THE DANUBE BRIDGE PROJECT. By Robert Hudson Graham. No. V.
In this closing paper upon the Danube Bridge competition, I shall endeavour to give a comprehensive account of the note upon Culmann's graphic treatment of elastic arches, courteously communicated to me by Messrs. Röthlisberger and Simons. In substance the note agrees very closely with Culmann's original description of his method but in nuinor details, and as taken from actual practice, cencrete and explicit. Those who are acquainted with Culmann's writings will endorse my statement that, although his methods are excellent, his way of putting a thing is not always happy. Gifted, as he undoubtedly was, with a rare and robust originality of thought, Culmann betrays a perfect heedlessness of style, scattering broadcast the pearls he finds, and leaving to others, with more time at their disposal, the trouble of collecting and retailing his thoughts under more winning
between the English mathematician and the practical scientific man." The best reply to this sweeping criticism, every way unworthy of Culmann, is the fact that Cremona himself has publicly admitted Maxwell's priority, and then the intrinsic evidence in Cremona's book that he had read and profited by Fleeming Jenkin's paper in continuation of Maxwell's original article in the Philosophical Magazine. Had Culmann passed these severe remarks upon Maxwell's exposition of the arch theory, instead of apon his theory of reciprocal figures, he might have touched a sympathetic chord; insomuch that the former, apart from the semblance of involving a petitio principin, is not in any senise a practical solution of the arch problem. But, as it is, Maxwell has a perfectly defensible claim to the first authorship of the theory of reciprocal figures, to the same extent that Culmann has a right to be regarded as the author of the only graphic solution of the nation. Wroblem which will stand the test of rigorous examidefinitions, to the description of this method my own
(2) If $\sum x y, F$ be the centrifugal moment of a system of forces relatively to a system of axes $x y$; then
where x, y, are the co-ordinates of the centre of gravity of the system, and K is the centrifugal moment of the system relatively to a parallel system of axes through the centre of gravity taken as origin.
(3) If the moment of inertia $\mathrm{I}=\Sigma \mathrm{F} y^{9}=k^{2} \cdot \Sigma \mathrm{~F}$; then k^{k} is the radius of gyration of the ellipse of inertia. Suppose, for example, that the ellipse became a circle of inertia of a radius of gyration k, Fig. 25 ; then, O^{\prime} being the centre of gravity of the system,
$\Sigma \cdot \mathrm{F} y^{2}=\Sigma, \mathrm{F} y^{2}{ }^{2}+\mathrm{O}^{1} \mathrm{C}^{2}$
wherefore, if $\mathrm{BC}=y_{p}$ and $\mathrm{O}^{+} \mathrm{C}=y_{1}$, we have

$$
y_{p}=y_{1}+\frac{k^{x}}{v} .
$$

(4) From Definitions (1), (2), and (3) we infer that the centrifugal moment $\Sigma \cdot x y \mathbf{F}$ of a system of forces is equal to the sum of the forces Σ. F multiplied by the product $x_{1} y_{p}$, in which x_{1} is the abscissa of the centre of gravity,

and graceful forms. Yet this very heedlessness probably explains why his championship of graphic methods met with so much coldness and opposition from that conservation section of the German professoriate which still plods doggedly on in the old analytical groove. The genial and pre-eminently thorough-going groove. The Ziurich had no kind of sympathy with professor of called mathematical finesse. In this respect may be much in common with the late Professor Fleeming Jenkin, and yet it is more lhane Professor Fleeming both were conspicuous leaders in the modern advance towards pure graphic methods, each was imperfectly acquainted with the other's work was imperfectly is absolutely certain that Culmann was unaware of the existence of Fleeming Jenkin's development, in 1869, of Clerk Maxwell's original paper on recipprocal figures, pubhe would not have passed from the jud ; Maxwell's paper was vague and superfie judgment that that Cremona, in his "Le and superficial, to the inference Grafica," 1870, must be considered theche nella Statica expounder of the theory of reciprocal figue author and passage Culmann's allusion to Moxwell, whet In this taken merely as a personal co Maxwell, whether it be Cambridge professor, or more criticism upon the learned Culmann's opinion upon the berly of Euglish exsion of ticians at large, canot be reral of Ensh mathemaour national talent. Here is the gustation way flattering Einfuibrung des Nullsystems ist Maxwell's ; ebenso riihren alle Aas Werk Cremona's nicht her . . Weiter als wie irgend wo gend von Cremona die Kluft zwischen dem englisch Gelehrers klaft noch tiker." - "The introduction of the system figures is due to Cremona, not to Me system of reciprocal may be said of the practical application of the method.
share in which consists only in reducing Culmann's nomenclature to English forms and constructing the figures, with
the exception of Fig. 32, from the indications of the text of Messrs. Röthlisberger and Simon's note.

Definitions.-(1) If the point A, Fig. 25, be the pole of the axis $\mathrm{O} x$ and $\mathrm{O}^{\prime} \mathrm{B}=0 \mathrm{~A}$; then the point B is called
and y_{p} the ordinate of the antipole of the axis of y; for if, in Fig. 26, G be the antipole of the axis OY and y_{p} its ordinate, then by Definition (1) $\mathrm{O}^{\prime} \mathrm{E}=\frac{k^{-1}}{x_{1}}$ and by the ordinary properties of the ellipse of inertia $D F=\frac{K}{k}$; whence $E G=\frac{K}{}$ and

$$
\begin{align*}
\Sigma x y \mathrm{~F} & =\left(x_{1} y_{1}+\mathrm{K}\right) \cdot \Sigma \mathrm{F}(\text { def. } 2) \\
& =x_{1}\left(y_{1}+\frac{\mathrm{K}}{x_{1}}\right) \cdot \Sigma \mathrm{F}=x_{1} y_{p} \cdot \Sigma \mathrm{~F} .
\end{align*}
$$

Similarly, when ordinates y replace abscissw x, we have $\Sigma y^{2} \mathbf{F}=y_{1} y_{p} \cdot \Sigma \mathbf{F}$.
Culmann's graphio method.- The usual formule for the deformations of an arch are

$$
\begin{align*}
& \Delta \phi=\Sigma \cdot \mathrm{M} \frac{d s}{\mathrm{EI}} \tag{1}\\
& \Delta x=\Sigma \mathrm{M} y \frac{d s}{\mathrm{EI}} \tag{2}\\
& \Delta y=\Sigma \mathrm{M} \cdot \frac{d s}{\mathrm{E}[} \tag{3}
\end{align*}
$$

in which $\Delta \phi$ represents the change in the angle of the uentral axis to the horizon, Δx and Δy the horizontal rinl vertical displacements of one end of the anch, E the modulus of elasticity, I the moment of inertia, ds the length of an elemental segment, x and y the co-ordinates at a point in the arch. In order to determine the reactions at one of the fixed abutmente, we suppose it invariable, so that the arch cannot turn or pivot upon its bedding surother movable, the deformation, one abutment fixed, the ment by any vertical
annulled by a force F , necessary and sufficient to bring the free end back to its primitive position. This force F, resulting from the moment at the abutment and the horientire arch. Let z, Fig. 27, be the variable distance of the centre of gravity of each arch segment from the direction of the force \mathbf{F}, and let $\mathrm{M}=\mathrm{Fz}$. Then, if \mathbf{E} be constant, equatious 1, 2, and 3 become

$$
\begin{aligned}
\mathrm{E} \Delta \phi & =\mathrm{F} \Sigma z \frac{d s}{\mathrm{I}} \\
-\mathrm{E} \Delta x & =\mathrm{F} \Sigma y z \cdot \frac{d s}{\mathrm{I}} \\
\mathrm{E} \Delta y & =\mathrm{F} \Sigma x z \frac{d s}{\mathrm{I}}
\end{aligned}
$$

Assume, now that each arch segment is of the fictitious weight $\frac{d s}{\mathrm{I}}$, and construct the centre of gravity and central
the centre of gravity O^{1}, the antipole x, and the antipole y respectively. Then by definition (4) we have

$$
\Sigma y z \frac{d s}{\mathrm{I}}=y_{0} z_{x} . \mathrm{S}
$$

in which equation y_{o} represents the ordinate of the centre of gravity. Similarly,

$$
\Sigma x z \frac{d s}{\mathrm{I}}=x_{0} z_{y} \cdot \mathrm{~S}
$$

Thus our equations of deformation become

$$
\begin{align*}
& \mathrm{E} \Delta \phi=z_{0} \cdot \mathbf{F S} \tag{4}\\
&-\mathrm{E} \Delta x \\
&-\mathrm{E} \Delta y_{0} z_{x} \cdot \mathrm{~F} \mathbf{S} \\
& \mathrm{E} \Delta=y_{0} z_{y}, \mathrm{~F}
\end{align*}
$$

On the assumption that the free end B of the arch moves to B_{1}, and that no special direction has been given to the axes,
through f, the antipole of F . Nose

ellipse of inertia of these loads.* The term $\Sigma \Sigma \frac{d s}{T}$ expresses the static moment of the resultant of the loads $\frac{d s}{I}$ relatively to the direction of the force F. Therefore, if $\Sigma \frac{d s}{\mathrm{I}}=\mathrm{S}$ and z_{0} be the oblique co-ordinate of the centre of gravity 0^{1}, we have

$$
\Sigma z \frac{d s}{\mathrm{I}}=z_{0} \mathrm{~S}
$$

The other two summations are the centrifugal moments of the loads $\frac{d s}{\mathrm{I}}$ relatively to one of the axes and the direction of F. Now, let x, Fig. 28, be the antipole of the axis X, y that of \mathbf{Y}, and let $z_{0} z_{x} z_{y}$ be the oblique ordinates of There are various ways of constructing the central ellipse ; frrst by
finding throe pairs of tangents, each set distant from the centro

 as to the method emploged by Meesri, Rothlibberger and Simone.-
R. H. G.
the angle $\mathrm{B} f \mathrm{~B}_{1}=\Delta \phi$, we have $\mathrm{BB}_{1}=r \Delta \phi$, and by definition (4) and former equations-
$-\mathrm{E} \Delta x=y_{0} z_{z} \cdot \mathrm{FS}=y_{y} z_{0} \cdot \mathrm{FS}=y_{y} \Delta \phi$ $\Delta y=x_{0} z_{y}$, FS $=x_{1} z_{0}$, FS $=x_{1} \Delta$ in which equation x_{f} and y_{f} are the new co-ordinates of $f, y_{f}=o$, and $x_{j}=r$. Moreover, the displacement BB_{1} of the free end of the arch will practically coincide with the direction of the new axis of y; or, as above stated,
BB $\mathrm{BB}_{1}=r \Delta \phi$. Hence
which equations lead to $; \mathrm{E} \Delta y=r \Delta \phi$,
solliciting an arch lad to the conclusion that any force solliciting an arch causes its free end to revolve round the
antipole of its direction in the antipole of its direction in the central ellipse of inertia of the loads $\frac{d s}{\mathrm{I}}$, and the extent of this rotation is measured by the product of the force and the static moment of the resultant of the loads $\frac{d s}{1}$, relatively to the direction of the given force.
Equations (4), (5), and (6) can be written in the forms

$$
\frac{z_{0}}{\Delta \phi}=\frac{-z_{x} \cdot y_{0}}{\Delta x}=\frac{z_{y} \cdot x_{0}}{\Delta y}=\frac{1}{\mathrm{FS}} ;
$$

whence it may be said that the perpendiculars, z_{o}, z_{z}, and gravity O^{1} and the two antipoles x and y, are proportional to $\Delta \phi,-\frac{\Delta x}{y_{0}}$, and $\frac{\Delta y}{x_{0}}$; that is to say, if from these three points we describe circles whose radii are proportional to $\Delta \phi_{0}-\frac{\Delta x}{y_{0}}$, and $\frac{\Delta y}{x_{o}}$, the tangents common to any two of these circles will intersect in a point on the direction of F. An equivalent construction is given in Fig. 27, where the points of intersection $a b$ and c are determined by drawing straight lines through the ends of the trimetrical co-ordinates $x \mathrm{~A}, \mathrm{O}^{1} \mathrm{D}$, and $y \mathrm{~B}$. Then
the magnitude of the force is found from the equation the magnitude of the force is found from the equation $\mathbf{F}=\frac{\Delta \phi}{z_{o} S}$.
Let us now establish the deformations due to the action of any external force P_{1}, assuming $r l$ and $r^{1} l$ to be the abscissee of the point of application P_{1}, x and x^{1} those of any segment of the arch, all measured from the left and right abutments, Fig. 29. The vertical reactions arising from the load P_{1} will be $r^{1} \mathrm{P}_{1}$ at the left, and $r \mathrm{P}_{1}$ at the right abutment. The bending moment at any section between the left abutment and the section x is represented by $r^{1} \mathrm{P}_{1} x$, and between x and the other end of the arch by $r \mathrm{P}_{1} x^{1}$. Substituting these values for M in equations 1, 2, and 3, we obtain-
$\mathbf{E} \Delta \phi=r^{1} \mathrm{P}_{1} \Sigma_{0}{ }^{r l} x \frac{d s}{\mathrm{I}}+r \mathrm{P}_{1} \Sigma_{r l^{l} x^{1} \frac{d s}{\mathrm{I}} . .(7)}$
$-\mathbf{E} \Delta x=r^{1} \mathrm{P}_{1} \mathrm{\Sigma}_{0}{ }^{r l} x y \frac{d s}{\mathrm{I}}+r \mathrm{P}_{1} \mathrm{\Sigma}_{r l^{2}} x^{1} y{ }_{\mathrm{I}}^{d s}$ (8)
$\mathbf{E} \Delta y=r^{1} \mathrm{P}_{1} \Sigma_{0}{ }^{r l} x^{2} \frac{d s}{\mathrm{I}}+r \mathrm{P}_{1} \sum_{r l^{l}} x x^{1} \frac{d s}{\mathrm{I}} \quad$ (9)
Prior to dealing with the graphic interpretation of these formule, it may be well to recall certain properties of summation polygons, Construct, Fig. 29 , the first polar polygon of the system P relatively to the force polygon $\mathrm{O}_{1} \vee \mathrm{~V}$, and prolong its sides to intersect the vertical lines through the abutments A and B ; then if H be the polar distance, we have

$$
\mathrm{AC}=\frac{\Sigma \cdot \mathrm{P} x}{H} ; \mathrm{BD}=\frac{\Sigma \cdot \mathrm{P} x^{1}}{H}
$$

Similarly, the second polygon, constructed relatively to the force-polygon $\mathrm{O}_{\mathbf{2}} \mathrm{Z} \mathrm{U}$, gives us the relation

$$
\mathrm{I} \mathrm{M}=\frac{\Sigma \cdot \mathrm{P} y}{H},
$$

whence

$$
\mathrm{RL}=\frac{\sum \mathrm{P} y}{\Sigma \mathrm{P}}
$$

If, now, with the series of segments IB, BL (the lithographer has written B, instead of K , Fig. 29, in this part), $\mathrm{L} M$ as forces, and R L as polar distance, we construct the third funicular relatively to the force-polygon $\mathrm{O}_{3} \mathrm{TU}$, we obtain

$$
\mathrm{SQ}=\frac{\Sigma \cdot \mathrm{P} y^{y}}{\Sigma \mathrm{P} y} .
$$

A gain, if with the same segments as forces, and the same polar distance, we construct the fourth funicular, we find

$$
\mathrm{EF}=\frac{\mathrm{\Sigma} \cdot \mathrm{P} x y}{\mathrm{H} \cdot \mathrm{RL}} ; \mathrm{G} \mathrm{H}=\frac{\sum \mathrm{P} x^{\prime} y^{\prime}}{\mathrm{H} \cdot \mathrm{KL}} \text { * }
$$

Returning after this digression to our general theme, let

$$
\mathrm{S}=\Sigma \frac{d s}{\mathrm{I}}=\Sigma \frac{d s}{\mathrm{~A} \cdot h^{\mathrm{x}}}=\frac{1}{\mathrm{~A}} \Sigma d \mathrm{~S}
$$

where A may be taken to represent a constant quantity and h the half depth of the section. The value of A varies but little from the area of cross section, which being nearly constant may be eliminated from all the terms in which it occurs. Having calculated the value of $d \mathrm{~S}$ for all the arch segments, set calculated the value of
them off as a series of forces in the force-polygon OPP, them off as a series of forces in the force-polygon P,
Fig. 30, relatively to which draw the first funicular Fig. 30, relatively to which draw the first funicular
polygon with its nuclei upon the series of horizontal lines polygon with its nuclei upon the series of horizontal iness
passing through the centres of the segments $d s$. The prolongations of the sides of this polygon determine upon A B produced segments of the kind $\frac{y \cdot d \mathrm{~S}}{\mathrm{~S}}$ as well as the sum $\mathrm{GH}=\frac{\Sigma y d \mathrm{~S}}{\mathrm{~S}}$, to which the ordinate y_{0} of intersection of the closing sides is also equal, defining a horizontal line passing through O, the point of application of the resultant of the system d S.
Next construct the second funicular relatively to the force-polygon OP and forces $d \mathrm{~S}$; then the prolongations of any two consecutive sides will intercept upon vertical lines through A and B intercepts of the kind

$$
\frac{x d \mathrm{~S}}{\mathrm{~S}} \text { and } \frac{x^{1} d \mathrm{~S}}{\mathrm{~S}}
$$

and the centre 0 will lie upon the vertical drawn through the intersection of the closing lines. Taking now the segments of G H as a new series of forces and y_{0} as polar distance, draw the third and fourth funicular polygons, whereby IK $=\sum y^{2} d S$
and the sums of the intercepts of the sides of the fourth polygon upon verticals through A and B are

$$
\frac{\sum x y d \mathrm{~S}}{y_{0} \mathrm{~S}} \text { and } \frac{\Sigma x^{1} y d \mathrm{~S}}{y_{0} \mathrm{~S}}
$$

The ordinate of intersection y_{x} of the closing sides of the third polygon is likewise the ordinate of the antipole X of the axis of abscisse A B relatively to the ellipse of inertia of the system $d \mathrm{~S}$. Similarly the abscisse x_{θ} of the closing lines of the fourth polygon is likewise that of the antipole X . Lastly, with the intercepts upon the verticals through A or B of the consecutive sides of the second polygon and the polar distance x_{o}, construct the sixth funicular, whose prolongations determine upon lines through A and B intercepts of the kind

$$
\frac{x^{2} d \mathrm{~S}}{x_{\mathrm{S}}} \text { and } \frac{x x^{1} d \mathrm{~S}}{x_{0} \mathrm{~S}} ;
$$

*Those who encounter any difficulty, in mastering central ellipees of
 Very fully rreated in the chapter on Moments in my Graphle and Analytio
statice. It is imposibile to go more fully into details of this nature in an article intended primarily for ongineers. - R. H. G.

struggle a Northerner who sought to establish himself in
the Southern States, and who manifested Republican clivities, had an unpleasant manifested Republican prowas the case while the country of itill smarted though this memory of defeate the country still smarted under the future, the bitter feeling is fading away now that the resi dents in the country have regained their natural po as president, and they can afford to welcome th有 he bitter folt the the have so long deemed themselves superior to the poor prou Southerners, that those of them who do not personally change in the centre of gravity, and like still to coming change in the centre of gravity, and like stil to touth he whilftless penturling aunong the more farssecing and impand of the visitors from the North as well as from Europe who have explored these regions, and who have seen in the exhibition at New Orleans and in the districts them selves the changes and developments wrought during the
last five years, recognise that the old order of things has passed away, and that the war veterans are being superseded by a younger generation reidv and eager to avai Englishmen who may come here free as they are from the party animosities of the civil wir are especially Engineers and mechanics are much wanted, and are valued highly, and those in England who are seeking either now in the South than either in the Eastern or Western States. And those who can the the two who ean take a few hundred or thousand pounds with them, or when they her, leave the funds at home to forlow them career before them which England cannot offer, and which, even in our most enterprising colonies, is not easily to be ound. And however much the development of mineral damage English may, when an export trade is established, such an event will only occur when free-trade is esta blished, and the benefit accruing to the whole human race when reciprocal commerce is permitted is certain to bring compensating advantages to fort in such general compensation for the direct damage they may sutfer, it may be said that the competition with English goods is not likely to occur very soon, for in the United States the doctrines of protection are still oo firmly held to be altered puickly. The Chinese wal which the American manufacturers have succeeded in building around them, while it ensures them all the trade of their own country, shuts them out from that export commerce of the world on which England so much depends nd so long as this state of aftairs certainly be expected with a view to the future, that English capital and skill, especially when possessed by young men, will more and more move westward to what appears likely σ be the centre of the English-speaking race.
Before concluding this series of articles on Alabama Orleans a few lines rig State of Georinay be writen about the neighbourgigl which is likely soon to be developed. For in this State as in Alabama, there appears to be an awakening to the true interests of the country, and the revival is more marked in some districts than in others. Atlanta, the war. With wide streets, stone built houses, legise thative chambers, busy factories, and among its hotels one of the finest in the United States, there is every sign of wealth and progress. Lancashire will find a keen rival here, for districts, with iron mills and centre of the cotton-growing路ricts, with iron mills and engineering factories growing he Atlantic and Golf ports, the with ready access to the Atlantic and
already established are likely to grow rapidly. Georgia is in many respects the leading Southern State. Free from the burden of public debt that overshadows some of her eighbours, with untainted credit, she is likely to make th best of her internal resources. Bad farming has im.
poverished greatly some of her lands, but in others skill nd capital are being wisely used. Artificial fertilisers ar pple prevent adulteration in these manures that might b adopted with advantage in England, and the manufacture
of them is likely to become a great trade. Hitherto the uperphosphates have been made in the northern the from Carolina phosphates and with sulphuric acid made of these phosphates, the discovery of coprolite phosphate ulphuric acid can be as sulphur pyrites, from which tone, has led to the manufacture cheaply than from brimormerly brought from a distance
Iron making is likely to grow up, and though competition with Alabama is hardly possible in ordinary iron, yet
there are great facilities for the higher grades of charcoal iron. Rich iron ore is abundant, the pine forests afford fuel for many years to come, and a manufacturing population, and easy access to the sea for export, will probably ensure a market. Money and skill are alone wanted.
Near the town of Cartersville in Georgia may be seen to
o-day the ruins of smelting furnaces and rolting mills situated on the edge of a forest by the side of a rapic river. The forest afforded an unlimited supply of charcoal fuel, and the river current gave all the power for the blast engine and the rolling mills. Were it not that the past, one would doubt the story of this place, for the victorious northern armies, under Sherman, deeming it
too valuable as a military resource, utterly destroyed it too valuable as a military resource, utterly destroyed it,
not only the mills and the engines, but the very rails on the five-mile line of railway to the neighbouring town.
The pine trees and ferns are growing up among the old The pine trees and ferns are growing up among the oid
foundations of the puddling furnaces and rolling mills, and in this strange medley of ruin and forest on
reminded of the unearthed relics of Mexican temples.

AMERICAN STEAM PRACTICE.

The following tables we quote from the Mechanical Engineer They are said to be collated from recent practice. The figure

Indicated Horse-poverer obtained per square foot of Grate, in

Thirer in the Strarts Setrlekrents.-Mr. Howard Newton, assistant municipal engineer, of Singapore, has published a
series of notes and experiments on the difforent kinds of timber in ordinary use in the Straits Settlements. The pamphlet contains observations on the forests adjoining our colonies
in the Malay Peninsula, and the need already of conservation. The trees are felled in large numbers for ordinary use, and pepper planters. Twenty specimens of woods are then described in detail, and finally an acoount of the moo in which the experiment
 on the toughness, fracture, deflection, \&o., are also given. It is curious to notice that some of the finest trees near Singapore-in
the Johore forests-have no botanical equivalents. Mr. Newton specially mentions a tree called by the Malays the ballow, which
grows from 60 ft . to 100 ft . in height, with a diameter of 3 ft . to 6 ft .
It it is a close-grained, tenacious, ,hard, heavy woad
or buidding. It is called popularly Johore teak.

- Tradr Gumds in Gkramany.-Twenty large trade guilds in Germany have been proposed to the Federal Council for parti--(1) mining guilds, representing 1862 undertakings, with 334,589 miners; ; (2) printers' guilds, with 1580 undertakings and 38,482
workmen; (3 paper makers workmen; ; 4) guilds of trades using paper, 1214 undertakings and 41,808 workmen ; (5) chemical industries' guilds, 2599 undertakings
 24,666 workmen ; (8) beetroot sugar manufacturers' guilds, 456
undertakings and 91,517 workmen; (9) spirita, yeast, starch, and undertakings and 91,517 workmen; (9) spirita, yeast, staroh, and
cheese maress guilds, 5645 undertakings and $3,5,56$ workmen
(10) ditillers
 Weavers ${ }^{9}$ guilds, 360 undertakings and 25,577 workmen; (13) (14) sewing machine makers' guilds, 812 undertakings and 34,152
workmen ; 15 pinaoforto and otter musical instrument makers guilds; 362 undertakings and 11,784 workmen ; (16) glass industry suilds, 791 undertakings and 35,084 workmen; (17 lass brioklayers
builds, 6203 undertakings aud 99,884 workmen (18) potters guilds, 666 undertakings and 42,635 workmen; (19) gas and water
men's guilds, 976 undertakings and 14,394 workmen ; ; 20 chimney weepss guilds, 2729 undertakings and 4403 workmen. The above
figures serve to prove how large is the total number of workmen enrolled in the various trade guilds of Germany.
Ratryall and Destcation in South Arrica,-Mr. Gamble the Colonial (South Africa) Hy Hraulic Enginece, -Mr. in hais official
report prepared for the late Parliament, thus sefers to the osubico of desication, on which, from his varied experience, he is entitle to speak with some authority. "I have been investigating," he
says, " old records and books of travel with the view of endea-
couring to discover how far Africa is drying up. There is little doubt that many springs and streams are not so constant as they used to be, but is the cause of
this a deficient rainfall, or some failure of the rain to reach th anderground strata from whence the springs are fed? Rainfal kecorda do not reach back very far: the longest register is that
kent the Royal observatory for forty-five years. This hows no
falling off of rainfall in this neighbourhood. Travellers sevent and a hundred years ago described the Karroo and ita droughts much the same terms as we do now; I cannot believe that any
considerable climatio change has taken place in historic times But I have no hesitation in saying that the reckless cutting down of
the burning of bush and grass so extensively practised, has pre
vent vented the rainwater from sinking in to feed the springs. I have of man, and were in that condition suitable fors feeding gemringy,
whioh are now bare 'vloors' intersected by deep gullies. Of these the rainwater flows without sinking in. Over-stocking leads to the same result. The only remedies are fencing and planting on an ex
tensive scale, and, where practicable, the making of artifcial lakes.

A GREAT SUGAR FACTORY.

