, and he was one of the most highly-esteemed, of Italian statesmen, and any national emergency must have brought him
again to the front. The King telegraphed to his widowexpressgain to the front, The King telegraphed to his widow express-
ing the warmest sympathy.
sitting in commemorating its lost colleague. Nearly every
Minister and nearly all the leading members of the Chamber spoke in his praise. Perhaps the most remarkable speech was that of Sigoor Bonghi, who read extracts from a speech by which we are witnessing. The Chamber will suspend its sittings for three days, and its members will go into mourning for fifteen days. The bust of signor sella will be placed in the the Foreign Minister, determined to vote funds for a monument to him in Rome: but somewhat acrid delate tols pace asent the locality for it. If it were to be placed in the Academy of Science all parties of the Chamber would agree; but if placed in front of the Ministry of House, thus honouring not merely the man of science, but the Statesman, the Left would oppose it. Having, however, been outvoted they left the House before the second voting which is nd by tho complete the measure, so to preventa legal quorum, and by this device they prevented the vote for the moment being taken. This manitestation of party rancour has much disgusted the public conscience. The interment of the deceased
statesman took place on Saturday in the family burying-place at Oropa, near Biella. The obsequies were strictly private, but the procession friends following the coffin was more than half a mile long. It is proposed to give the name Sella to the sreet in Rome now called Volturno, The House was adjourned until the 19th ult, and at the surgestion of the President of the Chamber of Deputies, a crown is to be placed on his tomb at the expense of the Chamber
Il Commendatore Quintino Sella was elected a of the Geological Society of London in the year 1881, and about
the same time was chosen a corresponding member of the Mineralogical Society.
Sellaite is the name given to an interesting mineral found in Italy some years ago; a singularly rare mineral, but one which 1872, published a paper in the Atti della \nVdash. Accad di Torino, on a colourless transparent mineral occurring with anhydrite at Geibroula, in Piedmont, and crystallising in the quadritic system. Small fragments of the mineral melt in the flame of a candle; it is insoluble in water and acids, with the exception of sulphur The sulphuric acid solution contained 39.64 per cent, of mag nesia, and the chemical and physical characters of the minera ed struver to consider a magnesium fluoride analogous to fluor spar in composis.
Cossa, of Turin.

a Large lathe

On page 224 we illustrate a very large lathe made by Mr. W Asquith, High-road Well Works, Halifax. This is a 30 in . centre break lathe, which will turn an object 10 ft . in diameter and 6 ft . wide, in the break, and admit 41 ft , between centres when the breal is open 6 ft . Finished weight, about 45 tons. The lathe is very powerful, steel gearing being largely used in its construction. of that can fou put to a general tool, and is arranged so that a traverse of fou
cuts for sliding, and six for surfacing, can be obtained from the
 or power. Upon the bed are two self-acting sliding, surfacing, and independently or simul traverse shaft. The screw forscrew cutting is the full length of the bed, placed inside, and supported by intermediate fixed bearings. Each carriage is arranged for screw cutting with a nut in two parts, which can be disengaged instantly
The edges of the bed are made at right angles as at A A adjustable in both directions, making the same very firm, moving with less friction, and putting less strain upon the bed. for receiving thrust and is wheel can be gearel for screws sithe of che motion wheels are all steel, and of a lage size, and can be reversed instantly for either sliding or screw cutting in either direction. rests for turning large feed by a ratchet lever. The standard is anana transversely or longitudinally, and is always parallel with the object operated upon.

Berly's Universal Electrical Directory and Advertiser -The third edition of this Directory, published by W. Dawson an Sons, has now been published, and it is well got up, convenientl names and manufactures. The Directory is prefaced by antal account of the prominent work of the past year, and with formul and wire tables. Its completeness as a cirectory may, however be questioned, when we find amongst the list of British electrical publications mention of some absuraly useless, while the mos valuable of all these periodicals, such as the Electrician, are no prominence is given to some for reasons which not in it, an promious. Advertisements are also intruded amongst the text.
The Twin-screw Tug-boat Clive.-The increasing size of the vessels frequenting the Hooghly has necessitated a revolution in the tug-boats used on the historical river on which Calcutta is situated and the trial trip on the Clyde the other day of the new twin-scre tug-boat Clive built expressly for the Hooghly river, marks the
commencement of a new departure. Externally the Clive has the masts, two raking funnels, and as her length is 192 ft ., with 572 tons, and as ah a depth of hold of 14 ft ., her gross tonnage is first-class Clyde-built fashion, sho presents a very effective ship Her engines were made by the well-known firm of Messrs
Rankin and Blackmore, of Greenock. They consist of two pairs
and
large large double-ended steel boilers, from which steam is supplied
at a pressure at a pressure of 80 lb . pressure, and capable of indicating
1450 -horse power. On the measured mile, with a mean draught of
9 ft . 9 ft , the engines made 82 revolutions. The Clive attained
speed of $15 \frac{1}{2}$ miles per hour. She has accommodation for 600 tons
of conl per hour. A marked feature in the at full speed, is only one to powerful patent steam windlass and capstan supplied by Ms the M'Onie, engineers, Greenock. Her builders are Messrs. R.
Duncan and Company, of Port Glasgow, from designs furnished Monie, engineers, Greenock. Her builders are Messrs. R.
Duncan and Company, of Port Glasgow, from designs furnished
them by Mr. James Ash, of London; her owners are Messrs. Jas.
Wylie and Company, of London and Calcutta.

LETTERS TO THE EDITOR.

[Continued from page 222.]

investigations of a particular case of an arghed rib. SIr, - - have thought the following investigation of a particular case of an arched rib might be of interest to your readers:-
Suppose we have a curved iron bar A B fixed at B, as in the diagram, and it is required to find
an expression for the largestadmis
 sible foree W acting endwise on the
bar. θ be the angle between
Let A B and the line of action chord $A B$ and the line of action
of W : Then resolving W along A B, we have W sec. θ. The
angular momentum round ρ tending angular momentar to the right is W
to bend the bar
sec. $\theta \times y$-the centre of the chord sec. $\theta \times y$-the centre of the chord
A B is taken for the origin of x.
The angular momentum in the opposite direction is inversely as
the radius or directly proportional to the radius of curvature ρ, and nature of material used and the unit
of measurement employed, or to $\rho \times \mathrm{C}$
Therefore it follows that W sec. $\boldsymbol{\theta} \times$

using the well-known expression for the radius of curvature. Put $p d y$ for $d x$ and $d p d y$ for $d^{2} y$, then this equation

$\frac{d y}{y \mathrm{~W} \sec \cdot \theta}=\mathrm{C} \frac{d p}{\left(1+p^{2}\right)}$	
Integrating with respect to y, we have-	
W sec. θ log. $y+\mathrm{C}_{\mathrm{n}}=\mathrm{C} \frac{p}{\left(1+p^{2}\right)^{2}}$....... (1)	
$\mathrm{C} \sqrt{ }$, $\left.1-\left(\mathrm{W} \text { sec. } \theta \text { log. } y+\mathrm{C}^{1}\right)^{2}\right\}$	
$x=\int p d y+\mathrm{C}^{11}=\frac{1}{\mathrm{C}} \int^{\mathrm{D}} \frac{\left(\mathrm{~W} \sec \cdot \theta \log \cdot y+\mathrm{C}^{1}\right) d y}{\sqrt{\left\{1-\left(\mathrm{W} \sec . \theta \log \cdot y+\mathrm{C}^{1}\right)^{2}\right\}}}+\mathrm{C}^{11}(2)$	
Therefore, $x=-\frac{1}{C} \sqrt{\text { a }}$ (1-(W sec. θ log. $\left.\left.y+\mathrm{C}^{1}\right)^{2}\right\}+\mathrm{C}^{11}$.	
To determine the values of the constants C^{1} and C^{11},	
In equation (1), when $y=b, x=0, \therefore \frac{d y}{d x}=0, \therefore p=0$.	

Hence we have-

$$
\mathrm{W} \sec . \theta \log \cdot b+\mathrm{C}^{1}
$$

W sec. $\theta \log , b+\mathrm{C}^{1}=o$, therefore $\mathrm{C}^{1}=\mathrm{W}$ sec. θ log. b. To
determine C^{11}, when $y=b, x=0$. Hence
 The full value of equation (2) therefore is-

$\left.x=-\frac{1}{\mathrm{C}} \sqrt{ } \sqrt{ } 1-(\mathrm{W} \sec . \theta \log . y-\mathrm{W} \sec . \theta \log . b)^{2}+\mathrm{C}\right\} .(3)$

 From which we obtain -$y=e \frac{-\int\left(\mathrm{C}^{2} x^{2}+\mathrm{C}+1\right)+\mathrm{W} \sec . \theta \log . b}{\mathrm{~W} \frac{\sec . \theta}{}}$
and-
wever

This gives an expression for the limiting value of the weight
which the curved bar can sustain withont "buckling."* which the curved bar can sustain withont "buckling."*
It will be observed that we have neglected the weight of the bar in our investigation- W representing an external force applied.
Should we desire to introduce this factor in our computation, we Should we desire to introduce this factor in our computation, we and the remainder will be the permissible force for action on the top of the bar.
London, Feb. 29th

