GRAPHIC KINEMATICS OF MACHINERY. Professor R. H. Smith, of Mason's College, Birmingham, communicated in April last a paper to the Royal Society of Edinburgh on a New Graphic Analysis of the Kinematics of Mechanisms. The following abstract of it was prepared for the press by Professor Fleeming Jenkin, being probably the last thing that distinguished professor wrote for the press before his death. The paper describes wrote for the press before his death. The of constructing velocity and acceleration diagrams for any mechanism however complicated consisting of rigid parts which move in one plane and are so linked together that when the motion of one point is known the motions of all the parts are determinate. This, of course, is a condition fulfilled by almost all rigid bar mechanisms.

The velocity diagram allows the velocity of every point in every bar of the mechanism for all positions of those bars to be easily and accurately found and recorded. The acceleration diagram does the same for the accelerations of
all parts of the mechanism. all parts of the mechanism.
The velocity of each point is indicated by a vector radiating from a pole ; that is to say, by a line the length of which measures the magnitude of the velocity to any
of \mathbf{B} relatively to A in the field the direction of which is fixed by the base-plate P. Similarly $c b$, the vector drawn velocity of B relative to C These consequences follow from the above fact that the image and velocity vectors are exactly similar to the triginal bar and the radii from the instantaneous axis to the points A B C, \& The from that the image $a b$ is turned round exactly through 90° is of use in drawing the diagram. Figs. 2 and $2 a$ show the velocity diagram for the ordinary crank P, the connect ing $\operatorname{rod} A B$, the piston $\operatorname{rod} B$, and the base plate P.

Twelve positions of A are shown; $A_{1} A_{2} A_{3} A_{4}$ \&c., is the
path of $A ; B_{1} B_{2} B_{3} B_{4}$ \&c., is the path of B; path of $\mathrm{A} ;$
$p a_{1}$ $\mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \quad \mathrm{~B}_{4}$ \&c., is the path of B ; corresponding to the twelve positions. These are known in direction (being perpendicular to the crank at each point) and in magnitude (the angular velocity being con-
image of A C B drawn as shown turned round 180 deg . and drawn to the scale given by any one vector $a^{2} b^{1}$ will give all the acceleration vectors precisely as the image turned through 90 deg. gave all the velocity vectors.
Next let us assume that w is not constant, but is being increased at the rate w^{1}; in other words, let w^{1} be the
the acceleration of A (which if $A P$ is rotating uniformly will be radial from A to P). Let us first suppose the ration of any point B relatively to P will be total acceleof the vector point $p^{1} a^{1}$ relatively to P will be the resultant acceleration in, the velocity of B relativel representing the latter component is ${ }^{1}$ B A directed from B to A. Draw therefore a^{1}. equal $w^{2} \mathrm{~B}$ A and turned round 180 deg .,
and $p^{1} b^{1}$ will be the required acceleration vector of \mathbf{B}. But a similar construction would give any other point c^{1}, and $a^{1} c^{1}: a^{1} b^{1}: c^{1} b^{1}=A \mathrm{C}: \mathrm{AB}: \mathrm{CB}$; therefore, an

convenient scale that may be chosen; while the inclination in the field shows the direction of the motion. In fact, velocity is shown exactly as force is shown in all graphic methods. "Vector" is a convenient name for a line of along the line the action arrow on it to show which way
stant). The circle $a_{1} a_{2} a_{3} a_{4} \& c$ c., is in fact the hodograph
of the motion of A. The vectors for B must obviously of the motion of A. The vectors for \mathbf{B} must obviously lie along a horizontal line through p. Their length is determined by drawing $a b$ in each position perpendicular to A B for that position. Any other point C in the connecting rod will appear similarly situated on the image $a b$, and the curve joining all the points will be the hodograph of the motion of C. Quite similarly we get the velocity of any point in the crank by the vector from p to the given point in the image (drawn for first position only). The dia gram, therefore, gives us accu rately the velocity and mac nitude and direction for every point of the crank and con-necting-rod, without ever re quiring that we should draw the path of such a point as C and to which path, however, the vector $p c$ will always be parallel.
Figs. 3, $3 a$ show a four link mechanism, and its velocity diagram for the complete cycle of motion. The magnitude and direction of $p a$ are known -it being assumed that the crank rotates uniformly, the direction of $p b$ is known at each point perpendicular to P B-and the point b is then in each case determined by do A B B in berpendicular to A B in each position. A curve joining all the a 's would be the hodograph for A; a curve joining all the b 's, the hodograph for B. Members of the mechanism which ase stationary, or move with velocity of translation only, have their images reduced to points, as p in all diagrams, and b in Fig. 2. The images of the other members as P A, A B, and P B in Fig. 3 wax and wane throughout the cycle, but the scale for the

A similar set of propositions hold good in respect of the acceleration vectors. Since an acceleration can be repre sented by a vector, accelerations can be compounded and decomposed like velocities, and the acceleration of a resultant velocity is the resultant of the accelerations of

Now let P A, Fig. 4, be a crank rotating as shown by its arrow, and let A B be a member of any shape rotating with an angular velocity v. Let $p^{1} a^{1}$, Fig. $4 b$, represent
 vectors remains constant. the component velocities.
which can be represented by vectors can be compounded or decomposed as forces are compounded or decomposed
Professor Smitherations belong to this order of actions, vectors $p a$ and $p b$ (Fig. 1a), representing the vecities of any two points A and B of any rigid bar; and if we draw what might be termed an "image" of the bar between the points $a b$, this image being similar in shape to the bar AB, and having its scale determined by sape to the bar image represent $\mathrm{A} B$ of the bar ; then (1) this a of the be placed as if turned round 90° from the positione will bar ; (2) that a vector drawn from to position of the image will represent the velocity of to any point c in the point C of the bar in the field of the base-plate P; (3) that the vector $a b$ (drawn FROM a то b) represents the motion

angular acceleration, and let it take place in the direction of w. The linear acceleration due to w^{1} of any point \mathbf{B} relatively to A will be w^{1}. AB in the direction of the acceleration of rotation and perpendicular to A B. Now, as before, let $p^{1} a^{2}$, Fig. $4 c$, be the acceleration vector for the point A . Then let $a^{1} \beta^{1}$ be the acceleration due to w as before, and let $\beta^{1} b^{1}$ be equal to $w^{1} . A \mathrm{~B}$, the new acceleration due to w^{1}. The vector $\beta^{1} b^{1}$ will be perpendicular to $a^{1} b^{1}$, because it is perpendicular to A B . The total acceleration of B for this perfectly general case will be $p^{1} b^{1}$, the resultants of three vectors, $p^{1} a^{1}, a^{1} \beta^{1}$, and $\beta^{1} b^{1}$. The vector $a^{1} b^{1}$, representing the acceleration of B rela-

tively to A, is turned round relatively to $A B$ in the direction of 20 , by an angle equal to $180^{\circ}-\beta^{1} a^{1} b^{1}$. This angle $\beta^{1} a^{1} b^{\prime}$ is constant for all points of the member ABC , for its tangent is $20^{1} \mathrm{AB}$
before, the vectors $a^{1} c^{1}, c^{1} b^{1}, a^{1} b^{1}$ wre proportional to A C, C B, and A B. Hence, as before, we may fit an image of the bar A B into the place indicated by $a^{1} b^{1}$, and vectors from p^{1} to any point of this image will give the accelerations of the corresponding points in the bar; and this image will be turned round in the direction of w through $180^{\circ}-\tan ^{-1} \frac{w^{1}}{w^{2}}$, where w^{1} is counted positive when in the direction of w. The total angle will, therefore, exceed 180 deg. When w^{1} is negative. If w and $r v^{2}$ are $n i$, the In any mechanism a point, coinciding with a^{1}.
velocity diagram we shall always we have already got the
may be termed the centripetal component $w^{2} \mathrm{~A} \mathrm{~B}$, since the vector $a b$, which is known, gives

$$
v=a b \text { or } w^{2} \cdot \mathrm{AB}=\frac{(a b)^{2}}{\mathrm{AB}} \text {. }
$$

We also know the direction of this component. We seldom know 20^{1}, but we always know its direction, perpendicular to AB; and with this information to guide us, there is usually little difficulty in completing the diagram.
Fig. $2 b$ represents the acce-
leration diagram for Fic. 2. leration diagram for Fig. 2. $p^{1} a^{1}$ is calculated from the
angular velocity of PA , and fixes the point a^{1}; then a_{1}^{1} β_{1}^{1} is calculated from the velocity $a_{1} b_{1}$, and is directed
from B to from B to A . This gives the point $\boldsymbol{\beta}_{1}^{1}$. We do not know w^{1}, but the component accele-
ration for B due to w^{1} must ration for B due to w^{1} must
be perpendicular to $A_{1} B_{1}$. be perpendicular to $\mathrm{A}_{1} \mathrm{~B}_{1}$.
Hence, draw $\beta_{1}^{1} b^{1}$ perpendicular to $A_{1} \mathbf{B}_{1}$, and where this cular cuts small $p^{1} b$ we find
the point b_{1}^{L}, for we know that the point b_{1}^{1}, for we know that
the direction of the accelerathe direction of the accelera-
tion of B must be in the line B B. The vector of $p^{1} b^{1}$ is the total acceleration of the member \mathbf{B} when in the position B_{1}. We can find w^{1} if it be desired from $\beta^{1} b^{1}$. The image of the crank and of the
connecting rod are shown in connecting rod are shown in
their places; the hodograph their places; the hodograph
for the acceleration of C is for the acceleration
shown by the curve.
Fig. $3 b$ shows the accelera-
tion diagram for Fig. 3. The mode of construction will now be readily followed. $p^{1} a$ is known, $a^{1} \beta^{1}$ is calculated from $a b$ in the velocity This does not give b^{\prime}, because the length of this component is unknown ; but approaching AB from the other end, we calculate $p^{1} \beta^{1}$ from $p b$ in velocity diagram, and then draw $\beta^{1} b^{1}$ perpendicular to PB . The intersection of this line with the other $\beta^{1} b^{1}$ fixes the point b_{1}^{1}. The image of large A B is drawn in its place. Six-bar mechanisms are treated
in the same way, as are also those with a larger number of members. However complex the mechanism, there is
\qquad
adoption. No one is disposed to deny that the existing methods of shunting are generally rude, cumbersome, and
fraught with peril. It remains to be seen how far the fraught with peri. It remains to be seen how far the efforts of inventors
of these drawbacks.
It is somewhat surprising that none of the many parliamentary inquiries into the subject of railway accidents
have gone much into this matter. In 1857 a Select

Committee was appointed by the House of Commons to inquire into the subject of railway accidents with a view to the removal of their causes by further legislation if possible. After receiving a great deal of evidence, that Committee classified railway accidents under the three heads of (1) inattention of servants; (2) defective material in works or rolling stock; and (3) excessive speed. It was mainly at the instance of this Committee that the powers and duties
of the Board of Trade in reference to the investigation of railway accidents were prescribed. The Committee, more-

always one pole only for the velocity diagram, and one for the acceleration diagram from which radiate the vectors for all parts of the mechanism ; the scale of the vectors also always remaining the same.

This method gives both the magnitude and direction of the acceleration vector with accuracy. The old elementary method consisted in finding first the path of C ; then the little elementary space $\triangle s$ passed over in a short time $\Delta t . \frac{\Delta s}{\Delta t}$ gave the magnitude of the velocity very roughly, and the direction of the tangent to the path was also very roughly known. The same process was followed with the hodograph of velocities, using Δv instead of Δs; defived. The new method is an improvement, not only because it is simpler and more comprehensive, but because it gives very much greater accuracy both as to magnitude it gives very much greater accuracy both as to magnitude
and direction. Algebraic analysis will only give the components of velocity and acceleration in cases where the path is some curve the elements of which can be expressed with reasonable simplicity by algebraic symbols ; but the motions of many combinations used by engineers defy representation in this way, whereas graphic analysis
applied as explained will solve these questions equally well applied as explained will solve these questions equally well
for any point of such complicated mechanisms as Joy's for any point of such complicatited mechanisms as Joy's fact, Professor Smith gives diagrams in his paper.

RAILWAY COUPLINGS.

The question which Mr. Broadhurst put to the Secretary to the Board of Trade on Monday, the 6th July, as to whether that department "will depute one or more of their inspecting officers of railways to examine and report on the various improved railway couplings, designed with the view of minimising the risk to life and limb, now on Board of Trade recommend the adoption by the railway companies of such as may be favourably reported on," raises several considerations of importance, and of which we are likely to hear a good deal more in the immediate future. It is as much the interest of the railway companies, as it is their duty, to take care that if the present
dangerous system of shunting can be dispensed with, consistently with the maintenance of due efficiency, no obstacle shall be thrown unnecessarily in the way of the
better system or systems that are recommended for their
over, recommended that the companies themselves were the best parties to give that strict personal supervision which they deemed necessary to "check the carelessness of the men employed on the line, and detect the insufficiency of the material used on them." No specific recommenda-
tions were made by this Committee in reference to the subtions were made by this Committee in reference to the sub-
ject of accidents to employés in coupling and uncoupling ject of accidents to employés in coupling and uncoupling
railway vehicles, possibly because any real improvement on railway vehicles, possibly because any real in
the old system had not then declared itself.
In 1865 a Royal Commission on railways was appointed to investigate, among other matters, that of safety in railway travelling. The recommendations of this Commission, however, refer exclusively to the safety of passengers, and
do not specifically touch upon the servants of the railway do not specifically touch upon the servants of the railway companies. A leading proposal was that the railway com-
panies should be made absolutely responsible for all panies should be made absoutely responsible for air
accidents to passengers, unless caused by their own accidents to passengers, unless caused by their own
negligence. Again, in 1870, another Select Committee of negigence. Again, in 1880, another Select Commitee of
the House of Commons was appointed to "inquire into the law, and the administration of the law, of compensation for accidents, as applied to railway companies, and also to inquire whether any and what precautions ought to be adopted by railway companies with a view to prevent accidents." The report of this Committee was mainly devoted to the consideration of compensation for accidents
to passengers, but that of accidents to servants, or that of to passengers, but that of accidents to servants, or that of
taking steps to prevent such accidents, did not seem to be considered any intrinsic part of the reference.
In June, 1874, another Royal Commission, with the Duke of Buckingham and Chandos as chairman, was appointed to inquire into the causes of accidents on railby further legislation. This Commission, after examining hosts of witnesses, remarked that the several similar inquiries held in previous years had only produced two practical proposals tending immediately to the prevention of railway accidents-(a) requiring a means of communication between the different parts of trains ; and (b) the enforcement of the block system; and recommended (1) adoption of the block system; (2) that the interlocking of points and signals be similarly enforced; (3) that facilities of afforded to the public to obtain redress for unpunctuality of trains by a cheap and summary process; (4) that al
trains should be supplied with sufficient brake power to trains shoul we supplied with sumf (5) thake power to
stop them within 500 yards; and (5) that there be an stop them within civil liability of railway companies for
extension of the
accidents to their servants, and of the criminal liability of persons in railway employments for acts of negligenc endangering life. As bearing specially upon the last named subject, the Commission remarked that accident to servants "are of very frequent occurrence in shunting operations in the goods yards of railway companies, an more especially from the practice of fly-shunting;" an they recommended that "the attention of the companien
should be called to this subject, with the view to the in should be called to this subject, with the view to the im provement of their arrangements and regulations in goods
yards." In the same report, Mr. William Galt, one of the yards." In the same report, Mr. Wiram Galt, one of the Commissioners, called attention to the fact that in the year 1875, "thirty-nine \$servants were killed and 51 injured intthe"discharge of ptheir duty without any faul being attributed to them by the companies," mainly in the processes of coupling and uncoupling. This continues to be the condition of things everi at the present time. In the seven years ending 1884, it appears that 1084 railway ser vants were killed, and 9390 were more or less seriously injured in following their dangerous occupations. This is a result that must be deplored alike by the general public and by the railway companies, as well as by the railway servants, whose employment is shown to be attended by such serious risks; and it is probable that neither Mr Broadhurst nor those whose cause he represents are more
anxious that a better state of things should be inaugurated anxious that a better state of things should be inaugurate than those who are charged with the administration of our great railway business. The real truth is that until apell there has been a lack of effective automatic coupling appl ances. Many inventors have at one time or another
brought out appliances designed to secure the desired brought out appliances designed to secure the desire
result, but they have generally been found deficient in one or other of the qualities that are necessary in a really prac ticable coupler. There is, however, some reason to believ that these difficulties may now be got over.
It is not for us to anticipate the conclusions at which the Board of Trade may shortly arrive with reference to the subject of railway couplings. The subject is not one that should be lightly considered nor settled without due regard to all the interests concerned. There are now about half-a-million vehicles of all kinds on the railway of the United Kingdom. If it were made compulsory on the management to apply automatic couplers to the whole of this legion, it is obvious that the expenditure entailed would be very heavy indeed-scarcely less so than that caused by the adoption of automatic brakes. Even this however, is not a sufficient reason for permitting the rail way companies to continue the existing system, if it can
be satisfactorily proved that another equally efficien system will enable immunity from danger to be enjoyed, along with equal efficiency. And it seems to be pretty well established that there are other systems that possen such a claim to consideration, and render it altogether unnecessary for railway servants to ride outside any vehicle while engaged in coupling and uncoupling operations, or to get down between them, as is now so commonly done, or, in short, to move from the platform where they are at work. American experience has demonstrated this beyond all cavil. Automatic coupling for passenger cars is the rule on the railways of the United States. About forty of the lines there have adopted one particular coupler, which is proved there have adopted one particuali coupler, whit its intended
to have all the necessary qualifitions for its purpose. As a consequence, accidents to railway servants purpose. As a consequence, accidents to thanway servant may be added that American railway engineers appear to may be added that American raitway engineers appeareally have bestowed more care upon the effort to obtain a really
good automatic coupler than our own. The conditions good automatic coupler than our own. The conditions
necessary to such a contrivance were thus stated in necessary to such a contrivance were thus stated in in
paper recently read before the Railroad Commissioners of Massachusetts:-
"(1) Safety to trainman:-The coupling should be so constructed that it can be operated without enterin between the cars, either to couple or uncouple, and it manipulation should be as convenient in the darkest nigl as in the light of day. Added to this, it should be certai in its action and convenient for inspection. (2) It shoul. be not only a coupler, but a buffer as well. (3) It shoul. be so adaptable to any form of draft rigging that th minimum of changes in parts already in use would b assured. (4) It should couple safely with the link atu pin now in use. (5) It should allow no slack in the coupler, but should have in the place thereof some such substitute as is commonly utilised in the starting of trains (6) The coupling should allow such freedom of vertica motion to cars, independent of each other when coupleit that the passage of one car over switches or depressions in the track should not result in throwing the entire weight of the car upon the draft rigging of the connecting car (7) It should curve freely, but have the minimum lateral motion."
The same writer claimed that the whole of these requirements were fulfilled in a particular coupler which he specified, but as to this each engineer and inventor will, of course, have his own opinion, as he will likewise, concerning the comparative advantages of a slack and a tight coupler. Both the latter systems are now on view at the Inventions that of merits, so as to place this hitherto neglected branch of railway working on the same highly satisfactory scientific and economic footing as the brake and the block systems

MISCELLANEOUS MACHINERY AT THE INVEN TIONS EXHIBITION No. III
Messrs. Hathorn, Davey, and Co., of Leeds, have an exhibit which comprises a number of specialities, Figs. 4 and 5 represent two varieties of deep well pumpe lately patented by Mr. Davey, and which have been specially designed with a view to simplicity of construc tion. There are two working barrels, each provided with a bucket, one bucket making the up stroke while the other makes the down, so that there is a continual delivery of water into the rising main. In this way the advantage of a double-action pump are secured without the intro-
duction of any valves beyond those in the buckets themselves. Another important feature is that the pump is self-charging. This will be seen by reference to Fig 4 self-charging. This will be seen by reference to Fig. 4, which shows a section of one of the patent pumps for use vessel into which the working barrel projects, the suction vessel a whe the pipe also being carried up as high as possible, so that
when the pumps are standing, water sufficient for
pumps will fully realise the great saving in both time and could be desired, every care having been taken not only in money from dispensing with the sa of such tackle. In this designing each part so that it should be easily and cheaply new pump all the working parts are taken out with the made, but in providing large wearing surfaces, generally of bucket by simply drawing the rods. It will be noticed that gun-metal, so as to avoid the necessity of frequent attenthe bottom barrel is provided with a cover fitting into a tion at the hands of skilled workmen
conical seating above the bucket, the cover coming away In Group VII., Naval Architecture, Rees' disengaging when the bucket is drawn. The tops of the barrels are formed into air vessels.
and hooking-on hooks, for ships' boats, are exhibited by
Messrs. W. Reed and Co., of New London-street. These

FIG. 6.

HAIHORN DAVEY, AND CO.'S DEEP WELL PUNPS AND DOMESTIO MOTOR
charging purpos $s 8$ is s ill retained in the chamber. Fig. 5 represen s the same type of pumps modified to suit the

condition of having to be placed below the water level in a well. In this form the importance of dispensing with suction valves is even greater than it is in the pump we

PRICE AND BELSHAM'S DRILL
have just described, because suction valves under water can only be got at with the aid of fishing tackle or divers Those who have had much experience with deep well

Four examples of the Davey motor or safety engine are hooks are shown by the accompanying engravings. The exhibited, two in the electric lighting department and two following are claimed as among the special features of the among the machinery in motion, one of the latter being device:- The hooks can be fixed to the ordinary fittings shown in operation driving a set of deep well pumps suitable of boats without the slightest alteration. They can be for supplying water to a mansion or private house. This shackled on to the sling or span equally as well as to ring motor was fully described and illustrated in Tre or eye bolts. Having fixed hooks at back of the shankEngineer, in connection with the Shrewsbury meeting of as shown on engraving-the hooking on and getting the the Royal Agricultural Society last year. It was then boat quickly out of the water is greatly facilitated, and is quite new. Since that time, we understand, it has a great advantage in stormy weather. The fixed hooks been largely adopted and has been greatly im. however, need not be used in ordinary fine weather, as proved and simplified in matters of detail. It is the disengaging hook can be easily attached and kept in specially suited for pumping water for the supply of position by one hand till the safety pin, which prevents it country houses, railway stations, \&c., and is generally applicable to all purposes for which small power is required. Its chief features are its safety, the small amount of unskilled attention necessary, and the small quantity of

REES'S BOAT-LOWERING HOOK.
fuel consumed, 6 lb . of gas coke sufficing to give a horsepower for one hour. The motors in the electric lighting department are illustrated in Fig. 6. The boiler, which is shown in section, is detached from the machine itself and is of a novel form, being so constructed that when once filled with coke it will go for eight hours without further attention. This is a matter of great importance. The motor works with steam of atmospheric pressure, which is condensed by means of a supply of a cold water. When used for pumping purposes the water supply itself is made available for condensing, and in other cases a circulating tank is required. This, however, need not be of large dimensions, as the water may be used over and over again. The water resulting from the condensation of the steam is returned again to the boiler, and as no oil or lubricant is put into the steam cylinder, the boiler is kept perfectly clean and free from deposit of any sort. The workmanship of these motors is all that

REES'S BOAT-LOWERING HOOK.
from unhooking, is put into place. In lowering the boat, the man in charge holds the thin line till the boat is in the water, when, assuming it to have taken the water evenly, he lets go the line, and both hooks are released instantly and simultaneously. If, however, the boat is allowed to take the water on an even keel, this thin line is not at all necessary, its use being simply to prevent the possibility of either end becoming unhooked in the event of one end taking the water before the other, as sometimes happens.
Messrs. Price and Belsham, Queen Victoria-street, E.C. exhibit a new patent automatic feed drill. This tool has been designed to combine the requirements of a bench
drill and ratchet brace, the special features in its construc-
tion being the automatic frictional feed and the continuous motion of the drill, the latter being obtained by means of mitre wheels and ratchets actuated by the usual backward and forward motion of the handle, as in an ordinary that holes can be drilled more accurately and with much reater rapidity, as the necessity for putting on the feed by hand is entirely obviated, the drill advancing autoadjustment, according as actional arrangement capable of adjustment, according as a quick or slow rate of travel is
lesired. This is accomplished by merely tightening or slackening a nut at the end of the spindle, which bears against a spring, and so varies the pressure on a loose
collar, through which the screwed end of the spindle passes. According as the pressure on the collar is great small, it is either fixed or free to follow the spindle when it is rotated. In the one case the spindle travels at a rate due to the pitch of its thread, and in the other there is no
travel at all ; but if the pressure be so adjusted as to merely retard the rotation of the collar, it is obvious that the feed will then be due to the difference between the rates of rotation of the spindle and collar, and this may be varied at will by altering the pressure upon the spring. By referring to the annexed illustrations, which show the drill carried in two forms of stand, it will be seen
that it can be readily changed from the bench stand to the Universal stand. This is accomplished by removing the nut on the back of the hollow arm. The Universal stand is provided with a slotted flange coupling fixed at any desired angle, all that is necessary being to fixed at any desired angle, all that is necessary being to
unscrew two $\frac{1}{2}$ in. nuts, and tighten them up again when unscrew two $\frac{1}{2} 1 n$, nuts, and tighten them up again when hand fly-wheel, the drill may be driven by power, or by a of malleable iron or steel, the working parts being entirely of malleable iron or steel, the working parts being entirely tus is therefore likely to be very durable, even if exposed to the usual rough handling that such a tool is sure to
meet with in engineers' and boiler-makers' shops. This meet with in engineers' and boiler-makers' shops. This
will be found a useful tool. It is light and handy, the will be found a useful tool. It is light
weight being only 21 lb . without the stand.
On this page we illustrate Fisher and Walker's patent friction clutch as applied for working an endless rope for underground haulage in collieries, which is exhibited by
Messrs. Walker Brothers, Wigan. A is the main driving Messrs. W alker Brothers, Wigan. A is the main driving B, truly turned on the outside. C is the rope pulley which is bored to fit the shaft, but is not keyed to it, and in which three pins D are secured. On the friction wheel is
a clip E, made in this case in three segments, the ends of a clip E, made in this case in three segments, the ends of
which are enlarged and fitted with gun-metal nuts in which are enlarged and fitted with gun-metal nuts in
which, work the right and left-handed screws F. Each segment of the clip is made with a boss and hole for

FISHER AND WALKER'S FRICTION CLUTOH.
receiving one of the pins D . G is a cast iron box sliding on a feather, and provided with arms H carrying links the right and left-handed screws F. When the sliding box is moved on the shaft by means of the hand wheel K , and connecting gear, motion is communicated to the right and left-handed screws, so that the clip ring opens and shaft, while the rope drum remains at rest. When the box is moved in the opposite direction, the clip is closed on
the friction wheel, which it grips, and is thereby caused to revolve, carrying with it the rope drum by means of the pins D. The right and left-handed screws can be arranged so that the clutch can be put into gear by moving the
sliding-box in either direction as may be most convenient sliding-box in either direction as may be most convenient. collieries has been largely applied by Messrs. Walker and has, we understand, been proved to be very economical in working. The ordinary mode of applying this length of the ropes, both as regards the empties going in and the full ones coming out of the mine. In this way yards apart, and the rope moving at the rate of yards apart, and the rope moving at the rate of
one and a-half miles an hour, a very large amount of material can be passed along one set of ways, while the expenditure of power for hauling is reduced to a minimum. The
ropes may either be fixed above or below the wagons, but ropes may either be fixed above or below the wagons, but
in the majority of cases the latter is the most convenient in the majority of cases the latter is the most convenient
method. With either arrangement the ropes are in a great measure carried by the wagons and prevented from rubbing on the ground, independently of the rollers fixed for the purpose. A usual mode of working is to fix the
haulage engines overhead at a convenient spot, where the haulage engines overhead at a convenient spot, where the
main roads meet, the rope pulleys being placed below the
floor on a vertical shaft. A number of pulleys may be fixed to one shaft, and the ropes directed by suitable carrying pulleys to the foor, ays requiring to be worked. We are informed that the ropes last a very long time, some having been regularly in use for over four years without requiring to be replaced This is probably due to the absence of severe jerks, which cannot be avoided when the rope has to
started every time a train is to be hauled.
A well-designed and well-made locomotive is exhibited n the Main Gallery of the Exhibition by the Vulcan Foundry Company, Newton-le-Willows. The engine is he first of two built by the company to the design of Major English, R.E., to replace similar engines sent to the oudan, originally employed on the works in con ection done good service. The following are the principal par ticulars, viz:-

Diameter of cylinders				$7 \frac{\mathrm{in}}{} \mathrm{in}$. by 12 in .
Diameter of coupled wheels	1 ft . 8 fin.
Diameter of bogie...		1 ft . 8 ¢in.
Rigid wheel base		3 ft .
Total wheel base ...	\ldots	...		7 ft .6 in.
Capacity of tank		200 gallons
Coal space			
Heating surface:				
Tubes, $13{ }^{3} \mathrm{in}$. diameter (71)	\ldots			204 sq. feet
Fire-box		...		18.75 sq. feet
Area of grate		4 sq . feet
Weight, loaded				10 tons

These engines take a gross load of 45 tons up an incline of 1 in 35 at the rate of ten miles per hour, the working pres-
sure being 150 lb . Although the details contain points of sure being 150 lb . Although the details contain points of interest, the speciality consists in the swing bogie arrange engine to pass readily curves having very short radii. The rails upon which the little Mars stands in the Exhibition are curved to a radius of 50 ft . From our sectional and detail engraving, supplemented by the perspective given t page 85, every detail as well as the general character of the design will be fully gathered.
We give this week a full page illustration of a large
fixed rivetting machine, designed by Mr. R. H. Tweddell, and constructed by Messrs. Fielding and Platt, Gloucester a detailed description of which, with further drawings, we hope to publish in our next. The type of this machine is that usually adopted for all fixed rivetters of the largest sizes, capable of exerting closing pressures of from 100 o 150 tons, and having gaps up to 12 ft . in depth, the ments of engineers engaged in the manufacture of large marine boilers for working with the high pressures now used in triple expansion engines.