 AT this epooh in the history of the colony of Georgetown, whenwe hear so much of hard times and sacarity of work for willing
hands to do, he that obtains permission from the attorney of hands to do, he that obtains permission
Plantation Diamond to visit that magnificent estate-- to which in Muture the appellation Great
than when it was merely used to distinguish Great Diamond from
 with the extensive alterations and improvement now in progress
there, may acount himself fortunate. If he travel by therver steamer and land at the stelling, he will find it a rather ricketty vessels used to lie alongside to deliver cargo and load produce for vessels used to ine alongside to deliver cargo and load produce for
Liverpool. In those days the estate's supplies and produe were
conveyed over a line of rails running from the end of the stelling conveyed over a line of rails running from the end of the stelling
right into the sugar store. The line of rails still exists, but is no longer used for that purpose, having been superseded by a spacious
water-way, which not only facilitates transport and saves the cost of a second handling of the goods, but, by a judicious arrange.
ment of looks and sluices, greatly facilitates
misitor lainding at also a
vain the stelling can hardly fail to observe a visitor lacding at the stelling can hardly fail to observe a
large sawpit, with a couplo of frame saws at work. Here,
we are told, the whole of the timber used in the construcwere sawn to the exact dimensions required, ready for the carpenters to place in position, thus saving an immense amount of
labour in transport and re-handling. And here, perhaps, we may be allowed to diverge from the main line of our purpose in order
to observe that these questions of transport and drainage are of more importance than many people imagine. The difference in
these respects between a riverine and a coast estate is arental in itself. While, at Diamond for instance, the cost of inland trans. port and drainage may be represented by (-); on coast estates,
especially where the buildings are "far back "- as at Industry, La Bonne Intention, and Enmore-it must be enormous. At
Biamond the eea-punts now pass directly int the dock at
Diand the works, and we are informed that as many as ten heavily
laden barges have been passed in, unladen, and passod out
to the river, in a single day. Such, moreover, is the security to the river, in a single day. Such, moreover, is the security
which the system affords, that of the thirteen hundred and odd
the tons of machinery and ironwork for the new buildings shipped
from Glasgow not a bolt was lost. A further advantage of the system is that the wood-cutters are able to deliver their cordwood
right at the furnace mouth, thereby obviating all re-handling. The manager, Mr. Fleming, says the cost of the locks and sluices,
and of the iron lifting bridge across the public road, to enable the cane punts to pass direet to the bubildingg, has already been more also in the neighbouring villages will be able to deliver their canes which ought to afford an additional incentive to our peasant proprictors to engage in the cultivation of the main staple of the
colony. These considerations have, no doubt, influenced Messra. Sandbach, Tinne, and Co. in so largely increasing their investments in riverine estates. But we have not yet exhausted, or, indeed,
touched upon, many of the advantages which Diamond, as the centre of a populous district, possesses. Among other unconsidered
trifles, when the construction of the new river dam and the locks and sluices was decided upon, has
grove swamp which formerly intervened between the residential right down to the river edge and we are informed that the change has been a very benefcial effect upon the health of those resident on the estate, for, although the saline swamp lay to lee ward of the
hospital and dwellings, the malaria arising from it extended beyond hospital and dwellings, the m
the area of the marsh itself.
With the exception of a very fine hospital, and a highly superior overseers ${ }^{\text {s. }}$ house, the casual for even the new buildings are as
blush see littlo to admire for plain externally as dissenting meeting-houses used to bo before the
modera rage for westhetics arose. The residences of the manager
Ther and deputy manager pertain to a former period, while the coolie
anges and labourers' cottages are huddled together without regrid to symmetrical, or even picturesque, arrangement. They might
have been tossed out of the car of a mammoth balloon, and allowed to remain as they fell. A traveller from town on the
public road, after passing the hospital, the overseers' and the
 stranger, once entangled in the maze, to extricate himsolf unless
he is provided with a pooket compass. How it was possible to turn out of such a labyrinth the large output of excellent sugar for which Diamond has long been eelebrated is a mechanical
mystery which, when what remains of the structure is razed to the ground, it wilb be imposibie to solve. If room for the relics can
be found in the Colonial Museum, they ought to be preserved. It is recorded that the elate Mr. Herry Clementson, on being con-
duoted over the works by Mr. Field, after having duly admired the perfection of the organisation and the admirable manner in which
the work was done, observed to his cicerone that to make the establishment perfeot only one thing was wanting. "And what in
ent that?" queried Mr. Field. A fire was the laconic and caustic reply. already intimated, they are as unpretentious in appearance as
people of consequence usually are in demeanour, and in no way calculated to attract attention, except by their extent. But if thi
typical stranger cross the trench and enter at the do northern end, he will observe what will "give him pause." The dumbfoundering. A root 330ft. in length, with a span of 60 oft. supported by five rows of iron columns 3 ftt . high, covers an area
of 19,800 superfial, filled, but not crowded, by machines of the most diverse forms and complex structure, erected at different
altitudes. Yet so symmetrian is the arrangement, so perfect the harmony, that no sense of incongruity or weirdness-the indefnite but unpleasant half-consciousness of something abnormal, if not
demoniacal, or at least Titanic, which so often oppresses those
inacuastomed to such spectacles-is excited. If, as Pope says
 or to become an hierarch among oelestialised architects and
mechanicians. On the northern front and on tho eastern and outhern side-the weather frontages-the building is sheathed, ai he roof is covered with galvanised iron; the western side, i.e.,
leeward face of the butling, is open. The floor is of conerete
throughout. Longitudinally the building is nominally divided though no actual partition exists-into two sections, the mill-house
thount and the sugar house, the former 90ft., the latter 240 t.t. in length. On
the windward side the mill-house has a lean-to 12 ft . wide, and at the opposite end a lean-to 45 ft . wide covering the sugar store whioh is 105 ft . long. At the northern end of the western side
there is a lean-to 35 ft . wide covering the boilers. The mill-house In the mill-house a new side gap mill by Mirrlees, Watson, and Co., of Glasgow, who have supplied all the new machinery and
also all the ironwork for the buildings, of the ordinary three-roller type, has been ereoted, and whas is is called the old mill
in process of erection. The new mill is of were dismantled, size and power
ollers being 34in. in diameter rollers being 34in. in diamoter and 78in. in length. It is driven by
a horizontal reversing engine, the oylinder being 28 in . in diameter and 48 inn . stroke. The diameter of the fly being $28 \sin$. in diameter
its weight 15 tons. tin., and
The weight of the mill without the engine and searing is 56 tons. The handling of these immense weights ha extending across the entire width of the mill-house, and mountel on a railway running the whole length of the mill-house, and sup.
ported by iron columns. The old mill is by Forrester, of Liverpool

JULY 17, 1885
THE ENGINEER.
and 66in. in length, and is driven by a six-oolumn beam engine, the
diameter of the oylinder being 26in., and the stroke 4ft. 6in. Adjoining the mill-house is a spacious dock, capable of accommo-
dating dating a large number of reserve punts, into which the cane carrier
projects. The megass from both mills will be carried up to an being adapted for burning green megass. There are six steel multitubuar boilers 7 ft. bin. in in diameter, 12 ft . long, intended to
me heated by megas, and one Lancashire boiler to be heated by be heated by megass, and one Lancashire boiler to be heated by
coal. Other coal boilers will be erected, but only one is yet in position. The boilers are intended to be worked at a pressure o
75 lb . to the square inch, and have been tested up to 1501 b . Each has 23 ft . of grate surface
On leaving the mill, the cane juice will pass first into the sulphur
box, where it will be treated with sulphurous acid gas, and then box, where it will be treated with sulphurous aciac gas, and then
be pumped up through a juice heater to clarififrs. The plunger of
the liguor pump is of 15in to either 14in., 16 in., or 18 in. There is a montejus into which the juice heater and pipes can be drained. There are twelve 800 -gallon clarifiers, the scum from which goes into a large egutter leading to
the scum tanks; the juice into another gatter, leading either to the the seum tanks the juice iet supply tanks, each holding 5000 gallons. sugar, direct to the triple effet, without subsiding. From the sub. siders the juice will pass along another gutter to the triple effet.
The scum from the clarifiers goes down to the soum tanks, whence The scum from the clarifiers goes down to the soum tanks, whence
it is pumped up to the filter presses, which are of the description known as centre screw. There is a battery of eight. From the filter presses the juice goes to the triple effet.
It may be mentioned that all the gutters in cast iron and are lined with enamel - a great safeguard against acidity. The triple effet consists of or three pans, each 9 ft. 3 in. in
act
diameter-by far the largest of heating surface, 3200 in each pan. And there are isolating shut off and the other or others used as either a double or single effet. In fact this kind of arrangement extends throughout the entire works. In the event of an accident anywhere, the part of the triple effet, the vacuum pans, or either of them, can b The vacuum pump for exhausting the triple effet has a plunger
of 30in, diameter and 30in. stroke. The steam cylinder is of 2 inin. of diameter. From the triple effet the juice is taken-by a pump
attached to the vacuum pans-to four re-heaters, where it is brought to the boiling point, and any soum that may rise is taken
off. From the rehoaters the syrup passes either yirect ta vacuum pan supply tank, or if it require further subsidence, to the subsiders, and, after subsidence, thence to the vacuum pans.
There are two pans of fitt. 6 in. diameter, each capable of delivering ten tons at a strike, and two vacuum pumps of 2 2inin, diameter and
2 tin. stroke, cylinder 16 in . diameter ; and by means of sluice 24 in. stroke, cylinder 16 in . diameter; and by means of sluice
valves either pan can be worked with either pump, or both pans with one pump. The pans are of iron. In each pan there are
670ft. of 4 in , worm. From the vacuum pans the mase cuite discharged into cooler trucks. There are twenty truoks for masse cuite, each holding enough to make threo tons of dry sugar.
There are six Soin. Weaton's centrifugals, with the pug mills pecuThere are six 30in. Weston's centrifugals, with the pug mills pecu-
liar to Demerara. A travelling band under the centrifugals carries the sugar into the hopper of the elevator, and the elevator carries a cylinder 12in. in diameter, and a stroke of 24 in.
There are three independent pumps for feding the boilers, each
of which can draw water either from the navigation trenches or from the hot water tank, which receeives the condensed water from triple effet, vaauum pans, \&c,., and deliver either to the boilers or to
theelevated tank holding 15,000 gallons which supplies water to pipe which convey it to every part of the building at which it can pos-
sibly be required. The taps are so arranged that no water-aarying will be required; everything can be washed down by simply turnlevated bank without using the pumps. Below the elevated water
tank is another large tank- 9600 galions-for storing molasee From this tank the molasses can go either to the molasses re-
heaters, and thence to the vacuum pan supply tanks, to make molasses sugar or direct to the distillery.
The chimney is 132 ft . high, from the
The chimney is 132 ft . high, from the top of the footings, and of
5 ft bore; and the boile flue is a very massive piece of work. The foundations of the building consist of transverse ballks of green-
heart, overlaid with concrete; 30,000 cubie feet of timber were used in the foundations. There eare 23,000 square ofeet of concrete
flooring, in the construction of which and of the brickwork thousand barrels of cement and 300 puns. of lime wero used. In the chimney, boiler flue, and other brick work, 850,000 bricks are
embedded. The total weight of the ironwork in the building-
including embedied. The total weight of the ironwork in the building-
inoluding machinery oxceeds 1300 tons. These figures will afford
alight though probably an inadequate, idea of the substantiality a slight, though probably an inadequate, idea of the substantiality
of the work. The distillery, which is in very good preservation, is retained, merits. The molasses tank is at a suf.
molasses to gravitate to the distillery.
At present there is no provision for maceration or double crushfrom the pay to spend money to extract the last drop of juice from the cane. For the first grinding, therefore, single crushing
only will be had recourse to. Plans of the recourse to.
engineers here -Mr. Mow works were, of course, prepared by the the consulting, the late Mr. Thylor,
resident, and other ensineers in the colony; and most peoplo with in the work to give credit to Mr. Russell for a considerable shar in the work, But in the hands of Messrs. Mirrlees, Watson, and
Co., the original designs were considerably amplifed, and every applianee for improvings there considerably amplifed, and every them to suggest was introduced. Work in eminent frrm enabled menced on 27 th A pril last year, and the now navigation arrangemants were completed just in time to receive the first shipment of of
machinery which arrived. Since then the weekly expenditure for abour alone in connection with the works has exceeded 1000 dols. the total amount of what is called the "expense account," to
date, being 216,000 dols. This includes Messrs. Mirrmees
Watson, and adding cost of labour, say 56,000 dols, the total expendi,
ture in round numbers is 270,000 dols., which, tit is expected will be increased to 280,000 dols. before the work is finished. But even that sum by no means represents the total amount of the extra-
ordinary expenditure which has been incurred on pln. Diamond
during the list twelve been in progress the field hands heve been idle Golden Grove had to be connected by aqueducts, and drainageo and navi-
gable canals improved, preparatory to the extended cane culture And alreadyalarguired to provide provender for the new works. swamp and juarge area of smiling canefields has taken the place of
attention, the while the main product has had due public road leading to Craig Village not been neglected. Along the cottages, delightful in the variety of architecture they present.
And around these cottages are gleeful groups of chubby chisldren Gviany race of which the very-much-mixed communit tains, suggestive if aid Barbadoes rather than of Demerana
empolder riant growth of dark green plantains, ther part covered with a luxuJust been gathered, giving every token of a prosperous and cong
tented peasantry construction of dams with a viow of extending farming operations
right
 Boundary of Sandbach, Tinne, and Co.'s magnificent block of Rast
soon be a waving plain of the Demerara staff of life. Behind
Grove the land is already empoldered as far back as Farm and Diamond waterpath. With all this evidence before us of united action, and concentrated effort and energy on the part of the
estate's authorities-backed, of course, by the absentee's capital, the investment of which is another name for faith in the colonyand the resident population, we could not help asking why the
farmers had thrown their energies so fully into the cultivation of rarmers had thrown their energies so fully into the cultivation of
the estate's land, while equally fertile land in Craig Village lies
" neglected, a veritable swamp. The farmers, feeling that they have a just landlord, who has dealt with them on the live-and-let-live principle in the past, and, knowing that their tenure is secure, willingly put forth their energies and we see the results in manifest prosperity and contentment,
We may add, however, that while efficient drainage and an We may add, however, that while efticient drainage and an
abundant supply of pure water is provided for them, the culti vators have no roads to maintain, no dams or water-courses to keep in order, nor any village rates to pay. The "Governo rrving Tax" of 2 per cent. does not affect them.
The ride round Grove, up the old Diamend me primeval woods, is very pleasant: there are so math, through criosities to arrest the attention. Ferns of many forms, calla iums, palms of endless variety, handsome creepers and drooping ess of coloumine in a picture which for beauteous forms and rich pect, the northern boundary of Diamposs. When we reach Pros ane-fields of Farm lie spread out before us. Even now, at the end of a protracted drought, they look fresh and vigorous. We
confess that when first told that the pearl of Demerara sugar estates had changed hands, and become the property of the proprietors of Diamond, we could not help heaving a sigh of regret;
for however much such gigantic works as those we have been describing may aid the cane-sugar people in their contest with roll of the colony of resident proprietors of the stamp of those who made Farm famous, and whose names have become househol In those who like to colony.
In those who like to look upon something more picturesque than a broad expanse of flat cane fields, the felling of the grand old
fathers of the forests, such as we see falling before the woodman' axe and hear crashing through the undergrowth, causing mothe earth to quake as if with fear or shiver with regret, may induce a
feeling of sadness. But while there are hungry mouths to fill and are backs to cover, wailing, puling babes to pacify, and yearnin nothers to comfort and console, suffering to relieve, and the gaun the beautiful to the beatific, subordinate the merely ornamental to that which is of real practioal utility, and honour those who,
endowed with energy, capital and faith, let fall the golden rain, the real cornucopia, or emblem of abundance from
which comfort, contentment, and happiness-unmistakeable indiations of which are often now to be found on Diamond indi in no niggard stream. The hard times of which we hear so much in town, and from other parts of the colony, have not spread to the Sandbach section of the East Bank of the Demerara river; and oonnoction with the new works, during the last twelve monthy flly 600 dols. a week have been expended in empoldering new land
and other field work, independent of the ordinary work estate; thus raising the hebdomadal sum disbursed in wages to more than 3000 dols, instead of 1500 dols.- the average amoun
before the now works and consequent reclamation of land wer undertaken. The resident population of the estate, including wome nd children, is about 1800 ; but during the last year it has been
found necessary to to upplement the local labour power by employ ing gangs of men from the neighbouring villages, and even from so-called, and men of that, chas, who have been employed, reside
in Georgetown, and not a few are said to have walked to and fro in Georgetown, and not a few are said to have walked to and fro
daily. When the longlooked for rains come down in their might
dnd there is sufficient water in the navigation trenches to floa and there is sumicient water in the navigation trenches to floa
laden punts, the big works will be set in motion, and we hope then to have an opportunity of improving our acquaintance with of the most perfect appliances which science and art combined have Wet been able to produce.
We ought to have mentioned at an earlier stage of this ramblin the buildings and machinery was effected mainly under the immediate personal supene, who unfortunately succumbed in February last to an attack of malarial fever, after ton months' unremitting
latour. To him, his succecsor, MIr. Berthon (from Mirrlees, Watson, ne work, averring that when he the successful accomplishment d parts of the work were substantially sod alle. But the importan must not be accepted too literally; for, as we have said, the old mill is now only in process of re-erection, and a great deal has been
done during the last month or six weeks, it being necessary to hav They are now ready to begin at a moment's notice though a good deal of ornamental work, such as the padding and lagging of the
 in the absence of Mr. Rusell, who at such work is facite poprinceps.
All deserve hearty congratulations on the success which has crowned their efforts. Omnia vincitit labor. -The Argosy, Demerara.

WAVE MOTIONS.

THE ships of the United States Navy have been engaged for
ome time in making observations of the dimensions and peed some time in making observations of the dimensions and speed of
deepp-sa waves. These ecorded observations are not so complete and numerous as is desired, and any assistance in this respect will architecture. The observations made where a ship falls in with a single series of approximately secular waves are most valuable, and One method of measuring the wave lengths consists in towing a
log line astern of a ship and noting the length of line when the \log line astern of a ship and noting the length of line when the
chip floats on the wave crest next abaft that on which the stern of the ship momentarily floats. The ship should be head-on, or position. To measure the wave heights, when the ship is in the
trough of the sea, and for an instant upright, the observer takes up a position such that the sucocsive average wave ridges, as
vewed by him from the trough, just reach the line of the horizon without obscuring it. The height of the eye above the water level
correetly measures the height of the waves. To measure very high waves the observer may have to awcend the rigging, while for
waves of less heigha a station on one of the decks may suffice, or eome temporary expedient devised for placing the observer near
the water leve. It is desirble to select a position as nearly
amidships as possible, but if it becomes neeessary to take a station amidships as possible, but if it becomes necessary to take a station
near the bow or stern, allowance must be made in estimating the
height of the eye above water for the deeper immersion which may be caused at the instant ty pitcoring.
The longest recorded wave measured a-half a mile from crest to crest, with a period of twenty-three seoonds. Waves havisg a
length of 500 f . or 600 tt , and periods of ten to eleven seconds, are the ordinary storm waves of the North Atlantic. In regard to the
heights of waves, the most trustworthy measurements show from 44ft. to 48 th, to be a remarkable height, Waves having a greater
height than 30 ott. are not commonly encountered. The Hydro-
graphic Office has blank forms for recording these obse and would be glad to furnish her theording these observations, shipmaster who takes
sufficient interest in the subject to make observations whenever

TRIAL OF A PAIR OF HORIZONTAL COMPOUND TANDEM ENGINES.
(Concluded from page 37.)
Efficienoy. The next question to be considered is that of the
efficiency of the engines; and this is easily ascertained. The actual quantities of heat supplied by the boilers and converted into useful quantities of heat supplied by the boilers and converted into usefu
work are given in line 4 of Table VV ., and line 17 of Table V . The quotient of the second divided by the first gives the ratio of heat utilised to heat supplied. Thus actual efficiency $=$ heat utilised The efficiency of a perfect heat engine-that is, one in which all he heat is supplied at the highest temperature and discharged at tures, or the range of temperature, divided by the higher in degrees Fahrenheit plus 461, the zero of Fahrenheit's thermometer being 461 degrees above the point of absolute cold or zero. Denoting the highest and lowest temperatures, viz., those of the
boilers and condenser, by t_{1} and t_{2} deg. Fah., the efficiency of a perfect engine would be $\frac{t_{1}-t_{2}}{t_{1}+461}$. This, though less than 1 , is the best result that is theoretically possible, and is therefore the
proper standard to which the actual performance should be comiven in lines 75 and 75 Table VIII, at the end. The efficiency relativesy to that of a
perfect engine working between the same limits of temperature is herefore $=$ actual efficiency . The figures expressing efficiency of perfect engine
these effficiencies are given below for each cylinder separately, and
or both conjointly
In the case of the non-condensing cylinders
 reciver, which is also the higher limit for the condensing oylinders.
rem

Table VII.

This temperature was not observed, but it is assumed to be between
the exhaust temperature in the small cylindera and the admission the exhaust temperature in the small cylinders and the admission
temperature in the large. Thus we see that on Friday only 12 per emperature on Wednesiday 111 per cent., of the heat gupplied was
utilised, or 43 and 39 per cent. of what might have been utilised had there been no condensation in the cylinders and no back
ressure. The writer has often wondered whether a material of prossure. The writer has often wondered whether a material of
ow conductivity and heat absorbing power-possibly toughened glass-might not be substituted for iron in the construction of the cylinders of steam engines. That so largo a proportion of the heat
that might be utilised-for to utilise the whole is a physical im-possibility-should be wasted to a great extent for want of a proper material for the oylinders, seems hardly creditable to modern
science, when the vast extent of the steam power of civilized antions is considered
The boilers.- Though not less important than the engines, the
performance of the boilers cannot be criticised with the smme petail, owing to the absence of the necessary data, particularly the quantity of air admitted, and the temperatures in the furnaces and chimney. A boiler, being a heat machine, is subject to the same
law as an engine, the effoiency of a perfect generator being again expressed by the fraction $\frac{t_{1}-t_{2}}{t_{1}+461}$, where t_{1} and t_{2} are the temperatures which would be produced in the farnace and ohimney by
perfect combustion without excess of air. The actual efficiency however, can be calculated by dividing the number of therma anits transmitted to the water by the calorific value of the fue
which evaporates it. As in the case of the engines, it is expressed by the fraction $\frac{\text { heat utilised }}{\text { heat supplied }}$, remembering that by heat supplied we mean, not the actual heat developed in the furnaces-for te have no means of ascertaining this-but the potential heat or
the fuel, or its calorifio value. On this basis the efficiency of the boiler appears to have been $0^{\circ} 599$ on the Friday and 0.555° on the
 wing to the waste gases from four boilers, besides thoso used for the trials, passing through it. The figures relating to the evapora-
tion, $\begin{aligned} & \text { wall as sio data }\end{aligned}$ from which they were calcolated, are jiven in Table IX, at the end.
table VIII.-Stumary.

	Engtine	$\mathrm{Frin}^{\mathrm{Fr}}$, is.	
	meter of cylinders, smal		
	plston rods, smail cyiliders, fronit in		
	large ", forment ,"		
	slumes:		
	aull eylinders, combined vol. excluding		
	sman cyttriders, volume" cu		
		18.741	
	Smm	13.741	
	sm		
		20.808	
	small cyund		
	Small cylinders, volume compressed elearance ", Small cylinders, volume clearance mean of		
	Spoch oendseen eglinde	$\begin{aligned} & 2.400 \\ & 50.000 \end{aligned}$	2.440
	Large eylinders, combined vol. exel cearance.		
18	Large cylind		
		$50 \cdot 178$	
	Large eylinde	e. 226	
	Large cylinders, volum clearance..		
	Large cylinders, volume eut öf + 4 remainder		
	Tarace chilinders, volume compreased		
	Large ecylinders, volume clear		
	Relative volumes of cylinders		
	of		
	Du		
	Duration of compresston, smanall cylindere, friottoib		
		0.144	
	,		
	Duration of compression, large cylinder, fruction of stroke.		
	Total rutio of expansion		1:148
	Value of X in $\mathrm{PVV} \mathrm{C},=$ small cylinders		

Fuol per I.H.P. per hour T.H.P
Puro combuatible per II.H.P. pe

action or metal, bmall etlindirs. Internal heat of steam left fiom provious
stroke wök ö couniression .. $_{\text {.. }}^{\text {.. }}$.. th. Total
Internal hout of mixture it end of com:
revesiou . Heat absorbed by metal during compres-
sivu .. nternal heat of mixturo comprosed in

 Heat available for work of admisaston
Absolute work of ndmustion Heat absorl ed by metal during admisesion Internal heat of mixture at end of admission
Internai heit of mixture at end öf expain-
sion .. . Incroase of intornal haat during oxpansion
Absoluto work of expansion Heat given out by metal during oxpansion Total heatavailable for workof expanasion-
Absoluto work of expansion $117+124-127)$ Hoat given up by motal during expulsion-

Action of metal, laror ctlinders. Internal heat of ateam left from provious
stroke Absolute wörk ö cömpreasiön Total-
Internal heat of mixture at end of comi:
pression. Heat absorbed during compresion Internal heat of mixture compresesed in clearances
Heat rocolved
$\underset{(126+132-143)}{\text { cylindor- }}$ ${ }_{141}^{140}$ Work of expulsion from ëmail cyinindersa..

the writer's presence by two of the company's inspectors well able to
indicate correctly, and to avoid the errors which frequently occur

The defects to which such a motion are liable are slipping of the The defects to which such a motion are liable are slipping of the
endless cord upon the pulleys and stretching of the strings conendless cord upon the pulleys and stretching of the strings con-
necting the indicator to the revolving spindles. The amount of slip did not exceed one revolution of the pulleys on either day, so that it could not have had any appreciable effect upon the diagrams. The stretching of the connecting cords on the morning of the day of the preliminary trial was considerable-so great, indeed, as to make the diagrams useless for any but the roughest calculation;
but after copper wires had been substituted it could not have been of importance. Moreover, as its effect would be to shorten the admission line, and thus reduce the value of γ, the high value obtained for that index on the Wednesday cannot be attributed to this cause. Nor was the error introduced by the direction of these cords, since the indicator was fixed at the same level as the pulleys
from which the motion was derived. There seems, therefore, no reason to attribute the peculiarity of the Wednesday's expansion curves to faults in the instruments or operators, and some other reason for it must be sought. On calculating the value of γ for all the diagrams taken from the smaller cylinders on the Wednesday, it was found (1) that they were in all cases slightly higher in the
mornings after starting than during the rest of the day; (2) that mornings after starting than during the front end of the cylinder of the right-hand engine, and the lowest from the back end; and (3) that the values varied with the duration of the period of com-
pression, being greatest when the compression was least. The pression, being greatest wh
following are the figures:-

	Values of x on Wednesday, 18.	Right-hand engine.		Left-hand engine.	
		Front.	Back.	Front.	Back.
1	Value of $\mathrm{\chi}$-Morning ..	1.093	0.964	1.088	1.080
2	" Afternoon	1.073	0.951	1.051	1.063
3	" Mean..	1.082	0.957	1.009	1.071
4	Duration of comprossion	$0 \cdot 120$	0.200	0.136	0.162

It would therefore seem that γ, and consequently all the figures
relating to the expansion, since they are deduced directly from the curves, depend in some way upon the temperatures prevailing in the cylinders. If this be so, it is easy to understand why the
curves should be essentially different on the first and second days, for although the initial pressures and ratios of expansion wero practically the same, the mean pressures and temperatures during the exhaust and compression were altogether different. Theso

	Temperature of steam in small cylinders in degrees Fahrenheit.	Friday, 13.	Wednesday
1	Mean during expulsion	234.94	199
2	At beginning of compression ..	233.82	$190 \cdot 11$
3	At end of comprossion	295-85	$205 \cdot 07$

Now, considering the duration of the exhaust we may, I think, assume that the temperature of the metal at the beginning of the
compression was about the same as that of the steam, and was compression was about 35 deg. lower on the Wednesday than on the Friday. To see what conclusion this assumption leads to, take first the figures relating to the Friday from Table IV. These show that the quantity of heat absorbed attained its maximum at or
near 0.325 of the stroke, or when about one-ninth of the expansion near 0.325 of the stroke, or when about one-ninth of the expansion
was completed. At this point the temperature of the metal was completed. being the temperature due to 68 lb . pressure, the pressure at this boing. The rise in the temperature of the metal from the beginning of the compression was therefore 301 deg. -234 deg. $=67$ deg. Now suppose all the 1182 thermal units absorbed up to this point at 0.113 , the weight of metal heated would be $\frac{1182}{0.113 \times 67}=152 \mathrm{lb}$, On the Wednesday the lowest temperature was 199 deg., and the number of units absorbed up to the same point as before being
1303 , the temperature of the metal would be raised through $\frac{1303}{0.113 \times 152}=74 \mathrm{deg}$, and its temperature after one-ninth of the 0.113×152
expansion had been completed would be $199 \mathrm{deg} .+74 \mathrm{deg} .=273$ deg., a temperature corresponding to a pressure of 44 lb . per square
inch only. As at this point the pressure of the steam was 66 lb , it is evident that before equilibrium could be attained and heat begin to be restored the metal must have received more heat, and the pressure and temperature of the steam must have fallen. That is to say, the maximum temperature at which the flow of heat began to be reversed would occur later in the stroke, and would be lower
than on the Friday. And on turning to the tables we find this than on the Friday. And on turning to the tables we find this ninths of the expansion on the Wednesday, while the re-evaporation of the water formed during the compression and admission was but 0.0042 lb , at thre-ninths, as against 0.0228 lb , at twoninths on the Friday. The reason why condensation continues after the flow of heat has been reversed is that for some time after the heat absorbed has passed the maximum the rate of flow is very
slow, the difference of temperature between the metal and the steam being very small, so that the work of the expansion is carried on mainly at the expense of the internal heat of the steam. For the sake of simplicity the argument has been based on the assumption that all the heat shown in the tables as entering the metal really did so. It is quite possible, however, that it may have been absorbed by water remaining after the exhaust as a fine dew upon
the cylinder ends and pistons. If this were so it would not the cylinder ends and pistons. If this were so it would not
invalidate the reasoning, though it would alter the figures given invalidate the reasoning, though it would alter the figures given,
owing to the specific heat of water being much higher than that of iron. It must not be supposed that in writing the above the writer wishes to treat the subject in any way ex cathedra; to do so would
be presumptuous. All he has attempted to do has been to show be presumptuous. All he has attempted to do has been to show
that the unusual value of γ on the Wednesday does not neoessarily that the unusual value of γ on the Wednesday does not neoessarily
imply error in the diagrams, but is consistent with what are geneimply error in the diagrams, but is consistent with what are gene-
rally supposed to be the laws regulating the distribution of the raily supposed to
heat in the cylinder of a steam engine. He may also mention that he has found similar values for γ under similar circumstances in
another case.
M. $\mathrm{L}_{\text {. }}$

Farnhay Waterworks.-The Farnham-Surrey-Waterworks Company is about to sink a deep well into the lower greensand
formation, to reach which the upper greensand and ganlt will formation, to reach which the upper greensand and gault will
have to be penetrated. Messrs. Le Grand and Suteliffes artesian tube well system has been adopted, and the work is to be commenced this week.
Production of Grpsur in Ths United States.-In the plaster and 60,000 tons of stucoo-total, 125,000 tons-were made in 1884, of which nearly all was from Nova Scotia gypeum. The statistios for Michigan have not been reported, but the production
did not vary greatly from that in 1883 , in which year it wat did not vary greatly from that in 1883 , in which year it was
60,082 short tons of land plaster and 159,100 barrels, of 300 lb , 60,082 short tons of land plaster and 159,100 barrels, of 300 lb ,
of stucco. In Ohio, 4217 short tons of land plaster and 20,307 barrels of stucco were produced. There was also a small produc-
tion in other parts of the country; but the total apmount of
domestic gypsum used is not known. tion in other parts of the country;
domestic gypsum used is not known.