Charles H. Romanes.
the breakage of screw shafts,
SIR,-The letters of your correspondents on propeller shafting encourages me to write to say that I think you would be
performing an act of great public utility and interest if you would performing an act of great public utility and interest if you w
collect and publish accounts of fractures of propeller shafts. We have read that quite recently two of the largest Atlantic
liners have been disabled from stenming, and compelled to finish their voyages under sail, consequent on breaking their screw shafts, but no details of the nature and position of the fractures, or explanations of the reasons why it was impossible to repair them at
Rea, have yet been published. We may, however, infer that the rea, have yet been published. We may, however, infer that the
fractures must have taken place either in the stern tube, or else in the crank shaft-both places almost impossible to repair, as a fracture in the intermediate portion of the shaft could easily be rectified hv taking out the broken part, and replacing it with a spare length.
When
When I was crossing the Atlantic, about four years ago, in the
Cunard 8,8 . Samaria, we picked up the disabled Danish steamer Thingvalla, and towed her, after a week, into Boston. She was incapacitated from steaming by the key of the propeller having
fallen out, leaving the propeller loose on the shaft, and hammering fallen out, leaving the propeller loose on the shaft, and hammering
the hull and rudder post alternately as the ship pitched. the hull and rudder post alternately as the ship pitched.
The captain seized the opportunity of the first calm day to
remove a length of the shaft, thus letting the propel romtom of the sea. His vessel then travelled much easier, and could take care of herself under sail if the sea had become rough and the towing hawser had parted.
Last April I read a paper before the Institution of Mechanical Engineers on the "Strength and Stability of Shafting," advocating, as your correspondents do, greater independence of the elasticities
of the shaft and the hull, and recommending that this should be of number of bearings for the intermediate part of the sorew shafting. Whether this is practically feasible experience only can show, but recent events have proved the importance of considering the elastic yielding of screw shafts.
In the discussion on the paper Professor Unwin mentioned that the plan proposed by your correspondent "Log Chip," of having intermediate couplings on universal joints, was formerly in use in the
French. navy, particularly with wood vessels, where the elastic
yielding of the hull would be very French navy, particularly with wood vessels, where the elastic
yielding of the hull would be very much greater than in iron or

The discussion of the nature and causes of these recent break-
downs would be of so much interest and utility that the responsible engineers who can furnish the details would be performing an act of
great public advantage in sending them to you for publication, and great public advantage in sending them to you for publication
I venture to hope that you will prevail upon them to do so.
R.A. Institution, Woolwich,
March 17th.
A. G. Greenhill.

FUEL AND WATER

Sir,-May I be allowed to draw your readers' attention to a
decimal point which, by a most unfortunate printer's error, has decimal point which, by a most unfortunate printer's error, has
slipped into the formula quoted in your review for the thickness of slipped into the formula quoted in your review for the thickness of
boiler shells- "Fuel and Water," p. 136 -and has only now been detected. The true form of this formula, of course, is $t=\stackrel{d p}{ }$ where t and d are thickness of plate and diameter of shell in inches, p is the pressure in pounds per square inch, and s the work-
ing stress in tons per square inch. ing stress in tons per square inch.

PROGRESS IN THE SIZE OF TELESCOPES.

Many years ago, Herschell gave a very great impulse to
physical astronomy. His amazing manual dexterity, his actiphysical astronomy, His amazing manual dexterity, his actiGuinand and Fraunhofer led to the realisation of large objectives by the progress they instituted in the manufacture of optical glass, whle a mechanism of clockwork compelled the glasses and
telescopes to follow the diurnal movement of the stars. All telescopes to follow the diurnal movement of the stars. All
modern instruments are mounted in this manner. The tendency is toward enlargement, so that telescopes have reached such a size that some possess mirrors of 1.20 m . in diameter-Paris and Mel
bourne-with refractors 0.65 m . aperture-Washington-of 0.75 m and even 1 m . in diameter. Is this mania for enlargement justified? Arago, when he asked from the Chamber the credit neces-
sary for the construction of an objective of 0.38 m ., believed that sary for the construction of an objective of 0.38 m , believed that,
by raising the enlargement of the glasses to 6000 times, objects upon the moon 20 m . in length or 2 m . in width should be seen, the causeway of a railroad, fortifications, and monuments. The single difficulty in the way of realising this hope lies in the deficient luminosity of the images. Yet it is impossible to determine to what extent the increase of the optical power of a lens or a tele-
scope is more than compensated by the increase of special aberration, the difficulty of manipulation, the instability, the deficiency of light.
To give a more exact conception of the fineness of details that are attained in a good instrument, we may recall that Schiaparelli, in his observations upon Mars, made at Milan with a lens of Merz,
of 0.218 m , aperture-Mars being distant 14 million leagues during of 0.218 m , aperture-Mars being distant 14 million leagues during
the opposition of 1877 -could distinguish a round spot 137 kilos, wide. From Mars an island such as Sicily, a lake of the size of Lake Ladoga or Tshad, could have been seen, a zone of 70 kilos.
would have been visible, and Jutland, Cuba, or Panama would have been seen. The lens of Washington, of 0.65 m. , would show details but one-third the size, that is 44 kilos. to 24 kilos.; upon the moon the lowest dimensions would be 315 m , in size, upon the
sun 177 kilos., upon Venus 36 kilos., upon Jupiter 555 kilos . Experience proves that the most useful aperture is from 0.38 m . to
0.40 m . The following is a table of instruments of which the $0^{*} 40 \mathrm{~m}$. The following is a table of instruments of which the
greatest diameter is $0^{\circ} 92 \mathrm{~m}$. The number of lenses whose diameter
is greater than 0.245 m . does not exceed 62 .

Lick, in Cal. Pulkowa Nice Paris Vionna Washington McCormick, Chicago Newall, Gateshend. Princeton, New Jersey Strassburg Milan Dearborn, Chicago. Van der Zee, BuIfalo, N. Rochestor Madison Lord L.ndsay, Aberdeun

Aporture in
centimetros.
 -Revue Seien:ifique.

Street Improvement.-The widening of Gray's-inn-road, from
Holborn Bars to Clerkenwell-road to 60 ft, by the Metropolitan Holborn Bars to Clerkenwell-road to 60ft. by the Metropolitan Board of Works, has been completed. The Holborn Board of
Works has resolved to plant trees on each side of the thorough-

Lighting Mines.-The Manchester Geological Society, which has at Wigan on Friday last, and the whole proceedings were devoted to the discussion of questionsaffecting the lighting of mines and blastin operations in the getting of coal, upon which papers were read by
Mr. H. Hall and Dr. C. Le Neve Foster, both of whom are Government inspectors of mines. Mr. Hall dealt chiefly with
what it was probable the Royal Commission would report as to lighting and blasting in mines. The experience of the last four years had, he said, established beyond the possibility of contradicyears that any unprotected gauze lamp was unsafe in an explosive atmosphere moving at even a moderate velocity. As it was alto-
gether out of the question that the difficulty would be met by were compelled to fall currents passing through the mines, they meet the following conditions:- That it must be self-extinguishing in an explosive mixture; that it must be impervious to draught; that if glass were used in the construction, it must be so arranged that the light would be extinguished before it could impinge on the glass when canted sideways, and that it must be strong and simple
in construction. The lamp which, in his opinion fulfilled these conditions the nearest was the Muesler; but it did not meet the last condition, and anyone who could simplify its construction would confer a great boon upon the mining community. With
regard to blasting operations, there appeared to be a strong case for further restriction as to the use of gunpowder,
and it was not improbable that the Commissioners would, and it was not improbable that the Commissioners would,
whilst admitting that the use of explosives could not be dispensed with altogether, suggest that the adoption of the
long wall system of working would in most seams render the use of explosives unnecessary for getting the coal itself; that blastin under its most favourable aspect was attended with substantial danger, but when the charge blew out, as it not unfrequently did,
then there was imminent risk of a serious explosion if the then there was imminent risk of a serious explosion if the mine
were fiery, and that as far as possible blasting should be altogether dispensed with, but in no case should it proceed in mines subject to fire-damp while a large number of persons were underground Dr. Foster, in his paper, gave a description of an arrangement introduced by Herr Wolff into his safety lamps for re-lighting them without removing the gauze. The apparatus for re-lighting closely
resembles Shadwell's patent lighter for ordinary gas jets, and the resembles Shadwell's patent lighter for ordinary gas jets, and the
lamp is re-lit by means of a flash from a detonating composition ignited by a hammer and spring operated from the outside of the lamp, which carries charges for re-lighting seventy-five times if required. The apparatus is, however, applicable only to lamps in which mineral volatile oils are used, and in the discussion it was questioned whether it might not prove a source of danger, as in the
event of a lamp becoming injured so as to be unsafe, the miner would still have the means of re-lighting it.

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS,

(From our own Correspondent.)