PRIVATE BILL LEGISLATION.
Ayter this week, with a prospect of the prorogation of Parliament within a fortnight, there will be little to record in regar the progress of Private Bils. There are fer now lent to be dealt with, except to announce their final stage; but the past
week has yielded some interesting material in the Committeerooms and in the two Chambers. Within a few days of the ond of the inquiry the Committee again interposed and gave a pecuiar and quite unexpected turn to the proceedings. The six weeks and the session was rapidly nearing its close, stated decide the question upon the pass the Bill. This conclusion they had come to after considering the alternative plan put forward by Mr. Lyster
last year, and of the limits of deviation which the promoters were now willing to adopt. That consideration also applied to the question of abstraction of water, dredging, and
interference with the outfall of the Weaver. Upon this intima tion some conversation followed, and it was arranged that the promoters should bring up a modified plan, showing the full Incidentally the chairman said the Committee did not think that, solely on engineering grounds, there was sufficient reason that, solely on engineering grounds, there was sufficient reason
to stop the Bill, but they did consider it important to interfere as little as possible with the estuary. Mr. Lyster's plan
interfered with the estuary less than that of the promo ters, and the Committee believed the promoters might interfere less than they did, and yet keep within thei limits of deviation. In pursuance of this understanding, on the following day Mr Pember brought up a plan exhibiting the The modified plan in many points follows the lines of the original, and everywhere keeps within the limits of deviation as defined in the Bill, but opposite Eastham and in crossing the estuary of the river Weaver-at which points the principal ab-
straction of tidal water will be caused-the promoters have straction of tidal water will be caused-the promoters have
made the lines of the canal to correspond with those of the alternative scheme proposed last year by Mr . Lyster, engineer to the Mersey Docks Board. At some points Mr. Leader Wiliams' original plan infringed upon the estuary even les than that of Mr. Lyster, and at these points no alteration has
been made. On the whole, the promoters assert that the modi
On fied plan will cause even less abstraction from the tidal area of the estuary than would Mr. Lyster's plan. As regards the dredging opposite Eastham, the promoters originally proposed to spring tides, but before the Lords' Committee they offered to reduce that depth to 16 ft . No stipulation was, however, made on that point by the Committee. The modified plan shows
dredging to the depth of only 15 ft , below low water of ordinary spring tides. This alteration would leave a depth at high water spring tides of 45 ft . and of 35 ft . at neap tides over the dock sill Eastham, and would not seriously interfere, as the promoters contend, with the efficiency of the canal. Subsequently, sections Describing the chief of the new clauses, Mr. Pember said the Describing the chief of the new clauses, Mr. Pember said the sills of the locks at the entrance to the canal at Eastham shall not be constructed at a lower level than 23 ft . below the datum level known as Old Dock sill" at Liverpool. In the original Bill the level mentioned was 28 ft .; the limits of deviation
allowed an alteration vertically of 5ft, and this alteration, Mr Pember asserted, was tantamount to dredging outside Eastham to a depth of only 15 ft ., because a 23 ft . sill would make it Dock Board, proposed to dredge 12 ft , the orivinal Bill proposed 20 ft , and he now undertook to limit the dredging to 15 ft .

Another amended clause of importance related to the limits of deviation. Mr. Pember said he understood the Committee supposing they passed ne bil, to desire to fix a line beyond the Committee said, "We will take care that your encroachment on the estuary is reduced toa minimum, and we will carefully define t." Mr.Pember next submitted a tabular statement of tidal capa ity cut off from the estuary of the Mersey by the proposed deposited plan woulde the gross abstraction according to th according to the modified plan, the abstraction would be 3,765,973 cubic yards. In Mr. Lyster's plan the amount of ostraction would be, according to the promoter's calculations $5,008,000$ cubic yards, and according to his own calculation city added to the estuary by dredging at Eastham and Runcorn Bridge above the level of low water, the net amount of abstraction would stand thus: Deposited plans, $5,589,952$ yards modified plans, $3,350,973$; Mr. Lyster's plan, according to the
promoter's calculation, $4,793,000$; and Mr. Lyster's plan according to his own calculation, $3,828,000$. The promoter Lyster's figures, nearly half-a-million cubic yards less than that involved in Mr. nearly half-a-m. Pember further explained that in this plan the canal would not getinto the estuary betweenEastham and the river Weaver, and in no case would it be more in the estuary than would Mr. Lyster's, After this some more commercial evidence was taken, and on Monday the investigation entered
counsel.
Looking now at the general Bills privately promoted, we find that the difficulty raised in the House of Lords over the Regent Canal City and Docks Bill has been overcome, and the measure passed by a Lords Committee. Having passed the Commons, the Bill was opposed in the Upper House on the ground that provision for paying interest out of capital during construction measure was very generally recognised, and the matter wa melved by sending the Bill to a Select Committee wa which Lord Hatherley presided-which reported in favou of the Bill on the ground that it would be difficult t raise the money unless interest was made during construction, The preamble of the Corporation Tower Bridge Bill has also some difficulty has sprung up in regard to compensation. M Saunders, representing the wharfingers and other opponent proposed the insertion of a clause giving the owners of propert compensation for anything in the scheme injuriously affecting their property. To this Mr. Littler, for the Corporation demurred, contending that under such a clause the corporation would have to pay at least a million and a-quarter in compensa-
tion. Instead of that he proposed to give compensation to the extent of one year's net rateable value, which would amount to £75,000.
The Chairman expressed the opinion that two years' rateable mitted to the Corporation at the ir next meeting
The Metropolitan Board of Works Bill for, inter blishing steam ferries at Greenwich and Woolwich, has bee approved by a House of Lords Committee ; and a Bill to extend being unopposed, has passed the House of Lords. The Hull Bridg Bill, which we mentioned last week, has also passed, subject t a slight change in the design. In the Lower House the south wark and Vauxhall Waterworks Bill has been witndrawn by reason of the lateness of the period and enes the Werposis Clauses Act (1847) Amend Bill has been read third time after a final protest by Lord Bramwell on behalf of the Water works Companies.
Nearer 100 than fifty private Bills have received the Royal Assent, including most of the railway, tramway, and wate
schemes which we have from time to time described and followe in their progress. A curious measure, not involving engineerin or structural works, which has passed the object of which is t divide an estate of 40,000 acres among various members of this family.
It may be here mentioned that at the meeting of the Liver pool Chamber of Commerce on Wednesday the following reso
lution was adopted:- "That, in the event of the Common Committee passing the preamble of the Manchester Ship Cans Bill, it is the opinion of this Council that a clause ought to be should the Mersey Conservators have occasion to call on the company to restore the estuary to its original condition in cas of injury thereto. That it appears to the Council that thi object can be attained either by making the liability of the shareholders for this particular object unlimited, or else by reserve liability to be applicable solely to this purpose.

Breaking Steel with Dynamite.-The Lackawanna Iron an Coal Company at Scranton has for a long time been trying to that they could be utilised. The American Manufacturer say these masses of metal became chilled in the ladles from time t time on account of the outlets getting clogged, so that the work They have been accumulating for several years, and the company has tried in various ways to break them, but the trials have bee devoid of any result until now. A 3000 lb . oblong weight of stee dropped on one of the 6 -ton bell-shaped masses from a height
50 ft . failed to break it, or even to crack the surface, and after thi experiment had been repeated forty or fifty times it was abandoned explosive to shatter the chunks. So a hole 1 lin in used as a drilled into the centre of one of the chunks for a distance of 18 Sin It was filled with powder, and a steel plug with a priming hole i
it was screwed into the orifice. When the powder was ignited by a slow match the workmen, who had retired to a safe distance expected to hear a terrific explosion. The powder had no more
effect on the mass than so much water would have had. A man who was used to handling dynamite was then asked to try his skil onite cartridge 5in. long was placed in the hole. Then the plu was screwed in again and the dynamite exploded. All that th dynamite did was to blow the plug out. The next thing done wa
to place two cartridges of dynamite in the hole to place two cartridges of dynamite in the hole and to tamp them
down with sand. When they exploded the force all went out of
the the hole in the wake of the sand. The dynamiter said that he would keep on adding one cartridge at each trial until the hol more, and he put in three cartridges the thir time and tamped them down with sand. The explosion was hear in every part of the city. The three cartridges had cracked the One piece, which measured 1200 lb ., was thrown more than 100 ft
Over thirty chunks of the same size will be similarly treated durin the summer

RAILWAY MATTERS.

A ratuway is talked of to connect Beverley and Hornsea, and it is proposed to construct tocks at the latter place. Direct commu-
niiation from Beverley to the sea would be an advantage alike to
Yorkshire Yorkshire manufacturers and agriculturists.
The Russian papers state that the work on the Trans-Caspian
Railuay is progressing rapidly. Large quantities of material have
been forwarded been forwarded, and forty engineers are employed on different
parts of the line. The second railway battalion is parts of the line. The second railway
reached Krasnovodsk on the 10th inst.
THE Great Northern Company has about 800 horses in London
alone, and their vans carry from 1200 to 1800 tons daily through the streets of the metropolis. Over London Bridge this company sen etreets of the metropois. Over London Briage this company
sent in one year 4056 vehicles, and over Blackrfiars 31,720 , or over
both bridges for the year 35,000 loaded ald 16,900 empty. No less than five collisions- 20 per cent. of the whole of the
American railway accidents, during last ITay-were caused by trains breaking in two. Two were caused by the absence of signals
where they were needed; one each by a mistake in train orders where they were needed ; one each by a mistatae in train orders,
by a misplaced switch and by a runa way engine, the last being by a misplace to switch and by a runa
THE headquarters of the Hurnai Railway are now placed at
Quetta. Several thousand men are working on the section east Quetta. Several thousand men are working on the section east
of Hurnai, and their health is reported to be good, although a
few cases of cholera have appeared. The route adopted for the few cases of cholera have appeared. The route adopted for the
extension from Shebo to the Khojak Pass is now being surveyed extension from Shebo to the Khojak Pass is now being s.
and the requisite material has been ordered from England.
THE new East Railway Station at Bournemouth, to which we
recently referred in this column, was opened last Friday for pasrecentiy referred It is a handsome and commodious structure, and
senger trattic
hat of Bow, from designs prepared by the engineer of the London and
South. Vestern Railway Company. It is 350 ft . long by 95 ft , span, South. Western Railway Company. It is 350ft. long by 95 ft . span,
with a glass roof about 40 ft . from the platform, carried on massive with a glass soof about 40ft. from the platform, carried on massive
iron girderse each of which weighs over 17 tons. The platforms
The Great Eastern Railway Company is making special arrange-
ments by means of its new steamers for visitors to the Antwerp Exhibition ${ }^{\text {The }}$ steamer Adelaide wwil leave Harwich for
Antwerp at 11 a.m. on Saturday, August 1 st , in connection with a
special train Antwerp at 11 a.m. on sacurday, Augstiont, in conmection wetarn
special trin from Iiverpool-street station an 9 a.m., and ren
from Antwerp on Tuesday morning, giving passengers two clear days at the Antwerp Exhibition or in Brussels. The s.s. Norwich
will leave Harwich on Friday evening and the Ipswich on Saturday will leave Harwich on Friday evening and the Ipswich on Saturday
evening for Antwerp, in addition to the ordinary steamers on
each night to Rotterdam in connection with the continental expresses from London at $8 \mathrm{p} . \mathrm{m}$. and Doncaster at 4.48 p.m.
Iv answer to a question in the House on the 27 th on the railway
from Suakim to Berber, Mr. W. H. Smith sid that no report had been received on the condition of this railway, but it was known
that one portion had been damaged by heavy rairs and another portion had been torn up by the Arabs. The total length laid
down was $18{ }^{3}$ miles, but this was not guarded beyond the western down was 189 miles, but this was not guarded beyond the wester
redoubt or maintained beyond $1 \frac{1}{1}$ milies from the landing place
About 15,000 tons of rails and 375,000 sleepers were provided o which all the rails and 350,000 sleepers were despstathed to sonakim. and were still there. The remainder would be brought back, and
would probably be made use of at certain military stations where would probably be made
tramways were required.
AN extraordinary occurrence took place on the 16th inst
on the Debbigh and Ruthin Railway. 1 butcher was driving
home a fat bullock when the and home a fat bullock, when the animal escaped on to the rail
way. The driver of the four o'clock train came down upon the way. The driver of the four oclook train came down upon the
animal on leaving Denbigh. The whistle was blown and the brakes applied, but the engine struck the animal, hurling it forward help-
less, but still on the line of rails. The engine, and several carriages jolted violently over the dead carcase, but the last carriage was
turned completely over, and was dragged along in this alarming turned completely over, and was dragged along in this alarming
position for 300 yards, doing great damage ot the permanent way.
The passenger escepe without injury, but were graatly alarmed
at the violent oscillation. The accident occurred on an embankat the violent oscillation. The accident, occurred on an embank-
ment, and had the engine left the rails a terrible catastrophe
must have occurred must have occurred.
Colbuvx's wood and paper brake shoe, a shoe consisting of
alternate layers of compressed paper and wood, of about \ddagger in. each,
 been equiped. These cars are stated to have been in daily service
for thirteen weeks, making a run of 9271 miles, against eight weks
 since the number of stops is about twenty times an ormany. Quicker
stops can be made than with metal shoes, it is said, and naturally stops can be made than with metal shoes, it is said, and naturally
with much less wear to the wheel tread The patentee is L . S .
Colburn, of Oberlin, O . There is especial necessity for some other Chaurn, of Oberlin, . There is especial necessity for some other
than a metallic shoe on the elevated roads, if it can be had, to avoid
the annoynce and danger to eyesight of tiving particies of metal. The Railroad Gazette record of train accidents in May contains
brief accounts of 25 collisions, 34 derailments, and 3 other ncoidents, being 6 acoidents in all1, in which 8 persons were e killed and 65
injured. Three collisions and 4 derailments caused the death of one or more epersons ; 5 collisions, 5 derailments and 2 other acci-
dents caused injury to persons but not death. In all 7 accidents
caused death and 12 injury, leaving 43 or 69 per cent, of the whole number in which there was no injury to persons serious enough for number in which there was no injury to persons serious enough for
reoord. The 25 collsisions killed 4 persons and injured 12 ; the 34
derailments killed 4 and injured 50 , while in the 3 other accidents 3 persons were hurt. All the persons killed and 32 of thosecinjured
were railroad employes, who thus formed 49 per cent. of the were railroad employes, who thus formed
injured and 55 per cent of the whole number of casualties. No pas
senger was reported killed last month. As compared with May. 1884
 BETwEEN eleven and twelve last Friday night an accident
happened on the London and North- Western Railway at Chelford.
About ten o'clock a goods train left Crewe for Manchester, and at happened on the London and North- Western Railway at Chelford.
About ten oclock a goods train left Crewe for Manchester, and at
10.33 a passenger train followed. The night was very foggy, and both lights and signals were completely obscured. When the
goods train was passing the signal-box at Chelford, the express passenger train, which was following, ran into the tail end of the
goods train wwith hreat force. Portions of the wagos were sent
fore Hying in all directions. One was thrown against the signal-box,
which it smashed up, and telegraphic communication was at once
stopped. The lines were strewn with broken wagons and goods, including immonse quantities of fruit. The passengers in the
express were greatly alarmed, and a Manchester lady and gentleman complained of being hurt. The guard and signalman had
remarkable escapes. The line was blocked until eight o'clock on Saturday morning.
As ruct instances as the following are somehow left out of the be published elsewhere, for the lives of passengers on other wise one
of the best equipped and managed of British railways are endangered by the cause of the facts:- It seems that on the 6th inst., the 6.10 a.m. Midland train from Loondon to Leicester, consisting of the
equivalent of 19 vehicles, lost about half an hour in running owing
to Leicester the train was broken into three pieces. A Aain on the
24th inst. the 9.15 p.m. Nidland Scotch train
forced to be stopped at Thurmaston signal Loondon was forceed to be stopped at Thurmaston signal box, about two miles out
of Leicester, owing to the tires on the wheels of a van being, it is said, red hot. The brakes could not be released, the luggage was These iittle incidents caused a delay of one hour and ten minutes
to this important competitive train.

NOTES AND MEMORANDA.

A PAPRR "On the Oxidation of Copper," by MM. Debray and
oannis, is given in Compt. Rend. 99, 688 :- "Copper becomes oxidised by heating it in air from 350 deg. up to a temperature at
which the dissociation of the oxide attains a tension of 1 atmowhich the dissociation of the oxide atains a tension of tatmo a moderate heat even more rapidly than metallic very high temperature cupric is converted into cuprous oxide.". At a The deaths registered during the week ending July 18th in
twenty-eight great towns of England and Wales corresponded to an annual rate of $19 \cdot 5$ per 1000 of their aggregate population, whic is estimated at $8,906,446$ persons in the middle of this year. The
six healthiest. places were Halifax, Bradford, Brighton, Hull Derby, and Bristol. In London during the week ending July 18 th rate per 1000 from all causes, which had been $16 \cdot 3 \cdot 17 \cdot 5$, and $18 \cdot \circ$ in the three preceding weeks, rose to
prevailed in any week since April last.
prevailed in any ween since Apin last.
In the Inventions Exhibition, Stand 1092, West Arcade, is most ingenious application of compressed air by Mr. Birch to th requirements of the artist and draughtsman. A supply of com
pressed air is provided by a foot pump, and this is led by a small pipe to an instrument held in the hand and containing a jet nozzle
near the end of a small trough for containing ink or colour. Ii the trough a needer reciprocates, its point projecting more or les at every reciprocation.
ink or colour, which is blown off by the air jet. Very remarkable and delicately shaded drawings are
The Concert Hall at the Albert Exhibition Palace, Battersea favourably as to the space apportioned to the audience, with some
fores of the best-known buildings devoted to music throughout the
world. Thus the largest buildings of the sort are at-La Scala,
 Paris, length 103ft., width 80ft., height fot.; Covent Garden,
 that while the Albert Palace Ooncert Hall is 157 ft . long, the
verage of the other five is 101 ft ; while it is 118 l l
 the audience is as follows :- At La Scola, Milan, 9135 square feet
San Carlos, Naples, 8500; Grand Opera, Paris, 10,506: Coven
 From time to time some new hygienic scare is invented, reign sanatarian invents a new one. Some hobby riders will feel indined to kill M. de Pervill when they read his article in the Jourral des
Defats. If we listen to him, bacteria will soon be useless ds scare. The proportion of bacteria in a cubic metre of atmospheri
air is, according to M. de Parville, 0.6 in sea air, 1 in the air high mountains, 60 in the principal cabin of a ship at sea, 200 on
the top of the Pantheon, 360 in the Rue de Rivoli, 6000 in the
Paris of the Hotel Diet, and 79,000 in the old hospital of the Pitie. In Ryder-street, St. James', a cubio metre of air contains only 240
bacteria, whereas in the Rue Rivoli the same quantity of air contains 360. M. de Parville says the superiority of London air a compared with the air of Paris is shown not ony by its containing
fewer bacteria, but also by the rate of mortality being smaller The greater purity or lesser impurity of the air of London is covering a greater extent of ground in proportion to the population and by its houses being lower.
THE following on the distillation of American petroleum is from a paper by M. D. Mendeleeff:-" On carefully fractioning the
portion of Baku-Caucasian-petroleum, which boils bet portion of Baku-Caucasian-petroleum, which boils between
50 deg. and 120 deg. the density of the fractions diminishes as the
boiling point rises from $55-62$ deg., from $80-90$ deg, and from $105-110$ deg. American petroleum shows the some peand from thus, the sp. Ar. of the fraction boiling at 80 deg. peo. is 0747 at
trat
17 deg., which is the same as the sp. gr. of the fraction boiling at 75 deg., beyond this point the gravity augments as the tempera-
ture is raised until 104 deg., when the
and ag. gr. is 0.7543 at 17 deg., and again diminishes, being 07270 at 17 deg. for the fraction
between 115 deg. and 117 deg., the same density as those boiling at 98 deg and at 85 deg . The gravity then again augments with the
temperature from $117-125$ deg. American and Caucasian petro leums are therefore similar in this respect, but the densities of rractions boing at equal temperatures are difterent; thus, the temperature is., whilst that of American coming over at iteg. The relative quantities of the
fractions are also different for the two petroleums,
The "Transactions" of the North of England Institute of Mining and Mechanical Ensineers give the following results from
a detailed report on an artesian well bored at Grissée a town of a detailed report on an artesian wesl bored at Grissee, a town of
25,000 inhabitants on the north coast of Java. The bore reached a depth of 747 metres 2451 tt ,- and observations of temperature
taken by Mr. J. Ph. Emerling, both during the progress of the boring and afterward, gave the following results, now published for the first time:

M. Ilinskr and G. Von Knorre, writing on
 and chromium must not be present -is mixed with a few o. o. of
free hydrochloric acid. There is then added to the previously heated, a hot solution of nitroso- β-naphthol in hot
aceetic acid. The precipitate is allowed to subside, and when cold
the liquid is tested with a further quantity of the nitros the liquid is tested with a further quantity of the nitroso-naphthol
solution. If the precipitation is complete, the deposit is filtered solution. If the precipitation is complete, the deposit is filtered
off after some hours, and washed with hydrochloric acid at 12 per
cent., first cold and then warm, until the nickel is removed cent., first cold and then warm, until the nickel is removed, and
lastly with hot water. As the precipitate is very bulky, the filter
used must not be too small ; in other respects, the washing is easy, used must not be too small ; in other respects, the washing is easy,
To the dry precipitate are added a few knife-points full of crystalline oxalic acid, free from ash; the filter is folded up and
incinerated cautiously in a tared Rose's crucible at a gradually nereang heat. It is then ignited in a current of hydrogen, and down, apparently quantitatively, by heating with potasium
hydroxide after the bulk of the acetic acid has been expelled by hent. It is preferable, nowever, to precipitate nickel and cobalt together in an aliquot part of the solution by means of potassium
hydroxide, and to weigh the metal after reduction in a current hydrogen. In another portion of the solution the cobalt is deter-
mined es mined as above, and the nickrcl is found as difference."

MISCELLANEA.

THE London offices of the Chillington Galvanising Company are boing the agents in London,
The first visit of the Inventors' Institute to the International
Inventions Exhibition at South Kensington will take place to-day Members will assemble at $4 \mathrm{p} . \mathrm{m}$. in the entrance vestibule from
Great preparations were made at Venice for the launch there, yesterday, of the new ironclad Francesco Morosini, in the presence
of the King and Queen of Naplos. Popple were flocking into
Venice from all directions, and it was expected that the members of the Moorish Embassy would be present.
THE City Press states that the special committee appointed by administration of the metropolis will probebably recommend that the
Home Secretary be appor Home Secretary be approached with a plan for creating separate
municipalities for the districts represented by the mentary boroughs, with the addition, perhaps, of West Ham.
The suggestion will include a central council at Guildhall for
HER Majesty's ship Icarus was launched at Devonport Dockyard on Monday in the presence of over 110,000 people. The vessel,
which was christened by Miss Phillimore, daughter of Admira Augustus Phillimore, commander--in-chief, is of the Mariner and
Racer class. She is 950 tons, and 1200 -horse power, and will attain a speed of 14 knots without forced draught. She is armed with eight 5 in. breech-loaders and four Nordenfeldts and Gardner guns
Her total cost when ready for sea will be about $£ 50,000$
Durinc the last few days a strike of a serious character has
existed among the sailors and firemen employed in the Atlantic
steamshin trade steamship trade. It appears that some of the large Atlantic man. Firemen who formerly reecived $\$ 41$ 10s. for what is known as the "Western Ocean voyage" aro now offered £4 per month.
The pay for the sailors for the same voyage has been reduced from 44 to $£ 310 \mathrm{~s}$, per month. Several of the companies have not yet
THE Southwark Foundry and Machine Company, of Philadelphia,
has just completed and is preparing for shipment a pair of centrihas just completed and is preparing for shipment a pair of centri-
fugal pumping engines for the United States Navy Yard at Mare
Island, Cal., which are claimed to be the largest ever made in America, and, with one exeption, in the world. Each pump
weighs 165,, 000 th. The engine cylinders are 82 in. in diameter by
2hin 24in. stroke. The pumps are over 11ft. in diameter, and each
has a capacity of 40,000 gallons per minute. All the pump pipes are ach ants independently of the other. The engines are supplied with the Porter-Allen link motion.
ABouT a year ago extraordinary deposits of magnesite were dis-
covered in Styria. As is well known, no material is so admirably adapted for furnace-lining, for durability and fire-resisting proper-
ties as magnesite. The composition of the material is approximately as follews :-Carbonaceous magnesia, $90 \cdot 30$ to $97 \cdot 32$ pe cent.; carbonaceous limestone, 0.0 to 0.61 per cent.; argilaceous
carth, $1 \cdot 40$ per cent.; iron oxide, 449 per cent.; insoluble
residum, 3.73 . silicica acid, 0.93 per cent.; argillaceous carth, 0.21 per cent.; iron
oxide a. onee, dead burnt, is chiefly e eplopeyed in the form of magneseria
btone for furnace bottoms, and already a considerable trade has sprung up for this and other purposes. The employment of
magnesia stone is not, however, confined to the steel industry Messrs. Zeitza and Co.,' Sheffield, are introducing it for the use of Is
Construction by the Metropolitan Board of Wow under course of construction by the Metropolitan Board of Works, is an aqueduct
crossing the valley of the Wandel, between St Annes.hill,
Wandsworth, and Merton-road, West-hill. Near St. Annes's. Church the sewer comes out into the open high ground, after passing under Clapham Common and portions of Wandsworth
Common. It is thence carried across tho valley of the Wandle by a mile in length. Garrett-lane is crossed over by an iron girde ylinders. The remaining sewer, formed at this point by iron is egg-shaped, and formed of concrete. Near Merton-road the
sewer is again carried undergent sewer is again carried underground on to Putney and Roehampton,
The oontractor for the aqueduct, which is now almost completed, works between High-street, Clapham, and the terminus at Putney and Roehampton.
AT the meeting of the Liverpool Water Committec on Monday fortnight ending the 21st inst. the total, sotumg of water at the Rivington reservoirs had decreased by $158,000,000$ gallons. Com
pared with the decrease in the total quantity of water in store of $1,336,000,000$ garens. The chairman-Mr. Bowes-said the committee had
foresen this scarcity anxious to push on with the new works at Vyrnwy. The water
was now so low that if there was not a good fall of rain they would was now so low that if there was not a good fall of rain they would
practically be without water before October. A member said that the grass was growing doown to the bottom of the Rivington
reservoirs, which more resembled graxing ground than places fo water storage. Water is supplied to the inhabitants during only
twelve out of the twenty-four hours. It was resolved to twelve out of the twenty-four hours. It was resolved to use sea
water for watering the streets instead of reservoir water. The new
works will not be ready for works will not be ready for at least three years,
AN American paper thus describes a tall chimney:" "The large
red stack at the Puebla smelter, which looms up above all other
stacks and buildings in the stacks and buildings in the city, attracts much attention. It can
be seen from any part of the city, and is the frrst thing that meets
the vision of the stranger as he, the vision of the stranger as he appron the Pueblos from the ata cost of 20,000 dols. It is 3 ist. in height and 1oft. in diameter
in the clear from the foundation slag, which was poured in a liquid state in the ground 16ft. deep,
and allowed to oool and solidify. On top of this, and above ground,
is is a seond foundation, 16 ft . high, made of brick. The stack proper,
which is 287 ft hati. high, is made of iron and lined with fire clay. It is
the largest stack west of the Missouri River, and when completed was painted red. The stack reached here from the East in sections, and was put together with rivets as it went up. A blacksmith
shop was sarried up in the air with the stack, and all the work
was done at the shop, which continued to ascend as the work
Sore time b
Government had decided to increase the weight of the heavy class reeeived an order for a special boring tool, to meet the require a which is in preparation is designed for turning out guns of from 150 up to 200 tons, should this be found requisite. With regard
to the system now being introduced by the Government of so con structing their guns as to afford greater facilities for replacing the
inside linings when worn out, with the view of rendering this wor possible of accomplishment on board ship or at a foreign station there seems to be very considerable doubt amongst practical non-
official constructors of ordnance as to the successful working of the system. The replacing of worn-out linings is, of course, a
matter of no difficulty at Woolwich, but if attempted with the limited appliances available on board, ship or at stations abroad, it
is regarded as most likely to end in failure.