ELECTRICAL ENGINEERING AT THE INVENTIONS EXHIBITION. No, VII.
Befork leaving the subject of Messrs. Paterson and Cooper's dynamo we must give the additional information promised in our last article. The annexed sketch shows a longitudinal section through the large Pheenix dynamo, which is classified by the makers as a 42 unit machine Accordin the this nomeriare one ixed by boir or watts viz., the eleci 1000 volt ampères or watts equal to $1 / 36$-horse power The weight of copper on the armature is 175 lb ., that on the field magnets 992 lb .; total, 1167 lo . With some makers it is customary to judge dynamo machines by weight of copper on the armaweight of copper on the armaput We do not think this is put. Weir basis of chink this is caur or comparison, beause the the density of current which is dlowed to flow through is allowed to flow through the armature wires. It wil asily be seen that the arger the speed the greater is the output obtained with a and similarly the copper, wire is strained by more the wire is strained by allowing The latter is essentially, the greater is the output. The latter is essentially a question of heating; and if all makers were to agree that the output they state can be obtained continuously during a run of, say, fifty hours, no objection could be raised as far as the question of speed, and to obtain a remans, however, the question of speed, and to obtain a fair basis of comparison the weight of copper on the armature should not oe compared with the output per se, but with the ratio of on the armature produces 240 watts in case, 1 lb . of copper on the armature produces 240 watts in the external circuit
full range of output. The curves also prove an interesting fact, first pointed out by Mr. Esson in the columns of the Electrician, viz., that dynamos regulate about equally well at widely varying speeds. For want of space we cannot enter in detail into this question, although it has considerable practical importance, but we mors to our contemporary for a full explanation of the fact Professor George for a full explanation of the fact. end of the North Court is exhibited a most remarkable machine intended for the electro-deposition of copper by means of a very large current flowing through a bath of copper_sulphate. A smaller machine of a similar character

ATERSON AND COOPER'S DYNAMO

is exhibited in the East Arcade, as also a number of drawings showing full size sections of Professor Forbes' machines. Before we can enter into a detailed description of these we must say a few words about the general principle of these unipolar, or, as Professor Forbes prefers
to call them, non-polar machines. The later term sems to call them, non-polar machines. The latter term seems the more appropriate of the two, as no external magnetism can be detected when the machine is at work. No such thing as one isolated magnet pole can be found in nature; there must always be two poles of opposite sign, although
only one of them may be directly utilised. In Professor
of the magnetic circuit, and to further intensify the mag netic action between the two poles. The arrangement shown in our sketch produces a current only along one vertical radius of the disc; but if we were to place a number of magnets all round the disc, and arrange a corresponding off along these radii; and if the magnet were made in the form of a ring-shaped shell, currents could be taken off long the whole circumference This is in substance what Professor Forbes has done. In his machine the shell is an electro-magnet excited by a circular coil placed in the bend of the yoke, and the disc is made of iron of considerable thickness, partly to obtain a large surface of considerable partly to reduce its internal resistance. In the first machine constructed on this principle the disc was made so wide that it became a cylindrical bar. Two coils were placed over it, leaving a space of about lin in the middle for the contact The shell is in the form of a cylinder about 13in long and 5in in diameter. The cylinder about whilst the other pole was the rubbing contact in the middle whis machine will be found and The next step taken by the inventor was to construct The next step taken cording to his patent No. 3115, 1883. We No. 3115 , 1883 . We
give a longitudinal secgive a longitudinal section of this dynamo in the annexed sketch, omitting, however, all
constructive details, constructive
Two dises D D atails,
D are Two discs D D are
mounted upon the same mounted upon the same spindle, and revolve within a duplicate cyiron S. Rings of trapezoidal cross of trapezoidal cross section are turned out of the shell, into which are
placed the insulated explaced the insulated exof force sce. The lines of force created by the surround them in closed curves as indicated by the

the armature is driven at a speed of 500 revolutions. At 1000 revolutions the output would be 480 watte, at 250 revolutions it would be only 120 watts, and so on. To obtain a fair basis of comparison, the speed should be assumed to be equal in all cases-say, 1000 revolutions, Against this it might be urged that as the speed has been fixed in each particular case by the maker, and that the machines must be driven at that speed, it is useless to know what the machines could do at 1000 revolutions. The question of practical importance is, what will they do at the speeds for which they are designed. Our answer to this objection is that users of dynamos prefer those which require low speeds, and that therefore even from a purely commercial point of view it is right that machines should be judging not only by the weight of copper on the armature per 1000 Watts, but also in relation to the speed. We would even advocate going a step further, and judge machines with regard to weight of copper on armature and field magnets as compared to their normal output when running at 1000 revolutions, Taken on this basis, each pound of copper on Messrs, Paterson and Coopers machine produces 72 watts, or nearly one-tenth of an electrical horse-power.
Through the courtesy of this firm we are able to place before our readers some characteristic curves of their 11 unit Phonix dynamo. It will be seen that up to 50 ampères there is a slight rise of electro-motive force, which circumstance makes the machine suitable for regulating at the far end of its main circuit, but only between the limits of 0 and 50 ampres. At larger currents there is a decided drop of electro-motive force, and the machine cannot be considered as a perfect regulator throughout its

Forbes machine, however, both poles are utilised, and as both are well within the body of the machine, which consists almost entirely of wrought iron, none of their magnetic force is wasted externally, as is the case more or less with all other dynamos. The subject of unipolar dynamos is not new, about thirty patents having been taken out within the last few years; but the difficulties of rubbing contacts at high speeds have always stood in the way of their practical application. Not the least of the merits of the machine under consideration lies in the successful manner in which this difficulty has to all appearances been overcome. In the beginning of thesc articles it was pointed out that the electromotive force in all dynamo electric machines is due to the cutting of lines of magnetic force by a conductor, the direction in which the electromotive force is set up being at right angles to the direction of movement and also at right angles to the linesof force. If a metal disc be fixed as per annexed sketch between the poles of a horseshoe magnet and rotated in the direction of the arrow, an electromotive force would be created in direction downwards from the axis to the circumference, and by arranging rubbing contacts on the axis and at the lowest point of the disc a current could be taken off. Other things
being equal, the current will be being equal, the current will be strongest if the poles are arranged to come very close to the disc, and in
some cases it might be advantageons to make the disc of soft iron in order to reduce the resistance
dotted lines, and since the direction of the current is opposite in the two coils, the lines cut the first disc in opposite sense to the second, setting up in one disc an lectro-motive force inwards and in the other disc outwards. The current flows from the outer circumference of the first disc towards its centre, then along the axis to the centre of the second disc, and thence outwards to its

 CURVES OF PHCENIX DYNAMO.

circumference. The rubbing contact is at the periphery of each disc, and at first it was attempted to use mercury for this purpose, the mercury being retained between india-rubber rings, as shown. It was expected that under the influence of centrifugal force the mercury would form a band of about equal thickness all round the circumfer-
ence, and thus establish the best possible contact. Experi-
ment proved, however, that mercury behaved more like ment proved, however, that mercury behaved more like distance closely to the disc but not touching the casing, and in other places leaving the disc and flying out to the casing, It was also found that the liquid friction of mercury by far greater than is commonly assumed, and These difficulties fairly recognised, Professor Forbes cast about for a remedy, and discovered that iron and carbon form a splendid contact, which will work at high speed without heating, and without appreciable wear. Engineers or they have long known thised at this than electricians ings consisting mostly of carbon in one form or other can be made to wear for years without any lubrication whatever. or forbes has therefore adopted carbon contacts, hem in ill of his machines, but he also proposes to use hitherto been employed, especially for the brushes of he thanks of all makers and users of dynamos, At present the commutator is that part of a machine which wears most, and in many cases it is costly to replace; but if
by the employment of carbon brushes the wear of the aced to a fraction of its present amount, the cost of keeping dynamos in running order will be reduced almost in the same proportion.
The diagrams exhibited on Stand 1324 give, so to speak, the whole history of the invention. They show how the original idea was developed, assuming more and more a practical shape. Thus we find the next improvement represented in a drawing which we reproduce in Figs. I
and 2 . The machine shown in the above sketch has evidently more internal resistance than absolutely necessary; for by making the discs wider we could increase their conductivity without in any way lessening the number of hies of force which pass through them. It is not even the discs at the expense of the central mass of iron between hem. Imagine, now, that we gradually widen the two discs ailowing their inner faces to approach more and more and form one continuous cylinder. We Iso the additional advantage of having transferred but two inner air spaces to the circumference of the cylinder, where, on account of the larger surface, their magnetic resistance is somewhat diminished. This arrangement is represented in Figs. 1 and 2. The dotted curves show again the character of the lines of force, and the arrows indicate the direction of the currents, which in every point are vertical to the lines of force. The electro-motive total number of lines passing through the armature If we assume the same degree of saturation for different size armatures, we find that the electro-motive force is proportional to the square of their diameter. The machine just described, although being a great improvement upon the former type, has the defect of being liable to an enormous side-thrust consequent upon inequality of magis practically impossible to so place the armature that the clearance on either side should be mathematically equal, exist, which necessitates the employment of a thrust bea
 ingas shown. To remedy this defect Professor Forbes has designed a modi fied arrangement machine which will be under 3. We again structive details is 6 in. diamete and 9 in. long;
the ends are the shapeshown
80 as to afford an equal area for the passage of lines o called the field magnet, is represented here by the shell S containing the two exciting coils C C . The cross section of these is trapezoidal as before, in order to leave as near as
may be an equal area of soft iron round these coils for the may be an equal area of soft iron round these coils for the
passage of the lines of force. Part of the shell consists of wo soft iron rings R R, which are insulated from the body of the shell and form the terminals of the machine. Two copper rings of angular section-shown in our dia-
gram by thick lines-form the rubbing contacts. They are provided on the inner circumference with teeth, by means of which the ring of carbon, which is continuous
all round and which forms the contact proper, is held in place. The air space or clearance between armature and shell is $\frac{1}{1} \mathrm{in}$. This machine has not yet been finished, but from experiments made with other machines it is expected that it will give a current of 5000 ampères at a difference
of potential between terminals of two volts if driven at 2000 revolutions per minute. For lighting purposes a similar machine could be made with a larger armature. If the cylinder be 4 ft . in diameter and 4 ft .
long, it would give 60 volts at a speed of 1000 Such a machine would, however,
be too cumber some in comouput that could
possibly be re
quired of it, al
put it could give. It is also doubtful whether, at a speed
of $12,500 \mathrm{ft}$ a minute, even carbon contacts will stand. The inventor proposes, therefore, to obtain higher electro-motive forces not by increasing the size of his machines to unwieldy proportions, but by making compound armatures
as shown in Fig. 4. The different cylinders are to be insulated from each other, and each is to be provided at the ends with rubbing contacts also insulated from each other. The contact 2 would be connected to 3,4 to 5 , and so on, the curre
Another form of the non-polar dynamos is shown in Fig. 5 . Only one exciting coil C is employed, consisting rough of or insulated flat sheet copper laid into acircuar revolves with it. The sides of this trough carry the carbon contact plates, and contact is insured with the rings RR, which form one terminal of the machine, by the magnetic attraction between the trough and these rings. The rings are insulated from the body of the machine, and have a little end play, so that they can be attracted towards the carbon discs. Suitable stops prevent them from turning. other contact is formed by two carbon discs fasthine orme ends of the armature, and the body exciting coil, as shown by the dotted curve, and the currents which cut these lines at right angles flow from the cast iron trough outwards to the ends of the armature, as indicated by the arrows. The armature of this machine is 9 in . in diameter and 8 in . long, and is calculated to give ane volt, if driven at 1000 revolutions per minute.

PASSENGER ENGINE-GREAT SOUTHERN AND

 WESTERN RALLWAY OF IRELANDIv our impression for June 26th we gave some illustrations of one of several fine engines constructed by Mr. J. Aspinall, at Inchicore, Dubin, for the Great Southern and Western Railway
of Ireland; at the same time we gave full dimensions. We now publish as a supplement a sectional engraving of the engine, and on page 50 we give two cross sections. The principal dimensions of the engine are:- - Cylinders,
stroke, 24 in .; diameter of driving wheels, 6ft. 6in.; total heating surface, 1051 square feet; grate surface, $18{ }^{\frac{3}{4}}$ square feet; weight in working order, 39 tons 10 cwt .

LAUNCHES AND TRIAL TRIPS.

THE steamer Avoca, built by Mr. W. B. Thompson, at Dundeo, for the Cork Steamship Company, made a trial tripo on 1st July,
showing a speed of over thirteen knots. The above vessel has been showing a speed of over thirtcen knots. The above vessel has been
built to the highest olass at Lloyd's, and is of the following dimensions: Length between perpendiculars, 26oft.; breadth, moulded, 34ft; ; and depth of hold, 15 ft .8 in . She is intended primarily for wie conveyanoe of cattle between London and the Continent, and
with this view she has been built on the cellular bottom principle The engines and boilers, which are from Mr. Thompson's Tay foundry, are placed well aft, this arrangement permitting of a better utilisation of the holds for carrying cattle, and at the same
time ensuring good ventilation from the two largo hatchay each end of main hold. The poop extends to the fore end of boiler hatoh maxy, and accommodation under the after end has been
provided for offliers and engineers, and on the poop deck a large provided for ollicers and engineers, and on the poop deck a largo
number of sheep will be carried. The space under the bridge dealk
 pane for in pitar pine, and contains roomy and comfortable quaris placed the wheel and chart house, with entrance to saloon. In is phacod the wheel and chart houss, wisten entrance to saltom.. In
the wheel house Higginson's patent steam quartermaster, by whioh the vossel can bo steered either by hand or steam, and from the wheol-house or from the flying bridge above. Under the
forecastle is placed Harfield's steam windlass for working the anchors. At the after end of this deck are placed two iron lighthouses, in which the ship's side lights are fixed. This arrangement places the lights clear of all possible obstructions, and beyond all and main holds, fore, main, and after 'tween decks, and all the available space on main deck, has been fitted up for carrying cattle
to the number of about 6o. The engines, wihoh aroof the com-
pound surface-condensing type, are of 18 . pound surfaco-condensing type, are of 187 nominal horre-power,
with cylinders 3lin and 62 in , stroke 48 in., steam being supplied
from one stecl donble from one steel double-ended boiler, at a prees
a donkey boiler for the cranes and winches.
The s.s. Actor, which has been recently built by Mesers. Raylton
Dixon and Co. for Liverpool ownera, Dixon and Co. for Lriverpool owners, left the coveland Dookyard
on Friday for her trial trip. She is built of steel, and her prinon Friday for her trial trip. She is built of steel, and her prin-
cipal dimensions are 200ft. over all by 3 bft. beam by 23 tht. depth of
hold, and sho has a deadweight carrying capacity of over 2100 tons
 Storkton, having boller pressure of 1601 lb , and will indicate 700 .
horse power, the proved success of this $t y p e$ of engines warranting horse power, tion provec success of this type of engines warranting
the expectan of great economy in the consumption of fuel.
After ber trial trip the After her trial trip the vessel proceeded to Liverpool.

 vessel has been built for Mr. G. Petrie, London. Accommodation
is provided for captin and offioers in full poop, and for petty
officers and orew in large iron deckhouse amidstips.

Bradford Trohicical Collzge, Enginkehing Depabtirent, A very interesting series of visits and exarsions to engineering
works for the sududents has been arried works for the stucents has been carried out during the past month,
the programme being as follows:- May 1 15h, Sowerby Bridge,
Meosrs. F. Berry and Sons ; May 28th, Leeds, Messrs. Kitson and Co. and Messrs. J. J. Fowler and Cor; June 2nd, Doncaster, Grea
Northern Railway Works June

Earl
Leed
and

Siir J. Whitworth and Manchester, Ashbury's Carriage Works
 June 30th, Crewe, London and North-Western Ranilway Works,
The above exoursions were in charge of Mr. G. F. Charnock, ehief assistant of the engineering department. The esession wask brought
to a close by a special two days excursion to London for the Inven. ments of the Con, ilege took part on Friday and saturday lepart-
10th and 11the the
Inst. On Friday the party was entertained the
 averago number of regular dession have been highly sucecesful, the ovening atudents being twenty
four and 100 regpectively.

STEAM ENGINES AT THE ROYAL AGRICULTURAL SOCIETY'S SHOW.
The Royal Agricultural Society's Annual Show is being held this year in Moor Park, Preston, a very admirable site in some respects. Preston is a town of 100,000 inhabitants, and was at one time known as "the own of the three P's," which, being done into English, eant "Poor, Proud, Preston." Whence the title was
derived we do not know. It is a straggling, dirty manufacderived we do not know. It is a straggling, dirty manufac-
turing place, possessing without any exception the most filthy cabs and flys it has ever been our evil fate to meet with The location of the town on the tidal river Ribble, however leaves little or nothing to be desired; and Avenham Park, if small, is one of the most charming of all the charming places of its kind in existence. Great preparations have been
made for the reception of the Prince of Wales. Triumphal made for the reception of the Prince of Wales. Triumphal smallest considetan masts have been put up wimpout the smallest consideration for economy. One triumphal arch near the railway station is an enbatcled structure, some 50ft. high, and framed of timber sufficiently strong to suggest
the idea that the builders determined to hand down their the idea that the builders d.
work to a distant posterity.
Since the Royal Agricultural Society held an annual show there has never been got-together under its auspices a display of machinery so totally devoid of interest for the engineer. Not only are many exhibitors absent, the articles shown are comparatively few in number, and absolutely devoid of all novelty. In one sentence, there is actually nothing new in the implement department of
the showyard. The application of a very small exhaust injector to a little vertical engine, and a swing fire door to a traction engine by Messrs. Robey and Co., stand out prominently as novelties-things to be kept in mind and made note of. It is not necessary that we should attempt to explain this paucity of novelty. It is not that there is less ingenuity or less need for improvement; we have only to deal with the fact. No doubt a large class of engineers have discovered that nothing is to be gained by taking novetties to the annual shows of a society which has indirectly, if not directly, discouraged improvement for years back. No prizes are offered this year, Save a few silver medals, which will not all be awarded, no prizes will be given except a few pounds for improved whipple trees and harness. Something will probably be done in the case of the working dairies, but not much. It is said, indeed, that the Society contemplates having a heavy los to meet next year, as its siow win bo held will be spent that can be avoided. This is probably true. It is also true that, as far as engineering is concerned, the glory of the Royal Agricultural Society is departing.
The usual well-known firms exhibit their usual wellknown engines. To deal with them in detail would be to repeat much that has already appeared-some of it year ago-in The Engisker. Instead of doing something may be gained if we say a little in the way of criticism concerning the engines exhibited. We shall mention no names. There is an old adage about throwing caps among a crowd which will apply here.
The evidence presented by the Preston. Showyard is to the effect that certain firms reached finality in design, demonstrated by the circumstance that at any time within the last five or six years the same engines have been shown nut. Among these there are steam engines in the yard which have been designed wood the .illest conception of what is and what is not good mechanical engineering, and this not among the cheapest engines shown. It may be urged-and we have
often heard it urged as an excuse for defects-that "after all much could not be expected for the money." Now this is simply a current fallacy. It is true of certain things; it is not true of design. A purchaser cannot legitimately expect to get 100f. of heating surface in a boiler from one firm, while he gets only fifty from all other makers for the same price. But this has nothing at all to do with the good may be of good a design as a whole. The various parts may be of good form. They may be at once pleasing to more to make, but less, because they are carefully designed. It is true that a good salary will have to be paid to a good
works manager, but the cost will be saved twice over. The truth is that the make che be saved twengines make less profit than those who sell low-priced and good engines. In ninety-nine cases out of the hundred the man who designs It will for does not know how to turn out work cheaply. all the bad example, be found on examination instead of by machinery; and this follows because it is practically im. possible to make a very bad engine except by hand. The man who really studies economy will consider first what design all his work in having done this he will nex ${ }_{\text {t }}$ his tools can be used to the fullest possible extent, and if he does not possess certain tools he will buy them. To of joints, as between the end of an excentric rod and the valve spindle, which have been got up by hand, and badly got up. They are mostly of forms very inconvemient for milling tool cannot be got, being highly popular. Any fitter can get these up with a vice, a file, and a square. If got up by the milling tool for less than the bare cost of it has recently become the fashion to use tubular guide bars-extensions, so to speak, of the cylinder. These
were introduced because they were introduced because they lend themselves easily
to the cheapest of all machine work, that of the o the cheapest of all machine work, that of the
lathe. But instances may be found in the show.
yard where the tube is used yard where the tube is used without any intelligent perception of its proper rcison. d'ttre, and separate
flat guide bars have been bolted in. It is impossible to conceive a situation less adapted for a flat guide than the
inside of a tube in which it has to be adjusted. Some of the engines shown do not appear to have been designed at
all; they have been "thrown together." Cylinders, for example-we are speaking now of vertical engines-are
carried far out from the side of the boiler on a huge foot. Two awkward pedestals stand below carrying a thin crank shaft, with the crank a couple of feet a way from any bearing
right in the middle. The valve chest has bolted to it a right in the middle. The valve chest has bolted to it a
throttle valve box; to this in turn is bolted a stop valve throttle valve box; to this in turn is bolted a stop valve box; lastly comes the steam pipe, with a multiplicity of
joints. A moment's thought would have shown that if the crank was put close to one of the bearings, the cylinder could, for obvious reasons, be got much closer up to the boiler, metal would be saved, and the whole job would have been better in every respect. Let any of our readers
who have the opportunity contrast vertical engines by the first-rate firms with those by inferior makers, and note the difference. We can assert positively that the bad engines cost their makers about as much as the good engines cost the firms who produce them. The worst of the whole business is that the inferior makers never seem
to learn anything. They walk round a showyard, inspect to learn anything. They walk round a showyard, inspect
their neighbours goods, and come away as ignorant as they their neighbours ${ }^{3}$ goods, and come away as ignorant as they
went. To this there are one or two notable exceptions, men who by never wasting a chance have really come to the very first rank in engine building from very small and very bad beginnings. These firms deserve success, and they will command it. It is not our purpose to write a treatise on the designing of steam engines, and when we
have said a few words on a vexed question we will leave this aspect of the Preston Show. It is constantly said that foreigners beat us in design because of technical education. Now, our experience is that foreigners do not beat us at all in this respect, and as regards the smaller class of engines, vertical and horizontal, to say nothing of portable engines, they are simply nowhere, a result which
is, we think, largely due to the fact that labour is so cheap on the Continent that there is nothing like the same rigorous determination to do without it manifested abroad that is to be found at home.
There are some features in the engines shown at Preston which are worth notice, although they are not strictly novelties. One of these is a modification of their spring
wheel brought out by IMessrs. Aveling and Porter, of Rochester. The normal spring wheel of this firm has recently been illustrated in our pages, and it will suffice to say here that the wheel consists of an outside tire made trough-shaped in section by two circumferential angle irons. The spokes of the wheel are secured to two outer rings, which just fit within the trough, and the inner wheel and the tire are connected by powerful coiled tangential springs, so arranged that every second space
between two spokes has two springs in it, and the alternate space no spring. Thus, in a sense, there are two springs pulling in opposite directions to each new wheel there is one spring to each spoke. We do not made, because we do not pretend to the gift of prophecy, but we do say that in our opinion it is the best elastic odious, it is said, yet they will be drawn; and those of our readers who remember that we have spoken in high terms of McLaren's spring wheels will ask if we have changed our minds; our reply is simply that we have not. We
hold to all that we have said of the McLaren wheel, but the Aveling wheel is better, because it is more elastic has a play of an inch or an inch and a-half, while the inch. Both are in the showyard and can be compared. We know nothing-we do not care to know in this connectionWhat the comparative cost of the two systems is, and we do not pretend to say which will last longest in regular hard work. We speak of both as mechanical devices intended to secure a certain result, and from this point of
view the Rochester wheel is the better of the two view the Rochester wheel is the better of the two. At
present these are the only two elastic wheels in the market concerning which anything need be said.
Spring engines are shown both by Mr. Foden and by Spring engines are shown both by Mr. Foden and by
Messrs. Fowler. The latter firm has taken up the manufacture of the Aveling and Porter wheel, under license from the firm. Messrs. Fowler exhibit a traction engine nard's patent. We fear that drivers, under we believe May nard's patent. We fear that this must be classed with many inventions which make their appearance now and then a die out. The trailing produce a sensation for a time, and are driven by a pitch chain from the cur-coupled engine downwards and backwards, on the near side of the engine The leading wheels, which are much smaller than the main driving wheels, are fitted on an axle, which does not comple and the middle of which is carried in a somewhat cylinder, about 2 ft . in diameter, in which is put a set of "Jack-in-the-box" gear, the vertical pinions of which areon cast-iron sleeves to which the road wheels are bolted. They are driven bya pitch chain leading downwardsand forwards from the crank shaft, on the off side of the engine. The result of the whole is that the leading wheels have a species of universal joint motion, so that the steering is not interfered with; but the leading end of the engine is virtually carried on a bearing, revolving at the same rate as the road wheels, and about 2 ft . in diameter. The friction must, of course, be very great. It is claimed that this engine will draw very much more than an engine of equal weight
with but a single pair of drivers. Time will show whether the advantage gained is worth the cost, complication, and friction. If the invention will succeed in any one's hands it will in those of Messrs. Fowler, whose name alone is a tower of strength to an invention of this kind. Three or
four other firms in addition to those we have named show traction engines, which, however, call for no comment.
Among the semi-fixed or undertype of engines we foun nothing new, a great deal that was good. Opinions and practiceseem to be divided as to the best way in which to
build engines of this type. For example. Messrs. build engines of this type. For example, Messrs,
Marshall, Sons, and Co., and Messrs. Hornsby and Son
each show compound engines of great strength and weight,
while Messrs. Ruston and Proctor engine, very much lighter in proportion in every part, but beautiful in design and faultless in workmanship. The Marshall engine is nominally 16 -horse power, the Hornsby engine is 25 -horse power, the Ruston and Proctor engine i 12-horse power, win cylinders 7in. and 1 in. in diameter The price of this engine is $£ 350$, that of Messrs. Hornsby $£ 620$, that of M essrs. Marshall $£ 410$-that is to say, the first costs $£ 29$ 3s. 4d. per nominal horse-power, the second $£ 2416 \mathrm{~s}$, and the third $£ 2512 \mathrm{~s}$. 6 d . It is certain that either the powers have been calculated on a different basis in each case, or that different factors of safety are allowed, or different speeds have been adopted by the makers. These three engines deserve attention, as being typical of the best modern production in design and workmanship. Messrs. Robinson and Co., of Rochdale, show an under type non-compound double-cylinder engine, with wrought iron frames and three bearings for the crank shaft which has some small peculiarities in the arrangement of the cylinders, not easily rendered intelligible without drawings. This is a very strong and well-made engine much, we think, the best engine ever shown by the firm. Close to it is an engine for driving a flour mill, by Messrs. Stevenson, engineers, of Canal Foundry, Preston; it has a $10 \frac{1}{2} \mathrm{in}$. cylinder, 20 in . stroke, and is fitted with Price and Stevenson's patent Corliss cut-off gear. As we shall illustrate this gear in an early impression, we shall reserve our description of it. Steam is supplied by a small marine
boiler, which forms a conspicuous object at that end of the boiler, which forms a conspicuous object at that end of the showyard.
Of portable engines there is the usual display. One new firm sends engines of much merit-namely, Messrs, J.T.
Marshall and C_{0}., of Sandiacre, Nottingham. We refer to an 8 -horse power engine and a little $1 \frac{1}{2}$-horse engine its prototype in miniature. In both we have good design and workmanship. It is evident that whoever designed these engines was brought up in a thoroughly sound Lincolnshire school. It is impossible to mistake the brand, if we may use the phrase. Messrs. Barrows and Stewart continue, we see, to make what is really the simplest engine that it is possible to build. As an example of the longevity of a good design we may cite the wrought iron frame portable engine of Messrs. E. R. and E. Turner, of Ipswich, now many years before the public. A great many other well-known firms are exhibitors of engines
and boilers, such as Ransomes, Sims, and Jefferies; the Reading Ironworks Company; Allchin, Linell, and Co.; Brown and May; Clayton and Shuttleworth; Farmer, Robey, and Co.; W. Foster and Co.; R. Garrett and Sons; Gibson and Robinson; \&c. \&c. Of some of these engines we shall have more to say in early impressions, though not in connection with the Preston show. Messrs. Marshall,
Sons, and Co, show a new chimney lifter, illustrated by
Sons, and co. show a new chimney iifter, iluustrated by