Upon 'Change in Birmingham this-Thursday-afternoon, and in Wolverhampton ye they were stopping their mils rather than accept many of the
orders offered them. This action does not arise from the associate project which was proposed, but is voluntary at individual works.
If it should continue, as there seems every probability it will, there will be less necessity for pursuing the associated scheme.
Manufacturers are doing their best to keep up prices, and they are altogether wise. To follow the market to a profitless level can tie idle half of the week it would be decidedly to the beneffit trade. Prices of galvanising doubles are this week $£ 712 \mathrm{~s}$. 6 d ., and latt
at $£ 7$. Woodford sheets were quoted this afternoon at $£ 9$ for 20 B.G.
$£ 1010 \mathrm{~s}$. for 21 to $24 \mathrm{~B} . \mathrm{G}$.; $£ 12$ for 25 and 26 g .; and $£ 1210 \mathrm{~s}$. for 28 g . Woodford Crown, close annealed sheets, were $£ 10$ for
20 g ; $£ 1110 \mathrm{~s}$, for 21 to 24 g .; $£ 13$ for 25 and $26 \mathrm{~g} . ;$ and $£ 1310 \mathrm{~s}$, best were $£ 1$ additional per ton, and double $£ 16$, £17 10s., and $£ 18$ according to gauge. Woodford charcoa steel close annealed sheets were $£ 13$ for 20 g ., respectively. $£ 1410 \mathrm{~s}$. for 21 to 24 g , $£ 16$ for 25 and 26 g ., and $£ 1610 \mathrm{~s}$. for 28 g
mmediate execution upon sheet-makers. A few of thications fo consequence as many orders as they can possibly get through in consequence as many orders as they can possibly get through in
the next fortnight. It may, however, be that this influx of
specifications is no more than a spurt. Galvanisers quote about

Plates are in slow sale, whether tank, girder, or boiler qualities superior qualities $£ 9$ to $£ 910 \mathrm{~s}$. The competition from othe districts keeps severe. Particularly is this so as to girder and bridge sorts from the North of England.
A moderate call is expressed for bars, hoops, strips, and other
merchant sections. Marked bars are $£ 8$ 2s. 6d, to $£ 7$. 10 . medium quality, $£ 615 \mathrm{~s}$. to $£ 610 \mathrm{~s}$; and common, $£ 65 \mathrm{~s}$, to $£ 6$ moops are $£ 610 \mathrm{~s}$. to $£ 7$, and gas strip $£ 62 \mathrm{~s}$. 6d. to $£ 65 \mathrm{~s}$
Additional evidences of the progress of the steel industry here
abouts are steadily forthcoming. The old-established and cele abouts are steadily forthooming. The olde-stablished and cele-
brated Lilleshall Iron Company, Shropshire, has now completed its steelworks, upon the erection of which it has been en manufnctur now being bought and converters will be blown in very shortly. When a start is actually made I shall have more to say about the new plant. I shall also by-and-bye give particulars concerning the plants which are being Clapp and Griffiths' patent. The best sheet firms are receiving the Clapp and Griffiths patent. The best sheet firms are receiving the
process with most favour, since the product is particularly adaptable for soft sheet rolling. The economy of the process is
most conspicuous. The Staffordshire firms have been induced to most conspicuous. The Staffordshire firms have been induced to
adopt it in much part because of its success in South Wales; and the competition of the Welsh sheet firms with those of this dis trict is steadily increasing.
Messrs. Nettlefold's, Birmingham, and Messrs. Hatton, Sons, and Co., Bilston, are two of the leading firms here who are entering upon the Clapp and Griffiths' method. At the latter works the new plant is in a very forward state, but a few weeks may pass
before a start is made. The firm advise me that it is their inten tion to produce only soft metal of the highest quality, which The notice which the ironmasters have just given for a reconsideration of the wages question will come before the Arbitration
Board in two or three weeks' time. Before the Board meets it is hoped that the arbitrator in the North of England will have given his decision upon the reduction claimed by the masters there.
That decision must necessarily largely regulate the result of the proceedings in this part of the kingdom. The strike in the Shropshire wire drawing trade is still going on, fill up the places of the strikers.
Pig iron does not show much revival this week. Still some
vendors of Derbyshire sorts reported good sales, but low prices have to be accepted. Sellers of hematites here and there reported good
to contracts in prospect if principals will allow them to meet buyer half way in the matter of price. Northampton pigs were quoted
44s., Derbyshires 45 s ., and Lincolnshires 47 s . For the Thorncliffe -South Yorkshire-brand 57s. 6d. is demanded, but without sales Hematites are quoted 57 s .6 d . to 58 s . 6d.; native all-mines are 80 s,
for cold blast, and 60 s . for hot blast; part-mines are 47 s . 6 d . to Cor cold blast, and 60 s . for hot blast ; part-mines are 47 s . 6 d .
45 s ., and cinder sorts 40 s . to 38 s . 6d.; North Staffordshire pottery mine is scarce and firm at 17 s . 6d. to 18 18s. delivered. Northampton ironstone of good quality was to-day quoted 6s. per ton delivered, but new sales are restricted.
South Wales blast fues
South Wales blast furnace coke is 15 s . delivered into this district;
Glamorgan foundry coke, 19 s , to 20 s , and Durham Glamorgan foundry coke, 198. to 20s., and Durham ditto, 19s. to
21 s . Coal is difficult to get off at from 5 s . up to 6 s . 6d, for forge sorts, according to the locality where it is mined. Mill coal is 7 s ., and furnace coal 9 s , to 10 s .
Some wrought iron girder work is being inquired for by the Mid-
land Railway Company, for erection on the northern division of its line, but the work is very small.
The annual report of the Chillington Iron Company, Wolver bampton, shows the large turn over of $£ 354,213$; but there has leen a loss of £5449. The directors state that prices have ruled while there has been only a slight fall in the price of pig iron and ing powers of the company in order to pose to exercise the borrow ng powers of the company in order to raise the sums necessary to
repay the temporary loans included in the $£ 87,117$ credited in the balance sheet to "accounts due by the company." The loans have been borrowed to provide cash capital.
The Institute of Iron and Steel Wo
Dudley, on Monday, the discussion upon Mr. J. E. Stead's paper The better cable news from Nuw Sout
The better cable news from New South Wales is encouraging. much importance if it is maintained. The Cape demand for tools anticipated revived buying are disappointed Some of the South American and Indian markets are ordering plantation tools and implements freely, but the profits resulting are very fine. For orders for picks, hammers, crowbars, spades, and other mining tools for South Africa, Australia, South America, Spain, and elsewhere, are happily rather more profitable. Horseshoes are in fair call from Australia and home. The agricultural implement trade
is in some degree an improvement on March last year. Old is in some degree an improvement on March
accounts the farmers are discharging rather better
The Council of the Birmingham Chamber of Commerce do not state that they cannot congratulate the Chamber on the present position or prospects 80 far as the immediate future is concerned, though with regard to some, at least, of the important staple
trades of the Midland district, the volume of tusiness trades of the Midland district, the volume of business has been,
and is still, important; but owing to home and foreign competition and is still, important; but owing to home and foreign competition
the resulting profits have no doubt been below the average. The Council is strongly of opinion that relief to the prevailing depression may be greatly aided by an equitable adjustment of the
railway rates of the district, and of considerable concessions in the rates generally. This would not only conduce to the material prosperity of the commercial community, but, would also be of
ultimate advantage to the railway shareholders,

Mr. John Brotherton, of the Imperial Tube Works, Wolver hampton, has been awarded a first-classiacertififate and gold medal
at the Calcutia Exhibition, for iron tubes and fittings for gas, water, and steam. The employers in the Wolverhampton plate lock trade having
mostly refused an advance of 10 per cent. in wages to their operamostly refused an advance of 10 per cent. in wages to their opera-
tives, these have come out on strike. The strike, however, cannot last very long.
The spike-makers employed at Messrs. W. M. Warden's works
at Handsworth have come out on strike against a reduction of 10 per cent. in wages. The men andmit that trade in in tad, but ung urge
that the employers ought to have served a notice upon the Association, that they, might take action upon the subject. The Nut
and Bolt Makers' Association support the men, jand are allowing them strike pay. The Birmingham gunmakers, dissatisfied with the charges made
by the Guardians of the Gun-barrel Proof House have by the Guardians of the Gun-barrel Proof House, have appointed
a deputation to wait upon the Guardians to ask for a reduction of rates. They claim that the profit during the past few years has
been about $£ 34,000$. Some of them, indeed, cate that the gun trade should be placed on an equal footing with
that of Belgium, to whose members the Belgian Proof House
returns annuilly returns annually, a bonus of 3 members cent.
The report of the West Bromwich bo
253,100 will be needed to carry out the Corporation sewerage
Of theme sche intercepting sewer from Rydding-lane to Roebuck-lane, and
the
$£ \Upsilon 4,500$ for the $£ 24,500$ for the subsidiary and branch sewers, contingenciaes, \&c.
The subsidiary sewers will drain sixteen small areas. The subsidiary sewers will drain sixteen small areas. There are that would nave to be dealt with is estimated at 879.450 daily sewage Hopes are entertained this weel in North Staftordshire of a
slight revival in trade. The depression shows signs of having slight revival in trade. The depression shows signs of having
reached the lowest point. The orders on foreign and colonial account are here and there a little better. The heavy section mill
are the best employed. Some of them are running full time. The Merchant mills, however, are only making three turns a week
Crown bars are quoted at $£ 6$ to $£ 67 \mathrm{~s}$. 6 d ., and common sorts at Lo 15s. upwaras per ton. Business in hoops appears to have fallen
away somewhat. Still prices are on the basis of $£ 6$ 5s. to \&6 10 s .
per ton. The plate trade is better Sereal
 iron branch. Quotations range from 408. to 45s.
At a large and influential meeting of the South Staffordshire an East Norcestershire Coal Masters A Association held at Birming
ham, Mr. J. B. Cocherane, the president, in the chair, it wa
resolved to all the question of miners' maetes, and it is wanseg' Board to consed that the staide trade does not warrant the present rate of wages.

NOTES FROM LANCASHIRE.