INVENTIONS EXHIBITION—LOCOMOTIVE BY THE VULCAN FOUNDRY COMPANY.

COMBINED ALLEN ENGINE AND KAPP DYNAMO.

A.rrovar within the last few years a large number of rotary engines specially designed for dynamo work have been brought out, there would seem still to be room for improvement in that direction, and Messrs. Allen and Co., makers of highspeed direct-acting engines, are manufacturing a combined
engine and dynamo, which we illustrate in the annexed engravengine and dynamo, which w
ing. About the engine we need not say anything, as it is widely known. The dynamo, however, is new.
The armature is wound on the Gramme principle, and the Gramme principle, and
is made exceptionally heavy is made exceptionally heavy
and of large diameterin order to reduce the speed sufficiently for driving direct by reciprocating engines. Projecting through the external periphery of the winding is a number of gun-metal radii tipped with fibre, which transmit the driving power direct to the wires which do thework, thus preventing the latter Them slipping on the core. piece with a perforated cenpiece with a perforated cenlatter being keyed to the spindle by two sets of arms. Air is admitted to the interior of the core through the perforations and escapes at the outer periphery between the external wires, which do not completely cover the surface of the core. In this way the armature is ventilated and kept cool. As will be seen from our illustration, the field magnets are nearly semicircular, the
object of this arrangement being to obtain a short mag. netic circuit and a compact arrangement requiring little room. The plant which is at the Inventions Exhibition is inted in the electric light shed the maximum current being 150 amperes and the potential 110 volts at the terminals, with a speed of 340 revolutions a minute. The total weight of the engine and dynamo combined is three tons.

CORRUGATED WIRE LATHING.

A_{N} ever increasing field seems to be found for wove wire in its useful adaptability to a variety of purposes. As a substitute for the usual lath foundation for plaster ceilings it is now being The manner in which it is element in fire-proof construction. The manner in which it is adapted for this purpose is very simple, as shown in the accompanying illustration. This
arrangement of wire lathing, which sheets of galvanised wove wire cloth is patented, is formed of sheets of galvanised wove wire cloth, 3 ft . wide by 6 fft . 10 in . long,
with an open mesh. These sheets have corrugation sin. deep, formed every 6 in, to 8 in., which make the or grooves and keep it from the under surface of the joists ments which have been made as to the comparative merits of the wove wire and the ordinary wood lathing, it has been found that the plaster keys better on to the woven wire than on to laths, and that when the plaster is heated red-hot, and suddenly chilled as by a gush of cold air or a jet of water, it does not crack and break away as would usually be the case with a
ceiling on ordinary lathing, but remains in its position, thus affording, in the case of fire, protection to the joists or flooring above. Another advantage, although of lesser importance, is above. Another advantage, although of lesser importance,
the preservation of the ceiling from cracks by the absence of contraction or expansion on the wire lathing, and the abundant play allowed for any slight twisting of the joists by the manner in which it is fixed with staples to the beams above. The system, which is being introduced by Messrs. R. Johnson, Clapham, and Morris, of Manchester, can also be used for

partition walls and pillars, and it has been supplied to several music halls in London, whilst in New York its use is rapidly spreading, and the fire insurance companies are abating the

premiums where the wire lathing is employed. It has also reeeived the npproval of the Metropolitan Board of Works, of British Christian, the president of the Royal Institute

ATTACHMENT FOR GAS COCKS

 This attachment, invented by Mr. G. Doutney, and described by the Scientific American, closes the cock by means of a spring, and prevents it remaining partly open when the gas is turnedoff. It may be attached to any burner now in use One end of a spiral spring, Fig. 2, is secured to the key and the other end to the casing surrounding the spring. The spring keeps the cock closed, and when the key is turned to open the cock the cock closed, and when the key is turned to open the cock the
spring swings it back again, thus closing the cock automatically. On the upper end of the key is a disc formed with ratchet teeth engaged by a lever, Fig. 1, to one end of which a cord is secured. A spring keeps the lever engaged with the teeth. The key is locked in any position, whether the gas is to be turned on full or only partially, by the lever engaging with one of the teeth of the disc. To extinguish the gas it is only necessary to pull the cord, when the key is released and is turned by the spring

thereby closing the cock effectively and preventing any escape of gas. This attachment will prevent loss of life by careless off the gas and then turning the key partly open again.

STANLEYS NEW PROTRACTOR
THE accompanying engravings show a new protractor poskssing great merits. The edges forming the angle proceed quite up to the vertex. This improvement will be most, important for the measurement of angles upon Ordnance plins

and plans of estates to small scales, where lines subtending any angle are generally very short. It will also be found couvenient for measuring and plotting angles from solids, used as a \&c. It is made by Mr. W. F. Stanley, of Great Turnstile.

CONTRACTS OPEN-IRON WAGONS, CAWNPORE-ACHNERARAILWAY.

CONTRAOTS OPEN.
INDIAN STATE RAILWAYS, - CONTRAOT FOR IRON BOGIE WAGONS FOR THE CAWNPORE-ACHNERA RAuWAY
The following is an abstract of the specification for sixty iron
covered goods bogie wagons, 2 ft . long wagons, 25ft. long. The work required under this specification comprises the construction, supply, and delivery in England, at
one or more of the ports named in the conditions and tender, of one or more of the ports named in the conditions and tender, of
iron underframes, and ironwork for underframes and bodies, and iron underframes, and ironwork for underframes and bodies, and complete, for putting the work together ins, washers, and rivets bodies to the underframes.
All fastenings, bolts and nuts, rivets, and washers are to be supplied in quantities sufficient for putting all the work together in India, with an allowance of 20 per cent. extra for waste. The contract does not include wheels and axles, bearing springs, and
axle-boxes. All these parts will form the subjects of separate contracts. No woodwork is required to be sent to India. The whole of the materials to be of the best quality. No other material than wrought iron, india-rubber, or steel is to be used, except where specitied otherwise, or shown on the drawings. All coupling hooks, foupling bolts, nuts, washers, and ping, coupling blocks, yokes,
yoke pins and washers, connecting rods, and connecting rod pins
and washers for the buffing and draw gear, are to be forged from and washers for the buffing and draw, gear, are to be forged from
Lowmoor iron supplied direet by the Lowmoor Iron Company; the yoke nuts and ferrules are to be of steel. All other iron is to be of some best best brand, of a quality to be approved by the Inspector-General, and is to be specially suited for smithing purposes. No iron of foreign manufacture is to be used throughout The iron m equal to the under-named several tensional strains, and shall indicate the several rates of contraction of the tested area at the point of fracture that follow, namely :-Bars and rods : Tensional strains per square inch, 24 tons; percentage of contraction of fractured
area, 20 . Plates: Tensional strains per square inch, 21 tons; perarea, 20. Plates: Tensional strains per square inch, 21 tons; per-
centage of contraction of fractured area, 10. Channel, angle, and T-iron: Tensional strains per square inch, 22 tons; percentage of contraction of fractured area, 15.
The channel bar in the sole and cross bars of the underframe and the middle cross bars of the bogie, and the end T bars and the side plates of the bogie truck are to be made of steel; the other plates
and angle bare may be made of steel. All steel used in the manufacture of the wagons, except that in the volute springs, is to be of such strength and quality that it shall be equal to a tensional strain of not less than 27 tons or more than 31 tons per square inch of section, and shall indjicate a contraction of 30 per cent, of the
tested area at the point of fracture. The steel of which the volute
springs are to be made is to comply on analysis with the following conditions, namely:-Its carbon must not exceed -9 or be less than 6 per cent.; and silicon, phosphorus, and sulphur must not be present in greater proportion than 06 per cent. each. The man ganese must not exceed 6 per cent. One spring in each 300 , or in
the lot of springs if the lot be less than 300 will be selected by the company's engineer, and will be subjected to complete analysis, Should this analysis show the carbon, silicon, phosphorus, or manganese in the steel to exceed the specified maximum, or should the carbon fall short of the specified minimum, the 300 springs, or the lot of springs represented by the spring showing such defective nalysis, will be rejected.
The india-rubber used for the work under the contract must be of the best quality and free from objectionable smell. The cast
iron is to be of such strength and quality that a bar 3 ft . 6 in . long, 2 in . wide, and 1 in . deep, when placed edgeways on bearings 3 ft . apart, will stand a weight of 30 cwt . suspended from its centre without breaking.
Every piece of work shall be manufactured with such accuracy that any piece may be used without dressing of any kind in the
place for which it is designed in any of the wagons. To ensure this, every piece must be made from a metal template or gaugo and all holes in it, whether hereafter specially mentioned or not must be drilled. It must further be drilled through the holes in
the template, so that the corresponding parts of all the wagons
may, without doubt, be exact duplicates of each other. The angle barss forming part, of the middle bars are to be framed. All holes
in the pieces of iron or steel which form the underframe and bogie in the pieces of iron or steel which form the underframe and bogie
trucks must be drilled, except those in the floor, middle bar headstock, and bogie cover plates, which may be punched, provided that all the holes in each plate are punched simultaneously, or through
a template clamped and fixed to the plate which contains all the holes in the plate. If one or other of these systems of punching
be not adopted, all holes in these plates must be drillec. The spring hanger brackets are to be forged out of the solid, and all hangers bored out true; they are to be neatly squared up at the angles and the ends drawn down as shown in the drawings. The gpring hangers are also to be forged out of the solid, the holes
through them are to be drilled, and the pins turned. The standard length of the coupling hook, measured from the eentre from which of the nose at the tip, is to be hook pin hole is struck to the inside the bearing part at the root, 12 tin. The bend in the hook must be made so as to allow of effective contact on the proper surfaces
of the hook and coupling block when the centre of one buffer head of the hook and coupling block when the centre of one buffer head
is 2in. lower or higher than the centre of the other buffer head, is 2 in. lower or higher than the centre of the other buffer head,
both buffers being placed horizontally in position for coupling. The buffer heads may be dabbed on to the jaws under a steam hamme but great care must be taken to secure a thoroughly sound weld
over the whole surface. The buffer faces must be faced up all over
in the lothe 隹 in the lathe. The buffer shanks must be forged solid with the
jaws, without a weld in their length, and must be drawn down jaws, without a weld in their length, and must be drawn down
under a steam hammer true to the form shown, and the round part scrap iron. The yoke lever, sliding coupling block, connecting rod and coupling screw, coupling hooks, spring sockets, and plungers
must be forged out of the solid, and all the holes for the pins must be drilled, and the pins must be turned. The yoke levers, sliding coupling blocks, and connecting rods may be left black, if in the
opinion of the Inspector-General they are suffciently neat and opmion of the ninsector-General they are sufficiently neat and
clean forgings. All other parts must be turneed, bored, or planed
where tinted where tinted red on the drawing. All holes must be drilled, but the joints and pins must be an easy fit. The end of the coupling
sorew which fits into the sliding block must be a sufficiently easy
fit fit to allow the sorew to angle and take up the several positions
assumed by the yoke lever in passing from its extreme forward to assumed by the yoke lever in passing from its extreme forward to
its extreme backward position. All nuts are to be square, and must fit so tightly on their bolts that they oannot be turned by One wagon of each kind with its buffers and couplings is to be
built and rivetted up complete, and approved by the InspeotorGeneral as a sample, before the rest of the wagons are proceeded
with. Should an examination of these samples lead the Inspeotorheneral oo order any alterations in the design of any of the parts,
he is to be at liberty to do so without claim on the part of the contractor for loss on any parts which he may have made prior to
the approval of the samples, or for any extra payment, except in the approval to wiefht at the shesedule rates.
Tenders, addressed to the Secretary with the words "," Tender for Ironwork for Covered and Low-sided with the words" Tender for Ironwork for Covered and Low-sided office, Westminster, S.W., before 2 p.me on Wendeneday, the the 5ia-
Ath
Augut, 1885 . If delivered by hand, they are to be placed in a box
provided for that provided for that purpose in the Store Department.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our

> THE LAWS OF Motion.

SIR, - "A Student" asked for a brief answer to his question, cannot react or push against itself, therefore it is unable to react or push against anything else. This is a piece of bad logic to
which I need only reply, non sequitur. " A Student" has only to
Nive live up to his nom de plume to become quite clear on such points
as this. It is rather absurd for me to work out little elementary sums in your columns. Nevertheless, in case it is of service in
clearing away fog, I will do one. Question.- If a man weighing. 160 lb . pushes horizontally against
the ground with a force of 601 lb . weight, and at the same ais the ground with a force of 60 lb . weight, and at the same time
pulls a rope with a force of 50 lb . weight, what is his acoeleration? Ansvere.-The resultant force acting on him is is 10 lb weeight, or
320 absolute units, and his mass is 160 , therefore his acceleration 320 absolute units, and his mass is 160 , therefore his acceleration
is 2 ft. per sceond (sic) per second ; and if he continues to steadily exert these forces by the muscles of his body, he will move 1 ft . in
the first second, 3 ft . in the next, 5 ft . in the next, and so on, as the first second, 3 ft . in the next, 5 ft . in the next, and so on, a
long as he maintains the inequality of forces unchanged.

the problem of flight.

Sri,-My last paper, commented on by you in The Evginerer of February 6th, was written after I had made arrangements to con
tinue the experimental part of the subiect, which, unfortunately am again compelled to postpone. The financial factor is siving me more trouble than any other at present; and if I would remain
within the limits of prudence, will abstain from all direct attempts
to get the human race into the air. I spent about 5000 dols in to get the human race into the air. I spent about 5000 dols. in
experiments, exclusive of time, in explaining a soaning bird, and,
just se sll the difficult just as all the difficult part had been accomplished, was forcoed out
of Florida to save myself from bankruptcy; and the finishing stroke of Rorida to
still lingers.
There is a method of presenting this matter which I have hitherto
refrained from expressing, fully intending to put into practical shape a device capable of sustaining intending to put into practical which wo
the case.
In view of frequent disappointments and the uncertainty of the
future, I send you herewith direct manner what I consider to thinted statement setting forth in a for such disposition as you may see fit to mane of it. I had pro-
vided myself with full-sized drawings in detail, and had purchased materials with which to proceed to Florida during the month of ing to begin operations at the termination of the rainy season, and expecting to complete the task before the ensuing summer. For many reasons that part of the country would be the best possible
to experiment in on account of the surprising steadiness of the winds and the mildness of the climate particularly, and the free-
dom from inquisitive interruption. dom from inquisitive interruption. I expect to meet no serious
difficulty with the remaining part of the work. So much by way
of personal explanation, query, "Why if it is so easily done, I do not do it." I Io not
expect to meet with any criticism which will impair. the validity expect to meet with any criticism which will impair the validity
of the case as I have stated it. It is simply self-evident. I can put it in no more direct shape than to term the floating device a
falling body which does not lose its energy of position. Had I in Florida, it would have been the end of the discoussion. It is the key whid, unlocks the whole problem, and why I did not get hold
of it long before is as much a mystery as anything connected with the vexed subject.
A bird floats motionless in a horizontal breeze: Why does it not
come down? It certainly gravitates towards the centre of the come down? It certainly gravitates towards the centre of the
earth, and being in free air ought to come down. There must be
something pushing it something pushing it up as much as gravity pulls it down. Whast
is that something? The disturbed air, of course. The surface kicks the air out or its ocurse, condenses it, and otherwise disturbs
it. The air kicks back, and the inclination of the surface deter-
mines the direction of this kick. It was gravity which did the
kicking vertically downward, constituting the action of the surface kicking vertically downward, constituting the action of the surface
on the air, the reaction of the air on the surface being vertically upwards, exactly opposite to the action. Hence the bird is falling the wind meets it when thpeature is related to the reating which supports it, in order to determine its motion. The direct pushe fore is required to drive a flat body flatways on the air than
more edgeways with the same velocity.
This is the whole case. The
the motive force is concerned, its only function being to distribute the gravitating energy. Thave shown how the disturbed air reaci at the rear of the surface to obliterate the direct push, and send
you herewith an account of experiments supplementing that explanation.
In my first papers published in The Enginere will be found the explanation only, as the precise manner in which the particles of air met the surface, and their consequent actions and reactions were not known to me. The width and inclination of surface are
factors of importance, and it is possible to get a flow of air of such specific character in regard to velocity and steadiness as to produce on a definitely shaped and inclined plane an equilibrium of force experiment seems conclusive on that point:-Erecting a rude plat. exper 2oft. above the flatson the eulf beach, I I frmly secured a thin
foard to standards from the platform, so that it inclined about 1

of perpendicular to 7 of base. Against the high edge of this
board was placed another 3 ft . l . A g by 14 in . wide, with a smooth board was placed another 3 ft . long by 14 in . wide, with a smooth
lower surface, and its upper one covered with fin. thickness of lower surface, and its upper one covered with in. thickness of
sponge secured by a very light wire sereen. It was supported on
spor four wire
other bo plane. The sponge surface was saturated with water which a once began to evaporate, thereby continually lessening the weight
of the board. The breze moved at the rate of about twenty-five miles an hour in the direction of the arrow a in the drawing.
After working and waiting several hours in winds which promise good results, patience had its reward. The board would suddenly leave its bearing and move upwards an forwards for distaness of from 10 ft . to 40 tt . in the direction chefore it lost its steadiness and came down. Once having made the leap,
it would keep on doing it as often as replaced on its bearings until the water would evaporate too much, when another wetting woul set it off again. Inever could get this action at an inard in place
1 to 6 , or any other than 1 to 7 , with the lower board Remove that board, and the action would continue anywhere from
1 to 7 to 1 to 3 , and nothing like the definiteness of weight required. If the air had been visible the whole modus operand would have been plain at once; but as it was invisible, I rest on
Newton's third law, and imagine several ways in which it might be done until better informed. Hencer ways in the rear expansions in every case of equilibrium, for the activities going
on under and above the surface are competent under certain condi tions to produce the result. But really all this is not the significan feature of the case. Whether it is done in this way or in that way
is of importance, it is true, in working out results; but that within the scope of mechanical possibility to be done at all is the fruitful germ which must inevitably grow int o vast proportions. ruitul germ which must
The trouble is to get the attention on the significant aspects, once
that in done the entire thing is self-evident.
I. LANCASTER. that is done,
July, 1885.

GWYNNE v. DRYSDALE AND Co.

Sir, -With reference to the report on this case appearing in your issue of 24 th inst., I , having been engaged on the defence and " "discussion" took place between the learned Judge and one of the pursuer's witnesses as you represent. What actually transpire
was that pursur's counsel put a guestion to the witness refer to which the Judge held to be a point of law for the determinatio of the Court. In so ruling he remarked to counsel on the impres. sion the evidence, so far as led, had produced upon the Court,
The witness thereupon interpolated an expression of opinion, which the Judge characterised as " most improper," and which the wit ness apologised for
As to the alleged statement of the Judge that a patented machine of something in a competing machine being slackened, it woul be quite needless, were it not for the seeming bias of your report,
to say that no such rule as a general principle, but distinctly the contrary, was laid down.
Whether the judgment is or is not likely to have an importan the fact that Mr. Gwynne's patent was held to be not for all form of swivelling attachments, but strictly for a specific form, to which he entirely failed to prove the pumps as made by Drysdale and
Co. could in any sense conform, the judgment would probabl have been a good deal more "remarkable" than you represent to be had the decision been the other way.
GEO. MACAULAY Cruikshank.

Glasgow, July 28th.

compound engines.

SIR,-We have been much interested by your article of June 26 th on "Triple Expansion Engines," and that of July 3rd on "Enficiency
of Steam Engines." Will you allow us to call the attention of you readers to our Kingdon's compound engine, of which we enclose sketch showing valve and cylinder arrangement? We think the above articles go a long way to prove that a tandem engine without
receivers is by far the most coonomical type that can be used, Our
practice for some years past has, at any rate with engines up to
100 indicated horse-power, proved this to be the case. Taking as
and n example the engines of the Isa, as described by you, we should employ to indicate the same horse-power a pair of Kngdons inatent
tandem engines, with two of high-pressure and two 17 2in. lowpressure cylinders.
We think it is evident that there would be far less friction and
cooling surface in this engine than in that of the Isa, there being no receiver or intermediate cylinder; moreover, the thrust on the crank would be more uniform throughout the stroke than is
possible in any other type of engine, because as the steam is carried
the possible in any other type of engine, because as the steam is carried
throughoutnine-tenths of the stroke, when the high-pressurecylinder is doing the least the low-pressure cylinder is doing the most work, s applied to their respective net result of each pair of cylinders cylinder is doing most duty. This engine would have two cranks at right angles similar to the usual type of compound engines,
each pair of cylinders being complete in itself, and the floor space ach pair of cylinders being complete in itself, and the floor space
occupied would be only that required for the low-pressure eylinders. We cannot help thinking that our engine combines many of the
points hinted at in your very interesting articles, and that therefore points hinted at in your very interesting articles, and that therefore
it may be of interest to your readers to learn that an engine of this it may be of interest to your readers to learn that an engine of this
lescription has been in use for several years with most satisfactory results. ${ }^{\text {Dartmouth, South Devon, }}$

SIMPSON AND DENISONS.

July 21st.

testing fans.

R. SIR, - With regard to the paper on fan-testing, read by Professor current issue, it seems to that the formule given are all based upon a false foundation; for, if I remember rightly, in his original
letter to THE ENGINEER, December 19th, 1884, Professor Smith et out from the equation $p_{o} v_{o}=p_{1} v_{1}=$ a constant, which is only
applicable in finding the logarithmic expression for the work done appicable in inding the ogion. Now in a a fan this function forme
by compression or expansion
part of the lost work, and the equation $p v=c$ cannot therefore be used as an instrument to gauge the useful work done by the fan. How then does Professor Smith avoid shipwreck upon his funda
mental formula? Simply by changing tack, and finally adopting a mental formula? ${ }^{\text {a }}$ Simply by changing tack, and finally adopting a
new expression $\left(p_{3}-p_{1}\right)$. V, where $p_{2}-p_{1}$ is the difference of pres
sures registered at sures registered at the outlet and inlet, and V the volumetric dis charge per second. The expression $\left(p_{2}-p_{1}\right) \cdot V$ involves the
assumption that V is constant, and therefore that the air is incom pressible; for, if the air were compressione, we should have the Aps, and not the volume, a constant quantity.
Apart, however, from the inconsistency of the method, I have
atill to wre thet the en account for the useful work done, because in the term $p_{2}-p_{1}$ Pro fesoror Smith muses inclucle the difference of static pressures, which
in a fan represent waste, not useful, work. Indeed, it is only the in a fan represent waste, not useful, work. Indeed, it is only the
difference in the pressures due to velocity which is a measure of the useful work done
Further, after defining h to be the height of the outlet over inle Smith nevertheless enters the quantity $0.08 \mathrm{~V} h$ with a plus sign as contributing to increase \mathbf{W}, the useful work.
Lastly, I was really astounded upon reading the following
passage in the paper:- "If Ao be the exit area where the current finally enters the free atmosphere, the average discharge velocity
may be taken as $\mathrm{V}-\mathrm{A}_{\rho}\left(\mathrm{V} \div \mathrm{A}_{\rho}\right.$?). It is certain that nearly all
mis if not quite all, the kinetic energy corresponding to this velocity is lost. This kinetic energy is $\frac{0.08}{2 g} \cdot \mathrm{~V}^{3}$,"
It would appear, then, to judge by this passage, that Professor
Smith actually believes the energy of discharge into the atmo shere to constitute so much lost work. He might as well say that the energy present in a jet of water leaving the nozzle of a fir essence of a fire engine to discharge at a high velocity. I will make this clear, though it stands but little in need of further elucidation: by taking two fans with equal discharge areas and
driving them at equal horse powers ; then, according to Professo dinith, the fan which delivers with the greater kinetic energy, or in other words, which discharges the greater volume of air pe
second into the ventilated space, or, if exhaust, into the atmosphere, is the less efficient and the lower in economical order of the
wo. have to remark that the last two equations in the paper, if tested by the law of continuity, are not complete
About the time of Professor $\$$.
About the time of Professor Smith's first letter there also
appeared in your columns a communication from Professor Unwin, in which he set out from a totally different hypothesis, supposing the air practically incompressible, and then stating the ordinary
equation of steady motion. At the end, by way of complement, he inserted the logarithmic function of the work lost ppon com pression. Now, I am perfectly ready to allow that Professo
Unwin's statement of the solltion present knowledge of the subjist istendistoctry, so far as our appears to me to end just where the interest of the problem besing Hence I scarcely think Professor Unwin meant to advance it as a final solution of the question under all its aspects, but only in th restricted sense of being adequate for all testing purposes. Let mo
try to explain what I conceive to be its insufficiency above an ry to explain what 1 conceive to be its insurficiency a bove and
beyond the immediate object of simply testing a fan. In a channel
of running water, prescinding fom tions, a given head is reduced either in giving velocity to the current or in overcoming frictional resistance upon the bottom and sides.
Consequently, if we know the differences in head and velocity at two sections of the current, we can at once deduce the work done
upon friotion between these limits; but in a compressible fluid like ir work may be lost in more than two ways, and therefore th the simple equational form explained above. It is the when and the where to apply the logarithmic function of work lost in com
R. H. GRAHM. July 28th.
SIR,- Allow me to state that your report of a paper on "Testing
Fans," read for me by the Secretary to the South Staftordshing rans, read for me by the Secretary to the suth stafordshir
Institute of Nining Engineers, is uncorrected by me. It contains sions which were struck out from the paper as originally Mason College, July 27 th.