impress our readers with the value of the system. For
obvious reasons we do not give real names. "Messrs. Hawl obvious reasons we do not give real names. "Messrs. Hawl,
Pulle, and Co. show a patent geared locomotive on springs This engine is designed to meet a want which has long been felt, and which has proved a hindrance to the extended use of road engines. After many years experiments, they have devised a plan for allowing the hind axle of the engine to move up and down without altering the relative positions of the geared wheels. They claim for this engine, therefore, the following advantages over any other so-called spring engines:-Rigid driving wheels, rigid gearing, the tractive power taken by the horn-blocks, and fitted with spring draw-gear, which not only takes off the shock in starting with-gear, which not only takes encine Many of these engines are now at work, both in this country and in the colonies; and although they are, without exception, doing the roughest class of haulage, over, in many instances, very rough roads and granite stones, they
continue to work with little or no wear and tear. The engine exhibited is fitted with compound cylinders, and is practically noiseless on the road, and effects a saving in fuel of at least 30 per cent. Engines of this class have been travelling for two years about twenty-eight miles per
day with a load of 22 to 23 tons, exclusive of wagons, with the low consumption of 7 t ewt. of English Lambton nuts, which is not a high class of steam coal. They have received most satisfactory testimonials from owners of these engines. An additional saving of fuel is effected by part of the exhaust steam being utilised for warming the water in the tanks. The feed pump, which supplies water to the boiler is so arranged as to pump either into the front tank or into the boiler as may be required, the pump being kept continually at work circulating the water between the two lanks, or direct into the boiler. The pump is placed so and is that the water flows directly into the clack-box, able then forced through the pipes as required. A suitwhich cock is placed on the delivery pipe of the pump, tank or into the boiler. A cock is also provided on the exhaust steam pipe from the cylinder to the tank. This can also be worked by the driver, and the amount of "M steam sent into the tank can thus be regulated." engiessrs. Dragge, Shove, and Co. exhibit a traction which possesses several improvements worthy of special axle bearinge, to a prolongation of the fire-box shell, as is ordinarily done, they are carried on the side plates of the tender, which are made specially strong for the purpose. This method of construction entirely removes all danger front, and is undoubtedly a step in the right direction The boiler is also attached to the tender in an improved manner, so as to prevent all straining of steam joints by the side pull of tender in turning corners. A very con-
venient winding drum is mounted on the main axle hold ing a quantity of steel rope. The whole of the detail of the engine are worked out with great care, the lever are conveniently together mo that one man can enily drive and steer, and the special system of steering adopted by ove, and Co. enables the engine to be assily guided in any direction with very slight effort on rigidy held in position that the engine will proceed any distance in a straight line without attention. All the working parts are of great strength, as they need to be for working parts are of great strength, as they need to be for
traction work. The gearing is entirely of steel, the tender is of ample capacity, and the draw-bar is selfguiding for connection to the machine or wagon drawn, and is provided with a strong and elastic spring which entirely obviates those destructive jerke so common with raction engines
Messrs. Tugge and Co. show a splendid assortment of traction engines. One deserves special notice. It is fitted
with special winding forward drum, fifty yards of steel wire rope, and water lifter. The boiler is made entirely of the best mild steel, and is constructed and tested so that it can be worked with perfect safety up to 200 lb . pressure
per square inch. The engine is designed for general purper square inch. The engine is designed for general purposes, but especially to meet, in the most perfect manner, the requirements of farmers and thrashing machine prothe gearing is made entirely of crucible steel. It combines the qualities of an excellent ordinary traction engine with - handiness of fixed and portable engines for thrashcyfinder horizontal high-pressure steam engine, fitted with automatic expansion gear. The engine has been specially designed to meet the considerably increasing demand for economical high-speed engines. The wearing surfaces and steam passages are very large. The bed-plate, slide bars,
and crank shaft pedestals are cast in one piece, thus ensuring great accuracy in construction. This type of engine is also constructed for winding, or with drums and gearing for hauling, and can be fitted with a condenser if
No possible exception can, we hold, be taken to makers issving such notices to the general public as those which we have quoted above. They are quite right to praise their own wares; and we will even go so far as to add that that we are in no wise prepared to dispute that every word
is true. This is quite beside the question. These stateis true. This is quite beside the question. These stateor worth perusal by our readers, and we consult the best interests of all concerned when we refuse to fill our pages
with matter of this kind. It is, we think, to be regretted with matter of this kind. It is, we think, to be regretted
that one section of the technical, or guari technical that one section of the technical, or quasi technical, press
sees fit to pursue an apposite, course Those who best know The Exoinerer are most fully aware that we beser hesitate to expend time, trouble, or money in bringing before the world of our readers anything which commends itself as new and good. But we hold that it is not only expedient to say what an engine can do, but to explain properly how it is done, and we may call attention to the
fact that there is scarcely one derice named above valuable, which is not also old and well known.

ROBEY'S SEMI-FIXED ENGINE, WITH RICHARDSON'S ELECTRIC REGULATOR.

The above illustrations show one of Richardson's regulators as applied to an engine developing 25 -horse power, Fig. 1
shows side elevation with stand and valve gear in section. Fig. 2 shows front elevation. A A are two solenoids, within which are suspended iron cores B. To the plate C connecting the two cores is bolted the buckle D, which is prolonged into rod F joined to the long arm of a lever G, the short arm of which rests upon the plunger H , and presses upon the upper

nd of the stalk of the double beat valve I. There is a screwed nut J upon the upper end of this valve spindle, by which its solenoid, can be adjusted. The electric current cites of the terminals K K , and in so doing excites the coils and causes the cores B to rise within them, lift up the lever G, and press down the valve I upon its seat, thus reducing the admission of steam. Great care has been taken in proportioning these parts so that steam admission is as instantaneously regulated as possible in unison with the variation in the amount of work being done We are informed that the apparatus is so delicate that the
slightest change in the current if it be for are lighting, and in electro-motive force if it be used for incandescent lighting, leaves nothing to be desired. The apparatus is so simple that there is no reason why it should not continue working for many months without attention. It will be seen that while uch a form of regulator may be perfect in its action so long as he connecting wires were bre by a displacement of a lamp
and the lever to which it is attached presses upon the upper part of the plunger H , and thus clcses the valve and stops the engine.

ARROWSMITH'S PROPELLER SHAFT.
This invention is intended to prevent damage to, or loss of screw steam vessels in case of the breaking of the propelle shaft. It is proposed to have a hollow driving shaft, containing an inner one. A is the hollow driving shaft ; B, inner shafts C , disc to keep inner shaft in place ; D, solid shaft. The inner shaft is not to be keyed so as to bear any torsion, its duty being to keep a broken shaft in line, the broken shaft revolving with it. The inner shaft may be solid or holow. Its tost obvious and another in the stern of the vessel, extending through

the stern tube. These parts have the greatest strain, and are therefore, most liable to fracture. The extra cost of its application in a new vessel, or in replacing on old shaft, is small, when Messrs. Whitworth's shafts are adopted. Should the driving shat break, set screws can be inserted on each side the fracture, drive the screw so as to keep pace with vessel under sail to even to propel it so as to give steerage way. Mr . Arrowsmith, address is St. Mary's Gate, Manchester- Ir. Arrowsmith
-
Thlbury Docks.-The contract for the very large quantity of Jocks has been secured by Messrs. John Lysaght, who, it will be remembered, were the contractors for the supply and erection of similar ironwork for the whole of the large sheds in the Royal Albert Docks some two or three years since.
The South-Eastern Railway Works, Ashford. - The Society of Engineers visited the Ashford Works of the South Eastern Railway Company on Wednesday, the 8th inst. The
visitors numbered about seventy, who went to Ashford in special visitors numbered about seventy, who went to Ashford in special
saloon carriages, and were very hospitably received. At Ashford they inspected the saw-mill, carriage-building shop, wagon shop machine and smiths' shop, rolling mill, and locomotive department generally, and afterwards went by special train to Folkestone and Dover. The larger number remained at Folkestone, many of whom visited the newly, extended harbour. Twenty-three dined and Wainwright, locomotive and carriage superintendents, were the guests of the evening.
Plans for New Steel Steam Oruising Vessels for the United States Navy. - The Secretary of the Navy has issued the following advertisement and notice concerning the construction of new steel steam cruising vessels for the United States Navy:Invitation is hereby extended to all engineers and mechanics of steam engines, boilers, or ordnance, having or controlling regular establishments and being engaged in the business, all officers of the navy, and especially all naval constructors, steam engineers, or ordnance officers of the navy, having plans, models, or designs of any vessels, or any part thereof, of the classes authorised by the Naval Appropriation Act of March 3rd, 1885, to submit such plans,
models, and designs to the Secretary of the Navy. These vessels are to be constructed on the best and most modern design, having the highest attainable speed and in the manner and conformity to the conditions and limitations provided for the construction of the new cruisers in the Acts of August 5th, 1882, and of March 3rd, 1883, except so far as said Acts provide for and define the duties
of the Naval Advisory Roard. Said plans, models, and designs should be submitted within the period of sixty days after May 15th, 1885, and should be transmitted to the Navy Department, Washington, D.C. Should any such plan, model, or design be adopted or used, a liberal compensation will be paid therefor. The department will, upon application, forward copies of so much of the all letters of inquiry and furnish all desired information on the all lett,"

RAILWAY MATTERS
The death is announced of Mr．Horace Walker，J．P．，of Sheffield， a director of the Great Eastern and East Lancashire Railways，and
of several important iron，steel，and colliery undertakings in the of several important iron，
South Yorkshire district．
THE great event of modern engineering enterprise，the opening of the Severn Tunnel，is soon to taie place．It was announced for
the 1st of August；but the necessity of doubling the line for ten to twelve miles，and contending with the land spring at Portskewett，
have somewhat retarded operations．It is possible，also，that a slight postponenent may follow if the Board of Trade insists
a mid－channel shaft for supplementing the ventilating fans．
AN American contemporary says ：－A special committee on rail－
road axles have by a majorty reported that iron axles are
safer than steel axles，that all the cranks should have the webs hooped，that as ison，cranks appear to fail anter running about
200,000 miles，and steel after 170,000 miles，it is highly 200,000 miles，and steel after 170,000 miles，it is highly desirable
that they should be taken off and never again used in passenger that they should be taken off and never again used in passengee
engines，and that crank axles properly constructed are as strong as
straight axles．To what country the committee belongs we are not told．
MAJor－Generral HuTchinson，inspector under the Board of
Trade，made his official inspection last Saturday week of the tram way line running from Birmingham to Dudley vid Smethwick and Oldbury．The Smethwick Local Board complained that the
company had not complied with the instructionsof the Board i making the line，and the innpector announced his intention o
withholding his certificate for that portion of the line runnin through Smethwick until the requirements of the Local Board had been complied with． He ，
other portions of the line．
IT is stated that the Russian Government has been making
secret inquiries in Teheran as to whether the Shah would inclined to permit a Russian company to build a railway from Tifilis to Teheran．Russia wants the line to run through Baku and
Resht，along the shores of the Caspian；but the Persian Govern－ ment wishes，for important strategical reasons，to have the railway
laid down direct inland from Teteran to Tiftis．A direct line，in
cose the case thu cossians use it to convey an army to Persia，would be protected by Russian gunboats．
WITH the view of checking the delays and inconveniences whic
arise from the practice of requiring railway companies to carry large
quantities of luga quantities of luggage in excess of all reasonable personal require the luggage exceedd the stipulated weight per passenger．The
weights allowed free are ：－First－class， 120 lb ．；second－class，

 THE accidents on the United States Railways，in May，are
classed by the Railroad Gazette as th thir nature and causes，as
follows：－Collisions Collows ：－Collisions：rear， 19 ；butting，4；crossing， 2 ；total，${ }^{\text {D }} 25$
Derailments ：broken rail， $1 ;$ broken frog， $1 ;$ broken bridge， 2,
 misplaced switch， 2 ，open draw， 1 ，rail removed for repairs， 1 ，
purpoosely misplaced switch， $1 ;$ dynamite exploded on track，
malicious obstruction accidents：boiler explosion， 1 ；broken wheel，not causing derail
ment， 1 ；car burned while running， $1 ;$ total， 3 ．Grand total， 62 ． AN express day service between London and Antwerp will
commence on the 25 th inst．，when the Great Eastern Railway
Company will run a special continental train from Liverpool－street Company will run a special continental train from Liverpool－street
Station at 9 a．m．In connection with this train its fast stel
paddele steamer Adelaide will leave Harwich - Parkeston Quay－ th 11 a．m．，arriving at Antwerp the same eveneningeston Quay－The service
will be run every Wednesday and Saturday，and there will be will be run every Wednesday and Saturday，and there will be a
corresponding morning service from Antwerp on Tuesdays and
Fridays，reaching London the same night．The ordinary week－day gervice leaving Liverpool－street Station at 8 p．m．every evening，
reaoching Antwerp and Rotterdam early the following morning， reaching Antwerp and Rotterdam early the
will be run in addition to the new day service．
THR opening of the Hull and Barnsley line and the Alexandra
Dock，on the 16 th inst．，is expected to largely benefit not only the port of Hull，but the South Yorkshire coal trade，by the reduction of the rates of carriage，of which the coalowners have long com－
plained．The new ompany intend carrying a large tonnage of
coal from the West Riding to Hull，and thence by sea to the coai from the West Riding to Hul，and thence by sea to the
Thames．The Nottingham and Derbyshire coalowners expect also
to benefit by the opening of the new dock at Boston carried by sea to London at something under 2s．a ton for every
100 miles，and the railways charge from 4s．to bs．per 100 miles． There must be room for reduction here，and the opening to the
two new dooks may preipitate a concession to the grievously harassed Yorkshire coalowners，
them Kansas City，Mo．，June 16th，says ：－＂A train appeared on the top of the steep incline on the new cable road，near
the Union Depot，yesterday atternoon，and dashed down at a
fearful rate of speed．The train was composed of two cars and a grip car，and was filled with passengers，who when they saw the
train beyond control，endeavoured to escape，but remained in the
 the plane at the depôt it collided with another train．Four men
who were on the grip car were seriously injured．One had both
legs amputated，and will die．The road has been in operation ont legs amputated，and will die．The road has been in operation only
two days．The accident was caused by the gripman becoming xited and losing cont
ThE tendency of the railways in the United States has been to combuns rail way admininstration in the world．The whole raililay
tinuupan
mileage in the United States and Canada is about 120,000 miles， nd nearly half，or 57,954 miles，is in the hands of fifteen companies which in turn represent the amalgamation of a greater number of
corporations．The magnificent distances traversed by these rail ways are as follows：－Missouri Pacific， 6045 miles ；Chicago
Miilwaukee，and St．Paul， 5804 miies ；Chicago and North－western

 2799 miles；Southern Pacific，2789 miles；Baltimore and Ohio，
737 miles；N Northern Pacifer
2766 miles ；total， $57,954.4$ ． 2549 ；Louisville and Nashvile， AskING whether in case of acoident it is better，should couplings
hold or break，a correspondent，＂．M．G．＂writes as follows to an American contemporary：－One day last winter 1 was a
passenger on a train，the bagage and express oar of which left
the track and went down the bank，dragging with it the smoker， which was next behind it．The near coupler of the smoker gave
way，and the car in rear of the smoker，with the others behind it， way，and the car in rear of the smoker，with the others behind it，
remained on the raiis．Hence the breaking of a coupling operated
to save a part of a train from derailment．In the instance specified below the holding of a link had the effect of preventing a wreck，
On February 23rd，1885，as train No． 31 of the Erie and Pitts－ burg－road，Donlin，conductor，reached a point $1 \frac{1}{2}$ Erie andes north of Albion Station，an axle in the forward truck of a loaded box－ar
broke just inside the wheel．The wheel fell between the rails with jourral side up，and was caught and held by the sand－board，or
lower bolster，of the following truck．The dismembered truck
went into the ditch，leaving its end of the car hanging on its coupling．The ditco，link of thing its enupling of the car car hanging on thisabled car，its
hauded the train behind it，with the detached wheel skating along haued the train behind it，with the detached wheel skating along
the ioy road－bed，as far as Allion，where the break was discovered．＂

NOTES AND MEMORANDA． Ir is said that a rich find of siver chlorides has been made on the surface of the Broken Hill claim at silverton，New South
Wales，which is said to run through a lode over 2oft．wide．The creat many claims have lately been pegged out along this line of country for miles．
Rervens just available show that the shipping trade was parti－
cularly active at Glasgow during the past month．The inward onnage amounted to 126,646 ，or an increase of 30,387 tons；while
the sailings were 144,701 tons，or an increase of 7968 tons， 0 On the the saings were 144， 01 tons，or an increase of 7968 tons．On the sailings in the same period have decreased by 23,049 tons．
A NEW alloy，a combination of manganese and tin，is being
brought out by Messrs．Billington and Newton，of Longport．The in and manganese are said to be amalgamated under a new process，
the result of a series of costly experiments．The new alloy is the result of a series of costly experiments．The new alloy is
offered as suitable for bearings in which shafting is required to run at a high speed，for steam ship propellers，and other purposes for wh
a high degree of tenacity and closeness of grain are requisite．
Nrrroges is solidified at a temperature of－ 214 deg．and under inder the pressure of 35 atmospheres．By carrying the rarefaction to 4 mm of mercury，the author has succeeded in obtaining a
temperature of 225 deg．The solidification point of carbon monoxide is－ 207 deg．with a pressure of 100 m ．of merourn．
Oxygen stills remains．liquid at a temperature considerably oxygen still 8 re
below -211 deg．
THE results of eleven months＇use of toughened glass beakers are Chus summarised by Mr．．R．F．Friswell，in a paper read before the
Chemical Society：－＂of twenty beakers，two burrst spontaneously， $=10$ per cent．；one burst on hot water being poured in，$=5$ per
cent．f six beame useless from fissures and enfoliation，$=30$ per ent．，eight are in good condition，$=40$ per cent．；three have been
roken by unknown means，$=15$ per cent，Taling into considera tion the loss of confidence caused by the high percentage of spon－
位合 Taneous bursting，it may
ailure in the laboratory
A PAPRR was recently read before the Physical Society Lodgetream－Lines of Monving Vortex－Rings，＂by Professor O．． y a series of as given by Sir W ．Thomson in his memoin on vortex motion，and joining up the corners of the quadrangles so formed．This opera－
tion is very simple，and by its application a number of the more emarkable properties of vortex rings may be obtained，the general of the highest order．Drawings were exhibited showing the nature and behaviour of a single vortex ring moving with different velo－ itites，a vortux ring approaching a a large dist．
of two unequal rings，and many other cases．
A battrer with a circulating liquid is described by J．Carpentier
Compt．Rend．，100，849－851）．The essential part of this bett s a syphon with unequal limbs，both of which are plunged in the re placed the electrodes the exiting sod carbon，and the syphon is filled in any convenient way．So long
as the cirouit remains open the liquid in the syphon remains homo－ as the cirouit remains open the liquid in the syphon remains homo－
geneous，and equilibrium is maintained，but as soon as the cireuit Is losed the eqnine dissolves and increases the density of the liquid
in whid
in which it is immersed．Hydrostatic equilibrium is thus dis－ urbed，and a circulation of the liquid is established proportional to the intensity of the current．The heavy liquid containining the
anc falls to the bottom of the vessel and remains distinctly sepa－ inc falls to the bottom of the vessel and remains distinctly sepa－
rated from the fresh solution，whilst the latter continually ascends the short limb of the syphon and is brought in contact with the

Soxk experiments of L．Forquignon upon malleable iron led him is melting point cast iron，at a temperature somewhat inferior to its metting point，is decomposed into free graphite and a purer
carburet of ron．He accordingly heated east iron in a vacuum，to a temperature of from 900 deg ．to 1000 deg．．．，for several days，
without melting or softening．The metal became malleable，and ith surface was covered with a dull grayish effloreseence，which as som a mark upon paper or on rough porcelain．The racture ometimes it was dotted with black graina of amorphous graphite regulary disseminated throughout the mass．It seems probable
that this partial decomposition depends upon a tendency to uuilibrium between the carbon，the iron，and the carburet of iron， The thentive proportion of each of these bodies beene the ecomposition of a homogeneous solid
of the of the tel
into two
menon．
AN abstract of a paper on the examination of potable water，by ． nethod recommended by the author for the chemical examination of water consists in adding to a litre of the water，enough ferrio chloride to correspond with about 5 mgrms．of iron．The ferric chloride should be as nearly neutral as possible．Under these conditions，ammonia，nitrites and nitrates are left in solution，
whilst other nitrogeneooss substances are carried down with the rrecipitate of ferric hydroxide．By heating this with soda－lime bis treatment cloudy water is completely clarified and vellow moor－water decolorised．The process has been applied with
success on the large scale in Holland for the purifation of drink－ ing water，especially during diarrhoea and cholera epidemics．In the pure cultureal examination of water，the author prefers to develope commended by Koch．The water to be tested is mixed with a clear sterilised yeast decoction．By sterilising this again，certain bacteria
re either killed or rendered inactive，while the others from their are either killed or rendered inactive，while the others from their
superior vitality survive and develope．By a process of progressive superior vitaity survive and develope．By a process of progressive
sterilisation，beginning at low temperatures and gradually ascend－ teriisation，beginning at 1ow
The behaviour of the different modifications of carbon towards ron at an elevated temperature has been made the subject of
xperiments by Mr．W．Hempel（Ber．18，998－1001）and these have been described in the＂Journal＂of the Chemical Society．In the experiments，the author employed commercial malleable iron－
foil containing 0.021 per cent．carbon， 0.04 per cent．silicon，and coil containing 0.021 per cent．carbon， 0.04 per cent．silicon，and
0.336 per cent．manganese ；the diamonds were perfectly colourless， and were previously heated to redness in an atmosphere of chemically pure sugar to a white heat．A comparative experiment is described in which a piece of foil was covered at one end with
amorphous carbon，in the middle with diamond－dust，and at the amorphous carbon，in the middle with diamond－dust，and at the
other end with graphite（crystallised from cast iron）；the whole Was heated for about two hours in a current of nitrogen to the nent the higher temperature of a blow－pipe，the iron was converted into portions covered with amorphous carbon and graphite appeared to be unaltered．The lowest temperature at which carburation takes 1160 deg．The carburation by means of Pmornhous carbon wa effected in a Schlosing＇s furnace，and the lowest temperature at
which grey iron is formed estimated at 1385 deg，to 1420 deg．On exposing iron placed between carbon poles（in an atmosphere of
nitrogen）to the temperature of thbe nitrogen）to the temperature of the electric are，white iron is pro－
duced．The different behaviour of the diamond and of amorphous phosphorvasts iron is compared to that of white and amorphon phosphorus to solvents．

THe prospectus has been issued of a company proposed to bo incorporated to construct waterworks under concession from and
for the free town of Szegedin，in Hungary，Messrs．Owen and
Elwes，Westminster，being the engineers A W ，
9th，Sir John Lubbock presented the medals and the certificate to the successful exhibitors at the Exhibition held in Dublin．Prof．
W．H．Corfield gave an address on＂The Water Supply

Mr．J．S．Dixov，president of the Mining Institute of scolland stated at a meeting of that body held at Hamilton a few days ago，
that the arrangements for the forthcoming exhibition of mining machinery were making satisfactory progress，and that a consider The exhibition is to be held in Glasgow at the same time as the autumn meetings of the Iron and Steel Institute
The Paris Petit Journal lately published an article，presumably
intended to be serious，on bottled energy－＂La Force en Bouteille，＂ intended to be serious，on bottled energy－＂La Force en Bouteille，
After passing in review the various methods－mechanical and After passing in review the various methors－mechanical and
electrical－for storing up energy，the writer gravely proposes to
ntilise the utilise the momentum of trains in motion，not merely when they pumps for compressing air and bottling it，to be turned to account