Manchester.-The actually new businesse coming forward in the
iron market here continues extremely small. So far as local and iron market here continues extremely small. So far as local and
district pig iron makers are concerned they have still a sufficient
weight of iron to deliver against old contracts to keep them and they show no disposition to press saleso on the present basing
prices, whilst buyers are quite indifferent about giving out order except such as they require for immediate wants. Occasional offer are put forward in the market for moderately large quantities, but
in most cases they are at prices so much under those that maker are ask little giving way at all in pig iran them. Indeed there is
ver very little giving way at all in pig iron, and for the small order
that buyers have to give out they find it very ifficult to place
them at much below current rates Finished piron makers, ever, have not been able to maintain so firm a position, and prices where orders have been taken, have recently been gradually reced-
ing from the nominal list rates. Generally throughout the iron trade there is a continued absence of any weight of new work in
prospect to give any real strength to the market, and bint prospect to give any real strength to the market, and buyers, who
can see nothing to be gained by giving out orders just now, prefer
to run out their contracts before entering into further engagements, There was but a v very quietere marter at at Manchester on on Tuendays,
with only a small inquiry for either pig or manufactured iron Lancashire makers of pig iron report little or nothing doing; they have had moderate offers at about 1 s . and 1 s .6 d . per ton unde
their quoted prices; but these they have declined to entertain; and although it is possible they would be prepared to give way a littl
 basis of about delivered. into this district quotations are on thrge and 4 s . 4d. to 44 s , 10d. less $2 \frac{1}{3}$
for foundry Lincolnhire, Mare oufdrs in theolnshire, and atket. The a little under these figeout of figures there
arnaces in the
North of England has not, so far as this market is concerreded, give
then that increased firmness to Middlesbrough iron that was anticipated
and there are still sellers and there are still sellers open to book orders for good foundry
brands at about 45s. net cash delivered equal to Manchester. The stronger tone reported in Sootch iron last week has been main-
tained, and there is less underselling; but the weight of business
doing here continues very The hematite trade shows no
 average figure forely good foundryth brands, lesess 2 h , still about the
The finished iron trade also continues in a deprestis district. and to secure orders local and North Staffordshire makers have
had to give way upon their nominal list rates of 56 per had to give way upon their nominal list rates of 96 per ton for
bars delivered into the Manchester district, 55 12. sd . being now
about the about the average figure, with Middlesbrough bars and plates
offering freely at 5 . 12. . 6 d. per ton, and in some cases even less
than this is being taken than this is being taken for good specifications.
The condition of the engineering trades
reports sente in from the various districts throughout the the last the above wranch of industry, would, so far as ecilly indentitified with cerned, appara to be practically stationary. The returns issued by
the Amalgamated Society of Engineers show an 31. per cent. of the members in reeceipt of out-of-work support,
which is about the same average as previous mouth. Ane axception as to tho ewn in the real ruleturns for the however, to
be found in the Manchester and Salford district, where the returns members; the cotton machine making trades appear to to have slightly improved, and someo of tha large fradses appear bave to have
outting an additional number of hands; the large engineering works and
tool are still preterty fulso of opt faikly employed, and locomotive builders
of Lawever, the trade generall improvement, but in most cases it is returned as fairly steady, and with the exxeppition of the shipbuilding branches, this is in, rettty
much the tenour of the reports from the leading industrial dis-
trict tricts throughout the country. The report issued by the Steam
Engine Makers' Society states pretty much the samet as last month, but the majority of the
branch reports are tery der trade itself. The reports sfom the various marine engine districts
are all of a depressed nature, and threatened reductions of are all of a depressed nature, and threatened reductions of wages
or the discharge of men seemed to be the general rule, whilst in wome districts there was also a tendency to increase the number of It may be of Colonay be of interest to add that the reports received from the Trades union societies are all of a very discouraging character. Trade continues bad, with no signof of ingrovement, and all branches
of industry, especially in the United States, are reported to be The slight improveur.

[^0]being fairly maintained, and so far there has been a decidedly
better business done this month than during either of the two pre ceding months of the year. The condition of the coal trade is,
however, still anything but good; and it is only in exceptional cases however, still anything but good; and it is only in exceptional cases
that pits are able to work more than four days a week without putting into stock. House fire ooals have been moving off
moderately well, but the common round coals still meet with only a slow sale for iron making and steam purposes, and the demand for engine fuel is only moderate, although supplies of slack are
scarce, owing to the small quantity of round coal now being scarce, owing to the small quanthy of round coal now being
screened. Quoted prices are without material change, but for quantities or for forward delivery low prices are taken for all
classes of round coal, and coal from the Yorkshire distriet is competing here at very low figures. At the pit mouth best coal
 qualities. 3 s . 3d. .to 3 . . 6d. per ton.
For shipment there has been more inquiry, and in the coasting secure orders continue very low, Lancashire steam coal delivered at
the high level, Liverpool, or the Garston Docks, averaging 78. 3d. 7. 6 bd . per ton.
There is every

There is every prospect of a protracted dispute in the wire-draw reduction varying from 15 to 25 per cent. On Tuesday a meeting of the representatives of the various firms and of the men now on strike was held at Manchester, for the purpose of coming to some
arrangement. The men's delegates presented a list which the masters' representatives would not acceept, and, on the other hand the men declined to discuss the masters' list, so that a settlemen
Barrow-in-Furness.-The hematite pig iron market of this dislast week. The slight improvement which occurred a few month ago has entirely died away, and the trade is now in a worse posiny thing but willing to come forward, and there is little dispositio o place orders. Makers on the whole are anxious to sell, but on both home, foreign, American, and continental accounts, are considerably restricted. The weight of shipments is inextensive, and as the present amount of deliveries does not by any means
represent the output of metal in this district, stoeks are daily represent the output of metal in this district, stooks are daily
increasing, and some time must elapse before they are cleared per ton less all round. Parcels of No. 1 quotations now are 1s l , offered, but selling slowly, at 47s. per ton net at works, prompt
delivery; No. 2 , at 46 s .; and No. 3 , at 45 s . per ton. The steel trade shows little change, but still remains in a low and unsatis
factory condition. factory condition. Orders rrom all quarters are coming but slowly
to hand. Rails are in limited request at unchanged prices, fro e4 10s. to $£ 5$ being generally accepted although large concession are made at easier rates. Steel shipbuilders are but indifferently partments of the steel and iron trades are anything but briskly mployed. Iron ore is quiet and prices are extremely low, ordera held are heary. Coal and coke quiet, at easier prices. Shipping dull, as freights are low.

THE SHEFFIELD DISTRICT.

(From our own Correspondent.)
THE Congo treaty is a subject which is exciting no little
attention. It is contended that by the new tariff our interests will practioally be placed under Portuguese rule. Sheffield, it is believed, will ise affected to the extent of $£ 200,000$ per annum lost
trade. British commerce on the Congo has hitherto been free and nfettered by any tariff, and the proposal in the treaty is to put a
duty of from 30 to 100 per cent. on our manufactures. This proposal is sufficient, some of our manufacturers say, to ruin those
engaged in the trade and surprise is exvessed that the Govern engaged in the trade, and surprise is exprerssed that the Govern-
ment should propose to abandon our interests to the mercy of ment should propose to abandon our interests to the mercy of
what is called the most protective nation in the world, one
whose colonial policy has been of the most restrictive chancter Whose colonial policy has been of the most restrictive character,
the consenuence of which is seen in the sta nation and want progress in all her colonies." The proposal to hand over the Congo district to the Portuguese is regarded as a direct invitation to other oountries to receive from
interests in Western Africa.
Messrs.
Messrs. George Butler and Co., of the Trinity Works, have
obtained a first-class certificate and silver medal for their t Calcutta ; Messrs, Ohristopher Johnson and Cor their exhibi and bronze medal; Messrs. Rawson Brothers, second-class and
anonze medal.

THE NORTH OF ENGLAND
(From our ovn Correspondent.)
THE Cleveland iron market held at Middlesbrough on Tuesday at the advanced rates which have prevailed since the outp pig iro reduced. No. $3 \mathrm{~g} . \mathrm{m} . \mathrm{b}$., for prompt delivery, cannot now be had from either merchants or makers for less than 37s. 3d. per ton;
some of the latter ask 3 d . to 9 d . more. The minimum price of orge iron is 308 . 9 d., but some makers demand and obtain 368 .
per ton. The pig iron trade is now ina much firmer condition than Therg been. little inquiry for warrants, the price being nominally 37 s . per ton.
The stocks in Messrs. Connal and Co.'s stores, both at Middlesbrough and Glasgow, have decreased during the past week. At
Middlesbrough the quantity held on Monday last was 60,777 tons, being a reduction of 273 tons for the week; at Glasgow,
mounted to 593,901 tons, being a reduction of 105 tons.
Exports from the Tees, have been fully equal to expectation this month; large quantities have been sent to foreign ports, notably
to those of Germany and Holland. The quantity of pig iron shipped o Monday night was 42,319 tons.
The manufactured iron trade continues in a dull and inanimate
condition. Fresh contracts are still most difficult to obte remain about the same, and are scarcely likely to be lower now that the price of pig iron has advanced. Ship plates are £5 2s. 6 d . to
$£ 5$. ss . per ton; shipbuilding angle iron, $£ 415 \mathrm{~s}$, to $£ 417 \mathrm{~s}$. 6 d .; and common bars, $£ 5$ to $£ 52 \mathrm{~s}$. 6 d , all free on cash 10 th less $2 t$ per cent.
The shipsmiths strike at
the men having agreed to for steamers. All the wages disputes in connection with the ship.
building trade at Middlesbrough and Stockton have now been adjusted for the time being.
The Anderston Foundry Company, of Port Clarence, which manufactures large quantities of rail way chairs, iron sleepers, and
crossings, is exceedingly busy, and intends to enlarge its works crossings, is exceedingly 7 busy, and int will require 400 more when
already employs about 700 hands, and with the proposed extensions are made.
The Fighting Cocks Wire Works near Darlington are again at Work. Mr. Dobbing, the plaintiff in the recent successful action
against the proprietor, has sold his house to the owner of the
neighbouring house property, whose income was suffring for wat neighbouring
of fis rents.
The North Brancepeth Coal Company have now given a fortLittleburn Colliery, near Durham. They are about to stop forty
coke ovens owing to the depression in trade.
A meeting of the Board of Arbitration was held at Darlington on
Monday last, when the emplogers' notico for a reduction of 1s, per
ton in puddling and 10 per cent. in other forge and mill wages was discussed. It was deceided to refer the matter to an arrinrater,
who will be asked to fix the rates for another three months.
vas unanimously resolved to ask Dr. Spence Watson, of Newenstle, was unanimously resol
again to act as refere
Messrs. Gray and Gladstone, who restarted the West Hartlepool Ironworks about two years since, have been compelied to cease
operations for want of a sufficiency of orders. It is understood opat they will work next week to finish up certain remaining speci-
thations, and that then they will discharge all employfes, except the fications, and that then they will discharge all employes, except the
manager and watchman, and will remain idle for two years, or until some considerable change takes place in the state of trade. ship-plates.
The Britannia Ironworks, Middlesbrough, belonging to Messrs.
Dorman, Long, and Co., have been standing the whole of this week or similar reasons. Angle iron is there chiefly made
The depressed state of the manufactured iron trade has at last excessive earnings of plate rollers in charge of heavy mills. These workmen are still obtaining in many cases £11 to £12 per week, and in some cases even more. It is considered that such earnings
as these, for any operative ironworkers, are absurd, when the state as these, for any operative ironworkers, are absurd, when the state
of trade is such that large numbers of their fellows have not the pportunity to earn anything whatever, and when employers are
ceasing operations in all directions, because they can only continue by working at a loss,

NOTES FROM SCOTLAND,

(From our oven Correspondent.)