International Inventions Exhibition. - The number of visiors to this Exhibition for the week ending July 25 th wa NAVAL Enginerr Appointurents,- The following appointments to the Marier at the Admiralty:- Alfred Palmer, chief engineer,
to additional, for service in the Euryalus
OrDNANCE FOR TURKEX.-On Saturday last the Porte signed a
contract with Messrs. Krupns'agents for the number with hessrs. Krupps, agents for the purchase of a large
nubber of guns and projectiles. The order is for seven very heavy guns, of 35 . centimetres bore, similar to the one already mounted
at the Dardanelles, twenty-two guns with a bore of 24.50 centi metres, and 400 field-pieces and mountain cannon, varying in calibre
from 7 to 9 centimetres. Four of the seven large guns are to defend the Bosphorus and three the Dardanelles. The others are intended for various fortifications on the coasts, and to bring the
artillery department of the army up to the standard determined artillery department of the army up to the standard determined by
the War-office. This contract will necessitate the negotiation of a
loan what means the Government, in view of its financial diffifulties, will obtain that sum

ГWEDDELL'S $150-T O N$ RIVETTING MACHINE
MESSRS, FIELDING AND PLATT, GLOUOESTER, CONSTRUCTORS
(For description see page 82.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

Al letters intended for insertion in The Enginezr, or con*taining questions, must be accompanied hy the name and address
of the writer, not necessarily for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous * We cannot undertake to return drawings or man
must therefore request correspondents to keep copies.

* In order to avoid trouble and confusion, we find ** In order to avoid trouble and confusioe, we ford. it necessary to
inforn correspondent that letters of inquiry addressed to the
piblic, and intended for in inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this colum, must, in all
cases, be accompanied by a large envelope legibly divected by the cases, be accompanied by a large envelope egibly directed by the
writer to himself, and bearing a 1d. postage stamp, in order that answers reeceived by us may be forvorarded to their destitation.
No notice vill be taken of communications which do not comply with these instructions.

plant for manufacturng gasoline from petroleum. (To the Editor of The Bygineer.)
SRR,-I shall be obliged if any of your readers an tell me address of
firm mantacturig to above in Eng
Birminghami, July 24 th.

crushing manganese dioxide

Isstruvtion of Mrchastcal Encinkrens.-The eummer meeting of theInstitution will be held at Lincoln on Tuesday, th August, and the Institution will of the week. The following papers have boen offered for reading and discussion after the address of the president, Mr, JeremiahHead:- "Description of Dunbar and Ruston's Steam Navvy," by Mr. Joseph Ruston, M.P. "On Recent Adaptations of the Robey SemiSpherical Excontric", by M. Lutis Poillon. "On Privato Installations of Electric Lighting," by Mr. Ralph H. C. Neville. "On the Iron Iodustryof Frodingham," by Mr. Georgo Dove. "Description of an Autographe Tost-Recording Apparatus," by Mr. J, Hartley Wicksteed. Arrangeneighbourbood at Grantham and at Gainsborough. A conversazione will be held on the 5th, and the Institution dinner on the 6th.

DEATH.
On the 19th nst., at Boulogne-sur-Mer, Geonoz How Hed Fexwick
C.E., son of the late Major B. Fenwick, R.A., aged 74 years.

THE ENGINEER.

JULY 31, 1885.

The efficiency of dynamos,
of estimating the excellence
The custom of estimating the excellence of dynamos by their electrical efficiency is now almost universally adopted by the makers of this class of machinery. The process by
which the electrical efficiency is computed is extremely which the electrical efficiency is computed is extremely
simple; in fact, so simple that the validity of the result simple; in fact, so simple that the validity of the result
might almost seem self-evident, and anyone daring to doubt the practical value of this method of jugging
dynamos lays himself open to an attack from those who dynamos lays himself open to an attack from those who
think that an electrical efficiency of some 90 or 95 per cent. is all that is required to make a dynamo an economical machine. They reason that if a machine converts 95 per cent. of the internal electrical energy into external energy it cannot possibly waste much power, as the
efficiency of conversion cannot surely be less than about 90 to 95 per cent., making the total commercial efficiency close upon 90 per cent. It is precisely this last assumption which deprives the statement of efficiency of its practical
value, and to say that the electrical efficiency of a dynamo
is 95 per cent. conveys absolutely no idea of the power necessary to work that particular machine. To explain our
meaning, let us take the case of a compound dynamo meaning, let us take the case of a compound dynamo
designed for feeding, say, 250 60-watt lamps. Without designed for feeding, say, 250 60-watt lamps. Without
fixing upon any particular type or drawing invidious comparisons between the machines of different makers, we can take it that several such machines could be
obtained in the market at a moment's notice having all about 90 per cent. electrical efficiency. Some may require less energy for exciting the field magnets, others may have a lower resistance in the armature, but the general result will be in all cases about equally satisfactory
As a fair average we may take it that the armature will have about 045 ohms, the main coils 015 , and the shunt coils 25 ohms resistance. At a speed of 1000 revolutions the external electro-motive force would be about 110 volts These figures are not taken at random, but can be considered as mean values for a number of different commercial dynamos. The electrical efficiency of our machine is now obtained as follows:- Shunt current equals $110: 2$ ture, $140^{\circ} 4$. Hence, loss of electro-motive force in arma ture $140.4 \times 045=6.3$ volts; loss in main coils, $136 \times$ $-015=2 \cdot 04$ volts; internal electrical energy, $140 \cdot 4 \times 118 \cdot 34$
$=16,630$ watts $;$ external energy, $110 \times 136=15,000$ watts; efficiency $\frac{15,000}{16,630}=90$ per cent. Suppose we were to rewind the armature, putting only one-half the number of turns on, but of twice the sectional area, thus reducing the resistance of the armature to 01125 ohms, we coul speed. In that case the electrical efficiency of the machine necessary to drive it be cent. But will the total powe not. On the contrary, it will absorb a good deal more power, because those hidden causes of loss which can prised by the somewhat ambiguous term "efficiency of conversion," have, on account of the doubling of the speed, been enormously increased. We maintain that to gain a few per cent. more in electrical efficiency. If a dynamo is in full work, there exist a multitude of causes all operating the same way, viz, to absorb power and to create heat. Some of these cuse are purely med anical, as, for instance, the friction of the bearings, the slipping of belts, and the resistance of the air, or windage, as it called by some electricians,
and these are the most serious. In estimating the friction of the bearings, the fact is generally overlooked that it is of the bearings, the fact is generally overlooked that
almost impossible to mount the armature mathematically central within the polar surfaces, and that in consequence the magnetic attraction is not perfectly balanced, throwing an additional pressure upon the bearings, and thus in creasing the friction. But his is a small matter if comin the to power wasted in some machines by current in the body of the armature core, and by the reaction which the armature exerts on the polar surfaces of the field magnets. If. the number of bars in the commutator
were infinitely large there would be no reaction, but as the number is always comparatively small, in fact, seldon more than 100 , and generally about 50 , the diameter along which the core of the armature is magnetised by the cur rent in its coils is not absolutely fixed in space, but oscil
lates somewhat to either side of the line of commutation the number of oscillations per orolution being equal to hal the number of bars and their amplitude to their angula distance. The effect on the field magnets is the same a if a powerful magnet were kept rapidly vibrating between the pole pieces. As a necessary consequence local current are generated in the metal forming the poles, and the
metal is thereby heated. This heat has to be paid for by an increased driving power. In some cases, especiall when the core of the armature is provided with iron teeth projecting between the coils, the reaction we have jus described is so strong that it is impossible to take full advantage of these projections by allowing them to approach the polar surface with the least possible amoun
of clearance. If this were done the pole pieces woul become so hot that it would be impossible to work th machine for any length of time, to say nothing of the waste of power. Yet the electrical efficiency of such a machine would be exceptionally high, since on account of the projections of the armature core the magnetic resistance amount of exciting power would suffice to produce a ver powerful field. But whether the core be provided with projections or not, a certain amount of heating does alway take place, as our readers can easily see by examining generally be found that the iron of the magnets, especially in that part of the polar surface where the armature coil leave it, is hotter than the magnet coils. The reason for thi is simply that the maker, with a view to showing a high
electrical efficiency, has put sufficient copper into the coils to prevent serious heating, whereas with regard to the magnet no precaution whatever has been taken. One very simple way to minimise the evil is to subdivide the iron of the pole pieces by narrow slots, and we would strongly recom-
mend the adoption of this inexpensive remedy. Selfinduction in the coils of the armature is another source heating, and consequently of loss of power. Like the former, it can never be entirely overcome, but by employ. ing a large number of bars in the commutator and a ver powerful field, it can be considerably reduced. With machines intended for very heavy currents, where the coils on the armature are formed of copper bars, local
 into strips. In all these cases the losses increase with the speed, or, to speak more correctly, with the square of the speed, and it is easy to see that in the example we cited efficiency obtained by doubling the speed is very dearly paid for by the increased losses, the sum total of which is about four times the amount corresponding to the lower speed. What is the actual amount of power wasted i
this way can only be determined by careful dynamometer experiments, but, unfortunately, very little has as yet been done in this direction. At South Kensington and elsewhere exhibitions follow each other in close succession, but in no
case have any trials been made to settle the question of the case have any trials been made to settle the question of the
efficiency of dynamosfrom a practical pointof view, although efficiency of dynamosfrom a practical pointof view, although
there never have been, or probably will be, better facilities there never have been, or probably will be, better facilitiea
than exist at South Kensington. The small sum necessary for the purpose does not seem yet to be obtained for the purpose does not seem yet to
although public money is used to support these exhi bitions, and large sums are made and disposed of some how. The introduction of this most misleading conception of electrical efficiency is probably to some extent the reason why the practical aspect of this question, which alone is of value to the engineer, has been so much neglected. It is so easy and simple to figure out the electrical efficiency to at least two places of decimals, and to dazzle intending buyers with the astonishingly high coeffien-obtained, with at once remark, in perfectly good faith-whilst trials, would certainlyometer are costly and tcouraging figure In saying this, we wish to be clearly understood. Nothing is further from our mind than to disparage generally the actual efficiency of dynamos. We have always held that good dynamos are, without exception, the most perfect machines for the transformation of energy. But we maintain that the so-called electrical efficiency is in no way a measure for the economy of transformation; nay more, that in some cases, especially with high speeds, it is positively misleading

We have but recently directed attention to the delays attendant on the present course of procedure in our home Patent-office. That those delays have been productive of tions has been evidenced by correspondence upon the sub ject which ensued in our columns. It has since been brought to our notice that the disabilities so incurred extend in a considerable degree to the working of the xtend in a considerable degree to the working of the patent system within our colonies. ifficulties and delays as regards protection afforded in the colonies mean a very rave restriction passed upon both home inventions and ome trade. certainly the larges thing which hampers the free export of these must react upon manufacturers in the three kingdoms. It is, there fore, most desirable in every interest, both home and colonial, that such a restriction should be reduced to minimum. As arrangements stand at present, nearly every colony, however small, has its own department and in many cases we fear the powerof doing this is exercised ither capriciously or under conditions conducive to delay and, therefore, in many instances to considerable hardshi We may consider as a typical case involving both these two last disabilities, one that has lately been brought mention of particulars as might lead to the identification of the parties concerned or of the individual colony o which it refers. After a protracted examination of the specialities claimed by an inventor who applied for the protection of a patent, it was granted to him both in or and India. Further application was then made was protection in one or our colonies, wherein was vitally necessary to the successful working of the
invention that it should be safeguarded. It was but natural o expect, after the close investigation that had been made into its claims by the English and Indian Patent-offices, that there would have been little or no hesitation on the part of the colonial officer charged with a local decision in adopting, that arrived at by those practised departments. official declared his inability to pronounce as to whether the claims set forth by the inventor were new in a sense sufficient to justify his granting the patent sought for. Now with this course of procedure we cannot possibly
quarrel. The officer referred to acted at least with perfect honesty. He confessed himself unequal to the situation and further stated that it would be necessary for him to apply for the opinion of an expert to guide him as to his final determination. Now in our West Indian coloniee, as in others of similar standing, we need not say that there must be, to begin with, an exceeding rarity of men who are specialists enough to be qualified to act as experts. But supposing such a man to be found, he is quite open to the objection to be taken that in an exceedingly limited
society, the members of which may be-as they were in the society, the members of which may be-as they were in the
particular case under reference-largely interested in the industry to which the invention was applicable, there is an industry to which the invention was applicabse, there is an
extreme probability that he might be biassed by previous connection or personal interest. Indeed, we are aware give his opinion in the case cited render it almost impossible but that he should be open to the working of a bias so produced. To the inventor, therefore, there are pre-
sented two disabilities arising out of the conditions under which colonial patents are awarded. The first arises from the fact that the office staff dealing with such questions must be limited to an extent fatal to its possession of the
knowledge required to deal with all branches of invention, knowledge required to deal with all branches of invention, a limitation certain to lead sometimes either to gross
injustice or delay; while the second is imposed by the injustice or delay; while the second is imposed by the consequent necessity of referring to a local expert whose
associations must tend towards the delivery of a biassed judgment. Such a position, we admit, may not be of
frequent occurrence, but it is always possible, and such a poqsibil occurrence, but it is always possible, and such a laim urisdiction in by the smaller colonies with regath anno grant them wisely they may inflict much injury, not only individuals, but on the great body of producers throughfficial empire; and if, as in the case under notice, their fulfil the duties required of them, it is manifest that the privilege claimed had better be allowed to lapse into the
hands of those who have fuller opportunities for capable
decision.
It is certainly too much to expect of any one man that he can, unaided, pronounce upon the merits, or as to the
novelty or its absence, of every project brought before novelty or its absence, of every project brought before
him ; and it may well be doubted if certain of our colonies re likely to be able give him the aid he requires Failing, therefore, to possess the means of full judgment
is it desirable that, for the sake of preserving a show of independent jurisdiction in patent matters, communities so situated should either desire or be permitted any longer to retain it? We should certainly say not. It need not be ssumed, howe the reference of al applications for patents to our English offices. There are
some of our colonies so situated as to be as well able to pronounce upon the merits of an invention as is our own Patent Department. The colonies might, we hold, be so gation could not fail of being entrusted to a staff alike capable as free from any possibility of being affected by local interests. The resuls of the pres the offim camnot whom an almost impossible duty is imposed, as to the infortunate applicants whose interests are made to suffer our own extensively officered department, supplied as it i ith every means for fully testin the relative advantage or novelty of every claim made, which cannot be justitied what may we expect from a system which is so heavily
handicapped by the total absence of such aids? We doub our typical case is by any means singular. It appear lmost impossible fro the facts that it can be, and the sooner some remedy is applied and the excessive sub
division of jurisdiction is ameliorated the better for the interests both of the public and of patent seekers generally

UnSANitary burial places and methods.

Again cholera is within a measurable distance of us, and should it visit us with serious or deadly effect those having more or less control of all sanitary administration will
have much to answer for ; want of sufficient warning cannot be pleaded in excuse. Last year we had very suf ficient reason to dread a visitation of this epidemic, and much was said and written as to the expediency of setting
ur house in order to avert it. Something was actually one, too-not so much as should have been, perhaps, but till, something. With the advent of winter came a renewed feeling of safety, and it is to be feared that the steps then lang taken to abate nuisances, to cleanse courts, lanes, and enerally to ient over-crowaing of tenement checked. The healthy housing of the poor has long attracted public attention, and it is pleasant to see that the subject con tinues to receive notice. It is, however, a problem, the nd suburban practices equally influencing public health however, receive but small attention, and one of these is the disposal of our dead. Parliament, since the enact ities, has not dealt with the subject; yet it is one that must at no distant date again form subject matter for legislation. As regards London in particular, it is increasing so rapidly in size that some of its cemeteries, sufficiently pened, are being so surrounded by inhabited houses as to bid fair to render them as much intramural in position as ever were those long since closed in the heart of the City proper manner, need not cause danger to public health entiment, do not permit of burials being so effected. For example, in the interests of public health all interments should be to a certain depth, in order that the poisonous gases generated by decomposition will be thoroughly icient depth of earth before reaching the atmosphere but economic and sentimental inducements very constantly cause an infraction of this safeguard. Another source of danger to public health exists in the practice of interments in vaults or graves within the walls of churches. Perhaps his, for here we have the living periodically breathing ai which must, owing to the absence of disinfectants, act as a poison more or less rapid in its injurious action on those inhaling it. An example of this can be found in a certain Roman Catholic cathedral, where constant interments take place in vaults beneath its floor, and clergymen who ente nd vir duties of daily performance of mass there healthy general lowering of constitutional tone. The same effect takes place with the frequenters of that place of worship in degrees varying with the constitutional abilities of those exposed to poisoned air to resist its influence-an influence which may not prove at any time directly fatal, but pave the way for cholera and other diseases by lowering general health and tone, and thus rendering persons so lowere re easy victims, as being more likely to receive infection strongly deprecated; we refer to the practice of sealing hem up in lead, without the precaution of introducing an hemical qualifed to neutralise the poisonous gases gene volumes as to render the drilling of the lead necessary to prevent the bursting of the coffin. These gases are deadly poison by dilution with the atmosphere. Certain preparapoison by dilution with the atmosphere. Certain prepara-
tions of zinc, as well as other things well known to all chemists, inexpensive and capable of easy application, are used. To illustrate our remarks we may refer to a certain cemetery, large in extent and beautifully kept, which its name indicotes, knoll or rising gre as its name indicates, a knoll or rising ground. Round
this a wide, deep trench, or dry moat, is dug, and the inner side of this trench is excavated all round at close and equal intervals with what we must designate as open
vaults, because they are only closed with iron gates, through
the bars of which the coffins are visible. At certain times, r as isedal an and with a drill piercing sealed coffins, to allow the confined cases to escape ; and so deadly are these gases, once the drill is through he has to fly the vault. So simple a matter s injecting a preparation of zinc does not see dopted, thus showing the careless indil
Quite recently steps have been taken to effect the closing of a churchyard, not in the mere suburbs, but in the centre near the centre, of the north side of Dublin the rensen for the demand being the all-sufficient one that it is overcrowded to such an extent that the greatest depth now attainable is 18in., a depth insufficient even in pure earth and perfectly bready so saturated as a disinfectant where the soil nd dwellinge posing organic math we labour thrown away well gs, streets, or sewer win lecay shall have to take place, or so that their decay shall do no injury to the living.

THE POWER OF FUEL.

We directed attention some months ago in The Engineer to series of returns made to one of the water corporations in the North, and showing the relative pumping power of coals, well worth while returning to the subject. Over a period of about five months this year, there were pumped more than 1154 verage. For every thousand gallons the coal consumed wa 436 lb ., whilst for the corresponding period of the past year the average over the same period, and with a slightly larger consump
tion, was 4.56 lb . per thousand gallons. In the last mont eported on, ending in June, the average consumption of fuel period last year it was 4.54 lb ger thoushd gall actual cost of the pumping alone is not given in the report efore us, but the cost of the engine expenses, with that of the iltration added, was ten years ago 372 per thousand gallons of the water pumped, and for the past half-year it has been 285 -a very reased demand for water. The water corporation referred to is thatof the Stockton and Middlesbrough Water Corporation Board. The coal consumption seems to have been this year at about the considerable variation in the quantity of coal used-the amount pumped in the month of May last, for instance, varying from nay be advantageously compared with those in the previou ayy be advantageously compared with those in the previou desirable to draw deductions of any moment therefrom. They point, however, to the need for much fuller information on the kinds of fuel for pumping and other power purposes-and they show that there is a variation in the use of the fuel to possibly ar in the case we give the changes may be due to other cause -to alterations in the pumps-we have no means of knowing,
but the whole question suggests the desirability of the investigation of the duty and the use of the various kinds of fuel.

MIDLAND TRADERS AND THE RAILWAY RATES
The midland traders are determined not to give up the battle with the railway companies. Although they have already
expended heavy sums in opposing the Railway Rates and Charges Bill, 1885 , and have incurred heavy liabilities in testing Great Western Railway, they are yet fully prepared to continue the agitation. The local committee formed in Birmingham for pposing the late Bills have a guarantee fund of nearly $£ 1000$ were necessary. At an important meeting of the Birmingham Committee towards the close of last week, held in the Town
Hall, it was urged that in consequence of the latest decision of he judges in the case above referred to, and the second case of similar nature which accompanied it in the courts, the traders were now in a worse position than before the Bills were
introduced. The companies had now a decision at law to proceed upon, unless it should be upset on a furthe
appeal. The principle was now acknowledged that ter appeal. The principle was now acknowledged that ter
minals might be charged, and the companies would, it wa
argued, "charge what they pleased." Some of them had, i hat, already begun to do so. The committee of them had, in clusion that the present was a juncture when unity of action was more than ever needed, and that to rest quiescent just now would be suicidal policy. They have therefore determined to take steps to form themselves into a permanent body, and so assist the other previously established bodies of traders in vari ous parts of the kingdom for agitating for a repeal of railway
ates legislation. It is understood that shortly Lord Henneker' London Committee, which consists of forty-four peers and mor han an equal number of commoners, the parious railway rate ssociations throughout the country, the different Chambers of Commerce, and the municipal bodies in certain of our principa on this all important question

TREET RENEWALS.

I_{T} is always an annoyance-to which, unless much more sringent rules are applied than are at present enforced, it is to be expected we shall perpetually be exposed--to see the surface underground London." The necessities of our present un cientific method of conducting our drainage and gas and wate supply leave us without any hope that such annoyance can be reduced if those charged with the care of our highways did what we cannot but consider to be their manifest duty. bave recently had under our notice several instances of the most tion of needed repairs below ground. It would be invidious were we to name such special indaces. Indeed, they are to indicate individual cases; but we have seen and heard of so many accidents arising from the careless relaying of the pitchers after such repairs, that we hold it to be most desirable to request pue attention of the several London vestries to what is a serious
public nuisance. So far as our own observation has gone, it would appear to be thought necessary, when relaying pavements
that have been disturbed, to do nothing more than roughly
replace the stones and cover them loosely with sufficient bind
weeks of traffic have worked it in. As for attempting to reproduce the destroyed level of the roadway, that appears number of horses may be allowed to break their knees and eject occupants from the vehicles drawn by them, until the traditional bishop or a Cabinet Minister comes to grief.

THE FORTHCOMING INDIA AND COLONIAL EXHIBITION,
EAch mail brings in intelligence of steps taken by the various British communities abroad to ensure success to the show which
is next year to occupy the grounds at South Kensington. It is next year to occupy the grounds at South Kensington. It
occurs to us to offer a suggestion to those to whom the preparation of Indian exhibits may be entrusted, which, we hope, may be acted upon. There are not many subjects included in the range of engineering science perhaps as to which we may look to acquire information of a special character from Indian or intemial experience; but there is one undoubtedly that has an experient for all engineers, and as to which India has had an workmen surpass in aptitude for it that possessed by the similar built in England. We allude to the system so largely into all the hydraulic works of our Indian Empire. We desire to see that system most fully represented next year by models upon a large and most complete scale. Its application to the founda tions of the abutments and piers of bridges, and more especially engineering, should be illustrated to the fullest possible extent
en Roorkee may well come to the front in representing this branch of construction in its every possible form, and then the English ongineer and mechanic may be able to learn a lesson employed in of practice which might more oft
work at home than it is at present.

the cleanliness of london termini

THE intense heat with which we have lately been visited has brought prominently under our notice several instances of a our London termini which public health and comfort both demand. In nearly every instance such roads are paved with wood, and on more than quite sickened by the noisome effluvia which they have given off during the high temperature of the past few weeks. When
subjected to some delay while waiting for trains we have absolutely compelled to quit the stations and seek a purer air railway company the managers of which have not issued per manent instructions and provided means for guarding against such an intolerable nuisance by the speedy removal of all horsedroppings. It has been disagreeably apparent to us, however, charged with seei the duly carried out anailed of have greatly neglected their duty. The glass roofs of the termin almost increase rather than diminish the power of the sun
rays, and the effect of them upon the wooden pavement which rays, and the effect of them upon the wooden pave
serves as an extended cab-stand is most deleterious,

LITERATURE

The Torpedo Sare. By Hobant Pacha. William Blackwood
The small pamphlet bearing this title has naturally attracted attention. Torpedo attack is at present
regarded as the most formidable danger a ship has to encounter in war. The writer is one of the few men who has been called upon to meet it; what he says must therefore carry much weight. He takes
a position which may be described briefly as follows: The Russian Navy possessed the newest kinds of
torpedoes and boats then designed. They were handed by "as active and gallant a set of men as ever stepped a
ships deck." The result of all their elforts was only to ship's deck." The result of all their efforts was only to
blow up two small wooden gun-boats in the Danube. anded by careless Turkish commanders, In all other attacks they failed. The Turkish fleet was not provided with the latest means of protection, yet, with Russian attack by very simple precautions, or it took its chance, and suffered very little. Consequently, it may be concluded that the powers of torpedoes such as have hitherto been employed have been greatly over-rated, and they are not likely to effect anything that need be viewed
with alarm. This, without further examination, sound exaing what they are here described and the Turks such as we know them to be, we should certainly not have expected such barren of Russian sailors in the torpedo boat and an effete old fatalist commanding the Turkish ship attacked; com bination of circumstances singularly conducive to a tragic end for the latter, we should suppose. If success was no achieved under such circumstances, we may well ask when Huld it he looked for? We may say at fully are not generally adopted. He is considered to over-rate the Russian attack. To give an example. It is stated on high authority that the Russians insisted on having safety caps fixed on all their Whitehead torpedoes, and that it were out that in the war the whole of their torpedoe they could hardly be expected to explode. Then, further, it may be urged that the instructed in the details of most vital importance of the weapons they received, were unlikely to understand their use generally. If the main fact-that is, the existence of the safety cap-is correct, the bearing of the second objection is limited to the position where torpedoes were picked up and the like. The failure to explode seems to be secured hindrance, then, suggests the case of the captain who had sixteen , ${ }^{2}$, soggests his ship not firing a salute to sixteen good reasons for his ship not firing a salute to weight to make Nelson say that he did not wish to hea the remaining fifteen reasons.

To come, however, to Hobart Pacha's book in mor detail. He appears to have depended a good deal on the difficulty of finding ships at night when no lights are allowed
to be shown. Not being provided with sufticient to be shown. Not being provided with sufficient means of
illuminating and watching the space round the fleet of
harbour in which he lay, he adopted the alternative of
trusting to darkness. He objects that experiments trusting to darkness. He objects that experiments
showing that English torpedo boats found English ships in English waters do not altogether bear on the point any more than a man ought to argue that because he can
find things in the dark in his own house he could do the same in a strange house. When he lay in the harbour of Batoum he bastinadoed any "old rascal" he caught showing a light in the town at night, and he learned that Russian boats coming 200 or 300 miles found it extremely
difficult to find Batoum itself at night, and utterly failed difficult to find Batoum itself at night, and utterly failed whether in harbour entrance in an position were guarded by a cordon which was formed according to circumstances of boats and wire rope, or trees, spars, and planks, the former being used at sea, the latter to a great extent in harbour. At sea an example is given of a circle formed of twenty-four boats connected with wire rope, having a radius of 550 yards, and allowing four ships in
the centre to lie 400 yards from the circumference of the circle. The wire ropes, 2 ft . below the water, caught the screw of any torpedo boat so as to capsize her. An
instance is given of a boat thus failing and being capsized and sent to the bottom with most of her crew, though commanded by a peculiarly cool and daring officer who Another case is given of a Harvey torpedo getting a singularly good opportunity of acting during an eclipse
which attracted the attention of the superstitious Turkish crew of a man-of-war. Nevertheless, the Harvey torpedo did no appreciable damage, although they reported that Hobart Paubless been destroyed,
trustworthy than the Harvey. He considers that a ship might run from torpedo boats when they were perceived to be moving sufficiently fast to make their approach, the rate of which of course would be the difference of to the torpedo boats, inasmuch as the ship would bring all available fire to bear on them while they gained at the rate of, say, 5 knots an hour only. Of course, it is to be replied that in some cases it would be a great point to
drive a ship to fall back thus, and if she is obliged to do so while the torpedo boats are at a long range, it appears to give them a power which might be awkwardly used in
case of a blockade. Further, the writer thinks that torpedo boats are open to the grave objections of being liable to attack friends by mistake, to deteriorate and get out of order very quickly, and to go to pieces or become
much dilapidated in a gale. Fish torpedoes, on the other hand, fired from a ship's deck, or any height above the and likely to endanger the firing ship. In the American War undoubtedly ships were damaged or sunk by sub-
merged torpedo boats which were allowed to creep merged torpedo boats which were allowed to creep up
unperceived. But this was at the cost of generally that fell under the personal observation of the writer it is questionable whether the loss of the boat and nearly all which only caused the ship to a price to pay for a hole repair damages. The Ley torpedo, steered by electricity, may be the "weapon of the future" if its want of speed may ee the "weapon of the future" it its want of speed present too easy a mark to escape destruction. This nearly completes the tale of torpedoes proper. Submarine mines,
however, the writer thinks can be made invaluable for defensive purposes if systematically laid down. He Clankse and Co. example, that a system proposed by Latimer and her Colonies safe against attack and invasion. The writer, however, concludes by wisely reminding us that our commerce cannot thus be protected. As we have already said, while the practical experience of a naval officer of ability and in the altogether exceptional position
of the writer, is extremely valuable, we believe that our naval officers generally consider that the Russian attack was much too crude in its character and too imperfectly conducted to be a fair sample of what might be expected
in any future war. Moreover, while the motto of the book seems to make light of torpedo attack, the writer occasionally shows that he would regard it as not only very formidable, but under certain circumstances irresist-
ible if certain improvements were well worked out. Some ible if certain improvements were well worked out. Some
will remark that the first of these is to fire torpedoes without safety caps on them.