The engineer to the Local Board of Petersfield，Hants，Mr neighbourhood of the own for on，has been sinking a shaft in the was chosen so as to get a supply from the Hythe beds and avoid the ferruginous water which is found in the overlying Sandgate depth of between 70 ft s．and and 8 ft ，an abundant supply of very pure
depth
soft water has been reached． A NEW appliance for drying and superheating steam has been As superheaters in the fire－box act unequally，and are Hanover解 composed of a chest traversed by tubes forming a continuation o thus superheated by contact with the outsides of the steam an位位side of the chest，both heated by the products of combustion THE centenary of the establishment of the Dartford Ironworks
known as J．and E．Halls，but now carried on by Messrs．Everard Hesketh and Bernard Godfrey，was commemorated by athleti a memorable success，every detail of the diverse arrangemen being carried out with the utmost efficiency under a large com．
mittee．In the course of the evening Mr．Hesketh gave a lengthy description of the rise and progress of the works，and of the lif Dartford Times of the 8th inst，gives a full account of this history and of the proceedings of the day．
IT appears that there are upwards of 600 local electric lighting
companies in the United States and Canada．If to the are and ncandescent lamps ind hese companies could be added th lamps belonging to isolated plants and private persons an
institutions，some adequate notion might be formed of the rapil advance of electric lighting and of its solid basis．All Europ
cannot show figures to match those of the United States in the department of public lighting．One field in which greater develop
ment has been made in Europe is that of ship lighting，for the reason that Europe has more ships than America of the sea－going
class．Another field is that of installations in miniature for city AT a depth of about 1100 ft ．Messrs．Allhusen have been succes ful in finding salt in two further bore holes at their Cowpen Marsh Works，Port Clarence，Middlesbrough．Their evaporating plant
and that of the Haverton Hill Salt Company，are both being pushed forward vigorously，and it is probable that by Septembe We also understand that at Eston the bore hole which is being sunk by Messrs．Bolokow，Vaughan，and Co．is now within
distance estimated at less than 200ft．of salt．In the course of year or two Teesside and the Middlesbrough district will probably
be as widely known for chemical works as hitherto for the produc－ Os Tuesday，at a meeting of the City Commission of Sewers，it companies to supply electricity，it was desirable that the Commis sion should undertake street lighting by eletricity，and that it be
referred to the Streets Committee to select a small area and obtain estimates of cost of instailation．
the lighting authority，under the Act，for the Co City，and they wad experimental lighting of a small area，the cost of which should not exceed $£ 1500$ ．After some discussion，it was deoided that the
whole subject generall should be referred to the Streets Com－
mitteo to consider and report． mittee to consider and report，
Messrs．Janks Tayior and Co．，of Birkenhead，have just
ompleted a large 60 ton steam－fixed crane for the Japanese Government．The machine is to be immediately sent to Yoko suka，near Yokohama．The crane，when fixed，will be close upon
50 ft ．high， masonry．It has a sweep of 46 ft. radius，and has a＂live＂ring
with a series of rollers working on a jib is of steel in the shape of two colindrical．masts united at the
top and terminating with rope pulleys all in one structur top and terminating with rope pulleys all in one structure．The wire．The crane is provided with four different speeds so as to lift quicelly lighter loads down to five tons．The machinery is so
arranged that it can be worked by one man．The motive power is supplied by a pair of engines of about 15－horse power．
Messis．Alex．STEPHEN AND Sons，shipbuilders，of Linthouse Denison＇s patent suspended weighing machine．This machine is very easy and handy to manipulate，and has no loose weights
it is also extremely sensitive for so large a power，and indicates weight of 7 lb ．with its full load on．The machine is made entirely of rorged iron and steel，and weighs only 19 awt． 1 qr． 4 lb ．The
makers of this tool are Messss．S．Denison and Son，of Leeds，who are the originators of the system of weighing large weights in sus
pension by means of compound leverage，and who olaim for all these appliances enat，of sencont．of their capaity．Messrs Stephen wil now be able to ascertain with certainty and the smallest amount of trouble the exact weight of their marine boilers，tanks，engines
\＆c．，as they are being lifted into the ships，thus saving a grea amount of worl．
The members of the Société des Ingénieurs Civils，of Paris，have been invited by the Association des Ingénieurs sortis de 1 ＇ ＇cole e ed
Liege to visit the Antwerp Exhibition and other point of interest． of sleeping cars to fetch their French confreres，who are timed to arrive at Antwerp at 3 p．m．， 9 th A August，when there will be the
inevitable vind On the 10th，a visit to the Exhibition will be followed by a banquet the guidance of the engineers of the Ecole de Gand．The 12t engineers of the Ecole de Gand，the Ecole de Louvain，and the special engineering school annexed to the Brussels University．
On the following days there will be alternative excursions to Ghent and Louvain or to Lioge and Spa，including the Cookerill this year prevented the Liege engineera from paying their retum visit to the members of the Institution of Mechanical Engineers，

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

* This week a Doulle Number of The Enginker is published
containing the Index to the Fifty-ninth Volume, a large quantity of extra matter, and a Supplement comesisting of a a
doublepase engraving of double-page engraving of a Four-coupled Passenger Engine,
Great Southern and Western Railvay of Ireland. Price of the Double Number, 1 s.

TO OORRESPONDENTS.

*All letters intended for insertion in The Enainker, or containing questions, must be accompanied by the name and addaress
of the writr, not necessarily for publication, unt a a a prof of
good faith. No notice whatever will be taken of anonymous communications.

* We cannot undertake to return drawings or ma
must therefore request correspondents to keep copies.
must therefore request correspondents to keep copies. it necessary to
${ }^{*}$ In order to cooid trouble and confusion, ,eve find
${ }^{*}$ In inform correspondents that letters of inquury addressed to the
pubbic, and intended for insertion in this coumn, must, in all
cases, be accompanied by a large envelope legibly directed by the
 ansovers received by us may be forworrded to to their destination.
No notice will be taken of communications which do not comply K. (Eastbourne). We wevisise you to advertise for a maker of the bolts in

Thi Exoringre can be had, by order, fiptions.

 Cloth cases for binding The Exainerr Votume, price 2a, bd, each
A complete set of Ther Exarnerr can be had on application.

adVERTISEMENTS.

 Advertisements cannot be inserted unless Delivered

DEATH.
On the 13th July, nt his residence, 2 , Endsleigh.gardens, Geonos
(ioroos PAcE, M. Inst. C.E., in his 49th year. Australian papers, please

THE ENGINEER.

$J U L Y$ 17, 1885.
the distribution of armour in ships of war. An official publication has recently made its appearance, being the substance of two lectures delivered at the Royal
Naval College, Greenwich, by Mr. W. E. Smith, Instruc-
tor in Naval Architecture at that establishment, and tor in Naval Architecture at that establishment, and
Assistant-Constructor at the Admiralty. The subject treated upon is identified with the controversy as to the
value of the continuous belt in armour-clad ships, and the value of the continuous belt in armour-clad ships, and the
merits of the citadel system. An introductory note by Sir Nathaniel Barnaby, the Director of Naval Construction, gives peculiar importance to the succeeding pages, testi-
mony being given to the qualifications of the lecturer and mony being given to the qualifications of the lecturer and
the accuracy of his facts. It is evident that the dissertation contained in the book is intended as an official defence, and embodies a reply from the Admiralty experts to those critics who have assailed the character of the armour-clads Whitehall. The lectures, in the form which they now present, are therefore authoritative, and in that respect
possess more than ordinary significance. Happily the possess more than ordinary significance. Happily the
various points at issue are discussed in a calm and logical spirit, the relative advantages and disadvantages of the
two systems being brought forward in two systems being brought forward in a manner
not only practical, but we might say also philosophical. The fiery declamations and onslaghtst of Sir
Edward Reed are here met by hard facts and cool arguments, care being taken to elucidate the true conditions of the problem. Indeed, it is on this point
that everything turns. The naval architect is limited that everything turns. The naval architect is limited
by certain conditions, beyond which he cannot escape, and his skill has to be shown in the exercise of the principle of selection, taking care that he does not lose more in one
direction than he gains in another. Imperfection must be accepted as inevitable; but in no respect is a ship to be so imperfect as to admit of her speedy destruction by any
possible mode of attack to which she is liable to be possible mode of attack to which she is liable to be
subjected, If an agreement could be arrived at as to the
relative values of the various risks to be encountered by any one ship, little room would be left for difference of
opinion as to the best balancing of imperfections. Excess opinion as to the best balancing of imperfections. Excess
of size is itself a defect in a ship, and this fault would be of size is itself a defect in a ship, and this thick and exten-
the necessary outcome of a demand for sive armour, enormous guns, great engine-power, large
coal-carrying capacity, and the like. Cost also has to be coal-carrying capacity, and the like. Cost also has to be
considered, and although it is said that the nation is ready considered, and although it is said that the nation is ready
to vote all the money necessary for creating and maintaining a powerful navy, an expensive ship is not generally approved.
Newspaper authorities and parliamentary orators dealing with naval questions will do well to study the points to which attention is drawn in Mr. Smith's lectures. Perhaps,
as suggested, some of these gentlemen would like to see a as suggested, some of these gentlemen would like to see a
ship with a continuous belt of armour ranging in thickness from 24 in . down to a minimum of 18 in . As to guns, possibly four of 150 tons each would be thought desirable, supplemented by a dozen 6 in. guns. As a defence against
torpedoes there might be an inner bottom of 4 in . armour torpedoes there might be an inner bottom of 41 in . armour
at a distance of 10 ft , from the outer bottom. Speed must doubtless be 20 knots. All this can be had if we submit to a displacement of something like 25,000 tons, and a cost
not far short of $£ 2,000,000$. The ship must be more than not far short of $\pm 2,000,000$. The ship must be more than
500 ft in length, her beam about 7 fft ., the mean draught 508 ft . in length, her beam about 75 ft ., the mean draught
28 ft , and the indicated horse-power about 30,000 . But her armour would not be absolutely gun-proof, and there would be no actual protection against ground mines. Whether any mortal man could efficiently command such a huge machine is a matter of doubt. Notwithstanding the great power of her engines, such a ship would be difficult to handte, and might be out-manceuvred by a shorter vessel, capable of turningmorerapidly. Passingaway from thisideal
monster to ships of practical size, we may see how the monster to ships of practical size, we may see how the increase of any one element of efliciency has to be balanced by a decrease in another direction. We may compare a ship having an armour belt from end to end wive another hang only a short belt. The latter will have a displacemeni of and four 63 -ton guns. The ship with a completely protecter wat will be reduced to 15 lnots, and her four tons, her speed will be reduced to 5 knots, and her four guns will only be of 48 tons each. At some points the bigger hip will have 8 cker anm points the short-belted ship will have the best protection On the whole, the fuly belted ship we most armour, yet the other will have the best defence for the
loading gear of the big guns. If we go to a larger size, loading gear of the big guns. If we go to a larger size,
and have a fully belted ship of 11,200 tons, the speed i till 1 knot less than that of the short belted, and the coal capacity will also be deficient. The guns will be three of 75 tons, and the loading gear will be imperfectly protected A useful comparison can be made between the Camperdown and the Dreadnought. In the former the maximum hickness of side armour is 18in., there are four 63 -ton guns, the speed is 16 knots, and the displacement is 10,000 cons, In the Dreadnought the maximum thickness of armour is only 14in., the four guns are of 38 tons each, the speed is 14 knots, and the displacement is 10,800 tons or the latter it may pleaded that the hull is completely protected along the water-line ; but it would appear tha this advantage has been purchased at the sacrifice of other
valuable qualities. The latest types of English battle valuable qualities. The latest types of English battle
ships are spoken of as being all central citadel ships the turret ships having a comparatively high and shor central citadel, and the barbette ships a shallower but longe belt. As an example of the turret central citadel ship we
have the Agamemnon. The armour composing the citadel have the Agamemnon. The armour composing the citade
extends for a length of 10 ft ., and reaches from 6 ft under water to the upper deck. At the ends of the vesse there is no side armour at all; but a 3in. under-water
deck runs from the end of the central citadel forward to he stem, where it gives thorough support to the ram, and aft to the stern of the ship, where it protects the compartments below it. It is very difficult for a projectile to get either through or below this deck, on account of its
being so far under water. Projectiles striking the hull near the water-line will simply go through the ship abov the deck, and the inflow of water cannot extend below.
On the other hand, it is argued that a heavy projectile on the other hand, ited ship in the region of the water line where the belt is thin, would get through the side armour, and under the protective deck, which is on
the top of the belt. Hence the projectile would reach the vitals of the ship, and might blow her up by firing the magazine. It is claimed for the under-water deck of the central citadel ship, that it prevents all risk of such catastrophe. Supposing the magazine of the belted ship not to be touched, a very large and perhaps fatal quantity the protective deck, this deck being above the water-line In the citadel ship the top of the protective deck is no only below the water-line, but is covered by coals and ends stores, which serve to exclude water when the thin partially so, and the thin ends are riddled by shot and shell, so as to admit water on to the protective deck draught as when the ends are riddled and all the store are in place. Thus the Inflexible with all the stores and coals on the under-water deck in their place, and her
ends riddled, would sink 23 in. below the load-dranght with riddled, would sink 23 in . below the load-draught ; bu the ends riddled th sinks the coal and stores gone, the sinkage below the loaddraught is as little as 15 in . Moreover the stores on the compartments all of which must be destroyed before thes sinkages can be brought to pass
An objection to the citadel ship lies in the fact that the ends being formed of only thin plate are readily penetrable, and probable. But if the belt were carried to the ends of the vessel, and all her existing qualities were retained unmpaired, there must necessarily be an addition of more less security against certain risks than there was previously.

Thus the steering gear would be more exposed, the and it would be more likely that the damage caused by monster projetiles would completely flood one both monster projectiles would completely food one or bown nder whe The ffect of the change is thus described: Inder water. The effect of the change is thus described: In attempting to obviate the risk admating a moderado we have or waly irese the we have largely increased the risk of having fatal quantities of water admitted, besides which we have
increased the probability of the ship being blown increased the probability of the ship being blown
up, or rendered unmanageable by damage to her steering gear. At the same time the size of the ship has been greatly augmented. A very strikig destrip. tion is given by be min as to the moting which belted ship may be capsized by water entering through steaming is sufficient to send water in above the belt, when steamm is suluth a shot has entered a the process is much more sea-way, and the vesh, the vessel be rolling, the water fous the side that rises to the one that descends. Going to the lower side, water outside; impriso wate com in faster than it water outside, honce thltimately cosize The at 1 goes out, and trophe can only be prevented by stopping the holes, or by dhe effect of water-tight subaisions remaining intact despite the enemys ire. thels hel bodel has capsized demonstrate this fact, and the belted model has capsized as readily as the other. But the result depends on having the water agitated. If the surrace remadhad dead leve the belted ship whal no io hove be fulfilled, the mere passing through the water when steaming at high speed being sufficient to create a confar as mere sinkage is concerned, it appears that the Tnfexible goes down min. more when she takes in ther wher were completely ridaled and the wesestroyed In the Wavir
 than that caused by in the Agamemnon, 2in. Ho the faflexible the effect is vood, and the Camperdown. The last named sinks sin rood, and the Camperdow. hy hasl 1 ind nore in coaling than she would by riddling. Accordingly, we are told the amo oing and fighting qualities in the ship, cannot itself be hange trim. If only one end be ruarily, admitted to the hange trim unless water bolkariy ad bed to the ther end, and for this provision has been made went to cause much inconvenience to those on board, and loes not imperil the ship in the slightest degree. In summing up his arguments, the lecturer says he does not wate toeainst the machine-gun and small gun than is the sentral citadel ship, or that the belted ship could be central citadel ship, or that the complete destruction of her upper orks, But he ontends it is alogether as some do, that the possession of a completely armoure water-line takes away all serious risk with regard to the "re of light guns. He says it is perfectly true that the
"Admiral" type of ship is destructible by light guns "if hey have time enough." Bat, he adds, it is also "perectly true" that the belted ship is destructible by the same weapons, and is more likely than the citadel ship to In destroyed by the big gun.
In discussing the behaviour of ships in a sea-way, Mr. Smith says that both resistance to rolling, and stability are necessary to safeguard a ship against capsizing. It is a
singular, and, we may say, a happy circumstance, that the resistance to rolling is increased when the ends of the itadel ship are perforated and water is admitted. This principle is tare perforated and water is alled the "water chamber," which enters into the design of the more recent our battle ships, and has been tried on a large scale in the Inflexible. Into all the details of the official defence we cannot at present enter; but what we have said may most carefully worked out by Mr. Smith, and the principles aid down are of extreme interest. Perhaps the lecturer has done more to show an equality of risk than a superior degree of safety as between a citadel and a belted ship. he fis of the case is simply another expression the he fact fighting means mischief, exemplifying the grs. Cerainly the make omeleles wio is made to
 claimed for it by some eminent advocates.

TORPEDO BOATS.

The experience acquired during the cruise of Tho Evolutionary Squadron on the coast of Ireland has not once to to bers. It did ning the performing powesight toper boat built of steel plates one-eighth to one-sixteenth of an inch thick was not well calculated to bear the shock of a collision or to jump a heavy boom. It was also obvious, made not quite so obvious, that a crat as well as below it, would be as unsinkable as a corked bottle. The torpedo boats stood rough weather very well in a
sense, that is to say, they did not sink, although two of them leaked, and they could steam at a fair rough wndeed, German experience goes to sming at such a pace that they will go through rather than over the could effect anything in the way of attack during a moderate gale. Her excessive liveliness would render it impossible to despatch a fish torpedo with any accuracy of aim; and be extremely unsatisfactory. One thing, however, certain, and that is, that in the smaller torpedo boats, at
all events, the motion in a rough chopping sea is so violent and incessant that no crew can stand it for many hours. Cooking becomes impossible; the accommodation on board is miserable, and must of necessity be so ; and it is exsleep. All which goes to prove that the smaller type of water, such as harbours, and rivers, and bays. This doe not mean that they are useless, but only that their utility is limited '' and any ironclad having a good offing would be quite safe as far as torpedo at
blew pretty hard with a rough sea.
Of late the principle involved in the torpedo boat has been extended, and craft of the kind of considerable There is still, however, we think, too wide a gap betwee even the largest torpedo boat and such a ship as the nay in worla presert posble of steamin at a very high speed, and yet it seems certain that vessel of the kind could be made extremely useful. A boat o this kind built of steel, as light as it is possible to mak her, and of good form, ought to attain a speed of 20 knots with about 2000-horse power-possibly less would do. For various reasons this, however, would best be divided of 20 knots an hour is make 300 revolutions per minute, a pitch of 6.9 ft . would suffice to give this speed, provided there was no slip.
Allowing 20 per cent. for slip, then a pitch of 8 ft . 3in. would do very well. The engines would be of moderate size. With a stroke of 2 ft . the piston speed would be
600 ft . perminute. Now 1000 -horse power $=33,000,000$ footpounds per minute, and $\frac{33,000,000}{600}=55,0001 \mathrm{lb}$. as the average gross effective pressure on the pistons. Referring the
power all to one cylinder, and taking the average effective pressure as 50 lb . on the square inch-corresponding to an absolute boiler pressure of, let us say, 175 lb . on the square inch-we have $\frac{55,000}{50}=1100$ as the number of square inches required in the piston. This is the area of a piston
$31 \pm$ in. in diameter. We have here the elements of compound engine. The low-pressure piston will be $31 \frac{1}{2} \mathrm{in}$. diameter; the stroke 2 ft .; propeller about 8 ft . in diameter by 8 ft . 4 in. pitch. All these are perfectly manageable less in proportion than that provided in an ordinary torpedo boat, being only 4-horse power to one ton of displacement; whereas in torpedo boats it sometimes rises remembered that as the displacement increases the propelling power required for given speeds rapidly decreases knots an hour with very little more than 1 -horse power per supplying steam by the aid of boilers working with a forced draught.
Such a craft as we describe could be made to play works could be very small at all events when she was in fighting trim she would be very difficult to hit at any distance with a gun of some size; and
it would be quite possible to make her turtle-back deck proof against the fire of machine guns, save at very short ranges, over at least all those portions which and the protection, such as the engine and Men could live on board such a craft in some comfort; and she would in time of peace make an admirable despatch boat, running at 15 or
16 knots with a very small consumption of fuel. As to her armament, that would be matter for consideration. She would be provided above and beyond all else with tage be fitted not only with the ordinary fish tor pedoes but with torpedoes to be towed. These would prove very useful in case she was attacked by torpedo
boats herself, as with a little mancuuvring she could perhaps get them foul of the towing line, when their disablement would be tolerably certain. Possibly more may yet be heard of towed torpedoes coming along in the and towed broad off either beam at pleasure by device well known to sailors. In addition, our imaginary craft he prow the tight as well running away as at any other time
It is of course out of the question to do more than which might, we think, be added to our navy with advantage. It is not to be supposed that 250 tons displacement possesses any charm, or that it may not be departed from
either way. As soon, however, as we go much above it we get a vessel too big and costly for its purpose; while i we go much below it the hull will be too small to carry displacement of 250 tons, a very satisfactory craft can be produced, which would be much more generally useful than any torpedo boat now afloat. There is no drift of opinion among qualified authorities is in favour of big torpedo boats. In all probability, however, the to have them.
celyon railways.
On the 20th May last the first through train from which has just been added to the railway system in Ceylon. The total distance to which this main line has now been opened is but 130 miles; a length which may appear to be insignificant, but which ceases to presen
that appearance when the character of the works upon it is taken into account. These are among the heaviest which have ever been undertaken, and the fact that this
comparatively short length of line reaches an altitude of

5291ft. must suffice to afford evidence that the obstacles to be overcome have been of a decidedly serious nature. We purpose to indicate the chief of these, and to quote nvolved in the attainment of the present terminus. For the first fifty miles from Colombo, the rails-as a single line-are laid, comparatively speaking, almost through a level country, but when that distance is reached the he succestanced by the great Kadugannawa incline, to the skill of its designer, Mr. G. I. Molesworth, M. Inst. C.E, the present Director-General of Indian State Railways. This incline carries the traffic up to Peradenia, about seventy-one miles from the starting point, and to an elevation of 2000 ft . above sea level. At this place there is a junction, whence a branch carries the traffic into the mountain capital, Kandy, and thence on to a northern xtension of seventeen miles to Matale
The great Kadugannawa incline alluded to has a length of $11 \frac{2}{4}$ miles, and constitutes the first attack upon the ormidable barrier of mountain ranges which occupy the southern central portion of the island. The total rise is 1388 ft ., to attain which a continuous gradient of 1 in 45 had to be adopted, while the sinuosities of the mountain is, perborced curves as low as ofleft. radrus, the low country to watch at night the descent of a heavily loaded train down this incline. With steam shut off and full brake power on, its whole course appears a streak of flame in the darkness, from the commencement to the terminaion of its descent. Severe as are the conditions under which this incline had to be constructed and worked, they are surpassed by those which have had to be contended with in the extension, the completion of which we now
chronicle. The more the heart of the hill country is hronicle. The more the heart of the hill country is解 the sharper becomes its features as they trend described the extreme ranges. On the first incine above crved was thought that the limit of grasibility to fe and coen reached, so as to insure a possis for ong time fears working of very heary ould be necessary to rest and be thankful at a point, Nawalapitya, some eventeen miles beyond Peradenia. On the section between these two places, the works required, though exceedingly pitya, however, the course of the line just completed ad to be lide the course of the line just completed ifficulties laid through a country presenting natural Kadugannawa incline, and the boldness of the engineers has been taxed to the utmost in the provision of means to vercome them.
It must be remembered that it was a sine qua non for this last extension that it should in every respect be suited to
the necessities of first-class traffic No reversing stations the necessities of first-class traffic. No reversing stations
were permitted, still less any break of gauge, while the were permitted, still less any break of gauge, while the
passage of the rolling stock from the low country was to e continuous We find, therefore, that to meet these equirements curves of as a radius as 300 ft . had to be adopted, and these upon inclines of 1 in 44 . The curvature was of almost continued reversal to enable the line to wind in and out of the mountain spurs. We shall, perhaps, best convey an idea of the character of the works now terminated by placing before our readers in a tabuthed form the pasticis of the several great inclines of he world in comparison with those on the Ceylon Railway.

The last in the foregoing list is included within the xtension now just completed. Its extreme curves and radients, when associaplet show its exerity not met with on any other of the works contained in the list, and we may feel proud of the advance of engineering science Which has rendered their adoption possible and successful. The colonists of Ceylon hope soon to see undertaken a yet
further extension to the summit of the Haputale Pass, The design for this has been prepared, and its execution vill also involve a further incline of 12 miles rising 359 feet, on which an average gradient of 1 in 46 with a maximum of 1 in 44 will be compulsory, as wil also the adoption of curves as sharp as 300 oft
We have thus briefly sketched the leading features of ne of the heaviest works of railway construction as yet attempted. Of the magnificent scenery met with throughout the entire length of the line it is scarcely within our
province to speak ; but it is known to be of such a province to sppak; but it is known to be of such a
character as to offer an inducement to passengers proceeding by the mail steamers to and from the East to vail themselves of the opportunity afforded by the necessary delay for coaling at Colombo to go as far at
least as Kandy and back. east as Kandy and back.
In connection with the subject of further railway extension in Ceylon, named above, we may refer to a rumour
that the Governor, Sir Arthur Gordon, purposes an immethat the Governor, Sir Arthur Gordon, purposes an imme-
diate visit to this country with the object of urging in diate visit to this country with the object of urging in
person on the Secretary of State for the Colonies the person on the Secretary of State for the Colonies the mmediate necessity of raising a loan for the purpose of arrying on the line another seventeen miles or so that the
Haputale Pass. At this point it would appear that olonists are willing that for the present railway extension in this direction should stop, and attention may then be iven to further additions to the coast railways. There las been much discussion over the estimates for this proposed work, and we see it stated that a revision of them
has shown the possibility of their reduction by sums variously stated between $£ 50,000$ and $£ 80,000$. Sir Arthur Gordon appears to have at last recognised the fac
-so persistently asserted-that this extension will ver largely increase the returns to be expected from that dithen the railway system of the islanerto proved mos ren completed. Nat system hardly be published, that its present and further extensions into the planting boon they must prove to the planting interest can hardly be over-estimated.

PRospects of shipbuilding

Although it cannot be said yet that there are many signs of
mprovement in the shipping trade, there is one indication of the future which must be kept in mind, and which wil ultimately affect both the shipping and the shipbuilding trade It is the decrease in the stocks of imported goods-especially colonial produce. This has been in progress for some time, and it is to be believed that we shall soon witness a more extensiv importation, and fuller employment for shipping, and it is on the latter that the hopes of the shipbuilding trade depend We do not forget that there is a demand just now which isdue to cheapness, there are some companies and firms who find that take advantage of the circumstances, and have given out order for vessels for special trades and uses, and some of our ship purposes, which enables them to tide over the time of dulness ithe trade. There is a benefit to both the buyer and the builde in these orders-the one in obtaining very cheap vessels and the other in keeping together connection and workmen We believe that the tonnage is the gauge of working power and the merchant shipping of the kingdom is now begin ning to decrease-the amount launched being less than tha lost-and as that decrease makes itself felt in the freight marke wider employment for ships that must set in when there is any increase in prices of commodities and in freights whin wil kept in the van of the navies of the commerce of the world; an whilst it is the primary need that the ships should be mor remunerative than they have been of late, yet that will arise from their fuller employment, and from the fact that the carrying capacity for cargos is decreasing. We are still building con-
siderable amounts in tonnage, it is true; but it is tonnage for special purposes, and it includes a very large proportion of
sailing vessels, whilst the loss is proportionately henvie in sailing vessels, whilst the loss is proportionately heavier in the work. Very slowly the market is adjusting itself to the changed condition of trade, and it is pleasant to find that that in the early future.

entrifugal pump patents.