THE iron market has been quiet this week, and the quotations of
warrants have not shown much fluctuation. It was anticipated that after the recent advance, which was attributed to speculative causes, there would be a considerable drop in prices; but hitherto
there has been a rally following upon the decline. For shipment a fair quantity of pig iron is required. The shipments of the past week were 12,238 tons, compared with 11,876 in the corresponding week of last year. The home demand, on the other hand, is
reported as slack, but the production is considerably smaller than it was twelve months ago, and there is at present no material addition to stocks. In fact, the aggregate in Meesrs. Connal and furnaces in blast, compared with 113 at the corresponding date in 1883, but it is expected that four additional furnaces that were put out at the Clyde Works by an accident to the blowing machinery Busineperation again in a few days.
Business was done in the warrant market on Friday last at
42s. 92d. per ton cash. On Monday forenoon the market was flat actions from 42s. $7 \frac{1 \mathrm{~d} \text { d. to }}{}$ 42s. 43d. cash, there being an on Tuesday forenoon at 42 s . 6 hd d . to 42 s . 7d d. cash, and in the
afternoon at 42 s . 8 d . to 42 s . 7 d . cash. Business was done on Wednesday at 42s. 6 hd. to to 42 s . 7 d ., and back to 42 s . 6d. canh.
To-day-Thursday-the tone was
cash. market values of makers' iron are as follows:-Gartsherrie,
The
f.o.b. at Glasgow, per ton, No. 1, 53 s.; No. 3, 51s.; Coltness,

 at Leith, 58s. 6d. and 52s.; Carron, at Grangemouth, 48s. 6d (spe

 shire. It was to take effect in the course of the present week, The reduction follows upon a similar one awarded by the North the wages of millmen, forgemen, and shinglers, and 1s per cent. on puddlers. When the last reduction was made the men loudly and they do not wish to have their wages regulated any longer by other hand, are acting in accordance with a long-established custom, the convenience of which is obvious, and the men
themselves used to approve cordially of the practice, espeThis last reduction will make their pay comparatively low, but the trade is at present in a very backward condition. The men have been idle several days this week, and are much dissatisfied with the position in which they are placed. The probability is,
however, that they will offer no organised resistance worthy of the name, more particularly as several hundred men have lately been
discharged owing to want of employment In the coal trade business is rather quiet

WALES AND ADJOINING COUNTIES

There has been a slightly better tone imparted to trade from tical cannot become more depressed; the lowest condition has beei reached; any change now must be an upward one. Cyfarthfa ba present pig irocrately brisk, and the iron is appreciated. At from neighbouring works, but very
shortl shortly it will be made again on the spot. A temporary stoppag took place at some of the mills of the district on Monday, and I am
afraid that in one or two cases the stoppage was a relief, for orders To tin -punning short.
To tin-plate a little more life has been imparted, and prices are I noticed lately that it had been decided upon the suggestion of
the South Wales Institute to the Cardiff University College to commitee this week, when it was arranged that the salary should A colliery manager has asked me to
give $£ 50$ a year for three years for state that he will willingly districts on chemistry and other scientific subjects.
Owners of best coal have nothing to inquiries or prices. They are all well booked. Some sligh to stoppages took place during the early part of the week, caused b
an arrival of steamers ; but this was son at docks and at the various lines of rail is as much as ever. What it would be if house coal was in free demand it is hard to state
That branch of the coal trade is slack and prices low, and winter is leaving us there is a poor lookout for recovery until next
A fine steamer left Cardiff this week, the Lilburn Tower, of the cipally coaled by the Lewis Merthyr and Dowlais coal, and
sailed direct for Erint sailed Elirect for pit oypt. the Powell Duffryn Company is being sunk in
the Rhymney Valley and the new Tredegr Colliery opene the Rhymney Valley and the new Tredegar Colliery opened out.
In the Merthyr parish a movement, initiated by Mr. Rhys, Llwydooed, has been made to levy a rate of $7 \frac{1}{2}$ per cent. upon

Gas making by the various corporations in the Birmingham dis trict appears to be a very profitable business. Tipton, which up to

the patent journal.

Condensed from the Jourraal of the Comnistioners

Applications for Letters Patent

name and addrisess of the communicating party are printed in italics.

11th March, 1884

 4678 sirisinina MuLes, w. Bamford and J. Kelly,
Middloton.
4072. Extriactisa Grease from Soar Water, B. Davy,

 1603. PAPER Whappers, H. J. Allison.--(D. Dick, Nem

 Dow, London.
STOO. Couriso Woo

 So6. Gurpiso Desioe, T. Dugard.-(W. H. Milliken,

 471. Cominustriak Ger, B. von stednacker, Prusela.

 Turcere omd H.M. Torec, B., B. P. Wilaling.-(IW

12th Mareh, 1884.

4737. SToppranso Bortuse, W., E, and T. W. Hazte-
hurst and J. Wolstenholme, Oldham.

 ${ }^{\text {croft, Leeds }}$ 4701. CAtico Pinstras, A. Drow, Burnley.

47

4
4
4
4
4
4
4
4
4
4
4
4

 and Flyer MAchinaz

 Purn, Nen York.)
PHorocraph Ho Phoroinaph Holdprs, T. Schmidt, Serlin.
VELociredes, J. Jackson, Coventry,

2. Mon.

 4996. Prasisa Cospositiose, P. Layden and w.
Mctoun, Jarrow-upon-Tyne.
 (E. Theien, Germany.)

13th March, 1883.
48
48
4
4
4

4800. Jcks for Looms, J. Robbla, Loeds.
480 . W

Gis. Insulated Conductors, de., A. R. Bennett, 4834. Ppoper Bage, F. D. Bumsted, Hednesford.
4885. Rotary Fountais, F. H. F. Engel.-(G. E. Wolf), Hamburg.)
4836, Drspersina OIL upon Waves, W. Gardiner,
Ealing.
Ealing.
4887. Raliway Couplino, J. Hyde, Acton.
4888. Tobacco PIres, dc., H. J. Haddan.--(F. Bailac,

4840. LTFEBATSE, H. Critten, Great Yarmouth.
4841. FIRE BAsKEx and Boller, A. H. Hearington,

London.
484. WATER-HEATER, A. H. Hearington, London.
4843. HETtINo WATER, dce, A. H. Hearington, London. 4843. Heativo Water, dce., A. H. Hearington, London.
484. Makis Hats, J. Goddard, Ashton-undor-Lyhe.
4845. Joint Fitives for Fishiva Rods, F. J. Williams,

London.
4846. Bortuss, J. Booth, New Basford.
4847. Tricycless, dec., E. Hollands, London.
4847. Trioycles, cec., E. Hollands, London.
4848. Drivise Becrs, F. Walton, Twickenhi
4890. Slup-Hook, L. K. Bell, Chatham.

14th March, 1884.

4851. Movalle Ascension Pifes for Gas Retorts, J,

Thomas, Bodmin.
4852. STERINO Tricyoles, E. Gilyard, Bradford,
4853, STovis, J. Parker, Kilwarnelk 4853. Stovis, J. Parker, Kilmarzock.
4854. Cylawper Pranting Machings, R. Cund

Thornton.
4855, STEAM VAlves, J. Longton, Brinscall.
4856. OnNAMENTINO Bricks, dc., W. R. Cornell, Whit
hall, Grays.
4857. Fixine Brackets to Mirrors, S. Krinks, Bio
48 mingham. Exaise Gland and Joint Packing, E,

4800. Valve Motions for Automatic Steam Pumps, A
Gozzard, Sheffield.
486. Nut or Bolt Lockino Device, J. Glover, Jun.
Liverpool.

 Potternewton.
4877. Suracing Wood Pavement, A. C. Bicknell,
Sandyeroft Sandycroft.
4878. Acomulator of Electrictity, J. Mijers, Ams terdam. Preparing Cement, J. Watson, Greenhithe-on-
Thames. 4880. GAs. Motor Engines, \&c., G. W. Weatherhogg,
London. London.
4881. Mu Stutlgart, Würtemburg.)
488, FERD, PATER HEAERE, Addison, Cumberland.
4883. JARS, de., T. C. Blanchflower, jun., and J. C.