INAUGURATION OF THE ANTWERP QUAYS.
The two miles and upwards of quay wall in Belgium's commercial metropolis, the fourth port of the world, with the new south docks and subsidiary works, which will eventually cost about eighty millions of francs, or $£ 3,200,000$ were inaugurated last Sunday, 26th inst., by the King of the Belgians. His Majesty Leopold II., with the Queen and Princess Louise of Belgium, left Ostend in a special train for Camise, on the Scheldt, where the royal party,
met by the Corps Diplomatique, embarked on board the Prince Baudouin. This steamer, preceded by the Ranée yacht, carrying the official committee, passed between a double row of about eighty steamers, including the England and John Bull, which, falling in one by one, followed the royal was reached a little before three o'clock. The squadron steamed slowly along the new quays, thronged with enthusiastic spectators, and then put about, steaming up stream, the hydrauliccranes swinging out their loads simultaneously
by way of salute. The royal party was set ashore in about the middle of the length of quay wall, between the Canal
au Sucre and the old Steen, au Sucre and the old Steen, a fortress dating from the Middle Ages. Amid loud hurrahs from the shore and the manned yards of the gaily dressed vessels alongside, with
the sounds of the Brabançonne, the Belgian national
anthem, the king mounted the dais, and was addressed by
M. Beernaert, chief of the Cabinet, to the following M. B
effect:- 17 th August, 1874, the first breach was made in the Citadel du Sud, on the site of which a populous quarter has now arisen, where the industry of both hemispheres now united (at the Exhibition) and along the Scheldt fo
3 kilometres the quays are accessible to the largest vessels 3 kilometres the quays are accessible to the largest vessels The important work which has been accomplished proves
the vitality of our little country, and its confidence in the the vitality of our little country, and its confidence in the
future. Antwerp now possesses 50 square kilometres future. Antwerp now possesses 50 square kilometres of
floating docks and 40 square kilometres of quays, 14 of floating docks and 40 square kilometres of quays,
which are covered in by shedding-a result of which our nation may well be proud.
M. De Wael, Burgomaster of Antwerp, followed with speech in which he recalled the origin of the works. In
1873 the Municipality pointed out to the State the insufficiency of itmipality pointed out to the Stal the re ment of 1874 , whith int been faithfully kept on botl sides; and when the city asked for a quay width of 10 metres instead of 60 metres, the State did not hesitate to
acquiesce There was now a minimum depth of 8 metre acquiesce There was now a minimum depth of 8 metres
at the foot of the quay wall, the works having been carried out in the best possible manner.

At the conclusion of his reply, the king shook the Burgomaster cordially by the hand, then witnessed the last races of the regatta, and subsequently the "Cortège of the the fourteenth century, to corporations of men who unloaded vessels, and who assumed the name of the country from by sturdy Flemish harses, that of the Noord-Natie, or Northern Nation, contained an immense block of granite ; the Rijn-Natie being repre car bringing up the rear.

Probably the best point of view was that selected by the present writer, viz, the top of the Cathedral tower scene was exceedingly animated, with the crowds throng ing towards the quays, while bunting was displayed from every possible point. The Belgian tricolour, black, yellow, and red-the gayest flag that flies-was, of
course, predominant, while the colours of Antwerp-red and white-with those of the new Congo State-a gold star on blue ground-qave variety. To the left, facing th work iron globe, was a prominent object. The Three Brothers, said to be the largest sailing vessel afloat, lay alongside ; while to the right, the Westernland, largest or 28 ft . draught, and 145 m . or 476 ft . long, left her moor ings by the side of the quay, swung round to the stream, and slowly entered the dry dock for overhauling previous
o her next dag Ye Yoi
In the new quays, viz, Quai Jordaens, Quai Van Dyck, Quai St. Michel, Quai Cockerill, and Quai de la Station, perpetiated, while honour is also done to our countryman John Cockerill, the founder of mechanical construction in Belgium. On the Quai Cockerill is established the new wharf of the enterprising Great Eastern Railway Company a day, for the new Parkestone Pier, Harwich. While the improver of Antwerp's quays has contributed not little towards developing the Great Eastern Company's
continental traffic, especially that of Italy, since the continental tratfic, especially that of Italy, since the
opening of the St. Gothard Tunnel, it is not too much to say that the English company has had an appreciable share in increasing the commerce of Antwerp. Both have
made spirted efforts; and the encouraging success which made spirtied efforts; and the encouraging
now rewarding them is equally deserved

The ground on which Antwerp stands, as its nam implies-aan 't varp, on the alluvion-was originally formed by accumulations of alluvial soil between the
two mouths of the Schyn, a tributary of the Scheldt, Pliny speaking of its being covered by the sea twice in thy twenty-four hours. It is not a little singular that the same natural cause, which formed Antwerp destroyed
Bruges as the emporium of the West, the hopeless silting up of the Zwyn in 1470 having diverted trade to the cit on the Scheldt. The fortunes of Antwerp have, however undergone considerable vicissitudes; and the treaty of which closed the Scheldt, was the signal for Antwerp decadence, which lasted until 1792, when the navigation was again made free. In 1803 Napoleon I. noticed the it with new quays and shipyards, and a wet and dry dock making the city, as has been said, "a loaded pistol pointed at England's heart." The old quays-now destroyedwhich edged the river, were made in 1818 and 1819; while Kattendyk basin, were carried out.
In 1870, a special Commission, appointed by the Minister scheme of new quays on the right bank a comprehensiv length of 1550 metres, or about a mile, with a depth at line water of 8 metres, or 26 ft ., accessible to Transatlanti of a projection intothe stream, called the Tête de grue, fromits or a projection into the stream, called the Tete de grue, from its
having been the site of a large revolving crane, served by the ancient corporation of Kraankinders. This projection, interfering with the stream and tide, prevented the scou which should keep the channel clear. The general projec was adopted by the Municipal College in 1873, the
Government undertaking the regulation of the river and Government undertaking the regulation of the river and 1877.

In the meanwhile the Government had conceded the Citadel du Sud, originally built by Pacciotti by order of
the Duke of Alva, and lands adjoining, to Dr. H. Stronsthe Duke of Alva, and lands adjoining, to Dr. H. Stronsthe Société Anonyme du Sud. The land thus obtained, amounting to 98 hectares, or 242 acres, has served for the new Southern railway station, three basins for small craft,
and an entirely new quarter of the city, the International

Exhibition building having also been erected on the por
tion not yet built over The quay built over,
The quay wall, in round numbers 2500 metres or composed of several arcs of different diameters.* It has a batter to the river of 1 in 20 from the coping to low-water mark, and of 1 in 10 from that point to the foundation ase. The foundations have been carried down to solid ground without any piles or framing; and the works have absorbed 375,000 cubic metres of brick and concrete
masonry, with 25,000 cubic metres of tooled stone, while masonry, with 25,000 cubic metres of tooled stone, while necessitating more than $2 \frac{1}{2}$ million metres of dredging and earthwork. The foundations have a uniform width of 9 metres, or nearly 30 ft ., the depth varying with the bed and the nature of the ground between $2 \frac{1}{2}$ and 5 metres, which brings the base line to from $10 \frac{1}{2}$ to 13 metres below low-water mark. On account of the great depth of the wall y the Kattendyk basin, it has there been strengthened by three counterforts, which project nearly 3 metres from
the back of the wall. From the last counterfort up-stream o the dock entrance the back of the counterfort up-stream ap vertically from the outside of the footings, thus considerably increasing its thickness.
On account of the sandy bottom of the river, the swift
current, and the great rise and fall of the tide-about metres, or 13 ft great rise and fall of the tide-about executing the work below high-water mark: but the con tractors, MM. Couvreux et Hersent, of Paris, devised a system of caissons and cofferdam, for working in compressed air, which was fully described in M. Royers' paper Antwerp in 1883, and reprinted in The Engineer of the date already given.
On account of an unexpected rise in the Scheldt, which occurred last year, an extra course of 30 centimetres, or in., has been given to the wall, making the height $66{ }^{\circ}$ metres, or nearly 22 ft ., above ordinary low-water mark, the foundation. The width is 2 metres, or $6 \frac{1}{2} \mathrm{ft}$., at the coping; 64 metres, or 20 ft ., at ordinary low-water level and 7 metres, or 23 ft ., at the base or foundation line; the oundations themselves being 9 metres, or nearly 30ft., wide, as stated above. There are taree landing pontoons, 100 metres by 20 metres, or 328 ft . $\times 65 \mathrm{ft}$., being connected with the shore by a gangway bridge, 35 metres by 6.7 metres, or $115 \mathrm{ft} . \times 22 \mathrm{ft}$. While the cost of regulating the river and making the quay wall has been borne by the state, that of erecting the shedding and providing the cranes and other appliances has fallen upon the city o Alied by Sir Williavelling hydraulic cranes have been sup castle, to all but the fourth and last section of the works between the Canal au Sucre and the old docks, for which the shedding has not yet been erected; but it is expected hat this portion will shortly be completed. Loading and unloading goes on by night as well as by day. At presen gas is the illuminant, which will, however, before long high; and the quay dues, as to which an outcry was made are now in abeyance, while the Customs regulations are ot carried out with severit
complete the whole project there still remains to tion between the two sides of the river. A bridge forming a continuation of the State Railway from the southery station, and joining the Pays de Waes line, has already been decided upon by the Chambers; but, on account of the slight elevation of the shores, it would have to be carried at a level of only 15 metres, or 49ft., above low-water mark. Great opposition, therefore, has been made to this scheme, on account of the interference with navigation;
but the objection would be met by substituting a tunnel, as proposed by M. Mathysen avil. making a by-pass canal, as designed by M. de Mathys, Ingénieur, Directeur des Ponts et Chaussées, who has had the supervision of the works all through. In 1870 this side oman got out a project of extensive docks on the left first portin tiver, which would have made Antwerp the of the fine world, but it was not carried out, on account The seprthat trade would be diverted from the city proper. temp aration of Belgium from Holland in 1830 caused a entering the port has increased from 1250 of 150,264 tons in 1832, to 4342 of $3,470,873$ tons in 1884, the mean tonnage of vessels having increased from 140 tons in 1836 Oranje, began to trade between Antwerp and Prins van in 1817, the first iron vessel arrived in 1838, and the first screw steamer in 1840,
Before the regulation of the river and the removal of the projecting Tete de grue, the direction of the set of the like a very depressed letter X; and the consequence was a silting up of the bed, in fact a continuation of the action rendering continual ground on which the city stands, since the banks have been made parallel, though on a curve, soundings taken constantly at one point or another show that this action has ceased, and that the scour is sufticient to keep the channel clear. The previsions of the engineers have, therefore been borne out; and warm achievement of a work which is truly gigantic for a country with a population scarcely greater than that of London.

South Kensington Musevar.- Visitors during the week ending July 25th, 1885 :-On Monday, Tuesday, and Saturday, free, from section, and other collections, 2628 , Mn Werchesday, Thursday, and Friday, admission 6d., from 10 a.m. to 6 p.m., Museum, 1682; mercantile marine, Indian section, and other collections, 688 .
Total, $13,522$.
Average of corresponding week in former
Total from the opening of the Museum, $24,166,366$. years,
*. A plan and sections were published in The Exarsker of 10th August,
18Ss, in comnection with the paper by M. Royers,

ELECTRICAL ENGINEERING AT THE INVENTIONS EXHIBITION. No, IX.

Messrs. Elwell-Parker, Limited, of Wolverhampton, show a large display of their dynamos, ranging from machines for an output of 1500 watts up to 50,000 watts poles, all the others are of the Gramme type with two poles, and are now being manufactured in almost every detail according to the original patents taken out by Messrs. Elwell and Parker in 1883. It is not often that we find the whole process of manufacture of any machine covered by the original specification. On the contrary, in most cases the first patent is merely the starting point for the practical development of the invention, and manufacturers find it necessary to continus patenting details until

Bürgin hexagon. It shares with the former the circular shape and the winding which completely covers the external surface of the core, and at the same time it has the mechanical advantage of the latter-the way the core is supported on metal arms. In the Bürgin machine the arms are forced into the ring after the same is wound, and they take a bearing in the corners of the hexagon. Since there can only be six distinct coils on each ring, it is necessary to employ a number of these rings so as to get an even current and to avoid sparking. This limits the width of each ring to about 2 in . to 3in. Now in the Elwell-Parker armature any desired number of coils may be wound on to the core to ensure an even current without the necessity of employing several rings on the same spindle, and the width of the ring is not limited by any other consideration but that of obtaining
what Messrs. Elwell and Parker do. After a few layers of wire are coiled on the surface is tested, and if found out of truth a cut is taken over it. We need hardly mention that the depth of a cut never equals the diameter of the wire, and usually is only a fraction of it. A few more layers are then coiled, and if necessary a cut is taken again, and so on until the core is completed to the right radial depth. In this way a true cylindrical core is obtained. After removing the blocks of wood and insulating the core, it is wound with double silk covered copper wire in the usual Gramme fashion, but only one layer of wire is used on the outside of the core; and this rule is not departed from even if the electro-motive force required be 1000 volts. No such high tension machine is, however shown at the Exhibition, the maximum electro-motive force reached by any of the exhibited machines being

THE ELWELL-PARKER DYNAMO ELECTRIC MACHINE.
the final shape taken by the invention is, on the one hand, shorn of a good deal that was considered most important at first, and, on the other hand, contains some salient Messrs Elwell-Parker's enecificationMessrs. Elwell-Parker's specification-1883, No. 770-is an exception to this rule, and possesses, therefore, considerdescribe their describe their dynamos by simply quoting parts of their numerical data, we prefer to give the description in any numerical data, we prefer to give the description in ou tion as by the courtesy of the firm, we are able to ion as, by the courtesy of the firm, we are able to lay before our readers.

It might be said that the Elwell-Parker dynamo was invented to order. The firm commenced their electrical work by the manufacture of an improved form of Planté accumulator ; and as in the "forming" of the cells dynamos were required, they used at first what machines they could obtain in the market. This was two years ago, and our electrical readers who have had experience in similar work will not be surprised to hear that none of the machines obtainable at that period could satisfactorily be used for charging accumulators. Sparking at the brushes, worn out commutators, waste of power, reversal of polarity, ourned up armatures, and other like evils were the order perfectly sati All this has been changed since then, and perfectiy satisfactory machines can now be obtained from Elwell-Parker resolved to satisfy their wants by making their own machines The first machine was fy making October, 1883, and has been used time in then, and has been used continually since that time in the company's works partly for lighting and partly promise between the ordinary Gramme ring and the
the desired output. Since the forcing of the arms into a 300 volts. This is a 6000 -watt machine used in conjunccircular ring would necessarily deform the ring, Messrs, tion with B. T. K. accumulators for lighting the East Elwell Parker have introduced the improvement of coil- Quadrant. It has been already remarked in a previous ing the wire direct over the arms, and not into a dummy article that most of the modern dynamos contain only one as was done by Buirgin. They insert segments of wood layer of wire on the armature; the Crompton, Edison between the arms, so as to preserve to the ring a true cir cular shape although the wire be coiled with a consid able amount of tension. We illustrate in Figs. 1 and 2 the able amount of tension. We illustrate in Figs. 1 and 2 the
method adopted for coiling the core. The supporting arms Hopkinson, on the armature; the Crompton, mas Hopkinson, Mather and Platt, and several other machine are constructed in this way; but Messrs. Elwell-Parke have pushed the principle to its matmost layer exceptionally thin; in other words,

$a a$ are keyed to the spindle C, and after having been insu- by allowing a high density of current in their armature lated with tape and fibre - the latter to prevent metallic coils. Most makers regard 3000 amperes per square inch contact between and fibre-the latter to prevent metalic coils. Most makers regard 3000 amperes per square inch contact between the core and the arms-the wood blocks they are morticed. Three bolts by discs D D, into which together. To prevent the small lugs or projections together. To prevent the small lugs or projections e coming in metallic contact with the iron of the core, washers $d d$ of vulcanised fibre are placed one at each end,
and the space between them is now completely filled with and the space between them is now completely filled with
iron wire coiled on as evenly as possible. In the ron wire coiled on as evenly as possible. In the
process of coiling a bituminous compound is applied, process of coiling a bituminous compound is applied, which is intended to insulate to a certain extent the
wires from each other. In our article of last week wires from each other. In our article of last week
we had occasion to speak of the value of that kind of we had occasion to speak of the value of that kind of insulation, and need not reopen the subject. The application of bitumen has, however, this important advantage, which can be turned up true in the lathe. In fact, that is
of conductor a sufficient strain, but in the dynamos under consideration the density is frequently as high as 6000 amperes. Roughly speaking we may say that the thick ness of the single layer in the Elwell-Parker machine 1 about one-half that found in other dynamos, and in this sense the firm have pushed the single layer principle further than other makers. They maintain that by making the core of small radial depth, so that even th inner coils do not completely fill two layers, the carrying capacity of the wire is considerably increased. The interior of the core is not ventilated, but by a peculia arrangement on the commutator a current of air is kep flowing into the cavity of the armature at the pulley end and out between the wires which join the armature to the commutator. This serves to cool the inner wires, whils the outer turns are kept cool by being whirled through
the surrounding air at considerable speed. How far this object is obtained we are unable to say; the point can only be settled by the actual experiment of working a machine with a full current, say, for fifty hours continuously. current means quadrupling the heat generated, and that would require four times the cooling, power. If Messrs,
Elwell and Parker are able to do this, we see no reason why other makers should not do the same by the applications of a fan or other special device, and thus double
the output of their machines. But we must return to the general description of the Elwell-Parker dynamo. In Figs. 3 and 4 we illustrate this machine by a longitudinal section and an end view. The supporting arms or "spiders" are keyed to the spindle C by the hubs A A. Part only of the core is shown, and the armature coils are left out for clearness of illustration. The dark lines represent the description of the commutator is required, as its construction is clearly shown in our drawing. We must mention, however, that the lugs are considerably extended, forming a large disc, to the front end of which is attached a fibre disc, and this arrangement serves partly to prevent
copper dust from being drawn into the armature, and partly acts as a fan by which a current of air is sent field magnets consist of flat wrought iron slabs K L bolted together in the shape of a rectangle, with cast pieces pinned on in the middle of the top and bottom
slabs. A large number of pins K K is used, these pins being driven tightly into holes bored out in the pole pieces arrangement it is intended to obtain the magnetic conduc tivity of wrought iron whilst still retaining the cheaper material, iz., cast iron for the bulk of the pole pieces. In small machines the frame 1 is made of Parkers metal but in larger machines it is made of cast iron, and packing pieces of non-magnetic metal are inserted between frame
and field magnets. It is of interest to note that the thickness of these pieces need not be very great; at any rate much less than would be required in an Edison machin of equal size. In the latter the pole pieces themselves have to be kept off the frame by non-magnetic packing, and since the free magnetism isgreatest at the poles the magnetic insu lation must be correspondingly high. In the Elwell-Parker machine, however, the two portions of the field magnets
which come nearest the frame both belong to the lower pole, and are therefore magnetically at a comparatively low difference of potential. Even if the packing were omitted the machine would still continue to work. The only effect would be a very slight drop of electro-motive force, due to
the partial muffling of the two lower half coils by direct contact with the frame. The rest of the magnetic circui would, however, not be altered. The arrangement of magnets adopted by Messrs. Elwell-Parker is certainly
very compact, but we think that it might be improved by keeping the vertical magnets a greater distance from the polar extensions N S. As is well known, magnetism is always densest at the corners, and a considerable number
of lines of force must be wasted by leakage from these corners to the core of the magnet. Some slight improvement might also be effected by shaping the extensions as shown in dotted lines.
The first armature made by the firm is exhibited in the Although it has been continuously piece of workmanship. 1883, until the opening of the Exhibition, and has been used hard, it does not show any signs of this except a slight bulging of the external wires, which is doubtless due
to the fact that they are held in place by friction only, and at some time or other, probably when giving an excess of current, have slightly shifted on the core. The core is 7 in . diameter, 9 in. long, and lin.thick. The effective area of iron is therefore $\frac{\pi}{4} \times 9 \times 1=7.07$ square inches. The field magnets are wrought iron slabs 8 in . by $1 \frac{1}{4} \mathrm{in}$, having a cent. in excess of that of the armature. The latter is 130 yards: At a speed of 1600 revolutions per minute the ofer.16 electro-mer volt. The field marce wound, and contain 46 ohms of 058 wire. This corresponds to about 4700 yards, and since the mean perimeter the total number of turns $=4700: 0.83=5660$. The exciting power on one half of the machine is therefore
$2830 \times$ current through shunt wire. The latter is $60: 46=1 \cdot 3$ ampères and the exciting power 3680 ampèreturns. This is a remarkably low figure, and is probably and pole pieces has by careful workmanship been reduced to the very lowest possible limit. From the figures given
above we calculate the electrical efficiency of the machine as follows:-Resistance of armature, 152 ohms; with an external current of 65 ampères the current through the
armature is $66: 3$, and the loss of pressure about 10 volts; internal energy, $70 \times 66.3=4640$ watts; external energy, $60 \times 65=3900$ watts ; efficiency, 86 per cent. The resistance of the armature is calculated at ordinary temperature,
but with a density of 6150 ampères-which corresponds to 65 ampères output-and it is probable that the temperature of the wire will rise considerably, increasing at the same time the resistance of the armature. This would, of course,
slightly lower the efficiency. There are 6.8 lb of copper on the armature, and 142 lb . on the magnets; total, 148.8 lb . With a speed of 1600 revolutions the output is therefore at the rate of 26.2 watts per pound of copper. With our the rate of 16.3 watts per pound of copper.
A word of explanation is necessary as regards the Some makers, and amongst them Messrs. Elwell-Parker, argue that since at any moment both halves of the armature lying on either side of the diameter of commutation are coupled parallel, the electro-motive force is produced in
one-half of the wire, and it is therefore right to take only
one-half the total length when figuring out the number of yards per volt. This argument is perfectly logical, and can be upheld on scientific grounds. But since an armature only half wound with wire is practically useless, we
prefer to adhere to our plan of always counting the whole of the wire when the machine has two poles. With four-pole machine the case is different. Here we are quite justified in counting only half the total wire, because it is practically possible, though not advisable, to work the active. The current will thereby be diminished to half its normal strength, but the electro-motive force will remain the same. similarly in a six-pole mach of wire
would only count one-third of the total length of coiled on the armature, and so on
Messrs. Elwell-Parker exhibit a very interesting fourpole machine, which we illustrate in the annexed engraving. The armature is constructed precisely of much larger dimensions. The core is 16 in . in diameter, 36 in . long, and wire, the perimeter of turn being 2.14 yards. This gives a total of 398 yards of double conductor. At a mpeedive force is 110 volts, being at the rate of 1.81 yard per volt,

We give in Fig. 5 a transverse section through armature and magnets, omitting, however, all constructive details, as our sketch is only intended to show the grouping of the pole pieces. To each side of the armature is fixed a com plete horseshoe magnet, which is supported at the yoke in
the cast iron framework-as will be seen from our per spective illustration-and at the poles by gun-metal bolts tapped into a central girder. The distance between the girder and any part of the magnet is at least twelve times the face of the pole piece. The exciting coils, of which we only show one, are 17 in . long, and each contains 2 cw of 058 wire, having a resistance of 72 ohms. The four arms are coupled parallel. Each contains about 3435
turns, and is traversed by an exciting current of 1.53 ampères. The exciting power in one of the magnets is therefore $2 \times 3430 \times 1.53=10,500$ ampereturns,
The resistance of the armature-cold-is 0278 ohms. We must mention that this figure is not from measurement, but is obtained by simply dividing the resistance of 398 yards of double 120 wire by 16 . The effective area of iron in the armature is 56.4 square inches, whilst the cross sectional area of the magnets, which are slabs 4 in . formern, is 128 square inches, or more than double the it should be for with the must supply sufficient lines for filling twice the area of the armature core; and if the lines shall not be throttled in core part of the magnetic circuit, the area of the magnet The machine is classified as a 50 unit dynamo; electromotive force, 110 volts; current, 460 ampères; current in shunt coils, 6.12 ampères; loss of pressure in armature, 13 volts; internal electrical energy, $466 \cdot 12 \times 123=57,200$; external energy, 50,600 ; efficiency, $88 \cdot 3$ per cent. The
density of current is 5150 amperes in the armature coils and 580 ampères in the shunt coils. The weight of copper ased is 104 lb . in armature, 896 lb . in field ; total, 1000 lb . At 450 revolutions the output is therefore 50.6 watts per pound of copper; at our standard speed of 1000 revoluIf per minute it would be 112 watts per pound of copper. If the coils on the field magnets be joined up in such both below it S , the machine will work like any ordinary two-polar dynamo. Two brushes only will in this case be employed. Messrs. Elwell-Parker have made that experiment, and have found that the electro-motive force thereby only increased by about 30 per cent., whilst, of
course, the current is halved. On purely theoretical course, the current is halved. On purely theoretical
grounds we would expect that the electro-motive force grounds we would expect that the electro-motive force
should be doubled; but in practice a point of saturation, as regards the density of lines in the armature core is soon reached, and that prevents the full advantage being obtained from the two-polar arrange-
ment. To make our meaning clear, let us assume for sake of argument that in the four-polar arrangement there are 112,000 lines emanating from each polar surface. We choose this figure simply by way of illustration, as it is a convenient multiple of the area of armature core.
Through each square inch of it there will, therefore, be 1000 lines. In order that the electro-motive force may be doubled by the two-polar of lines emanating from thrangement, the total min the same, and to make this possible the density of lines would have to be 2000 per square inch of core. This is probably more than the core call carry ; or, in other words, saturation sets in and prevents the full number of lines from being created. Messrs. Elwell-Parker have supplied two dynamos like the one just described to the Blackpoo Electric Tramway Company, as well as seven motors for ing Mr. Holroyd Smith's car on the South Promenade We hope to give a full description of this system of electrical propulsion shortly, and for the present must content ourselves to lay before our readers a few data regarding the motor only. It is shunt wound, and intended to plied by an Elwell-Parker dynamo, The current is sup-
speed engine also made by that firm. With a current of 30 ampères through the armature of the motor, it exerts with sufficiqu approximation, with sufficient approximation, assume teing shunt wound torque is the same-the field-magnets being sound and the strength of field therefore independent of case the motor would give off about 8 -horse power at a speed of 600 revolutions a minute. The resistance of the armature is 75 ohms, that of field magnets 200 ohms. The motor weighs 6 cwt. Its field magnets resemble somewhat those of a Siemens machine, which orm to
been adopted in order to be able to get the motor into the been adopted in order to be able to get the
confined space under the floor of the car.
In all there are eleven dynamos and one motor exhibited by Messrs. Elwell-Parker ; their list is as follows :-One 50,000 watt machine, driven by Tower engine, and lighting the Club dining room; one 20,000 watt machine as reserve to the above; one 12,000 watt machine, for charging accumulators, lighting the Royal Pavilion, one lighting the mast Qua, charging B. $1 . \mathrm{K}$. accumane, driven by Willans engine, and lighting the Subway; one 6000 watt generator driven by Elwell-Parker engine, and supplying current to electric tramway; one 3000 watt machine, driven direct by three-cylinder Elwell-Parker engine, intended for train lighting ; one 3000 watt machine, driven by 3 -horse power Otto gas engine, charging 26 cells at Mr. Yaylor Smith's stand; one 3000 watt machine, driven by Beachy gas engine, and lighting Messrs. Woodhouse and Rawson's stand in East Arcade; one 1500 watt machine, driven by electric tram-car.