The trial of the case of Gwynne v. Drysdale, which bears on centrifugal pumps, was opened in the Court of Session, Edin-
burgh, on the 14th inst., before Lord Ordinary McLaren. It involves determination of a point in which patentees and manu facturers as well as users of patented machines are deeply concerned, and is, therefore, followed by parties of these classes and
others with considerable interest. The productions in the case nclude such a great variety of models that for their in the cas dation, as also the accommodation of the large number of witnesses, it was necessary to shift the trial from Lor ccLaren's small court room to the large Justiciary Court Hall mith, and the defendents Messrs. Dryry G wynne, of Hammer Pursuer's patent is No. 2922, of 1878, which consists in fixing together the two main parts of a steam centrifugal pump, viz, the steam engine and the pump proper, so that the suction an discharge pipes may be set to any angle by swivelling the
pump case without interfering with the driving engine, and the main point is whether or not the device is invaded by the defendants, who manufacture a steam pump, with the two main part arranged in the same way as pursuer s, but forme suction an fresh holes for reception of the bolts securing the parts together Defendants plead that the patent founded on is null and void in and used prior to the date of the letters-patent ; (2) that th invention is of no practical utility. The leading skilled witnesse for pursuer are Messrs. Hunt, of Glasgow, Stevenson, of Airdrie, and
Allan, of London ; and for defendants, Messrs. Cruikshank and Fairweather, of Glasgow. We shall publish the judgment of the Oo the points of the case, as well as to their disposal.

he commision on trade depression

THE ironmasters and the iron manufacturers of the Cleveland district have united in drawing up a petition to Lord Iddesley, Royal Commission of enquiry into the causes of the presen depression in trade. The prayer of the petitioners is that Mr . David Dale, of Darlington, may be made one of the Commissioners. It is understood that the president and secretary of
the Ironworkers' Association are likely to send up a simila petition on their own account. Mr. Dale seems, by his position and experience, singularly fitted for such a post. From a youth he has spent his life among the iron, coal, and railway interest of the North. He is a partner in the great firm of Joseph Pease of the Consett Iron Company, director of the Barrow Steel and Iron Company, a Justice of the Peace, the referee of the Board of Arbitration, and he holds many other positions of import throw light upon the enigma in question than Mr. Dale, and the selection of him as a Commissioner would be most acceptable to all classes in the North of England.
the preston dock and ribble improvement.
The Prince of Wales is to-day to lay the foundation-stone of the new Preston Dock work, which is now making rapid
progress in the hands of the contractor, Mr. T. A. Walker. The progress in the hands of the contractor, Mr. T. A. Waiker. The
project includes the dock of about 40 acres, River Ribble diverproject includes the dock of about 40 acres, River Ribble diver-
sion at Preston, graving docks, and extensive river works, chiefly consisting of several miles of training walls, and dredging. We June an account of the project in our impression for details. About 800 men are at present engaged on the work constructing the dock and on the river diversion. The sea wal require nearly 600,000 yards of dumped stone, most of which yards of dredging dock excava, will have to be done, and the argest dredger ever built is purpose. Mr. E, Garlick, C.E., is the engineer for the work,

MISCELLANEOUS MACHINERY AT THE ROYAL AGRICULTURAL SHOW, PRESTON.
The gratitude that is called forth by small things will be found a necessary quality by the seeker after novelties who goes to the Preston Show and does not leave disappointed. Originality is nearly dead. There are no new loaves, we must pick up the crumbs.
On the stand of Messrs. Allchin Linnel is a new thrash-

Of this machine we have no drawings, but the ac- \mid companying diagram will enable us to give its mechanical features. The ordinary horse-rake teeth are replaced by a horizontal set of teeth T pivotted at A, and controlled by levers connected at B. These teeth are
carried a small height above the ground. Above the rear carried a small height above the ground. Above the rear
part of the teeth is the lower part of an iron apron A, up part of the teeth is the lower part of an iron apron A, up
which the crop collected at T is persuaded to go by the teeth carried on the endless chain arrangement running

Hornsby's "Progress" sheaf delivery reaper, and along the delivery tail of the platform of this machine they have attached the upper works of a sheaf binder with the Appleby inder. The price of this attachment, which can be fitted to any self-delivery machine, is $£ 26$, and this added to the $£ 28$ or $£ 30$ for the reaper, makes the total cost rather more than that of a sheaf binder of the usual type. This, however, would not influence many farmers who possess self-delivery machines in good order, which for $£ 26$ they

EARLY FOUR-FURROW BALANOE STEAM PLOUGH.

ing machine crum, made under Caswell's patent. It is made with cast steel B of double-headed railway rail section as shown by the as shown by the beaters are heavy, but they need no wood backing and plate covering orbolts. They covering or bolts. They
are fixed in the heads with flat wedge keys C driven in between the web and the side of the slot in the head.
 The arrangement pro-
bably makes a very good drum, but it does not afford any facilities for balancing, holes being drilled in some of the beaters to lighten them for this purpose. This is necessarily a rather slow method, and one which would not recommend itself to thrashing machine users who may want to put in a new beater in the field, and whose only alternative would be to put lead rivets or bolts and nuts into the holes in the other beaters. The form of the beater s very good, but we do not know whether the drum has been practically tested.

lately been asked for pea breaking machines. At Stand No. 180 Bracher's machine for this purpose is exhibited. The essential parts of the machine are two parallel square a wrought iron grid, the spindles being fitted with spindles being fitted with a number of claw teeth, as
shown in the sketch. The shown in the sketch. The
machines are thus of the machines are thus of the old chopping sausage machine, which used to make its yearly appearance at the show, has now been replaced by one having a revolving
 iron basin, B, of the ection shown in the an utter consists of a number of thin blades, \mathbf{K}, of scimitar form, and about half an inch apart, each blade working through the openings in a grating, G, the meat being prevented from running away from the knives

by a guard descending from the grating, G, at the farther side, to within about two inches from the bottom of the basin. Machines of this kind are shown by two makers one of them being Messrs. T. Green and Son, Leeds, and Messrs. J. Gardner and Son, Birmingham. Our sketch is not accurate, but it serves to show the idea; the separate machines, with knives chopping on a blo sharpening. The old noisy nuisance in many places, and, no doubt, will be repreat by the new silent machines.
Mr. T. H. Ramsden, Leeds, exhibits an implement of very prepossessing appearance æsthetically, mechanically or agriculturally, though it may, perhaps, even in view of appearances are occasionally sometimes admed that horse-rake and haymaker by Mr. Ramsden mey combined sort, and he was certainly determined that no farourabl notice should be obtained by superficial attractivarable
over rollers C C. By these means the crop is delivered at

tribute the crop haymaker fashion. The machine is carried on wheels approximately as shown by the dotted circle. The price of the machine is $£ 17$, which we mention,
can convert into a sheaf binder. For making new machines, however, the reaper part may be much simpler than the ordinary machine, such as the sheaf-delivery machines with the arrangements for making sheaves of different sizes or of the same size in a varying crop. A cheap and, we should be inclined to think, efficient machine exhibited shows signs of being one of the first, but the arrangement is promising. It delivers within about a foot of the ground, and will deal with any length of straw.
Several makers now show haymakers with screens made as an integral part of the machine, and not as a makeshift suggested by afterthought. Amongst others who make a
 neat and rigid application of corrugated iron. The soreen profanity on a very windy day. profanity on a very windy day.
roove, like almost every other seems to have got into a ment. The balance plough shows no desire on the part of

SILOS ON HOWARD'S SYSTEM.

because for $£ 315 s$, more a really efficient haymaker and a the makers to offend by innovation. In general design it We wellake could be obtained from well-known makers. is as it has been for years, and the chief features may be | We welcome a new thing with much pleasure, but can | traced without any effort in the engraving which we now |
| :--- | :--- |
| seldom say much for combination tools of this class. | publish of the first, or one of the first, two or three ploughs | Messrs much for combination tools of this class.

Messrs, Jenkinson and Giblet, of Grantham, have done We have not in making a sheaf-binding reaping machine. We have not seen it at work, but do not see why it should
not, and be light in draught. They have simply taken a
publish of the first, or one of the first, two or three ploughs Fowler and hell Works, by Worby, when the late John ploughing set, and before Worby made the self-moving anchor. The plough, as shown, had the beams of 7 in .
deals ; it contained the slack gear, and all the essential features of the modern more finished implement.
A new implement is, however, shown by Messrs. Fowler and Co., namely, a big balance ditching machine or plough. This is shown this year for the first time, and is designed to make a ditch in two operations, 2 ft .6 in . deep, 1 ft . wide
at the bottom, and 2 ft . wide at the top. It will, we are at the bottom, and 2 ft . wide at the top. It will, we are
informed, make a ditch of this size at the rate of a mile informed, make a ditch of this size at the rate of a mile
per hour. One of the two skifes cuts the soil to a depth of 15 in ., and the second finishes it to the full depth of
2 ft . 6 in. Each skife is of \downarrow form, and at its rear is a 2 ft . 6 in . Each skife is of U form, and at its rear is a
very large breast which throws the earth to one side of very large
the trench.

$\left\lvert\, \begin{aligned} & \text { that commends itself in the modern style of high class } \\ & \text { machine construction }\end{aligned}\right.$ machine construction.
Well designed
Well designed machines are exhibited by Messrs. Brad-
ley and Craven, and Mr.T.C. Fawcett; Messrs Whitehed ley and Craven, and Mr. T. C. Fawcett; Messrs. J. Whitehead
and Co., Messrs. E. Page and Co., and Mr. W. Johnson are exhibitors in this class the machines of the last mentioned having been recently illustrated in our columns. A pug mill of new form is shown in section by Messrs.
Whitehead and Co. Instead of the casing of the mill being as usual, cylindrical, it is of corrugated longitudinal section thus, and the pugging arms
on the vertical spindle are alteron the vertical spindle are alternately of the longer and shorter
radii The action of this mill radii. The action of this mill is no doubt somewhat more
effective than those with plain effective than those with plain
cylinder, as the clay from the smaller diameters gets a turnover motion, which causes it to
be presented to the next set of arms in a different position. roller flour mill machinery, the
horizontal burr stone mills havi
 horizontal burr stone mhs having almost disappeared. It is noteworthy that in these roller flour mills, with but one
or two exceptions, the design is both mechanically and resthetically good, some being excellent types of good modern engineering design. Amongst the makers whose names should be specially mentioned in this respect are
Messrs. Hind and Lund, Preston; J. Tomlinson, Rochdale; J H. Carter, Mark-lane, Messss. Robey and Co., Lincoln, makers for Mr. F. Nell, Mark-lane; Messrs. Robinson aud Son, Rochdale; and Mr. W. Gardner, Mroucester. Messrs. Hopkinson, must also be mentioned in this class. Mr. C. Hopkinson, must also be mentioned in this class.
Roller mills are exhibited by Messrs. Penny and Co. Mr. J. H. Carter exhibits one of his disintegrators combined with a breaker, by which the hard material upon which the disintegrator is to work is reduced to a size which

A new implement for finishing and twitch eradicating is also exhibited for the first time. It is designed with operation, and is more especially suitable for the spring Ind after harvest work, when the land is in a dry state. roller, which is a consolidator rather than a roller, and then cultivates it again, but in the after cultivation the tines are placed so close together that the land is left as a harrow would leave it. The implement being carried on miform ends and centre does not sink in so The affect of using the roller or consolidator in the centre is to overcome a danger from steam cultivation in dry seasons, namely, leaving the land too loose for the favourable promises to give the farmer a means of accomplishing a certain kind of work at low cost.
A novelty in light railways for farm and other use is recently made a brief reference to this invention, but now give drawings showing its construction. It must be admitted that it is the simplest of the many light permanent ways that have been brought out, and will, no
doubt, have a very wide field of application abroad as vell as at home. The parts are fewer than by any system, and can be put together by any nigger with half the ingenuity of a monkey. Our engravings show it so completely that it is umnecessary to describe it further. strengths, and with rails from 10 lb . to 20 lb . per yard as ordinary weights, or lighter or heavier for special purposes. They have just published a catalogue, specially devoted to this subject, and including the various forms of points, curves, turntables, and for the rolling-stock which they ive of their The same firm exhibit a small silo, illustralarge scale, and we illustrate silos as erected by the firm for Mr. R. Whitehead, of torpedo fame. In Messrs. Howard's system the ensilage is not put under a heavy pressure as a means of excluding air, and preventing fer-
mentation, \&c., but it is filled into the silo, which is covered with a cover made air-tight by means of the water joint, shown at page 55 . The system is now attractng a good deal of attention, and the samples exhibited

Brickmaking machines are largely exhibited, and in some cases show some improvement in design. We cannot,
however, now describe them, as we are at present without drawings. It may, however, be remarked, that upon at least one maker, the lessons in design which visitors are supposed to learn, are lost. Year after year the same hedge carpenter style of pattern-making presents
itself. The machines have the appearance of being designed piecemeal in the fitting-shop, most of the details signed piecemeal in the fitting-shop, most of the details
being evidently made as construction proceeds, and appabeing evidently made as construction proceeds, and appa-
rently set out by the fitter or smith with occasional assistance of a carpenter to knock together a make-shift pattern, The word design can hardly be used with propriety, for there is little evidence that any of the machines have
been properly designed by a draughtsman with any been properiy designed by a draughtsman with any
pretence to ability in the mechanics of form, and certainly o appreciation of resthetic fitness. There is one machine, the side frames of which appear to have been made when
half-inch board was the only material in the pattern shop. They are of the ribbed type, some of the ribs being and some not thickened. The strengtheningthening bolt, and some not thickened. The strengthening bolt is passed hrough the neutral axis of the casting, and is so
employed as to be of very much less use than a little more than its own weight of properly disposed cast iron. There embodiment of poverty in design, and of the neglect of all
will agree with its inside. The
breaker consists chiefly of two breaker consists chiefly of two
steel spindles, the centre parts of steel spindles, the centre parts of
which are square, and are fitted, which are square, and are fitted,
as shown, with short, hard steel as shown, with short, hard stee
spuds, and is said to make a very satisfactory breaker. Mr. Carter also shows one of his dis-
 , made with water-tight and easil integrators of small size, made wind wet substances, such as the constituents of paint. The machine runs at about 5000 revolutions per minute, and is said to produce a
5 many very fine paint, and it is quite unnecessary to say thor
mixed. It is also made for working on dry paints.
The Malden Ironworks Company shows a chaff-cutter with a fan elevator, the fan of which runs loose on the main spindle, and is driven by a belt from a pulley on a second spindle. The belt pulleys of this and other machines
by this firm are all unturned. They are, however, moulded from good patterns and run quite truly, and are for many from good patterns and run quite tr
purposes better than turned pulleys.
Mr. W. B. Stubbs, Hawksworth, shows a winnowing machine with a combined elevator in one frame, instead of being a separate machine as hitherto. This is an improvement and saves cost.
Messrs. Crowley and Co., Sheffield, show amongst other well-made machinery a fine four-knife ensilage cutter, with
an elevator consisting of a trough in which works an Ewart chain provided with wood strips at short distances apart. chain provided with wood strips at short distances apart.
Messrs. Richmond and Chandler also show a machine of this class provided with a similar elevator. It is noticeable throughout the show that Ewart's chain for driving and other purposes is very highly appreciated by machine builders. It is so easily brought into use for driving one or several spindles by toothed wheels if in the same plane, but otherwise in any
work at tolerably high speeds, and must have
saved a heap of trouble to many a machine maker. Messrs. Richmond and
Chandler also show Hodg-
kinson's
 which two mixers work in o which two mixers work in opposite directions in one box shown, and thus make an effective kneader.
Mr. John Wilder, of Reading, shows some well-made radial slots, so that as the mouth rises the with guides in give greater freedom of egress to the hay or straw, and
gres give greater freedom of egress to the hay or straw, and
thus to prevent choking. The same machines are fitted with back motion, the lever controlling which is forced with back motion, the lever controlling which is forced
back by a sping, so that when the attendant has used it bock by a spring, so that when the attendant has used it
to return the hay from the mouth, the rollers cease to turn to return the hay from the mouth, the rollers cease to turn
backwards as soon as he frees the handle. He cannot thus dockwards as soon as he frees the handle. He cannot thus
either injure his hands or cause the hay to wind into the upper part of the mouth by forgetting to reverse the rollers. pper part of the mouth by forgetting to reverse the rolers. hese we may mention those of the Lancashire Belting Company. These endless belts run very smoothly, and to be unaffected by are not so stiff as leather. They seem to be unaffected by heat or wet, and being thin they lick round a pulley and need not be so tight as a thicker belt would necessarily have to be. They have gained a very
high reputation in Lancashire and other mills, and should do so for driving dynamo-electric machines.

The Chair of Enginerring, University College, Bhistot. has been appointed to the new Chair of Engineering in Unive Shaw College, Liverpool. Professor Hele Shaw's acquirements and training and experience eminently suit him for the duties of this
chair His bhility chair. His ability and acquirements are not only of a high order, but he has made excellent use of both, as is shown by the long list
of his work since 1876 , which, as we know does not tholude that he has done in wrork, of great merrit. The authorities of
the min
University College, Bristol, will severely feel his tor Liverpool.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible f
correspondents.]

correspondents.]

Sir,- The "other fore". for which "A Student" asks, is the
eaction of the stone against the gravitation medium, and is the product of the stone's mass and acceleration. I never said it was incorrect to speak of the drawback of a cart : it is simply equal to I am forward of the hors
T am constrained to agree with " " Φ. H.'s" opening sen-
tence, and to admit that further discussion is useless.
The points at issue have, The points at issue have, however, narrowed "themselves
down, and it has become clear that what " Φ. .". is
most directly running foul of is not the third, but the most directly running foul of is not the third, but the first "law of
motion." The third law has, in his mind, become so swollen, that there is no room for the other two. The first law assererst that a
body acted on by no force continues to move in a straight line with a uniform velocity. " Φ. . ." asserts that no body is ever acted on by any force of resultant magnitude greater than zero. Hence, either he must maintain that all motion is uniform in speed and direction, or he must deny the vainity of the first law.
not know which horn of the dilemma he prefers. Not content with the actual assertion of the third law that forces are balanced so as to constitute stresses, " $\$$. ח.". goes further,
and maintains that all the stresses in a connected system are balanced too; so that, for instance, the stresses in all the drawbars of a train are necessarily equal-the stress in that near the
engine being no greater than the stress in the draw-bar of the last engine being no greater than the stress in ",
truck ! I do not know whether " Φ. Π ", will endorse this statement or not, but it is no more absurd than his view that all the stresses concerned in a tug-of-war are necessarily equal.
The "definite answer" he asks for will, I fear, do him The "definite answer" he asks for will, I fear, do him no good,
but there is no difficulty in giving it. Question: "Why are the but there is no difificuly in giving it. Question: "hy are the
stresses not equal?" Ansver: Because of the inertia of accelerated matter.
I." Ignores inertia, and is unacquainted with the real essence of the laws of motion as expressed most fully by the second law, and so he naturally fails to understand some simple kinetic
facts. He says, "The thrust of A on the ground is derived from fhes. He says, The thrust of A on the ground is derived from
the rope stress, and can be eeither more nor less ; for, take away example of a false conclusion supported by a false premise ; but it is consistent with " Φ. Π.'s" " views. He is bound by consistency to uphold the ludicrous dootrine that unless a man is pulling at a
rope there can be no stress between him and the ground. Surely a rope there can be no stress between hi
most obvious reductio ad absurdum.
I do not expect " Φ. Π." " to recant or admit his error here and now i it has become engraven, and is not so easily removed.
But if he values truth and clearness, as I am sure he does, I adjure him to consider the subject of inertia carefully, and to gradually free himself from those serious misconceptions which he has formed with regard to this important and fundamental matter.
His error is anique in my experience of fundamental misconceptions, and it is based on an exaggerated or too broadcast an application of a true doctrine
The truth, that forces in a system are balanced so as to constitute
1st. The forces acting on an accelerated body are balanced, or
2nd. The stresses in a system are body is always zero.
exists at one point the same exists at every whatever stress The first of these two erroneous statements is his old-established and serious belief, and is at the root of most of his difficulty. The
second may be only a position temporarily taken up under the exigencies of controversy, and if so I certainly have no wish to press him to continue to occupy so pregnable a fortress, from which a couple of spring balances could at any time dislodge him.
and longoveld irstief statenent, however, appears to be his serious and long-held belief., I pray him to notice that it is a direct con-
tradiction of Newton's first and second laws of motion to consider it again in this light, and to choose between the mutually incom. patible statements.
I have now, I hope, clearly and fairly pointed out to him his vulnerable points, and having done so, I trust he will permit me to
Shake hands and step out of the arena.
OLIVER LoDGE.

Sir, -Mr . Benson's letter supplies an admirable instance of ine and the result he obtained is diferent exp By cutting or burning what I shall term the trigger thread aoroat he at once did away with the balance of forces so far as his board resting on the pencils was concerned. I shall not talke up your
time in showing what I Ihave no doubt he will see in m minute time in showing what I have no doubt he will see in a minute,
viz., that the conditions are quite different from those of my experi-

As he does not seem to have quite caught the point at issue, I
may put the thing in another light. It matters nothing to my may put the thing in another lizht. It matters nothing to my
argument whether the motion produced along the plank be fast or argument whether the motion produced along the plank be fast or
slow, so long as there is motion. This he will concede. Now if
the to maintain that steady contact between the board and the thing pulled which is essential to the fulfiment of the conditions. If, for example, in the tug of war, one eby jump on the board, the
board will immediately fly from under his feet, and board will immediately fly from under his feet, and the other boy
standing on it will fall on his back. In Mr. Benson's experiment the load jumpsalong the board when the string is out. If yourcorresponthe rope is carried down to a fair lead, so that the rope may lio half an inch or so above the board when stretched horizontally,
and if this end of the rope be then hooked to a heavy weight and if this end of the rope be then hooked to a heavy weight
resting on a kind of sleigh, so that there will be considerable friction set up, then I say that a man standing on the board
and turning the winch can haul the weight to him along the board without moving the board in any way. For the resistance
of the weight to be move is of the weight to be moved is due almost wholly to the friction
between the sleighand the board, and this friction will tend to drag between the sleigh and the board, and this friction will tend todrag
the board one way just as much as the pull on the rope, connected through the winch to the platiform, tends to move it the other way; mass moved will be small and insufficient to overcome the inertia of the platform, man and winch, and the small roller resistance which is inseparable from the construction.
If your correspondent will modify his experiment by putting a letting a string attached to the weight hang over the pulley and the edge of the table, and hanging weight on the string just sufficient to
make make the weight on the board slide slowly along it as the weight
falls, he will find that the the weight is falling. As the friction of repose is greater than that
of motion, it will probably he necesary to start the sliding weight of motion, it will probably be necessary topstart the sliding weight
or load with the finger. All experiments or load with the finger. All experiments, however, conducted on
so small a scale must be unsatisfactory, because elements
of sing ance when we operate on a large scale. If Mr. Bo import.
ans will support a plank on some rollers sand will lie down on his face
upon it, stretch out his arms and grasp the ede of the upon it, stretch out his arms and grasp the edge of the plank
above his head, he will find that he can draw himself along the plank without moving it. If Dr. Lodges argument
would simply shoot the plank from under himself
I do not quite understand what Mr. Muir's long letter is intended for. I may, however, ask Mr. Muir if when his two engines were
pulling a pulling against each other with a balanced pull, what would
happen if an external foree were applied which would start them
 Mr . Muir-that is to say, neglecting rolling friction and the friction
of the axle boxes? The engines would go on for a mile or so,

What would happen to the roller-supported rails? I think Mr.
Muir will grant that they would stand still. Muir will grant that they would stand still.
If Mr. Muir will let me have his views
may be quite sure that we have a common ground of discussion which we certainly have not now, save
may have something more to say to him.
London, July 14th.

STEAM HAMMERS.
SIr,-Messrs, Glen and Ross having been largely concerned in
manufacture and sale of patented machinery a full half century, and having had the patent rights of the Rigby hammer assigned to them as far back as 1856, should not be ignorant of the fact that the rights and privileges of patentees are imperilled by asking-or
at all events by answering-such queries as "wherein lies the patent?" till after a patent has been sealed. Previous to this stage, if more is done than give public intimation of the fact and
title of the patent, thanks and not blame is surely due to him. title of the patent, thanks and not blame is surely due to him.
If my assailants in the present instance, and self-confessed assailIf my assailants in the present instance, and seli-confessed assail my inability to see aught but the reverse.
In their letters to you under this heading three issues are raised which I will touch on, passing over many others. (1) In
point of fact, did the patent rights of the Rigby hammer pass into by them? (2)"Have I or have I not drawn on public credulity by asking them to accept my hammer as patent without having queries of "wherein lies the patent" ill-timed and not bond fide? As regards the last, all I have to say for the present is contained in the above lines, and as regards that immediately preceding, a little more to be said of the first issue, and shortly it may for present purposes be thus said. Messrs. Glen and Ross claim to have fallen into possession of the patent rights of the Rigby hammer in 1856, and, as is well known, they for many years
subsequent to that date proclaimed themselves broad and wide
"S view that the patent rights of the Rigby hammer fell into the hands of the British public on 26th January, 1857, a few weeks or a few months at most after they are claimed to have fallen
into the hands of Messrs. Glen and Ross, it is difficult to conceive of any intrinsic value the possession of patent rights a few
weeks or months could possibly be to Messrs. Glen and Ross or any other; and returning to poetry for a moment, it is still proclamation of their claim to the sole makership of the patent Rigby steam hammer throughout many long years subsequent to a greater difficulty than all consists in seeing the "beauty born of grace" of calling in question "the action of various parties, parties and Mr. Stevenson were doing nothing more than they were honourably justified in doing in furtherance of right and suppression of wrong, consisting, amongst other things, of self-
constituted and catch-penny arrogance. GTEVENson. Airdrie Engine Works, Airdrie,
July 8 th.
[This correspondence must end here.-ED. E.]

GAS ENGINES

jastice to our company, may I ask you to correct a of Macgregor's book on gas engines, which, if allowed to pass uncorrected and endorsed by your authoritative paper, is calculated
to do us serious injury. re governed by regulating the "as also rightly stating are governed by regulating the supply of gas;" also rightly stating
that such a mode of governing is not the most economical. I have given up using in our compression engines a governor
that in any way varies the strength of the charge (excepting to a that in any way varies the strength of the charge (excepting to a
modified degree in special instances, such as electric lighting), and or some time our horizontal compression engines have been fitted with pressed, but not its proportions of gas and air, with the result of giving stronger or weaker working strokes, as shown in the
accompanying diagrams taken this morning from onr shop engine, accompanying diagrams taken this
which is of 8 nominal horse-power.

The larger diagram shows the ignition of a full charge, giving
an initial pressure of 220 lb . The smaller diagram is from a an initial pressure of 220 lb . The smaller diagram is from a This mode of governing has two very great advantagesn the first place, the gas is more economically burned
the smaller diagram, because the expansion is continued
down to atmospheric pressure; in the second place, the engin down to atmospheric pressure; in the second place, the engine very steady speed, and working with greater economy when only doing, say, one-third to one-half of the maximum work, as is ondon gas with an 8 -horse power engine
The "Differential" engine is controlled by a governor that cuts off the gas entirely when its speed exceeds that to which it is
adjusted. I hope shortly to apply the automatic governor to this ongine also. JAMES ATKINson, Managing Director. Aitish Gas Engine and Engineering Co., Limited,
Albion Works, Gospel Oak, London. N.W., July 13th.