488 488 488
 488, 488, 488 488 4880 480 489 480

London.
4894. Cams of Kitrino Machines, W. R. Alington,
L90ndon.
4896. Eloriva Guns, Sir R. Payne-Gallwey, Bedale. 4896. Eliscruical Switches, W. Lowrie, London, an
A. B. Pickard, Now Beckenhim,
4897. WATERPRoor FELTs, A. Davidson, Wimbledon. 49.7. Wateraroor Felts, A. Daviddon,
4898. BELL, de., G. Watts, London
4899. WEAVING, T. H. Brigg, Bradford.
4899. WEAvINO, T. H. Brigg, Bradford.
490. VENTILATING, S. Chandler, jun., and J. Chandler,

London.
4991. Coupinas, J. Brockio, Brixton.
4902. Drying, dC., Steas, W. R. Lake.-(L. Fouque, Parig.)
4903, Glazed Suelter Wall, de., J. Monro, New
Barnet, Barnet.
4004. Thead Separators, de., A. M. Clark.-(G. Jaquith, Kentucky, V.S.)
4905. LockINO APPARATUS, A. Reinhard.-(B. G. Kecker,
Germany.) 4906. Dark Slide for Photograpmic Cameras, A. F.
Howman, Oxford. 4907. Yrenimga Couplivas, R. H. Heenan and R. H.
Froude, Manchestor.
4008, Lumucated BEAMivos, R. H. Heenan and R. H. Froude, Manchestor.
4000, Lumbicarzo BEA
Froude, Manchoster.

4909. 1. 490. D W.

15th March, 1884.

 13. Pull Openiso CAs, E. H. Cooke and H. T. B
mour, Cork.

1. Looms for Weavisa, J. Wild, Huddersficld.
2. PICKERs for Looms, H. Totlow, Manchester. 4915. PIOKER for Looms, H. Totlow, Mancherter.
3. Movse and RAT Traps, J. Baber, Liverpool.
4. Rotary Enoises, J. Sant, Newcastle-und

Lyme. Rary Enoines, J. Bant, Newcastle-under-
4918. Stinning, \&e., Macmisery, R. Wild, Littlo-
borough,

worth and W. Dickinson, Burnley.
4020. Woot Combirs, \&c., MAchovery, E. G. Hatters-
ley and S. Hird, Haworth.
ley and S. Hird, Haworth.
402y. Handle ATracharnt, dc., for Hand Bags, W,
Hemingway, Roehampton.
Hemingway, Roehampton.
4922. Tave Jointive, B. C. Tyzack, North Shiolds.
4923. PAPER-cUTITNO Machines, H. P. Trueman an

Partridge, West Bromwich.
492. Boors and soems, R. Gilintt, Knutsford.
4929. BichrosATE of SodA, C. S. Gorman, Irvine.
4929. Bicuromats of Soda, C. S. Gorman, Irvine.
4930. Graer Cakes, M. Chatficid, Horsham.
4931. Baoosiae Checks, C. C

Wednesbury.
4997. IvandEscest Lasps, J. S. Fairfax, London.
4938. Perambivelotors, J. L. Bramley and J. S. Conway, London.
4930. HzEs. for Boors and Shoss, W. H. Stevens,
Leicester.
Leicestor.
4940. Frasies for Suspension Lasps, E. A. Rippingille,
Aston.
Aston.
4041. Lasps for Burxing Mineral Outs, E. A. Rippin-
gille, Aston.
4942. METLLIC Labels, dec., B. Knight and J. Durant,
Birmingham.
Birmingham.
4943. Fursaces for Heating Inow, T. Milward,
Kiddermingter.

 ADMINISTERING AXESTHETIOS, L. Roussy, Geneva.
LINK Motion, A. D. Bryce-Douglas, Soafield.
 Yikldisa Courlisa for Rotatiso Shatrs, R. I
Prodid R. H. Froude, Manchoster. Producina Violet, de., Colournsg Matrers, C
Abel. (Farbucrke cormals Meister, Lucius, aut
ning, Germany.) ining, Germany.)
ILLomivative Ligrt-Hovses, J. R. Wigham,
ikstown.
Bracks, F. J. Wollen, Walthamstow, and G. C
diek, London.

and

 ousdale, Harrogate.
roke-peyening Furnaces for Bakers' Ovens,
ith, London. 2. Steas Tramway Locomotives, D. MeI. Reid,
ynemouth.
3. Ahing Machinery, s. Skinner, Eastbourne.
4. Actuating Mechanical automatos Toy Work4. Actuating Mechanical Automaton Toy Work-
me, de., G. Cole, London.
5. Combing Wool, dc., W. Fearnley and I. Davy, 497... Drawisa, de., upon Glass, E. S. Chatterton,
London.-Jenuery' $26 \ell h, 1884$. 17th March, 1884

4977. Linen Horse and Stidolph, Woodbrid
 Stidolph, Woodbrid

4988. Sprivo Hingess for Doors, P. O'Connor, Wavertree.
4989. Metallic Packiva PISTOX, R. Youns 4999. Metallic Packing Piston, R. Young, Leith.
4990. Direct Action Corkscrew, H. Perry, Brighton.
4991. Connecting Leather Picking Abms to Pickino Sticks, T. Pickersgill, Huddersfield.

Leach, Accrington.
3. Mowtiverower Engines, W. Cooke, Nottingham,
and S. Meekin. New Lenton. and S. Meekin, New Lenton. 4985. Pioton Steam Engine Indicators, G. M. Borns,

London.
86. Indcating Apparatus, A. Horne, Liverpool.
Si. Elastic Pkncil Over-Grainer, W. F. Pigott, Bywale, Ireland.
498. STRAK Bowkrs, W. Wright, Airdrie
4989. CHANoING SENBITTBED PLATEs,
undee.
FLower-Pors, dec, C. M. Hunter, Birmingham,
d. J. Mountord, Small Heath. and C. J. Mountford, S. M. M. Hunter, Hirmingham,
4991. TALLE Fonks, dce., C. Ibbotson, Sheffeld.
4992. Looms, T. Richmond, H. Haworth, 4992. Looms, T. Richmond, H. Haworth, and D.
Whitehead, Burnley.
4093, PERETULL CUTino Macurnes, J. W. Taylor, P.
Gledhill, and J. Liversedge, Huddersfleld. Gledhill, and J. Liversedge Hudderssfleld. Ta,
4094. Looms, E. Beach, near Leeds.
4995. DrawiNo PiNs, \&c., F. Brampton, Birmingham.
4996. Locking VeLocrredss, B. Roberta, Birmingham. Eerseytilatino Buildinas, T. Clayton, Ashton-on-
Internal Gauafs, W. Whittam, Salford. ey.
Nternal Gavars, W. Whittam, Salford.
Iviso Alara in Fkarise States of the Human DY, W, Fearnley, London.
VEmirczes, W. J. Brower, London.
STocks and DIEs, J. C. Bater, Br
. Stocks and Dises, J. C. Batuer, Brockley.
Givisa Wooden Articles the Appeni
Metal, C. W. Rees, London.

Belfast.
5006. Dregrers, W. Fleming de P. Ferguson, Paisley,
5007. GAs Exanks, W. and S. H. Hill, York.

5009. Washivg Machises, J. Roffey, Bromley.
5010. CLIP or HoldEr for TickETs, dc., W. Pottor jum. London.
soil. Insulutivo plates for Galvanic Batteriss, de.,
D. Hammond, London. 5012. Electrical Accemulators, de., D. Hammond,
London. London,
5013. PReserve Tiss, J. J. Burton and H. Harsant,
London. London.
5014. Vkritan Blinds, A. Boult.-(J. Querre, France.)
5015. Markise Lawn Texsis Coums, A. J. Boult.-
 Catford, London.
5018. LIFE-BVovs, dc., J. R. Hodgzon, London.
6019. Trimingo Mechinism for SEwino Machinss,

 Wenham, London.
5025. Smetinc Iron Ore, S. R. Smyth, London.

ABSTRAOTS OF SPEOIFIOATIONS

aftce of Her Mojecty's Commissioners of Patents.
of
 The combustion chamber is made of fire-clay, and is
provided with a number of gas jots. Injectors send a spray of liquid humbrocarbon fuels imprecgated with
arar steam into tho combustion chamber, where it
impinges on a fire-clay block and is broken wp impoing
ignited.
2544.
 This relates to a process for the production of a large
percentage of hydrogen by the action of hot lime, and
it consists in bringing naphthn tontact with a highly naphted vody bour and steam int
the of lime, in cooling the product, and then causing the regulated constan
stream, under uniform pressure, to flow through chamber containing lime in a cooler condition. 2546. Hamaocks, asd in them Combination with
ATricycle AND A Tent, C. E. Hieater, Harrisbury, The hammock is formed so that it can be suspended
from the whecels of tricycles, whitch can thus be con-
verted into a slooping compartment. 3307. Eerekrvesciva Drisk, A. Baumparten, London.
tith Juty, 1883.- (Provisional protection not allocel.). Milk is reduced by evaporation, and the residne
treatod chemically to preserve it, and then mixed
with strongly charged carbonated or efferveseing
water, 3379. Eanthexware on Porcelain Tiles, G. Max
Broseley, Salop,-7th July, 1883.-(Provisional pyoA pattern is isprosesed upon the surface of the tillem
while in a pastic condition by moulds, dies of em whilo in a plastic condition by moutes, and they are then burned.

 and it consists in a marine drug construeted with
shank provided with a stationary collar and a runner
o which ribs and strectchers, whose outer to which ribs and strotchers, whose outor ends are
loosely connected together, are rospectively hinged ing
combination with rriangular phatos hinged to euell
other and to the ribs, whereby the drag will be openied
3531. Masuracture or Stekl, W. Naylor, Penistons
3531. Manuracture or Stekl, W. Naylor, Penistont,
Yorke. 1 1ech Juty, $1883.2 d$.
This relates to the manufacture of a soft weldable

 ${ }_{3 B 6}$

 ces.

form

 37
 ${ }^{36} 7_{5}$ Solvitur

 3680. Refrigerating Apparatus for Preserining

 The object is to dispense with the weights usuall
employed to support vertically sliding gas pendants
and it consists in substituting therefor spring barrels to which one end of a metal ribeor spring barrels,
other end thereof being secured to the bottom of the
one 3682. Appabatus -27th J Jal Machines, \&ce, G the Contente Upon the stationary framework of the centrifugal o
other stationary base is fixed an adjustable spout other stationary base is fixed an adjustable spout,
which has a chisel or gange-shaped end, and can be
made to dip down into the centrifugal cage with ita edge facing the way the machine is rotating, whereby
the machine can be emptied without stopping it. 3683. Life Rifts, A. H. Williems, London.-27t The raft is composed of two or more flat air-tigh
chambers jointed together and arranged to form a sent Chambers jointed together and arranged to form a seat
when folded, a folding contrivance or compartment
being arranged between any or all of the flat chambers. 3685. FASTENINCS FOR
AND OTHER Doors,

AND OTHER DOORS, 27 Th July, $1883.6 d$.