THE MERCHANT VENTURERS' SCHOOL, BRISTOL.
Oiv Saturday last the new school of the Bristol Merchant enturers was formally opened by Sir rederick Bramwell, in the presence of a large and representative gane
the Bishop of the diocese, the Members of Parliament for the city, the Mayor, Sheriff, and other local magnates, the Master
and Wardens of the Merchant Venturers, Colonel Donnelly representing the Science and Art Department, Mr. Philip Magnus, representing the City Guilds, Mr. Owen Roberts, the Clothworkers Company
The history of this school may be said to date from the founding of the Bristol Trade School in the year 1856, which
was established principally through the exertions of Canon was estabilished principally through the exervions af Canon in the applied sciences ; and thus there was founded one of the first institutions in this country where systematic teaching was undertaken with that aim in view. Considerable success attended the working of the scheme, and in the year 1866 the results were specially referred to in the report "That the Trade School of Bristol should, with its 120 pupils, carry off four out of the eight gold medals awarded, besides two silver and four bronze medals and 97 prizes, redounds greatly to its credit, and places it decidedly at the head of the science schools.
About ten years ago the direction of the school was transferred by the body of gentlemen who had managed it from its comthat time until now been managed under the scheme framed by the Endowed Schools' Commission, at an annual cost to the Trust of from $£ 500$ to $£ 600$. The success of the school both in point of numbers and results has continued to increase, and has for largely prepongerates on the Colston Trust, the desirability of its still further development. The first step towards this was obviously the substitution of more suitable buildings for the cramped and insufficient premises, to which, according to one of the speakers at the opening, the students came in irrepressible he bers, but which for nearly thirty years had been the home of Trust ao. This was too great an enterprise for the Colston Merchant Venturers to take this first step themselves, and upon the change of location of the school to take over its entire management, and become in future responsible for its maintenance. The site of the old Grammar school was accordingly secured, and a truly magniicent structure has been erected at opening of this building, and its dedication to the use of the School, the Bristol under the name of the Merched to exist
We must now briefly describe the nature of the instruction provided by the school, and afterwards the building itself. The school comprises:-(I) A primary department for boys of nine years old and upwards. (II.) A secondary department for boys
under eighteen years of age. This is subdivided into (1) a division intended for boys whose careers will be connected with manufactures and the constructive arts, and for those who wish to proceed to the higher departments of the school, the subjects modery being chiefly mathematics, applied science, and the studies. The foregoing courses are arranged to be completed by the time a boy has reached sixteen years of age. (III.) The mining and technical department, for students above sixteen years of age. (IV.) The chemical and metalurgical department.
(V.) The evening class department, open to all persons above xteen years of age without distinction of sex.
The building itself, which is in the fourteenth century Gothic style of architecture, is a result of careful study of all the
wants of a terhnical school, and embodies the experiences gained by a special deputation, who visited the best and most recent schools at home and on the Continent. It is four stories in height, and covers an area of 26,000 square feet. The basemen contains a range of lofty rooms 102 ft . long and on an average as a gymnasium, but which is not yet fitted up. It is possible that the teaching of trades in connection with building and is also a dining be commenced for the ensuing winter. There kitchen and offices be supplied. The gas engine, ventilating fan, hot-water warming apparatus, and an exercise court 116ft. by 52 ft . occupy the
remainder of the basement. The ground floor contains the library-in which are already several hundred volumes, the museum The museum which is 44 ft by 35 ft , is intended to museam. the museum, which is 4 tt . by sst., is intended be chielly technological, but contrinions are inved of al Merchant Venturers rightly believing that such a museum
facturing and mining operations, and the applications of the discoveries of science to the industries of the world, will be of invaluable service in developing the intelligence and
interest of the students. It is stated in the prospectus, from which some of the information concerning the work of the school has been drawn, that it is intended to open this museum freely to the general public, and as Bristol has at present no collection of the kind in view, such a course is highly to be com mended. There are also on this floor four class-rooms, the porter's residence, and an examination hall, 80 ft . by 44 ft . and vork, the execution of which reflects the highest credit upon the builders, Messrs, Brock and Bruce, as its design does upon the architect, Mr. Robins, F.S.A. Upon the first floor, and ronting the two streets which run parallel to the two front sides of the building, is the artificers' drawing-room, 85 ft . by 20 ft ., ivisible, as occasion serves, into two rooms by means of a sliding shutter. The room has been arranged so as to afford the best possible light to the students working there, and is fitted with convenient drawing tables. Beyond this room is the diagram room and engineering lecture room, the latter 30 ft . by
27 ft ., also cloak room, lavatories, art drawing room, and side allery of the examination hall.
The second floor at the top of the building has the chemical and physical laboratories, lecture-rooms and class-rooms, also ness with which these are fitted up can only be estimated by personal inspection. The large chemical laboratory, which is 52 ft . by 30 ft ., has accommodation for forty students. The ze of the other rooms are: Physical science laboratory, 31 ft by 21 ft .; metallurgical laboratory, 30 ft . by $20 \mathrm{ft} . ;$ physical cience lecture-room, 42 ft . by 31 ft .; besides which are a gas and water analysis room, a balance-room, combustion-room, and ead master's private room.
In conclusion it must be remarked that the fittings and orkmanship are throughout of the most perfect kind, and ideed, the beauty and elegance of the work on the building ill, and as an W enture to affirm that in this respect, at any rate, the Wew chool is not surpassed and probably not equalled by any technical school at home or abroad, and after a very careful examination of the whole, we are not surprised at the statement made in a speech at the opening ceremony, by Mr. Philip Magnus, who, as a member of the Commission on Technical Educa tion, has recently visited all the colleges and schools of mportance in this country and on the Continent, to the effect that he had never seen a shool better adapted to the purpose for which it was built than the Merchant Venturers school. We have no doubt but that the greatly increased advantages of the new building will give renewed impetus to the work of the school, and we trust that the citizens of Bristol their latest educational undertaking.

LOSSES FROM SOUTH YORKSHIRE COLLIERY

 STRIKES.EVERY week brings fresh reminders of the appalling losses sus tained by the recent sad strikes in the South Yorkshire coal trade. sustained connected with collieries and colliery work the losses working man and his family sustain is as nothing compared with the loss which coal-miners, railway companies, and the public experience. The past few days has witn arrange strikes the Church Lane Colliery, near Barnsley, belonging to the Old Silkstone Coal and Iron Company, the men have agreed to resume work, after being out about three months, and losing from past ten or twelve years been the scene of several costly strikes, in some of which the firm imported and lodged fresh hands at the works at great expense. Some idea may be formed of the losses sustained from the statement of Mr. Ogden, the chairman of the company, who in a recent address to the men declared that the losses sustained by the present and ormer companies during the past ten years was not covered by half a million of money. At one time
the colliery was closed for a year and a-half. The present disastrous struggle for the most part being against what the men term a "Billy Fair Play," but which is simply a testing machine, over which the coal passes in order to make it marketable. With respect to the Denaby Main struggle, which has extended from December, 1884, down to the present £11,500 has been sacrificed in wages; whilst the Manchester Sheffield, and Lincolnshire Railway Company has lost £9000 by the strike. The loss sustained by the company-which prior to the stoppage sent from 12,000 to 15,000 tons of coal per month to Hull alone-the setting down of the pits, the procuring
of fresh hands, and the expense of sustaining the underground workings have been almost unconceivable. Referring to the of 1880 and 1881, Mr. Chappell, miners' agent, who and forfeited his position owing to his firmness, declared that the cost of that strike was not less than $£ 783,000$ in wages alone, in addition to which the Miners Association had paid to the men said, had paid $£ 52,000$ to men on strike, and had caused a loss in wages alone to the extent of $£ 450,000$. Such facts as these speak for themselves, and ought to convince the men that there is nothing to be gained by strikes.

LAUNCHES AND TRIAL TRIPS.
On the 25 th inst. Messrs. Edwards and Symes successfully launched from their shipbuilding yard at Oubitt Town a sea-going
steam launch for the Corporation of the City of London and Port Sanitary Committee, for the use of Dr. Collingridge between Teddington and the Nore. As soon as the launch was afloat it was taken alongside the wharf and the boiler and machinery put on 11 ft . beam, and 6 ft . deep. The machinery is of the compound surface condensing type, with extra large boilers. The expected speed is from ten to eleven miles an hour.
One of the steam trawlers for supplying fish to Para was launched from Bidston Wharf, Birkenhead, by Messrs. Cochran and Co., at noon on Tuesday last. These vessels are being built to the order of Messrs. Castel Pontet, under arrangement with the Provincial appliance for carrying on the projected work successfully. The machinery is also being made by Messrs, Cochran and Co. The launch was in every way successful, and the vessel was named the Esperança

On Saturday an iron brow at Chatham pier gave way and prethe failure is not yet known, but Mr. Henry Law has visited the scene of the accident. It is expected that a Board of Trade inquiry will be made.

MARCH'S STREET SWEEPER AND ELEVATOR A machine for sweeping streets and taking away the sweep ings has long been much wanted in every town of any size, Sweeping machines have been in use many years, but none have sweepings, although hundreds of patents have and remove the this country and America for the purpose. Mr. W. March has however, produced such a machine, and overcome the numerou practical difficulties that beset the task, and exhibits one of his machines in the Inventions Exhibition. During all last week work on London Bridge as illustrated in our engravings, was at traffic, and its action witnessed by large numbers of people. The machine used was the form shown at Fig. 3, and its action was so successful that the Commissioners of Sewers have determined to adopt the machine for the purpose. Hitherto the Bridge House Estate has paid about $£ 750$ to keep this bridge swept, the whole of the roadway part of the bridge will now be
kept clean all day instead of being cleaned once a day, and
way as that of the brushes, the necessary intermediate pinio being keyed on to a short shaft revolving in the lever t, while the lower end of the lever is centred upon the lower shaft of the elevator, or upon the circular bearing of that shaft, as shown wh. 2. The upper end of this lever has a pin t^{1} fixed into winion slides a shot in the shoot lever u, so that when the pime raises the shoot the disengage the gear, it at the same bein aises the shoot q, the sled lever u and eyes of the shou the which passes through the guide frame ov in which the lever works The machine is supported at its rear end by a small castor wheel n. The machine is coupled to the wagon by an upright hook o, the rear part of which slides freely up and down in a round hole of a block or jaw piece p fastened in front of the case. The fore part of the hook is square, and enters square hole of compensating lever gear attached to the unde part of the mud or dust wagons, the end of the attachment being indicated by dotted lines,
The brushes of the machine we have seen at work are 4 ft . 7 in .

probably at a lower cost. The great advantage which the machine will secure of keeping the bridge free of the great collections of mud which at some parts of the year cover the
bridge after a few hours of traffic, will be very highly esteemed. bridge after a few hours of traffic, will be very highly esteemed.
Our engravings show the machine as now adopted by the City Our engravings show the machine as now adopted by the City
Commissioners, Figs. 1 and 2, and as combined with a wagon. Referring to Figs. 1 and 2, it will be seen that two short endless b^{1}. The upper shaft is driven by a pinion c which sears into spur ring y bolted to one of the large road wheels. The brushes sweep the refuse up an inclined brush-pan into the elevator

FIg. 4-MARCH'S STREET SWEEPER AND WAGON COMBINED.
case, to which the pan is hinged. Two short taper bars e, one on each side of the machine, are centred at their large ends upon the axle collars. One of these levers carries one end of
the front shaft b. The other end of this shaft revolves in the lower end of a smaft b. The other end of this shaft revolves in the lower end of a small upright lever, which, being pivotted by a
bolt passing through both, enables the aforesaid pinion to be thrown in and out of gear. The two shafts of the chain of brushes are connected by a set of right and left threaded rods and elongated nuts f, the rods being terminated by eyes in which both shafts revolve. The rear end of each of the levers is suspended from the angle iron frame by means of a screwed eye bolt g which passes loosely through the frame and has one nut above and one below the frame, whereby the brushes can be lowered to the pan as they wear away. The lower end of the brush pan h is suspended at both sides by chains fastened to cranks which are keyed to the rocking shaft above. The brush pan h supports both ends of the hind shafts b^{1} by means of another set of right and left threaded rods and elongated nuts i, so that not only both the pan and brushes are raised simultaneously by depressing the hand lever k of the rocking
shaft, but both pan and brushes are likewise free to rise over shaft, but both pan and brushes are likewise free to rise over any unusual obstruction in the road. The rocking bar crank
l, on the right-hand side of the machine has a perforated boss , on the right-hand side of the machine, has a perforated boss
at its rear side about half-way down. A rod connects this boss to the top of the small upright lever, whereby the pinion is thrown into and out of gear as the brush pan is either lowered or raised by the hand lever. The elevator m consists of an inclined case, containing a series of buckets which work inside or between the two chain wheels $r r^{2}$ and their chains; the buckets, like the brushes, being attached to the chains by ears cast on the links. The elevator is driven by a spur ring on the left-hand large wheel, and the pinion is thrown in and out of gear in the same
long, so that the machine moving at three miles per hour, or 264 ft . per minute, would sweep and collect from 1210 squar reet per minute, although the actual area swept per hour would of course, not be at this rate, as in sweeping width after widt the one brush track would have slightly to overlap the other in wll cabbage leaves, paper, and so on.
The elevator is capable of working any quantity that may be The machine can be attached to any wagon, and thus the mud heaps along the sides of streets may
henceforth be wholly avoided; horses wil not have to haul and stop every few yard wagon containing, perhaps, over two ton -very heavy work-and the work of clean ng may always go on at any time withou any hindrance to traffic. The machin is made by Mr. W. March, of St. Mary axe, London.

THE PANAMA CANAL
The report which M. de Lesseps read at the annual general meeting of share holders on Wednesday is of ing that modi fications of detail, necessitated by circum stances, have been introduced into the
original programme of the work, but the leading principles of that programme have not been altered. That programme con sisted, first, in the cutting of a canal from Panama to Colon, 9 metres deep, below the average height of the waters in the tw oceans; second, the width of the canal wa oceans; second, the width of the canal wa the two oceans was not to comprise any tunnel, but to bu an open cutting in its entire length; fourth, at Panama current in the canal. fifth, in the middle of the course of the cana long station, or siding, 5 kilometres in extent, was to be created sixth, at Ha Gamboa an immense dam was to be constructed, so as to intercept the waters of the Rio Chagres, and to give them
nother course. The excution of this programme has been pro ceeded with during the current year, and the machines necessary for the completion of the works of the canal have already reached the Isthmus, or are in course of construction. In support of this assertion M. de Lesseps quotes a passage from a report receive
from the director-general of the works to that effect, concludes thus:- "It therefore follows that, that effect, and which nenced the dry excavation work on the Isthmus on 1stJanuary, 1885 and only begun'the dredging work on the1st January, 1886, the cana could be completed on the 1st January, 1888. To be provided against possible accidents, there is all the dry excavation work executed before the 1st January, 1885, and all the dredging which was to be that there is no doubt that half the effort necessary for the cutting of the canal has already been made. M. de Lesseps says:- "The regular continuation of the piercing of the Isthmus and the com pletion of the canal in 1888 are the best replies that can be opposed to the adversaries of the canal. We will not do our partners in the work-the shareholders--the injury of supposing that they ar To show the Pan
To show the Panama shareholders that they need feel absolutely no alarm, the president of the company relates how, in 1860, the that time the public was warned against taking up the little shares of the Suez Canal Company. The progress of the works was de scribed as such as to show the impracticability of the enterprise.
"It is," says M. de Lesseps, "in precisely similar terms that the

Panama Canal is now sometimes spoken of. The little shares of
the Suez Canal, issued at 500 f ., have beocme big shares of 2200 f the Suez Canal, issued at 500 f ., have become big shares of 2200 f
TTe Egyptian Bosphorus has been created. The little shares and
 Mredecessor. Referring to the little mishaps which havine that the gigantio work of pieroing the Isthmus ocound be acoomplished with
out any such accidents, and that the execution of each portion of out any such accidents, and that the execution of each portion of
the works could be regulated like clockwork. The number of In January, $1885-$ quoting the everory month is steadily increasing, in February, 590,000 cubio metres; in March, 627,000 ; in April
775,000 ; in May, 795,000 . In April, 1885 , there were 17,881 persons occupied on the works; but in October there were 20,368
persons employed on them. Since that time the number of men employed has been maintained at about that figure. The denths
on the works continue very high. The official returns of the deaths that have occurred on the works during the year ending March last are as follows:- 1884 : April, 59 deaths, of which 9 were Europeans May, 41 deaths, 3 Europeans ; June, 60 deaths, 12 Europeans July, 87 deaths, 26 Europeans; August, 119 deaths, 35 Europeans;
September, 132 death, 25 Europeans; October, 163 deaths, 42 Europeans;
142 deaths, 59 Euroreeans. 1885 : January, 91 deans ; December
death, peans ; February, 46 deaths, 13 Europeans; Marrh, , M9, deaths, 21 Panama in May, it had not entailed any took place at Colon and Panama in May, it had not entailed any great losson the company.
At the Calebra, where the most serious incident occurred, the loss fell on the contractor. In that chapter of M. de Lesseps' report chief engineer has calculated that, by certain modifications, would be possible to reduce the total number of cubic
metres of soil to be removed to construct the canal, from
120 millions 120 millions, the estimate of the Technical. Commission,
to 90 or 95 million metres. Nevertheless, M . de Lesseps
prefers to take the original estimate as the base of his calculation prefers to take the original estimate as the base of his calculation to remove $62,691,595$ cubic metres of soil for a total sum of
$219,295,974 \mathrm{f}$. Moreover, contracts have been entered into with of the works for a sum of $480,000,000$. The total cost of tha eactual piercing of the Isthmus will, therefore, amount to $700,000,000$ f.
$E 28,000,000$ sterling. To this sum must, of course, of the canal administration, and the annual interest paid on capital. The International Congress estimated the expenditure for the purchased the Panama Railway and land in the vicinity of Colo its borrowing powers to cover these expenses, which were not included in the original estimate, At the end of his report, M. de to borrow 600,000, ooof., by the issue of bonds with annual prize drawings. Having obtained the approbation of the ehareholders $h e$
will take the necessary steps to obtain that authorisation.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

(From our own Correspondent.)

THE outturn of finished iron this week has been curtailed somewha by the excessively hot weather, an
mills and forges later than usual.
The orders given out at the present time, generally speaking, go
no further than immediate requirements, although a little impetus no further than immediate requirements, although a little impetau
has here and there been given to some of the works by the receipt
of orders for sheeets, and bars and hoops, on account of Australin of orders for sheets, and bars and hoops, on account of Australia,
Canada, South America, India, and some markets on the European
continent. The continent. The aggregate
the district is considerable.
able to boast having made full time for Th wecks past, but these are in a minority.
The Greetsgrgren Sheet Ironworks, West Bromwioh, have this
week prassed into the hands of Mr. Geo. Onions, of the Regent Ironworks, Bilston, whose capability of rolling ineets of the ralvanising
is now increased from four to six
 Oog for 28 gange. Indian and Russian inquiries for sheets, ane apon
the market in good numbers, but the prices offered are in many cases too low to tempt maker
The elist priee for Staffor of the marked bar firms are quare quite comantent to get get $£ 7$, while for
second-class qualities they are second-class qualities they are freely accepting Et ± 6.1., wand even
E6. At the e atter price a large trade is being done with Australia
and Canada. Hurdle bars arg to to Quotations on the open market for merchant iron of an ordinary
quality appear from the list of the Pelsall Coal and Iron Company This concern quoutes at date:- Bars, , in. roumds and sanuares, and
upwards, $£ 5$ 10s. per ton; hoops and strips, lin. by 18 b.g, and

 Bar makers spoke yesterday and to-day of the increased compe
tition of Belgium in foreign markets, and instanced the further re tition of Belgium in foreign markets, and antanced the further re
duction of 5 s . per ton which has just been announced by the Belgian
firms. Bel

 tin bars, $£ 417 \mathrm{~s}$. Gd. for blooms and billets, and $£ 710 \mathrm{~s}$. for boiler There has this week come into the district a specimen of rolled
steel which promises, it is claimed, something ilik a revolution in
the highest branches of the tube trode It
 has just been acquired by the Dowlais Company. This company
are understod to have ordered from an engineering firm at West
Bromwich Bromwich a new three-high mill in which to orin the strip. The
economy to the tube maker of strip in that shape is very great since there are in some tube works extensive plantst of machinery
solely for producing the feather solely for producing the feather edge. The price at which it seems
likely the strip will be procurable in Birmingham and the Stafford-
shire district is about $£ 7$ 5s. The patent is equally applicable to
the the rolling of strip iron for iron tube making, and there seems to
belitle room to doubt that iron tube strip with feather edges will
soon become a commodity of local iros In pig iron stocks of most makes of all-mine sorts continue
large. Two firms in the Bilston district are currently reported to
hold stocks of 1200 . hald stocks of 12,000 and 15,000 tons respectively, much of which Was made when prices were 10 s, a ton higher than current rates:
All-mine iron is uoted at £4 for cold blast sorts, and $£ 3$ for hot
blast last sorts, but about $£ 217 \mathrm{~s}$. Gd. for the latter is really the top
sellig price. Part--mine pigs are $£ 2$ to $£ 25$ s, nominal, and cinder selling price. Part-mine pigs are $£ 2$ to $£ 25 \mathrm{~s}$, nominal, and cinder
pigs $£ 113 \mathrm{~s}$, to $£ 116 \mathrm{~s}$. 3 d . per ton.

Ulverstone hematites are changing hands at 53s, and othe Derbyshire pigs went off to-day upon the basis of 37 s . 6 d . to 40 s , $\underset{\text { per ton. }}{\text { Most }}$
colosial and home contracts, though there are some of them who are not anything like busy. Competition for the work offered is keen, and values are therefore lower than for a long time past. One of the latest contracts which has come into the market for ironwork is for bogie wagon ironwork needed by the Indian Stat
Railways; and 200 wheels and axles are also required by the Danish State Railways
The deputation from the operative Nailmakers' Association Which has recently waited upon the masters to request them to association which is in of wages, have presented a report to thei is said, informed the deputation "that they were quite willing to return to the 1879 list in conjunction with the up-country. the settlement arrived at will shertly be held
A private meeting of operative vice-makers was held in Dudley on Monday to endeavour to settle the strike which is now going factory.

The quarterly meeting of the workmen's executive of the Nut The financial report of the late strike showed that the income had been $£ 1459$, and the expenditure $£ 1445$. The meeting decided that in order to strengthen the association a
should be held throughout the district.
The Railway Rolling Stock Company, Wolverhampton, are in a voluntary liquidation. At their half-yearly meeting in Wolve hampton on Tuesday the chairman said that a large reserve fund was upon their hands, but they were unable to employ it profitably One thing alone would save the company from liquidation, and
that was for the shareholders to sell to the directors their permanen debenture stock, and for this a fair premium would be given. I the company were wound up the reserve fund, which belonged to the sh
intact.
A gratifying exhibition of goodwill between employer and em ployed has just been displayed at the Highfields Engineering Works,
Bilston. Upon the recent decease of the late proprietor of the Biston. Upon the recent decease of the late proprietor of th
works, Mr. T. J. Perry, who was highly esteemed, some of the oldest employis, who had been engaged at the establishmen of their late employer. This week all the operatives have bee presented by Mr. Perry's family with a handsomely-framed portrai of the deceased gentleman, together with an address.
In order to illustrate the working of its system,
Telephone Company has just fitted up, in offices of the Great Telephone Company has just fitted up, in offices of the Grea
Western Arcade, Birmingham, a pair of its patent telephones. At Stafford Assizes on Wednesday, the Hanley Colliery Com pany were sued by Mr. T. B. Shufflebotham for 11000 , damages to property consequent upon defendants mining operations. The plaintiff is the owner of fifteen houses at Hanley and defendants year a subsidence took place, and the houses were so disturbed a by the defendants at the latter end of 1883 , having previously been in the hands of many owners.

NOTES FROM LANCASHIRE.