SIR,-In reply to your correspen SYSTEM,
the empty, or block, section of signalling on rail Re," respecting the block system, I tried to get the system introduced on the Greas Western Railway twenty years ago, but without succeess. I then
published the system. I was informed by a firm of signal manupacturers that Funnell, of Brighton, had anticipated me; and no can give your correspondent the information required. C.J. L. can give your
July 14th.

SOLID BEAMS.

Sir, - I was not surprised to find in your last issue that my review of Mr. Donaldson's small book on girders had met with his disapproval. I only wish I could have conscientiously made it
more according to his taste. He is, however, quite mistaken in
supposing that my brain had been "hemuddled" by a previous
dose of Rankine's "Applied Mechanics"-a book for which I have
much respect, but which I did not consult before writing the review. Indeed, my criticism stands perfectly independent of
books. If, therefore, Mr. Donaldson has found any points of agreement between Rankine and myself, I can only feel gratified at the coincidence. I cannot comprehend that Mr. Donaldson
should need to be told what is meant by "a moment of inertia of a surface." Regarding the other questions, I regret my inability to agree with
July 11th.

The Author of the Review.

AMERICAN NOTES.

(From our oum Correspondent.)
The most import work now in hand is the York, July 3rd. the building of bridges, and the completion of railway terminal The New this city, Philadelphia, and in some Western cities. depôt room and car track. The Pennsylvania terminal arrangements in Jersey City are barely sufficient, and, in short, the railroad
accommodations in general are growing more and more contracted accommodations in general are growing more and more contracted
when measured by increasing necessities. Within a day or two the announcement has been made of the proposed construction of consideration for several months. The investors are anxious to find channels for investment, and the recently submitted reports of experts who have been carefully investigating into the prospec-
tive carrying power of projected roads in the Far West and South are favourable to the immediate prosecution of these enterprises. Some of the Pennsylvania rail mills have already secured important rail contracts, and expect more during July and August. Very much has been said in and out of print in regard to the place in metallurgy which will be filled by the Clapp-Griftith pro-
cess. As yet steel makers do not feel altogether assured that it is all its frie
Bridge builders are submitting specifications for large lots of bridge iron. The autumn months will be active in bridge construction. Some 2500 miles of broad-gauge railroads will be changed
to the standard gauge in the Southern States as rapidly as possible. The narrow-gauge system meets with less and less encouragement directed to the development of lumber, inineral, and agricultural regions, where large purchases have been already made by capital ists for the purpose of holding until the properties appreciate in
value, as they certainly will do. The Baltimore and Ohio Com pany begins the work of constructing its terminal facilities in potlet. The Pennsylvania Company has fought the new comer
valiantly, but it has gained a footing in the den of its adversary.
\qquad
THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

(From our own Correspondent.)

On 'Ohange in Wolverhampton yesterday, and in Birmingham ago. The improvement was not conspicuous, still it existed. The reports did not lead to the impression that the ironmasters' orderbooks had been materially swelled by the business placed since the
quarterly meetings. But contract negotiations between buyers quarterly meetings. But contract negotiations between buyers
and sellers which were opened at those gatherings were yesterday and sellers which were opened at those gatherings were yesterday
and to-day brought to a satisfactory conclusion in a number of instances, and in the course of the Marked, bar makers did not report much increase of trade upon
the week, and Round Oak bars remained at $£ 82 \mathrm{~s}$. 6 d . W. Millington and Co. quoted cable iron, plating bars, and
 and $£ 105 \mathrm{~s}$, according to quality ; angles, 11 in . to $3 \mathrm{in} .$, , $£ 810 \mathrm{~s}$.,
$£ 9$, and $£ 10$, according to quality; tang iron, $\frac{1}{2} \mathrm{in}$. and $\mathrm{I}_{\mathrm{i}} \mathrm{in}$.
$£ 710 \mathrm{~s}$. for ordinary, $£ 810 \mathrm{~s}$, for best, and $£ 910 \mathrm{~s}$. for double best

 ع11 10s.
Plates Plates Messrs. Millington quoted at $£ 9$ for ordinary, $£ 910 \mathrm{~s}$. for
best boiler, $£ 10$ 10s. for double best, $£ 1210 \mathrm{~s}$. for treble best for langing inwardly. Sheets not larger than 10 ft. by 3 ff . best for $\frac{1}{8}$ in
hey quote $£ 910 \mathrm{~s}$., and best qualities 20 s . per ton additional. The orders offered to the sheet makers by merchants, by th galvanisers, and the hardware manufacturers, were not to-day
large individual extent, yet the aggregate was encouraging.
only better prices could be obtained there would not be much only better prices could be obtained there would not be much to
grumble at. At present there is no revival in rates, and one two firms have decided to stop making until a revival does occur
Messrs. John Lysaght and Co.'s Swan Garden Ironworks at Wolverhampton continue a conspicuous exception. At this exten-
sive establishment all the mills are running night and day in supplying sheets for galvanising at Bristol, mainly in satisfaction
of the needs of the Australian markets. Yet the supply of black
sheets of the firm's own manufacture is inadequate to their needs and they would be glad to set another works going if one could be Sheets of 20 gauge for galvanising were quoted to-day $£ 610 \mathrm{~s}$.
24 gauge, $£ 615 \mathrm{~s}$, to $£ 617 \mathrm{~g}$, 6 d and on to $£ 7 ; 277$ gauge, $£ 710 \mathrm{~s}$. to \& 715 s . Mer
at works,
Shropshire makers are getting better prices than the Staffordshire firms. The quoted working up sheets, superior quality, 20 gauge,
$£ 75 \mathrm{~s}$. Liverpool; 24 gauge, $\ell 82 \mathrm{~s} .6 \mathrm{~d}$. , Liverpool; and 27 gauge,
$£ 92 \mathrm{~s} .6 \mathrm{~d}$. Galvanising qualities they quote at $£ 715 \mathrm{~s}$, Liverpool, $£ 92 \mathrm{~s} .6 \mathrm{~d}$. Galvanising qualities they quote at $£ 715 \mathrm{~s}$., Liverpool,
for 24 gauge ; and $£ 8$ 12s. 6d. Liverpool, for 26 gauge. They
reported themselves in the receipt of good Indian inquiries. reported themselves in the receipt of good Indian inquiries.
The best-thin - sheet makers of East Worcestershire are doing
more than many other firms, and are obtaining more profit. Most more than many other firms, and are obtaining more profit. Mos ahead than for a couple of years past. Tin-plates also are in larger
demand. The most important markets at date are the Australias, the United States, Canada, Germany, and other parts of Europe.
E. P. and W. Baldwin quote their "Shield" quality of singles for Working-up purposes $£ 9$; Severn, £10; B., 211 ; and B.B., £12
Doubles are quoted 30 s. extra, and lattens a further 20 s . Steel stamping sheets of 24 gauge are $£ 13$, and 26 and 27 gauge, £14 10s.
The United States demand for baling hoops is only slow, but Messrs. Dawes, of Oldbury, are working on an order for 1000 tons.
Common hoops are quoted $£ 510$ s., while narrow strips for gas tube making are $£ 55 \mathrm{~s}$, and upwards. Com nen bars are $£ 0$ down In steel, competition from other districts with local makers is keen. The Staffordshire Steel and Ingot Iron Company quoted this afternoon for basic steel for boiler and bridge plates an
average of $£ 710 \mathrm{~s}$; ; tin-plate bars, $£ 45 \mathrm{~s}$; ; and blooms and billets, $£ 417 \mathrm{~s} .6 \mathrm{~d}$.
The Herb
The Herbert's Park Ironworks, Darlaston, has been re-started by steel sheets. The works, which formerly belonged to Messrs. David Jones and Sons, were closed about six years ago, and the new company have made considerable improvements. The Pleck
Works, Walsall, of Mr. J. Southern, are to be closed until sheet Orders in the
Orders in the galvanised sheet trade are more numerous, mainly
on account of the Australias and South America. This week the

Gospel Oak Company's works at Wolverhampton started on
Monday night, an occurrence which has not taken place for a year or more. Some seventy workpeople were put on.
The business that was done in pig iron a week or
The business that was done in pig iron a week or two before the quarterly meetings has mostly satisfied buyers' present necessities.
Agents will not generally book at current rates more than three Agents will not generally book at current rates more than three
months ahead. Sales of the Lonsdale foundry piz-No. months ahead. Sales of the Lonsdale foundry pig-No. 3-have
this week been effected at $57 \mathrm{~s} .6 \mathrm{~d} .$, and of No. 4 selected forge pig at 45s. Thorncliffe pigs are firm at 50 s .
Lincolnshire gray forge pigs are quoted at 41s, 6d. Wingerworth
and Westbury forge pigs are 39 s . 6 d ., and other and Westbury forge pigs are 39s. 6d., and other Derbyshire sorts are selling at
field mine pigs. are $47 \mathrm{s}$. . 6d.; ; Darlaston Northampton forge, 38 s .; and Capponfield common, 33 s .6 d .
Constructive engineers note with
Constructive engineers note with interest that among the con-
tracts for which tenders are at present invited are several from tracts for which tenders are at present invited are several from
Ireland, including the construction of a pier, 350 ft , in length, at Clogher Head, Oriel Harbour, and a wrought iron bridge, of 100 ft . span and three 35 ft . spans, for a- single line of railway over the river Lee, near Macroom, which is some twenty miles from Cork. The important market which exists for iron and steel masters, way interest in India, receives every week fresh illustrations. The Secretary of State for India is enquiring for stee rails, steel fish plates, switches and crossings, and the South Indian Railway cast iron tires, wrought iron tubes, and spiral springs. The Scinde Punjaub, and Delhi Railway Company wants a supply of crossings, rolling stock, fish plates, and the like
The Union Rolling Stock Company, Birmingham, has paid divi dends of 6 per cent. upon preference shares, and 10 per cent.,
together with a bonus of 2 per cent., upon ordinary shares, for the The Birmingham Tramways and Omnibus Company will pay an
interim dividend of 10 per cent. A somewhat serious difficulty Birmingham, Tame, and Rea District Den as to the receipt by the rom Sutton Coldfield. Under the provisions of the Act of 1881 it was provided that it should not be obligatory on the joint board to extent exceeding 40 gallons per head per day. The Works Com mittee are of opinion that the amount of sewage now actually conveyed from Sutton Coldfield is very largely in excess of this quantity, and the questio
The internal drainage of Stourbridge is occupying the attention
of the commissioners of the town. Tenders have been advertised for carrying out the proposed new works, and a dozen contractor have replied. The amounts of the tenders range from $£ 6217$,
which is the tender of Mr. T. Dawson, Bury, down to $£ 4561$, the which is the tender of Mr. T. Dawson, Bury, down to £4551, the
tender of Mr. T. Vale, Kidderminster. The three lowest tender ave been referred to the surveyor for examination and report.

NOTES FROM LANCASHIRE

From our own Correspondent.)
Manchester.- "No improvement," " no trade doing," "ruinous monotonous phrases week after week in the iron market here, and there is nothing in the trade outlook of this district to give ope of anything better in the immediate future. The quarterly neetings have certainly not left behind them any stronger feeling but seem rather to have emphasised the prevailing depression by
the discouraging reports brought back by those who had attended he meetings. Generally no material revival is now looked forwar to as at all probable this year, and a continuance of the present low prices during the ensuing six months is regarded as practically
certain. This, of course, tends to check business; makers are open to sell over the year at current rates; but buyers, except they buy simply from hand-to-mouth, as their experience been that a policy of waiting has been the most profitable to the buyers. Even where sellers have recently induced buyers to give
put fairly large orders, they are in many instances in not much better position, as they are finding it almost as difficult to get some customers to take the deliveries of the iron they have bo The others who have not bought to give out ord The Manchester iron market on Tuesday was only very thinly here were scarcely any inquiries; the current market rates were without material change from last week, but in most cases a firm offer would have led to something under the prices quoted being
taken. Lancashire pig iron is, if anything, a trifle easier, 39 s . 6d., for in the case of very small orders, the average figure for ordinary business of any weight being 39s., less $2 k$, delivered. In district brands the tendency is also to shrink within the compass of the
minimum market prices, and 38 s . to 39 s . less $2 \frac{1}{2}$, delivered here, now practically covers all the district brands coming into this
market. Middlesbrough and Scotch irons are also being offered here at very low figures.
In the manufactured
previously either being held back or in negotiation, have been
given out, and this has tended towards an business doing. The market, however, has not been appreciably and North Staffordshire bars, $£ 515 \mathrm{~s}$. to $£ 517 \mathrm{~s}$. 6d. for hoops, and Q6 15s. to $\& 7$ per ton for sheets delivered into the Manchester
district, with North-country plates again almost the same price as In the engineering trades generally reports from most of the
In themain路 furnished in the tool-making branch, as I understand that although there are a number of vacant situations for tool draughtsmen in
this district, not a single draughtsman is to be found out of mployment. This would certainly appear to be an indication offices, whatever may be the condition of work in the shops. A new cutter sharpening machine of very simple construction
has just been patented by Messrs. Browett, Lindley, and Co., of
Salford. The machine, which is mounted on Salford. The machine, which is mounted on a neat cast iron pulleys, consists of an emery wheel, underneath which is an The cutter to be sharpened is held in the holder, which also con-
Thape tains a sheet steel former, placed directly underneath the cutter, and the motion of the former against the abutment is exactly
reproduced by the tooth of the cutter against the emery wheel. This machine is specially adaptable where milling cutters are in use, one great question in connection with the economical use of this the cutters without re-softening, and this rectitiously sharpening the cutters without re-softening, and this requirement appears to
be very effectively covered by Messrs, Browett and Lindley's new sharpening machine.
Mr. James H. Lyn
a new steel substitute for the wooden keys at present used on rail ways. This is a very simple arrangement, consisting of a piece of the two ends, through which an ordinary fish-bolt is passed. The bent plate is placed between the web of the rail and the jaw of the
chair: then, by screwing up the the plate is made to take a still deeper bend, and it the slot holes,
on the web of the on the web of the rail, tending to hold it firmly in its proper
position. This method of keying up the rails has only been
extensive practical test, but on the face of it a very simple arrange-
ment is presented for dispensing with some of the serious dis ment is presented for dispensing with some of the serious
advantages attaching to the use of the ordinary woden keys. adanatages attaching to the use of the ordinary wooden keys.
The result of the coroner's inquiry into the clifton Hall Colliery
explosion, although probably the jury explosion, although probably the jary oculd have come to no other
decision upon the facts they had before them, can searcely be decision, upon the facts they had before them, can scarcely be
rugarded as a satisfactory ending of the investigation, and until Mr. Arnold Morley has presented his report to the Home-office the Conference, sitting in Manchester last week, took a very strong
view of the matter, and passed a resolution to the effect that the rerlict given was not in accordance with the evidence placed before the jury. This, however, may be taken more as the natural result
of the prejudice entertained against a non-unionist colliery than as of the prejudice entertained against a non-unionist colliery than as
the outcome of fair criticism. But there are matters in connection with the disaster with regard to which it would have been better that something more definite could have been known. The main
question which the disaster has brought to the front is the use of naked lights in mines. To the use of such naked lights the explo sion was found to be due, and the question naturally arises-
Should they be allowed in mines at all? The argument put for ward at the inquest that a naked light with itst known danger, is
preferable to the fancied security of a "safety" lamp, which whe danger arises is unable to stand the test, may apply very
well to mines in which the old Davy lamps are still in use, be last two or three year the best lamps brought out durin explosion through the medium of the lamp has been provided. Unless not only the use of naked lights, but also the fring of shots
when the workmen are in the pit, are strictly prohibited in all when the workmen are in the pit, are stricty pronibited in all
mines, it tis to be feared we shal sill have to witness the periodi-
cal recurrence of such terrible disasters as that at the Clifton Hall Colliery near Manchester.
Association of Employers and Foremen was held on Saturday evening, Mr. Thos. Ashbury, C.E., in the absence of the president, occupying the chair. No paper was read, and the proceedings were
purely formal, the election of auditors and the nomination of new members being about the whole of the business done.
normal condition so far as the demand for house-fire consumption is concerned, the orders giving out, although very small in weight ear. In other descriptions of fuel the trade doing is, hower yanormally dull; the continued deprossion in all the large manusumers, and common coal for iron-making purposes is bad to sell, the short time prevailing throughout the cotton manufacturing histricts, and the slackness of trade amongst the chemical an ments for engine fuel. There is consequently a good deal of coal and fuel of all descriptions being thrown upon the market, and oxcept where collieries are either prepared to run about half time or put into stocks, very low figures are taken to effect sales. The
leading colliery proprietors in the Manchester district are holding firmly to their present rates, and at some of the large collieries in coal rather than force it on the got. There is, however, a good deal of underselling, and for
temporary sales to clear away stocks it would be difficult to say

 sor
Shipping, which generally has only been very dull for some seeks past, is reported to be showing gnications of improvement drug in the market, but prices continue very low.
ordinary qualities ave a moderately good demand; at the ovens
as. 6 d . to 10 , with the best sorts up to ordinary qualies and
12s. and 13s. per ton.
Darrov.
does not appear to be any immediate prospect of a revival even on depression is being very severely felt in ning to be felt. The output of the furnaces has been for several months greatly beyond the requirements, and as stocks have
increased very heavily, producers have at last been compelled to increased very heavily, producers have at last been compened to
prepare for blowing out one or two furnces, and as a consequence the number of hands is being reduced. The orders which
are being given out are only sufficient to cover pressing requirements. Indeed, some of the parcels are very small, nental and colonial inquiries are very small, and no likelihoed of being any better for some time to come. Prices are unchanged.
No. 1 Bessemer, 43 s . per ton ; No. 2, 42s. 6., and 42s. for No. 3 . Not only are pris low, but inquiries are very fow-so few, indeed, that the mills are only working short time. It is owing to Inro ore is still in very slow demand at same rates as last quoted. Iron ore is still in very slow demand at alme rates as last quoted.
Iron shipbuilders are not quite so fully employed, though the position at present is satisfactory

THE SHEFFIELD DISTRICT.

(From our ove Correspondent)

ThE official return of coals exported from the South Yorkshire compared with 105,728 in the corresponding month of 1884 . F , For
the six months January to June, 1885 , the total is 532,256 . tons, as compared wish 611,920 tons
Of
 long way for last June, that colliery having sent a tonnage of no less than 11,224 tons, being more than dobble sent the previous June.
Shireoak ocoupies seoond place, with 6808 tons ; and ThryShiroak occupies second place, with 6888 tons; and
bergh Hall is third, with 5544 tons. Denaby Main, from
which 11,348 fors which 1osh8 tons were sent in June, 1884 , was again blank
last month, and Fryston, which sent 5064 tons a year ago, shows a similar result. The increase in exports is mainly caused by very
large demands from Russia-17,194 tons mains well as by Sweden and Norway, 20,923-13,028; East Indies, Gibraitar, Belgium, California, and United States.
falling off. Hardware and autlery arolone have fallen in regrettable

 £10,513 to $£ 8186$; British North; America, from $£ 9559$ to $£ 7266$; British Possessions in South Africa, $\& 49909$ to to $£ 5570$; British East
Indies, from $£ 19,447$ to $£ 19,257$. Australasian markets alone show an increase, the value having risen from $£ 47,006$ to $£ 52,521$.
Heavy decreases are also reported in steel, chiefly with the United Heavy decreases are also reported in steel, ehiefly with the United
States and France, as well as in stel rails, the leading markets
which show a decline being Spain and Canaries which show a decine beeng spain and Canaries, Argentine
Republic and Australasia while the United States, Ilexico,
Brazil, and Peru, which were excellent customers in June, 1884, The home trade in rails is expected to receive a fillip this year,
or early in 1886, by the neecsity several leading companies will be or early in 1886, by the necessity several leading companies will be
under of re-layinglarge portionsof their lines. Stubbornly as steel
rails stand the wear and tear of railway traftio, there is a limit to
their endurance, and in the opinion of many principals of rail firms
the time is ai hand when the con the time is at hand when the companies will be obliged to inn
heary
be anppenditure on this account. The foreign demand will also be animated by the decision of the Indian
an additional $\& 1,000,000$ in rail way extensions.
It may be mentioned as a noticeable feature of "The Cutleries" -the short name by which the Cutlers' Company's Industrial Ex hibition is now known-that there are several female competitors
in the sections. In one instance, the work of Mrs. . As. Ashton,
in in hatting round tang tabsle-knives, has been very highly comInended by artisans themselves, although she has not succeeded in
winning a prize. It is part of the Sheffield industrial system to have "small masters," i.e., small manufacturers, whose employés
are frequently limited to the members of their and in these cases the girls as well as the boys learn a useful craf by which, if necessary, they may earn their livelihood in after
years. Wessrs. Walker and Hall, of the Electro Works, Howard-street, Sheffield, have completed a splendid specimen of plated ware, in
the form of a plateau for the bridecake, which is to form the present of Liverpool to the Princess Beatrice on her approaching marriage with Prince Henry of Battenberg. This massive plateau
is 54 in . in diameter, and is of a most tasteful and appropriat design, the workmanship reflecting the greatest possible credit on the artistic eskill of Messrs. Walker and Hall's employes. Thes
senior partrer in the firm, Mr. J. E. Bingham, who is the Master Cutler for the year, had an opportunity while Prince Albert Victo was recently in Sheffield as his guest, of showing the present to
his Royal Highness, who expressed himself as being highly pleased with the plateau. Messrs. Walker and Hall have a special reputation of this class of work, and have accomplished some notable
examples of silver work in their time, not the east of which was
the the famous "Plimsoll Cup" in solid silver, to which the firm con tributed the precious metal, and the workmen gave the labour.
The Denaby Main strike, which has now lasted for over thirty weeks, has culminated in a riot of some magnitude. Those who know the facts will not be surprised at this regrettabate incident
The company has endeavoured to fill the places of its excited is no denying the desire of these new-comers to stay and work istricts they an get no work to do, and are glad to have the chance of earning 5s, a day. The Denaby Main men, while disavowing,
all intimidation, undoubtedly succeed somehow in preventing their old employers from keeping these new hands. On Saturday and Sunday the strained relations between a new body of Staffordshire eal battle. A Staffordshire man, believing himself to be in peril rom several of the locked-out miners, turned and fired
 wards took place. On Sunday the opposing forces met in
hostile array, heavy missiles being employed on both sides. So serious was the cuisturbance that the police charged the Denaby men, who were driven from the field. Though thus worsted in
the fight by the strong arm of the law, the Denaby men practically Staffordshire men, drawn up on one side of the Don, had an interviow with then, Denawn men- nearly 1000 strong-drawn up on
the other. The Staffordshire miners told their former foes of the field that they had decided to throw up their work and return home, and that they would do their best to prevent others leaving
heir distriet for Denaby. The decision was received with tremendous cheering, and thus the Dedaby men have once more succeeded in keeping their masters' pits idfe, and preventing work-
people from accepting a system of working which they will not ven try for a month.

THE NORTH OF ENGLAND

THz outlook as regards the Cleveland pig iron trade is as gloomy as ever. There was but a poor attendance at the market held at
Middlesbrough on TTesday last, and scarcely any business was transacted. The price of No. $3 \mathrm{~g} . \mathrm{m} . \mathrm{b}$. is maintained at 32 s . per
ton by merohnants, and it is said that some makers will now acoept
the the same figure. The leading firms do not, however, take less
than 32s. 6d., and some ask even more. Where special brands are required the maximum price is naturally paid, Merchants are
offering No. 3 at the same price for forward as for prompt delivery but they make few sales, and only for small lots. Buyers are not easily tempted even by this low figure, as they expect less will yet
be taken. Forge iron is in poor request, and the price has fallen. It can now be bought at 31s. Gd. per ton, and in tome cases it has even changed hands at 31s. 3d.
Holders of warrants show no desire to sell, and the price is firmly maintained at 32s. 9d, per ton. Mess. Connul's store at
The stok of Ceveland pig iron in Messrs. .
Middlesbrough has increased 1850 tons during the past week. Siddesbroush has increased 18 sotons during the past week. They only amounted to
tons leen
30,184
tons on Monday last, being about 7000
 manufactured iron trade. Fresh orders are very sarce, and suffi-
cient specifcations to keep the mills running regularly are not to
co
 also slacker, though the works are at present fully employed.
Steel plates are 57 to $£ 7$. 2 s . 6 d . per ton, and angles $£ 612 \mathrm{~s}$. 6 d .; The value of ofocds oxported from Middlesbrough during last
month-exdusive of coal and coke-amounted to $E 210214$, being an increase of E424 over June, 1884. At Newcastle the returns
show show a decrease of $£ 14,795$, the total amount being $£ 198,525$
At
Middlesbroughg of of Cleveland mineowners and miners, held at Middlesbrough on the 10th inst., the sliding sale of the regula-
tion of mineres wages was renewed for a further period of two years.
on or privately, anythining like reasonable prices for secoond hand plant,
tools, or machines. Within the sales have been made, vizi, the last two or three weeks two such and the other at Elsecar. Very poor prices were obtained in both
cases, and many of the lots were literally given away. Machinery sales are largely attended by brokers from all parts, and only into each other's hands and do not compete. But when an unfortunate individual not known to them is seen to be eager for a lot,
they bid against him, and run him up until he is satisfied he can get no benefit by attending sales. Unless previously disposed of
by private treaty another engineer's plant is ilikely to bo sold at
Leeds in two or three weeks and Nuneley, of Hunslot. It includes some good tools, and should
have a better fote the The shipping trade to Spain from the North of England is being
adversely affected by the visitation of the cholera to that country.
 turn. This is bad enough of itself, but when the extreme lowness
of freights is oonsidered, it beomes evident that nothing but loss
can be the consequence of continuing to con

NOTES FROM SCOTLAND.
(From
Busiskss generally has been curtailed this week on account of
the Glasgow Fair holidays, which began nominally and actually on Thursday, when the works were closed for the
next weel next week or two. Several firms of shipbuilders and marine
engineers, who aro extra buay with Admiralty and other contraets,
are desirous that their workmen should come back at the end of a
week, but in other cases workshops will be closed for the greater part of a fortnight. There will be no business in the different markets until Tuesday next, and the whole of next week will be necessarily very quiet. The approartments early in the week, on account of the necessity of finishing up pressing orders, but the The demand for Sootch iron is poor even for this season of the year. A desire on the part of bears to cover over sales led to a
considerable number of transactions in warrants, whed trongly held and not easy to obtain. The result was that quotahigher than in the preceding week. The past week's shiments of Scotec pig iron were 7044 tons, as compared with 7410 tons in the preceding week, and 10,199 tons in the corresponding week of 1884. At Calder an extra furnace has been put in blast, and there are low ninety-one in operation against ninety-six at the same date
ast year. The slow inquiry has led to a larger addition to stocks, the quantity added in Messrs. Connal and
the course of the week exceeding 2000 tons
Business was done in the warrant market on Friday at 40s. 11d. ash. On Monday transactions occurred at from 40s. 10 1 d . to quiet at 40., . . 10 d to to 04s. 111. cash. Trassactions were noted on The (Thursday). reduction in some of the equotations. Froe on board at Glasgow,
Gartsherrie, No. 1 , is quoted at 46 s . 9 d , per ton. Gartsherrie, No. 1, is quoted at 46s. 98. per ton; No. 3, 44s,
Colteness, 48s. 6d. and 46s. ; angloan, 48s. and 46s. 6d.; Summer-