This relates to means for ensuring the fastening
one of the doors by the action of closing the oth it consists in causing the second door ro come in con
tact with an arm pivotted to the casing and forcing no a recess in the door which is first closed 3686. Machinery for Cutting or Breaking U
Suaar Case ivo Lexthe, J. Thorraton, Clech
heaton.
 mamini in owito phaced the sin matan mian 3687. Cuarrs, F. C. Glaser, Berlin. $-28 t h$ July, 1883 ,

- A communication from
F. W. II. Ruperti, Germany.) Sd.
This relates to chairs with adjustable seats, backs and footboards or leg-rests, and it consists, in con
structing the seat so that it can slide backward or
forwards on the fruming. The back is hinge.jointed to the seat, and is supported by the arm rests which
are jointed to the framing, so that by ajusting the
seat the angle of the back is also altered. To the front are jointed to the framing, so that by adjusting the
seat the angle of the back is also altered. To the fron
edge of the seat is hinged a footooard or leg-rest
which is adjustable to form any angle with the seat. 3688. Apparatus for Guidivg Chains or Ropes to
Winch and other Barbels, R. J. Redd, Croydon. The 28 July, Jus , 883 . Gd.
The object 1 is to guide chains or ropes to barrels so
that there is no tendency to irregularity in its conthat there is no tendency to irregularity in its con-
volutions thereon, and it consists in leading the rope or chain through an eye or over a guide pulley, and
then over a second guide pulley arranged to travel in a parabolic curve of which the first eye is the focus,
the axis of the barrel being parallel to the directrix. 3689. Spinnixg axd Roving Machinery, T. E. Smith,

 incrensed, contains less "twist," and therofore softer
than when operated upon in the ordinary manner;
and it consists in mounting on the rings trivellers of
and and it consists in mounting on the rings travellers of
less weight than ordinarily used, and in conjunction
with such travellers using a rod on which is secured a number of brushes for the purpose of retarding the
travellers, which would otherwiso overrun the bobbins and cause the fibre to "snarl" when the machine is started.
3692 .
L. F
L. Fox, Loodon,-28th July, 1883. 6 d .
High tension currents are generated at any suitable put where power may oe chieaply obtainec. Chese
curronts aremploged to drive motors having coupled
on their shafts generators, by which currents of the requisite tension are produced at the places where the
light or power is required 3694. Machinery yor Preparing and Spinning
Yans or all Frimes, dec., W. Lenceaster, Accring

noin puley

 aid wim

 ramaer rit os sme

 tatan no

iorm-" briquettes" to be used as fuel, to form artificia
leather, and for other purposes.
3700 .

 dione axe and to

 tram it tuosterextypo. sprodicea

 371. Ammants ron curmso Dom

 371.1

 , ind

 $\mathrm{m}^{\text {miden }}$

 3723. Dons or G.s. Rimonts J. Baruh

 rall ben

 and 372

 mat uriugin acm the tomation it tho mad

 373. B.

chambor forming a aeoondary regenerntor.
below the burner is perforited to admit air:

 the crank shart. Mintin eanal jank it hertod an

 top rall bracket is a holiding and stop piate

 flutid olly or poas stick figsupgendod bya cord to an

 stampa.

 Tho apparntus ensists of ofman or pallot revolving

 STructures, J. Jefferies, Gracecend, and C. Thom.
son, London, - 31 st July, 1883. (Not proceded vith.)
 3754. Apparatus yor Ventilatino, Heatino, Deo-
 A cylindrical vessel is provided with a screen and a chamber to receive a lamp, and also a pipe ontering
the lower part, and provided with a mouth-pieco at it opposite end terminating at or near the upper part of
the room.

3757. Mowing And Reapisa Miohines, E. Pratt, This consststs in forming projections on the driving
wheels of mowing or reaping machines by casting them in chills, while the wheels themselves are cast in when travelling over the ground.
3758. Automatio Flushino and Antiseptic Tank,
F. J. Austin, London.-1st Aupust, 1883., Gd. Running up from the bottom and near the centre of near tho bottom of the tank, over which, extending thother pipe, closed at
nop. The water supply is top. The water supply is rogulated by a ball tap.
Over the tank is a second tank, containing disinfecting flutd, , nnd fitted with a ball valve, oporatod autto-
matically simultaneously with the discharge of water into t
3759. Star Pads, T. Griflth, Manchester:-1s This consists in forming a pad to receive carpets of
one thickness of felt and stitched around the edges. 3763. Electrio Clocks G. M. Herotizky, Hamburg.The "function" of the current is regulatod by a
vibrating pendulum which automatically receives an
impulse every minute. mpulso
3760. Street Cleasers and Snow Removers, B J. B. Milts, London. 1 st August, 1883,-(4 commu
nication from A. J. Reynolds, Chicago.)-(Not pro-
ceeded with.) 2 d. This relates to a combined road sweoper and wagon,
ruitably actuanted so as to automatically load the dirt or snow swopt up by the sweoper into the wagon.
3761. Means for Supportiva Trousers, J. H. Two buttons are secured at each side of the trousers to recoive loops or tabs formed at the opposite onds of
an adjustable band, which passes round the buek of
the trousers 3768. APpA
 The stamps or tickets are passed in strips through rollers, which advance them a given distance ecch
time a plunger is caused to descend. The lower roller ips in wator or gum, and the top roller may be caused
oprint the ticket. The plunger in descending cuts to print the ticket. The plunger in descending outs
off each ticket, and its further movement affixes it to
the article to which it is to bo the article to which it is to bo applied.
1883 . $6 d$, .
37es Tho uprights aro of wood and the horizontal bars of
iron, and a diagonal pioce of wood is tononed into the
top of one and the bottom of the other intight top of one and the bottom of the other upright.
Two shorter diagonal piecos are tenoned one to the middle of each upright, and extend one above and the
other below the main diagonal piece to near the other below the main diagonal piece to near the
midddle of the gate. Alt the horizontal bars pass
throuk the diagonals. The top bar is formed in one
with the top hinge, and the other end receives a nut with the top hingona, and the other end receives a nut
outside the upright. The bottom bar is also fittod
outh nuts outside each upright. 3771. Machines por Makino Envelopes and simmlar
Reckptacles, de., J. C. Mevburb, London.-1at
 A blank is takon by a pneumatic suction dovice
from the top of the pplio and delivered to an ondless
carrying belt, which carries it through the folders for carrying belt, which carries it through the folders for
the end flaps, which consist of folding blades over
which the flaps aro folded by narow bolts. Gum or
pasto is appled by a gumming roll. The bottom flap
3762. M.ichinery for Cutting Metals, W. W. Hulse,
Mancheste.- 1 It Augut, 18383 . 6 d. In drilling and boring machines the boring spindle standard fixed at any desired part of a base plate, Stays carrying the cutting bar are fixed on the base
plate and can be adjusted vertically with the boring spindle. The tables are secured to the base plate, and each is provided with a slide movable in guides, to
which the work is secured. The invention further relates to machines for punching and shearing, and
also for planing metals. 37'7. Arrangembnts and Mrchanism for Grinding,
Glazing, and Polishing Articles of Metal, R. The principal feature consists in entering the article to be operated upon between a rotary grinding, glaz-
ing, or polishing surface, and an india-rubber roller ing, or polishing surface, and an india-rubber roller
which presses the article against the operating surface and prevents it moving except at the speed imparted
to the india-rubber roller. 3777 .
3763. Producing Golden Sulphuret of Antimony
or Pentabulphide or Antimony, A. G. Brooks, London. - (A commun
Haverhill, U.S.)
This consists in producing golden sulphuret of anti-
mony by dissolving native sulphide of antimony free sulphur separately in saturated solutions of caustic alkali, and afterwards adding the same
together and heating the mixture with acid. 3778. Gones won Bucyere Taceore
3764. Gonas yon Bicycles, Tricroles, \&e., F. U The part of the handie of bicycles which is gripped
by the hand can be revolved, so as to actuate the
3765. Apparatus for the Reglation or the move-
ment of tuie Carbons on Electrodes in Electri LaMps, E. G. Brever, London. - 2nd Aupust, 1883.Ateliers de Construction Mecaniques et d'Apperecell
Electriques Pariol Slectriques, Paris.) 10 .
The descent of the upper carbon imparts a rotary
motion to a vertical contral scrow. This screw is pro vided with two nuts, one of which regulates the move-
ment of the screw, while the other, under the influence of a rising plate operated by electro-magnets,
imparts either backward or forward motion to the screw, Various mothods of applying this principle 3781 . Ruze and illustrat
3766. Razons AND Razon Suzaths, T. Clarkc
Shefleted. 2 and August, 1883. 4d.
The handle is made hollow, and forms a sheath or case, into which the blade can slide when not in use. 3785. SErtino AND Distribution or TYpe, de., W.
R. Lake, London.-2nd Aupust, 1883.- A communiA speaking tube is fitted into an aperture in a wheel, which is caused to rotate intermittently, and bring
the tubo succossively in front of a serios of tubes leading to the compositors, whereby each composito
hears a portion of the dictation of a single person extending over a fixed period. Tho compositor set
the typo by depressing the keys of a composin apparatus
3767. Platiting Machines suitable pon Making Findlay, London.- 2 2nd A upust, 1883 . 6 dd . machines indopendently of the sobbins and bobbin 3790. Automatic Brakes for Trasway Cars, \&c.
E. B. Price, Antrim.-2nd Auguat, 1883, Bd, E. B. Price, Antrim. - 2nd August, 1883. Bd,
This consists in the use of a contrifugal governo
and of a friction clutch, to which the brake blocks are connected, the governor and clutch beng arranged so
that the brake blocks-which are held free of the wheels while the vehicle travels at the proper speed-
will be automatically applied when an excossive speed is attained
3768. Direct-activa Pumpino Exaines, W. Clark;
London, $-2 n d$ August, 1888 . -
 toam piston are connected together, and work in unison in a case, one end of which forms the pump,
and the other end the steam engine, and it consista in making the cylindor open at both ends, and surround ing ita ends by independent chambers providing a
plunger playing in the cylinder, a valve opening
outward from pening outward from one chamber and inward to the ther chamber, whereby the pump is made on one other from the mainn supply, ; ndi on the other stroke is made to tra
to the other.
3769. Ego Decapriator, with Rotatino Blade, 1 . C. Henderson, London. - srd Auqust, 1883.- (4 com
municis