Manchester.-The condition of trade continues without improve ment, and the position, so far as makers of iron are concorned, id
rapidy becoming critical. At the very best, the prices obtainable barely cover the cost of production, and with regard to many com modities, the choice lies between going on at a loss or stoppin
works entirely at a still greater loss. There is, however, a limit to the production of iron at a loss, and the probable closing of som of the works is already being looked forward to as a possibility in the near future. There are certainly no prospects of any carly im
provement in trade to encourage makers to continue operations at a serious loss as a temporary expedient to carry them over to better times. So far as many of the large iron using branches of industry in the engineering trades are concerned the prospects are
rather of lessened activity, and users of iron who have entered into rather of lessened activity, and users of iron who have entered into at all heary contracts, in anticipation of work coming forward, are actual requirements.
There was a very flat market at Manchester on Tuesday. Fo pig iron there was comparatively little or no inquiry, and quate
prices were, if anything, a trifle lower than those of last week prices were, if anything, a trifle lower than those of last week,
This, however, represents rather a receding of the nominal quota tions to previous actual selling rates than really any further 38 s . 6 d. , less 21 , delivered equal to Manchestor, and district brands 37 s . 6 d . to 38 s s. 6 d , , less 2 k , but the business doing is extremel small, and where buyers have any orders of weight to give out
they hang back for still even lower figures, Outside brands, such as standing the continued upward tendency shown by the Glasgo Hematites are poor, and good found change; the demand continues extreme about 51 s ,., leses 82 , , delivered equal to Manchester.
The condition. One or two of the large firms are able to keep the works on full time, but generaily the forges throughout this
district are very indifferently employed, and the prices ruling for all descriptions of finished iron are extremely low. ${ }^{\text {D }}$ Delivered int the Manchester district, ordinary merchant bars average $£ 55$
per ton; hoops, $£ 515 \mathrm{~s}$, to $£ 517 \mathrm{~s}$. 6 d ; and sheets, $£ 6$ 15s, to $£ 5$ per tron.
Irounders complain of an absence of orders generally, whils prices are excessively low, with a keen competition for any wor
that does come into the market. In builders castings there comparatively no work of any weight giving out, and cast iro columns, delivered into the Manchester district, are to bo got at
about \&4 15s. to $£ 5$ per ton, and cast iron girders at $\& 110 \mathrm{lo}$. to
per ton. For cast iron pipes prices per ton. For cast iron pipes prices rule exceptionally low, an
ordinary sections, with bored and turned ends, are to bo got a about \&t 5 s. per ton, delivered here.
A slackening off is still generally reported throughout the engi
neering trades, neering trades, and the returns as to employment show a
increasing number of men coming out of work. The leading makers are moderately well employed, and in heavy engineerin work some of the local firms are tolerably busy on orders for
Elswick and Sheffield for steel ordnance purposes. Cotto machinists are in some instances rather better off for work tha they were, and a tolerably large order in connection with the
re-fitting up of the Great Western Cotton Manufacturing Company's mills at Bristol has been secured by firms in this district General engineering work is, however, very quiet, small engine
builders are but very indifferently employed, boiler makers are working on old orders, with very few new ones coming forward and although locomotive builders are kept fairly busy, the new
work coming forward is very small, and there is a keen competi A special plant for the reco ammonia, from the blast furnace of the residual products, tar and from the designs of Mr. John Dempster, of R. and J. Dempster Messrs. Robt. Heath and Sons. This plant, which is the first
its kind that has been put down in Engle
somewhat similar to that used in ordinary coal-gas works. A very
powerful condenser of 200 wrought iron tubes, 40 ft . long, fixed vertically, has cold water flowing down the outside of each pipe
the gases are drawn from the furnaces and forced through the appa ratus by four exhausters. After leaving the exhausters the gase thro through four specially designed washers, and filled with materibers of large dimensi. These large surface and to each scrubber there is a separate pump; these pumps main except ins how of ammoniacal liquor through the scrubbers, remove the last traces of ammonia. In all the apparatus pre-
rester cautions have been taken against accidents by explosion by having escape valves fixed, so that any sudden rush of gas would find easy
exit. In designing the plant one indispensable objeet has had to b ept in view, and chis has been that in utinsing residuals the gase provision should be mede against any waste of gas in the pathat raising whole of the gases from the blast furnaces is utilised fo raising steam for the blast engines, forges, and pits. This plan
was successfully set to work last week by Mr. John Dempster in the presence of the proprietors and managers of the works, and fully justify the anticipations of the srontientors satisfactory as to fully justify the anticipations of the proprietors and the patentee
The successul operation of this plant will be a matter of conside able interest to the iron trade generally, especially in these days of keen competition when practically the only source for an increase margin of profit has to be found in increased economy in the means
A further de
the market has just been introduced by Messrs. Greenall and first engine of this I have had an opportunity of inspecting the engine is termed the Simplex, and a very simple form of
construction, with very few working parts, has been secured The engine is worked by non-compressed gas and air, an the supply of gas. To the side of the engine a catch-wheel motion is conveyed to these by an excentric and a rocking disen from the engin shaft. At every revolution the catch-wheel alters its position one
tooth by means of a catch, and the bottom tooth then presses own a lever connected with the gas valve, thus admitting a charge
gas, which is mixed with air obtained through a valve at the back of the engine. The air and gas then pass into the cylinder, to the end of the cylinder. A hanging valve is adjusted to this passage, which is opened by the suction as the piston travels
forward, and the flame constantly burning in front is drawn in, thus communicating with the charge in the cylinder, and an explosion having taken place, the valve is immediately closed by the
orce produced. The rocking disc, which is provided for is regulated in its action by governor on the engine, which is arranged to act upon a stud ing an excessive speed, and the governors are thrown full open, the atch is lifted free from the catch-wheel, and no further charge of the catch drops into its proper position. By this arrangement the ngine is only supplied with gas in proportion to the work it is secured.
The
The local reception committee appointed in connection with the recent meeting of the Gas Institute in Manchester have brought meeting was celebrated by a dinner at the Brookland's Hotel on Thursday, and Mr. Alderman W. H. Bailey, who occupied the chair, was able to announce that out of the surplus funds left in
the hands of the committee, they had contributed $£ 10$ to tho Olifton Colliery Accident Fund and C10 to the Widows' and Orphans Fund of the Gas Institute. But this was not all; afterwards, on behalf of the committee, a very handsome clock and
vases were presented to Mr. Thomas, the hon. sec.; a similar previgit of the Institute to Manchester were presented to Mrs. Newbigging, the wife of the president, and to Mrs. Bailey, the wife of the chairman, for
the services she had rendered in receiving the guests at the recep he services she had rendered in reciving the guests at the recep-
tion given to the members of the Institute in the Manchester Town Th
the demand is reported in all descriptions of fuel, and with pits not working more than three to four days a week there is an accu-
mulation of stocks not only of house-fire coals, but of steam and orge coals and engine fuel. Quoted rates are nominally without and where colliery proprietors have to move away quantities extremely low prices are frequently taken. At the pit mouth the average prices remain at 8 s . to $8 \mathrm{~s}, 6 \mathrm{~d}$. for best coals, $6 \mathrm{~s}, 6 \mathrm{~d}$, to 7 s . for seconds, 5 s , to 5 s .6 d . common, and $4 \mathrm{~s}, 3 \mathrm{~d}$. to $4 \mathrm{~s}, 9 \mathrm{~d}$. burgy,
3 s .6 d . to 4 s . best slack, and 2 s , 6 d . to 3 s . per ton for common sorts. the shipping trade there has been rather a falling-off, but
In tres are without alteration, good qualities of steam coal delivered at the high-level, Liverpool, or the Garston Docks, averaging 7s, to s. 3 d . per ton.
Barrob. There is a growing impression that we have not yet
seen the worst of the depression which has characterised the hematite pig iron trade of this district, in common with the pi iron trade of the country generally, for several months past, and
the opinion I have proved is alike supported by those whose busi-
ness it is to make iron as well as by those who buy cither for wse or for re-sale. The immediate prospects are gloomy, and the pro
bability seems to be that a much less active winter will follow the summer months we are now passing through, and which in themyears. Prices are exceedingly low; but these do not tempt either
yone indefinite continuance or intensification of the present lifeless stat of trade. Mixed numbers of Bessemer pig iron were never known
so low in value as 42s. Gd. per ton net for prompt delivery,
or 43s. 6d. for forward delivery. The indifference of buyers to negotiate for forward deliveries at extremely low prices is in
itself indicative of the position now existent. Steel makers are very short of work, and their mills are working very irregular
time. The demand for rails and merchant material is very weak,
while special steel of the hard and mild types rels lomer wire, axles, tires, and plates are in such limited request tha at work. Shipbuilders not only join in the general tone of in tributes largely to the paucity of demand for steamships and sailin carrying companies in the country, and in the world in fact, find
it necessary to lay up for an indefinite period a fair percentage of it necessary to lay up for an indefinite period a fair percentage of
the vessels which ordinarily carry on their trade. There are no
new features in engineering, either in the marine or the general new features
departments.

THE SHEFFIELD DISTRICT
Instructions have been issued by the Admiralty authorities fo the immediate completion of the armoured cruisers, to which
reference has already been made in THE ENGINERR. It is desire reference has already been made in The Enginker, It is desired
that all the armour for these vessels should be ready by the end of warch next, which will keep the mills pretty briskly employed,
with the other orders now in hand. The Lancashire and Yorkshire
Railway Company are inviting tenders for a thousand
wheels and axles, a considerable portion of which will no doubt be
placed in this district. A heavy order for locomotives-between placed in this district. A heavy order for locomotives-between
fifty and sixty- has been placer by the Indian authorities in
Glasgow. Work in connection with this important line will follow Ghe usual course of finding its way to Sheffield firms. In the lighter departments of in.
At the half-yearly meeting of the Manchester, Sheffield, and
Lincolnshire Railway last week, Sir Edward Watkin, the chairman, stated that the loss to the company through diminished chair
luring the half- year was $£ 26,000$, added to which there solely caused by the Denaby Main stoppage, and $£ 5500$ by falling e6000 in expenses, leaving $£ 35,000$ as the undoubted bill of the company for the languor of the industries in the districts, par company for the languor of the industries in the pany.
tioularl the Sheffild district traversed by the oompany.
The Manchester, Sheffield, and Iincolyshire Railway The Manchester, Sheffield, and Lincolnshire Rail way Company ried arising out of the disaster at Bullhouse Junction, near
Penistone, in 1884 . Among the victims of the memorable camity was a Mr. Woodhead, a civil engineer ; and hem his widow, at Manwhester Assizes, sought to reocver \&10,000 damames. Mr. Justice
Manisty put two questions to the jury. The first was: Were the Manisty put two questions to the jury. The first was: Were the
company guilty of negligence in not having an automatic brake negligent in not discovering the flaw in the crank axle, the breaking of which was the primary cause of the accident. The jury replied in the negative to both these questions, and the judge therefore
directed a verdict to be entered for the defendant with costs, and directed a verdict to be ent
certified for a special jury. Nothing is yet decided as to the ultimate fate of the Elsecar
rronworks, which are built on ground leased from Earl Fitzwilliam It is expected that the famous establishment, though it may not be revived in the name with which it has ofr years been worked -
Dawes-will yet be resuscitated. The slightest upward movement Wakefirold market would hasten operations in that direction. At Wakefield, the site of the well-known Normanton Iron works-
now dismantled -was offered for sale on the 25th inst. The site, ccommodation on the Midland Railway, extends to 31,000 square yards of freehold building land, and thererofere affords every facility
for development. Only one out of three lots was sold -a plot, onsisting of ilf,577 square yards, with a frontage to the Midland
asilway, and forming part of the ironwors site tarted at 1s. per yard, and rose gradually to 3 s , price the lot was sold to a Leeds solicitor. For another lot no bid
was made, and a third was withdra was made, and a third was withdrawn at 2 s . 8 d. per yard.
Another colliery dispute, I Iam glad to say, has been satisfactorily rranged, after the men har stood out for threemonths. The Church Dodworth, near Barnsley, accepted the 10 per cent. rempaction, in efused to resume work in consequence of a "Billy Fair Play", having been put on the pit bank. The owners declared that the
machine was not a ". Billy Fair Play", but a machine riddle, with
ifin. mesh, which, they held, would not make any difference a Pin. mesh, which, they held, would not make any difference
whatever to men who did their work honestly. Various meetings were held for the purpose of settling the dispute, but all efforts were fruitless until the 27 th, when an arrangement was made to
esume work on Thursday. About 1000 men were affected when the strike commenced, but a large number have got work else-
where, and the others have been supported by the Yorkshire Mhere, and the oth
Mr. W. H. Chambers, the manager of the Denahy Main Colliery, at an end, has not at once employed the whole of the late workmen. He points out that the men have no more claim on the Denaby
Colliery than on any other colliery in Yorkshire, having deliberately given notice and left the company's employment more than six
months ago. Mr. Chambers further points out that the men allowed themselves to be removed from their houses "rather than accept the ample wages offered," and subsequently refused to work
at a guarantee of 5s. 6 d.
and a day.
saw the horses sold, saw the horses sold, and the pits closed for an indefinite period, without a single man offering his services at the sum named. The
company thus having no alternative but to bring men from a dis-
tance, had done so, At present the company has not been able to employ more than fifty of the old hands, having already engaged Staffordshire men,
who broke up their homes on the faith that the company would find them employment. And Mr. Chambers very
properly declines to send to the right-about the properly declines to send to the right-about the men from a
distance who helped him in the time of trouble. "Besides the Staffordshire men already here," he says, "many more were
engaged before the Denaby men made any intimation. These engaged before the Denaby men made any intimation. These
people have given notice to leave their works, and have broken people have given notice to teave eneir works, and have broken
up their homes, trusting to that engagement, which the company The Nunnery Colliery part
Silkstone branch at 13s. per ton, "hards" at 111s., screened at 10s.,
seconds at 9 s ., and nuts at 7 s . per ton
THE NORTH OF ENGLAND
(From our own Correspondent.)
THE Cleveland iron market, held at Middlesbrough on Tuesday ast, was somemhat better attended than it has been of late, and
the tone, so far as pig iron was concerned, was a shade firmer the tone, so far as pig iron was concerned, was a shade firmer.
During last week merchants were selling No. 3 g.m.b. for prompt
delivery delivery at 31s. 102d. per ton, and even 31s. 9 d . was accepted by
some for small lots. On Tuesday last the lowest price at which No. 3 could be bought from either merchants or makers was 32 s., is in poor request, owing to the diminished consumption at the
finished ironworks, and the price is weaker. There is now no difficulty in obtaining it at 31s, per ton, but some makers hold out
for 31s. Holders of warrants continue to increase their stock, and will
not accept less than 32s. 9d. por ton for No. 3 . During the past week. 158 itons of pig iron were sent into Messrs.
Connal and Co.'s store at Middlesbrough. The total stook held by Connal and Co.'s store at Middlesbrough. The total stook held by
them on Monday last was 59.236 tons.
This months shipments of pig iron from the Tees fall consi-
derably behind those of last derably behind those of last porighth, owing principally to the the
smaller quantity required for scotland. Up to Inonday last only
58,729 tons had been sent away, as against 00,980 tons during the 58,729 tons had been sent away, as against 7,980 tons during the
same number of days in June.

 ment in the demand. Slight reduotions on the above prices are
made to secure large and favourable contracte, but there are not
many to be had just now. It is scarcly likely price will fall
lower, as it is well known that loss. The directors of the Consett Iron Company will recommend t, The directors of the Consett Iron Company will recommend te
the general meeting to be held on the 15th prox. the payment of a
dividend of 10s. per share on ordinary shares, and 4s. 3d. per share to shareholders in the Consett Spanish Ore Company.
The Hull and Barnsley Railway was opened for passenger traffic
on the 27 th inst. The depression in the steam shipping trade continues on the
Tyne, and the number of idle vessels is being increased daily. The River Wear Commissioners' returns for June show an increase of The acoountant to the North of England P. The accountant to the North of England Board of Arbitration
has issued his report for the two months ending June 30th. It
shows that the net average selling price of plates, bars, angles,
and iron rails, was $£ 417 \mathrm{~s}$. $5 \cdot 17 \mathrm{~d}$. per ton. This is 6 d . per ton less
than for the two months ending April 30th, and 5 s .10 d below the lowest price reached in 1879 .
Chief-Justice Waite, of the United States, and Mrs. Waite visited Newcastle-on-Tyne on Monday last and inspected the ol castle, the Museum of Antiquities, and other places of interest
They then went on board a steamer and made a voyage down the iver to Tynemoth. The honourable gentleman seemed deeply
mpressed with the activity apparent on either bank, and with th large amount of shipping afloat. He said the Tyne was the mos wonderful river he had ever seen, and certainly the most interest
ing sight he had witnessed in England. To Tynesiders who are so used to the coaly river, and who often revile it as dirty and distinguished a foreigner has to say on the matter
A meeting of the Board of Arbitration for the manufactured iron trade was held at Darlington on the 27 th instant for the purpose o considering further the possibility of re-estabishing a siding geal Mr. David Dale, referee of the Standing Committee, attended, and after some preliminary business had been disposed of, presided over the meeting. He was not empowered to decide between the con-
tending parties, but was merely invited to give his views, and to tending parties, but was merey invited to give his views, and to
promote a settlement so far as lay in his power. At the arbitra promote a settlement so far as lay in his power. At the atroitraa
tion held in January last, Dr. Spence Watson, the arbitrator, had to the operatives should not be a fixed amount, but variable, according to the state of trade. When this proposition came
to be discussed, it was found that the views of the employers and those of the operatives were exactly
whether the difference should be greatest when when they were low. The employers argued that according to economic laws the former was the correct view; while the workis, the highest relative wages-when trade was at the worst. of the introduction of this new source of contention. He con. would that Dr. Watson's suggestion offered no at he therefore advised the Board to settle upon a fixed and unvariable sum above shilings for pounds. This was then put to the meeting and carried unanimousiy. Atter conferring privately and separately with the employers and the operatives, Mr. Dale announced that both parties adaered to their previous offers. The employers then
stated that they were willing to refer the whole matter to the final settlement of Mr. Dale, and the operative delegates assenting to this on their own behalf, promised to do their best to get their
constituents also to agree to abide by any award whish Mr. Dale might give. The question for decision will therefore be whether might give., The question for decision will therefore be whether
ironworkers' rates shall be on the basis of 1 s . 6 d . above shillings for poun
A proposition has been made that Mr. Edward Backhouse, banker placed on the new Commission to inquire into the depression of trade. Mr. Backhouse is a good deal more than a mere banker.
H e cause of the variations and changes in the great industries of the North. His shrewdness and foresight are well known and highly esteemed, and there is no doubt that his appointment on the
Commission would give the greatest satisfaction not only in the Commission would give the greatest satisfaction not only in the
town where he resides, but throughout the whole of the northern counties.

NOTES FROM SCOTLAND

The past week has been another quiet one in trade circles, as in some cases work has only just been resumed after the holidays. and the quotations exhibit a considerable improvement, due chiefly to holders reducing their oversales. The shipments of the the preceding week, and 10,315 in the corresponding week of 1884 , During the eeek there has been an addition of 2000 tons to the furnaces in blast against ninety in the preceding week and ninetyfour at the same date last year
41s. 6 d . 41s. 7 d ., closing at 41 s s. 6 d , , The quotations the same on Tuesday. Yesterd. The quotations were practically business ranging from 41s. $6 \frac{1}{2 d}$. to 41 s . $4 \frac{1}{2} \mathrm{~d}$. cash, and 41s. 88d. to 41s. 3d. cash, and 41s. 5 d. d. one month, closing sellers 41 s . 3 ? cash, and buyers a halfpenny per ton less.
The market values of makers' inon
 44s.; Summerlee, 47s. and 44s.; Carnbroe, 46s. and 44s.; Clyde and
 Glengarnock, at Ardrossan, 46 s. and $41 \mathrm{~s} . ;$ Eglinton, 41 s . and
38s. 3d.; Dalmellington, 43s. and 40s. The adverse report issued by the Arbitration Board of the North of England, although it is very unsatisfactory, has occasioned no surprise here. There has of late been a fair output of malleable
iron in the West of been possible to obtain adequate prices.
The shipments of iron and steel manufactures from Glasgow in the past week have leen necessarily small, owing to the suspension Caloutta, ; £11505 worthod of machinery, chivefty for India ; \&ition
steel goods ; $£ 1554$ sewing machines ; and $£ 25,500$ worth of other articles
In th
In the coal trade business has been quiet in the course of the Gerk. The shipments from Glasgow amounted to 21,886 tons,
Grangemouth, 1,2922 ; Ayr, 7926 ; Troon, 7695 ; Irvine, 2612; and Greenock, 2373 tons. The shipping trade for the next week or two on the west coast will be considerably augmented by the
demands of the Quebec fleet, which is now being supplied with cargoes. At Bo'ness twelve cargoes of coals were sent away during the week, including one steamer which carried over 1000 tons for holidays; but orders are reported to have accumulated, so that a There was comparatively little doing at Leith, but the coal trad the 1st of January of 55,897 tons of coals is exported, as compared With the quantity despatched in the same time last year. o get up a wages agitation in the Hamilton mining district, but it had very stent much success wil attend them. The men have therefore done better than if they had lost time through strikes.
is usual at this season, however, the protability e a considerable amount of idle time probability is that there wil next few weeks. Mr. H. M'Neil, one of the speakers at the meet ings referred to, urged upon the miners the desirability of returning a
sent disorganised state of the miners such a thing was out of the
The twenty-fourth annual meeting of the North British Associa tion of Gas Managers has just been held at Dundee under the
presidency of Mr. John M'Crase the manager of the local casworks In the course of his address the chairman gave it as his opinion Ithough there were several defects still to be remedied, the mos
over the whole setting, and the inability to reach certain parts of reference to at certain times and in certain circumstances. makers to certify the cocrocentess of the registering part
as well as the measuring part of every meter. He saw no reason why the measuring part of every meter. He saw no
hous, which is so yich in hydrocarbons
hould be compressed into cylinders and ing tram-cars, omnibuses, railway trains, and for other pur peare, and Mr. Dalzell, Kilmarnock, and Mitchell, of Edinburgh
y. Mat vice-presidents; and it was agreed that next meeting take place a counburgh. A number of interesting papers were read in the
course of the day including one by Mr. Mitehell, of Edinburgh, on the regulation of pressure in street mains, especially in elevated districts, and the duties of gas companies and corporations to thei-
onsumers in this respece.
The report of the Arizona Copper Company for the half year
ending 31st March has iust been issued to the shareholders, a large nding 31st March has just been issued to the shareholders, a larg during October, November, and December the cost of producing the copper at Clifton was in excess of the price that could be
realised. The directors are of opinion that the company can coninue its business, and so far pay its way even at present prices but that any material fall in pries, unacompanied by a corre-
sponding fall in wages and freights, which is hardly to be antici-
pated, pated, would prove very embarrassing.

WALES AND ADJOINING COUNTIES.
Apart from a lessened demand for coal, there have been severa things. The most serious last week was the fracture of the crank of the engine at No. 1 pit, Merthyr Vale, which has led to a com number of men out, as it was a very busy colliery, but by working hree shifts per diem in No. 2 some modification of the difficultie as been brought about, though this must be, I should imagine, a
some hazard with regard to ventilation. The engine, an old nava one I believe, was a fine one and the largest in the country, and the replacement must be costly, possibly $£ 2000$. At the same oxiery a misunderstanding amongst the workmen has also been
extant; but, fortunately, Mr. W. T. Lewis and "Mahon " brought about a peaceful settlement on Saturday. Mr. Lewis and the Ash in settling what is called the pitwood disputo. woul not be required the next day, and it was not until Tuesday that anything like operations were resumed, coal to the extent o several thousand tons in excess of demand having been raised. In
addition, I have heard of important collieries in the Rhondda the only worked in the week appear to be about the best. Ocean collieries, too,
have been slack. The result has been more inanimation at the ports than one likes to see, but shippers and coalowners are
hopeful, and believe the quietness is only temporary. at week recerrend several Admiralty contracts which were one for Gibraltar, and the Glamorgan, and Lockett and Judking the others for Portsmouth and other depots.
Prices remain about the same, notwithstanding the falling off in demand, and small steam is firm at 5s. per more for lack of tonnage than weakness in demand ; generally
speaking the coal trade there is moderately good. For paten
fuel enquiry is not quite so brisk, and shipments have been fuel enc
limited.
In rron and steel there is not much to chronicle. Dowlais has await the completion of the new pressing engine. Thi shipments of rails, dc., from the astrict have been limited, and principally
confined to consignments for Sundswall and Smyma is coming more freely into Cardiff and Newport, though I have a ment intession that this is not so mucch due to present requiresanitary authorities. The probable advance in price may lead for
a time to more buying for stok, a prudent measure in the view of prices getting into better tone In tin-plate ware good cargoes have left Swansea during the past
week, notably 3000 tons by the steamers, Warwick and Brooklyn Prices few fork.
15 s ., and some brands certainly firmer. Cokes are bought from 14s. 3d. to coke, fetched readily from 15 s . to as 15 s . dd . Altogether the united
action of mater stop week, which is now on, may do good. A little time will show. The stop, is being well carried out in incokes. Charcoals are being
made, as that kind of plate is not in abundance. The carriage shed of the Taf Vale Railway was destroyed by Great progress is reported with the Barry Dockks. During the
last few days the work of shutting out the tide from the new docks was successfully accomplished. This was done under Mr. We docks personal superintendenee, ably supported by Mr. C. H. Walker.
The heavy work at Wenvoe Tunnel is being pressed forward, and
it is expected the it is expected that in a short time 3000 men will be at work. This week one collier was fined for having matches in his possession, and The wages at the OCean oclineriess are to remain unchanged
acoording to the action of their scale. \square
Those Plaguy Belis.-The Amerioan Lumber World says :How many pounds of lace leather do you use in a year? Figure it
up and see what it costs you. Figure up how many inches of belting you waste every year by cutting off the ends where the hooks or been wasted in stopping to lace belts. Get all these figures down fine and then go to town and learn to make a cement joint. Get fish glue, and make the coment yourserfif Uet some one "isinglass" or
two parts of common glish and
widthe width too long. Scarf the ends a distance equal to the extra length. Take a very little hot cement on the brush, and work it into the splice. Rub both ends until it is just wet-not covered. The less
cement you get int the joint the stronger it will be. Put the splice together on a hardwood board, or better still, a smooth iron. Hammer lightly with a round face. Don't try to drive the pegs usiness. After pegging trim with a sharp knife. Cut all the phegs off close to the leather. In ten minutes the belt will be ready togo
to work. It would be better if it could stand an hour or two after splicing, but the glue sets very quickly, and a joint seldom comes
apart. Try the cement joint and see how much nicer everything runs. Put a cemented belt on one pulley of an upright moulder
and run the other spindle with a big laced joint. What a difference you find. The laced belt makes you think of the shaker to a grist
mill, while the cemented belt runs smooth and nice, and you don't hear it at all. belts and cement jelts joints. Put them in big belts, little of lacing or another belt hook. It takes longer to make a cement splice. You can lace three belts while you are cementing one, but splice gives out. Figure that up, too, and put it beside the pile of
lace leather and torn belt ends, belt hooks and malleable iron

NEW COMPANIES.

 The following companies have just been regis Anglo-Continental Gas Lamp Company, Limited. This company proposes to manufacture gaslamps and apparatus of all kinds for light, heat, notive power, ventilation, or to carry on the business of mechanical and ga engineers and manufacturing chemists. registered on the 16th inst., with a capital of
ع90,000, in 6000 redeemable preference shares of $£ 10$ each and 30,000 residuary shares of $£ 1$ each the company is
each member.
A. MeGechie, 21 , Sparshold-road, Crouch-hill, ${ }^{\text {L1 shares }}$

 The number of directors is not to be less than
three, nor more than seven; the subscribers are hree, nor more than seven; the subscribers are
to appoint the first and act ad interim ; qualifica to appoint the first and act ad interim; qualifica-
tion, \&100 in shares or stock; remuneration, $\{200$ tion, aliou in
per annum.

Bridge Cement Company, Limited. This company proposes to adopt an unregistered
agreement (of which no particulars are given) made with Messrs. T. C. Hooman, C. Chapman and B.P. Harris. The company was incorporated on the 21st inst, and proposes to carry on business The capital is \&ask manufoonacturers, and coopers.
follow shares, and the
Toling are the first subscribers:-
${ }^{*}$ F. P. P. . Harris, Southffeet, Kent, former

The number of directors is not to be less tha two, nor more than four; the first are the sub scribers denoted by an asterisk. The company in

IntercolonialSteam Navigation Company,Limited. This company proposes to trade as general
carriers and shippers from England to and from carriers and shippers srom England to and from
the Island of Maritius, Madagascar, Diego Mauritius; and between Mauritius, Madaciesasar. nd the East Coast of Africa. It was registered on the 17th inst., with a capital of $£ 250,000$ in $£ 5$ hares. The subscribers are:-
Sir Gilbert Edward Campbell,
court, Fleetststreet, accountant Bart., 5, Mitre. Shares
 street, secretary to the Patent Porous Carbon

The number of directors is not to be less than
five, nor more than twelve ; qualification, 50 five, nor more than twelve; qualification, 50
shares ; the first are Sir Francis Knowles, Bart., Major-General Charles Frederick Browne, Ad
miral Roys, Captain T. P. Harper, MMesrs. A
Bremen F, P, de la rebert Barnard, and the subscribers denoted by an asterisk. Each dire stor will bers entited by to
two guineas for every board meeting attended, two guineas for every board meeting attended,
also to a salary of $£ 100$ per annum. The board will be further entitled to a sum equal to the
same rate per cent. upon the annual divisible ame rate per cent. upon the annual divisible
profits, as such divisible profits bear to the capital pronts, whe sh they are declared. Pursuant to an
upon whit
agreement of the 14th inst. Mr. T. J. Killeen is agreement of the 14 th inst. Mr. T. J. Killeen is
appointed managing director, and is to receive
ape 2000 fully-paid shares and a salary of $\& 1200$ per annum; this appointment is for fife, provided
the managing director continues to hold 1000
shares. Sir Gilbert Edward Campbell, Bart., is sappointed secretary.

Self-threading Needle Company, Limited. This company proposes to purchase and work
a cegrainenvention referred to in an unregistered
Rgement of the 20th inst., between William Rutton May and Charles Grant. The company
vas incorporated on the 22 nd inst., with a capital was incorporated on the 22 nd inst., with a capital
of $£ 30,000$ in $£ 1$ shares. The subscribers are:-
 W. Maxwell Gow, 307, Vauxhall Bridge-road
F. Winn, Watorar, Herts. clerke,
H3, Ashchurch-grove, shepherd
W. Wilson "Alëxanäder," $\mathrm{i0}$, " Arthur--street Ẅesi.,
 The number of directors is not to be less than hree, nor more than seven; the subscribers are to appoint the first and are to act ad interim
qualification, 200 shares ; remuneration, $7 \frac{1}{2}$ pe ent. upon the profits declared and divided.