 The past week's shinments of iros. cluded four locomotives and enginesuactures from the Clyde Calcutta, and four ditives valued at $£ 111,724$, for Huelva; a steam Iredger worth $£ 3900$ for Melbourne, steam barge, $£ 1000$, for Port
Said, and a screw steamer, $£ 7000$, for Alexandria;
$£ 9150$ worth of machinery, $£ 1420$ sewing machines, $£ 2600$ steel manufactures, and sc., to the value of $£ 10,540$ for Calcutta.
The inquiry for shipping coals is pretty well maintained, the
past week's shipments including 26,853 tons from Glasgow, 327 rom Greenock, 2406 from Irvine, 6112 from Troon, 8341 from Ayr,
14,088 from Grangemouth, and 4807 from Bo'n 14,088 from Grangemouth, and 4807 from Bo ness. In the
Western district the inquiry for house coals is small, as indeed it large output in anticipation of the fair holidays, which began to wards the end of the present week. The quotations of ooand
are still low, ranging at the ship's side from 58. 9d. to 68. 3d. for
 owing to there being a plentiful supply of tonnage

WALES AND ADJOINING COUNTIES.
The old French saying that the unexpected generally comes to past few years. Schemes that are indispensable for the mineral
 bitterness of competitive rivalry into the social class Rubicon easily. What could be more needed than as railway to
develope the great mining engineers told me personally that such a line would prove another Taff Vale; yet two efforts have been made and unsuccess-
fully. It remains to be seen whether the Rhymney Railw fully. It remains to be seen whether the Rhymney Railway Com-
pany. will fare better In note that the preamble of the Barry
Dock and Railways Bill has passed the House of Commons Com. mittee. It was the arefully expressed and elaborately supported
argument of the counsel for the Marquis of Bute and the Taff
V ale Railway that the line was totally unnecessary.
I am glad to hear that the Monmouthahire
am glad to hear that the Monmouthshire coal scheme, to which ing an extensive tract by a new company, and ultimately descending and can only measures. The cool trade is not quite so buoyant, to be partilly active, some favoured coal
and owners being much more flourishing than others. Up to the pre-
sent, however, the Cardiff district cannot be said to have done 30th, 1884, amounted to 4,137, 851 tons. This half-year they have Thalled $4,238,447$ tons, thus showing an increase of 100,596 tons.
The height to which the prosperity of the Welsh coalfield has arisen is well shown when we compare the totals with other ports
of the k kinglom. Thus the total of the whole of the Tyne ports
on for the same period in 1885 shows but 4,029,130 tons; Sunder and,
$1,827,413$ tons; Newport, $1,410,143$ tons; Swansea, 788,590 tons and Liverpool, 660,383 tons. The present coal trade of Cardiff of quantity, is all that con be ne needed ; but a but ahilling and more in reperpot ton
would be a great boon to master and man. House coal is sluggish and the a result it that some ocllieries are onny working three to
four days per week. Small steam is firm in price, and is being picked up readily in all quarters.
Patent fuel is in steady requirement. At Swansea, France,
Italy, and Russia aro good customers. Cardiff, too, is doing a large trade. Prices, 9 s , 9 d. to 10 s, , and firm.
I have no change to report in the iron and steel trades. A and Tredegar, with some of the other large works, show something like the old activity, and at Tredegar especially hopes are stron
of future business, as the management have successfully contended
俍 with the dimfutites of makng steel sleopers, and aro now turning
them out. This sleeper weighs 120 lb ., and is rolled in such lengths as only to necessitate the cutting of two crop ends instead
of six. I I hear that good orders from India are to hand, and WFess may be
industry
Tin-plate is firmer in price, and inquiries are on the increase;
but some degree of quietness prevails on account of stock-taking. The prevailing opinion is that the action of the masters in agreein to a stoppage of one week in four will have a good effect. One
thing is oertain. Makers are putting prices up, and buyers aro
showing more anxiety to close for forwald deliver. of the make at present is unexceptionally good. No fault can be
found ound, and if the leading makerceptionaninye the excellence of their brands, they can be assured of getting an advanced price. A
hopeful state prevails si the trade, though June sales were less by
nearly 5000 tons than in nearly 5000 tons than in May. Still this was not unexpected, and
as compared with June, 1884, we show an increase of 5400 tons. The Tin-plate Decorating Company, formerly Leech, Flower,
and Co., is being floated. Their old repute for artistic decoration Irgests a good feature for the company.
Iron ore is very dull.
House
House coal quotations, 8s. 3d. for No. 2 and 9s. for No. 3.
Pitwood weaker owing to increased car
The examination of colliery managers at Bristol has proved eminently satisfactory, seven having passed. The first of these was a working collier of the Aberdare Valley, and there is a fine
nd healthy stimulus in the fact that he was able to head the ompetition, and prove his capacity to govern in the pit where 1 e

NEW COMPANIES.

The

Hevenoid Syndicate, Limited.

 This syndicate was constituted by deed ofsettlement on the 22 nd ult., and registered as a
limited company on the sth inst. with a capital of $£ 60,000$, in $£ 5$ shares, 3750 of which are taken pany is to acquire and work the patents No . 6233 ? of 30th December, 1882, sealed 22nd June, 1883, and No. 1571, of 16 th January, 1884, granted
respectively to Mr. Henry Gerner and Mr. Alfred respectively to Mr. Henry Gerner and Mr. Alfred
Henry Huth, for inventions preparation and manufacture of india-rubber gutta-percha, or any analogous gum. The mem-

The number of directors is not to be less than paid-up capital; the first are the subscribers
denoted by an asterisk. Mr. A. H. Huth is board for the year ending 25th March, 1886, is to be a maximum of 10 per cent. per annum on the profits for the current year, or in case the profits
do not exceed that sum, a minimum of $£ 150$ for each director, and a minimum of $£ 50$ for each director for all subsequent yeara

Mortgage Securities and Trust Corporation, Upon terms of an
解 company proposes to purchant of the 26 th ult, Chadwiek and James Boardman, carrying on business in London and Manchester as account.
ants, financial and insurance agents, under the style of Chadwicks, Boardman, and Company, private mortgage agency, or the lendates brivarowing of money on mortgage to or by indi viduals, firms, or municipal corporations. It was registered on the 3 rd inst. with a capital of
$\& 50,000$, divided into 2400 A shares of $£ 20$ each, $£ 50,000$, divided into 2400 A shares of $£ 20$ each,
and 100 B or deferred shares of $£ 20$ each. Messrs. and 100 B or deferred shares of exze each. Apessrs. salary of $£ 220$ per annum each. The purchase consideration is 100 B shares. The subscribers "C. W. Hastings, M.P., Barnard's-green House, Shares.

 J. Harcourt Smith, Barnes, "Burrey :

The number of directors is not to be less tha three, nor more than twelve ; qualification, 20 A shares; the irrst are the subscribers denoted by
an asterisk. The remuneration of the ordinary directors will be at the rate of $£ 100$ per annum each, with $£ 50$ additional for the chairman.

New Explosives Company, Limited On the 2nd inst. this company was registered the undertaking, business, and property of the
Explosives Company, Limited, including their property at Stowmarket, Penrryyndendraeth, and T. Large. 8, Coburg.road, Teddington

The number of directors is not to be less than three, nor more than six ; qualification, 100 shares;
the first are the subscribers denoted by an asterisk, and Mesers. H. D. Sandeman, Lawrence Hey. worth, and with an arke. Rumuneration 4500
per annum, wat anditional $£ 150$ per annum
tor the chairman.

Patent Gum and Rubber Company, Limited. Upon terms of an agreement of the 10 th inst.,
this company proposes to this company proposes to purchase certain British
and Foreign patent rights relating to methods of hardening resins and preparations therefrom. It Was registered on the 6th inst. with a capital of tion is $£ 28,000$ in fully paid shares. The sub. soribers are:-
W. Hartmann, 10 , Billiters-street, merchant Sharces

The number of directors is not to be less than three, nor more than six; qualification, 25 shares; the first
asterisk, Mr. Michard Le Dour, Dene
and 5105 per annum to each director.

Syrinx Gas Engine Company, Limited. This company was registered on the 2 nd inst. with a capital ol from Meers, Clarke and Gillespie the patent of
$\left|\begin{array}{l}\text { Edward Cotham and John Gillespie (No. 3495, } \\ \text { 1884) for the manufacture of the Syrinx gas }\end{array}\right|$ engine, and also the business of manufacturing
the said engine, and the business of mechanical the sald engine, and the business of mechanical engineers, agricultural implement makers, and
hlacksmiths, carried on at the Meadowland Wocksmiths, carried on at atevene Mertford. The subseribers Charles D
 E. F. Colins, stevenage, clerke
J. Gillespis, stovenage, engineer

Most of the regulations of Table A of the Comanies' Act, 1862, apply

RUST CEMENT

ONR of the most adhesive and durable of
cements known to mechanics who essay to unite iron surfaces is the exide of iron itself; 1 unith this a joint can be made so perfect and sound that the rom wing beak before the cement will part. In
removing the cast iron pipe of a bilge pump from a ship that had made four Atlantio voyages, it
was neeessary to take the sections apart. The
flanges had been pasted with a cement of cast iron flanges had been pasted with a cement of cast iron
drillings and filings, mixed with sulphur and sal. ammoniac, moistened with water. Then the nut -three in each flange-were set up on the bolts,
and the union was completed. The four voyage -going and returning - occupied nearly a year. When the separation of the parts was attempted, ven cho coll chisel was unable to make a divisio cements. The sulphur and ammoniacal salts are simply means to more rapidly oxidise the iron drilings and filings - the iron rust is really the
cement. If time is allowed, ordinary water or salt water would act as a solvent.
All our iron ores are simply oxides, and when hey are exposed to the atmosphere they show the
ordinary colour of iron oxide red. This oxide gives the red colour to the " brownstone" - red andstone -80 much affected $\begin{gathered}\text { or building purposes, } \\ \text {, }\end{gathered}$ These stones are only sand cohered in mass by now on some of the New England beaches. Th narrow and slightly raised windrows of sand thrown up by some heavy storm or some very high tide, so that they are beyond the redestroying
effects of common tides and ordinary winds, cal efffects of common tides and ordinary winds, ca gathered which are only sand slightly held by the gathered which are only sand slightly held by the stone-if such a term may be allowed-solid to the feeling, and capable of being thrownas missiles eyond these are the shingles of the beach and
the eliffs that define the shores. In olden time hhe liffs that define the shores. In olden time
this and and this iron was mixed, subjected to pressure by outerlying layers, and at length became "solid rock," as we eall it. And yet this quarried
oock of sand cemented with iron is still somewha soft, and for building purposes requires seasoning - the gradual reabsorption of the water given by or it has the oxidising effect of salt water, for ito effect on iron is similar to that of salt water on Iton under similar ciroumstances.
It is evident that any substance that induces rust in iron is not a sace one to use in comnection with permanent structures of iron. Some years
ago an instance of iron in connection with red sandstone - brownstone - was noticed, wher brownstone. The stairway was removed, and the
ron in the stone was disintegrated into mere iron in the stone was disintegrated into merc
treads. In this instance the holding of the iro balusters was sulphur. And sulphur is much stone, or even in iron, by sulphur. Lead is perhaps as safe as any material that is not too expensive to use. In removing an iron fence, the
embedment of the palings in lead lining the holes in the stone, making a superfcies of about 14 in was readily overoome by lever aotion; while the cross section of the same paling through iron rails necessitated the use of hammer and cold chisel - Scientific American.

South Kensington Musbus.- Visitors during the week ending July 11th, $1885:-\mathrm{On}$ Monday, Tuesday, and Saturday, free, from $10 \mathrm{a} . \mathrm{m}$, to
10 p.m., Muscum, $7246 ;$ mercantile marine, 10 p.m., Muscum, 7246 ; mercantile marine
Indian seotion, and other collections, 2616 . O Wednesday, Thursday, and Friday, admissio mercantile marine, Indian 10 a.m., Musecum, 1651
mation, and othe collections, 201. Total, 11,714 . Average of
corresponding week in former years, 17,429, corresponding week in former years, l17,429,
Total from the opening of the Museum,
at Tu
Thite Usg or Natural Gas.- The town of Pittsburg, Fennsylvania, affords an illustration of what may be accomplished in the use of
natural gas. This gas is now conveyed to the
town throug tour Iine of 8 in. pipe. A line of 10 in. pipe is also
being being laid. The pressure of the gas ap the wells
is from 150 lb . to 230 lb . to the square inch. the wells are eighteen miles distant on the one side and about twenty-five miles on the other
and as the consumption is variable, the pressure at the city cannot be given. Greater pressure increase liability to leakage and bursting of pipes. For the prevention of such casualties, safety
valves are provided at the wells, permitting the escape of all superfluous gas. The enormous parison of, say, 2001 lb . pressure at the wells, with a 2 oz, pressure of common gas for ordinary lighting. The amount of natural gas now furnished for use in Pittsburg is supposed to be
something like $25,000,000$ cubio feet per day; the 10in. pipe now being laid will, it is estimated
increase the supply to $40,000,000 \mathrm{ft}$. The of manufactured gas used for lighting the same
city probably falls below $3,000,000$ the About fifty mills and factories of various kinds in Pitts.
butg now
burg now use natural gas, and it is used for
domestic purposes in 200 houses,

THE PATENT JOURNAL. *. It has come to our notite that some applicants of the

 Applications for Letters Patent.

Applications for Letters Patent.
When patents have been "communteated, the name and addres
printed in italics.

S197. Automatic Elkerrio TELL-Thig AppiRatus, A

,
 200. Coal-cottrina Machings, R. Thompoon, Liver

Yulham. 215. Dupiex Stenc Esonses, Li B. Carricaburu

S216. Vantyb Gear for Duplax Stram Exainss, L. B.

 ${ }^{\text {Liversedge }}$

 Homerton.

 s242. Mulis for Grixdiso Almosde, be., W. T. Oseh

 Petens, London. Suss, L. and J. W. Haylock,
8245 Boors and

82so. Oxidiskd or Solidirikd Oll, te., F. Walton,
London. 3251. Fonisace Grates, L. S. Dulac, London.
seh July, 1885.

32S4. Wratrikn Boxide and Dheont Excludens,
W. B. shoriand, Manchester.

S2siverpool. Bavis and other WAshiso Vssesks, J. shanks,
 326. Orawisa and CLosisa of Borties, J. Welb,
Manchenter. 320in. Boster. DUplex Stosk Breakrr, ta., R. Brook,
Leder
 Toveg, Birminghan
S2es. PRVENTING th
 Usk
Frod
Bratt
IMPR

8277
88
827
827
828
828
88
828
828
828
828
828
828
828
828
828
828
828
828
8

 828
828
88
88
82
828
828
828
8
8
88
88

 2289, Grisgow. Price, London.
8290.
linger, LomRriNs, London.

> 9 th July, 1885 . cmiso Groovesi

 han, Liverpool Delas, ce., W. H. Gay and w.

 CAMERA SLides, J. B. Holroyd, Hallfax.
GUN-Lock, W. C. McEntee and J. Hughes,

 Drconatiso Curxa and Gluss, A. M. F. Caspar,

 hshitton and H. GXvL. Mant, Birming Provectuse, \&c., D. R. Dawson,

 cott, Halifax.
S3is. Tuniva Talles for Ranwars, ,. Robertson, Cockirg H. MoxsiLss Gexs, W. Ford, R. Jack-
add $\}$ W. W. Toney, Sirmingham.

 Sinson, Birming ham, w. s. Gardner and A. H.

 Moncrieff, London.
Thack Schew
Blackheath.
 8376. Fixing Wigks in Lamprs, P. P. Burt and S. B. Edmonds, Birmingham.
8377. FRaMEs for LAMPs,
I. Sherwood, jun., and F. Sherwood, Birmingham.
8378. Combina Cotron, Silk, \&c., J. Dugdill, Manchester.
8379. SECU
8379. Skovrina Window Blinds, de., to Rollers
G. F. Whittle, Manchester G. F. Whittle, Manchester.
8380. FLOAB for ReguLATING the Motion of Valves,
F. N. Mackay, Liverpool. 8381. Stpronting and Livvellina Protooraphic
Cameras, \&c., J. M. C. Grove, Letterkenny,
 Richardson, Jarrow-on-Tyne.
8383. Manufacturing Gas Hooks, A. E. Gorse, West Bromwich.
8884. WAshing Machine, W. H. Tiplady and C. Wood, 8385. Blower for Domestic Fire-orates, R. R. Roberts, Manchester.
8386. FILE GUIDE for SH Manchester.
8987. MusiIAL Instruments, P. Tarbutt, London.
8388. Horse ColLAR CLASP, H. S. Fisher.- $(N$. 889. SEWING N EEDLESS 390. WINDOW BLIND, S. S. H. Sharp, Halifax 8391. Comet Globe Hocder, W. Beale, Birmingham. Germany.)
8893. Flushing Apparatus for Drains, \&e., J. Morris,
Liverpool Liver Coortina or Dressing Stone, E. Chatham,
Liverpool. Liverpool. and the GUardig and Drivere, J. Tasker and A. M.
Coates, London Coates, London.
8396. PAROHMENT PAPER, H. Mason, London,
3997. OPENING and CLOSING FTE-EXTIVGU
 3998. WINDING and REELING. Cotovon, de., J. W.
Makant and P. Parkinson, London. 399. Lrsks, T. White and G. H. Dixon, Sheffield,
 Belgamp.) Chimneys, D. C. Defrien.-(L. Sepulehre,
402. Size for Sizing Raw Stle, J. F. Giraud, London.
 bank, Anerley.
4405 . Openina Boxes of Tinned Goods, B. Campbell, 8406. Diginfectants, W. D. Borland, Stowmarket.
8407. Indicator for Applyina the Names to STREETB, R. Essery, London.
4408. Maing Packers of Cianrettes, de., R. de M. La9wson, Construdoting Floorinas of Bridges, de., c.s.
willime Williams and H. Stanton, Cubitt Town.
8410. INcANDEsoent Electric LAMPs, H. Harris, London.
841. Hydo-aarburetted Air Engings, J. J. R.
 1. R. Geister and Voeckler and Roh, Saxony.)
3415. GAB Enanses, O. W. Pinkney, London.
 Balteries, A. Khotinsky, London.
M. Fack Plate and Latas Chuok
 8418. Purifying Copper Precipitates, J. Y. Johnson.
(E. Deligny, France.) (B. Deligny, France.)
8419. Stand for Carrying Rolls of Paper, P. Stewart,
Glagow, S42asgow. Cowrollina Device for Semaphores, C. ReitziusElkwall, London. 2eatand.)
8422. Gkar for Drivina Rollers, de., E. Morewood,
 13th July, 1885. 8425. Floral Wreatiss, J. C. Beyrodt, Germany.
8426. Locomotive Torpedoes, E. C. Peck, Old Chariton.
8427. Combination Lietter Stamping, Arranging, and
Printino Machine, W. C. Burton, Rochdale. Printino Machink, W. C. Burton, Rochdale.
S428. Skoondary or Storace Batteries, G. E. Dorman, Stafford.
429. GAs Reoulators, T. R. Anderson, Dundee. bind automatio and Continuous Brakes, H. Brockel 8isi. Connectino Fasteners to Drivino Brits, I. Jackson, Glossop.
8432. WIRE CLorr, R. Rowat, Glasgow.
8433. Frxiva, Nowcastle-on-Tyne. 8is4. Pulp Strainer, J. Wood and R. Penman, Edin-
burgh. burgh,
8435. Furnaces, J. C. Brentnall, Manchester.
8366. Nemede Sprinas for SEwina Machi Young, Edinburgh.
8iser Sewina Machines, D.
8437. Wood-workiva Macuivery 843. Wood-WorkiNa Machinery, S. Ingham, W.
Illingworth, and J. W. Haywood, Leeds.
438. STERRING VELOCIPEDEy, M. Woodheal 8438. Steerrng Vklocipedes, M. Woodhead and P.
Angois, Nottingham.
8439. Slide Valves for Steam Engines, P. Baylis, 8as9. SLIIDE Valves for Steam Engines, P. Baylis,
London. 8440. Sulpruretted Hydroaen, E. W. Parnell and J.
Simpson, Liverpool. simpson, Liverpool.
8441. Sorkw Propellers for Ships, G. A. Calvert,
Liverpool. Liverpool.
${ }^{\text {84i. PREBSINa Hats, }}$ Hipping Manchester, W. E. Carrington and R. 8443. BLEACHINGGAPPRARTUS, A. Whowell, London.
844. BAKERS' OVENS, J. T. Pearson 8444. Bakers' Ovens, J. T. Pearson, London.
845. VENETAN BLIND, S. Willoughby, London.
844. RALLWAY StaNAEs, 844. Rallway Stowniss, R. Hudson, London.
847. Botruino Lievids, F. G. Riley, London. dis, Doublina Machines, J. and J. Nightingale 8449. RUNNERS for Braces, \&c., E. Farrow, London.
8450. FASTENINOS for WINDOW 'SASBEs, C. W. Watson, Willesden-green. Pump and FLuid Piston, J. W.
8451. PNEUMATIC Pord
Gordon, LLower Clapton. $-13 t h$ October, 1884, Gordon, Lower Clapton.- 13 th October, 1884.
8452. TrLEPHONIC APPARATUs, J. Munro, West Croy8453. Wrre Ropr, H. Cheesman, London.
8454. Photographic Shutters, H. J. and and A. Newman, London. and A. Newman, London.
845. Elecrrio Bells, H. J. and E. J. Dale, and A.
Nowman, London. Nawman, London.
8456. AERILL Naviation, H. J. Dale, London.
8.
 8458. Writing Pense, T, Maguire, Blackburn. 8459. Movable Taroets, F. Clarke, London.
8460. Alama Fatenios for Doors and Windows, F. Lebacq and J. Ponty, London.
8461. INsTnUMENTs for TAKiNa Soundinas, A. J. Cooper and E. E. Wigzell, London.
8462, SToD FAsTENINGs, O. Raflenbeul, London.
8463. FIreplace, O. Imray. - (D. A. Rosenstiehl, France.)
864. Scoturina Fibrous Stems, \&c., W. E. Death, London.
865. UTiLisise the Motive Power of Stens, F.
Prince. $=$ (H. J. B. Hennebutte, France.) 8466. Velocipedes, T. Butler, London.
8667. Umbrellas and Paras. 8167. Umacrel.as and PARASOLs, W. R. Lake.-(U.G.
Steinmetz, United States.) Stes. Naitino Machinke, w. R. Lake.-(F. F. Raymond, United States.)
S469. Enderss BaNDS
Binns, United Slaten.)

SELeOted amerioan patents. (From the Onited States' Patent opteo Odcial Gautte.)

 ing materal, having a cavity ind a a resistance column
of finelv divided

sickle blades having boxes fitted on said bar and pro-
vided with rearwardly-projecting flanges b^{2}, a nut on vided with rearwardly-projecting flanges b^{2}, a nut on
the sickle bar, the wear plate F, having a depending
wing fited wing fitted alongside of and locking the nut on the
sickle bar, the distance bar g, placed on the finger bar, the guide plate E, placed on the distance bar and pro jected over the flange b^{2} of the sickle bl
fastening bolt G, substantially as set forth.
fastoning bolt G, substantially as set forth.
319,502. Combinse Driling and Boriso Machine Jainuary $2 n d, 1885$.
Claim. - (i) In a combination tool comprising
 spindle, mechanism, substantially as set forth, to
rotate or prevent rotation of said spindle, a face plate rotate or prevent rotation of said spindle, a face plat
or table, and mechansm, substantillily as set forth, to
rotate or prevent rotation of said face plate, substan tially as and for the the purpose specified. (2) In a com
bination tool a drill or tool and gearing to rotate it, mechanism, substantially as set
forth, to separate sald gears to arreat the rotation the spindle, and a lock to provent the rotation of said spindie when the gears are separated, substantially as
and for the purpose tool, a drill or tool spindlo combined with gearing to
rotate it, mechanism, substantially is a separate said gears to arrest the rotation of the
gethanis spindle a a lock to prevent the rotation of said spindle
when the gears are separated, a face plate, and

mechanism, substantially as sot forth, to rotate or
prevent rotation of said face plate preveno the purpose specified. (4) The combination of shat B, having bevel pinion , frame E, having a
guide F, box G, screw H, to move said box, guide F, box G, screw H, to move said box, gear D,
carried by said box, and spindle K, substantially as carried by said box, and spindie K , substantialy as
and for the purpose specified. (5) The combination of
shaft B , having bevel pinion ${ }^{\text {C }}$, frame E , shaft B, having, bevel pinion C, frame E, having a
guide F, box G, screw H, to move said box, gear D guide F, box G , screw H , to move said box, gear $\mathrm{D}_{\text {, }}$
carriod by said box, and a lock to provent rotation of
said gearD, substantially as and for the pup asid gear D, substantially as and for the purpose speci-
fied. (6) The combination of shaft B, having bevel
pinion C , frame E , having to move said box, gear D, carried by said box, lever 1 spring 1 I, pin J, and spindle K, substantially as and
for the purpose specified. (7) The combination of
and for the purpose specified. (7) The combination of
frames E and N , face plate M , having gear M^{11} pinion O, shaft Oi , gears O^{2}, shaft P, countersunk A, and connecting s.
319,515. Metal Mould pon Castiva Sterl Wherls,
Willam Sellers, Philladelphia, Pa.-Filed June 8th, 1883. The mould, being closed, as appears in
Brief.-The
ig. 4, is moderately heated. The metal is poured Frap. 4, is at the hub hut to fill the mould and make one a
rapiking head at the hub and another at the rim. Air
sind
and gases escape betwecn the loose fit at upper edge of
the rim or through cross grooves there filed. Mould
stands until skin is set enough to hold the casting in form -say one and ahalf minute -and is then supported by the lowerhub portion and a bottom

flange on its rim. Pass the wheel directly to an
annealing furnace, cut off the sinking heads-if cast annealing furnace, cut off the sinking heads-if cast 319,519. SIGrivered Oil Cupor Lubricator, Charles
W. Sherburne, Boston, Mass,-Filed February 17th, Claim.-In a sight feed lubricator for locomotives,
the combination of a sight.feed chamber, the passage , connecting the reservoir with the passage G, and two-way cock F , having the passage f, which connects
the side feed chamber with the escape passage and the

passage $f 4$, which is adapted to connect the passago e with the escape passage, whereby the reservoir is conpassages, vaive, and the opening of one of which passages closes
the other, all substantially as and for the purposes
described. described.
319,520. Core-bar, Frederick Shickle, St. Louis, Mo. Brief. - The heat of the casting operatos to char the
strip B, which is of wood or other frangible material,

319,520

so as to enable it to drop from its position and allow M19,540. Dynasio-rLRernic Maching, Leonidas G.
Woolley, Indianapolis, Ind_-Filed 1884. (1) The combination of the dynamo-electric
Claim.machine, the rotary engine for driving the samec, a
common shaft for the engine and the armature of the ammon shaft a common bed upon which said ongine
dynamo, and and dynamo are both mounted, said engine being
and said dyan

319,540

located between the limbs or coils of said dynamo, substantially as set forth. (2) The combination of the
dynamo-eleetric machine, the engine for driving the
sme, and a common bed upon which both are symamo, nne a common, bed upon which both are
mounted, said engine being locatod between the limbs or coils of sald
319,580. Iscandrscent Elecrric Lamp, Louis
Heinse, Netcark, N.J.-Filed December 15th, 1884 . 19, Deinse, Necoard, N.J.-Filed December 15th, 1884 .
Claim. - (1) In an incandecent electric lamp, the
combination of the hermetically sealed bulb A,

inclosing an incandescent fllament, the neck B, and
the conducting wires a the conducting wires a, , provided with eyes in their
ends, with the socket C and the wires ay al, having
hooks in their ends for engaging said eyes, and the

ends of alotst forming an irregular line, as deecribded,

 of Claim- (1) The combinution, in a at tubo oxpander,

 expandar, fo a mandir haring ga monion, on tanourig

 fitted with a a erros of expander rollers and mounted
upon tho expander head with the capuity of end upon tho expander head witit the capasity on end
morement of tho hater rolativelt to tho carrer a
 mandirn and erring an an estins ment or tho sup.

 the capacty of end morement ot tho lateve rolatively
to tho ecarrier
driving tour