A metal ring has at the bottom a spiral spring, and at top a rotating disc, with a contral aperturre to
receve the egg. on the disc a cutting blade is
mounted, and can be rotated by a hentle
3793. Manufacturr or Devonsuire or other
Cream, dc., W. Horner, Culdington,-3rd August, 1883. ©d.
This consists in heating cream or milk in veseels by
stenm, so as to obtaln a perfectly uniform hent. 3794. Applyina Printed Desions to Stoneware, The dosign on paper is transferred to the article, and
the paper is then rubbed over the outelde the paper is then rubbed over the outside with
volatile liquid, such as turpentine or parafine ofl,
when the paper when the parer can be romoved, leaving the design
behind. The volatile liquid causes the medium of the pigment to completely evaporate off the surface of pigment to
the article.
3795. Livesoats, G. Skelton, London.-3rd August, This rolates to the construction of metallic lifeboats
with air chambers. 3798. Embroide
 This relates to a frame to hold fabrics for embroidering thereon, and consists in inserting the ends of the
fabric into slots in the frame, and securing them therein by mea
needle points.
3797. Screw Nuts and Arrangements for Locking
Or Fabenino the same, One ond of the nut is mado conical and slits are cut In it, and the nut is used in connection with a washer
on another nut formed with a conical recess to receive on another nut formed with a conical recoss th receive
the conical end of the nut, so that when the latter is
screwed home it is compressed and binds tightly on screwed h
the screw.
$3798, ~ M$
3798. Mrlis with Vertical Runiers for Grispisa
Paint, do., T. T. Crook, Bolton.-3rd August, 1883 .

This consists in driving edge rumners by placing on the vertical pan shaft a bevel wheel gearing with bevel
wheels secured to the bosses of the edge runners. 3799. Weighina Apparatus for Granulous, Put
verelemt, and Liquit Materiala, H, J. Haddan
from C. Munncu, Cotogne.) \&d.
For solid matorials a receptacle is suspended from For soid matorials a receptacle is suspended from a
scale beam, and contains a single compartment fitte
with with a valve at hottom. Two weights are mounted
looso on a shatt provided with knife odgos the upper
weight serving to open the inlet valves, but not until
the discharge valve of the receptacle has been closed
weight in such a position that it may fall freely to
open the discharge valve. Auxiliary weights serve to put the balance throughe the first period of action, and
to close the discharge value. A pivotted vessel is pro vided for weighing liquids.

 The paper on Which is tho phitograph or print
 the petare, which wilt hen boapparent on the canvist
water.
3801 .
 Thpocectad with.). 2 diduing on the card spining
 Into one doubled and twisted
machine, such a sus he mule jenny

Thitid reateses oppecilly to dobbio machines haring plates at the proper time by usphy rising α and filling
noedse pitates carred in frames pivoted to the frame

3803. Packisa-cases ror Bottles, dec., W. R. Lake,
London.- 3 d August, 1883.-(A communication from
J. H. Livermore and C. L. H. de Hundermark;

The case or box is provided with bars or brackets, some fixed and others sliding, and which by their
shape and arrangement permit the bottles in the case do bo firmly held in position.
to
3806. Apparatus yor Printina prom Engraved
Plates, J. H. Johnaon, London.-3rd August, 1888 ,
(A communication from II. F. Marcilly and Uts-
This consists in the employment of an automatic inking and scraping or wiping app,
for printing from engraved plates.
3807. Rallway Passenger Carrages, Cars, on
saloons, T. Clapham, Keighley;-3rd August, 1883 .

This relates to constructing rallway carriages with interior sido communication from end to end; also
with washing accommodation and all modern con. with washing accommodation and an modern con-
venionces, besides means for extinguishing fires, and
for rescuing lives in case of fire. 3808. Machings yor Winding Yarn or Thread, W.
Clant tion from La Societd Ryo ficires, France.) Gd.
This relates to a machine for uniting two or more yarns or threads, so arranged that should one yarn or
thread break, the winding of the yarns or threads hread break, the winding of the yarns or tiread
from the bobbins of the same group is immediately
rrested, and it consists in causing the threads to arrested, and it consists in causing tho threads to
keep a lover in position, which, when released, falls
and provents the spool from revolving. 3809. Memers yor Rivertine Umer
dc., W. Clark, London. - -3 rd Aupust, 1888., - (A com This consionst in the the combination of a plunger, foed
tolls, knives, and other accessories operated by a lever mounted in a frame, the machine being intended
especially for entering and cutting the rivots or pins 3811
-4th Aupuat, 1883, Bd, S. Leaducater, near Leeds.
One side of the chair is formed to recolve the rail,
and the other is beyelled to receive a metallic key and the other is bevelled to receive a motallic koy
formed to fit aganinst the other side of the rail. The
inner end of the key is provided with a wob to slide in a groove in tho bevelled side of the chair, and a partly in the chair and partly in the key.

SELEOTED AMERIOAN PATENTS.
292,779. Reciprocatino Hydro-transmitter, Wm
Baxter, Jereey City, N.J. .-Filed March 200t, 1888.
Claim.-(1) The combination of the direct-acting ${ }_{\mathbf{F}}$ reciprocating steam pump A, with the pipe E , tank F , and rociprocating pump consisting of the cylinders
a and d, tho motor cylinder a being supplied with
water by automatic valves contained in valve chest b, and tho pump A being connected with said valve
chest by a pipe G, and the motor a discharging its

spent water into the tank F by pipe H, as and for the purpose set forth. (2) The combination, with the discharge pipes H and o from the motor and drainage
cylinders a and d, of the connecting cook e and stop. cylmaers
cock , arn
set forth.
 Weston, Neteark, N.J.--Fled January $318 t, 1883$,
Claim.-(1) In a dynamo-electric machine or motor, an armaturo corre in tha form of a disco, as deseribed
in combination with coils wound thereon in a direo tion parallel with the axis of rotation of the core, sub chine or motor, an armature corc in the form of a
disc, having peripheral recesses or grooves, in com disc, having peripheral recesses or grooves, in com
bination with coils wound thereon in a dircotion
parallel to the axis of rotation, as set forth. (3) The combination, in a dynamo-electric machine or motor,
with field magnets, substantially ns described, of a

[02.719

magnets and pole pieces bridging the cores of the
same, of a flat or disc-shaped armature mounted in bearings formed or set in the cores of the magnets, as
and for the purpose set forth.
293,185. Hot Arr or Gas Engise, Hiram S. Maxim, Clnim.- (1) In an air or gas engine, the combination
of a cylinder and piston, a flame or fire chamber, passages or chambers of communication from said,
flame or fire chamber to opposite ends of the cylinder, valves located at opposite ends of the cylinder, those as a comprepsorating, ind conjunction with the piston, ting and exhausting air to and from the working end
of the cylinder, passages and a valve arranged to connect saidid passages of communication indopendently of the fire or flame chamber, and automatic means for operating said valve to shunt all or a portion of the
air entirely from said flame or fire chamber in its route from the pumping to the working end of the
cylinder, substantially as described. (2) In an air or cylinder, substantially as described. (2) In an air or
gas engine having a fire chamber in communication
with the opposito ends of its cylinder by means of with the opposite ends of its cylinder by means of
suitable passages and valves, and suitable shunt pas-

 prassages, an air sir space or chamber connected with tho pumping end of the cylinder, a floxible diaphragm, form connecting said diaphragm with the valve controlling
the shunt passaces, and arrunged to move the shunt passages, and arranged to move said valve
proportion to the pressure on the diaphragm, sub-
itantially ns and for the purpose set forth. (s) Th proportion to the prossure on the diaphagm, sub-
stantially as and for the purpose set forth. (). The
mothod horein described of regulating the speed of an air or gas ongine, which consists in shunting through
a route distinct from and independent of the fire chamber, a portion or the whole of the air or gas
forced into the engine, as and for the purpose set
forth. (4) The method hercin described of increasiug the efficiency of an air or gas engine, the same con-
sisting in adding a small portion of cool air to the gases Issuing from the fire on their way to the cylinder
essentially as set forth

CONTENTS.

[^0]: t in the coal trade reported last week is