Van Gelder, Apsimon, and Co., Limited. This is the conversion to a company of the machine makers, carried on my wrights, and Gelder and Apsimon, at Victoria W orks, Sowerby
Bridge, York, and 3, old Ropery, Liverpool. It was registered on the 17 th inst., with a capital
$£ 40,000$, in $£ 10$ shares. The subscribers are :-

Thomas Apsimon, Birkdale, milling engineer
Whilliam Darbes,
W, Rumford-place, Liverpooi,

 James Duff, Halifax, chartered
Mrs. M. V. Humphreys, Halifax

The number of directors is not to be less than three, nor morhe subscribers denoted by an asterisk; the first are the subscribers denoted Stopes and Co.,
and Mr. H. Stopes, of Messrs. H. Stopes 24A, Southwark-street. Me company, in general dors are appointed managing directors, and each will be entitled to $£ 300$ per annum, with an
additional $£ 50$ for every 1 per cent. dividend beyond 5 per cent. per annum
Marine Biological Association of the United Marine Biologioal Kingdom.
This association was registered on the 17th inst. as a company limited by guarantee to 5 s . each
member, with Board of Trade licence to dispense with the word "limited "in the title. Its object is to promote the investigation of the biology (in
its widest sense) of the animals and plants found its widest sense of the animals and plants yound
on the coasts of the United Kingdom, and for such purpose to establish and maintain laboratories efficiently equipped with the boats, dredging implements, and oother apparatus, required for
scientific investigation of marine life. The subscientific inve
scribers are:

The management will be vested in a council consisting of the governors, the officers, and fourten other members.
THE ELECTROLYTIC REDUCTION OF FINE COPPER FROM ITS ORES.* The Italian Copper Mining and Electrometalurgical Company, of Genoa, which re-
ceived the second prize of 5000 lire, deseribesDingler's Polytechnisches Journal-the process Which has been adopted for some time past at
heir works at Casarza, near Sestri-Ponente, as follows:-The plant includes twenty Siemens electrolytic dynamos, giving a current of 250 amperes at 15 volts tension, each of which serves
twelve reducing baths. Part of the ore, varying twelve reducing baths. Part of the ore, varying
in amount according to circumstances, is smelted to a coarse metal, containing copper 30 , sulphur 30, and iron 40 per cent., which serves as the anode. Another part of the ore is roasted and
lixiviated to form a solution containing as much lixiviated to form a solution containing as much
copper sulphate as is required to render the
ferrous sulphate of the anode useful for the errous sulphate of the anode useful for the
electrolytic decomposition of the copper salt. The order of the operation is as follows :-
Preparation of the anodes.-The ore intended for this purpose is smelted for coarse regulus in he usual way. The regulus is cast into thin to form the conductor for the current. The anodes so prepared are placed in the decomposing cells, thin sheets of copper being used as cathodes.
Preparation of the solution. -The ore roasted o as to produce the necessary sulphate for the bath is systematically lixiviated with an addition
of sulphuric acid to dissolve any oxide of copper formed in roasting the liquor, containing copper and iron sulphate, is kept in tanks and added to
the bath as required. The copper sulphate is the bath as required. The copper sulphate is
decomposed by the electric current, copper being deposited on the cathode, while the anode is attacked with the formation of iron salts and
sulphuric acid, which prevents the deposit of iron and the evolution of hydrogen, so that the copper deposits in a compact form and chemically pure.
The saturation and proper composition of the solution is maintained by connecting the baths by
pipes with the liviviating and recular ciroulation of the liguor is tept un The solution has a sufficient oxidising power to dissolve up metallic sulphides, in some cases
without requiring a preliminary roasting. The greater part of the electro-motive force necessary or the decomposition of the copper sulphate is
furnished by the oxidation of iron in the anded so that for the remaining work in the bath an electro-motive force not exceeding one volt is
sufficient. The exhausted anode may be utilised or the reproduction of sulphur or sulphuric acid When the solution is overloaded with iron vitriol
it is removed from the bath, and the last traees
of of copper are recovered by precipitation with
sulphuretted hydrogen, which is produced by sulphuretted hydrogen, which is produced by
adding regulus to the acid liquor. A the same
time the iron salts are reduced to ferrous sulphate, time the iron salts are reduced to ferrous sulphate,
and the free sulphuric acid is neutralised. The and the free sulphuric accid is neutralised. .The
iron vitriol may be recovered by crystalising, from copper, are run to waste. If the baths are properly arranged, and care be taken to keep the liquors in circulation at the proper strength, a maximum yield of 44 lb . of copper per horse-power
employed may be obtained daily. The process appears to be particularly well adapted for mines obtainable, but which, owing to the difficulty of obtaining, and the high cost of mineral fuel, are
unfavourably placed for smelting operations.

Silver Mines of Bolivia.-The Bolivian Government levies a tax of 4s. 6d. for each ounce
of silver, and this, says the United States Minisof silver, and this, says tha Paz-has been farmed out. The product of the mines of Bolivia is estimated at increasing as new machinery and methods are being introduced. The Huanchaca mines, situated
in the southern part of Bolivia, in lat. 20 deg. S. and long. 67 deg. W., in a south-western direction from Potosi, are considered the richest, and pro-
duce about $5,600,000$ oz. Potosi is still produc. tive after being worked over 250 years, and yields annually about $1,200,000 \mathrm{oz}$; and the mines of Oruro produce about $1,200,000 \mathrm{oz}$. The Guadelape, situated about 100 miles south of Potosi, $9,300,000$ oz. The Colquechaca mines in the or vince of Aullages, about lat, 18 deg . S , directly north of Potosi, are considered the richest after those of Huanchaca, and it is estimated that they yield about $3,200,000 \mathrm{oz}$. There are many small mines distributed over the Bolivian-Andean plateau which produce well, the estimated quan-
tity for the year 1883 being $3,500,000$ a grand total of $16,000,000$ oz,

Proceedings " Inst. Civil Engineers.

THE PATENT JOURNAL.
Co

** It has come to our notice that some applicants of the the Patent-oftce Sales Department, for Patent Specifications

 giving the number of the pape of Ther Exicer oriciat wh hich
the Specifcation they require is refred te a
 Index, and giving, the numbers there found, which only
refer to the pages, in place of turning to to those pagess and refer to the pages, in
finding the number

Applications for Letters Patent.

 ** When patents have been "communicated," thename and address of the communicating party are
nrinted in italics. 21 st July, 1885 ,
8757. Stockina
SUsPENDER, ©c., s57. Stockina Suspender, de., F. E. Taylor, Bir-
 8759. ITvoinderseent Gas Fires, T. Fletcher, Man-

 W. W. Woods and H. S. Grimsley, Reading
8764. Hix Rer Res and GUARD C. R. Chichester, Ros.

 b77e Rki, Belgium.) rahan, Canada.)
8777. NEUTRALISI

8785. ATtachinso NETS to their Sopponts, w. H.
8786.

8794. Bleachina Vegiable textle Fabrics, w.
Mather, London.

 Sutton.
880. Boiler FUrnacks, W. Noble and A. Mackie,
Sutton. Sutton.
8sut. Skerp
States.) Shears, w. Clark.-(E. Kellogg, United

 deverage from the LEAVEs of
Movewnen, ILonon
Movement and TELEaraphy, P. 8811. SrNorronous
B. Delany, Londo
ssio

 Valk, Holland.)
8823. PRIMARY BATtERIEs, J. Noad, London. 22nd July, 1885.
8824. Pelerine Machinss, A. W. C. Shuttlewood,
London.
 Marriott, sheffield.
Alien and F, Lorrime for Advertsina Purposzs, J.

 SELIF-ADNUstisa Bortue HoLDER, T. White,

 T. Rochford, Birmingham.
TERATINO Buous, de., G. M. Newhall and J. H.
 C. Myors, Wilikd and strap for Looms, G. Bartle
AsTENERS for GLovzs, de., G. R. McDonald, London.
S847. SToppisa and Startino Vehioles, T. Mortis,
 BLLLIADD CURS, W. Butterer, London.
SUSPENDINO PTITVRBE, E. Tonks Londo
 8852. SEREMYOE CISTRRRs, de., for Wattr-closets, A. Deas, Glasgow
88ss. Gumb of SkiLL, Vincenzo, Count di Tergolina,
ITndons S84. GAME of Skilu, Vincenzo, Count di Tergolina,

8880. Insulator for blectrion' Apparatus, B. Pell,
London ELectric Generators, E. and A. E. Jones, Lano Curtans, R. F. Carey, London.
Howey substrute, C. Lyle and J. J. Eastick, don. Living, de., Boarts, P. G. B. Westmacott,

 Wood, London.
Fr. SiEve or Strangr, w. W. Lako.-(A. H. Prauciel, Beots, G. M. Tebbutt, London.
DRAWIso Bo Ro RD, de., J. Wellett,
 75. Fasteniva Tips or STu
P., and A. Cave, London.

28 rd July , 1885 .

 8886. Traction Exaises, E. Foden, Manchester.
8887. PONCHING MACHINE, J. Mcসlurdo, Manche
 Ey.
 8891. Whirt for Spiswiva Purposss, w. Skett and G
 ${ }^{8893}$ Birmicrole Lamps, J. s. Edge, jun., and S. Snell,

 Leck Moro, W. Wlough, London.
EATs of CLosme E. G. Colton and D. T. Bostel,

 Beckingsale, London.
s900. RoLLINO and Foroing Mgtals, H. W. Hollis Loovion. Driviso Belts and Ropss, H. J. Haddan.- $(F$.

London. 897. Conting Photoaraphio Platrs, B. J. Edwards,

8918. NET. and other Haulisa Machise, T. Cain,
London

 London. 24 h July, 1885.
s927. Testing Yarns or Thread, R. Wallwork, Man-

8919. Candlestioks, W. Green, Harborne.
8920. Thrasing MAchines, E. Foden, Manchester.
8921. Locking Nuts on Fish-plate Bolts, T. V. Rio
 Harvey, Preston.
8922. Photogaphic Printing Apparatus, C. D. Durnford, Edinburgh.
B939. RULINa Indicator Diagrams, F. H. Livens,
Lincoln. Sincoln.
SAFETY Stirrup, E. Allen, Harden, and B. Cope,
Bloxwich. 8941. Railway Chatrs, M. Murray and A. Macredie, London.
8923. Crair and Pipe Light, o. Polenz.- (N. B.
Denys, Sennys, singapore.)
8943, Couplna, \&ata., RAILWAY and other Vehicles, D.
Davies, Sheffild. 3944. SETringe, \&c., Hat Bodies, J. E. Mills and T.
Ashworth, London. Ashworth, London.
8924. Solirtire, C. H. Brigg and T. Ainley, Elland.
8925. KNTTINE STockings. ©c., W. Rothwell, London.
8926. many.)
8927. Nexde Threaders, J. Darling, Glasgow.
 London.
8928. Exposives, D. Johnson, London.
80.KING LADDERS or STEPS, J. W. Cowland, London.
8929. Brides of Double Eye-glasses, W. Curry and
J. F. Pickard, London.
 London.
8930. Preventina Explosion of Steam Bollers, B.
Meyer, London. 8957. Fininges-Making Machines, J. Pacey, London.
8931. Ventiating, C. Ching, London. 8958. Vevitilating, C. Ching, London.
London. London.
8932. Gover London. London.
s961. WIRE Rope, G. R. Cooke and S. R. Millen,
London. London.
8933. Primary Electrical Batteries, C. D. Barker,
London. London.
8934. SUBSTrutes for Leather, M. Zingler, London.
8935. PowER, \&C., for PAReOETS, \&c., A. J. Boult.-
(C. Wittleonsely, Ger (C. Wittkowsky, Germany.)

25th July, 1885.
3965. Extracting, \&c., Gold, \&c., W. H. Duncan,
Coalbrookdale. Coalbrookdale.
s966. Warming Apparatus for Greenhouses, de., e.
A. Rippingille, London. A. Rippingille, London.
8967. Copering, W. Brown, Birkenhead.
3968. WATER-CLosETs, W. F. Buchan, Edinburgh.
8969. ADVERTISING, R. Crawford, Southsea
970. Regentrative. Hot Blast Suovisea, for Heating
Air, \&co., A. C. Hill, Middlesbrough. AIr, \&c., A. C. Hill, Middlesbrough.
897. Foodiva Lamp for Photographio Work, tc., W.
J. Lancaster, Birmingham J. Lancaster, Birmingham.
892. TAPP or COCKs, C. H. Ancill, Birmingham.
8973. SEPARATION of AmMonIACAL Products, L. Mond

Liverpool.
8974. Duss Collecror, \&c., for Corn, \&o., Mills, G.
F. Thompson, Warwick. 8975. Improved Stopper, J. Lees, Manchester.
8976. ApJostable Winvow Blinds, J. E. Walsh.-(M.
G. Mitter and . Ehlert, Germany.).

 8979. Slotring Machines, S. Dixon, Manchester.
9980. Fire-grates, J. J. Sumner and E. Higginbotham, Manchester. Facer, Manchester.
B98. Artices of Jewellery, W. L. B. Hinde,
London. 8993. SHuTrLe-boxes of Looms, N. Wood and W.
Harris, London. Harris, London.
8984. Dress-cotring, S. A. Cooke, London.
8TRAW SHoE Soles, E. Edwards.-(M. Serra, France.)
8986. FITERs, James Clayton and Joseph Clayton,
Manchester. 8987. Gaivanio Plant Invigorator, \&c., R. G. Owen,
8988. CIGAR CAses, \&c., A. Whowell and E. Chadwick,
London. 8989. Brick Kilns, O. Hertrampf, London.
8990. Lamps, O. Ney, Berlin. Berta, Germany.) Lanterns, L. A. Groth.-(F. I Berta, Germany.) Livt, L. A. Groth.-(G. Bregoli,
s992. Mrohanical
Italy.) Italy.)
8993. Carbonate of Potassiun, F. Brunjes, London.
8994. PREParING " Hopeine," F. Springmuhl, London. 8995. Prearring Hopeine, F. Springmuhl, London
Dreyer, London. Dreyer, London.
9996. Carriages for Machine Guns, T. Nordenfelt, London.
s997. Febing Yarn to Machines, W. Sanders and L
Slowin, London. Slowin, London.
8998. Brekeh - LOADing Fire - Arms, H. schlund
London. London.
8999. ANTISEPTIC Compound, F. G. Broxholm, London.
9000 . AUTOMATIC GAs GoverNor, A. Kinnear, London. 8999. ANTISEPTIC Compound, F. G. Broxholm, London.
900., AUTMATIG GAs Govervo, A. Kinnear, London.
9001. SELM-LIGHTING GAS BURNERS, A. Kinnear, London. 9002 . Cartridee for Mines, J. Mitchell and J. Sin clair, London.
9003 Limprisg Explosions, J. Mitchell and J. Sinclair, London
9004. Storm Lantern, E. Jehu, Welshpool.
9005. Brake for Perambulators, dc., J. Main, Brix-
ton. ton. Utilising a Substange for Making Gloves, W
Walton Bishopwearmouth. 9007. PAVEMENTS for Footraths, E. B. Ellice-Clark 9000. Friving Machines, W. Fairweather and R. F.
Peel, Manchester. 900. Prevchting. the Unequal Wear of Leaters
of Drawing-ofe Rollers of Combing Machines, W. H. Greenwood and F. Farrar, Bradord.
9010. Windina Yarns or Thread, J. Binns, Leeds. 9011. Rollers for Wringing, dc., MAchines,
Thornton, Halifax 9012. SLATE Yencil Sharpeners, J. Putnam, U.S.
901. FIBH-PLTEE for Rails of Tramways, dC., R. H
Twige, London 9014. Improving the Tone of Stringed Instrumenets 9015. Prepparing, dce., Infusions from Tra, de., G
H. Hobbs, Hanley. 9016. Handle Bars for Velocipedes, F. J. J. Gibbons
London. 9017. Ovens for Drying Slurry, \&c., J. H. Wood,
London. 9018. Box for Developing, \&c., Photographic Dry
Plates, J. Burke, London. PLATES, UBELLA STICK, H. Cintrat, London.
9020. SALRELING STATTLE, \&., T. V. kurdan, London.
9021. Roors, J. B Spe
 E. Newton.-(A. Nobel, France.) E. Newton.-(A
9023. Explosive Compounds, H. E.
Nobel, France.). No24 Machinery for Sifting, de., Grain, E. P.
Alexander.-(A. Millott, France.). 9025 . Wereled Vehicles for RAILS, de., T. E
Knightley, London. Knightley, London.
9026. SEATS for PERAMBUATORS, G. Pounce, London.
9027. Cocks or VALVES, A. G. Brookes.-(c. H. Gerson, Germany.)
9028. Rkoist
9029. Electrical Arc Lamps, A. F. Link.-(L. Scharn 9030. LAWN TENNIs Bats, C. Malings, London. 9031. Keys, \&c., for Securing Railway Rafis, E. W.
Stoney, London. 9032. Starting, de., Wheleled Vehicles by Traction, L. Duhamel, London.
903s. Regulativa Suply of Grain to Militisa 903. REGULATING Henveberg. London.
MioHINERY, W. Hend
9034. COMBNG WOOL, ©.., W. Wradley, Bradford.
9035. Loose HEAD for SUNKEN BoLTs, A. B. Perkins, 9034. Loose HEAD for SuNken Bolis, A. B. Perkins,
London.
9036. Fire Alarm, G. F. Redfern.-(A. Bruynell,
 9038. FEED-
France.)

SELEOTED AMERIOAN PATENTS

 (From the United States' Patent oflce oficial Gazette.) 320,158. Core for the Armatures of Dynamo-kiectric Machines, Hans J. Miller, Nevo York, -Filed January 20th, 1885.
Claim. - A Siemens armature core formed of a single
block of metal, provided with a series of transverse block of metal, provided with a series of transverse
ventilating apertures extending from side to side and ventilating apertures extending from side to side and
dividing the central portion into transverse gridiron

bars, the said transverse apertures between the bars
having the same cross section from the outer surface having the same cross section from the outer surface
of one side of the armature core to the outer surface of the opposite side, substantially as herein shown and described
320,185. Friotion Drill Brace, Richard S. Solomon,
Cape Town, Cape of Good Hope.-Filed April 8th, Cape 185.
aim. - The combination, in a drilling brace, of the collars A A, forming a tapered or V-shaped groove on
the spindle B, with the pawl C, set at an angle to the

spindle in the angular chamber or recess F in the
stock D the whole constructed, combined and arranged to operate the brace by friction, substan-
tially as described. 320,280. Por SAF

- Filed April 25th, 1885 . ${ }^{2}$. Pearson, the valve having a spring-supporting surface, a casing having a stud or bearing for the spring independent
of the valve, and a volute spring interposed between of the valve, and a volute spring interposed between
the valve and bearing, tthe form of the spring enabling a guiding spindle to be dispensed with, and the length of the casing to be reduced to the minimum, as set
forth. (2) In a pop safety valve, the combination of Yorth. (2) In a pop safety valve, the comben and sup-
the valve, the disc or plate c above the valve
ported thereby, the casing over the valve, the adjust-

able stud in the top of the casing, and the interposed operate without a guide or spindle. (3) In a pop safety valve, the combination of the vallae-supported
dise or plate e, the stud f, the interposed volute spring, and the flexible diaphragm clamped centrally between
the upper end of the spring and the stud margin between the lower end of the spring and the
320,285. Electric Ianiter for Gas Engines, D.S.
Regan, San Francisco, Cal,-Filed December 6th,

1884. (1) In an electrical igniter for gas engines, the combination with a gas chamber of terminals finger carried by the piston head for breaking the
circuit, substantially as set forth. (2) In an electrical

igniter for gas engines, the combination with a gas
chamber of terminals normally in circuit located within the samee one of said terminals being locatated
and the other stationary and a finger carried by the and the other stationary, and a finger carried by the
piston head and adapted to break the circuit, sub-
stantially as set forth. (3) In an electrical igniter for
and stantialy as set forth. (3) In an electrical igniter fo
gas engines, the combination with a gas chamber of a
pivotted lever, a stud, said stud and lever being
normally in contact, and located within the gas
chamber, wires connecting with the dynamo and chamber, wires connecting with the dynamo, and
means for breaking the contact of the stud and lever. (4) In an electrical ingiter for gas engines. the dynamo
O and insulated stud, in combination with a pivotted O and insulated stud, in combination with a pivotted
lever, the connecting wires $P Q$, and a finger carried lever, the connecting wires P Q, and a finger carried
by the piston head, substantiall as set forth. (5) The
dynamo O , connected by a wire P , with an insulated dynamo O, connected by a wire P, with an insulated
stud having its contact end located within the gas
chamber and the connecting wire Q attached to the enginer and combination wing a movale lever within
enge cas chamber, pulley 11 and N , located the gas chamber, pulley \int and N_{1}, located as described,
a belt connecting said pulleys, and means for breaking a belt connecting said pulleys, and means for breaking
the contact of the stud and lever, substantially as set
for the the contact of the stad and lever, substantialiy as set
forth. (6) In an electrical igniter for gas engines, the
combination with the gas chamber of an insulated combination with the gas chamber of an insulated
stud, a pivotted lever, stud, a pivotted iver, said stud and lever being nor-
mally in circuit, and a finger carried by the piston
head and adapted to break the contact of the stud and head and arapted to break the contact of the stud and
lever, substantially as set forth. (7) In an electrical lever, substantially as set forth. (7) In an electrical
igniter for gas engines, the combination with the gas
chamber of terminals normally in circuits loe chamber of terminals normally in circuits located
within the same, one of said terminals having 2 slot within the same, one of said terminals having a slot
and a finger having a bent end, and carried by the
piston head to engage the same, substantiolly piston head to engage the same, substantially as set
forth. 320,297. Manufacture of Finanents for Incan-
DEsgent Lamps, Frederic shaefer, Boston, Mass. Caim. Filed November 26th, 1884.
Claim.- (1) TTat improvement in the art or method consists in laying a thread over a yielding carbonisable former, the said former receiving its shape from a mould, which is removed from the former after the
thread has been wound thereon, then simultaneously thread has been wound thereon, then simutaneously
carbonising the thread and former. whereby the
molecular structure of the thread or filament is in no

way subjected to a strain, the former yielding in the carbonising process, thus obviating the breaking of
the filaments, substantially as described. (2) That
improvement improvement in the art or method of manufacturing filaments for electric lamps which consists in laying a ing carbonisable former, and simultaneously, car-
bonising the thread and former located within it, thus preserving the thread upon the former in a convenient
form for shipment, substantially as described. 320,512. Manhoue Covers for Bollers, Frank
Trovobridge, Fond du Lac, Wis.-Filed March 9th, Claim. - (1) In a man or hand hole cover for steam
oilers, sewers, \&c., the combination of the cover sorew, eyes, a pivotal bolt, and cover-securing bort,
substante
substalily as described.' (2) A man or hand hole substantially as described. (2) A man or hand hole
cover comprising the following elements :-A flanged

cover having a gasket or packing ring, screw eyebolts, a pivotal bolt, and a securing bolt having serewand nut, substantially as described.
320,525. Pacoiva For Piston-RoDs, Willis Augustus,
Keokuk, Iovoa.-Filed February 4th, 1885. Claim, - (1) In a packing for piston-rods and similar
articles, a metallic packing ring provided with a rectangular end operating within a spherically con-
caved socket, for the purpose substantially as de caved socket, for the purpose substantially as de-
scribed, (2) In a packing for piston-rods and similar

320,525

articles, a stuffing-box provided with a gland having
an enlargement extending outward, forming an oi an enlargement extending outward, forming an oil
cell, a socket provided with a flange extending into
ent said cell, and a metallic packing ring constantly
forced into the socket by a spring, all adapted'to operate as described.
320,605. Blast Furnace, Peter L. Wiemer, Lebanon
Pa.-Filed April 13th, 1885 . Claim. - (1) The combination, with the crucible and
bosh of a blast furnace, of a cooler or refrigerator operating automatically to admit air in varying quan
tities at different points in the height of the structur tities at different points in the height of the structure
upon the outer surface of the masonry forming the
wall of said crucible and bosh, substantiol upon the outer surface of the masonry forming the
wall of said crucible and booh, substantially as
described. (2) The combination, with the crucible
and bosh of described. (2) The combination, with the crucible
and bosh of a furnace, and a binding consisting of
beams of metal separated and connected, as shown, of beams of metal separated and connected, as shown, of
an air chamber formed by the wall of the stack and
an outer casing, to which air is admitted automatically an outer casing, to which air is admitted automatically
and in varying quantities, substantially as described
(3) The (3) The combination, with the crucible and bosh, of a series of air chambers formed by the vertical beams,
connected as shown, the outer surface of the masonry, and the casing, substantially as described. (4) In
blast furnace, the combination, with the binders for the crucible and bosh, consisting of beams of meta separated and connected as shown, of a casing having
a nnular air inlets, substantially as described. (5) In
a blast furnace, the combination of the stack and an a blast furnace, the combination of the stack and an
inclosing jacket or casing composed of separate hori inclosing jacket or casing composed of separate hori-
zontal sections having annular air inlets formed
between them, substantially as described. (6) A blast
and ontal sections having annuwar air
between them, , substantially as described. (6) A Alast
furnace stack, in combination with an inclosing jacket or casing provided with air inlets arranged in outlet or outlets communicating with the annulus
formed by the wall of the stack and the casing, substantially as described. (7) The combination of a
blast furnace stack and a surrounding casing or jacket provided with air indets arrrounged ing different horeri adapted to apply air directly to the outer surface of
the masoury forming the walls of the crucible and perature of the furnace rises and falls, substantially as described. (8) A furnace stack composed of a single wall of masonry surrounded by a metallic casing open
to the atmosphere at both ends and provided with a
series of intermediate airinlets, the supply of air being controlled autematically by varying degrees of heat in
temperature of the ascending column of air, substan
tially as dessribed. $(9) \mathrm{A}$ furrace stack, in combina
tion with a cosing tion with a casing provided with a series of annula air inlets arranged in different horizontal planes, th
supply of air being controlled automatically by vary ing degrees of heat in the furnace and the ascending column of heated air supplied with cold air at differen
points in the height of the stack. (10) The combina

320,605

tion of the furnace stack, the air chambers, and the
casing formed in sections, curved, substantially as casing formed in sections, curved, substantially as
shown, to provide for expansion of the casing. (11) The combination of the stack, the 1-beams, the hori-
zontal coupling rods, the casing, and suitable means zontal coupling rods, the casing, and suitable means
for connecting the casing to the flanges of the beams, substantially as described.
320,607. Cuvtrvayor, Albert Wilhelm, Pleasant Hill,
1ex.- Filed March 16 th, 1885 , Claim.-In a combined cultivator and sweep stock, the combination of a bear, a double stock strapped to
the beam, and having a diamond-shaped point bolted

to the lower end, an inclined brace bolted to the beam and brace, substantially as set forth.
320,841. ElETric Arc Lamp, . L. Buckingham, New 320,841. Elegrric Arc Lamp, C. L. Buckingham, New
York, N. Y.-Filed August 26 th , 1884 . Claim. - In an electric lamp, the combination of a
lifting electro-magnet for estabisishing an arc, a clamping apparatus for supporting the carbon against the
action of gravity which is independent of the lifting and feeding apparatus, and a second electro-magnet and feeding apparatus, which are independent of the
lifting and supporting devices. (2) In an electric lifting and supporting devices. (2) In an electric
lamp, the combination of an arc branch electro-
magnet, a shunt branch electro-magnet, which is magnet, a shunt branch electro-magnet, which is
called into action when the normal arc is established, called a clutch for establishing the arc through the
and
agency of the arc branch electro-magnet, which clutch is unlocked from the carbon holder, and returned to
its normal position under the control of the shunt
. 320,841

electro-magnet, and which remains in readiness to carbon holder. (3) In an electric lamp, the combina-
tion of a clutch and mechanism for cansing the tion of a clutch and mechanism for causing the clutch
to first lift the carbon apparatus, to then cause the clutch to release the carbon, and to immediately return said clutch to a position to again lift said
carbon upon an'abnormal diminution of arc resistance 4) In an electric lamp, the combination of a lifting electro-magnet and a clutch, a short circuit for said
lifting electro-magnet, and a shunt electoro lifting electro-magnet, and a shunt electro-magnet for
opening and closing said short circuit, whereby the opening and closing said short circuit, whereby the
culuth is adapted to lift and release the carbon and
to be returned to its original position upon the
establishment of a normal arc.

